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The Next Day

The morning of the next day found the three friends, Newton, 
Einstein, and Breton, well breakfasted, in their clubhouse, 
seated by the fire in their comfortable Windsors, each 
harboring a tempered eagerness to continue their 
investigation of Theoretical Physics.  The smell of Autumn 
danced again with the sound of a log crackling in the fireplace. 
The room was no less cozy and peaceful; warm but not hot; 
lighted, but not bright.

Newton, who loved to summarize and recapitulate as well as 
construct tables, began the conversation with an attempt to 
summarize the conclusions of the previous day.  “We 
discussed so many items yesterday, let us start by 
summarizing yesterday's conclusions.  We came to see how a 
science like Physics differs from a technology like Surveying.

Breton, interrupting: “Technology is useful, and when no 
longer useful, discarded.  It willingly sacrifices truth for utility.  
Science is not necessarily useful but will not compromise truth 
and so is permanent.

Einstein, adding in his friendliest tone: “Technology relies on 
measurement, but science does not.

Newton: ”And many more differences which you will 
remember from my tables of yesterday, but sciences differ 
from each other too.  The science of Physics differs from the 
science of Mathematics.

Einstein: "They are both true and permanent, but differ in 
what they are true to. 

Breton: "Mathematics is true to its axioms while Physics must 
be true to some aspect of reality.

Newton: “We accepted, after some debate the following 
definition of Physics:

Physics is the study of reality 
observable as extended, moving, or forcing.
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Breton: "So we concluded that the symbols and ideas of 
Mathematics were inappropriate for the science of Physics 
because they easily lead to ambiguities and false 
conclusions.”

Einstein, in a somewhat less friendly tone,: "Physics without 
Mathematics, that is hard to swallow since everywhere Physics 
is explained in terms of the symbols of Mathematics.”

Breton: "Yes, we saw how treacherous the abuse of language 
and symbols becomes for anyone seeking the truth in any 
science.  Ordinary language abounds in ambiguities; we noted 
the emergence of dictionaries to help us communicate.
  Since truth in general and scientific truth in particular cannot 
tolerate contradictions, sciences are forced to construct 
special dictionaries to avoid ambiguities in their disciplines.  
Mathematics has its dictionary; Physics should also have its 
own, distinct from the one for Mathematics.  We call the 
dictionary for the science of Physics by the name Theoretical 
Physics.  It, not Mathematics, is the proper language for 
Physics.”

Einstein: "But for all that, the language of Mathematics does 
seem appropriate for the study of Physics.”

Breton: "Mathematics has great appeal because of its simple, 
logical structure, a quality which should also characterize an 
appropriate language for Physics.  Nevertheless the ideas of 
Mathematics are not the ideas of Theoretical Physics, even 
were they to use the same symbols.  In Mathematics, a symbol 
would refer to the mathematical dictionary, while the same 
symbol in Theoretical Physics would refer to a different 
dictionary.  A grave confusion results from using the wrong 
dictionary.” 

Newton: "We illustrated all this.  For instance, the proposition
2+2=4

is true enough as a mathematical statement, but ambiguous 
or even false as a physical statement.”

Breton: "So we embarked on a great adventure to discover 
how mathematical ideas and propositions can be transformed 
into ideas and propositions suitable for Theoretical Physics.  
The outlines of the adventure are clear enough: to transform 
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any mathematical idea, it must first be constrained, and when 
so constrained may then be elaborated into a panoply of 
related ideas.”

Einstein: "So we examined some mathematical ideas with a 
view to their transformation into Theoretical Physics.”

Newton: "We started with the positive integers, a subject I 
could not imagine held such amazing profundities.  From there 
it was more amazement with the negative integers and then 
even more with quotient numbers.  Quotient numbers, we 
discovered, harbor a topology, from which the mathematical 
ideas of limits germinate.  From there we examined the 
amazing world of functions, and ideas of continuity, 
derivatives and integrals.”

Breton: "You've omitted so much.” 

Newton: "True enough: topics like look‒alike functions, and 
step functions, and many others besides.  When I reflect on 
our conversation yesterday I stand amazed at the amazing 
topics we wrestled with.  A brief summary just omits too much. 
Yesterday's conversation should be made into a book!”

Breton: "What would be its title?”

Newton: "Why don't you propose a title?”

Breton: "Let's title it 'tp1.1'.  The title would stand for 
theoretical physics 1.1.  The 1.1 would indicate more to 
come.”

Einstein: "Who, except us, would know what tp1.1 means?”

Breton: "We could give it a subtitle like 'an inquiry into the 
foundations of the science of Physics.'”

Einstein: "Better, but still obscure.”

Breton: "Would you like to try your hand at a title?”

Einstein, after a pause: "No.  The book might appeal to 
adventurous and inquiring minds and surely discourage 
shallow, superficial surfing.  Let the title stand.”
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Newton: "We can refer to the book tp1.1 for any of the many 
topics we have not summarized.”

Einstein, looking to assert his standing in the discussion: "But 
Breton points out that none of this amazing world of 
Mathematics is Theoretical Physics.  We ended the day by 
showing how these mathematical ideas can be transformed 
into Theoretical Physics.  First we would give any 
mathematical idea a physical label.  Physical labels are all 
reducible to three elementary ones: for extension (L), for 
motion (V), and for force (F).  Mathematical expressions, being 
unlabeled, may be combined in ways that are not allowable 
for Theoretical Physics.  So it became apparent that, although 
an identical symbol might be used, a number is mathematics 
is different idea from a number in Theoretical Physics.”

Newton, continuing: "Expressions in Theoretical Physics must 
follow the Rules for Labels. The Rules show how new ideas for 
Theoretical Physics can be created from the elementary ones.”

Einstein, still looking to lead: "In addition to labeling, we saw 
how the ideas of Theoretical Physics must be referenced either 
materially or spatially.”

Breton: "And how the word 'set' can said of material things as 
well as mathematical ideas which led to the idea of a particle, 
the properties of material things,  and the constraints of 
resolution.”

Einstein: "We would do well to deepen our conversation about 
these topics since they promise application to the science of 
Physics.”

Newton: "But Breton suggested that today we look into the 
subject of location.”

Breton, looking to smooth the rising contention between his 
friends: "Thank you Newton.  We observe physical objects 
located here and there.  Yet very little of what we discussed 
yesterday faced this aspect of physical reality.  Mathematics 
provides an interesting structure called vectors which may be 
suitable for transformation into Theoretical Physics.  I suspect 
we will deepen our knowledge of yesterday's topics by seeing 
them in this new perspective.  Will you trust me, Einstein?”
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Einstein: "I trust an old friend, or rather, I will agree based on 
our fast friendship, but be forewarned I will be quick to object 
if the trust is violated.”
 
Breton: "Thank you, Einstein.  I will do my best not to violate 
your trust. 

Vectors

Einstein: "Start by giving us a definition.”

Breton: "That is difficult because a vector is an elemental idea. 
There aren't many antecedents upon which I can build a 
definition.  For instance, if I defined a vector to be an element 
in a vector space you would say immediately that that defines 
nothing.”

Einstein, with not a little sarcasm: "Without a definition we 
don't know what we are talking about.”

Breton: "Agreed.  What elemental experience can I refer to for 
a start?”

Newton: "you noted yesterday that of the many topics we 
discussed, nothing touched location.  Yet Physics deals with 
extension, motion and force, all of which imply a location at 
which an object can be observed as extended, moving, or 
forcing.  So let me suggest we take location as a given upon 
which to build a definition.”

Breton: "Let's try this definition.

9
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Einstein: "The definition doesn't say much.  A vector then is 
just another name for location.”

Newton: "Breton, your definition has a physical flavor to it.  We 
are embarked on an adventure to convert mathematical ideas 
into those suitable for Theoretical Physics.  Let's start with 
some purely mathematical ideas.” 

Einstein, trying to be helpful now that Breton had been 
cornered: "How did we approach positive integers?  We did not 
define numbers, we simply enumerated them, and declared 
they were subject to a plus operator.”

Newton: "Or alternatively we declared the positive integers to 
be the result of an indefinite application of the plus operator 
on a number called one.”

Breton: "So, we should be looking for axioms, rather than 
definitions?”

Einstein: "What's the difference?

Breton: "Axioms are fundamental statements upon which a 
logical structure can be erected.  Like rules for a game, they 
need to be simply accepted.  If the axioms are changed a 
different structure will emerge.  Think of Euclid's axioms for 
geometry.  They form a basis for a plane geometry.  Change 
the axioms, a new geometry will appear.
   Definitions are built upon the axioms.  They use the 
accepted axioms including their terms as a root vocabulary.”

Newton: "How does this fit in with location?”

Breton: "Location is an attribute of an object.  If the object is a 
material one, location is a physical attribute, not an idea at all. 
A vector is an idea which hopefully can be transformed to 
describe a location.  To provide all possible descriptions for  
locations we create a set ideas of all possible lengths and all 
possible directions.”

Einstein, looking to derail a coming argument: "But what if the 
object is a mathematical idea like a triangle?”
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Breton placidly: "Before triangles, we should first discuss 
angles.  

Einstein: " And before angles, lines and points.

Breton: "So we have entered into a discussion of geometry, a 
vast subject which may only be related to our goal 
tangentially.

Newton: "My illustrious ancestor loved geometry.  Let us honor 
the great man by stating at least the foundations.  Geometry 
consists of lines which may intersect at points.

Breton, trying to angle a return towards the main goal.  “The 
point at which two lines intersect may be called a vertex. At 
the vertex four angles are formed between the lines.     
“There are many kinds of angles; it will be worth our while to 
define them and then consider how they apply to triangles.  

Einstein, happily interrupting,: “And how do you measure 
angles?”

Breton: "You bring up another good point.  Angles, indeed, can 
be measured because they have parts.  As a mathematical 
idea, an angle is complex.  We started with two lines which 
intersect.  The intersection, called the vertex, can form the 
center of a circle.  Further, we can truncate one of the lines 
finitely at the vertex and let it be the radius of a circle.  An 
angle is this complex of lines, vertex and circle.  To measure 
the angle, note that the two lines, intersecting the circle, 
define an arc of the circle.  The ratio of the length of the arc 
compared to the circumference of the circle is used to 
measure the angle.”

With that Breton quickly sketched this illustration.
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Newton: "So different measures result from the measurement 
of the circumference.

Breton: "Exactly.  Two of the most common are called 
measurement in degrees and measurement in radians.  
For measurement in degrees the circumference is divided into 
360 equal parts.  The arc of the angle will then be measured 
as so many of these degrees.  For measurement in radians the 
circumference is divided into the number of radii which will fit 
into it.  That number is 2⁕pi.   The arc of the angle will then be 
measured as so many of these radii, called radians.

Einstein: "So the actual measurement is accomplished in 
terms of arbitrary units.

Breton: "Not arbitrary.  The measurement assumes a reference 
which must be stated but often merely assumed when the unit 
is declared.  
If all this is clear, let us return to the definitions of different 
angles.
...An acute angle is an angle less than 90 degrees (pi/2);
...a right angle is an angle equal to 90 degrees (pi/2);
...an obtuse angle is an angle greater than 90 degrees (pi/2), 
but less than 180 degrees (pi);
...a reflex angle is an angle greater than 180 degrees (pi).
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Two angles are sometimes paired.  The following definitions 
are often helpful.
   Two angles are called conjugates if their sum equals 360 
degrees (2⁕pi).
   Two angles are called supplementary if their sum equals 
180 degrees (pi).
   Two angles are called complimentary if their sum equals 90 
degrees (pi/2).”  

Turning to Newton, Breton asked: “Newton, would you please 
make a table of these definitions for us?

Quickly responding, Newton quickly produced the following 
table.

Angles

Type Definition

acute Less than pi/2

right Equal to pi/2

obtuse Greater than pi/2

reflex Greater than pi

Conjugate Sum equals 2⁕pi

Supplementary Sum equals pi

Complimentary Sum equals pi/2

Einstein: “Then a triangle is a mathematical structure of lines 
forming three angles.

Breton, returning to the main track gleefully: “Then the 
location of one vertex can be referred to a second vertex.  In a 
similar way the location of a physical object must be referred 
to some observer.  You bring up some good points Einstein.
  In surveying, mathematical triangles play no unimportant 
role.  Triangles are not numbers.  Would it be worthwhile to 
begin our study of location and vectors with triangles?

Einstein, needling Breton: “Since we are searching for 
foundations, angles would be a better choice. Don't you agree 
angles are more basic than triangles?
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Breton, humbly conceding,: "Agreed.”

Newton: "And triangles?  I want to discuss triangles further.”

Breton: "A triangle is a mathematical object with only three 
angles.  It will then have only three vertices, and then each 
vertex will share two lines.  These shared lines are called 
sides of the triangle, and they number three also.
   Usually the triangle is a planar figure, but not necessarily so. 
Even when restricted to a plane, the plane need not be a 
Euclidean plane.  
A large variety of triangles may be defined since the three 
angles need not all be the same.
...An oblique triangle is one all of whose angles are acute;
...a right triangle is one which has one right angle.
...an equilateral triangle is one all of whose angles are equal;
...an isosceles triangle is one with two equal angles;
...a scalene triangle is one none of whose angles are equal.

Newton, anticipating a request quickly produced the following 
table without being asked. 

Triangles

Type Definition

oblique All angles acute

right One right angle

Equilateral All angles equal

isosceles Two angles equal

scalene No angles equal

Breton: "A couple of special definitions associated with right 
triangles should be noted.  First let me sketch a right triangle.
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The side opposite the right angle is called the hypotenuse.  
The other two sides are orthogonal to each other.  The 
following two definitions should be remembered.

sin(angle) ≡ length of the side opposite the angle
/length of the hypotenuse

cos(angle) ≡ length of the side nearest the angle
/length of the hypotenuse

As you can see from the sketch
sin(angle1) = cos(angle2)

and
sin(angle2) = cos(angle1)

Einstein, taking charge of the discussion again: "Just give us a 
definition of a vector.

Breton: "Rather let me give you the axioms of a mathematical 
set of vectors which we may symbolized as V.  The space is 
populated by elements called vectors symbolized by v.  Our 
space of vectors presupposes the set of quotient numbers Q 
with its algebra and topology.  The axioms also presuppose 
two operations, vector addition (symbolized by +) and 
multiplication by quotient numbers called scalar 
multiplication (symbolized by ⁕) which adhere to the following 
axioms:

v1 + (v2 + v3) = (v1 + v2) + v3:
v1 + v2 = v2 + v1
q1⁕(q2⁕v1) =  (q1⁕q2)⁕v1
q1⁕(v1 + v2) =  q1⁕v1 + q1⁕v2
(q1+q2)⁕v1 = q1⁕v1 + q2⁕v1
1⁕v = v, for any vector in the vector space.

Also, there exists a zero vector in the vector space symbolized 
by 0 such that 

v+ 0 = v

15
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for any vector in the vector space, and for every vector v in 
the vector space, there exists a vector ‒v such that

v + (‒v) = 0
Does this help?”

Einstein: "Not much, if at all.”

Newton: "Why not call this set of vectors a space?.

Einstein: "Because it can be used to show the relative 
nnpositions of objects. 

Breton: "Their locations.  Is space something physical or is it a 
mathematical idea?

Einstein: "Physical!

Newton: "Mathematical!

Breton: "Your answers show that this question should be 
addressed.  It seems to me that some uses of the word 'space' 
are physical or quasi‒physical, and others mathematical.  Let 
me list some current uses of the word:

outer space, as the universe beyond earth's
 atmosphere 

as a gap between written characters.  ASCII code 32.
personal space in human relationships.
a square in a board game.
a business term to describe a competitive environment
a solution space, candidates for solutions of equations
mental space in cognitive science
a vacuum
some buildings
address space in computers
cyberspace
white‒space as allocated but locally unused radio

 frequencies

Newton: "Enough.  The word 'space' can be used in science 
and engineering, but also in fiction, music, art, law and many, 
many other contexts.
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Breton: "It appears the word 'space' can be stretched 
indefinitely.  If used as a synonym for void, then it seems to 
me poorly adapted to what I have called a vector set.

Newton: "Remember the ambiguities of language we 
discussed in tp1.1?  Aren't we slipping into such a morass 
when we use the word space.

Breton: "The word 'space' may be useful to us later, but only 
after it has received a rigorous definition.  Remember the story 
of the mountain hiker?

Einstein: "Let's just use the word 'set' which is less ambiguous 
and can refer to mathematical objects unequivocally.

Breton: "Fine.  So we can look to examine vector sets.  But let 
us reflect on the intellectual path we have covered.  First we 
thought to define the set V

V ≡ {v}
as a set of objects.  Einstein rightly remarked this definition 
said little.
Next, we specified further 

V ≡ {{v},Q,+,⁕}
where Q is our algebra of quotient numbers, + a new kind of 
addition, and ⁕ a new kind of multiplication.  While we have 
defined Q previously in tp1.1, the two operators  remain 
unspecified.

Newton, reflectively: "Look!  The axioms for the set of vectors 
have extended Q.  If we take the vectors to be the partitions of 
the quotient numbers, and plus and multiply as defined for Q, 
then Q is itself a vector space.”

Breton: "We are well started then.  The  set of vectors will be a 
set rooted in Q, associated with it by scalar multiplication, but 
possibly developed far beyond Q.  So if v is a vector and q1 is 
a quotient number, then q1⁕v is also a vector. 

Einstein, objecting: "Hold it there.  This is a strange 
multiplication different from any of the others we seen.” 

Breton: "True enough.  Very little gets by you, Einstein.  This is 
yet another kind of multiplication, a multiplication of a 
different color.”  
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Einstein: "Why call it multiplication at all?”

Breton: "Remember our rules for symbols?  We might have 
written 

q1 + v1
but that  would violate our rules for labels since q1 and v1 
should have the same label.  Since we are looking to 
transform mathematical ideas into Theoretical Physics we 
would do well to rule out such combinations.  
   But according to the rules for labels, the symbol 

q1⁕v1
would be acceptable.”

Einstein: "But why call it multiplication at all?"

Breton: "Mathematicians call it scalar multiplication, a special 
kind declared for vector sets.  The word scalar is used because 
operations like  

q1⁕q2⁕v1
are allowed.  This kind of operation 'scales' the vector by 
making it longer of shorter.”

Einstein: "Now you're mixing the multiplications.  The first 
applies only to Q; the second only to the  set of vectors.  They 
must be different operators.” 

Breton: "Right again.  They are different operators and must 
be seen as such.  For his reason I have emboldened the 
second symbol for multiplication.  I ask you to tolerate this 
admitted confusion for simplicity's sake.  Scalar multiplication 
is stipulated by the axioms of a vector space.”

Einstein, thinking to corner Breton again: "This could get 
confusing.” 

Breton, naively: "It gets worse.  Mathematicians also endow 
the vector set with some algebraic features.  So the  set of 
vectors has its own plus operator such that if v1 and v2 are 
vectors then 

v1 + v2 
is also a vector.

Einstein, now looking to scope out the problem: "We know 
about Q, and as Newton has observed, by itself it can be 
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considered a vector set.  On the other hand, vector sets other 
than Q may exist—a mathematical universe whose extent is 
hard to imagine.” 

Breton, continuing unabahsed: "So from this mathematical 
universe of vector sets, we have to pick one which can be 
made suitable for Theoretical Physics.”

Newton: "How?”

Breton: "You have already suggested the right path.  We are 
looking for a vector set which can be useful in describing 
locations, just simple mathematical locations.”

Einstein, scornfully: "What is a simple, mathematical 
location?”

Newton: "That's easy enough.  In conformity to its axioms, the 
vector set has a zero vector.  A simple mathematical location 
is the vector related to the zero vector.  For instance, my 
illustrious ancestor, could describe the position of a planet 
with relation to the sun as a vector relative to the zero vector 
taken as the sun.”

Breton, noting a flashing from Einstein's eyes, pressed on 
quickly to avoid a confrontation: "So what is needed is a 
vector which incorporates both a distance and a direction.  
The distance can be taken as a scalar from Q, the quotient 
numbers, but what about direction?”

Einstein, stubbornly: "I don't like the word 'distance'.  It 
connotes an idea which relates more to physical reality.  Let's 
use a more mathematical word like 'length'.”

Breton, in a conciliatory mood: "Fine.  So let every vector in 
our vector set be composed of a length and a direction.”

Newton, helpfully: "Direction can be thought of as points on a 
sphere centered on the zero vector.”

Breton, probing: "So can directions be taken from Q?”

Newton, with a touch of irritation: "No, directions seem to be 
some kind of vector themselves without length.”
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Breton: "Or with some implied length.  In any case the vectors 
in our vector set would have a scalar length and a vector 
direction.  The length and the direction could not be added, 
but they could be symbolized as 

v = q ⁕ u
where the emboldened characters represent vectors and the 
unemboldened character represent quotient numbers.

The multiplication sign annoyed Einstein.  Despite his 
insistence on disambiguity, Breton was clearly using the 
symbol ambiguously.  Looking to draw out some 
consequences from the inconsistency, Einstein continued: 
"Then any vector, say v, in our special vector set could be 
written as 

v = q(v)⁕u(v)

Newton, seizing the argument with a certain bustle: "If 
v = u(v) 

then q(v) must equal one. 

Breton, happily concluding: "So direction is a vector whose 
length is one.  We might call such vectors unit vectors.”

Einstein, somewhat miffed because the argument had not 
gone as he expected: "I suspect you anticipated all this by 
symbolizing 'u' for directions since they are unit vectors.”

Newton, ignoring Einstein's ignoble suggestion, wrapped up 
the conclusion: "Then directions are simply unit vectors, one 
for each point on a unit sphere centered on the zero vector.”

Einstein: "Length and direction are measurable.  Have we 
fallen from science into technology?  Remember we agreed 
that technology relies on measurement, a trait that separates 
technology from science.”

Breton, patiently: "Measurements result in numbers; vectors 
are not numbers.  Recall our previous discussion.  Theoretical 
Physics deals with objects that are measurable, because 
extended.  Relationships between its ideas can be explained 
without actually measuring anything, just as relationships 
between mathematical ideas can be explained without 
measurements.
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Newton, pushing on: "Are vectors ordered?

Breton: "You ask a good question, Newton.  Remember our 
discussion of quotient numbers?  Quotient number are not 
ordered of themselves, but when partitioned correctly, the 
partitions themselves emerge as ordered.  Something 
analogous occurs with vectors.  The set of vectors is not 
ordered, but certain subsets may be. 

Einstein: "Length can be stated in numbers, but what about 
direction?”

Breton: "The numbers related to length are called the 
underlying field of the vector and for Theoretical Physics the 
set of partitions of quotient numbers, called Q, is sufficient.  
Many mathematicians, however, prefer to use the real 
numbers, R, as the underlying field.”

Einstein: "I prefer to say 'completed numbers', rather than real 
numbers.”

Breton: "As you will.  I mean to emphasize that the underlying 
field comes with its algebra and topology.”

Einstein: "How about direction?

Breton: "Imagine you are standing in the center of a sphere.  
Any point on the sphere from your perspective would be a 
direction.”

Newton: "So these imaginings give us some idea of a vector, 
but one I find little helpful.  Let me suggest another approach.  
Remember how the positive integers were developed. 
Yesterday, Breton asked me for not one integer, but the whole 
set of them.”

Einstein: "Then I proposed how the whole set could be 
generated by an algorithm.”

Breton: "And one of you, I don't remember which, questioned 
why we should develop the whole set at all.

Einstein: "I did.”
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Breton: "We answered that the whole set was developed to 
answer any question about the operation of the plus operator 
on any positive integers.  So the development could be seen 
as forming the set of answers to all such questions.

Newton: "Why not try the same with vectors?  What is the set 
of vectors good for?

Breton: "A splendid insight Newton.  Let us consider the entire 
set of vectors, covering every length and every direction.

Einstein: "Like the quotient numbers.

Breton: "Something like, but not the same.  The directions of 
vectors refer to a sphere, while the directions of quotient 
numbers refer to a circle.

Einstein: "So the whole set of vectors provide answers about 
locations.”

Newton: "Vectors are growing a little more useful, but not 
much. 

Einstein: "You represent direction as a vector.  Isn't direction 
an angle? 

Breton: "You ask an interesting question.  Which is more 
fundamental: angle or direction?

Einstein: "Angle because directions are stated in terms of 
angles.

Breton: "But angles need a reference.  Isn't an angle measured 
between two directions?  So it seems to me that direction is 
the more fundamental concept.  I can point to something to 
show its direction without any reference to an angle.

Einstein, doggedly: "In any case angle and direction are 
closely related ideas.

Breton: "Different, but related.  Moreover, once a system of 
axes is accepted, any point on the sphere can be located by 
three angles.  If the three angles are called angle1, angle2, 
and angle3, then the three angles defining a given direction 
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are constrained by the by the formula
(cos(angle1))² + (cos(angle2))² + (cos(angle3))² = 1

where cos is the trigonometric function called cosine.

Einstein, never an amiable loser, thought to change the 
direction of the conversation: "Vectors are members of a 
vector set, so for any two vectors v1 and v2, another vector, 
v1+v2, is a member of the same space.  What is v1+v2?”

Newton, agreeably, without noticing Einstein's tactic: "Let's 
also consider scalar multiplication.”

Breton, taking up the new challenge: "Scalar multiplication is 
easy.  If v1 = q1⁕u(v1) is a vector, then 

v2 ≡ q2⁕v1 = q2⁕q1⁕u(v1)
So scalar multiplication produces another vector having the 
same direction as the original vector, but with a scaled length. 
For this reason this kind of multiplication in the vector set is 
called scalar multiplication.
   Two vectors having the same direction are called parallel 
vectors.

Newton, probing: "Suppose v2 = (‒1)⁕v1 are they still 
parallel?”

Breton: "Good remark, Newton.  I need to be more precise.  Let 
me offer the following definition.
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Newton, probing still: "How about 0?”

Breton: "Arguing from the definition, the zero vector would be 
parallel to any vector in V.

Einstein, making a favorite point and attempting again to 
control the conversation: "So the zero vector is a special 
vector!  Let's return to vector addition. How about  v1+v2?”

Addition in the Set of Vectors

Breton, taking up the challenge gingerly: "The vector, v1+v2, 
will have a length and direction, so 

v1+v2 = q⁕u;
so to define vector addition we have to define q and u.

Einstein, with a touch of triumph in his voice: "How?”

Breton, pensively and cautiously: "Let's try with a simple 
example.  Suppose v1 and v2 are directions.  If so, 

u(v1) + u(v2) = q⁕u
 = 2 ⁕cos(angle/2)⁕u

where angle is the angle between u(v1) and u(v2).
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Einstein, quickly objecting: "Where did that come from?  Why 
not 

u(v1) + u(v2) = u?
You specify q but not u, while I specify both.

Breton, now aware of Einstein's truculence: "Really?  You 
specify that the vectorial sum of two directions is another 
direction, but still unspecified.
   But from the axioms of the vector set 

u(v1)+u(v1) = 2⁕u(v1)
which is no longer a unit vector.  So it appears your suggestion 
implies a contradiction and so cannot be considered an 
appropriate definition.

Einstein, crushed, but too proud to concede: "Are there 
contradictions with your suggestion?

Breton: "Could be.  As you pointed out, my suggestion does 
not specify the direction.

Thinking prudence called for, Einstein thought for a long 
moment on how best to challenge Breton.  Finally, he mused: 
"I note that you have defined an angle from two directions.  
We might have defined direction in terms of angles. So which 
is a more fundamental concept: angle or direction?”

Newton, impulsively: "Angle!”

Einstein, glad to see his question taking root: "I say direction!”

Breton, always looking to reconcile his two friends: "Besides 
simple assertions, how can we come to the truth of the 
matter?”

Newton, resorting to a familiar tactic: "Let's enumerate the 
differences.”

Breton: "Both words are used in many different contexts.  Let 
us restrict our consideration to mathematical contexts which 
can lead to a physical application.
   Angles can be added numerically.  We can add a 90 degree 
angle to a 30 degree angle to form a 120 degree angle.  
Directions cannot be simply added to produce another 
direction.”
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Einstein, objecting: "Directions are vectors and so can be 
added in the vector set.

Breton: "Hold on.  Add two angles, obtain another angle.  Add 
two directions, the result is not another direction.  Besides, the 
two additions are different kinds of additions.  Let us call the 
one for angles, scalar addition.  The one for directions we can 
call vector addition.  We have not yet defined vector addition, 
but it must be suitably defined for a vector set.

'Here', Einstein thought, 'Breton is objecting with my own 
objection.  I have just used addition ambiguously.'  Rather 
than let Breton score that embarrassing point, Einstein quickly 
took up Newton's agenda: "Angles refer to triangles, whereas 
directions refer to a unit sphere.

Newton, continuing his agenda: "We can define either in terms 
of the other.
   An angle can be defined from two directions originating from 
the same point, called the vertex.  The two directions can then 
serve as sides of a triangle.
  A direction can be defined in terms of angles.  First set up a 
coordinate system of three mutually orthogonal axes.  Using 
the axes as sides, a direction can be defined in terms of three 
angles.

Breton: "True enough, but consider this, Newton.  If Einstein 
asks me to point at you, I will simply point my index finger in 
your direction with no reference to angles at all.   So directions 
may be defined in terms of angles, but not necessarily so. 

Newton: "Still locations can be defined in terms of angles, just 
as surveyors do.  A baseline and two angles are all that is 
needed.

Einstein, enjoying the different points of view: "But locations 
are defined even more easily by a direction and a distance.

Breton: "Newton, would a table help us?”

With that Newton happily drew up the following table which he 
presented to his friends. 
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Angle Direction

Scalar addition Vectorial addition

Refers to triangles Refers to a unit sphere

Defined in terms of two 
directions

Does not need angles to be 
defined, but may be defined 
in terms of three angles.

Can be useful for location. Can be useful for location.

Breton, after considering the table: "The table shows clearly 
that angle and direction are two different ideas.  For a 
mathematical science like Euclidean Geometry, angle may 
well be a better choice as prior to direction.  The simplicity of 
direction seems more appropriate for Theoretical Physics.”
   Turning to his two friends, he questioned:
”Do you both agree that angle and direction are ideas, not 
physical objects?

Newton: "Of course.”

Einstein: "But they may be properties of material objects.

Breton: "Location appears a property of all material objects.  
That is why Theoretical Physics should favor direction as 
axiomatic in its vector set.  So doing, locations are more 
simply described.
   Will you accept then, for our great adventure, that direction 
is taken as a fundamental and axiomatic idea from which 
angles may be defined.

Newton quickly agreed, but Einstein commented: “It is a fine 
and subtle point which I accept reluctantly.”

The fineness and the subtlety put Breton in mind of a story 
about proper beginnings.
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Peaches

Deliberately, he planted me.  He had this vision, one of a 
prolific peach tree flourishing beside his driveway, just here 
about five feet off, hiding that view, enhancing this other.  He 
envisioned my spring flowering, the delicately purple blooms 
before the leaves budded out, a delicately purplish fountain. 
Then with the coming leaves I would put forth peachlings, 
little hard nuggets at first, which would grow and grow.  With 
the growing, my branches would begin to bow, almost to the 
ground.

He imagined himself sitting in a chair by my trunk, lazily 
contemplating the the peachlings's slow growth.  In my 
shade, he would read, or doze, or simply enjoy a comfortable 
peace.

The wrens would tell him when to harvest.  Brashly, they 
would pick into the sunny side of the peach, a small 
indentation, leaving the firmer skin untouched.  Time to 
harvest.  A time for calling family and friends.  A time for 
singing, for joyful collecting into baskets, bags, whatever, in 
which to collect the bountiful harvest.  Peaches  everywhere, 
in the kitchen, on the porch, in the fridge, on window sills.

And now the next steps would be launched.  Peaches, washed 
and dried, could be served, whole, drilled or not, or peeled 
and with stones removed sliced just before serving.  Cream 
could be added as a dessert, or they might find their way into 
a fruit cup or salad.

Or the peaches could be fried.  He would cut the peaches in 
halves, remove the stones,  and cook them over low heat 
until tender, basting with butter.  He might relish the result 
as a meat accompaniment or even as a desert.

Or they might find their way into delicious peach cobblers, or 

28

v2

v1 v2+v3
v3

v1 • (v2+v3)



luscious peach shortcakes or toothsome peach upside down 
cakes.  He could smell the aroma now.  Or why not a peach 
cream pie,  or a peach sponge pie.  Mouth-watering.  Some 
might be canned, some might be put in jams and jellies, some 
might be brandied.  Visions of peach tarts floated by his 
imagination.

Thus motivated, he planted me.  First he selected me from 
other seeds in his collection.  Then he placed me in a five inch 
pot filled with potting soil which he watered generously.  He 
smiled when I pushed forth my first leaves.  When I grew to 
six inches,  he transferred me from the pot to a large hole in 
just the location he had in mind.  I grew fast.  The first year I 
had grown two feet tall, the next year ten feet tall.  He 
watered, he weeded, he mulched.  The leaves, the bark 
looked exactly like a peach tree.  Next year, he smiled to 
himself, he would be harvesting peaches.

Little does he know, I am an apricot.
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Breton: “So let us return to defining vectorial addition.

Newton: "In any case, you want us to accept as an axiom, that 
v1+v2 = q(v1+v2)⁕ u(v1+v2).

It seems we can say more about the direction u(v1+v2).

Breton: "What do you see?

Newton: "Let us imagine a plane defined by the two vectors v1 
and v2.  Suppose further that v1+v2 lies in the same plane.  
Then it appears that the direction u(v1+v2) equals some ratio 
of u(v1) and u(v2), say 

u(v1+v2) = a⁕u(v1) + b⁕u(v2)
for some a and b.

Breton: "And the angle between v1 and v1+v2 or between v2 
and v1+v2 must always be less that the angle between v1 
and v2.

Einstein, always looking to steer the conversation: " Let's do 
directions as a first step. 

Breton: "OK.  Suppose two directions, u1 and u2.  We know 
their sum as a vector of the vector set is not a direction.  So 

u1 + u2 = q⁕u3
Further, u1 and u2 can be thought of a radii of a unit sphere.
So if u2 = u1, what might be an appropriate definition?

Newton, engagingly willlingly: "We should have
u1 + u1 = 2⁕u1

Breton: "And how about u1 + (‒u1)? 

Newton: "We should have
u1 + (‒u1) = 0

Breton: "Now any direction u2 will lie between u1 and ‒u1, so 
their corresponding q's will lie between 2 and 0.

Newton: "And their direction?

Breton: "Half way way between them.

Einstein: "What does that mean?
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Breton: "A few diagrams may be helpful. 

With that Breton sketched the following drawings.

Drawing 1: Addition of Directions

Breton: "Look at the drawing carefully.  The solid lines with 
arrows indicate vectors; the dashed lines are parallel to them.  
In each case a rhombus appears, that is a rectangle 
(quadrilateral) with four equal sides.  The sum of the two 
directions is indicated by the diagonal of the rhombus.  Half of 
the rhombus formed by u1, u1+u2, and the parallel u2, is a 
triangle.  The sides of the triangle and its angles are related by 
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a trigonometric law called the cosine law which states  that 
the length of the diagonal is equal to twice the length of a side 
multiplied by the cosine of half the included angle.  So for us  

q(u1+u2) = 2⁕q(u1)⁕cos(angle/2). 
q(u1+u2) = 2⁕cos(angle/2).

since q(u1) = 1

Newton: "I can put the results into a table. 

angle (degrees) cos(angle/2) q(u1+u2)

0 1 2

45 0.92388 1.846776

90 sqrt(2)/2 1.41422

135 0.38638 0.77276

180 0 0

Einstein: "Justify your formula for q(u1+u2)!

Breton: "This is simply an exercise in trigonometry.  Follow 
along in this diagram.

With that Breton handed his two friends the following diagram.

Breton: "First from the tip of the first direction, drop a line 
perpendicular to the diagonal line, as shown.  Then note that 
the perpendicular line divides the larger triangle into two 
other equal right triangles.  Moreover, the angle between the 
first direction and the diagonal is just half the angle between 
the vectors.  Now in such a configuration the cosine of an 

32

1

1

1

diagonal

v2

v1 v2+v3
v3

v1 • (v2+v3)



angle is defined as the ratio of the hypotenuse to the adjacent 
side, that is

cos(angle/2) = (diagonal/2)/1.
Therefore, 

diagonal = 2 ⁕ cos(angle/2).     
as I have indicated above.

Einstein, returning to the attack: "It appears to me that by 
using triangles and perpendiculars you have embraced 
Euclidean geometry.

Newton, unwilling to neglect such an opportunity: "And given 
a good reason for the instinctive genius of my illustrious 
forebear in basing his Physics on Euclidean geometry.

Breton, retreating: "Einstein is right. By insisting on measuring 
the diagonal, I have lost the path.  Theoretical Physics should 
not be tied to Euclid's geometry, or indeed to any geometry at 
all.  Nor should our vector set.  I have made specific what 
might well have been left unspecified.  Still the process of 
imagining the sum of two vectors from the image of a 
rhomboid can stand, provided we do not tie the rhomboid to a 
Euclidean plane.

Newton: "You are denigrating my illustrious ancestor. 

Breton: "Not only yours, but Einstein's as well.  

Einstein, still prodding: "Some sort of geometry has to be 
assumed for Physics. 

Breton: "And if it doesn't correspond with reality?

Unable to respond both Newton and Einstein fell silent.

Breton: "We are engaged in a effort to create ideas which 
correspond to physical reality.  To geometrize the description 
of location may impose an assumption which leads physicists 
astray.  Theoretical Physics needs only conceive of a vector set 
with vectorial addition satisfying the axioms.  Addition in the 
vectorial set is merely illustrated by the diagonal of the 
rhomboid. 

Einstein: "I find it difficult to think about location without a 
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geometry.

Breton: "Just as you found it hard to imagine immaterial ideas. 
Still, to describe location as a length and a direction requires 
no assumption of a specific geometry.

Newton: "But its measurement will.

Breton: "Very likely, but measurement is of little concern to the 
science of Physics.  See how easily we slip into technology and 
away from science.

Newton: "Why vectorial addition in the first place?

Breton: "We observe physical objects as mutable.  An object 
lextended in one direction may subsequently be extended in a 
different direction; an object moving in a certain direction, 
may subsequently be observed moving in another direction.  
An object being forced in one direction may subsequently be 
forced in another direction.  A mathematical vector set has the 
possibility of being transformed into an appropriate concept 
for Theoretical Physics to describe and understand these 
observations. 

Einstein: "How do you finally describe vectorial addition for 
any two vectors in our special mathematical vector set?

Breton: "First let me review what we have learned from 
directions.  The specific definition of addition for directions fits 
some of the axioms of a vector set.  Let me list them.

u1 + u2 = u2 + u1
1⁕(u1 + u2) =  1⁕u1 + 1⁕u2
(1+1)⁕u1 = 1⁕u1 + 1⁕u1
1⁕u = u, for any direction

and for every direction u, there exists a vector ‒u such that
u + (‒u) = 0

Einstein: "But not all the axioms are satisfied.

Breton: "True enough.  Remember we started the investigation 
of the plus operator for vectors by first considering what might 
be appropriate for directions.  Now we can climb a little higher 
to consider addition for vectors generally. 
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Newton: "I propose a simple extension of our results for 
directions.  We can take 

v1+v2 ≡ q1⁕uv1 + q2⁕uv2
from a rhomboid rather than a rhombus.”

Einstein: "Don't go hiding behind some fancy names.  Explain 
each and show us how they differ. 

Newton: "A rhombus is a quadrilateral with four equal sides.  A 
rhomboid is a quadrilateral two of its sides not necessarily 
equal in length but matched by equal, parallel sides.  
   An illustration can bring out the difference perhaps more 
clearly than words.  Breton, would you kindly draw us a 
rhombus and a rhomboid. 

Breton quickly obliged with the following drawings.

Newton: "For directions we used a rhombus each of whose 
sides had a length equaled one.  Then the addition of two 
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vectors was defined as the diagonal of the rhombus.
   We can extend that definition to any two vectors of equal 
length.

q⁕u1 + q⁕u2
by referencing a rhombus the length of whose sides equals q.
   We can finally extend the definition to any two vectors 

q1⁕u1 + q2⁕u2
by referencing a rhomboid the length of whose sides equals 
q1 and q2.

Breton: "Then vector addition can be referred in all instances 
by the diagonal of a rhomboid.  Here is a diagram which 
illustrates vectorial addition generally.

Einstein: "The drawing shows what you are trying to define, 
but what is the length of v1+v2?

Breton: "Here this sketch may help you.
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Breton: "This sketch labels the three angles: 1,2, and 3, and 
includes extension lines so the their sines can be indicated.  
Angle1 lies opposite v1; angle2 lies opposite v2; angle3 lies 
opposite v1+v2.  Since 

sin(angle1) =  length(l1)/length(v1+v2) 
length(v1+v2) = length(l1)/sin(angle1)

Since sin(angle2) = length(l2)/length(v1+v2)
length(v1+v2) = length(l2)/sin(angle2)

Both angle1 and angle2 are acute angles, but angle3 is 
obtuse.  Referring to angle3 the length of the sum can be 
expressed in terms of cosines.

length(v1+v2) = cos(angle1)/length(v2)
+ cos(angle2)/length(v1)

So here Einstein are three equations for length(v1+v2). 

Einstein, continuing the challenge: "Express the difference 
between two vectors!

Breton: "I will have to expand my sketch a little.

With that Breton quickly handed his friends the following 
sketch.

37

v2

v1

v1+v2

3

2

1

3

l2

l1

l3

2

1

v2

v1 v2+v3
v3

v1 • (v2+v3)



Breton: "Now three other angles have been indicated: angle4,
 angle5, and angle 6.  From the sketch we see
sin(angle4)/length(v1‒v2)

= sin(angle5)/length(‒v2) 
= sin(angle6)/length(v1)

so that
length(v1‒v2) = length(‒v2)⁕sin(angle4)/sin(angle5)
length(v1‒v2) = length(v1)⁕sin(angle4)/sin(angle6)

The answer may involve us again in a specific geometry and 
lead us off our chosen path.  For our purposes we will simply 
accept as axiomatic that our vector set has an addition 
operator which operates on any two vectors as referenced in 
our rhomboid illustration without implying a specific geometry.

Einstein: "So what can you give for a definition of vectorial 
addition.

Breton: "Nothing.  Addition in the vector set is an axiomatic 
assumption.  It can be described, but not defined since 
definition would imply something 'more' axiomatic. 

Newton: "In Euclidean Geometry, a 'line' is an axiomatic 
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assumption.  It cannot be defined in terms of simpler axioms, 
but merely accepted and described.

Breton: "So by the axioms we are given a plus operator which 
operates on any two vectors in the vector set as 

+(v1,v2) = v1+v2

Newton: "Specifically, if v2 = 0
v1 + 0 = v1

Einstein: “Show me.

Newton: "Look at the diagram.  As v2 goes to 0, angle 2 also 
becomes zero and v1+v2 becomes v1.

Einstein: “And if v2 = ‒v1?

Newton: "Look at the diagram again.  Let v2 become ‒v1. 
Then angle 2 plus angle 1 equal pi and  v1+v2 becomes 0 
orthogonal to v1.
...So we see the rhomboid scheme leads to a definition of the 
+ vectorial operator consistent with the axioms for a the 
vectorial set.
   The plus operator acts symbolically like the plus operator for 
integers.

Breton: "So let us accept that a set symbolized as 
V ={{q⁕u such that q is an element of Q, u a direction},+}

as a vector set. since it satisfies all the axioms of a 
mathematical vector set. 

Newton: "I agree.

Einstein: "I also agree, but where is all this leading to?

Breton: "Remember how we developed the quotient numbers, 
starting with the positive integers?  We moved from the 
positive integers, to the negative integers, to multiplication, to 
division, each time enlarging our consideration to a set which 
finally supported a full algebra.  Then we showed that the set 
of quotient partitions could support a topology from which we 
could define limits and then continuous functions.  Do you 
think our vector set could support a similar development?
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Einstein: "You put before us an ambitious agenda.  Who knows 
where it will end?

Newton: "If we follow our earlier development we might expect 
surprises.

Breton: " And adventure, intellectual adventure.

Subtraction in the Set of Vectors

Newton: "Subtraction is easy.  From its axioms the vector set 
already contains a vector ‒v for every vector v.  Moreover we 
accept that 

v + (‒v) = 0
as we have seen in the illustration for addition in the vector 
set.

Breton: "Can minus act like an operator?

