

Constants

Constant	Symbol	Value	Units
Speed of light in a vacuum	С	2.997 924 58 x 10 ⁸	m/s
Permittivity of vacuum	£0	8.854 187 817 620 x 10 ⁻¹²	F/m
Permeability of free space	μo	1.256 637 0614 x 10 ⁻⁶	H/m
Planck's constant	h	6.626 069 57 x 10 ⁻³⁴	J∙s
Boltzmann's constant	k	1.380 648 8 x 10 ⁻²³	J/K
Faraday's constant	F	9.648 533 99 x 10 ⁴	C/mol
Avogadro's constant	NA	6.022 141 29 x 10 ²³	1/mol
Unified atomic mass unit	mu	1.660 538 921 x 10 ⁻²⁷	kg
Electronic charge	q	1.602 176 565 x 10 ⁻¹⁹	С
Rest mass of electron	me	9.109 382 15 x 10 ⁻³¹	kg
Mass of proton	mp	1.672 621 777 x 10 ⁻²⁷	kg
Gravitational constant	G	6.673 84 x 10 ⁻¹¹	Nm ² /kg ²
Standard gravity	gn	9.806 65	m/s ²
Ice point	T _{ice}	273.15	K
Maximum density of water	ρ	1.00 x 10 ³	kg/m ³
Density of mercury (0°C)	РHg	1.362 8 x 10 ⁴	kg/m ³
Gas constant	R	8.314 462 1	J/(K∙mol)
Speed of sound in air (at 0°C)	Cair	3.312 x 10 ²	m/s

Imperial to metric conversions

Unit	Symbol	Equivalent	Unit	
inches	in	25.4 mm/in	millimeter	
mil	mil	0.0254 mm/mil	millimeter	
feet	ft	0.3048 m/ft	meters	
yards	yd	0.9144 m/yd	meters	
miles	mi	1.6093 km/mi	kilometers	
circular mil	cir mil	5.067x10 ⁻⁴ mm ² /cir mil	square millimeters	
square yards	yd ²	0.8361 m ²	square meters	
pints	pt oz	0.5682 L/pt	liters	
ounces	lb	28.35 g/oz	grams	
pounds		0.4536 kg/lb	kilograms	
calories	cal	4.184 J/cal	joules	J
horsepower	hp	745.7 W/hp	watts	W

Metric to imperial conversions

Unit	Symbol	Conversion	Unit	Symbol
millimeter	mm	0.0394 in/mm	inch	in
millimeter	mm	39.4 mil/mm	mil	mil
meters	m	3.2808 ft/m	feet	ft
meters	m	1.0936 yd/m	yard	yd
kilometers	km	0.6214 mi/km	miles	mi
square millimeters	mm ²	1974 cir mil/mm ²	circular mil	cir mil
square meters	m ²	1.1960 yd ² / m ²	square yards	yd ²
liters	L	1.7600 pt/L	pints	pt
grams	g	0.0353 oz/g	ounces	ΟZ
kilograms	kg	2.2046 lb/kg	pounds	lb
joules	J	0.239 cal/J	calories	cal
watts	W	1.341x10 ⁻³ hp/W	horsepower	hp

Conversion between codes, mV, %, and ppm

	Codes	mV	%	ppm
Codes		$Codes \cdot \left(\frac{V_{FSR}}{2^N}\right) \cdot 1000$	Codes $\cdot \left(\frac{1}{2^N}\right) \cdot 100$	Codes $\cdot \left(\frac{1}{2^N}\right) \cdot 10^6$
mV	$mV \cdot \left(\frac{2^N}{V_{FSR} \cdot 1000}\right)$	•	mV $\cdot \left(\frac{1}{V_{FSR} \cdot 1000}\right) \cdot 100$	$mV \cdot \left(\frac{1}{V_{FSR} \cdot 1000}\right) \cdot 10^6$
%	$\% \cdot \left(\frac{2^N}{100}\right)$	%•((<u>V_{FSR}•1000</u>) 100)		$\% \cdot \left(\frac{10^6}{100}\right)$
ppm	$ppm \cdot \left(\frac{2^N}{10^6}\right)$	ppm • $\left(\frac{V_{FSR} \cdot 1000}{10^{6}}\right)$	ppm $\left(\frac{1}{10^{\circ}}\right) \cdot 100$	

