/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */
/*
 * Timers are evil beasts across platforms...
 */
 
#include <test/bootstrapfixture.hxx>
 
#include <osl/thread.hxx>
#include <salhelper/thread.hxx>
#include <chrono>
 
#include <vcl/timer.hxx>
#include <vcl/idle.hxx>
#include <vcl/svapp.hxx>
#include <vcl/scheduler.hxx>
#include <svdata.hxx>
#include <salinst.hxx>
 
// #define TEST_WATCHDOG
 
// Enables timer tests that appear to provoke windows under load unduly.
//#define TEST_TIMERPRECISION
 
/// Avoid our timer tests just wedging the build if they fail.
class WatchDog : public osl::Thread
{
    sal_Int32 mnSeconds;
public:
    explicit WatchDog(sal_Int32 nSeconds) :
        Thread(),
        mnSeconds( nSeconds )
    {
        create();
    }
    virtual void SAL_CALL run() override
    {
        osl::Thread::wait( std::chrono::seconds(mnSeconds) );
        fprintf(stderr, "ERROR: WatchDog timer thread expired, failing the test!\n");
        fflush(stderr);
        CPPUNIT_ASSERT_MESSAGE("watchdog triggered", false);
    }
};
 
static WatchDog * aWatchDog = new WatchDog( 120 ); // random high number in secs
 
class TimerTest : public test::BootstrapFixture
{
public:
    TimerTest() : BootstrapFixture(true, false) {}
 
    void testIdle();
#ifndef WIN32
    void testIdleMainloop();
#endif
#ifdef TEST_WATCHDOG
    void testWatchdog();
#endif
    void testDurations();
#ifdef TEST_TIMERPRECISION
    void testAutoTimer();
    void testMultiAutoTimers();
#endif
    void testAutoTimerStop();
    void testNestedTimer();
    void testSlowTimerCallback();
    void testTriggerIdleFromIdle();
    void testInvokedReStart();
    void testPriority();
    void testRoundRobin();
 
    CPPUNIT_TEST_SUITE(TimerTest);
    CPPUNIT_TEST(testIdle);
#ifndef WIN32
    CPPUNIT_TEST(testIdleMainloop);
#endif
#ifdef TEST_WATCHDOG
    CPPUNIT_TEST(testWatchdog);
#endif
    CPPUNIT_TEST(testDurations);
#ifdef TEST_TIMERPRECISION
    CPPUNIT_TEST(testAutoTimer);
    CPPUNIT_TEST(testMultiAutoTimers);
#endif
    CPPUNIT_TEST(testAutoTimerStop);
    CPPUNIT_TEST(testNestedTimer);
    CPPUNIT_TEST(testSlowTimerCallback);
    CPPUNIT_TEST(testTriggerIdleFromIdle);
    CPPUNIT_TEST(testInvokedReStart);
    CPPUNIT_TEST(testPriority);
    CPPUNIT_TEST(testRoundRobin);
 
    CPPUNIT_TEST_SUITE_END();
};
 
#ifdef TEST_WATCHDOG
void TimerTest::testWatchdog()
{
    // out-wait the watchdog.
    osl::Thread::wait( std::chrono::seconds(12) );
}
#endif
 
 
class IdleBool : public Idle
{
    bool &mrBool;
public:
    explicit IdleBool( bool &rBool ) :
        Idle( "IdleBool" ), mrBool( rBool )
    {
        SetPriority( TaskPriority::LOWEST );
        Start();
        mrBool = false;
    }
    virtual void Invoke() override
    {
        mrBool = true;
        Application::EndYield();
    }
};
 
void TimerTest::testIdle()
{
    bool bTriggered = false;
    IdleBool aTest( bTriggered );
    Scheduler::ProcessEventsToIdle();
    CPPUNIT_ASSERT_MESSAGE("idle triggered", bTriggered);
}
 
#ifndef WIN32
// tdf#91727
void TimerTest::testIdleMainloop()
{
    bool bTriggered = false;
    IdleBool aTest( bTriggered );
    // coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
    while (!bTriggered)
    {
        ImplSVData* pSVData = ImplGetSVData();
 