Newton: "The axioms give us plus as an operator, but not 
minus.  If minus were an operator we would need to know 

v1 ‒ v2
for any v1 and v2.

Breton: "We already know 
0 + (–v2) = ‒v2

which we could take as 
0 – v2 = ‒v2

Newton: "Minus would be well defined as an operator as 
v1 ‒ v2 ≡ v1 + (‒v2)

Einstein: "Breton, show us how this would look as an 
illustration. 

Breton: "Gladly. 

With that he quickly produced the following drawing.
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Breton: "Using the same rules of vectorial addition, you can 
see that  v1‒v2 may differ from v1+v2 in both length and 
direction.

Newton: "Notice the line parallel to v1‒v2, the one stretching 
from the tip of v2 to the tip of v1.  It has the same length and 
direction as v1‒v2.

Einstein: "Same length, but not a direction since it does not 
relate to the unit sphere.

Breton: "It would if the unit sphere were centered at the tip of 
v2 instead of 0.

Newton: "Look at the dashed line parallel to v2.  We would 
arrive at v1+v2 by traveling along v1 and the parallel line.  

Breton: "And we would arrive at v1‒v2 by traveling along v1 
and the line parallel to ‒v2.  Have you discovered a new way 
for defining addition and subtraction in the vector set?

Newton: "Yes we have.  I am tracing some paths in the 
diagram.  They all comply with the rule.

Breton: "So the parallel lines can be thought of as translated 
base vectors.  Allowing translated vectors enables vectors to 
be added and subtracted.  For instance, 
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v1+v2 = v1 + v2.

Einstein: "Not always.  The direction of the translated vector 
seems important.  For instance take the path

v1+v2 + v1 
does not equal v2

Breton: "You're right, but look 
v1+v2  ‒  v1 = v2

works fine.  So taking the path in the direction opposite than 
the base vector produces a vectorial subtraction.  So we can 
define sums of vectors analogously to sums of numbers.  The 
start of each of the summands will be the tip of the arrow
of its previous member.  The summand will be plus or minus 
depending on its correspondence to its base vector. 

Newton: "More than analogous.  If we take the partitions of Q 
as a vector set with only two directions, plus and minus, then 
the analogy becomes perfect.  So we have achieved a 
generalization of numerical Arithmetic for our vector set. 

Breton: "Another of your splendid insights.  But our notation 
has not  followed this new way of vectorial Arithmetic.  Let me 
propose a similar expansion of our notation.  Our vectors have 
been designated as 

v = q(v)⁕u(v).
Each translated vector can be written as 

v = v+v0 ‒ v0
one for each v0.  That is, 

q(v)⁕u(v) = q(v+v0)⁕u(v+v0) ‒ q(v0)⁕u(v0)
So for a translated vector we use 

 v = v2 – v0
where v2 = v+v0.  A translated vector of v can be thought of 
as starting from a base vector v0 and extending in the 
direction u(v) for a length q(v) to the vector v2.  A translated 
vector can be found for each base vector v0.

Einstein: "Then our former notation can be seen as having 
implied v0 = 0 for the base vector. 

Newton: "Something like the partitions of Q.  A given vector 
and all its translations acts like a partition in the vector set, 
one for each value of q and each direction.
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Breton: "Whereas direction was muted concept in Q, it 
becomes prominent in our vector set.

Einstein: "It's uncanny.  The partition containing 1/1 in Q 
differs from the partition containing ‒1/1, just as the partition 
in V for 1⁕u(v) differs from the partition for ‒1⁕u(v).

Newton: "Even more.  The partition containing ‒1/(‒1) 
contains 1/1, just as the partition in V for ‒1⁕u(‒v) contains 
the vector 1⁕u(v).

Breton: "So we have achieved an intellectually beautiful vista.  
Though different, the partitions of Q reveal a similarity to the 
partitions of V.  The perception of an underlying unity gives us 
a better appreciation of both and brings us intellectual 
enjoyment.
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Page for poem or other insert.
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Multiplication in the set of Vectors

Einstein: "Can we multiply in the vector set?

Breton: "Multiplication is not included in the axioms.

Newton: "Then let us define it.

Breton: "Unlike addition of vectors which produces another 
vector, multiplication according to our rules for physical units 
can produce objects which are not vectors.

Einstein: "Why be restricted to rules for labels when we are 
defining a mathematical structure?  

Breton: "We are looking to define mathematical objects which 
can be transformed into Theoretical Physics.  So it makes 
sense to respect the restrictions even in mathematics.  
Remember how we just used the same principle when we 
refused to add scalar variables with vector variables.

Newton, impatiently: "Agreed.  So how do we proceed?

Breton, plodding forward: "Let's enumerate the possibilities.  
The product resulting from the multiplication of two vectors. 
could be a member of the underlying field, Q.  Or again, it 
could be another vector.

Einstein: "Then these would be two different kinds of 
multiplication.

Breton: "Correct.  And let me add still another product, a 
transformation.

Newton: "What kind of transformation?

Breton: "The transformation would take one vector and 
transform it into another vector.  Although involving vectors, 
the transformation itself is not a vector. 

Einstein: "So far I hear words; please show us concretely what 
you mean?

Breton, patiently: "Will this help?  Multiplication is a kind of 
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function.  So if I describe the domain and ranges, you may 
perceive what I am saying more clearly: 

multiplication1: VxV ⟶ Q
multiplication2: VxV ⟶ V
multiplication3: VxT ⟶ V

Einstein: "So the vector set you propose has four different 
kinds of multiplications: scalar multiplication which we accept 
axiomatically, and then these other multiplications.  I can see 
that the further multiplications are each different because 
they have different ranges.  But they are still undefined.

Inner (Dot) Product

Breton: "So let us start with multiplication1

Multiplication1 is called the inner product or sometimes the 
dot product.  By this curious convention, we call the function, 
•, by its image.  To avoid confusion with the other 
multiplications in the vector se, it is symbolized with '•'.
As you can see

•: VxV ⟶ Q
where VxV is a joint set.

Einstein, analytically: "The product depends on the angle 
between the two vectors.

Breton: "Correct.  Suppose both vectors are unit vectors.  What 
would be the result?
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Definition   (inner (dot) product)
Given

v1, v2 vectors in the vector space. 
for

v1 = q(v1)⁕u(v1)
v2 = q(v2)⁕u(v2)
angle, the angle between u(v1) and u(v2)

 then

v1 • v2 ≡  q(v1)⁕q(v2)⁕cos(angle)

end of definition
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Einstein: "Then 
u(v1) • u(v2) = 1⁕1⁕cos(angle)

so cos(angle) equals the inner product of the directions of the 
two vectors.  From this we can conclude that 

u(v1) • u(v2) = u(v2) • u(v1)
and even

v1 • v2 = v2 • v1

Breton: "What would be the result if the angle were 0?

Einstein: "Since cos(0) = 1, 
v1 • v2 = q(v1)⁕q(v2)

Breton: "And if v1 = v2?

Einstein: "Then
v1 • v1 =  q(v1)⁕q(v1)

Breton: "So then the inner product of a vector with itself is 
equal to the square of its length.” 

Einstein: "Interesting.

Breton: "Suppose angle equals 90 degrees. 

Einstein: "Then cos(angle) = 0, so 
v1 • v2 =  0

Breton: "Two vectors so related are said to be perpendicular 
to each other, also called orthogonal vectors.
   And if the angle equals 180 degrees?

Einstein: "Then cos(angle) = ‒1, so 
v1 •(‒v2) = ‒q(v1)⁕q(v1)

Breton: "Which would be the same as 
(‒v1) • v2 = ‒q(v1)⁕q(v2)

Einstein: "correct.

Breton: "So the inner product varies from q(v1)⁕q(v2) to
‒q(v1)⁕q(v2) depending on the alignment of the two vectors.
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Einstein: "This inner product can be a very interesting addition 
to our vector set.

Breton: "Yes indeed.  The enhancement will become even 
more interesting when we discuss how to transform it into 
Theoretical Physics.
   We can come to appreciate the inner product more by 
considering its geometrical rendition.  Obviously from its 
definition

v1 • v2 =v2 • v1 
since both equal q(v1)⁕q(v2)⁕cos(angle).
   Now look how this plays out geometrically.

With that Breton handed the following sketch to his friends.

Breton: "In addition to the two vectors, the sketch shows two 
right triangles composed of the lines: l2, l4, q(v1) and l1, l3, 
q(v2).  From the sketch

cos(angle) = l2/ q(v1) = l1/ q(v2)
Now consider
v1 • v2 = q(v1)⁕q(v2)⁕cos(angle)

   = q(v1)⁕q(v2)⁕l2/ q(v1)
Similarly 
v1 • v2 = q(v1)⁕q(v2)⁕l1/ q(v2)
So

q(v2)⁕l2 = q(v1)⁕l1
a result somewhat difficult to see geometrically.  Thus we can 
often use a result easily proved vectorially to establish a result 
much more difficult to prove geometrically.  And vice‒versa.

Newton: "Since both q(v)’s  and l’s are lengths, when we talk 
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about thier products we are talking about areas.  The areas 
are  different, but they have the same value.  To prove their 
equivalence geometrically we would have to slice up one area 
into pieces which could be superimposed the the second area.

Einstein, hoping to cut the discussion short: "It would be easier 
to measure both. 

Breton, countering: "But the measurement would always be 
inexact, so by measurement we could never prove the areas 
were exactly equal. 

Newton: "And we would have had to choose some unit of 
measurement.

Einstein: "Breton, show us a sketch of the area of an inner 
product.

Complying Breton produced the following sketch.

Breton: "Both of the hatched areas equal v1 • v2. 

Breton,with a note of urgency: "So we come to appreciate the 
beauty and harmony of the inner product.  But let's move on.
   We have axiomatically that

 v1 + (v2 + v3) = (v1 + v2) + v3
What can we say about  (v1 • v2) + (v1 • v3)?
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Sums of inner products

Einstein, joining in enthusiastically to alleviate somewhat a 
suspicion that his contribution to the conversation was 
devolving into a pall of negativism: "This is the addition of two 
quotient numbers.  Let angle2 be the angle between v1 and 
v2; let angle3 be the angle between v1 and v3.  Then

v1 • v2 = q(v1)⁕q(v2)⁕(uv1 • uv2)
  = q(v1)⁕q(v2)⁕cos(angle2) 

v1 • v3 = q(v1)⁕q(v3)⁕cos(angle3)
v1 • v2 + v1 • v3 

  = q(v1)⁕q(v2)⁕(uv1•uv2) 
+ q(v1)⁕q(v3)⁕(uv1•uv3)

  = q(v1)⁕(q(v2)⁕(uv1•uv2) +q(v3)⁕(uv1•uv3)
  = q(v1)⁕(q(v2)⁕cos(angle2) + q(v3)⁕cos(angle3))

Breton appreciatively : "What can we say about
  v1 • (v2+v3)? 

Einstein: "That's not hard.  Let 
v2 = q(v2)⁕u(v2)

and   v3 = q(v3)⁕u(v3). 
Then
v1 • (v2+v3)

 = q(v1)⁕u(v1)•(q(v2+v3)⁕u(v2+v3)

Breton: "So does v1 • (v2+v3) = v1 • v2 + v1 • v3?

Einstein: "The formulas are almost the same

Breton: "But not exactly.  The would be equal if
(q(v2)⁕(uv1•uv2) + q(v3)⁕(uv1•uv3)

= u(v1)•(q(v2)⁕u(v2)+q(v3)⁕u(v3))

Einstein, recalling the earlier discussion on inner products: 
"Could they possible be equal if not exactly the same?

Breton: "An intriguing possibility.  Le us take same examples. 

If v2 or v3 = 0, say v2 = 0, then
v1 • (v2+v3) = v1 • v3

and     (v1 • v2) + (v1 • v3) = v1 • v3
likewise for v3 = 0
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If v2 = v3  
v1 • (v2+v3) = v1 • (v2+v2) = v1 • (2⁕v2)

=  2⁕(v1•v2)
and    (v1 • v2) + (v1 • v3) = (v1 • v2) + (v1 • v2) 

= 2⁕(v1•v2)

If v2 = ‒  v3  
v1 • (v2+v3) = v1 • 0

= 0
and    (v1 • v2) + (v1 • v3) = (v1 • v2) ‒ (v1 • v2) 

= 0

If  v1 • v2) = 0  and v1 • v3 = 0
v1 • (v2+v3) = v1 • q(v2+v3)⁕(a⁕u(v2) + b⁕u(v3))

= a⁕q(v2+v3)⁕v1 • u(v2)
  + b⁕q(v2+v3)⁕v1 • u(v3)
= 0 + 0

and    (v1 • v2) + (v1 • v3) = 0 + 0

Einstein: "Encouraging.

Breton: "But not a proof that in every instance that 
 v1 • (v2+v3) = v1 • v2 + v1 • v3.

Would you like to try proving the proposition generally?

Einstein: "Let's try together.  We already know they would be 
equal if 
(q(v2)⁕(uv1•uv2) + q(v3)⁕(uv1•uv3)

= u(v1)•(q(v2+v3)⁕u(v2+v3)

Breton: "We already know 
q(v2)⁕(u(v1)•u(v2)) = u(v1)•(q(v2)⁕u(v2)

and similarly for v3.  So we need only be concerned with the 
sum.

Einstein: "And we know that from our discussion of translated 
vectors

q(v2+v3)⁕u(v2+v3) = q(v2)⁕u(v2) + q(v3)⁕u(v3).
So
u(v1)•(q(v2+v3)⁕u(v2+v3)

= u(v1)•(q(v2)⁕u(v2) + q(v3)⁕u(v3))
= u(v1)•(q(v2)⁕u(v2) + u(v1)•(q(v3)⁕u(v3)
= q(v2)⁕(uv1•uv2) + q(v3)⁕(uv1•uv3)
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Breton: "So you have proven the proposition for all cases. 

Einstein: "This is hard to visualize.

Breton: "We have proven the proposition algebraically, but the 
geometric rendition remains obscured.  Some drawings may 
be helpful. 

In a few minutes Breton handed his friends these three 
sketches.

Breton: "This first sketch shows the two vectors, v2 and v3 
and their sum lying in the same plane.  The vector v1 sticks 
up from the plane.  The dotted lines show the orthogonals 
from from v1 to v2, v3, and v2+v3.  The orthogonals are 
related to inner products.  
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Breton: "Geometrically, this area lies in a plane orthogonal to 
the plane defined by v1 and (v2+v3).

   The next sketch shows the two areas v1 • v2 and v1 • v3.

Breton: "While the algebraic proof requires fine reasoning, the 
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geometric proof would be even more difficult.  Now are you 
convinced.

Einstein grudgingly: "It does follows that 
v1 • (v2+v3) = v1 • v2 + v1 • v3 

Breton, pressing the victory to a deliciously bitter ending: "The 
conclusion is ambiguous.  If your mean 

v1 • (v2+v3) = v1 • (v2 + v1) • v3 
then the result is a inner product between a scalar and a 
vector, which is meaningless.   If you mean 

v1 • (v2+v3) = (v1 • v2) + (v1 • v3) 
then the result is the sum of two scalar quantities, a 
meaningful result.”  
   After a short pause Breton continued in an agreeable tone. 
“Your reasoning follows the format for our formal proofs.  Why 
not use the format we agreed upon?  But before that, I suggest 
we simplify our notation.  Let us write 

q1 for  q(v1)
q2 for  q(v2)
q3 for  q(v3)
uv1 for u(v1)
uv2 for u(v2)
uv3 for u(v3)

Whenever no ambiguity will follow, we can do the same in 
other contexts.

Einstein joining gladly: “Agreed.  Here's my proof.”
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Breton: "The proof rests on the rhomboid definition of plus in 
the vector set. 

Newton, with a note of delightful satisfaction: "We are building 
a mathematical structure‒‒the parts fit together.

Breton: "We've become intellectual carpenters.

Vector product

Newton: " How about multiplication2?

Breton: "Again we need a definition.
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Proof:  
Given 

v1 = q1⁕uv1
v2 = q2⁕uv2
v3 = q3⁕uv3
v4 = q4⁕uv4 
     = q(v2+v3)⁕u(v2+v3)

then

v1 •(v2+v3) = (v1 • v2) + (v1 • v3)

Proof: 
v1 • (v2+v3)

= qv1⁕uv1•(q4⁕uv4)
= qv1⁕uv1•(q(v2+v3)⁕u(v2+v3)
= qv1⁕uv1•(qv2⁕uv2 + qv3⁕uv3)
= qv1⁕uv1•qv2⁕uv2 + qv1⁕uv1•qv3⁕uv3)
=(v1 • v2) + (v1 • v3)

qed 
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Multiplication2 is called the cross product.  To avoid 
confusion with the other multiplications in the vector set it is 
symbolized with '∧'.
   As you can see

∧: VxV ⟶ V

Newton: "The vector product depends not only on the angle 
between the two vectors, but also on an orthogonal direction.  
We must have

un • v1 =  0
and

un • v2 =  0
Does such a vector exist?”

Breton: "We need only 
un • u(v1) =  0

and
un • u(v2) =  0

so we need deal only with the unit sphere.”

Newton: " Since all directions are part of our vector set,  we 
can find one which is orthogonal  to u(v1). 

Breton: "The two vectors, v1 and v2, can be used to define a 
plane.  Since each of the vectors of this plane are orthogonal 
to un, we call this plane orthogonal to un.
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Definition   (vector (cross) product—initial)
Given

v1, v2 vectors in the vector space. 
for

v1 = q(v1)⁕u(v1)
v2 = q(v2)⁕u(v2)
angle, the angle between u(v1) and u(v2)
un(v1,v2), a direction orthogonal 

to v1 and v2
 then

v1 ∧ v2 ≡  q(v1)⁕q(v2)⁕sin(angle)⁕un(v1,v2)

end of definition
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Einstein: "When you talk about planes you are implying 
Euclidean geometry!

Breton: "Not really.  We are only dealing with the axiomatic 
plus operator of the vector set.  By 'plane' in this context I 
mean only a set P = {q1⁕v1 + q2⁕v2, q1 and q2 in Q}.  The 
vector plane would have to be further specified to make it a 
Euclidean plane.

Einstein: "A diagram would help here.

So Breton quickly sketched the following diagram to illustrate  
the orthogonal planes. 

Breton: "Imagine the disk a unit circle viewed from the side.  
The circle is a great circle from a unit sphere which you have 
to imagine.  The two vectors v1 and v2 lie in a plane which 
also contains the unit circle.  The unit vector un is orthogonal 
to the unit circle and so orthogonal to both v1 and v2.

Newton: "So there does exist a direction which is orthogonal to 
both v1 and v2. In fact all directions which lie in the plane of 
the unit circle are orthogonal to un.

Einstein: "If. un is orthogonal to v1 then so also is –un.  There 
are thus two orthogonal vectors, in opposite directions.  So 
Breton your definition is flawed.  You have narrowed the 
possibilities, but for an adequate definition you would have to 
narrow the possibilities to only one.

Breton: "True enough.  Notice that the definition is only an 
initial definition.  A final definition will be forthcoming. 

Einstein: "Promises, promises, always promises.

Breton: "Which will be kept in due time.  The initial definition 
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of the vector product has narrowed the possibilities from an 
infinite number to just two.  With a little patience we will finally 
narrow it to just one.  But even with this initial definition we 
can come to some conclusions.  What is v1 ∧ v1?

Newton: "Since sin(angle) = 0,  v1 ∧ v1 = 0.

Breton: "And how about  v1 ∧ 0?

Newton: "Since q(0) = 0,  v1 ∧ 0 = 0.also. 

Breton: "Which also holds for 0 ∧ v1.  And if  v1 • v2 = 0?

Newton: "Since sin(angle) = 1,
v1 ∧ v2 = q(v1)⁕q(v2)⁕un(v1,v2).

Einstein: "Again an ambiguous result. 

Breton: "Which will be resolved anon.  Notice when the value 
of the inner product is a minimum, the vector product has its 
maximum length.  Conversely when v1 ∧ v1 = 0,

v1 • v1 =  q(v1)⁕q(v1)
attains its maximum value.

Einstein: "But when  v1 ∧ 0 = 0, v1 • 0 = 0.

Newton: “We found the inner product interesting, but what 
possible interest can we expect from the cross product?

Breton: "Look at my diagram again.  If v1 and v2 are swirling, 
then an effect could be produced in the orthogonal direction.  
So to investigate the motion of propellers, we might find the 
cross product useful. 

Einstein: "And for electricity as well.

Breton: "Interesting prospects, don't you think Newton?  But 
let us focus again on our mathematical aim of defining an 
algebra for the set of vectors.  We have not finished with 
vector multiplication.  What can we say about  v1 ∧ (v2+v3)?

Sums of vector products
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Newton: "I suspect v1 ∧ (v2+v3) =  v1 ∧ v2 + v1 ∧ v3.

Breton: "Can you prove it?

Newton: "I'll try.  Le t me first define
v1 ∧ v2 = q(v1)⁕q(v2)⁕sin(angle2)⁕un(v1,v2)
v1 ∧ v3 = q(v1)⁕q(v3)⁕sin(angle3)⁕un(v1,v3)

so
v1 ∧ v2 + v1 ∧ v3 

=  q(v1)⁕q(v2)⁕sin(angle2)⁕un(v1,v2)
+ q(v1)⁕q(v3)⁕sin(angle3)⁕un(v1,v3))

while 
v1 ∧ (v2+v3) =  q(v1)⁕u(v1)∧(q(v2)⁕u(v2) + q(v3)⁕u(v3))

 = u(v1)∧(q(v1)⁕q(v2)⁕u(v2) 
+ q(v1)⁕q(v3)⁕u(v3))

 = q(v1)⁕q(v2)⁕u(v1)∧u(v2) 
+ q(v1)⁕q(v3)⁕u(v1)∧u(v3))

=  q(v1)⁕q(v2)⁕sin(angle2)⁕un(v1,v2)
+ q(v1)⁕q(v3)⁕sin(angle3)⁕un(v1,v3))

So they are equal. 

Breton: "Would you put your reasoning into a formal proof?

Newton: "Try this.”
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Proof:   
Given 

v1 = q1⁕uv1
v2 = q2⁕uv2
v3 = q3⁕uv3
v4 = q4⁕uv4 
     = q(v2+v3)⁕u(v3+v4)

then

v1 ∧ (v2+v3) = (v1 ∧ v2) + (v1 ∧ v3)

Proof: 
v1 ∧ (v2+v3)

= qv1⁕uv1∧(q4⁕uv4)
= qv1⁕uv1∧(q(v2+v3)⁕u(v3+v4))
= qv1⁕uv1∧(qv2⁕uv2 + qv3⁕uv3)
= qv1⁕uv1∧qv2⁕uv2 + qv1⁕uv1∧qv3⁕uv3)
=(v1 ∧ v2) + (v1 ∧ v3)

qed 
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Breton: "A good proof, don't you think Einstein?

Outer Product

Einstein, dismissively,: "Yes, much similar to my proof for inner 
products.  Now let us turn to the third type multiplication, 
transformations.  Again we need a definition.  

Breton: "Agreed.  The way forward has become easier.  Let me 
offer 

As you can see the transformation [v1 ⁕ v2] transforms the 
vector v3 into a scaled vector parallel to v2.  Now tell me: ‘Is 
the transformation [v1 ⁕ v2] identical with [v2 ⁕ v1]?

Einstein: "Of course not!  The transformation [v1 ⁕ v2] 
operates to produce a vector parallel to v2 while [v2 ⁕ v1] 
operates to produce a vector parallel to v1 

Newton: "Then although
 v1 • v2 = v2 • v1

still
[v1 ⁕ v2] ≠ [v2 ⁕ v1]

Breton: "Which confirms the difference between these 
multiplications.  In summary

v1 • v2 = v2 • v1
v1 ∧ v2 = ‒v2 ∧ v1
[v1 ⁕ v2] ≠ [v2 ⁕ v1]

  Suppose v3 and v1 are unit vectors.  What would be the 
result?

Newton: "Then 
uv3•[uv1 ⁕ v2] = cos(angle(3,1))⁕ v2
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where cos(angle(3,1)) is the angle formed by v3 and v1.

Breton: "What would be the result if the angle were 0?

Newton: "Then 
uv1•[uv1 ⁕ v2] = v2

Breton: "Suppose v3 and v1  were orthogonal vectors.

Einstein: "Then cos(angle) = 0, so 
v3•[v1 ⁕ v2] = 0

Breton: "And if the angle equals 180 degrees?

Einstein: "Then cos(angle) = ‒1, so 
v3•[v1 ⁕ v2] = ‒v2

Breton: "For given vectors, even though the multiplications are 
distinct, a certain symmetry appears in their ranges.  Here let 
me illustrate by this table. 

PRODUCT RANGE

v1 • v2 q(v1)⁕q(v2) to ‒q(v1)⁕q(v2)

v1 ∧ v2 q(v1)⁕q(v2)⁕un to ‒q(v1)⁕q(v2)⁕un

v3•[v1 ⁕ v2] q(v1)⁕q(v3)⁕v2 to ‒q(v1)⁕q(v3)⁕v2

Sums of outer products

Breton: "What can we say about
v3•[v1 ⁕ v2] + v3•[v4 ⁕ v5]?

Newton: "That's easy.  
v3•[v1 ⁕ v2] = (v3•v1) ⁕ v2

and
v3•[v4 ⁕ v5] = (v3•v4) ⁕ v5

so
v3•[v1 ⁕ v2] + v3•[v4 ⁕ v5]

=  (v3•v1) ⁕ v2 + (v3•v4) ⁕ v5

Breton: "So the outer multiplication is not so mysterious!  Can 
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these outer transformations be added?

Einstein: "If so, then suppose
[v1 ⁕ v2] + [v4 ⁕ v5] = [(v1+v4) ⁕ (v2+v5)]

Newton: " Then 
v3•([v1 ⁕ v2] + [v4 ⁕ v5])

= v3•[v1 ⁕ v2] + v3•[v4 ⁕ v5]
= (v3•v1) ⁕ v2 + (v3•v4) ⁕ v5]

while
v3•[(v1+v4) ⁕ (v2+v5)]

= v3•(v1+v4) ⁕ (v2+v5)
= (v3•v1+v3•v4) ⁕ (v2+v5)
= (v3•v1+v3•v4) ⁕ v2 

+ (v3•v1+v3•v4) ⁕ v5
so it does not appear that outer products can be added.

Breton: "Not as outer products, but perhaps the sum of two 
outer products can result in another kind of transformation.

Einstein: "Possibly.  Breton, you raise an interesting possibility.  
Since the outer product transforms one vector into another, 
perhaps the cross product which also yields a vector different 
from each multiplicand can also be expressed as a 
transformation. 

Newton, concerned about becoming defocused: "Before we 
wander off, let's stick to the trail of outer products.

Combinations of Multiplications

Breton: "Right.  Let's investigate combinations of these 
multiplications. 

Newton: "What?  These multiplications can be combined?

Breton: "Why not?  The cross product of two vectors yields a 
vector which can then be a multiplicand of the inner product 
with a third vector to produce a quotient number.  So isn't a 
combination like

v1 • (v2∧v3) = q1
legitimate?

Einstein: "Of course.  Such combinations open interesting 
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possibilities.

Breton: "So we can also consider combinations like
(v1∧v2) • v3 = q2

and
v2 • (v3∧v1) = q3

The scalar triple product

Now I assert
q1=q2=q3

Einstein: "Assert all you will, Breton.  You will need to prove it 
before I accept it.

Breton: "It does seem astounding, you are right to question.  If 
what I assert is true, we will have mounted a little higher up 
the mountain of our adventure from which we might expect to 
open up to a large panoramic vista. 
  Let me start by making the proof a little easier.  Defining 

v1 ≡ qv1⁕uv1
v2 ≡ qv2⁕uv2
v3 ≡ qv3⁕uv3

then 
v1 • (v2∧v3)
       = v1 • (qv2⁕qv3⁕sin(angle23)⁕un23)
       =qv1⁕uv1• (qv2⁕qv3⁕sin(angle23)⁕un23)
       =qv1⁕qv2⁕qv3⁕sin(angle23)⁕uv1•un23
       =qv1⁕qv2⁕qv3⁕sin(angle23)⁕cos(angle(v1,un23))
Likewise, 
v2 • (v3∧v1) 
       =qv1⁕qv2⁕qv3⁕sin(angle31)⁕cos(angle(v2,un31))
v3 • (v1∧v2) 
       =qv1⁕qv2⁕qv3⁕sin(angle12)⁕cos(angle(v3,un12))
   The factor  qv1⁕qv2⁕qv3 appears in all three equations 
where they form equal products.
   So we need only consider whether 

sin(angle23)⁕cos(angle(v1,un23))
= sin(angle31)⁕cos(angle(v2,un31))
= sin(angle12)⁕cos(angle(v3,un12))

Einstein: "All these new definitions can be confusing. 
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Breton: "We are dealing with six different angles, so we need 
six different symbols.  The complexity should be viewed as 
clarifying rather than confusing.  If we don't create the 
symbols, our thinking would be very much impeded. 

Newton: "Breton, continue with your proof.

Breton: "Recall the rhombus which we used to defined the 
addition of vectors.  What is its area?

Einstein: "What has this to do with the matter?

Breton: "Patience, my dear Einstein.

Newton: "Everyone know the area of a rhombus is the product 
of its base with its height.

Breton: "Not necessarily then, the product of its base with its 
side.  Let me illustrate. With that Breton drew the following 
illustration.

Breton: "The area of the rhombus equals the product of its 
base and height because one can translate the triangle with 
the slanted side to the other side of the rhombus, the area I 
have indicated by the hatched triangle, to produce a square.  
Subtracting the area of one triangle and replacing with the 
area of ab equal triangle does not change the area.  The 
reconstructed area is then a square whose area is clearly the 
product of the length of its base with the length of its height.  
  Now consider the angle between the base and the side.  The 
length of the height is then the length of the side times the 
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sine of that angle.  Let us call the length of the base, l1, and 
the length of the side, l2.  The area of the rhombus can then 
be expressed as 

area = l1⁕l2⁕sin(angle(l1,l2))

Newton: "A similar conclusion could be reached for rhomboids 
also.

Breton: "Certainly.

Einstein: "You have assigned base and side arbitrarily.  If you 
exchanged them you might get a different result.

Newton: "I'm beginning to see how this argument could lead 
to proving your contention, Breton.  But show us how it makes 
no difference which side is considered the base.

Breton: "It's not clear from the illustration?  All right, let's 
switch the sides.  Here is a second illustration,

So you see the first side has become a new base with a 
different height, but the same area.  So we can conclude

area = l1⁕l2⁕sin(angle(l1,l2))
        = l2⁕l1⁕sin(angle(l2,l1))

So we can further conclude
sin(angle(l1,l2)) = sin(angle(l2,l1))

Newton: "What does that mean for vectors?

Breton: "Let the sides and their directions be represented as 
vectors, v1 and v2.  Do you remember the definition of the 
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cross product. 

Newton: "Of course.
v1 ∧ v2 ≡  q(v1)⁕q(v2)⁕sin(angle12)⁕un(v1,v2).

Breton: "So look at the scalar part of the product.  Isn't is just 
the area of a rhomboid. 

Newton: "Yes, I see that.  Still, the cross product is a vector and 
not a scalar.

Breton: "Or we can consider that cross product as a vector 
area, whose direction is orthogonal to the plane of its two 
vectors, and whose length equals the area of the rhomboid 
defined by the two vectors. 

Einstein, mockingly: "So length equals area?

Breton: "I stand corrected.  I should have said 'whose 
magnitude equals the area of the rhomboid'.

Einstein: "Much better.  So just as the product of two lengths is 
a scalar area, the cross product of two vectors is a vector area.

Newton: "Wonderful.  The language of vectors subsumes 
ordinary arithmetic and even surpasses it.

Breton: "In this instance, we now can consider areas as scalars 
or as vectors.  Vectorial language is like singing a song rather 
than just reading the score.

Einstein: "Remarkable and surprising, but enough of 
metaphors!  We know how to calculate the arithmetical area of 
a rhomboid and that it makes no difference which side is taken 
as base, but for vectorial areas, how do we know that either 
option has the same direction?

Breton: "That's easy enough.  Since the two vectors define a 
plane, any vector orthogonal to both vectors will be 
orthogonal to the plane, and thus be parallel vectors.  The 
order of the vectors, however, becomes important, since a 
reversed order will produce a negatively parallel vector. 

Einstein: "Breton, you still have not proven your assertion.  
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How do vectorial areas help with your proof?

Breton: "Consider now the volume of parallelepipeds. 

Einstein: "Rhomboids, parallelepipeds!  Just define a 
parallelepiped.  Be like Newton who was good enough to 
define rhomboids.

Breton: "A parallelepiped is a six sided solid mathematical 
object, each side of which is a rhomboid which has an similar 
side opposite and parallel to it.

Newton: "So a parallelepiped is just an extension of rhomboids 
to three dimensions.  Since each surface of the parallelepiped 
is a rhomboid we now know how to calculate its surface area. 

Einstein: "So a parallelepiped is just a box.

Newton: "Which may be scrunched up a bit.

Breton: "We were able to calculate the area of a rhomboid 
from the knowledge of its sides.  Because of parallelism we 
needed to know only two different sides.
  Now parallelepipeds have a volume.  How can we calculate 
its volume?

Newton: "For a rectangular parallelepiped, the answer is the 
area its base area times its height.

Breton: "Since the area of the base for the rectangular case is 
just the product of the length of its sides, the volume of the 
rectangular parallelepiped is just the product of the length of 
its three edges.  More generally, If the base area is a 
rhomboid, while the remaining edge is perpendicular to the 
base, the volume of the parallelepiped would be the area of 
the base rhomboid times the length of the remaining side. 

Einstein: "How about the the general case where the 
remaining side is canted in an arbitrary direction with respect 
to the base.

Breton: "So let us go vectorial.  Let each of the three non‒
parallel edges be designated v1, v2, and v3.  Further let v1 
and v2 be associated with the base area.  Then the height of 
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the parallelepiped is associated with v3.  The length of the 
height  is thus 

length of height = v3 • un
where un is a direction orthogonal to the base.
Therefore,
volume = area of base⁕(length of height)

  =  q(v1)⁕q(v2)⁕sin(angle(v1,v2))⁕qv3⁕(uv3•un)
Now consider
(v1 ∧ v2)•v3 = (q(v1)⁕q(v2)⁕sin(angle(v1,v2))⁕un(v1,v2))

• qv3⁕uv3
= q(v1)⁕q(v2)⁕sin(angle(v1,v2))⁕qv3

⁕(un(v1,v2)•uv3)
What do you conclude?

Newton: "Since un(v1,v2) and un are both directions 
orthogonal to the base, the equations are the same.

Breton: "Not the same, but equal.  So (v1 ∧ v2)•v3 equals the 
volume of a paralellepiped formed by the three vectors.

Einstein: "Nice, but this does not fully prove your assertion.  
You must further show that any combination of the vectors 
yields the same result.

Breton: "Fair enough.  First do you agree
(v1 ∧ v2)•v3 = v3•(v1 ∧ v2)?

Einstein: "Certainly.  As we saw earlier, inner products 
commute.

Breton: "So now I must show
(v1 ∧ v2)•v3 =(v2 ∧ v3)•v1 

Both Newton and Einstein lean forward eagerly.

Breton: " Now (v2 ∧ v3)•v1 corresponds to a different side of 
the parallelepiped with a different height.  But since it is the 
same parallelepiped, tell me does it have the same volume?

Einstein: "Yes.

Breton: "So even though the multiplicative factors are 
different, as volumes 

(v1 ∧ v2)•v3 =(v2 ∧ v3)•v1 
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Einstein, even more reluctantly,: "Yes.

Breton: "And further (pressing his argument home)
(v1 ∧ v2)•v3 =(v2 ∧ v3)•v1 
(v1 ∧ v2)•v3 =(v3 ∧ v1)•v2 
(v1 ∧ v2)•v3 =.v1 (v2 ∧ v3) 
(v1 ∧ v2)•v3 = v2 (v3 ∧ v1) 

Does all this finally prove my assertion?

Newton: "Yes indeed!  What you have shown is marvelous 
indeed.  Vectorial multiplication marvelously comprehends 
arithmetical multiplication and greatly extends it.  I begin to 
see how our intellectual vistas are being enlarged. 

Einstein: "Not so fast.  Since, 
v•(‒v3) = ‒ (v•v3)

   .≠ v•v3
(v1 ∧ v2)•(‒v3) ≠ (v2 ∧ v3)•v1 

What's going on here?

Breton: "Very little gets by you Einstein.  What is 
(v1 ∧ v2)•(‒v3)?

Einstein: "You tell me. 

Breton: "If (v1 ∧ v2)•(v3) is the volume of a parallelepiped, 
then
(v1 ∧ v2)•(‒v3) is the volume of a different parallelepiped.

Einstein: "With a negative volume!

Breton: "Just so.  You bring up an important subject which we 
touched on yesterday.  Consider arithmetic multiplication.  If 
the area of a rectangle

area = 2⁕3 = 6
what is the area of a rectangle 2⁕(‒3)?

Einstein: "How can it be ‒6?

Breton: "Recall how yesterday we distinguished two 
conventions: positive definite and basic.  If we insist that all 
areas as positive then we are insisting on the positive definite 
convention.  If not, then we should use the basic convention 
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which allows an area to be negative.  The basic convention 
insists that the positive area differs from the negative area.  
We risk confusion when we mix the conventions. 

Einstein: "So we are using the basic convention with these 
vectorial multiplications.

Breton: "Correct.  The basic convention was assumed when we 
agreed that 

(v1•‒v3) = ‒ v1•v3

Einstein: "Why not use the positive definite convention?

Newton: "Then we would not be able to use negative numbers.

Breton: "No small restriction.  In any case, we have assumed 
the basic convention. 

Einstein: "Then the word 'volume' is misleading. 

Breton: "Only from the aspect of the positive definite 
convention.  Our expanded (basic) view allows negative areas 
as well as negative volumes.  This comports well with the 
possibility that (v1 ∧ v2)•(v3) may be positive or negative.
  If you insist on the positive definite convention, then we shall 
have to consider only 

abs((v1 ∧ v2)•(v3)).

Newton: "The basic convention will do for me.

Einstein: "Then we must see 
(v1 ∧ v2)•(v3)

as different from
(v2 ∧ v1)•(v3)

since the second is the negative of the first.

Breton: "Correct.  Here's a little memnonic to help associating 
which volumes are equal.  All the equal volumes keep a cyclic 
order of the vectors.  For instance, (v1 ∧ v2)•(v3) orders the 
vectors as 1,2,3.  It has the same volume as (v2 ∧ v3)•(v1) 
which orders the vectors 2,3,1.
  The cyclic order has 

1,2,3 ⟶ 2,3,1 ⟶ 3,1,2
Vectors so ordered have equal values.
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Einstein: "And the opposite direction
3,2,1 ⟶ 1,3,2 ⟶ 2,1,3

would also tag equal values?

Breton: "Check it out.

Newton: "I will.  After a short pause.  “Look, the rule works 
flawlessly.

Breton: "So long as the cyclic order is preserved, any 
arrangement of the vectors yields the same value.  For this 
reason, the value is often referred to as the scalar triple 
product.

Einstein: "Even though each of the products individually are 
different, the all have the same value.  This is a result I find 
hard to stomach. 

Breton: "We have here another instance of the important 
distinction between the meaning of the word 'is' and the 
meaning of the word 'equal'.  It is just loose thinking to 
conflate the two.  We could all agree that 

7+3=4+6=5+5=10
even though {7+3} is not {4+6} which is not {5+5}.

Newton: "Yesterday, you insisted on the same distinction.  I 
agreed then, but now realize better how the difference 
between 'is' and 'equals' is rooted deeply in our efforts to 
think correctly. 

Breton: "You remind me now of another aspect of triple 
products which reflects a conclusion reached yesterday.  If the 
vector v has units, say L , the the inner, vector, and outer 
products we have defined should have units, L⁕L, and the 
triple product units L⁕L⁕L.  In our development taking L as 
length, then  L⁕L would denote and area and  L⁕L⁕L a 
volume.

Newton: "Exactly as we determined.

Breton: "So vectorial algebra fits nicely, at least in this aspect, 
with our quest for Theoretical Physics. 
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Newton: "This is becoming intellectually satisfying.

Breton: "We have mounted a little further up our mountain.  
Let's turn to view the panorama.  The vectors, v1, v2, and v3 
may have any physical units.  For instance we might 
considered 

(f1 ∧ f2)•(v3)
where f1 and f2 are forces and v3 a velocity.  Then we would 
know immediately 

(f1 ∧ f2)•(v3)=(v3 ∧ f1)•(f2)
    = ‒(f1 ∧ v3)•(f2)

although measuring and calculating the involved variables 
might be difficult.

Newton, in amazement: "Instead of fashioning only one more 
intellectual idea for our explorations, we have now a whole 
warehouse of interesting intellectual tools.

Breton: "I find it pitiful that so much of modern physics is 
explained merely in terms of scalars.  Vectorial explanations 
offer the prospect of so much more insight.  For instance, the 
idea of area as a scalar has dominated our thinking, but the 
idea of area can be expanded as a vector, and perhaps even 
as a transformation.  How might these expanded ideas of area 
enlighten our thinking?

Newton: "Our metaphorical mountain offers more challenges 
than we first foresaw. 

With that, Newton rose from his chair and took down the 
picture which he had framed during the previous day's 
conversation. 
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Breton: "We have extended ourselves.  I think it time to 
regroup and consider our next steps. 

Einstein: "I agree.  If we climb too fast we can slip and fall.  
Newton would you kindly summarize for us. 

Newton: "Let me start from the axioms themselves.  We are 
given a field of scalar numbers (taken as Q, the quotient 
numbers) and a set of vectors, and two operators (addition 
and scalar multiplication) which act on any vector to produce 
another vector.  Let me symbolize then as 

+:V1xV2 ⟶ V3
and 

⁕:QxV1 ⟶ V2

Breton: "You show the sets involved nicely, but please show 
the symbolism for the action of the operators on individual 
elements of the vector set, V.

Newton: "Certainly 
v1+v2 = v3

and
q⁕v1= v2

The axioms stipulate that these equation always hold.
   The vector set, axiomatically, does not define multiplication.  
So of itself, it is not a field.  Breton proposed expanding the 
vector set to include some other operators, like multiplication 
and so try to construct a field on the foundation of the 
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axiomatic set of vectors. We defined three such possible 
multiplications: the inner, the vector, and the outer products.

Breton: "Would you construct a table showing what we have so 
far accomplished.

Newton: "Gladly.

With that Newton set to work and soon produced the following 
table which he passed to this two friends.

Axiomatic Comments

v1+v2 = v3 closure

q⁕v1= v2 Scalar multiply

v1+(v2+v3) = (v1+v2)+v3 association

Defined: two at a time

v1•v2 = v2•v1 Inner product

b⁕v1•c⁕v2 = b⁕c⁕(v1•v2)

abs(v1•v2) ≤ abs(v1) ⁕ abs(v2)

v1∧v2 = ‒(v2∧v1)
                                = ((‒v2)∧v1)
                                = (v2∧(‒v1)) 

cross product

v1∧v1 = 0

(b⁕v1)∧(c⁕v2) = b⁕c⁕(v1∧v2)

abs(v1∧v2) ≤ abs(v1)⁕abs(v2)

v1•(v1∧v2) = v2•(v1∧v2) = 0

(b⁕v1)⁕(c⁕v2) = b⁕c⁕(v1⁕v2)

(abs(v1)⁕abs(v2))²
        = (abs(v1∧v2))² + (abs(v1•v2))²

Defined: three at at time

v1•(v2+v3)  = v1•v2 + v1•v3

v1∧(v2+v3) = v1∧v2 + v1∧v3

v1⁕(v2+v3) = v1⁕v2 + v1⁕v3
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v1•(v2∧v3) = v2•(v3∧v1)
                   = v3•(v1∧v2) 
                   = (v1∧v2)•v3
                  = (v2∧v3)•v1
                  = (v3∧v1)•v2 

Scalar triple 
product

v1•(v2⁕v3) = (v1•v2)⁕v3 transformation

Einstein: "Your list is impressive, but you have added some 
equations which we have not proved.

Breton: "As usual Einstein, little escapes your notice.  Newton, 
I see you have added only three such equations.  Please tell us 
why and more importantly prove those assertions. 

