
HTML
One-Page Version

html.spec.whatwg.org
Multipage Version

/multipage

Developer Version
/dev

PDF Version
/print.pdf

Translations
日本語 • 简体中文

FAQ
on GitHub

Join us on IRC
#whatwg on Freenode

Contribute on GitHub
whatwg/html repository

Commits
on GitHub

Snapshot
as of this commit

Twitter Updates
@htmlstandard

Open Issues
filed on GitHub

Open an Issue
whatwg.org/newbug

Tests
web-platform-tests html/

Issues for Tests
ongoing work

1 Introduction .. 1
2 Common infrastructure... 2
3 Semantics, structure, and APIs of HTML documents... 3
4 The elements of HTML .. 4
5 Microdata.. 12
6 User interaction .. 12
7 Loading web pages... 13
8 Web application APIs .. 15
9 Communication .. 16
10 Web workers ... 17
11 Web storage ... 18
12 The HTML syntax .. 18
13 The XML syntax .. 21
14 Rendering ... 21
15 Obsolete features ... 22
16 IANA considerations.. 22
Index.. 22
References... 23
Acknowledgments ... 23
Intellectual property rights .. 23

1 Introduction .. 24
1.1 Where does this specification fit?.. 24
1.2 Is this HTML5? ... 24
1.3 Background ... 25
1.4 Audience ... 25
1.5 Scope .. 25

Living Standard — Last Updated 2 September 2020

Table of contents

Full table of contents

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://whatwg.org/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/dev/
https://html.spec.whatwg.org/print.pdf
https://github.com/whatwg/html/wiki/Translations
https://github.com/whatwg/html/blob/master/FAQ.md
https://wiki.whatwg.org/wiki/IRC
https://github.com/whatwg/html
https://github.com/whatwg/html/commits
https://html.spec.whatwg.org/commit-snapshots/5bad12a0faa313eea79a3ded51f907c4a76fcb76/
https://twitter.com/htmlstandard
https://github.com/whatwg/html/issues
https://whatwg.org/newbug
https://github.com/web-platform-tests/wpt/tree/master/html
https://github.com/web-platform-tests/wpt/labels/html
https://whatwg.org/

1.6 History... 25
1.7 Design notes ... 26

1.7.1 Serializability of script execution ... 27
1.7.2 Compliance with other specifications .. 27
1.7.3 Extensibility ... 27

1.8 HTML vs XML syntax ... 28
1.9 Structure of this specification.. 28

1.9.1 How to read this specification.. 29
1.9.2 Typographic conventions ... 29

1.10 A quick introduction to HTML .. 30
1.10.1 Writing secure applications with HTML .. 33
1.10.2 Common pitfalls to avoid when using the scripting APIs ... 34
1.10.3 How to catch mistakes when writing HTML: validators and conformance checkers.............35

1.11 Conformance requirements for authors .. 35
1.11.1 Presentational markup... 35
1.11.2 Syntax errors ... 36
1.11.3 Restrictions on content models and on attribute values.. 38

1.12 Suggested reading .. 41

2 Common infrastructure... 42
2.1 Terminology... 42

2.1.1 Parallelism ... 42
2.1.2 Resources .. 43
2.1.3 XML compatibility .. 44
2.1.4 DOM trees.. 44
2.1.5 Scripting .. 45
2.1.6 Plugins ... 45
2.1.7 Character encodings.. 46
2.1.8 Conformance classes ... 46
2.1.9 Dependencies .. 49
2.1.10 Extensibility ... 65
2.1.11 Interactions with XPath and XSLT... 65

2.2 String comparison ... 67
2.3 Policy-controlled features .. 67
2.4 Common microsyntaxes.. 67

2.4.1 Common parser idioms.. 67
2.4.2 Boolean attributes ... 67
2.4.3 Keywords and enumerated attributes.. 68
2.4.4 Numbers .. 68

2.4.4.1 Signed integers .. 68
2.4.4.2 Non-negative integers.. 69
2.4.4.3 Floating-point numbers .. 69
2.4.4.4 Percentages and lengths .. 71
2.4.4.5 Non-zero percentages and lengths... 72
2.4.4.6 Lists of floating-point numbers... 72
2.4.4.7 Lists of dimensions... 73

2.4.5 Dates and times... 73
2.4.5.1 Months ... 74
2.4.5.2 Dates.. 74
2.4.5.3 Yearless dates .. 75

2

2.4.5.4 Times.. 76
2.4.5.5 Local dates and times .. 77
2.4.5.6 Time zones ... 78
2.4.5.7 Global dates and times .. 79
2.4.5.8 Weeks... 80
2.4.5.9 Durations.. 81
2.4.5.10 Vaguer moments in time .. 85

2.4.6 Colors .. 85
2.4.7 Space-separated tokens .. 87
2.4.8 Comma-separated tokens.. 87
2.4.9 References... 88
2.4.10 Media queries .. 88

2.5 URLs.. 88
2.5.1 Terminology ... 88
2.5.2 Parsing URLs .. 89
2.5.3 Dynamic changes to base URLs... 89

2.6 Fetching resources .. 90
2.6.1 Terminology ... 90
2.6.2 Determining the type of a resource ... 90
2.6.3 Extracting character encodings from meta elements... 90
2.6.4 CORS settings attributes.. 91
2.6.5 Referrer policy attributes ... 91
2.6.6 Nonce attributes .. 92
2.6.7 Lazy loading attributes .. 93

2.7 Common DOM interfaces .. 94
2.7.1 Reflecting content attributes in IDL attributes ... 94
2.7.2 Collections ... 96

2.7.2.1 The HTMLAllCollection interface... 96
2.7.2.1.1 [[Call]] (thisArgument, argumentsList) 98

2.7.2.2 The HTMLFormControlsCollection interface.. 98
2.7.2.3 The HTMLOptionsCollection interface ... 100

2.7.3 The DOMStringList interface.. 101
2.8 Safe passing of structured data .. 102

2.8.1 Serializable objects.. 102
2.8.2 Transferable objects... 103
2.8.3 StructuredSerializeInternal (value, forStorage [, memory]) ... 104
2.8.4 StructuredSerialize (value) .. 108
2.8.5 StructuredSerializeForStorage (value) ... 108
2.8.6 StructuredDeserialize (serialized, targetRealm [, memory]).. 108
2.8.7 StructuredSerializeWithTransfer (value, transferList)... 111
2.8.8 StructuredDeserializeWithTransfer (serializeWithTransferResult, targetRealm).................112
2.8.9 Performing serialization and transferring from other specifications 112

3 Semantics, structure, and APIs of HTML documents... 114
3.1 Documents.. 114

3.1.1 The Document object.. 114
3.1.2 The DocumentOrShadowRoot interface... 115
3.1.3 Resource metadata management.. 115
3.1.4 DOM tree accessors ... 117

3.2 Elements ... 121
3.2.1 Semantics .. 121

3

3.2.2 Elements in the DOM ... 123
3.2.3 HTML element constructors ... 125
3.2.4 Element definitions.. 128

3.2.4.1 Attributes ... 129
3.2.5 Content models ... 129

3.2.5.1 The "nothing" content model ... 130
3.2.5.2 Kinds of content ... 130

3.2.5.2.1 Metadata content ... 131
3.2.5.2.2 Flow content ... 131
3.2.5.2.3 Sectioning content.. 131
3.2.5.2.4 Heading content ... 132
3.2.5.2.5 Phrasing content... 132
3.2.5.2.6 Embedded content ... 132
3.2.5.2.7 Interactive content ... 132
3.2.5.2.8 Palpable content ... 133
3.2.5.2.9 Script-supporting elements... 133

3.2.5.3 Transparent content models... 133
3.2.5.4 Paragraphs ... 134

3.2.6 Global attributes .. 136
3.2.6.1 The title attribute.. 139
3.2.6.2 The lang and xml:lang attributes ... 140
3.2.6.3 The translate attribute .. 141
3.2.6.4 The dir attribute.. 142
3.2.6.5 The style attribute.. 144
3.2.6.6 Embedding custom non-visible data with the data-* attributes..................145

3.2.7 The innerText getter and setter... 148
3.2.8 Requirements relating to the bidirectional algorithm .. 150

3.2.8.1 Authoring conformance criteria for bidirectional-algorithm formatting
characters .. 150
3.2.8.2 User agent conformance criteria .. 150

3.2.9 Requirements related to ARIA and to platform accessibility APIs... 151

4 The elements of HTML .. 152
4.1 The document element ... 152

4.1.1 The html element .. 152
4.2 Document metadata ... 153

4.2.1 The head element .. 153
4.2.2 The title element .. 154
4.2.3 The base element .. 155
4.2.4 The link element .. 157

4.2.4.1 Processing the media attribute... 162
4.2.4.2 Processing the type attribute... 162
4.2.4.3 Fetching and processing a resource from a link element 163
4.2.4.4 Processing `Link` headers... 164
4.2.4.5 Providing users with a means to follow hyperlinks created using the link
element .. 164

4.2.5 The meta element .. 164
4.2.5.1 Standard metadata names... 166
4.2.5.2 Other metadata names .. 168
4.2.5.3 Pragma directives... 169
4.2.5.4 Specifying the document's character encoding.. 173

4.2.6 The style element .. 174
4.2.7 Interactions of styling and scripting... 177

4.3 Sections .. 178
4.3.1 The body element .. 178

4

4.3.2 The article element .. 180
4.3.3 The section element .. 182
4.3.4 The nav element.. 184
4.3.5 The aside element .. 187
4.3.6 The h1, h2, h3, h4, h5, and h6 elements .. 190
4.3.7 The hgroup element .. 191
4.3.8 The header element .. 194
4.3.9 The footer element .. 195
4.3.10 The address element .. 197
4.3.11 Headings and sections... 199

4.3.11.1 Creating an outline... 201
4.3.11.2 Sample outlines.. 205
4.3.11.3 Exposing outlines to users ... 209

4.3.12 Usage summary... 210
4.3.12.1 Article or section?... 211

4.4 Grouping content .. 211
4.4.1 The p element.. 211
4.4.2 The hr element.. 214
4.4.3 The pre element.. 216
4.4.4 The blockquote element... 217
4.4.5 The ol element.. 220
4.4.6 The ul element.. 222
4.4.7 The menu element .. 223
4.4.8 The li element.. 224
4.4.9 The dl element.. 226
4.4.10 The dt element.. 230
4.4.11 The dd element.. 231
4.4.12 The figure element .. 232
4.4.13 The figcaption element... 235
4.4.14 The main element .. 235
4.4.15 The div element.. 237

4.5 Text-level semantics.. 238
4.5.1 The a element.. 238
4.5.2 The em element.. 241
4.5.3 The strong element .. 242
4.5.4 The small element .. 244
4.5.5 The s element.. 245
4.5.6 The cite element .. 246
4.5.7 The q element.. 247
4.5.8 The dfn element.. 249
4.5.9 The abbr element .. 250
4.5.10 The ruby element .. 252
4.5.11 The rt element.. 258
4.5.12 The rp element.. 258
4.5.13 The data element .. 259
4.5.14 The time element .. 260
4.5.15 The code element .. 267
4.5.16 The var element.. 268
4.5.17 The samp element .. 269
4.5.18 The kbd element.. 270

5

4.5.19 The sub and sup elements... 271
4.5.20 The i element.. 272
4.5.21 The b element.. 273
4.5.22 The u element.. 275
4.5.23 The mark element .. 275
4.5.24 The bdi element.. 278
4.5.25 The bdo element.. 279
4.5.26 The span element .. 279
4.5.27 The br element.. 280
4.5.28 The wbr element.. 281
4.5.29 Usage summary... 282

4.6 Links.. 283
4.6.1 Introduction ... 283
4.6.2 Links created by a and area elements .. 284
4.6.3 API for a and area elements .. 284
4.6.4 Following hyperlinks .. 289
4.6.5 Downloading resources.. 290

4.6.5.1 Hyperlink auditing .. 293
4.6.6 Link types .. 294

4.6.6.1 Link type "alternate" ... 295
4.6.6.2 Link type "author" ... 297
4.6.6.3 Link type "bookmark" ... 297
4.6.6.4 Link type "canonical" ... 297
4.6.6.5 Link type "dns-prefetch".. 298
4.6.6.6 Link type "external" ... 298
4.6.6.7 Link type "help" ... 298
4.6.6.8 Link type "icon" ... 298
4.6.6.9 Link type "license" ... 300
4.6.6.10 Link type "manifest" ... 301
4.6.6.11 Link type "modulepreload" .. 301
4.6.6.12 Link type "nofollow" ... 303
4.6.6.13 Link type "noopener" ... 303
4.6.6.14 Link type "noreferrer".. 304
4.6.6.15 Link type "opener" ... 304
4.6.6.16 Link type "pingback" ... 304
4.6.6.17 Link type "preconnect".. 304
4.6.6.18 Link type "prefetch" ... 305
4.6.6.19 Link type "preload" ... 305
4.6.6.20 Link type "prerender" ... 305
4.6.6.21 Link type "search" ... 305
4.6.6.22 Link type "stylesheet".. 306
4.6.6.23 Link type "tag"... 308
4.6.6.24 Sequential link types .. 309

4.6.6.24.1 Link type "next" ... 309
4.6.6.24.2 Link type "prev" ... 309

4.6.6.25 Other link types.. 309
4.7 Edits .. 311

4.7.1 The ins element.. 311
4.7.2 The del element.. 312
4.7.3 Attributes common to ins and del elements .. 313
4.7.4 Edits and paragraphs... 314
4.7.5 Edits and lists .. 315
4.7.6 Edits and tables ... 315

6

4.8 Embedded content.. 316
4.8.1 The picture element .. 316
4.8.2 The source element .. 317
4.8.3 The img element.. 320
4.8.4 Images... 328

4.8.4.1 Introduction.. 328
4.8.4.1.1 Adaptive images ... 333

4.8.4.2 Attributes common to source, img, and link elements 335
4.8.4.2.1 Srcset attributes ... 335
4.8.4.2.2 Sizes attributes ... 335

4.8.4.3 Processing model ... 336
4.8.4.3.1 When to obtain images... 337
4.8.4.3.2 Reacting to DOM mutations .. 337
4.8.4.3.3 The list of available images .. 338
4.8.4.3.4 Decoding images .. 338
4.8.4.3.5 Updating the image data .. 339
4.8.4.3.6 Selecting an image source.. 342
4.8.4.3.7 Updating the source set.. 343
4.8.4.3.8 Parsing a srcset attribute .. 344
4.8.4.3.9 Parsing a sizes attribute.. 346
4.8.4.3.10 Normalizing the source densities .. 346
4.8.4.3.11 Reacting to environment changes 347

4.8.4.4 Requirements for providing text to act as an alternative for images348
4.8.4.4.1 General guidelines .. 348
4.8.4.4.2 A link or button containing nothing but the image348
4.8.4.4.3 A phrase or paragraph with an alternative graphical
representation: charts, diagrams, graphs, maps, illustrations349
4.8.4.4.4 A short phrase or label with an alternative graphical
representation: icons, logos... 350
4.8.4.4.5 Text that has been rendered to a graphic for typographical
effect ... 352
4.8.4.4.6 A graphical representation of some of the surrounding text.353
4.8.4.4.7 Ancillary images ... 354
4.8.4.4.8 A purely decorative image that doesn't add any
information .. 355
4.8.4.4.9 A group of images that form a single larger picture with no
links ... 355
4.8.4.4.10 A group of images that form a single larger picture with
links ... 356
4.8.4.4.11 A key part of the content .. 356
4.8.4.4.12 An image not intended for the user 359
4.8.4.4.13 An image in an email or private document intended for a
specific person who is known to be able to view images..................... 360
4.8.4.4.14 Guidance for markup generators .. 360
4.8.4.4.15 Guidance for conformance checkers................................... 360

4.8.5 The iframe element .. 361
4.8.6 The embed element .. 369
4.8.7 The object element .. 373
4.8.8 The param element .. 378
4.8.9 The video element .. 380
4.8.10 The audio element .. 384
4.8.11 The track element .. 385
4.8.12 Media elements ... 387

4.8.12.1 Error codes ... 389
4.8.12.2 Location of the media resource .. 390
4.8.12.3 MIME types... 391
4.8.12.4 Network states ... 392
4.8.12.5 Loading the media resource... 392

7

4.8.12.6 Offsets into the media resource ... 403
4.8.12.7 Ready states... 405
4.8.12.8 Playing the media resource.. 408
4.8.12.9 Seeking .. 415
4.8.12.10 Media resources with multiple media tracks .. 417

4.8.12.10.1 AudioTrackList and VideoTrackList objects417
4.8.12.10.2 Selecting specific audio and video tracks declaratively....421

4.8.12.11 Timed text tracks ... 421
4.8.12.11.1 Text track model ... 421
4.8.12.11.2 Sourcing in-band text tracks ... 424
4.8.12.11.3 Sourcing out-of-band text tracks....................................... 426
4.8.12.11.4 Guidelines for exposing cues in various formats as text track
cues ... 428
4.8.12.11.5 Text track API .. 429
4.8.12.11.6 Event handlers for objects of the text track APIs434
4.8.12.11.7 Best practices for metadata text tracks............................ 434

4.8.12.12 Identifying a track kind through a URL ... 436
4.8.12.13 User interface... 436
4.8.12.14 Time ranges ... 438
4.8.12.15 The TrackEvent interface .. 438
4.8.12.16 Events summary .. 439
4.8.12.17 Security and privacy considerations... 441
4.8.12.18 Best practices for authors using media elements 441
4.8.12.19 Best practices for implementers of media elements 442

4.8.13 The map element.. 442
4.8.14 The area element .. 443
4.8.15 Image maps... 445

4.8.15.1 Authoring ... 445
4.8.15.2 Processing model ... 446

4.8.16 MathML .. 448
4.8.17 SVG.. 449
4.8.18 Dimension attributes ... 449

4.9 Tabular data .. 450
4.9.1 The table element .. 450

4.9.1.1 Techniques for describing tables .. 455
4.9.1.2 Techniques for table design.. 458

4.9.2 The caption element .. 458
4.9.3 The colgroup element .. 459
4.9.4 The col element.. 460
4.9.5 The tbody element .. 461
4.9.6 The thead element .. 462
4.9.7 The tfoot element .. 463
4.9.8 The tr element.. 464
4.9.9 The td element.. 465
4.9.10 The th element.. 467
4.9.11 Attributes common to td and th elements.. 469
4.9.12 Processing model... 470

4.9.12.1 Forming a table .. 470
4.9.12.2 Forming relationships between data cells and header cells 473

4.9.13 Examples ... 475
4.10 Forms .. 478

4.10.1 Introduction ... 478
4.10.1.1 Writing a form's user interface ... 478
4.10.1.2 Implementing the server-side processing for a form.................................. 480

8

4.10.1.3 Configuring a form to communicate with a server 481
4.10.1.4 Client-side form validation ... 482
4.10.1.5 Enabling client-side automatic filling of form controls................................ 483
4.10.1.6 Improving the user experience on mobile devices 483
4.10.1.7 The difference between the field type, the autofill field name, and the input
modality ... 484
4.10.1.8 Date, time, and number formats .. 485

4.10.2 Categories ... 486
4.10.3 The form element .. 486
4.10.4 The label element .. 490
4.10.5 The input element .. 493

4.10.5.1 States of the type attribute ... 499
4.10.5.1.1 Hidden state (type=hidden) ... 499
4.10.5.1.2 Text (type=text) state and Search state (type=search)....499
4.10.5.1.3 Telephone state (type=tel) .. 500
4.10.5.1.4 URL state (type=url).. 501
4.10.5.1.5 Email state (type=email) ... 502
4.10.5.1.6 Password state (type=password).. 503
4.10.5.1.7 Date state (type=date) .. 504
4.10.5.1.8 Month state (type=month) .. 505
4.10.5.1.9 Week state (type=week) ... 506
4.10.5.1.10 Time state (type=time) .. 507
4.10.5.1.11 Local Date and Time state (type=datetime-local).........508
4.10.5.1.12 Number state (type=number).. 509
4.10.5.1.13 Range state (type=range) .. 510
4.10.5.1.14 Color state (type=color) .. 513
4.10.5.1.15 Checkbox state (type=checkbox) 513
4.10.5.1.16 Radio Button state (type=radio)...................................... 514
4.10.5.1.17 File Upload state (type=file)... 515
4.10.5.1.18 Submit Button state (type=submit) 518
4.10.5.1.19 Image Button state (type=image)..................................... 518
4.10.5.1.20 Reset Button state (type=reset)...................................... 520
4.10.5.1.21 Button state (type=button).. 521

4.10.5.2 Implementation notes regarding localization of form controls 521
4.10.5.3 Common input element attributes .. 521

4.10.5.3.1 The maxlength and minlength attributes 522
4.10.5.3.2 The size attribute .. 522
4.10.5.3.3 The readonly attribute... 522
4.10.5.3.4 The required attribute... 523
4.10.5.3.5 The multiple attribute... 524
4.10.5.3.6 The pattern attribute... 525
4.10.5.3.7 The min and max attributes ... 526
4.10.5.3.8 The step attribute .. 527
4.10.5.3.9 The list attribute .. 528
4.10.5.3.10 The placeholder attribute ... 530

4.10.5.4 Common input element APIs... 531
4.10.5.5 Common event behaviors .. 534

4.10.6 The button element .. 535
4.10.7 The select element .. 537
4.10.8 The datalist element .. 543
4.10.9 The optgroup element .. 544
4.10.10 The option element .. 545
4.10.11 The textarea element .. 548
4.10.12 The output element .. 553
4.10.13 The progress element .. 555
4.10.14 The meter element .. 557
4.10.15 The fieldset element .. 562

9

4.10.16 The legend element .. 565
4.10.17 Form control infrastructure .. 566

4.10.17.1 A form control's value .. 566
4.10.17.2 Mutability ... 566
4.10.17.3 Association of controls and forms .. 566

4.10.18 Attributes common to form controls .. 568
4.10.18.1 Naming form controls: the name attribute .. 568
4.10.18.2 Submitting element directionality: the dirname attribute 568
4.10.18.3 Limiting user input length: the maxlength attribute 569
4.10.18.4 Setting minimum input length requirements: the minlength attribute....569
4.10.18.5 Enabling and disabling form controls: the disabled attribute570
4.10.18.6 Form submission attributes .. 570
4.10.18.7 Autofill .. 573

4.10.18.7.1 Autofilling form controls: the autocomplete attribute573
4.10.18.7.2 Processing model.. 579

4.10.19 APIs for the text control selections .. 585
4.10.20 Constraints .. 590

4.10.20.1 Definitions .. 590
4.10.20.2 Constraint validation .. 591
4.10.20.3 The constraint validation API.. 592
4.10.20.4 Security .. 595

4.10.21 Form submission.. 595
4.10.21.1 Introduction.. 595
4.10.21.2 Implicit submission... 596
4.10.21.3 Form submission algorithm .. 596
4.10.21.4 Constructing the entry list.. 599
4.10.21.5 Selecting a form submission encoding ... 601
4.10.21.6 URL-encoded form data.. 602
4.10.21.7 Multipart form data .. 602
4.10.21.8 Plain text form data.. 602
4.10.21.9 The SubmitEvent interface .. 603
4.10.21.10 The FormDataEvent interface .. 603

4.10.22 Resetting a form .. 603
4.11 Interactive elements ... 604

4.11.1 The details element .. 604
4.11.2 The summary element .. 607
4.11.3 Commands... 607

4.11.3.1 Facets ... 607
4.11.3.2 Using the a element to define a command .. 608
4.11.3.3 Using the button element to define a command 608
4.11.3.4 Using the input element to define a command... 608
4.11.3.5 Using the option element to define a command 609
4.11.3.6 Using the accesskey attribute on a legend element to define a
command ... 609
4.11.3.7 Using the accesskey attribute to define a command on other elements...610

4.11.4 The dialog element .. 610
4.12 Scripting.. 614

4.12.1 The script element .. 614
4.12.1.1 Processing model ... 619
4.12.1.2 Scripting languages.. 624
4.12.1.3 Restrictions for contents of script elements .. 624
4.12.1.4 Inline documentation for external scripts... 626
4.12.1.5 Interaction of script elements and XSLT .. 627

4.12.2 The noscript element .. 627

10

4.12.3 The template element .. 629
4.12.3.1 Interaction of template elements with XSLT and XPath 632

4.12.4 The slot element .. 633
4.12.5 The canvas element .. 634

4.12.5.1 The 2D rendering context... 638
4.12.5.1.1 Implementation notes... 645
4.12.5.1.2 The canvas state... 645
4.12.5.1.3 Line styles... 646
4.12.5.1.4 Text styles ... 650
4.12.5.1.5 Building paths ... 654
4.12.5.1.6 Path2D objects.. 659
4.12.5.1.7 Transformations .. 659
4.12.5.1.8 Image sources for 2D rendering contexts 661
4.12.5.1.9 Fill and stroke styles ... 663
4.12.5.1.10 Drawing rectangles to the bitmap 666
4.12.5.1.11 Drawing text to the bitmap... 667
4.12.5.1.12 Drawing paths to the canvas .. 669
4.12.5.1.13 Drawing focus rings and scrolling paths into view672
4.12.5.1.14 Drawing images .. 673
4.12.5.1.15 Pixel manipulation .. 675
4.12.5.1.16 Compositing.. 679
4.12.5.1.17 Image smoothing .. 679
4.12.5.1.18 Shadows ... 680
4.12.5.1.19 Filters .. 681
4.12.5.1.20 Working with externally-defined SVG filters...................... 682
4.12.5.1.21 Drawing model.. 682
4.12.5.1.22 Best practices ... 682
4.12.5.1.23 Examples .. 683

4.12.5.2 The ImageBitmap rendering context .. 687
4.12.5.2.1 Introduction .. 687
4.12.5.2.2 The ImageBitmapRenderingContext interface687

4.12.5.3 The OffscreenCanvas interface... 689
4.12.5.3.1 The offscreen 2D rendering context.................................... 693

4.12.5.4 Color spaces and color correction .. 694
4.12.5.5 Serializing bitmaps to a file .. 695
4.12.5.6 Security with canvas elements .. 695

4.13 Custom elements .. 696
4.13.1 Introduction ... 696

4.13.1.1 Creating an autonomous custom element ... 696
4.13.1.2 Creating a form-associated custom element.. 697
4.13.1.3 Creating a customized built-in element.. 698
4.13.1.4 Drawbacks of autonomous custom elements... 699
4.13.1.5 Upgrading elements after their creation .. 701

4.13.2 Requirements for custom element constructors and reactions.. 702
4.13.3 Core concepts.. 703
4.13.4 The CustomElementRegistry interface... 706
4.13.5 Upgrades ... 709
4.13.6 Custom element reactions... 711
4.13.7 The ElementInternals interface .. 714

4.14 Common idioms without dedicated elements ... 717
4.14.1 Bread crumb navigation .. 717
4.14.2 Tag clouds.. 718
4.14.3 Conversations .. 718
4.14.4 Footnotes... 721

4.15 Disabled elements... 723
4.16 Matching HTML elements using selectors and CSS ... 723

11

4.16.1 Case-sensitivity of the CSS 'attr()' function ... 723
4.16.2 Case-sensitivity of selectors .. 723
4.16.3 Pseudo-classes .. 724

5 Microdata.. 729
5.1 Introduction... 729

5.1.1 Overview.. 729
5.1.2 The basic syntax.. 729
5.1.3 Typed items ... 732
5.1.4 Global identifiers for items .. 733
5.1.5 Selecting names when defining vocabularies .. 733

5.2 Encoding microdata .. 734
5.2.1 The microdata model... 734
5.2.2 Items.. 734
5.2.3 Names: the itemprop attribute ... 736
5.2.4 Values .. 738
5.2.5 Associating names with items ... 739
5.2.6 Microdata and other namespaces.. 740

5.3 Sample microdata vocabularies .. 740
5.3.1 vCard ... 741

5.3.1.1 Conversion to vCard... 749
5.3.1.2 Examples.. 753

5.3.2 vEvent ... 754
5.3.2.1 Conversion to iCalendar ... 759
5.3.2.2 Examples.. 760

5.3.3 Licensing works ... 761
5.3.3.1 Examples.. 762

5.4 Converting HTML to other formats .. 762
5.4.1 JSON... 762

6 User interaction .. 765
6.1 The hidden attribute... 765
6.2 Inert subtrees.. 766
6.3 Tracking user activation .. 766

6.3.1 Data model .. 767
6.3.2 Processing model... 767
6.3.3 APIs gated by user activation .. 768

6.4 Activation behavior of elements.. 768
6.5 Focus... 769

6.5.1 Introduction ... 769
6.5.2 Data model .. 770
6.5.3 The tabindex attribute.. 773
6.5.4 Processing model... 775
6.5.5 Sequential focus navigation... 779
6.5.6 Focus management APIs.. 780
6.5.7 The autofocus attribute.. 782

6.6 Assigning keyboard shortcuts ... 784
6.6.1 Introduction ... 784
6.6.2 The accesskey attribute.. 785
6.6.3 Processing model... 786

12

6.7 Editing... 786
6.7.1 Making document regions editable: The contenteditable content attribute..................... 786
6.7.2 Making entire documents editable: the designMode getter and setter................................ 788
6.7.3 Best practices for in-page editors .. 788
6.7.4 Editing APIs.. 789
6.7.5 Spelling and grammar checking .. 789
6.7.6 Autocapitalization .. 791
6.7.7 Input modalities: the inputmode attribute... 792
6.7.8 Input modalities: the enterkeyhint attribute ... 793

6.8 Find-in-page .. 793
6.8.1 Introduction ... 793
6.8.2 Interaction with selection .. 794

6.9 Drag and drop ... 794
6.9.1 Introduction ... 794
6.9.2 The drag data store ... 796
6.9.3 The DataTransfer interface.. 797

6.9.3.1 The DataTransferItemList interface ... 800
6.9.3.2 The DataTransferItem interface... 801

6.9.4 The DragEvent interface ... 802
6.9.5 Processing model... 804
6.9.6 Events summary.. 809
6.9.7 The draggable attribute.. 809
6.9.8 Security risks in the drag-and-drop model... 810

7 Loading web pages... 811
7.1 Browsing contexts ... 811

7.1.1 Creating browsing contexts ... 812
7.1.2 Related browsing contexts... 814

7.1.2.1 Navigating related browsing contexts in the DOM 816
7.1.3 Security ... 817
7.1.4 Groupings of browsing contexts .. 818
7.1.5 Browsing context names.. 819

7.2 Security infrastructure for Window, WindowProxy, and Location objects ... 821
7.2.1 Integration with IDL ... 821
7.2.2 Shared internal slot: [[CrossOriginPropertyDescriptorMap]] .. 821
7.2.3 Shared abstract operations.. 822

7.2.3.1 CrossOriginProperties (O) ... 822
7.2.3.2 CrossOriginPropertyFallback (P) ... 822
7.2.3.3 IsPlatformObjectSameOrigin (O) .. 822
7.2.3.4 CrossOriginGetOwnPropertyHelper (O, P)... 823
7.2.3.5 CrossOriginGet (O, P, Receiver).. 824
7.2.3.6 CrossOriginSet (O, P, V, Receiver) .. 824
7.2.3.7 CrossOriginOwnPropertyKeys (O) ... 824

7.3 The Window object ... 824
7.3.1 APIs for creating and navigating browsing contexts by name ... 826
7.3.2 Accessing other browsing contexts.. 829
7.3.3 Named access on the Window object ... 830
7.3.4 Discarding browsing contexts .. 831
7.3.5 Closing browsing contexts ... 831
7.3.6 Browser interface elements ... 832
7.3.7 Script settings for Window objects.. 833

13

7.4 The WindowProxy exotic object ... 834
7.4.1 [[GetPrototypeOf]] ()... 834
7.4.2 [[SetPrototypeOf]] (V) .. 835
7.4.3 [[IsExtensible]] () .. 835
7.4.4 [[PreventExtensions]] () .. 835
7.4.5 [[GetOwnProperty]] (P) .. 835
7.4.6 [[DefineOwnProperty]] (P, Desc).. 836
7.4.7 [[Get]] (P, Receiver)... 836
7.4.8 [[Set]] (P, V, Receiver) ... 836
7.4.9 [[Delete]] (P).. 836
7.4.10 [[OwnPropertyKeys]] () ... 837

7.5 Origin .. 837
7.5.1 Sites... 839
7.5.2 Relaxing the same-origin restriction .. 840
7.5.3 Origin isolation... 841

7.6 Sandboxing ... 842
7.7 Cross-origin opener policies .. 844

7.7.1 The `Cross-Origin-Opener-Policy` header ... 845
7.7.2 Browsing context group switches due to cross-origin opener policy.................................... 846

7.8 Cross-origin embedder policies ... 847
7.8.1 The headers... 847
7.8.2 Embedder policy checks .. 848

7.9 Session history and navigation ... 849
7.9.1 Browsing sessions.. 849
7.9.2 The session history of browsing contexts .. 849
7.9.3 The History interface ... 851
7.9.4 Implementation notes for session history .. 856
7.9.5 The Location interface ... 857

7.9.5.1 [[GetPrototypeOf]] () ... 864
7.9.5.2 [[SetPrototypeOf]] (V) .. 864
7.9.5.3 [[IsExtensible]] ()... 864
7.9.5.4 [[PreventExtensions]] () .. 864
7.9.5.5 [[GetOwnProperty]] (P)... 864
7.9.5.6 [[DefineOwnProperty]] (P, Desc) .. 864
7.9.5.7 [[Get]] (P, Receiver) ... 864
7.9.5.8 [[Set]] (P, V, Receiver).. 865
7.9.5.9 [[Delete]] (P) .. 865
7.9.5.10 [[OwnPropertyKeys]] () .. 865

7.10 Browsing the web.. 865
7.10.1 Navigating across documents.. 865
7.10.2 Page load processing model for HTML files.. 876
7.10.3 Page load processing model for XML files .. 877
7.10.4 Page load processing model for text files .. 877
7.10.5 Page load processing model for multipart/x-mixed-replace resources 878
7.10.6 Page load processing model for media .. 878
7.10.7 Page load processing model for content that uses plugins .. 879
7.10.8 Page load processing model for inline content that doesn't have a DOM 879
7.10.9 Navigating to a fragment... 880
7.10.10 History traversal .. 881

7.10.10.1 Persisted user state restoration.. 883
7.10.10.2 The PopStateEvent interface .. 883

14

7.10.10.3 The HashChangeEvent interface... 884
7.10.10.4 The PageTransitionEvent interface ... 884

7.10.11 Loading documents ... 885
7.10.12 Unloading documents .. 885

7.10.12.1 The BeforeUnloadEvent interface... 887
7.10.13 Aborting a document load ... 887
7.10.14 The `X-Frame-Options` header.. 888

7.11 Offline web applications .. 890
7.11.1 Introduction ... 890

7.11.1.1 Supporting offline caching for legacy applications 891
7.11.1.2 Events summary .. 892

7.11.2 Application caches... 892
7.11.3 The cache manifest syntax.. 894

7.11.3.1 Some sample manifests ... 894
7.11.3.2 Writing cache manifests ... 895
7.11.3.3 Parsing cache manifests... 897

7.11.4 Downloading or updating an application cache ... 900
7.11.5 The application cache selection algorithm .. 907
7.11.6 Changes to the networking model ... 907
7.11.7 Expiring application caches ... 908
7.11.8 Disk space ... 908
7.11.9 Security concerns with offline applications caches.. 909
7.11.10 Application cache API .. 909
7.11.11 Browser state... 911

8 Web application APIs .. 913
8.1 Scripting.. 913

8.1.1 Introduction ... 913
8.1.2 Agents and agent clusters ... 913

8.1.2.1 Integration with the JavaScript agent formalism .. 913
8.1.2.2 Integration with the JavaScript agent cluster formalism 914

8.1.3 Realms and their counterparts .. 916
8.1.3.1 Environments ... 916
8.1.3.2 Environment settings objects ... 917
8.1.3.3 Realms, settings objects, and global objects.. 918

8.1.3.3.1 Entry ... 921
8.1.3.3.2 Incumbent... 921
8.1.3.3.3 Current.. 924
8.1.3.3.4 Relevant.. 924

8.1.3.4 Enabling and disabling scripting... 924
8.1.3.5 Secure contexts.. 924

8.1.4 Script processing model .. 925
8.1.4.1 Scripts .. 925
8.1.4.2 Fetching scripts .. 926
8.1.4.3 Creating scripts .. 933
8.1.4.4 Calling scripts... 934
8.1.4.5 Killing scripts .. 936
8.1.4.6 Runtime script errors.. 936
8.1.4.7 Unhandled promise rejections.. 938

8.1.5 JavaScript specification host hooks.. 938
8.1.5.1 HostEnqueuePromiseJob(job, realm) .. 939
8.1.5.2 HostEnsureCanCompileStrings(callerRealm, calleeRealm)........................... 940
8.1.5.3 HostPromiseRejectionTracker(promise, operation) 940

15

8.1.5.4 Module-related host hooks ... 941
8.1.5.4.1 HostGetImportMetaProperties(moduleRecord) 942
8.1.5.4.2 HostImportModuleDynamically(referencingScriptOrModule,
specifier, promiseCapability) ... 942
8.1.5.4.3 HostResolveImportedModule(referencingScriptOrModule,
specifier).. 943

8.1.6 Event loops .. 944
8.1.6.1 Definitions .. 944
8.1.6.2 Queuing tasks .. 945
8.1.6.3 Processing model ... 946
8.1.6.4 Generic task sources .. 951
8.1.6.5 Dealing with the event loop from other specifications 952

8.1.7 Events.. 954
8.1.7.1 Event handlers ... 954
8.1.7.2 Event handlers on elements, Document objects, and Window objects...........961

8.1.7.2.1 IDL definitions ... 963
8.1.7.3 Event firing... 965

8.2 The WindowOrWorkerGlobalScope mixin .. 965
8.3 Base64 utility methods ... 967
8.4 Dynamic markup insertion .. 967

8.4.1 Opening the input stream.. 967
8.4.2 Closing the input stream.. 969
8.4.3 document.write() .. 970
8.4.4 document.writeln() .. 970

8.5 DOM parsing ... 971
8.6 Timers ... 972
8.7 Microtask queuing ... 975
8.8 User prompts... 977

8.8.1 Simple dialogs ... 977
8.8.2 Printing .. 978

8.9 System state and capabilities ... 979
8.9.1 The Navigator object.. 979

8.9.1.1 Client identification .. 980
8.9.1.2 Language preferences.. 982
8.9.1.3 Custom scheme handlers: the registerProtocolHandler() method982

8.9.1.3.1 Security and privacy ... 984
8.9.1.4 Cookies... 985
8.9.1.5 Plugins.. 985

8.10 Images .. 990
8.11 Animation frames.. 995

9 Communication .. 998
9.1 The MessageEvent interface ... 998
9.2 Server-sent events .. 999

9.2.1 Introduction ... 999
9.2.2 The EventSource interface.. 1000
9.2.3 Processing model... 1002
9.2.4 Parsing an event stream.. 1003
9.2.5 Interpreting an event stream... 1003
9.2.6 Authoring notes ... 1006
9.2.7 Connectionless push and other features.. 1006
9.2.8 Garbage collection... 1007

16

9.2.9 Implementation advice .. 1007
9.3 Web sockets .. 1008

9.3.1 Introduction ... 1008
9.3.2 The WebSocket interface ... 1008
9.3.3 Feedback from the protocol ... 1012
9.3.4 Ping and Pong frames .. 1014
9.3.5 The CloseEvent interface.. 1014
9.3.6 Garbage collection... 1015

9.4 Cross-document messaging .. 1016
9.4.1 Introduction ... 1016
9.4.2 Security ... 1016

9.4.2.1 Authors... 1016
9.4.2.2 User agents .. 1017

9.4.3 Posting messages .. 1017
9.5 Channel messaging... 1018

9.5.1 Introduction ... 1018
9.5.1.1 Examples.. 1019
9.5.1.2 Ports as the basis of an object-capability model on the web...................... 1020
9.5.1.3 Ports as the basis of abstracting out service implementations1021

9.5.2 Message channels ... 1021
9.5.3 Message ports ... 1021
9.5.4 Broadcasting to many ports... 1024
9.5.5 Ports and garbage collection ... 1025

9.6 Broadcasting to other browsing contexts .. 1025

10 Web workers ... 1028
10.1 Introduction... 1028

10.1.1 Scope... 1028
10.1.2 Examples ... 1028

10.1.2.1 A background number-crunching worker.. 1028
10.1.2.2 Using a JavaScript module as a worker .. 1029
10.1.2.3 Shared workers introduction .. 1031
10.1.2.4 Shared state using a shared worker ... 1033
10.1.2.5 Delegation.. 1037
10.1.2.6 Providing libraries... 1039

10.1.3 Tutorials ... 1042
10.1.3.1 Creating a dedicated worker .. 1042
10.1.3.2 Communicating with a dedicated worker ... 1043
10.1.3.3 Shared workers .. 1043

10.2 Infrastructure .. 1044
10.2.1 The global scope.. 1044

10.2.1.1 The WorkerGlobalScope common interface .. 1044
10.2.1.2 Dedicated workers and the DedicatedWorkerGlobalScope interface1046
10.2.1.3 Shared workers and the SharedWorkerGlobalScope interface................1047

10.2.2 The event loop... 1047
10.2.3 The worker's lifetime ... 1048
10.2.4 Processing model... 1048
10.2.5 Runtime script errors ... 1051
10.2.6 Creating workers.. 1051

10.2.6.1 The AbstractWorker mixin.. 1051
10.2.6.2 Script settings for workers.. 1052
10.2.6.3 Dedicated workers and the Worker interface ... 1053

17

10.2.6.4 Shared workers and the SharedWorker interface..................................... 1054
10.2.7 Concurrent hardware capabilities .. 1056

10.3 APIs available to workers .. 1056
10.3.1 Importing scripts and libraries ... 1056
10.3.2 The WorkerNavigator interface .. 1057
10.3.3 The WorkerLocation interface .. 1057

11 Web storage ... 1059
11.1 Introduction... 1059
11.2 The API .. 1060

11.2.1 The Storage interface ... 1060
11.2.2 The sessionStorage getter .. 1062
11.2.3 The localStorage getter .. 1063
11.2.4 The StorageEvent interface.. 1063

11.3 Privacy .. 1064
11.3.1 User tracking ... 1064
11.3.2 Sensitivity of data.. 1065

11.4 Security... 1065
11.4.1 DNS spoofing attacks... 1065
11.4.2 Cross-directory attacks .. 1065
11.4.3 Implementation risks ... 1065

12 The HTML syntax .. 1067
12.1 Writing HTML documents .. 1067

12.1.1 The DOCTYPE... 1067
12.1.2 Elements.. 1068

12.1.2.1 Start tags ... 1069
12.1.2.2 End tags ... 1070
12.1.2.3 Attributes ... 1070
12.1.2.4 Optional tags.. 1071
12.1.2.5 Restrictions on content models .. 1077
12.1.2.6 Restrictions on the contents of raw text and escapable raw text
elements .. 1077

12.1.3 Text .. 1077
12.1.3.1 Newlines... 1077

12.1.4 Character references ... 1077
12.1.5 CDATA sections .. 1078
12.1.6 Comments ... 1078

12.2 Parsing HTML documents .. 1079
12.2.1 Overview of the parsing model.. 1080
12.2.2 Parse errors.. 1081
12.2.3 The input byte stream ... 1085

12.2.3.1 Parsing with a known character encoding .. 1086
12.2.3.2 Determining the character encoding.. 1086
12.2.3.3 Character encodings .. 1091
12.2.3.4 Changing the encoding while parsing .. 1091
12.2.3.5 Preprocessing the input stream.. 1091

12.2.4 Parse state... 1092
12.2.4.1 The insertion mode .. 1092
12.2.4.2 The stack of open elements ... 1093
12.2.4.3 The list of active formatting elements.. 1095
12.2.4.4 The element pointers ... 1096

18

12.2.4.5 Other parsing state flags.. 1096
12.2.5 Tokenization ... 1097

12.2.5.1 Data state .. 1098
12.2.5.2 RCDATA state.. 1098
12.2.5.3 RAWTEXT state... 1098
12.2.5.4 Script data state... 1098
12.2.5.5 PLAINTEXT state... 1099
12.2.5.6 Tag open state.. 1099
12.2.5.7 End tag open state ... 1099
12.2.5.8 Tag name state... 1100
12.2.5.9 RCDATA less-than sign state... 1100
12.2.5.10 RCDATA end tag open state.. 1100
12.2.5.11 RCDATA end tag name state... 1101
12.2.5.12 RAWTEXT less-than sign state .. 1101
12.2.5.13 RAWTEXT end tag open state ... 1101
12.2.5.14 RAWTEXT end tag name state.. 1101
12.2.5.15 Script data less-than sign state.. 1102
12.2.5.16 Script data end tag open state... 1102
12.2.5.17 Script data end tag name state.. 1102
12.2.5.18 Script data escape start state .. 1103
12.2.5.19 Script data escape start dash state.. 1103
12.2.5.20 Script data escaped state... 1103
12.2.5.21 Script data escaped dash state .. 1104
12.2.5.22 Script data escaped dash dash state ... 1104
12.2.5.23 Script data escaped less-than sign state.. 1104
12.2.5.24 Script data escaped end tag open state... 1105
12.2.5.25 Script data escaped end tag name state.. 1105
12.2.5.26 Script data double escape start state .. 1105
12.2.5.27 Script data double escaped state... 1106
12.2.5.28 Script data double escaped dash state .. 1106
12.2.5.29 Script data double escaped dash dash state.. 1107
12.2.5.30 Script data double escaped less-than sign state 1107
12.2.5.31 Script data double escape end state .. 1107
12.2.5.32 Before attribute name state ... 1108
12.2.5.33 Attribute name state .. 1108
12.2.5.34 After attribute name state.. 1109
12.2.5.35 Before attribute value state ... 1109
12.2.5.36 Attribute value (double-quoted) state .. 1109
12.2.5.37 Attribute value (single-quoted) state ... 1110
12.2.5.38 Attribute value (unquoted) state .. 1110
12.2.5.39 After attribute value (quoted) state.. 1111
12.2.5.40 Self-closing start tag state.. 1111
12.2.5.41 Bogus comment state .. 1111
12.2.5.42 Markup declaration open state... 1112
12.2.5.43 Comment start state .. 1112
12.2.5.44 Comment start dash state.. 1112
12.2.5.45 Comment state .. 1113
12.2.5.46 Comment less-than sign state.. 1113
12.2.5.47 Comment less-than sign bang state... 1113
12.2.5.48 Comment less-than sign bang dash state .. 1113
12.2.5.49 Comment less-than sign bang dash dash state...................................... 1113
12.2.5.50 Comment end dash state ... 1114
12.2.5.51 Comment end state.. 1114
12.2.5.52 Comment end bang state... 1114
12.2.5.53 DOCTYPE state ... 1115

19

12.2.5.54 Before DOCTYPE name state .. 1115
12.2.5.55 DOCTYPE name state ... 1115
12.2.5.56 After DOCTYPE name state... 1116
12.2.5.57 After DOCTYPE public keyword state.. 1116
12.2.5.58 Before DOCTYPE public identifier state .. 1117
12.2.5.59 DOCTYPE public identifier (double-quoted) state 1117
12.2.5.60 DOCTYPE public identifier (single-quoted) state..................................... 1118
12.2.5.61 After DOCTYPE public identifier state ... 1118
12.2.5.62 Between DOCTYPE public and system identifiers state.......................... 1118
12.2.5.63 After DOCTYPE system keyword state .. 1119
12.2.5.64 Before DOCTYPE system identifier state .. 1119
12.2.5.65 DOCTYPE system identifier (double-quoted) state 1120
12.2.5.66 DOCTYPE system identifier (single-quoted) state................................... 1120
12.2.5.67 After DOCTYPE system identifier state ... 1121
12.2.5.68 Bogus DOCTYPE state .. 1121
12.2.5.69 CDATA section state ... 1121
12.2.5.70 CDATA section bracket state .. 1122
12.2.5.71 CDATA section end state .. 1122
12.2.5.72 Character reference state .. 1122
12.2.5.73 Named character reference state... 1122
12.2.5.74 Ambiguous ampersand state ... 1123
12.2.5.75 Numeric character reference state... 1123
12.2.5.76 Hexadecimal character reference start state ... 1123
12.2.5.77 Decimal character reference start state... 1124
12.2.5.78 Hexadecimal character reference state ... 1124
12.2.5.79 Decimal character reference state ... 1124
12.2.5.80 Numeric character reference end state.. 1124

12.2.6 Tree construction ... 1125
12.2.6.1 Creating and inserting nodes ... 1126
12.2.6.2 Parsing elements that contain only text... 1131
12.2.6.3 Closing elements that have implied end tags .. 1132
12.2.6.4 The rules for parsing tokens in HTML content .. 1132

12.2.6.4.1 The "initial" insertion mode .. 1132
12.2.6.4.2 The "before html" insertion mode..................................... 1133
12.2.6.4.3 The "before head" insertion mode 1134
12.2.6.4.4 The "in head" insertion mode ... 1135
12.2.6.4.5 The "in head noscript" insertion mode.............................. 1137
12.2.6.4.6 The "after head" insertion mode....................................... 1137
12.2.6.4.7 The "in body" insertion mode ... 1138
12.2.6.4.8 The "text" insertion mode... 1148
12.2.6.4.9 The "in table" insertion mode ... 1150
12.2.6.4.10 The "in table text" insertion mode 1152
12.2.6.4.11 The "in caption" insertion mode 1152
12.2.6.4.12 The "in column group" insertion mode 1153
12.2.6.4.13 The "in table body" insertion mode 1154
12.2.6.4.14 The "in row" insertion mode ... 1155
12.2.6.4.15 The "in cell" insertion mode.. 1156
12.2.6.4.16 The "in select" insertion mode.. 1156
12.2.6.4.17 The "in select in table" insertion mode 1158
12.2.6.4.18 The "in template" insertion mode 1158
12.2.6.4.19 The "after body" insertion mode..................................... 1160
12.2.6.4.20 The "in frameset" insertion mode 1160
12.2.6.4.21 The "after frameset" insertion mode 1161
12.2.6.4.22 The "after after body" insertion mode 1161
12.2.6.4.23 The "after after frameset" insertion mode 1162

12.2.6.5 The rules for parsing tokens in foreign content.. 1162
12.2.7 The end.. 1165
12.2.8 Coercing an HTML DOM into an infoset.. 1166

20

12.2.9 An introduction to error handling and strange cases in the parser 1167
12.2.9.1 Misnested tags: <i></i> .. 1167
12.2.9.2 Misnested tags: <p></p>.. 1168
12.2.9.3 Unexpected markup in tables... 1169
12.2.9.4 Scripts that modify the page as it is being parsed 1171
12.2.9.5 The execution of scripts that are moving across multiple documents......1172
12.2.9.6 Unclosed formatting elements ... 1172

12.3 Serializing HTML fragments... 1173
12.4 Parsing HTML fragments ... 1177
12.5 Named character references... 1178

13 The XML syntax .. 1188
13.1 Writing documents in the XML syntax ... 1188
13.2 Parsing XML documents .. 1188
13.3 Serializing XML fragments... 1190
13.4 Parsing XML fragments ... 1191

14 Rendering ... 1192
14.1 Introduction... 1192
14.2 The CSS user agent style sheet and presentational hints ... 1192
14.3 Non-replaced elements ... 1193

14.3.1 Hidden elements.. 1193
14.3.2 The page.. 1193
14.3.3 Flow content .. 1195
14.3.4 Phrasing content.. 1196
14.3.5 Bidirectional text ... 1198
14.3.6 Quotes ... 1198
14.3.7 Sections and headings... 1204
14.3.8 Lists ... 1205
14.3.9 Tables... 1206
14.3.10 Margin collapsing quirks .. 1211
14.3.11 Form controls... 1211
14.3.12 The hr element.. 1212
14.3.13 The fieldset and legend elements ... 1212

14.4 Replaced elements.. 1215
14.4.1 Embedded content .. 1215
14.4.2 Images... 1216
14.4.3 Attributes for embedded content and images ... 1217
14.4.4 Image maps... 1218

14.5 Widgets ... 1219
14.5.1 Introduction ... 1219
14.5.2 Button layout ... 1219
14.5.3 The button element .. 1219
14.5.4 The details and summary elements ... 1219
14.5.5 The input element as a text entry widget .. 1220
14.5.6 The input element as domain-specific widgets .. 1220
14.5.7 The input element as a range control .. 1221
14.5.8 The input element as a color well... 1221
14.5.9 The input element as a checkbox and radio button widgets .. 1221

21

14.5.10 The input element as a file upload control ... 1221
14.5.11 The input element as a button ... 1221
14.5.12 The marquee element .. 1222
14.5.13 The meter element .. 1223
14.5.14 The progress element .. 1223
14.5.15 The select element .. 1224
14.5.16 The textarea element .. 1224

14.6 Frames and framesets... 1225
14.7 Interactive media .. 1227

14.7.1 Links, forms, and navigation.. 1227
14.7.2 The title attribute ... 1227
14.7.3 Editing hosts .. 1228
14.7.4 Text rendered in native user interfaces ... 1228

14.8 Print media.. 1229
14.9 Unstyled XML documents.. 1230

15 Obsolete features ... 1231
15.1 Obsolete but conforming features... 1231

15.1.1 Warnings for obsolete but conforming features... 1231
15.2 Non-conforming features... 1232
15.3 Requirements for implementations ... 1237

15.3.1 The marquee element .. 1237
15.3.2 Frames... 1239
15.3.3 Other elements, attributes and APIs .. 1241

16 IANA considerations.. 1250
16.1 text/html... 1250
16.2 multipart/x-mixed-replace .. 1251
16.3 application/xhtml+xml .. 1252
16.4 text/cache-manifest.. 1253
16.5 text/ping... 1254
16.6 application/microdata+json... 1255
16.7 text/event-stream.. 1256
16.8 `Cross-Origin-Embedder-Policy`.. 1257
16.9 `Cross-Origin-Embedder-Policy-Report-Only`... 1257
16.10 `Cross-Origin-Opener-Policy` ... 1257
16.11 `Origin-Isolation` .. 1258
16.12 `Ping-From`.. 1258
16.13 `Ping-To` ... 1259
16.14 `Refresh` ... 1259
16.15 `Last-Event-ID` .. 1259
16.16 `X-Frame-Options` .. 1260
16.17 web+ scheme prefix... 1260

Index.. 1262
Elements ... 1262
Element content categories .. 1268

22

Attributes .. 1269
Element Interfaces .. 1277
All Interfaces ... 1279
Events ... 1281
MIME Types.. 1282

References... 1285

Acknowledgments ... 1294

Intellectual property rights .. 1297

23

This specification defines a big part of the web platform, in lots of detail. Its place in the web platform specification stack relative to
other specifications can be best summed up as follows:

CSS SVG MathML Service Workers

ID
B

Fe
tc

h
CS

P
AV

1
Op

us

PN
G

THIS SPECIFICATION
HTTP TLS DOM Unicode Web IDL

MIME URL XML JavaScript Encoding

This section is non-normative.

In short: Yes.

1 Introduction §p24

1.1 Where does this specification fit? §p24

1.2 Is this HTML5? §p24

24

In more length: the term "HTML5" is widely used as a buzzword to refer to modern web technologies, many of which (though by no
means all) are developed at the WHATWG. This document is one such; others are available from the WHATWG Standards overview.

This section is non-normative.

HTML is the World Wide Web's core markup language. Originally, HTML was primarily designed as a language for semantically
describing scientific documents. Its general design, however, has enabled it to be adapted, over the subsequent years, to describe a
number of other types of documents and even applications.

This section is non-normative.

This specification is intended for authors of documents and scripts that use the features defined in this specification, implementers of
tools that operate on pages that use the features defined in this specification, and individuals wishing to establish the correctness of
documents or implementations with respect to the requirements of this specification.

This document is probably not suited to readers who do not already have at least a passing familiarity with web technologies, as in
places it sacrifices clarity for precision, and brevity for completeness. More approachable tutorials and authoring guides can provide a
gentler introduction to the topic.

In particular, familiarity with the basics of DOM is necessary for a complete understanding of some of the more technical parts of this
specification. An understanding of Web IDL, HTTP, XML, Unicode, character encodings, JavaScript, and CSS will also be helpful in places
but is not essential.

This section is non-normative.

This specification is limited to providing a semantic-level markup language and associated semantic-level scripting APIs for authoring
accessible pages on the web ranging from static documents to dynamic applications.

The scope of this specification does not include providing mechanisms for media-specific customization of presentation (although
default rendering rules for web browsers are included at the end of this specification, and several mechanisms for hooking into CSS are
provided as part of the language).

The scope of this specification is not to describe an entire operating system. In particular, hardware configuration software, image
manipulation tools, and applications that users would be expected to use with high-end workstations on a daily basis are out of scope.
In terms of applications, this specification is targeted specifically at applications that would be expected to be used by users on an
occasional basis, or regularly but from disparate locations, with low CPU requirements. Examples of such applications include online
purchasing systems, searching systems, games (especially multiplayer online games), public telephone books or address books,
communications software (email clients, instant messaging clients, discussion software), document editing software, etc.

This section is non-normative.

For its first five years (1990-1995), HTML went through a number of revisions and experienced a number of extensions, primarily
hosted first at CERN, and then at the IETF.

With the creation of the W3C, HTML's development changed venue again. A first abortive attempt at extending HTML in 1995 known as

1.3 Background §p25

1.4 Audience §p25

1.5 Scope §p25

1.6 History §p25

25

https://spec.whatwg.org/

HTML 3.0 then made way to a more pragmatic approach known as HTML 3.2, which was completed in 1997. HTML4 quickly followed
later that same year.

The following year, the W3C membership decided to stop evolving HTML and instead begin work on an XML-based equivalent, called
XHTML. This effort started with a reformulation of HTML4 in XML, known as XHTML 1.0, which added no new features except the new
serialization, and which was completed in 2000. After XHTML 1.0, the W3C's focus turned to making it easier for other working groups
to extend XHTML, under the banner of XHTML Modularization. In parallel with this, the W3C also worked on a new language that was
not compatible with the earlier HTML and XHTML languages, calling it XHTML2.

