
Figure 3.3. Services define properties and methods.

When I use the word service, as it relates to an object, I always mean a set of interfaces, 
properties, and services that an object supports. Given a specific interface or service, you can 
find the definition of that interface or service at http://api.openoffice.org. The service 
definition defines only the objects immediately defined by the service. For example, the 
TextRange service is defined as supporting the CharacterProperties service, which is defined 
to support individual properties such as the CharFontName. An object that supports the 
TextRange service, therefore, supports the CharFontName property even though it is not 
explicitly listed; you need to explore all of the listed interfaces, services, and properties to see 
what an object really supports.

 3.6.6. Interfaces and services
Although the definition of services and interfaces are available, the definition is a poor 
method for quickly determining everything about an object. You can set break points in the 
BASIC IDE and inspect variables. This is useful to see the properties. XRay is a popular 
object inspection library. Download and install Xray from OOo Macros (see 
http://ooomacros.org/dev.php#101416). I wrote my own object inspection macros before 
XRay was availabl.

Most UNO objects implements the XServiceInfo interface, which allows you to ask the 
object if it supports a specific service. 

Listing 3.8: Verify that a document is a text document.

  Dim s As String
  s = "com.sun.star.text.TextDocument"
  If ThisComponent.supportsService(s) Then
    Print "The document is a text document"
  Else
    Print "The document is not a text document"
  End If 

13



 3.6.7. What type is this object?
It is useful to know the object type so that you know what you can do with it. Here is a brief 
list of inspection methods:

Table 3.2: Methods used to inspect variables.

Method Description
IsArray Is the parameter an array?

IsEmpty Is the parameter an uninitialized variant type?

IsNull Does the parameter contain “no” data?

IsObject Is the parameter an OLE object?

IsUnoStruct Is the parameter an UNO structure?

TypeName What is the type name of the parameter?

A variables type name can also provide information about a variables properties.

Table 3.3: Values returned by the TypeName() statement.

Type TypeName()
Variant “Empty” or name of contained object

Object “Object” even if it is null. Same for structures.

regular type regular type name such as “String”

array name followed by “()”

Listing 3.9 demonstrates the statements in Table 3.2 for different variable types.

Listing 3.9: Inspect variables.
Sub TypeTest
  Dim oSFA
  Dim aProperty As New com.sun.star.beans.Property
  oSFA = CreateUnoService( "com.sun.star.ucb.SimpleFileAccess" )
  Dim v, o As Object, s As String, ss$, a(4) As String
  ss = "Empty Variant: " & GetSomeObjInfo(v) & chr(10) &_
    "Empty Object: " & GetSomeObjInfo(o) & chr(10) &_
    "Empty String: " & GetSomeObjInfo(s) & chr(10)
  v = 4
  ss = ss & "int Variant: " & GetSomeObjInfo(v) & chr(10)
  v = o
  ss = ss & "null obj Variant: " & GetSomeObjInfo(v) & chr(10) &_

14



    "struct: " & GetSomeObjInfo(aProperty) & chr(10) &_
    "service: " & GetSomeObjInfo(oSFA) & chr(10) &_
    "array: " & GetSomeObjInfo(a())
  MsgBox ss, 64, "Type Info"
End Sub

REM Returns basic type information for the parameter.
REM This also returns the dimensions of an array.
Function GetSomeObjInfo(vObj) As String
  Dim s As String
  s = "TypeName = " & TypeName(vObj) & CHR$(10) &_
    "VarType = " & VarType(vObj) & CHR$(10)
  If IsNull(vObj) Then
    s = s & "IsNull = True"
  ElseIf IsEmpty(vObj) Then
    s = s & "IsEmpty = True"
  Else
    If IsObject(vObj) Then 
      On Local Error GoTo DebugNoSet
      s = s & "Implementation = " & _
              NotSafeGetImplementationName(vObj) & CHR$(10)
      DebugNoSet:
      On Local Error Goto 0
      s = s & "IsObject = True" & CHR$(10)
    End If
    If IsUnoStruct(vObj) Then s = s & "IsUnoStruct = True" & CHR$(10)
    If IsDate(vObj) Then s = s & "IsDate = True" & CHR$(10)
    If IsNumeric(vObj) Then s = s & "IsNumeric = True" & CHR$(10)
    If IsArray(vObj) Then
      On Local Error Goto DebugBoundsError:
      Dim i%, sTemp$
      s = s & "IsArray = True" & CHR$(10) & "range = ("
      Do While (i% >= 0)
        i% = i% + 1
        sTemp$ = LBound(vObj, i%) & " To " & UBound(vObj, i%)
        If i% > 1 Then s = s & ", "
        s = s & sTemp$
      Loop
      DebugBoundsError:
      On Local Error Goto 0