Capacitor type overview

Capacitor type	Description
COG/NP0 (Type 1 ceramic)	Use in signal path, filtering, low distortion, audio, and precision Limited capacitance range: 0.1 pF to 0.47 µF Lowest temperature coefficient: ±30 ppm/°C Low- voltage coefficient Minimal piezoelectric effect Good tolerance: ±1% to ±10% Temperature range: -55°C to 125°C (150°C and higher) Voltage range may be limited for larger capacitance values
X7R (Type 2 ceramic)	Use for decoupling and other applications where accuracy and low distortion are not required X7R is an example of a type 2 ceramic capacitor See EIA capacitor tolerance table for details on other types Capacitance range: 10 pF to 47 μ F Temperature coefficient: ±833 ppm/°C (±15% across temp range) Substantial voltage coefficient Tolerance: ±5% to -20%/+80% Temperature range: -55°C to 125°C Voltage range may be limited for larger capacitance values

Y5V (Type 2 ceramic)	Use for decoupling and other applications where accuracy and low distortion are not required Y5V is an example of a type 2 ceramic capacitor See EIA capacitor tolerance table for details on other types Temperature coefficient: –20%/+80% across temp range Temperature range: –30°C to 85°C Other characteristics are similar to X7R and other type 2 ceramic
Aluminum oxide electrolytic	Use for bulk decoupling and other applications where large capacitance is required Note that electrolytic capacitors are polarized and will be damaged, if a reverse polarity connection is made Capacitance range: 1 µF to 68,000 µF Temperature coefficient: ±30 ppm/°C Substantial voltage coefficient Tolerance: ±20% Temperature range: -55°C to 125°C (150°C and higher) Higher ESR than other types
Tantalum electrolytic	Capacitance range: 1 μF to 150 μF Similar to aluminum oxide but smaller size
Polypropylene film	Capacitance range: 100 pF to 10 µF Very low voltage coefficient (low distortion) Higher cost than other types Larger size per capacitance than other types Temperature coefficient: 2% across temp range Temperature range: -55°C to 100°C

Standard capacitance table

Stand	ard cap	pacitano	ce table)							
1	1.1	1.2	1.3	1.5	1.6	1.8	2	2.2	2.4	2.7	3
3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1

Ceramic capacitor tolerance markings

Code	Tolerance	Code	Tolerance
В	± 0.1 pF	J	± 5%
С	± 0.25 pF	К	± 10%
D	± 0.5 pF	М	± 20%
F	±1%	Z	+ 80%, –20%
G	± 2%		

EIA capacitor tolerance markings (Type 2 capacitors)

Figure 3: Effect of ESR and ESL on capacitor frequency response

Discrete Components

Bipolar junction transistors (BJT)

Figure 6: Bipoloar transistors

$$\begin{split} \mathbf{I}_{C} &= \mathbf{I}_{B} \boldsymbol{\cdot} \boldsymbol{\beta} \\ \mathbf{I}_{C} &= \mathbf{I}_{B} + \mathbf{I}_{E} \\ V_{BE} &\approx 0.7 V \end{split}$$

V_{BC} is reversed biased

$$V_{CF} \approx V_{BC} + V_{BF}$$

- (1) Current gain
- (2) Current law for bipolar transistors
- (3) Voltage base to emitter is forward bias for normal operation. Approximately 0.7V.
- (4) Voltage base to collector is reverse bias for normal operation
- (5) Collector to emitter voltage

Where

B, E, C = base, emitter, and collector

- I_B, I_E, I_C = base, emitter, and collector current
- $\beta = h_{fe} = current gain$
- V_{CE}= collector to emitter voltage
- V_{BC} = base to collector voltage
- V_{BE} = base to emitter voltage

P-channel JFET

ıI

Drain-to-source voltage, VDS (V)

Figure 9: N-channel JFET characteristic curve I_D vs V_{GS}

- · The maximum gate-to-source voltage is 0V for an N-channel JFET. Greater than 0V will forward bias the gateto-source junction and cause abnormal operation.
- The P-channel FET has similar characteristic curves but the polarity is opposite.