Newton: "All three equations refer to absolute values.  In one
abs(v1•v2) ≤ abs(v1) ⁕ abs(v2)

if we use basic convention 
abs(v1) = abs(qv1)
abs(v2) = abs(qv2)
abs(v1•v2) = abs(qv1⁕qv2⁕cos(angle))

The result follows since abs(cos(angle)) ≤ 1.
  The second such equation

abs(v1∧v2) ≤ abs(v1) ⁕ abs(v2)
follows almost immediately since 

abs(v1∧v2) = abs(qv1⁕qv2⁕sin(angle))
since again abs(sin(angle)) ≤ 1.
  The third such equation

(abs(v1)⁕abs(v2))² = (abs(v1∧v2))² + (abs(v1•v2))²
follows closely.
Note

(abs(v1)⁕abs(v2))² = (abs(qv1)⁕abs(qv2))²
abs(v1∧v2))² = (abs(qv1)⁕abs(qv2)⁕sin(angle))²
abs(v1•v2))² = (qv1⁕qv2⁕cos(angle))²

so
(abs(v1∧v2))² + (abs(v1•v2))² 

= (qv1⁕qv2)²⁕(sin²(angle)+ ⁕cos²(angle))
= (qv1⁕qv2)².

Breton: "So this third equation simply rests on the identity
sin²(angle)+ ⁕cos²(angle) = 1

Einstein: "Good, but it seems to me other combinations of 
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three vectors are possible.  For instance, Newton should add 
(v1•v2)⁕v3 to his table.

Newton: "Einstein, you're right.  If v1•(v2⁕v3) can make the 
list why not v1∧(v2∧v3)?

Breton: "Agreed, but while v1•(v2⁕v3) is defined from the 
outer product what does v1∧(v2∧v3) equal?

Newton: "Let's not go too fast.  I need equations to enter into 
my table.

Einstein: "From the definition of outer product we know
v1•(v2⁕v3) = (v1•v2)⁕v3

Breton: "We also know from in inner product that 
v1•v2 = v2•v1

so that
v1•(v2⁕v3) = (v2•v1)⁕v3.

Einstein: "And again from the outer product
(v2•v1)⁕v3 = (v2•(v1⁕v3)

Newton: "Good.  I'll add to my table
v1•(v2⁕v3) = (v1•v2)⁕v3 

          = (v2•v1)⁕v3 
            = v2•(v1⁕v3)

The vector triple product

Breton: "We need to be careful with the parentheses.  
How about v1∧(v2∧v3)?  The vector product v2∧v3 is 
itself a vector and as such can form a multiplicand with a 
third vector.  So it is a legitimate addition to Newton's 
table.  But what does it equal?

Newton: "It's not obvious to me.

Breton: "Nor to me.  Let me try to analyze the question.  
We know
(v2∧v3) = qv2⁕qv3⁕sin(angle(2,3))⁕un(2,3)
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v1∧(v2∧v3) = qv1⁕qv2⁕qv3⁕sin(angle(2,3))
⁕uv1∧un(2,3)

So the vector uv1∧un(2,3) is orthogonal to both uv1 
and un(2,3) while un(2,3) is itself orthogonal to v2 and 
v3. Therefore since v1∧un(2,3) must lie in the plane 
generated by v2 and v3 

v1∧(v2∧v3) = a⁕v2 + b⁕v3
for some a and b.

Newton: "Not bad.  So we need only determine two 
scalar quantities, a and b.  

Einstein: "The factor, qv1⁕qv2⁕qv3, shows we are dealing 
with some kind of volume which is not a scalar like 
v1•(v2∧v3) but a vector—a vector‒volume.  Is this the same 
as a volume of vectors?

Breton: "You have an inquisitive mind Einstein.  Like any 
vector a vectorial volume has a magnitude and a direction.  
We have discovered that the vectorial volume v1∧(v2∧v3) 
can be decomposed into two other vectorial volumes, one in 
the direction uv2 and another in the direction uv3.   But let us 
put your question aside for now as a distraction.  Right now we 
are trying to obtain an equation for Newton's table.

Newton: "Which we have reduced to determining two scalars, 
a and b. It seems to me that both a and b must somehow 
involve v1.

Breton: "You have good instincts, Newton.  Furthermore, 
a and b must both be scalar “areas”.

Newton: "How do we proceed?

Breton: "Let's start with some examples which may show 
us the way.  The path ahead looks rough, hard to cut 
through.  And let's just consider the directions because 
we know the factor qv1⁕qv2⁕qv3 will finally apply to the 
full volume.  So first look at a cube where the edges and 
their directions coincide the the vectors.  Here look at 
this diagram. 
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With that Breton handed his friends this sketch.  

Breton: "You are looking at a corner of the cube whether 
from the inside of from the outside makes no difference.  
For this geometry .v2 and v3 are orthogonal to each 
other and v1 is orthogonal to both.  For this example, 

(uv2∧uv3) = uv1)
since sin(angle(2,3)) = 1.
Then

uv1∧(uv2∧uv3) = uv1∧uv1 = 0

Newton: "Not much learned from this example.  The 
result would hold for any rectangular parallelepiped.  
Another example?

Breton: "Let's incline uv1 in the uv3 direction  Then 
again

(uv2∧uv3) = un(2,3)
as in this sketch.
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Now 
uv1∧(un(2,3)) = sin(angle(1,un)⁕uv2.

Notice sin(angle(1,un) = cos(angle(1,3)

Newton: "And cos(angle(1,3) = uv1•uv3.  So for this 
example

uv1∧(uv2∧uv3) = (uv1•uv3)⁕uv2.
Again this example could be expanded to parallelepipeds 
similarly inclined.

Breton: "We might have inclined uv1 in the uv2 direction 
and so obtained 

uv1∧(uv2∧uv3) = (uv1•uv2)⁕uv3 

Einstein: "Wait a minute.  We have not decided the 
direction of the cross product.  It could be positive or 
negative.  Which one is it here?

Breton: "Very little gets by you Einstein.  I have promised 
resolution of this problem, but as of now, I have not 
delivered on that promise.  So the two products, 

(uv1•uv3)⁕uv2 and (uv1•uv2)⁕uv3
might both be positive, or both negative, or one positive 
and the other negative.

Newton: "I suspect we can sharpen the result a little.  
Recall we found previously that the cross products could 
be organized into two groups by sign.  Within each group 
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the products kept a cyclic rotation.  Here we see the 
products do not keep the same cyclic rotation, so I 
suspect the products differ in sign.

Einstein: "That still leave unresolved which one is 
positive and which one negative. 

Breton: "True enough.  The answer will have to wait on 
my promise.

Einstein: "Promises, promises.

Breton: "One or the other is true, so we have indeed 
advanced toward a solution even if we not attained it 
completely.  For now let's continue our search for a 
comprehensive solution.  Suppose v2 and v3 and not 
orthogonal, while v1 is orthogonal to both.

not much different from the fully orthogonal case since 
uv2∧uv3 = sin(angle(2,3)⁕uv1 and uv1∧uv1 = 0

Breton: "Good!  And if uv1 is inclined toward uv2 or uv3 we 
get the same answer as as before.  So of all the possible case 
we might explore, only one is left—the case where uv1 is 
inclined arbitrarily.  

With that Breton handed the following illustration to his 
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friends. 

Breton: "The vector uv1∧un(2,3) is orthogonal to both 
uv1 and un.

Einstein: " But uv1∧un(2,3) does not equal 
uv1∧(uv2∧uv3)!

Breton: "True enough, but close.  As we have seen
uv1∧(uv2∧uv3) = sin(angle(2,3))⁕uv1∧un(2,3)

so we seek a vector parallel to the one illustrated.

Einstein: "In fact, 
uv1∧(uv2∧uv3)

 = sin(angle(2,3))⁕sin(angle(uv1,un(2,3))
⁕un(uv1,un(2,3))

Newton: " So we have the right direction and length.  
What more do we want?

Breton: "You have noted the result is a vector in the 
plane defined by uv2 and uv3.  So can we express the 
result as a vector in that plane?

Einstein: "Breton draw a diagram showing all the vectors!

Breton: "All right, but it could be complicated.  Within a 
few minutes Breton presented his friends the following 
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skeetch.

Einstein: "What's this?  The illustration is way too 
complicated.  I can't understand it.

Breton: "As I suspected.  Let me build it up slowly. With 
that he presented his friends the following illustration.

Breton: "We start with three directions, uv1, uv2, and 
uv3.  Two of the vectors, uv2 and uv3, lie in a plane, 
the plane of the illustration.  The other vector, uv1, 
inclines from the plane.  All three vectors have the same 
unit magnitude, so you have to imagine the position of 
uv1.

Newton: "They all are are radii of a sphere which we can 
imagine like a bubble enclosing the illustration.

Breton: "Exactly.  Then un(2,3) is another such radius 
which is orthogonal to both uv2 and uv3.  I tried to 
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illustrate the orthogonality by the little rectangle at the 
base of the vector. 
   The vector uv2∧uv3 is not a direction, but a vector 
parallel to un(2,3).
   You will notice that uv1•uv2 is a length along uv2 and 
uv1•uv3 is a length along uv3.

Einstein: “Why did you mark them off?

Breton: "Because they could hold the answer to our 
inquiry.  They are created by a perpendicular from the tip 
of uv1 to the lines of both uv2 and uv3.  They create 
slanted triangles.
   Recall the case where uv1 was in the plane of un(2,3) 
and uv2?  Then uv1∧ un(2,3) = uv1•uv2⁕uv3.  So I 
thought to mark them on the illustration first to show 
how they corroborate our earlier conclusions and then to 
open a path which might lead to an answer to our 
inquiry.

Einstein: "Then if uv1 lies in the plane of un(2,3) and 
uv3 then uv1∧ un(2,3) = ‒uv1•uv3⁕uv2 as I 
expected. 

Breton: "That is still an undecided question.  But you do 
observe correctly that the rotation of uv1∧ un(2,3) is 
opposite for uv3 from the uv2. 

Newton: "All right the diagram illustrates all of the results 
obtained so far.  Now return to the general case.

With Newton's words, Breton quickly sketched the 
following illustration.
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Breton: "This illustration shows sin(angle(uv1,un(2,3)), 
the projection of which on the plane of uv2 and uv3 
would lie directly under the uv1 vector.  The vector 
uv1∧(sin(angle(2,3))⁕un(2,3)) lies in the plane of uv2 
and uv3 since it is orthogonal to un(2,3).
   So now we can focus on the plane of uv2 and uv3 as 
in this next illustration.

Newton: "We are no longer referenced to a unit sphere, 
but to some smaller sphere inside it.  

Einstein: "Just how are the results expressed in terms of 
uv2 and uv3?
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Breton: "Let's reexamine the diagram for the case where  
uv1 lies in the plane of uv3 and un(2,3).

And even more particularly, the case where uv1 = uv3
In this case, 

uv1•uv3 = 1
uv1•uv2 = sin(angle(uv2,uv3))
sin(angle(uv1,un(2,3)) = 1

Then
uv3∧(uv2∧uv3) 

=  sin(angle(uv2,uv3))
⁕sin(angle(uv3,un(2,3))⁕un(uv3,un(2,3))

= uv3•uv2⁕1⁕un(uv3,un(2,3))

Einstein: "How does this relate to uv2 and uv3?

Breton: "Remember Newton's rhomboid?  Our problem has 
been reduced to one where we know the sum of two vectors 
each of which we know the direction, but not the magnitude.  

With that Breton sketched the following diagram for his 
friends.
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Breton: "See how the unknown magnitudes can become 
known by constructing parallel lines to the two vectors.  

Einstein: " Show us how this solves our problem.

So Breton quickly produced the following sketch.

Breton: "We already know from above

86

uv3^(uv2^uv3)

uv2
 uv1=uv3

uv3•uv2 uv3•uv2

-uv3•uv2

sin(angle(2,3))

v2

v1 v2+v3
v3

v1 • (v2+v3)



uv3∧(uv2∧uv3) = sin(angle(uv2,uv3))⁕un(uv3,un(2,3)).
From the diagram you can see that the two vectors, one along 
uv2 and the other along uv3, sum vectorially to produce 
uv3∧(uv2∧uv3).    For this special case, the vector along uv2 
is simply uv2 itself; the vector along uv3 is ‒ (v1• v2)⁕v3.

Einstein: "I can see that the vector along uv2 is simply uv2, 
but the magnitude of the vector along uv3 needs explanation.

Breton: "Since for this special case, uv1 = uv3, and uv1 is 
orthogonal to uv1∧(uv2∧uv3), it follows that uv3 is also 
orthogonal to uv1∧(uv2∧uv3).  So a rectangle is formed the 
length of whose sides are 

uv3•uv2 and
sin(angle(uv2,uv3)).

The vector uv2 splits the rectangle into two right 
triangles. The triangle on the top of the rectangle 
matches exactly the lower of these triangles.

Newton: "I can see that the the magnitude of uv3∧(uv2∧uv3) 
is simply sin(angle(uv2,uv3)).

Breton: "So we have shown for this special case
  uv3∧(uv2∧uv3) = uv2 ‒ (uv3•uv2)⁕uv3

= sin(angle(uv2,uv3))

Einstein: "As I expected the summation involves a negative 
vector.

Breton: "The question of the signs of vector products will be 
settled anon. 

Einstein: "The diagram and the algebraic result mesh nicely.  
Look as the angle between uv2 and uv3 decreases, the 
diagram shows uv3∧(uv2∧uv3) becoming 0 and then 
likewise

uv3 ‒ (uv3•uv3)⁕uv3 = 0.

Newton: "And if the angle between the vectors grows to ninety 
degrees, uv3∧(uv2∧uv3) becomes uv2 and likewise

uv2 ‒ (uv3•uv2)⁕uv3 = uv2
 since  uv3•uv2 = 0.
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Breton: "The solution for this special case extends easily to 
other directions of uv2 and uv3 from the same to even 
opposite directions.

Einstein: "And even beyond.  If the angle between exceeds 
180 degrees, the sine of the angle becomes negative and 
uv3∧(uv2∧uv3) reverses direction.  Since

uv2∧uv3 = ‒ uv3∧uv2
One might have written the configuration as uv3∧(uv3∧uv2).
It all comes together so perfectly.

Breton: "We are engaged in construction an edifice, not a 
physical one with hammer and nails, but a spiritual one with 
ideas.  It's beginning to look beautiful. 

Einstein, succumbing finally to the metaphor: "Let's continue 
the construction!

Breton: "Next then let's keep uv1 in the plane of uv3 and 
un(2,3) but not necessarily equal to uv3.  

Newton: "Then uv1∧(uv2∧uv3) remains orthogonal to uv1 
and
uv1∧(uv2∧uv3) = sin(angle(2,3))

⁕sin(angle(uv1,un(2,3))
⁕un(uv1,un(2,3)).

Einstein: "Then uv1•uv3  no longer equals one. 

 Breton draw us a new diagram. 

Breton: "With that Breton quickly produced the following 
sketch
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Breton: "The sketch looks down on the (uv2,uv3) plane.  
You will have to imagine the un(2,3) vector sticking 
straight up towards you.  The uv1 vector also sticks up 
from the plane but at an angle and lies in the plane of 
uv3 and un(2,3).  In addition to the planar vectors, I 
have also marked some magnitudes as projections of 
uv1 on the plane: uv1•uv3 which projects directly 
downwards on uv3 and uv1•uv2 which projects 
sidewards towards uv2.

Einstein: "Why?

Breton: "A little patience please.  We know
uv1^(uv2^uv3) = sin(angle(2,3))⁕sin(angle(uv1,un(2,3))

⁕un(uv1,un(2,3))
The sin(angle(2,3)) is marked on the sketch.  As you can see it 
forms part of a right triangle whose hypotenuse is uv3 with a 
magnitude equal to one.
The projections of uv1 on uv2 and uv3 are their inner 
products and so marked on the sketch.

Newton: "They give a idea of the location of uv1 up from the 
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sketch.

Breton: "Please notice a triangle proportional to the one 
containing sin(angle(2,3)), the triangle with sides marked  
uv1•uv2,  uv1•uv3, and x.  Can you tell me what the length 
of x is?

Newton: "Since the triangles are proportional we can write this 
proportion

sin(angle(2,3))/1 = x/ uv1•uv3
So 

 sin(angle(2,3))⁕uv1•uv3 = x⁕1
that is, 

 x= sin(angle(2,3))⁕uv1•uv3 

Einstein, dismissibely: "That much is obvious.

Breton: "Notice again that 
uv1•uv3 = sin(angle(uv1,un(2,3)).

Einstein: "Show me. 

Acceding to Einstein's request, Breton quickly sketched the 
following.

Breton: "In this sketch we are looking at the plane 
(uv3,un(2,3)).  For the case we are considering uv1 also lies 
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in this plane.

Einstein: "This plane is orthogonal to the (uv2,uv3) plane.

Breton: " Correct.  This sketch shows the angle between uv1 
and un(2,3).  Since the magnitude of uv1 is one, 
sin(angle(uv1,un(2,3))) = opposite side/hypotenuse

 = opposite side/1
the length of the opposite side equals the sine of the angle.
   Now construct uv1•uv3 along uv3.  See how .a rectangle is 
formed with uv1•uv3 and sin(angle(uv1,un(2,3))) forming 
opposite sides. So the value of uv1•uv3 must equal that of 
sin(angle(uv1,un(2,3))).

Newton, reflecting Einstein previous dismissive remark: "That 
much is obvious. The sides of the rectangle are 

sin(angle(uv1,un(2,3))) = uv1•uv3
and 
cos(angle(uv1,un(2,3))) = uv1•un(2,3)

Breton: "Exactly.  So now we have established that the value 
of x in the prior sketch equals

sin(angle(2,3))⁕sin(angle(uv1,un(2,3))
which is just the magnitude of uv1^(uv2^uv3).
   Now let us return to the prior sketch and focus on the right 
triangle formed by the sides

x
uv1•uv3

and
uv1•uv2

   Now construct a similar right triangle above this with 
the sides

sin(angle(2,3))⁕sin(angle(uv1,un(2,3))
along uv1^(uv2^uv3).

 ‒uv1•uv2
along uv3

and a remaining side
along uv2.

The length of the remaining side must be uv1•uv3.  I have 
marked this constructed triangle in the sketch.
  
Newton: "So we have just proven
uv1∧(uv2∧uv3) = (uv1•uv3)⁕uv2 ‒ (uv1• uv2)⁕uv3

91

v2

v1 v2+v3
v3

v1 • (v2+v3)



Breton: "And if uv1 = uv3, we regain the expression of the 
first case namely, 

uv1∧(uv2∧uv3) = uv2 ‒ (uv1• uv2)⁕uv3

Einstein: "The solution is not unique!  In a plane, if the 
problem is to find two vectors such as their sum equals a third, 
then many possibilities exist.  Explicitly if v1 is given, then  

v1 = v2 + v3
is solved for many different combinations of v2 and v3.

Breton: "True enough.  But go further.  If v1, v2, and v3 are all 
given, then no solution may exist.  Further if only v1 and v2 
are given, then a unique v3 is determined as 

v3 = v1 ‒ v2
But the task we set ourselves is different from these.  We are 
given v1, v2, and v3, and we seek a solution, if any, to 

v1 = q2⁕uv2 + q3⁕uv3
where q2 and q3 are unknown.  We have found unique 
solutions for this problem.

Einstein: "What if uv1 had been aligned with uv2?

Breton: "Let us investigate uv1 in the plane of uv2 and 
un(2,3).  Then our results would include uv1 = uv2.

Einstein: "Yes, that would do.

Breton: "Then consider the following sketch.
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Breton: "Now uv1∧(uv2∧uv3) is orthogonal to uv2 rather 
than uv3 as before.  The sin(angle(2,3)) is also represented 
differently.  Again we ask for the magnitude of the line marked 
x.

Newton: "Again we see proportional triangle, so we can write
sin(angle(2,3))/1 = x/ uv1•uv2

So 
x= sin(angle(2,3))⁕uv1•uv2 

Einstein: "That much is obvious.  And now
uv1•uv2 = sin(angle(uv1,un(2,3)).

So again the magnitude of x just equals the magnitude of 
uv1∧(uv2∧uv3).

Breton: "Can you see that the triangle with sides x, uv1•uv2, 
and uv1•uv3 matches the triangle with sides 
uv1∧(uv2∧uv3),  ‒uv1•uv2, and uv1•uv3 exactly?

Newton: "So again, 
uv1∧(uv2∧uv3) = (uv1•uv3)⁕uv2 ‒ (uv1• uv2)⁕uv3
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Einstein, in reluctant agreement: "Remarkable.  But you have 
not proven the most general case.

Breton: "You are right again, Einstein.  So let us consider the 
case where .uv1 is not necessarily aligned with with either 
uv2 or uv3.  We can follow the trail already blazed and act on 
the suspicion the solutions already discovered may lead to the 
general solution.  Allow me to sketch the general situation 
again. 

With that Breton produced the following sketch. 

Breton: "The sketch imagines you are looking at the (uv2,uv3) 
plane from an angle rather than straight down.  All of the 
directions can be shown, remembering that each direction has 
a length equal to one.  The directions uv2 and uv3 determine 
un(2,3) and the sine of the angle between them determines 
sin(angle(2,3))⁕un(2,3). The direction uv1 sticks up from 
the plane and determines uv1•uv2 and uv1•uv3.  Again 
sin(angle(uv1,un(2,3))) equals the projection of uv1 onto the 
plane directly below.
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   With this orientation let me now draw a sketch looking 
straight down on the plane.

With that, Breton produced the following sketch.

Breton: "For this case, looking down on the (uv2,uv3) plane, 
the magnitude of uv1•uv3 and uv1•uv2 are shown from 
orthogonal projections from uv1 onto uv3 and uv2.    The 
projection of uv1 onto the plane provides the magnitude of 
sin(angle(uv1,un(2,3))).  The line x1 parallels one depiction of 
sin(angle(2,3); x2 parallels the alternate depiction.  Each 
connects the tip of the uv1 projection to the projections onto 
uv2 or uv3.
Sin(angle(2,3) equals the inner product of uv3 and uv2 
matching the way sin(angle(2,3)) is shown.
   In the general case uv1∧(uv2∧uv3) is orthogonal to uv1, 
but not necessarily to either uv2 or uv3.  
   Note that angle(2,3) is equal to the sum of two angles, 
labeled 1 and 2 created by uv1.

Newton: "Now there are no proportional triangles.
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Einstein: " The sketch is complicated.  Explain it further. 

Breton: "Let's look more closely at the two triangles formed by 
uv1.  What is the sin(angle1)?

Newton: "The projections form right triangles, so 
sin(angle1) = length(x1)/sin(angle(uv1,un(2,3)))

Breton: "And cos(angle1)?

Newton: "The projections form right triangles, so 
cos(angle1) = uv1•uv2/sin(angle(uv1,un(2,3)))

Breton: "What is the sin(angle2)?

Newton: "Again we find a right triangle, so 
sin(angle2) = length(x2)/sin(angle(uv1,un(2,3)))

Breton: "And cos(angle2)?

Newton: "That's easy. 
cos(angle2) = uv1•uv3/sin(angle(uv1,un(2,3)))

Einstein: "And what has all this to do with your proof?

Breton: "Patience, my dear Einstein.  Now consider the upper 
triangle formed by the sides labeled  uv1•uv2, uv1•uv3, and 
uv1∧(uv2∧uv3).  The upper angle is just angle(2,3) and so 
may be divided into our two angles, 1 and 2, as in the lower 
triangle.  The dividing line is now orthogonal to 
uv1∧(uv2∧uv3).

Einstein: "So we can calculate 
uv1•uv3)⁕uv2 ‒ (uv1•uv2)⁕uv3.

Breton: "Exactly. Start with 
sin(angle1) = x1/uv1•uv2
sin(angle2) = x2/uv1•uv3

from which we can calculate
length(x1+x2) = sin(angle1)⁕uv1•uv2 

+ sin(angle2)⁕uv1•uv3
Then
uv1•uv3)⁕uv2 ‒ (uv1•uv2)⁕uv3 is a vector which is 
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orthogonal to uv1
and has a magnitude of 

sin(angle1)⁕uv1•uv2 + sin(angle2)⁕uv1•uv3

Newton: "Which exactly corresponds to uv1∧(uv2∧uv3).

Breton: "So Einstein will you concede that in all cases 
uv1∧(uv2∧uv3) = uv1•uv3)⁕uv2 ‒ (uv1•uv2)⁕uv3?

Einstein, in reluctant resignation: "Yes, but Breton with all 
these many right triangles underlining your proof, you have 
assumed Euclidean plane geometry.  So does our vector 
algebra rest on Euclid's axioms?

Newton: "What an amazingly wonderful tribute to my 
illustrious ancestor.

Breton: "Not so.  It is a point worth discussing.  For his 
geometry Euclid includes an axiom called the parallel 
postulate, namely that parallel lines never meet.  From this 
postulate he easily deduces that the interior angles of a 
triangle equal two right angles.  This is the language of 
Euclidean geometry, a mathematical science.  
   The language of vectorial calculus is somewhat different.  
Parallel lines for this admittedly mathematical science are 
those which have the same direction.  So even though the two 
sciences use the same word, parallel, the meaning of the word 
differs in each.  So it is with many of the words we have been 
using like lines points, etc. which are axioms for Euclid, but in 
vectorial calculus are derivative ideas based on direction, 
magnitude, and the underlying field with its own calculus and 
topology.
  So our words have been confusing two different dictionaries, 
somewhat like the confusion between the Mathematics and 
Theoretical Physics.

Newton: "Both dictionaries, the one for Eucldean geometry 
and the one for vectorial algebra are mathematical 
dictionaries.

Breton: "For this reason we are tempted to use the same 
words for different ideas.  We saw in tp1.1 that any science 
cannot tolerate the ambiguity. 
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Newton: "They are specialized sub‒dictionaries.  Still, we can 
define ideas for vectorial algebra which coincide with the 
axioms of Euclidean Geometry. 

Breton: "Yes, we can.  The same ideas remain axioms in 
Euclidean Geometry, but are derivative ideas in vectorial 
algebra.

Einstein: "It's a subtle point indeed.

Breton: "Again we see the difference between words and 
ideas.
One can conceive right angles even in non‒planar geometries. 
Moreover, even in a plane one can conceive geometries which 
are non‒Euclidean.  Although, when we defined triangles, we 
used the fact that in the Euclidean plane the sum of the 
angles in a triangle equals 180 degrees.  These special 
definitions referred only to Euclidean plane triangles.  Angles 
and triangles may be defined in a broader context.  In this 
broader context, our results will still hold because the logic 
remains the same for these different triangles.  In effect we 
used Euclidean Geometry to show results that apply 
generically.  In the generic case, the axiomatic ideas of 
Euclidean Geometry would have to be defined in terms of 
vectorial algebra: direction, magnitude, and the scalar field.  
That said, Euclidean geometry does comport well with vector 
algebra.  

Newton: "Previously we saw that vectorial proofs can facilitate 
geometrical proofs.  In this latest proof we we see the reverse
—geometrical proofs facilitate a vectorial conclusion.  Vectorial 
algebra and Geometry march together like a groom and bride.

Breton: "Newton, would you update your table to includes our 
latest results? 

Axiomatic Comments

v1+v2 = v3 closure

q⁕v1= v2 Scalar multiply

v1+(v2+v3) = (v1+v2)+v3 association

Defined: two at a time
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v1•v2 = v2•v1 Inner product

b⁕v1•c⁕v2 = b⁕c⁕(v1•v2)

abs(v1•v2) ≤ abs(v1) ⁕ abs(v2)

v1∧v2 = ‒(v2∧v1)
                                = ((‒v2)∧v1)
                                = (v2∧(‒v1)) 

cross product

v1∧v1 = 0

(b⁕v1)∧(c⁕v2) = b⁕c⁕(v1∧v2)

abs(v1∧v2) ≤ abs(v1)⁕abs(v2)

v1•(v1∧v2) = v2•(v1∧v2) = 0

(b⁕v1)⁕(c⁕v2) = b⁕c⁕(v1⁕v2)

(abs(v1)⁕abs(v2))²
        = (abs(v1∧v2))² + (abs(v1•v2))²

Defined: three at at time

v1•(v2+v3)  = v1•v2 + v1•v3

v1∧(v2+v3) = v1∧v2 + v1∧v3

v1⁕(v2+v3) = v1⁕v2 + v1⁕v3

v1•(v2∧v3) = v2•(v3∧v1)
                   = v3•(v1∧v2) 
                   = (v1∧v2)•v3
                  = (v2∧v3)•v1
                  = (v3∧v1)•v2 

Scalar triple 
product

v1•(v2⁕v3) = (v1•v2)⁕v3 transformation

v1∧(v2∧v3) = (v1•v3)⁕v2
                            ‒ (v1• v2)⁕v3
                     = v3•(v1⁕v2)
                             ‒ v3⁕(v1•v2)
                     = v1•(v3⁕v2 ‒ v2⁕v3)

Vector triple 
prduct

Einstein: "I see you have added some additional results. 

Newton: "Yes.  They are simply elaborations from earlier 
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results.  For instance
(v1•v3)⁕v2 = v3•(v1⁕v2)

since
(v1•v3) = v3•v1

and
(v3•v1)⁕v2 = v3•(v1⁕v2)

Einstein: "You should add more because  v2∧v3 = ‒v3∧v2.  
So we can put 
v1∧(v3∧v2) =(v1• v2)⁕v3 ‒ (v1•v3)⁕v2

Newton: "Of course.  Now I can see several other valid 
combinations as well.  Let me update the table to include 
them too.

After a few minutes Newton produced the additions to his 
table. 

Defined: three at at time

(v1∧v2)∧v3
 = (v1•v3)⁕v2‒ (v2•v3)⁕v1
 = v1•(v3⁕v2)
                   ‒ v1⁕(v3•v2)
 = v3•(v1⁕v2 ‒ v2⁕v1)

v1∧(v2∧v3) ‒ (v1∧v2)∧v3
    = v2•(v3⁕v1 ‒ v1⁕v3)
v1∧(v2∧v3)
   +v2∧(v3∧v1)
    + v3∧(v1∧v2) = 0

Newton: "The top entry uses your remark, Einstein, and 
relabels some of the vectors.  The second entry finds an 
identity in certain of the differences.  Now 

v1∧(v2∧v3) = (v1•v3)⁕v2 ‒ (v1• v2)⁕v3
(v1∧v2)∧v3 =(v1•v3)⁕v2 ‒ (v2•v3)⁕v1

so their difference
v1∧(v2∧v3) ‒ (v1∧v2)∧v3 =  ‒ (v1• v2)⁕v3 

+ (v2•v3)⁕v1
 = v2•(v3⁕v1 ‒ v1⁕v3)

The  third item uses relabeling to discover a remarkable 
itdentity.
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v1∧(v2∧v3) = (v1•v3)⁕v2 ‒ (v1• v2)⁕v3
v2∧(v3∧v1) = (v2•v1)⁕v3 ‒ (v2• v3)⁕v1
v3∧(v1∧v2) = (v3•v2)⁕v1 ‒ (v3• v1)⁕v2

so their vectorial sum equals the zero vector.

Breton: "Your table shows were are truly on the way to developing a 
vectorial algebra.

Einstein: "We still have some way to go.  Let's examine vectors four 
at a time.

Newton: "Some of these are straightforward. Try 
(v1+v2)•(v3+v4)

=v1•(v3+v4) + v2•(v3+v4)
= v1•v3 + v1•v4 + v2•v3 + v2•v4

Einstein: "Straightforward enough

Newton: "Then how about 
(v1+v2)∧(v3+v4)

 = v1∧v3 + v1∧v4 + v2∧v3 + v2∧v4 
and
(v1+v2)⁕(v3+v4)

 = v1⁕v3 + v1⁕v4 + v2⁕v3 + v2⁕v4 

Einstein: "Yes, just use the same argument.

Newton: "Let's try something more difficult.  Consider the 
scalar

(v1∧v2)•(v3∧v4) 

Einstein: "Not so difficult. 
(v1∧v2)•(v3∧v4) = q1⁕q2⁕sin(angle1,2)

⁕q3⁕q4⁕sin(angle3,4)
⁕un(1,2)•un(3,4)

 = q1⁕q2⁕q3⁕q4
⁕sin(angle1,2)⁕sin(angle3,4)
⁕cos(un(1,2),un(3,4))

Breton: "Again we can ask for this relationship in terms of a 
purely vector equation, but our experience with triple products 
forewarns us of no small difficulties.  May I suggest we 
abandon this part of the trail for now to take it up later when 
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we have ascended a little further. 

Einstein: "Again promises, promises. 

Breton: "Which will be kept anon.

Newton: "What now?

The Origin 

Breton: "Let's consider the zero vector which is provided 
axiomatically in the set of vectors.  Since it is a vector, 
what is its magnitude?

Einstein: "That's easy.  The zero vector has zero length.

Breton: "By which you must mean,
0 = 0*u(0)

where zero in the set of vectors is not the same as zero in the 
underlying field of quotient numbers, Q.

Einstein: "Thank you for your precision.

Breton: "Now prove your assertion.

Einstein: "Of course, it's true. 

Breton: "Which is merely your assertion.  Why can't the zero 
vector have some other magnitude?

N,Why not?

Einstein: "All right, let me try to prove something I already 
know is true.  Where do I start?

Breton: "You might try the axioms.

Einstein: "Of course, the axioms are taken as true.  Where 
shall we start?

Breton: "For any vector
1⁕v + 1⁕ v =(1+1)⁕v = 2⁕v
1⁕v ‒ 1⁕ v  =(1‒1)⁕v = 0⁕v
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Now what can you say about abs(0)?

Einstein: "Since abs(v)≥0 for any vector 
abs(0)≥0

Breton: "And is abs(v + v)≥abs(v ‒ v) ?

Einstein: "Yes indeed. So for v = 0 
0 ≤abs(0) = abs(v ‒ v) ≤ abs(v + v)≤ 2⁕abs(0)

For any non‒zero value for abs(0) the inequalities would not 
hold.  Only abs(0) = 0 works. 

Newton: "So you have proven abs(0) = 0!

Breton: "Now let me ask you another question.  Since every 
vector can be written

v = abs(v) ⁕u(v)
that is, the scalar product of a magnitude and a direction, 
what is the direction of 0? 

Einstein: "The zero vector like the zero in the numbers is very 
special.

Breton: "Is it?  Notice
0 = abs(0) ⁕u(0)

= 0 ⁕u(0)     
so it appears any direction will do for u(0).

Einstein: "Breton, you never change your rascally ways.

Breton: "Well if u(0) is any one of many directions that 0 can 
be any one of many vectors.

Newton: "But still it is only one vector.

Einstein: "What a morass you have led us into, Breton.  It has 
to be one of many possible unspecified vectors.

Newton: "In fact any one of an infinite number of vectors, 
since directions correspond to all the points on the unit 
sphere.

Breton: "Remember the axiom concerning 0
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v = v + 0?
So 0 acts as a reference for all vectors .  This is true for Q as a 
vector set where the quotient number 0 acts as a reference; it 
also true for magnitudes in V, as Einstein has just shown.

abs(v) = abs(v) + abs(0)
So how can 0 serve as a reference for the direction of any 
vector?

Newton: "Take any direction u1.  The the subset {v|v= q⁕u1 
for all q} is a line of vectors whose directions can all be 
referenced to u1.

Breton: "Splendid.  So u1 can be part of our answer.

Newton: "Next take u2 any direction orthogonal to u1.  The 
the subset {v|v= q1⁕u1 + q2⁕u2  for all q1 and q2} is a 
plane of vectors whose directions can all be referenced to u1 
and u2.

Breton: "Splendid.  So u1 and u2 can be part of our answer.

Newton: "Next take u3 any direction orthogonal to u1 and u2.  
The the subset {v|v= q1⁕u1 + q2⁕u2 + q3⁕u3 for all q1 
and q2 and q3} is the set of all vectors each of which can  be 
referenced to u1 and u2 and u3.

Einstein: "So in Newton's scheme we first choose arbitrarily 
one direction u1 of all the directions of the sphere; next we 
choose arbitrarily a second direction u2 from a great circle of 
the sphere orthogonal to u1; finally we no longer choose but 
accept the single direction u3 which is orthogonal to both u1 
and u2.
   Any one of the three directions taken singly serves as a 
reference to a subset of vectors in a line.  Any two together 
serve as a reference to a subset of vectors in a plane.  All 
three together  serve as a reference to any vector.

Breton: "Including 0?

Einstein: "Yes.  I like the balance between the choosing and 
the application.

Breton: "So now we have a reference for directions which 
though not derived from 0 will comport well with calling 0 the 
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reference for all vectors, for both their magnitudes and 
directions.  That is, 

v = q1⁕u1 +q2⁕u2 +q3⁕u3 +0 ⁕u1 +0⁕u2 +0⁕u3
specifying 

v = v + 0

Einstein: "How does this match 
v = q⁕u(v)?

Breton: "The answer can be found using some of our previous 
results.
The inner product 

v • v =  q²
for v = q⁕u(v)
and
v • v =(q1⁕u1 +q2⁕u2 +q3⁕u3)

•(q1⁕u1 +q2⁕u2 +q3⁕u3)
=  q1⁕u1•(q1⁕u1)

+ q1⁕u1•(q2⁕u2)
+ q1⁕u1•(q3⁕u3)
+ q2⁕u2•(q1⁕u1)
+ q2⁕u2•(q2⁕u2)
+ q2⁕u2•(q3⁕u3)
+ q31⁕u3•(q1⁕u1)
+ q3⁕u3•(q2⁕u2)
+ q3⁕u3•(q3⁕u3)

=  q1⁕q1 + q2⁕q2 + q3⁕q3
since ui•uj = 0 if I≠j and ui•uj = 1 if i=j.

Newton: " So
q² = q1² + q2² + q3²

Breton: "By specifying 0 this way, we have made it a reference 
for all vectors, both their magnitudes and directions.

Einstein: "So this new 0 is different from the axiomatic 0.

Breton: "To avoid ambiguity, let us call the new 0 the origin of 
our set of vectors.

Newton: "The origin fits in with our previous discussion of 
direction and angles.  One direction can be specified by three 
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angles.

Breton: "There is something profound here, more profound 
than Mathematics or Theoretical Physics.  It has been revealed 
that the God whom we know exists is a Trinity, one God in 
three separate Persons.  It is not strange that his creation 
should show traces of its origin.  We have such a trace here: 
one direction expressed as three distinct directions.

Einstein: "Are you saying you can prove God is a Trinity.

Breton: "Of course not.  While we have proved God's 
existence, what God is appears beyond our power of 
comprehension.  But if God reveals himself as Trinity, then the 
world becomes more comprehensible.  

Einstein: "We defined Physics as a science which deals with a 
world that is extended, moving, and forcing.  The Trinity is 
none of these things.  So God, the Trinity, is not physical, and 
so not the object of scrutiny by the science of Physics.

Breton: "I agree.  God is like a frame around a picture.  God 
gives meaning to the science of Physics, but is not the direct 
object of its study.  Like a frame around a picture.

Newton: "A most interesting subject I agree, but not on our 
path up the mountain.  Is there more about the origin?

Breton: "Let's examine how a direction is expressed in terms 
of the origin's reference.

Einstein: "That's easy enough.  Given the origin as described 
above, any direction

u(v) = q1⁕u1 + q2⁕u2 + q3⁕u3)
for some quotient numbers, q1, q2, and q3 where

sqrt(q1² + q2² + q3²) = 1
from what we have just proven.

Breton: "For directions may I suggest replacing the symbol q 
with the symbol c.

Newton: "Why?

Breton: "Because from a geometrical perspective, the c's are 
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just directional cosines.  It makes the relationship between 
direction and angles clear and exact.

Newton: "So vectors referred to an origin for 0 have two 
representations, one in terms of magnitude and direction, and 
a second in terms of the arbitrary coordinate system.  There 
must exist relationships between the two representations.

Breton: "Let's examine them.  Any vector 
v = abs(v)⁕u(v)
v ≡ q⁕(c1⁕u1 + c2⁕u2 + c3⁕u3)
v ≡ q1⁕u1 + q2⁕u2 + q3⁕u3
v =  v • u1⁕u1 + v • u2⁕u2 + v • u3⁕u3
v = v •(u1⁕u1 + u2⁕u2 + u3⁕u3)

The first of these relationships we have from the axioms;
the second is a definition of q as abs(v) for the magnitude of v 
with reference to the origin;
the third defines three magnitudes in the origin's directions;
the fourth equation relates these three magnitudes to the 
inner products with the given vector;
the fifth equation factors the fourth equation and establishes 

I ≡  u1⁕u1 + u2⁕u2 + u3⁕u3
as the identity transformation.
It follows that 

qi =  v • u1
q = sqrt(q1² + q2² + q3²)
ci = qi/q

The three ci's are called directional cosines.

Einstein: "For a direction then 
abs(u(v) = sqrt(q1² + q2² + q3²) = 1

Newton: "Just as we asserted earlier.  For any vector
v = abs(v)⁕u(v)

     = q1⁕u1 + q2⁕u2 + q3⁕u3
     = q⁕(c1⁕u1 + c2⁕u2 + c3⁕u3)

so
q1 =  q⁕c1
q2 =  q⁕c2
q3 =  q⁕c3

So  tell us why the ci are called direction cosines.
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Breton: "The equations give the reason
qi =  v • ui
   =  q ⁕ u(v) • ui

so
qi/q = u(v) • ui

    = ci
    = cos(u(v),ui)

Einstein: "That explains why the ci are cosines, but why 
are they called directional cosines?

Breton: "The angles of the three cosines define the 
vector's direction.

Newton: "How does representation in terms of the origin 
match with the vectorial operations.

Breton: "Easily enough.  For 
v1 = q1⁕uv1
     = q1⁕(c11⁕u1 + c12⁕u2 + c13⁕u3)
v2 = q2⁕uv2
     = q2⁕(c21⁕u1 + c22⁕u2 + c23⁕u3)

v1+v2 = (q1⁕c11+ q2⁕c21)⁕u1
 + (q1⁕c12+ q2⁕c22)⁕u2
 + (q1⁕c13+ q2⁕c23)⁕u3

v1•v2 = q1⁕q2⁕(c11⁕c21 + c12⁕c22 + c13⁕c23)
v1∧v2 = q1⁕q2⁕((c12⁕c23 ‒ c13⁕c22)⁕u1

+ (c13⁕c21 ‒ c11⁕c23)⁕u2
+ (c11⁕c22 ‒ c12⁕c21)⁕u3)

v1⁕v2 = q1⁕q2⁕uv1⁕uv2

Einstein: "Wherever did you get v1∧v2?

Breton: "I will now answer your question about the 
ambiguity in the cross product.  Please follow these 
straight‒forward substitutions and operations.
v1∧v2 = q1⁕q2⁕uv1∧uv2

  = q1⁕q2⁕
     (c11⁕u1 ∧(c21⁕u1 + c22⁕u2 + c23⁕u3)
     + c12⁕u2 ∧(c21⁕u1 + c22⁕u2 + c23⁕u3)
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     + c13⁕u3)∧(c21⁕u1 + c22⁕u2 + c23⁕u3)
  = q1⁕q2⁕(c11⁕c21⁕u1∧u1 

+ c11⁕c22⁕u1∧u2
+ c11⁕c23⁕u1∧u3)
+ c12⁕c21⁕u2∧u1 
+ c12⁕c22⁕u2 ∧u2
+ c12⁕c23⁕u2∧u3)
+ c13⁕c21⁕u3∧u1 
+c 13⁕c22⁕u3 ∧u2
+c 13⁕c23⁕u3∧u3)

Since the directions of the origin make up an orthogonal 
set, the following definitions resolve the ambiguity in the 
vector product.

u1∧u2 ≡ u3
u2∧u3 ≡ u1
u3∧u1 ≡ u2

You can see that the cyclic arrangement I alluded to 
before is incorporated in these definitions.
   Remembering that ui∧ui = 0 and that ui∧uj = ‒uj∧ui 
v1∧v2 = q1⁕q2⁕(c11⁕c22⁕u3

‒ c11⁕c23⁕u2
‒ c12⁕c21⁕u3
+ c12⁕c23⁕u1
+ c13⁕c21⁕u2
‒ c13⁕c22⁕u1)

= q1⁕q2⁕(c12⁕c23⁕u1
‒ c13⁕c22⁕u1)
+ c13⁕c21⁕u2
‒ c11⁕c23⁕u2
+ c11⁕c22⁕u3
‒ c12⁕c21⁕u3

= q1⁕q2⁕((c12⁕c23 ‒ c13⁕c22)⁕u1)
+ (c13⁕c21 ‒ c11⁕c23)⁕u2
+ (c11⁕c22 ‒ c12⁕c21)⁕u3)

Newton: "Just as you stated.