Around the time that HTML's evolution was stopped in 1998, parts of the API for HTML developed by browser vendors were specified
and published under the name DOM Level 1 (in 1998) and DOM Level 2 Core and DOM Level 2 HTML (starting in 2000 and culminating
in 2003). These efforts then petered out, with some DOM Level 3 specifications published in 2004 but the working group being closed
before all the Level 3 drafts were completed.

In 2003, the publication of XForms, a technology which was positioned as the next generation of web forms, sparked a renewed
interest in evolving HTML itself, rather than finding replacements for it. This interest was borne from the realization that XML's
deployment as a web technology was limited to entirely new technologies (like RSS and later Atom), rather than as a replacement for
existing deployed technologies (like HTML).

A proof of concept to show that it was possible to extend HTML4's forms to provide many of the features that XForms 1.0 introduced,
without requiring browsers to implement rendering engines that were incompatible with existing HTML web pages, was the first result
of this renewed interest. At this early stage, while the draft was already publicly available, and input was already being solicited from
all sources, the specification was only under Opera Software's copyright.

The idea that HTML's evolution should be reopened was tested at a W3C workshop in 2004, where some of the principles that underlie
the HTML5 work (described below), as well as the aforementioned early draft proposal covering just forms-related features, were
presented to the W3C jointly by Mozilla and Opera. The proposal was rejected on the grounds that the proposal conflicted with the
previously chosen direction for the web's evolution; the W3C staff and membership voted to continue developing XML-based
replacements instead.

Shortly thereafter, Apple, Mozilla, and Opera jointly announced their intent to continue working on the effort under the umbrella of a
new venue called the WHATWG. A public mailing list was created, and the draft was moved to the WHATWG site. The copyright was
subsequently amended to be jointly owned by all three vendors, and to allow reuse of the specification.

The WHATWG was based on several core principles, in particular that technologies need to be backwards compatible, that
specifications and implementations need to match even if this means changing the specification rather than the implementations, and
that specifications need to be detailed enough that implementations can achieve complete interoperability without reverse-
engineering each other.

The latter requirement in particular required that the scope of the HTML5 specification include what had previously been specified in
three separate documents: HTML4, XHTML1, and DOM2 HTML. It also meant including significantly more detail than had previously
been considered the norm.

In 2006, the W3C indicated an interest to participate in the development of HTML5 after all, and in 2007 formed a working group
chartered to work with the WHATWG on the development of the HTML5 specification. Apple, Mozilla, and Opera allowed the W3C to
publish the specification under the W3C copyright, while keeping a version with the less restrictive license on the WHATWG site.

For a number of years, both groups then worked together. In 2011, however, the groups came to the conclusion that they had different
goals: the W3C wanted to publish a "finished" version of "HTML5", while the WHATWG wanted to continue working on a Living Standard
for HTML, continuously maintaining the specification rather than freezing it in a state with known problems, and adding new features
as needed to evolve the platform.

In 2019, the WHATWG and W3C signed an agreement to collaborate on a single version of HTML going forward: this document.

This section is non-normative.

It must be admitted that many aspects of HTML appear at first glance to be nonsensical and inconsistent.

HTML, its supporting DOM APIs, as well as many of its supporting technologies, have been developed over a period of several decades
by a wide array of people with different priorities who, in many cases, did not know of each other's existence.

1.7 Design notes §p26

26

https://www.w3.org/blog/news/archives/7753

Features have thus arisen from many sources, and have not always been designed in especially consistent ways. Furthermore, because
of the unique characteristics of the web, implementation bugs have often become de-facto, and now de-jure, standards, as content is
often unintentionally written in ways that rely on them before they can be fixed.

Despite all this, efforts have been made to adhere to certain design goals. These are described in the next few subsections.

This section is non-normative.

To avoid exposing web authors to the complexities of multithreading, the HTML and DOM APIs are designed such that no script can
ever detect the simultaneous execution of other scripts. Even with workersp1053, the intent is that the behavior of implementations can
be thought of as completely serializing the execution of all scripts in all browsing contextsp811.

The exception to this general design principle is the JavaScript SharedArrayBuffer class. Using SharedArrayBuffer objects, it can in
fact be observed that scripts in other agents are executing simultaneously. Furthermore, due to the JavaScript memory model, there
are situations which not only are un-representable via serialized script execution, but also un-representable via serialized statement
execution among those scripts.

This section is non-normative.

This specification interacts with and relies on a wide variety of other specifications. In certain circumstances, unfortunately, conflicting
needs have led to this specification violating the requirements of these other specifications. Whenever this has occurred, the
transgressions have each been noted as a "willful violation", and the reason for the violation has been noted.

This section is non-normative.

HTML has a wide array of extensibility mechanisms that can be used for adding semantics in a safe manner:

• Authors can use the classp137 attribute to extend elements, effectively creating their own elements, while using the most
applicable existing "real" HTML element, so that browsers and other tools that don't know of the extension can still support it
somewhat well. This is the tack used by microformats, for example.

• Authors can include data for inline client-side scripts or server-side site-wide scripts to process using the data-*=""p145

attributes. These are guaranteed to never be touched by browsers, and allow scripts to include data on HTML elements that
scripts can then look for and process.

• Authors can use the <meta name="" content="">p164 mechanism to include page-wide metadata.

• Authors can use the rel=""p284 mechanism to annotate links with specific meanings by registering extensions to the
predefined set of link typesp309. This is also used by microformats.

• Authors can embed raw data using the <script type="">p614 mechanism with a custom type, for further handling by inline
or server-side scripts.

• Authors can create pluginsp45 and invoke them using the embedp369 element. This is how Flash works.

• Authors can extend APIs using the JavaScript prototyping mechanism. This is widely used by script libraries, for instance.

• Authors can use the microdata feature (the itemscope=""p734 and itemprop=""p736 attributes) to embed nested name-value
pairs of data to be shared with other applications and sites.

1.7.1 Serializability of script execution §p27

1.7.2 Compliance with other specifications §p27

1.7.3 Extensibility §p27

27

https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-agents

This section is non-normative.

This specification defines an abstract language for describing documents and applications, and some APIs for interacting with in-
memory representations of resources that use this language.

The in-memory representation is known as "DOM HTML", or "the DOM" for short.

There are various concrete syntaxes that can be used to transmit resources that use this abstract language, two of which are defined
in this specification.

The first such concrete syntax is the HTML syntax. This is the format suggested for most authors. It is compatible with most legacy web
browsers. If a document is transmitted with the text/htmlp1250 MIME type, then it will be processed as an HTML document by web
browsers. This specification defines the latest HTML syntax, known simply as "HTML".

The second concrete syntax is XML. When a document is transmitted with an XML MIME type, such as application/xhtml+xmlp1252,
then it is treated as an XML document by web browsers, to be parsed by an XML processor. Authors are reminded that the processing
for XML and HTML differs; in particular, even minor syntax errors will prevent a document labeled as XML from being rendered fully,
whereas they would be ignored in the HTML syntax.

The DOM, the HTML syntax, and the XML syntax cannot all represent the same content. For example, namespaces cannot be
represented using the HTML syntax, but they are supported in the DOM and in the XML syntax. Similarly, documents that use the
noscriptp627 feature can be represented using the HTML syntax, but cannot be represented with the DOM or in the XML syntax.
Comments that contain the string "-->" can only be represented in the DOM, not in the HTML and XML syntaxes.

This section is non-normative.

This specification is divided into the following major sections:

Introductionp24

Non-normative materials providing a context for the HTML standard.

Common infrastructurep42

The conformance classes, algorithms, definitions, and the common underpinnings of the rest of the specification.

Semantics, structure, and APIs of HTML documentsp114

Documents are built from elements. These elements form a tree using the DOM. This section defines the features of this DOM, as
well as introducing the features common to all elements, and the concepts used in defining elements.

The elements of HTMLp152

Each element has a predefined meaning, which is explained in this section. Rules for authors on how to use the element, along with
user agent requirements for how to handle each element, are also given. This includes large signature features of HTML such as
video playback and subtitles, form controls and form submission, and a 2D graphics API known as the HTML canvas.

Microdatap729

This specification introduces a mechanism for adding machine-readable annotations to documents, so that tools can extract trees of
name-value pairs from the document. This section describes this mechanism and some algorithms that can be used to convert
HTML documents into other formats. This section also defines some sample Microdata vocabularies for contact information,
calendar events, and licensing works.

User interactionp765

HTML documents can provide a number of mechanisms for users to interact with and modify content, which are described in this
section, such as how focus works, and drag-and-drop.

1.8 HTML vs XML syntax §p28

The XML syntax for HTML was formerly referred to as "XHTML", but this specification does not use that term (among other reasons,
because no such term is used for the HTML syntaxes of MathML and SVG).

Note

1.9 Structure of this specification §p28

28

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#xml-mime-type

Loading web pagesp811

HTML documents do not exist in a vacuum — this section defines many of the features that affect environments that deal with
multiple pages, such as web browsers and offline caching of web applications.

Web application APIsp913

This section introduces basic features for scripting of applications in HTML.

Web workersp1028

This section defines an API for background threads in JavaScript.

The communication APIsp998

This section describes some mechanisms that applications written in HTML can use to communicate with other applications from
different domains running on the same client. It also introduces a server-push event stream mechanism known as Server Sent
Events or EventSourcep1000, and a two-way full-duplex socket protocol for scripts known as Web Sockets.

Web storagep1059

This section defines a client-side storage mechanism based on name-value pairs.

The HTML syntaxp1067

The XML syntaxp1188

All of these features would be for naught if they couldn't be represented in a serialized form and sent to other people, and so these
sections define the syntaxes of HTML and XML, along with rules for how to parse content using those syntaxes.

Renderingp1192

This section defines the default rendering rules for web browsers.

There are also some appendices, listing obsolete featuresp1231 and IANA considerationsp1250, and several indices.

This specification should be read like all other specifications. First, it should be read cover-to-cover, multiple times. Then, it should be
read backwards at least once. Then it should be read by picking random sections from the contents list and following all the cross-
references.

As described in the conformance requirements section below, this specification describes conformance criteria for a variety of
conformance classes. In particular, there are conformance requirements that apply to producers, for example authors and the
documents they create, and there are conformance requirements that apply to consumers, for example web browsers. They can be
distinguished by what they are requiring: a requirement on a producer states what is allowed, while a requirement on a consumer
states how software is to act.

Requirements on producers have no bearing whatsoever on consumers.

This is a definition, requirement, or explanation.

For example, "the foo attribute's value must be a valid integerp68" is a requirement on producers, as it lays out the allowed values;
in contrast, the requirement "the foo attribute's value must be parsed using the rules for parsing integersp68" is a requirement on
consumers, as it describes how to process the content.

Example

Continuing the above example, a requirement stating that a particular attribute's value is constrained to being a valid integerp68

emphatically does not imply anything about the requirements on consumers. It might be that the consumers are in fact required to
treat the attribute as an opaque string, completely unaffected by whether the value conforms to the requirements or not. It might
be (as in the previous example) that the consumers are required to parse the value using specific rules that define how invalid
(non-numeric in this case) values are to be processed.

Example

1.9.1 How to read this specification §p29

1.9.2 Typographic conventions §p29

29

This is an open issue.

[Exposed=Window]
interface Example {

// this is an IDL definition
};

/* this is a CSS fragment */

The defining instance of a term is marked up like this. Uses of that term are marked up like thisp30 or like thisp30.

The defining instance of an element, attribute, or API is marked up like this. References to that element, attribute, or API are marked
up like thisp30.

Other code fragments are marked up like this.

Variables are marked up like this.

In an algorithm, steps in synchronous sectionsp949 are marked with ⌛.

In some cases, requirements are given in the form of lists with conditions and corresponding requirements. In such cases, the
requirements that apply to a condition are always the first set of requirements that follow the condition, even in the case of there being
multiple sets of conditions for those requirements. Such cases are presented as follows:

↪ This is a condition
↪ This is another condition

This is the requirement that applies to the conditions above.

↪ This is a third condition
This is the requirement that applies to the third condition.

This section is non-normative.

A basic HTML document looks like this:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Sample page</title>

</head>

This is a note.
Note

This is an example.
Example

This is a warning.
⚠Warning!

variable = object . methodp30([optionalArgument])
This is a note to authors describing the usage of an interface.

For web developers (non-normative)

1.10 A quick introduction to HTML §p30

IDL

CSS

30

<body>
<h1>Sample page</h1>
<p>This is a simple sample.</p>
<!-- this is a comment -->

</body>
</html>

HTML documents consist of a tree of elements and text. Each element is denoted in the source by a start tagp1069, such as "<body>",
and an end tagp1070, such as "</body>". (Certain start tags and end tags can in certain cases be omittedp1071 and are implied by other
tags.)

Tags have to be nested such that elements are all completely within each other, without overlapping:

<p>This is very wrong!</p>

<p>This is correct.</p>

This specification defines a set of elements that can be used in HTML, along with rules about the ways in which the elements can be
nested.

Elements can have attributes, which control how the elements work. In the example below, there is a hyperlinkp283, formed using the
ap238 element and its hrefp284 attribute:

simple

Attributesp1070 are placed inside the start tag, and consist of a namep1070 and a valuep1070, separated by an "=" character. The attribute
value can remain unquotedp1070 if it doesn't contain ASCII whitespace or any of " ' ` = < or >. Otherwise, it has to be quoted using
either single or double quotes. The value, along with the "=" character, can be omitted altogether if the value is the empty string.

<!-- empty attributes -->
<input name=address disabled>
<input name=address disabled="">

<!-- attributes with a value -->
<input name=address maxlength=200>
<input name=address maxlength='200'>
<input name=address maxlength="200">

HTML user agents (e.g., web browsers) then parse this markup, turning it into a DOM (Document Object Model) tree. A DOM tree is an
in-memory representation of a document.

DOM trees contain several kinds of nodes, in particular a DocumentType node, Element nodes, Text nodes, Comment nodes, and in
some cases ProcessingInstruction nodes.

The markup snippet at the top of this sectionp30 would be turned into the following DOM tree:

DOCTYPE: html
htmlp152 langp140="en"
headp153

#text: ⏎␣␣
titlep154

#text: Sample page
#text: ⏎␣

#text: ⏎␣
bodyp178

#text: ⏎␣␣
h1p190

#text: Sample page
#text: ⏎␣␣
pp211

#text: This is a

31

https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

The document element of this tree is the htmlp152 element, which is the element always found in that position in HTML documents. It
contains two elements, headp153 and bodyp178, as well as a Text node between them.

There are many more Text nodes in the DOM tree than one would initially expect, because the source contains a number of spaces
(represented here by "␣") and line breaks ("⏎") that all end up as Text nodes in the DOM. However, for historical reasons not all of the
spaces and line breaks in the original markup appear in the DOM. In particular, all the whitespace before headp153 start tag ends up
being dropped silently, and all the whitespace after the bodyp178 end tag ends up placed at the end of the bodyp178.

The headp153 element contains a titlep154 element, which itself contains a Text node with the text "Sample page". Similarly, the
bodyp178 element contains an h1p190 element, a pp211 element, and a comment.

This DOM tree can be manipulated from scripts in the page. Scripts (typically in JavaScript) are small programs that can be embedded
using the scriptp614 element or using event handler content attributesp955. For example, here is a form with a script that sets the value
of the form's outputp553 element to say "Hello World":

<form name="main">
Result: <output name="result"></output>
<script>
document.forms.main.elements.result.value = 'Hello World';

</script>
</form>

Each element in the DOM tree is represented by an object, and these objects have APIs so that they can be manipulated. For instance,
a link (e.g. the ap238 element in the tree above) can have its "hrefp284" attribute changed in several ways:

var a = document.links[0]; // obtain the first link in the document
a.href = 'sample.html'; // change the destination URL of the link
a.protocol = 'https'; // change just the scheme part of the URL
a.setAttribute('href', 'https://example.com/'); // change the content attribute directly

Since DOM trees are used as the way to represent HTML documents when they are processed and presented by implementations
(especially interactive implementations like web browsers), this specification is mostly phrased in terms of DOM trees, instead of the
markup described above.

HTML documents represent a media-independent description of interactive content. HTML documents might be rendered to a screen,
or through a speech synthesizer, or on a braille display. To influence exactly how such rendering takes place, authors can use a styling
language such as CSS.

In the following example, the page has been made yellow-on-blue using CSS.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Sample styled page</title>
<style>
body { background: navy; color: yellow; }

</style>
</head>
<body>
<h1>Sample styled page</h1>
<p>This page is just a demo.</p>

</body>

ap238 hrefp284="demo.html"
#text: simple

#text: sample.
#text: ⏎␣␣
#comment: this is a comment
#text: ⏎␣⏎

32

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

</html>

For more details on how to use HTML, authors are encouraged to consult tutorials and guides. Some of the examples included in this
specification might also be of use, but the novice author is cautioned that this specification, by necessity, defines the language with a
level of detail that might be difficult to understand at first.

This section is non-normative.

When HTML is used to create interactive sites, care needs to be taken to avoid introducing vulnerabilities through which attackers can
compromise the integrity of the site itself or of the site's users.

A comprehensive study of this matter is beyond the scope of this document, and authors are strongly encouraged to study the matter
in more detail. However, this section attempts to provide a quick introduction to some common pitfalls in HTML application
development.

The security model of the web is based on the concept of "origins", and correspondingly many of the potential attacks on the web
involve cross-origin actions. [ORIGIN]p1289

Not validating user input
Cross-site scripting (XSS)
SQL injection

When accepting untrusted input, e.g. user-generated content such as text comments, values in URL parameters, messages from
third-party sites, etc, it is imperative that the data be validated before use, and properly escaped when displayed. Failing to do this
can allow a hostile user to perform a variety of attacks, ranging from the potentially benign, such as providing bogus user
information like a negative age, to the serious, such as running scripts every time a user looks at a page that includes the
information, potentially propagating the attack in the process, to the catastrophic, such as deleting all data in the server.

When writing filters to validate user input, it is imperative that filters always be safelist-based, allowing known-safe constructs and
disallowing all other input. Blocklist-based filters that disallow known-bad inputs and allow everything else are not secure, as not
everything that is bad is yet known (for example, because it might be invented in the future).

There are many constructs that can be used to try to trick a site into executing code. Here are some that authors are encouraged to
consider when writing safelist filters:

• When allowing harmless-seeming elements like imgp320, it is important to safelist any provided attributes as well. If one
allowed all attributes then an attacker could, for instance, use the onloadp962 attribute to run arbitrary script.

• When allowing URLs to be provided (e.g. for links), the scheme of each URL also needs to be explicitly safelisted, as there

For example, suppose a page looked at its URL's query string to determine what to display, and the site then redirected the user
to that page to display a message, as in:

Say Hello
Say Welcome
Say Kittens

If the message was just displayed to the user without escaping, a hostile attacker could then craft a URL that contained a script
element:

https://example.com/message.cgi?say=%3Cscript%3Ealert%28%27Oh%20no%21%27%29%3C/script%3E

If the attacker then convinced a victim user to visit this page, a script of the attacker's choosing would run on the page. Such a
script could do any number of hostile actions, limited only by what the site offers: if the site is an e-commerce shop, for
instance, such a script could cause the user to unknowingly make arbitrarily many unwanted purchases.

This is called a cross-site scripting attack.

Example

1.10.1 Writing secure applications with HTML §p33

33

are many schemes that can be abused. The most prominent example is "javascript:p872", but user agents can
implement (and indeed, have historically implemented) others.

• Allowing a basep155 element to be inserted means any scriptp614 elements in the page with relative links can be hijacked,
and similarly that any form submissions can get redirected to a hostile site.

Cross-site request forgery (CSRF)
If a site allows a user to make form submissions with user-specific side-effects, for example posting messages on a forum under the
user's name, making purchases, or applying for a passport, it is important to verify that the request was made by the user
intentionally, rather than by another site tricking the user into making the request unknowingly.

This problem exists because HTML forms can be submitted to other origins.

Sites can prevent such attacks by populating forms with user-specific hidden tokens, or by checking `Origin` headers on all
requests.

Clickjacking
A page that provides users with an interface to perform actions that the user might not wish to perform needs to be designed so as
to avoid the possibility that users can be tricked into activating the interface.

One way that a user could be so tricked is if a hostile site places the victim site in a small iframep361 and then convinces the user to
click, for instance by having the user play a reaction game. Once the user is playing the game, the hostile site can quickly position
the iframe under the mouse cursor just as the user is about to click, thus tricking the user into clicking the victim site's interface.

To avoid this, sites that do not expect to be used in frames are encouraged to only enable their interface if they detect that they are
not in a frame (e.g. by comparing the windowp826 object to the value of the topp816 attribute).

This section is non-normative.

Scripts in HTML have "run-to-completion" semantics, meaning that the browser will generally run the script uninterrupted before doing
anything else, such as firing further events or continuing to parse the document.

On the other hand, parsing of HTML files happens incrementally, meaning that the parser can pause at any point to let scripts run. This
is generally a good thing, but it does mean that authors need to be careful to avoid hooking event handlers after the events could have
possibly fired.

There are two techniques for doing this reliably: use event handler content attributesp955, or create the element and add the event
handlers in the same script. The latter is safe because, as mentioned earlier, scripts are run to completion before further events can
fire.

One way this could manifest itself is with imgp320 elements and the loadp1282 event. The event could fire as soon as the element has
been parsed, especially if the image has already been cached (which is common).

Here, the author uses the onloadp962 handler on an imgp320 element to catch the loadp1282 event:

If the element is being added by script, then so long as the event handlers are added in the same script, the event will still not be
missed:

<script>
var img = new Image();
img.src = 'games.png';
img.alt = 'Games';
img.onload = gamesLogoHasLoaded;
// img.addEventListener('load', gamesLogoHasLoaded, false); // would work also

</script>

Example

1.10.2 Common pitfalls to avoid when using the scripting APIs §p34

34

https://fetch.spec.whatwg.org/#http-origin

This section is non-normative.

Authors are encouraged to make use of conformance checkers (also known as validators) to catch common mistakes. The WHATWG
maintains a list of such tools at: https://whatwg.org/validator/

This section is non-normative.

Unlike previous versions of the HTML specification, this specification defines in some detail the required processing for invalid
documents as well as valid documents.

However, even though the processing of invalid content is in most cases well-defined, conformance requirements for documents are
still important: in practice, interoperability (the situation in which all implementations process particular content in a reliable and
identical or equivalent way) is not the only goal of document conformance requirements. This section details some of the more
common reasons for still distinguishing between a conforming document and one with errors.

This section is non-normative.

The majority of presentational features from previous versions of HTML are no longer allowed. Presentational markup in general has
been found to have a number of problems:

The use of presentational elements leads to poorer accessibility
While it is possible to use presentational markup in a way that provides users of assistive technologies (ATs) with an acceptable
experience (e.g. using ARIA), doing so is significantly more difficult than doing so when using semantically-appropriate markup.
Furthermore, even using such techniques doesn't help make pages accessible for non-AT non-graphical users, such as users of text-
mode browsers.

Using media-independent markup, on the other hand, provides an easy way for documents to be authored in such a way that they
work for more users (e.g. users of text browsers).

Higher cost of maintenance
It is significantly easier to maintain a site written in such a way that the markup is style-independent. For example, changing the
color of a site that uses throughout requires changes across the entire site, whereas a similar change to a site
based on CSS can be done by changing a single file.

However, if the author first created the imgp320 element and then in a separate script added the event listeners, there's a chance
that the loadp1282 event would be fired in between, leading it to be missed:

<!-- Do not use this style, it has a race condition! -->

<!-- the 'load' event might fire here while the parser is taking a

break, in which case you will not see it! -->
<script>
var img = document.getElementById('games');
img.onload = gamesLogoHasLoaded; // might never fire!

</script>

1.11 Conformance requirements for authors §p35

1.10.3 How to catch mistakes when writing HTML: validators and conformance checkers §p35

1.11.1 Presentational markup §p35

35

https://whatwg.org/validator/

Larger document sizes
Presentational markup tends to be much more redundant, and thus results in larger document sizes.

For those reasons, presentational markup has been removed from HTML in this version. This change should not come as a surprise;
HTML4 deprecated presentational markup many years ago and provided a mode (HTML4 Transitional) to help authors move away from
presentational markup; later, XHTML 1.1 went further and obsoleted those features altogether.

The only remaining presentational markup features in HTML are the stylep144 attribute and the stylep174 element. Use of the stylep144

attribute is somewhat discouraged in production environments, but it can be useful for rapid prototyping (where its rules can be
directly moved into a separate style sheet later) and for providing specific styles in unusual cases where a separate style sheet would
be inconvenient. Similarly, the stylep174 element can be useful in syndication or for page-specific styles, but in general an external
style sheet is likely to be more convenient when the styles apply to multiple pages.

It is also worth noting that some elements that were previously presentational have been redefined in this specification to be media-
independent: bp273, ip272, hrp214, sp245, smallp244, and up275.

This section is non-normative.

The syntax of HTML is constrained to avoid a wide variety of problems.

Unintuitive error-handling behavior
Certain invalid syntax constructs, when parsed, result in DOM trees that are highly unintuitive.

Errors with optional error recovery
To allow user agents to be used in controlled environments without having to implement the more bizarre and convoluted error
handling rules, user agents are permitted to fail whenever encountering a parse errorp1081.

Errors where the error-handling behavior is not compatible with streaming user agents
Some error-handling behavior, such as the behavior for the <table><hr>... example mentioned above, are incompatible with
streaming user agents (user agents that process HTML files in one pass, without storing state). To avoid interoperability problems
with such user agents, any syntax resulting in such behavior is considered invalid.

Errors that can result in infoset coercion
When a user agent based on XML is connected to an HTML parser, it is possible that certain invariants that XML enforces, such as
element or attribute names never contain multiple colons, will be violated by an HTML file. Handling this can require that the parser
coerce the HTML DOM into an XML-compatible infoset. Most syntax constructs that require such handling are considered invalid.
(Comments containing two consecutive hyphens, or ending with a hyphen, are exceptions that are allowed in the HTML syntax.)

Errors that result in disproportionately poor performance
Certain syntax constructs can result in disproportionately poor performance. To discourage the use of such constructs, they are
typically made non-conforming.

For example, the following markup fragment results in a DOM with an hrp214 element that is an earlier sibling of the
corresponding tablep450 element:

<table><hr>...

Example

For example, the following markup results in poor performance, since all the unclosed ip272 elements have to be reconstructed
in each paragraph, resulting in progressively more elements in each paragraph:

<p><i>She dreamt.
<p><i>She dreamt that she ate breakfast.
<p><i>Then lunch.
<p><i>And finally dinner.

Example

1.11.2 Syntax errors §p36

36

Errors involving fragile syntax constructs
There are syntax constructs that, for historical reasons, are relatively fragile. To help reduce the number of users who accidentally
run into such problems, they are made non-conforming.

Errors involving known interoperability problems in legacy user agents
Certain syntax constructs are known to cause especially subtle or serious problems in legacy user agents, and are therefore marked
as non-conforming to help authors avoid them.

The resulting DOM for this fragment would be:

pp211

ip272

#text: She dreamt.
pp211

ip272

ip272

#text: She dreamt that she ate breakfast.
pp211

ip272

ip272

ip272

#text: Then lunch.
pp211

ip272

ip272

ip272

ip272

#text: And finally dinner.

For example, the parsing of certain named character references in attributes happens even with the closing semicolon being
omitted. It is safe to include an ampersand followed by letters that do not form a named character reference, but if the letters
are changed to a string that does form a named character reference, they will be interpreted as that character instead.

In this fragment, the attribute's value is "?bill&ted":

Bill and Ted

In the following fragment, however, the attribute's value is actually "?art©", not the intended "?art©", because even
without the final semicolon, "©" is handled the same as "©" and thus gets interpreted as "©":

Art and Copy

To avoid this problem, all named character references are required to end with a semicolon, and uses of named character
references without a semicolon are flagged as errors.

Thus, the correct way to express the above cases is as follows:

Bill and Ted <!-- &ted is ok, since it's not a named character reference
-->

Art and Copy <!-- the & has to be escaped, since © is a named
character reference -->

Example

For example, this is why the U+0060 GRAVE ACCENT character (`) is not allowed in unquoted attributes. In certain legacy user
agents, it is sometimes treated as a quote character.

Example

37

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

Errors that risk exposing authors to security attacks
Certain restrictions exist purely to avoid known security problems.

Cases where the author's intent is unclear
Markup where the author's intent is very unclear is often made non-conforming. Correcting these errors early makes later
maintenance easier.

Cases that are likely to be typos
When a user makes a simple typo, it is helpful if the error can be caught early, as this can save the author a lot of debugging time.
This specification therefore usually considers it an error to use element names, attribute names, and so forth, that do not match the
names defined in this specification.

Errors that could interfere with new syntax in the future
In order to allow the language syntax to be extended in the future, certain otherwise harmless features are disallowed.

Some authors find it helpful to be in the practice of always quoting all attributes and always including all optional tags, preferring the
consistency derived from such custom over the minor benefits of terseness afforded by making use of the flexibility of the HTML
syntax. To aid such authors, conformance checkers can provide modes of operation wherein such conventions are enforced.

This section is non-normative.

Beyond the syntax of the language, this specification also places restrictions on how elements and attributes can be specified. These
restrictions are present for similar reasons:

Errors involving content with dubious semantics
To avoid misuse of elements with defined meanings, content models are defined that restrict how elements can be nested when
such nestings would be of dubious value.

Another example of this is the DOCTYPE, which is required to trigger no-quirks mode, because the behavior of legacy user
agents in quirks mode is often largely undocumented.

Example

For example, the restriction on using UTF-7 exists purely to avoid authors falling prey to a known cross-site-scripting attack
using UTF-7. [UTF7]p1292

Example

For example, it is unclear whether the author intended the following to be an h1p190 heading or an h2p190 heading:

<h1>Contact details</h2>

Example

For example, if the author typed <capton> instead of <caption>, this would be flagged as an error and the author could correct
the typo immediately.

Example

For example, "attributes" in end tags are ignored currently, but they are invalid, in case a future change to the language makes
use of that syntax feature without conflicting with already-deployed (and valid!) content.

Example

For example, this specification disallows nesting a sectionp182 element inside a kbdp270 element, since it is highly unlikely for an
author to indicate that an entire section should be keyed in.

Example

1.11.3 Restrictions on content models and on attribute values §p38

38

https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-document-quirks

Errors that involve a conflict in expressed semantics
Similarly, to draw the author's attention to mistakes in the use of elements, clear contradictions in the semantics expressed are also
considered conformance errors.

Cases where the default styles are likely to lead to confusion
Certain elements have default styles or behaviors that make certain combinations likely to lead to confusion. Where these have
equivalent alternatives without this problem, the confusing combinations are disallowed.

Errors that indicate a likely misunderstanding of the specification
Sometimes, something is disallowed because allowing it would likely cause author confusion.

Errors involving limits that have been imposed merely to simplify the language
Some conformance errors simplify the language that authors need to learn.

Errors that involve peculiarities of the parser
Certain elements are parsed in somewhat eccentric ways (typically for historical reasons), and their content model restrictions are
intended to avoid exposing the author to these issues.

In the fragments below, for example, the semantics are nonsensical: a separator cannot simultaneously be a cell, nor can a
radio button be a progress bar.

<hr role="cell">

<input type=radio role=progressbar>

Example

Another example is the restrictions on the content models of the ulp222 element, which only allows lip224 element children. Lists
by definition consist just of zero or more list items, so if a ulp222 element contains something other than an lip224 element, it's
not clear what was meant.

Example

For example, divp237 elements are rendered as block boxes, and spanp279 elements as inline boxes. Putting a block box in an
inline box is unnecessarily confusing; since either nesting just divp237 elements, or nesting just spanp279 elements, or nesting
spanp279 elements inside divp237 elements all serve the same purpose as nesting a divp237 element in a spanp279 element, but
only the latter involves a block box in an inline box, the latter combination is disallowed.

Example

Another example would be the way interactive contentp132 cannot be nested. For example, a buttonp535 element cannot contain
a textareap548 element. This is because the default behavior of such nesting interactive elements would be highly confusing to
users. Instead of nesting these elements, they can be placed side by side.

Example

For example, setting the disabledp570 attribute to the value "false" is disallowed, because despite the appearance of meaning
that the element is enabled, it in fact means that the element is disabled (what matters for implementations is the presence of
the attribute, not its value).

Example

For example, the areap443 element's shapep444 attribute, despite accepting both circp445 and circlep445 values in practice as
synonyms, disallows the use of the circp445 value, so as to simplify tutorials and other learning aids. There would be no benefit
to allowing both, but it would cause extra confusion when teaching the language.

Example

For example, a formp486 element isn't allowed inside phrasing contentp132, because when parsed as HTML, a formp486 element's
start tag will imply a pp211 element's end tag. Thus, the following markup results in two paragraphsp134, not one:

Example

39

https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://drafts.csswg.org/css2/#inline-box

Errors that would likely result in scripts failing in hard-to-debug ways
Some errors are intended to help prevent script problems that would be hard to debug.

Errors that waste authoring time
Some constructs are disallowed because historically they have been the cause of a lot of wasted authoring time, and by
encouraging authors to avoid making them, authors can save time in future efforts.

Errors that involve areas that affect authors migrating between the HTML and XML syntaxes
Some authors like to write files that can be interpreted as both XML and HTML with similar results. Though this practice is
discouraged in general due to the myriad of subtle complications involved (especially when involving scripting, styling, or any kind
of automated serialization), this specification has a few restrictions intended to at least somewhat mitigate the difficulties. This
makes it easier for authors to use this as a transitionary step when migrating between the HTML and XML syntaxes.

Errors that involve areas reserved for future expansion
As with the restrictions on the syntax intended to allow for new syntax in future revisions of the language, some restrictions on the
content models of elements and values of attributes are intended to allow for future expansion of the HTML vocabulary.

Errors that indicate a mis-use of other specifications
Certain restrictions are intended to support the restrictions made by other specifications.

<p>Welcome. <form><label>Name:</label> <input></form>

It is parsed exactly like the following:

<p>Welcome. </p><form><label>Name:</label> <input></form>

This is why, for instance, it is non-conforming to have two idp137 attributes with the same value. Duplicate IDs lead to the wrong
element being selected, with sometimes disastrous effects whose cause is hard to determine.

Example

For example, a scriptp614 element's srcp615 attribute causes the element's contents to be ignored. However, this isn't obvious,
especially if the element's contents appear to be executable script — which can lead to authors spending a lot of time trying to
debug the inline script without realizing that it is not executing. To reduce this problem, this specification makes it non-
conforming to have executable script in a scriptp614 element when the srcp615 attribute is present. This means that authors
who are validating their documents are less likely to waste time with this kind of mistake.

Example

For example, there are somewhat complicated rules surrounding the langp140 and xml:langp140 attributes intended to keep the
two synchronized.

Example

Another example would be the restrictions on the values of xmlns attributes in the HTML serialization, which are intended to
ensure that elements in conforming documents end up in the same namespaces whether processed as HTML or XML.

Example

For example, limiting the values of the targetp284 attribute that start with an U+005F LOW LINE character (_) to only specific
predefined values allows new predefined values to be introduced at a future time without conflicting with author-defined values.

Example

For example, requiring that attributes that take media query lists use only valid media query lists reinforces the importance of
following the conformance rules of that specification.

Example

40

This section is non-normative.

The following documents might be of interest to readers of this specification.

Character Model for the World Wide Web 1.0: Fundamentals [CHARMOD]p1285

This Architectural Specification provides authors of specifications, software developers, and content developers with a common
reference for interoperable text manipulation on the World Wide Web, building on the Universal Character Set, defined jointly by
the Unicode Standard and ISO/IEC 10646. Topics addressed include use of the terms 'character', 'encoding' and 'string', a
reference processing model, choice and identification of character encodings, character escaping, and string indexing.

Unicode Security Considerations [UTR36]p1292

Because Unicode contains such a large number of characters and incorporates the varied writing systems of the world, incorrect
usage can expose programs or systems to possible security attacks. This is especially important as more and more products are
internationalized. This document describes some of the security considerations that programmers, system analysts, standards
developers, and users should take into account, and provides specific recommendations to reduce the risk of problems.

Web Content Accessibility Guidelines (WCAG) 2.0 [WCAG]p1292

Web Content Accessibility Guidelines (WCAG) 2.0 covers a wide range of recommendations for making web content more
accessible. Following these guidelines will make content accessible to a wider range of people with disabilities, including
blindness and low vision, deafness and hearing loss, learning disabilities, cognitive limitations, limited movement, speech
disabilities, photosensitivity and combinations of these. Following these guidelines will also often make your web content more
usable to users in general.

Authoring Tool Accessibility Guidelines (ATAG) 2.0 [ATAG]p1285

This specification provides guidelines for designing web content authoring tools that are more accessible for people with
disabilities. An authoring tool that conforms to these guidelines will promote accessibility by providing an accessible user
interface to authors with disabilities as well as by enabling, supporting, and promoting the production of accessible web content
by all authors.

User Agent Accessibility Guidelines (UAAG) 2.0 [UAAG]p1291

This document provides guidelines for designing user agents that lower barriers to web accessibility for people with disabilities.
User agents include browsers and other types of software that retrieve and render web content. A user agent that conforms to
these guidelines will promote accessibility through its own user interface and through other internal facilities, including its
ability to communicate with other technologies (especially assistive technologies). Furthermore, all users, not just users with
disabilities, should find conforming user agents to be more usable.

1.12 Suggested reading §p41

41

This specification depends on Infra. [INFRA]p1288

This specification refers to both HTML and XML attributes and IDL attributes, often in the same context. When it is not clear which is
being referred to, they are referred to as content attributes for HTML and XML attributes, and IDL attributes for those defined on
IDL interfaces. Similarly, the term "properties" is used for both JavaScript object properties and CSS properties. When these are
ambiguous they are qualified as object properties and CSS properties respectively.

Generally, when the specification states that a feature applies to the HTML syntaxp1067 or the XML syntaxp1188, it also includes the other.
When a feature specifically only applies to one of the two languages, it is called out by explicitly stating that it does not apply to the
other format, as in "for HTML, ... (this does not apply to XML)".

This specification uses the term document to refer to any use of HTML, ranging from short static documents to long essays or reports
with rich multimedia, as well as to fully-fledged interactive applications. The term is used to refer both to Documentp114 objects and
their descendant DOM trees, and to serialized byte streams using the HTML syntaxp1067 or the XML syntaxp1188, depending on context.

In the context of the DOM structures, the terms HTML document and XML document are used as defined in DOM, and refer specifically
to two different modes that Documentp114 objects can find themselves in. [DOM]p1287 (Such uses are always hyperlinked to their
definition.)

In the context of byte streams, the term HTML document refers to resources labeled as text/htmlp1250, and the term XML document
refers to resources labeled with an XML MIME type.

For simplicity, terms such as shown, displayed, and visible might sometimes be used when referring to the way a document is
rendered to the user. These terms are not meant to imply a visual medium; they must be considered to apply to other media in
equivalent ways.

To run steps in parallel means those steps are to be run, one after another, at the same time as other logic in the standard (e.g., at
the same time as the event loopp944). This standard does not define the precise mechanism by which this is achieved, be it time-
sharing cooperative multitasking, fibers, threads, processes, using different hyperthreads, cores, CPUs, machines, etc. By contrast, an
operation that is to run immediately must interrupt the currently running task, run itself, and then resume the previously running
task.

To avoid race conditions between different in parallelp42 algorithms that operate on the same data, a parallel queuep42 can be used.

A parallel queue represents a queue of algorithm steps that must be run in series.

A parallel queuep42 has an algorithm queue (a queue), initially empty.

To enqueue steps to a parallel queuep42, enqueue the algorithm steps to the parallel queuep42 's algorithm queuep42.

To start a new parallel queue, run the following steps:

1. Let parallelQueue be a new parallel queuep42.

2. Run the following steps in parallelp42:

2 Common infrastructure §p42

2.1 Terminology §p42

For guidance on writing specifications that leverage parallelism, see Dealing with the event loop from other specifications p952.
Note

2.1.1 Parallelism §p42

42

https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#xml-document
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://infra.spec.whatwg.org/#queue
https://infra.spec.whatwg.org/#queue-enqueue

1. While true:

1. Let steps be the result of dequeueing from parallelQueue's algorithm queuep42.

2. If steps is not nothing, then run steps.

3. Assert: running steps did not throw an exception, as steps running in parallelp42 are not allowed to throw.

3. Return parallelQueue.

The specification uses the term supported when referring to whether a user agent has an implementation capable of decoding the
semantics of an external resource. A format or type is said to be supported if the implementation can process an external resource of
that format or type without critical aspects of the resource being ignored. Whether a specific resource is supported can depend on

Implementations are not expected to implement this as a continuously running loop. Algorithms in standards
are to be easy to understand and are not necessarily great for battery life or performance.

Note

Steps running in parallelp42 can themselves run other steps in in parallelp42. E.g., inside a parallel queuep42 it can be useful to run a
series of steps in parallel with the queue.

Note

Imagine a standard defined nameList (a list), along with a method to add a name to nameList, unless nameList already contains
name, in which case it rejects.

The following solution suffers from race conditions:

1. Let p be a new promise.

2. Run the following steps in parallelp42:

1. If nameList contains name, reject p with a TypeError and abort these steps.

2. Do some potentially lengthy work.

3. Append name to nameList.

4. Resolve p with undefined.

3. Return p.

Two invocations of the above could run simultaneously, meaning name isn't in nameList during step 2.1, but it might be added
before step 2.3 runs, meaning name ends up in nameList twice.

Parallel queues solve this. The standard would let nameListQueue be the result of starting a new parallel queuep42, then:

1. Let p be a new promise.

2. Enqueue the following stepsp42 to nameListQueue:

1. If nameList contains name, reject p with a TypeError and abort these steps.

2. Do some potentially lengthy work.

3. Append name to nameList.

4. Resolve p with undefined.

3. Return p.

The steps would now queue and the race is avoided.

Example

2.1.2 Resources §p43

43

https://infra.spec.whatwg.org/#queue-dequeue
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-contain
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-contain
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#list-append

what features of the resource's format are in use.

What some specifications, in particular the HTTP specifications, refer to as a representation is referred to in this specification as a
resource. [HTTP]p1288

A resource's critical subresources are those that the resource needs to have available to be correctly processed. Which resources
are considered critical or not is defined by the specification that defines the resource's format.

For CSS style sheets, we tentatively define here that their critical subresources are other style sheets imported via @import rules,
including those indirectly imported by other imported style sheets.

This definition is not fully interoperable; furthermore, some user agents seem to count resources like background images or web
fonts as critical subresources. Ideally, the CSS Working Group would define this; see w3c/csswg-drafts issue #1088 to track
progress on that front.

To ease migration from HTML to XML, UAs conforming to this specification will place elements in HTML in the http://www.w3.org/
1999/xhtml namespace, at least for the purposes of the DOM and CSS. The term "HTML elements" refers to any element in that
namespace, even in XML documents.

Except where otherwise stated, all elements defined or mentioned in this specification are in the HTML namespace
("http://www.w3.org/1999/xhtml"), and all attributes defined or mentioned in this specification have no namespace.

The term element type is used to refer to the set of elements that have a given local name and namespace. For example, buttonp535

elements are elements with the element type buttonp535, meaning they have the local name "button" and (implicitly as defined
above) the HTML namespace.

Attribute names are said to be XML-compatible if they match the Name production defined in XML and they contain no U+003A
COLON characters (:). [XML]p1293

When it is stated that some element or attribute is ignored, or treated as some other value, or handled as if it was something else,
this refers only to the processing of the node after it is in the DOM. A user agent must not mutate the DOM in such situations.

A content attribute is said to change value only if its new value is different than its previous value; setting an attribute to a value it
already has does not change it.

The term empty, when used for an attribute value, Text node, or string, means that the length of the text is zero (i.e., not even
containing controls or U+0020 SPACE).

A node A is inserted into a node B when the insertion steps are invoked with A as the argument and A's new parent is B. Similarly, a
node A is removed from a node B when the removing steps are invoked with A as the removedNode argument and B as the
oldParent argument.

A node is inserted into a document when the insertion steps are invoked with it as the argument and it is now in a document tree.
Analogously, a node is removed from a document when the removing steps are invoked with it as the argument and it is now no
longer in a document tree.

For example, a PNG image would be considered to be in a supported format if its pixel data could be decoded and rendered, even
if, unbeknownst to the implementation, the image also contained animation data.

Example

An MPEG-4 video file would not be considered to be in a supported format if the compression format used was not supported, even
if the implementation could determine the dimensions of the movie from the file's metadata.

Example

2.1.3 XML compatibility §p44

2.1.4 DOM trees §p44

44

https://drafts.csswg.org/cssom/#css-style-sheet
https://github.com/w3c/csswg-drafts/issues/1088
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://www.w3.org/TR/xml/#NT-Name
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#control
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#in-a-document-tree

A node becomes connected when the insertion steps are invoked with it as the argument and it is now connected. Analogously, a
node becomes disconnected when the removing steps are invoked with it as the argument and it is now no longer connected.

A node is browsing-context connected when it is connected and its shadow-including root's browsing contextp811 is non-null. A node
becomes browsing-context connected when the insertion steps are invoked with it as the argument and it is now browsing-context
connectedp45. A node becomes browsing-context disconnected either when the removing steps are invoked with it as the
argument and it is now no longer browsing-context connectedp45, or when its shadow-including root's browsing contextp811 becomes
null.

The construction "a Foo object", where Foo is actually an interface, is sometimes used instead of the more accurate "an object
implementing the interface Foo".

An IDL attribute is said to be getting when its value is being retrieved (e.g. by author script), and is said to be setting when a new
value is assigned to it.

If a DOM object is said to be live, then the attributes and methods on that object must operate on the actual underlying data, not a
snapshot of the data.

The term plugin refers to an implementation-defined set of content handlers used by the user agent that can take part in the user
agent's rendering of a Documentp114 object, but that neither act as child browsing contextsp814 of the Documentp114 nor introduce any
Node objects to the Documentp114 's DOM.

Typically such content handlers are provided by third parties, though a user agent can also designate built-in content handlers as
plugins.

A user agent must not consider the types text/plain and application/octet-stream as having a registered pluginp45.

A plugin can be secured if it honors the semantics of the sandboxp365 attribute.

One example of a plugin would be a PDF viewer that is instantiated in a browsing contextp811 when the user navigates to a PDF file.
This would count as a plugin regardless of whether the party that implemented the PDF viewer component was the same as that
which implemented the user agent itself. However, a PDF viewer application that launches separate from the user agent (as
opposed to using the same interface) is not a plugin by this definition.

Example

This specification does not define a mechanism for interacting with plugins, as it is expected to be user-agent- and platform-
specific. Some UAs might opt to support a plugin mechanism such as the Netscape Plugin API; others might use remote content
converters or have built-in support for certain types. Indeed, this specification doesn't require user agents to support plugins at all.
[NPAPI]p1289

Note

For example, a secured plugin would prevent its contents from creating popups when the plugin is instantiated inside a sandboxed
iframep361.

Example

Browsers should take extreme care when interacting with external content intended for pluginsp45. When third-
party software is run with the same privileges as the user agent itself, vulnerabilities in the third-party software
become as dangerous as those in the user agent.

⚠Warning!

2.1.5 Scripting §p45

2.1.6 Plugins §p45

45

https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#interface-node
https://tools.ietf.org/html/rfc2046#section-4.1.3
https://tools.ietf.org/html/rfc2046#section-4.5.1

Since different users having different sets of pluginsp45 provides a tracking vector that increases the chances of users being
uniquely identified, user agents are encouraged to support the exact same set of pluginsp45 for each user.

A character encoding, or just encoding where that is not ambiguous, is a defined way to convert between byte streams and Unicode
strings, as defined in Encoding. An encoding has an encoding name and one or more encoding labels, referred to as the encoding's
name and labels in the Encoding standard. [ENCODING]p1287

A UTF-16 encoding is UTF-16BE or UTF-16LE. [ENCODING]p1287

An ASCII-compatible encoding is any encoding that is not a UTF-16 encodingp46. [ENCODING]p1287

This specification describes the conformance criteria for user agents (relevant to implementers) and documents (relevant to authors
and authoring tool implementers).

Conforming documents are those that comply with all the conformance criteria for documents. For readability, some of these
conformance requirements are phrased as conformance requirements on authors; such requirements are implicitly requirements on
documents: by definition, all documents are assumed to have had an author. (In some cases, that author may itself be a user agent —
such user agents are subject to additional rules, as explained below.)

User agents fall into several (overlapping) categories with different conformance requirements.

Web browsers and other interactive user agents
Web browsers that support the XML syntaxp1188 must process elements and attributes from the HTML namespace found in XML
documents as described in this specification, so that users can interact with them, unless the semantics of those elements have
been overridden by other specifications.

Web browsers that support the HTML syntaxp1067 must process documents labeled with an HTML MIME type as described in this
specification, so that users can interact with them.

User agents that support scripting must also be conforming implementations of the IDL fragments in this specification, as described
in Web IDL. [WEBIDL]p1292

Since support for encodings that are not defined in Encoding is prohibited, UTF-16 encodingsp46 are the only encodings that this
specification needs to treat as not being ASCII-compatible encodingsp46.

Note

For example, if a requirement states that "authors must not use the foobar element", it would imply that documents are not
allowed to contain elements named foobar.

Example

There is no implied relationship between document conformance requirements and implementation conformance requirements.
User agents are not free to handle non-conformant documents as they please; the processing model described in this specification
applies to implementations regardless of the conformity of the input documents.

Note

A conforming web browser would, upon finding a scriptp614 element in an XML document, execute the script contained in that
element. However, if the element is found within a transformation expressed in XSLT (assuming the user agent also supports
XSLT), then the processor would instead treat the scriptp614 element as an opaque element that forms part of the transform.

Example

2.1.7 Character encodings §p46

2.1.8 Conformance classes §p46

46

https://infra.spec.whatwg.org/#tracking-vector
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#name
https://encoding.spec.whatwg.org/#label
https://encoding.spec.whatwg.org/#utf-16be
https://encoding.spec.whatwg.org/#utf-16le
https://encoding.spec.whatwg.org/#encoding
https://infra.spec.whatwg.org/#html-namespace
https://mimesniff.spec.whatwg.org/#html-mime-type

Non-interactive presentation user agents
User agents that process HTML and XML documents purely to render non-interactive versions of them must comply to the same
conformance criteria as web browsers, except that they are exempt from requirements regarding user interaction.

Visual user agents that support the suggested default rendering
User agents, whether interactive or not, may be designated (possibly as a user option) as supporting the suggested default
rendering defined by this specification.

This is not required. In particular, even user agents that do implement the suggested default rendering are encouraged to offer
settings that override this default to improve the experience for the user, e.g. changing the color contrast, using different focus
styles, or otherwise making the experience more accessible and usable to the user.

User agents that are designated as supporting the suggested default rendering must, while so designated, implement the rules the
rendering sectionp1192 defines as the behavior that user agents are expected to implement.

User agents with no scripting support
Implementations that do not support scripting (or which have their scripting features disabled entirely) are exempt from supporting
the events and DOM interfaces mentioned in this specification. For the parts of this specification that are defined in terms of an
events model or in terms of the DOM, such user agents must still act as if events and the DOM were supported.

Conformance checkers
Conformance checkers must verify that a document conforms to the applicable conformance criteria described in this specification.
Automated conformance checkers are exempt from detecting errors that require interpretation of the author's intent (for example,
while a document is non-conforming if the content of a blockquotep217 element is not a quote, conformance checkers running
without the input of human judgement do not have to check that blockquotep217 elements only contain quoted material).

Conformance checkers must check that the input document conforms when parsed without a browsing contextp811 (meaning that no
scripts are run, and that the parser's scripting flagp1096 is disabled), and should also check that the input document conforms when
parsed with a browsing contextp811 in which scripts execute, and that the scripts never cause non-conforming states to occur other
than transiently during script execution itself. (This is only a "SHOULD" and not a "MUST" requirement because it has been proven to
be impossible. [COMPUTABLE]p1285)

The term "HTML validator" can be used to refer to a conformance checker that itself conforms to the applicable requirements of this
specification.

Unless explicitly stated, specifications that override the semantics of HTML elements do not override the requirements on DOM
objects representing those elements. For example, the scriptp614 element in the example above would still implement the
HTMLScriptElementp614 interface.

Note

Typical examples of non-interactive presentation user agents are printers (static UAs) and overhead displays (dynamic UAs). It
is expected that most static non-interactive presentation user agents will also opt to lack scripting supportp47.

Note

A non-interactive but dynamic presentation UA would still execute scripts, allowing forms to be dynamically submitted, and so
forth. However, since the concept of "focus" is irrelevant when the user cannot interact with the document, the UA would not
need to support any of the focus-related DOM APIs.

Example

Scripting can form an integral part of an application. Web browsers that do not support scripting, or that have scripting
disabled, might be unable to fully convey the author's intent.

Note

XML DTDs cannot express all the conformance requirements of this specification. Therefore, a validating XML processor and a
DTD cannot constitute a conformance checker. Also, since neither of the two authoring formats defined in this specification are
applications of SGML, a validating SGML system cannot constitute a conformance checker either.

Note

47

Data mining tools
Applications and tools that process HTML and XML documents for reasons other than to either render the documents or check them
for conformance should act in accordance with the semantics of the documents that they process.

Authoring tools and markup generators
Authoring tools and markup generators must generate conforming documentsp46. Conformance criteria that apply to authors also
apply to authoring tools, where appropriate.

Authoring tools are exempt from the strict requirements of using elements only for their specified purpose, but only to the extent
that authoring tools are not yet able to determine author intent. However, authoring tools must not automatically misuse elements
or encourage their users to do so.

When an authoring tool is used to edit a non-conforming document, it may preserve the conformance errors in sections of the
document that were not edited during the editing session (i.e. an editing tool is allowed to round-trip erroneous content). However,
an authoring tool must not claim that the output is conformant if errors have been so preserved.

Authoring tools are expected to come in two broad varieties: tools that work from structure or semantic data, and tools that work on
a What-You-See-Is-What-You-Get media-specific editing basis (WYSIWYG).

The former is the preferred mechanism for tools that author HTML, since the structure in the source information can be used to
make informed choices regarding which HTML elements and attributes are most appropriate.

However, WYSIWYG tools are legitimate. WYSIWYG tools should use elements they know are appropriate, and should not use
elements that they do not know to be appropriate. This might in certain extreme cases mean limiting the use of flow elements to
just a few elements, like divp237, bp273, ip272, and spanp279 and making liberal use of the stylep144 attribute.

All authoring tools, whether WYSIWYG or not, should make a best effort attempt at enabling users to create well-structured,
semantically rich, media-independent content.

User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g., to prevent denial of service
attacks, to guard against running out of memory, or to work around platform-specific limitations.

For compatibility with existing content and prior specifications, this specification describes two authoring formats: one based
on XMLp1188, and one using a custom formatp1067 inspired by SGML (referred to as the HTML syntaxp1067). Implementations must

To put it another way, there are three types of conformance criteria:

1. Criteria that can be expressed in a DTD.

2. Criteria that cannot be expressed by a DTD, but can still be checked by a machine.

3. Criteria that can only be checked by a human.

A conformance checker must check for the first two. A simple DTD-based validator only checks for the first class of errors and is
therefore not a conforming conformance checker according to this specification.

A tool that generates document outlinesp201 but increases the nesting level for each paragraph and does not increase the
nesting level for each section would not be conforming.

Example

For example, it is not conforming to use an addressp197 element for arbitrary contact information; that element can only be used
for marking up contact information for its nearest articlep180 or bodyp178 element ancestor. However, since an authoring tool is
likely unable to determine the difference, an authoring tool is exempt from that requirement. This does not mean, though, that
authoring tools can use addressp197 elements for any block of italics text (for instance); it just means that the authoring tool
doesn't have to verify that when the user uses a tool for inserting contact information for an articlep180 element, that the user
really is doing that and not inserting something else instead.

Example

In terms of conformance checking, an editor has to output documents that conform to the same extent that a conformance
checker will verify.

Note

48

https://infra.spec.whatwg.org/#tracking-vector

support at least one of these two formats, although supporting both is encouraged.

Some conformance requirements are phrased as requirements on elements, attributes, methods or objects. Such requirements fall into
two categories: those describing content model restrictions, and those describing implementation behavior. Those in the former
category are requirements on documents and authoring tools. Those in the second category are requirements on user agents.
Similarly, some conformance requirements are phrased as requirements on authors; such requirements are to be interpreted as
conformance requirements on the documents that authors produce. (In other words, this specification does not distinguish between
conformance criteria on authors and conformance criteria on documents.)

This specification relies on several other underlying specifications.