        // can't test this via Application::Yield since this
        // also processes all tasks directly via the scheduler.
        pSVData->maAppData.mnDispatchLevel++;
        pSVData->mpDefInst->DoYield(true, false);
        pSVData->maAppData.mnDispatchLevel--;
    }
    CPPUNIT_ASSERT_MESSAGE("mainloop idle triggered", bTriggered);
}
#endif
 
class TimerBool : public Timer
{
    bool &mrBool;
public:
    TimerBool( sal_uLong nMS, bool &rBool ) :
        Timer( "TimerBool" ), mrBool( rBool )
    {
        SetTimeout( nMS );
        Start();
        mrBool = false;
    }
    virtual void Invoke() override
    {
        mrBool = true;
        Application::EndYield();
    }
};
 
void TimerTest::testDurations()
{
    static const sal_uLong aDurations[] = { 0, 1, 500, 1000 };
    for (size_t i = 0; i < SAL_N_ELEMENTS( aDurations ); i++)
    {
        bool bDone = false;
        TimerBool aTimer( aDurations[i], bDone );
        // coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
        while( !bDone )
        {
            Application::Yield();
        }
    }
}
 
 
class AutoTimerCount : public AutoTimer
{
    sal_Int32 &mrCount;
    const sal_Int32 mnMaxCount;
 
public:
    AutoTimerCount( sal_uLong nMS, sal_Int32 &rCount,
                    const sal_Int32 nMaxCount = -1 )
        : AutoTimer( "AutoTimerCount" )
        , mrCount( rCount )
        , mnMaxCount( nMaxCount )
    {
        SetTimeout( nMS );
        Start();
        mrCount = 0;
    }
 
    virtual void Invoke() override
    {
        ++mrCount;
        CPPUNIT_ASSERT( mnMaxCount < 0 || mrCount <= mnMaxCount );
        if ( mrCount == mnMaxCount )
            Stop();
    }
};
 
#ifdef TEST_TIMERPRECISION
 
void TimerTest::testAutoTimer()
{
    const sal_Int32 nDurationMs = 30;
    const sal_Int32 nEventsCount = 5;
    const double exp = (nDurationMs * nEventsCount);
 
    sal_Int32 nCount = 0;
    std::ostringstream msg;
 
    // Repeat when we have random latencies.
    // This is expected on non-realtime OSes.
    for (int i = 0; i < 10; ++i)
    {
        const auto start = std::chrono::high_resolution_clock::now();
        nCount = 0;
        AutoTimerCount aCount(nDurationMs, nCount);
        while (nCount < nEventsCount) {
            Application::Yield();
        }
 
        const auto end = std::chrono::high_resolution_clock::now();
        double dur = std::chrono::duration<double, std::milli>(end - start).count();
 
        msg << std::setprecision(2) << std::fixed
            << "periodic multi-timer - dur: "
            << dur << " (" << exp << ") ms." << std::endl;
 
        // +/- 20% should be reasonable enough a margin.
        if (dur >= (exp * 0.8) && dur <= (exp * 1.2))
        {
            // Success.
            return;
        }
    }
 
    CPPUNIT_FAIL(msg.str().c_str());
}
 
void TimerTest::testMultiAutoTimers()
{
    // The behavior of the timers change drastically
    // when multiple timers are present.
    // The worst, in my tests, is when two
    // timers with 1ms period exist with a
    // third of much longer period.
 
    const sal_Int32 nDurationMsX = 5;
    const sal_Int32 nDurationMsY = 10;
    const sal_Int32 nDurationMs = 40;
    const sal_Int32 nEventsCount = 5;
    const double exp = (nDurationMs * nEventsCount);
    const double expX = (exp / nDurationMsX);
    const double expY = (exp / nDurationMsY);
 
    sal_Int32 nCountX = 0;
    sal_Int32 nCountY = 0;
    sal_Int32 nCount = 0;
    std::ostringstream msg;
 
    // Repeat when we have random latencies.
    // This is expected on non-realtime OSes.
    for (int i = 0; i < 10; ++i)
    {
        nCountX = 0;
        nCountY = 0;
        nCount = 0;
 
        const auto start = std::chrono::high_resolution_clock::now();
        AutoTimerCount aCountX(nDurationMsX, nCountX);
        AutoTimerCount aCountY(nDurationMsY, nCountY);
 