Einstein: "So the direction of the cross product depends 
on the choice of origin.
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Breton: "Yes.  This should not be too surprising.  If you 
turn yourself upside down, what first faces up afterwards 
faces down. 

Newton: "So the direction of the cross product which 
might have been defined completely arbitrarily at first, is 
finally defined in terms of an arbitrary origin.  This must 
be why you refused to reduced the ambiguity earlier, 
despite Einstein's scoffing.

Einstein: "Breton, are you saying our algebra of vector 
sets then applies only to a particular choice of origin. 

Breton: "That is a question which separates your 
distinguished ancestors.  Isaac Newton held that one 
special location in the universe is an absolute location.  
His discoveries depended on such an assumption.  Albert 
Einstein disagreed.  The origin of our algebra for vectors 
sets may illumine the controversy.  So let us put the 
question on our agenda, but first let us clear this path 
about vectorial operations referred to the origin a little 
more. 

Both agree. For different reasons. 

Breton: "We haven't expressed v1⁕v2 in terms of the 
origin.

Newton: "We said before
v1⁕v2 = q1⁕q2⁕uv1⁕uv2

which is the vectorial expression.   Referred to the origin 
this becomes
v1⁕v2 = q1⁕q2⁕(c11⁕u1 + c12⁕u2 + c13⁕u3)

⁕(c12⁕u1 + c22⁕u2 + c23⁕u3)
= q1⁕q2

⁕(c11⁕c12⁕u1⁕u1 
  + c11⁕c22⁕u1⁕u2
  + c11⁕c23⁕u1⁕u3
  + c12⁕c12⁕u2⁕u1 
  + c12⁕c22⁕u2⁕u2
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  + c12⁕c23⁕u2⁕u3
  + c13⁕c12⁕u3⁕u1 
  + c13⁕c22⁕u3⁕u2
  + c13⁕c23⁕u3⁕u3)

Breton: "Well done.  The vectorial outer product explodes 
into nine outer products of the origin's directions. 

Einstein: "What good is this expansion?  It seems so 
much more clumbsy. 

Breton: "It often makes proving propositions rather more 
simple.  Let me illustrate  We have shown for the triple 
scalar product.

(v1 ∧ v2)•v3 =(v2 ∧ v3)•v1 
basing the proof on geometry.   Let's try a proof based on 
the origin.   We would have
(v1 ∧ v2)•v3 

= q1⁕q2⁕((c12⁕c23 ‒ c13⁕c22)⁕u1)
+ (c13⁕c21 ‒ c11⁕c23)⁕u2
+ (c11⁕c22 ‒ c12⁕c21)⁕u3)

•q3⁕(c31⁕u1 + c32⁕u2 + c33⁕u3)
where v3 = q3⁕(c31⁕u1 + c32⁕u2 + c33⁕u3)
Then 
(v1 ∧ v2)•v3 

= q1⁕q2⁕q3
⁕((c12⁕c23 ‒ c13⁕c22)⁕c31

+ (c13⁕c21 ‒ c11⁕c23)⁕c32
+ (c11⁕c22 ‒ c12⁕c21)⁕c33)

and
(v2 ∧ v3)•v1

= q2⁕q3⁕((c22⁕c33 ‒ c23⁕c32)⁕u1)
+ (c23⁕c31 ‒ c21⁕c33)⁕u2
+ (c21⁕c32 ‒ c22⁕c31)⁕u3)

•q1⁕(c11⁕u1 + c12⁕u2 + c13⁕u3)
= q2⁕q3⁕q1

⁕(c22⁕c33 ‒ c23⁕c32)⁕c11
+ (c23⁕c31 ‒ c21⁕c33)⁕c12
+ (c21⁕c32 ‒ c22⁕c31)⁕c13)

Are they equal?
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Newton: "They are not the same, but they could be 
equal.  Let me assemble the factors. 
For (v1 ∧ v2)•v3 
(c12⁕c23 ‒ c13⁕c22)⁕c31

+ (c13⁕c21 ‒ c11⁕c23)⁕c32
+ (c11⁕c22 ‒ c12⁕c21)⁕c33)

=  c12⁕c23⁕c31
  +c13⁕c21⁕c32
  +c11⁕c22⁕c33

 ‒ c13⁕c22⁕c31
 ‒ c11⁕c23⁕c32
 ‒ c12⁕c21⁕c33)

For (v2 ∧ v3)•v1 
(c22⁕c33 ‒ c23⁕c32)⁕c11

+ (c23⁕c31 ‒ c21⁕c33)⁕c12
+ (c21⁕c32 ‒ c22⁕c31)⁕c13)

= c22⁕c33⁕c11
 + c23⁕c31⁕c12
 + c21⁕c32⁕c13

 ‒ c23⁕c32⁕c11
 ‒c21⁕c33⁕c12
 ‒ c22⁕c31⁕c13

So although the summands are differently ordered, each 
summand in one case finds its match in the other case.
And in both cases

q1⁕q2⁕q3 = q2⁕q3⁕q1
So (v2 ∧ v3)•v1 does indeed equal (v1 ∧ v2)•v3

Einstein: "A proof without the difficult geometry.

Breton: "The origin with its orthogonal coordinates does 
not eliminate the geometry so much as finesses it.  True 
geometrical propositions about areas and volumes 
difficult to prove by geometrical methods alone, may find 
easier proofs by vectorial algebra.

Einstein: "I am willing to concede that all the variations 
of the scalar triple product can be proven similarly, but 
what about the vector triple product?
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Newton: "Let me try 
v1∧(v2∧v3) = q1⁕q2⁕q3⁕uv1∧(uv2∧uv3)
and 
(uv1•uv3)⁕uv2 ‒ (uv1• uv2)⁕uv3

=q1⁕q3⁕q2⁕(uv1•uv3)⁕uv2 
‒ q1⁕q2⁕q3(uv1• uv2)⁕uv3

so the factor q1⁕q2⁕q3 occurs in both expressions; we 
may then deal only with the directions. 
uv1∧(uv2∧uv3) = (c11⁕u1 + c12⁕u2 + c13⁕u3)

∧((c21⁕u1 + c22⁕u2 + c23⁕u3)
      ∧(c31⁕u1 + c32⁕u2 + c33⁕u3))

= (c11⁕u1 + c12⁕u2 + c13⁕u3)
∧(c21⁕u1 ∧c31⁕u1

+ c22⁕u2∧c31⁕u1
+ c23⁕u3∧c31⁕u1
+ c21⁕u1 ∧c32⁕u2
+ c22⁕u2∧c32⁕u2
+ c23⁕u3∧c32⁕u2
+ c21⁕u1 ∧ c33⁕u3
+ c22⁕u2∧c c33⁕u3
+ c23⁕u3∧ c33⁕u3)

= (c11⁕u1 + c12⁕u2 + c13⁕u3)
∧(‒c22c31⁕u3

+ c23⁕c31⁕u2
+ c21⁕c32⁕u3
‒ c23⁕c32⁕u1
‒ c21⁕ c33⁕u2
+ c22⁕c33⁕u1)

= (c11⁕u1 + c12⁕u2 + c13⁕u3)
∧((c22⁕c33‒ c23⁕c32)⁕u1

+ (c23⁕c31‒ c21⁕ c33)⁕u2
+ (c21⁕c32‒c22⁕c31)⁕u3)

= (c11⁕u1∧(c22⁕c33‒ c23⁕c32)⁕u1 
+ c12⁕u2∧(c22⁕c33‒ c23⁕c32)⁕u1
+ c13⁕u3)∧(c22⁕c33‒ c23⁕c32)⁕u1
+ c11⁕u1∧(c23⁕c31‒ c21⁕ c33)⁕u2 
+ c12⁕u2∧(c23⁕c31‒ c21⁕ c33)⁕u2
+ c13⁕u3)∧(c23⁕c31‒ c21⁕ c33)⁕u2
+ c11⁕u1∧(c21⁕c32‒c22⁕c31)⁕u3 
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+ c12⁕u2∧(c21⁕c32‒c22⁕c31)⁕u3
+ c13⁕u3)∧(c21⁕c32‒c22⁕c31)⁕u3

= (c12⁕(c21⁕c32‒c22⁕c31)
‒ c13⁕(c23⁕c31‒ c21⁕ c33))⁕u1

+ (c13⁕(c22⁕c33‒ c23⁕c32)
‒ c11⁕(c21⁕c32‒c22⁕c31))⁕u2 

+ (c11⁕(c23⁕c31‒ c21⁕ c33)
‒ c12⁕(c22⁕c33‒ c23⁕c32))⁕u3

So after careful bookkeeping we conclude
uv1∧(uv2∧uv3) 

= (c12⁕(c21⁕c32‒c22⁕c31)
‒ c13⁕(c23⁕c31‒ c21⁕ c33))⁕u1

+ (c13⁕(c22⁕c33‒ c23⁕c32)
‒ c11⁕(c21⁕c32‒c22⁕c31))⁕u2 

+ (c11⁕(c23⁕c31‒ c21⁕ c33)
‒ c12⁕(c22⁕c33‒ c23⁕c32))

Now let me calculate
(uv1•uv3)⁕uv2 ‒ (uv1• uv2)⁕uv3

=(c11⁕u1 + c12⁕u2 + c13⁕u3)
•(c31⁕u1 + c32⁕u2 + c33⁕u3)

⁕(c21⁕u1 + c22⁕u2 + c23)⁕u3)
   ‒(c11⁕u1 + c12⁕u2 + c13⁕u3)

•(c21⁕u1 + c22⁕u2 + c23⁕u2)
⁕(c31⁕u1 + c32⁕u2 + c33)⁕u3)

=(c11⁕c31 + c12⁕c32+ c13⁕c33)
⁕(c21⁕u1 + c22⁕u2 + c23)⁕u3)

   ‒(c11⁕ c21 + c12⁕ c22 + c13⁕c23) c21⁕u1
⁕(c31⁕u1 + c32⁕u2 + c33)⁕u3)

=((c11⁕c31 + c12⁕c32+ c13⁕c33)⁕c21
   ‒(c11⁕ c21 + c12⁕ c22 + c13⁕c23)⁕c31)⁕u1
+((c11⁕c31 + c12⁕c32+ c13⁕c33)⁕c22
   ‒(c11⁕ c21 + c12⁕ c22 + c13⁕c23)⁕c32)⁕u2
+((c11⁕c31 + c12⁕c32+ c13⁕c33)⁕c23
   ‒(c11⁕ c21 + c12⁕ c22 + c13⁕c23)⁕c33)⁕u3
=(c12⁕c32⁕c21 ‒ c12⁕ c22⁕c31

+ c13⁕c33⁕c21  ‒c13⁕c23⁕c31)⁕u1
+((c11⁕c31⁕c22  ‒c11⁕ c21⁕c32

+ c13⁕c33⁕c22 ‒ c13⁕c23⁕c32)⁕u2
+(c11⁕c31⁕c23  ‒c11⁕ c21⁕c33

+c12⁕c32⁕c23‒c12⁕ c22⁕c33)⁕u3
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The two derivations match!  So here is a different proof 
that 

v1∧(v2∧v3) = (uv1•uv3)⁕uv2 ‒ (uv1• uv2)⁕uv3

Einstein: "So we have traded geometry for bookkeeping.

Breton: "Two different trails to the same place.  We have 
climbed a little higher.

Einstein: "The bookkeeping trail is easier.  Why not try it 
on the four vectors identified. 

Newton: "Let's pick up where we were before.  Does 
(v1∧v2)•(v3∧v4) = v1•(v2∧(v3∧v4))?
Let 
v1=q1⁕(c11⁕u1 + c12⁕u2 + c13⁕u3)
v2=q2⁕(c21⁕u1 + c22⁕u2 + c23⁕u3)
v3=q3⁕(c31⁕u1 + c32⁕u2 + c33⁕u3)
v4=q4⁕(c41⁕u1 + c42⁕u2 + c43⁕u3)
Then
v1∧v2 = q1⁕q2⁕((c12⁕c23 ‒ c13⁕c22)⁕u1)

+ (c13⁕c21 ‒ c11⁕c23)⁕u2
+ (c11⁕c22 ‒ c12⁕c21)⁕u3)

v3∧v4 = q3⁕q4⁕((c32⁕c43 ‒ c33⁕c42)⁕u1)
+ (c33⁕c41 ‒ c31⁕c43)⁕u2
+ (c31⁕c42 ‒ c32⁕c41)⁕u3)

so
(v1∧v2)•(v3∧v4) =q1⁕q2⁕q3⁕q4

⁕((c12⁕c23 ‒ c13⁕c22)⁕u1)
   + (c13⁕c21 ‒ c11⁕c23)⁕u2
   + (c11⁕c22 ‒ c12⁕c21)⁕u3)
• ((c32⁕c43 ‒ c33⁕c42)⁕u1)
   + (c33⁕c41 ‒ c31⁕c43)⁕u2
   + (c31⁕c42 ‒ c32⁕c41)⁕u3)

=(c12⁕c23 ‒ c13⁕c22)⁕(c32⁕c43 ‒ c33⁕c42)
   + (c13⁕c21 ‒ c11⁕c23)⁕(c33⁕c41 ‒ c31⁕c43)
   + (c11⁕c22 ‒ c12⁕c21)⁕ (c31⁕c42 ‒ c32⁕c41)

while
(v1•v3)⁕(v2•v4) ‒ (v1•v4)⁕(v2•v3)

= q1⁕q2⁕q3⁕q4
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⁕((c11⁕c31 +  c12⁕c32 +  c13⁕c33)
⁕(c21⁕c41 +  c22⁕c42 +  c23⁕c43)

   ‒ (c11⁕c41 +  c12⁕c42 +  c13⁕c43)
⁕(c21⁕c31 +  c22⁕c32 +  c23⁕c33))

Einstein: "They don't look the same.

Newton: "Wait.  Let's expand then into single addends. 
For (v1∧v2)•(v3∧v4)
(c12⁕c23 ‒ c13⁕c22)⁕(c32⁕c43 ‒ c33⁕c42)

   + (c13⁕c21 ‒ c11⁕c23)⁕(c33⁕c41 ‒ c31⁕c43)
   + (c11⁕c22 ‒ c12⁕c21)⁕(c31⁕c42 ‒ c32⁕c41)
=(c12⁕c23⁕c32⁕c43

+ c13⁕c22⁕c33⁕c42
‒c12⁕c23⁕c33⁕c42
‒ c13⁕c22⁕c32⁕c43

+ c13⁕c21⁕c33⁕c41
+ c11⁕c23⁕c31⁕c43

‒c13⁕c21⁕c31⁕c43
‒ c11⁕c23⁕c33⁕c41

+ c11⁕c22⁕c31⁕c42
+ c12⁕c21⁕c32⁕c41

‒c11⁕c22⁕c32⁕c41
‒ c12⁕c21⁕c31⁕c42

while for (v1•v3)⁕(v2•v4) ‒ (v1•v4)⁕(v2•v3)
((c11⁕c31 +  c12⁕c32 +  c13⁕c33)

⁕(c21⁕c41 +  c22⁕c42 +  c23⁕c43)
   ‒ (c11⁕c41 +  c12⁕c42 +  c13⁕c43)

⁕(c21⁕c31 +  c22⁕c32 + c23⁕c33))
=  c11⁕c31⁕c21⁕c41 

+ c11⁕c31⁕c22⁕c42
+ c11⁕c31⁕c23⁕c43
+ c12⁕c32⁕c21⁕c41
+ c12⁕c32⁕ c22⁕c42
+ c12⁕c32⁕c23⁕c43
+ c13⁕c33⁕c21⁕c41
+ c13⁕c33⁕c22⁕c42
+ c13⁕c33⁕c23⁕c43
‒ c11⁕c41⁕c21⁕c31
‒ c11⁕c41⁕c22⁕c32
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‒ c11⁕c41⁕c23⁕c33
‒ c12⁕c42⁕c21⁕c31
‒ c12⁕c42⁕c22⁕c32
‒ c12⁕c42⁕c23⁕c33
‒ c13⁕c43)⁕c21⁕c31
‒ c13⁕c43)⁕ c22⁕c32
‒ c13⁕c43)⁕c23⁕c33

Einstein: "You have 12 summands in the first compilation 
and 18 in this one.

Newton: "But six of them cancel; so this final compilation 
also reduces  to 12 summands which are

= c11⁕c31⁕c22⁕c42
+ c11⁕c31⁕c23⁕c43
+ c12⁕c32⁕c21⁕c41
+ c12⁕c32⁕c23⁕c43
+ c13⁕c33⁕c21⁕c41
+ c13⁕c33⁕c22⁕c42
‒ c11⁕c41⁕c22⁕c32
‒ c11⁕c41⁕c23⁕c33
‒ c12⁕c42⁕c21⁕c31
‒ c12⁕c42⁕c23⁕c33
‒ c13⁕c43⁕c21⁕c31
‒ c13⁕c43⁕ c22⁕c32

Now check these.

Einstein: "They all match!  I'm amazed.   We've traded 
geometry for bookkeeping, and the bookkeeping seems 
easier.

Breton: "So Newton now you have a couple more entries 
for your table. 

Newton: "Only one.

Breton: " Acutally two.  Remember we proved earlier
v1•(v2∧(v3∧v4)) = (v1•v3)⁕(v2•v4) ‒ (v1•v4)⁕(v2•v3)
so we also know

(v1∧v2)•(v3∧v4) = v1•(v2∧(v3∧v4))
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With that Newton added the following entries to his table.

Defined: four at at time

(v1∧v2)•(v3∧v4)
 = ((v1•v3)⁕(v2•v4) 
       ‒ (v1•v2)⁕(v3•v4)

(v1∧v2)•(v3∧v4)
 = v1•(v2∧(v3∧v4))

(v1∧v2)•(v3∧v4)
 + (v1∧v3)•(v4∧v2)
 + (v1∧v4)•(v2∧v3) = 0

Einstein: "You've added still more entries.

Newton: "And I could have easily added still others.  For 
instance
since (v1∧v2)•(v3∧v4)

 = ((v1•v3)⁕(v2•v4) ‒ (v1•v2)⁕(v3•v4)
then 
(v1∧v3)•(v4∧v2)

 = ((v1•v4)⁕(v3•v2) ‒ (v1•v3)⁕(v4•v2)
and 
(v1∧v4)•(v2∧v3)

 = ((v1•v2)⁕(v4•v3) ‒ (v1•v4)⁕(v2•v3)
each of which is proved by as mere substitution of labels.
Sum them together; you will find each positive summand 
matched by a negative summand.

Einstein: "Other possibilities exist.  How about 
(v1∧v2)∧(v3∧v4)?

Breton: "That's already solved.  Remember
v∧(v2∧v3) = (v•v3)⁕v2 ‒ (v• v2)⁕v3

from above?  By simply relabelling 
v2 as v3
v3 as v4
v as v1∧v2)

the  equation becomes
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(v1∧v2)∧(v3∧v4) 
= ((v1∧v2)• v4)⁕v3 ‒ ((v1∧v2)•v3)⁕v2

which we can rewrite as 
(v1∧v2)∧(v3∧v4) = v4•(v1∧v2)⁕v3 ‒v3•(v1∧v2)⁕v2
and also since

(v1∧v2)∧v = (v1•v)⁕v2‒ (v2•v)⁕v1
(v1∧v2)∧(v3∧v4) = v1•(v3∧v4)⁕v2 ‒v2•(v3∧v4)⁕v1
So with neither geometry of bookkeeping you can add these 
identities to your table Newton.

Einstein: "How about v1∧(v2∧(v3∧v4)) or ((v1∧v2)∧v3)∧v4?

Newton: "Let me try these.  We know
v1∧(v2∧v) = (v1•v)⁕v2 ‒ (v1• v2)⁕v

so
v1∧(v2∧(v3∧v4))

= (v1•(v3∧v4))⁕v2 ‒ (v1• v2)⁕(v3∧v4)
and likewise since we know

(v∧v3)∧v4 = (v•v4)⁕v3‒ (v3•v4)⁕v
((v1∧v2)∧v3)∧v4

= ((v1∧v2)•v4))⁕v3 ‒ (v3• v4)⁕(v1∧v2)
Easy.  Indeed, I begin to see relationships between our 
results.  Look
v1∧(v2∧(v3∧v4))

= (v1•(v3∧v4))⁕v2 ‒ (v1• v2)⁕(v3∧v4)
so
v1∧((v3∧v4)∧v2)

= (v1• v2)⁕(v3∧v4) ‒ (v1•(v3∧v4))⁕v2
which can be rewritten
v1∧((v2∧v3)∧v4)

= (v1• v3)⁕(v4∧v2) ‒ (v1•(v4∧v2))⁕v3
= (v1•(v2∧v4))⁕v3 ‒ (v1• v3)⁕(v2∧v4)

and likewise
((v1∧v2)∧v3)∧v4

= ((v1∧v2)•v4))⁕v3 ‒ (v3• v4)⁕(v1∧v2)
so
(v3∧(v1∧v2))∧v4

= (v3• v4)⁕(v1∧v2) ‒ ((v1∧v2)•v4))⁕v3 
which can be rewritten
(v1∧(v2∧v3))∧v4

= (v1• v4)⁕(v2∧v3) ‒ ((v2∧v3)•v4))⁕v1 
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Einstein: "Two different results for the same thing.

Breton: "Two roads leading to the same destination.  We 
have come again to the distinction between 'is' and 
'equals'.  The two different expressions are not the same, 
but they are equal as vectors.  Remember how earlier we 
noted that {2+2} and {3+1} are different numerical 
expressions with the same value.  Now we see two 
different vectorial expressions having the same vectorial 
value.

Newton: "Another breathtaking intellectual vista.

Breton: "Just as with numbers, the many expressions for 
same value lead to equations and eventually to an 
algebra.  We can note here that from the above we have
(v1•(v2∧v4))⁕v3 ‒ (v1• v3)⁕(v2∧v4)

= (v1• v4)⁕(v2∧v3) ‒ ((v2∧v3)•v4))⁕v1 
which becomes on transposing, 
(v1•(v2∧v4))⁕v3 + ((v2∧v3)•v4))⁕v1

= (v1• v4)⁕(v2∧v3) + (v1• v3)⁕(v2∧v4)  

Einstein: "Let me observe that with four vectors we can 
insert three different multiplications.

Breton: "But not all of these are legitimate.  For instance, 
v1•v2•v3•v4 makes no sense. 

Einstein: "While v1•(v2•v3⁕v4) does.  So let us 
continue with other possibilities.

Newton: "Some are easy enough.  Let me write some for 
you.

v1•(v2•v3⁕v4) = (v1•v4)⁕(v2•v3)
v1•(v2⁕v3)•v4 = (v1•v2)⁕(v3•v4)

  = v1•(v2⁕v4)•v3
  = v2•(v1⁕v3)•v4
  = v2•(v1⁕v4)•v3
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Einstein: "You've done well with the combination {inner, 
inner, outer}.  Now try {inner, outer, outer}!

Newton: "All =right
(v1•v2)⁕(v3⁕v4)  = (v1•(v2⁕v3))⁕v4

   = v3⁕(v1•v2)⁕v4
   = (v3⁕v1)•(v2⁕v4)
   = v3⁕(v2•v1)⁕v4
   = (v3⁕v2)•(v1⁕v4)

(v1⁕v2)•(v3⁕v4) = (v2•v3)⁕(v1⁕v4)

Einstein: "The last equation is not obvious. 

Newton: "It's simple enough.  For any vector v
v•(v1⁕v2)•(v3⁕v4) = (v•v1)⁕v2•(v3⁕v4)

   = (v•v1)⁕(v2•v3)⁕v4)
   =(v2•v3)⁕(v•v1)⁕v4)
   = (v2•v3)⁕v•(v1⁕v4)

so the action of any vector on (v1⁕v2)•(v3⁕v4) is the 
same as that on (v2•v3)⁕(v1⁕v4).

Breton: "So it appears that the inner and outer products 
act together, inner products producing scalars and outer 
products producing transformations.

Einstein: "How about the combination {inner, vector, 
outer}?

Newton: "Not too difficult 
 v1•((v2∧v3)⁕v4) = (v1•(v2∧v3))⁕v4

= (v2•(v3∧v1))⁕v4
= (v3•(v1∧v2))⁕v4
= ((v1∧v2)•v3)⁕v4
= ((v2∧v3)•v1)⁕v4
= ((v3∧v1)•v2)⁕v4
= v2•((v3∧v1)⁕v4)
= v3•((v1∧v2)⁕v4)

which are all variations of the triple scalar product as 
well as.

(v1∧v2)•(v3⁕v4) .= (v1•(v2∧v3))⁕v4
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In contrast
v1∧(v2•(v3⁕v4)) = (v2•v3)⁕(v1∧v4)

From the vector triple product with a transposition
we have 
(v1•v2)⁕(v3∧v4)  = (v1∧v3)•(v4⁕v2) 

+ (v1∧v3)∧(v4∧v2)
Reversing the order we obtain again from the scalar 
triple product

(v1⁕(v2∧v3))•v4 = v1⁕((v2∧v3)•v4)
   = v1⁕((v3∧v4)•v2)
   = v1⁕((v4∧v2)•v3)
   = v1⁕(v2•(v3∧v4))
   = v1⁕(v3•(v4∧v2))
   = v1⁕(v4•(v2∧v3))

Breton: "The effort to prove the triple product is paying 
dividends.

Einstein: "The combination {vector ,cross, outer} is 
missing.

Breton: "For a good reason.  The operation 
v∧(v1⁕v2) 

is not defined.  It is worthwhile noting  that
v1•(v2⁕v3)‒(v2⁕v3)•v1 = (v2∧v3)∧v1,

 not 0 generally, and that (v1∧v2)•(v3⁕v4) does not 
equal v1∧(v2•(v3⁕v4)).
Now Newton, would you be good enough to put all of 
these into a table to which we can easily refer. 

Newton: "Gladly.

Axiomatic Comments

v1+v2 = v3 closure

v1+v2 
     = (q1⁕c11+ q2⁕c21)⁕u1

 + (q1⁕c12+ q2⁕c22)⁕u2
+ (q1⁕c13+ q2⁕c23)⁕u3

Reference origin 
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v1+(v2+v3) = (v1+v2)+v3 association

q⁕v1= v2 Scalar 
multiplication

Defined: two at a time

v1•v2 = v2•v1 Inner product

v1•v2 = q1⁕q2
     ⁕(c11⁕c21 + c12⁕c22 + 
c13⁕c23)

Reference origin

b⁕v1•c⁕v2 = b⁕c⁕(v1•v2)

abs(v1•v2) ≤ abs(v1) ⁕ abs(v2)

v1∧v2 = ‒(v2∧v1)
                                = ((‒v2)∧v1)
                                = (v2∧(‒v1)) 

cross product

u1∧u2 ≡ u3
u2∧u3 ≡ u1
u3∧u1 ≡ u2

Reference origin

v1∧v2 = q1⁕q2
             ⁕((c12⁕c23 ‒ c13⁕c22)⁕u1

+ (c13⁕c21 ‒ c11⁕c23)⁕u2 
 + (c11⁕c22 ‒ c12⁕c21)⁕u3)

Reference origin

v1∧v1 = 0

v1•(v1∧v2) = v2•(v1∧v2) = 0

(b⁕v1)∧(c⁕v2) = b⁕c⁕(v1∧v2)

abs(v1∧v2) ≤ abs(v1)⁕abs(v2)

(b⁕v1)⁕(c⁕v2) = b⁕c⁕(v1⁕v2)

v1⁕v2 = q1⁕q2⁕uv1⁕uv2 Reference origin

v1⁕v2 = q1⁕q2
⁕(c11⁕c12⁕u1⁕u1 
  + c11⁕c22⁕u1⁕u2
  + c11⁕c23⁕u1⁕u3
  + c12⁕c12⁕u2⁕u1 
  + c12⁕c22⁕u2⁕u2
  + c12⁕c23⁕u2⁕u3
  + c13⁕c12⁕u3⁕u1 

Reference origin
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  + c13⁕c22⁕u3⁕u2
  + c13⁕c23⁕u3⁕u3)

(abs(v1)⁕abs(v2))²
        = (abs(v1∧v2))² + (abs(v1•v2))²

Defined: three at at time

v1•(v2+v3)  = v1•v2 + v1•v3

v1∧(v2+v3) = v1∧v2 + v1∧v3

v1⁕(v2+v3) = v1⁕v2 + v1⁕v3

v1•(v2∧v3) = v2•(v3∧v1)
                   = v3•(v1∧v2) 
                   = (v1∧v2)•v3
                  = (v2∧v3)•v1
                  = (v3∧v1)•v2 

Scalar triple 
product

v1•(v2⁕v3) = (v1•v2)⁕v3 transformation

v1∧(v2∧v3) = (v1•v3)⁕v2
                            ‒ (v1• v2)⁕v3
                     = v3•(v1⁕v2)
                             ‒ v3⁕(v1•v2)
                     = v1•(v3⁕v2 ‒ v2⁕v3)

Vector triple 
product

v1∧(v2∧v3) ‒ (v1∧v2)∧v3
                     = v2•(v3⁕v1 ‒ v1⁕v3)

v1∧(v2∧v3)
   +v2∧(v3∧v1)
    + v3∧(v1∧v2) = 0

Defined: four at at time

(v1∧v2)•(v3∧v4)
                    = v1•(v2∧(v3∧v4))
                    = ((v1•v3)⁕(v2•v4) 
                           ‒ (v1•v2)⁕(v3•v4)

{vector,inner,vector}

(v1∧v2)•(v3∧v4)
      + (v1∧v3)•(v4∧v2)
      + (v1∧v4)•(v2∧v3) = 0

{vector,inner,vector}

(v1∧v2)∧(v3∧v4)
                    = v4•(v1∧v2)⁕v3 

{vector,vector,vector}
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                         ‒v3•(v1∧v2)⁕v2

((v1∧v2)∧v3)∧v4
= ((v1∧v2)•v4))⁕v3

                      ‒ (v3• v4)⁕(v1∧v2)

{vector,vector,vector}

(v1∧(v2∧v3))∧v4
= (v1• v4)⁕(v2∧v3)

                      ‒ ((v2∧v3)•v4))⁕v1 

{vector,vector,vector}

v1∧(v2∧(v3∧v4))
= (v1•(v3∧v4))⁕v2 

                      ‒ (v1• v2)⁕(v3∧v4)

{vector,vector,vector}

v1∧((v2∧v3)∧v4)
= (v1• v4)⁕(v2∧v3) 

                       ‒(v1•(v2∧v3))⁕v4

{vector,vector,vector}

(v1•(v2∧v4))⁕v3 
+ ((v2∧v3)•v4))⁕v1

= (v1• v4)⁕(v2∧v3) 
  + (v1• v3)⁕(v2∧v4) 

{inner,vector,outer}

v1•(v2•v3⁕v4) = (v1•v4)⁕(v2•v3) {inner,inner,outer}

v1•(v2⁕v3)•v4 
= (v1•v2)⁕(v3•v4)
= v1•(v2⁕v4)•v3
= v2•(v1⁕v3)•v4
= v2•(v1⁕v4)•v3

{inner,outer,inner}

(v1•v2)⁕(v3⁕v4)  
= (v1•(v2⁕v3))⁕v4
= v3⁕(v1•v2)⁕v4
= (v3⁕v1)•(v2⁕v4)
= v3⁕(v2•v1)⁕v4
= (v3⁕v2)•(v1⁕v4)

{inner,outer,outer}

(v1⁕v2)•(v3⁕v4)
 = (v2•v3)⁕(v1⁕v4)

{outer,inner,outer}

 v1•((v2∧v3)⁕v4) = (v1•(v2∧v3))⁕v4
        = (v2•(v3∧v1))⁕v4
        = (v3•(v1∧v2))⁕v4
        = ((v1∧v2)•v3)⁕v4
        = ((v2∧v3)•v1)⁕v4

{inner, vector, outer}
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        = ((v3∧v1)•v2)⁕v4
        = v2•((v3∧v1)⁕v4)
        = v3•((v1∧v2)⁕v4)

(v1∧v2)•(v3⁕v4) .= (v1•(v2∧v3))⁕v4 {vector,inner,outer}

v1∧(v2•(v3⁕v4))
= (v2•v3)⁕(v1∧v4)

{vector,inner,outer}

(v1•v2)⁕(v3∧v4) 
= (v1∧v3)•(v4⁕v2) 
  + (v1∧v3)∧(v4∧v2)

inner,outer,vector}

(v1⁕(v2∧v3))•v4 
= v1⁕((v2∧v3)•v4)
= v1⁕((v3∧v4)•v2)
= v1⁕((v4∧v2)•v3)
= v1⁕(v2•(v3∧v4))
= v1⁕(v3•(v4∧v2))
= v1⁕(v4•(v2∧v3))

{outer,vector,inner}

Breton: "You have constructed a remarkable table, Newton, a 
veritable armory of intellectual tools.  We have climbed much 
higher on our mountain climb. 

Newton: "How fascinating that each of these vectorial 
expressions corresponds to a geometrical theorem whose 
proof might be very difficult indeed. 

Einstein: "This wonderful facility arises from the way we 
defined the origin.  The vectorial origin corresponds to the 
zero of the quotient numbers.  It must be special indeed.

Newton: "Just as my illustrious ancestor said and 
furthermore both named this origin and claimed it as an 
absolute location. 

Breton: "Whatever claim made about a physical origin, I 
am set to prove that the origin of the set of vectors is 
completely arbitrary,

Newton: "I shall oppose your reasoning with every ounce 
of my fiber.  Success for you would devastate not only 
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my illustrious ancestor, but also most of classical 
physics. 

Einstein: "Just as my illustrious ancestor claimed. 

Breton: "Illustrious ancestors aside, shall we just proceed 
reasonably and logically without appeals to previous 
authority?

Einstein: "Please proceed with your proof.

Breton: "Let me first describe the logic of the proof.  Suppose a 
given origin has been chosen.  If ant other vector in the set of 
vectors can replace the given origin, then the choice of origin 
is arbitrary.

Newton: "What do you mean by replace?

Breton: "That all the elementarty functions of vectors referred 
to the initial origin can be reexpressed in terms of the second 
origin. 

Newton: "But the expressions will different.

Breton: "Very likely. 

Newton: "Different expressions mean the origins are not 
arbitrary.  One may be preferable to another. 

Breton: "Still both expressions are valid.  There is no intrinsic 
reason for choosing one over the other. 

Einstein: "Similar to look‒alike functions where two different 
expressions have the same value.  So we will have, if Breton 
can prove his contention, two different descriptions of the 
same thing, which is not at all the same as two different 
descriptions of two different things.  Let's get on with the 
proof.

Breton: "First let me label the given origin v0.  Secondly, let 
me take another vector v1 as a candidate for the new origin.  
Then for any vector v

v ‒ v1 = (v ‒ v0) ‒ (v1‒ v0)
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v ‒ v0 = (v ‒ v1) ‒ (v0‒ v1)
Now label the vector referenced to v0 as origin as 

v|v0 ≡ v ‒ v0
and the same vector referenced to v1 as origin as 

v|v1 ≡ v ‒ v1
Then the equations can be written as 

v|v1 =  v|v0 ‒ v1|v0
v|v0 =  v|v1 ‒ v0|v1.

So any vector can be expressed as well with either v0 or v1 
taken as the origin.

Newton: "Not so fast.  You have shown either vector can serve 
as the zero of the set of vectors,  but not necessarily as origin.  
The origin incorporates an orientation, remember?

Breton: "How could I forget?  Let 
A = u1⁕ur1 + u2⁕ur2 + u3⁕ur3

where u1, u2, u3 are the orientation of v0 and  ur1, ur2, ur3 
are three mutually orthogonal directions which will serve as 
the orientation of v1.
   Then A has an inverse

A‒1 = ur1⁕u1 + ur2⁕u2 + ur3⁕u3
since A•A‒1 = I, the identity transformation.
Now  for any vector v
     (v ‒ v0)• I = ((v ‒ v1) ‒ (v0‒ v1))•A•A‒1

 = (v ‒ v1)•A•A‒1 ‒ (v0‒ v1)•A•A‒1

Now let 
v|v1 = (v ‒ v1)•A

to indicate both a change in position and reorientation. 
Then 

v|v1 = (v|v0 ‒ v1|v0)•A
for v1 as origin, and

v|v0 = (v|v1 ‒ v0|v1)•A‒1

for v0 as origin.
Thus v1 is as suitable to serve as reference as v0, both for 
locations and orientations, and thus as origin for any vector v.

Einstein: "Exactly.  No location is absolute; any location is only 
relative to the origin.  But suppose the origin itself is moving.

Breton: "How would you know it is moving?

Newton: "If the vector v and the origin were both moving 
identically, then it would appear that v is not moving. 
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Breton: "So v can appear as moving and not moving. 

Einstein: "Breton you've led us into another thicket.  How will 
you get us out of this one.

Breton: "Consider the origin as defining a given perspective.  
So long as the origin remains constant, the perspective 
remains the same.  But if the origin changes, the perspective 
changes.  For instance, were the origin rotated 180 degrees, 
what was first perceived as forward, would then be perceived 
as backward.  Similarly, if a vector is perceived as moving 
referred to the first origin, the movement would appear 
different referred to a different origin.  If the second origin 
were moving, the perspective might change enough to make 
the vector appear to have stopped moving. 

Einstein: "So there is no true location or true motion?

Breton: "No absolutely true location or motion exists 
physically, only location and motion referred to an origin.

Einstein: "That is all location and motion are relative. 

Breton: "It is not their existence which is relative, but only our 
perception of them.

Newton: "I disagree vehemently.  When my illustrious ancestor 
sought to understand the forces operating in the solar system, 
he used the perspective of the motion relative to the sun as 
origin.  On this basis he formulate the axioms of his Principia.  
If these axioms are absolutely true, and let me add they result 
in his definition of gravity, then the sun must be an absolute 
location.

Breton: "And if the sun is not an absolute location, then his 
axioms are not absolutely true. 

Newton: "Then classical mechanics is not absolutely true. 

Einstein: "Of course, just as my illustrious ancestor said. 

Breton: "Well now, we have departed from considering vector 
sets and their proposed algebra.  Let us take one step at a 
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time, lest we fall on our faces.  I have merely established that 
position and movement of vectors are described relative to an 
origin.  Consequently for a different origin, the description 
may change.  As Einstein pointed out, these descriptions look 
like look‒alike functions.

Both Einstein and Newton say almost simultaneously: “What 
next?”

Breton: "We have constructed intellectually a set of vectors 
which can be added and multiplied, but we shall not have an 
algebra until we learn how to divide vectors. 

Einstein: "Ask any mathematician, vectors cannot be divided. 

Breton: "We found that multiplication in the set of vectors 
needed to be defined.  So let us try to define division in the set 
of vectors without reference to opinion of others which may be 
erroneous. 

Newton: "How?

Breton: "Remember in the set of quotient numbers, Q, for 
every quotient number, q, except 0. we could find another 
quotient number q1 such that q ⁕ q1 = 1.  Thus we could 
define 1/q ≡ q1 and so we were came to define division in Q 
using reciprocal quotient numbers.
   Now any vector v = q(v)⁕uv.  We already have a reciprocal 
for q(v) so we only need deal with uv.

Newton: "And we already know uv•uv. = 1. So for any vector 
v

v •((1/q(v))⁕uv)) = q(v)⁕uv•((1/q(v))⁕uv)) = 1.

Breton: "By your leave let us label the vector ((1/q(v))⁕uv)) as 
qd(v).
So you see dear Einstein, division in the set of vectors is not 
only possible, but even easy.  For every vector v there exists a 
reciprocal vector qd(v) such that 

v•qd(v) = 1.

Einstein: "Except for 0.

Breton: "Similar to the quotient numbers. 
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Newton: "This is wonderful.  We are scaling up the mountain.  
The axiom of scalar multiplication contained implicitly the 
possibility of scalar division.

Einstein: "But for the set of vectors other multiplications are 
defined as well as the inner product.

Breton: "You are astute Einstein.  So there must be other kinds 
of division for the set of vectors.  Let me then propose a 
formal definition of two reciprocal vectors.

Notice that
v•qd(v) = 1

while
v•q(v) = 3.

Newton: "Are there others?

Solutions of vector algebraic equations

Breton: "Yes but this will do for now.  And now that we have 
assembled an algebra for our set of vectors, let us solve a few 
algebraic equations.  What is the solution for a vector x where

x•v1 = q1
and v1 is a given vector and q1 is a given quotient number?.

Einstein: "Let's break out the equation a little more.  Say
x = q(x)⁕ux

and
v1 = q(v1)⁕uv1

Then
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Definition  (reciprocal vectors)
   Given 

v = q(v)⁕uv = q(v)⁕(c1⁕u1+c2⁕u2+c3⁕u3)
   then

qd(v) ≡ uv/q(v) = (c1⁕u1+c2⁕u2+c3⁕u3)/q(v)
is called the directional reciprocal vector of v,
and

q(v) ≡ q(uv)/q(v) = (u1/c1+u2/c2+u3/c3)/q(v)
is called the general reciprocal vector of v,

end of definition
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q(x)⁕ux•uv1 = q1/q(v1)
For any direction ux

q(x) = q1/(q(v1)⁕ux•uv1)
so that many q(x) are possible.
For any magnitude q(x)

ux•uv1 = q1/q(v1)⁕q(x))
so that ux may be taken from any circle on the unit sphere 
whose cosine with uv1 equals q1/q(v1)⁕q(x)).
  So there is no solution to the equation. 

Breton: "An admirable development to a false conclusion.  Let 
me give you a solution,

x1 = q1⁕qd(v1)
since q1⁕qd(v1)•v1 = q1⁕1 = q1.

Newton: "So Einstein's  argument shows not there are no 
solutions, but there are a great many with differing directions 
and magnitudes.

Breton: "The truth of the matter is sprouting.  We can go 
further.  Let x1 and x2 be two different solutions.  Then

(x1 ‒ x2)•v1 = q1‒ q1 = 0 
so the difference between any two solution vectors is 
orthogonal to v1.  Consequently, the entire set of solutions 
describes a plane orthogonal to v1 
   In particular for any solution vector let 

x = q1⁕qd(v1) = q⁕un
for some quotient number q and un a direction orthogonal to 
v1.  Then the entire set of solutions may be written as 

{x|x = q1⁕qd(v1) + q⁕un}.

Einstein: "What's so special about the reciprocal vector qd(v1) 
for a solution?

Breton: "As you have shown, the magnitude of any solution 
can be written as 

q(x) = q1/(q(v1)⁕ux•uv1)
so the minimum magnitude is that which maximizes ux•uv1.

Newton: "Which is ux = uv1!

Breton: "Exactly.  Then the unique solution with minimum 
magnitude is 

x = q(x)⁕ux = q1⁕uv1/q(v1)
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  = q1⁕qd(v1)

Einstein: "Remarkable.  Just as with quotient numbers, a 
divisor can be any of an infinite number of quotient numbers.  
For instance, 

3/2 = 3/(4/2) = 3/(6/3) 
and so on.

Breton: "The unity we perceive are indeed remarkable, and 
intellectually beautiful. 
   But now let us turn to climb a little higher up the mountain.  
We have seen outer products as a kind of transformation 
which changes one vector into another.  Because of its utility 
let me now consider transformations more generally as 
matrices. 

Einstein: "A new word.  Please define what you mean.

Breton: "Of course. Here is a definition.

The matrix can be represented as an ordered array of vectors, 
as follows.  For 

v1 = v11⁕u1 +.v12⁕u2 +.v13⁕u3 
v2 = v21⁕u1 +.v22⁕u2 +.v23⁕u3 
v3 = v31⁕u1 +.v32⁕u2 +.v33⁕u3 

A=[
v11 v12 v13
v21 v22 v23
v31 v32 v33 ]

You can see that the matrix is composed of nine elements 
arranged in three rows and three columns and implies a given 
orientation.