Infra
The following terms are defined in Infra: [INFRA]p1288

• The general iteration terms while, continue, and break.
• implementation-defined
• tracking vector
• code point and its synonym character
• surrogate
• scalar value
• tuple
• noncharacter
• string, code unit, length, and code point length
• The string equality operations is and identical to
• scalar value string
• ASCII whitespace
• control
• ASCII digit
• ASCII upper hex digit
• ASCII lower hex digit
• ASCII hex digit
• ASCII upper alpha
• ASCII lower alpha
• ASCII alpha
• ASCII alphanumeric
• isomorphic decode
• ASCII lowercase
• ASCII uppercase
• ASCII case-insensitive
• strip newlines
• normalize newlines
• strip leading and trailing ASCII whitespace
• strip and collapse ASCII whitespace
• split a string on ASCII whitespace
• split a string on commas
• collect a sequence of code points and its associated position variable
• skip ASCII whitespace
• The ordered map data structure and the associated definitions for value, entry, exists, getting the value of an

entry, setting the value of an entry, removing an entry, clear, getting the keys, size, and iterate
• The list data structure and the associated definitions for append, extend, replace, remove, empty, contains, size, is

empty, iterate, and clone
• The stack data structure and the associated definitions for push and pop
• The queue data structure and the associated definitions for enqueue and dequeue
• The ordered set data structure and the associated definition for append and union
• The struct specification type and the associated definition for item
• The forgiving-base64 encode and forgiving-base64 decode algorithms
• HTML namespace
• MathML namespace
• SVG namespace
• XLink namespace
• XML namespace
• XMLNS namespace

Unicode and Encoding
The Unicode character set is used to represent textual data, and Encoding defines requirements around character encodings.
[UNICODE]p1292

This specification introduces terminologyp46 based on the terms defined in those specifications, as described earlier.
Note

2.1.9 Dependencies §p49

✔ MDN

49

https://infra.spec.whatwg.org/#iteration-while
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#tuple
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-upper-hex-digit
https://infra.spec.whatwg.org/#ascii-lower-hex-digit
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-alpha
https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#isomorphic-decode
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-uppercase
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#strip-newlines
https://infra.spec.whatwg.org/#normalize-newlines
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#split-on-commas
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#string-position-variable
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-value
https://infra.spec.whatwg.org/#map-entry
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-get
https://infra.spec.whatwg.org/#map-get
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#map-remove
https://infra.spec.whatwg.org/#map-clear
https://infra.spec.whatwg.org/#map-getting-the-keys
https://infra.spec.whatwg.org/#map-size
https://infra.spec.whatwg.org/#map-iterate
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-extend
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-empty
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#stack
https://infra.spec.whatwg.org/#stack-push
https://infra.spec.whatwg.org/#stack-pop
https://infra.spec.whatwg.org/#queue
https://infra.spec.whatwg.org/#queue-enqueue
https://infra.spec.whatwg.org/#queue-dequeue
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#set-union
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#forgiving-base64-encode
https://infra.spec.whatwg.org/#forgiving-base64-decode
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://encoding.spec.whatwg.org/#encoding

The following terms are used as defined in Encoding: [ENCODING]p1287

• Getting an encoding
• Get an output encoding
• The generic decode algorithm which takes a byte stream and an encoding and returns a character stream
• The UTF-8 decode algorithm which takes a byte stream and returns a character stream, additionally stripping one

leading UTF-8 Byte Order Mark (BOM), if any
• The UTF-8 decode without BOM algorithm which is identical to UTF-8 decode except that it does not strip one leading

UTF-8 Byte Order Mark (BOM)
• The encode algorithm which takes a character stream and an encoding and returns a byte stream
• The UTF-8 encode algorithm which takes a character stream and returns a byte stream
• The BOM sniff algorithm which takes a byte stream and returns an encoding or null.

XML and related specifications
Implementations that support the XML syntaxp1188 for HTML must support some version of XML, as well as its corresponding
namespaces specification, because that syntax uses an XML serialization with namespaces. [XML]p1293 [XMLNS]p1293

Data mining tools and other user agents that perform operations on content without running scripts, evaluating CSS or XPath
expressions, or otherwise exposing the resulting DOM to arbitrary content, may "support namespaces" by just asserting that their
DOM node analogues are in certain namespaces, without actually exposing the namespace strings.

The attribute with the tag name xml:space in the XML namespace is defined by Extensible Markup Language (XML). [XML]p1293

The Name production is defined in XML. [XML]p1293

This specification also references the <?xml-stylesheet?> processing instruction, defined in Associating Style Sheets with XML
documents. [XMLSSPI]p1293

This specification also non-normatively mentions the XSLTProcessor interface and its transformToFragment() and
transformToDocument() methods. [XSLTP]p1293

URLs
The following terms are defined in URL: [URL]p1292

• host
• public suffix
• domain
• IPv4 address
• IPv6 address
• URL
• Origin of URLs
• Absolute URL
• Relative URL
• registrable domain
• The URL parser and basic URL parser as well as these parser states:

◦ scheme start state
◦ host state
◦ hostname state
◦ port state
◦ path start state
◦ query state
◦ fragment state

• URL record, as well as its individual components:
◦ scheme
◦ username
◦ password
◦ host
◦ port
◦ path
◦ query
◦ fragment
◦ cannot-be-a-base-URL flag
◦ object

• valid URL string
• The cannot have a username/password/port concept
• The URL serializer
• The host parser
• The host serializer
• Host equals

In the HTML syntaxp1067, namespace prefixes and namespace declarations do not have the same effect as in XML. For instance,
the colon has no special meaning in HTML element names.

Note

50

https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#get-an-output-encoding
https://encoding.spec.whatwg.org/#decode
https://encoding.spec.whatwg.org/#utf-8-decode
https://encoding.spec.whatwg.org/#utf-8-decode-without-bom
https://encoding.spec.whatwg.org/#utf-8-decode
https://encoding.spec.whatwg.org/#encode
https://encoding.spec.whatwg.org/#utf-8-encode
https://encoding.spec.whatwg.org/#bom-sniff
https://infra.spec.whatwg.org/#xml-namespace
https://www.w3.org/TR/xml/#NT-Name
https://www.w3.org/TR/xml-stylesheet/#the-xml-stylesheet-processing-instruction
https://url.spec.whatwg.org/#concept-host
https://url.spec.whatwg.org/#host-public-suffix
https://url.spec.whatwg.org/#concept-domain
https://url.spec.whatwg.org/#concept-ipv4
https://url.spec.whatwg.org/#concept-ipv6
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-relative
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#scheme-start-state
https://url.spec.whatwg.org/#host-state
https://url.spec.whatwg.org/#hostname-state
https://url.spec.whatwg.org/#port-state
https://url.spec.whatwg.org/#path-start-state
https://url.spec.whatwg.org/#query-state
https://url.spec.whatwg.org/#fragment-state
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-username
https://url.spec.whatwg.org/#concept-url-password
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-url-object
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-host-parser
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-host-equals

• URL equals
• serialize an integer
• Default encode set
• component percent-encode set
• UTF-8 percent-encode
• percent-decode
• set the username
• set the password
• The application/x-www-form-urlencoded format
• The application/x-www-form-urlencoded serializer

A number of schemes and protocols are referenced by this specification also:

• The about: scheme [ABOUT]p1285

• The blob: scheme [FILEAPI]p1287

• The data: scheme [RFC2397]p1290

• The http: scheme [HTTP]p1288

• The https: scheme [HTTP]p1288

• The mailto: scheme [MAILTO]p1288

• The sms: scheme [SMS]p1291

• The urn: scheme [URN]p1292

Media fragment syntax is defined in Media Fragments URI. [MEDIAFRAG]p1289

HTTP and related specifications
The following terms are defined in the HTTP specifications: [HTTP]p1288

• `Accept` header
• `Accept-Language` header
• `Cache-Control` header
• `Content-Disposition` header
• `Content-Language` header
• `Last-Modified` header
• `Referer` header

The following terms are defined in HTTP State Management Mechanism: [COOKIES]p1285

• cookie-string
• receives a set-cookie-string
• `Cookie` header

The following term is defined in Web Linking: [WEBLINK]p1292

• `Link` header

The following terms are defined in Structured Field Values for HTTP: [STRUCTURED-FIELDS]p1291

• structured header
• boolean
• token
• parameters

The following terms are defined in MIME Sniffing: [MIMESNIFF]p1289

• MIME type
• valid MIME type string
• valid MIME type string with no parameters
• HTML MIME type
• JavaScript MIME type and JavaScript MIME type essence match
• JSON MIME type
• XML MIME type

Fetch
The following terms are defined in Fetch: [FETCH]p1287

• ABNF
• about:blank
• An HTTP(S) scheme
• A local scheme
• A network scheme
• A fetch scheme
• CORS protocol
• default `User-Agent` value
• extract a MIME type
• fetch
• HTTP-redirect fetch
• ok status
• navigation request

51

https://url.spec.whatwg.org/#concept-url-equals
https://url.spec.whatwg.org/#serialize-an-integer
https://url.spec.whatwg.org/#default-encode-set
https://url.spec.whatwg.org/#component-percent-encode-set
https://url.spec.whatwg.org/#string-utf-8-percent-encode
https://url.spec.whatwg.org/#string-percent-decode
https://url.spec.whatwg.org/#set-the-username
https://url.spec.whatwg.org/#set-the-password
https://url.spec.whatwg.org/#concept-urlencoded
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://tools.ietf.org/html/rfc6694#section-2
https://w3c.github.io/FileAPI/#DefinitionOfScheme
https://tools.ietf.org/html/rfc2397#section-2
https://tools.ietf.org/html/rfc7230#section-2.7.1
https://tools.ietf.org/html/rfc7230#section-2.7.2
https://tools.ietf.org/html/rfc6068#section-2
https://tools.ietf.org/html/rfc5724#section-2
https://tools.ietf.org/html/rfc2141#section-2
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-5.3.5
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc6266
https://tools.ietf.org/html/rfc7231#section-3.1.3.2
https://tools.ietf.org/html/rfc7232#section-2.2
https://tools.ietf.org/html/rfc7231#section-5.5.2
https://tools.ietf.org/html/rfc8288#section-3
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#boolean
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#token
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#param
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://mimesniff.spec.whatwg.org/#html-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#json-mime-type
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://fetch.spec.whatwg.org/#abnf
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#local-scheme
https://fetch.spec.whatwg.org/#network-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#default-user-agent-value
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-http-redirect-fetch
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#navigation-request

• network error
• `Origin` header
• `Cross-Origin-Resource-Policy` header
• process response
• getting a structured field value
• set
• get, decode, and split
• terminate
• cross-origin resource policy check
• the RequestCredentials enumeration
• the RequestDestination enumeration
• the fetch() method
• serialize a response URL for reporting
• response and its associated:

◦ type
◦ url
◦ url list
◦ status
◦ header list
◦ body
◦ internal response
◦ CSP list
◦ location URL

• request and its associated:
◦ url
◦ method
◦ header list
◦ body
◦ client
◦ URL list
◦ current URL
◦ reserved client
◦ replaces client id
◦ initiator
◦ destination
◦ potential destination
◦ translating a potential destination
◦ script-like destinations
◦ priority
◦ origin
◦ referrer
◦ synchronous flag
◦ mode
◦ credentials mode
◦ use-URL-credentials flag
◦ unsafe-request flag
◦ cache mode
◦ redirect mode
◦ referrer policy
◦ cryptographic nonce metadata
◦ integrity metadata
◦ parser metadata
◦ reload-navigation flag
◦ history-navigation flag

The following terms are defined in Referrer Policy: [REFERRERPOLICY]p1290

• referrer policy
• The `Referrer-Policy` HTTP header
• The parse a referrer policy from a `Referrer-Policy` header algorithm
• The "no-referrer", "no-referrer-when-downgrade", "origin-when-cross-origin", and "unsafe-url" referrer policies

The following terms are defined in Mixed Content: [MIX]p1289

• a priori authenticated URL

Paint Timing
The following terms are defined in Paint Timing: [PAINTTIMING]p1289

• mark paint timing

Long Tasks
The following terms are defined in Long Tasks: [LONGTASKS]p1288

• report long tasks

Web IDL
The IDL fragments in this specification must be interpreted as required for conforming IDL fragments, as described in Web IDL.
[WEBIDL]p1292

52

https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#http-origin
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-header-list-set
https://fetch.spec.whatwg.org/#concept-header-list-get-decode-split
https://fetch.spec.whatwg.org/#concept-fetch-terminate
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check
https://fetch.spec.whatwg.org/#requestcredentials
https://fetch.spec.whatwg.org/#requestdestination
https://fetch.spec.whatwg.org/#dom-global-fetch
https://fetch.spec.whatwg.org/#serialize-a-response-url-for-reporting
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url-list
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#concept-response-header-list
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-internal-response
https://fetch.spec.whatwg.org/#concept-response-csp-list
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-method
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-request-body
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-url-list
https://fetch.spec.whatwg.org/#concept-request-current-url
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://fetch.spec.whatwg.org/#concept-request-replaces-client-id
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#concept-potential-destination-translate
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#request-destination-script-like
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-priority
https://fetch.spec.whatwg.org/#concept-request-origin
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#unsafe-request-flag
https://fetch.spec.whatwg.org/#concept-request-cache-mode
https://fetch.spec.whatwg.org/#concept-request-redirect-mode
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-reload-navigation-flag
https://fetch.spec.whatwg.org/#concept-request-history-navigation-flag
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-header-dfn
https://w3c.github.io/webappsec-referrer-policy/#parse-referrer-policy-from-header
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-no-referrer
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-origin-when-cross-origin
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-unsafe-url
https://w3c.github.io/webappsec-mixed-content/#a-priori-authenticated-url
https://w3c.github.io/paint-timing/#mark-paint-timing
https://w3c.github.io/longtasks/#report-long-tasks

The following terms are defined in Web IDL:

• this
• extended attribute
• named constructor
• constructor operation
• overridden constructor steps
• internally create a new object implementing the interface
• array index property name
• supported property indices
• determine the value of an indexed property
• set the value of an existing indexed property
• set the value of a new indexed property
• support named properties
• supported property names
• determine the value of a named property
• set the value of an existing named property
• set the value of a new named property
• delete an existing named property
• perform a security check
• platform object
• legacy platform object
• primary interface
• interface object
• include
• interface prototype object
• [[Realm]] field of a platform object
• callback context
• frozen array and creating a frozen array
• create a new object implementing the interface
• callback this value
• converting between Web IDL types and JS types
• invoking and constructing callback functions
• converting to a sequence of Unicode scalar values
• overload resolution algorithm
• exposed
• [LegacyFactoryFunction]
• [LegacyLenientThis]
• [LegacyNullToEmptyString]
• [LegacyOverrideBuiltIns]
• [LegacyTreatNonObjectAsNull]
• [LegacyUnenumerableNamedProperties]
• [LegacyUnforgeable]

The Web IDL also defines the following types that are used in Web IDL fragments in this specification:

• ArrayBuffer
• ArrayBufferView
• boolean
• DOMString
• double
• enumeration
• Error
• Function
• long
• object
• Uint8ClampedArray
• unrestricted double
• unsigned long
• USVString
• VoidFunction

The term throw in this specification is used as defined in Web IDL. The DOMException type and the following exception names are
defined by Web IDL and used by this specification:

• "IndexSizeError"
• "HierarchyRequestError"
• "InvalidCharacterError"
• "NotFoundError"
• "NotSupportedError"
• "InvalidStateError"
• "SyntaxError"
• "InvalidAccessError"
• "SecurityError"
• "NetworkError"
• "AbortError"
• "QuotaExceededError"
• "DataCloneError"
• "EncodingError"
• "NotAllowedError"

53

https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#dfn-extended-attribute
https://heycam.github.io/webidl/#dfn-named-constructor
https://heycam.github.io/webidl/#idl-constructors
https://heycam.github.io/webidl/#overridden-constructor-steps
https://heycam.github.io/webidl/#internally-create-a-new-object-implementing-the-interface
https://heycam.github.io/webidl/#dfn-array-index-property-name
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-determine-the-value-of-an-indexed-property
https://heycam.github.io/webidl/#dfn-set-the-value-of-an-existing-indexed-property
https://heycam.github.io/webidl/#dfn-set-the-value-of-a-new-indexed-property
https://heycam.github.io/webidl/#dfn-support-named-properties
https://heycam.github.io/webidl/#dfn-supported-property-names
https://heycam.github.io/webidl/#dfn-determine-the-value-of-a-named-property
https://heycam.github.io/webidl/#dfn-set-the-value-of-an-existing-named-property
https://heycam.github.io/webidl/#dfn-set-the-value-of-a-new-named-property
https://heycam.github.io/webidl/#dfn-delete-an-existing-named-property
https://heycam.github.io/webidl/#dfn-perform-a-security-check
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-legacy-platform-object
https://heycam.github.io/webidl/#dfn-primary-interface
https://heycam.github.io/webidl/#dfn-interface-object
https://heycam.github.io/webidl/#include
https://heycam.github.io/webidl/#dfn-interface-prototype-object
https://heycam.github.io/webidl/#es-platform-objects
https://heycam.github.io/webidl/#dfn-callback-context
https://heycam.github.io/webidl/#dfn-frozen-array-type
https://heycam.github.io/webidl/#dfn-create-frozen-array
https://heycam.github.io/webidl/#new
https://heycam.github.io/webidl/#dfn-callback-this-value
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#invoke-a-callback-function
https://heycam.github.io/webidl/#construct-a-callback-function
https://heycam.github.io/webidl/#dfn-obtain-unicode
https://heycam.github.io/webidl/#dfn-overload-resolution-algorithm
https://heycam.github.io/webidl/#dfn-exposed
https://heycam.github.io/webidl/#LegacyFactoryFunction
https://heycam.github.io/webidl/#LegacyLenientThis
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyOverrideBuiltIns
https://heycam.github.io/webidl/#LegacyTreatNonObjectAsNull
https://heycam.github.io/webidl/#LegacyUnenumerableNamedProperties
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#common-ArrayBufferView
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-double
https://heycam.github.io/webidl/#idl-enums
https://heycam.github.io/webidl/#idl-Error
https://heycam.github.io/webidl/#common-Function
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-object
https://heycam.github.io/webidl/#idl-Uint8ClampedArray
https://heycam.github.io/webidl/#idl-unrestricted-double
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-USVString
https://heycam.github.io/webidl/#VoidFunction
https://heycam.github.io/webidl/#dfn-throw
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#invalidcharactererror
https://heycam.github.io/webidl/#notfounderror
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#invalidaccesserror
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#networkerror
https://heycam.github.io/webidl/#aborterror
https://heycam.github.io/webidl/#quotaexceedederror
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#encodingerror
https://heycam.github.io/webidl/#notallowederror

When this specification requires a user agent to create a Date object representing a particular time (which could be the special
value Not-a-Number), the milliseconds component of that time, if any, must be truncated to an integer, and the time value of the
newly created Date object must represent the resulting truncated time.

JavaScript
Some parts of the language described by this specification only support JavaScript as the underlying scripting language.
[JAVASCRIPT]p1288

The following terms are defined in the JavaScript specification and used in this specification:

• active function object
• agent and agent cluster
• automatic semicolon insertion
• candidate execution
• The current Realm Record
• early error
• forward progress
• invariants of the essential internal methods
• JavaScript execution context
• JavaScript execution context stack
• JavaScript realm
• EnvironmentRecord
• NewTarget
• running JavaScript execution context
• surrounding agent
• abstract closure
• immutable prototype exotic object
• Well-Known Symbols, including @@hasInstance, @@isConcatSpreadable, @@toPrimitive, and @@toStringTag
• Well-Known Intrinsic Objects, including %Array.prototype%, %Error.prototype%, %EvalError.prototype%,

%Function.prototype%, %JSON.parse%, %Object.prototype%, %Object.prototype.valueOf%,
%RangeError.prototype%, %ReferenceError.prototype%, %SyntaxError.prototype%, %TypeError.prototype%,
and %URIError.prototype%

• The FunctionBody production
• The Module production
• The Pattern production
• The Script production
• The Type notation
• The Completion Record specification type
• The List and Record specification types
• The Property Descriptor specification type
• The Script Record specification type
• The Cyclic Module Record specification type
• The Source Text Module Record specification type and its Evaluate and Link methods
• The ArrayCreate abstract operation
• The Call abstract operation
• The Construct abstract operation
• The CopyDataBlockBytes abstract operation
• The CreateByteDataBlock abstract operation
• The CreateDataProperty abstract operation
• The DetachArrayBuffer abstract operation
• The EnumerableOwnPropertyNames abstract operation
• The FinishDynamicImport abstract operation
• The OrdinaryFunctionCreate abstract operation
• The Get abstract operation
• The GetActiveScriptOrModule abstract operation
• The GetFunctionRealm abstract operation
• The HasOwnProperty abstract operation
• The HostEnqueuePromiseJob abstract operation
• The HostEnsureCanCompileStrings abstract operation
• The HostImportModuleDynamically abstract operation
• The HostPromiseRejectionTracker abstract operation
• The HostResolveImportedModule abstract operation
• The InitializeHostDefinedRealm abstract operation

For instance, given the time 23045 millionths of a second after 01:00 UTC on January 1st 2000, i.e. the time
2000-01-01T00:00:00.023045Z, then the Date object created representing that time would represent the same time as that
created representing the time 2000-01-01T00:00:00.023Z, 45 millionths earlier. If the given time is NaN, then the result is a
Date object that represents a time value NaN (indicating that the object does not represent a specific instant of time).

Example

The term "JavaScript" is used to refer to ECMA-262, rather than the official term ECMAScript, since the term JavaScript is more
widely known. Similarly, the MIME type used to refer to JavaScript in this specification is text/javascript, since that is the
most commonly used type, despite it being an officially obsoleted type p27 according to RFC 4329. [RFC4329]p1290

Note

54

https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-date-objects
https://mimesniff.spec.whatwg.org/#mime-type
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-automatic-semicolon-insertion
https://tc39.es/ecma262/#sec-candidate-executions
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#early-error-rule
https://tc39.es/ecma262/#sec-forward-progress
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-lexical-environments
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-abstract-closure
https://tc39.es/ecma262/#immutable-prototype-exotic-object
https://tc39.es/ecma262/#sec-well-known-symbols
https://tc39.es/ecma262/#sec-well-known-intrinsic-objects
https://tc39.es/ecma262/#sec-properties-of-the-array-prototype-object
https://tc39.es/ecma262/#sec-properties-of-the-error-prototype-object
https://tc39.es/ecma262/#sec-properties-of-the-function-prototype-object
https://tc39.es/ecma262/#sec-json.parse
https://tc39.es/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.es/ecma262/#sec-object.prototype.valueof
https://tc39.es/ecma262/#prod-FunctionBody
https://tc39.es/ecma262/#prod-Module
https://tc39.es/ecma262/#prod-Pattern
https://tc39.es/ecma262/#prod-Script
https://tc39.es/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#sec-script-records
https://tc39.es/ecma262/#sec-cyclic-module-records
https://tc39.es/ecma262/#sec-source-text-module-records
https://tc39.es/ecma262/#sec-moduleevaluation
https://tc39.es/ecma262/#sec-moduledeclarationlinking
https://tc39.es/ecma262/#sec-arraycreate
https://tc39.es/ecma262/#sec-call
https://tc39.es/ecma262/#sec-construct
https://tc39.es/ecma262/#sec-copydatablockbytes
https://tc39.es/ecma262/#sec-createbytedatablock
https://tc39.es/ecma262/#sec-createdataproperty
https://tc39.es/ecma262/#sec-detacharraybuffer
https://tc39.es/ecma262/#sec-enumerableownpropertynames
https://tc39.es/ecma262/#sec-finishdynamicimport
https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
https://tc39.es/ecma262/#sec-get-o-p
https://tc39.es/ecma262/#sec-getactivescriptormodule
https://tc39.es/ecma262/#sec-getfunctionrealm
https://tc39.es/ecma262/#sec-hasownproperty
https://tc39.es/ecma262/#sec-hostenqueuepromisejob
https://tc39.es/ecma262/#sec-hostensurecancompilestrings
https://tc39.es/proposal-dynamic-import/#sec-hostimportmoduledynamically
https://tc39.es/ecma262/#sec-host-promise-rejection-tracker
https://tc39.es/ecma262/#sec-hostresolveimportedmodule
https://tc39.es/ecma262/#sec-initializehostdefinedrealm

• The IsAccessorDescriptor abstract operation
• The IsCallable abstract operation
• The IsConstructor abstract operation
• The IsDataDescriptor abstract operation
• The IsDetachedBuffer abstract operation
• The IsSharedArrayBuffer abstract operation
• The NewObjectEnvironment abstract operation
• The NormalCompletion abstract operation
• The OrdinaryGetPrototypeOf abstract operation
• The OrdinarySetPrototypeOf abstract operation
• The OrdinaryIsExtensible abstract operation
• The OrdinaryPreventExtensions abstract operation
• The OrdinaryGetOwnProperty abstract operation
• The OrdinaryDefineOwnProperty abstract operation
• The OrdinaryGet abstract operation
• The OrdinarySet abstract operation
• The OrdinaryDelete abstract operation
• The OrdinaryOwnPropertyKeys abstract operation
• The ObjectCreate abstract operation
• The ParseModule abstract operation
• The ParseScript abstract operation
• The NewPromiseReactionJob abstract operation
• The NewPromiseResolveThenableJob abstract operation
• The RegExpBuiltinExec abstract operation
• The RegExpCreate abstract operation
• The RunJobs abstract operation
• The SameValue abstract operation
• The ScriptEvaluation abstract operation
• The SetImmutablePrototype abstract operation
• The ToBoolean abstract operation
• The ToString abstract operation
• The ToUint32 abstract operation
• The TypedArrayCreate abstract operation
• The Abstract Equality Comparison algorithm
• The Strict Equality Comparison algorithm
• The Atomics object
• The Date class
• The RegExp class
• The SharedArrayBuffer class
• The TypeError class
• The RangeError class
• The eval() function
• The [[IsHTMLDDA]] internal slot
• import()
• import.meta
• The HostGetImportMetaProperties abstract operation
• The typeof operator
• The delete operator
• The TypedArray Constructors table

Users agents that support JavaScript must also implement ECMAScript Internationalization API. [JSINTL]p1288

WebAssembly
The following term is defined in WebAssembly JavaScript Interface: [WASMJS]p1292

• WebAssembly.Module

DOM
The Document Object Model (DOM) is a representation — a model — of a document and its content. The DOM is not just an API; the
conformance criteria of HTML implementations are defined, in this specification, in terms of operations on the DOM. [DOM]p1287

Implementations must support DOM and the events defined in UI Events, because this specification is defined in terms of the DOM,
and some of the features are defined as extensions to the DOM interfaces. [DOM]p1287 [UIEVENTS]p1292

In particular, the following features are defined in DOM: [DOM]p1287

• Attr interface
• Comment interface
• DOMImplementation interface
• Document interface
• DocumentOrShadowRoot interface
• DocumentFragment interface
• DocumentType interface
• ChildNode interface
• Element interface
• attachShadow() method.
• An element's shadow root
• The retargeting algorithm
• Node interface

55

https://tc39.es/ecma262/#sec-isaccessordescriptor
https://tc39.es/ecma262/#sec-iscallable
https://tc39.es/ecma262/#sec-isconstructor
https://tc39.es/ecma262/#sec-isdatadescriptor
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://tc39.es/ecma262/#sec-issharedarraybuffer
https://tc39.es/ecma262/#sec-newobjectenvironment
https://tc39.es/ecma262/#sec-normalcompletion
https://tc39.es/ecma262/#sec-ordinarygetprototypeof
https://tc39.es/ecma262/#sec-ordinarysetprototypeof
https://tc39.es/ecma262/#sec-ordinaryisextensible
https://tc39.es/ecma262/#sec-ordinarypreventextensions
https://tc39.es/ecma262/#sec-ordinarygetownproperty
https://tc39.es/ecma262/#sec-ordinarydefineownproperty
https://tc39.es/ecma262/#sec-ordinaryget
https://tc39.es/ecma262/#sec-ordinaryset
https://tc39.es/ecma262/#sec-ordinarydelete
https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
https://tc39.es/ecma262/#sec-objectcreate
https://tc39.es/ecma262/#sec-parsemodule
https://tc39.es/ecma262/#sec-parse-script
https://tc39.es/ecma262/#sec-newpromisereactionjob
https://tc39.es/ecma262/#sec-newpromiseresolvethenablejob
https://tc39.es/ecma262/#sec-regexpbuiltinexec
https://tc39.es/ecma262/#sec-regexpcreate
https://tc39.es/ecma262/#sec-runjobs
https://tc39.es/ecma262/#sec-samevalue
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://tc39.es/ecma262/#sec-set-immutable-prototype
https://tc39.es/ecma262/#sec-toboolean
https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-touint32
https://tc39.es/ecma262/#typedarray-create
https://tc39.es/ecma262/#sec-abstract-equality-comparison
https://tc39.es/ecma262/#sec-strict-equality-comparison
https://tc39.es/ecma262/#sec-atomics-object
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-regexp-regular-expression-objects
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://tc39.es/ecma262/#sec-eval-x
https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-meta-properties
https://tc39.es/ecma262/#sec-hostgetimportmetaproperties
https://tc39.es/ecma262/#sec-typeof-operator
https://tc39.es/ecma262/#sec-delete-operator
https://tc39.es/ecma262/#table-49
https://webassembly.github.io/spec/js-api/#module
https://dom.spec.whatwg.org/#interface-attr
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-domimplementation
https://dom.spec.whatwg.org/#interface-document
https://dom.spec.whatwg.org/#documentorshadowroot
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#interface-childnode
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#dom-element-attachshadow
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#retarget
https://dom.spec.whatwg.org/#interface-node

• NodeList interface
• ProcessingInstruction interface
• ShadowRoot interface
• Text interface
• node document concept
• document type concept
• host concept
• The shadow root concept, and its delegates focus
• The shadow host concept
• HTMLCollection interface, its length attribute, and its item() and namedItem() methods
• The terms collection and represented by the collection
• DOMTokenList interface, and its value attribute
• createDocument() method
• createHTMLDocument() method
• createElement() method
• createElementNS() method
• getElementById() method
• getElementsByClassName() method
• appendChild() method
• cloneNode() method
• importNode() method
• preventDefault() method
• id attribute
• setAttribute() method
• textContent attribute
• The tree, shadow tree, and node tree concepts
• The tree order and shadow-including tree order concepts
• The child concept
• The root and shadow-including root concepts
• The inclusive ancestor, shadow-including descendant, shadow-including inclusive descendant, and shadow-

including inclusive ancestor concepts
• The first child and next sibling concepts
• The document element concept
• The in a document tree, in a document (legacy), and connected concepts
• The slot concept, and its name and assigned nodes
• The assigned slot concept.
• The find flattened slottables algorithm
• The assign a slot algorithm
• The pre-insert, insert, append, replace, replace all, string replace all, remove, and adopt algorithms for nodes
• The insertion steps, removing steps, adopting steps, and children changed steps hooks for elements
• The change, append, remove, replace, and set value algorithms for attributes
• The attribute change steps hook for attributes
• The attribute list concept
• The data of a text node
• The child text content of a node
• The descendant text content of a node
• Event interface
• Event and derived interfaces constructor behavior
• EventTarget interface
• The activation behavior hook
• The legacy-pre-activation behavior hook
• The legacy-canceled-activation behavior hook
• The create an event algorithm
• The fire an event algorithm
• The canceled flag
• The dispatch algorithm
• EventInit dictionary type
• type attribute
• target attribute
• currentTarget attribute
• bubbles attribute
• cancelable attribute
• composed attribute
• composed flag
• isTrusted attribute
• initEvent() method
• add an event listener
• addEventListener() method
• The remove an event listener and remove all event listeners algorithms
• EventListener callback interface
• The type of an event
• An event listener and its type and callback
• The encoding (herein the character encoding), mode, and content type of a Documentp114

• The distinction between XML documents and HTML documents
• The terms quirks mode, limited-quirks mode, and no-quirks mode
• The algorithm to clone a Node, and the concept of cloning steps used by that algorithm
• The concept of base URL change steps and the definition of what happens when an element is affected by a base

URL change
• The concept of an element's unique identifier (ID)
• The concept of an element's classes
• The term supported tokens
• The concept of a DOM range, and the terms start, end, and boundary point as applied to ranges.
• The create an element algorithm

56

https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#interface-shadowroot
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#dom-htmlcollection-length
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#dom-domimplementation-createdocument
https://dom.spec.whatwg.org/#dom-domimplementation-createhtmldocument
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#dom-document-createelementns
https://dom.spec.whatwg.org/#dom-nonelementparentnode-getelementbyid
https://dom.spec.whatwg.org/#dom-document-getelementsbyclassname
https://dom.spec.whatwg.org/#dom-node-appendchild
https://dom.spec.whatwg.org/#dom-node-clonenode
https://dom.spec.whatwg.org/#dom-document-importnode
https://dom.spec.whatwg.org/#dom-event-preventdefault
https://dom.spec.whatwg.org/#dom-element-id
https://dom.spec.whatwg.org/#dom-element-setAttribute
https://dom.spec.whatwg.org/#dom-node-textcontent
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#concept-node-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-tree-child
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
https://dom.spec.whatwg.org/#concept-tree-first-child
https://dom.spec.whatwg.org/#concept-tree-next-sibling
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#slot-name
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#slotable-assigned-slot
https://dom.spec.whatwg.org/#find-flattened-slotables
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#concept-node-pre-insert
https://dom.spec.whatwg.org/#concept-node-insert
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-replace
https://dom.spec.whatwg.org/#concept-node-replace-all
https://dom.spec.whatwg.org/#string-replace-all
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#concept-node-adopt
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#concept-node-adopt-ext
https://dom.spec.whatwg.org/#concept-node-children-changed-ext
https://dom.spec.whatwg.org/#concept-element-attributes-change
https://dom.spec.whatwg.org/#concept-element-attributes-append
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://dom.spec.whatwg.org/#concept-element-attributes-replace
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://dom.spec.whatwg.org/#concept-element-attribute
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-pre-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-canceled-activation-behavior
https://dom.spec.whatwg.org/#concept-event-create
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#concept-event-dispatch
https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#dom-event-target
https://dom.spec.whatwg.org/#dom-event-currenttarget
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#composed-flag
https://dom.spec.whatwg.org/#dom-event-istrusted
https://dom.spec.whatwg.org/#dom-event-initevent
https://dom.spec.whatwg.org/#add-an-event-listener
https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://dom.spec.whatwg.org/#remove-an-event-listener
https://dom.spec.whatwg.org/#remove-all-event-listeners
https://dom.spec.whatwg.org/#callbackdef-eventlistener
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#event-listener-type
https://dom.spec.whatwg.org/#event-listener-callback
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-document-mode
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-node-clone
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-class
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-range
https://dom.spec.whatwg.org/#concept-range-start
https://dom.spec.whatwg.org/#concept-range-end
https://dom.spec.whatwg.org/#concept-range-bp
https://dom.spec.whatwg.org/#concept-create-element

• The element interface concept
• The concepts of custom element state, and of defined and custom elements
• An element's namespace, namespace prefix, local name, custom element definition, and is value
• MutationObserver interface and mutation observers in general

The following features are defined in UI Events: [UIEVENTS]p1292

• The MouseEvent interface
• The MouseEvent interface's relatedTarget attribute
• MouseEventInit dictionary type
• The FocusEvent interface
• The FocusEvent interface's relatedTarget attribute
• The UIEvent interface
• The UIEvent interface's view attribute
• auxclick event
• click event
• dblclick event
• mousedown event
• mouseenter event
• mouseleave event
• mousemove event
• mouseout event
• mouseover event
• mouseup event
• wheel event
• keydown event
• keypress event
• keyup event

The following features are defined in Touch Events: [TOUCH]p1291

• Touch interface
• Touch point concept
• touchend event

The following features are defined in Pointer Events: [POINTEREVENTS]p1290

• pointerup event

This specification sometimes uses the term name to refer to the event's type; as in, "an event named click" or "if the event name
is keypress". The terms "name" and "type" for events are synonymous.

The following features are defined in DOM Parsing and Serialization: [DOMPARSING]p1287

• innerHTML
• outerHTML

The following features are defined in Selection API: [SELECTION]p1291

• selection
• Selection

The following parts of Fullscreen API are referenced from this specification, in part to define the rendering of dialogp610 elements,
and also to define how the Fullscreen API interacts with HTML: [FULLSCREEN]p1287

• top layer (an ordered set) and its add operation
• requestFullscreen()
• run the fullscreen steps

High Resolution Time provides the current high resolution time and the DOMHighResTimeStamp typedef. [HRT]p1288

File API
This specification uses the following features defined in File API: [FILEAPI]p1287

• The Blob interface and its type attribute
• The File interface and its name and lastModified attributes
• The FileList interface
• The concept of a Blob's snapshot state
• The concept of read errors
• Blob URL Store

User agents are encouraged to implement the features described in execCommand. [EXECCOMMAND]p1287

Note

57

https://dom.spec.whatwg.org/#concept-element-interface
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-element-defined
https://dom.spec.whatwg.org/#concept-element-custom
https://dom.spec.whatwg.org/#concept-element-namespace
https://dom.spec.whatwg.org/#concept-element-namespace-prefix
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#mutationobserver
https://dom.spec.whatwg.org/#mutation-observers
https://w3c.github.io/uievents/#mouseevent
https://w3c.github.io/uievents/#mouseevent
https://w3c.github.io/uievents/#dom-mouseevent-relatedtarget
https://w3c.github.io/uievents/#dictdef-mouseeventinit
https://w3c.github.io/uievents/#focusevent
https://w3c.github.io/uievents/#focusevent
https://w3c.github.io/uievents/#dom-focusevent-relatedtarget
https://w3c.github.io/uievents/#uievent
https://w3c.github.io/uievents/#uievent
https://w3c.github.io/uievents/#dom-uievent-view
https://w3c.github.io/uievents/#event-type-auxclick
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-dblclick
https://w3c.github.io/uievents/#event-type-mousedown
https://w3c.github.io/uievents/#event-type-mouseenter
https://w3c.github.io/uievents/#event-type-mouseleave
https://w3c.github.io/uievents/#event-type-mousemove
https://w3c.github.io/uievents/#event-type-mouseout
https://w3c.github.io/uievents/#event-type-mouseover
https://w3c.github.io/uievents/#event-type-mouseup
https://w3c.github.io/uievents/#event-type-wheel
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keypress
https://w3c.github.io/uievents/#event-type-keyup
https://w3c.github.io/touch-events/#touch-interface
https://w3c.github.io/touch-events/#dfn-touch-point
https://w3c.github.io/touch-events/#event-touchend
https://w3c.github.io/pointerevents/#the-pointerup-event
https://dom.spec.whatwg.org/#dom-event-type
https://w3c.github.io/DOM-Parsing/#dom-element-innerhtml
https://w3c.github.io/DOM-Parsing/#dom-element-outerhtml
https://w3c.github.io/selection-api/#dfn-selection
https://w3c.github.io/selection-api/#selection-interface
https://fullscreen.spec.whatwg.org/#top-layer
https://infra.spec.whatwg.org/#ordered-set
https://fullscreen.spec.whatwg.org/#top-layer-add
https://fullscreen.spec.whatwg.org/#dom-element-requestfullscreen
https://fullscreen.spec.whatwg.org/#run-the-fullscreen-steps
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#dfn-type
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-name
https://w3c.github.io/FileAPI/#dfn-lastModified
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#snapshot-state
https://w3c.github.io/FileAPI/#BlobURLStore

Indexed Database API
This specification uses cleanup Indexed Database transactions defined by Indexed Database API. [INDEXEDDB]p1288

Media Source Extensions
The following terms are defined in Media Source Extensions: [MEDIASOURCE]p1289

• MediaSource interface
• detaching from a media element

Media Capture and Streams
The following terms are defined in Media Capture and Streams: [MEDIASTREAM]p1289

• MediaStream interface

Reporting
The following terms are defined in Reporting: [REPORTING]p1289

• Queue a report
• report type
• visible to ReportingObservers

XMLHttpRequest
The following features and terms are defined in XMLHttpRequest: [XHR]p1292

• The XMLHttpRequest interface, and its responseXML attribute
• The ProgressEvent interface, and its lengthComputable, loaded, and total attributes
• The FormData interface
• The FormDataEntryValue type
• entry
• create an entry

Battery Status
The following features are defined in Battery Status API: [BATTERY]p1285

• getBattery() method

Media Queries
Implementations must support Media Queries. The <media-condition> feature is defined therein. [MQ]p1289

CSS modules
While support for CSS as a whole is not required of implementations of this specification (though it is encouraged, at least for web
browsers), some features are defined in terms of specific CSS requirements.

When this specification requires that something be parsed according to a particular CSS grammar, the relevant algorithm in
CSS Syntax must be followed, including error handling rules. [CSSSYNTAX]p1287

To parse a CSS <color> value, given a string input with an optional element element, run these steps:

1. Let color be the result of parsing input as a CSS <color>. [CSSCOLOR]p1286

2. If color is failure, then return failure.

3. If color is 'currentcolor', then:

1. If element is not given, then set color to opaque black.

2. Otherwise, set color to the computed value of the 'color' property of element.

4. Return color.

The following terms and features are defined in Cascading Style Sheets (CSS): [CSS]p1285

• viewport

For example, user agents are required to close all open constructs upon finding the end of a style sheet unexpectedly. Thus,
when parsing the string "rgb(0,0,0" (with a missing close-parenthesis) for a color value, the close parenthesis is implied by this
error handling rule, and a value is obtained (the color 'black'). However, the similar construct "rgb(0,0," (with both a missing
parenthesis and a missing "blue" value) cannot be parsed, as closing the open construct does not result in a viable value.

Example

58

https://w3c.github.io/IndexedDB/#cleanup-indexed-database-transactions
https://w3c.github.io/media-source/#idl-def-mediasource
https://w3c.github.io/media-source/#mediasource-detach
https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-mediastream
https://w3c.github.io/reporting/#queue-report
https://w3c.github.io/reporting/#report-type
https://w3c.github.io/reporting/#visible-to-reportingobservers
https://xhr.spec.whatwg.org/#xmlhttprequest
https://xhr.spec.whatwg.org/#dom-xmlhttprequest-responsexml
https://xhr.spec.whatwg.org/#interface-progressevent
https://xhr.spec.whatwg.org/#dom-progressevent-lengthcomputable
https://xhr.spec.whatwg.org/#dom-progressevent-loaded
https://xhr.spec.whatwg.org/#dom-progressevent-total
https://xhr.spec.whatwg.org/#formdata
https://xhr.spec.whatwg.org/#formdataentryvalue
https://xhr.spec.whatwg.org/#concept-formdata-entry
https://xhr.spec.whatwg.org/#create-an-entry
https://w3c.github.io/battery/#widl-Navigator-getBattery-Promise-BatteryManager
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.csswg.org/css-color/#typedef-color
https://drafts.csswg.org/css-color/#valdef-color-currentcolor
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css2/#viewport

• line box
• out-of-flow
• in-flow
• content area
• content box
• border box
• margin box
• border edge
• margin edge
• collapsing margins
• containing block
• inline box
• block box
• The 'margin-top', 'margin-bottom', 'margin-left', and 'margin-right' properties
• The 'padding-top', 'padding-bottom', 'padding-left', and 'padding-right' properties
• The 'top', 'bottom', 'left', and 'right' properties
• The 'float' property
• The 'clear' property
• The 'width' property
• The 'height' property
• The 'line-height' property
• The 'vertical-align' property
• The 'content' property
• The 'inline-block' value of the 'display' property
• The 'visibility' property

CSS also defines the following border properties: [CSS]p1285

Border properties
Top Bottom Left Right

Width 'border-top-width' 'border-bottom-width' 'border-left-width' 'border-right-width'
Style 'border-top-style' 'border-bottom-style' 'border-left-style' 'border-right-style'
Color 'border-top-color' 'border-bottom-color' 'border-left-color' 'border-right-color'

The basic version of the 'display' property is defined in CSS, and the property is extended by other CSS modules. [CSS]p1285

[CSSRUBY]p1286 [CSSTABLE]p1287

The following terms and features are defined in CSS Logical Properties: [CSSLOGICAL]p1286

• The 'margin-block-start', 'margin-block-end', 'margin-inline-start', and 'margin-inline-end' properties
• The 'padding-block-start', 'padding-block-end', 'padding-inline-start', and 'padding-inline-end' properties
• The 'border-block-start-width' property
• The 'block-size' property
• The 'inline-size' property

The following terms and features are defined in CSS Color: [CSSCOLOR]p1286

• named color
• <color>
• The 'color' property
• The 'currentcolor' value
• opaque black
• transparent black

The following terms are defined in CSS Images: [CSSIMAGES]p1286

• default object size
• intrinsic dimensions
• intrinsic aspect ratio
• intrinsic height
• intrinsic width
• The 'image-orientation' property
• The 'object-fit' property

The term paint source is used as defined in CSS Images Level 4 to define the interaction of certain HTML elements with the CSS
'element()' function. [CSSIMAGES4]p1286

The following features are defined in CSS Backgrounds and Borders: [CSSBG]p1286

• The 'background-color' property
• The 'background-image' property
• The 'border-radius' property

The following features are defined in CSS Box Alignment: [CSSALIGN]p1286

• The 'align-content' property
• The 'align-items' property

59

https://drafts.csswg.org/css2/#line-box
https://drafts.csswg.org/css2/#out-of-flow
https://drafts.csswg.org/css2/#in-flow
https://drafts.csswg.org/css2/#box-content-area
https://drafts.csswg.org/css2/#content-box
https://drafts.csswg.org/css2/#border-box
https://drafts.csswg.org/css2/#margin-box
https://drafts.csswg.org/css2/#border-edge
https://drafts.csswg.org/css2/#margin-edge
https://drafts.csswg.org/css2/#collapsing-margins
https://drafts.csswg.org/css2/#containing-block-details
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://drafts.csswg.org/css2/#propdef-margin-top
https://drafts.csswg.org/css2/#propdef-margin-bottom
https://drafts.csswg.org/css2/#propdef-margin-left
https://drafts.csswg.org/css2/#propdef-margin-right
https://drafts.csswg.org/css2/#propdef-padding-top
https://drafts.csswg.org/css2/#propdef-padding-bottom
https://drafts.csswg.org/css2/#propdef-padding-left
https://drafts.csswg.org/css2/#propdef-padding-right
https://drafts.csswg.org/css2/#propdef-top
https://drafts.csswg.org/css2/#propdef-bottom
https://drafts.csswg.org/css2/#propdef-left
https://drafts.csswg.org/css2/#propdef-right
https://drafts.csswg.org/css2/#float-position
https://drafts.csswg.org/css2/#flow-control
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#propdef-line-height
https://drafts.csswg.org/css2/#propdef-vertical-align
https://drafts.csswg.org/css2/#content%E2%91%A0
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#propdef-visibility
https://drafts.csswg.org/css2/#propdef-border-top-width
https://drafts.csswg.org/css2/#propdef-border-bottom-width
https://drafts.csswg.org/css2/#propdef-border-left-width
https://drafts.csswg.org/css2/#propdef-border-right-width
https://drafts.csswg.org/css2/#propdef-border-top-style
https://drafts.csswg.org/css2/#propdef-border-bottom-style
https://drafts.csswg.org/css2/#propdef-border-left-style
https://drafts.csswg.org/css2/#propdef-border-right-style
https://drafts.csswg.org/css2/#propdef-border-top-color
https://drafts.csswg.org/css2/#propdef-border-bottom-color
https://drafts.csswg.org/css2/#propdef-border-left-color
https://drafts.csswg.org/css2/#propdef-border-right-color
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-logical/#propdef-margin-block-start
https://drafts.csswg.org/css-logical/#propdef-margin-block-end
https://drafts.csswg.org/css-logical/#propdef-margin-inline-start
https://drafts.csswg.org/css-logical/#propdef-margin-inline-end
https://drafts.csswg.org/css-logical/#propdef-padding-block-start
https://drafts.csswg.org/css-logical/#propdef-padding-block-end
https://drafts.csswg.org/css-logical/#propdef-padding-inline-start
https://drafts.csswg.org/css-logical/#propdef-padding-inline-end
https://drafts.csswg.org/css-logical/#propdef-border-block-start-width
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-logical/#propdef-inline-size
https://drafts.csswg.org/css-color/#named-color
https://drafts.csswg.org/css-color/#typedef-color
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-color/#valdef-color-currentcolor
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#default-object-size
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-images/#intrinsic-aspect-ratio
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images-3/#the-image-orientation
https://drafts.csswg.org/css-images/#the-object-fit
https://drafts.csswg.org/css-images-4/#paint-source
https://drafts.csswg.org/css-backgrounds/#the-background-color
https://drafts.csswg.org/css-backgrounds/#the-background-image
https://drafts.csswg.org/css-backgrounds/#propdef-border-radius
https://drafts.csswg.org/css-align/#propdef-align-content
https://drafts.csswg.org/css-align/#propdef-align-items

• The 'align-self' property
• The 'justify-self' property
• The 'justify-content' property
• The 'justify-items' property

The following terms and features are defined in CSS Display: [CSSDISPLAY]p1286

• outer display type
• block-level
• block container
• formatting context
• block formatting context
• inline formatting context
• absolutely positioned
• replaced element
• CSS box

The following features are defined in CSS Flexible Box Layout: [CSSFLEXBOX]p1286

• The 'flex-direction' property
• The 'flex-wrap' property

The following terms and features are defined in CSS Fonts: [CSSFONTS]p1286

• first available font
• The 'font-family' property
• The 'font-weight' property
• The 'font-size' property
• The 'font' property

The following features are defined in CSS Grid Layout: [CSSGRID]p1286

• The 'grid-auto-columns' property
• The 'grid-auto-flow' property
• The 'grid-auto-rows' property
• The 'grid-column-gap' property
• The 'grid-row-gap' property
• The 'grid-template-areas' property
• The 'grid-template-columns' property
• The 'grid-template-rows' property

The following terms are defined in CSS Inline Layout: [CSSINLINE]p1286

• alphabetic baseline
• ascent metric
• descent metric
• hanging baseline
• ideographic-under baseline

The following terms and features are defined in CSS Intrinsic & Extrinsic Sizing: [CSSSIZING]p1287

• fit-content inline size

The 'list-style-type' property is defined in CSS Lists and Counters. [CSSLISTS]p1286

The following features are defined in CSS Overflow. [CSSOVERFLOW]p1286

• The 'overflow' property and its 'hidden' value
• The 'text-overflow' property

The following features are defined in CSS Positioned Layout: [CSSPOSITION]p1286

• The 'position' property and its 'static' value

The following features are defined in CSS Multi-column Layout. [CSSMULTICOL]p1286

• The 'column-count' property
• The 'column-fill' property
• The 'column-gap' property
• The 'column-rule' property
• The 'column-width' property

The 'ruby-base' value of the 'display' property is defined in CSS Ruby Layout. [CSSRUBY]p1286

The following features are defined in CSS Table: [CSSTABLE]p1287

• The 'border-spacing' property
• The 'border-collapse' property

60

https://drafts.csswg.org/css-align/#propdef-align-self
https://drafts.csswg.org/css-align/#propdef-justify-self
https://drafts.csswg.org/css-align/#propdef-propdef-justify-content
https://drafts.csswg.org/css-align/#propdef-propdef-justify-items
https://drafts.csswg.org/css-display/#outer-display-type
https://drafts.csswg.org/css-display/#block-level
https://drafts.csswg.org/css-display/#block-container
https://drafts.csswg.org/css-display/#formatting-context
https://drafts.csswg.org/css-display/#block-formatting-context
https://drafts.csswg.org/css-display/#inline-formatting-context
https://drafts.csswg.org/css-display/#absolutely-positioned
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-flexbox/#propdef-flex-direction
https://drafts.csswg.org/css-flexbox/#propdef-flex-wrap
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css-fonts/#font-family-prop
https://drafts.csswg.org/css-fonts/#font-weight-prop
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-fonts/#font-prop
https://drafts.csswg.org/css-grid/#propdef-grid-auto-columns
https://drafts.csswg.org/css-grid/#propdef-grid-auto-flow
https://drafts.csswg.org/css-grid/#propdef-grid-auto-rows
https://drafts.csswg.org/css-grid/#propdef-grid-column-gap
https://drafts.csswg.org/css-grid/#propdef-grid-row-gap
https://drafts.csswg.org/css-grid/#propdef-grid-template-areas
https://drafts.csswg.org/css-grid/#propdef-grid-template-columns
https://drafts.csswg.org/css-grid/#propdef-grid-template-rows
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-inline/#ascent-metric
https://drafts.csswg.org/css-inline/#descent-metric
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css-sizing/#fit-content-inline-size
https://drafts.csswg.org/css-lists/#propdef-list-style-type
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css-overflow/#valdef-overflow-hidden
https://drafts.csswg.org/css-overflow/#propdef-text-overflow
https://drafts.csswg.org/css-position/#position-property
https://drafts.csswg.org/css-position/#valdef-position-static
https://drafts.csswg.org/css-multicol/#propdef-column-count
https://drafts.csswg.org/css-multicol/#propdef-column-fill
https://drafts.csswg.org/css-multicol/#propdef-column-gap
https://drafts.csswg.org/css-multicol/#propdef-column-rule
https://drafts.csswg.org/css-multicol/#propdef-column-width
https://drafts.csswg.org/css-ruby/#valdef-display-ruby-base
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-tables/#propdef-border-spacing
https://drafts.csswg.org/css-tables/#border-collapse-property

• The 'table-cell', 'table-row', 'table-caption', and 'table' values of the 'display' property

The following features are defined in CSS Text: [CSSTEXT]p1287

• The 'text-transform' property
• The 'white-space' property
• The 'text-align' property
• The 'letter-spacing' property

The following features are defined in CSS Writing Modes: [CSSWM]p1287

• The 'direction' property
• The 'unicode-bidi' property
• The block flow direction, block size, inline size, block-start, block-end, inline-start, inline-end, line-left, and

line-right concepts

The following features are defined in CSS Basic User Interface: [CSSUI]p1287

• The 'outline' property
• The 'cursor' property
• The 'appearance' property

The algorithm to update animations and send events is defined in Web Animations. [WEBANIMATIONS]p1292.

Implementations that support scripting must support the CSS Object Model. The following features and terms are defined in the
CSSOM specifications: [CSSOM]p1286 [CSSOMVIEW]p1286

• Screen interface
• LinkStyle interface
• CSSStyleDeclaration interface
• cssText attribute of CSSStyleDeclaration
• StyleSheet interface
• create a CSS style sheet
• remove a CSS style sheet
• associated CSS style sheet
• CSS style sheets and their properties:

◦ type
◦ location
◦ parent CSS style sheet
◦ owner node
◦ owner CSS rule
◦ media
◦ title
◦ alternate flag
◦ disabled flag
◦ CSS rules
◦ origin-clean flag

• CSS style sheet set
• CSS style sheet set name
• preferred CSS style sheet set name
• change the preferred CSS style sheet set name
• Serializing a CSS value
• run the resize steps
• run the scroll steps
• evaluate media queries and report changes
• Scroll an element into view
• Scroll to the beginning of the document
• The resize event
• The scroll event
• set up browsing context features

The following features and terms are defined in CSS Syntax: [CSSSYNTAX]p1287

• conformant style sheet
• parse a comma-separated list of component values
• component value
• environment encoding
• <whitespace-token>

The following terms are defined in Selectors: [SELECTORS]p1291

• type selector
• attribute selector
• pseudo-class

The following features are defined in CSS Values and Units: [CSSVALUES]p1287

• <length>
• The 'em' unit

61

https://drafts.csswg.org/css-tables/#table-cell
https://drafts.csswg.org/css-tables/#table-row
https://drafts.csswg.org/css-tables/#table-caption
https://drafts.csswg.org/css-tables/#table
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-text/#text-transform-property
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#text-align-property
https://drafts.csswg.org/css-text/#letter-spacing-property
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-writing-modes/#block-flow-direction
https://drafts.csswg.org/css-writing-modes/#block-size
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-writing-modes/#block-start
https://drafts.csswg.org/css-writing-modes/#block-end
https://drafts.csswg.org/css-writing-modes/#inline-start
https://drafts.csswg.org/css-writing-modes/#inline-end
https://drafts.csswg.org/css-writing-modes/#line-left
https://drafts.csswg.org/css-writing-modes/#line-right
https://drafts.csswg.org/css-ui/#outline
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui-4/#appearance-switching
https://drafts.csswg.org/web-animations/#update-animations-and-send-events
https://drafts.csswg.org/cssom-view/#the-screen-interface
https://drafts.csswg.org/cssom/#the-linkstyle-interface
https://drafts.csswg.org/cssom/#the-cssstyledeclaration-interface
https://drafts.csswg.org/cssom/#dom-cssstyledeclaration-csstext
https://drafts.csswg.org/cssom/#the-cssstyledeclaration-interface
https://drafts.csswg.org/cssom/#the-stylesheet-interface
https://drafts.csswg.org/cssom/#create-a-css-style-sheet
https://drafts.csswg.org/cssom/#remove-a-css-style-sheet
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-type
https://drafts.csswg.org/cssom/#concept-css-style-sheet-location
https://drafts.csswg.org/cssom/#concept-css-style-sheet-parent-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-node
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-css-rule
https://drafts.csswg.org/cssom/#concept-css-style-sheet-media
https://drafts.csswg.org/cssom/#concept-css-style-sheet-title
https://drafts.csswg.org/cssom/#concept-css-style-sheet-alternate-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-css-rules
https://drafts.csswg.org/cssom/#concept-css-style-sheet-origin-clean-flag
https://drafts.csswg.org/cssom/#css-style-sheet-set
https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://drafts.csswg.org/cssom/#preferred-css-style-sheet-set-name
https://drafts.csswg.org/cssom/#change-the-preferred-css-style-sheet-set-name
https://drafts.csswg.org/cssom/#serialize-a-css-value
https://drafts.csswg.org/cssom-view/#run-the-resize-steps
https://drafts.csswg.org/cssom-view/#run-the-scroll-steps
https://drafts.csswg.org/cssom-view/#evaluate-media-queries-and-report-changes
https://drafts.csswg.org/cssom-view/#scroll-an-element-into-view
https://drafts.csswg.org/cssom-view/#scroll-to-the-beginning-of-the-document
https://drafts.csswg.org/cssom-view/#eventdef-window-resize
https://drafts.csswg.org/cssom-view/#eventdef-document-scroll
https://drafts.csswg.org/cssom-view/#set-up-browsing-context-features
https://drafts.csswg.org/css-syntax/#conform-classes
https://drafts.csswg.org/css-syntax/#parse-a-comma-separated-list-of-component-values
https://drafts.csswg.org/css-syntax/#component-value
https://drafts.csswg.org/css-syntax/#environment-encoding
https://drafts.csswg.org/css-syntax/#typedef-whitespace-token
https://drafts.csswg.org/selectors/#type-selector
https://drafts.csswg.org/selectors/#attribute-selector
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/css-values/#em

• The 'ex' unit
• The 'vw' unit
• The 'in' unit
• The 'px' unit
• The 'attr()' function
• The math functions

The term style attribute is defined in CSS Style Attributes. [CSSATTR]p1286

The following terms are defined in the CSS Cascading and Inheritance: [CSSCASCADE]p1286

• specified value
• computed value
• used value

The CanvasRenderingContext2Dp638 object's use of fonts depends on the features described in the CSS Fonts and Font Loading
specifications, including in particular FontFace objects and the font source concept. [CSSFONTS]p1286 [CSSFONTLOAD]p1286

The following interfaces and terms are defined in Geometry Interfaces: [GEOMETRY]p1287

• DOMMatrix interface, and associated m11 element, m12 element, m21 element, m22 element, m41 element, and
m42 element

• DOMMatrix2DInit and DOMMatrixInit dictionaries
• The create a DOMMatrix from a dictionary and create a DOMMatrix from a 2D dictionary algorithms for

DOMMatrix2DInit or DOMMatrixInit

The following terms are defined in the CSS Scoping: [CSSSCOPING]p1287

• flat tree

Intersection Observer
The following term is defined in Intersection Observer: [INTERSECTIONOBSERVER]p1288

• run the update intersection observations steps
• IntersectionObserver
• IntersectionObserverInit
• observe
• unobserve
• isIntersecting
• target

WebGL
The following interfaces are defined in the WebGL specifications: [WEBGL]p1292

• WebGLRenderingContext interface
• WebGL2RenderingContext interface
• WebGLContextAttributes dictionary

WebVTT
Implementations may support WebVTT as a text track format for subtitles, captions, metadata, etc., for media resources.
[WEBVTT]p1292

The following terms, used in this specification, are defined in WebVTT:

• WebVTT file
• WebVTT file using cue text
• WebVTT file using only nested cues
• WebVTT parser
• The rules for updating the display of WebVTT text tracks
• The WebVTT text track cue writing direction
• VTTCue interface

The WebSocket protocol
The following terms are defined in Fetch: [FETCH]p1287

• establish a WebSocket connection

The following terms are defined in The WebSocket protocol: [WSP]p1292

• the WebSocket connection is established
• extensions in use
• subprotocol in use
• a WebSocket message has been received
• send a WebSocket Message
• fail the WebSocket connection
• close the WebSocket connection

62

https://drafts.csswg.org/css-values/#ex
https://drafts.csswg.org/css-values/#vw
https://drafts.csswg.org/css-values/#in
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#funcdef-attr
https://drafts.csswg.org/css-values/#math-function
https://drafts.csswg.org/css-style-attr/#style-attribute
https://drafts.csswg.org/css-cascade/#specified-value
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-font-loading/#font-source
https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#matrix-m11-element
https://drafts.fxtf.org/geometry/#matrix-m12-element
https://drafts.fxtf.org/geometry/#matrix-m21-element
https://drafts.fxtf.org/geometry/#matrix-m22-element
https://drafts.fxtf.org/geometry/#matrix-m41-element
https://drafts.fxtf.org/geometry/#matrix-m42-element
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit
https://drafts.fxtf.org/geometry/#dictdef-dommatrixinit
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-dictionary
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-2d-dictionary
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit
https://drafts.fxtf.org/geometry/#dictdef-dommatrixinit
https://drafts.csswg.org/css-scoping/#flat-tree
https://w3c.github.io/IntersectionObserver/#run-the-update-intersection-observations-steps
https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://w3c.github.io/IntersectionObserver/#dictdef-intersectionobserverinit
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-observe
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-unobserve
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-isintersecting
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLContextAttributes
https://w3c.github.io/webvtt/#webvtt-file
https://w3c.github.io/webvtt/#webvtt-file-using-cue-text
https://w3c.github.io/webvtt/#webvtt-file-using-only-nested-cues
https://w3c.github.io/webvtt/#webvtt-parser
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#webvtt-cue-writing-direction
https://w3c.github.io/webvtt/#vttcue
https://fetch.spec.whatwg.org/#concept-websocket-establish

• start the WebSocket closing handshake
• the WebSocket closing handshake is started
• the WebSocket connection is closed (possibly cleanly)
• the WebSocket connection close code
• the WebSocket connection close reason
• Sec-WebSocket-Protocol field

ARIA
The role attribute is defined in Accessible Rich Internet Applications (ARIA), as are the following roles: [ARIA]p1285

• button
• presentation

In addition, the following aria-* content attributes are defined in ARIA: [ARIA]p1285

• aria-describedby
• aria-disabled
• aria-label

Finally, the following terms are defined ARIA: [ARIA]p1285

• accessible name

Content Security Policy
The following terms are defined in Content Security Policy: [CSP]p1285

• Content Security Policy
• disposition
• directive set
• Content Security Policy directive
• CSP list
• The Content Security Policy syntax
• enforce the policy
• The parse a serialized Content Security Policy algorithm
• The Initialize a global object's CSP list algorithm
• The Initialize a Document's CSP list algorithm
• The Should element's inline behavior be blocked by Content Security Policy? algorithm
• The Should navigation request of type from source in target be blocked by Content Security Policy? algorithm
• The Should navigation response to navigation request of type from source in target be blocked by Content

Security Policy? algorithm
• The report-uri directive
• The EnsureCSPDoesNotBlockStringCompilation abstract operation
• The Is base allowed for Document? algorithm
• The frame-ancestors directive
• The sandbox directive
• The Should element be blocked a priori by Content Security Policy? algorithm
• The contains a header-delivered Content Security Policy property.