        AutoTimerCount aCount(nDurationMs, nCount);
        // coverity[loop_top] - Application::Yield allows the timer to fire and toggle nCount
        while (nCount < nEventsCount) {
            Application::Yield();
        }
 
        const auto end = std::chrono::high_resolution_clock::now();
        double dur = std::chrono::duration<double, std::milli>(end - start).count();
 
        msg << std::setprecision(2) << std::fixed << "periodic multi-timer - dur: "
            << dur << " (" << exp << ") ms, nCount: " << nCount
            << " (" << nEventsCount << "), nCountX: " << nCountX
            << " (" << expX << "), nCountY: " << nCountY
            << " (" << expY << ")." << std::endl;
 
        // +/- 20% should be reasonable enough a margin.
        if (dur >= (exp * 0.8) && dur <= (exp * 1.2) &&
            nCountX >= (expX * 0.8) && nCountX <= (expX * 1.2) &&
            nCountY >= (expY * 0.8) && nCountY <= (expY * 1.2))
        {
            // Success.
            return;
        }
    }
 
    CPPUNIT_FAIL(msg.str().c_str());
}
#endif // TEST_TIMERPRECISION
 
void TimerTest::testAutoTimerStop()
{
    sal_Int32 nTimerCount = 0;
    const sal_Int32 nMaxCount = 5;
    AutoTimerCount aAutoTimer( 0, nTimerCount, nMaxCount );
    // coverity[loop_top] - Application::Yield allows the timer to fire and increment TimerCount
    while (nMaxCount != nTimerCount)
        Application::Yield();
    CPPUNIT_ASSERT( !aAutoTimer.IsActive() );
    CPPUNIT_ASSERT( !Application::Reschedule() );
}
 
 
class YieldTimer : public Timer
{
public:
    explicit YieldTimer( sal_uLong nMS ) : Timer( "YieldTimer" )
    {
        SetTimeout( nMS );
        Start();
    }
    virtual void Invoke() override
    {
        for (int i = 0; i < 100; i++)
            Application::Yield();
    }
};
 
void TimerTest::testNestedTimer()
{
    sal_Int32 nCount = 0;
    YieldTimer aCount(5);
    AutoTimerCount aCountUp( 3, nCount );
    // coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
    while (nCount < 20)
        Application::Yield();
}
 
 
class SlowCallbackTimer : public Timer
{
    bool &mbSlow;
public:
    SlowCallbackTimer( sal_uLong nMS, bool &bBeenSlow ) :
        Timer( "SlowCallbackTimer" ), mbSlow( bBeenSlow )
    {
        SetTimeout( nMS );
        Start();
        mbSlow = false;
    }
    virtual void Invoke() override
    {
        osl::Thread::wait( std::chrono::seconds(1) );
        mbSlow = true;
    }
};
 
void TimerTest::testSlowTimerCallback()
{
    bool bBeenSlow = false;
    sal_Int32 nCount = 0;
    AutoTimerCount aHighFreq(1, nCount);
    SlowCallbackTimer aSlow(250, bBeenSlow);
    // coverity[loop_top] - Application::Yield allows the timer to fire and toggle bBeenSlow
    while (!bBeenSlow)
        Application::Yield();
    // coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
    while (nCount < 200)
        Application::Yield();
}
 
 
class TriggerIdleFromIdle : public Idle
{
    bool* mpTriggered;
    TriggerIdleFromIdle* mpOther;
public:
    explicit TriggerIdleFromIdle( bool* pTriggered, TriggerIdleFromIdle* pOther ) :
        Idle( "TriggerIdleFromIdle" ), mpTriggered(pTriggered), mpOther(pOther)
    {
    }
    virtual void Invoke() override
    {
        Start();
        if (mpOther)
            mpOther->Start();
        Application::Yield();
        if (mpTriggered)
            *mpTriggered = true;
    }
};
 
void TimerTest::testTriggerIdleFromIdle()
{
    bool bTriggered1 = false;
    bool bTriggered2 = false;
    TriggerIdleFromIdle aTest2( &bTriggered2, nullptr );
    TriggerIdleFromIdle aTest1( &bTriggered1, &aTest2 );
    aTest1.Start();
    Application::Yield();
    CPPUNIT_ASSERT_MESSAGE("idle not triggered", bTriggered1);
    CPPUNIT_ASSERT_MESSAGE("idle not triggered", bTriggered2);
}
 
 
class IdleInvokedReStart : public Idle
{
    sal_Int32 &mrCount;
public:
    IdleInvokedReStart( sal_Int32 &rCount )
        : Idle( "IdleInvokedReStart" ), mrCount( rCount )
    {
        Start();
    }
    virtual void Invoke() override
    {
        mrCount++;
        if ( mrCount < 2 )
            Start();
    }
};
 