Metal oxide semiconductor field effect transistor (MOSFET)

Figure 10: MOSFET transistors

 $I_G \approx 0A$

l_D = l_S

- (10) Gate is insulated so that input current is negligible
- (11) Drain current equal to source current

$$I_{D} = \mu_{n}C_{OX}\frac{W}{L}\left(\left(V_{GS} - V_{TH}\right)V_{DS} - \frac{V_{DS}^{2}}{2}\right)$$

(12) Drain current in linear region (triode)

$$I_{D} = \frac{\mu_{n}C_{OX}}{2} \frac{W}{L} (V_{GS} - V_{TH})^{2} (1 + \lambda (V_{DS} - V_{DSsat}))$$
⁽¹³⁾ Drain current in saturation region

Where

- G, D, S = gate, drain, and source
- µn = charge-carrier effective mobility
- C_{OX} = capacitance of oxide
- W, L = width and length of gate
- V_{GS} = gate to source voltage
- V_{DS} = drain to source voltage
- V_{TH} = threshold voltage
- λ = channel length modulation

Metal oxide semiconductor field effect transistor (MOSFET)

Figure 11: N-channel MOSFET characteristic curve, Ip vs. Vps

- The parameters, such as µ_n, C_{OX}, W, and L, may not be given in discrete MOSFET data sheets.
- The P-channel FET has similar characteristic curves but the polarity is opposite.

Resistor equations

$$R_{T} = R_{1} + R_{2} + \dots + R_{N}$$

$$R_{T} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}$$

$$R_{T} = \frac{1}{\frac{1}{R_{1} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{N}}}}$$

- (14) Series resistors
- (15) Two parallel resistors
- (16) Parallel resistors

Where

 R_T = equivalent total resistance R₁, R₂, R₃, ...R_N = component resistors

Ohm's law and voltage divider equation

$$V = I \cdot R$$
$$V_{OUT} = \left(\frac{R_2}{R_1 + R_2}\right) \cdot V_{sup}$$

- (17) Ohm's law
- (18) Voltage divider equation

$$P = \frac{1}{2} \cdot V_p \cdot I_p \cdot \cos \theta$$

Where

P = average power in watts (W) for sinusoidal signals

V_p = peak voltage in volts (V)

I_p = peak current in amps (A)

 θ = phase angle between the voltage and current sine waves

Analog

- Resistor equations
 - Power equations •
- Capacitor equations (series, parallel, charge, energy)
 - Inductor equations (series, parallel, energy) .
 - Capacitor charge and discharge .
 - RMS and mean voltage definition
 - RMS for common signals
 - Logarithm laws
 - dB definitions •

Analog

Pole and zero definition with examples .

Capacitor equations

$$C_{t} = \frac{1}{\frac{1}{C_{1}} + \frac{1}{C_{2}} + ... + \frac{1}{C_{N}}}$$
(23) Series capacitors
$$C_{t} = \frac{C_{1}C_{2}}{C_{1} + C_{2}}$$
(24) Two series capacitors
$$C_{t} = C_{1} + C_{2} + ... + C_{N}$$
(25) Parallel capacitors
$$Where$$

$$C_{t} = equivalent total capacitance$$

$$C_{1}, C_{2}, C_{3}...C_{N} = component capacitors$$

$$Q = CV$$
(26) Charge storage
$$Q = It$$
(27) Charge defined

Where

Q = charge in coulombs (C)

C = capacitance in farads (F)

V = voltage in volts (V)

I = current in amps (A)

t = time in seconds (s)

$$i = C \frac{dv}{dt}$$

(28) Instantaneous current through a capacitor

Where

i = instantaneous current through the capacitor

C = capacitance in farads (F)