15

http://ooomacros.org/dev.php#101416
http://api.openoffice.org/


      s = s & ")" & CHR$(10)
    End If
  End If
  GetSomeObjInfo = s
End Function

REM This places an error handler where it will catch the problem
REM and return something anyway!
Function SafeGetImplementationName(vObj) As String
  On Local Error GoTo ThisErrorHere:
  SafeGetImplementationName = NotSafeGetImplementationName(vObj)
  Exit Function
ThisErrorHere:
  On Local Error GoTo 0
  SafeGetImplementationName = "*** Unknown ***"
End Function

REM The problem is that if this Function is called and the vObj 
REM type does NOT support the getImplementationName() call, 
REM then I receive an "Object variable not set" error at 
REM the Function definition.
Function NotSafeGetImplementationName(vObj) As String
  NotSafeGetImplementationName = vObj.getImplementationName()
End Function

 3.6.8. What methods, properties, interfaces, and services are supported?
UNO objects usually support ServiceInfo, which provides information about the service. Use 
getImplementationName() to obtain the fully qualified object name. Use the fully qualified 
name to search Google or the Developer's Guide for more information. Listing 3.10 
demonstrates how to print the methods, interfaces, and properties for an UNO object.

Listing 3.10: What can this object do?
MsgBox  vObj.dbg_methods              'Methods for this object.
MsgBox  vObj.dbg_supportedInterfaces  'Interfaces for by this object.
MsgBox  vObj.dbg_properties           'Properties for this object.

OOo includes macros to display debug information. The most commonly used included 
macros are PrintdbgInfo(object) and ShowArray(object). The WritedbgInfo(object) macro 
inserts object debug information into an open writer document.

 3.6.9. Languages other than Basic
StarBasic provides numerous conveniences not provided by other programming languages. 
This section touches on only a few of these.

16



 3.6.9.1. CreateUnoService
The CreateUnoService() method is a short cut to obtaining the global service manager and 
then calling createInstance() on the service manager.

Listing 3.11: Get the global process service manager.
oManager = GetProcessServiceManager()
oDesk = oManager.createInstance("com.sun.star.frame.Desktop")

In StarBasic, this process may be done in a single step – unless you need to use 
createInstanceWithArguments() that is.

Listing 3.12: CreateUnoService is less code than using the process service manager.
oDesk = CreateUnoService("com.sun.star.frame.Desktop")

Other languages, such as Visual Basic, do not support the CreateUnoService() method.

Listing 3.13: Create a UNO service using Visual Basic.
Rem Visual Basic does not support CreateUnoService().
Rem The service manager is always the first thing to create 
REM In Visual Basic.
Rem If OOo is not running, it is started.
Set oManager = CreateObject("com.sun.star.ServiceManager")
Rem Create a desktop object.
Set oDesk = oManager.createInstance("com.sun.star.frame.Desktop")

 3.6.9.2. ThisComponent
In StarBasic, ThisComponent references the current the document, or the document that 
caused a macro to be called. ThisComponent is set  when the macro is started, and does not 
change, even if the macro causes a new document to become current – this includes closing 
ThisComponent. Even with the pitfalls, ThisComponent is a nice convenience. In languages 
other than Basic, the common solution is to use the getCurrentComponent() on the desktop 
object. If the Basic IDE or help window is current, getCurrentComponent() returns these 
objects, which are not OOo Documents.