void TimerTest::testInvokedReStart()
{
    sal_Int32 nCount = 0;
    IdleInvokedReStart aIdle( nCount );
    Scheduler::ProcessEventsToIdle();
    CPPUNIT_ASSERT_EQUAL( sal_Int32(2), nCount );
}
 
 
class IdleSerializer : public Idle
{
    sal_uInt32 mnPosition;
    sal_uInt32 &mrProcesed;
public:
    IdleSerializer( const sal_Char *pDebugName,
                    sal_uInt32 nPosition, sal_uInt32 &rProcesed )
        : Idle( pDebugName )
        , mnPosition( nPosition )
        , mrProcesed( rProcesed )
    {
        Start();
    }
    virtual void Invoke() override
    {
        ++mrProcesed;
        CPPUNIT_ASSERT_EQUAL_MESSAGE( "Ignored prio", mnPosition, mrProcesed );
    }
};
 
void TimerTest::testPriority()
{
    // scope, so tasks are deleted
    {
        // Start: 1st Idle low, 2nd high
        sal_uInt32 nProcessed = 0;
        IdleSerializer aLowPrioIdle( "IdleSerializer LowPrio", 2, nProcessed );
        aLowPrioIdle.SetPriority( TaskPriority::LOWEST );
        IdleSerializer aHighPrioIdle( "IdleSerializer HighPrio", 1, nProcessed );
        aHighPrioIdle.SetPriority( TaskPriority::HIGHEST );
        Scheduler::ProcessEventsToIdle();
        CPPUNIT_ASSERT_EQUAL_MESSAGE( "Not all idles processed", sal_uInt32(2), nProcessed );
    }
 
    {
        // Start: 1st Idle high, 2nd low
        sal_uInt32 nProcessed = 0;
        IdleSerializer aHighPrioIdle( "IdleSerializer HighPrio", 1, nProcessed );
        aHighPrioIdle.SetPriority( TaskPriority::HIGHEST );
        IdleSerializer aLowPrioIdle( "IdleSerializer LowPrio", 2, nProcessed );
        aLowPrioIdle.SetPriority( TaskPriority::LOWEST );
        Scheduler::ProcessEventsToIdle();
        CPPUNIT_ASSERT_EQUAL_MESSAGE( "Not all idles processed", sal_uInt32(2), nProcessed );
    }
}
 
 
class TestAutoIdleRR : public AutoIdle
{
    sal_uInt32 &mrCount;
 
    DECL_LINK( IdleRRHdl, Timer *, void );
 
public:
    TestAutoIdleRR( sal_uInt32 &rCount,
                    const sal_Char *pDebugName )
        : AutoIdle( pDebugName )
        , mrCount( rCount )
    {
        CPPUNIT_ASSERT_EQUAL( sal_uInt32(0), mrCount );
        SetInvokeHandler( LINK( this, TestAutoIdleRR, IdleRRHdl ) );
        Start();
    }
};
 
IMPL_LINK_NOARG(TestAutoIdleRR, IdleRRHdl, Timer *, void)
{
    ++mrCount;
    if ( mrCount == 3 )
        Stop();
}
 
void TimerTest::testRoundRobin()
{
    sal_uInt32 nCount1 = 0, nCount2 = 0;
    TestAutoIdleRR aIdle1( nCount1, "TestAutoIdleRR aIdle1" ),
                   aIdle2( nCount2, "TestAutoIdleRR aIdle2" );
    while ( Application::Reschedule() )
    {
        CPPUNIT_ASSERT( nCount1 == nCount2 || nCount1 - 1 == nCount2 );
        CPPUNIT_ASSERT( nCount1 <= 3 );
        CPPUNIT_ASSERT( nCount2 <= 3 );
    }
    CPPUNIT_ASSERT( 3 == nCount1 && 3 == nCount2 );
}
 
CPPUNIT_TEST_SUITE_REGISTRATION(TimerTest);
 
CPPUNIT_PLUGIN_IMPLEMENT();
 
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */

V654 The condition 'nCount < 20' of loop is always true.

V654 The condition 'nCount < 200' of loop is always true.

V776 Potentially infinite loop. The variable in the loop exit condition '!bBeenSlow' does not change its value between iterations.

V776 Potentially infinite loop. The variable in the loop exit condition 'nMaxCount != nTimerCount' does not change its value between iterations.