Einstein: "How does the matrix fit with the definition?
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Definition  (matrix)
   Given

three vectors, v1, v2, v3.
And origin designated by u1, u2, u3

   then a matrix A is defined as
A ≡ u1 ⁕ v1 + u2 ⁕ v2 + u3 ⁕ v3

end of definition
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Breton: "Let's start with a simple outer product.  Let the 
direction vectors of the origin's orientation be represented as 

u1 = (1,0,0)
u2 = (0,1,0)
u3 = (0,0,1)

and 
v1 = (v11,v12,v13)

Now
u1⁕ v1 = u1⁕(. v11⁕u1 +.v12⁕u2 +.v13⁕u3

  =v11⁕u1⁕u1 + v12⁕u1⁕u2 + v13⁕u1⁕u3
This same result is expressed in matrix notation as 

[
1
0
0 ] •

[v11 v12 v13 ]

where the first element of the column vector , 1, is multiplied 
by each member of the horizontal vector to form the topmost 
row of the matrix, the second element of the column vector, 0, 
is multiplied by each member of the horizontal vector to form 
the middle row of the matrix , and the third element of the 
column vector, 0, is multiplied by each member of the 
horizontal vector to form the bottom row of the matrix 
The result becomes 

[
1
0
0 ] •

[v11 v12 v13 ]
= [

v11 v12 v13
0 0 0
0 0 0 ]

You can see that u1⁕u1 corresponds to position of the first 
row and first column; that u1⁕u2 corresponds to position of 
the first row and second column; that u1⁕u3 corresponds to 
position of the first row and the third column.

Einstein: "What good is all this bookkeeping for?

Breton: "It does seem complicated, but it matches the 
complicated process of vector multiplication well.  For instance 
the inner product of two vectors v1•v2 can be expressed as 

[v11 v12 v13 ]
• [

v21
v22
v23] ≡ v11⁕v21+v12⁕v22+v13⁕v23

So this matrix multiplication comprehends both inner and 
outer vector multiplications.

Newton: "You have added to the above description by defining 
matrix multiplication to resemble inner products.
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Breton: "True enough.  We could say succinctly that in matrix 
multiplication rows and multiplied with columns as inner 
products.  And if we agree on this definition, then two matrices 
can be multiplied together, as 

[
v11 v12 v13
v21 v22 v23
v31 v32 v33] • [

x11 x12 x13
x21 x22 x23
x31 x32 x33]

= (v11⁕x11 + v12⁕x21 + v13⁕x31)⁕u1⁕u1
+ (v11⁕x12 + v12⁕x22 + v13⁕x32)⁕u1⁕u2
+ (v11⁕x13 + v12⁕x23 + v13⁕x33)⁕u1⁕u3
+ (v21⁕x11 + v22⁕x21 + v23⁕x31)⁕u2⁕u1
+ (v21⁕x12 + v22⁕x22 + v23⁕x32)⁕u2⁕u2
+ (v21⁕x13 + v22⁕x23 + v23⁕x33)⁕u2⁕u3
+ (v31⁕x11 + v32⁕x21 + v33⁕x31)⁕u3⁕u1
+ (v31⁕x12 + v32⁕x22 + v33⁕x32)⁕u3⁕u2
+ (v31⁕x13 + v32⁕x23 + v33⁕x33)⁕u3⁕u3

Einstein: "If this defines matrix multiplication, then it is 
ambiguous!   A vector in this notation can be either vertical or 
horizontal.  How can that be?

Breton: "As usual you are astute, my dear Einstein.  We must 
make a choice so let us choose horizontal for a vector.  Then 
v•A is another horizontal vector, and so a legitimate 
operation.  But A•v is not a meaningful symbol if v is taken as 
a horizontal vector.  If however v is taken as a vertical vector, 
the operation results in a vertical vector and so is not a 
legitimate operation by itself.  However,  v1•A•v2 becomes a 
horizontal vector multiplied by a vertical vector which is an 
inner product and so legitimate. 

Newton: "Now you have gotten us into a fine pickle.  
Sometimes the vector is horizontal and sometimes vertical. 

Breton: "Not really  We adopt the rule that a vector is 
represented horizontally usually but not always.  When it 
follows a matrix it will be presented vertically.

Einstein: "So its position relative to a matrix determines if the 
vector is represented horizontally or vertically.
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Breton: "Correct.  I see you are unsure.  Let me define a 
function of matrices which could clarify this rule.

If 

A = [
a11 a12 a13
a21 a22 a23
a31 a32 a33 ]

then 

T[A] = [
a11 a21 a33
a12 a22 a32
a13 a23 a33]

Newton: "So the transpose simply exchanges rows and 
columns.

Breton: "Exactly.  So we can apply the transpose notation to 
horizontal vectors to create a vertical vector.  Then had I made 
all vectors horizontal what I have written above as A•v would 
be written as  A•T[v].  But this is an unnecessary 
complication.  Post vector multiplication can only be 
meaningful as a vertical vector. 

Einstein: "But the transpose notation is still useful?

Breton: "Of course.  To signify outer products we would write
T[v1]• v2 = v1*v2

while inner products v1• v2 would have to be  
v1•T[v2]

Newton: "So we can formulate functions of matrices as well as 
of vectors. 

Breton: "Yes indeed.  Let me define a few for you.
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   Given 

A = u1⁕v1 + u2⁕v2 + u3⁕v3
   then the transpose of A is defined as 

T[A] ≡ v1⁕u1 + v2⁕u2 + v3⁕u3  

end of definition
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tr[A] ≡ u1•A•u1 + u2•A•u2 + u3•A•u3 
is call the trace of A.  You can see that 

tr[A] = v11 + v22 + v33, 
a scalar.

Newton: "So the trace of a matix is simply the sum of its 
diagonal elements .

Breton: "There are two diagonals.  The  diagonal with locations 
u1*u1, u2*u2, and u3*u3 is called the main diagonal.  The 
main diagonal figures in a similar matrix function called the 
diagonal matrix operator.  It is defined as 

g[A] ≡ v11⁕u1 + v22⁕u2 + v33⁕u3

Newton: "So g[A] transforms a matrix into a vector specified 
by its main diagonal.  But why do you call it an operator.

Breton: " Remember in tp1.1 we said an operator is “a general 
term for a process applied to a set”.  Here we have an 
operator as a function of a matrix.  Let me define another such 
operator,

c[A] ≡ (v23‒v32)⁕u1 + (v31‒v13)⁕u2 + (v12‒v21)⁕u3
which is called the curl matrix operator.  This operator  also 
transforms the matrix into a vector but uses only off‒diagonal 
elements.

Newton: "Which reminds me of vector multiplication.

Breton: "You have good intuitions, Newton.  The curl matrix 
operator, however, operates on a matrix to yield a vector, a 
process which differs from cross multiplication. Let me 
introduce you to another matrix operator which is defined in 
terms now familiar to us

det[A] ≡ v1•(v2∧v3) = v2•(v3∧v1) = v3•(v1∧v2)
is called the determinant of a matrix.  As you can see it is 
simply the scalar triple product of its constituent vectors.

Newton: "So the determinant is like the “volume” of a matrix.

Breton: "Something like, but just remember the triple product 
can also be a negative number.  The determinant figures into 
another operator, the inverse matrix of .A.

det[A]⁕ A‒1 = (v2∧v3)⁕u1 
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+ (v3∧v1)⁕u2
+ (v1∧v2)⁕u3

Einstein: "You can call it an inverse and label it an inverse, but 
can you prove it is an inverse?

Breton: "Of course.  First compute
u1⁕v1•(v2∧v3)⁕u1

Einstein: "I see 
u1⁕v1•(v2∧v3)⁕u1  =v1•(v2∧v3)⁕u1⁕u1

Breton: "Which is det[A]⁕u1⁕u1.  So 
A•A‒1 = (u1⁕v1 + u2⁕v2 +u3⁕v3)

•((v2∧v3)⁕u1 
+ (v3∧v1)⁕u2
+ (v1∧v2)⁕u3/det[A]

          = (u1⁕v1)•((v2∧v3)⁕u1 
+ (v3∧v1)⁕u2
+ (v1∧v2)⁕u3/det[A]

 +  (u2⁕v2)•((v2∧v3)⁕u1 
+ (v3∧v1)⁕u2
+ (v1∧v2)⁕u3/det[A]

 +  (u3⁕v3)•((v2∧v3)⁕u1 
+ (v3∧v1)⁕u2
+ (v1∧v2)⁕u3/det[A]

          = (u1⁕v1)•((v2∧v3)⁕u1/det[A]
  +  (u2⁕v2)•((v3∧v1)⁕u2/det[A]
  +  (u3⁕v3)•((v1∧v2)⁕u3/det[A]

          = (u1⁕det[A]⁕u1/det[A]
  +  (u2⁕det[A]⁕u2/det[A]
  +  (u3⁕det[A]⁕u3/det[A]

          = u1⁕u1 + u2⁕u2 + u3⁕u3
          = I
which is the identity transformation.

Newton: "The proof builds on that remarkable property of the 
scalar triple product.  We are building well. 

Einstein: "Your proof depends on the arbitrary orientation of 
the origin.
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Breton: "Of course.  The result is the same for any given 
orientation, although the form and value of the factors may 
change with different origins.

Newton: "Just as we have seen for vectors themselves.

Einstein: "What results when det[A] = 0?

Breton: "Then the matrix does not have an inverse.  Isn't 
this similar to quotient numbers where the inverse of q is 
1/q unless q=0?

Einstein: "Let's step back a little.  We aimed at trying to 
define an algebra for the set of vectors.  Now it seems 
we have not only accomplished that, but also defined an 
algebra for matrices.  Breton, write the operations for 
matrix algebra explicitly.

Breton: "Better still let me construct a table showing the 
algebra of both vectors and matrices.  The symbols of 
the table are defined as 

v1 ≡ v1⁕uv1
v2 ≡ v2⁕uv2

With the origin taken as reference these vectors are 
further specified as 

v1 ≡ v11⁕u1 + v12⁕u2 + v13⁕u3)
v1 ≡ v1⁕(c11⁕u1 + c12⁕u2 + c13⁕u3)
v2 ≡ v21⁕u1 + v22⁕u2 + v23⁕u3)
v2 ≡ v2⁕(c21⁕u1 + c22⁕u2 + c23⁕u3)

Origin reference for vectors

Addition 

v1+v2 (v11+v21)⁕u1
(v12+v22)⁕u2
(v13+v23)⁕u3

Subtraction

v1‒v2 (v11‒v21)⁕u1
(v12‒v22)⁕u2
(v13‒v23)⁕u3
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Multiplication

v1•v2 (v11⁕v21)
+(v12⁕v22)
+(v13⁕v23)

v1∧v2 (v12⁕v23‒v13⁕v22)⁕u1
+(v13⁕v21‒v11⁕v23)⁕u2
+(v11⁕v22‒v12⁕v21)⁕u3

v1⁕v2 (v11⁕v21)⁕u1⁕u1
+(v11⁕v22)⁕u1⁕u2
+(v11⁕v23)⁕u1⁕u3
+(v12⁕v21)⁕u2⁕u1
+(v12⁕v22)⁕u2⁕u2
+(v12⁕v23)⁕u2⁕u3
+(v13⁕v21)⁕u3⁕u1
+(v13⁕v22)⁕u3⁕u2
+(v13⁕v23)⁕u3⁕u3

Division

v1•qd(v2) (v1/v2)
⁕(c11⁕c21
   +c12⁕c22
   +c13⁕c23)

v1∧q(v2) (v1/v2)
⁕((c12/c23‒c13/c22)⁕u1
   +(c13/c21‒c11/c23)⁕u2
   +(c11/c22‒c12/c21)⁕u3)

v1⁕qd(v2) (v1/v2)
⁕(c11⁕c21)⁕u1⁕u1
+(c11⁕c22)⁕u1⁕u2
+(c11⁕c23)⁕u1⁕u3
+(c12⁕c21)⁕u2⁕u1
+(c12⁕c22)⁕u2⁕u2
+(c12⁕c23)⁕u2⁕u3
+(c13⁕c21)⁕u3⁕u1
+(c13⁕c22)⁕u3⁕u2
+(c13⁕c23)⁕u3⁕u3

With the origin taken as reference, the symbols for the 
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matrix table are defined for two matrices A1 and A2 
specified as 

A1 ≡ u1⁕v1 + u2⁕v2 + u3⁕v3 
A2 ≡ u1⁕x1 + u2⁕x2 + u3⁕x3 

v1 ≡ v1⁕(c11⁕u1 + c12⁕u2 + c13⁕u3)
v2 ≡ v2⁕(c21⁕u1 + c22⁕u2 + c23⁕u3)

Origin reference for matrices

Addition 

A1+A2 u1⁕(v1+x1)
+ u2⁕(v2+x2)
+ u3⁕(v3+x3)

Subtraction

A1‒A2 u1⁕(v1‒x1)
+ u2⁕(v2‒x2)
+ u3⁕(v3‒x3)

Multiplication

A1•A2 (u1•v1⁕x1•u1
   +u2•v1⁕x2•u1
   +u3•v1⁕x3•u1)
                         ⁕u1⁕u1
+(u1•v1⁕x1•u2
   +u2•v1⁕x2•u2
   +u3•v1⁕x3•u2
                         ⁕u1⁕u2
+(u1•v1⁕x1•u3
   +u2•v1⁕x2•u3
   +u3•v1⁕x3•u3
                         ⁕u1⁕u3
+(u1•v2⁕x1•u1
   +u2•v2⁕x2•u1
   +u3•v2⁕x3•u1)
                         ⁕u2⁕u1
+(u1•v2⁕x1•u2
   +u2•v2⁕x2•u2
   +u3•v2⁕x3•u2
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                         ⁕u2⁕u2
+(u1•v2⁕x1•u3
   +u2•v2⁕x2•u3
   +u3•v2⁕x3•u3
                         ⁕u2⁕u3
+(u1•v3⁕x1•u1
   +u2•v3⁕x2•u1
   +u3•v3⁕x3•u1)
                         ⁕u3⁕u1
+(u1•v3⁕x1•u2
   +u2•v3⁕x2•u2
   +u3•v3⁕x3•u2
                         ⁕u3⁕u2
+(u1•v3⁕x1•u3
   +u2•v3⁕x2•u3
   +u3•v3⁕x3•u3
                         ⁕u3⁕u3

Division

A1•A2‒1 (u1•v1⁕(x2∧x3)•u1
   +u2•v1⁕(x3∧x1)•u1
   +u3•v1⁕(x1∧x2)•u1)
               ⁕u1⁕u1/det[A2]
+(u1•v1⁕(x2∧x3)•u2
   +u2•v1⁕(x3∧x1)•u2
   +u3•v1⁕(x1∧x2)•u2)
               ⁕u1⁕u2/det[A2]
+(u1•v1⁕(x2∧x3)•u3
   +u2•v1⁕(x3∧x1)•u3
   +u3•v1⁕(x1∧x2)•u3)
               ⁕u1⁕u3/det[A2]
+(u1•v2⁕(x2∧x3)•u1
   +u2•v2⁕(x3∧x1)•u1
   +u3•v2⁕(x1∧x2)•u1)
               ⁕u2⁕u1/det[A2]
+(u1•v2⁕(x2∧x3)•u2
   +u2•v2⁕(x3∧x1)•u2
   +u3•v2⁕(x1∧x2)•u2)
               ⁕u2⁕u2/det[A2]
+(u1•v2⁕(x2∧x3)•u3
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   +u2•v2⁕(x3∧x1)•u3
   +u3•v2⁕(x1∧x2)•u3)
               ⁕u2⁕u3/det[A2]
+(u1•v3⁕(x2∧x3)•u1
   +u2•v3⁕(x3∧x1)•u1
   +u3•v3⁕(x1∧x2)•u1)
               ⁕u3⁕u1/det[A2]
+(u1•v3⁕(x2∧x3)•u2
   +u2•v3⁕(x3∧x1)•u2
   +u3•v3⁕(x1∧x2)•u2)
               ⁕u3⁕u2/det[A2]
+(u1•v3⁕(x2∧x3)•u3
   +u2•v3⁕(x3∧x1)•u3
   +u3•v3⁕(x1∧x2)•u3)
               ⁕u3⁕u3/det[A2]

Einstein: "You have added many things there, Breton.  For 
Instance you have defined a cross multiplication.

Breton: "And also a outer product multiplication. The cross 
multiplication is just a restatement of our earlier definition 
when we first discussed the origin.  The outer product 
multiplication comes from our earlier discussion of matrix 
multiplication.

Solution of vector equations

Einstein: "So can we also solve vector equations involving 
these multiplications?  For instance, if 

x∧v1 = v2
with v1 and v2 known, what is x?

Breton: "May I try something a little easier.  How about
(v1∧v2)• x = q

where v1 and v2 are given vectors and q a given scalar.

Newton: "That's not so difficult.  The equation is a triple 
product.  The cross product  v1∧v2 equals

 qv1*qv2*sin(angle(v2,v2)*un(v2,v2)
where un is a unit vector orthogonal to both v1 and v2.  
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The problem can then be rewritten as 
qv1*qv2*sin(angle(v2,v2)*un(v2,v2)• x = q

the set of whose solutions are already known from our earlier 
discussion of v1• x = q.  The minimum solution is 

x = q*qd(un(v2,v2))/(qv1*qv2*sin(angle(v2,v2))
where qd is the directional quotient vector.

Breton: "Nicely done.  Not so difficult but neither a solution 
which might be easily guessed at.

EinsteinNow let's try the solutions to 
(x∧v1)•v2 = q

Newton: "Much more difficult.  Breton, have you any 
suggestions.

Breton: "I'd like to introduce another matrix definition which 
could open a different path to the solution.  Remember xx 
suggested that cross multiplication could be expressed with a 
matrix.  Let us now define that matrix.

EinsteinWhy do you call it an operator?

Breton: "The curl vector operator can be written as a matrix

C (v)=v∗[
0 −c3 c2
c3 0 −c1

−c2 c1 0 ]
The determinant of C(v) is zer0 so it has no inverse; neither 
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Definition  (curl vector operator)
   Given 

v = v⁕(c1⁕u1+c2⁕u2+c3⁕u3)
   then

C(v) ≡ v⁕(‒c3⁕u1⁕u2 + c2⁕u1⁕u2
+c3⁕u2⁕u1 ‒ c2⁕u2⁕u3
‒c2⁕u3⁕u1 + c1⁕u3⁕u2)

is called the curl vector operator.
end of definition
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can it be represented as an outer product.  We have here an 
example of different kind of transformation.

EinsteinHow does this help to solve our problem?

Breton: "First let me define a related matrix function.

The curl vector operator and the curl matrix function are 
related as follows: 

v1∧v2 = c(v1⁕v2) = v1•C(v2)
They will likely find use when dealing with cross products.

EinsteinSo let us see if the help with our problem (x∧v1)•v2 
= q!

Breton: "We can rewrite the problem as 
x•C(v1)•v2 = q

which can be expanded into 

v1⁕v2⁕x• [
0 −c13 c12

c13 0 −c11
−c12 c11 0 ] • [

c21
c22
c23]  = q

Now let's perform the matrix multiplication on the right to 
obtain 
v1⁕v2⁕x•((‒c22⁕c13 + c23⁕c12)⁕u1

+(c21⁕c13 ‒ c23⁕c11)⁕u2
+(‒c21⁕c12 + c22⁕c11)⁕u3)

 = q
which is just our familiar solution of v• x = q in a different 
garb.
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Definition  (curl matrix function)
   Given 

v1 = v1⁕(c11⁕u1+c12⁕u2+c13⁕u3)
v2 = v2⁕(c21⁕u1+c22⁕u2+c23⁕u3)

   then

c(v1⁕v2) ≡ v1∧v2

is called the curl matrix function.
end of definition
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Newton: "So the solution of (x∧v1)•v2 = q is 
x = q⁕qd((‒c22⁕c13 +c23⁕c12)⁕u1

          +(c21⁕c13 ‒c23⁕c11)⁕u2
          +(‒c21⁕c12 + c22⁕c11)⁕u3)/(v1⁕v2)

Not an easy solution to guess at!

Breton: "Just one of the solutions.  An infinite number more 
exist which are related to the minimum one you have written.

EinsteinNow can we address the problem I first proposed?  
What is the solution to x∧v1 = v2?

Newton: "Let me try.  The problem can be restated as 
x•C(v1) = v2 

so x can be found by simply inverting C(v1)!

Breton: "Except that its determinant equals zero and so C(v1) 
has no inverse.

Newton: "Then the equation has no solutions!

Breton: "If v2 = 0 then  x = 0  is a solution.

Newton: "True enough.  So are there other solutions?

Breton: "Let me try.
x∧v1 = v2

x⁕ux∧uv1 = v2⁕uv2 /v1
Some solutions are readily apparent.  If v2 = 0, but not v1, 
then x = 0 is the only solution.  If v1 = 0, but not v2, then no 
solution for x exists.  If both v2 = 0 and v1 = 0, then x may 
be any vector at all.

EinsteinWhere does that leave us?

Breton: "With the knowledge that solutions not only depend on 
the directions of v1 and v2, but also their magnitudes.

Einstein: "Sometimes it's easy, any vector will do; other times 
it's impossible, no vector will do.

Breton: "Try thinking about it this way.  Suppose x is a solution. 
Then v2 must be orthogonal to both v1 and x.  So solutions 
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only exist for some v2, but not all.  The restriction on v2, then 
is 

v2•v1= 0
From our now familiar solutions to x•v = q we know that the 
only. solutions for v2 lie in a plane orthogonal to v1.  For any 
other v2, no solution exists.

Einstein: "Brilliant.  Then what is the solution for a given 
restricted v2?

Breton: "If v2•v1= 0, then let us choose v2 = qv2⁕un(v1) 
where un(v1) is orthogonal to v1.  Then we can rewrite our 
equation as 

x∧v1 = qv2⁕un(v1)
Now we see that x has to be orthogonal to un(v1) as well.  So 
then both 

x∧v1 =qx qv1⁕sin(angle(x,v1))⁕un(v1)
   = qv2⁕un(x,v1)

define a solution.

Newton: "So
qx = q2/(qv1⁕sin(angle(x,v1)))

and
un(v1)= un(x,v1)

Einstein: "Which still does not define qx since it depends on 
angle(x,v1)!

Breton: "What it does define is the entire set of solutions.  Any 
solution for x must satisfy simultaneously 

x∧v1 =qx⁕qv1⁕sin(angle(x,v1))⁕un(x,v1)
and  x∧v1 = qv2⁕uv2
All solutions lie in a plane orthogonal to uv2, but not all such 
vectors are solutions, but only those who satisfy 

qx⁕sin(angle(x,v1)) = qv2/ qv1
A curve in the plane orthogonal to v2 designates the entire 
set of solutions.  The whole set of solutions is thus

{x|x = (qv2/(qv1⁕sin(angle(x,v1))))⁕un(v1,v2)}
Among these solutions there is one which minimizes qx, 
namely the one that maximizes sin(angle(x,v1)), specifically 
the one for which sin(angle(x,v1)) = 1.  For this minimum 
solution 

x = (qv2/qv1)⁕un(v1,v2)
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Newton: "Magnificient.

Breton: "Similar to the directional quotient vector for 
inner products, we can define a directional quotient 
vector for cross products as follows:

Newton: "Then
qd(u1,u2) = u3
qd(u2,u3) = u1
qd(u3,u1) = u2

Breton: "Exactly.

Einstein: "How about outer products?

Breton: "The problem can formulated in any of three ways. 
x•v1⁕v2=v3
v1•x⁕v2=v3
v1•v2⁕x=v3

Newton: "The first two formulations are identical since 
x•v1=v1•x.

Breton: "I stand corrected.  There are only two possible 
formulations.  Let us start with the first one.

x•v1⁕v2=q(v3)⁕v2 = v3
so v3 must have the same direction as v2.  Furthermore

x•v1⁕v2=q(v3)

Newton: "Whose solutions for x we already know, including a 
minimum one.
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Breton: "Which we can write as 
x=q(v3)⁕qd(v1)/v2

Einstein: "So let us proceed to v1•v2⁕x=v3

Breton: "Now the direction of x must be the same as that of 
v3. So we may rewrite the problem as 

v1•v2⁕q(x)⁕uvx=v3⁕uv3
from which we see 

q(x)=v3/v1•v2
and

uvx=uv3

Einstein: "So for this problem there is only one unique answer.  
For others, many solutions exist.  Newton would you create a 
table showing these differences. 

Equation given restrictions solutions minimum

x•v1 = q1 v1,q1 none plane x = 
q1⁕qd(v1)

(v1∧v2)
     • x
          = q

v1,v2,q none plane x = q
*
qd(un
   (v1,v2))
/(qv1*qv2
*sin(angle
   (v2,v2))

(x∧v1)
    •v2 
          = q

v1,v2,q v2•v1= 0 plane x = q⁕qd
((c23⁕c12
‒c22⁕c13)
        ⁕u1
+(c21⁕c13 
‒c23⁕c11)
        ⁕u2
+(c22⁕c11 
‒c21⁕c12)
         ⁕u3)
/(v1⁕v2)

x∧v1
       = v2

v1, v2 v2•v1=0;
x•un(v1)

curve in 
plane

x = 
(qv2/qv1)⁕
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            = 0 un(v1,v2)

x•v1⁕v2
           
=v3

v1, v2, 
v3

uv2 = uv3 plane x=v3⁕qd(v
1)/v2

v1•v2⁕x
          =v3

v1, v2, 
v3

uvx = uv3 unique x=v3/
(v1•v2)

Newton: "So now we can solve vector equations.

Einstein: "How about matrix equations?

Breton: "Since we have formed an algebra of matrices, we 
should be able to solve matrix equations too. 

Einstein: "Sounds like a promise.  Deliver! 

Breton: "Let's start with some matrix, A, a given vector v, and 
a matrix equation 

x•A = v
and ask for the unknown vector x.

Newton: "That's easy.  Simply find the inverse of the matrix.  
Then 

x = v•A‒1 

Breton: "That will do for matrices with inverses.  What about 
those without inverses, those whose determinants equal zero. 

Einstein: "We've seen just a case with the outer product.  If 
A = v1⁕v2

an outer product, it has no inverse, but the solution to 
x•v1⁕v2 is any vector parallel to v2.

Newton: "Show me that outer products have not inverse.

Einstein: "If they did, then the solution would be the unique 
solution you just demonstrated. 

Newton: "Show me that the determinant of any outer product 
equals zero.

Breton: "All right, let me do it.  Please pay close attention to 
the manipulations. 
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Let v1 =v1⁕(c11⁕u1+c12⁕u2+c13⁕u3
Let v2 =v2⁕(c21⁕u1+c22⁕u2+c23⁕u3

then 
v1⁕v2 = v1⁕v2⁕(c11⁕c12⁕u1⁕u1

+ c11⁕c22⁕u1⁕u2
+ c11⁕c23⁕u1⁕u3
+c21⁕c12⁕u2⁕u1
+ c21⁕c22⁕u2⁕u2
+ c21⁕c23⁕u2⁕u3
+c31⁕c12⁕u3⁕u1
+ c31⁕c22⁕u3⁕u2
+ c31⁕c23⁕u3⁕u3)

 = v1⁕v2⁕(u1⁕(c11⁕c12⁕u1
+ c11⁕c22⁕u2
+ c11⁕c23⁕u3)

+u2⁕(c21⁕c12⁕u1
+ c21⁕c22⁕u2⁕u2
+ c21⁕c23⁕u2⁕u3)

+u3⁕(c31⁕c12⁕u1
+ c31⁕c22⁕u2
+c31⁕c23⁕u3))

Therefore 
det[v1⁕v2]=(c11⁕c12⁕u1+ c11⁕c22⁕u2+ c11⁕c23⁕u3)

^(c21⁕c12⁕u1+ c21⁕c22⁕u2+ c21⁕c23⁕u3)
 •(c31⁕c12⁕u1+ c31⁕c22⁕u2+ c31⁕c23⁕u3)

= (c11⁕c12⁕ c21⁕c22⁕u3 ‒  c11⁕c12⁕ c31⁕c23⁕u2
 ‒c11⁕c22⁕ c21⁕c12⁕u3 + c11⁕c22⁕ c21⁕c23⁕u1
 +c11⁕c23⁕ c31⁕c12⁕u2 ‒  c11⁕c23⁕ c21⁕c22⁕u1)

•(c31⁕c12⁕u1+ c31⁕c22⁕u2+ c31⁕c23⁕u3)
= 0

So any outer product has a determinant equal to zero.

Einstein: "Thank you.  Perhaps you can deliver on your 
promise after all. 

Breton: "The promise recognizes distinctions in the set of 
matrices.  A matrix can be seen as as function

A:V3 ⟶ V3
so we can ask functional questions about it.  Is an outer 
product injective or surjective?

Einstein: "I like the terminology into or onto.  Since the outer 
product maps any vector into a given direction, it must be an 
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into function.  And also many-to-one.

Breton: "How about a matrix with an inverse?

Einstein: "That matrix would be both onto and 1-1.

Breton: "Can you prove you assertion?

Einstein: "Let x1•A = v1  and x2•A = v1 where x1≠ x2. Then
(x1‒x2)•A = 0

Now if A has and inverse 
(x1‒x2)•A•A‒1 = (x1‒x2) = 0•A‒1 = 0

So x1 =x2, a contradiction.  So A as a function must be 1-1.
Next let v1 be any vector.  Then

v1•A‒1 = x1
for some vector x1.  For x1 then 

x1•A = v1
and so A as a function must be onto.

Breton: "Well proven.  Matrices as functions then may be 
either 1-1 and onto, or otherwise, that is, not 1-1 not onto.  If A 
= [0] for instance,  it would map any vector of the domain into 
the 0 vector of the range.  This is an example of a matrix as a 
constant function.

Newton: "How can we distinguish between the many types of 
matrices which are not 1-1 and onto?

To examine further the categories of mat rices let me offer the 
following definition. 

Einstein: "Then the vector 0 is a member of null subset of any 
matrix.
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Definition  (null set of a matrix)
   Given 

A, a matrix
   then

N(A) ≡ {v|v is a vector such that v•A =0}

is called the null subset of A
end of definition
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Breton: "If v1 is in the null subset, then for any q1, q1⁕v1 is 
also in the subset.

Newton: "That would be all the members of a straight line of 
vectors.

Breton: "And if two non-parallel vectors find themselves in the 
null subset?

Newton: "Then any vector in the plane of vectors containing 
the two vectors would also be in the null subset. 

Breton: "What is the null subset of a matrix with an inverse?

Newton: "Only the vector 0.

Breton: "So any given matrix can be categorized as one whose 
null subset is either a vector line, plane, the whole set of 
vectors, or simply the vector 0.  We label these subsets with a 
function called dimension, whose value are 

subset 0 dimension = 0
a line  dimension = 1
a plane dimension = 2
V3  dimension = 3

The entire set of matrices are divided into four subsets each 
characterized by a dimension.

Newton: "Whereas the partitions of quotient numbers had only 
two characterizations—0 and line.

Breton: "Yes, you see the similarities.  Do you remember the 
definition of restricted subsets?  Note that each of these 
partitions,-- lines, planes, or v3 entire-- comes with its 
restricted algebra.

E,And the 0 in quotient numbers evolves into the [0] of 
matrices.  How do the subsets relate to V3?

Breton: "We already know some answers. For M, any matrix 
with a 0 null subset,  

M: V3⟶ V3
For M, any matrix with V3 as its  null subset,  

M: V3⟶ 0
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Newton: "So if you add the dimension of the null subset to the 
dimension of the image the result is always 3.

Einstein: "So for M, any matrix with a line of vectors for its null 
subset, is the image of V3 a plane?

Breton: "Could be.  Suppose the null space is the line v1⁕u1.  
Then M would map any vector v⁕(c1⁕u1 +c2⁕u2 +c3⁕u3) 
into some other vector v2⁕u2 +v3⁕u3.  The image of all such 
vectors would indeed be a plane orthogonal to u1.

Einstein: "How about an arbitrary direction?

Newton: "Then we might as well chosen the origin to have u1 
as the arbitrary direction with an identical result.

Breton: "So again the dimension of the image added to the 
dimension of the null set equals 3.

Newton: "A similar argument shows the image of a matrix with 
a plane for a null set would have an image of a line of vectors.

Breton: "We give a name rank  to the image of A.  Then we 
can write for any matrix A

dimension(N(A)) + rank(A) = 3

Einstein: "Why not simply say 
dimension(N(A)) + dimension(image(A)) = 3?

Breton: "Acceptable, of course.  It's just a bit more convenient 
to talk about the solutions of matrix equations for a matrix of 
rank 2, than one whose image has dimension of 2.

Einstein: "Proceed then to the solutions of matrix equations.

Breton: "Let's start with the equation
x•A =b

where the matrix A and the vector b are given.  We seek a 
solution for x.

Newton: "We already have solutions for matrices of rank 0 or 
rank3.  For a matrix of rank 3 only one vector is a solution; for 
a matrix of rank 0 any vector is a solution.
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Breton: "So we might suspect solutions for matrices of rank 1 
or 2 might have some vectors but not all for solutions.  Let's 
start with the explicit solution for matrices of rank3. Let

A = u1⁕a1 +u2⁕a2 +u3⁕a3
where the ai are the rows of the matrix.  The solution for 

x•T[A] =b
is

x =b•T[A]‒1 

Now for b = b⁕(c1⁕u1+c2⁕u2+c3⁕u3)
b•T[A]‒1

               = b⁕(c1⁕u1+c2⁕u2+c3⁕u3)
     •(u1⁕(a2∧a3)+u2⁕(a3∧a1)+u3⁕(a1∧a2))/det[A]

        = b⁕((c1⁕(a2∧a3)+c2⁕(a3∧a1)+c3⁕(a1∧a2))/det[A]

Einstein: "You've changed the problem by substituting the 
transpose.  Why?

Breton: "The original problem calls for multiplying the 
unknown vector by the columns of the matrix.  By substituting 
the transpose the solution can be stated in terms of the rows 
of A.  If the matrix is given, then so too is its transpose.

Einstein: "Let's move on then to matrices of other ranks. 
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Breton: "Suppose now a matrix A of rank2.  Then N(A) is a line 
of vectors.

Einstein: "For such a matrix, what is the solution for x in the 
equation 

x•[A] = b
where the matrix A and the vector b are given. 

Breton: "Let me start, but you will have to follow closely.  Let 
uv1, uv2, and un be three different non-planar directions with 
un the direction of N(A).  Then the vector x may be 
represented as 

x = t1⁕uv1+t2⁕uv2 +t3⁕un
for some t1, t2, and t3.  So the solution for 

x•[A] = (t1⁕uv1+t2⁕uv2 +t3⁕un)•A = b
devolves into a solution for t1 and t2 since t3⁕un•[A] = 0
   Furthermore b must be constrained to lie outside N(A) since 
if  b=t3⁕un contradicts the assumption that uv1•A lies 
outside N(A).  Assuming then. 

b = b1⁕u1+b2⁕u2 +b3⁕u3
b•[A] = (b1⁕a11+ b2⁕a21+ b3⁕a31)⁕u1

+(b1⁕a12+ b2⁕a22+ b3⁕a32)⁕u2 
+(b1⁕a13+ b2⁕a23+ b3⁕a33)⁕u3 

≠ 0
If b= 0 then x = 0 is the only solution.  

Newton: "What is image of A?

Breton: "The image is all vectors except those in the null set of 
A, that is, A ‒ N(A), except that 0 belongs to both the image 
and the null set.
  We might also note that if x1 and x2 are solutions, then  x1‒
x2 lies in the null set of A since 

(x1‒x2)•A=x1•A ‒x2•A = b‒b = 0.
We can also also calculate some components of the equation 
as 
uv1•[A] = (uv11⁕a11+ uv12⁕a21+ uv13⁕a31)⁕u1

+(uv11⁕a12+ uv12⁕a22+ uv13⁕a32)⁕u2 
+(uv11⁕a13+ uv12⁕a23+ uv13⁕a33)⁕u3 

uv2•[A] = (uv21⁕a11+ uv22⁕a21+ uv23⁕a31)⁕u1
+(uv21⁕a12+ uv22⁕a22+ uv23⁕a32)⁕u2 
+(uv21⁕a13+ uv22⁕a23+ uv23⁕a33)⁕u3 

Newton: "That's a porridge of symbols.
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Breton: "Which can be easily confused.  Why not simplify by 
defining a few new symbols?.  Let 

q1 = uv11⁕a11+ uv12⁕a21+ uv13⁕a31
q2 = uv11⁕a12+ uv12⁕a22+ uv13⁕a32
q3 = uv11⁕a13+ uv12⁕a23+ uv13⁕a33
q4 = uv21⁕a11+ uv22⁕a21+ uv23⁕a31
q5 = uv21⁕a12+ uv22⁕a22+ uv23⁕a32
q6 = uv21⁕a13+ uv22⁕a23+ uv23⁕a33

Then we can write
uv1•[A] =q1⁕u1+q2⁕u2+q3⁕u3 
uv2•[A] = q4⁕u1+q5⁕u2 +q6⁕u3 
so that 
(t1⁕uv1+t2⁕uv2 +t3⁕un)•A

=t1⁕uv1•A+t2⁕uv2•A +0
=t1⁕(q1⁕u1+q2⁕u2+q3⁕u3) 
  + t2⁕(q4⁕u1+q5⁕u2 +q6⁕u3) 
= b1⁕u1+b2⁕u2 +b3⁕u3

Thus, 
t1⁕q1 + t2⁕q4= b1
t1⁕q2 + t2⁕q5= b2
t1⁕q3 + t2⁕q6= b3

So we have three different equations which can be solved for 
two unknowns.  We can rewrite the equations as  

t2 = (b1 ‒ t1⁕q1)/q4
t2 = (b2 ‒ t1⁕q2)/q5
t2 = (b3 ‒ t1⁕q3)/q6

First let's solve for t1 from the first two equations.
(b1 ‒ t1⁕q1)/q4 = (b2 ‒ t1⁕q2)/q5

so that
 (b1 ‒ t2⁕q4)/q1 = (b2 ‒ t2⁕q5)/q2
and so

t2⁕q5)/q2 ‒ t2⁕q4)/q1= (b2/q2‒b1/q1
and so

t2⁕q5⁕q1 ‒ t2⁕q4⁕q2= (b2⁕q1‒b1⁕q2
and so finally

t2 = (b2⁕q1‒b1⁕q2)/(q5⁕q1 ‒q4⁕q2)
Similarly, 

t1=(b1⁕q2‒b2⁕q1)/(q2⁕q4 ‒q1⁕q5)

Newton: "How can you put down the result for t1 so quickly 
and easily?

Breton: "We are using only the first two equations.
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t1⁕q1 + t2⁕q4= b1
t1⁕q2 + t2⁕q5= b2

By substituting t1 for t2 in our result, we see we should also  
substitute q4 for q2 and vice-versa; q1 for q5 and vice versa; 
and b1 for b2 and versa.  This a process called substitution.  
Try it.

Newton: "It works.

Breton: "So our solution becomes.
x = (t1⁕uv1+t2⁕uv2 +t3⁕un) 
   = (b2⁕q4‒b1⁕q5)/(q2⁕q4 ‒q1⁕q5))⁕uv1

+*(b1⁕q2‒b2⁕q1 )/(q2⁕q4 ‒q1⁕q5))⁕uv2 
+t3⁕un) 

Newton: "Not something we could guess at easily.

Einstein: "Show directly that x is a solution.

Breton: "All right. Let us check  against the original
x•[A] = (t1⁕uv1+t2⁕uv2 +t3⁕un)•[A].  Starting with t3 = 0 
let us and first calculate some of the components.  Remember
uv1•[A] =q1⁕u1+q2⁕u2+q3⁕u3 
uv2•[A] = q4⁕u1+q5⁕u2 +q6⁕u3 
so 
t1⁕uv1•A = (b2⁕q4‒b1⁕q5)⁕(q1⁕u1+q2⁕u2+q3⁕u3)

/(q2⁕q4 ‒q1⁕q5)
= (b2⁕q4⁕q1‒b1⁕q5⁕q1)⁕u1/(q2⁕q4 ‒q1⁕q5)
    +(b2⁕q4⁕q2‒b1⁕q5⁕q2)⁕u2/(q2⁕q4 ‒q1⁕q5)
    +(b2⁕q4⁕q3‒b1⁕q5⁕q3)⁕u3/(q2⁕q4 ‒q1⁕q5)

t1⁕uv2•A = (b1⁕q2‒b2⁕q1)⁕(q4⁕u1+q5⁕u2 +q6⁕u3)
/(q2⁕q4 ‒q1⁕q5)

= (b1⁕q2⁕q4‒b2⁕q1⁕q4)⁕u1/(q2⁕q4 ‒q1⁕q5)
     + (b1⁕q2⁕q5‒b2⁕q1⁕q5)⁕u2/(q2⁕q4 ‒q1⁕q5)
     + (b1⁕q2⁕q6‒b2⁕q1⁕q6)⁕u3/(q2⁕q4 ‒q1⁕q5)

So
(t1⁕uv1+t2⁕uv2)•[A]

=  (b2⁕q4⁕q1‒b1⁕q5⁕q1)⁕u1/(q2⁕q4 ‒q1⁕q5)
    +(b1⁕q2⁕q4‒b2⁕q1⁕q4)⁕u1/(q2⁕q4 ‒q1⁕q5)
    +(b2⁕q4⁕q2‒b1⁕q5⁕q2)⁕u2/(q2⁕q4 ‒q1⁕q5)
    +(b1⁕q2⁕q5‒b2⁕q1⁕q5)⁕u2/(q2⁕q4 ‒q1⁕q5)
    +(b2⁕q4⁕q3‒b1⁕q5⁕q3)⁕u3/(q2⁕q4 ‒q1⁕q5)
    + (b1⁕q2⁕q6‒b2⁕q1⁕q6)⁕u3/(q2⁕q4 ‒q1⁕q5)
= ((b2⁕q4⁕q1‒b1⁕q5⁕q1)/(q2⁕q4 ‒q1⁕q5)
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    +  (b1⁕q2⁕q4‒b2⁕q1⁕q4)/(q2⁕q4 ‒q1⁕q5))⁕u1
    +((b2⁕q4⁕q2‒b1⁕q5⁕q2)/(q2⁕q4 ‒q1⁕q5)
    +(b1⁕q2⁕q5‒b2⁕q1⁕q5)/(q2⁕q4 ‒q1⁕q5))⁕u2
    +((b2⁕q4⁕q3‒b1⁕q5⁕q3)/(q2⁕q4 ‒q1⁕q5)
    + (b1⁕q2⁕q6‒b2⁕q1⁕q6)/(q2⁕q4 ‒q1⁕q5))⁕u3
=  ((b2⁕q4⁕q1)/(q2⁕q4 ‒q1⁕q5)

‒(b1⁕q5⁕q1)/(q2⁕q4 ‒q1⁕q5))
 +  (b1⁕q2⁕q4/(q2⁕q4 ‒q1⁕q5)

‒b2⁕q1⁕q4)/(q2⁕q4 ‒q1⁕q5))
⁕u1

    +((b2⁕q4⁕q2)/(q2⁕q4 ‒q1⁕q5)
‒(b1⁕q5⁕q2)/(q2⁕q4 ‒q1⁕q5)

    +(b1⁕q2⁕q5)/(q2⁕q4 ‒q1⁕q5)
‒(b2⁕q1⁕q5)/(q2⁕q4 ‒q1⁕q5))

⁕u2
    +((b2⁕q4⁕q3/(q2⁕q4 ‒q1⁕q5)

‒b1⁕q5⁕q3)/(q2⁕q4 ‒q1⁕q5)
    + (b1⁕q2⁕q6/(q2⁕q4 ‒q1⁕q5)

‒b2⁕q1⁕q6)/(q2⁕q4 ‒q1⁕q5))
⁕u3

=  ((b2⁕q4⁕q1)/(q2⁕q4 ‒q1⁕q5)
‒b2⁕q1⁕q4)/(q2⁕q4 ‒q1⁕q5))

 +  (b1⁕q2⁕q4/(q2⁕q4 ‒q1⁕q5)
‒(b1⁕q5⁕q1)/(q2⁕q4 ‒q1⁕q5))

⁕u1
    +((b2⁕q4⁕q2)/(q2⁕q4 ‒q1⁕q5)

‒(b2⁕q1⁕q5)/(q2⁕q4 ‒q1⁕q5)
    +(b1⁕q2⁕q5)/(q2⁕q4 ‒q1⁕q5)

‒(b1⁕q5⁕q2)/(q2⁕q4 ‒q1⁕q5))
⁕u2

    +((b2⁕q4⁕q3/(q2⁕q4 ‒q1⁕q5)
‒b2⁕q1⁕q6)/(q2⁕q4 ‒q1⁕q5))

    + (b1⁕q2⁕q6/(q2⁕q4 ‒q1⁕q5)
‒b1⁕q5⁕q3)/(q2⁕q4 ‒q1⁕q5)

⁕u3
=  ((b2⁕(q4⁕q1)/(q2⁕q4 ‒q1⁕q5)

   ‒q1⁕q4)/(q2⁕q4 ‒q1⁕q5))
 +  (b1⁕(q2⁕q4‒q5⁕q1)/(q2⁕q4 ‒q1⁕q5))

⁕u1
    +((b2⁕q4⁕q2)/(q2⁕q4 ‒q1⁕q5)

‒(b2⁕q1⁕q5)/(q2⁕q4 ‒q1⁕q5)
    +(b1⁕q2⁕q5)/(q2⁕q4 ‒q1⁕q5)

‒(b1⁕q5⁕q2)/(q2⁕q4 ‒q1⁕q5))
⁕u2
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    +((b2⁕q4⁕q3/(q2⁕q4 ‒q1⁕q5)
‒b2⁕q1⁕q6)/(q2⁕q4 ‒q1⁕q5))

    + (b1⁕q2⁕q6/(q2⁕q4 ‒q1⁕q5)
‒b1⁕q5⁕q3)/(q2⁕q4 ‒q1⁕q5)

⁕u3
=  ((b2⁕(q4⁕q1)/(q2⁕q4 ‒q1⁕q5)

   ‒q1⁕q4)/(q2⁕q4 ‒q1⁕q5))
 +  (b1⁕(q2⁕q4‒q5⁕q1)/(q2⁕q4 ‒q1⁕q5))

⁕u1
    +((b2⁕q4⁕q2)‒q1⁕q5)/(q2⁕q4 ‒q1⁕q5)
    +(b1⁕(q2⁕q5)‒q5⁕q2)/(q2⁕q4 ‒q1⁕q5))

⁕u2
    +((b2⁕(q4⁕q3‒q1⁕q6)/(q2⁕q4 ‒q1⁕q5)
    + (b1⁕(q2⁕q6‒q5⁕q3)/(q2⁕q4 ‒q1⁕q5)

⁕u3
= b1⁕u1 + b2⁕u2 

+(b2⁕(q4⁕q3‒q1⁕q6)+b1⁕(q2⁕q6‒q5⁕q3)
/(q2⁕q4 ‒q1⁕q5))⁕u3

Einstein: "So your x is not a solution.