 3.6.9.3. StarDesktop
StarDesktop references the desktop object which is essentially the primary OOo application. 
The name originated when the product was named StarOffice and it displayed a main desktop 
object that contained  all of the open components. Examples of components that the desktop 
object may contain include all supported documents, the BASIC Integrated Development 
Environment (IDE), and the included help pages (see Figure 3.4).

17



Figure 3.4: The desktop contains components.

Getting back to the macro in Listing 3.19, StarDesktop provides access to the currently open 
components. The method getCurrentComponent() returns the currently active 
component. If the macro is run from the BASIC IDE, then a reference to the BASIC IDE is 
returned. If the macro is run while a document is displayed, probably by using Tools > 
Macros > Run Macro then oComp will reference the current document.

TIP The global variable ThisComponent refers to the currently active document. If a non-
document type component has the focus, then ThisComponent refers to the last active 
document. As of OOo version 2.01, the Basic IDE, help pages, and Base documents do not 
cause ThisComponent to be set to the current component.

 3.6.10. Accessing methods and properties
StarBasic automatically makes the methods and properties supported by an object available – 
StarBasic sometimes makes properties available that are not available using other methods. In 
other languages, the interface that defines the method that you want to call must be extracted 
before it can be used (see Listing 3.14).

Listing 3.14: In Java, you must obtain an interface before you can use it.
XDesktop xDesk;
xDesk = (XDesktop) UnoRuntime.queryInterface(XDesktop.class, desktop);
XFrame xFrame = (XFrame) xDesk.getCurrentFrame();
XDispatchProvider oProvider = (XDispatchProvider) 
UnoRuntime.queryInterface(XDispatchProvider.class, xFrame);

If the view cursor is in a text section, the TextSection property contains a reference to the text 
section. If not, the TextSection property is null. In StarBasic, I can obtain the text section as 
follows:

Listing 3.15: OOo Basic allows you to access properties directly.
If IsNull(oDoc.CurrentController.getViewCursor().TextSection) Then

18



In a language other than StarBasic, the CurrentController property and the TextSection 
property are not directly available. The current controller is available using a “get” method, 
and the text section is available as a property value. Code that uses get and set methods is 
easier to translate into other languages than code that uses properties. 

Listing 3.16: Access some properties using get methods.
oVCurs = oDoc.getCurrentController().getViewCursor()
If IsNull(oVCurs.getPropertyValue("TextSection")) Then

StarBasic allows some properties to act as an array, even if the property is not an array; 
specifically, properties that implement an interface for indexed access. Consider the Sheets 
property in a Calc document. In Calc, both of the following accomplish the same task, but 
only the second example works outside of StarBasic.

Listing 3.17: OOo Basic allows you to access some properties as an array.
oDoc.sheets(1) ' Access as an array.
oDoc.getSheets().getByIndex(1) ' Use a method.

 3.7. Summary
The StarBasic language refers to the syntax and the commands for general programming. 
StarBasic is easy to use.

Listing 3.18: Simple macro that does not access the OOo API.
Sub SimpleExample()
  Dim i As Integer
  i = 4
  Print "The value of i = " & i
End Sub

Most macros are written to interact with the OOo components. You must, therefore, learn 
about the methods and properties for each object that you want to use; this is difficult.

Listing 3.19: Simple macro that uses the OOo API to inspect the current component.
Sub ExamineCurrentComponent
  Dim oComp
  oComp = StarDesktop.getCurrentComponent()
  If HasUnoInterfaces(oComp, "com.sun.star.frame.XStorable") Then
    If oComp.hasLocation() Then
      Print "The current component has URL: " & oComp.getLocation()
    Else
      Print "The current component does not have a location."
    End If
  Else

19



    Print "The current component is not storable"
  End If
End Sub

Although the macro in Listing 3.19 is simple, it requires a lot knowledge to write. The macro 
starts by declaring the variable oComp, which defaults to type Variant because the type is not 
explicitly given.

