[4] for Θ in terms of B and V gives

$$
\begin{equation*}
\Theta=\frac{\hbar}{k_{B}}\left(6 \pi^{2}\right)^{\frac{1}{3}}\left(\frac{B_{T}}{M}\right)^{\frac{1}{2}} V^{\frac{1}{6}} \tag{18}
\end{equation*}
$$

leading to a definite relationship between δ_{T} and $\gamma_{\mathrm{G}}: \delta_{\mathrm{T}}=2 \gamma_{\mathrm{G}}+1 / 3$. But Equation (18) is too simple,

Equation above written with MATHTYPE (copied from OpenOffice file
Equation below written with Libre FORMULA

$$
\Theta=\frac{\hbar}{k_{B}}\left(6 \pi^{2}\right)^{\frac{1}{3}}\left(\frac{B_{T}}{M}\right)^{\frac{1}{2}} V^{\frac{1}{6}}
$$

Equation below written of MATHTYPE (fresh, not copied, i,e., insert object...)

$$
\Theta=\frac{\hbar}{k_{B}}\left(6 \pi^{2}\right)^{\frac{1}{3}}\left(\frac{B_{T}}{M}\right)^{\frac{1}{2}} V^{\frac{1}{6}}
$$

