
[image: image1.emf]
_1311409687.pdf

Cache Mapping

COMP375 1

Cache MappingCache Mapping
COMP375 Computer Architecture

d O i tiand Organization

Goals

• Understand how the cache system finds a
d t it i th hdata item in the cache.

• Be able to break an address into the fields
used by the different cache mapping
schemes.

Cache Challenges

• The challenge in cache design is to ensure
th t th d i d d t d i t tithat the desired data and instructions are
in the cache. The cache should achieve a
high hit ratio.

• The cache system must be quickly
searchable as it is checked every memorysearchable as it is checked every memory
reference.

Cache to Ram Ratio

• A processor might have 512 KB of cache
d 512 MB f RAMand 512 MB of RAM.

• There may be 1000 times more RAM than
cache.

• The cache algorithms have to carefully
select the 0 1% of the memory that is likelyselect the 0.1% of the memory that is likely
to be most accessed.

Cache Mapping

COMP375 2

Tag Fields
• A cache line contains two fields

– Data from RAM
– The address of the block currently in the

cache.
• The part of the cache line that stores the

address of the block is called the tag field.
• Many different addresses can be in any• Many different addresses can be in any

given cache line. The tag field specifies
the address currently in the cache line.

• Only the upper address bits are needed.

Cache Lines
• The cache memory is divided into blocks

or lines. Currently lines can range from 16 y g
to 64 bytes.

• Data is copied to and from the cache one
line at a time.

• The lower log2(line size) bits of an address
if i l b i lispecify a particular byte in a line.

Line address Offset

Line Example
0110010100
0110010101
0110010110

With a line size of 4,
0110010110
0110010111
0110011000
0110011001
0110011010
0110011011

These boxes
represent RAM

addresses

the offset is the
log2(4) = 2 bits.

The lower 2 bits
0110011011
0110011100
0110011101
0110011110
0110011111

specify which byte
in the line

Computer Science Search

• If you ask COMP285 students how to
h f d t it th h ld b blsearch for a data item, they should be able

to tell you

• Linear Search – O(n)
Binary Search O(log n)• Binary Search – O(log2n)

• Hashing – O(1)
• Parallel Search – O(n/p)

Cache Mapping

COMP375 3

Mapping
• The memory system has to quickly

determine if a given address is in the cache.
• There are three popular methods of

mapping addresses to cache locations.
– Fully Associative – Search the entire

cache for an address.
Direct Each address has a specific– Direct – Each address has a specific
place in the cache.

– Set Associative – Each address can be
in any of a small set of cache locations.

Direct Mapping
• Each location in RAM has one specific

place in cache where the data will be held.
C id th h t b lik• Consider the cache to be like an array.
Part of the address is used as index into
the cache to identify where the data will be
held.

• Since a data block from RAM can only be y
in one specific line in the cache, it must
always replace the one block that was
already there. There is no need for a
replacement algorithm.

Direct Cache Addressing

• The lower log2(line size) bits define which
b t i th bl kbyte in the block

• The next log2(number of lines) bits defines
which line of the cache

• The remaining upper bits are the tag field.

Tag Line Offset

Cache Constants

• cache size / line size = number of lines
• log2(line size) = bits for offset
• log2(number of lines) = bits for cache index
• remaining upper bits = tag address bits

Cache Mapping

COMP375 4

Example direct address
Assume you have
• 32 bit addresses (can address 4 GB)
• 64 byte lines (offset is 6 bits)
• 32 KB of cache
• Number of lines = 32 KB / 64 = 512
• Bits to specify which line = log2(512) = 9

Tag Line Offset
6 bits9 bits17 bits

Example Address

• Using the previous direct mapping scheme
ith 17 bit t 9 bit i d d 6 bit ff twith 17 bit tag, 9 bit index and 6 bit offset
01111101011101110001101100111000

01111101011101110 001101100 111000
Tag Index offset

• Compare the tag field of line 001101100
(10810) for the value 01111101011101110. If it

matches, return byte 111000 (5610) of the line

How many bits are in the tag, line
and offset fields?

25% 25%25%25%Direct Mapping
24 bit addresses
64K bytes of cache
16 byte cache lines

1. tag=4, line=16, offset=4

 ta
g=

4,
lin

e=
16

, o
ffs

et=
4

 ta
g=

4,
lin

e=
14

, o
ffs

et=
6

 ta
g=

8,
lin

e=
12

, o
ffs

et=
4

 ta
g=

6,
lin

e=
12

, o
ffs

et=
6

2. tag=4, line=14, offset=6
3. tag=8, line=12, offset=4
4. tag=6, line=12, offset=6

Associative Mapping
• In associative cache mapping, the data

from any location in RAM can be stored in
any location in cacheany location in cache.

• When the processor wants an address, all
tag fields in the cache as checked to
determine if the data is already in the
cache.

• Each tag line requires circuitry to compare
the desired address with the tag field.

• All tag fields are checked in parallel.