Service Workers
The following terms are defined in Service Workers: [SW]p1291

• active worker
• client message queue
• control
• handle fetch
• match service worker registration
• service worker
• service worker client
• ServiceWorker interface
• ServiceWorkerContainer interface
• ServiceWorkerGlobalScope interface

Secure Contexts
The following algorithms are defined in Secure Contexts: [SECURE-CONTEXTS]p1291

• Is url potentially trustworthy?

Permissions Policy
The following terms are defined in Permissions Policy: [PERMISSIONSPOLICY]p1289

• permissions policy
• policy-controlled feature
• container policy
• serialized permissions policy
• default allowlist
• The creating a permissions policy algorithm
• The creating a permissions policy from a response algorithm
• The is feature enabled by policy for origin algorithm

63

https://w3c.github.io/aria/#button
https://w3c.github.io/aria/#presentation
https://w3c.github.io/aria/#aria-describedby
https://w3c.github.io/aria/#aria-disabled
https://w3c.github.io/aria/#aria-label
https://w3c.github.io/aria/#dfn-accessible-name
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-csp/#policy-disposition
https://w3c.github.io/webappsec-csp/#policy-directive-set
https://w3c.github.io/webappsec-csp/#directives
https://w3c.github.io/webappsec-csp/#csp-list
https://w3c.github.io/webappsec-csp/#grammardef-serialized-policy
https://w3c.github.io/webappsec-csp/#enforced
https://w3c.github.io/webappsec-csp/#parse-serialized-policy
https://w3c.github.io/webappsec-csp/#initialize-global-object-csp
https://w3c.github.io/webappsec-csp/#initialize-document-csp
https://w3c.github.io/webappsec-csp/#should-block-inline
https://w3c.github.io/webappsec-csp/#should-block-navigation-request
https://w3c.github.io/webappsec-csp/#should-block-navigation-response
https://w3c.github.io/webappsec-csp/#should-block-navigation-response
https://w3c.github.io/webappsec-csp/#report-uri
https://w3c.github.io/webappsec-csp/#can-compile-strings
https://w3c.github.io/webappsec-csp/#allow-base-for-document
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://w3c.github.io/webappsec-csp/#sandbox
https://w3c.github.io/webappsec-csp/#should-plugin-element-be-blocked-a-priori-by-content-security-policy
https://w3c.github.io/webappsec-csp/#contains-a-header-delivered-content-security-policy
https://w3c.github.io/ServiceWorker/#dfn-active-worker
https://w3c.github.io/ServiceWorker/#dfn-client-message-queue
https://w3c.github.io/ServiceWorker/#dfn-control
https://w3c.github.io/ServiceWorker/#on-fetch-request-algorithm
https://w3c.github.io/ServiceWorker/#scope-match-algorithm
https://w3c.github.io/ServiceWorker/#dfn-service-worker
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://w3c.github.io/ServiceWorker/#serviceworker
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope
https://w3c.github.io/webappsec-secure-contexts/#potentially-trustworthy-url
https://w3c.github.io/webappsec-feature-policy/#permissions-policy
https://w3c.github.io/webappsec-feature-policy/#policy-controlled-feature
https://w3c.github.io/webappsec-feature-policy/#container-policy
https://w3c.github.io/webappsec-feature-policy/#serialized-permissions-policy
https://w3c.github.io/webappsec-feature-policy/#default-allowlist
https://w3c.github.io/webappsec-feature-policy/#create-for-browsingcontext
https://w3c.github.io/webappsec-feature-policy/#create-from-response
https://w3c.github.io/webappsec-feature-policy/#is-feature-enabled

• The process permissions policy attributes algorithm

Payment Request API
The following feature is defined in Payment Request API: [PAYMENTREQUEST]p1289

• PaymentRequest interface

MathML
While support for MathML as a whole is not required by this specification (though it is encouraged, at least for web browsers),
certain features depend upon small parts of MathML being implemented. [MATHML]p1289

The following features are defined in Mathematical Markup Language (MathML):

• MathML annotation-xml element
• MathML math element
• MathML merror element
• MathML mi element
• MathML mn element
• MathML mo element
• MathML ms element
• MathML mtext element

SVG
While support for SVG as a whole is not required by this specification (though it is encouraged, at least for web browsers), certain
features depend upon parts of SVG being implemented.

User agents that implement SVG must implement the SVG 2 specification, and not any earlier revisions.

The following features are defined in the SVG 2 specification: [SVG]p1291

• SVGElement interface
• SVGImageElement interface
• SVGScriptElement interface
• SVGSVGElement interface
• SVG a element
• SVG desc element
• SVG foreignObject element
• SVG image element
• SVG script element
• SVG svg element
• SVG title element
• SVG use element

Filter Effects
The following feature is defined in Filter Effects: [FILTERS]p1287

• <filter-function-list>

Worklets
The following feature is defined in Worklets: [WORKLETS]p1292

• WorkletGlobalScope
• A WorkletGlobalScope's owner document

Cooperative Scheduling of Background Tasks
The following features are defined in Cooperative Scheduling of Background Tasks: [REQUESTIDLECALLBACK]p1290

• requestIdleCallback()
• start an idle period algorithm

Storage
The following terms are defined in Storage: [STORAGE]p1291

• obtain a local storage bottle map
• obtain a session storage bottle map
• storage proxy map
• legacy-clone a browsing session storage shed

Web App Manifest
The following features are defined in Web App Manifest: [MANIFEST]p1288

• application manifest
• installed web application
• process the manifest

64

https://w3c.github.io/webappsec-feature-policy/#process-permissions-policy-attributes
https://w3c.github.io/payment-request/#dom-paymentrequest
https://www.w3.org/Math/draft-spec/chapter5.html#mixing.elements.annotation.xml
https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://www.w3.org/Math/draft-spec/chapter3.html#presm.merror
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mi
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mn
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mo
https://www.w3.org/Math/draft-spec/chapter3.html#presm.ms
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mtext
https://svgwg.org/svg2-draft/types.html#InterfaceSVGElement
https://svgwg.org/svg2-draft/embedded.html#InterfaceSVGImageElement
https://svgwg.org/svg2-draft/interact.html#InterfaceSVGScriptElement
https://svgwg.org/svg2-draft/struct.html#InterfaceSVGSVGElement
https://svgwg.org/svg2-draft/linking.html#AElement
https://svgwg.org/svg2-draft/struct.html#DescElement
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://svgwg.org/svg2-draft/struct.html#UseElement
https://drafts.fxtf.org/filter-effects/#typedef-filter-function-list
https://drafts.css-houdini.org/worklets/#workletglobalscope
https://drafts.css-houdini.org/worklets/#workletglobalscope
https://drafts.css-houdini.org/worklets/#workletglobalscope-owner-document
https://w3c.github.io/requestidlecallback/#the-requestidlecallback-method
https://w3c.github.io/requestidlecallback/#start-an-idle-period-algorithm
https://storage.spec.whatwg.org/#obtain-a-local-storage-bottle-map
https://storage.spec.whatwg.org/#obtain-a-session-storage-bottle-map
https://storage.spec.whatwg.org/#storage-proxy-map
https://storage.spec.whatwg.org/#legacy-clone-a-browsing-session-storage-shed
https://w3c.github.io/manifest/#dfn-manifest
https://w3c.github.io/manifest/#dfn-installed-web-application
https://w3c.github.io/manifest/#dfn-processing-a-manifest

This specification does not require support of any particular network protocol, style sheet language, scripting language, or any of the
DOM specifications beyond those required in the list above. However, the language described by this specification is biased towards
CSS as the styling language, JavaScript as the scripting language, and HTTP as the network protocol, and several features assume that
those languages and protocols are in use.

A user agent that implements the HTTP protocol must implement HTTP State Management Mechanism (Cookies) as well. [HTTP]p1288

[COOKIES]p1285

Vendor-specific proprietary user agent extensions to this specification are strongly discouraged. Documents must not use such
extensions, as doing so reduces interoperability and fragments the user base, allowing only users of specific user agents to access the
content in question.

All extensions must be defined so that the use of extensions neither contradicts nor causes the non-conformance of functionality
defined in the specification.

When vendor-neutral extensions to this specification are needed, either this specification can be updated accordingly, or an extension
specification can be written that overrides the requirements in this specification. When someone applying this specification to their
activities decides that they will recognize the requirements of such an extension specification, it becomes an applicable
specification for the purposes of conformance requirements in this specification.

User agents must treat elements and attributes that they do not understand as semantically neutral; leaving them in the DOM (for
DOM processors), and styling them according to CSS (for CSS processors), but not inferring any meaning from them.

When support for a feature is disabled (e.g. as an emergency measure to mitigate a security problem, or to aid in development, or for
performance reasons), user agents must act as if they had no support for the feature whatsoever, and as if the feature was not
mentioned in this specification. For example, if a particular feature is accessed via an attribute in a Web IDL interface, the attribute
itself would be omitted from the objects that implement that interface — leaving the attribute on the object but making it return null or
throw an exception is insufficient.

Implementations of XPath 1.0 that operate on HTML documents parsed or created in the manners described in this specification (e.g.
as part of the document.evaluate() API) must act as if the following edit was applied to the XPath 1.0 specification.

First, remove this paragraph:

This specification might have certain additional requirements on character encodings, image formats, audio formats, and video
formats in the respective sections.

Note

For example, while strongly discouraged from doing so, an implementation could add a new IDL attribute "typeTime" to a control
that returned the time it took the user to select the current value of a control (say). On the other hand, defining a new control that
appears in a form's elementsp488 array would be in violation of the above requirement, as it would violate the definition of
elementsp488 given in this specification.

Example

Someone could write a specification that defines any arbitrary byte stream as conforming, and then claim that their random junk is
conforming. However, that does not mean that their random junk actually is conforming for everyone's purposes: if someone else
decides that that specification does not apply to their work, then they can quite legitimately say that the aforementioned random
junk is just that, junk, and not conforming at all. As far as conformance goes, what matters in a particular community is what that
community agrees is applicable.

Note

2.1.10 Extensibility §p65

2.1.11 Interactions with XPath and XSLT §p65

65

https://dom.spec.whatwg.org/#html-document

A QName in the node test is expanded into an expanded-name using the namespace declarations from the expression context.
This is the same way expansion is done for element type names in start and end-tags except that the default namespace declared
with xmlns is not used: if the QName does not have a prefix, then the namespace URI is null (this is the same way attribute names
are expanded). It is an error if the QName has a prefix for which there is no namespace declaration in the expression context.

Then, insert in its place the following:

A QName in the node test is expanded into an expanded-name using the namespace declarations from the expression context. If
the QName has a prefix, then there must be a namespace declaration for this prefix in the expression context, and the
corresponding namespace URI is the one that is associated with this prefix. It is an error if the QName has a prefix for which there
is no namespace declaration in the expression context.

If the QName has no prefix and the principal node type of the axis is element, then the default element namespace is used.
Otherwise if the QName has no prefix, the namespace URI is null. The default element namespace is a member of the context for
the XPath expression. The value of the default element namespace when executing an XPath expression through the DOM3 XPath
API is determined in the following way:

1. If the context node is from an HTML DOM, the default element namespace is "http://www.w3.org/1999/xhtml".

2. Otherwise, the default element namespace URI is null.

XSLT 1.0 processors outputting to a DOM when the output method is "html" (either explicitly or via the defaulting rule in XSLT 1.0) are
affected as follows:

If the transformation program outputs an element in no namespace, the processor must, prior to constructing the corresponding DOM
element node, change the namespace of the element to the HTML namespace, ASCII-lowercase the element's local name, and ASCII-
lowercase the names of any non-namespaced attributes on the element.

This specification does not specify precisely how XSLT processing interacts with the HTML parserp1079 infrastructure (for example,
whether an XSLT processor acts as if it puts any elements into a stack of open elementsp1093). However, XSLT processors must stop
parsingp1165 if they successfully complete, and must set the current document readinessp117 first to "interactive" and then to
"complete" if they are aborted.

This specification does not specify how XSLT interacts with the navigationp866 algorithm, how it fits in with the event loopp944, nor how
error pages are to be handled (e.g. whether XSLT errors are to replace an incremental XSLT output, or are rendered inline, etc).

This is equivalent to adding the default element namespace feature of XPath 2.0 to XPath 1.0, and using the HTML namespace
as the default element namespace for HTML documents. It is motivated by the desire to have implementations be compatible
with legacy HTML content while still supporting the changes that this specification introduces to HTML regarding the
namespace used for HTML elements, and by the desire to use XPath 1.0 rather than XPath 2.0.

Note

This change is a willful violationp27 of the XPath 1.0 specification, motivated by desire to have implementations be compatible with
legacy content while still supporting the changes that this specification introduces to HTML regarding which namespace is used for
HTML elements. [XPATH10]p1293

Note

This requirement is a willful violationp27 of the XSLT 1.0 specification, required because this specification changes the namespaces
and case-sensitivity rules of HTML in a manner that would otherwise be incompatible with DOM-based XSLT transformations.
(Processors that serialize the output are unaffected.) [XSLT10]p1293

Note

There are also additional non-normative comments regarding the interaction of XSLT and HTML in the script element sectionp627,
and of XSLT, XPath, and HTML in the template element sectionp632.

Note

66

https://www.w3.org/TR/REC-xml-names/#NT-QName
https://www.w3.org/TR/1999/REC-xpath-19991116/#dt-expanded-name
https://www.w3.org/TR/REC-xml-names/#NT-QName
https://www.w3.org/TR/REC-xml-names/#NT-QName
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase

A string pattern is a prefix match for a string s when pattern is not longer than s and truncating s to pattern's length leaves the two
strings as matches of each other.

This document defines the following policy-controlled features:

• "autoplay", which has a default allowlist of 'self'.
• "cross-origin-isolated", which has a default allowlist of 'self'.
• "document-domain", which has a default allowlist of *.

There are various places in HTML that accept particular data types, such as dates or numbers. This section describes what the
conformance criteria for content in those formats is, and how to parse them.

Some of the micro-parsers described below follow the pattern of having an input variable that holds the string being parsed, and
having a position variable pointing at the next character to parse in input.

A number of attributes are boolean attributes. The presence of a boolean attribute on an element represents the true value, and the
absence of the attribute represents the false value.

If the attribute is present, its value must either be the empty string or a value that is an ASCII case-insensitive match for the attribute's
canonical name, with no leading or trailing whitespace.

2.2 String comparison §p67

2.3 Policy-controlled features §p67

2.4 Common microsyntaxes §p67

Implementors are strongly urged to carefully examine any third-party libraries they might consider using to implement the parsing
of syntaxes described below. For example, date libraries are likely to implement error handling behavior that differs from what is
required in this specification, since error-handling behavior is often not defined in specifications that describe date syntaxes similar
to those used in this specification, and thus implementations tend to vary greatly in how they handle errors.

Note

The values "true" and "false" are not allowed on boolean attributes. To represent a false value, the attribute has to be omitted
altogether.

Note

Here is an example of a checkbox that is checked and disabled. The checkedp497 and disabledp570 attributes are the boolean
attributes.

<label><input type=checkbox checked name=cheese disabled> Cheese</label>

This could be equivalently written as this:

<label><input type=checkbox checked=checked name=cheese disabled=disabled> Cheese</label>

Example

2.4.1 Common parser idioms §p67

2.4.2 Boolean attributes §p67

MDN

67

https://w3c.github.io/webappsec-feature-policy/#policy-controlled-feature
https://w3c.github.io/webappsec-feature-policy/#default-allowlist
https://w3c.github.io/webappsec-feature-policy/#default-allowlist
https://w3c.github.io/webappsec-feature-policy/#default-allowlist
https://infra.spec.whatwg.org/#ascii-case-insensitive

Some attributes are defined as taking one of a finite set of keywords. Such attributes are called enumerated attributes. The
keywords are each defined to map to a particular state (several keywords might map to the same state, in which case some of the
keywords are synonyms of each other; additionally, some of the keywords can be said to be non-conforming, and are only in the
specification for historical reasons). In addition, two default states can be given. The first is the invalid value default, the second is
the missing value default.

If an enumerated attribute is specified, the attribute's value must be an ASCII case-insensitive match for one of the given keywords
that are not said to be non-conforming, with no leading or trailing whitespace.

When the attribute is specified, if its value is an ASCII case-insensitive match for one of the given keywords then that keyword's state is
the state that the attribute represents. If the attribute value matches none of the given keywords, but the attribute has an invalid value
defaultp68, then the attribute represents that state. Otherwise, there is no default, and invalid values mean that there is no state
represented.

When the attribute is not specified, if there is a missing value defaultp68 state defined, then that is the state represented by the
(missing) attribute. Otherwise, the absence of the attribute means that there is no state represented.

A string is a valid integer if it consists of one or more ASCII digits, optionally prefixed with a U+002D HYPHEN-MINUS character (-).

A valid integerp68 without a U+002D HYPHEN-MINUS (-) prefix represents the number that is represented in base ten by that string of
digits. A valid integerp68 with a U+002D HYPHEN-MINUS (-) prefix represents the number represented in base ten by the string of digits
that follows the U+002D HYPHEN-MINUS, subtracted from zero.

The rules for parsing integers are as given in the following algorithm. When invoked, the steps must be followed in the order given,
aborting at the first step that returns a value. This algorithm will return either an integer or an error.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let sign have the value "positive".

4. Skip ASCII whitespace within input given position.

5. If position is past the end of input, return an error.

6. If the character indicated by position (the first character) is a U+002D HYPHEN-MINUS character (-):

1. Let sign be "negative".

2. Advance position to the next character.

3. If position is past the end of input, return an error.

Otherwise, if the character indicated by position (the first character) is a U+002B PLUS SIGN character (+):

You can also mix styles; the following is still equivalent:

<label><input type='checkbox' checked name=cheese disabled=""> Cheese</label>

The empty string can be a valid keyword.
Note

2.4.4.1 Signed integers §p68

2.4.3 Keywords and enumerated attributes §p68

2.4.4 Numbers §p68

68

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#skip-ascii-whitespace

1. Advance position to the next character. (The "+" is ignored, but it is not conforming.)

2. If position is past the end of input, return an error.

7. If the character indicated by position is not an ASCII digit, then return an error.

8. Collect a sequence of code points that are ASCII digits from input given position, and interpret the resulting sequence as a
base-ten integer. Let value be that integer.

9. If sign is "positive", return value, otherwise return the result of subtracting value from zero.

A string is a valid non-negative integer if it consists of one or more ASCII digits.

A valid non-negative integerp69 represents the number that is represented in base ten by that string of digits.

The rules for parsing non-negative integers are as given in the following algorithm. When invoked, the steps must be followed in
the order given, aborting at the first step that returns a value. This algorithm will return either zero, a positive integer, or an error.

1. Let input be the string being parsed.

2. Let value be the result of parsing input using the rules for parsing integersp68.

3. If value is an error, return an error.

4. If value is less than zero, return an error.

5. Return value.

A string is a valid floating-point number if it consists of:

1. Optionally, a U+002D HYPHEN-MINUS character (-).
2. One or both of the following, in the given order:

1. A series of one or more ASCII digits.
2. Both of the following, in the given order:

1. A single U+002E FULL STOP character (.).
2. A series of one or more ASCII digits.

3. Optionally:
1. Either a U+0065 LATIN SMALL LETTER E character (e) or a U+0045 LATIN CAPITAL LETTER E character (E).
2. Optionally, a U+002D HYPHEN-MINUS character (-) or U+002B PLUS SIGN character (+).
3. A series of one or more ASCII digits.

A valid floating-point numberp69 represents the number obtained by multiplying the significand by ten raised to the power of the
exponent, where the significand is the first number, interpreted as base ten (including the decimal point and the number after the
decimal point, if any, and interpreting the significand as a negative number if the whole string starts with a U+002D HYPHEN-MINUS
character (-) and the number is not zero), and where the exponent is the number after the E, if any (interpreted as a negative number
if there is a U+002D HYPHEN-MINUS character (-) between the E and the number and the number is not zero, or else ignoring a
U+002B PLUS SIGN character (+) between the E and the number if there is one). If there is no E, then the exponent is treated as zero.

The best representation of the number n as a floating-point number is the string obtained from running ToString(n). The
abstract operation ToString is not uniquely determined. When there are multiple possible strings that could be obtained from ToString

2.4.4.2 Non-negative integers §p69

2.4.4.3 Floating-point numbers §p69

The Infinity and Not-a-Number (NaN) values are not valid floating-point numbersp69.
Note

The valid floating-point numberp69 concept is typically only used to restrict what is allowed for authors, while the user agent
requirements use the rules for parsing floating-point number values p70 below (e.g., the maxp556 attribute of the progressp555

element). However, in some cases the user agent requirements include checking if a string is a valid floating-point numberp69 (e.g.,
the value sanitization algorithmp497 for the Numberp509 state of the inputp493 element, or the parse a srcset attributep344 algorithm).

Note

69

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-tostring

for a particular value, the user agent must always return the same string for that value (though it may differ from the value used by
other user agents).

The rules for parsing floating-point number values are as given in the following algorithm. This algorithm must be aborted at the
first step that returns something. This algorithm will return either a number or an error.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 1.

4. Let divisor have the value 1.

5. Let exponent have the value 1.

6. Skip ASCII whitespace within input given position.

7. If position is past the end of input, return an error.

8. If the character indicated by position is a U+002D HYPHEN-MINUS character (-):

1. Change value and divisor to −1.

2. Advance position to the next character.

3. If position is past the end of input, return an error.

Otherwise, if the character indicated by position (the first character) is a U+002B PLUS SIGN character (+):

1. Advance position to the next character. (The "+" is ignored, but it is not conforming.)

2. If position is past the end of input, return an error.

9. If the character indicated by position is a U+002E FULL STOP (.), and that is not the last character in input, and the character
after the character indicated by position is an ASCII digit, then set value to zero and jump to the step labeled fraction.

10. If the character indicated by position is not an ASCII digit, then return an error.

11. Collect a sequence of code points that are ASCII digits from input given position, and interpret the resulting sequence as a
base-ten integer. Multiply value by that integer.

12. If position is past the end of input, jump to the step labeled conversion.

13. Fraction: If the character indicated by position is a U+002E FULL STOP (.), run these substeps:

1. Advance position to the next character.

2. If position is past the end of input, or if the character indicated by position is not an ASCII digit, U+0065 LATIN
SMALL LETTER E (e), or U+0045 LATIN CAPITAL LETTER E (E), then jump to the step labeled conversion.

3. If the character indicated by position is a U+0065 LATIN SMALL LETTER E character (e) or a U+0045 LATIN CAPITAL
LETTER E character (E), skip the remainder of these substeps.

4. Fraction loop: Multiply divisor by ten.

5. Add the value of the character indicated by position, interpreted as a base-ten digit (0..9) and divided by divisor, to
value.

6. Advance position to the next character.

7. If position is past the end of input, then jump to the step labeled conversion.

8. If the character indicated by position is an ASCII digit, jump back to the step labeled fraction loop in these
substeps.

14. If the character indicated by position is U+0065 (e) or a U+0045 (E), then:

1. Advance position to the next character.

2. If position is past the end of input, then jump to the step labeled conversion.

70

https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

3. If the character indicated by position is a U+002D HYPHEN-MINUS character (-):

1. Change exponent to −1.

2. Advance position to the next character.

3. If position is past the end of input, then jump to the step labeled conversion.

Otherwise, if the character indicated by position is a U+002B PLUS SIGN character (+):

1. Advance position to the next character.

2. If position is past the end of input, then jump to the step labeled conversion.

4. If the character indicated by position is not an ASCII digit, then jump to the step labeled conversion.

5. Collect a sequence of code points that are ASCII digits from input given position, and interpret the resulting
sequence as a base-ten integer. Multiply exponent by that integer.

6. Multiply value by ten raised to the exponentth power.

15. Conversion: Let S be the set of finite IEEE 754 double-precision floating-point values except −0, but with two special values
added: 21024 and −21024.

16. Let rounded-value be the number in S that is closest to value, selecting the number with an even significand if there are two
equally close values. (The two special values 21024 and −21024 are considered to have even significands for this purpose.)

17. If rounded-value is 21024 or −21024, return an error.

18. Return rounded-value.

The rules for parsing dimension values are as given in the following algorithm. When invoked, the steps must be followed in the
order given, aborting at the first step that returns a value. This algorithm will return either a number greater than or equal to 0.0, or
failure; if a number is returned, then it is further categorized as either a percentage or a length.

1. Let input be the string being parsed.

2. Let position be a position variable for input, initially pointing at the start of input.

3. Skip ASCII whitespace within input given position.

4. If position is past the end of input or the code point at position within input is not an ASCII digit, then return failure.

5. Collect a sequence of code points that are ASCII digits from input given position, and interpret the resulting sequence as a
base-ten integer. Let value be that number.

6. If position is past the end of input, then return value as a length.

7. If the code point at position within input is U+002E (.), then:

1. Advance position by 1.

2. If position is past the end of input or the code point at position within input is not an ASCII digit, then return the
current dimension valuep72 with value, input, and position.

3. Let divisor have the value 1.

4. While true:

1. Multiply divisor by ten.

2. Add the value of the code point at position within input, interpreted as a base-ten digit (0..9) and divided
by divisor, to value.

3. Advance position by 1.

4. If position is past the end of input, then return value as a length.

2.4.4.4 Percentages and lengths §p71

71

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#string-position-variable
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

5. If the code point at position within input is not an ASCII digit, then break.

8. Return the current dimension valuep72 with value, input, and position.

The current dimension value, given value, input, and position, is determined as follows:

1. If position is past the end of input, then return value as a length.

2. If the code point at position within input is U+0025 (%), then return value as a percentage.

3. Return value as a length.

The rules for parsing nonzero dimension values are as given in the following algorithm. When invoked, the steps must be
followed in the order given, aborting at the first step that returns a value. This algorithm will return either a number greater than 0.0,
or an error; if a number is returned, then it is further categorized as either a percentage or a length.

1. Let input be the string being parsed.

2. Let value be the result of parsing input using the rules for parsing dimension valuesp71.

3. If value is an error, return an error.

4. If value is zero, return an error.

5. If value is a percentage, return value as a percentage.

6. Return value as a length.

A valid list of floating-point numbers is a number of valid floating-point numbersp69 separated by U+002C COMMA characters, with
no other characters (e.g. no ASCII whitespace). In addition, there might be restrictions on the number of floating-point numbers that
can be given, or on the range of values allowed.

The rules for parsing a list of floating-point numbers are as follows:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let numbers be an initially empty list of floating-point numbers. This list will be the result of this algorithm.

4. Collect a sequence of code points that are ASCII whitespace, U+002C COMMA, or U+003B SEMICOLON characters from input
given position. This skips past any leading delimiters.

5. While position is not past the end of input:

1. Collect a sequence of code points that are not ASCII whitespace, U+002C COMMA, U+003B SEMICOLON, ASCII
digits, U+002E FULL STOP, or U+002D HYPHEN-MINUS characters from input given position. This skips past leading
garbage.

2. Collect a sequence of code points that are not ASCII whitespace, U+002C COMMA, or U+003B SEMICOLON
characters from input given position, and let unparsed number be the result.

3. Let number be the result of parsing unparsed number using the rules for parsing floating-point number values p70.

4. If number is an error, set number to zero.

5. Append number to numbers.

6. Collect a sequence of code points that are ASCII whitespace, U+002C COMMA, or U+003B SEMICOLON characters
from input given position. This skips past the delimiter.

6. Return numbers.

2.4.4.5 Non-zero percentages and lengths §p72

2.4.4.6 Lists of floating-point numbers §p72

72

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace

The rules for parsing a list of dimensions are as follows. These rules return a list of zero or more pairs consisting of a number and
a unit, the unit being one of percentage, relative, and absolute.

1. Let raw input be the string being parsed.

2. If the last character in raw input is a U+002C COMMA character (,), then remove that character from raw input.

3. Split the string raw input on commas. Let raw tokens be the resulting list of tokens.

4. Let result be an empty list of number/unit pairs.

5. For each token in raw tokens, run the following substeps:

1. Let input be the token.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value be the number 0.

4. Let unit be absolute.

5. If position is past the end of input, set unit to relative and jump to the last substep.

6. If the character at position is an ASCII digit, collect a sequence of code points that are ASCII digits from input given
position, interpret the resulting sequence as an integer in base ten, and increment value by that integer.

7. If the character at position is U+002E (.), then:

1. Collect a sequence of code points consisting of ASCII whitespace and ASCII digits from input given
position. Let s be the resulting sequence.

2. Remove all ASCII whitespace in s.

3. If s is not the empty string, then:

1. Let length be the number of characters in s (after the spaces were removed).

2. Let fraction be the result of interpreting s as a base-ten integer, and then dividing that number
by 10length.

3. Increment value by fraction.

8. Skip ASCII whitespace within input given position.

9. If the character at position is a U+0025 PERCENT SIGN character (%), then set unit to percentage.

Otherwise, if the character at position is a U+002A ASTERISK character (*), then set unit to relative.

10. Add an entry to result consisting of the number given by value and the unit given by unit.

6. Return the list result.

In the algorithms below, the number of days in month month of year year is: 31 if month is 1, 3, 5, 7, 8, 10, or 12; 30 if month is
4, 6, 9, or 11; 29 if month is 2 and year is a number divisible by 400, or if year is a number divisible by 4 but not by 100; and 28
otherwise. This takes into account leap years in the Gregorian calendar. [GREGORIAN]p1288

When ASCII digits are used in the date and time syntaxes defined in this section, they express numbers in base ten.

2.4.4.7 Lists of dimensions §p73

While the formats described here are intended to be subsets of the corresponding ISO8601 formats, this specification defines
parsing rules in much more detail than ISO8601. Implementors are therefore encouraged to carefully examine any date parsing
libraries before using them to implement the parsing rules described below; ISO8601 libraries might not parse dates and times in
exactly the same manner. [ISO8601]p1288

Note

2.4.5 Dates and times §p73

73

https://infra.spec.whatwg.org/#split-on-commas
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit

Where this specification refers to the proleptic Gregorian calendar, it means the modern Gregorian calendar, extrapolated
backwards to year 1. A date in the proleptic Gregorian calendarp74, sometimes explicitly referred to as a proleptic-Gregorian date, is
one that is described using that calendar even if that calendar was not in use at the time (or place) in question. [GREGORIAN]p1288

A month consists of a specific proleptic-Gregorian datep74 with no time-zone information and no date information beyond a year and a
month. [GREGORIAN]p1288

A string is a valid month string representing a year year and month month if it consists of the following components in the given
order:

1. Four or more ASCII digits, representing year, where year > 0

2. A U+002D HYPHEN-MINUS character (-)

3. Two ASCII digits, representing the month month, in the range 1 ≤ month ≤ 12

The rules to parse a month string are as follows. This will return either a year and month, or nothing. If at any point the algorithm
says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a month componentp74 to obtain year and month. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Return year and month.

The rules to parse a month component, given an input string and a position, are as follows. This will return either a year and a
month, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not at least four
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the year.

2. If year is not a number greater than zero, then fail.

3. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail.
Otherwise, move position forwards one character.

4. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the month.

5. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

6. Return year and month.

A date consists of a specific proleptic-Gregorian datep74 with no time-zone information, consisting of a year, a month, and a day.
[GREGORIAN]p1288

A string is a valid date string representing a year year, month month, and day day if it consists of the following components in the
given order:

1. A valid month stringp74, representing year and month

The use of the Gregorian calendar as the wire format in this specification is an arbitrary choice resulting from the cultural biases of
those involved in the decision. See also the section discussing date, time, and number formatsp485 in forms (for authors),
implementation notes regarding localization of form controls p521, and the timep260 element.

Note

2.4.5.1 Months §p74

2.4.5.2 Dates §p74

74

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

2. A U+002D HYPHEN-MINUS character (-)

3. Two ASCII digits, representing day, in the range 1 ≤ day ≤ maxday where maxday is the number of days in the month month
and year yearp73

The rules to parse a date string are as follows. This will return either a date, or nothing. If at any point the algorithm says that it
"fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp75 to obtain year, month, and day. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Let date be the date with year year, month month, and day day.

6. Return date.

The rules to parse a date component, given an input string and a position, are as follows. This will return either a year, a month, and
a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Parse a month componentp74 to obtain year and month. If this returns nothing, then fail.

2. Let maxday be the number of days in month month of year yearp73.

3. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail.
Otherwise, move position forwards one character.

4. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the day.

5. If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

6. Return year, month, and day.

A yearless date consists of a Gregorian month and a day within that month, but with no associated year. [GREGORIAN]p1288

A string is a valid yearless date string representing a month month and a day day if it consists of the following components in the
given order:

1. Optionally, two U+002D HYPHEN-MINUS characters (-)

2. Two ASCII digits, representing the month month, in the range 1 ≤ month ≤ 12

3. A U+002D HYPHEN-MINUS character (-)

4. Two ASCII digits, representing day, in the range 1 ≤ day ≤ maxday where maxday is the number of daysp73 in the month
month and any arbitrary leap year (e.g. 4 or 2000)

The rules to parse a yearless date string are as follows. This will return either a month and a day, or nothing. If at any point the
algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a yearless date componentp76 to obtain month and day. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

2.4.5.3 Yearless dates §p75

In other words, if the month is "02", meaning February, then the day can be 29, as if the year was a leap year.
Note

75

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

5. Return month and day.

The rules to parse a yearless date component, given an input string and a position, are as follows. This will return either a month
and a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Collect a sequence of code points that are U+002D HYPHEN-MINUS characters (-) from input given position. If the collected
sequence is not exactly zero or two characters long, then fail.

2. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the month.

3. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

4. Let maxday be the number of daysp73 in month month of any arbitrary leap year (e.g. 4 or 2000).

5. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail.
Otherwise, move position forwards one character.

6. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the day.

7. If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

8. Return month and day.

A time consists of a specific time with no time-zone information, consisting of an hour, a minute, a second, and a fraction of a second.

A string is a valid time string representing an hour hour, a minute minute, and a second second if it consists of the following
components in the given order:

1. Two ASCII digits, representing hour, in the range 0 ≤ hour ≤ 23

2. A U+003A COLON character (:)

3. Two ASCII digits, representing minute, in the range 0 ≤ minute ≤ 59

4. If second is nonzero, or optionally if second is zero:
1. A U+003A COLON character (:)
2. Two ASCII digits, representing the integer part of second, in the range 0 ≤ s ≤ 59
3. If second is not an integer, or optionally if second is an integer:

1. A U+002E FULL STOP character (.)
2. One, two, or three ASCII digits, representing the fractional part of second

The rules to parse a time string are as follows. This will return either a time, or nothing. If at any point the algorithm says that it
"fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a time componentp76 to obtain hour, minute, and second. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Let time be the time with hour hour, minute minute, and second second.

6. Return time.

The rules to parse a time component, given an input string and a position, are as follows. This will return either an hour, a minute,
and a second, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns
nothing.

2.4.5.4 Times §p76

The second component cannot be 60 or 61; leap seconds cannot be represented.
Note

76

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

1. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the hour.

2. If hour is not a number in the range 0 ≤ hour ≤ 23, then fail.

3. If position is beyond the end of input or if the character at position is not a U+003A COLON character, then fail. Otherwise,
move position forwards one character.

4. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the minute.

5. If minute is not a number in the range 0 ≤ minute ≤ 59, then fail.

6. Let second be 0.

7. If position is not beyond the end of input and the character at position is U+003A (:), then:

1. Advance position to the next character in input.

2. If position is beyond the end of input, or at the last character in input, or if the next two characters in input starting
at position are not both ASCII digits, then fail.

3. Collect a sequence of code points that are either ASCII digits or U+002E FULL STOP characters from input given
position. If the collected sequence is three characters long, or if it is longer than three characters long and the third
character is not a U+002E FULL STOP character, or if it has more than one U+002E FULL STOP character, then fail.
Otherwise, interpret the resulting sequence as a base-ten number (possibly with a fractional part). Set second to
that number.

4. If second is not a number in the range 0 ≤ second < 60, then fail.

8. Return hour, minute, and second.

A local date and time consists of a specific proleptic-Gregorian datep74, consisting of a year, a month, and a day, and a time,
consisting of an hour, a minute, a second, and a fraction of a second, but expressed without a time zone. [GREGORIAN]p1288

A string is a valid local date and time string representing a date and time if it consists of the following components in the given
order:

1. A valid date stringp74 representing the date

2. A U+0054 LATIN CAPITAL LETTER T character (T) or a U+0020 SPACE character

3. A valid time stringp76 representing the time

A string is a valid normalized local date and time string representing a date and time if it consists of the following components in
the given order:

1. A valid date stringp74 representing the date

2. A U+0054 LATIN CAPITAL LETTER T character (T)

3. A valid time stringp76 representing the time, expressed as the shortest possible string for the given time (e.g. omitting the
seconds component entirely if the given time is zero seconds past the minute)

The rules to parse a local date and time string are as follows. This will return either a date and time, or nothing. If at any point the
algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp75 to obtain year, month, and day. If this returns nothing, then fail.

4. If position is beyond the end of input or if the character at position is neither a U+0054 LATIN CAPITAL LETTER T character (T)
nor a U+0020 SPACE character, then fail. Otherwise, move position forwards one character.

2.4.5.5 Local dates and times §p77

77

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

5. Parse a time componentp76 to obtain hour, minute, and second. If this returns nothing, then fail.

6. If position is not beyond the end of input, then fail.

7. Let date be the date with year year, month month, and day day.

8. Let time be the time with hour hour, minute minute, and second second.

9. Return date and time.

A time-zone offset consists of a signed number of hours and minutes.

A string is a valid time-zone offset string representing a time-zone offset if it consists of either:

• A U+005A LATIN CAPITAL LETTER Z character (Z), allowed only if the time zone is UTC

• Or, the following components, in the given order:

1. Either a U+002B PLUS SIGN character (+) or, if the time-zone offset is not zero, a U+002D HYPHEN-MINUS
character (-), representing the sign of the time-zone offset

2. Two ASCII digits, representing the hours component hour of the time-zone offset, in the range 0 ≤ hour ≤ 23

3. Optionally, a U+003A COLON character (:)

4. Two ASCII digits, representing the minutes component minute of the time-zone offset, in the range 0 ≤ minute ≤ 59

The rules to parse a time-zone offset string are as follows. This will return either a time-zone offset, or nothing. If at any point the
algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a time-zone offset componentp78 to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Return the time-zone offset that is timezonehours hours and timezoneminutes minutes from UTC.

The rules to parse a time-zone offset component, given an input string and a position, are as follows. This will return either time-
zone hours and time-zone minutes, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that
point and returns nothing.

1. If the character at position is a U+005A LATIN CAPITAL LETTER Z character (Z), then:

1. Let timezonehours be 0.

2. Let timezoneminutes be 0.

3. Advance position to the next character in input.

Otherwise, if the character at position is either a U+002B PLUS SIGN (+) or a U+002D HYPHEN-MINUS (-), then:

2.4.5.6 Time zones §p78

This format allows for time-zone offsets from -23:59 to +23:59. Right now, in practice, the range of offsets of actual time zones is
-12:00 to +14:00, and the minutes component of offsets of actual time zones is always either 00, 30, or 45. There is no guarantee
that this will remain so forever, however, since time zones are used as political footballs and are thus subject to very whimsical
policy decisions.

Note

See also the usage notes and examples in the global date and timep79 section below for details on using time-zone offsets with
historical times that predate the formation of formal time zones.

Note

78

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

1. If the character at position is a U+002B PLUS SIGN (+), let sign be "positive". Otherwise, it's a U+002D HYPHEN-
MINUS (-); let sign be "negative".

2. Advance position to the next character in input.

3. Collect a sequence of code points that are ASCII digits from input given position. Let s be the collected sequence.

4. If s is exactly two characters long, then:

1. Interpret s as a base-ten integer. Let that number be the timezonehours.

2. If position is beyond the end of input or if the character at position is not a U+003A COLON character,
then fail. Otherwise, move position forwards one character.

3. Collect a sequence of code points that are ASCII digits from input given position. If the collected
sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a
base-ten integer. Let that number be the timezoneminutes.

If s is exactly four characters long, then:

1. Interpret the first two characters of s as a base-ten integer. Let that number be the timezonehours.

2. Interpret the last two characters of s as a base-ten integer. Let that number be the timezoneminutes.

Otherwise, fail.

5. If timezonehours is not a number in the range 0 ≤ timezonehours ≤ 23, then fail.

6. If sign is "negative", then negate timezonehours.

7. If timezoneminutes is not a number in the range 0 ≤ timezoneminutes ≤ 59, then fail.

8. If sign is "negative", then negate timezoneminutes.

Otherwise, fail.

2. Return timezonehours and timezoneminutes.

A global date and time consists of a specific proleptic-Gregorian datep74, consisting of a year, a month, and a day, and a time,
consisting of an hour, a minute, a second, and a fraction of a second, expressed with a time-zone offset, consisting of a signed number
of hours and minutes. [GREGORIAN]p1288

A string is a valid global date and time string representing a date, time, and a time-zone offset if it consists of the following
components in the given order:

1. A valid date stringp74 representing the date

2. A U+0054 LATIN CAPITAL LETTER T character (T) or a U+0020 SPACE character

3. A valid time stringp76 representing the time

4. A valid time-zone offset stringp78 representing the time-zone offset

Times in dates before the formation of UTC in the mid twentieth century must be expressed and interpreted in terms of UT1
(contemporary Earth solar time at the 0° longitude), not UTC (the approximation of UT1 that ticks in SI seconds). Time before the
formation of time zones must be expressed and interpreted as UT1 times with explicit time zones that approximate the contemporary
difference between the appropriate local time and the time observed at the location of Greenwich, London.

2.4.5.7 Global dates and times §p79

The following are some examples of dates written as valid global date and time stringsp79.

"0037-12-13 00:00Z"
Midnight in areas using London time on the birthday of Nero (the Roman Emperor). See below for further discussion on which
date this actually corresponds to.

Example

79

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

The rules to parse a global date and time string are as follows. This will return either a time in UTC, with associated time-zone
offset information for round-tripping or display purposes, or nothing. If at any point the algorithm says that it "fails", this means that it
is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp75 to obtain year, month, and day. If this returns nothing, then fail.

4. If position is beyond the end of input or if the character at position is neither a U+0054 LATIN CAPITAL LETTER T character (T)
nor a U+0020 SPACE character, then fail. Otherwise, move position forwards one character.

5. Parse a time componentp76 to obtain hour, minute, and second. If this returns nothing, then fail.

6. If position is beyond the end of input, then fail.

7. Parse a time-zone offset componentp78 to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.

8. If position is not beyond the end of input, then fail.

9. Let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second, subtracting
timezonehours hours and timezoneminutes minutes. That moment in time is a moment in the UTC time zone.

10. Let timezone be timezonehours hours and timezoneminutes minutes from UTC.

11. Return time and timezone.

A week consists of a week-year number and a week number representing a seven-day period starting on a Monday. Each week-year in
this calendaring system has either 52 or 53 such seven-day periods, as defined below. The seven-day period starting on the Gregorian
date Monday December 29th 1969 (1969-12-29) is defined as week number 1 in week-year 1970. Consecutive weeks are numbered
sequentially. The week before the number 1 week in a week-year is the last week in the previous week-year, and vice versa.
[GREGORIAN]p1288

"1979-10-14T12:00:00.001-04:00"
One millisecond after noon on October 14th 1979, in the time zone in use on the east coast of the USA during daylight saving
time.

"8592-01-01T02:09+02:09"
Midnight UTC on the 1st of January, 8592. The time zone associated with that time is two hours and nine minutes ahead of UTC,
which is not currently a real time zone, but is nonetheless allowed.

Several things are notable about these dates:

• Years with fewer than four digits have to be zero-padded. The date "37-12-13" would not be a valid date.

• If the "T" is replaced by a space, it must be a single space character. The string "2001-12-21 12:00Z" (with two spaces
between the components) would not be parsed successfully.

• To unambiguously identify a moment in time prior to the introduction of the Gregorian calendar (insofar as moments in
time before the formation of UTC can be unambiguously identified), the date has to be first converted to the Gregorian
calendar from the calendar in use at the time (e.g. from the Julian calendar). The date of Nero's birth is the 15th of
December 37, in the Julian Calendar, which is the 13th of December 37 in the proleptic Gregorian calendarp74.

• The time and time-zone offset components are not optional.

• Dates before the year one can't be represented as a datetime in this version of HTML.

• Times of specific events in ancient times are, at best, approximations, since time was not well coordinated or measured
until relatively recent decades.

• Time-zone offsets differ based on daylight saving time.

2.4.5.8 Weeks §p80

80

A week-year with a number year has 53 weeks if it corresponds to either a year year in the proleptic Gregorian calendarp74 that has a
Thursday as its first day (January 1st), or a year year in the proleptic Gregorian calendarp74 that has a Wednesday as its first day
(January 1st) and where year is a number divisible by 400, or a number divisible by 4 but not by 100. All other week-years have 52
weeks.

The week number of the last day of a week-year with 53 weeks is 53; the week number of the last day of a week-year with 52
weeks is 52.

A string is a valid week string representing a week-year year and week week if it consists of the following components in the given
order:

1. Four or more ASCII digits, representing year, where year > 0

2. A U+002D HYPHEN-MINUS character (-)

3. A U+0057 LATIN CAPITAL LETTER W character (W)

4. Two ASCII digits, representing the week week, in the range 1 ≤ week ≤ maxweek, where maxweek is the week number of the
last dayp81 of week-year year

The rules to parse a week string are as follows. This will return either a week-year number and week number, or nothing. If at any
point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not at least four
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the year.

4. If year is not a number greater than zero, then fail.

5. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail.
Otherwise, move position forwards one character.

6. If position is beyond the end of input or if the character at position is not a U+0057 LATIN CAPITAL LETTER W character (W),
then fail. Otherwise, move position forwards one character.

7. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the week.

8. Let maxweek be the week number of the last dayp81 of year year.

9. If week is not a number in the range 1 ≤ week ≤ maxweek, then fail.

10. If position is not beyond the end of input, then fail.

11. Return the week-year number year and the week number week.

A duration consists of a number of seconds.

The week-year number of a particular day can be different than the number of the year that contains that day in the proleptic
Gregorian calendarp74. The first week in a week-year y is the week that contains the first Thursday of the Gregorian year y.

Note

For modern purposes, a weekp80 as defined here is equivalent to ISO weeks as defined in ISO 8601. [ISO8601]p1288

Note

2.4.5.9 Durations §p81

Since months and seconds are not comparable (a month is not a precise number of seconds, but is instead a period whose exact
length depends on the precise day from which it is measured) a durationp81 as defined in this specification cannot include months

Note

81

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

A string is a valid duration string representing a durationp81 t if it consists of either of the following:

• A literal U+0050 LATIN CAPITAL LETTER P character followed by one or more of the following subcomponents, in the order
given, where the number of days, hours, minutes, and seconds corresponds to the same number of seconds as in t:

1. One or more ASCII digits followed by a U+0044 LATIN CAPITAL LETTER D character, representing a number of days.

2. A U+0054 LATIN CAPITAL LETTER T character followed by one or more of the following subcomponents, in the order
given:

1. One or more ASCII digits followed by a U+0048 LATIN CAPITAL LETTER H character, representing a
number of hours.

2. One or more ASCII digits followed by a U+004D LATIN CAPITAL LETTER M character, representing a
number of minutes.

3. The following components:

1. One or more ASCII digits, representing a number of seconds.

2. Optionally, a U+002E FULL STOP character (.) followed by one, two, or three ASCII digits,
representing a fraction of a second.

3. A U+0053 LATIN CAPITAL LETTER S character.

• One or more duration time componentsp82, each with a different duration time component scalep82, in any order; the sum of
the represented seconds being equal to the number of seconds in t.

A duration time component is a string consisting of the following components:

1. Zero or more ASCII whitespace.

2. One or more ASCII digits, representing a number of time units, scaled by the duration time component scalep82

specified (see below) to represent a number of seconds.

3. If the duration time component scalep82 specified is 1 (i.e. the units are seconds), then, optionally, a U+002E FULL
STOP character (.) followed by one, two, or three ASCII digits, representing a fraction of a second.

4. Zero or more ASCII whitespace.

5. One of the following characters, representing the duration time component scale of the time unit used in the
numeric part of the duration time componentp82:

U+0057 LATIN CAPITAL LETTER W character
U+0077 LATIN SMALL LETTER W character

Weeks. The scale is 604800.

U+0044 LATIN CAPITAL LETTER D character
U+0064 LATIN SMALL LETTER D character

Days. The scale is 86400.

U+0048 LATIN CAPITAL LETTER H character
U+0068 LATIN SMALL LETTER H character

Hours. The scale is 3600.

U+004D LATIN CAPITAL LETTER M character
U+006D LATIN SMALL LETTER M character

Minutes. The scale is 60.

(or years, which are equivalent to twelve months). Only durations that describe a specific number of seconds can be described.

This, as with a number of other date- and time-related microsyntaxes defined in this specification, is based on one of the
formats defined in ISO 8601. [ISO8601]p1288

Note

82

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-whitespace

U+0053 LATIN CAPITAL LETTER S character
U+0073 LATIN SMALL LETTER S character

Seconds. The scale is 1.

6. Zero or more ASCII whitespace.

The rules to parse a duration string are as follows. This will return either a durationp81 or nothing. If at any point the algorithm says
that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let months, seconds, and component count all be zero.

4. Let M-disambiguator be minutes.

5. Skip ASCII whitespace within input given position.

6. If position is past the end of input, then fail.

7. If the character in input pointed to by position is a U+0050 LATIN CAPITAL LETTER P character, then advance position to the
next character, set M-disambiguator to months, and skip ASCII whitespace within input given position.

8. While true:

1. Let units be undefined. It will be assigned one of the following values: years, months, weeks, days, hours, minutes,
and seconds.

2. Let next character be undefined. It is used to process characters from the input.

3. If position is past the end of input, then break.

4. If the character in input pointed to by position is a U+0054 LATIN CAPITAL LETTER T character, then advance
position to the next character, set M-disambiguator to minutes, skip ASCII whitespace within input given position,
and continue.

5. Set next character to the character in input pointed to by position.

6. If next character is a U+002E FULL STOP character (.), then let N equal zero. (Do not advance position. That is
taken care of below.)

Otherwise, if next character is an ASCII digit, then collect a sequence of code points that are ASCII digits from input
given position, interpret the resulting sequence as a base-ten integer, and let N be that number.

Otherwise next character is not part of a number; fail.

7. If position is past the end of input, then fail.

8. Set next character to the character in input pointed to by position, and this time advance position to the next
character. (If next character was a U+002E FULL STOP character (.) before, it will still be that character this time.)

9. If next character is U+002E (.), then:

1. Collect a sequence of code points that are ASCII digits from input given position. Let s be the resulting
sequence.

2. If s is the empty string, then fail.

3. Let length be the number of characters in s.

This is not based on any of the formats in ISO 8601. It is intended to be a more human-readable alternative to the ISO
8601 duration format.

Note

This flag's other value is months. It is used to disambiguate the "M" unit in ISO8601 durations, which use the same unit
for months and minutes. Months are not allowed, but are parsed for future compatibility and to avoid misinterpreting
ISO8601 durations that would be valid in other contexts.

Note

83

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

4. Let fraction be the result of interpreting s as a base-ten integer, and then dividing that number by
10length.

5. Increment N by fraction.

6. Skip ASCII whitespace within input given position.

7. If position is past the end of input, then fail.

8. Set next character to the character in input pointed to by position, and advance position to the next
character.

9. If next character is neither a U+0053 LATIN CAPITAL LETTER S character nor a U+0073 LATIN SMALL
LETTER S character, then fail.

10. Set units to seconds.

Otherwise:

1. If next character is ASCII whitespace, then skip ASCII whitespace within input given position, set next
character to the character in input pointed to by position, and advance position to the next character.

2. If next character is a U+0059 LATIN CAPITAL LETTER Y character, or a U+0079 LATIN SMALL LETTER Y
character, set units to years and set M-disambiguator to months.

If next character is a U+004D LATIN CAPITAL LETTER M character or a U+006D LATIN SMALL LETTER M
character, and M-disambiguator is months, then set units to months.

If next character is a U+0057 LATIN CAPITAL LETTER W character or a U+0077 LATIN SMALL LETTER W
character, set units to weeks and set M-disambiguator to minutes.

If next character is a U+0044 LATIN CAPITAL LETTER D character or a U+0064 LATIN SMALL LETTER D
character, set units to days and set M-disambiguator to minutes.

If next character is a U+0048 LATIN CAPITAL LETTER H character or a U+0068 LATIN SMALL LETTER H
character, set units to hours and set M-disambiguator to minutes.

If next character is a U+004D LATIN CAPITAL LETTER M character or a U+006D LATIN SMALL LETTER M
character, and M-disambiguator is minutes, then set units to minutes.

If next character is a U+0053 LATIN CAPITAL LETTER S character or a U+0073 LATIN SMALL LETTER S
character, set units to seconds and set M-disambiguator to minutes.

Otherwise if next character is none of the above characters, then fail.

10. Increment component count.

11. Let multiplier be 1.

12. If units is years, multiply multiplier by 12 and set units to months.

13. If units is months, add the product of N and multiplier to months.

Otherwise:

1. If units is weeks, multiply multiplier by 7 and set units to days.

2. If units is days, multiply multiplier by 24 and set units to hours.

3. If units is hours, multiply multiplier by 60 and set units to minutes.

4. If units is minutes, multiply multiplier by 60 and set units to seconds.

5. Forcibly, units is now seconds. Add the product of N and multiplier to seconds.

14. Skip ASCII whitespace within input given position.

9. If component count is zero, fail.

10. If months is not zero, fail.

11. Return the durationp81 consisting of seconds seconds.
84

https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace

A string is a valid date string with optional time if it is also one of the following:

• A valid date stringp74

• A valid global date and time stringp79

The rules to parse a date or time string are as follows. The algorithm will return either a datep74, a timep76, a global date and
timep79, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Set start position to the same position as position.