20



 4. Examples

 4.1. Debugging And Inspecting Macros
It can be difficult to determine what methods and properties are available for an object. The 
methods in this section should help.

 4.1.1. Determine Document Type
In OOo, most of the functionality is defined by services. To determine the document type, 
look at the services it supports. The macro shown below uses this method. I assume that this 
is safer than using getImplementationName().

Listing 4.1: Identify most OpenOffice.org document types.
'Author: Included with OpenOffice
'Modified by Andrew Pitonyak
Function GetDocumentType(oDoc)
  Dim sImpress$
  Dim sCalc$
  Dim sDraw$
  Dim sBase$
  Dim sMath$
  Dim sWrite$

  sCalc    = "com.sun.star.sheet.SpreadsheetDocument"
  sImpress = "com.sun.star.presentation.PresentationDocument"
  sDraw    = "com.sun.star.drawing.DrawingDocument"
  sBase    = "com.sun.star.sdb.DatabaseDocument"
  sMath    = "com.sun.star.formula.FormulaProperties"
  sWrite   = "com.sun.star.text.TextDocument"

  On Local Error GoTo NODOCUMENTTYPE
  If oDoc.SupportsService(sCalc) Then
    GetDocumentType() = "scalc"
  ElseIf  oDoc.SupportsService(sWrite) Then
    GetDocumentType() = "swriter"
  ElseIf  oDoc.SupportsService(sDraw) Then
    GetDocumentType() = "sdraw"
  ElseIf  oDoc.SupportsService(sMath) Then
    GetDocumentType() = "smath"
  ElseIf  oDoc.SupportsService(sImpress) Then

GetDocumentType() = "simpress"
  ElseIf  oDoc.SupportsService(sBase) Then
    GetDocumentType() = "sbase"

21



  End If
  NODOCUMENTTYPE:
  If Err <> 0 Then
    GetDocumentType = ""
    Resume GOON
    GOON:
  End If
End Function

Listing 4.2 returns the name of the PDF export filter based on the document type.

Listing 4.2: Use the document type to determine the PDF export filter.
Function GetPDFFilter(oDoc)
  REM Author: Alain Viret [Alain.Viret@bger.admin.ch]
  REM Modified by Andrew Pitonyak
  On Local Error GoTo NODOCUMENTTYPE
  Dim sImpress$
  Dim sCalc$
  Dim sDraw$
  Dim sBase$
  Dim sMath$
  Dim sWrite$

  sCalc    = "com.sun.star.sheet.SpreadsheetDocument"
  sImpress = "com.sun.star.presentation.PresentationDocument"
  sDraw    = "com.sun.star.drawing.DrawingDocument"
  sBase    = "com.sun.star.sdb.DatabaseDocument"
  sMath    = "com.sun.star.formula.FormulaProperties"
  sWrite   = "com.sun.star.text.TextDocument"

  On Local Error GoTo NODOCUMENTTYPE
  If oDoc.SupportsService(sCalc) Then
    GetPDFFilter() = "calc_pdf_Export"
  ElseIf  oDoc.SupportsService(sWrite) Then
    GetPDFFilter() = "writer_pdf_Export"
  ElseIf  oDoc.SupportsService(sDraw) Then
    GetPDFFilter() = "draw_pdf_Export"
  ElseIf  oDoc.SupportsService(sMath) Then
    GetPDFFilter() = "math_pdf_Export"
  ElseIf  oDoc.SupportsService(sImpress) Then
    GetPDFFilter() = "impress_pdf_Export"

22


	 3.6.2.  Object
	 3.6.3.  Structures
	 3.6.4.  Interfaces
	 3.6.5.  Services
	 3.6.6.  Interfaces and services
	 3.6.7.  What type is this object?
	 3.6.8.  What methods, properties, interfaces, and services are supported?

	 3.6.9.  Languages other than Basic
	 3.6.9.1.  CreateUnoService
	 3.6.9.2.  ThisComponent

	 3.6.9.3.  StarDesktop
	 3.6.10.  Accessing methods and properties

	 3.7.  Summary