 $\frac{dv}{dt}$ = the instantaneous rate of voltage change

$$E = \frac{1}{2}CV^2$$

(29) Energy stored in a capacitor

Where

E = energy stored in a capacitor in joules (J)

V = voltage in volts

C = capacitance in farads (F)

Inductor equations

$$L_{t} = L_{1} + L_{2} + \dots + L_{N}$$
(30) Series inductors
$$L_{t} = \frac{1}{\frac{1}{L_{1}} + \frac{1}{L_{2}} + \dots + \frac{1}{L_{N}}}$$
(31) Parallel inductors
$$L_{t} = \frac{L_{1}L_{2}}{L_{1} + L_{2}}$$
(32) Two parallel inductors
Where

Where

Lt = equivalent total inductance L1, L2, L3...LN = component inductance

$$v = L \frac{di}{dt}$$
 (33) Instantaneous voltage across an inductor

Where

v = instantaneous voltage across the inductor L = inductance in henries (H) $\frac{di}{dt}$ = instantaneous rate of current change

$$E = \frac{1}{2}LI^2$$
 (34) Energy stored in an inductor

Where

.

E = energy stored in an inductor in joules (J)

I = current in amps

L = inductance in henries (H)

Equation for charging an RC circuit

$$V_{C} = V_{S} \left[1 - e^{\left(\frac{-t}{\tau} \right)} \right]$$

Where

 V_{C} = voltage across the capacitor at any instant in time (t)

Vs = the source voltage charging the RC circuit

t = time in Seconds

 τ = RC, the time constant for charging and discharging capacitors

Equation for discharging an RC circuit

Where

- V_C = voltage across the capacitor at any instant in time (t)
- V_i = the initial voltage of the capacitor at t = 0s
- t = time in seconds
- τ = RC, the time constant for charging and discharging capacitors

Percentage discharged vs. number of time constants

Capacitor with constant current source

Figure 15: Capacitor with constant current source

$$dv = \frac{I}{C}dt$$
$$V_{OUT} = \frac{I_{S}}{C_{L}}t$$

(37) General equation for capacitor voltage current

(38) For constant current

Where

$$\begin{split} I_S &= \text{constant current source in amps (A)} \\ V_{OUT} &= \text{voltage developed across the capacitor in volts (V)} \\ C_L &= \text{load capacitance in farads (F)} \\ t &= \text{time in seconds (s)} \end{split}$$

AC power equation

Where

$$P = \frac{1}{2} \cdot V_p \cdot I_p \cdot \cos\theta$$

P = average power in watts (W) for sinusoidal signals

V_p = peak voltage in volts (V)

Ip = peak current in amps (A)

θ = phase angle between the voltage and current sine waves

RMS and mean voltage

RMS voltage

$$V_{\text{RMS}} = \sqrt{\frac{1}{(T_2 - T_1)}} \int_{T_1}^{T_2} [V(t)]^2 dt$$

(39) General relationship

Where

 $\begin{array}{l} V(t)=\mbox{continuous function of time}\\ t=\mbox{time in seconds}\\ T_1\leq t\leq T_2=\mbox{the time interval that the function is defined over} \end{array}$

Mean voltage

$$V_{\text{MEAN}} = \frac{1}{(T_2 - T_1)} \int_{T_1}^{T_2} V(t) dt$$
 (40) General relationship

Where

V(t) = continuous function of time

t = time in seconds

 $T_1 \le t \le T_2$ = the time interval that the function is defined over

Figure 16: Full wave rectified sine wave

(43) RMS for a half-wave rectified sine wave

(44) Mean for a half-wave rectified sine wave

Figure 17: Half-wave rectified sine wave

$$V_{\text{RMS}} = \sqrt{\left(\frac{V_{a}^{2} + V_{a} \cdot V_{b} + V_{b}^{2}}{3}\right)\left(\frac{\tau}{T}\right)}$$