4. Set the date present and time present flags to true.

5. Parse a date componentp75 to obtain year, month, and day. If this fails, then set the date present flag to false.

6. If date present is true, and position is not beyond the end of input, and the character at position is either a U+0054 LATIN
CAPITAL LETTER T character (T) or a U+0020 SPACE character, then advance position to the next character in input.

Otherwise, if date present is true, and either position is beyond the end of input or the character at position is neither a
U+0054 LATIN CAPITAL LETTER T character (T) nor a U+0020 SPACE character, then set time present to false.

Otherwise, if date present is false, set position back to the same position as start position.

7. If the time present flag is true, then parse a time componentp76 to obtain hour, minute, and second. If this returns nothing,
then fail.

8. If the date present and time present flags are both true, but position is beyond the end of input, then fail.

9. If the date present and time present flags are both true, parse a time-zone offset componentp78 to obtain timezonehours and
timezoneminutes. If this returns nothing, then fail.

10. If position is not beyond the end of input, then fail.

11. If the date present flag is true and the time present flag is false, then let date be the date with year year, month month, and
day day, and return date.

Otherwise, if the time present flag is true and the date present flag is false, then let time be the time with hour hour, minute
minute, and second second, and return time.

Otherwise, let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second,
subtracting timezonehours hours and timezoneminutes minutes, that moment in time being a moment in the UTC time zone;
let timezone be timezonehours hours and timezoneminutes minutes from UTC; and return time and timezone.

A simple color consists of three 8-bit numbers in the range 0..255, representing the red, green, and blue components of the color
respectively, in the sRGB color space. [SRGB]p1291

A string is a valid simple color if it is exactly seven characters long, and the first character is a U+0023 NUMBER SIGN character (#),
and the remaining six characters are all ASCII hex digits, with the first two digits representing the red component, the middle two digits
representing the green component, and the last two digits representing the blue component, in hexadecimal.

A string is a valid lowercase simple color if it is a valid simple colorp85 and doesn't use any characters in the range U+0041 LATIN
CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F.

The rules for parsing simple color values are as given in the following algorithm. When invoked, the steps must be followed in the
order given, aborting at the first step that returns a value. This algorithm will return either a simple colorp85 or an error.

1. Let input be the string being parsed.

2.4.5.10 Vaguer moments in time §p85

2.4.6 Colors §p85

85

https://infra.spec.whatwg.org/#ascii-hex-digit

2. If input is not exactly seven characters long, then return an error.

3. If the first character in input is not a U+0023 NUMBER SIGN character (#), then return an error.

4. If the last six characters of input are not all ASCII hex digits, then return an error.

5. Let result be a simple colorp85.

6. Interpret the second and third characters as a hexadecimal number and let the result be the red component of result.

7. Interpret the fourth and fifth characters as a hexadecimal number and let the result be the green component of result.

8. Interpret the sixth and seventh characters as a hexadecimal number and let the result be the blue component of result.

9. Return result.

The rules for serializing simple color values given a simple colorp85 are as given in the following algorithm:

1. Let result be a string consisting of a single U+0023 NUMBER SIGN character (#).

2. Convert the red, green, and blue components in turn to two-digit hexadecimal numbers using ASCII lower hex digits, zero-
padding if necessary, and append these numbers to result, in the order red, green, blue.

3. Return result, which will be a valid lowercase simple colorp85.

Some obsolete legacy attributes parse colors in a more complicated manner, using the rules for parsing a legacy color value,
which are given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that
returns a value. This algorithm will return either a simple colorp85 or an error.

1. Let input be the string being parsed.

2. If input is the empty string, then return an error.

3. Strip leading and trailing ASCII whitespace from input.

4. If input is an ASCII case-insensitive match for the string "transparent", then return an error.

5. If input is an ASCII case-insensitive match for one of the named colors, then return the simple colorp85 corresponding to that
keyword. [CSSCOLOR]p1286

6. If input's code point length is four, and the first character in input is U+0023 (#), and the last three characters of input are all
ASCII hex digits, then:

1. Let result be a simple colorp85.

2. Interpret the second character of input as a hexadecimal digit; let the red component of result be the resulting
number multiplied by 17.

3. Interpret the third character of input as a hexadecimal digit; let the green component of result be the resulting
number multiplied by 17.

4. Interpret the fourth character of input as a hexadecimal digit; let the blue component of result be the resulting
number multiplied by 17.

5. Return result.

7. Replace any code points greater than U+FFFF in input (i.e., any characters that are not in the basic multilingual plane) with
the two-character string "00".

8. If input's code point length is greater than 128, truncate input, leaving only the first 128 characters.

9. If the first character in input is a U+0023 NUMBER SIGN character (#), remove it.

10. Replace any character in input that is not an ASCII hex digit with the character U+0030 DIGIT ZERO (0).

11. While input's code point length is zero or not a multiple of three, append a U+0030 DIGIT ZERO (0) character to input.

CSS2 System Colors are not recognized.
Note

86

https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#ascii-lower-hex-digit
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-color/#named-color
https://www.w3.org/TR/css3-color/#css2-system
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#string-code-point-length

12. Split input into three strings of equal code point length, to obtain three components. Let length be the code point length that
all of those components have (one third the code point length of input).

13. If length is greater than 8, then remove the leading length-8 characters in each component, and let length be 8.

14. While length is greater than two and the first character in each component is a U+0030 DIGIT ZERO (0) character, remove
that character and reduce length by one.

15. If length is still greater than two, truncate each component, leaving only the first two characters in each.

16. Let result be a simple colorp85.

17. Interpret the first component as a hexadecimal number; let the red component of result be the resulting number.

18. Interpret the second component as a hexadecimal number; let the green component of result be the resulting number.

19. Interpret the third component as a hexadecimal number; let the blue component of result be the resulting number.

20. Return result.

A set of space-separated tokens is a string containing zero or more words (known as tokens) separated by one or more ASCII
whitespace, where words consist of any string of one or more characters, none of which are ASCII whitespace.

A string containing a set of space-separated tokensp87 may have leading or trailing ASCII whitespace.

An unordered set of unique space-separated tokens is a set of space-separated tokensp87 where none of the tokens are
duplicated.

An ordered set of unique space-separated tokens is a set of space-separated tokensp87 where none of the tokens are duplicated
but where the order of the tokens is meaningful.

Sets of space-separated tokensp87 sometimes have a defined set of allowed values. When a set of allowed values is defined, the tokens
must all be from that list of allowed values; other values are non-conforming. If no such set of allowed values is provided, then all
values are conforming.

A set of comma-separated tokens is a string containing zero or more tokens each separated from the next by a single U+002C
COMMA character (,), where tokens consist of any string of zero or more characters, neither beginning nor ending with ASCII
whitespace, nor containing any U+002C COMMA characters (,), and optionally surrounded by ASCII whitespace.

Sets of comma-separated tokensp87 sometimes have further restrictions on what consists a valid token. When such restrictions are
defined, the tokens must all fit within those restrictions; other values are non-conforming. If no such restrictions are specified, then all
values are conforming.

The 2D graphics contextp636 has a separate color syntax that also handles opacity.
Note

How tokens in a set of space-separated tokensp87 are to be compared (e.g. case-sensitively or not) is defined on a per-set basis.
Note

For instance, the string " a ,b,,d d " consists of four tokens: "a", "b", the empty string, and "d d". Leading and trailing
whitespace around each token doesn't count as part of the token, and the empty string can be a token.

Example

2.4.7 Space-separated tokens §p87

2.4.8 Comma-separated tokens §p87

87

https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

A valid hash-name reference to an element of type type is a string consisting of a U+0023 NUMBER SIGN character (#) followed by
a string which exactly matches the value of the name attribute of an element with type type in the same tree.

The rules for parsing a hash-name reference to an element of type type, given a context node scope, are as follows:

1. If the string being parsed does not contain a U+0023 NUMBER SIGN character, or if the first such character in the string is
the last character in the string, then return null.

2. Let s be the string from the character immediately after the first U+0023 NUMBER SIGN character in the string being parsed
up to the end of that string.

3. Return the first element of type type in scope's tree, in tree order, that has an idp137 or name attribute whose value is s, or
null if there is no such element.

A string is a valid media query list if it matches the <media-query-list> production of Media Queries. [MQ]p1289

A string matches the environment of the user if it is the empty string, a string consisting of only ASCII whitespace, or is a media
query list that matches the user's environment according to the definitions given in Media Queries. [MQ]p1289

A string is a valid non-empty URL if it is a valid URL string but it is not the empty string.

A string is a valid URL potentially surrounded by spaces if, after stripping leading and trailing ASCII whitespace from it, it is a valid
URL string.

A string is a valid non-empty URL potentially surrounded by spaces if, after stripping leading and trailing ASCII whitespace from
it, it is a valid non-empty URLp88.

This specification defines the URL about:legacy-compat as a reserved, though unresolvable, about: URL, for use in DOCTYPEp1067s in
HTML documents when needed for compatibility with XML tools. [ABOUT]p1285

This specification defines the URL about:html-kind as a reserved, though unresolvable, about: URL, that is used as an identifier for
kinds of media tracks. [ABOUT]p1285

This specification defines the URL about:srcdoc as a reserved, though unresolvable, about: URL, that is used as the URL of iframe
srcdoc documentsp362. [ABOUT]p1285

The fallback base URL of a Documentp114 object document is the URL record obtained by running these steps:

1. If document is an iframe srcdoc documentp362, then return the document base URLp88 of document's browsing contextp811 's
container documentp814.

2. If document's URL is about:blankp51, and document's browsing contextp811 's creator base URLp812 is non-null, then return
that creator base URLp812.

3. Return document's URL.

The document base URL of a Documentp114 object is the absolute URL obtained by running these steps:

Although idp137 attributes are accounted for when parsing, they are not used in determining whether a value is a valid
hash-name referencep88. That is, a hash-name reference that refers to an element based on idp137 is a conformance error
(unless that element also has a name attribute with the same value).

Note

2.5 URLs §p88

2.4.9 References §p88

2.4.10 Media queries §p88

2.5.1 Terminology §p88

88

https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#ascii-whitespace
https://url.spec.whatwg.org/#valid-url-string
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#valid-url-string
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://tools.ietf.org/html/rfc6694#section-2
https://dom.spec.whatwg.org/#html-document
https://tools.ietf.org/html/rfc6694#section-2
https://tools.ietf.org/html/rfc6694#section-2
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#syntax-url-absolute

1. If there is no basep155 element that has an hrefp156 attribute in the Documentp114, then return the Documentp114 's fallback base
URLp88.

2. Otherwise, return the frozen base URLp156 of the first basep155 element in the Documentp114 that has an hrefp156 attribute, in
tree order.

Parsing a URL is the process of taking a string and obtaining the URL record that it represents. While this process is defined in URL, the
HTML standard defines a wrapper for convenience. [URL]p1292

To parse a URL url, relative to either a document or environment settings object, the user agent must use the following steps. Parsing
a URL either results in failure or a resulting URL stringp89 and resulting URL recordp89.

1. Let encoding be document's character encoding, if document was given, and environment settings object's API URL
character encodingp917 otherwise.

2. Let baseURL be document's base URLp88, if document was given, and environment settings object's API base URLp917

otherwise.

3. Let urlRecord be the result of applying the URL parser to url, with baseURL and encoding.

4. If urlRecord is failure, then return failure.

5. Let urlString be the result of applying the URL serializer to urlRecord.

6. Return urlString as the resulting URL string and urlRecord as the resulting URL record.

When a document's document base URLp88 changes, all elements in that document are affected by a base URL changep56.

The following are base URL change stepsp56, which run when an element is affected by a base URL changep56 (as defined by DOM):

↪ If the element creates a hyperlinkp283

If the URL identified by the hyperlink is being shown to the user, or if any data derived from that URL is affecting the display,
then the hrefp284 attribute should be reparsedp89 relative to the element's node document and the UI updated appropriately.

If the hyperlink has a pingp284 attribute and its URL(s) are being shown to the user, then the pingp284 attribute's tokens should
be reparsedp89 relative to the element's node document and the UI updated appropriately.

↪ If the element is a qp247, blockquotep217, insp311, or delp312 element with a cite attribute
If the URL identified by the cite attribute is being shown to the user, or if any data derived from that URL is affecting the
display, then the URL should be reparsedp89 relative to the element's node document and the UI updated appropriately.

↪ Otherwise
The element is not directly affected.

This wrapper is only useful when the character encoding for the URL parser has to match that of the document or environment
settings object for legacy reasons. When that is not the case the URL parser can be used directly.

Note

For example, the CSS :linkp725/:visitedp725 pseudo-classes might have been affected.
Example

For instance, changing the base URL doesn't affect the image displayed by imgp320 elements, although subsequent accesses
of the srcp323 IDL attribute from script will return a new absolute URL that might no longer correspond to the image being

Example

2.5.2 Parsing URLs §p89

2.5.3 Dynamic changes to base URLs §p89

89

https://dom.spec.whatwg.org/#concept-tree-order
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-parser
https://dom.spec.whatwg.org/#concept-document-encoding
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/selectors/#pseudo-class
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#syntax-url-absolute

A response whose type is "basic", "cors", or "default" is CORS-same-origin. [FETCH]p1287

A response whose type is "opaque" or "opaqueredirect" is CORS-cross-origin.

A response's unsafe response is its internal response if it has one, and the response itself otherwise.

To create a potential-CORS request, given a url, destination, corsAttributeState, and an optional same-origin fallback flag, run
these steps:

1. Let mode be "no-cors" if corsAttributeState is No CORSp91, and "cors" otherwise.

2. If same-origin fallback flag is set and mode is "no-cors", set mode to "same-origin".

3. Let credentialsMode be "include".

4. If corsAttributeState is Anonymousp91, set credentialsMode to "same-origin".

5. Let request be a new request whose url is url, destination is destination, mode is mode, credentials mode is credentialsMode,
and whose use-URL-credentials flag is set.

The Content-Type metadata of a resource must be obtained and interpreted in a manner consistent with the requirements of MIME
Sniffing. [MIMESNIFF]p1289

The computed MIME type of a resource must be found in a manner consistent with the requirements given in MIME Sniffing.
[MIMESNIFF]p1289

The rules for sniffing images specifically, the rules for distinguishing if a resource is text or binary, and the rules for
sniffing audio and video specifically are also defined in MIME Sniffing. These rules return a MIME type as their result.
[MIMESNIFF]p1289

The algorithm for extracting a character encoding from a meta element, given a string s, is as follows. It either returns a
character encoding or nothing.

1. Let position be a pointer into s, initially pointing at the start of the string.

2. Loop: Find the first seven characters in s after position that are an ASCII case-insensitive match for the word "charset". If no
such match is found, return nothing.

3. Skip any ASCII whitespace that immediately follow the word "charset" (there might not be any).

4. If the next character is not a U+003D EQUALS SIGN (=), then move position to point just before that next character, and
jump back to the step labeled loop.

shown.

2.6 Fetching resources §p90

It is imperative that the rules in MIME Sniffing be followed exactly. When a user agent uses different heuristics for
content type detection than the server expects, security problems can occur. For more details, see MIME Sniffing.
[MIMESNIFF]p1289

⚠Warning!

2.6.1 Terminology §p90

2.6.2 Determining the type of a resource §p90

2.6.3 Extracting character encodings from metap164 elements §p90

90

https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-internal-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://mimesniff.spec.whatwg.org/#rules-for-text-or-binary
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace

5. Skip any ASCII whitespace that immediately follow the equals sign (there might not be any).

6. Process the next character as follows:

↪ If it is a U+0022 QUOTATION MARK character (") and there is a later U+0022 QUOTATION MARK character
(") in s

↪ If it is a U+0027 APOSTROPHE character (') and there is a later U+0027 APOSTROPHE character (') in s
Return the result of getting an encoding from the substring that is between this character and the next earliest
occurrence of this character.

↪ If it is an unmatched U+0022 QUOTATION MARK character (")
↪ If it is an unmatched U+0027 APOSTROPHE character (')
↪ If there is no next character

Return nothing.

↪ Otherwise
Return the result of getting an encoding from the substring that consists of this character up to but not including the
first ASCII whitespace or U+003B SEMICOLON character (;), or the end of s, whichever comes first.

A CORS settings attribute is an enumerated attributep68. The following table lists the keywords and states for the attribute — the
states given in the first cell of the rows with keywords give the states to which those keywords map.

State Keywords Brief description

anonymousAnonymous
(the empty string)

Requests for the element will have their mode set to "cors" and their credentials mode set to "same-origin".

Use Credentials use-credentials Requests for the element will have their mode set to "cors" and their credentials mode set to "include".

The attribute's invalid value defaultp68 is the Anonymousp91 state, and its missing value defaultp68 is the No CORS state. For the
purposes of reflectionp94, the canonical keywordp95 for the Anonymousp91 state is the anonymousp91 keyword.

The majority of fetches governed by CORS settings attributesp91 will be done via the create a potential-CORS requestp90 algorithm.

For more modern features, where the request's mode is always "cors", certain CORS settings attributesp91 have been repurposed to
have a slightly different meaning, wherein they only impact the request's credentials mode. To perform this translation, we define the
CORS settings attribute credentials mode for a given CORS settings attributep91 to be determined by switching on the attribute's
state:

↪ No CORSp91

↪ Anonymousp91

"same-origin"

↪ Use Credentialsp91

"include"

A referrer policy attribute is an enumerated attributep68. Each referrer policy, including the empty string, is a keyword for this
attribute, mapping to a state of the same name.

The attribute's invalid value defaultp68 and missing value defaultp68 are both the empty string state.

This algorithm is distinct from those in the HTTP specifications (for example, HTTP doesn't allow the use of single quotes and
requires supporting a backslash-escape mechanism that is not supported by this algorithm). While the algorithm is used in
contexts that, historically, were related to HTTP, the syntax as supported by implementations diverged some time ago. [HTTP]p1288

Note

2.6.4 CORS settings attributes §p91

2.6.5 Referrer policy attributes §p91

✔ MDN

91

https://infra.spec.whatwg.org/#ascii-whitespace
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#concept-encoding-get
https://infra.spec.whatwg.org/#ascii-whitespace
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy

The impact of these states on the processing model of various fetches is defined in more detail throughout this specification, in Fetch,
and in Referrer Policy. [FETCH]p1287 [REFERRERPOLICY]p1290

A nonce content attribute represents a cryptographic nonce ("number used once") which can be used by Content Security Policy to
determine whether or not a given fetch will be allowed to proceed. The value is text. [CSP]p1285

Elements that have a noncep92 content attribute ensure that the crytographic nonce is only exposed to script (and not to side-channels
like CSS attribute selectors) by taking the value from the content attribute, moving it into an internal slot named
[[CryptographicNonce]], exposing it to script via the HTMLOrSVGElementp125 interface mixin, and setting the content attribute to the
empty string. Unless otherwise specified, the slot's value is the empty string.

The nonce IDL attribute must, on getting, return the value of this element's [[CryptographicNonce]]p92; and on setting, set this
element's [[CryptographicNonce]]p92 to the given value.

The following attribute change steps are used for the noncep92 content attribute:

1. If element does not include HTMLOrSVGElementp125, then return.

2. If localName is not noncep92 or namespace is not null, then return.

3. If value is null, then set element's [[CryptographicNonce]]p92 to the empty string.

4. Otherwise, set element's [[CryptographicNonce]]p92 to value.

Whenever an element including HTMLOrSVGElementp125 becomes browsing-context connectedp45, the user agent must execute the
following steps on the element:

1. Let CSP list be element's shadow-including root's CSP listp115.

2. If CSP list contains a header-delivered Content Security Policy, and element has a noncep92 content attribute attr whose value
is not the empty string, then:

1. Let nonce be element's [[CryptographicNonce]]p92.

2. Set an attribute value for element using "noncep92" and the empty string.

Several signals can contribute to which processing model is used for a given fetch; a referrer policy attributep91 is only one of
them. In general, the order in which these signals are processed are:

1. First, the presence of a noreferrerp304 link type;

2. Then, the value of a referrer policy attributep91;

3. Then, the presence of any metap164 element with namep166 attribute set to referrerp167.

4. Finally, the `Referrer-Policy` HTTP header.

Note

element . nonce
Returns the value of the element's [[CryptographicNonce]]p92 internal slot.
Can be set, to update that slot's value.

For web developers (non-normative)

Note how the setter for the noncep92 IDL attribute does not update the corresponding content attribute. This, as well as the below
setting of the noncep92 content attribute to the empty string when an element becomes browsing-context connectedp45, is meant
to prevent exfiltration of the nonce value through mechanisms that can easily read content attributes, such as selectors. Learn
more in issue #2369, where this behavior was introduced.

Note

2.6.6 Nonce attributes §p92

✔ MDN

92

https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-header-dfn
https://github.com/whatwg/html/issues/2369
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://heycam.github.io/webidl/#include
https://heycam.github.io/webidl/#include
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://w3c.github.io/webappsec-csp/#contains-a-header-delivered-content-security-policy
https://dom.spec.whatwg.org/#concept-element-attributes-set-value

3. Set element's [[CryptographicNonce]]p92 to nonce.

The cloning steps for elements that include HTMLOrSVGElementp125 must set the [[CryptographicNonce]]p92 slot on the copy to the value
of the slot on the element being cloned.

A lazy loading attribute is an enumerated attributep68. The following table lists the keywords and states for the attribute — the
keywords in the left column map to the states in the cell in the second column on the same row as the keyword.

The attribute directs the user agent to fetch a resource immediately or to defer fetching until some conditions associated with the
element are met, according to the attribute's current state.

Keyword State Description

lazy Lazy Used to defer fetching a resource until some conditions are met.
eager Eager Used to fetch a resource immediately; the default state.

The attribute's missing value defaultp68 and invalid value defaultp68 are both the Eagerp93 state.

The will lazy load element steps, given an element element, are as follows:

1. If scripting is disabledp924 for element, then return false.

2. If element's lazy loading attributep93 is in the Lazyp93 state, then return true.

3. Return false.

Each imgp320 and iframep361 element has associated lazy load resumption steps, initially null.

Each Documentp114 has a lazy load intersection observer, initially set to null but can be set to an IntersectionObserver instance.

To start intersection-observing a lazy loading element element, run these steps:

1. Let doc be element's node document.

2. If doc's lazy load intersection observerp93 is null, set it to a new IntersectionObserver instance, initialized as follows:

The intention is to use the original value of the IntersectionObserver constructor. However, we're forced to use the
JavaScript-exposed constructor in this specification, until Intersection Observer exposes low-level hooks for use in
specifications. See bug w3c/IntersectionObserver#427 which tracks this. [INTERSECTIONOBSERVER]p1288

◦ The callback is these steps, with arguments entries and observer:

If element's [[CryptographicNonce]]p92 were not restored it would be the empty string at this point.
Note

As each Documentp114 's CSP listp115 is append-only, user agents can optimize away the contains a header-delivered Content Security
Policy check by, for example, holding a flag on the Documentp114, set during Document creation and initializationp873.

Note

This is an anti-tracking measure, because if a user agent supported lazy loading when scripting is disabled, it would still
be possible for a site to track a user's approximate scroll position throughout a session, by strategically placing images in
a page's markup such that a server can track how many images are requested and when.

Note

For imgp320 and iframep361 elements that will lazy loadp93, these steps are run from the lazy load intersection observerp93 's callback
or when their lazy loading attributep93 is set to the Eagerp93 state. This causes the element to continue loading.

Note

2.6.7 Lazy loading attributes §p93
MDN

93

https://w3c.github.io/webappsec-csp/#contains-a-header-delivered-content-security-policy
https://w3c.github.io/webappsec-csp/#contains-a-header-delivered-content-security-policy
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://heycam.github.io/webidl/#include
https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://github.com/w3c/IntersectionObserver/issues/427

1. For each entry in entries using a method of iteration which does not trigger developer-modifiable array
accessors or iteration hooks :

1. Let resumptionSteps be null.

2. If entry.isIntersecting is true, then set resumptionSteps to entry.target's lazy load
resumption stepsp93.

3. If resumptionSteps is null, then return.

4. Stop intersection-observing a lazy loading element p94 for entry.target.

5. Set entry.target's lazy load resumption stepsp93 to null.

6. Invoke resumptionSteps.

The intention is to use the original value of the isIntersecting and target getters. See w3c/
IntersectionObserver#427. [INTERSECTIONOBSERVER]p1288

◦ The options is an IntersectionObserverInit dictionary with the following dictionary members: «["rootMargin"
→ an implementation-defined value]»

See issue #5408.

3. Call doc's lazy load intersection observerp93 's observe method with element as the argument.

The intention is to use the original value of the observe method. See w3c/IntersectionObserver#427.
[INTERSECTIONOBSERVER]p1288

To stop intersection-observing a lazy loading element element, run these steps:

1. Let doc be element's node document.

2. Assert: doc's lazy load intersection observerp93 is not null.

3. Call doc's lazy load intersection observerp93 unobserve method with element as the argument.

The intention is to use the original value of the unobserve method. See w3c/IntersectionObserver#427.
[INTERSECTIONOBSERVER]p1288

Some IDL attributes are defined to reflect a particular content attribute. This means that on getting, the IDL attribute returns the
current value of the content attribute, and on setting, the IDL attribute changes the value of the content attribute to the given value.

In general, on getting, if the content attribute is not present, the IDL attribute must act as if the content attribute's value is the empty
string; and on setting, if the content attribute is not present, it must first be added.

If a reflecting IDL attribute is a USVString attribute whose content attribute is defined to contain a URL, then on getting, if the content
attribute is absent, the IDL attribute must return the empty string. Otherwise, the IDL attribute must parsep89 the value of the content
attribute relative to the element's node document and if that is successful, return the resulting URL stringp89. If parsing fails, then the
value of the content attribute must be returned instead, converted to a USVString. On setting, the content attribute must be set to the
specified new value.

If a reflecting IDL attribute is a DOMString attribute whose content attribute is an enumerated attributep68, and the IDL attribute is

This allows for fetching the image during scrolling, when it does not yet — but is about to — intersect the
viewport.

Note

2.7 Common DOM interfaces §p94

2.7.1 Reflecting content attributes in IDL attributes §p94

94

https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-isintersecting
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-isintersecting
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://github.com/w3c/IntersectionObserver/issues/427
https://github.com/w3c/IntersectionObserver/issues/427
https://w3c.github.io/IntersectionObserver/#dictdef-intersectionobserverinit
https://infra.spec.whatwg.org/#implementation-defined
https://github.com/whatwg/html/issues/5408
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-observe
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-observe
https://github.com/w3c/IntersectionObserver/issues/427
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-unobserve
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-unobserve
https://github.com/w3c/IntersectionObserver/issues/427
https://heycam.github.io/webidl/#idl-USVString
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#idl-USVString
https://heycam.github.io/webidl/#idl-DOMString

limited to only known values, then, on getting, the IDL attribute must return the keyword value associated with the state the
attribute is in, if any, or the empty string if the attribute is in a state that has no associated keyword value or if the attribute is not in a
defined state (e.g. the attribute is missing and there is no missing value defaultp68). If there are multiple keyword values for the state,
then return the conforming one. If there are multiple conforming keyword values, then one will be designated the canonical keyword;
choose that one. On setting, the content attribute must be set to the specified new value.

If a reflecting IDL attribute is a nullable DOMString attribute whose content attribute is an enumerated attributep68, then, on getting, if
the corresponding content attribute is in its missing value default state then the IDL attribute must return null, otherwise, the IDL
attribute must return the keyword value associated with the state the attribute is in. If there are multiple keyword values for the state,
then return the conforming one. If there are multiple conforming keyword values, then one will be designated the canonical
keywordp95; choose that one. On setting, if the new value is null, the content attribute must be removed, and otherwise, the content
attribute must be set to the specified new value.

If a reflecting IDL attribute is a DOMString or USVString attribute but doesn't fall into any of the above categories, then the getting and
setting must be done in a transparent, case-preserving manner.

If a reflecting IDL attribute is a boolean attribute, then on getting the IDL attribute must return true if the content attribute is set, and
false if it is absent. On setting, the content attribute must be removed if the IDL attribute is set to false, and must be set to the empty
string if the IDL attribute is set to true. (This corresponds to the rules for boolean content attributesp67.)

If a reflecting IDL attribute has a signed integer type (long) then, on getting, the content attribute must be parsed according to the
rules for parsing signed integersp68, and if that is successful, and the value is in the range of the IDL attribute's type, the resulting
value must be returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is absent, then the default
value must be returned instead, or 0 if there is no default value. On setting, the given value must be converted to the shortest possible
string representing the number as a valid integerp68 and then that string must be used as the new content attribute value.

If a reflecting IDL attribute has a signed integer type (long) that is limited to only non-negative numbers then, on getting, the
content attribute must be parsed according to the rules for parsing non-negative integers p69, and if that is successful, and the value is
in the range of the IDL attribute's type, the resulting value must be returned. If, on the other hand, it fails or returns an out of range
value, or if the attribute is absent, the default value must be returned instead, or −1 if there is no default value. On setting, if the value
is negative, the user agent must throw an "IndexSizeError" DOMException. Otherwise, the given value must be converted to the
shortest possible string representing the number as a valid non-negative integerp69 and then that string must be used as the new
content attribute value.

If a reflecting IDL attribute has an unsigned integer type (unsigned long) then, on getting, the content attribute must be parsed
according to the rules for parsing non-negative integers p69, and if that is successful, and the value is in the range 0 to 2147483647
inclusive, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is
absent, the default value must be returned instead, or 0 if there is no default value. On setting, first, if the new value is in the range 0
to 2147483647, then let n be the new value, otherwise let n be the default value, or 0 if there is no default value; then, n must be
converted to the shortest possible string representing the number as a valid non-negative integerp69 and that string must be used as
the new content attribute value.

If a reflecting IDL attribute has an unsigned integer type (unsigned long) that is limited to only non-negative numbers greater
than zero, then the behavior is similar to the previous case, but zero is not allowed. On getting, the content attribute must first be
parsed according to the rules for parsing non-negative integers p69, and if that is successful, and the value is in the range 1 to
2147483647 inclusive, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or if the
attribute is absent, the default value must be returned instead, or 1 if there is no default value. On setting, if the value is zero, the user
agent must throw an "IndexSizeError" DOMException. Otherwise, first, if the new value is in the range 1 to 2147483647, then let n be
the new value, otherwise let n be the default value, or 1 if there is no default value; then, n must be converted to the shortest possible
string representing the number as a valid non-negative integerp69 and that string must be used as the new content attribute value.

If a reflecting IDL attribute has an unsigned integer type (unsigned long) that is limited to only non-negative numbers greater
than zero with fallback, then the behavior is similar to the previous case, but disallowed values are converted to the default value.
On getting, the content attribute must first be parsed according to the rules for parsing non-negative integers p69, and if that is
successful, and the value is in the range 1 to 2147483647 inclusive, the resulting value must be returned. If, on the other hand, it fails
or returns an out of range value, or if the attribute is absent, the default value must be returned instead. On setting, first, if the new
value is in the range 1 to 2147483647, then let n be the new value, otherwise let n be the default value; then, n must be converted to
the shortest possible string representing the number as a valid non-negative integerp69 and that string must be used as the new
content attribute value.

If a reflecting IDL attribute has an unsigned integer type (unsigned long) that is clamped to the range [min, max], then on getting,
the content attribute must first be parsed according to the rules for parsing non-negative integers p69, and if that is successful, and the
value is between min and max inclusive, the resulting value must be returned. If it fails, the default value must be returned. If it
succeeds but the value is less than min, min must be returned. If it succeeds but the value is greater than max, max must be returned.

95

https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-USVString
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long

On setting, it behaves the same as setting a regular reflected unsigned integer.

If a reflecting IDL attribute has a floating-point number type (double or unrestricted double), then, on getting, the content attribute
must be parsed according to the rules for parsing floating-point number values p70, and if that is successful, the resulting value must be
returned. If, on the other hand, it fails, or if the attribute is absent, the default value must be returned instead, or 0.0 if there is no
default value. On setting, the given value must be converted to the best representation of the number as a floating-point number p69

and then that string must be used as the new content attribute value.

If a reflecting IDL attribute has a floating-point number type (double or unrestricted double) that is limited to numbers greater
than zero, then the behavior is similar to the previous case, but zero and negative values are not allowed. On getting, the content
attribute must be parsed according to the rules for parsing floating-point number values p70, and if that is successful and the value is
greater than 0.0, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or if the attribute
is absent, the default value must be returned instead, or 0.0 if there is no default value. On setting, if the value is less than or equal to
zero, then the value must be ignored. Otherwise, the given value must be converted to the best representation of the number as a
floating-point numberp69 and then that string must be used as the new content attribute value.

If a reflecting IDL attribute has the type DOMTokenList, then on getting it must return a DOMTokenList object whose associated
element is the element in question and whose associated attribute's local name is the name of the attribute in question.

The HTMLFormControlsCollectionp98 and HTMLOptionsCollectionp100 interfaces are collections derived from the HTMLCollection
interface. The HTMLAllCollectionp97 interface is a collection, but is not so derived.

The HTMLAllCollectionp97 interface is used for the legacy document.allp1249 attribute. It operates similarly to HTMLCollection; the
main differences are that it allows a staggering variety of different (ab)uses of its methods to all end up returning something, and that
it can be called as a function as an alternative to property access.

Objects that implement the HTMLAllCollectionp97 interface are legacy platform objects with an additonal [[Call]] internal method
described in the section belowp98. They also have an [[IsHTMLDDA]] internal slot.

The values Infinity and Not-a-Number (NaN) values throw an exception on setting, as defined in Web IDL. [WEBIDL]p1292

Note

2.7.2.1 The HTMLAllCollectionp97 interface §p96

All HTMLAllCollectionp97 objects are rooted at a Documentp114 and have a filter that matches all elements, so the elements
represented by the collection of an HTMLAllCollectionp97 object consist of all the descendant elements of the root Documentp114.

Note

Objects that implement the HTMLAllCollectionp97 interface have several unusual behaviors, due of the fact that they have an
[[IsHTMLDDA]] internal slot:

• The ToBoolean abstract operation in JavaScript returns false when given objects implementing the HTMLAllCollectionp97

interface.

• The Abstract Equality Comparison algorithm, when given objects implementing the HTMLAllCollectionp97 interface,
returns true when compared to the undefined and null values. (Comparisons using the Strict Equality Comparison
algorithm, and Abstract Equality comparisons to other values such as strings or objects, are unaffected.)

• The typeof operator in JavaScript returns the string "undefined" when applied to objects implementing the
HTMLAllCollectionp97 interface.

These special behaviors are motivated by a desire for compatibility with two classes of legacy content: one that uses the presence
of document.allp1249 as a way to detect legacy user agents, and one that only supports those legacy user agents and uses the
document.allp1249 object without testing for its presence first. [JAVASCRIPT]p1288

Note

2.7.2 Collections §p96

96

https://heycam.github.io/webidl/#idl-double
https://heycam.github.io/webidl/#idl-unrestricted-double
https://heycam.github.io/webidl/#idl-double
https://heycam.github.io/webidl/#idl-unrestricted-double
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://heycam.github.io/webidl/#dfn-legacy-platform-object
https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot
https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot
https://tc39.es/ecma262/#sec-toboolean
https://tc39.es/ecma262/#sec-abstract-equality-comparison
https://tc39.es/ecma262/#sec-strict-equality-comparison
https://tc39.es/ecma262/#sec-typeof-operator

[Exposed=Window,
LegacyUnenumerableNamedProperties]

interface HTMLAllCollection {
readonly attribute unsigned long length;
getter Element (unsigned long index);
getter (HTMLCollection or Element)? namedItem(DOMString name);
(HTMLCollection or Element)? item(optional DOMString nameOrIndex);

// Note: HTMLAllCollection objects have a custom [[Call]] internal method and an [[IsHTMLDDA]]
internal slot.
};

The object's supported property indices are as defined for HTMLCollection objects.

The supported property names consist of the non-empty values of all the idp137 attributes of all the elements represented by the
collection, and the non-empty values of all the name attributes of all the "all"-named elementsp97 represented by the collection, in tree
order, ignoring later duplicates, with the idp137 of an element preceding its name if it contributes both, they differ from each other, and
neither is the duplicate of an earlier entry.

On getting, the length attribute must return the number of nodes represented by the collection.

The indexed property getter must return the result of getting the "all"-indexed elementp97 from this HTMLAllCollectionp97 given the
passed index.

The namedItem(name) method must return the result of getting the "all"-named element(s)p98 from this HTMLAllCollectionp97 given
name.

The item(nameOrIndex) method must perform the following steps:

1. If nameOrIndex was not provided, return null.

2. Return the result of getting the "all"-indexed or named element(s)p98 from this HTMLAllCollectionp97, given nameOrIndex.

The following elements are "all"-named elements: ap238, buttonp535, embedp369, formp486, framep1240, framesetp1239, iframep361, imgp320,
inputp493, mapp442, metap164, objectp373, selectp537, and textareap548

To get the "all"-indexed element from an HTMLAllCollectionp97 collection given an index index, return the indexth element in

collection . lengthp97

Returns the number of elements in the collection.

element = collection . itemp97(index)
element = collection(index)
element = collection[index]

Returns the item with index index from the collection (determined by tree order).

element = collection . itemp97(name)
collection = collection . itemp97(name)
element = collection . namedItemp97(name)
collection = collection . namedItemp97(name)
element = collection(name)
collection = collection(name)
element = collection[name]
collection = collection[name]

Returns the item with ID or name name from the collection.
If there are multiple matching items, then an HTMLCollection object containing all those elements is returned.
Only buttonp535, formp486, iframep361, inputp493, mapp442, metap164, objectp373, selectp537, and textareap548 elements can have a
name for the purpose of this method; their name is given by the value of their name attribute.

For web developers (non-normative)

IDL

97

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-element
https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#interface-htmlcollection
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://dom.spec.whatwg.org/#interface-htmlcollection
https://heycam.github.io/webidl/#dfn-supported-property-names
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#represented-by-the-collection

collection, or null if there is no such indexth element.

To get the "all"-named element(s) from an HTMLAllCollectionp97 collection given a name name, perform the following steps:

1. If name is the empty string, return null.

2. Let subCollection be an HTMLCollection object rooted at the same Documentp114 as collection, whose filter matches only
elements that are either:

◦ "all"-named elementsp97 with a name attribute equal to name, or,

◦ elements with an ID equal to name.

3. If there is exactly one element in subCollection, then return that element.

4. Otherwise, if subCollection is empty, return null.

5. Otherwise, return subCollection.

To get the "all"-indexed or named element(s) from an HTMLAllCollectionp97 collection given nameOrIndex:

1. If nameOrIndex, converted to a JavaScript String value, is an array index property name, return the result of getting the "all"-
indexed elementp97 from this HTMLAllCollectionp97 given the number represented by nameOrIndex.

2. Return the result of getting the "all"-named element(s)p98 from this HTMLAllCollectionp97 given nameOrIndex.

1. If argumentsList's size is zero, or if argumentsList[0] is undefined, return null.

2. Let nameOrIndex be the result of converting argumentsList[0] to a DOMString.

3. Let result be the result of getting the "all"-indexed or named element(s)p98 from this HTMLAllCollectionp97 given
nameOrIndex.

4. Return the result of converting result to an ECMAScript value.

The HTMLFormControlsCollectionp98 interface is used for collections of listed elementsp486 in formp486 elements.

[Exposed=Window]
interface HTMLFormControlsCollection : HTMLCollection {

// inherits length and item()
getter (RadioNodeList or Element)? namedItem(DOMString name); // shadows inherited namedItem()

};

[Exposed=Window]
interface RadioNodeList : NodeList {

attribute DOMString value;
};

2.7.2.1.1 [[Call]] (thisArgument, argumentsList) §p98

The thisArgument is ignored, and thus code such as Function.prototype.call.call(document.all, null, "x") will still search
for elements. (document.all.call does not exist, since document.all does not inherit from Function.prototype.)

Note

2.7.2.2 The HTMLFormControlsCollectionp98 interface §p98

collection . length
Returns the number of elements in the collection.

For web developers (non-normative)

IDL

✔ MDN

98

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#concept-id
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#dfn-array-index-property-name
https://infra.spec.whatwg.org/#list-size
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#es-type-mapping
https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#dom-htmlcollection-length
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#dom-htmlcollection-length

The object's supported property indices are as defined for HTMLCollection objects.

The supported property names consist of the non-empty values of all the idp137 and namep568 attributes of all the elements represented
by the collection, in tree order, ignoring later duplicates, with the idp137 of an element preceding its namep568 if it contributes both, they
differ from each other, and neither is the duplicate of an earlier entry.

The namedItem(name) method must act according to the following algorithm:

1. If name is the empty string, return null and stop the algorithm.

2. If, at the time the method is called, there is exactly one node in the collection that has either an idp137 attribute or a namep568

attribute equal to name, then return that node and stop the algorithm.

3. Otherwise, if there are no nodes in the collection that have either an idp137 attribute or a namep568 attribute equal to name,
then return null and stop the algorithm.

4. Otherwise, create a new RadioNodeListp98 object representing a livep45 view of the HTMLFormControlsCollectionp98 object,
further filtered so that the only nodes in the RadioNodeListp98 object are those that have either an idp137 attribute or a
namep568 attribute equal to name. The nodes in the RadioNodeListp98 object must be sorted in tree order.

5. Return that RadioNodeListp98 object.

Members of the RadioNodeListp98 interface inherited from the NodeList interface must behave as they would on a NodeList object.

The value IDL attribute on the RadioNodeListp98 object, on getting, must return the value returned by running the following steps:

1. Let element be the first element in tree order represented by the RadioNodeListp98 object that is an inputp493 element
whose typep495 attribute is in the Radio Buttonp514 state and whose checkednessp566 is true. Otherwise, let it be null.

2. If element is null, return the empty string.

3. If element is an element with no valuep497 attribute, return the string "on".

4. Otherwise, return the value of element's valuep497 attribute.

On setting, the valuep99 IDL attribute must run the following steps:

1. If the new value is the string "on": let element be the first element in tree order represented by the RadioNodeListp98 object
that is an inputp493 element whose typep495 attribute is in the Radio Buttonp514 state and whose valuep497 content attribute is
either absent, or present and equal to the new value, if any. If no such element exists, then instead let element be null.

Otherwise: let element be the first element in tree order represented by the RadioNodeListp98 object that is an inputp493

element whose typep495 attribute is in the Radio Buttonp514 state and whose valuep497 content attribute is present and equal
to the new value, if any. If no such element exists, then instead let element be null.

2. If element is not null, then set its checkednessp566 to true.

element = collection . item(index)
element = collection[index]

Returns the item with index index from the collection. The items are sorted in tree order.

element = collection . namedItemp99(name)
radioNodeList = collection . namedItemp99(name)
element = collection[name]
radioNodeList = collection[name]

Returns the item with ID or namep568 name from the collection.
If there are multiple matching items, then a RadioNodeListp98 object containing all those elements is returned.

radioNodeList . value [= value]
Returns the value of the first checked radio button represented by the object.
Can be set, to check the first radio button with the given value represented by the object.

✔ MDN

✔ MDN

99

https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://dom.spec.whatwg.org/#interface-htmlcollection
https://heycam.github.io/webidl/#dfn-supported-property-names
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

The HTMLOptionsCollectionp100 interface is used for collections of optionp545 elements. It is always rooted on a selectp537 element
and has attributes and methods that manipulate that element's descendants.

[Exposed=Window]
interface HTMLOptionsCollection : HTMLCollection {

// inherits item(), namedItem()
[CEReactions] attribute unsigned long length; // shadows inherited length
[CEReactions] setter undefined (unsigned long index, HTMLOptionElement? option);
[CEReactions] undefined add((HTMLOptionElement or HTMLOptGroupElement) element, optional (HTMLElement

or long)? before = null);
[CEReactions] undefined remove(long index);
attribute long selectedIndex;

};

The object's supported property indices are as defined for HTMLCollection objects.

On getting, the length attribute must return the number of nodes represented by the collection.

On setting, the behavior depends on whether the new value is equal to, greater than, or less than the number of nodes represented by
the collection at that time. If the number is the same, then setting the attribute must do nothing. If the new value is greater, then n
new optionp545 elements with no attributes and no child nodes must be appended to the selectp537 element on which the
HTMLOptionsCollectionp100 is rooted, where n is the difference between the two numbers (new value minus old value). Mutation

2.7.2.3 The HTMLOptionsCollectionp100 interface §p10

0

collection . lengthp100 [= value]
Returns the number of elements in the collection.
When set to a smaller number, truncates the number of optionp545 elements in the corresponding container.
When set to a greater number, adds new blank optionp545 elements to that container.

element = collection . item(index)
element = collection[index]

Returns the item with index index from the collection. The items are sorted in tree order.

collection[index] = element
When index is a greater number than the number of items in the collection, adds new blank optionp545 elements in the
corresponding container.
When set to null, removes the item at index index from the collection.
When set to an optionp545 element, adds or replaces it at index index from the collection.

element = collection . namedItem(name)
element = collection[name]

Returns the item with ID or namep1233 name from the collection.
If there are multiple matching items, then the first is returned.

collection . addp101(element [, before])
Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before the item with that number, or an element from
the collection, in which case element is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at the end of the list.
This method will throw a "HierarchyRequestError" DOMException if element is an ancestor of the element into which it is to be
inserted.

collection . removep101(index)
Removes the item with index index from the collection.

collection . selectedIndexp101 [= value]
Returns the index of the first selected item, if any, or −1 if there is no selected item.
Can be set, to change the selection.

For web developers (non-normative)

IDL

✔ MDN

100

https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://dom.spec.whatwg.org/#dom-htmlcollection-length
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://dom.spec.whatwg.org/#concept-id
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection

events must be fired as if a DocumentFragment containing the new optionp545 elements had been inserted. If the new value is lower,
then the last n nodes in the collection must be removed from their parent nodes, where n is the difference between the two numbers
(old value minus new value).

The supported property names consist of the non-empty values of all the idp137 and namep1233 attributes of all the elements represented
by the collection, in tree order, ignoring later duplicates, with the idp137 of an element preceding its namep1233 if it contributes both, they
differ from each other, and neither is the duplicate of an earlier entry.

When the user agent is to set the value of a new indexed property or set the value of an existing indexed property for a given property
index index to a new value value, it must run the following algorithm:

1. If value is null, invoke the steps for the removep101 method with index as the argument, and return.

2. Let length be the number of nodes represented by the collection.

3. Let n be index minus length.

4. If n is greater than zero, then append a DocumentFragment consisting of n-1 new optionp545 elements with no attributes and
no child nodes to the selectp537 element on which the HTMLOptionsCollectionp100 is rooted.

5. If n is greater than or equal to zero, append value to the selectp537 element. Otherwise, replace the indexth element in the
collection by value.

The add(element, before) method must act according to the following algorithm:

1. If element is an ancestor of the selectp537 element on which the HTMLOptionsCollectionp100 is rooted, then throw a
"HierarchyRequestError" DOMException.

2. If before is an element, but that element isn't a descendant of the selectp537 element on which the
HTMLOptionsCollectionp100 is rooted, then throw a "NotFoundError" DOMException.

3. If element and before are the same element, then return.

4. If before is a node, then let reference be that node. Otherwise, if before is an integer, and there is a beforeth node in the
collection, let reference be that node. Otherwise, let reference be null.

5. If reference is not null, let parent be the parent node of reference. Otherwise, let parent be the selectp537 element on which
the HTMLOptionsCollectionp100 is rooted.

6. Pre-insert element into parent node before reference.

The remove(index) method must act according to the following algorithm:

1. If the number of nodes represented by the collection is zero, return.

2. If index is not a number greater than or equal to 0 and less than the number of nodes represented by the collection, return.

3. Let element be the indexth element in the collection.

4. Remove element from its parent node.

The selectedIndex IDL attribute must act like the identically named attribute on the selectp537 element on which the
HTMLOptionsCollectionp100 is rooted

The DOMStringListp101 interface is a non-fashionable retro way of representing a list of strings.

[Exposed=(Window,Worker)]
interface DOMStringList {

Setting lengthp100 never removes or adds any optgroupp544 elements, and never adds new children to existing optgroupp544

elements (though it can remove children from them).

Note

IDL

2.7.3 The DOMStringListp101 interface §p10

1

✔ MDN

101

https://dom.spec.whatwg.org/#interface-documentfragment
https://heycam.github.io/webidl/#dfn-supported-property-names
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#concept-tree-order
https://heycam.github.io/webidl/#dfn-set-the-value-of-a-new-indexed-property
https://heycam.github.io/webidl/#dfn-set-the-value-of-an-existing-indexed-property
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-replace
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notfounderror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-pre-insert
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection

readonly attribute unsigned long length;
getter DOMString? item(unsigned long index);
boolean contains(DOMString string);

};

Each DOMStringListp101 object has an associated list.

The supported property indices for a DOMStringListp101 object are the numbers zero to the associated list's size minus one. If its
associated list is empty, it has no supported property indices.

The length attribute's getter must return this DOMStringListp101 object's associated list's size.

The item(index) method, when invoked, must return the indexth item in this DOMStringListp101 object's associated list, or null if
index plus one is greater than this DOMStringListp101 object's associated list's size.

The contains(string) method, when invoked, must return true if this DOMStringListp101 object's associated list contains string, and
false otherwise.

This section uses the terminology and typographic conventions from the JavaScript specification. [JAVASCRIPT]p1288

Serializable objectsp102 support being serialized, and later deserialized, in a way that is independent of any given JavaScript Realm. This
allows them to be stored on disk and later restored, or cloned across agent and even agent cluster boundaries.

Not all objects are serializable objectsp102, and not all aspects of objects that are serializable objectsp102 are necessarily preserved when
they are serialized.

Platform objects can be serializable objectsp102 if their primary interface is decorated with the [Serializable] IDL extended attribute.
Such interfaces must also define the following algorithms:

serialization steps, taking a platform object value, a Record serialized, and a boolean forStorage
A set of steps that serializes the data in value into fields of serialized. The resulting data serialized into serialized must be
independent of any JavaScript Realm.

These steps may throw an exception if serialization is not possible.

These steps may perform a sub-serializationp107 to serialize nested data structures. They should not call StructuredSerializep108

directly, as doing so will omit the important memory argument.

The introduction of these steps should omit mention of the forStorage argument if it is not relevant to the algorithm.

New APIs must use sequence<DOMString> or equivalent rather than DOMStringListp101.
⚠Warning!

strings . lengthp102

Returns the number of strings in strings.

strings[index]
strings . itemp102(index)

Returns the string with index index from strings.

strings . containsp102(string)
Returns true if strings contains string, and false otherwise.

For web developers (non-normative)

2.8 Safe passing of structured data §p10

2

2.8.1 Serializable objects §p10

2

102

https://infra.spec.whatwg.org/#list
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-is-empty
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-contain
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agent-clusters
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-primary-interface
https://heycam.github.io/webidl/#dfn-extended-attribute
https://heycam.github.io/webidl/#dfn-platform-object
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-code-realms

deserialization steps, taking a Record serialized and a platform object value
A set of steps that deserializes the data in serialized, using it to set up value as appropriate. value will be a newly-created instance
of the platform object type in question, with none of its internal data set up; setting that up is the job of these steps.

These steps may throw an exception if deserialization is not possible.

These steps may perform a sub-deserializationp110 to deserialize nested data structures. They should not call
StructuredDeserializep108 directly, as doing so will omit the important targetRealm and memory arguments.

It is up to the definition of individual platform objects to determine what data is serialized and deserialized by these steps. Typically the
steps are very symmetric.

The [Serializable]p102 extended attribute must take no arguments, and must only appear on an interface. It must not appear more
than once on an interface.

For a given platform object, only the object's primary interface is considered during the (de)serialization process. Thus, if inheritance is
involved in defining the interface, each [Serializable]p102-annotated interface in the inheritance chain needs to define standalone
serialization stepsp102 and deserialization stepsp103, including taking into account any important data that might come from inherited
interfaces.

Objects defined in the JavaScript specification are handled by the StructuredSerializep108 abstract operation directly.

Transferable objectsp103 support being transferred across agents. Transferring is effectively recreating the object while sharing a
reference to the underlying data and then detaching the object being transferred. This is useful to transfer ownership of expensive
resources. Not all objects are transferable objectsp103 and not all aspects of objects that are transferable objectsp103 are necessarily
preserved when transferred.

Let's say we were defining a platform object Person, which had associated with it two pieces of associated data:

• a name value, which is a string;
• and a best friend value, which is either another Person instance or null

We could then define Person instances to be serializable objectsp102 by annotating the Person interface with the
[Serializable]p102 extended attribute, and defining the following accompanying algorithms:

serialization stepsp102

1. Set serialized.[[Name]] to value's associated name value.

2. Let serializedBestFriend be the sub-serializationp107 of value's associated best friend value.

3. Set serialized.[[BestFriend]] to serializedBestFriend.

deserialization stepsp103

1. Set value's associated name value to serialized.[[Name]].

2. Let deserializedBestFriend be the sub-deserializationp110 of serialized.[[BestFriend]].

3. Set value's associated best friend value to deserializedBestFriend.

Example

Originally, this specification defined the concept of "cloneable objects", which could be cloned from one JavaScript Realm to
another. However, to better specify the behavior of certain more complex situations, the model was updated to make the
serialization and deserialization explicit.

Note

Transferring is an irreversible and non-idempotent operation. Once an object has been transferred, it cannot be transferred, or
Note

2.8.2 Transferable objects §p10

3

✔ MDN

103

https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-primary-interface
https://heycam.github.io/webidl/#dfn-extended-attribute
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-agents

Platform objects can be transferable objectsp103 if their primary interface is decorated with the [Transferable] IDL extended attribute.
Such interfaces must also define the following algorithms:

transfer steps, taking a platform object value and a Record dataHolder
A set of steps that transfers the data in value into fields of dataHolder. The resulting data held in dataHolder must be independent
of any JavaScript Realm.

These steps may throw an exception if transferral is not possible.

transfer-receiving steps, taking a Record dataHolder and a platform object value
A set of steps that receives the data in dataHolder, using it to set up value as appropriate. value will be a newly-created instance of
the platform object type in question, with none of its internal data set up; setting that up is the job of these steps.

These steps may throw an exception if it is not possible to receive the transfer.

It is up to the definition of individual platform objects to determine what data is transferred by these steps. Typically the steps are very
symmetric.

The [Transferable]p104 extended attribute must take no arguments, and must only appear on an interface. It must not appear more
than once on an interface.

For a given platform object, only the object's primary interface is considered during the transferring process. Thus, if inheritance is
involved in defining the interface, each [Transferable]p104-annotated interface in the inheritance chain needs to define standalone
transfer stepsp104 and transfer-receiving stepsp104, including taking into account any important data that might come from inherited
interfaces.

Platform objects that are transferable objectsp103 have a [[Detached]] internal slot. This is used to ensure that once a platform object
has been transferred, it cannot be transferred again.

Objects defined in the JavaScript specification are handled by the StructuredSerializeWithTransferp111 abstract operation directly.

The StructuredSerializeInternalp104 abstract operation takes as input a JavaScript value value and serializes it to a Realm-independent
form, represented here as a Record. This serialized form has all the information necessary to later deserialize into a new JavaScript
value in a different Realm.

This process can throw an exception, for example when trying to serialize un-serializable objects.

1. If memory was not supplied, let memory be an empty map.

2. If memory[value] exists, then return memory[value].

3. Let deep be false.

4. If Type(value) is Undefined, Null, Boolean, Number, BigInt, or String, then return { [[Type]]: "primitive", [[Value]]: value }.

5. If Type(value) is Symbol, then throw a "DataCloneError" DOMException.

6. Let serialized be an uninitialized value.

7. If value has a [[BooleanData]] internal slot, then set serialized to { [[Type]]: "Boolean", [[BooleanData]]:
value.[[BooleanData]] }.

8. Otherwise, if value has a [[NumberData]] internal slot, then set serialized to { [[Type]]: "Number", [[NumberData]]:
value.[[NumberData]] }.

indeed used, again.

The purpose of the memory map is to avoid serializing objects twice. This ends up preserving cycles and the identity of
duplicate objects in graphs.

Note

2.8.3 StructuredSerializeInternal (value, forStorage [, memory]) §p10

4

104

https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-primary-interface
https://heycam.github.io/webidl/#dfn-extended-attribute
https://heycam.github.io/webidl/#dfn-platform-object
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-primary-interface
https://heycam.github.io/webidl/#dfn-platform-object
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-exists
https://tc39.es/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.es/ecma262/#sec-ecmascript-data-types-and-values
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException

9. Otherwise, if value has a [[BigIntData]] internal slot, then set serialized to { [[Type]]: "BigInt", [[BigIntData]]:
value.[[BigIntData]] }.

10. Otherwise, if value has a [[StringData]] internal slot, then set serialized to { [[Type]]: "String", [[StringData]]:
value.[[StringData]] }.

11. Otherwise, if value has a [[DateValue]] internal slot, then set serialized to { [[Type]]: "Date", [[DateValue]]:
value.[[DateValue]] }.

12. Otherwise, if value has a [[RegExpMatcher]] internal slot, then set serialized to { [[Type]]: "RegExp", [[RegExpMatcher]]:
value.[[RegExpMatcher]], [[OriginalSource]]: value.[[OriginalSource]], [[OriginalFlags]]: value.[[OriginalFlags]] }.

13. Otherwise, if value has an [[ArrayBufferData]] internal slot, then:

1. Let size be value.[[ArrayBufferByteLength]].

2. If ! IsSharedArrayBuffer(value) is true, then:

1. Let agentCluster be the surrounding agent's agent cluster.

2. If agentCluster's cross-origin isolatedp914 is false, then throw a "DataCloneError" DOMException.

3. If forStorage is true, then throw a "DataCloneError" DOMException.

4. Set serialized to { [[Type]]: "SharedArrayBuffer", [[ArrayBufferData]]: value.[[ArrayBufferData]],
[[ArrayBufferByteLength]]: size, [[AgentCluster]]: agentCluster }.

