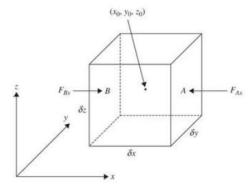
Equation not visible problem

.pptx file, view in LO Impress 6.4.4.2 under Ubuntu 18.04 (Cambria Math is installed)

2 Principles


Pressure gradient force:

- Random molecular motion → no direction dependency of the pressure
- Infinitesimal volume element, pressure
 - Taylor-expansion:

 \rightarrow ;

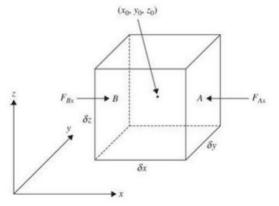
Total pressure gradient force with

James R. Holton, Gregory J. Hakin. An Introduction to Dynamic Modelling (5th Edition). Elsevier, 2013.

Equation not visible problem

.pptx file, view in LO Impress 6.4.4.2 under Win 10

2 Principles


Pressure gradinant force:

- -- Readenimaleelatimation >nodirection dependency of the pressure
- - Infinitesimal volume element pressure p_0

Taylor-expansion:
$$p \approx p_0 + \frac{\partial p}{\partial x} \frac{\delta_x}{2}$$

 \Rightarrow ; Taylor-expansion: $p \approx p_0 + \frac{\partial p}{\partial x} \frac{\delta_x}{2}$
 $\Rightarrow F_{Ax} = -(p_0 + \frac{\partial p}{\partial x} \frac{\delta_x}{2}) \delta y \delta z$; $F_{Bx} = +(p_0 - \frac{\partial p}{\partial x} \frac{\delta_x}{2}) \delta y \delta z$
 $\Rightarrow F_x = -\frac{\partial p}{\partial x} \delta x \delta y \delta z$
Total pressure gradient force with

Total pressure gradient force with $m = \rho \delta x \delta y \delta z$

$$\Rightarrow \frac{\vec{\mathbf{F}}}{m} = -\frac{1}{\rho} \; \vec{\nabla} p$$

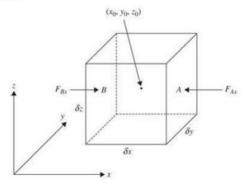
Equation not visible problem

.pptx file, view in Powerpoint 2016

2 Principles

Pressure gradient force:

- Random molecular motion → no direction dependency of the pressure
- Infinitesimal volume element, pressure p_0


- Taylor-expansion:
$$p \approx p_0 + \frac{\partial p}{\partial x} \frac{\delta x}{2}$$

$$\rightarrow F_{Ax} = -(p_0 + \frac{\partial p}{\partial x} \frac{\delta x}{2}) \delta y \delta z$$
; $F_{Bx} = +(p_0 - \frac{\partial p}{\partial x} \frac{\delta x}{2}) \delta y \delta z$

$$\rightarrow F_x = -\frac{\partial p}{\partial x} \delta x \delta y \delta z$$

Total pressure gradient force with $m = \rho \delta x \delta y \delta z$

$$\Rightarrow \frac{\vec{\mathbf{F}}}{m} = -\frac{1}{\rho} \; \vec{\nabla} p$$

James R. Holton, Gregory J. Hakin. An Introduction to Dynamic Modelling (5th Edition). Elsevier, 2013.