[4] for Θ in terms of B and V gives

$$\Theta = \frac{\hbar}{k_B} \left(6\pi^2 \right)^{\frac{1}{3}} \left(\frac{B_T}{M} \right)^{\frac{1}{2}} V^{\frac{1}{6}}$$
 (18)

leading to a definite relationship between δ_T and γ_G : $\delta_T = 2 \gamma_G + 1/3$. But Equation (18) is too simple,

Equation above written with MATHTYPE (copied from OpenOffice file

Equation below written with Libre FORMULA

$$\Theta = \frac{\hbar}{k_B} (6\pi^2)^{\frac{1}{3}} \left(\frac{B_T}{M}\right)^{\frac{1}{2}} V^{\frac{1}{6}}$$

Equation below written of MATHTYPE (fresh, not copied, i,e., insert object...)

$$\Theta = \frac{\hbar}{k_B} \left(6\pi^2 \right)^{\frac{1}{3}} \left(\frac{B_T}{M} \right)^{\frac{1}{2}} V^{\frac{1}{6}}$$