3. Otherwise:

1. If ! IsDetachedBuffer(value) is true, then throw a "DataCloneError" DOMException.

2. Let dataCopy be ? CreateByteDataBlock(size).

3. Perform ! CopyDataBlockBytes(dataCopy, 0, value.[[ArrayBufferData]], 0, size).

4. Set serialized to { [[Type]]: "ArrayBuffer", [[ArrayBufferData]]: dataCopy, [[ArrayBufferByteLength]]: size
}.

14. Otherwise, if value has a [[ViewedArrayBuffer]] internal slot, then:

1. Let buffer be the value of value's [[ViewedArrayBuffer]] internal slot.

2. Let bufferSerialized be ? StructuredSerializeInternalp104(buffer, forStorage, memory).

3. Assert: bufferSerialized.[[Type]] is "ArrayBuffer".

4. If value has a [[DataView]] internal slot, then set serialized to { [[Type]]: "ArrayBufferView", [[Constructor]]:
"DataView", [[ArrayBufferSerialized]]: bufferSerialized, [[ByteLength]]: value.[[ByteLength]], [[ByteOffset]]:
value.[[ByteOffset]] }.

5. Otherwise:

1. Assert: value has a [[TypedArrayName]] internal slot.

2. Set serialized to { [[Type]]: "ArrayBufferView", [[Constructor]]: value.[[TypedArrayName]],
[[ArrayBufferSerialized]]: bufferSerialized, [[ByteLength]]: value.[[ByteLength]], [[ByteOffset]]:
value.[[ByteOffset]], [[ArrayLength]]: value.[[ArrayLength]] }.

15. Otherwise, if value has [[MapData]] internal slot, then:

1. Set serialized to { [[Type]]: "Map", [[MapData]]: a new empty List }.

2. Set deep to true.

This check is only needed when serializing (and not when deserializing) as cross-origin isolatedp914

cannot change over time and a SharedArrayBuffer cannot leave an agent cluster.

Note

This can throw a RangeError exception upon allocation failure.
Note

105

https://tc39.es/ecma262/#sec-issharedarraybuffer
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-agent-clusters
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-createbytedatablock
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://tc39.es/ecma262/#sec-copydatablockbytes
https://tc39.es/ecma262/#sec-list-and-record-specification-type

16. Otherwise, if value has [[SetData]] internal slot, then:

1. Set serialized to { [[Type]]: "Set", [[SetData]]: a new empty List }.

2. Set deep to true.

17. Otherwise, if value has an [[ErrorData]] internal slot and value is not a platform object, then:

1. Let name be ? Get(value, "name").

2. If name is not one of "Error", "EvalError", "RangeError", "ReferenceError", "SyntaxError", "TypeError", or "URIError",
then set name to "Error".

3. Let valueMessageDesc be ? value.[[GetOwnProperty]]("message").

4. Let message be undefined if IsDataDescriptor(valueMessageDesc) is false, and ?
ToString(valueMessageDesc.[[Value]]) otherwise.

5. Set serialized to { [[Type]]: "Error", [[Name]]: name, [[Message]]: message }.

6. User agents should attach a serialized representation of any interesting accompanying data which are not yet
specified, notably the stack property, to serialized.

18. Otherwise, if value is an Array exotic object, then:

1. Let valueLenDescriptor be ? OrdinaryGetOwnProperty(value, "length").

2. Let valueLen be valueLenDescriptor.[[Value]].

3. Set serialized to { [[Type]]: "Array", [[Length]]: valueLen, [[Properties]]: a new empty List }.

4. Set deep to true.

19. Otherwise, if value is a platform object that is a serializable objectp102:

1. If value has a [[Detached]]p104 internal slot whose value is true, then throw a "DataCloneError" DOMException.

2. Let typeString be the identifier of the primary interface of value.

3. Set serialized to { [[Type]]: typeString }.

4. Set deep to true.

20. Otherwise, if value is a platform object, then throw a "DataCloneError" DOMException.

21. Otherwise, if IsCallable(value) is true, then throw a "DataCloneError" DOMException.

22. Otherwise, if value has any internal slot other than [[Prototype]] or [[Extensible]], then throw a "DataCloneError"
DOMException.

23. Otherwise, if value is an exotic object and value is not the %Object.prototype% intrinsic object associated with any JavaScript
realm, then throw a "DataCloneError" DOMException.

24. Otherwise:

1. Set serialized to { [[Type]]: "Object", [[Properties]]: a new empty List }.

2. Set deep to true.

See the Error Stacks proposal for in-progress work on specifying this data. [JSERRORSTACKS]p1288

Note

For instance, a [[PromiseState]] or [[WeakMapData]] internal slot.
Example

For instance, a proxy object.
Example

106

https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://heycam.github.io/webidl/#dfn-platform-object
https://tc39.es/ecma262/#sec-get-o-p
https://tc39.es/ecma262/#sec-isdatadescriptor
https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-ordinarygetownproperty
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#dfn-primary-interface
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-iscallable
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-list-and-record-specification-type

25. Set memory[value] to serialized.

26. If deep is true, then:

1. If value has a [[MapData]] internal slot, then:

1. Let copiedList be a new empty List.

2. For each Record { [[Key]], [[Value]] } entry of value.[[MapData]]:

1. Let copiedEntry be a new Record { [[Key]]: entry.[[Key]], [[Value]]: entry.[[Value]] }.

2. If copiedEntry.[[Key]] is not the special value empty, append copiedEntry to copiedList.

3. For each Record { [[Key]], [[Value]] } entry of copiedList:

1. Let serializedKey be ? StructuredSerializeInternalp104(entry.[[Key]], forStorage, memory).

2. Let serializedValue be ? StructuredSerializeInternalp104(entry.[[Value]], forStorage, memory).

3. Append { [[Key]]: serializedKey, [[Value]]: serializedValue } to serialized.[[MapData]].

2. Otherwise, if value has a [[SetData]] internal slot, then:

1. Let copiedList be a new empty List.

2. For each entry of value.[[SetData]]:

1. If entry is not the special value empty, append entry to copiedList.

3. For each entry of copiedList:

1. Let serializedEntry be ? StructuredSerializeInternalp104(entry, forStorage, memory).

2. Append serializedEntry to serialized.[[SetData]].

3. Otherwise, if value is a platform object that is a serializable objectp102, then perform the serialization stepsp102 for
value's primary interface, given value, serialized, and forStorage.

The serialization stepsp102 may need to perform a sub-serialization. This is an operation which takes as input a
value subValue, and returns StructuredSerializeInternalp104(subValue, forStorage, memory). (In other words, a sub-
serializationp107 is a specialization of StructuredSerializeInternalp104 to be consistent within this invocation.)

4. Otherwise, for each key in ! EnumerableOwnPropertyNames(value, key):

1. If ! HasOwnProperty(value, key) is true, then:

1. Let inputValue be ? value.[[Get]](key, value).

2. Let outputValue be ? StructuredSerializeInternalp104(inputValue, forStorage, memory).

3. Append { [[Key]]: key, [[Value]]: outputValue } to serialized.[[Properties]].

27. Return serialized.

%Object.prototype% will end up being handled via this step and subsequent steps. The end result is that its exoticness is
ignored, and after deserialization the result will be an empty object (not an immutable prototype exotic object).

Note

It's important to realize that the Records produced by StructuredSerializeInternalp104 might contain "pointers" to other records that
create circular references. For example, when we pass the following JavaScript object into StructuredSerializeInternalp104:

const o = {};
o.myself = o;

it produces the following result:

{

Example

107

https://tc39.es/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.es/ecma262/#immutable-prototype-exotic-object
https://infra.spec.whatwg.org/#map-set
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-primary-interface
https://tc39.es/ecma262/#sec-enumerableownpropertynames
https://tc39.es/ecma262/#sec-hasownproperty
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#sec-list-and-record-specification-type

1. Return ? StructuredSerializeInternalp104(value, false).

1. Return ? StructuredSerializeInternalp104(value, true).

The StructuredDeserializep108 abstract operation takes as input a Record serialized, which was previously produced by
StructuredSerializep108 or StructuredSerializeForStoragep108, and deserializes it into a new JavaScript value, created in targetRealm.

This process can throw an exception, for example when trying to allocate memory for the new objects (especially ArrayBuffer
objects).

1. If memory was not supplied, let memory be an empty map.

2. If memory[serialized] exists, then return memory[serialized].

3. Let deep be false.

4. Let value be an uninitialized value.

5. If serialized.[[Type]] is "primitive", then set value to serialized.[[Value]].

6. Otherwise, if serialized.[[Type]] is "Boolean", then set value to a new Boolean object in targetRealm whose [[BooleanData]]
internal slot value is serialized.[[BooleanData]].

7. Otherwise, if serialized.[[Type]] is "Number", then set value to a new Number object in targetRealm whose [[NumberData]]
internal slot value is serialized.[[NumberData]].

8. Otherwise, if serialized.[[Type]] is "BigInt", then set value to a new BigInt object in targetRealm whose [[BigIntData]] internal
slot value is serialized.[[BigIntData]].

9. Otherwise, if serialized.[[Type]] is "String", then set value to a new String object in targetRealm whose [[StringData]] internal
slot value is serialized.[[StringData]].

10. Otherwise, if serialized.[[Type]] is "Date", then set value to a new Date object in targetRealm whose [[DateValue]] internal
slot value is serialized.[[DateValue]].

11. Otherwise, if serialized.[[Type]] is "RegExp", then set value to a new RegExp object in targetRealm whose [[RegExpMatcher]]
internal slot value is serialized.[[RegExpMatcher]], whose [[OriginalSource]] internal slot value is serialized.[[OriginalSource]],
and whose [[OriginalFlags]] internal slot value is serialized.[[OriginalFlags]].

[[Type]]: "Object",
[[Properties]]: «

{
[[Key]]: "myself",
[[Value]]: <a pointer to this whole structure>

}
»

}

The purpose of the memory map is to avoid deserializing objects twice. This ends up preserving cycles and the identity
of duplicate objects in graphs.

Note

2.8.4 StructuredSerialize (value) §p10

8

2.8.5 StructuredSerializeForStorage (value) §p10

8

2.8.6 StructuredDeserialize (serialized, targetRealm [, memory]) §p10

8

108

https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-exists

12. Otherwise, if serialized.[[Type]] is "SharedArrayBuffer", then:

1. If targetRealm's corresponding agent cluster is not serialized.[[AgentCluster]], then then throw a
"DataCloneError" DOMException.

2. Otherwise, set value to a new SharedArrayBuffer object in targetRealm whose [[ArrayBufferData]] internal slot
value is serialized.[[ArrayBufferData]] and whose [[ArrayBufferByteLength]] internal slot value is
serialized.[[ArrayBufferByteLength]].

13. Otherwise, if serialized.[[Type]] is "ArrayBuffer", then set value to a new ArrayBuffer object in targetRealm whose
[[ArrayBufferData]] internal slot value is serialized.[[ArrayBufferData]], and whose [[ArrayBufferByteLength]] internal slot
value is serialized.[[ArrayBufferByteLength]].

If this throws an exception, catch it, and then throw a "DataCloneError" DOMException.

14. Otherwise, if serialized.[[Type]] is "ArrayBufferView", then:

1. Let deserializedArrayBuffer be ? StructuredDeserializep108(serialized.[[ArrayBufferSerialized]], targetRealm,
memory).

2. If serialized.[[Constructor]] is "DataView", then set value to a new DataView object in targetRealm whose
[[ViewedArrayBuffer]] internal slot value is deserializedArrayBuffer, whose [[ByteLength]] internal slot value is
serialized.[[ByteLength]], and whose [[ByteOffset]] internal slot value is serialized.[[ByteOffset]].

3. Otherwise, set value to a new typed array object in targetRealm, using the constructor given by
serialized.[[Constructor]], whose [[ViewedArrayBuffer]] internal slot value is deserializedArrayBuffer, whose
[[TypedArrayName]] internal slot value is serialized.[[Constructor]], whose [[ByteLength]] internal slot value is
serialized.[[ByteLength]], whose [[ByteOffset]] internal slot value is serialized.[[ByteOffset]], and whose
[[ArrayLength]] internal slot value is serialized.[[ArrayLength]].

15. Otherwise, if serialized.[[Type]] is "Map", then:

1. Set value to a new Map object in targetRealm whose [[MapData]] internal slot value is a new empty List.

2. Set deep to true.

16. Otherwise, if serialized.[[Type]] is "Set", then:

1. Set value to a new Set object in targetRealm whose [[SetData]] internal slot value is a new empty List.

2. Set deep to true.

17. Otherwise, if serialized.[[Type]] is "Array", then:

1. Let outputProto be targetRealm.[[Intrinsics]].[[%Array.prototype%]].

2. Set value to ! ArrayCreate(serialized.[[Length]], outputProto).

3. Set deep to true.

18. Otherwise, if serialized.[[Type]] is "Object", then:

1. Set value to a new Object in targetRealm.

2. Set deep to true.

19. Otherwise, if serialized.[[Type]] is "Error", then:

1. Let prototype be %Error.prototype%.

2. If serialized.[[Name]] is "EvalError", then set prototype to %EvalError.prototype%p54.

3. If serialized.[[Name]] is "RangeError", then set prototype to %RangeError.prototype%p54.

4. If serialized.[[Name]] is "ReferenceError", then set prototype to %ReferenceError.prototype%p54.

5. If serialized.[[Name]] is "SyntaxError", then set prototype to %SyntaxError.prototype%p54.

This step might throw an exception if there is not enough memory available to create such an ArrayBuffer object.
Note

109

https://tc39.es/ecma262/#sec-agent-clusters
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-properties-of-the-array-prototype-object
https://tc39.es/ecma262/#sec-arraycreate
https://tc39.es/ecma262/#sec-properties-of-the-error-prototype-object

6. If serialized.[[Name]] is "TypeError", then set prototype to %TypeError.prototype%p54.

7. If serialized.[[Name]] is "URIError", then set prototype to %URIError.prototype%p54.

8. Let message be serialized.[[Message]].

9. Set value to ! ObjectCreate(prototype, « [[ErrorData]] »).

10. Let messageDesc be PropertyDescriptor{ [[Value]]: message, [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: true }.

11. If message is not undefined, then perform ! OrdinaryDefineOwnProperty(value, "message", messageDesc).

12. Any interesting accompanying data attached to serialized should be deserialized and attached to value.

20. Otherwise:

1. Let interfaceName be serialized.[[Type]].

2. If the interface identified by interfaceName is not exposed in targetRealm, then throw a "DataCloneError"
DOMException.

3. Set value to a new instance of the interface identified by interfaceName, created in targetRealm.

4. Set deep to true.

21. Set memory[serialized] to value.

22. If deep is true, then:

1. If serialized.[[Type]] is "Map", then:

1. For each Record { [[Key]], [[Value]] } entry of serialized.[[MapData]]:

1. Let deserializedKey be ? StructuredDeserializep108(entry.[[Key]], targetRealm, memory).

2. Let deserializedValue be ? StructuredDeserializep108(entry.[[Value]], targetRealm, memory).

3. Append { [[Key]]: deserializedKey, [[Value]]: deserializedValue } to value.[[MapData]].

2. Otherwise, if serialized.[[Type]] is "Set", then:

1. For each entry of serialized.[[SetData]]:

1. Let deserializedEntry be ? StructuredDeserializep108(entry, targetRealm, memory).

2. Append deserializedEntry to value.[[SetData]].

3. Otherwise, if serialized.[[Type]] is "Array" or "Object", then:

1. For each Record { [[Key]], [[Value]] } entry of serialized.[[Properties]]:

1. Let deserializedValue be ? StructuredDeserializep108(entry.[[Value]], targetRealm, memory).

2. Let result be ! CreateDataProperty(value, entry.[[Key]], deserializedValue).

3. Assert: result is true.

4. Otherwise:

1. Perform the appropriate deserialization stepsp103 for the interface identified by serialized.[[Type]], given
serialized and value.

The deserialization stepsp103 may need to perform a sub-deserialization. This is an operation which
takes as input a previously-serialized Record subSerialized, and returns
StructuredDeserializep108(subSerialized, targetRealm, memory). (In other words, a sub-deserializationp110

is a specialization of StructuredDeserializep108 to be consistent within this invocation.)

23. Return value.

110

https://tc39.es/ecma262/#sec-objectcreate
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#sec-ordinarydefineownproperty
https://heycam.github.io/webidl/#dfn-exposed
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-createdataproperty
https://tc39.es/ecma262/#sec-list-and-record-specification-type

1. Let memory be an empty map.

2. For each transferable of transferList:

1. If transferable has neither an [[ArrayBufferData]] internal slot nor a [[Detached]]p104 internal slot, then throw a
"DataCloneError" DOMException.

2. If transferable has an [[ArrayBufferData]] internal slot and ! IsSharedArrayBuffer(transferable) is true, then throw a
"DataCloneError" DOMException.

3. If memory[transferable] exists, then throw a "DataCloneError" DOMException.

4. Set memory[transferable] to { [[Type]]: an uninitialized value }.

3. Let serialized be ? StructuredSerializeInternalp104(value, false, memory).

4. Let transferDataHolders be a new empty List.

5. For each transferable of transferList:

1. If transferable has an [[ArrayBufferData]] internal slot and ! IsDetachedBuffer(transferable) is true, then throw a
"DataCloneError" DOMException.

2. If transferable has a [[Detached]]p104 internal slot and transferable.[[Detached]]p104 is true, then throw a
"DataCloneError" DOMException.

3. Let dataHolder be memory[transferable].

4. If transferable has an [[ArrayBufferData]] internal slot, then:

1. Set dataHolder.[[Type]] to "ArrayBuffer".

2. Set dataHolder.[[ArrayBufferData]] to transferable.[[ArrayBufferData]].

3. Set dataHolder.[[ArrayBufferByteLength]] to transferable.[[ArrayBufferByteLength]].

4. Perform ? DetachArrayBuffer(transferable).

5. Otherwise:

1. Assert: transferable is a platform object that is a transferable objectp103.

2. Let interfaceName be the identifier of the primary interface of transferable.

3. Set dataHolder.[[Type]] to interfaceName.

4. Perform the appropriate transfer stepsp104 for the interface identified by interfaceName, given
transferable and dataHolder.

5. Set transferable.[[Detached]]p104 to true.

6. Append dataHolder to transferDataHolders.

6. Return { [[Serialized]]: serialized, [[TransferDataHolders]]: transferDataHolders }.

In addition to how it is used normally by StructuredSerializeInternalp104, in this algorithm memory is also used to ensure
that StructuredSerializeInternalp104 ignores items in transferList, and let us do our own handling instead.

Note

transferable is not transferred yet as transferring has side effects and StructuredSerializeInternalp104 needs to
be able to throw first.

Note

Specifications can use the [[ArrayBufferDetachKey]] internal slot to prevent ArrayBuffers from
being detached. This is used in WebAssembly JavaScript Interface, for example. [WASMJS]p1292

Note

2.8.7 StructuredSerializeWithTransfer (value, transferList) §p11

1

111

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#list-iterate
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-issharedarraybuffer
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#map-exists
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-detacharraybuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-primary-interface
https://infra.spec.whatwg.org/#list-append

1. Let memory be an empty map.

2. Let transferredValues be a new empty List.

3. For each transferDataHolder of serializeWithTransferResult.[[TransferDataHolders]]:

1. Let value be an uninitialized value.

2. If transferDataHolder.[[Type]] is "ArrayBuffer", then set value to a new ArrayBuffer object in targetRealm whose
[[ArrayBufferData]] internal slot value is transferDataHolder.[[ArrayBufferData]], and whose
[[ArrayBufferByteLength]] internal slot value is transferDataHolder.[[ArrayBufferByteLength]].

3. Otherwise:

1. Let interfaceName be transferDataHolder.[[Type]].

2. If the interface identified by interfaceName is not exposed in targetRealm, then throw a
"DataCloneError" DOMException.

3. Set value to a new instance of the interface identified by interfaceName, created in targetRealm.

4. Perform the appropriate transfer-receiving stepsp104 for the interface identified by interfaceName given
transferDataHolder and value.

4. Set memory[transferDataHolder] to value.

5. Append value to transferredValues.

4. Let deserialized be ? StructuredDeserializep108(serializeWithTransferResult.[[Serialized]], targetRealm, memory).

5. Return { [[Deserialized]]: deserialized, [[TransferredValues]]: transferredValues }.

Other specifications may use the abstract operations defined here. The following provides some guidance on when each abstract
operation is typically useful, with examples.

StructuredSerializeWithTransferp111

StructuredDeserializeWithTransferp112

Cloning a value to another JavaScript Realm, with a transfer list, but where the target Realm is not known ahead of time. In this case
the serialization step can be performed immediately, with the deserialization step delayed until the target Realm becomes known.

Analogous to StructuredSerializeWithTransferp111, in addition to how it is used normally by StructuredDeserializep108, in
this algorithm memory is also used to ensure that StructuredDeserializep108 ignores items in
serializeWithTransferResult.[[TransferDataHolders]], and let us do our own handling instead.

Note

In cases where the original memory occupied by [[ArrayBufferData]] is accessible during the deserialization,
this step is unlikely to throw an exception, as no new memory needs to be allocated: the memory occupied by
[[ArrayBufferData]] is instead just getting transferred into the new ArrayBuffer. This could be true, for example,
when both the source and target Realms are in the same process.

Note

messagePort.postMessage()p1024 uses this pair of abstract operations, as the destination Realm is not known until the
MessagePortp1022 has been shippedp1022.

Example

2.8.8 StructuredDeserializeWithTransfer (serializeWithTransferResult, targetRealm) §p11

2

2.8.9 Performing serialization and transferring from other specifications §p11

2

112

https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-iterate
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#sec-code-realms

StructuredSerializep108

StructuredSerializeForStoragep108

StructuredDeserializep108

Creating a JavaScript Realm-independent snapshot of a given value which can be saved for an indefinite amount of time, and then
reified back into a JavaScript value later, possibly multiple times.

StructuredSerializeForStoragep108 can be used for situations where the serialization is anticipated to be stored in a persistent
manner, instead of passed between Realms. It throws when attempting to serialize SharedArrayBuffer objects, since storing
shared memory does not make sense. Similarly, it can throw or possibly have different behavior when given a platform object with
custom serialization stepsp102 when the forStorage argument is true.

In general, call sites may pass in Web IDL values instead of JavaScript values; this is to be understood to perform an implicit conversion
to the JavaScript value before invoking these algorithms.

Call sites that are not invoked as a result of author code synchronously calling into a user agent method must take care to properly
prepare to run scriptp935 and prepare to run a callbackp921 before invoking StructuredSerializep108, StructuredSerializeForStoragep108, or
StructuredSerializeWithTransferp111 abstract operations, if they are being performed on arbitrary objects. This is necessary because the
serialization process can invoke author-defined accessors as part of its final deep-serialization steps, and these accessors could call
into operations that rely on the entryp919 and incumbentp919 concepts being properly set up.

history.pushState()p854 and history.replaceState()p854 use StructuredSerializeForStoragep108 on author-supplied state
objects, storing them as serialized statep849 in the appropriate session history entryp849. Then, StructuredDeserializep108 is used
so that the history.statep852 property can return a clone of the originally-supplied state object.

Example

broadcastChannel.postMessage()p1026 uses StructuredSerializep108 on its input, then uses StructuredDeserializep108 multiple
times on the result to produce a fresh clone for each destination being broadcast to. Note that transferring does not make sense
in multi-destination situations.

Example

Any API for persisting JavaScript values to the filesystem would also use StructuredSerializeForStoragep108 on its input and
StructuredDeserializep108 on its output.

Example

This specification used to define a "structured clone" algorithm, and more recently a StructuredClone abstract operation. However,
in practice all known uses of it were better served by separate serialization and deserialization steps, so it was removed.

Note

window.postMessage()p1018 performs StructuredSerializeWithTransferp111 on its arguments, but is careful to do so immediately,
inside the synchronous portion of its algorithm. Thus it is able to use the algorithms without needing to prepare to run scriptp935

and prepare to run a callbackp921.

Example

In contrast, a hypothetical API that used StructuredSerializep108 to serialize some author-supplied object periodically, directly from a
taskp944 on the event loopp944, would need to ensure it performs the appropriate preparations beforehand. As of this time, we know
of no such APIs on the platform; usually it is simpler to perform the serialization ahead of time, as a synchronous consequence of
author code.

Example

113

https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#es-type-mapping

Every XML and HTML document in an HTML UA is represented by a Documentp114 object. [DOM]p1287

The Documentp114 object's URL is defined in DOM. It is initially set when the Documentp114 object is created, but can change during the
lifetime of the Documentp114 object; for example, it changes when the user navigatesp866 to a fragmentp880 on the page and when the
pushState()p854 method is called with a new URL. [DOM]p1287

When a Documentp114 is created by a scriptp925 using the createDocument() or createHTMLDocument() the Documentp114 is ready for
post-load tasksp1165 immediately.

The document's referrer is a string (representing a URL) that can be set when the Documentp114 is created. If it is not explicitly set,
then its value is the empty string.

DOM defines a Document interface, which this specification extends significantly.

enum DocumentReadyState { "loading", "interactive", "complete" };
typedef (HTMLScriptElement or SVGScriptElement) HTMLOrSVGScriptElement;

[LegacyOverrideBuiltIns]
partial interface Document {

// resource metadata management
[PutForwards=href, LegacyUnforgeable] readonly attribute Location? location;
attribute USVString domain;
readonly attribute USVString referrer;
attribute USVString cookie;
readonly attribute DOMString lastModified;
readonly attribute DocumentReadyState readyState;

// DOM tree accessors
getter object (DOMString name);
[CEReactions] attribute DOMString title;
[CEReactions] attribute DOMString dir;
[CEReactions] attribute HTMLElement? body;
readonly attribute HTMLHeadElement? head;
[SameObject] readonly attribute HTMLCollection images;
[SameObject] readonly attribute HTMLCollection embeds;
[SameObject] readonly attribute HTMLCollection plugins;
[SameObject] readonly attribute HTMLCollection links;
[SameObject] readonly attribute HTMLCollection forms;
[SameObject] readonly attribute HTMLCollection scripts;
NodeList getElementsByName(DOMString elementName);
readonly attribute HTMLOrSVGScriptElement? currentScript; // classic scripts in a document tree only

// dynamic markup insertion
[CEReactions] Document open(optional DOMString unused1, optional DOMString unused2); // both

arguments are ignored

3 Semantics, structure, and APIs of HTML documents §p11

4

3.1 Documents §p11

4

Interactive user agents typically expose the Documentp114 object's URL in their user interface. This is the primary
mechanism by which a user can tell if a site is attempting to impersonate another.

⚠Warning!

IDL

3.1.1 The Documentp114 object §p11

4

✔ MDN

114

https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#dom-domimplementation-createdocument
https://dom.spec.whatwg.org/#dom-domimplementation-createhtmldocument
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#interface-document
https://svgwg.org/svg2-draft/interact.html#InterfaceSVGScriptElement
https://heycam.github.io/webidl/#LegacyOverrideBuiltIns
https://heycam.github.io/webidl/#LegacyUnforgeable
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

WindowProxy? open(USVString url, DOMString name, DOMString features);
[CEReactions] undefined close();
[CEReactions] undefined write(DOMString... text);
[CEReactions] undefined writeln(DOMString... text);

// user interaction
readonly attribute WindowProxy? defaultView;
boolean hasFocus();
[CEReactions] attribute DOMString designMode;
[CEReactions] boolean execCommand(DOMString commandId, optional boolean showUI = false, optional

DOMString value = "");
boolean queryCommandEnabled(DOMString commandId);
boolean queryCommandIndeterm(DOMString commandId);
boolean queryCommandState(DOMString commandId);
boolean queryCommandSupported(DOMString commandId);
DOMString queryCommandValue(DOMString commandId);

// special event handler IDL attributes that only apply to Document objects
[LegacyLenientThis] attribute EventHandler onreadystatechange;

// also has obsolete members
};
Document includes GlobalEventHandlers;
Document includes DocumentAndElementEventHandlers;

The Documentp114 has a referrer policy (a referrer policy), initially the empty string, which represents the default referrer policy used
by fetches initiated by the Documentp114.

The Documentp114 has an embedder policy (an embedder policyp847).

The Documentp114 has a CSP list, which is a CSP list containing all of the Content Security Policy objects active for the document. The
list is empty unless otherwise specified.

The Documentp114 has a permissions policy, which is a permissions policy, which is initially empty.

The Documentp114 has a module map, which is a module mapp941, initially empty.

The Documentp114 has a cross-origin opener policy, which is a cross-origin opener policyp844, initially "unsafe-nonep845".

DOM defines the DocumentOrShadowRoot mixin, which this specification extends.

partial interface mixin DocumentOrShadowRoot {
readonly attribute Element? activeElement;

};

The referrer attribute must return the document's referrerp114.

document . referrerp115

Returns the URL of the Documentp114 from which the user navigated to this one, unless it was blocked or there was no such
document, in which case it returns the empty string.
The noreferrerp304 link type can be used to block the referrer.

For web developers (non-normative)

IDL

3.1.2 The DocumentOrShadowRootp115 interface §p11

5

3.1.3 Resource metadata management §p11

5

115

https://w3c.github.io/editing/docs/execCommand/#execcommand%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandenabled%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandindeterm%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandstate%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandsupported%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandvalue%28%29
https://heycam.github.io/webidl/#LegacyLenientThis
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/webappsec-csp/#csp-list
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-feature-policy/#permissions-policy
https://dom.spec.whatwg.org/#documentorshadowroot
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#concept-document-url

The cookie attribute represents the cookies of the resource identified by the document's URL.

A Documentp114 object that falls into one of the following conditions is a cookie-averse Document object:

• A Documentp114 object whose browsing contextp811 is null.

• A Documentp114 whose URL's scheme is not a network scheme.

On getting, if the document is a cookie-averse Document objectp116, then the user agent must return the empty string.
Otherwise, if the Documentp114 's originp837 is an opaque originp837, the user agent must throw a "SecurityError"
DOMException. Otherwise, the user agent must return the cookie-stringp51 for the document's URL for a "non-HTTP" API,
decoded using UTF-8 decode without BOM. [COOKIES]p1285

On setting, if the document is a cookie-averse Document objectp116, then the user agent must do nothing. Otherwise, if the
Documentp114 's originp837 is an opaque originp837, the user agent must throw a "SecurityError" DOMException. Otherwise, the user
agent must act as it would when receiving a set-cookie-stringp51 for the document's URL via a "non-HTTP" API, consisting of the new
value encoded as UTF-8. [COOKIES]p1285 [ENCODING]p1287

The lastModified attribute, on getting, must return the date and time of the Documentp114 's source file's last modification, in the
user's local time zone, in the following format:

1. The month component of the date.

2. A U+002F SOLIDUS character (/).

3. The day component of the date.

4. A U+002F SOLIDUS character (/).

5. The year component of the date.

6. A U+0020 SPACE character.

7. The hours component of the time.

8. A U+003A COLON character (:).

document . cookiep116 [= value]
Returns the HTTP cookies that apply to the Documentp114. If there are no cookies or cookies can't be applied to this resource, the
empty string will be returned.
Can be set, to add a new cookie to the element's set of HTTP cookies.
If the contents are sandboxed into a unique originp842 (e.g. in an iframep361 with the sandboxp365 attribute), a "SecurityError"
DOMException will be thrown on getting and setting.

For web developers (non-normative)

Since the cookiep116 attribute is accessible across frames, the path restrictions on cookies are only a tool to help manage which
cookies are sent to which parts of the site, and are not in any way a security feature.

Note

The cookiep116 attribute's getter and setter synchronously access shared state. Since there is no locking mechanism,
other browsing contexts in a multiprocess user agent can modify cookies while scripts are running. A site could, for
instance, try to read a cookie, increment its value, then write it back out, using the new value of the cookie as a
unique identifier for the session; if the site does this twice in two different browser windows at the same time, it
might end up using the same "unique" identifier for both sessions, with potentially disastrous effects.

⚠Warning!

document . lastModifiedp116

Returns the date of the last modification to the document, as reported by the server, in the form "MM/DD/YYYY hh:mm:ss", in the
user's local time zone.
If the last modification date is not known, the current time is returned instead.

For web developers (non-normative)

✔ MDN

116

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#network-scheme
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-url
https://encoding.spec.whatwg.org/#utf-8-decode-without-bom
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-url
https://encoding.spec.whatwg.org/#utf-8-encode

9. The minutes component of the time.

10. A U+003A COLON character (:).

11. The seconds component of the time.

All the numeric components above, other than the year, must be given as two ASCII digits representing the number in base ten, zero-
padded if necessary. The year must be given as the shortest possible string of four or more ASCII digits representing the number in
base ten, zero-padded if necessary.

The Documentp114 's source file's last modification date and time must be derived from relevant features of the networking protocols
used, e.g. from the value of the HTTP `Last-Modified` header of the document, or from metadata in the file system for local files. If
the last modification date and time are not known, the attribute must return the current date and time in the above format.

Each document has a current document readiness. When a Documentp114 object is created, it must have its current document
readinessp117 set to the string "loading" if the document is associated with an HTML parserp1079, an XML parserp1188, or an XSLT
processor, and to the string "complete" otherwise. Various algorithms during page loading affect this value. When the value is set, the
user agent must fire an event named readystatechangep1282 at the Documentp114 object.

A Documentp114 is said to have an active parser if it is associated with an HTML parserp1079 or an XML parserp1188 that has not yet been
stoppedp1165 or abortedp1165.

The readyState IDL attribute must, on getting, return the current document readinessp117.

The html element of a document is its document element, if it's an htmlp152 element, and null otherwise.

The head element of a document is the first headp153 element that is a child of the html elementp117, if there is one, or null otherwise.

The head attribute, on getting, must return the head elementp117 of the document (a headp153 element or null).

The title element of a document is the first titlep154 element in the document (in tree order), if there is one, or null otherwise.

The title attribute must, on getting, run the following algorithm:

1. If the document element is an SVG svg element, then let value be the child text content of the first SVG title element that
is a child of the document element.

document . readyStatep117

Returns "loading" while the Documentp114 is loading, "interactive" once it is finished parsing but still loading subresources,
and "complete" once it has loaded.
The readystatechangep1282 event fires on the Documentp114 object when this value changes.
The DOMContentLoadedp1281 event fires after the transition to "interactive" but before the transition to "complete", at the
point where all subresources apart from asyncp615 scriptp614 elements have loaded.

For web developers (non-normative)

document . headp117

Returns the head elementp117.

For web developers (non-normative)

document . titlep117 [= value]
Returns the document's title, as given by the title elementp117 for HTML and as given by the SVG title element for SVG.
Can be set, to update the document's title. If there is no appropriate element to update, the new value is ignored.

For web developers (non-normative)

3.1.4 DOM tree accessors §p11

7

✔ MDN

✔ MDN

✔ MDN

117

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://tools.ietf.org/html/rfc7232#section-2.2
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#document-element
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#document-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://dom.spec.whatwg.org/#concept-child-text-content
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#document-element

2. Otherwise, let value be the child text content of the title elementp117, or the empty string if the title elementp117 is null.

3. Strip and collapse ASCII whitespace in value.

4. Return value.

On setting, the steps corresponding to the first matching condition in the following list must be run:

↪ If the document element is an SVG svg element

1. If there is an SVG title element that is a child of the document element, let element be the first such element.

2. Otherwise:

1. Let element be the result of creating an element given the document element's node document, title, and
the SVG namespace.

2. Insert element as the first child of the document element.

3. String replace all with the given value within element.

↪ If the document element is in the HTML namespace

1. If the title elementp117 is null and the head elementp117 is null, then return.

2. If the title elementp117 is non-null, let element be the title elementp117.

3. Otherwise:

1. Let element be the result of creating an element given the document element's node document, titlep154,
and the HTML namespace.

2. Append element to the head elementp117.

4. String replace all with the given value within element.

↪ Otherwise
Do nothing.

The body element of a document is the first of the html elementp117 's children that is either a bodyp178 element or a framesetp1239

element, or null if there is no such element.

The body attribute, on getting, must return the body elementp118 of the document (either a bodyp178 element, a framesetp1239 element,
or null). On setting, the following algorithm must be run:

1. If the new value is not a bodyp178 or framesetp1239 element, then throw a "HierarchyRequestError" DOMException.

2. Otherwise, if the new value is the same as the body elementp118, return.

3. Otherwise, if the body elementp118 is not null, then replace the body elementp118 with the new value within the body
elementp118 's parent and return.

4. Otherwise, if there is no document element, throw a "HierarchyRequestError" DOMException.

5. Otherwise, the body elementp118 is null, but there's a document element. Append the new value to the document element.

document . bodyp118 [= value]
Returns the body elementp118.
Can be set, to replace the body elementp118.
If the new value is not a bodyp178 or framesetp1239 element, this will throw a "HierarchyRequestError" DOMException.

For web developers (non-normative)

The value returned by the bodyp118 getter is not always the one passed to the setter.
Note

✔ MDN

118

https://dom.spec.whatwg.org/#concept-child-text-content
https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-document
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://infra.spec.whatwg.org/#svg-namespace
https://dom.spec.whatwg.org/#concept-tree-first-child
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#string-replace-all
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#string-replace-all
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-replace
https://dom.spec.whatwg.org/#document-element
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#document-element

The images attribute must return an HTMLCollection rooted at the Documentp114 node, whose filter matches only imgp320 elements.

The embeds attribute must return an HTMLCollection rooted at the Documentp114 node, whose filter matches only embedp369 elements.

The plugins attribute must return the same object as that returned by the embedsp119 attribute.

The links attribute must return an HTMLCollection rooted at the Documentp114 node, whose filter matches only ap238 elements with
hrefp284 attributes and areap443 elements with hrefp284 attributes.

The forms attribute must return an HTMLCollection rooted at the Documentp114 node, whose filter matches only formp486 elements.

The scripts attribute must return an HTMLCollection rooted at the Documentp114 node, whose filter matches only scriptp614

elements.

The getElementsByName(name) method steps are to return a livep45 NodeList containing all the HTML elementsp44 in that document
that have a name attribute whose value is identical to the name argument, in tree order. When the method is invoked on a Documentp114

object again with the same argument, the user agent may return the same as the object returned by the earlier call. In other cases, a
new NodeList object must be returned.

In this example, the setter successfully inserts a bodyp178 element (though this is non-conforming since SVG does not allow a
bodyp178 as child of SVG svg). However the getter will return null because the document element is not htmlp152.

<svg xmlns="http://www.w3.org/2000/svg">
<script>
document.body = document.createElementNS("http://www.w3.org/1999/xhtml", "body");
console.assert(document.body === null);

</script>
</svg>

Example

document . imagesp119

Returns an HTMLCollection of the imgp320 elements in the Documentp114.

document . embedsp119

document . pluginsp119

Return an HTMLCollection of the embedp369 elements in the Documentp114.

document . linksp119

Returns an HTMLCollection of the ap238 and areap443 elements in the Documentp114 that have hrefp284 attributes.

document . formsp119

Return an HTMLCollection of the formp486 elements in the Documentp114.

document . scriptsp119

Return an HTMLCollection of the scriptp614 elements in the Documentp114.

For web developers (non-normative)

collection = document . getElementsByNamep119(name)
Returns a NodeList of elements in the Documentp114 that have a name attribute with the value name.

For web developers (non-normative)

document . currentScriptp120

Returns the scriptp614 element, or the SVG script element, that is currently executing, as long as the element represents a
classic scriptp925. In the case of reentrant script execution, returns the one that most recently started executing amongst those
that have not yet finished executing.
Returns null if the Documentp114 is not currently executing a scriptp614 or SVG script element (e.g., because the running script
is an event handler, or a timeout), or if the currently executing scriptp614 or SVG script element represents a module

For web developers (non-normative)

✔ MDN
✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

119

https://svgwg.org/svg2-draft/struct.html#SVGElement
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-nodelist
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://svgwg.org/svg2-draft/interact.html#ScriptElement

The currentScript attribute, on getting, must return the value to which it was most recently set. When the Documentp114 is created,
the currentScriptp120 must be initialized to null.

The Documentp114 interface supports named properties. The supported property names of a Documentp114 object document at any
moment consist of the following, in tree order according to the element that contributed them, ignoring later duplicates, and with
values from idp137 attributes coming before values from name attributes when the same element contributes both:

• the value of the name content attribute for all exposedp120 embedp369, formp486, iframep361, imgp320, and exposedp120 objectp373

elements that have a non-empty name content attribute and are in a document tree with document as their root;

• the value of the idp137 content attribute for all exposedp120 objectp373 elements that have a non-empty idp137 content
attribute and are in a document tree with document as their root; and

• the value of the idp137 content attribute for all imgp320 elements that have both a non-empty idp137 content attribute and a
non-empty name content attribute, and are in a document tree with document as their root.

To determine the value of a named property name for a Documentp114, the user agent must return the value obtained using the
following steps:

1. Let elements be the list of named elementsp120 with the name name that are in a document tree with the Documentp114 as
their root.

2. If elements has only one element, and that element is an iframep361 element, and that iframep361 element's nested browsing
contextp814 is not null, then return the WindowProxyp834 object of the element's nested browsing contextp814.

3. Otherwise, if elements has only one element, return that element.

4. Otherwise return an HTMLCollection rooted at the Documentp114 node, whose filter matches only named elementsp120 with
the name name.

Named elements with the name name, for the purposes of the above algorithm, are those that are either:

• Exposedp120 embedp369, formp486, iframep361, imgp320, or exposedp120 objectp373 elements that have a name content attribute
whose value is name, or

• Exposedp120 objectp373 elements that have an idp137 content attribute whose value is name, or

• imgp320 elements that have an idp137 content attribute whose value is name, and that have a non-empty name content
attribute present also.

An embedp369 or objectp373 element is said to be exposed if it has no exposedp120 objectp373 ancestor, and, for objectp373 elements, is
additionally either not showing its fallback contentp132 or has no objectp373 or embedp369 descendants.

scriptp925.

This API has fallen out of favor in the implementer and standards community, as it globally exposes scriptp614 or SVG script
elements. As such, it is not available in newer contexts, such as when running module scriptsp925 or when running scripts in a
shadow tree. We are looking into creating a new solution for identifying the running script in such contexts, which does not make it
globally available: see issue #1013.

Note

There will be at least one such element, by definition.
Note

The dirp144 attribute on the Documentp114 interface is defined along with the dirp142 content attribute.
Note

✔ MDN

120

https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://dom.spec.whatwg.org/#concept-shadow-tree
https://github.com/whatwg/html/issues/1013
https://heycam.github.io/webidl/#dfn-support-named-properties
https://heycam.github.io/webidl/#dfn-supported-property-names
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://heycam.github.io/webidl/#dfn-determine-the-value-of-a-named-property
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#interface-htmlcollection

Elements, attributes, and attribute values in HTML are defined (by this specification) to have certain meanings (semantics). For
example, the olp220 element represents an ordered list, and the langp140 attribute represents the language of the content.

These definitions allow HTML processors, such as web browsers or search engines, to present and use documents and applications in a
wide variety of contexts that the author might not have considered.

Authors must not use elements, attributes, or attribute values for purposes other than their appropriate intended semantic purpose, as
doing so prevents software from correctly processing the page.

3.2 Elements §p12

1

As a simple example, consider a web page written by an author who only considered desktop computer web browsers:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>My Page</title>

</head>
<body>
<h1>Welcome to my page</h1>
<p>I like cars and lorries and have a big Jeep!</p>
<h2>Where I live</h2>
<p>I live in a small hut on a mountain!</p>

</body>
</html>

Because HTML conveys meaning, rather than presentation, the same page can also be used by a small browser on a mobile phone,
without any change to the page. Instead of headings being in large letters as on the desktop, for example, the browser on the
mobile phone might use the same size text for the whole page, but with the headings in bold.

But it goes further than just differences in screen size: the same page could equally be used by a blind user using a browser based
around speech synthesis, which instead of displaying the page on a screen, reads the page to the user, e.g. using headphones.
Instead of large text for the headings, the speech browser might use a different volume or a slower voice.

That's not all, either. Since the browsers know which parts of the page are the headings, they can create a document outline that
the user can use to quickly navigate around the document, using keys for "jump to next heading" or "jump to previous heading".
Such features are especially common with speech browsers, where users would otherwise find quickly navigating a page quite
difficult.

Even beyond browsers, software can make use of this information. Search engines can use the headings to more effectively index
a page, or to provide quick links to subsections of the page from their results. Tools can use the headings to create a table of
contents (that is in fact how this very specification's table of contents is generated).

This example has focused on headings, but the same principle applies to all of the semantics in HTML.

Example

For example, the following snippet, intended to represent the heading of a corporate site, is non-conforming because the second
line is not intended to be a heading of a subsection, but merely a subheading or subtitle (a subordinate heading for the same
section).

<body>
<h1>ACME Corporation</h1>
<h2>The leaders in arbitrary fast delivery since 1920</h2>
...

The hgroupp191 element is intended for these kinds of situations:

<body>

Example

3.2.1 Semantics §p12

1

121

Authors must not use elements, attributes, or attribute values that are not permitted by this specification or other applicable
specificationsp65, as doing so makes it significantly harder for the language to be extended in the future.

<hgroup>
<h1>ACME Corporation</h1>
<h2>The leaders in arbitrary fast delivery since 1920</h2>

</hgroup>
...

The document in this next example is similarly non-conforming, despite being syntactically correct, because the data placed in the
cells is clearly not tabular data, and the citep246 element mis-used:

<!DOCTYPE HTML>
<html lang="en-GB">
<head> <title> Demonstration </title> </head>
<body>
<table>
<tr> <td> My favourite animal is the cat. </td> </tr>
<tr>
<td>
—<cite>Ernest</cite>,
in an essay from 1992

</td>
</tr>

</table>
</body>

</html>

This would make software that relies on these semantics fail: for example, a speech browser that allowed a blind user to navigate
tables in the document would report the quote above as a table, confusing the user; similarly, a tool that extracted titles of works
from pages would extract "Ernest" as the title of a work, even though it's actually a person's name, not a title.

A corrected version of this document might be:

<!DOCTYPE HTML>
<html lang="en-GB">
<head> <title> Demonstration </title> </head>
<body>
<blockquote>
<p> My favourite animal is the cat. </p>

</blockquote>
<p>
—Ernest,
in an essay from 1992

</p>
</body>

</html>

Example

In the next example, there is a non-conforming attribute value ("carpet") and a non-conforming attribute ("texture"), which is not
permitted by this specification:

<label>Carpet: <input type="carpet" name="c" texture="deep pile"></label>

Here would be an alternative and correct way to mark this up:

Example

122

DOM nodes whose node document's browsing contextp811 is null are exempt from all document conformance requirements other than
the HTML syntaxp1067 requirements and XML syntaxp1188 requirements.

Through scripting and using other mechanisms, the values of attributes, text, and indeed the entire structure of the document may
change dynamically while a user agent is processing it. The semantics of a document at an instant in time are those represented by
the state of the document at that instant in time, and the semantics of a document can therefore change over time. User agents must
update their presentation of the document as this occurs.

The nodes representing HTML elementsp44 in the DOM must implement, and expose to scripts, the interfaces listed for them in the
relevant sections of this specification. This includes HTML elementsp44 in XML documents, even when those documents are in another
context (e.g. inside an XSLT transform).

Elements in the DOM represent things; that is, they have intrinsic meaning, also known as semantics.

Elements can be referenced (referred to) in some way, either explicitly or implicitly. One way that an element in the DOM can be
explicitly referenced is by giving an idp137 attribute to the element, and then creating a hyperlinkp283 with that idp137 attribute's value
as the fragmentp880 for the hyperlinkp283 's hrefp284 attribute value. Hyperlinks are not necessary for a reference, however; any manner
of referring to the element in question will suffice.

<label>Carpet: <input type="text" class="carpet" name="c" data-texture="deep pile"></label>

In particular, the templatep629 element's template contentsp631 's node document's browsing contextp811 is null. For example, the
content modelp128 requirements and attribute value microsyntax requirements do not apply to a templatep629 element's template
contentsp631. In this example an imgp320 element has attribute values that are placeholders that would be invalid outside a
templatep629 element.

<template>
<article>

<h1></h1>

</article>
</template>

However, if the above markup were to omit the </h1> end tag, that would be a violation of the HTML syntaxp1067, and would thus
be flagged as an error by conformance checkers.

Example

HTML has a progressp555 element that describes a progress bar. If its "value" attribute is dynamically updated by a script, the UA
would update the rendering to show the progress changing.

Example

For example, an olp220 element represents an ordered list.
Example

Consider the following figurep232 element, which is given an idp137 attribute:

<figure id="module-script-graph">
<img src="module-script-graph.svg"

alt="Module A depends on module B, which depends
on modules C and D.">

<figcaption>Figure 27: a simple module graph</figcaption>

Example

3.2.2 Elements in the DOM §p12

3

123

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#xml-document

The basic interface, from which all the HTML elementsp44 ' interfaces inherit, and which must be used by elements that have no
additional requirements, is the HTMLElementp124 interface.

[Exposed=Window]
interface HTMLElement : Element {

[HTMLConstructor] constructor();

// metadata attributes
[CEReactions] attribute DOMString title;
[CEReactions] attribute DOMString lang;
[CEReactions] attribute boolean translate;
[CEReactions] attribute DOMString dir;

// user interaction
[CEReactions] attribute boolean hidden;
undefined click();
[CEReactions] attribute DOMString accessKey;
readonly attribute DOMString accessKeyLabel;
[CEReactions] attribute boolean draggable;
[CEReactions] attribute boolean spellcheck;
[CEReactions] attribute DOMString autocapitalize;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString innerText;

ElementInternals attachInternals();
};

HTMLElement includes GlobalEventHandlers;
HTMLElement includes DocumentAndElementEventHandlers;
HTMLElement includes ElementContentEditable;
HTMLElement includes HTMLOrSVGElement;

[Exposed=Window]
interface HTMLUnknownElement : HTMLElement {

// Note: intentionally no [HTMLConstructor]
};

The HTMLElementp124 interface holds methods and attributes related to a number of disparate features, and the members of this
interface are therefore described in various different sections of this specification.

The element interface for an element with name name in the HTML namespace is determined as follows:

</figure>

A hyperlinkp283-based referencep123 could be created using the ap238 element, like so:

As we can see in figure 27, ...

However, there are many other ways of referencingp123 the figurep232 element, such as:

• "As depicted in the figure of modules A, B, C, and D..."

• "In Figure 27..." (without a hyperlink)

• "From the contents of the 'simple module graph' figure..."

• "In the figure below..." (but this is discouragedp232)

IDL

✔ MDN

124

https://dom.spec.whatwg.org/#interface-element
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://dom.spec.whatwg.org/#concept-element-interface
https://infra.spec.whatwg.org/#html-namespace

1. If name is appletp1232, bgsoundp1232, blinkp1233, isindexp1232, keygenp1232, multicolp1233, nextidp1232, or spacerp1233, then
return HTMLUnknownElementp124.

2. If name is acronymp1232, basefontp1233, bigp1233, centerp1233, nobrp1233, noembedp1232, noframesp1232, plaintextp1232, rbp1232,
rtcp1232, strikep1233, or ttp1233, then return HTMLElementp124.

3. If name is listingp1232 or xmpp1233, then return HTMLPreElementp216.

4. Otherwise, if this specification defines an interface appropriate for the element typep44 corresponding to the local name
name, then return that interface.

5. If other applicable specificationsp65 define an appropriate interface for name, then return the interface they define.

6. If name is a valid custom element namep704, then return HTMLElementp124.

7. Return HTMLUnknownElementp124.

Features shared between HTML and SVG elements use the HTMLOrSVGElementp125 interface mixin: [SVG]p1291

interface mixin HTMLOrSVGElement {
[SameObject] readonly attribute DOMStringMap dataset;
attribute DOMString nonce; // intentionally no [CEReactions]

[CEReactions] attribute boolean autofocus;
[CEReactions] attribute long tabIndex;
undefined focus(optional FocusOptions options = {});
undefined blur();

};

To support the custom elementsp696 feature, all HTML elements have special constructor behavior. This is indicated via the
[HTMLConstructor] IDL extended attribute. It indicates that the interface object for the given interface will have a specific behavior
when called, as defined in detail below.

The [HTMLConstructor]p125 extended attribute must take no arguments, and must only appear on constructor operations. It must
appear only once on a constructor operation, and the interface must contain only the single, annotated constructor operation, and no
others. The annotated constructor operation must be declared to take no arguments.

Interfaces declared with constructor operations that are annotated with the [HTMLConstructor]p125 extended attribute have the
following overridden constructor steps:

1. Let registry be the current global objectp924 's CustomElementRegistryp706 object.

2. If NewTarget is equal to the active function object, then throw a TypeError.

The use of HTMLElementp124 instead of HTMLUnknownElementp124 in the case of valid custom element namesp704 is done to ensure
that any potential future upgradesp709 only cause a linear transition of the element's prototype chain, from HTMLElementp124 to a
subclass, instead of a lateral one, from HTMLUnknownElementp124 to an unrelated subclass.

Note

An example of an element that is neither an HTML nor SVG element is one created as follows:

const el = document.createElementNS("some namespace", "example");
console.assert(el.constructor === Element);

Example

This can occur when a custom element is defined using an element interface as its constructor:
Example

IDL

3.2.3 HTML element constructors §p12

5

125

https://heycam.github.io/webidl/#dfn-extended-attribute
https://heycam.github.io/webidl/#idl-constructors
https://heycam.github.io/webidl/#overridden-constructor-steps
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://dom.spec.whatwg.org/#concept-element-interface

3. Let definition be the entry in registry with constructorp705 equal to NewTarget. If there is no such definition, then throw a
TypeError.

4. Let is value be null.

5. If definition's local namep705 is equal to definition's namep705 (i.e., definition is for an autonomous custom elementp703), then:

1. If the active function object is not HTMLElementp124, then throw a TypeError.

6. Otherwise (i.e., if definition is for a customized built-in elementp703):

1. Let valid local names be the list of local names for elements defined in this specification or in other applicable
specificationsp65 that use the active function object as their element interface.

2. If valid local names does not contain definition's local namep705, then throw a TypeError.

3. Set is value to definition's namep705.

7. If definition's construction stackp705 is empty, then:

1. Let element be the result of internally creating a new object implementing the interface to which the active
function object corresponds, given the current Realm Record and NewTarget.

2. Set element's node document to the current global objectp924 's associated Documentp826.

3. Set element's namespace to the HTML namespace.

4. Set element's namespace prefix to null.

5. Set element's local name to definition's local namep705.

customElements.define("bad-1", HTMLButtonElement);
new HTMLButtonElement(); // (1)
document.createElement("bad-1"); // (2)

In this case, during the execution of HTMLButtonElementp536 (either explicitly, as in (1), or implicitly, as in (2)), both the
active function object and NewTarget are HTMLButtonElementp536. If this check was not present, it would be possible to
create an instance of HTMLButtonElementp536 whose local name was bad-1.

Since there can be no entry in registry with a constructorp705 of undefined, this step also prevents HTML element
constructors from being called as functions (since in that case NewTarget will be undefined).

Note

This can occur when a custom element is defined to not extend any local names, but inherits from a
non-HTMLElementp124 class:

customElements.define("bad-2", class Bad2 extends HTMLParagraphElement {});

In this case, during the (implicit) super() call that occurs when constructing an instance of Bad2, the active
function object is HTMLParagraphElementp212, not HTMLElementp124.

Example

This can occur when a custom element is defined to extend a given local name but inherits from the wrong
class:

customElements.define("bad-3", class Bad3 extends HTMLQuoteElement {}, { extends:
"p" });

In this case, during the (implicit) super() call that occurs when constructing an instance of Bad3, valid local
names is the list containing qp247 and blockquotep217, but definition's local namep705 is pp211, which is not in that
list.

Example

126

https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://dom.spec.whatwg.org/#concept-element-interface
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://heycam.github.io/webidl/#internally-create-a-new-object-implementing-the-interface
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#sec-built-in-function-objects
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-element-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-namespace-prefix
https://dom.spec.whatwg.org/#concept-element-local-name

6. Set element's custom element state to "custom".

7. Set element's custom element definition to definition.

8. Set element's is value to is value.

9. Return element.

8. Let prototype be Get(NewTarget, "prototype"). Rethrow any exceptions.

9. If Type(prototype) is not Object, then:

1. Let realm be GetFunctionRealm(NewTarget).

2. Set prototype to the interface prototype object of realm whose interface is the same as the interface of the active
function object.

10. Let element be the last entry in definition's construction stackp705.

11. If element is an already constructed markerp705, then throw an "InvalidStateError" DOMException.

This occurs when author script constructs a new custom element directly, e.g. via new MyCustomElement().
Note

The realm of the active function object might not be realm, so we are using the more general concept of "the same
interface" across realms; we are not looking for equality of interface objects. This fallback behavior, including using the
realm of NewTarget and looking up the appropriate prototype there, is designed to match analogous behavior for the
JavaScript built-ins and Web IDL's internally create a new object implementing the interface algorithm.

Note

This can occur when the author code inside the custom element constructorp703 non-conformantlyp702 creates another
instance of the class being constructed, before calling super():

let doSillyThing = false;

class DontDoThis extends HTMLElement {
constructor() {

if (doSillyThing) {
doSillyThing = false;
new DontDoThis();
// Now the construction stack will contain an already constructed marker.

}

// This will then fail with an "InvalidStateError" DOMException:
super();

}
}

Example

This can also occur when author code inside the custom element constructorp703 non-conformantlyp702 calls super()
twice, since per the JavaScript specification, this actually executes the superclass constructor (i.e. this algorithm) twice,
before throwing an error:

class DontDoThisEither extends HTMLElement {
constructor() {

super();

// This will throw, but not until it has already called into the HTMLElement
constructor

super();
}

}

Example

127

https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://dom.spec.whatwg.org/#concept-element-is-value
https://tc39.es/ecma262/#sec-get-o-p
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.es/ecma262/#sec-getfunctionrealm
https://tc39.es/ecma262/#sec-built-in-function-objects
https://heycam.github.io/webidl/#dfn-interface-prototype-object
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://heycam.github.io/webidl/#dfn-interface-object
https://tc39.es/ecma262/#sec-built-in-function-objects
https://heycam.github.io/webidl/#internally-create-a-new-object-implementing-the-interface
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

12. Perform element.[[SetPrototypeOf]](prototype). Rethrow any exceptions.

13. Replace the last entry in definition's construction stackp705 with an already constructed markerp705.

14. Return element.

In addition to the constructor behavior implied by [HTMLConstructor]p125, some elements also have named constructors (which are
really factory functions with a modified prototype property).

