
Pasting operations

Current state:
A string of textS stemming from some source paragraph S is pasted into some target paragraph
T. TextS then brings all of its formatting with it, viz. both the text modifications applied 
selectively to textS itself or to substrings of it and the formatting of the entire S. As a result of 
the pasting operation, T then not only contains textS with its own modifications; the entire T 
now assumes the paragraph formatting of S. This behavior of LO Writer is 1) theoretically 
misguided and 2) impractical for the user:

1) The design does not distinguish properly between block-level elements and inline 
elements, to use HTML terminology. Block-level elements like a paragraph, a list item, a table 
cell etc. have their own formatting properties; and likewise inline elements like words or 
strings inside a block-level element have their own formatting properties. The two sets of 
properties are mutually independent both in theory and, to a large extent, in practice. S and T 
are two block-level elements which may differ in their formatting. For instance, S may be an 
enumeration item, while T may be an indented paragraph. The pasting operation converts T 
into an enumeration item.

One cannot counter this argument by saying that LO design does not obey the principles of 
HTML design. Terminology aside, the difference between the two levels is valid for all of text 
processing. It is observed, i.a., by MS Word and, in fact, by any other decent text processor 
except LO/OO. The inference ‘If paragraphs S and T contain an identical piece of subtext, then 
S and T must share their block-level formatting’ is so obviously invalid that one wonders how 
LO developers can have been clinging to it for decades now.

2) This behavior is practically never what the user intends. Normally, the user wants to 
preserve the inline-formatting of textS. If not, he can use ‘Paste Special – Unformatted text’. A 
situation where the user intends to apply, simultaneously, the block-level formatting of S to T 
is hard to imagine. Most of the time, the user has to undo the effect of this mistaken design.

One might reply to this that if the user does not want to carry the source formatting over to T, 
he can just use ‘Paste Special – Unformatted text’. However, this does not solve it, because this 
operation also strips textS of its entire inline-formatting. Moreover, if textS contains some field 
code, this gets lost by this pasting operation. As a consequence, there is in LO no way to paste 
a string into some target without disfiguring either the source string or the target.

I have marked this as a bug rather than an enhancement because it is a serious design mistake,
obstructing the user’s workflow.

Suggestion:
The problem can, in principle, be solved either with the Copy/Cut or with the Paste operation:
a) Custom Copy:

• Distinguish between a Default Copy (as before) and a Custom Copy.
• In Default Copy, a string of text is copied preserving its inline-formatting while leaving 

behind the formatting of its source block.
• In Custom Copy, the user has the following options:

◦ Do not preserve any formatting.
◦ Preserve only inline formatting (as in the Default).
◦ Preserve both inline and block-level formatting.



b) Custom Paste
• Distinguish between a Default Pasting and a Special (or Custom) Pasting as before.
• In Default Pasting, a string of text is pasted into the target preserving its inline-

formatting while leaving behind the formatting of its source block.
• In Custom Pasting, the user has the following options:

◦ Do not preserve any formatting (as currently in ‘Unformatted text’).
◦ Preserve only inline formatting (as in the new Default).
◦ Preserve both inline and block-level formatting (as in the current default).

There may be arguments for either solution. Implementing both would not make much sense, 
since the option chosen at the moment of copying limits the pasting options.