Breton: "It does solve correctly for two of the three 
components of b.  Remember we have only used the first two 
of three equations which do not explicitly reference b3.  The 
complicated scalar for u3, may yet evaluate to b3.  What do 
you think the result would be if we had used the first and the 
third equations?

Newton: "We can try substitution.  If
t1⁕q1 + t2⁕q4= b1
t1⁕q2 + t2⁕q5= b2

yields 
x = (b2⁕q4‒b1⁕q5)/(q2⁕q4 ‒q1⁕q5))⁕uv1

+*(b1⁕q2‒b2⁕q1 )/(q2⁕q4 ‒q1⁕q5))⁕uv2 
+t3⁕un) 

for a solution
which verifies to 
b1⁕u1 + b2⁕u2 

+(b2⁕(q4⁕q3‒q1⁕q6)+b1⁕(q2⁕q6‒q5⁕q3)
/(q2⁕q4 ‒q1⁕q5))⁕u3

then
t1⁕q1 + t2⁕q4= b1
t1⁕q3 + t2⁕q6= b3

yields 
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x = (b3⁕q4‒b1⁕q6)/(q3⁕q4 ‒q1⁕q6))⁕uv1
+*(b1⁕q3‒b3⁕q1 )/(q3⁕q4 ‒q1⁕q6))⁕uv2 
+t3⁕un)

which verifies to 
x = b1⁕u1 + b3⁕u3 

+(b3⁕(q4⁕q2‒q1⁕q5)+b1⁕(q3⁕q5‒q6⁕q2)
/(q3⁕q4 ‒q1⁕q6))⁕u2

Likewise using the second and third equations,
t1⁕q2 + t2⁕q5= b2
t1⁕q3 + t2⁕q6= b3

yields 
x = (b3⁕q5‒b2⁕q6)/(q3⁕q5 ‒q2⁕q6))⁕uv1

+*(b2⁕q3‒b3⁕q2)/(q3⁕q6 ‒q2⁕q6))⁕uv2 
+t3⁕un) 

which verifies to 
x = b2⁕u2 + b3⁕u3 

+(b3⁕(q5⁕q1‒q2⁕q4)+b2⁕(q3⁕q4‒q6⁕q1)
/(q3⁕q5 ‒q2⁕q6))⁕u1

Einstein: "Let's do an example. 

Breton: "All right.  Let 
A = u1⁕u1+u1⁕u2+u1⁕u3

+3⁕u2⁕u1+2⁕u2⁕u2+u2⁕u3
+3⁕u3⁕u1+3⁕u3⁕u2+3⁕u3⁕u3

The null subset of A is {t3⁕(3⁕u1‒u3)}
Let

b = u1+u2+u3
Then b1 = 1 = b2 = b3.
Let

uv1 = u1
uv2 = u2

Then
q1 = uv11⁕a11+ uv12⁕a21+ uv13⁕a31= 1
q2 = uv11⁕a12+ uv12⁕a22+ uv13⁕a32= 1
q3 = uv11⁕a13+ uv12⁕a23+ uv13⁕a33= 1
q4 = uv21⁕a11+ uv22⁕a21+ uv23⁕a31= 3
q5 = uv21⁕a12+ uv22⁕a22+ uv23⁕a32= 2
q6 = uv21⁕a13+ uv22⁕a23+ uv23⁕a33 = 1

So
x = (b2⁕q4‒b1⁕q5)/(q2⁕q4 ‒q1⁕q5))⁕uv1

+*(b1⁕q2‒b2⁕q1)/(q2⁕q4 ‒q1⁕q5))⁕uv2 
+t3⁕un) 

  = (u1+t3⁕un)
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which verifies to u1 + u2+ u3, which is b.
For the first and third equations,
x = (b3⁕q4‒b1⁕q6)/(q3⁕q4 ‒q1⁕q6))⁕uv1

+*(b1⁕q3‒b3⁕q1 )/(q3⁕q4 ‒q1⁕q6))⁕uv2 
  = (u1+t3⁕un)
which verifies to u1 + u2+ u3, which is b.
For the second and third equations,
x = (b3⁕q5‒b2⁕q6)/(q3⁕q5 ‒q2⁕q6))⁕uv1

+*(b2⁕q3‒b3⁕q2)/(q3⁕q6 ‒q2⁕q6))⁕uv2 
  = (u1+t3⁕un)
which also verifies u1 + u2+ u3, which is b.
So in this example, all three equations yield the same 
verifiable solutions.

Einstein: "The example is too simple.  Let uv1 = u1 +2⁕u2 + 
u3.

Breton: "Then
q1 = uv11⁕a11+ uv12⁕a21+ uv13⁕a31= 10
q2 = uv11⁕a12+ uv12⁕a22+ uv13⁕a32= 8
q3 = uv11⁕a13+ uv12⁕a23+ uv13⁕a33= 6
q4 = uv21⁕a11+ uv22⁕a21+ uv23⁕a31= 3
q5 = uv21⁕a12+ uv22⁕a22+ uv23⁕a32= 2
q6 = uv21⁕a13+ uv22⁕a23+ uv23⁕a33 = 1

Now for the first and second equations,
x = (b2⁕q4‒b1⁕q5)/(q2⁕q4 ‒q1⁕q5))⁕uv1

+*(b1⁕q2‒b2⁕q1)/(q2⁕q4 ‒q1⁕q5))⁕uv2 
+t3⁕un) 

  = ((u1+2⁕u2+u3)/4) ‒ (u2/2)+t3⁕un)
  = ((u1+u3)/4)+t3⁕un)
which verifies to u1 + u2+ u3, which is b.

Einstein: "Try the first and third equations.

Breton: "Then 
x = (b3⁕q4‒b1⁕q6)/(q3⁕q4 ‒q1⁕q6))⁕uv1

+*(b1⁕q3‒b3⁕q1 )/(q3⁕q4 ‒q1⁕q6))⁕uv2 
x = (3‒1)/(18 ‒10))⁕(u1+2u2 + u3)

+*(6‒10)/(18 ‒10))⁕u2 
x = (2/8)⁕(u1+2u2 + u3)+(‒4)/(8 )⁕u2 
x = (u1+2u2 + u3)/4‒u2/2
x = (u1+ u3)/4
as before.
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Einstein: "And the second and third equations?

Breton: "Then 
x = (2‒1)/(12 ‒8))⁕uv1

+(6‒8)/(12 ‒8))⁕u2 
x = (1/4)⁕(u1+2u2 + u3)+(‒2/4))⁕u2 
x = (u1+2u2 + u3)/4‒u2/2
x = (u1+ u3)/4
as before.

Einstein: "So all the equations yield the same set of solutions, 
namely a line of vectors parallel to the null set of A.

Breton: "So the set of solutions can be expressed as 
{x} = xm +{y|y is a vector in N(A)}

where xm is orthogonal to N(A).   The solution xm would be 
the one with minimum magnitude.  Let us find xm.

Newton: "That's easy.  The vector y we have previously 
expressed as t3⁕un.  Then since any single solution 

x1 = xm + y = xm + t3⁕un
just set t3=0.  Then x1 = xm.

Einstein: "Not so.  Just look at our examples.  In the first simple 
example 

x1 = (u1+t3⁕un)
while in the second example, 

x1 = (u1+ u3)/4) +t3⁕un
So does xm equal u1 or u1+ u3)/4?

Newton: "Breton, what is going on?

Breton: "The examples differ only in the choice of the the 
choice of uv1.  The examples show that the the resulting 
solution depends on the arbitrary choice of uv1 and uv2, 
suitably restricted.  Every solution does fit the mold of 

x1 =  xm + t3⁕un
for some t3.  So for the first example.

u1 =  xm + t31⁕(3u1‒u3)
and for the second example, 

(u1+ u3)/4) =  xm + t32⁕(3u1‒u3)
should solve for the same xm.

Einstein: "In the first example
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xm =  u1 ‒ t31⁕(3u1‒u3)
.In the second example

xm = (u1+ u3)/4) ‒ t32⁕(3u1‒u3)
Then according to your hypothesis. Breton, 

u1 ‒ t31⁕(3⁕u1‒u3) = (u1+ u3)/4) ‒ t32⁕(3⁕u1‒u3)
for some t31 and t32.  So we should have

(1‒3⁕t31)⁕u1 = (1/4 ‒3⁕t32)⁕u1
and

t31⁕u3 = (¼ + t32)⁕u3
From the last equation 

t31 = (¼ + t32)
which inserted into the prior equation 

(1‒3⁕t31) = (1‒3⁕(¼ + t32) = (1/4 ‒3⁕t32)
which confirms your conjecture. 

Breton: "The minimum solution must be orthogonal to N(A).  
However, 

u1•(3u1‒u3) = 3
and 

((u1+ u3)/4)•(3u1‒u3) = (3 ‒1)/4 = 1/2
so neither of the the solutions acquired by the examples is the 
minimum solution.

Newton: "So forget the examples; go to the general case. 

Einstein: "If we can't solve for the specific example, we won't 
be able to solve the more general case. 

Breton: "So let's first solve for the example.  We know the null 
set and we know two solutions.  For orthogonality we only 
need two vectors, one from the null set and one from the set 
of solutions.  So let us set the orthogonality equation as 

(u1+ t3⁕(3⁕u1‒u3))•(3⁕u1‒u3) = 0 
where we take the vector (u1+ t3⁕(3⁕u1‒u3)) for xm and 
the vector 3⁕u1‒u3 from the null set.  We can then solve for 
t3 and thus calculate xm.

Newton: "So then 
(u1+ t3⁕(3⁕u1‒u3))•(3⁕u1‒u3) = 0 
((3⁕ t3+1)⁕u1‒ t3⁕u3))•(3⁕u1‒u3) = 0
3⁕((3⁕ t3+1) + t3)) = 0
10⁕ t3 + 3 = 0
So t3 = ‒3/10 and

xm = (u1 ‒3⁕(3⁕u1‒u3))/10 = (u1 +3⁕u3)/10
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Breton: "Well done.  You may check as I have that xm is a 
solution, is orthogonal to N(A), and has a magnitude less than 
either of our previous solutions.

Einstein: "We might have started with uv1 and uv2 
orthogonal to N(A).

Newton: "And even orthogonal to each other.

Breton: "We started knowing the existence of N(A), and 
indicating some restrictions of the problem, without, however, 
claiming knowledge of any single vector in the null set.  That 
lack of knowledge may have complicated the solution.  We 
could have assumed knowledge of un, a knowledge which can 
be acquired from the matrix.  Then un•[A] = 0 places a a 
constraint on the elements of A.  Furthermore uv1 and uv2 
can be chosen as you have indicated so that 

un•uv1 = 0
un•uv2 = 0
uv1•uv2 = 0

which may have simplified the proof.  
In the examples the equation for is given, but the vectors uv1 
and uv2 are chosen arbitrarily.

Newton: "Let's do the example choosing the inquiring vectors 
orthogonally.  Suppose  uv1 = 3⁕u1+u3 and  uv2 = u2.  This 
choice satisfies our conditions.

Einstein: "Then
q1 = uv11⁕a11+ uv12⁕a21+ uv13⁕a31 = 6
q2 = uv11⁕a12+ uv12⁕a22+ uv13⁕a32 = 6
q3 = uv11⁕a13+ uv12⁕a23+ uv13⁕a33 = 6
q4 = uv21⁕a11+ uv22⁕a21+ uv23⁕a31 = 3
q5 = uv21⁕a12+ uv22⁕a22+ uv23⁕a32 = 2
q6 = uv21⁕a13+ uv22⁕a23+ uv23⁕a33 = 1

Then using the first solution with t3 = 0
x = (b2⁕q4‒b1⁕q5)/(q2⁕q4 ‒q1⁕q5))⁕uv1

+*(b1⁕q2‒b2⁕q1 )/(q2⁕q4 ‒q1⁕q5))⁕uv2 
  = (3‒2)/(18 ‒12))⁕(3⁕u1+u3)
 +*(6‒6 )/(18 ‒12))⁕u2 
  = (3⁕u1 +u3)/6
So this process while convenient, does not yield the minimum 
solution.
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Breton: "But the choice of uv1 = 6⁕(3⁕u1+u3)/10 and  uv2 
= u2 would have produced the minimum.  So It appears that 
finding the null set of the matrix can be an efficient 
preliminary to obtaining the minimum solution.  Suppose then 
that both un and some solution x are known. Then 

xm = x ‒ t⁕un
for some t.  Further 

xm•un = x•un ‒ t⁕un•un = 0
Thus 

t= x•un /un•un 
So

xm = x ‒x•un⁕un/un•un 
=  x•[I‒un⁕un]/un•un 

where I is the identity matrix.

Einstein: "How about rank 1 matrices.
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Breton: "Suppose now a matrix A of rank1.  Then N(A) is a 
plane  of vectors.

Einstein: "For such a matrix, I ask again:what is the solution 
for x in the equation 

x•A = b
where the matrix A and the vector b are given?

Breton: "Now let v, n1, and n2 be three different non-planar 
vectors with n1 and n2 vectors in N(A).  Then the vector x 
may be represented as 

x = t0⁕v+t1⁕n1 +t2⁕n2
for some t0, t1, and t2.  So the solution for 

x•A = (t0⁕v+t1⁕n1 +t2⁕n2)•A = b
devolves into a solution for t0 since

(t1⁕n1 +t2⁕n2•[A] = 0
   Furthermore b must be constrained to lie outside N(A) since 
otherwise b contradicts the assumption that uv•A lies outside 
N(A).  Assuming then. 

b = b1⁕u1+b2⁕u2 +b3⁕u3
b•[A] = (b1⁕a11+ b2⁕a21+ b3⁕a31)⁕u1

+(b1⁕a12+ b2⁕a22+ b3⁕a32)⁕u2 
+(b1⁕a13+ b2⁕a23+ b3⁕a33)⁕u3 

≠ 0
If b= 0 then x = 0 is the only solution.  

Newton: "What is image of A?

Breton: "The image is all vectors except those in the null set of 
A, that is, A ‒ N(A), except that 0 belongs to both the image 
and the null set.
  We might also note that if x1 and x2 are solutions, then  x1‒
x2 lies in the null set of A since 

(x1‒x2)•A=x1•A ‒x2•A = b‒b = 0.
  We can also also calculate 
v•[A] = (v1⁕a11+ v2⁕a21+ v3⁕a31)⁕u1

+(v1⁕a12+ v2⁕a22+ v3⁕a32)⁕u2 
+(v1⁕a13+ v2⁕a23+ v3⁕a33)⁕u3 

which we can symbolize by defining a few new symbols as
q1 = v1⁕a11+ v2⁕a21+ v3⁕a31
q2 = v1⁕a12+ v2⁕a22+ v3⁕a32
q3 = v1⁕a13+ v2⁕a23+ v3⁕a33

Then we can write
v•[A] =q1⁕u1+q2⁕u2+q3⁕u3 

167

v2

v1 v2+v3
v3

v1 • (v2+v3)



so that 
(t0⁕v+t1⁕n1 +t2⁕n2)•A

=t0⁕v•A +0
=t0⁕(q1⁕u1+q2⁕u2+q3⁕u3) 
= b1⁕u1+b2⁕u2 +b3⁕u3

Thus, 
t0⁕q1= b1
t0⁕q2= b2
t0⁕q3 = b3

So we have three different equations which can be solved for 
t0.  We can solve for t0 as

t0 = b1/q1
t0 = b2/q2
t0 = b3/q3

So our solution becomes.
x = (t0⁕v+t1⁕n1 +t2⁕n2) 
   = (b1/q1)⁕v +t1⁕n1 +t2⁕n2) 
or
x = (b2/q2)⁕v +t1⁕n1 +t2⁕n2) 
or
x = (b3/q3)⁕v +t1⁕n1 +t2⁕n2) 

Einstein: "Now show directly that x is a solution.

Breton: "All right. Let us check  against the original
x•A = (t0⁕v+t1⁕n1 +t2⁕n2)•A.  Starting with t1 = 0 and   t2 
= 0 let us and first calculate 
t0⁕v•A =b1⁕(q1⁕u1+q2⁕u2+q3⁕u3)/q1

     =b1⁕u1+b1⁕q2⁕u2/q1+b1⁕q3⁕u3/q1

Einstein: "So your x is not a solution.

Breton: "But it is!  Did you notice, 
b1/q1 = b2/q2 = b3/q3

so 
b1⁕q2/q1 = b2
b1⁕q3/q1 = b3

Newton: "So the solutions Breton wrote down are indeed 
solutions to x•A = b

Einstein: "It's too simple.  Let's do an example. 

Breton: "All right.  Let 
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A = u1⁕u1+u1⁕u2+u1⁕u3
+2⁕u2⁕u1+2⁕u2⁕u2+2⁕u2⁕u3
+3⁕u3⁕u1+3⁕u3⁕u2+3⁕u3⁕u3

The null subset of A is {t1⁕(2⁕u1‒u2)+t2⁕(3⁕u1‒u3)} for 
any t1 and t2 in Q.
Let

b = u1+u2+u3
Then b1 = 1 = b2 = b3.
For v = u1 we can calculate 

q1 = v1⁕a11+ v2⁕a21+ v3⁕a31 = 1
q2 = v1⁕a12+ v2⁕a22+ v3⁕a32 = 1
q3 = v1⁕a13+ v2⁕a23+ v3⁕a33 = 1

Then a solution to x•A = b with t1 = t2=1 is
x = (b1/q1)⁕v +t1⁕n1 +t2⁕n2) 
   = u1 + 2⁕u1‒u2 +3⁕u1‒u3 
   =6⁕u1‒u2 ‒u3 
since

(6⁕u1‒u2 ‒u3)•A = u1 +u1+u1 = b
All the equations yield the same set of solutions, namely a 
plane of vectors parallel to the null set of A.

Einstein: "Show me.”

Breton: "Easily.  Suppose x1 is a solution.  Then x1 added to 
any vector in N(A) is also a solution.  It follows that the set 

{x1 +N(A)}
is a plane of vectors parallel to N(A).

Einstein: "Are they the only solutions?  Perhaps other solutions 
exist beyond that plane.”

Breton: "No.  If x2 were any other solution, then  x1‒x2 lies in 
the null set of A as we showed earlier.
   Now can we find the solution with the least magnitude?

Newton: "Again, the set of solutions can be expressed as 
{x} = xm +{y|y is a vector in N(A)}

where xm is orthogonal to N(A).   The solution xm would be 
the one with minimum magnitude. 
  Suppose now that both n, a vector in the null set, and some 
solution x are known. Then 

xm = x ‒ t⁕n
for some t.
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Further 
xm•n = x•n ‒ t⁕n•n = 0

Thus 
t= x•n /n•n 

So as before
xm = x ‒x•n⁕n/n•n 
      =  x•[I‒n⁕n]/n•n 

where I is the identity matrix.

Einstein: "Not so.  As we have already shown, the vectors 
orthogonal to n would form a plane, not a unique vector.

Newton: "Breton where have I gone wrong?

Breton: "Einstein is right.  Why not choose two non-parallel 
vectors in N(A) and require xm to be orthogonal to both.  
Then xm will be unique.

Newton: "Something like a cross product.  So let n1 and n2 
both be non-parallel vectors of N(A). Then 

xm•n1 =  0
xm•n2 =  0

Also suppose a solution x is known.  Then 
x = xm + t1⁕n1 + t2⁕n2

for some t1 and t2.  So
xm = x ‒ (t1⁕n1 + t2⁕n2)

xm•n1 = x•n1 ‒ (t1⁕n1•n1 + t2⁕n2•n1) = 0
xm•n2 = x•n2 ‒ (t1⁕n1•n2 + t2⁕n2•n2) = 0

The two unknowns, t1 and t2 may thus be solved as 
t1⁕n1•n1 + t2⁕n2•n1) = x•n1 
t1⁕n1•n2 + t2⁕n2•n2) = x•n2 

so
t1⁕n1•n1⁕n2•n2 + t2⁕n2•n1⁕n2•n2 = x•n1⁕n2•n2 
t1⁕n1•n2⁕n2•n1 + t2⁕n2•n2⁕n2•n1 = x•n2⁕n2•n1 
so subtracting
t1⁕n1•n1⁕n2•n2 ‒ t1⁕n1•n2⁕n2•n1 

 = x•n1⁕n2•n2 ‒ x•n2⁕n2•n1 
that is, 
t1 = x•(n1⁕n2•n2 ‒n2⁕n2•n1)

/(n1•n1⁕n2•n2 ‒ n1•n2⁕n2•n1)
Likewise
t2 = x•(n2⁕n1•n1 ‒n1⁕n1•n2)

/(n2•n2⁕n1•n1 ‒ n2•n1⁕n1•n2)
Consequently, 
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xm = x ‒ (t1⁕n1 + t2⁕n2)
      = x ‒ (x•(n1⁕n2•n2 ‒n2⁕n2•n1)⁕n1

/(n1•n1⁕n2•n2 ‒ n1•n2⁕n2•n1)
 + x•(n2⁕n1•n1 ‒n1⁕n1•n2)⁕n2

/(n2•n2⁕n1•n1 ‒ n2•n1⁕n1•n2))
      = x ‒ (x•(n1⁕n2•n2⁕n1 ‒n2⁕n2•n1⁕n1)

/(n1•n1⁕n2•n2 ‒ n1•n2⁕n2•n1)
 + x•(n2⁕n1•n1⁕n2 ‒n1⁕n1•n2⁕n2)

/(n2•n2⁕n1•n1 ‒ n2•n1⁕n1•n2))
      = x ‒ (x•(n1⁕n2•n2⁕n1 ‒n2⁕n2•n1⁕n1

 +n2⁕n1•n1⁕n2 ‒n1⁕n1•n2⁕n2)
/(n1•n1⁕n2•n2 ‒ n1•n2⁕n2•n1)

      = x•[I ‒ (n1⁕n2•n2⁕n1 ‒n2⁕n2•n1⁕n1
 +n2⁕n1•n1⁕n2 ‒n1⁕n1•n2⁕n2)

/(n1•n1⁕n2•n2 ‒ n1•n2⁕n2•n1)]
where again I is the identity matrix.

Breton: "If n1 and n2 are chosen orthogonalically
xm = x•[I ‒ (n2•n2⁕n1⁕n1 +n1•n1⁕n2⁕n2)

/(n1•n1⁕n2•n2)]
Newton would you construct a table of these solutions. 

Newton: "Gladly. 

Solutions of x•A = b, A and b given

Rank N(A) Solutions xm 

0 V3 0 0

1 Plane x = (b1/q1)⁕v +t1⁕n1 +t2⁕n2) xm = (x•[I 
‒ (n1⁕n2
     •n2⁕n1
 ‒n2⁕n2
     •n1⁕n1
 +n2⁕n1
      •n1⁕n2
 ‒n1⁕n1
     •n2⁕n2)]
/(n1•n1
     ⁕n2•n2
 ‒ n1•n2
     ⁕n2•n1)

2 Line x = ( (b2⁕q4‒b1⁕q5)⁕v1
                      /(q2⁕q4 ‒q1⁕q5))

xm = x•[I
   ‒(n⁕n
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+*(b1⁕q2‒b2⁕q1)⁕v2
                     /(q2⁕q4 ‒q1⁕q5))
+t3⁕n)

      /n•n)] 

3 Single 
vector 

x = b⁕((c1⁕(a2∧a3)
       +c2⁕(a3∧a1)+c3⁕(a1∧a2))
                                   /det[A]

Solutions for the Matrix

Einstein: "Now I ask:what is the solution for the matrix X in the 
equation 

v1•X = v2
where the v1 and v2 are given?

Breton: "I suspect rarely does a unique answer exist.  Let us 
start with some definitions.

X = u1⁕x1+u2⁕x2+u3⁕x3
x1 = x11⁕u1+x12⁕u2+x13⁕u3
x2 = x21⁕u1+x22⁕u2+x23⁕u3
x3 = x31⁕u1+x32⁕u2+x33⁕u3
v1 = v11⁕u1+v12⁕u2+v13⁕u3
v2 = v21⁕u1+v22⁕u2+v23⁕u3

v1•X = (v11⁕x11+v12⁕x21+v13⁕x31)⁕u1
+ (v11⁕x12+v12⁕x22+v13⁕x32)⁕u2
+ (v11⁕x13+v12⁕x23+v13⁕x33)⁕u3

From these definitions, you can see the solution calls for 
determining nine unknowns, the xij, from three equations,

v1•(x11⁕u1⁕u1+x21⁕u2⁕u1+x31⁕u3⁕u1) = v21⁕u1
v1•(x12⁕u1⁕u2+x22⁕u2⁕u2+x32⁕u3⁕u2) = v21⁕u2
v1•(x13⁕u1⁕u3+x23⁕u2⁕u3+x33⁕u3⁕u3) = v21⁕u3

that is, 
v1•(x11⁕u1+x21⁕u2+x31⁕u3) = v21
v1•(x12⁕u1+x22⁕u2+x32⁕u3) = v22
v1•(x13⁕u1+x23⁕u2+x33⁕u3) = v23

Newton: "We know the solutions to these equations.  
Remember the solution to x•v1 = q1?  These equations have 
the same form.  So

(x11⁕u1+x21⁕u2+x31⁕u3) = v21⁕qd(v1)
(x12⁕u1+x22⁕u2+x32⁕u3) = v22⁕qd(v1)
(x13⁕u1+x23⁕u2+x33⁕u3) = v23⁕qd(v1)
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Breton: "Those are the orthogonal solutions.  For each 
orthogonal solution an infinite plane of other solutions exists, 
as we have seen.  The three planes not need not intersect, 
may intersect in parallel lines, or even in a point.

Einstein: "We are facing a thicket.  Before trying to cut 
through, we can find some solutions for particular cases.  For 
instance, if v1=0, then  v2=0 also, so that X can be any 
matrix whatsoever.  Similarly, if [X]=[0], v2=0 also, for any 
vector v1 whatsoever.

Newton: "But if  v2=0, then v1 need not equal zero, nor need 
[X]=[0].

Breton: "So the trivial solution for a matrix of rank 0 is known.  
Shall we try for solutions for a matrix of rank3?

Newton: "Which is to say that the matrix has an inverse.

Breton: "Right.  If X has an inverse, then
X‒1 = x2∧x3⁕u1 +x3∧x1⁕u2 +x1∧x2⁕u3/det(X)

and
v1= v2•X‒1 

Einstein: "Is det(X) equal to det(X‒1)?

Breton: "A good question Einstein.  If so, then X‒1 is also a 
matrix of rank3. We know that the determinant is a scalar 
triple product, namely, 

det(X) = x1•(x2∧x3) 
= x11⁕x22⁕x33

+x12⁕x23⁕x31
+x13⁕x21⁕x32
‒x11⁕x23⁕x32
‒x12⁕x21⁕x33
‒x13⁕x22⁕x31

Newton: "So det(X)=det(T[(X]).

Breton: "Well yes, but we are looking for the determinant of 
the inverse. 

X‒1 = ((x2∧x3)⁕u1 +(x3∧x1)⁕u2 +(x1∧x2)⁕u3)/det(X)
and its transpose 
T[X‒1]= (u1⁕(x2∧x3) +u2⁕(x3∧x1) +u3⁕(x1∧x2))/det(X).
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Einstein: "If X1 and X2 are matrices of rank 3, what is 
det(X1•X2)?

Now Einstein hit upon a question which set the  three friends 
battling.  The smoke and details of that battle, long and 
confusing, are laid out in the Appendix.  Let it be recorded 
that,  though sorely tried, the friendship survived.  The scarred 
warriors finally proved that given two matrices X1 and X2  of 
rank 3,

det(X1•X2) = det(X1)⁕det(X2)

Breton: "So having finally proved that the determinant of the 
product of two matrices of rank 3 equals the product of the 
determinant of each matrix, we come to a easy answer to our 
earlier question: What is the determinant of X‒1?

Newton: " We do?  Show us.

Breton: "Given a matrix X of rank three, then as you observed, 
Newton, it has an inverse, that is, 

X•X‒1 = I
So 

det(X•X‒1) = det(X)⁕det(X‒1) = det(I)
Therefore, 

det(X‒1) = det(I)/det(X)

Newton: "And what is det(I)?

Einstein: "You can easily calculate det(I)= 1.

Newton: "This set of determinants has inverses, like quotient 
numbers—and like quotient vectors.  Have we, in fact, defined 
an algebra of matrices?

Breton: "Just so.  If X is a matrix of rank 3,   then det(X‒1) is 
non-zero which means that X‒1 is itself a matrix of rank 3.  
With the inclusion of inverse matrices, the set of matrices of 
rank 3 do indeed constitute an algebra since given any two 
such matrices, X1 and X2 , 

X1 + X2 is defined,
X1 ‒ X2 is defined,
X1 • X2 is defined,
X1 / X2 = X1 • X2 ‒1 is defined,
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Einstein: "Then we should be able to solve my question:what 
is the matrix X in the equation 

v1•X = v2
where the v1 and v2 are given?

Breton: "For a matrix of rank 3, the vectors, v1 and v2 must 
obey 

v1= v2•X‒1 
so let us work on these solutions first, 

Einstein: "Fine, Go to it.

Breton: "First, I suspect there exist more than one solution.  So 
let us start by finding at least one solution.  Suppose X 
diagonal. Then let 

v1= v11⁕u1 + v12⁕u2 +v13⁕u3  
v2= v21⁕u1 + v22⁕u2 +v23⁕u3  
X= g1⁕u1⁕u1 +g2⁕u2⁕u2 +g3⁕u3⁕u3 

If we can find the g's in terms of the v's we will have a 
solution.  So expanding v1•X = v2 we have 
v11⁕u1 + v12⁕u2 +v13⁕u3

•[g1⁕u1⁕u1 +g2⁕u2⁕u2 +g3⁕u3⁕u3] 
= v21⁕u1 + v22⁕u2 +v23⁕u3

that is, 
v11⁕g1⁕u1 + v12⁕g2⁕u2 +v13⁕g3⁕u3

= v21⁕u1 + v22⁕u2 +v23⁕u3
so 

g1 = v21/v11
g2 = v22/v12
g3 = v23/v13

You can see easily that 
X= v21⁕u1⁕u1/v11 + v22⁕u2⁕u2/v12 +v23⁕u3⁕u3/v13

is a solution.

Newton: "How about the inverse.

Breton: "For the diagonal case
X‒1 = u1⁕u1/g1 +u2⁕u2/g2 +u3⁕u3/g3

and 
v1= v2•X‒1 

expands as 
v11⁕u1 + v12⁕u2 +v13⁕u3

= v21⁕u1 + v22⁕u2 +v23⁕u3
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•u1⁕u1/g1 +u2⁕u2/g2 +u3⁕u3/g3
Then for the same values of the g's
v11⁕u1 + v12⁕u2 +v13⁕u3

= v21⁕u1 + v22⁕u2 +v23⁕u3
•[v11⁕u1⁕u1/v21

+v12⁕u2⁕u2/v22 
+v13⁕u3⁕u3/v23]

Einstein: "Too easy.  How about other solutions?

Breton: "Do you trust me to find others?

Newton: "No need for trust.  Just produce what you say is a 
solution; we can easily verify it.

Breton: "All right.  I will use a method for finding rank3 
solutions which can be modified to find rank2 and rank1 
solutions also.
To find the solutions of v1•A = v2 of rank 3 in general, chose 
three distinct directions, ua1, ua2, and ua3.  Next, define 

t1 ≡ v2•u1/(v1•ua1)
t2 ≡ v2•u2/(v1•ua2)
t3 ≡ v2•u3/(v1•ua3)

Then
A= t1⁕ua1⁕u1 + t2⁕ua2⁕u2 + t3⁕ua3⁕u3

is a solution, since 
v1•A = v1•[t1⁕ua1⁕u1 

+ t2⁕ua2⁕u2 + t3⁕ua3⁕u3]
               = t1⁕v1•ua1⁕u1 

+ t2⁕v1•ua2⁕u2 + t3⁕v1•ua3⁕u3
               = (v2•u1/v1•ua1)⁕v1•ua1⁕u1

 + (v2•u2/v1•ua2)⁕v1•ua2⁕u2
 + (v2•u3/v1•ua3)⁕v1•ua3⁕u3

              = v2•[u1⁕u1 + u2⁕u2 + u3⁕u3]
              = v2

Newton: "That's like magic.  How did you know how to define 
the t's?

Breton: "You didn't trust me!  Still the solution is verified.

Newton: "So an infinity of choices is available, for all the 
different choices of ua's possible.
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Einstein: "Suppose each uai = ui.

Breton: "Then 
A= t1⁕u1⁕u1 + t2⁕u2⁕u2 + t3⁕u3⁕u3

a diagonal matrix
A=v2•u1/(v1•u1⁕ua1⁕u1 + t2⁕ua2⁕u2 + t3⁕ua3⁕u3

and 
t1 ≡ v2•u1/(v1•u1)
t2 ≡ v2•u2/(v1•u2)
t3 ≡ v2•u3/(v1•u3)

Newton: "Which is precisely our former solution.

Einstein: "How about the rank2 solutions?

To find the rank 2 solutions of v1•A = v2 chose two distinct 
directions, ua1, ua2,  Next define 

t1 ≡ v2•u1/v1•ua1
t2 ≡ v2•u2/v1•ua2
t3 ≡ v2•u3/v1•ua2

Then
 A= t1⁕ua1⁕u1 + t2⁕ua2⁕u2 + t3⁕ua2⁕u3 

is a solution, since 

v1•A = v1•[t1⁕ua1⁕u1 + t2⁕ua2⁕u2 + t3⁕ua2⁕u3]
           = t1⁕v1•ua1⁕u1 + t2⁕v1•ua2⁕u2 

+ t3⁕v1•ua2⁕u3
           = (v2•u1⁕v1•ua1⁕u1/v1•ua1)

+ (v2•u2⁕v1•ua2⁕u2/v1•ua2)
+ (v2•u3⁕v1•ua2⁕u3/v1•ua2)

         = v2•[u1⁕u1 + u2⁕u2 + u3⁕u3]
          = v2
Six similar variations may be formed for any arbitrary choice 
of any two distinct directions. 

Newton: "So the method for the magic is clear.  Let me try the 
rank 1 solutions of v1•A = v2.  Chose any direction ua1 not 
orthogonal to v1.  Next, define 

t1 ≡ v2•u1/v1•ua1
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t2 ≡ v2•u2/v1•ua1
t3 ≡ v2•u3/v1•ua1

Then 
A= t1⁕ua1⁕u1 + t2⁕ua1⁕u2 + t3⁕ua1⁕u3

is a solution, since 
v1•A = v1•[t1⁕ua1⁕u1 + t2⁕ua1⁕u2 + t3⁕ua1⁕u3]
           = t1⁕v1•ua1⁕u1 + t2⁕v1•ua1⁕u2 

+ t3⁕v1•ua1⁕u3
           = v2•u1⁕v1•ua1⁕u1/v1•ua1

 + (v2•u2⁕v1•ua1⁕u2/v1•ua1
 + (v2•u3)⁕v1•ua1⁕u3/v1•ua1

           = v2•[u1⁕u1 + u2⁕u2 + u3⁕u3]
           = v2

Breton: "  Suppose ua1 = uv1

Newton: "Then
A = t1⁕uv1⁕u1 + t2⁕uv1⁕u2 + t3⁕⁕uv1 u3
   = (v2•u1)⁕u1⁕uv1/v1 

+ (v2•u2)⁕u2⁕uv1/v1 
+ (v2•u3)⁕u3⁕v1/v1

    = v2•(u1⁕u1+ u2⁕u2 + u3⁕u3)⁕uv1/v1
    = v2⁕uv1/v1.
Breton: "which can be rewritten

A = = v2⁕qd(v1),
an outer product.
Fuvthevmove fov any v and a matrix A of rank 1 which solves 
the equation  v1•A = v2

v•A = v•[t1⁕u1⁕ua1 + t2⁕u2⁕ua1 + t3⁕u3⁕ua1]
           = t1⁕v•ua1⁕u1 + t2⁕v•ua1⁕u2

 + t3⁕v•ua1⁕u3
           = v2•u1⁕v•ua1⁕u1/v1•ua1

 + (v2•u2⁕v•ua1⁕u2/v1•ua1
 + (v2•u3⁕v•ua1⁕u3/v1•ua1

          = (v•ua1/v1•ua1)
⁕v2•[u1⁕u1 + u2⁕u2 + u3⁕u3]

= (v•ua1/v1•ua1)⁕v2
Thus A maps any vector into a unique direction.
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Appendix

Breton: "Good question.  Let 
X1 = u1⁕x11+u2⁕x12+u3⁕x13
X2 = u1⁕x21+u2⁕x22+u3⁕x23

Then
X1•T[X2] = x11•x21⁕u1⁕u1 

+ x11•x22⁕u1⁕u2 
+ x11•x23⁕u1⁕u3
+x12•x21⁕u2⁕u1 
+ x12•x22⁕u2⁕u2 
+ x12•x23⁕u2⁕u3
+ x13•x21⁕u3⁕u1 
+ x13•x22⁕u3⁕u2 
+ x13•x23⁕u3⁕u3

So
det(X1•T[X2]) 
     = (x11•x21⁕u1 + x11•x22⁕u2 + x11•x23⁕u3)

∧(x12•x21⁕u1+x12•x22⁕u2+x12•x23⁕u3)
•(x13•x21⁕u1+x13•x22⁕u2+x13•x23⁕u3)

     =(x11•x22⁕x12•x23‒ x11•x23⁕x12•x22)⁕u1
+(x11•x23⁕x12•x21‒x11•x21⁕x12•x23)⁕u2
+(x11•x21⁕x12•x22‒x11•x22⁕x12•x21)⁕u3)

•(x13•x21⁕u1+x13•x22⁕u2+x13•x23⁕u3)
     =x11•x22⁕x12•x23⁕x13•x21

‒ x11•x23⁕x12•x22⁕x13•x21
+x11•x23⁕x12•x21⁕x13•x22
‒x11•x21⁕x12•x23⁕x13•x22
+x11•x21⁕x12•x22⁕x13•x23
‒x11•x22⁕x12•x21⁕x13•x23

Wouldn't it be remarkable if this porridge of symbols equaled 
det(X1)⁕det(X2)?

Einstein: "Remark away.

Breton: "All right. 
det(X1)= (x11∧x12)•x13
det(X2)= (x21∧x22)•x23

Let 
x11 = q111⁕u1 + q112⁕u2 + q113⁕u3 
x12 = q121⁕u1 + q122⁕u2 + q123⁕u3 
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x13 = q131⁕u1 + q132⁕u2 + q133⁕u3 
x21 = q211⁕u1 + q212⁕u2 + q213⁕u3 
x22 = q221⁕u1 + q222⁕u2 + q223⁕u3 
x23 = q231⁕u1 + q232⁕u2 + q233⁕u3 

Then 
x11∧x12=((q112⁕q123 ‒ q113⁕q122)⁕u1)

+ (q113⁕q121 ‒ q111⁕q123)⁕u2
+ (q111⁕q122 ‒ q112⁕q121)⁕u3)

(x11∧x12)•x13 = ((q112⁕q123 ‒ q113⁕q122)⁕u1)
+ (q113⁕q121 ‒ q111⁕q123)⁕u2
+ (q111⁕q122 ‒ q112⁕q121)⁕u3)
•(q131⁕u1 + q132⁕u2 + q133⁕u3) 

 = ((q112⁕q123 ‒ q113⁕q122)⁕q131 
+ (q113⁕q121 ‒ q111⁕q123)⁕ q132
+ (q111⁕q122 ‒ q112⁕q121)⁕ q133

(x21∧x22)•x23 = 
 = ((q212⁕q223 ‒ q213⁕q222)⁕q231 

+ (q213⁕q221 ‒ q211⁕q223)⁕q232
+ (q211⁕q222 ‒ q212⁕q221)⁕q233

So
det(X1)⁕det(X2)

=(x11∧x12)•x13⁕(x21∧x22)•x23 
= ((q112⁕q123 ‒ q113⁕q122)⁕q131 

+ + (q113⁕q121 ‒ q111⁕q123)⁕ q132
+ (q111⁕q122 ‒ q112⁕q121)⁕ q133

⁕((q212⁕q223 ‒ q213⁕q222)⁕q231 
+ (q213⁕q221 ‒ q211⁕q223)⁕q232
+ (q211⁕q222 ‒ q212⁕q221)⁕q233

 = (q112⁕q123⁕q131‒ q113⁕q122⁕q131 
+ q113⁕q121⁕q132 ‒ q111⁕q123⁕q132
+ (q111⁕q122⁕q133 ‒ q112⁕q121⁕q133)

⁕(q212⁕q223⁕q231 ‒ q213⁕q222⁕q231 
+ (q213⁕q221⁕q232 ‒ q211⁕q223⁕q232
+ (q211⁕q222⁕q233 ‒ q212⁕q221⁕q233)

= (q112⁕q123⁕q131‒ q113⁕q122⁕q131 
+ q113⁕q121⁕q132 ‒ q111⁕q123⁕q132
+ q111⁕q122⁕q133 ‒ q112⁕q121⁕q133)

⁕(q212⁕q223⁕q231 ‒ q213⁕q222⁕q231 
+ (q213⁕q221⁕q232 ‒ q211⁕q223⁕q232
+(q211⁕q222⁕q233 ‒ q212⁕q221⁕q233)
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So altogether we obtain 6x6=36 individual summands, 
18 positive and 18 negative, each individual summand 
composed of the multiplied product of three separate 
elements of the matrices.

Newton: "What lot of symbols.