Cache Mapping

COMP375 5

Associative Cache Mapping

• The lower log2(line size) bits define which
b t i th bl kbyte in the block

• The remaining upper bits are the tag field.
• For a 4 GB address space with 128 KB

cache and 32 byte blocks:

Tag Offset
5 bits27 bits

Example Address

• Using the previous associate mapping
h ith 27 bit t d 5 bit ff tscheme with 27 bit tag and 5 bit offset
01111101011101110001101100111000

011111010111011100011011001 11000
Tag offset

• Compare all tag fields for the value
011111010111011100011011001. If a match
is found, return byte 11000 (2410) of the line

How many bits are in the tag and
offset fields?

25% 25%25%25%Associative Mapping
24 bit addresses
128K bytes of cache
64 byte cache lines

1. tag= 20, offset=4

 ta
g=

 20
, o

ffs
et=

4
 ta

g=
19

, o
ffs

et=
5

 ta
g=

18
, o

ffs
et=

6
 ta

g=
16

, o
ffs

et=
8

2. tag=19, offset=5
3. tag=18, offset=6
4. tag=16, offset=8

Set Associative Mapping
• Set associative mapping is a mixture of

direct and associative mapping.pp g
• The cache lines are grouped into sets.
• The number of lines in a set can vary from

2 to 16.
• A portion of the address is used to specify

which set will hold an address.
• The data can be stored in any of the lines

in the set.

Cache Mapping

COMP375 6

Set Associative Mapping
• When the processor wants an address, it

indexes to the set and then searches theindexes to the set and then searches the
tag fields of all lines in the set for the
desired address.

• n = cache size / line size = number of lines
• b = log2(line size) = bit for offset
• w = number of lines / set
• s = n / w = number of sets

Example Set Associative
Assume you have
• 32 bit addresses
• 32 KB of cache 64 byte lines
• Number of lines = 32 KB / 64 = 512
• 4 way set associative
• Number of sets = 512 / 4 = 128
• Set bits = log2(128) = 7

Tag Set Offset
6 bits7 bits19 bits

Example Address

• Using the previous set-associate mapping
ith 19 bit t 7 bit i d d 6 bit ff twith 19 bit tag, 7 bit index and 6 bit offset
01111101011101110001101100111000

0111110101110111000 1101100 111000
Tag Index offset

• Compare the tag fields of lines 110110000 to
110110011 for the value
0111110101110111000. If a match is found,
return byte 111000 (56) of that line

How many bits are in the tag, set
and offset fields?

25% 25%25%25%2-way Set Associative
24 bit addresses
128K bytes of cache
16 byte cache lines

1. tag=8, set = 12, offset=4

 ta
g=

8,
se

t =
 12

, o
ffs

et=
4

 ta
g=

16
, s

et
= 4

, o
ffs

et=
4

 ta
g=

12
, s

et
= 8

, o
ffs

et=
4

 ta
g=

10
, s

et
= 1

0,
offs

et=
4

g
2. tag=16, set = 4, offset=4
3. tag=12, set = 8, offset=4
4. tag=10, set = 10, offset=4

Cache Mapping

COMP375 7

Replacement policy
• When a cache miss occurs, data is copied

into some location in cache.into some location in cache.
• With Set Associative or Fully Associative

mapping, the system must decide where
to put the data and what values will be
replaced.

• Cache performance is greatly affected by
properly choosing data that is unlikely to
be referenced again.

Replacement Options

• First In First Out (FIFO)
• Least Recently Used (LRU)
• Pseudo LRU
• Random

LRU replacement

• LRU is easy to implement for 2 way set
i tiassociative.

• You only need one bit per set to indicate
which line in the set was most recently used

• LRU is difficult to implement for larger ways.
For an N way mapping there are N!• For an N way mapping, there are N!
different permutations of use orders.

• It would require log2(N!) bits to keep track.

Pseudo LRU
• Pseudo LRU is frequently used in set

associative mapping.pp g
• In pseudo LRU there is a bit for each half

of a group indicating which have was most
recently used.

• For 4 way set associative, one bit
i di h h lindicates that the upper two or lower two
was most recently used. For each half
another bit specifies which of the two lines
was most recently used. 3 bits total.

Cache Mapping

COMP375 8

Comparison of Mapping
Fully Associative

A i i i k h b b i• Associative mapping works the best, but is
complex to implement. Each tag line
requires circuitry to compare the desired
address with the tag field.

• Some special purpose cache such as theSome special purpose cache, such as the
virtual memory Translation Lookaside
Buffer (TLB) is an associative cache.

Comparison of Mapping
Direct

• Direct has the lowest performance, but is
easiest to implement.

• Direct is often used for instruction cache.
• Sequential addresses fill a cache line and

then go to the next cache line.
• Intel Pentium level 1 instruction cache

uses direct mapping.

Comparison of Mapping
Set Associative

• Set associative is a compromise between
the other two. The bigger the “way” the
better the performance, but the more
complex and expensive.

• Intel Pentium uses 4 way set associative
caching for level 1 data and 8 way set
associative for level 2.