Each element in this specification has a definition that includes the following information:

Categories
A list of categoriesp130 to which the element belongs. These are used when defining the content modelsp129 for each element.

Contexts in which this element can be used
A non-normative description of where the element can be used. This information is redundant with the content models of elements
that allow this one as a child, and is provided only as a convenience.

Content model
A normative description of what content must be included as children and descendants of the element.

Tag omission in text/html
A non-normative description of whether, in the text/htmlp1250 syntax, the startp1069 and endp1070 tags can be omitted. This
information is redundant with the normative requirements given in the optional tagsp1071 section, and is provided in the element
definitions only as a convenience.

Content attributes
A normative list of attributes that may be specified on the element (except where otherwise disallowed), along with non-normative
descriptions of those attributes. (The content to the left of the dash is normative, the content to the right of the dash is not.)

This step is normally reached when upgradingp709 a custom element; the existing element is returned, so that the
super() call inside the custom element constructorp703 assigns that existing element to this.

Note

Named constructors for HTML elements can also be used in an extends clause when defining a custom element constructorp703:

class AutoEmbiggenedImage extends Image {
constructor(width, height) {

super(width * 10, height * 10);
}

}

customElements.define("auto-embiggened", AutoEmbiggenedImage, { extends: "img" });

const image = new AutoEmbiggenedImage(15, 20);
console.assert(image.width === 150);
console.assert(image.height === 200);

Example

For simplicity, only the most specific expectations are listed.

For example, all phrasing contentp132 is flow contentp131. Thus, elements that are phrasing contentp132 will only be listed as
"where phrasing contentp132 is expected", since this is the more-specific expectation. Anywhere that expects flow contentp131

also expects phrasing contentp132, and thus also meets this expectation.

Note

3.2.4 Element definitions §p12

8

128

https://heycam.github.io/webidl/#dfn-named-constructor

Accessibility considerations
For authors: Conformance requirements for use of ARIA rolep63 and aria-*p63 attributes are defined in ARIA in HTML. [ARIA]p1285

[ARIAHTML]p1285

For implementers: User agent requirements for implementing accessibility API semantics are defined in HTML Accessibility API
Mappings. [HTMLAAM]p1288

DOM interface
A normative definition of a DOM interface that such elements must implement.

This is then followed by a description of what the element representsp123, along with any additional normative conformance criteria
that may apply to authors and implementations. Examples are sometimes also included.

An attribute value is a string. Except where otherwise specified, attribute values on HTML elementsp44 may be any string value,
including the empty string, and there is no restriction on what text can be specified in such attribute values.

Each element defined in this specification has a content model: a description of the element's expected contentsp129. An HTML
elementp44 must have contents that match the requirements described in the element's content model. The contents of an element
are its children in the DOM.

ASCII whitespace is always allowed between elements. User agents represent these characters between elements in the source
markup as Text nodes in the DOM. Empty Text nodes and Text nodes consisting of just sequences of those characters are considered
inter-element whitespace.

Inter-element whitespacep129, comment nodes, and processing instruction nodes must be ignored when establishing whether an
element's contents match the element's content model or not, and must be ignored when following algorithms that define document
and element semantics.

Authors must not use HTML elementsp44 anywhere except where they are explicitly allowed, as defined for each element, or as
explicitly required by other specifications. For XML compound documents, these contexts could be inside elements from other
namespaces, if those elements are defined as providing the relevant contexts.

In addition, HTML elementsp44 may be orphan nodes (i.e. without a parent node).

3.2.4.1 Attributes §p12

9

Thus, an element A is said to be preceded or followed by a second element B if A and B have the same parent node and there are
no other element nodes or Text nodes (other than inter-element whitespacep129) between them. Similarly, a node is the only child
of an element if that element contains no other nodes other than inter-element whitespacep129, comment nodes, and processing
instruction nodes.

Note

The Atom Syndication Format defines a content element. When its type attribute has the value xhtml, The Atom Syndication
Format requires that it contain a single HTML divp237 element. Thus, a divp237 element is allowed in that context, even though this
is not explicitly normatively stated by this specification. [ATOM]p1285

Example

For example, creating a tdp465 element and storing it in a global variable in a script is conforming, even though tdp465 elements are
otherwise only supposed to be used inside trp464 elements.

var data = {
name: "Banana",
cell: document.createElement('td'),

Example

3.2.5 Content models §p12

9

129

https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

When an element's content model is nothing, the element must contain no Text nodes (other than inter-element whitespacep129) and
no element nodes.

Each element in HTML falls into zero or more categories that group elements with similar characteristics together. The following broad
categories are used in this specification:

• Metadata contentp131

• Flow contentp131

• Sectioning contentp131

• Heading contentp132

• Phrasing contentp132

• Embedded contentp132

• Interactive contentp132

These categories are related as follows:

Flow

Heading

Sectioning

Metadata

Interactive
Phrasing

Embedded

Sectioning content, heading content, phrasing content, embedded content, and interactive content are all types of flow content.
Metadata is sometimes flow content. Metadata and interactive content are sometimes phrasing content. Embedded content is also a
type of phrasing content, and sometimes is interactive content.

Other categories are also used for specific purposes, e.g. form controls are specified using a number of categories to define common
requirements. Some elements have unique requirements and do not fit into any particular category.

};

3.2.5.1 The "nothing" content model §p13

0

Most HTML elements whose content model is "nothing" are also, for convenience, void elementsp1068 (elements that have no end
tagp1070 in the HTML syntaxp1067). However, these are entirely separate concepts.

Note

3.2.5.2 Kinds of content §p13

0

Some elements also fall into other categories, which are defined in other parts of this specification.
Note

130

https://dom.spec.whatwg.org/#interface-text

Metadata content is content that sets up the presentation or behavior of the rest of the content, or that sets up the relationship of
the document with other documents, or that conveys other "out of band" information.

⇒ basep155, linkp157, metap164, noscriptp627, scriptp614, stylep174, templatep629, titlep154

Elements from other namespaces whose semantics are primarily metadata-related (e.g. RDF) are also metadata contentp131.

Most elements that are used in the body of documents and applications are categorized as flow content.

⇒ ap238, abbrp250, addressp197, areap443 (if it is a descendant of a mapp442 element), articlep180, asidep187, audiop384, bp273,
bdip278, bdop279, blockquotep217, brp280, buttonp535, canvasp634, citep246, codep267, datap259, datalistp543, delp312,
detailsp604, dfnp249, dialogp610, divp237, dlp226, emp241, embedp369, fieldsetp562, figurep232, footerp195, formp486, h1p190, h2p190,
h3p190, h4p190, h5p190, h6p190, headerp194, hgroupp191, hrp214, ip272, iframep361, imgp320, inputp493, insp311, kbdp270, labelp490,
linkp157 (if it is allowed in the bodyp159), mainp235 (if it is a hierarchically correct main elementp236), mapp442, markp275, MathML
math, menup223, metap164 (if the itempropp736 attribute is present), meterp557, navp184, noscriptp627, objectp373, olp220,
outputp553, pp211, picturep316, prep216, progressp555, qp247, rubyp252, sp245, sampp269, scriptp614, sectionp182, selectp537,
slotp633, smallp244, spanp279, strongp242, subp271, supp271, SVG svg, tablep450, templatep629, textareap548, timep260, up275,
ulp222, varp268, videop380, wbrp281, autonomous custom elementsp703, textp132

Sectioning content is content that defines the scope of headingsp132 and footersp195.

⇒ articlep180, asidep187, navp184, sectionp182

Each sectioning contentp131 element potentially has a heading and an outlinep201. See the section on headings and sectionsp199 for
further details.

3.2.5.2.1 Metadata content §p13

1

Thus, in the XML serialization, one can use RDF, like this:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xml:lang="en">

<head>
<title>Hedral's Home Page</title>
<r:RDF>
<Person xmlns="http://www.w3.org/2000/10/swap/pim/contact#"

r:about="https://hedral.example.com/#">
<fullName>Cat Hedral</fullName>
<mailbox r:resource="mailto:hedral@damowmow.com"/>
<personalTitle>Sir</personalTitle>

</Person>
</r:RDF>

</head>
<body>
<h1>My home page</h1>
<p>I like playing with string, I guess. Sister says squirrels are fun
too so sometimes I follow her to play with them.</p>

</body>
</html>

This isn't possible in the HTML serialization, however.

Example

3.2.5.2.2 Flow content §p13

1

3.2.5.2.3 Sectioning content §p13

1

There are also certain elements that are sectioning rootsp199. These are distinct from sectioning contentp131, but they can also have
Note

131

https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://svgwg.org/svg2-draft/struct.html#SVGElement

Heading content defines the header of a section (whether explicitly marked up using sectioning contentp131 elements, or implied by
the heading content itself).

⇒ h1p190, h2p190, h3p190, h4p190, h5p190, h6p190, hgroupp191

Phrasing content is the text of the document, as well as elements that mark up that text at the intra-paragraph level. Runs of
phrasing contentp132 form paragraphsp134.

⇒ ap238, abbrp250, areap443 (if it is a descendant of a mapp442 element), audiop384, bp273, bdip278, bdop279, brp280, buttonp535,
canvasp634, citep246, codep267, datap259, datalistp543, delp312, dfnp249, emp241, embedp369, ip272, iframep361, imgp320, inputp493,
insp311, kbdp270, labelp490, linkp157 (if it is allowed in the bodyp159), mapp442, markp275, MathML math, metap164 (if the
itempropp736 attribute is present), meterp557, noscriptp627, objectp373, outputp553, picturep316, progressp555, qp247, rubyp252,
sp245, sampp269, scriptp614, selectp537, slotp633, smallp244, spanp279, strongp242, subp271, supp271, SVG svg, templatep629,
textareap548, timep260, up275, varp268, videop380, wbrp281, autonomous custom elementsp703, textp132

Text, in the context of content models, means either nothing, or Text nodes. Textp132 is sometimes used as a content model on its
own, but is also phrasing contentp132, and can be inter-element whitespacep129 (if the Text nodes are empty or contain just ASCII
whitespace).

Text nodes and attribute values must consist of scalar values, excluding noncharacters, and controls other than ASCII whitespace. This
specification includes extra constraints on the exact value of Text nodes and attribute values depending on their precise context.

Embedded content is content that imports another resource into the document, or content from another vocabulary that is inserted
into the document.

⇒ audiop384, canvasp634, embedp369, iframep361, imgp320, MathML math, objectp373, picturep316, SVG svg, videop380

Elements that are from namespaces other than the HTML namespace and that convey content but not metadata, are embedded
contentp132 for the purposes of the content models defined in this specification. (For example, MathML, or SVG.)

Some embedded content elements can have fallback content: content that is to be used when the external resource cannot be used
(e.g. because it is of an unsupported format). The element definitions state what the fallback is, if any.

Interactive content is content that is specifically intended for user interaction.

⇒ ap238 (if the hrefp284 attribute is present), audiop384 (if the controlsp436 attribute is present), buttonp535, detailsp604,
embedp369, iframep361, imgp320 (if the usemapp445 attribute is present), inputp493 (if the typep495 attribute is not in the
Hiddenp499 state), labelp490, objectp373 (if the usemapp445 attribute is present), selectp537, textareap548, videop380 (if the
controlsp436 attribute is present)

an outlinep201.

3.2.5.2.4 Heading content §p13

2

3.2.5.2.5 Phrasing content §p13

2

Most elements that are categorized as phrasing content can only contain elements that are themselves categorized as phrasing
content, not any flow content.

Note

3.2.5.2.6 Embedded content §p13

2

3.2.5.2.7 Interactive content §p13

2

132

https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-text
https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://infra.spec.whatwg.org/#html-namespace

As a general rule, elements whose content model allows any flow contentp131 or phrasing contentp132 should have at least one node in
its contentsp129 that is palpable content and that does not have the hiddenp765 attribute specified.

This requirement is not a hard requirement, however, as there are many cases where an element can be empty legitimately, for
example when it is used as a placeholder which will later be filled in by a script, or when the element is part of a template and would
on most pages be filled in but on some pages is not relevant.

Conformance checkers are encouraged to provide a mechanism for authors to find elements that fail to fulfill this requirement, as an
authoring aid.

The following elements are palpable content:

⇒ ap238, abbrp250, addressp197, articlep180, asidep187, audiop384 (if the controlsp436 attribute is present), bp273, bdip278,
bdop279, blockquotep217, buttonp535, canvasp634, citep246, codep267, datap259, detailsp604, dfnp249, divp237, dlp226 (if the
element's children include at least one name-value group), emp241, embedp369, fieldsetp562, figurep232, footerp195, formp486,
h1p190, h2p190, h3p190, h4p190, h5p190, h6p190, headerp194, hgroupp191, ip272, iframep361, imgp320, inputp493 (if the typep495 attribute
is not in the Hiddenp499 state), insp311, kbdp270, labelp490, mainp235, mapp442, markp275, MathML math, menup223 (if the element's
children include at least one lip224 element), meterp557, navp184, objectp373, olp220 (if the element's children include at least
one lip224 element), outputp553, pp211, prep216, progressp555, qp247, rubyp252, sp245, sampp269, sectionp182, selectp537, smallp244,
spanp279, strongp242, subp271, supp271, SVG svg, tablep450, textareap548, timep260, up275, ulp222 (if the element's children include
at least one lip224 element), varp268, videop380, autonomous custom elementsp703, textp132 that is not inter-element
whitespacep129

Script-supporting elements are those that do not representp123 anything themselves (i.e. they are not rendered), but are used to
support scripts, e.g. to provide functionality for the user.

The following elements are script-supporting elements:

⇒ scriptp614, templatep629

Some elements are described as transparent; they have "transparent" in the description of their content model. The content model of
a transparentp133 element is derived from the content model of its parent element: the elements required in the part of the content
model that is "transparent" are the same elements as required in the part of the content model of the parent of the transparent
element in which the transparent element finds itself.

3.2.5.2.8 Palpable content §p13

3

Palpable contentp133 makes an element non-empty by providing either some descendant non-empty textp132, or else something
users can hear (audiop384 elements) or view (videop380 or imgp320 or canvasp634 elements) or otherwise interact with (for example,
interactive form controls).

Note

3.2.5.2.9 Script-supporting elements §p13

3

3.2.5.3 Transparent content models §p13

3

For instance, an insp311 element inside a rubyp252 element cannot contain an rtp258 element, because the part of the rubyp252

element's content model that allows insp311 elements is the part that allows phrasing contentp132, and the rtp258 element is not
phrasing contentp132.

Example

In some cases, where transparent elements are nested in each other, the process has to be applied iteratively.
Note

Consider the following markup fragment:
Example

133

https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://svgwg.org/svg2-draft/struct.html#SVGElement

When a transparent element has no parent, then the part of its content model that is "transparent" must instead be treated as
accepting any flow contentp131.

A paragraph is typically a run of phrasing contentp132 that forms a block of text with one or more sentences that discuss a particular
topic, as in typography, but can also be used for more general thematic grouping. For instance, an address is also a paragraph, as is a
part of a form, a byline, or a stanza in a poem.

Paragraphs in flow contentp131 are defined relative to what the document looks like without the ap238, insp311, delp312, and mapp442

elements complicating matters, since those elements, with their hybrid content models, can straddle paragraph boundaries, as shown
in the first two examples below.

Let view be a view of the DOM that replaces all ap238, insp311, delp312, and mapp442 elements in the document with their contentsp129.
Then, in view, for each run of sibling phrasing contentp132 nodes uninterrupted by other types of content, in an element that accepts

<p><object><param><ins><map>Apples</map></ins></object></p>

To check whether "Apples" is allowed inside the ap238 element, the content models are examined. The ap238 element's content
model is transparent, as is the mapp442 element's, as is the insp311 element's, as is the part of the objectp373 element's in which the
insp311 element is found. The objectp373 element is found in the pp211 element, whose content model is phrasing contentp132. Thus,
"Apples" is allowed, as text is phrasing content.

3.2.5.4 Paragraphs §p13

4

The term paragraphp134 as defined in this section is used for more than just the definition of the pp211 element. The paragraphp134

concept defined here is used to describe how to interpret documents. The pp211 element is merely one of several ways of marking
up a paragraphp134.

Note

In the following example, there are two paragraphs in a section. There is also a heading, which contains phrasing content that is
not a paragraph. Note how the comments and inter-element whitespacep129 do not form paragraphs.

<section>
<h1>Example of paragraphs</h1>
This is the first paragraph in this example.
<p>This is the second.</p>
<!-- This is not a paragraph. -->

</section>

Example

Generally, having elements straddle paragraph boundaries is best avoided. Maintaining such markup can be difficult.
Note

The following example takes the markup from the earlier example and puts insp311 and delp312 elements around some of the
markup to show that the text was changed (though in this case, the changes admittedly don't make much sense). Notice how this
example has exactly the same paragraphs as the previous one, despite the insp311 and delp312 elements — the insp311 element
straddles the heading and the first paragraph, and the delp312 element straddles the boundary between the two paragraphs.

<section>
<ins><h1>Example of paragraphs</h1>
This is the first paragraph in</ins> this example.
<p>This is the second.</p>
<!-- This is not a paragraph. -->

</section>

Example

134

content other than phrasing contentp132 as well as phrasing contentp132, let first be the first node of the run, and let last be the last
node of the run. For each such run that consists of at least one node that is neither embedded contentp132 nor inter-element
whitespacep129, a paragraph exists in the original DOM from immediately before first to immediately after last. (Paragraphs can thus
span across ap238, insp311, delp312, and mapp442 elements.)

Conformance checkers may warn authors of cases where they have paragraphs that overlap each other (this can happen with
objectp373, videop380, audiop384, and canvasp634 elements, and indirectly through elements in other namespaces that allow HTML to be
further embedded therein, like SVG svg or MathML math).

A paragraphp134 is also formed explicitly by pp211 elements.

The pp211 element can be used to wrap individual paragraphs when there would otherwise not be any content other than phrasing
content to separate the paragraphs from each other.

Note

In the following example, the link spans half of the first paragraph, all of the heading separating the two paragraphs, and half of
the second paragraph. It straddles the paragraphs and the heading.

<header>
Welcome!

This is home of...
<h1>The Falcons!</h1>
The Lockheed Martin multirole jet fighter aircraft!

This page discusses the F-16 Fighting Falcon's innermost secrets.

</header>

Here is another way of marking this up, this time showing the paragraphs explicitly, and splitting the one link element into three:

<header>
<p>Welcome! This is home of...</p>
<h1>The Falcons!</h1>
<p>The Lockheed Martin multirole jet
fighter aircraft! This page discusses the F-16 Fighting
Falcon's innermost secrets.</p>

</header>

Example

It is possible for paragraphs to overlap when using certain elements that define fallback content. For example, in the following
section:

<section>
<h1>My Cats</h1>
You can play with my cat simulator.
<object data="cats.sim">
To see the cat simulator, use one of the following links:

Download simulator file
Use online simulator

Alternatively, upgrade to the Mellblom Browser.

</object>
I'm quite proud of it.

</section>

There are five paragraphs:

Example

135

https://svgwg.org/svg2-draft/struct.html#SVGElement
https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel

The following attributes are common to and may be specified on all HTML elementsp44 (even those not defined in this specification):

• accesskeyp785

• autocapitalizep791

• autofocusp782

• contenteditablep787

• dirp142

• draggablep809

• enterkeyhintp793

• hiddenp765

• inputmodep792

• isp703

• itemidp735

• itempropp736

• itemrefp735

• itemscopep734

• itemtypep734

• langp140

• noncep92

• spellcheckp789

• stylep144

• tabindexp773

• titlep139

• translatep141

These attributes are only defined by this specification as attributes for HTML elementsp44. When this specification refers to elements
having these attributes, elements from namespaces that are not defined as having these attributes must not be considered as being
elements with these attributes.

1. The paragraph that says "You can play with my cat simulator. object I'm quite proud of it.", where object is the objectp373

element.
2. The paragraph that says "To see the cat simulator, use one of the following links:".
3. The paragraph that says "Download simulator file".
4. The paragraph that says "Use online simulator".
5. The paragraph that says "Alternatively, upgrade to the Mellblom Browser.".

The first paragraph is overlapped by the other four. A user agent that supports the "cats.sim" resource will only show the first one,
but a user agent that shows the fallback will confusingly show the first sentence of the first paragraph as if it was in the same
paragraph as the second one, and will show the last paragraph as if it was at the start of the second sentence of the first
paragraph.

To avoid this confusion, explicit pp211 elements can be used. For example:

<section>
<h1>My Cats</h1>
<p>You can play with my cat simulator.</p>
<object data="cats.sim">
<p>To see the cat simulator, use one of the following links:</p>

Download simulator file
Use online simulator

<p>Alternatively, upgrade to the Mellblom Browser.</p>

</object>
<p>I'm quite proud of it.</p>

</section>

For example, in the following XML fragment, the "bogus" element does not have a dirp142 attribute as defined in this specification,
despite having an attribute with the literal name "dir". Thus, the directionalityp142 of the inner-most spanp279 element is 'rtlp142 ',

Example

3.2.6 Global attributes §p13

6

MDN

136

DOM standard defines the user agent requirements for the class, id, and slot attributes for any element in any namespace.
[DOM]p1287

The classp137, idp137, and slotp137 attributes may be specified on all HTML elementsp44.

When specified on HTML elementsp44, the classp137 attribute must have a value that is a set of space-separated tokensp87 representing
the various classes that the element belongs to.

When specified on HTML elementsp44, the idp137 attribute value must be unique amongst all the IDs in the element's tree and must
contain at least one character. The value must not contain any ASCII whitespace.

Identifiers are opaque strings. Particular meanings should not be derived from the value of the idp137 attribute.

There are no conformance requirements for the slotp137 attribute specific to HTML elementsp44.

To enable assistive technology products to expose a more fine-grained interface than is otherwise possible with HTML elements and
attributes, a set of annotations for assistive technology productsp151 can be specified (the ARIA rolep63 and aria-*p63 attributes).
[ARIA]p1285

The following event handler content attributesp955 may be specified on any HTML elementp44:

• onabortp961

• onauxclickp961

• onblurp962*
• oncancelp961

• oncanplayp961

• oncanplaythroughp961

inherited from the divp237 element indirectly through the "bogus" element.

<div xmlns="http://www.w3.org/1999/xhtml" dir="rtl">
<bogus xmlns="https://example.net/ns" dir="ltr">

</bogus>
</div>

Assigning classes to an element affects class matching in selectors in CSS, the getElementsByClassName() method in the DOM,
and other such features.

There are no additional restrictions on the tokens authors can use in the classp137 attribute, but authors are encouraged to use
values that describe the nature of the content, rather than values that describe the desired presentation of the content.

Note

The idp137 attribute specifies its element's unique identifier (ID).

There are no other restrictions on what form an ID can take; in particular, IDs can consist of just digits, start with a digit, start with
an underscore, consist of just punctuation, etc.

An element's unique identifier can be used for a variety of purposes, most notably as a way to link to specific parts of a document
using fragments, as a way to target an element when scripting, and as a way to style a specific element from CSS.

Note

The slotp137 attribute is used to assign a slot to an element: an element with a slotp137 attribute is assigned to the slot created by
the slotp633 element whose namep633 attribute's value matches that slotp137 attribute's value — but only if that slotp633 element
finds itself in the shadow tree whose root's host has the corresponding slotp137 attribute value.

Note

✔ MDN

137

https://dom.spec.whatwg.org/#dom-document-getelementsbyclassname
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-documentfragment-host

• onchangep961

• onclickp961

• onclosep961

• oncontextmenup961

• oncopyp963

• oncuechangep961

• oncutp963

• ondblclickp961

• ondragp961

• ondragendp961

• ondragenterp961

• ondragleavep961

• ondragoverp961

• ondragstartp961

• ondropp961

• ondurationchangep961

• onemptiedp961

• onendedp961

• onerrorp962*
• onfocusp962*
• onformdatap961

• oninputp961

• oninvalidp961

• onkeydownp961

• onkeypressp961

• onkeyupp961

• onloadp962*
• onloadeddatap961

• onloadedmetadatap961

• onloadstartp961

• onmousedownp961

• onmouseenterp962

• onmouseleavep962

• onmousemovep962

• onmouseoutp962

• onmouseoverp962

• onmouseupp962

• onpastep963

• onpausep962

• onplayp962

• onplayingp962

• onprogressp962

• onratechangep962

• onresetp962

• onresizep962*
• onscrollp962*
• onsecuritypolicyviolationp962

• onseekedp962

• onseekingp962

• onselectp962

• onslotchangep962

• onstalledp962

• onsubmitp962

• onsuspendp962

• ontimeupdatep962

• ontogglep962

• onvolumechangep962

• onwaitingp962

• onwheelp962

Custom data attributesp145 (e.g. data-foldername or data-msgid) can be specified on any HTML elementp44, to store custom data,
state, annotations, and similar, specific to the page.

The attributes marked with an asterisk have a different meaning when specified on bodyp178 elements as those elements expose
event handlersp954 of the Windowp824 object with the same names.

Note

While these attributes apply to all elements, they are not useful on all elements. For example, only media elementsp387 will ever
receive a volumechangep440 event fired by the user agent.

Note

138

In HTML documents, elements in the HTML namespace may have an xmlns attribute specified, if, and only if, it has the exact value
"http://www.w3.org/1999/xhtml". This does not apply to XML documents.

XML also allows the use of the xml:spacep50 attribute in the XML namespace on any element in an XML document. This attribute has
no effect on HTML elementsp44, as the default behavior in HTML is to preserve whitespace. [XML]p1293

The title attribute representsp123 advisory information for the element, such as would be appropriate for a tooltip. On a link, this could
be the title or a description of the target resource; on an image, it could be the image credit or a description of the image; on a
paragraph, it could be a footnote or commentary on the text; on a citation, it could be further information about the source; on
interactive contentp132, it could be a label for, or instructions for, use of the element; and so forth. The value is text.

If this attribute is omitted from an element, then it implies that the titlep139 attribute of the nearest ancestor HTML elementp44 with a
titlep139 attribute set is also relevant to this element. Setting the attribute overrides this, explicitly stating that the advisory
information of any ancestors is not relevant to this element. Setting the attribute to the empty string indicates that the element has no
advisory information.

If the titlep139 attribute's value contains U+000A LINE FEED (LF) characters, the content is split into multiple lines. Each U+000A LINE
FEED (LF) character represents a line break.

Some elements, such as linkp157, abbrp250, and inputp493, define additional semantics for the titlep139 attribute beyond the semantics
described above.

The advisory information of an element is the value that the following algorithm returns, with the algorithm being aborted once a
value is returned. When the algorithm returns the empty string, then there is no advisory information.

1. If the element has a titlep139 attribute, then return its value.

2. If the element has a parent element, then return the parent element's advisory informationp139.

In HTML, the xmlns attribute has absolutely no effect. It is basically a talisman. It is allowed merely to make migration to and from
XML mildly easier. When parsed by an HTML parserp1079, the attribute ends up in no namespace, not the "http://www.w3.org/
2000/xmlns/" namespace like namespace declaration attributes in XML do.

Note

In XML, an xmlns attribute is part of the namespace declaration mechanism, and an element cannot actually have an xmlns
attribute in no namespace specified.

Note

There is no way to serialize the xml:spacep50 attribute on HTML elementsp44 in the text/htmlp1250 syntax.
Note

3.2.6.1 The titlep139 attribute §p13

9

Relying on the titlep139 attribute is currently discouraged as many user agents do not expose the attribute in an accessible
manner as required by this specification (e.g., requiring a pointing device such as a mouse to cause a tooltip to appear, which
excludes keyboard-only users and touch-only users, such as anyone with a modern phone or tablet).

Note

Caution is advised with respect to the use of newlines in titlep139 attributes.

For instance, the following snippet actually defines an abbreviation's expansion with a line break in it:

<p>My logs show that there was some interest in <abbr title="Hypertext
Transport Protocol">HTTP</abbr> today.</p>

Example

✔ MDN

139

https://dom.spec.whatwg.org/#html-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#xml-document
https://infra.spec.whatwg.org/#xml-namespace
https://dom.spec.whatwg.org/#xml-document

3. Return the empty string.

User agents should inform the user when elements have advisory informationp139, otherwise the information would not be discoverable.

The title IDL attribute must reflectp94 the titlep139 content attribute.

The lang attribute (in no namespace) specifies the primary language for the element's contents and for any of the element's attributes
that contain text. Its value must be a valid BCP 47 language tag, or the empty string. Setting the attribute to the empty string indicates
that the primary language is unknown. [BCP47]p1285

The lang attribute in the XML namespace is defined in XML. [XML]p1293

If these attributes are omitted from an element, then the language of this element is the same as the language of its parent element, if
any.

The langp140 attribute in no namespace may be used on any HTML elementp44.

The lang attribute in the XML namespacep140 may be used on HTML elementsp44 in XML documents, as well as elements in other
namespaces if the relevant specifications allow it (in particular, MathML and SVG allow lang attributes in the XML namespacep140 to be
specified on their elements). If both the langp140 attribute in no namespace and the lang attribute in the XML namespacep140 are
specified on the same element, they must have exactly the same value when compared in an ASCII case-insensitive manner.

Authors must not use the lang attribute in the XML namespacep140 on HTML elementsp44 in HTML documents. To ease migration to and
from XML, authors may specify an attribute in no namespace with no prefix and with the literal localname "xml:lang" on HTML
elementsp44 in HTML documents, but such attributes must only be specified if a langp140 attribute in no namespace is also specified,
and both attributes must have the same value when compared in an ASCII case-insensitive manner.

To determine the language of a node, user agents must look at the nearest ancestor element (including the element itself if the node
is an element) that has a lang attribute in the XML namespacep140 set or is an HTML elementp44 and has a langp140 in no namespace
attribute set. That attribute specifies the language of the node (regardless of its value).

If both the langp140 attribute in no namespace and the lang attribute in the XML namespacep140 are set on an element, user agents
must use the lang attribute in the XML namespacep140, and the langp140 attribute in no namespace must be ignoredp44 for the
purposes of determining the element's language.

If node's inclusive ancestors do not have either attribute set, but there is a pragma-set default languagep170 set, then that is the
language of the node. If there is no pragma-set default languagep170 set, then language information from a higher-level protocol (such
as HTTP), if any, must be used as the final fallback language instead. In the absence of any such language information, and in cases
where the higher-level protocol reports multiple languages, the language of the node is unknown, and the corresponding language tag
is the empty string.

If the resulting value is not a recognized language tag, then it must be treated as an unknown language having the given language
tag, distinct from all other languages. For the purposes of round-tripping or communicating with other services that expect language
tags, user agents should pass unknown language tags through unmodified, and tagged as being BCP 47 language tags, so that
subsequent services do not interpret the data as another type of language description. [BCP47]p1285

3.2.6.2 The langp140 and xml:langp140 attributes §p14

0

The attribute in no namespace with no prefix and with the literal localname "xml:lang" has no effect on language processing.
Note

Thus, for instance, an element with lang="xyzzy" would be matched by the selector :lang(xyzzy) (e.g. in CSS), but it would not
be matched by :lang(abcde), even though both are equally invalid. Similarly, if a web browser and screen reader working in
unison communicated about the language of the element, the browser would tell the screen reader that the language was "xyzzy",
even if it knew it was invalid, just in case the screen reader actually supported a language with that tag after all. Even if the screen
reader supported both BCP 47 and another syntax for encoding language names, and in that other syntax the string "xyzzy" was a
way to denote the Belarusian language, it would be incorrect for the screen reader to then start treating text as Belarusian,

Example

✔ MDN

✔ MDN

140

https://infra.spec.whatwg.org/#xml-namespace
https://dom.spec.whatwg.org/#xml-document
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#html-document
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor

If the resulting value is the empty string, then it must be interpreted as meaning that the language of the node is explicitly unknown.

User agents may use the element's language to determine proper processing or rendering (e.g. in the selection of appropriate fonts or
pronunciations, for dictionary selection, or for the user interfaces of form controls such as date pickers).

The lang IDL attribute must reflectp94 the langp140 content attribute in no namespace.

The translate attribute is an enumerated attributep68 that is used to specify whether an element's attribute values and the values of
its Text node children are to be translated when the page is localized, or whether to leave them unchanged.

The attribute's keywords are the empty string, yes, and no. The empty string and the yes keyword map to the yes state. The no
keyword maps to the no state. In addition, there is a third state, the inherit state, which is the missing value defaultp68 and the invalid
value defaultp68.

Each element (even non-HTML elements) has a translation mode, which is in either the translate-enabledp141 state or the no-
translatep141 state. If an HTML elementp44 's translatep141 attribute is in the yes state, then the element's translation modep141 is in the
translate-enabledp141 state; otherwise, if the element's translatep141 attribute is in the no state, then the element's translation
modep141 is in the no-translatep141 state. Otherwise, either the element's translatep141 attribute is in the inherit state, or the element
is not an HTML elementp44 and thus does not have a translatep141 attribute; in either case, the element's translation modep141 is in the
same state as its parent element's, if any, or in the translate-enabledp141 state, if the element is a document element.

When an element is in the translate-enabled state, the element's translatable attributesp141 and the values of its Text node children
are to be translated when the page is localized.

When an element is in the no-translate state, the element's attribute values and the values of its Text node children are to be left as-
is when the page is localized, e.g. because the element contains a person's name or a name of a computer program.

The following attributes are translatable attributes:

• abbrp468 on thp467 elements
• alt on areap444, imgp321, and inputp519 elements
• contentp165 on metap164 elements, if the namep166 attribute specifies a metadata name whose value is known to be

translatable
• downloadp284 on ap238 and areap443 elements
• label on optgroupp545, optionp546, and trackp386 elements
• langp140 on HTML elementsp44; must be "translated" to match the language used in the translation
• placeholder on inputp530 and textareap551 elements
• srcdocp362 on iframep361 elements; must be parsed and recursively processed
• stylep144 on HTML elementsp44; must be parsed and recursively processed (e.g. for the values of 'content' properties)
• titlep139 on all HTML elementsp44

• valuep497 on inputp493 elements with a typep495 attribute in the Buttonp521 state or the Reset Buttonp520 state

Other specifications may define other attributes that are also translatable attributesp141. For example, ARIA would define the aria-
label attribute as translatable.

The translate IDL attribute must, on getting, return true if the element's translation modep141 is translate-enabledp141, and false
otherwise. On setting, it must set the content attribute's value to "yes" if the new value is true, and set the content attribute's value to
"no" otherwise.

because "xyzzy" is not how Belarusian is described in BCP 47 codes (BCP 47 uses the code "be" for Belarusian).

3.2.6.3 The translatep141 attribute §p14

1

In this example, everything in the document is to be translated when the page is localized, except the sample keyboard input and
sample program output:

<!DOCTYPE HTML>

Example

MDN

141

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://drafts.csswg.org/css2/#content%E2%91%A0
https://w3c.github.io/aria/#aria-label
https://w3c.github.io/aria/#aria-label

The dirp142 attribute specifies the element's text directionality. The attribute is an enumerated attributep68 with the following keywords
and states:

The ltr keyword, which maps to the ltr state
Indicates that the contents of the element are explicitly directionally isolated left-to-right text.

The rtl keyword, which maps to the rtl state
Indicates that the contents of the element are explicitly directionally isolated right-to-left text.

The auto keyword, which maps to the auto state
Indicates that the contents of the element are explicitly directionally isolated text, but that the direction is to be determined
programmatically using the contents of the element (as described below).

The attribute has no invalid value defaultp68 and no missing value defaultp68.

The directionality of an element (any element, not just an HTML elementp44) is either 'ltr' or 'rtl', and is determined as per the first
appropriate set of steps from the following list:

↪ If the element's dirp142 attribute is in the ltrp142 state
↪ If the element is a document element and the dirp142 attribute is not in a defined state (i.e. it is not present or has

an invalid value)
↪ If the element is an inputp493 element whose typep495 attribute is in the Telephonep500 state, and the dirp142 attribute

is not in a defined state (i.e. it is not present or has an invalid value)
The directionalityp142 of the element is 'ltrp142 '.

↪ If the element's dirp142 attribute is in the rtlp142 state
The directionalityp142 of the element is 'rtlp142 '.

↪ If the element is an inputp493 element whose typep495 attribute is in the Textp499, Searchp499, Telephonep500, URLp501, or
Emailp502 state, and the dirp142 attribute is in the autop142 state

↪ If the element is a textareap548 element and the dirp142 attribute is in the autop142 state
If the element's valuep566 contains a character of bidirectional character type AL or R, and there is no character of bidirectional
character type L anywhere before it in the element's valuep566, then the directionalityp142 of the element is 'rtlp142 '. [BIDI]p1285

<html lang=en> <!-- default on the document element is translate=yes -->
<head>
<title>The Bee Game</title> <!-- implied translate=yes inherited from ancestors -->

</head>
<body>
<p>The Bee Game is a text adventure game in English.</p>
<p>When the game launches, the first thing you should do is type
<kbd translate=no>eat honey</kbd>. The game will respond with:</p>
<pre><samp translate=no>Yum yum! That was some good honey!</samp></pre>

</body>
</html>

3.2.6.4 The dir attribute §p14

2

The heuristic used by this state is very crude (it just looks at the first character with a strong directionality, in a manner
analogous to the Paragraph Level determination in the bidirectional algorithm). Authors are urged to only use this value as a
last resort when the direction of the text is truly unknown and no better server-side heuristic can be applied. [BIDI]p1285

Note

For textareap548 and prep216 elements, the heuristic is applied on a per-paragraph level.
Note

✔ MDN

142

https://dom.spec.whatwg.org/#document-element

Otherwise, if the element's valuep566 is not the empty string, or if the element is a document element, the directionalityp142 of
the element is 'ltrp142 '.

Otherwise, the directionalityp142 of the element is the same as the element's parent element's directionalityp142.

↪ If the element's dirp142 attribute is in the autop142 state
↪ If the element is a bdip278 element and the dirp142 attribute is not in a defined state (i.e. it is not present or has an

invalid value)
Find the first character in tree order that matches the following criteria:

• The character is from a Text node that is a descendant of the element whose directionalityp142 is being determined.

• The character is of bidirectional character type L, AL, or R. [BIDI]p1285

• The character is not in a Text node that has an ancestor element that is a descendant of the element whose
directionalityp142 is being determined and that is either:

◦ A bdip278 element.
◦ A scriptp614 element.
◦ A stylep174 element.
◦ A textareap548 element.
◦ An element with a dirp142 attribute in a defined state.

If such a character is found and it is of bidirectional character type AL or R, the directionalityp142 of the element is 'rtlp142 '.

If such a character is found and it is of bidirectional character type L, the directionalityp142 of the element is 'ltrp142 '.

Otherwise, if the element is a document element, the directionalityp142 of the element is 'ltrp142 '.

Otherwise, the directionalityp142 of the element is the same as the element's parent element's directionalityp142.

↪ If the element has a parent element and the dirp142 attribute is not in a defined state (i.e. it is not present or has an
invalid value)

The directionalityp142 of the element is the same as the element's parent element's directionalityp142.

The directionality of an attribute of an HTML elementp44, which is used when the text of that attribute is to be included in the
rendering in some manner, is determined as per the first appropriate set of steps from the following list:

↪ If the attribute is a directionality-capable attributep143 and the element's dirp142 attribute is in the autop142 state
Find the first character (in logical order) of the attribute's value that is of bidirectional character type L, AL, or R. [BIDI]p1285

If such a character is found and it is of bidirectional character type AL or R, the directionality of the attributep143 is 'rtlp142 '.

Otherwise, the directionality of the attributep143 is 'ltrp142 '.

↪ Otherwise
The directionality of the attributep143 is the same as the element's directionalityp142.

The following attributes are directionality-capable attributes:

• abbrp468 on thp467 elements
• alt on areap444, imgp321, and inputp519 elements
• contentp165 on metap164 elements, if the namep166 attribute specifies a metadata name whose value is primarily intended to be

human-readable rather than machine-readable
• label on optgroupp545, optionp546, and trackp386 elements
• placeholder on inputp530 and textareap551 elements

Since the dirp142 attribute is only defined for HTML elementsp44, it cannot be present on elements from other namespaces. Thus,
elements from other namespaces always just inherit their directionalityp142 from their parent element, or, if they don't have one,
default to 'ltrp142 '.

Note

This attribute has rendering requirements involving the bidirectional algorithm p150.
Note

143

https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#document-element

• titlep139 on all HTML elementsp44

The dir IDL attribute on an element must reflectp94 the dirp142 content attribute of that element, limited to only known valuesp95.

The dir IDL attribute on Documentp114 objects must reflectp94 the dirp142 content attribute of the html elementp117, if any, limited to
only known valuesp95. If there is no such element, then the attribute must return the empty string and do nothing on setting.

All HTML elementsp44 may have the stylep144 content attribute set. This is a style attribute as defined by CSS Style Attributes.
[CSSATTR]p1286

In user agents that support CSS, the attribute's value must be parsed when the attribute is added or has its value changed, according
to the rules given for style attributes. [CSSATTR]p1286

However, if the Should element's inline behavior be blocked by Content Security Policy? algorithm returns "Blocked" when executed
upon the attribute's element, "style attribute", and the attribute's value, then the style rules defined in the attribute's value must
not be applied to the element. [CSP]p1285

document . dirp144 [= value]
Returns the html elementp117 's dirp142 attribute's value, if any.
Can be set, to either "ltr", "rtl", or "auto" to replace the html elementp117 's dirp142 attribute's value.
If there is no html elementp117, returns the empty string and ignores new values.

For web developers (non-normative)

Authors are strongly encouraged to use the dirp142 attribute to indicate text direction rather than using CSS, since that way their
documents will continue to render correctly even in the absence of CSS (e.g. as interpreted by search engines).

Note

This markup fragment is of an IM conversation.

<p dir=auto class="u1"><bdi>Student</bdi>: How do you write "What's your name?" in
Arabic?</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: <p/>ما اسمك؟
<p dir=auto class="u1"><bdi>Student</bdi>: Thanks.</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: That's written "شكرًا".</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: Do you know how to write "Please"?</p>
<p dir=auto class="u1"><bdi>Student</bdi>: <right?</p ,"من فضلك"

Given a suitable style sheet and the default alignment styles for the pp211 element, namely to align the text to the start edge of the
paragraph, the resulting rendering could be as follows:

As noted earlier, the autop142 value is not a panacea. The final paragraph in this example is misinterpreted as being right-to-left
text, since it begins with an Arabic character, which causes the "right?" to be to the left of the Arabic text.

Example

3.2.6.5 The style attribute §p14

4

✔ MDN
✔ MDN

✔ MDN

144

https://drafts.csswg.org/css-style-attr/#style-attribute
https://drafts.csswg.org/css-style-attr/#style-attribute
https://w3c.github.io/webappsec-csp/#should-block-inline
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element

Documents that use stylep144 attributes on any of their elements must still be comprehensible and usable if those attributes were
removed.

The style IDL attribute is defined in CSS Object Model (CSSOM). [CSSOM]p1286

A custom data attribute is an attribute in no namespace whose name starts with the string "data-", has at least one character after
the hyphen, is XML-compatiblep44, and contains no ASCII upper alphas.

Custom data attributesp145 are intended to store custom data, state, annotations, and similar, private to the page or application, for
which there are no more appropriate attributes or elements.

These attributes are not intended for use by software that is not known to the administrators of the site that uses the attributes. For
generic extensions that are to be used by multiple independent tools, either this specification should be extended to provide the
feature explicitly, or a technology like microdatap729 should be used (with a standardized vocabulary).

In particular, using the stylep144 attribute to hide and show content, or to convey meaning that is otherwise not included in the
document, is non-conforming. (To hide and show content, use the hiddenp765 attribute.)

Note

element . stylep145

Returns a CSSStyleDeclaration object for the element's stylep144 attribute.

For web developers (non-normative)

In the following example, the words that refer to colors are marked up using the spanp279 element and the stylep144 attribute to
make those words show up in the relevant colors in visual media.

<p>My sweat suit is <span style="color: green; background:
transparent">green and my eyes are <span style="color: blue;
background: transparent">blue.</p>

Example

3.2.6.6 Embedding custom non-visible data with the data-*p145 attributes §p14

5

All attribute names on HTML elementsp44 in HTML documents get ASCII-lowercased automatically, so the restriction on ASCII
uppercase letters doesn't affect such documents.

Note

For instance, a site about music could annotate list items representing tracks in an album with custom data attributes containing
the length of each track. This information could then be used by the site itself to allow the user to sort the list by track length, or to
filter the list for tracks of certain lengths.

<li data-length="2m11s">Beyond The Sea
...

It would be inappropriate, however, for the user to use generic software not associated with that music site to search for tracks of a
certain length by looking at this data.

This is because these attributes are intended for use by the site's own scripts, and are not a generic extension mechanism for
publicly-usable metadata.

Example

Example

✔ MDN

145

https://drafts.csswg.org/cssom/#the-cssstyledeclaration-interface
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://dom.spec.whatwg.org/#html-document

Every HTML elementp44 may have any number of custom data attributesp145 specified, with any value.

Authors should carefully design such extensions so that when the attributes are ignored and any associated CSS dropped, the page is
still usable.

User agents must not derive any implementation behavior from these attributes or values. Specifications intended for user agents
must not define these attributes to have any meaningful values.

JavaScript libraries may use the custom data attributesp145, as they are considered to be part of the page on which they are used.
Authors of libraries that are reused by many authors are encouraged to include their name in the attribute names, to reduce the risk of
clashes. Where it makes sense, library authors are also encouraged to make the exact name used in the attribute names customizable,
so that libraries whose authors unknowingly picked the same name can be used on the same page, and so that multiple versions of a
particular library can be used on the same page even when those versions are not mutually compatible.

The dataset IDL attribute provides convenient accessors for all the data-*p145 attributes on an element. On getting, the datasetp146

IDL attribute must return a DOMStringMapp146 whose associated element is this element.

The DOMStringMapp146 interface is used for the datasetp146 attribute. Each DOMStringMapp146 has an associated element.

[Exposed=Window,
LegacyOverrideBuiltIns]

interface DOMStringMap {
getter DOMString (DOMString name);
[CEReactions] setter undefined (DOMString name, DOMString value);

Similarly, a page author could write markup that provides information for a translation tool that they are intending to use:

<p>The third claim covers the case of HTML markup.</p>

In this example, the "data-mytrans-de" attribute gives specific text for the MyTrans product to use when translating the phrase
"claim" to German. However, the standard translatep141 attribute is used to tell it that in all languages, "HTML" is to remain
unchanged. When a standard attribute is available, there is no need for a custom data attributep145 to be used.

In this example, custom data attributes are used to store the result of a feature detection for PaymentRequest, which could be
used in CSS to style a checkout page differently.

<script>
if ('PaymentRequest' in window) {

document.documentElement.dataset.hasPaymentRequest = '';
}

</script>

Here, the data-has-payment-request attribute is effectively being used as a boolean attributep67; it is enough to check the
presence of the attribute. However, if the author so wishes, it could later be populated with some value, maybe to indicate limited
functionality of the feature.

Example

For example, a library called "DoQuery" could use attribute names like data-doquery-range, and a library called "jJo" could use
attributes names like data-jjo-range. The jJo library could also provide an API to set which prefix to use (e.g.
J.setDataPrefix('j2'), making the attributes have names like data-j2-range).

Example

element . datasetp146

Returns a DOMStringMapp146 object for the element's data-*p145 attributes.
Hyphenated names become camel-cased. For example, data-foo-bar="" becomes element.dataset.fooBar.

For web developers (non-normative)

IDL

✔ MDN

✔ MDN

146

https://w3c.github.io/payment-request/#dom-paymentrequest
https://heycam.github.io/webidl/#LegacyOverrideBuiltIns

[CEReactions] deleter undefined (DOMString name);
};

To get a DOMStringMap's name-value pairs, run the following algorithm:

1. Let list be an empty list of name-value pairs.

2. For each content attribute on the DOMStringMapp146 's associated elementp146 whose first five characters are the string
"data-" and whose remaining characters (if any) do not include any ASCII upper alphas, in the order that those attributes are
listed in the element's attribute list, add a name-value pair to list whose name is the attribute's name with the first five
characters removed and whose value is the attribute's value.

3. For each name in list, for each U+002D HYPHEN-MINUS character (-) in the name that is followed by an ASCII lower alpha,
remove the U+002D HYPHEN-MINUS character (-) and replace the character that followed it by the same character converted
to ASCII uppercase.

4. Return list.

The supported property names on a DOMStringMapp146 object at any instant are the names of each pair returned from getting the
DOMStringMap's name-value pairsp147 at that instant, in the order returned.

To determine the value of a named property name for a DOMStringMapp146, return the value component of the name-value pair whose
name component is name in the list returned from getting the DOMStringMap's name-value pairsp147.

To set the value of a new named property or set the value of an existing named property for a DOMStringMapp146, given a property
name name and a new value value, run the following steps:

1. If name contains a U+002D HYPHEN-MINUS character (-) followed by an ASCII lower alpha, then throw a "SyntaxError"
DOMException.

2. For each ASCII upper alpha in name, insert a U+002D HYPHEN-MINUS character (-) before the character and replace the
character with the same character converted to ASCII lowercase.

3. Insert the string data- at the front of name.

4. If name does not match the XML Name production, throw an "InvalidCharacterError" DOMException.

5. Set an attribute value for the DOMStringMapp146 's associated elementp146 using name and value.

To delete an existing named property name for a DOMStringMapp146, run the following steps:

1. For each ASCII upper alpha in name, insert a U+002D HYPHEN-MINUS character (-) before the character and replace the
character with the same character converted to ASCII lowercase.

2. Insert the string data- at the front of name.

3. Remove an attribute by name given name and the DOMStringMapp146 's associated elementp146.

This algorithm will only get invoked by Web IDL for names that are given by the earlier algorithm for getting the DOMStringMap's
name-value pairsp147. [WEBIDL]p1292

Note

If a web page wanted an element to represent a space ship, e.g. as part of a game, it would have to use the classp137 attribute
along with data-*p145 attributes:

<div class="spaceship" data-ship-id="92432"
data-weapons="laser 2" data-shields="50%"
data-x="30" data-y="10" data-z="90">

<button class="fire"
onclick="spaceships[this.parentNode.dataset.shipId].fire()">

Fire
</button>

Example

147

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://dom.spec.whatwg.org/#concept-element-attribute
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-uppercase
https://infra.spec.whatwg.org/#ascii-uppercase
https://heycam.github.io/webidl/#dfn-supported-property-names
https://heycam.github.io/webidl/#dfn-determine-the-value-of-a-named-property
https://heycam.github.io/webidl/#dfn-set-the-value-of-a-new-named-property
https://heycam.github.io/webidl/#dfn-set-the-value-of-an-existing-named-property
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lowercase
https://www.w3.org/TR/xml/#NT-Name
https://heycam.github.io/webidl/#invalidcharactererror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://heycam.github.io/webidl/#dfn-delete-an-existing-named-property
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lowercase
https://dom.spec.whatwg.org/#concept-element-attributes-remove

The innerText getter steps are:

1. If this is not being renderedp1192 or if the user agent is a non-CSS user agent, then return this's descendant text content.

2. Let results be a new empty list.

3. For each child node node of this:

1. Let current be the list resulting in running the inner text collection stepsp149 with node. Each item in results will
either be a string or a positive integer (a required line break count).

</div>

Notice how the hyphenated attribute name becomes camel-cased in the API.

Given the following fragment and elements with similar constructions:

<img class="tower" id="tower5" data-x="12" data-y="5"
data-ai="robotarget" data-hp="46" data-ability="flames"
src="towers/rocket.png" alt="Rocket Tower">

...one could imagine a function splashDamage() that takes some arguments, the first of which is the element to process:

function splashDamage(node, x, y, damage) {
if (node.classList.contains('tower') && // checking the 'class' attribute

node.dataset.x == x && // reading the 'data-x' attribute
node.dataset.y == y) { // reading the 'data-y' attribute

var hp = parseInt(node.dataset.hp); // reading the 'data-hp' attribute
hp = hp - damage;
if (hp < 0) {

hp = 0;
node.dataset.ai = 'dead'; // setting the 'data-ai' attribute
delete node.dataset.ability; // removing the 'data-ability' attribute

}
node.dataset.hp = hp; // setting the 'data-hp' attribute

}
}

Example

element . innerTextp148 [= value]
Returns the element's text content "as rendered".
Can be set, to replace the element's children with the given value, but with line breaks converted to brp280 elements.

For web developers (non-normative)

This step can produce surprising results, as when the innerTextp148 getter is invoked on an element not being
renderedp1192, its text contents are returned, but when accessed on an element that is being renderedp1192, all of its
children that are not being renderedp1192 have their text contents ignored.

Note

Intuitively, a required line break count item means that a certain number of line breaks appear at that point,
but they can be collapsed with the line breaks induced by adjacent required line break count items,
reminiscent to CSS margin-collapsing.

Note

3.2.7 The innerTextp148 getter and setter §p14

8

✔ MDN

148

https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://infra.spec.whatwg.org/#list
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#string

2. For each item item in current, append item to results.

4. Remove any items from results that are the empty string.

5. Remove any runs of consecutive required line break count items at the start or end of results.

6. Replace each remaining run of consecutive required line break count items with a string consisting of as many U+000A LINE
FEED (LF) characters as the maximum of the values in the required line break count items.

7. Return the concatenation of the string items in results.

The inner text collection steps, given a node node, are as follows:

1. Let items be the result of running the inner text collection stepsp149 with each child node of node in tree order, and then
concatenating the results to a single list.

2. If node's computed value of 'visibility' is not 'visible', then return items.

3. If node is not being renderedp1192, then return items. For the purpose of this step, the following elements must act as
described if the computed value of the 'display' property is not 'none':

◦ selectp537 elements have an associated non-replaced inline CSS box whose child boxes include only those of
optgroupp544 and optionp545 element child nodes;

◦ optgroupp544 elements have an associated non-replaced block-level CSS box whose child boxes include only those
of optionp545 element child nodes; and

◦ optionp545 element have an associated non-replaced block-level CSS box whose child boxes are as normal for non-
replaced block-level CSS boxes.

4. If node is a Text node, then for each CSS text box produced by node, in content order, compute the text of the box after
application of the CSS 'white-space' processing rules and 'text-transform' rules, set items to the list of the resulting strings,
and return items. The CSS 'white-space' processing rules are slightly modified: collapsible spaces at the end of lines are
always collapsed, but they are only removed if the line is the last line of the block, or it ends with a brp280 element. Soft
hyphens should be preserved. [CSSTEXT]p1287

5. If node is a brp280 element, then append a string containing a single U+000A LINE FEED (LF) character to items.

6. If node's computed value of 'display' is 'table-cell', and node's CSS box is not the last 'table-cell' box of its enclosing 'table-
row' box, then append a string containing a single U+0009 CHARACTER TABULATION (tab) character to items.

7. If node's computed value of 'display' is 'table-row', and node's CSS box is not the last 'table-row' box of the nearest ancestor
'table' box, then append a string containing a single U+000A LINE FEED (LF) character to items.

8. If node is a pp211 element, then append 2 (a required line break count) at the beginning and end of items.

9. If node's used value of 'display' is block-level or 'table-caption', then append 1 (a required line break count) at the beginning
and end of items. [CSSDISPLAY]p1286

10. Return items.

This algorithm is amenable to being generalized to work on ranges. Then we can use it as the basis for Selection's stringifier and
maybe expose it directly on ranges. See Bugzilla bug 10583.

The innerTextp148 setter steps are:

1. Let document be this's node document.

items can be non-empty due to 'display:contents'.
Note

Floats and absolutely-positioned elements fall into this category.
Note

Note that descendant nodes of most replaced elements (e.g., textareap548, inputp493, and videop380 — but not buttonp535) are not
rendered by CSS, strictly speaking, and therefore have no CSS boxes for the purposes of this algorithm.

Note

149

https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-remove
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#list
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#propdef-visibility
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-display/#css-box
https://dom.spec.whatwg.org/#interface-text
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#text-transform-property
https://infra.spec.whatwg.org/#list
https://drafts.csswg.org/css-text/#white-space-property
https://infra.spec.whatwg.org/#list-append
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-tables/#table-cell
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-tables/#table-cell
https://drafts.csswg.org/css-tables/#table-row
https://drafts.csswg.org/css-tables/#table-row
https://infra.spec.whatwg.org/#list-append
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-tables/#table-row
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-tables/#table-row
https://drafts.csswg.org/css-tables/#table
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#block-level
https://drafts.csswg.org/css-tables/#table-caption
https://infra.spec.whatwg.org/#list-append
https://drafts.csswg.org/css-display/#css-box
https://dom.spec.whatwg.org/#concept-range
https://w3c.github.io/selection-api/#selection-interface
https://dom.spec.whatwg.org/#concept-range
https://www.w3.org/Bugs/Public/show_bug.cgi?id=10583
https://heycam.github.io/webidl/#this
https://dom.spec.whatwg.org/#concept-node-document

2. Let fragment be a new DocumentFragment object whose node document is document.

3. Let input be the given value.

4. Let position be a pointer into input, initially pointing at the start of the string.

5. Let text be the empty string.

6. While position is not past the end of input:

1. Collect a sequence of code points that are not U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters from input given position. Set text to the collected characters.

2. If text is not the empty string, then append a new Text node whose data is text and node document is document
to fragment.

3. While position is not past the end of input, and the character at position is either a U+000A LINE FEED (LF) or
U+000D CARRIAGE RETURN (CR) character:

1. If the character at position is a U+000D CARRIAGE RETURN (CR) character and the next character is a
U+000A LINE FEED (LF) character, then advance position to the next character in input.