(47) RMS for a trapezoid

$$V_{MEAN} = \frac{\tau}{2T} (V_a + V_b)$$

(48) Mean for a trapezoid

Figure 19: Trapezoidal wave

Logarithmic mathematical definitions

$\log\left(\frac{A}{B}\right) = \log(A) - \log(B)$	(51) Log of dividend	ve
$\log(AB) = \log(A) + \log(B)$	(52) Log of product	
$\log(A^{x}) = x \log(A)$	(53) Log of exponent	ive
$\log_{b}(X) = \frac{\log_{a}(X)}{\log_{a}(b)}$	(54) Changing the base of log function	/
$\log_2(X) = \frac{\log_{10}(X)}{\log_{10}(2)}$	(55) Example changing to log base 2	
$ln(X) = log_e(X)$	(56) Natural log is log base e	
e = 2.718282	(57) Exponential function to 6 digits	

dB definitions

Definitions

Voltage gain (dB) = 20 log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ Power gain (dB) = 10 log $\left(\frac{P_{OUT}}{P_{IN}}\right)$ Power measured (dBm) = 10 log $\left(\frac{Power measured (W)}{1 \text{ mW}}\right)$

(60) Voltage gain in decibels

(61) Power gain in decibels

(62) Used for input or output power

Examples of common gain values and dB equivalent

Roll-off rate is the decrease in gain with frequency

Decade is a tenfold increase or decrease in frequency (from 10 Hz to 100 Hz is one decade)

Octave is the doubling or halving of frequency (from 10 Hz to 20 Hz is one octave)

A (V/V)	A (dB)
0.001	-60
0.01	-40
0.1	-20
1	0
10	20
100	40
1,000	60
10,000	80
100,000	100
1,000,000	120
10,000,000	140

Time to phase shift

Bode plots (zeros)

Where

Zero location = f_Z Magnitude (f < f_Z) = 0 dB Magnitude (f = f_Z) = +3 dB Magnitude (f > f_Z) = +20 dB/decade Phase (f = f_Z) = +45° Phase (0.1 f_Z < f < 10 f_Z) = +45°/decade Phase (f > 10 f_Z) = +90° Phase (f < 0.1 f_Z) = 0°

$$G_{V} = \frac{V_{OUT}}{V_{IN}} = G_{DC} \left[j \left(\frac{f}{f_{Z}} \right) + 1 \right]$$

$$G_{V} = \frac{V_{OUT}}{V_{IN}} = G_{DC} \sqrt{\left(\frac{f}{f_{Z}}\right)^{2} + 1}$$

 $\theta = \tan^{-1}\left(\frac{f}{f_Z}\right)$

 $G_{dB} = 20 \text{ Log}(G_V)$

(68) As a complex number

(69) Magnitude

(70) Phase shift

(71) Magnitude in dB

Where

G_V = voltage gain in V/V

G_{dB} = voltage gain in decibels

G_{DC} = the dc or low frequency voltage gain

f = frequency in Hz

f_Z = frequency at which the zero occurs

 θ = phase shift of the signal from input to output

j = indicates imaginary number or $\sqrt{-1}$

Amplifier

- Calculating amplifier offset
 - Op amp bandwidth •
 - Full power bandwidth •
- Large signal step response
 - Settling time •
 - Noise equations •
 - Stability equations •
 - Instrumentation amplifiers
 - Power calculations •

 $G_{CL} = 1$

(72) Gain for buffer configuration

Figure 25: Buffer configuration

$$G_{CL} = \frac{R_f}{R_1} + 1$$

Zin = Op amp input impdeance

V_{cm}=V_{IN}

- (73) Gain for non-inverting configuration
- (74) Input impedance. See data sheet for value, but typically greater than 100MΩ to 100TΩ.
- (75) The common mode voltage is equal to the input signal. Check for common mode limitations.