Einstein: "And easily confused.  To reduce the possibility 
of committing errors let us label these triple multiplies 
more simply.  I propose

ap1= q112⁕q123⁕q131
an1= q113⁕q122⁕q131
ap2= q113⁕q121⁕q132
an2= q111⁕q123⁕q132
ap3= q111⁕q122⁕q133
an3= q112⁕q121⁕q133
bp1= q212⁕q223⁕q231
bn1= q213⁕q222⁕q231
bp2= q213⁕q221⁕q232
bn2= q211⁕q223⁕q232
bp3= q211⁕q222⁕q233
bn3= q212⁕q221⁕q233

Then in this new notation
det(X1)⁕det(X2) 

=(ap1 – an1 + ap2 – an2 + ap3 – an3)
⁕ (bp1 – bn1 + bp2 – bn2 + bp3 – bn3)

= ap1⁕(bp1 – bn1 + bp2 – bn2 + bp3 – bn3)
 ‒an1⁕(bp1 – bn1 + bp2 – bn2 + bp3 – bn3)
+ ap2⁕(bp1 – bn1 + bp2 – bn2 + bp3 – bn3)
 ‒an2⁕(bp1 – bn1 + bp2 – bn2 + bp3 – bn3)
+ap3⁕(bp1 – bn1 + bp2 – bn2 + bp3 – bn3)
– an3⁕(bp1 – bn1 + bp2 – bn2 + bp3 – bn3)

det(X1)⁕det(X2) = ap1⁕bp1
‒ap1⁕bn1
+ap1⁕bp2
–ap1⁕bn2
+ap1⁕bp3
–ap1⁕bn3
‒an1⁕bp1
+an1⁕bn1
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‒an1⁕bp2
+an1⁕bn2
‒an1⁕bp3
+an1⁕bn3
+ap2⁕bp1
–ap2⁕bn1
+ap2⁕bp2
–ap2⁕bn2
+ap2⁕bp3
‒ap2⁕bn3
‒an2⁕bp1
+an2⁕bn1
‒an2⁕bp2
+an2⁕bn2
‒an2⁕bp3
+an2⁕bn3
+ap3⁕bp1
–ap3⁕bn1
+ap3⁕bp2
–ap3⁕bn2
+ap3⁕bp3
–ap3⁕bn3
‒an3⁕bp1
+an3⁕bn1
–an3⁕bp2
+an3⁕bn2
–an3⁕bp3
+an3⁕bn3

Einstein: "The thicket is somewhat thinned, but still 
formidable.  You will have to prove that det(X1•X2) equals the 
same sum.

Breton: "Remember we noted det(X1) =det(T[X1]).  So 
expanding the determinant of the multiplied matrices from 
above det(X1•T[X2]) 

     =x11•x21⁕x12•x22⁕x13•x23
+ x11•x22⁕x12•x23⁕x13•x21
+ x11•x23⁕x12•x21⁕x13•x22
‒x11•x21⁕x12•x23⁕x13•x22
‒x11•x22⁕x12•x21⁕x13•x23
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‒ x11•x23⁕x12•x22⁕x13•x21 check ok
In terms of the previous definitions of the vectors, the first of 
the six expands thus

x11•x21⁕x12•x22⁕x13•x23
= (q111⁕u1 + q112⁕u2 + q113⁕u3)

•(q211⁕u1 + q212⁕u2 + q213⁕u3)
   ⁕(q121⁕u1 + q122⁕u2 + q123⁕u3)

•(q221⁕u1 + q222⁕u2 + q223⁕u3)
   ⁕(q131⁕u1 + q132⁕u2 + q133⁕u3)

•(q231⁕u1 + q232⁕u2 + q233⁕u3)
= (q111⁕q211 + q112⁕q212 + q113⁕q213)
   ⁕(q121⁕q221 + q122⁕q222 + q123⁕q223)
   ⁕(q131⁕q231 + q132⁕q232 + q133⁕q233)

So here we have 27 addends each composed of two matrix 
elements multiplied together.
  Let us label these double multiplies more simply to reduce 
the possibility of committing errors.  I propose

c1p1 = q111⁕q211
c1p2 = q112⁕q212
c1p3 = q113⁕q213
d1p1 = q121⁕q221
d1p2 = q122⁕q222
d1p3 = q123⁕q223
e1p1 = q131⁕q231
e1p2 = q132⁕q232
e1p3 = q133⁕q233

Then in terms of this new notation
x11•x21⁕x12•x22⁕x13•x23

= c1p1⁕d1p1⁕e1p1
+c1p1⁕d1p1⁕e1p2
+c1p1⁕d1p1⁕e1p3
+c1p1⁕d1p2⁕e1p1
+c1p1⁕d1p2⁕e1p2
+c1p1⁕d1p2⁕e1p3
+c1p1⁕d1p3⁕e1p1
+c1p1⁕d1p3⁕e1p2
+c1p1⁕d1p3⁕e1p3
+c1p2⁕d1p1⁕e1p1
+c1p2⁕d1p1⁕e1p2
+c1p2⁕d1p1⁕e1p3
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+c1p2⁕d1p2⁕e1p1
+c1p2⁕d1p2⁕e1p2
+c1p2⁕d1p2⁕e1p3
+c1p2⁕d1p3⁕e1p1
+c1p2⁕d1p3⁕e1p2
+c1p2⁕d1p3⁕e1p3
+c1p3⁕d1p1⁕e1p1
+c1p3⁕d1p1⁕e1p2
+c1p3⁕d1p1⁕e1p3
+c1p3⁕d1p2⁕e1p1
+c1p3⁕d1p2⁕e1p2
+c1p3⁕d1p2⁕e1p3
+c1p3⁕d1p3⁕e1p1
+c1p3⁕d1p3⁕e1p2
+c1p3⁕d1p3⁕e1p3

Einstein: "So for this first addend expands into 27 addends 
each with six matrix elements multiplied together.  Breton, it 
looks like you're done for.

Breton: "Patience.  Each of the c⁕d⁕e addends consists of 
3⁕2=6 elements of the original matrices while each of the 
a⁕b addends consists of 2⁕3=6 elements of the original 
matrices--an encouraging sign.
   Let us continue to the second factor.  For
x11•x22⁕x12•x23⁕x13•x21

= (q111⁕u1 + q112⁕u2 + q113⁕u3)
•(q221⁕u1 + q222⁕u2 + q223⁕u3)

   ⁕(q121⁕u1 + q122⁕u2 + q123⁕u3)
•(q231⁕u1 + q232⁕u2 + q233⁕u3)

   ⁕(q131⁕u1 + q132⁕u2 + q133⁕u3)
•(q211⁕u1 + q212⁕u2 + q213⁕u3)

= (q111⁕q221 + q112⁕q222 + q113⁕q223)
   ⁕(q121⁕q231 + q122⁕ q232 + q123⁕q233)
   ⁕(q131⁕ q211 + q132⁕ q212 + q133⁕q213)

Again let us label these double multiplies more simply to 
reduce the possibility of committing errors.  I propose

c2p1 = q111⁕q221
c2p2 = q112⁕q222
c2p3 = q113⁕q223
d2p1 = q121⁕q231
d2p2 = q122⁕q232
d2p3 = q123⁕q233
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e2p1 = q131⁕q211
e2p2 = q132⁕q212
e2p3 = q133⁕q213

Then in terms of this new notation
x11•x22⁕x12•x23⁕x13•x21

= c2p1⁕d2p1⁕e2p1
+c2p1⁕d2p1⁕e2p2
+c2p1⁕d2p1⁕e2p3
+c2p1⁕d2p2⁕e2p1
+c2p1⁕d2p2⁕e2p2
+c2p1⁕d2p2⁕e2p3
+c2p1⁕d2p3⁕e2p1
+c2p1⁕d2p3⁕e2p2
+c2p1⁕d2p3⁕e2p3
+c2p2⁕d2p1⁕e2p1
+c2p2⁕d2p1⁕e2p2
+c2p2⁕d2p1⁕e2p3
+c2p2⁕d2p2⁕e2p1
+c2p2⁕d2p2⁕e2p2
+c2p2⁕d2p2⁕e2p3
+c2p2⁕d2p3⁕e2p1
+c2p2⁕d2p3⁕e2p2
+c2p2⁕d2p3⁕e2p3
+c2p3⁕d2p1⁕e2p1
+c2p3⁕d2p1⁕e2p2
+c2p3⁕d2p1⁕e2p3
+c2p3⁕d2p2⁕e2p1
+c2p3⁕d2p2⁕e2p2
+c2p3⁕d2p2⁕e2p3
+c2p3⁕d2p3⁕e2p1
+c2p3⁕d2p3⁕e2p2
+c2p3⁕d2p3⁕e2p3

For the addend
x11•x23⁕x12•x21⁕x13•x22

= (q111⁕u1 + q112⁕u2 + q113⁕u3)
•(q231⁕u1 + q232⁕u2 + q233⁕u3)

⁕(q121⁕u1 + q122⁕u2 + q123⁕u3)
•(q211⁕u1 + q212⁕u2 + q213⁕u3)

⁕(q131⁕u1 + q132⁕u2 + q133⁕u3)
•(q221⁕u1 + q222⁕u2 + q223⁕u3)

= (q111⁕ q231 + q112⁕ q232 + q113⁕q233)
⁕(q121⁕ q211 + q122⁕ q212 + q123⁕q213)
⁕(q131⁕ q221 + q132⁕ q222 + q133⁕ q223)
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let 
c3p1 = q111⁕q231
c3p2 = q112⁕q232
c3p3 = q113⁕q233
d3p1 = q121⁕q211
d3p2 = q122⁕q212
d3p3 = q123⁕q213
e3p1 = q131⁕q221
e3p2 = q132⁕q222
e3p3 = q133⁕q223

Then
x11•x23⁕x12•x21⁕x13•x22

= c3p1⁕d3p1⁕e3p1
+c3p1⁕d3p1⁕e3p2
+c3p1⁕d3p1⁕e3p3
+c3p1⁕d3p2⁕e3p1
+c3p1⁕d3p2⁕e3p2
+c3p1⁕d3p2⁕e3p3
+c3p1⁕d3p3⁕e3p1
+c3p1⁕d3p3⁕e3p2
+c3p1⁕d3p3⁕e3p3
+c3p2⁕d3p1⁕e3p1
+c3p2⁕d3p1⁕e3p2
+c3p2⁕d3p1⁕e3p3
+c3p2⁕d3p2⁕e3p1
+c3p2⁕d3p2⁕e3p2
+c3p2⁕d3p2⁕e3p3
+c3p2⁕d3p3⁕e3p1
+c3p2⁕d3p3⁕e3p2
+c3p2⁕d3p3⁕e3p3
+c3p3⁕d3p1⁕e3p1
+c3p3⁕d3p1⁕e3p2
+c3p3⁕d3p1⁕e3p3
+c3p3⁕d3p2⁕e3p1
+c3p3⁕d3p2⁕e3p2
+c3p3⁕d3p2⁕e3p3
+c3p3⁕d3p3⁕e3p1
+c3p3⁕d3p3⁕e3p2
+c3p3⁕d3p3⁕e3p3

Some the addends are negative.  They expand as follows.  
For
‒x11•x21⁕x12•x23⁕x13•x22
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=‒(q111⁕q211 + q112⁕ q212 + q113⁕q213)
⁕(q121⁕q231 + q122⁕ q232 + q123⁕q233)
⁕(q131⁕ q221 + q132⁕ q222 + q133⁕q223)
= ‒c1p1⁕d2p1⁕e3p1

‒c1p1⁕d2p1⁕e3p2
‒c1p1⁕d2p1⁕e3p3
‒c1p1⁕d2p2⁕e3p1
‒c1p1⁕d2p2⁕e3p2
‒c1p1⁕d2p2⁕e3p3
‒c1p1⁕d2p3⁕e3p1
‒c1p1⁕d2p3⁕e3p2
‒c1p1⁕d2p3⁕e3p3
‒c1p2⁕d2p1⁕e3p1
‒c1p2⁕d2p1⁕e3p2
‒c1p2⁕d2p1⁕e3p3
‒c1p2⁕d2p2⁕e3p1
‒c1p2⁕d2p2⁕e3p2
‒c1p2⁕d2p2⁕e3p3
‒c1p2⁕d2p3⁕e3p1 
‒c1p2⁕d2p3⁕e3p2
‒c1p2⁕d2p3⁕e3p3
‒c1p3⁕d2p1⁕e3p1
‒c1p3⁕d2p1⁕e3p2
‒c1p3⁕d2p1⁕e3p3
‒c1p3⁕d2p2⁕e3p1
‒c1p3⁕d2p2⁕e3p2
‒c1p3⁕d2p2⁕e3p3
‒c1p3⁕d2p3⁕e3p1
‒c1p3⁕d2p3⁕e3p2
‒c1p3⁕d2p3⁕e3p3

For 
‒x11•x22⁕x12•x21)⁕x13•x23

= ‒(q111⁕q221 + q112⁕q222 + q113⁕q223)
   ⁕(q121⁕q211 + q122⁕q212 + q123⁕q213)
   ⁕(q131⁕q231 + q132⁕q232 + q133⁕q233)
= ‒c2p1⁕d3p1⁕e1p1

‒c2p1⁕d3p1⁕e1p2
‒c2p1⁕d3p1⁕e1p3
‒c2p1⁕d3p2⁕e1p1
‒c2p1⁕d3p2⁕e1p2
‒c2p1⁕d3p2⁕e1p3
‒c2p1⁕d3p3⁕e1p1
‒c2p1⁕d3p3⁕e1p2
‒c2p1⁕d3p3⁕e1p3
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‒c2p2⁕d3p1⁕e1p1
‒c2p2⁕d3p1⁕e1p2
‒c2p2⁕d3p1⁕e1p3
‒c2p2⁕d3p2⁕e1p1
‒c2p2⁕d3p2⁕e1p2
‒c2p2⁕d3p2⁕e1p3
‒c2p2⁕d3p3⁕e1p1
‒c2p2⁕d3p3⁕e1p2
‒c2p2⁕d3p3⁕e1p3
‒c2p3⁕d3p1⁕e1p1
‒c2p3⁕d3p1⁕e1p2
‒c2p3⁕d3p1⁕e1p3
‒c2p3⁕d3p2⁕e1p1
‒c2p3⁕d3p2⁕e1p2
‒c2p3⁕d3p2⁕e1p3
‒c2p3⁕d3p3⁕e1p1
‒c2p3⁕d3p3⁕e1p2
‒c2p3⁕d3p3⁕e1p3

one is missing here.  Corrected above.
‒c2p3⁕d3p1⁕e1p1
‒c2p3⁕d3p2⁕e1p1
‒c2p3⁕d3p1⁕e1p2
‒c2p3⁕d3p2⁕e1p2
‒c2p3⁕d3p3⁕e1p2
‒c2p3⁕d3p1⁕e1p3
‒c2p3⁕d3p2⁕e1p3
‒c2p3⁕d3p3⁕e1p3

For 
‒ x11•x23⁕x12•x22⁕x13•x21

= ‒(q111⁕q231 + q112⁕q232 + q113⁕q233)
⁕(q121⁕q221 + q122⁕ q222 + q123⁕q223)
⁕(q131⁕q211 + q132⁕ q212(e1p2) + q133⁕q213)
= ‒c3p1⁕d1p1⁕e2p1

‒c3p1⁕d1p1⁕e2p2
‒c3p1⁕d1p1⁕e2p3
‒c3p1⁕d1p2⁕e2p1
‒c3p1⁕d1p2⁕e2p2
‒c3p1⁕d1p2⁕e2p3
‒c3p1⁕d1p3⁕e2p1
‒c3p1⁕d1p3⁕e2p2
‒c3p1⁕d1p3⁕e2p3
‒c3p2⁕d1p1⁕e2p1
‒c3p2⁕d1p1⁕e2p2
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‒c3p2⁕d1p1⁕e2p3
‒c3p2⁕d1p2⁕e2p1
‒c3p2⁕d1p2⁕e2p2
‒c3p2⁕d1p2⁕e2p3
‒c3p2⁕d1p3⁕e2p1
‒c3p2⁕d1p3⁕e2p2
‒c3p2⁕d1p3⁕e2p3
‒c3p3⁕d1p1⁕e2p1
‒c3p3⁕d1p1⁕e2p2
‒c3p3⁕d1p1⁕e2p3
‒c3p3⁕d1p2⁕e2p1
‒c3p3⁕d1p2⁕e2p2
‒c3p3⁕d1p2⁕e2p3
‒c3p3⁕d1p3⁕e2p1
‒c3p3⁕d1p3⁕e2p2
‒c3p3⁕d1p3⁕e2p3

Newton: "How can you put down the answers so quickly?

Breton: "By substituting.  Once we know the expansion for 
x11•x22⁕x12•x23⁕x13•x21 then the expansion for 
x11•x21⁕x12•x22⁕x13•x23 simply substitutes 

x21 for x22
x22 for x23
x23 for x21

Einstein: "You still have a great many more factors for 
det(X1•T[X2]) than for det(X1)⁕det(X2).

Breton: "Some may cancel.  Let's look.  Below I list all the 
positive summands followed by the negative summands.  

+c1p1⁕d1p1⁕e1p1
+c1p1⁕d1p1⁕e1p2
+c1p1⁕d1p1⁕e1p3
+c1p1⁕d1p2⁕e1p1
+c1p1⁕d1p2⁕e1p2
+c1p1⁕d1p2⁕e1p3
+c1p1⁕d1p3⁕e1p1
+c1p1⁕d1p3⁕e1p2
+c1p1⁕d1p3⁕e1p3
+c1p2⁕d1p1⁕e1p1
+c1p2⁕d1p1⁕e1p2
+c1p2⁕d1p1⁕e1p3
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+c1p2⁕d1p2⁕e1p1
+c1p2⁕d1p2⁕e1p2
+c1p2⁕d1p2⁕e1p3
+c1p2⁕d1p3⁕e1p1
+c1p2⁕d1p3⁕e1p2
+c1p2⁕d1p3⁕e1p3
+c1p3⁕d1p1⁕e1p1
+c1p3⁕d1p13⁕e1p2
+c1p3⁕d1p1⁕e1p3
+c1p3⁕d1p2⁕e1p1
+c1p3⁕d1p2⁕e1p2
+c1p3⁕d1p2⁕e1p3
+c1p3⁕d1p3⁕e1p1
+c1p3⁕d1p3⁕e1p2
+c1p3⁕d1p3⁕e1p3
+c2p1⁕d2p1⁕e2p1 cancels ‒c2p1⁕d3p1⁕e1p1
+c2p1⁕d2p1⁕e2p2
+c2p1⁕d2p1⁕e2p3
+c2p1⁕d2p2⁕e2p1
+c2p1⁕d2p2⁕e2p2
+c2p1⁕d2p2⁕e2p3
+c2p1⁕d2p3⁕e2p1
+c2p1⁕d2p3⁕e2p2
+c2p1⁕d2p3⁕e2p3
+c2p2⁕d2p1⁕e2p1
+c2p2⁕d2p1⁕e2p2
+c2p2⁕d2p1⁕e2p3
+c2p2⁕d2p2⁕e2p1
+c2p2⁕d2p2⁕e2p2
+c2p2⁕d2p2⁕e2p3
+c2p2⁕d2p3⁕e2p1
+c2p2⁕d2p3⁕e2p2
+c2p2⁕d2p3⁕e2p3
+c2p3⁕d2p1⁕e2p1
+c2p3⁕d2p1⁕e2p2
+c2p3⁕d2p1⁕e2p3
+c2p3⁕d2p2⁕e2p1
+c2p3⁕d2p2⁕e2p2
+c2p3⁕d2p2⁕e2p3
+c2p3⁕d2p3⁕e2p1
+c2p3⁕d2p3⁕e2p2
+c2p3⁕d2p3⁕e2p3
+c3p1⁕d3p1⁕d3p1 cancels ‒c3p1⁕d1p1⁕e2p1
+c3p1⁕d3p1⁕d3p2
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+c3p1⁕d3p1⁕d3p3
+c3p1⁕d3p2⁕d3p1
+c3p1⁕d3p2⁕d3p2
+c3p1⁕d3p2⁕d3p3
+c3p1⁕d3p3⁕d3p1
+c3p1⁕d3p3⁕d3p2
+c3p1⁕d3p3⁕d3p3
+c3p2⁕d3p1⁕d3p1
+c3p2⁕d3p1⁕d3p2
+c3p2⁕d3p1⁕d3p3
+c3p2⁕d3p2⁕d3p1
+c3p2⁕d3p2⁕d3p2
+c3p2⁕d3p2⁕d3p3
+c3p2⁕d3p3⁕d3p1
+c3p2⁕d3p3⁕d3p2
+c3p2⁕d3p3⁕d3p3
+c3p3⁕d3p1⁕d3p1
+c3p3⁕d3p1⁕d3p2
+c3p3⁕d3p1⁕d3p3
+c3p3⁕d3p2⁕d312
+c3p3⁕d3p2⁕d3p2
+c3p3⁕d3p2⁕d3p3
+c3p3⁕d3p3⁕d3p1
+c3p3⁕d3p3⁕d3p2
+c3p3⁕d3p3⁕d3p3

‒c1p1⁕d2p1⁕e3p1
‒c1p1⁕d2p1⁕e3p2
‒c1p1⁕d2p1⁕e3p3
‒c1p1⁕d2p2⁕e3p1
‒c1p1⁕d2p2⁕e3p2
‒c1p1⁕d2p2⁕e3p3
‒c1p1⁕d2p3⁕e3p1
‒c1p1⁕d2p3⁕e3p2
‒c1p1⁕d2p3⁕e3p3
‒c1p2⁕d2p1⁕e3p1
‒c1p2⁕d2p1⁕e3p2
‒c1p2⁕d2p1⁕e3p3
‒c1p2⁕d2p2⁕e3p1
‒c1p2⁕d2p2⁕e3p2
‒c1p2⁕d2p2⁕e3p3
‒c1p2⁕d2p3⁕e3p1 
‒c1p2⁕d2p3⁕e3p2

192

v2

v1 v2+v3
v3

v1 • (v2+v3)



‒c1p2⁕d2p3⁕e3p3
‒c1p3⁕d2p1⁕e3p1
‒c1p3⁕d2p1⁕e3p2
‒c1p3⁕d2p1⁕e3p3
‒c1p3⁕d2p2⁕e3p1
‒c1p3⁕d2p2⁕e3p2
‒c1p3⁕d2p2⁕e3p3
‒c1p3⁕d2p3⁕e3p1
‒c1p3⁕d2p3⁕e3p2
‒c1p3⁕d2p3⁕e3p3
‒c2p1⁕d3p1⁕e1p1
‒c2p1⁕d3p2⁕e1p1
‒c2p1⁕d3p3⁕e1p1
‒c2p1⁕d3p1⁕e1p2
‒c2p1⁕d3p2⁕e1p2
‒c2p1⁕d3p3⁕e1p2
‒c2p1⁕d3p1⁕e1p3
‒c2p1⁕d3p2⁕e1p3
‒c2p1⁕d3p3⁕e1p3
‒c2p2⁕d3p1⁕e1p1
‒c2p2⁕d3p2⁕e1p1
‒c2p2⁕d3p3⁕e1p1
‒c2p2⁕d3p1⁕e1p2
‒c2p2⁕d3p2⁕e1p2
‒c2p2⁕d3p3⁕e1p2
‒c2p2⁕d3p1⁕e1p3
‒c2p2⁕d3p2⁕e1p3
‒c2p2⁕d3p3⁕e1p3
‒c2p3⁕d3p1⁕e1p1
‒c2p3⁕d3p2⁕e1p1
‒c2p3⁕d3p1⁕e1p2
‒c2p3⁕d3p2⁕e1p2
‒c2p3⁕d3p3⁕e1p2
‒c2p3⁕d3p1⁕e1p3
‒c2p3⁕d3p2⁕e1p3
‒c2p3⁕d3p3⁕e1p3
‒c3p1⁕d1p1⁕e2p1
‒c3p1⁕d1p1⁕e2p2
‒c3p1⁕d1p1⁕e2p3
‒c3p1⁕d1p2⁕e2p1
‒c3p1⁕d1p2⁕e2p2
‒c3p1⁕d1p2⁕e2p3
‒c3p1⁕d1p3⁕e2p1
‒c3p1⁕d1p3⁕e2p2
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‒c3p1⁕d1p3⁕e2p3
‒c3p2⁕d1p1⁕e2p1
‒c3p2⁕d1p1⁕e2p2
‒c3p2⁕d1p1⁕e2p3
‒c3p2⁕d1p2⁕e2p1
‒c3p2⁕d1p2⁕e2p2
‒c3p2⁕d1p2⁕e2p3
‒c3p2⁕d1p3⁕e2p1 
‒c3p2⁕d1p3⁕e2p2
‒c3p2⁕d1p3⁕e2p3
‒c3p3⁕d1p1⁕e2p1
‒c3p3⁕d1p1⁕e2p2
‒c3p3⁕d1p1⁕e2p3
‒c3p3⁕d1p2⁕e2p1
‒c3p3⁕d1p2⁕e2p2
‒c3p3⁕d1p2⁕e2p3
‒c3p3⁕d1p3⁕e2p1
‒c3p3⁕d1p3⁕e2p2
‒c3p3⁕d1p3⁕e2p3

Einstein: "So none of them match!  There are 27 times 6 = 
162 in this cde list which cannot possibly match the 36 
addends in the ab list.

Breton: "None match formally, but perhaps in value.  For 
instance, 
c1p1⁕d1p1⁕e1p1 = .q111⁕q211⁕q121⁕q221⁕q131⁕q231

       = q111⁕q211⁕q121⁕q231⁕q131⁕q221
       = c1p1⁕d2p1⁕e3p1
       = q111⁕q221⁕q121⁕q231⁕q131⁕q211
       = c2p1⁕d2p1⁕e2p1
       = q111⁕q221⁕q121⁕q211⁕q131⁕q231
       = c2p1⁕d3p1⁕e1p1
       = q111⁕q231⁕q121⁕q221⁕q131⁕q231
       = c3p1⁕d1p1⁕e2p1
       = q111⁕q231⁕q121⁕q211⁕q131⁕q221
       =c3p1⁕d3p1⁕e3p1 

So
    c1p1⁕d1p1⁕e1p1 = c1p1⁕d2p1⁕e3p1

= c2p1⁕d3p1⁕e1p1
= c2p1⁕d2p1⁕e2p1
= c3p1⁕d3p1⁕e3p1
= c3p1⁕d1p1⁕e2p1

Cancellations are indicated.
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c1p1⁕d2p1⁕e3p1
= c2p1⁕d3p1⁕e1p1 x
= c2p1⁕d2p1⁕e2p1
= c3p1⁕d3p1⁕e3p1
= c3p1⁕d1p1⁕e2p1 x

So for this one entry there are five others of identical value.
If you look in the positive list you will find c1p1⁕d1p1⁕e1p1, 
c2p1⁕d2p1⁕e2p1, and c3p1⁕d3p1⁕e3p1 while the negative 
list contains c2p1⁕d3p1⁕e1p1 and c3p1⁕d1p1⁕e2p1. 
So the positive and negative lists are each reduced by two 
addends respectively.
  Would  you agree that 
    c1p2⁕d1p2⁕e1p2 = c1p2⁕d2p2⁕e3p2

= c2p2⁕d3p2⁕e1p2
= c2p2⁕d2p2⁕e2p2
= c3p2⁕d3p2⁕e3p2
= c3p2⁕d1p2⁕e2p2?

Einstein: "Let me heck it out.  We musn't be caught up in an 
empty formalism.
c1p2⁕d1p2⁕e1p2 =  q112⁕q212⁕ q122⁕q222⁕q132⁕q232
while
c1p⁕d1p1⁕e1p1 = q111⁕q211⁕q121⁕q221⁕q131⁕q231
so the only change will be to replace final 1s with 2s.
So now let me check 
c3p2⁕d1p2⁕e2p2 = q112⁕q232⁕ q122⁕q222⁕q132⁕q212
so it works out in this instance.

Breton: "You might more easily have noted that the change 
from p1 to p2 simply changes qxx1 to qxx2 in all instances.

Einstein: "So I see.  And changing p1 to p3 simply changes 
qxx1 to qxx3

Breton: "So are you ready to admit also
    c1p3⁕d1p3⁕e1p3 = c1p3⁕d2p3⁕e3p3

= c2p3⁕d3p3⁕e1p3
= c2p3⁕d2p3⁕e2p3
= c3p3⁕d3p3⁕e3p3
= c3p3⁕d1p3⁕e2p3?

Einstein: "Of course.

Breton: "The 162 summands of det(X1•X2) can now be seen 
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to contain nine groups of 18 summands each.  In one of these 
groups 12 summands may possible cancel each other. 

Einstein: "We have shown that true for only one such 
grouping.

Breton: "True enough. Let's examine 
c1p1⁕d1p1⁕e1p2  = q111⁕q211⁕q121⁕q221⁕q132⁕q232
to see if perhaps It might equal c1p1⁕d2p2⁕e3p1

Einstein: "Yes.
c1p1⁕d2p2⁕e3p1 = q111⁕q211⁕q122⁕q232⁕q131⁕q221
So these don't match, Breton.

Breton: "Let's try if c2p1⁕d3p1⁕e1p2 corresponds to 
c2p1⁕d3p1⁕e1p2 =  q111⁕q221⁕q121⁕q211⁕q132⁕q232
and so it does.  It appears then that we can switch only factors 
with the same pi's.  So with c1p1⁕d2p2⁕e3p1 we can find six 
corresponding summands, for c1p1⁕d1p1⁕e1p2 we can find 
only two.

Hh so where are the 18 summands for this situation?

Comparisons
 c1p1⁕d1p1⁕e1p1 c1p1⁕d1p1⁕e1p2
= c1p1⁕d2p1⁕e3p1 123 to 132 no
= c2p1⁕d3p1⁕e1p1 123 to 213 = c2p1⁕d3p1⁕e1p2
= c2p1⁕d2p1⁕e2p1 123 to 231 no
= c3p1⁕d3p1⁕e3p1 123 to 312 no
= c3p1⁕d1p1⁕e2p1 123 to 321 no

+c1p1⁕d1p2⁕e1p1 
= q111⁕q211⁕ q122⁕q222⁕ q131⁕q231
= c3p1⁕ d1p2⁕e2p1

+c1p1⁕d1p2⁕e1p2
= q111⁕q211 q122⁕q222 q132⁕q232
=‒c1p1⁕d2p2⁕e3p2

Breton: "Then applying the same rule for substitution do you 
agree
    c1p1⁕d1p1⁕e1p2 = c1p1⁕d2p2⁕e3p1check 123 to 132
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= c2p1⁕d3p1⁕e1p2check123 to 213
= c2p1⁕d2p1⁕e2p2 231
= c3p1⁕d3p1⁕e3p2 312
= c3p1⁕d1p1⁕e2p2 321

hhhhhhhhhhhhhhhhhhhhhhh
 c1p1⁕d1p1⁕e1p1 = c1p1⁕d2p1⁕e3p1 123 to 132

= c2p1⁕d3p1⁕e1p1 123 to 213
= c2p1⁕d2p1⁕e2p1 123 to 231
= c3p1⁕d3p1⁕e3p1 123 to 312
= c3p1⁕d1p1⁕e2p1 123 to 321

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
q111⁕q211⁕q121⁕q221⁕q132⁕q232
 c1p1⁕d1p1⁕e1p2
q111⁕q221⁕q121⁕q211⁕q132⁕q232
 c2p1⁕d3p1⁕e1p2
these don't match
q111⁕q211⁕d2p2 = q122⁕q232⁕e3p1 = q131⁕q221
c1p1⁕d2p2⁕e3p1

Einstein: "I'll agree to c2p1⁕d2p1⁕e2p2 and 
c3p1⁕d3p1⁕e3p2 but let me check
c2p1⁕d3p1⁕e1p2 = q111⁕q221⁕q121⁕q211⁕q132⁕q232
c2p1 = q111⁕q221 d3p1 = q121⁕q211 e1p2 = q132⁕q232
which checks
and
c3p1⁕d1p1⁕e2p2      

c3p1 = q111⁕q231
d1p1 = q121⁕q221
e2p1 = q131⁕q211

.

 c1p1⁕d1p1⁕e1p1 = c1p1⁕d2p1⁕e3p1
= c2p1⁕d3p1⁕e1p1
= c2p1⁕d2p1⁕e2p1
= c3p1⁕d3p1⁕e3p1
= c3p1⁕d1p1⁕e2p1
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c1p1 = q111⁕q211
c1p2 = q112⁕q212
c1p3 = q113⁕q213
d1p1 = q121⁕q221
d1p2 = q122⁕q222
d1p3 = q123⁕q223
e1p1 = q131⁕q231
e1p2 = q132⁕q232
e1p3 = q133⁕q233

c2p1 = q111⁕q221
c2p2 = q112⁕q222
c2p3 = q113⁕q223
d2p1 = q121⁕q231
d2p2 = q122⁕q232
d2p3 = q123⁕q233
e2p1 = q131⁕q211
e2p2 = q132⁕q212
e2p3 = q133⁕q213

c3p1 = q111⁕q231
c3p2 = q112⁕q232
c3p3 = q113⁕q233
d3p1 = q121⁕q211
d3p2 = q122⁕q212
d3p3 = q123⁕q213
e3p1 = q131⁕q221
e3p2 = q132⁕q222
e3p3 = q133⁕q223

Breton: "
Now we need to see how the labels fit together.
ap1⁕bp1= q112⁕q123⁕q131⁕q212⁕q223⁕q231
= c3p2⁕q123⁕q131⁕q223⁕q231 (c3p2 =q112⁕q212)
= c3p2⁕d3p3⁕q131⁕q231 (d3p3 =q123⁕q223)
= c3p2⁕d3p3⁕e3p1 (e3p1 =q131⁕q231)
so 

ap1⁕bp1=c1p2⁕d1p3⁕e1p1 

q111⁕q122⁕q133
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c1p1 = q111⁕q211
c1p2 = q112⁕q212
c1p3 = q113⁕q213
d1p1 = q121⁕q221
d1p2 = q122⁕q222
d1p3 = q123⁕q223
e1p1 = q131⁕q231
e1p2 = q132⁕q232
e1p3 = q133⁕q233

c2p1 = q111⁕q221
c2p2 = q112⁕q222
c2p3 = q113⁕q223
d2p1 = q121⁕q231
d2p2 = q122⁕q232
d2p3 = q123⁕q233
e2p1 = q131⁕q211
e2p2 = q132⁕q212
e2p3 = q133⁕q213

c3p1 = q111⁕q231
c3p2 = q112⁕q232
c3p3 = q113⁕q233
d3p1 = q121⁕q211
d3p2 = q122⁕q212
d3p3 = q123⁕q213
e3p1 = q131⁕q221
e3p2 = q132⁕q222
e3p3 = q133⁕q223

ap1⁕bp1=q112⁕q123⁕q131⁕q212⁕q223⁕q231 
ap1⁕bp1=c1p2⁕d1p3⁕e1p1 

ap1⁕bp2 =q112⁕q123⁕q131⁕q213⁕q221⁕q232
ap1⁕bp2 =c3p2 ⁕d3p3 ⁕e3p1 

ap1⁕bp3= q112⁕q123⁕q131⁕q211⁕q222⁕q233
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ap1⁕bp3=c2p2⁕d2p3 ⁕e2p1

an1⁕bn1=q113⁕q122⁕q131⁕q213⁕q222⁕q231
an1⁕bn1=c1p3⁕d1p2⁕e1p1

an1⁕bn2=q113⁕q122⁕q131⁕q211⁕q223⁕q232
an1⁕bn2=c2p3⁕d2p2⁕e2p1 

an1⁕bn3=q113⁕q122⁕q131⁕q212⁕q221⁕q233
an1⁕bn3=c3p3 ⁕d3p2⁕e3p1

an1⁕bp1= q113⁕q122⁕q131⁕ q212⁕q223⁕q231
an1⁕bp1 = c2p3 ⁕d3p2⁕e1p1

an1⁕bp2= q113⁕q122⁕q131⁕q213⁕q221⁕q232
an1⁕bp2= c1p3⁕d2p2 ⁕e3p1

an1⁕bp3= q113⁕q122⁕q131⁕ q211⁕q222⁕q233
an1⁕bp3= c3p3 ⁕d1p2 ⁕e2p1 

ap1⁕bn1=  q112⁕q123⁕q131⁕q213⁕q222⁕q231
ap1⁕bn1=  c2p2 ⁕d3p3 ⁕e1p1 

ap1⁕bn2=  q112⁕q123⁕q131⁕q211⁕q223⁕q232
ap1⁕bn2=  c3p2⁕d1p3⁕e2p1

ap1⁕bn3=  q112⁕q123⁕q131⁕q212⁕q221⁕q233
ap1⁕bn3=  c1p2 ⁕d2p3 ⁕e3p1 

ap2⁕bp1= q113⁕q121⁕q132⁕q212⁕q223⁕q231
ap2⁕bp1= c2p3⁕d2p1⁕e2p2

ap2⁕bp2= q113⁕q121⁕q132⁕q213⁕q221⁕q232
ap2⁕bp2 =c1p3⁕d1p1⁕e1p2

ap2⁕bp3= q113⁕q121⁕q132⁕q211⁕q222⁕q233
ap2⁕bp3=c3p3⁕d3p1⁕e3p2

an2⁕bn1 = q111⁕q123⁕q132⁕q213⁕q222⁕q231
an2⁕bn1 = c3p1⁕d3p3⁕e3p2
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an2⁕bn2 = q111⁕q123⁕q132⁕q211⁕q223⁕q232
an2⁕bn2 = c1p1⁕d1p3⁕e1p2

an2⁕bn3 = q111⁕q123⁕q132⁕q212⁕q221⁕q233
an2⁕bn3 = c2p1⁕d2p3⁕e2p2

ap2⁕bn1= q113⁕q121⁕q132⁕q213⁕q222⁕q231
ap2⁕bn1= c1p3⁕d2p1⁕e3p2

ap2⁕bn2= q113⁕q121⁕q132⁕q211⁕q223⁕q232
ap2⁕bn2 =c2p3⁕d3p1⁕e1p2

ap2⁕bn3= q113⁕q121⁕q132⁕q212⁕q221⁕q233
ap2⁕bn3=c3p3⁕d1p1⁕e2p2

an2⁕bp1 = q111⁕q123⁕q132⁕q212⁕q223⁕q231
an2⁕bp1 = c3p1⁕d1p3⁕e2p2

an2⁕bp2 = q111⁕q123⁕q132⁕q213⁕q221⁕q232
an2⁕bp2 = c2p1⁕d3p3⁕e1p2

an2⁕bp3 = q111⁕q123⁕q132⁕q211⁕q222⁕q233
an2⁕bp3 = c1p1⁕d2p3⁕e3p2

ap3⁕bp1=q111⁕q122⁕q133⁕q212⁕q223⁕q231 
ap3⁕bp1=c3p1⁕d3p2⁕e3p3 

ap3⁕bp2 =q111⁕q122⁕q133⁕q213⁕q221⁕q232
ap3⁕bp2 =c2p1 ⁕d2p2 ⁕e2p3 

ap3⁕bp3= q111⁕q122⁕q133⁕q211⁕q222⁕q233
ap3⁕bp3=c1p1⁕d1p2 ⁕e1p3

an3⁕bn1=q112⁕q121⁕q133⁕q213⁕q222⁕q231
an3⁕bn1=c2p2⁕d2p1⁕e2p3

an3⁕bn2=q112⁕q121⁕q133⁕q211⁕q223⁕q232
an3⁕bn2=c3p2⁕d3p1⁕e3p3 

an3⁕bn3=q112⁕q121⁕q133⁕q212⁕q221⁕q233
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an3⁕bn3=c1p2⁕d1p1⁕e1p3

an3⁕bp1= q112⁕q121⁕q133⁕ q212⁕q223⁕q231
an3⁕bp1 = c1p2⁕d2p1⁕e3p3

an3⁕bp2= q112⁕q121⁕q133⁕q213⁕q221⁕q232
an3⁕bp2= c3p2⁕d1p1 ⁕e2p3

an3⁕bp3= q112⁕q121⁕q133⁕ q211⁕q222⁕q233
an3⁕bp3= c2p2⁕d3p1⁕e1p3 

ap3⁕bn1=  q111⁕q122⁕q133⁕q213⁕q222⁕q231
ap3⁕bn1= c3p1⁕d1p2⁕e2p3

ap3⁕bn2=  q111⁕q122⁕q133⁕q211⁕q223⁕q232
ap3⁕bn2= c1p1⁕d2p2⁕e3p3

ap3⁕bn3=  q111⁕q122⁕q133⁕q212⁕q221⁕q233
ap3⁕bn3= c2p1⁕d3p2⁕e1p3 

ap1= q112⁕q123⁕q131
an1= q113⁕q122⁕q131
ap2= q113⁕q121⁕q132
an2= q111⁕q123⁕q132
ap3= q111⁕q122⁕q133
an3= q112⁕q121⁕q133
bp1= q212⁕q223⁕q231
bn1= q213⁕q222⁕q231
bp2= q213⁕q221⁕q232
bn2= q211⁕q223⁕q232
bp3= q211⁕q222⁕q233
bn3= q212⁕q221⁕q233

det(X1•T[X2]) value det(X1)⁕det(X2)

c1p2⁕d1p3⁕e1p1 q112⁕q123
⁕q131⁕q212
⁕q223⁕q231

ap1⁕bp1

c3p2⁕d3p3 ⁕e3p1 q112⁕q123
⁕q131⁕q213

ap1⁕bp2
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⁕q221⁕q232

c2p2⁕d2p3 ⁕e2p1 q112⁕q123
⁕q131⁕q211
⁕q222⁕q233

ap1⁕bp3

c1p3⁕d1p2⁕e1p1 q113⁕q122
⁕q131⁕q213
⁕q222⁕q231

an1⁕bn1

c2p3⁕d2p2⁕e2p1 q113⁕q122
⁕q131⁕q211
⁕q223⁕q232

an1⁕bn2

c3p3 ⁕d3p2⁕e3p1 q113⁕q122
⁕q131⁕q212
⁕q221⁕q233

an1⁕bn3

c2p3 ⁕d3p2⁕e1p1 q113⁕q122
⁕q131⁕ q212
⁕q223⁕q231

‒an1⁕bp1

c1p3⁕d2p2 ⁕e3p1 q113⁕q122
⁕q131⁕q213
⁕q221⁕q232

‒an1⁕bp2

c3p3 ⁕d1p2 ⁕e2p1 q113⁕q122
⁕q131⁕ q211
⁕q222⁕q233

‒an1⁕bp3

c2p2 ⁕d3p3 ⁕e1p1 q112⁕q123
⁕q131⁕q213
⁕q222⁕q231

‒ap1⁕bn1

c3p2⁕d1p3⁕e2p1 q112⁕q123
⁕q131⁕q211
⁕q223⁕q232

‒ap1⁕bn2

c1p2 ⁕d2p3 ⁕e3p1 q112⁕q123
⁕q131⁕q212
⁕q221⁕q233

‒ap1⁕bn3

c2p3⁕d2p1⁕e2p2 q113⁕q121
⁕q132⁕q212
⁕q223⁕q231

ap2⁕bp1

c1p3⁕d1p1⁕e1p2 q113⁕q121 ap2⁕bp2

203

v2

v1 v2+v3
v3

v1 • (v2+v3)



⁕q132⁕q213
⁕q221⁕q232

c3p3⁕d3p1⁕e3p2 q113⁕q121
⁕q132⁕q211
⁕q222⁕q233

ap2⁕bp3

c3p1⁕d3p3⁕e3p2 q111⁕q123
⁕q132⁕q213
⁕q222⁕q231

an2⁕bn1

c1p1⁕d1p3⁕e1p2 q111⁕q123
⁕q132⁕q211
⁕q223⁕q232

an2⁕bn2

c2p1⁕d2p3⁕e2p2 q111⁕q123
⁕q132⁕q212
⁕q221⁕q233

an2⁕bn3

c1p3⁕d2p1⁕e3p2 q113⁕q121
⁕q132⁕q213
⁕q222⁕q231

‒ap2⁕bn1

c2p3⁕d3p1⁕e1p2 q113⁕q121
⁕q132⁕q211
⁕q223⁕q232

‒ap2⁕bn2

c3p3⁕d1p1⁕e2p2 q113⁕q121
⁕q132⁕q212
⁕q221⁕q233

‒ap2⁕bn3

c3p1⁕d1p3⁕e2p2 q111⁕q123
⁕q132⁕q212
⁕q223⁕q231

‒an2⁕bp1

c2p1⁕d3p3⁕e1p2 q111⁕q123
⁕q132⁕q213
⁕q221⁕q232

‒an2⁕bp2

c1p1⁕d2p3⁕e3p2 q111⁕q123
⁕q132⁕q211
⁕q222⁕q233

‒an2⁕bp3

c3p1⁕d3p2⁕e3p3 q111⁕q122
⁕q133⁕q212
⁕q223⁕q231 

ap3bp1
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c2p1 ⁕d2p2 ⁕e2p3 q111⁕q122
⁕q133⁕q213
⁕q221⁕q232

ap3⁕bp2

c1p1⁕d1p2 ⁕e1p3 q111⁕q122
⁕q133⁕q211
⁕q222⁕q233

ap3⁕bp3

c2p2⁕d2p1⁕e2p3 q112⁕q121
⁕q133⁕q213
⁕q222⁕q231

an3⁕bn1

c3p2⁕d3p1⁕e3p3 q112⁕q121
⁕q133⁕q211
⁕q223⁕q232

an3⁕bn2

c1p2⁕d1p1⁕e1p3 q112⁕q121
⁕q133⁕q212
⁕q221⁕q233

an3⁕bn3

c1p2⁕d2p1⁕e3p3 q112⁕q121
⁕q133⁕q212
⁕q223⁕q231

‒an3⁕bp1

c3p2⁕d1p1⁕e2p3 q112⁕q121
⁕q133⁕q213
⁕q221⁕q232

‒an3⁕bp2

c2p2⁕d3p1⁕e1p3 q112⁕q121
⁕q133⁕q211
⁕q222⁕q233

‒an3⁕bp3

c3p1⁕d1p2⁕e2p3 q111⁕q122
⁕q133⁕q213
⁕q222⁕q231

‒ap3⁕bn1

c1p1⁕d2p2⁕e3p3 q111⁕q122
⁕q133⁕q211
⁕q223⁕q232

‒ap3⁕bn2

c2p1⁕d3p2⁕e1p3 q111⁕q122
⁕q133⁕q212
⁕q221⁕q233

‒ap3⁕bn3
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X1•T[X2] = x11•x21⁕u1⁕u1 
+ x11•x22⁕u1⁕u2 
+ x11•x23⁕u1⁕u3
+x12•x21⁕u2⁕u1 
+ x12•x22⁕u2⁕u2 
+ x12•x23⁕u2⁕u3
+ x13•x21⁕u3⁕u1 
+ x13•x22⁕u3⁕u2 
+ x13•x23⁕u3⁕u3

