Breton: "So you have proven the proposition for all cases.
Einstein: "This is hard to visualize.
Breton: "We have proven the proposition algebraically, but the geometric rendition remains obscured. Some drawings may be helpful.

In a few minutes Breton handed his friends these three sketches.

Breton: "This first sketch shows the two vectors, v2 and $\mathbf{v 3}$ and their sum lying in the same plane. The vector $\mathbf{v} \mathbf{~ s t i c k s ~ u p ~ f r o m ~}$ the plane. The dotted lines show the orthogonals from from $\mathbf{v 1}$ to $\mathbf{v 2}, \mathbf{v} 3$, and $\mathbf{v 2} \mathbf{+ v 3}$. The orthogonals are related to inner products.

This next sketch show the area designated by $\mathbf{v 1} \cdot(\mathbf{v} 2+\mathbf{v} 3)$

Breton: "Geometrically, this area lies in a plane orthogonal to the plane defined by $\mathbf{v 1}$ and ($\mathbf{v 2 + v 3) .}$

The next sketch shows the two areas $\mathbf{v 1} \cdot \mathbf{v} \mathbf{2}$ and $\mathbf{v} 1 \cdot \mathbf{v} 3$.

Breton: "While the algebraic proof requires fine reasoning, the geometric proof would be even more difficult. Now are you convinced.

Einstein grudgingly: "It does follows that

$$
v 1 \cdot(v 2+v 3)=v 1 \cdot v 2+v 1 \cdot v 3
$$

Breton, pressing the victory to a deliciously bitter ending: "The conclusion is ambiguous. If your mean

$$
\mathrm{v} 1 \cdot(\mathrm{v} 2+\mathrm{v} 3)=\mathrm{v} 1 \cdot(\mathrm{v} 2+\mathrm{v} 1) \cdot \mathrm{v} 3
$$

then the result is a inner product between a scalar and a vector, which is meaningless. If you mean

$$
\mathrm{v} 1 \cdot(\mathrm{v} 2+\mathrm{v} 3)=(\mathrm{v} 1 \cdot \mathrm{v} 2)+(\mathrm{v} 1 \cdot \mathrm{v} 3)
$$

then the result is the sum of two scalar quantities, a meaningful result."
After a short pause Breton continued in an agreeable tone. "Your reasoning follows the format for our formal proofs. Why not use the format we agreed upon? But before that, I suggest we simplify our notation. Let us write

$$
\mathrm{q} 1 \text { for } \mathrm{q}(\mathrm{v} \mathbf{1})
$$

q2 for $q(v 2)$
q3 for $q(v 3)$
$\mathbf{u v 1}$ for $\mathbf{u}(\mathbf{v} 1)$
uv2 for $\mathbf{u}(\mathbf{v} 2)$
$\mathbf{u v 3}$ for $\mathbf{u}(\mathbf{v} 3)$
Whenever no ambiguity will follow, we can do the same in other contexts.

Einstein joining gladly: "Agreed. Here's my proof."