Figure 26: Non-inverting configuration

- $G_{CL} = -\frac{R_f}{R_f}$
- $Z_{in} = R_1$

V_{cm}= 0V

- (76) Gain for inverting configuration
- (77) Input impedance. Low compared to the non-inverting configuration.
- (78) The common mode voltage held constant at 0V so the common mode range and CMRR is not a concern

Figure 27: Inverting configuration

$$V_{OUT} = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots + \frac{V_N}{R_N} \right)$$

(79) Transfer function for inverting summing amplifier

$$V_{OUT} = -\frac{R_f}{R_1}(V_1 + V_2 + ... + V_N)$$

(80) Transfer function for inverting summing amplifier, assuming R1 = R2 = ... = RN

Figure 28: Inverting summing configuration

$$V_{OUT} = \left(\frac{R_f}{R_{in}} + 1\right) \left[\frac{V_1}{N} + \frac{V_2}{N} + \dots + \frac{V_N}{N}\right]$$

(81) Transfer function for noninverting summing amplifier for equal input resistors

Where

 $R_1 = R_2 = ... = R_N$ N = number of input resistors

Figure 29: Non-inverting summing configuration

Simple non-inverting amp with C_f filter

 $G_{LF} = \frac{R_f}{R_1} + 1$ (82) Gain for non-inverting configuration for $f < f_C$

G_{HF} = 1 (83) Gain for non-inverting configuration for f >> f_C

$$f_C = \frac{1}{2\pi R_f C_f}$$

(84) Cut off frequency for non-inverting configuration

Figure 31: Frequency response for non-inverting op amp with C_f filter

Simple inverting amp with C_f filter

$$G_{LF} = -\frac{R_f}{R_1}$$

- (85) Gain for inverting configuration for $f < f_C$
- G_{HF} = -20dB/decade after f_C until op amp bandwidth limitation

$$f_{\rm C} = \frac{1}{2\pi \, {\rm R_f} \, {\rm C_f}}$$

(86) Gain for inverting configuration for $f > f_C$

(87) Cutoff frequency for inverting configuration

Figure 32: Inverting amplifier with Cf filter

Figure 33: Frequency response for inverting op amp with Cf filter

Differential filter cutoff

Figure 34: Input filter for instrumentation amplifier

Select C_{DIF} ≥ 10C_{CM1}

 $R_{IN1} = R_{IN2}$

 $C_{CM1} = C_{CM2}$

$$f_{CM} = \frac{1}{2\pi R_{IN1} C_{CM1}}$$

$$f_{DIF} = \frac{1}{2\pi (2R_{IN1}) \left(C_{DIF} + \frac{1}{2}C_{CM1}\right)}$$

- (88) Differential capacitor is sized 10 times the common-mode capacitor
- (89) Input resistors must be equal
- (90) Common-mode capacitors must be equal
- (91) Common-mode filter cutoff

Where

- f_{DIF} = differential cutoff frequency
- f_{CM} = common-mode cutoff frequency
- R_{IN} = input resistance
- C_{CM} = common-mode filter capacitance
- C_{DIF} = differential filter capacitance

Note: Selecting $C_{DIF} \ge 10 C_{CM}$ sets the differential mode cutoff frequency about 20 times lower than the common-mode cutoff frequency. This prevents common-mode noise from being converted into differential noise due to component tolerances.

Calculating amplifier offset voltage

Figure 35: Op amp bias current and offset calculations

$R_{eq} = \frac{R_{f} \cdot R_{g}}{R_{f} + R_{g}}$	(93) Equivalent feedback resistance
V _{OS(IBN)} = I _{BN} • R _{eq}	(94) Offset RTI from I _{BN} flowing into feedback
$V_{OS(IBP)} = I_{BP} \cdot R_{IN}$	(95) Offset RTI from I _{BP} flowing into source impedance
V _{OS(total worst)} = ±V _{OS(Amp}	 b) ± V_{OS(IBN)} ± V_{OS(IBP)} (96) Directly adding the offset components. Conservative estimate.
$V_{OS(total stat)} = \sqrt{V_{OS(Amp})}$	² + V _{OS(IBN)} ² + V _{OS(IBP)} ² (97) Statistically adding the offset components. More realistic estimate.
$G_n = \frac{R_f}{R_g} + 1$	(98) Noise gain of op amp (always non-inverting gain)
$V_{OS(RTO)} = V_{OS(RTI)} \cdot G_n$	(99) Offset referred to the output

