1 looking at font styles in equations

For eample, in

$$
\mathbf{n}(t+1)=A \mathbf{n}(t) \mathrm{Q}
$$

both the Q and the bold font \mathbf{n} should not be italicized in the .rtf output. LaTeX never italicizes bold font in math mode (as this is never needed/wanted).

2 testing align environment

First align without an asterisk.

$$
\begin{aligned}
z w & =(3+2 i)(2-i) \\
& =6-3 i+4 i-2 i^{2} \\
& =8+i \\
z w & =(3+2 i)(2-i) \\
& =6-3 i+4 i-2 i^{2} \\
& =8+i
\end{aligned}
$$

Now align with an asterisk.

$$
\begin{aligned}
z w & =(3+2 i)(2-i) \\
& =6-3 i+4 i-2 i^{2} \\
& =8+i
\end{aligned}
$$

3 testing equation references

$$
\begin{equation*}
x=y \tag{1}
\end{equation*}
$$

The equation before this is equation 1. Alternatively one might use (1).

4 reported (non-) problems in 1.9.15

First commas in equations

$$
\text { for } x, y \text { in } A
$$

as an inline $\forall x, y \in Z$. Yet another comma example R_{1}, R_{2}
Now for the problem associated with \sum

$$
\sum=1
$$

5 Inline equations

First, test an inline equation in a paragraph of its own
$x^{2}+y^{2}=z^{2}$
Lets test baselines of equations. First compare these \qquad as well as \qquad Now descenders like y y and finally x^{2} vs x^{2} or x_{2} vs x_{2}

Parsing the tricky $\$ \$$ properly ε_{o} as an example.
First begin with simple $\$$ delimited equation such as $x+y=w$ as an example. All the equations in this section should look identical.

Next how about a simple \begin\{math\} delimited equation such as } x + y = w as an example. All the equations in this section should look identical.

Now consider \backslash (and \backslash) delimited equation such as $x+y=w$ as an example. All the equations in this section should look identical.

6 Unnumbered equations

I will start with a simple $\$ \$$ wave equation that will have no number

$$
\nabla^{2} \phi-\frac{1}{c} \frac{\partial \phi}{\partial t}=0
$$

Bug that caused crash when equation began with ···

$$
\ldots \nabla^{2} \phi-\frac{1}{c} \frac{\partial \phi}{\partial t}=0
$$

another reported crash with ldots

$$
\begin{aligned}
\ldots & =b \\
c & =d
\end{aligned}
$$

Note: Delimiting an equation by $\$ \$$ is a plainTEX command which causes inconsistent vertical distances and does not obey the class option fleqn. Therefore it should not be used in $\mathrm{A}_{\mathrm{E}} \mathrm{X}$ documents. Use $$
...
$$ instead:

$$
\nabla^{2} \phi-\frac{1}{c} \frac{\partial \phi}{\partial t}=0
$$

This is followed by a displaymath environment

$$
\nabla^{2} \phi-\frac{1}{c} \frac{\partial \phi}{\partial t}=0
$$

Here is an example of the $$
environment
\[
\nabla^{2} \phi-\frac{1}{c} \frac{\partial \phi}{\partial t}=0
$$

Here we check indentation

$$
a=b
$$

displaymath

$$
a=b
$$

enddisplaymath

7 Numbered equations

Next comes an equation environment

$$
\begin{equation*}
\nabla^{2} \phi-\frac{1}{c} \frac{\partial \phi}{\partial t}=0 \tag{2}
\end{equation*}
$$

Note that \nonumber in an equation environment still gets an equation number

$$
\nabla^{2} \phi-\frac{1}{c} \frac{\partial \phi}{\partial t}=0
$$

8 Testing equation array

Here the equation array is being tested. This equation has no equation number and is about as simple as an equation array can get.

$$
\begin{aligned}
z= & w+x+ \\
& 5 w-8 c
\end{aligned}
$$

Here the equation array is being tested. This equation has equation numbers and is almost as simple as an equation array can get.

$$
\begin{align*}
z= & w+x+ \tag{3}\\
& 5 w-8 c \tag{4}
\end{align*}
$$

Here the equation array is being tested. This equation the first and third equations numbered

$$
\begin{align*}
& z=w+x \tag{5}\\
& z=w+x \\
& z=w+x \tag{6}
\end{align*}
$$

Here the equation array is being tested. This checks for a bug when \nonumber is present in an \begin\{eqnarray*\} environment. No equations should be num- } bered.