So
det(X1•T[X2]) 
     = (x11•x21⁕u1 + x11•x22⁕u2 + x11•x23⁕u3)

∧(x12•x21⁕u1+x12•x22⁕u2+x12•x23⁕u3)
•(x13•x21⁕u1+x13•x22⁕u2+x13•x23⁕u3)

     =(x11•x22⁕x12•x23‒ x11•x23⁕x12•x22)⁕u1
+(x11•x23⁕x12•x21‒x11•x21⁕x12•x23)⁕u2
+(x11•x21⁕x12•x22‒x11•x22⁕x12•x21)⁕u3)

•(x13•x21⁕u1+x13•x22⁕u2+x13•x23⁕u3)
     =x11•x22⁕x12•x23⁕x13•x21

‒ x11•x23⁕x12•x22⁕x13•x21
+x11•x23⁕x12•x21⁕x13•x22
‒x11•x21⁕x12•x23⁕x13•x22
+x11•x21⁕x12•x22⁕x13•x23
‒x11•x22⁕x12•x21⁕x13•x23

hh this all checks out.

    c1p1⁕d1p1⁕e1p1 = c1p1⁕d2p1⁕e3p1
= c2p1⁕d3p1⁕e1p1
= c2p1⁕d2p1⁕e2p1
= c3p1⁕d3p1⁕e3p1
= c3p1⁕d1p1⁕e2p1

    c1p2⁕d1p2⁕e1p2 = c1p2⁕d2p2⁕e3p2
= c2p2⁕d3p2⁕e1p2
= c2p2⁕d2p2⁕e2p2
= c3p2⁕d3p2⁕e3p2
= c3p2⁕d1p2⁕e2p2?

    c1p3⁕d1p3⁕e1p3 = c1p3⁕d2p3⁕e3p3
= c2p3⁕d3p3⁕e1p3
= c2p3⁕d2p3⁕e2p3
= c3p3⁕d3p3⁕e3p3
= c3p3⁕d1p3⁕e2p3?
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    c1p1⁕d1p1⁕e1p1 = c1p1⁕d2p1⁕e3p1
= c2p1⁕d3p1⁕e1p1
= c2p1⁕d2p1⁕e2p1
= c3p1⁕d3p1⁕e3p1
= c3p1⁕d1p1⁕e2p1

c1p1⁕d1p1⁕e1p2= c2p1⁕d3p1⁕e1p2
+c1p1⁕d1p2⁕e1p1 = c3p1⁕ d1p2⁕e2p1
+c1p1⁕d1p2⁕e1p2

= q111⁕q211 q122⁕q222 q132⁕q232
=‒c1p1⁕d2p2⁕e3p2
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c1px⁕d1px = c2px⁕d3px
c1px⁕e1px = c3px⁕e2px
d1px⁕e1px = d2px⁕e3px
c2px⁕d2px = c3px⁕d1px
c2px⁕e2px = c1px⁕e3px
d2px⁕e2px = d3px⁕e1px
c3px⁕d3px = c1px⁕d2px
c3px⁕e3px = c2px⁕e1px
d3px⁕e3px = d1px⁕e2px

c1p1
⁕d1p1
⁕e1p1   
1,4

+c2p1
⁕d2p1
⁕e2p1     
1,5

+c3p1
⁕d3p1
⁕e3p1     
1,6

‒c1p1
⁕d2p1
⁕e3p1   
1,1

‒c2p1
⁕d3p1
⁕e1p1 
1,2

‒c3p1
⁕d1p1
⁕e2p1 
1,3

+c1p1
⁕d1p1
⁕e1p2   
2,5

+c2p1
⁕d2p1
⁕e2p2     
2,6

+c3p1
⁕d3p1
⁕e3p2     
2,4

‒c1p1
⁕d2p1
⁕e3p2
2,3

‒c2p1
⁕d3p1
⁕e1p2 :2
,1

‒c3p1
⁕d1p1
⁕e2p2
 2,2

+c1p1
⁕d1p1
⁕e1p3     
3,5

+c2p1
⁕d2p1
⁕e2p3     
3,6

+c3p1
⁕d3p1
⁕e3p3     
3,4

‒c1p1
⁕d2p1
⁕e3p3
3,3

‒c2p1
⁕d3p1
⁕e1p3 
3,1

‒c3p1
⁕d1p1
⁕e2p3
3,2

+c1p1
⁕d1p2
⁕e1p1   
4,6

+c2p1
⁕d2p2
⁕e2p1     
4,4

+c3p1
⁕d3p2
⁕e3p1   
4,5

‒c1p1
⁕d2p2
⁕e3p1
4,2

‒c2p1
⁕d3p2
⁕e1p1
4,3

‒c3p1
⁕d1p2
⁕e2p1     
4,1

+c1p1
⁕d1p2
⁕e1p2     
5,4

+c2p1
⁕d2p2
⁕e2p2     
5,5

+c3p1
⁕d3p2
⁕e3p2     
5,6

‒c1p1
⁕d2p2
⁕e3p2     
5,1

‒c2p1
⁕d3p2
⁕e1p2 
5,2

‒c3p1
⁕d1p2
⁕e2p2
5,3

+c1p1
⁕d1p2
⁕e1p3
+ap3
⁕bp3

+c2p1
⁕d2p2
⁕e2p3
+ap3
⁕bp2

+c3p1
⁕d3p2
⁕e3p3
+ap3
⁕bp1

‒c1p1
⁕d2p2
⁕e3p3
–ap3
⁕bn2

‒c2p1
⁕d3p2
⁕e1p3 
–ap3
⁕bn3

‒c3p1
⁕d1p2
⁕e2p3
–ap3
⁕bn1

+c1p1
⁕d1p3
⁕e1p1     

+c2p1
⁕d2p3
⁕e2p1    

+c3p1
⁕d3p3
⁕e3p1  

‒c1p1
⁕d2p3
⁕e3p1

‒c2p1
⁕d3p3
⁕e1p1 

‒c3p1
⁕d1p3
⁕e2p1     
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7,6 7,4 7,5 7.2 7,3 7,1

+c1p1
⁕d1p3
⁕e1p2
+an2
⁕bn2

+c2p1
⁕d2p3
⁕e2p2 
+an2
⁕bn3

+c3p1
⁕d3p3
⁕e3p2
+an2
⁕bn1

‒c1p1
⁕d2p3
⁕e3p2
‒an2
⁕bp3

‒c2p1
⁕d3p3
⁕e1p2
‒an2
⁕bp2

‒c3p1
⁕d1p3
⁕e2p2
‒an2
⁕bp1

+c1p1
⁕d1p3
⁕e1p3     
9,4

+c2p1
⁕d2p3
⁕e2p3    
9,5

+c3p1
⁕d3p3
⁕e3p3    
9,6

‒c1p1
⁕d2p3
⁕e3p3     
9,1

‒c2p1
⁕d3p3
⁕e1p3
9,2

‒c3p1
⁕d1p3
⁕e2p3
9,3

+c1p2
⁕d1p1
⁕e1p1    
10,4

+c2p2
⁕d2p1
⁕e2p1     
10,5

+c3p2
⁕d3p1
⁕e3p1   
10,6

‒c1p2
⁕d2p1
⁕e3p1     
10,1

‒c2p2
⁕d3p1
⁕e1p1
10,2

‒c3p2
⁕d1p1
⁕e2p1
10,3

+c1p2
⁕d1p1
⁕e1p2     
11,6

+c2p2
⁕d2p1
⁕e2p2   
11,4

+c3p2
⁕d3p1
⁕e3p2  
11,5

‒c1p2
⁕d2p1
⁕e3p2
11,2

‒c2p2
⁕d3p1
⁕e1p2c1
11,3

‒c3p2
⁕d1p1
⁕e2p2    
11,1

+c1p2
⁕d1p1
⁕e1p3
+an3
⁕bn3

+c2p2
⁕d2p1
⁕e2p3
+an3
⁕bn1

+c3p2
⁕d3p1
⁕e3p3
+an3
⁕bn2

‒c1p2
⁕d2p1
⁕e3p3
‒an3
⁕bp1

‒c2p2
⁕d3p1
⁕e1p3
–an3
⁕bp3

‒c3p2
⁕d1p1
⁕e2p3
–an3
⁕bp2

+c1p2
⁕d1p2
⁕e1p1   
13,5

+c2p2
⁕d2p2
⁕e2p1    
13,6

+c3p2
⁕d3p2
⁕e3p1   
13,4

‒c1p2
⁕d2p2
⁕e3p1
13,3

‒c2p2
⁕d3p2
⁕e1p1
13,1

‒c3p2
⁕d1p2
⁕e2p1
13,2

+c1p2
⁕d1p2
⁕e1p2    
14,5

+c2p2
⁕d2p2
⁕e2p2     
14,6

+c3p2
⁕d3p2
⁕e3p2  
14,4

‒c1p2
⁕d2p2
⁕e3p2   
14,3 

‒c2p2
⁕d3p2
⁕e1p2
14,1

‒c3p2
⁕d1p2
⁕e2p2
14,2

+c1p2
⁕d1p2
⁕e1p3   
15,5

+c2p2
⁕d2p2
⁕e2p3   
15,6

+c3p2
⁕d3p2
⁕e3p3   
15,4

‒c1p2
⁕d2p2
⁕e3p3
5,3

‒c2p2
⁕d3p2
⁕e1p3
15,1

‒c3p2
⁕d1p2
⁕e2p3
15,2

+c1p2
⁕d1p3
⁕e1p1  
+ap1

+c2p2
⁕d2p3
⁕e2p1  
+ap1

+c3p2
⁕d3p3
⁕e3p1  
+ap1

‒c1p2
⁕d2p3
⁕e3p1 
–ap1

‒c2p2
⁕d3p3
⁕e1p1 
‒ap1

‒c3p2
⁕d1p3
⁕e2p1
–ap1
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⁕bp1 ⁕bp3 ⁕bp2 ⁕bn3 ⁕bn1 ⁕bn2

+c1p2
⁕d1p3
⁕e1p2     
17,6

+c2p2
⁕d2p3
⁕e2p2     
17,4

+c3p2
⁕d3p3
⁕e3p2    
17,5

‒c1p2
⁕d2p3
⁕e3p2
17,2

‒c2p2
⁕d3p3
⁕e1p2
17,3

‒c3p2
⁕d1p3
⁕e2p2   
17,1

+c1p2
⁕d1p3
⁕e1p3    
18,4

+c2p2
⁕d2p3
⁕e2p3   
18,5

+c3p2
⁕d3p3
⁕e3p3   
18,6

‒c1p2
⁕d2p3
⁕e3p3   
18,1

‒c2p2
⁕d3p3
⁕e1p3
18,2

‒c3p2
⁕d1p3
⁕e2p3
18,3

+c1p3
⁕d1p1
⁕e1p1     
19,4

+c2p3
⁕d2p1
⁕e2p1    
19,5

+c3p3
⁕d3p1
⁕e3p1  
19,6

‒c1p3
⁕d2p1
⁕e3p1    
19,1

‒c2p3
⁕d3p1
⁕e1p1
19,2

‒c3p3
⁕d1p1
⁕e2p1
19,6

+c1p3
⁕d1p1
⁕e1p2   
+ap2
⁕bp2

+c2p3
⁕d2p1
⁕e2p2  
+ap2
⁕bp1

+c3p3
⁕d3p1
⁕e3p2 
+ap2
⁕bp3 

‒c1p3
⁕d2p1
⁕e3p2
–ap2
⁕bn1

‒c2p3
⁕d3p1
⁕e1p2
–ap2
⁕bn2

‒c3p3
⁕d1p1
⁕e2p2
‒ap2
⁕bn3

+c1p3
⁕d1p1
⁕e1p3    
21,4

+c2p3
⁕d2p1
⁕e2p3  
21,5

+c3p3
⁕d3p1
⁕e3p3   
25,6

‒c1p3
⁕d2p1
⁕e3p3
21,1

‒c2p3
⁕d3p1
⁕e1p3
21,2

‒c3p3
⁕d1p1
⁕e2p3  
21,3

+c1p3
⁕d1p2
⁕e1p1   
+an1
⁕bn1

+c2p3
⁕d2p2
⁕e2p1 
+an1
⁕bn2

+c3p3
⁕d3p2
⁕e3p1  
+an1
⁕bn3

‒c1p3
⁕d2p2
⁕e3p1
‒an1
⁕bp2

‒c2p3
⁕d3p2
⁕e1p1 
‒an1
⁕bp1

‒c3p3
⁕d1p2
⁕e2p1
‒an1
⁕bp3

+c1p3
⁕d1p2
⁕e1p2
23,4  

+c2p3
⁕d2p2
⁕e2p2
23,5

+c3p3
⁕d3p2
⁕e3p2  
23,6

‒c1p3
⁕d2p2
⁕e3p2  
23,1

‒c2p3
⁕d3p2
⁕e1p2
23,2

‒c3p3
⁕d1p2
⁕e2p2
23,3

+c1p3
⁕d1p2
⁕e1p3
24,4

+c2p3
⁕d2p2
⁕e2p3  
24,5

+c3p3
⁕d3p2
⁕e3p3  
24,6

‒c1p3
⁕d2p2
⁕e3p3
24,1

‒c2p3
⁕d3p2
⁕e1p3
24,2

‒c3p3
⁕d1p2
⁕e2p3   
24,3

+c1p3
⁕d1p3
⁕e1p1   
25,5

+c2p3
⁕d2p3
⁕e2p1
25,6

+c3p3
⁕d3p3
⁕e3p1  
25,4

‒c1p3
⁕d2p3
⁕e3p1
25,3

‒c2p3
⁕d3p3
⁕e1p1
25,1

‒c3p3
⁕d1p3
⁕e2p1
25,2
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+c1p3
⁕d1p3
⁕e1p2    
26,5

+c2p3
⁕d2p3
⁕e2p2  
26,6

+c3p3
⁕d3p3
⁕e3p2  
26,4

‒c1p3
⁕d2p3
⁕e3p2
26,3

‒c2p3
⁕d3p3
⁕e1p2
26,1

‒c3p3
⁕d1p3
⁕e2p2
26,2

+c1p3
⁕d1p3
⁕e1p3 
27,4

+c2p3
⁕d2p3
⁕e2p3    
27,5

+c3p3
⁕d3p3
⁕e3p3  
27,6

‒c1p3
⁕d2p3
⁕e3p3   
27,1

‒c2p3
⁕d3p3
⁕e1p3
27,2

‒c3p3
⁕d1p3
⁕e2p3
27,3

 totals
Result: Out of 81 positives
63 are canceled by negatives
leaving 18 positives and 18 negatives addends..
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c2px⁕d2px = c3px⁕d1px
c2px⁕e2px = c1px⁕e3px
d2px⁕e2px = d3px⁕e1px

c2p1 = q111⁕q221
d2p1 = q121⁕q231
e2p1 = q131⁕q211
c3p1 = q111⁕q231
d1p1 = q121⁕q221
c1p1 = q111⁕q211
e3p1 = q131⁕q221
d3p1 = q121⁕q211
e1p1 = q131⁕q231
c2p2 = q112⁕q222
d2p2 = q122⁕q232

c3p2 = q112⁕q232
d1p2 = q122⁕q222

+c2p1
⁕d2p1
⁕e2p1       1,3

‒c1p1
⁕d2p1
⁕e3p1 c1:  
1,1

‒c2p1
⁕d3p1
⁕e1p1 c2: 1,1

‒c3p1
⁕d1p1
⁕e2p1

+c2p1
⁕d2p1
⁕e2p2     2,4

‒c1p1
⁕d2p1
⁕e3p2

‒c2p1
⁕d3p1
⁕e1p2

‒c3p1
⁕d1p1
⁕e2p2  c2:2,1

+c2p1
⁕d2p1
⁕e2p3       3,4

‒c1p1
⁕d2p1
⁕e3p3

‒c2p1
⁕d3p1
⁕e1p2 

‒c3p1
⁕d1p1
⁕e2p3   c2:3,1

+c2p1
⁕d2p2
⁕e2p1      4,2

‒c1p1
⁕d2p2
⁕e3p1   
c2:4,1

‒c2p1
⁕d3p2hh
⁕e1p1  c1:2,1

‒c3p1
⁕d1p2
⁕e2p1   c1:4,1

+c2p1
⁕d2p2
⁕e2p2       5,3

‒c1p1
⁕d2p2
⁕e3p2   
c1:5,1

‒c2p1
⁕d3p2
⁕e1p2 c2:5,1

‒c3p1
⁕d1p2
⁕e2p2

+c2p1 ‒c1p1 ‒c2p1 ‒c3p1
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⁕d2p2
⁕e2p3    none

⁕d2p2
⁕e3p3

⁕d3p2
⁕e1p3 c2:9,1

⁕d1p2
⁕e2p3

+c2p1
⁕d2p3
⁕e2p1    7,2

‒c1p1
⁕d2p3
⁕e3p1  c2:7.1

‒c2p1
⁕d3p3
⁕e1p1 c1: 3,1

‒c3p1
⁕d1p3
⁕e2p1 c1:7,1

+c2p1
⁕d2p3
⁕e2p2   none

‒c1p1
⁕d2p3
⁕e3p2

‒c2p1
⁕d3p3
⁕e1p2  

‒c3p1
⁕d1p3
⁕e2p2

+c2p1
⁕d2p3
⁕e2p3    6,3

‒c1p1
⁕d2p3
⁕e3p3c1:9,1

‒c2p1
⁕d3p3
⁕e1p3

‒c3p1
⁕d1p3
⁕e2p3

+c2p2
⁕d2p1
⁕e2p1     10,3

‒c1p2
⁕d2p1
⁕e3p1 
c1:10,1

‒c2p2
⁕d3p1
⁕e1p1c2:10,1

‒c3p2
⁕d1p1
⁕e2p1

+c2p2
⁕d2p1
⁕e2p2   11,2

‒c1p2
⁕d2p1
⁕e3p2c2:11,1

‒c2p2
⁕d3p1
⁕e1p2c1:13,1

‒c3p2
⁕d1p1
⁕e2p2 
c1:11,1

+c2p2
⁕d2p1
⁕e2p3   none

‒c1p2
⁕d2p1
⁕e3p3

‒c2p2
⁕d3p1
⁕e1p3

‒c3p2
⁕d1p1
⁕e2p3

+c2p2
⁕d2p2
⁕e2p1    13,4

‒c1p2
⁕d2p2
⁕e3p1

‒c2p2
⁕d3p2
⁕e1p1

‒c3p2
⁕d1p2
⁕e2p1c2:13,1

+c2p2
⁕d2p2
⁕e2p2     14,3

‒c1p2
⁕d2p2
⁕e3p2 
c1:14,1 

‒c2p2
⁕d3p2
⁕e1p2c2:14,1

‒c3p2
⁕d1p2
⁕e2p2

+c2p2
⁕d2p2
⁕e2p3   15,4

‒c1p2
⁕d2p2
⁕e3p3

‒c2p2
⁕d3p2
⁕e1p3c2:18,1

‒c3p2
⁕d1p2
⁕e2p3c2:15,1

+c2p2
⁕d2p3
⁕e2p1  none4

‒c1p2
⁕d2p3
⁕e3p1 

‒c2p2
⁕d3p3
⁕e1p1 

‒c3p2
⁕d1p3
⁕e2p1

+c2p2
⁕d2p3
⁕e2p2     17,2

‒c1p2
⁕d2p3
⁕e3p2c2:17,1

‒c2p2
⁕d3p3
⁕e1p2c1:15,1

‒c3p2
⁕d1p3
⁕e2p2c1:17,1
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+c2p2
⁕d2p3
⁕e2p3   15,3

‒c1p2
⁕d2p3
⁕e3p3c1:18,1

‒c2p2
⁕d3p3
⁕e1p3c1:25,1

‒c3p2
⁕d1p3
⁕e2p3

+c2p3
⁕d2p1
⁕e2p1    19,3

‒c1p3
⁕d2p1
⁕e3p1 
c1:19,1

‒c2p3
⁕d3p1
⁕e1p1c2:19,1

‒c3p3
⁕d1p1
⁕e2p1

+c2p3
⁕d2p1
⁕e2p2   none

‒c1p3
⁕d2p1
⁕e3p2

‒c2p3
⁕d3p1
⁕e1p2c2:23,1

‒c3p3
⁕d1p1
⁕e2p2

+c2p3
⁕d2p1
⁕e2p3  21,2

‒c1p3
⁕d2p1
⁕e3p3c2:21,1

‒c2p3
⁕d3p1
⁕e1p3c1:26,1

‒c3p3
⁕d1p1
⁕e2p3c1:21,1

+c2p3
⁕d2p2
⁕e2p1  none

‒c1p3
⁕d2p2
⁕e3p1

‒c2p3
⁕d3p2
⁕e1p1 

‒c3p3
⁕d1p2
⁕e2p1

+c2p3
⁕d2p2
⁕e2p2 20,3

‒c1p3
⁕d2p2
⁕e3p2c1:23,1

‒c2p3
⁕d3p2
⁕e1p2

‒c3p3
⁕d1p2
⁕e2p2 

+c2p3
⁕d2p2
⁕e2p3  24,2

‒c1p3
⁕d2p2
⁕e3p3c2:24,1

‒c2p3
⁕d3p2
⁕e1p3

‒c3p3
⁕d1p2
⁕e2p3c1:24,1

+c2p3
⁕d2p3
⁕e2p1     25,4

‒c1p3
⁕d2p3
⁕e3p1

‒c2p3
⁕d3p3
⁕e1p1

‒c3p3
⁕d1p3
⁕e2p1c2:25,1

+c2p3
⁕d2p3
⁕e2p2  26,4

‒c1p3
⁕d2p3
⁕e3p2

‒c2p3
⁕d3p3
⁕e1p2

‒c3p3
⁕d1p3
⁕e2p2c2:26,1

+c2p3
⁕d2p3
⁕e2p3    27,3

‒c1p3
⁕d2p3
⁕e3p3c1:27,1

‒c2p3
⁕d3p3
⁕e1p3c2:27,1

‒c3p3
⁕d1p3
⁕e2p3

21 6 9 6
Result: Out of 27 positive c2's
21 are canceled by negatives
  6 c1's 9 c2's 6 c3's

6 are left unmatched.
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c3px⁕d3px = c1px⁕d2px
c3px⁕e3px = c2px⁕e1px
d3px⁕e3px = d1px⁕e2px

c3p1 = q111⁕q231
d3p1 = q121⁕q211
c1p1 = q111⁕q211
d2p1 = q121⁕q231

c3p1 = q111⁕q231
e3p1 = q131⁕q221
c2p1 = q111⁕q221
e1p1 = q131⁕q231

d3p1 = q121⁕q211
e3p1 = q131⁕q221
d1p1 = q121⁕q221
e2p1 = q131⁕q211

+c3p1
⁕d3p1
⁕e3p1      1,4

‒c1p1
⁕d2p1
⁕e3p1 c1:  
1,1

‒c2p1
⁕d3p1
⁕e1p1 c2: 1,1

‒c3p1
⁕d1p1
⁕e2p1c3: 1,1

+c3p1
⁕d3p1
⁕e3p2     2,2

‒c1p1
⁕d2p1
⁕e3p2  c3:2,1

‒c2p1
⁕d3p1
⁕e1p2

‒c3p1
⁕d1p1
⁕e2p2  c2:2,1

+c3p1
⁕d3p1
⁕e3p3     3,2

‒c1p1
⁕d2p1
⁕e3p3c3:3,1

‒c2p1
⁕d3p1
⁕e1p2 

‒c3p1
⁕d1p1
⁕e2p3   c2:3,1

+c3p1
⁕d3p2
⁕e3p1   2,3

‒c1p1
⁕d2p2
⁕e3p1   
c2:4,1

‒c2p1
⁕d3p2hh
⁕e1p1  c1:2,1

‒c3p1
⁕d1p2
⁕e2p1   c1:4,1

+c3p1
⁕d3p2
⁕e3p2     5,4

‒c1p1
⁕d2p2
⁕e3p2   
c1:5,1

‒c2p1
⁕d3p2
⁕e1p2 c2:5,1

‒c3p1
⁕d1p2
⁕e2p2c3:5,1

+c3p1
⁕d3p2

‒c1p1
⁕d2p2

‒c2p1
⁕d3p2

‒c3p1
⁕d1p2
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⁕e3p3    none ⁕e3p3 ⁕e1p3 c2:9,1 ⁕e2p3

+c3p1
⁕d3p3
⁕e3p1  3,3

‒c1p1
⁕d2p3
⁕e3p1  c2:7.1

‒c2p1
⁕d3p3
⁕e1p1 c1: 3,1

‒c3p1
⁕d1p3
⁕e2p1 c1:7,1

+c3p1
⁕d3p3
⁕e3p2    none

‒c1p1
⁕d2p3
⁕e3p2

‒c2p1
⁕d3p3
⁕e1p2  

‒c3p1
⁕d1p3
⁕e2p2

+c3p1
⁕d3p3
⁕e3p3    9,4

‒c1p1
⁕d2p3
⁕e3p3c1:9,1

‒c2p1
⁕d3p3
⁕e1p3

‒c3p1
⁕d1p3
⁕e2p3c3:9,1

10+c3p2
⁕d3p1
⁕e3p1   10,4

‒c1p2
⁕d2p1
⁕e3p1 
c1:10,1

‒c2p2
⁕d3p1
⁕e1p1c2:10,1

‒c3p2
⁕d1p1
⁕e2p1c3:10,1

+c3p2
⁕d3p1
⁕e3p2  13,3

‒c1p2
⁕d2p1
⁕e3p2c2:11,1

‒c2p2
⁕d3p1
⁕e1p2c1:13,1

‒c3p2
⁕d1p1
⁕e2p2 
c1:11,1

+c3p2
⁕d3p1
⁕e3p3   none

‒c1p2
⁕d2p1
⁕e3p3

‒c2p2
⁕d3p1
⁕e1p3

‒c3p2
⁕d1p1
⁕e2p3

+c3p2
⁕d3p2
⁕e3p1   13,2

‒c1p2
⁕d2p2
⁕e3p1c3:13,1

‒c2p2
⁕d3p2
⁕e1p1

‒c3p2
⁕d1p2
⁕e2p1c2:13,1

+c3p2
⁕d3p2
⁕e3p2  14,4

‒c1p2
⁕d2p2
⁕e3p2 
c1:14,1 

‒c2p2
⁕d3p2
⁕e1p2c2:14,1

‒c3p2
⁕d1p2
⁕e2p2c3:14,1

+c3p2
⁕d3p2
⁕e3p3   15,2

‒c1p2
⁕d2p2
⁕e3p3c3:15,1

‒c2p2
⁕d3p2
⁕e1p3c2:18,1

‒c3p2
⁕d1p2
⁕e2p3c2:15,1

+c3p2
⁕d3p3
⁕e3p1  none4

‒c1p2
⁕d2p3
⁕e3p1 

‒c2p2
⁕d3p3
⁕e1p1 

‒c3p2
⁕d1p3
⁕e2p1

+c3p2
⁕d3p3
⁕e3p2    12,3

‒c1p2
⁕d2p3
⁕e3p2c2:17,1

‒c2p2
⁕d3p3
⁕e1p2c1:15,1

‒c3p2
⁕d1p3
⁕e2p2c1:17,1

+c3p2 ‒c1p2 ‒c2p2 ‒c3p2
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⁕d3p3
⁕e3p3   18,4

⁕d2p3
⁕e3p3c1:18,1

⁕d3p3
⁕e1p3c1:25,1

⁕d1p3
⁕e2p3c3:18,1

+c3p3
⁕d3p1
⁕e3p1  19,4

‒c1p3
⁕d2p1
⁕e3p1 
c1:19,1

‒c2p3
⁕d3p1
⁕e1p1c2:19,1

‒c3p3
⁕d1p1
⁕e2p1c3:19,1

+c3p3
⁕d3p1
⁕e3p2  none5

‒c1p3
⁕d2p1
⁕e3p2

‒c2p3
⁕d3p1
⁕e1p2c2:23,1

‒c3p3
⁕d1p1
⁕e2p2

+c3p3
⁕d3p1
⁕e3p3   25,3

‒c1p3
⁕d2p1
⁕e3p3c2:21,1

‒c2p3
⁕d3p1
⁕e1p3c1:26,1

‒c3p3
⁕d1p1
⁕e2p3c1:21,1

+c3p3
⁕d3p2
⁕e3p1  none6

‒c1p3
⁕d2p2
⁕e3p1

‒c2p3
⁕d3p2
⁕e1p1 

‒c3p3
⁕d1p2
⁕e2p1

+c3p3
⁕d3p2
⁕e3p2  23,4

‒c1p3
⁕d2p2
⁕e3p2c1:23,1

‒c2p3
⁕d3p2
⁕e1p2

‒c3p3
⁕d1p2
⁕e2p2 
c3:23,1 

+c3p3
⁕d3p2
⁕e3p3  23,3

‒c1p3
⁕d2p2
⁕e3p3c2:24,1

‒c2p3
⁕d3p2
⁕e1p3

‒c3p3
⁕d1p2
⁕e2p3c1:24,1

+c3p3
⁕d3p3
⁕e3p1  25,2

‒c1p3
⁕d2p3
⁕e3p1 
c3:25,1

‒c2p3
⁕d3p3
⁕e1p1

‒c3p3
⁕d1p3
⁕e2p1c2:25,1

+c3p3
⁕d3p3
⁕e3p2  26,2

‒c1p3
⁕d2p3
⁕e3p2 
c3:26,1

‒c2p3
⁕d3p3
⁕e1p2

‒c3p3
⁕d1p3
⁕e2p2c2:26,1

+c3p3
⁕d3p3
⁕e3p3  27,4

‒c1p3
⁕d2p3
⁕e3p3c1:27,1

‒c2p3
⁕d3p3
⁕e1p3c2:27,1

‒c3p3
⁕d1p3
⁕e2p3 
c3:27,1

21 6 6 9
Result: Out of 27 positive c3's
21 are canceled by negatives
  6 c1's 9 c2's 6 c3's

6 are left unmatched.
‒c3p3
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⁕d1p1
⁕e2p2
‒c1p1⁕d2p2⁕e3p3
‒c2p3⁕d3p2⁕e1p1

‒c1p1⁕d2p2⁕e3p3      6,1

‒c3p1⁕d1p2⁕e2p3      6,3

‒c1p1⁕d2p3⁕e3p2    8,1

‒c2p1⁕d3p2⁕e1p3     8,2

‒c3p1⁕d1p3⁕e2p2    8,3

‒c2p2⁕d3p3⁕e1p1   9,2 ‒ap1⁕bn1

‒c1p2⁕d2p1⁕e3p3   12,1

‒c3p2⁕d1p1⁕e2p3   12,3

‒c1p2⁕d2p3⁕e3p1   16,1 –ap1⁕bn3

‒c2p2⁕d3p1⁕e1p3    16,2

‒c3p2⁕d1p3⁕e2p1    16,3 –ap1⁕bn2

‒c1p3⁕d2p1⁕e3p2   20,1

‒c3p3⁕d1p1⁕e2p2  20,3

‒c1p3⁕d2p2⁕e3p1   22,1

‒c2p3⁕d3p1⁕e1p2    22,2

‒c3p3⁕d1p2⁕e2p1   22,3

‒c2p3⁕d3p3⁕e1p3      24,2 hh

‒c2p3⁕d3p2⁕e1p3   26,2 hh

+c3p1⁕d3p2⁕e3p3   c3 6,0

+c3p1⁕d3p3⁕e3p2    8,0

+c3p2⁕d3p1⁕e3p3   12,0

+c3p2⁕d3p3⁕e3p1  16,0 +ap1⁕bp2

+c3p3⁕d3p1⁕e3p2  20,0

+c3p3⁕d3p2⁕e3p1  22,0

+c1p1⁕d1p2⁕e1p3      c1 6,0

+c1p1⁕d1p3⁕e1p2   c1 8,0

+c1p2⁕d1p1⁕e1p3   c1 12,0
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+c1p2⁕d1p3⁕e1p1   c1 16,0 +ap1⁕bp1

+c1p3⁕d1p1⁕e1p2    c1 20,0

+c1p3⁕d1p2⁕e1p1   c1  22,0

+c2p1⁕d2p2⁕e2p3     c2 6,0

+c2p1⁕d2p3⁕e2p2   c2 8,0

+c2p2⁕d2p1⁕e2p3   c3  12,0

+c2p2⁕d2p3⁕e2p1  c2 16,0 +ap1⁕bp3

+c2p3⁕d2p1⁕e2p2   c2 20,0

+c2p3⁕d2p2⁕e2p1  c2 22, 0

6+
18-

+ap1⁕bp3+c2p2⁕d2p3⁕e2p1

c1p3 = q113⁕q213
c2p3 = q113⁕q223
c3p3 = q113⁕q233
d1p2 = q122⁕q222
d2p2 = q122⁕q232
d2p3 = q123⁕q233
e1p1 = q131⁕q231
e1p2 = q132⁕q232
e1p3 = q133⁕q233
e2p1 = q131⁕q211
e2p2 = q132⁕q212
e2p3 = q133⁕q213
e3p1 = q131⁕q221

c1p2 = q112⁕q212
d1p3 = q123⁕q223

headings

+ap1⁕bp1 q112⁕q123⁕q131
⁕q212⁕q223⁕q231

+c1p2⁕d1p3⁕e1p1
(16,1)
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‒ap1⁕bn1 q112⁕q123⁕q131
⁕q213⁕q222⁕q231

‒c2p2⁕d3p3⁕e1p1
(16,5)

+ap1⁕bp2 q112⁕q123⁕q131
⁕q213⁕q221⁕q232

+c3p2⁕d3p3⁕e3p1
(16,3)

–ap1⁕bn2 q112⁕q123⁕q131
⁕q211⁕q223⁕q232

‒c3p2⁕d1p3⁕e2p1
(16,6)

+ap1⁕bp3 q112⁕q123⁕q131
⁕q211⁕q222⁕q233

+c2p2⁕d2p3⁕e2p1
(16,2)

–ap1⁕bn3 q112⁕q123⁕q131
⁕q212⁕q221⁕q233

‒c1p2⁕d2p3⁕e3p1
(16,4)

‒an1⁕bp1 q113⁕q122⁕q131
⁕q212⁕q223⁕q231

‒c2p3⁕d3p2⁕e1p1
(22,5)

+an1⁕bn1 q113⁕q122⁕q131
⁕q213⁕q222⁕q231

+c1p3⁕d1p2⁕e1p1
(22,1)

‒an1⁕bp2 q113⁕q122⁕q131
⁕q213⁕q221⁕q232

‒c1p3⁕d2p2⁕e3p1
(22,4)

+an1⁕bn2 q113⁕q122⁕q131
⁕q211⁕q223⁕q232

+c2p3⁕d2p2⁕e2p1
(22,2)

‒an1⁕bp3 q113⁕q122⁕q131
⁕q211⁕q222⁕q233

‒c3p3⁕d1p2⁕e2p1
(22,6)

+an1⁕bn3 q113⁕q122⁕q131
⁕q212⁕q221⁕q233

+c3p3⁕d3p2⁕e3p1
(22,3)

+ap2⁕bp1 q113⁕q121⁕q132
⁕q212⁕q223⁕q231

+c2p3⁕d2p1⁕e2p2
(20,2)

–ap2⁕bn1 q113⁕q121⁕q132
⁕q213⁕q222⁕q231

‒c1p3⁕d2p1⁕e3p2
(20,4)

+ap2⁕bp2 q113⁕q121⁕q132
⁕q213⁕q221⁕q232

+c1p3⁕d1p1⁕e1p2 
(20,1)

–ap2⁕bn2 q113⁕q121⁕q132
⁕q211⁕q223⁕q232

‒c2p3⁕d3p1⁕e1p2
(20,5)

+ap2⁕bp3 q113⁕q121⁕q132
⁕q211⁕q222⁕q233

+c3p3⁕d3p1⁕e3p2
(20,3)

‒ap2⁕bn3 q113⁕q121⁕q132 ‒c3p3⁕d1p1⁕e2p2
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⁕q212⁕q221⁕q233 (20,6)

‒an2⁕bp1 q111⁕q123⁕q132
⁕q212⁕q223⁕q231

‒c3p1⁕d1p3⁕e2p2
(8,6)

+an2⁕bn1 q111⁕q123⁕q132
⁕q213⁕q222⁕q231

+c3p1⁕d3p3⁕e3p2
(8,3)

‒an2⁕bp2 q111⁕q123⁕q132
⁕q213⁕q221⁕q232

‒c2p1⁕d3p3⁕e1p2 
(8,5)

+an2⁕bn2 q111⁕q123⁕q132
⁕q211⁕q223⁕q232

+c1p1⁕d1p3⁕e1p2
(8.1)

‒an2⁕bp3 q111⁕q123⁕q132
⁕q211⁕q222⁕q233

‒c1p1⁕d2p3⁕e3p2
(8,4)

+an2⁕bn3 q111⁕q123⁕q132
⁕q212⁕q221⁕q233

+c2p1⁕d2p3⁕e2p2
(8,2)

+ap3⁕bp1 q111⁕q122⁕q133
⁕q212⁕q223⁕q231

+c3p1⁕d3p2⁕e3p3
(6,3)

–ap3⁕bn1 q111⁕q122⁕q133
⁕q213⁕q222⁕q231

‒c3p1⁕d1p2⁕e2p3
(6,6)

+ap3⁕bp2 q111⁕q122⁕q133
⁕q213⁕q221⁕q232

+c2p1⁕d2p2⁕e2p3
(6,2)

–ap3⁕bn2 q111⁕q122⁕q133
⁕q211⁕q223⁕q232

‒c1p1⁕d2p2⁕e3p3
(6,4)

+ap3⁕bp3 q111⁕q122⁕q133
⁕q211⁕q222⁕q233

+c1p1⁕d1p2⁕e1p3
(6,1)

–ap3⁕bn3 q111⁕q122⁕q133
⁕q212⁕q221⁕q233

+c2p1⁕d3p2⁕e1p3
(6,5)

‒an3⁕bp1 q112⁕q121⁕q133
⁕q212⁕q223⁕q231

‒c1p2⁕d2p1⁕e3p3
(12,4)

+an3⁕bn1 q112⁕q121⁕q133
⁕q213⁕q222⁕q231

+c2p2⁕d2p1⁕e2p3
(12,2)

–an3⁕bp2 q112⁕q121⁕q133
⁕q213⁕q221⁕q232

+c3p2⁕d1p1⁕e2p3
(12,6)

+an3⁕bn2 q112⁕q121⁕q133 +c3p2⁕d3p1⁕e3p3
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⁕q211⁕q223⁕q232 (12,3)

–an3⁕bp3 q112⁕q121⁕q133
⁕q211⁕q222⁕q233

‒c2p2⁕d3p1⁕e1p3
(12,5)

+an3⁕bn3 q112⁕q121⁕q133
⁕q212⁕q221⁕q233

+c1p2⁕d1p1⁕e1p3
(12,1)

Xtra +c3p3⁕d3p2⁕e3p1  none6
‒c1p3⁕d2p2⁕e3p1
‒c2p3⁕d3p1⁕e1p2 
‒c3p3⁕d1p2⁕e2p1
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A=[
v11 v12 v13
v21 v22 v23
v31 v32 v33 ]

v=[
v11
v21
v31]

A=[v11 v12 v13 ]
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I have been noting some points of our discussion today.  Let 
me summarize the path we have trodden; tomorrow is another 
day. 

First we struggled with the definition of Physics finally 
agreeing that

Physics is the study of reality observable as extended, 
moving, or forcing.

from which we deduced that Physics studies
reality reductively;

reality comprehends much more.  
We also proved God exists and so becomes 

a context of all physical inquiry.
Then we noted the confusion

between mathematical symbols
and similar symbols used for Physics.

We discussed why mathematics as such is 
inappropriate for Physics.  

So we started a discussion of theoretical physics
 with a discussion on symbols.

Although symbols themselves are arbitrary,
they must follow some rules to avoid 

becoming ambiguous or misleading.
We settled on a set of rules for the symbols.
Then Einstein asked a question about variables

 which led to a discussion on how to avoid 
typical ambiguities.

We decided to use the following symbols
x for the object being observed
r for the position of the object
a to denote the observation. 

We then discussed the difference between 
equations and definitions.  We agreed to use 

≡ for definitions
and 

= for equations
Then we saw that words 'set' and 'operator' 
   have different mathematical and physical meanings.
Then we defined theoretical physics as 

a set of coherent ideas related
in a framework of logically consistent 

statements
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useful for understanding physical observations.
Theoretical Physics, not mathematics

is the proper language for the science of 
Physics.

So the great adventure is described as how to 
transform

the admittedly logical structure of mathematics
into theoretical physics.

We decided first to investigate some basic
mathematical structures and show how these 

are
transformed into theoretical physics.  

We started with numbers.
In so common an idea as the positive integers

 we discovered oceans of fascination
which continued to negative integers
and then to quotient numbers.
We also saw ways in which the mathematical ideas 

differ
from those of theoretical physics,

 even when symbolized identically.
Then we launched into a discussion of functions.
In the set of all functions,

those most interesting to theoretical physics 
form

only a minuscule part. 
For these restricted functions we looked at limits

and those which map topologies into topologies
 from which we learned about

continuous functions 
and look‒alike functions.

With the restrictions also came qualities which could
 prove useful for the study for Physics.

We defined other categories of functions:
step,
linear,
summed
multiplied,
restricted,
compound.

We then took up the special limiting
 functions of functions namely

differentiation
and integration,
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and why we might want to restrict
 their definition to basic functions.

Our considerations led us to an idea of direction 
and to positive definite
and basic conventions
for their symbolism.

Then we moved to prove the fundamental theorem
 of the calculus, 
and then extended the fundamental theorem to 

functions with a step discontinuity.
Finally Breton explained that mathematical ideas 

are transformed into related ideas
 of theoretical physics generically
 by first restricting the idea
which, upon restriction, may then be 
expanded to a large panoply of related ideas.

It is these ideas, not the mathematical ones, 
which are suitable for Physics.

He showed how this applies to physical variables, 
and the rules governing physical units.

The primary physical variables for theoretical physics 
are

extension, motion, and movers,
which are idealizes as length, velocity, and 

force.  
References are required for theoretical physics,

but not for mathematics.
Material and spatial references need to be 

distinguished.
Breton promised our adventure would look to finding

relationships between the two.
We discussed how material sets differ

from mathematical sets
and how the topological ideas of mathematics

 are transformed into theoretical physics.
In particular the idea of a particle in theoretical physics

differs from a mathematical point.
We showed how physical properties can be attached to

particles as ideas,
and how the idea of a particle accommodates
the physical process of observation 

with limited resolution."
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