Where

R_f, R_g = the feedback and gain setting resistors

R_{IN} = resistance seen by noninverting input

 $l_{BN},\,l_{BP}$ = the current flowing from the inverting (l_{BN}) and noninverting (l_{BP}) op amp input as specified in the data sheet

$$\label{eq:Vos(amp)} \begin{split} &V_{os(amp)} = \text{the input offset voltage specification from the op amp data sheet} \\ &V_{OS(FITI)} = \text{this is the offset referred to the input. This can be either $V_{os(total worst)}$ or $V_{os(total stat)}$. \end{split}$$

Op amp bandwidth

 $GBW = G_n \bullet BW$

Where

GBW = gain bandwidth product, listed in op amp data sheet specification table G_n = closed loop noise gain, always non-inverting gain BW = the bandwidth limitation of the amplifier

Example

Determine bandwidth using equation 95, where G_n = 100 (from amplifier configuration) GBW = 22MHz (from data sheet)

Answer

 $BW = \frac{GBW}{G_n} = \frac{22MHz}{100} = 220kHz$

Note that the same result can be graphically determined using the A_{OL} curve as shown below.

Figure 36: Using A_{OL} to find closed-loop bandwidth

Small signal step response

$$\tau_{R} = \frac{0.35}{f_{C}}$$

(101) Rise time for a small signal step

Where

τ_R = the rise time of a small signal step response

fc = the closed-loop bandwidth of the op amp circuit

Small signal step response waveform

Figure 37: Small signal step response

Full power bandwidth

$$V_p = \frac{SR}{2\pi f}$$

(102) Maximum output without slew-rate induced distortion

Where

 $V_{\rm P}$ = maximum peak output voltage before slew induced distortion occurs ${\rm SR}$ = slew rate

f = frequency of applied signal

Figure 38: Maximum output without slew-rate induced distortion

Large signal response (slew rate)

Figure 39: Large signal step response

(103) Rise time for large signal step response

(104) Approximate total time for waveform to transition from peak to peak for large signal response

Where

 $V_{(10\% \text{ TO } 90\%)} = \text{the change in output voltage from 10\% to 90\% for a step input SR = the slew rate of the amplifier <math display="block">V_{co} = \text{peak-to-peak square wave voltage for a step response}$

Combining noise sources

$$e_{nT} = \sqrt{(e_{n1})^2 + (e_{n2})^2}$$

$$\mathbf{e}_{nT} = \sqrt{\left(\mathbf{e}_{n1}\right)^2 + \left(\mathbf{e}_{n2}\right)^2 + 2 \cdot \mathbf{C} \cdot \mathbf{e}_{n1} \cdot \mathbf{e}_{n2}}$$

(106) Combining two correlated noise sources

Where

ent = total noise

en1, en2 = noise sources

C = correlation factor, ranges from -1 to +1. C= 0 for uncorrelated sources, C=-1 for inversely correlated, and C=+1 for directly correlated.

Averaging noise sources

$$e_{nAvg} = \frac{e_n}{\sqrt{N}}$$

Where

enAvg = the noise amplitude after averaging

en = the noise amplitude before averaging

N = the number of averages

Settling Time

Figure 40: Small signal step response

Where

Settling time = the time from when an input step is applied until the output settles inside an error guard band. Settling time is measured with a large step (near full scale) input.

Prop delay = propagation delay. The time from when the input step is applied until the output begins to respond

Slew = the output is transitioning at the maximum rate given by the slew rate specification in the amplifier data sheet Over the years and depending on the writer, an OTA has been referred to as a *diamond transistor*, a voltage-controlled current source, a transconductor, a macro transistor, and a positive second-generation current conveyor or CCII+. Figure 1 illustrates these terms and the corresponding symbols generally used to represent each.

Figure 1. Typical OTA Elements and Accepted References