$$
\begin{aligned}
& z=w+x \\
& z=w+x \\
& z=w+x
\end{aligned}
$$

9 Equation numbering test

This equation needs a number
$\varphi=\left|\begin{array}{c}\psi_{1} \\ \psi_{2}\end{array}\right| ; \quad$ and $\quad \chi=\left|\begin{array}{c}\psi_{3} \\ \psi_{4}\end{array}\right| ; \quad$ or $\quad \eta=\left|\begin{array}{c}\tilde{\psi}_{1} \\ \tilde{\psi}_{2}\end{array}\right| ; \quad$ and $\quad \lambda=\left|\begin{array}{c}\tilde{\psi}_{3} \\ \tilde{\psi}_{4}\end{array}\right| ;$
more text following

10 Testing math environment closing

For a while, getting latex2rtf to contain all the math elements to the enclosing was a major headache. It is working for now. Here are a few test cases.

Case 1 Here a math environment is found within an italic environment $s_{c}+1$ or s_{c}

Case 2 The odd construction $\$ \mathrm{a}+\backslash \mathrm{bf} \mathrm{R} \$$ follows $a+\mathbf{R}$ which should make "a" italic and "R" bold

Case 3 Same as above but using \backslash (to enter a math environment $a+\mathbf{R}$ roman type follows

Case 4 Same as above but using $$
to enter a math environment
\[
a+\mathbf{R}
$$

roman type follows
Case 5 Same as above but using \begin\{math\} to enter a math environment } $a+\mathbf{R}$ roman type follows

Case 6 Same as above but using \begin\{equation\} to enter a math envi- } ronment

$$
\begin{equation*}
a+\mathbf{R} \tag{8}
\end{equation*}
$$

roman type follows
Case 7 Same as above but using \begin\{eqnarray\} to enter a math envi- } ronment

$$
\begin{equation*}
a+\mathbf{R} \tag{9}
\end{equation*}
$$

roman type follows
Case 8 Same as above but using \begin\{equation*\} to enter a math envi- } ronment
Note: \begin\{equation*\} produces LaTeX error. }
Use \begin\{displaymath\} instead. }
Case 8a Same as above but using \begin\{displaymath\} to enter a math } environment

$$
a+\mathbf{R}
$$

roman type follows
Case 9 Same as above but using $\$ \$$ to enter a math environment

$$
a+\mathbf{R}
$$

roman type follows
Note: Delimiting an equation by $\$ \$$ is a plainTEX command and should not be used in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ documents.

11 Large Delimiters

11.1 Determinant

$$
\operatorname{det} A=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right|
$$

11.2 Mixed Delimiters

$$
w=\left|4 x^{3}+\left((x-y)+\frac{42}{1+x^{4}}\right)\right|
$$

11.3 Submatrices

$$
A=\left[\begin{array}{cccc}
\left\lvert\, \begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right. & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

11.4 Fractions

Simple

$$
\frac{x}{y}
$$

More complicated

$$
\frac{x+1}{\frac{x+2}{y+z+w}}
$$

Missing braces

$$
\frac{x}{y}
$$

Including braces

$$
\frac{\{x+y\}}{w}
$$

Including left

$$
\frac{\{\sqrt{y+z}\}}{w}
$$

12 fields

Problem with mbox containing $\$$ in a field

$$
x[l] \leftarrow x[(l+m) \bmod n] \oplus \operatorname{shiftright}(x[l]) \oplus \begin{cases}0 & \text { if LSB of } x[l]=0 \\ b & \text { if LSB of } x[l]=1,\end{cases}
$$

problem with correctly delimiting the above equation $x[l] \leftarrow x[(l+m) \bmod n] \oplus$ $\operatorname{shiftright}(x[l]) \oplus \begin{cases}0 & \text { if LSB of } x[l]=0 \\ b & \text { if LSB of } x[l]=1,\end{cases}$

Look at the position of the superscript in this:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]^{T}
$$

or the superscript and subscript superposition:

$$
s=\sum_{i=1}^{n} x_{i}^{2}
$$

or embedded sub/superscripts:

$$
s_{n}=s^{n^{2}}
$$

and

$$
s_{n}=s^{n_{2}}
$$