2. Advance position to the next character in input.

3. Append the result of creating an element given document, brp280, and the HTML namespace to fragment.

7. Replace all with fragment within this.

Text contentp132 in HTML elementsp44 with Text nodes in their contentsp129, and text in attributes of HTML elementsp44 that allow free-
form text, may contain characters in the ranges U+202A to U+202E and U+2066 to U+2069 (the bidirectional-algorithm formatting
characters). [BIDI]p1285

User agents must implement the Unicode bidirectional algorithm to determine the proper ordering of characters when rendering
documents and parts of documents. [BIDI]p1285

The mapping of HTML to the Unicode bidirectional algorithm must be done in one of three ways. Either the user agent must implement
CSS, including in particular the CSS 'unicode-bidi', 'direction', and 'content' properties, and must have, in its user agent style sheet, the
rules using those properties given in this specification's renderingp1192 section, or, alternatively, the user agent must act as if it
implemented just the aforementioned properties and had a user agent style sheet that included all the aforementioned rules, but
without letting style sheets specified in documents override them, or, alternatively, the user agent must implement another styling
language with equivalent semantics. [CSSGC]p1286

The following elements and attributes have requirements defined by the renderingp1192 section that, due to the requirements in this
section, are requirements on all user agents (not just those that support the suggested default renderingp47):

• dirp142 attribute
• bdip278 element
• bdop279 element
• brp280 element
• prep216 element
• textareap548 element
• wbrp281 element

3.2.8.1 Authoring conformance criteria for bidirectional-algorithm formatting characters §p15

0

Authors are encouraged to use the dirp142 attribute, the bdop279 element, and the bdip278 element, rather than maintaining the
bidirectional-algorithm formatting characters manually. The bidirectional-algorithm formatting characters interact poorly with CSS.

Note

3.2.8.2 User agent conformance criteria §p15

0

3.2.8 Requirements relating to the bidirectional algorithm §p15

0

150

https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-replace-all
https://heycam.github.io/webidl/#this
https://dom.spec.whatwg.org/#interface-text
https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css2/#content%E2%91%A0

User agent requirements for implementing Accessibility API semantics on HTML elementsp44 are defined in HTML Accessibility API
Mappings. [HTMLAAM]p1288

Conformance checker requirements for checking use of ARIA rolep63 and aria-*p63 attributes on HTML elementsp44 are defined in ARIA
in HTML. [ARIAHTML]p1285

3.2.9 Requirements related to ARIA and to platform accessibility APIs §p15

1

151

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As document's document element.
Wherever a subdocument fragment is allowed in a compound document.

Content modelp128:
A headp153 element followed by a bodyp178 element.

Tag omission in text/htmlp128:
An htmlp152 element's start tagp1069 can be omitted if the first thing inside the htmlp152 element is not a commentp1078.
An htmlp152 element's end tagp1070 can be omitted if the htmlp152 element is not immediately followed by a commentp1078.

Content attributesp128:
Global attributesp136

manifestp152 — Application cache manifestp892

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLHtmlElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The htmlp152 element representsp123 the root of an HTML document.

Authors are encouraged to specify a langp140 attribute on the root htmlp152 element, giving the document's language. This aids speech
synthesis tools to determine what pronunciations to use, translation tools to determine what rules to use, and so forth.

The manifest attribute gives the address of the document's application cachep892 manifestp892, if there is one. If the attribute is
present, the attribute's value must be a valid non-empty URL potentially surrounded by spacesp88.

The manifestp152 attribute is part of the legacy "offline web applicationsp890" feature, which is in the process of being removed
from the web platform. (This is a long process that takes many years.) Using the manifestp152 attribute at this time is highly
discouraged. Use service workers instead. [SW]p1291

The manifestp152 attribute only has an effectp907 during the early stages of document load. Changing the attribute dynamically thus
has no effect (and thus, no DOM API is provided for this attribute).

4 The elements of HTML §p15

2

4.1 The document element §p15

2

For the purposes of application cache selectionp907, later basep155 elements cannot affect the parsing of URLsp89 in manifestp152

attributes, as the attributes are processed before those elements are seen.

Note

The window.applicationCachep910 IDL attribute provides scripted access to the offline application cachep892 mechanism.
Note

IDL

4.1.1 The html element §p15

2

✔ MDN

✔ MDN

152

https://dom.spec.whatwg.org/#document-element
https://w3c.github.io/html-aria/#el-html
https://w3c.github.io/html-aam/#el-html

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As the first element in an htmlp152 element.

Content modelp128:
If the document is an iframe srcdoc documentp362 or if title information is available from a higher-level protocol: Zero or more
elements of metadata contentp131, of which no more than one is a titlep154 element and no more than one is a basep155

element.
Otherwise: One or more elements of metadata contentp131, of which exactly one is a titlep154 element and no more than one is
a basep155 element.

Tag omission in text/htmlp128:
A headp153 element's start tagp1069 can be omitted if the element is empty, or if the first thing inside the headp153 element is an
element.
A headp153 element's end tagp1070 can be omitted if the headp153 element is not immediately followed by ASCII whitespace or a
commentp1078.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLHeadElement : HTMLElement {

[HTMLConstructor] constructor();
};

The headp153 element representsp123 a collection of metadata for the Documentp114.

The htmlp152 element in the following example declares that the document's language is English.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Swapping Songs</title>
</head>
<body>
<h1>Swapping Songs</h1>
<p>Tonight I swapped some of the songs I wrote with some friends, who
gave me some of the songs they wrote. I love sharing my music.</p>
</body>
</html>

Example

4.2 Document metadata §p15

3

The collection of metadata in a headp153 element can be large or small. Here is an example of a very short one:

<!doctype html>
<html lang=en>

Example

IDL

4.2.1 The head element §p15

3

✔ MDN

✔ MDN

153

https://infra.spec.whatwg.org/#ascii-whitespace
https://w3c.github.io/html-aria/#el-head
https://w3c.github.io/html-aam/#el-head

Categoriesp128:
Metadata contentp131.

Contexts in which this element can be usedp128:
In a headp153 element containing no other titlep154 elements.

Content modelp128:
Textp132 that is not inter-element whitespacep129.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTitleElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString text;
};

The titlep154 element representsp123 the document's title or name. Authors should use titles that identify their documents even when
they are used out of context, for example in a user's history or bookmarks, or in search results. The document's title is often different

<head>
<title>A document with a short head</title>

</head>
<body>
...

Here is an example of a longer one:

<!DOCTYPE HTML>
<HTML LANG="EN">
<HEAD>
<META CHARSET="UTF-8">
<BASE HREF="https://www.example.com/">
<TITLE>An application with a long head</TITLE>
<LINK REL="STYLESHEET" HREF="default.css">
<LINK REL="STYLESHEET ALTERNATE" HREF="big.css" TITLE="Big Text">
<SCRIPT SRC="support.js"></SCRIPT>
<META NAME="APPLICATION-NAME" CONTENT="Long headed application">

</HEAD>
<BODY>
...

The titlep154 element is a required child in most situations, but when a higher-level protocol provides title information, e.g. in the
Subject line of an email when HTML is used as an email authoring format, the titlep154 element can be omitted.

Note

IDL

4.2.2 The title element §p15

4

✔ MDN

✔ MDN

154

https://w3c.github.io/html-aria/#el-title
https://w3c.github.io/html-aam/#el-title

from its first heading, since the first heading does not have to stand alone when taken out of context.

There must be no more than one titlep154 element per document.

The text attribute's getter must return this titlep154 element's child text content.

The textp155 attribute's setter must string replace all with the given value within this titlep154 element.

The string to use as the document's title is given by the document.titlep117 IDL attribute.

User agents should use the document's title when referring to the document in their user interface. When the contents of a titlep154

element are used in this way, the directionalityp142 of that titlep154 element should be used to set the directionality of the document's
title in the user interface.

Categoriesp128:
Metadata contentp131.

Contexts in which this element can be usedp128:
In a headp153 element containing no other basep155 elements.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

hrefp156 — Document base URLp88

targetp156 — Default browsing contextp811 for hyperlinkp283 navigationp866 and form submissionp595

If it's reasonable for the Documentp114 to have no title, then the titlep154 element is probably not required. See the headp153

element's content model for a description of when the element is required.

Note

title . textp155 [= value]
Returns the child text content of the element.
Can be set, to replace the element's children with the given value.

For web developers (non-normative)

Here are some examples of appropriate titles, contrasted with the top-level headings that might be used on those same pages.

<title>Introduction to The Mating Rituals of Bees</title>
...

<h1>Introduction</h1>
<p>This companion guide to the highly successful
<cite>Introduction to Medieval Bee-Keeping</cite> book is...

The next page might be a part of the same site. Note how the title describes the subject matter unambiguously, while the first
heading assumes the reader knows what the context is and therefore won't wonder if the dances are Salsa or Waltz:

<title>Dances used during bee mating rituals</title>
...

<h1>The Dances</h1>

Example

4.2.3 The base element §p15

5

✔ MDN

✔ MDN

155

https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#string-replace-all

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLBaseElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString href;
[CEReactions] attribute DOMString target;

};

The basep155 element allows authors to specify the document base URLp88 for the purposes of parsing URLsp89, and the name of the
default browsing contextp811 for the purposes of following hyperlinksp290. The element does not representp123 any content beyond this
information.

There must be no more than one basep155 element per document.

A basep155 element must have either an hrefp156 attribute, a targetp156 attribute, or both.

The href content attribute, if specified, must contain a valid URL potentially surrounded by spacesp88.

A basep155 element, if it has an hrefp156 attribute, must come before any other elements in the tree that have attributes defined as
taking URLs, except the htmlp152 element (its manifestp152 attribute isn't affected by basep155 elements).

The target attribute, if specified, must contain a valid browsing context name or keywordp819, which specifies which browsing
contextp811 is to be used as the default when hyperlinksp283 and formsp486 in the Documentp114 cause navigationp866.

A basep155 element, if it has a targetp156 attribute, must come before any elements in the tree that represent hyperlinksp283.

To get an element's target, given an ap238, areap443, or formp486 element element, run these steps:

1. If element has a target attribute, then return that attribute's value.

2. If element's node document contains a basep155 element with a targetp156 attribute, then return the value of the targetp156

attribute of the first such basep155 element.

3. Return the empty string.

A basep155 element that is the first basep155 element with an hrefp156 content attribute in a document tree has a frozen base URL. The
frozen base URLp156 must be immediatelyp42 setp156 for an element whenever any of the following situations occur:

• The basep155 element becomes the first basep155 element in tree order with an hrefp156 content attribute in its Documentp114.
• The basep155 element is the first basep155 element in tree order with an hrefp156 content attribute in its Documentp114, and its

hrefp156 content attribute is changed.

To set the frozen base URL for an element element:

1. Let document be element's node document.

2. Let urlRecord be the result of parsing the value of element's hrefp156 content attribute with document's fallback base URLp88,
and document's character encoding. (Thus, the basep155 element isn't affected by itself.)

3. Set element's frozen base URLp156 to document's fallback base URLp88, if urlRecord is failure or running Is base allowed for

If there are multiple basep155 elements with hrefp156 attributes, all but the first are ignored.
Note

If there are multiple basep155 elements with targetp156 attributes, all but the first are ignored.
Note

IDL

156

https://w3c.github.io/html-aria/#el-base
https://w3c.github.io/html-aam/#el-base
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-parser
https://dom.spec.whatwg.org/#concept-document-encoding
https://w3c.github.io/webappsec-csp/#allow-base-for-document

Document? on the resulting URL recordp89 and document returns "Blocked", and to urlRecord otherwise.

The href IDL attribute, on getting, must return the result of running the following algorithm:

1. Let document be element's node document.

2. Let url be the value of the hrefp156 attribute of this element, if it has one, and the empty string otherwise.

3. Let urlRecord be the result of parsing url with document's fallback base URLp88, and document's character encoding. (Thus,
the basep155 element isn't affected by other basep155 elements or itself.)

4. If urlRecord is failure, return url.

5. Return the serialization of urlRecord.

The hrefp157 IDL attribute, on setting, must set the hrefp156 content attribute to the given new value.

The target IDL attribute must reflectp94 the content attribute of the same name.

Categoriesp128:
Metadata contentp131.
If the element is allowed in the bodyp159: flow contentp131.
If the element is allowed in the bodyp159: phrasing contentp132.

Contexts in which this element can be usedp128:
Where metadata contentp131 is expected.
In a noscriptp627 element that is a child of a headp153 element.
If the element is allowed in the bodyp159: where phrasing contentp132 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

hrefp158 — Address of the hyperlinkp283

crossoriginp158 — How the element handles crossorigin requests
relp158 — Relationship between the document containing the hyperlinkp283 and the destination resource
mediap159 — Applicable media
integrityp159 — Integrity metadata used in Subresource Integrity checks [SRI]p1291

hreflangp159 — Language of the linked resource
typep159 — Hint for the type of the referenced resource

In this example, a basep155 element is used to set the document base URLp88:

<!DOCTYPE html>
<html lang="en">

<head>
<title>This is an example for the <base> element</title>
<base href="https://www.example.com/news/index.html">

</head>
<body>

<p>Visit the archives.</p>
</body>

</html>

The link in the above example would be a link to "https://www.example.com/news/archives.html".

Example

4.2.4 The link element §p15

7

✔ MDN

✔ MDN

157

https://w3c.github.io/webappsec-csp/#allow-base-for-document
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-parser
https://dom.spec.whatwg.org/#concept-document-encoding
https://url.spec.whatwg.org/#concept-url-serializer

referrerpolicyp159 — Referrer policy for fetches initiated by the element
sizesp160 — Sizes of the icons (for relp158="iconp298")
imagesrcsetp160 — Images to use in different situations, e.g., high-resolution displays, small monitors, etc. (for
relp158="preloadp305")
imagesizesp160 — Image sizes for different page layouts (for relp158="preloadp305")
asp161 — Potential destination for a preload request (for relp158="preloadp305" and relp158="modulepreloadp301")
colorp161 — Color to use when customizing a site's icon (for relp158="mask-icon")
disabledp161 — Whether the link is disabled
Also, the titlep159 attribute has special semanticsp159 on this element: Title of the link; CSS style sheet set name.

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLLinkElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString href;
[CEReactions] attribute DOMString? crossOrigin;
[CEReactions] attribute DOMString rel;
[CEReactions] attribute DOMString as; // (default "")
[SameObject, PutForwards=value] readonly attribute DOMTokenList relList;
[CEReactions] attribute DOMString media;
[CEReactions] attribute DOMString integrity;
[CEReactions] attribute DOMString hreflang;
[CEReactions] attribute DOMString type;
[SameObject, PutForwards=value] readonly attribute DOMTokenList sizes;
[CEReactions] attribute USVString imageSrcset;
[CEReactions] attribute DOMString imageSizes;
[CEReactions] attribute DOMString referrerPolicy;
[CEReactions] attribute boolean disabled;

// also has obsolete members
};
HTMLLinkElement includes LinkStyle;

The linkp157 element allows authors to link their document to other resources.

The address of the link(s) is given by the href attribute. If the hrefp158 attribute is present, then its value must be a valid non-empty
URL potentially surrounded by spacesp88. One or both of the hrefp158 or imagesrcsetp160 attributes must be present.

If both the hrefp158 and imagesrcsetp160 attributes are absent, then the element does not define a link.

The crossorigin attribute is a CORS settings attributep91. It is intended for use with external resource linksp283.

The types of link indicated (the relationships) are given by the value of the rel attribute, which, if present, must have a value that is a
unordered set of unique space-separated tokensp87. The allowed keywords and their meaningsp294 are defined in a later section. If the
relp158 attribute is absent, has no keywords, or if none of the keywords used are allowed according to the definitions in this
specification, then the element does not create any links.

relp158 's supported tokens are the keywords defined in HTML link typesp294 which are allowed on linkp157 elements, impact the
processing model, and are supported by the user agent. The possible supported tokens are alternatep295, dns-prefetchp298, iconp298,
manifestp301, modulepreloadp301, nextp309, pingbackp304, preconnectp304, prefetchp305, preloadp305, prerenderp305, searchp305, and
stylesheetp306. relp158 's supported tokens must only include the tokens from this list that the user agent implements the processing
model for.

Theoretically a user agent could support the processing model for the canonicalp297 keyword — if it were a search engine that
executed JavaScript. But in practice that's quite unlikely. So in most cases, canonicalp297 ought not be included in relp158 's

Note

IDL

✔ MDN

158

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-potential-destination
https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://w3c.github.io/html-aria/#el-link
https://w3c.github.io/html-aam/#el-link
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://drafts.csswg.org/cssom/#the-linkstyle-interface
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens

A linkp157 element must have either a relp158 attribute or an itempropp736 attribute, but not both.

If a linkp157 element has an itempropp736 attribute, or has a relp158 attribute that contains only keywords that are body-okp294, then the
element is said to be allowed in the body. This means that the element can be used where phrasing contentp132 is expected.

Two categories of links can be created using the linkp157 element: links to external resourcesp283 and hyperlinksp283. The link types
sectionp294 defines whether a particular link type is an external resource or a hyperlink. One linkp157 element can create multiple links
(of which some might be external resource linksp283 and some might be hyperlinksp283); exactly which and how many links are created
depends on the keywords given in the relp158 attribute. User agents must process the links on a per-link basis, not a per-element basis.

The exact behavior for links to external resourcesp283 depends on the exact relationship, as defined for the relevant link typep294.

The media attribute says which media the resource applies to. The value must be a valid media query listp88.

The integrity attribute represents the integrity metadata for requests which this element is responsible for. The value is text. The
attribute must only be specified on linkp157 elements that have a relp158 attribute that contains the stylesheetp306, preloadp305, or
modulepreloadp301 keyword. [SRI]p1291

The hreflang attribute on the linkp157 element has the same semantics as the hreflang attribute on the a elementp284.

The type attribute gives the MIME type of the linked resource. It is purely advisory. The value must be a valid MIME type string.

For external resource linksp283, the typep159 attribute is used as a hint to user agents so that they can avoid fetching resources they do
not support.

The referrerpolicy attribute is a referrer policy attributep91. It is intended for use with external resource linksp283, where it helps set
the referrer policy used when fetching and processing the linked resourcep163. [REFERRERPOLICY]p1290.

The title attribute gives the title of the link. With one exception, it is purely advisory. The value is text. The exception is for style
sheet links that are in a document tree, for which the titlep159 attribute defines CSS style sheet sets.

supported tokens.

If the relp158 attribute is used, the element can only sometimes be used in the bodyp178 of the page. When used with the
itempropp736 attribute, the element can be used both in the headp153 element and in the bodyp178 of the page, subject to the
constraints of the microdata model.

Note

Each link created for a linkp157 element is handled separately. For instance, if there are two linkp157 elements with
rel="stylesheet", they each count as a separate external resource, and each is affected by its own attributes independently.
Similarly, if a single linkp157 element has a relp158 attribute with the value next stylesheet, it creates both a hyperlinkp283 (for
the nextp309 keyword) and an external resource linkp283 (for the stylesheetp306 keyword), and they are affected by other attributes
(such as mediap159 or titlep159) differently.

Note

For example, the following linkp157 element creates two hyperlinksp283 (to the same page):

<link rel="author license" href="/about">

The two links created by this element are one whose semantic is that the target page has information about the current page's
author, and one whose semantic is that the target page has information regarding the license under which the current page is
provided.

Example

Hyperlinksp283 created with the linkp157 element and its relp158 attribute apply to the whole document. This contrasts with the
relp284 attribute of ap238 and areap443 elements, which indicates the type of a link whose context is given by the link's location
within the document.

Note

159

https://dom.spec.whatwg.org/#concept-supported-tokens
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://dom.spec.whatwg.org/#in-a-document-tree
https://drafts.csswg.org/cssom/#css-style-sheet-set

The imagesrcset attribute may be present, and is a srcset attributep335.

The imagesrcsetp160 and hrefp158 attributes (if width descriptorsp335 are not used) together contribute the image sourcesp337 to the
source setp337.

If the imagesrcsetp160 attribute is present and has any image candidate stringsp335 using a width descriptorp335, the imagesizes
attribute must also be present, and is a sizes attributep335. The imagesizesp160 attribute contributes the source sizep337 to the source
setp337.

The imagesrcsetp160 and imagesizesp160 attributes must only be specified on linkp157 elements that have both a relp158 attribute that
specifies the preloadp305 keyword, as well as an asp161 attribute in the "image" state.

The sizes attribute gives the sizes of icons for visual media. Its value, if present, is merely advisory. User agents may use the value to
decide which icon(s) to use if multiple icons are available. If specified, the attribute must have a value that is an unordered set of
unique space-separated tokensp87 which are ASCII case-insensitive. Each value must be either an ASCII case-insensitive match for the
string "anyp299", or a value that consists of two valid non-negative integersp69 that do not have a leading U+0030 DIGIT ZERO (0)
character and that are separated by a single U+0078 LATIN SMALL LETTER X or U+0058 LATIN CAPITAL LETTER X character. The
attribute must only be specified on linkp157 elements that have a relp158 attribute that specifies the iconp298 keyword or the apple-
touch-icon keyword.

The titlep159 attribute on linkp157 elements differs from the global titlep139 attribute of most other elements in that a link
without a title does not inherit the title of the parent element: it merely has no title.

Note

These attributes allow preloading the appropriate resource that is later used by an imgp320 element that has the corresponding
values for its srcsetp321 and sizesp321 attributes:

<link rel="preload" as="image"
imagesrcset="wolf_400px.jpg 400w, wolf_800px.jpg 800w, wolf_1600px.jpg 1600w"
imagesizes="50vw">

<!-- ... later, or perhaps inserted dynamically ... -->
<img src="wolf.jpg" alt="A rad wolf"

srcset="wolf_400px.jpg 400w, wolf_800px.jpg 800w, wolf_1600px.jpg 1600w"
sizes="50vw">

Note how we omit the hrefp158 attribute, as it would only be relevant for browsers that do not support imagesrcsetp160, and in
those cases it would likely cause the incorrect image to be preloaded.

Example

The imagesrcsetp160 attribute can be combined with the mediap159 attribute to preload the appropriate resource selected from a
picturep316 element's sources, for art directionp330:

<link rel="preload" as="image"
imagesrcset="dog-cropped-1x.jpg, dog-cropped-2x.jpg 2x"
media="(max-width: 800px)">

<link rel="preload" as="image"
imagesrcset="dog-wide-1x.jpg, dog-wide-2x.jpg 2x"
media="(min-width: 801px)">

<!-- ... later, or perhaps inserted dynamically ... -->
<picture>

<source srcset="dog-cropped-1x.jpg, dog-cropped-2x.jpg 2x"
media="(max-width: 800px)">

<img src="dog-wide-1x.jpg" srcset="dog-wide-2x.jpg 2x"
alt="An awesome dog">

</picture>

Example

160

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

The as attribute specifies the potential destination for a preload request for the resource given by the hrefp158 attribute. It is an
enumerated attributep68. Each potential destination is a keyword for this attribute, mapping to a state of the same name. The attribute
must be specified on linkp157 elements that have a relp158 attribute that contains the preloadp305 keyword. It may be specified on
linkp157 elements that have a relp158 attribute that contains the modulepreloadp301 keyword; in such cases it must have a value which
is a script-like destination. For other linkp157 elements, it must not be specified.

The processing model for how the asp161 attribute is used is given in an individual link type's fetch and process the linked resourcep163

algorithm.

The color attribute is used with the mask-icon link type. The attribute must only be specified on linkp157 elements that have a relp158

attribute that contains the mask-icon keyword. The value must be a string that matches the CSS <color> production, defining a
suggested color that user agents can use to customize the display of the icon that the user sees when they pin your site.

linkp157 elements have an associated explicitly enabled boolean. It is initially false.

The disabled attribute is a boolean attributep67 that is used with the stylesheetp306 link type. The attribute must only be specified on
linkp157 elements that have a relp158 attribute that contains the stylesheetp306 keyword.

Whenever the disabledp161 attribute is removed, set the linkp157 element's explicitly enabledp161 attribute to true.

The IDL attributes href, hreflang, integrity, media, rel, sizes, type, and disabled each must reflectp94 the respective content
attributes of the same name.

The as IDL attribute must reflectp94 the asp161 content attribute, limited to only known valuesp95.

The crossOrigin IDL attribute must reflectp94 the crossoriginp158 content attribute, limited to only known valuesp95.

The referrerPolicy IDL attribute must reflectp94 the referrerpolicyp159 content attribute, limited to only known valuesp95.

The apple-touch-icon keyword is a registered extension to the predefined set of link types p309, but user agents are not required
to support it in any way.

Note

The attribute does not have a missing value defaultp68 or invalid value defaultp68, meaning that invalid or missing values for the
attribute map to no state. This is accounted for in the processing model. For preloadp305 links, both conditions are an error; for
modulepreloadp301 links, a missing value will be treated as "script".

Note

This specification does not have any user agent requirements for the colorp161 attribute.
Note

The mask-icon keyword is a registered extension to the predefined set of link types p309, but user agents are not required to
support it in any way.

Note

Removing the disabledp161 attribute dynamically, e.g., using document.querySelector("link").removeAttribute("disabled"),
will fetch and apply the style sheet:

<link disabled rel="alternate stylesheet" href="css/pooh">

Example

There is no reflecting IDL attribute for the colorp161 attribute, but this might be added later.
Note

161

https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#request-destination-script-like
https://drafts.csswg.org/css-color/#typedef-color

The imageSrcset IDL attribute must reflectp94 the imagesrcsetp160 content attribute.

The imageSizes IDL attribute must reflectp94 the imagesizesp160 content attribute.

The relList IDL attribute must reflectp94 the relp158 content attribute.

If the link is a hyperlinkp283 then the mediap159 attribute is purely advisory, and describes for which media the document in question
was designed.

However, if the link is an external resource linkp283, then the mediap159 attribute is prescriptive. The user agent must apply the external
resource when the mediap159 attribute's value matches the environmentp88 and the other relevant conditions apply, and must not apply
it otherwise.

The default, if the mediap159 attribute is omitted, is "all", meaning that by default links apply to all media.

If the typep159 attribute is present, then the user agent must assume that the resource is of the given type (even if that is not a valid
MIME type string, e.g. the empty string). If the attribute is omitted, but the external resource linkp283 type has a default type defined,
then the user agent must assume that the resource is of that type. If the UA does not support the given MIME type for the given link
relationship, then the UA should not fetch and process the linked resourcep163; if the UA does support the given MIME type for the given
link relationship, then the UA should fetch and process the linked resourcep163 at the appropriate time as specified for the external
resource linkp283 's particular type. If the attribute is omitted, and the external resource linkp283 type does not have a default type
defined, but the user agent would fetch and process the linked resourcep163 if the type was known and supported, then the user agent
should fetch and process the linked resourcep163 under the assumption that it will be supported.

User agents must not consider the typep159 attribute authoritative — upon fetching the resource, user agents must not use the typep159

attribute to determine its actual type. Only the actual type (as defined in the next paragraph) is used to determine whether to apply
the resource, not the aforementioned assumed type.

If the external resource linkp283 type defines rules for processing the resource's Content-Type metadatap90, then those rules apply.
Otherwise, if the resource is expected to be an image, user agents may apply the image sniffing rules, with the official type being the
type determined from the resource's Content-Type metadatap90, and use the resulting computed type of the resource as if it was the
actual type. Otherwise, if neither of these conditions apply or if the user agent opts not to apply the image sniffing rules, then the user
agent must use the resource's Content-Type metadatap90 to determine the type of the resource. If there is no type metadata, but the
external resource linkp283 type has a default type defined, then the user agent must assume that the resource is of that type.

Once the user agent has established the type of the resource, the user agent must apply the resource if it is of a supported type and
the other relevant conditions apply, and must ignore the resource otherwise.

4.2.4.1 Processing the mediap159 attribute §p16

2

The external resource might have further restrictions defined within that limit its applicability. For example, a CSS style sheet
might have some @media blocks. This specification does not override such further restrictions or requirements.

Note

4.2.4.2 Processing the typep159 attribute §p16

2

The stylesheetp306 link type defines rules for processing the resource's Content-Type metadatap90.
Note

If a document contains style sheet links labeled as follows:

<link rel="stylesheet" href="A" type="text/plain">
<link rel="stylesheet" href="B" type="text/css">
<link rel="stylesheet" href="C">

Example

✔ MDN

162

https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://mimesniff.spec.whatwg.org/#computed-mime-type

All external resource linksp283 have a fetch and process the linked resource algorithm, which takes a linkp157 element el. They also
have linked resource fetch setup steps which take a linkp157 element el and request request. Individual link types may provide
their own fetch and process the linked resourcep163 algorithm, but unless explicitly stated, they use the default fetch and process the
linked resourcep163 algorithm. Similarly, individual link types may provide their own linked resource fetch setup stepsp163, but unless
explicitly stated, these steps just return true.

The default fetch and process the linked resource, given a linkp157 element el, is as follows:

1. If el's hrefp158 attribute's value is the empty string, then return.

2. Parsep89 the URL given by el's hrefp158 attribute, relative to el's node document. If that fails, then return. Otherwise, let url be
the resulting URL recordp89.

3. Let corsAttributeState be the current state of the el's crossoriginp158 content attribute.

4. Let request be the result of creating a potential-CORS requestp90 given url, the empty string, and corsAttributeState.

5. Set request's synchronous flag.

6. Set request's client to el's node document's relevant settings objectp924.

7. Set request's cryptographic nonce metadata to the current value of el's [[CryptographicNonce]]p92 internal slot.

8. Set request's integrity metadata to the current value of el's integrityp159 content attribute.

9. Set request's referrer policy to the current state of the el's referrerpolicyp159 attribute.

10. Run the linked resource fetch setup stepsp163, given el and request. If the result is false, then return.

11. Run the following steps in parallelp42:

1. Let response be the result of fetching request.

2. Let success be true.

3. If response is a network error or its status is not an ok status, set success to false.

4. If success is true, wait for the link resourcep283 's critical subresourcesp44 to finish loading.

The specification that defines a link type's critical subresourcesp44 (e.g., CSS) is expected to describe how
these subresources are fetched and processed. However, since this is not currently explicit, this specification
describes waiting for a link resourcep283 's critical subresourcesp44 to be fetched and processed, with the
expectation that this will be done correctly.

5. Queue an element taskp946 on the networking task sourcep952 given el to process the linked resourcep164 given el,
success, and response.

...then a compliant UA that supported only CSS style sheets would fetch the B and C files, and skip the A file (since text/plain is
not the MIME type for CSS style sheets).

For files B and C, it would then check the actual types returned by the server. For those that are sent as text/cssp1283, it would
apply the styles, but for those labeled as text/plain, or any other type, it would not.

If one of the two files was returned without a Content-Typep90 metadata, or with a syntactically incorrect type like Content-
Type: "null", then the default type for stylesheetp306 links would kick in. Since that default type is text/cssp1283, the style sheet
would nonetheless be applied.

4.2.4.3 Fetching and processing a resource from a linkp157 element §p16

3

Note that content-specific errors, e.g., CSS parse errors or PNG decoding errors, do not affect success.
Note

163

https://tools.ietf.org/html/rfc2046#section-4.1.3
https://mimesniff.spec.whatwg.org/#mime-type
https://tools.ietf.org/html/rfc2046#section-4.1.3
https://fetch.spec.whatwg.org/#concept-request
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status

User agents may opt to only try to fetch and processp163 such resources when they are needed, instead of pro-actively fetching all the
external resourcesp283 that are not applied.

Similar to the fetch and process the linked resourcep163 algorithm, all external resource linksp283 have a process the linked resource
algorithm which takes a linkp157 element el, boolean success, and response response. Unless an individual link type provides its own
process the linked resourcep164 algorithm, the default process the linked resource algorithm, given a linkp157 element el, and
boolean success (ignoring response) is used:

1. If success is true, fire an event named loadp1282 at el.

2. Otherwise, fire an event named errorp1281 at el.

Unless otherwise specified for a given relp158 keyword, the element must delay the load eventp1165 of the element's node document
until all the attempts to fetch and process the linked resourcep163 and its critical subresourcesp44 are complete. (Resources that the
user agent has not yet attempted to fetch and process, e.g., because it is waiting for the resource to be needed, do not delay the load
eventp1165.)

HTTP `Link` headers, if supported, must be assumed to come before any links in the document, in the order that they were given in
the HTTP message. These headers are to be processed according to the rules given in the relevant specifications. [HTTP]p1288

[WEBLINK]p1292

The processing of `Link` headers, in particular their influence on a Documentp114 's script-blocking style sheet counterp178, is not
defined. See issue #4224 for discussion on integrating this into the spec.

Interactive user agents may provide users with a means to follow the hyperlinksp290 created using the linkp157 element, somewhere
within their user interface. The exact interface is not defined by this specification, but it could include the following information
(obtained from the element's attributes, again as defined below), in some form or another (possibly simplified), for each hyperlinkp283

created with each linkp157 element in the document:

• The relationship between this document and the resource (given by the relp158 attribute)

• The title of the resource (given by the titlep159 attribute).

• The address of the resource (given by the hrefp158 attribute).

• The language of the resource (given by the hreflangp159 attribute).

• The optimum media for the resource (given by the mediap159 attribute).

User agents could also include other information, such as the type of the resource (as given by the typep159 attribute).

The activation behavior of linkp157 elements that create hyperlinksp283 is to follow the hyperlinkp290 created by the linkp157 element.

Categoriesp128:
Metadata contentp131.
If the itempropp736 attribute is present: flow contentp131.
If the itempropp736 attribute is present: phrasing contentp132.

4.2.4.4 Processing `Link` headers §p16

4

Registration of relation types in HTTP `Link` headers is distinct from HTML link typesp294, and thus their semantics can be different
from same-named HTML types.

Note

4.2.4.5 Providing users with a means to follow hyperlinks created using the linkp157 element §p16

4

4.2.5 The meta element §p16

4

✔ MDN

✔ MDN

164

https://fetch.spec.whatwg.org/#concept-response
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3
https://github.com/whatwg/html/issues/4224
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

Contexts in which this element can be usedp128:
If the charsetp165 attribute is present, or if the element's http-equivp169 attribute is in the Encoding declaration statep170: in a
headp153 element.
If the http-equivp169 attribute is present but not in the Encoding declaration statep170: in a headp153 element.
If the http-equivp169 attribute is present but not in the Encoding declaration statep170: in a noscriptp627 element that is a child
of a headp153 element.
If the namep166 attribute is present: where metadata contentp131 is expected.
If the itempropp736 attribute is present: where metadata contentp131 is expected.
If the itempropp736 attribute is present: where phrasing contentp132 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

namep166 — Metadata name
http-equivp169 — Pragma directive
contentp165 — Value of the element
charsetp165 — Character encoding declarationp173

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLMetaElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString httpEquiv;
[CEReactions] attribute DOMString content;

// also has obsolete members
};

The metap164 element representsp123 various kinds of metadata that cannot be expressed using the titlep154, basep155, linkp157,
stylep174, and scriptp614 elements.

The metap164 element can represent document-level metadata with the namep166 attribute, pragma directives with the http-equivp169

attribute, and the file's character encoding declarationp173 when an HTML document is serialized to string form (e.g. for transmission
over the network or for disk storage) with the charsetp165 attribute.

Exactly one of the namep166, http-equivp169, charsetp165, and itempropp736 attributes must be specified.

If either namep166, http-equivp169, or itempropp736 is specified, then the contentp165 attribute must also be specified. Otherwise, it must
be omitted.

The charset attribute specifies the character encoding used by the document. This is a character encoding declarationp173. If the
attribute is present, its value must be an ASCII case-insensitive match for the string "utf-8".

There must not be more than one metap164 element with a charsetp165 attribute per document.

The content attribute gives the value of the document metadata or pragma directive when the element is used for those purposes.
The allowed values depend on the exact context, as described in subsequent sections of this specification.

The charsetp165 attribute on the metap164 element has no effect in XML documents, but is allowed in XML documents in order to
facilitate migration to and from XML.

Note

IDL

165

https://w3c.github.io/html-aria/#el-meta
https://w3c.github.io/html-aam/#el-meta
https://encoding.spec.whatwg.org/#encoding
https://infra.spec.whatwg.org/#ascii-case-insensitive

If a metap164 element has a name attribute, it sets document metadata. Document metadata is expressed in terms of name-value pairs,
the namep166 attribute on the metap164 element giving the name, and the contentp165 attribute on the same element giving the value.
The name specifies what aspect of metadata is being set; valid names and the meaning of their values are described in the following
sections. If a metap164 element has no contentp165 attribute, then the value part of the metadata name-value pair is the empty string.

The name and content IDL attributes must reflectp94 the respective content attributes of the same name. The IDL attribute httpEquiv
must reflectp94 the content attribute http-equivp169.

This specification defines a few names for the namep166 attribute of the metap164 element.

Names are case-insensitive, and must be compared in an ASCII case-insensitive manner.

application-name
The value must be a short free-form string giving the name of the web application that the page represents. If the page is not a web
application, the application-namep166 metadata name must not be used. Translations of the web application's name may be given,
using the langp140 attribute to specify the language of each name.

There must not be more than one metap164 element with a given languagep140 and where the namep166 attribute value is an ASCII
case-insensitive match for application-namep166 per document.

User agents may use the application name in UI in preference to the page's titlep154, since the title might include status messages
and the like relevant to the status of the page at a particular moment in time instead of just being the name of the application.

To find the application name to use given an ordered list of languages (e.g. British English, American English, and English), user
agents must run the following steps:

1. Let languages be the list of languages.

2. Let default language be the languagep140 of the Documentp114 's document element, if any, and if that language is not
unknown.

3. If there is a default language, and if it is not the same language as any of the languages in languages, append it to
languages.

4. Let winning language be the first language in languages for which there is a metap164 element in the Documentp114 where
the namep166 attribute value is an ASCII case-insensitive match for application-namep166 and whose languagep140 is the
language in question.

If none of the languages have such a metap164 element, then return; there's no given application name.

5. Return the value of the contentp165 attribute of the first metap164 element in the Documentp114 in tree order where the
namep166 attribute value is an ASCII case-insensitive match for application-namep166 and whose languagep140 is winning
language.

author
The value must be a free-form string giving the name of one of the page's authors.

description
The value must be a free-form string that describes the page. The value must be appropriate for use in a directory of pages, e.g. in
a search engine. There must not be more than one metap164 element where the namep166 attribute value is an ASCII case-insensitive
match for descriptionp166 per document.

generator
The value must be a free-form string that identifies one of the software packages used to generate the document. This value must
not be used on pages whose markup is not generated by software, e.g. pages whose markup was written by a user in a text editor.

4.2.5.1 Standard metadata names §p16

6

This algorithm would be used by a browser when it needs a name for the page, for instance, to label a bookmark. The
languages it would provide to the algorithm would be the user's preferred languages.

Note

✔ MDN

166

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

keywords
The value must be a set of comma-separated tokensp87, each of which is a keyword relevant to the page.

To obtain the list of keywords that the author has specified as applicable to the page, the user agent must run the following steps:

1. Let keywords be an empty list.

2. For each metap164 element with a namep166 attribute and a contentp165 attribute and where the namep166 attribute value is
an ASCII case-insensitive match for keywordsp167:

1. Split the value of the element's content attribute on commas.

2. Add the resulting tokens, if any, to keywords.

3. Remove any duplicates from keywords.

4. Return keywords. This is the list of keywords that the author has specified as applicable to the page.

User agents should not use this information when there is insufficient confidence in the reliability of the value.

referrer
The value must be a referrer policy, which defines the default referrer policy for the Documentp114. [REFERRERPOLICY]p1290

If any metap164 elements are inserted into the documentp44 or removed from the documentp44, or existing metap164 elements have
their namep166 or contentp165 attributes changed, user agents must run the following algorithm:

1. Let candidate elements be the list of all metap164 elements that meet the following criteria, in tree order:

◦ The element is in a document tree
◦ The element has a namep166 attribute, whose value is an ASCII case-insensitive match for referrerp167

◦ The element has a contentp165 attribute, whose value is not the empty string
◦ The element is a child of the head elementp117 of the document

2. For each element in candidate elements:

Here is what a tool called "Frontweaver" could include in its output, in the page's headp153 element, to identify itself as the tool
used to generate the page:

<meta name=generator content="Frontweaver 8.2">

Example

This page about typefaces on British motorways uses a metap164 element to specify some keywords that users might use to look
for the page:

<!DOCTYPE HTML>
<html lang="en-GB">
<head>
<title>Typefaces on UK motorways</title>
<meta name="keywords" content="british,type face,font,fonts,highway,highways">

</head>
<body>
...

Example

Many search engines do not consider such keywords, because this feature has historically been used unreliably and even
misleadingly as a way to spam search engine results in a way that is not helpful for users.

Note

For instance, it would be reasonable for a content management system to use the keyword information of pages within the
system to populate the index of a site-specific search engine, but a large-scale content aggregator that used this information
would likely find that certain users would try to game its ranking mechanism through the use of inappropriate keywords.

Example

167

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#split-on-commas
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://infra.spec.whatwg.org/#ascii-case-insensitive

1. Let value be the value of element's contentp165 attribute, converted to ASCII lowercase.

2. If value is one of the values given in the first column of the following table, then set value to the value given in
the second column:

Legacy value Referrer policy

never no-referrer

default no-referrer-when-downgrade

always unsafe-url

origin-when-crossorigin origin-when-cross-origin

3. If value is a referrer policy, then set element's node document's referrer policyp115 to policy.

theme-color
The value must be a string that matches the CSS <color> production, defining a suggested color that user agents should use to
customize the display of the page or of the surrounding user interface. For example, a browser might color the page's title bar with
the specified value, or use it as a color highlight in a tab bar or task switcher.

There must not be more than one metap164 element with its namep166 attribute value set to an ASCII case-insensitive match for
theme-colorp168 per document.

To obtain a page's theme color, user agents must run the following steps:

1. Let candidate elements be the list of all metap164 elements that meet the following criteria, in tree order:

◦ The element is in a document tree
◦ The element has a namep166 attribute, whose value is an ASCII case-insensitive match for theme-colorp168

◦ The element has a contentp165 attribute

2. For each element in candidate elements:

1. Let value be the result of stripping leading and trailing ASCII whitespace from the value of element's contentp165

attribute.

2. Let color be the result of parsingp58 value.

3. If color is not failure, then return color.

3. Return nothing (the page has no theme color).

If any metap164 elements are inserted into the documentp44 or removed from the documentp44, or existing metap164 elements have
their namep166 or contentp165 attributes changed, user agents must re-run the above algorithm and apply the result to any affected
UI.

When using the theme color in UI, user agents may adjust it in implementation-specific ways to make it more suitable for the UI in
question. For example, if a user agent intends to use the theme color as a background and display white text over it, it might use a
darker variant of the theme color in that part of the UI, to ensure adequate contrast.

Anyone can create and use their own extensions to the predefined set of metadata names. There is no requirement to register

The fact that these steps are applied for each element enables deployment of fallback values for older user agents.
[REFERRERPOLICY]p1290

Note

This standard itself uses "WHATWG green" as its theme color:

<!DOCTYPE HTML>
<title>HTML Standard</title>
<meta name="theme-color" content="#3c790a">
...

Example

4.2.5.2 Other metadata names §p16

8

⚠ MDN

168

https://infra.spec.whatwg.org/#ascii-lowercase
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-no-referrer
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-unsafe-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-origin-when-cross-origin
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/webappsec-referrer-policy/#unknown-policy-values
https://drafts.csswg.org/css-color/#typedef-color
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace

such extensions.

However, a new metadata name should not be created in any of the following cases:

• If either the name is a URL, or the value of its accompanying contentp165 attribute is a URL; in those cases, registering it as
an extension to the predefined set of link typesp309 is encouraged (rather than creating a new metadata name).

• If the name is for something expected to have processing requirements in user agents; in that case it ought to be
standardized.

Also, before creating and using a new metadata name, consulting the WHATWG Wiki MetaExtensions page is encouraged — to avoid
choosing a metadata name that's already in use, and to avoid duplicating the purpose of any metadata names that are already in use,
and to avoid new standardized names clashing with your chosen name. [WHATWGWIKI]p1292

Anyone is free to edit the WHATWG Wiki MetaExtensions page at any time to add a metadata name. New metadata names can be
specified with the following information:

Keyword
The actual name being defined. The name should not be confusingly similar to any other defined name (e.g. differing only in case).

Brief description
A short non-normative description of what the metadata name's meaning is, including the format the value is required to be in.

Specification
A link to a more detailed description of the metadata name's semantics and requirements. It could be another page on the Wiki, or a
link to an external page.

Synonyms
A list of other names that have exactly the same processing requirements. Authors should not use the names defined to be
synonyms (they are only intended to allow user agents to support legacy content). Anyone may remove synonyms that are not used
in practice; only names that need to be processed as synonyms for compatibility with legacy content are to be registered in this
way.

Status
One of the following:

Proposed
The name has not received wide peer review and approval. Someone has proposed it and is, or soon will be, using it.

Ratified
The name has received wide peer review and approval. It has a specification that unambiguously defines how to handle pages
that use the name, including when they use it in incorrect ways.

Discontinued
The metadata name has received wide peer review and it has been found wanting. Existing pages are using this metadata name,
but new pages should avoid it. The "brief description" and "specification" entries will give details of what authors should use
instead, if anything.

If a metadata name is found to be redundant with existing values, it should be removed and listed as a synonym for the existing
value.

If a metadata name is added in the "proposed" state for a period of a month or more without being used or specified, then it may be
removed from the WHATWG Wiki MetaExtensions page.

If a metadata name is added with the "proposed" status and found to be redundant with existing values, it should be removed and
listed as a synonym for the existing value. If a metadata name is added with the "proposed" status and found to be harmful, then it
should be changed to "discontinued" status.

Anyone can change the status at any time, but should only do so in accordance with the definitions above.

When the http-equiv attribute is specified on a metap164 element, the element is a pragma directive.

4.2.5.3 Pragma directives §p16

9

169

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://wiki.whatwg.org/wiki/MetaExtensions

The http-equivp169 attribute is an enumerated attributep68. The following table lists the keywords defined for this attribute. The states
given in the first cell of the rows with keywords give the states to which those keywords map. Some of the keywords are non-
conforming, as noted in the last column.

State Keyword Notes

Content Languagep170 content-language Non-conforming
Encoding declarationp170 content-type

Default stylep171 default-style

Refreshp171 refresh

Set-Cookiep173 set-cookie Non-conforming
X-UA-Compatiblep173 x-ua-compatible

Content security policyp173 content-security-policy

When a metap164 element is inserted into the documentp44, if its http-equivp169 attribute is present and represents one of the above
states, then the user agent must run the algorithm appropriate for that state, as described in the following list:

Content language state (http-equiv="content-languagep170")

This pragma sets the pragma-set default language. Until such a pragma is successfully processed, there is no pragma-set
default languagep170.

1. If the metap164 element has no contentp165 attribute, then return.

2. If the element's contentp165 attribute contains a U+002C COMMA character (,) then return.

3. Let input be the value of the element's contentp165 attribute.

4. Let position point at the first character of input.

5. Skip ASCII whitespace within input given position.

6. Collect a sequence of code points that are not ASCII whitespace from input given position.

7. Let candidate be the string that resulted from the previous step.

8. If candidate is the empty string, return.

9. Set the pragma-set default languagep170 to candidate.

Encoding declaration state (http-equiv="content-typep170")
The Encoding declaration statep170 is just an alternative form of setting the charsetp165 attribute: it is a character encoding
declarationp173. This state's user agent requirements are all handled by the parsing section of the specification.

For metap164 elements with an http-equivp169 attribute in the Encoding declaration statep170, the contentp165 attribute must have a
value that is an ASCII case-insensitive match for a string that consists of: the literal string "text/html;", optionally followed by any
number of ASCII whitespace, followed by the literal string "charset=utf-8".

A document must not contain both a metap164 element with an http-equivp169 attribute in the Encoding declaration statep170 and a
metap164 element with the charsetp165 attribute present.

The Encoding declaration statep170 may be used in HTML documents, but elements with an http-equivp169 attribute in that state
must not be used in XML documents.

This feature is non-conforming. Authors are encouraged to use the langp140 attribute instead.
Note

If the value consists of multiple space-separated tokens, tokens after the first are ignored.
Note

This pragma is almost, but not quite, entirely unlike the HTTP `Content-Language` header of the same name. [HTTP]p1288

Note

170

https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://tools.ietf.org/html/rfc7231#section-3.1.3.2
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#xml-document

Default style state (http-equiv="default-stylep170")
This pragma sets the name of the default CSS style sheet set.

1. If the metap164 element has no contentp165 attribute, or if that attribute's value is the empty string, then return.

2. Change the preferred CSS style sheet set name with the name being the value of the element's contentp165 attribute.
[CSSOM]p1286

Refresh state (http-equiv="refreshp170")
This pragma acts as timed redirect.

A Documentp114 object has an associated will declaratively refresh (a boolean). It is initially false.

1. If the metap164 element has no contentp165 attribute, or if that attribute's value is the empty string, then return.

2. Let input be the value of the element's contentp165 attribute.

3. Run the shared declarative refresh stepsp171 with the metap164 element's node document, input, and the metap164 element.

The shared declarative refresh steps, given a Documentp114 object document, string input, and optionally a metap164 element
meta, are as follows:

1. If document's will declaratively refreshp171 is true, then return.

2. Let position point at the first code point of input.

3. Skip ASCII whitespace within input given position.

4. Let time be 0.

5. Collect a sequence of code points that are ASCII digits from input given position, and let the result be timeString.

6. If timeString is the empty string, then:

1. If the code point in input pointed to by position is not U+002E (.), then return.

7. Otherwise, set time to the result of parsing timeString using the rules for parsing non-negative integers p69.

8. Collect a sequence of code points that are ASCII digits and U+002E FULL STOP characters (.) from input given position.
Ignore any collected characters.

9. Let urlRecord be document's URL.

10. If position is not past the end of input, then:

1. If the code point in input pointed to by position is not U+003B (;), U+002C (,), or ASCII whitespace, then return.

2. Skip ASCII whitespace within input given position.

3. If the code point in input pointed to by position is U+003B (;) or U+002C (,), then advance position to the next
code point.

4. Skip ASCII whitespace within input given position.

11. If position is not past the end of input, then:

1. Let urlString be the substring of input from the code point at position to the end of the string.

2. If the code point in input pointed to by position is U+0055 (U) or U+0075 (u), then advance position to the next
code point. Otherwise, jump to the step labeled skip quotes.

3. If the code point in input pointed to by position is U+0052 (R) or U+0072 (r), then advance position to the next
code point. Otherwise, jump to the step labeled parse.

4. If the code point in input pointed to by position is U+004C (L) or U+006C (l), then advance position to the next
code point. Otherwise, jump to the step labeled parse.

5. Skip ASCII whitespace within input given position.

6. If the code point in input pointed to by position is U+003D (=), then advance position to the next code point.
Otherwise, jump to the step labeled parse.

⚠ MDN

171

https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://drafts.csswg.org/cssom/#css-style-sheet-set
https://drafts.csswg.org/cssom/#change-the-preferred-css-style-sheet-set-name
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point

7. Skip ASCII whitespace within input given position.

8. Skip quotes: If the code point in input pointed to by position is U+0027 (') or U+0022 ("), then let quote be that
code point, and advance position to the next code point. Otherwise, let quote be the empty string.

9. Set urlString to the substring of input from the code point at position to the end of the string.

10. If quote is not the empty string, and there is a code point in urlString equal to quote, then truncate urlString at
that code point, so that it and all subsequent code points are removed.

11. Parse: Parsep89 urlString relative to document. If that fails, return. Otherwise, set urlRecord to the resulting URL
recordp89.

12. Set document's will declaratively refreshp171 to true.

13. Perform one or more of the following steps:

◦ After the refresh has come due (as defined below), if the user has not canceled the redirect and, if meta is
given, document's active sandboxing flag setp844 does not have the sandboxed automatic features browsing
context flagp842 set, then navigatep866 document's browsing contextp811 to urlRecord, with historyHandlingp866 set
to "replacep866" and the source browsing contextp866 set to document's browsing contextp811.

For the purposes of the previous paragraph, a refresh is said to have come due as soon as the later of the
following two conditions occurs:

▪ At least time seconds have elapsed since document's completely loaded timep885, adjusted to take
into account user or user agent preferences.

▪ If meta is given, at least time seconds have elapsed since meta was inserted into the documentp44

document, adjusted to take into account user or user agent preferences.

◦ Provide the user with an interface that, when selected, navigatesp866 a browsing contextp811 to urlRecord, with
document's browsing contextp811 as the source browsing contextp866.

◦ Do nothing.

In addition, the user agent may, as with anything, inform the user of any and all aspects of its operation, including the
state of any timers, the destinations of any timed redirects, and so forth.

For metap164 elements with an http-equivp169 attribute in the Refresh statep171, the contentp165 attribute must have a value
consisting either of:

• just a valid non-negative integerp69, or

• a valid non-negative integerp69, followed by a U+003B SEMICOLON character (;), followed by one or more ASCII
whitespace, followed by a substring that is an ASCII case-insensitive match for the string "URL", followed by a U+003D
EQUALS SIGN character (=), followed by a valid URL string that does not start with a literal U+0027 APOSTROPHE (') or
U+0022 QUOTATION MARK (") character.

In the former case, the integer represents a number of seconds before the page is to be reloaded; in the latter case the integer
represents a number of seconds before the page is to be replaced by the page at the given URL.

It is important to use document here, and not meta's node document, as that might have changed between
the initial set of steps and the refresh coming due and meta is not always given (in case of the HTTP
`Refreshp1259` header).

Note

A news organization's front page could include the following markup in the page's headp153 element, to ensure that the page
automatically reloads from the server every five minutes:

<meta http-equiv="Refresh" content="300">

Example

Example

172

https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#concept-url

Set-Cookie state (http-equiv="set-cookiep170")
This pragma is non-conforming and has no effect.

User agents are required to ignore this pragma.

X-UA-Compatible state (http-equiv="x-ua-compatiblep170")
In practice, this pragma encourages Internet Explorer to more closely follow the specifications.

For metap164 elements with an http-equivp169 attribute in the X-UA-Compatible statep173, the contentp165 attribute must have a
value that is an ASCII case-insensitive match for the string "IE=edge".

User agents are required to ignore this pragma.

Content security policy state (http-equiv="content-security-policyp170")
This pragma enforces a Content Security Policy on a Documentp114. [CSP]p1285

1. If the metap164 element is not a child of a headp153 element, return.

2. If the metap164 element has no contentp165 attribute, or if that attribute's value is the empty string, then return.

3. Let policy be the result of executing Content Security Policy's parse a serialized Content Security Policy algorithm on the
metap164 element's contentp165 attribute's value, with a source of "meta", and a disposition of "enforce".

4. Remove all occurrences of the report-uri, frame-ancestors, and sandbox directives from policy.

5. Enforce the policy policy.

For metap164 elements with an http-equivp169 attribute in the Content security policy statep173, the contentp165 attribute must have
a value consisting of a valid Content Security Policy, but must not contain any report-uri, frame-ancestors, or sandbox
directives. The Content Security Policy given in the contentp165 attribute will be enforced upon the current document. [CSP]p1285

There must not be more than one metap164 element with any particular state in the document at a time.

A character encoding declaration is a mechanism by which the character encoding used to store or transmit a document is
specified.

The Encoding standard requires use of the UTF-8 character encoding and requires use of the "utf-8" encoding label to identify it.
Those requirements necessitate that the document's character encoding declarationp173, if it exists, specifies an encoding label using
an ASCII case-insensitive match for "utf-8". Regardless of whether a character encoding declarationp173 is present or not, the actual
character encoding used to encode the document must be UTF-8. [ENCODING]p1287

To enforce the above rules, authoring tools must default to using UTF-8 for newly-created documents.

The following restrictions also apply:

• The character encoding declaration must be serialized without the use of character referencesp1077 or character escapes of
any kind.

A sequence of pages could be used as an automated slide show by making each page refresh to the next page in the sequence,
using markup such as the following:

<meta http-equiv="Refresh" content="20; URL=page4.html">

A page might choose to mitigate the risk of cross-site scripting attacks by preventing the execution of inline JavaScript, as well
as blocking all plugin content, using a policy such as the following:

<meta http-equiv="Content-Security-Policy" content="script-src 'self'; object-src 'none'">

Example

4.2.5.4 Specifying the document's character encoding §p17

3

173

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/webappsec-csp/#enforced
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-csp/#parse-serialized-policy
https://w3c.github.io/webappsec-csp/#report-uri
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://w3c.github.io/webappsec-csp/#sandbox
https://w3c.github.io/webappsec-csp/#directives
https://w3c.github.io/webappsec-csp/#enforced
https://w3c.github.io/webappsec-csp/#grammardef-serialized-policy
https://w3c.github.io/webappsec-csp/#report-uri
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://w3c.github.io/webappsec-csp/#sandbox
https://w3c.github.io/webappsec-csp/#directives
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-csp/#enforced
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#label
https://encoding.spec.whatwg.org/#label
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#utf-8

• The element containing the character encoding declaration must be serialized completely within the first 1024 bytes of the
document.

In addition, due to a number of restrictions on metap164 elements, there can only be one metap164-based character encoding declaration
per document.

If an HTML document does not start with a BOM, and its encoding is not explicitly given by Content-Type metadatap90, and the
document is not an iframe srcdoc documentp362, then the encoding must be specified using a metap164 element with a charsetp165

attribute or a metap164 element with an http-equivp169 attribute in the Encoding declaration statep170.

If the document is an iframe srcdoc documentp362, the document must not have a character encoding declarationp173. (In this case,
the source is already decoded, since it is part of the document that contained the iframep361.)

In XML, the XML declaration should be used for inline character encoding information, if necessary.

Categoriesp128:
Metadata contentp131.

Contexts in which this element can be usedp128:
Where metadata contentp131 is expected.
In a noscriptp627 element that is a child of a headp153 element.

Content modelp128:
Textp132 that gives a conformant style sheet.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

mediap175 — Applicable media
Also, the titlep175 attribute has special semanticsp175 on this element: CSS style sheet set name.

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]

A character encoding declaration is required (either in the Content-Type metadatap90 or explicitly in the file) even when all
characters are in the ASCII range, because a character encoding is needed to process non-ASCII characters entered by the user in
forms, in URLs generated by scripts, and so forth.

Using non-UTF-8 encodings can have unexpected results on form submission and URL encodings, which use the document's
character encoding by default.

Note

In HTML, to declare that the character encoding is UTF-8, the author could include the following markup near the top of the
document (in the headp153 element):

<meta charset="utf-8">

In XML, the XML declaration would be used instead, at the very top of the markup:

<?xml version="1.0" encoding="utf-8"?>

Example

IDL

4.2.6 The style element §p17

4

✔ MDN

✔ MDN

174

https://dom.spec.whatwg.org/#html-document
https://encoding.spec.whatwg.org/#encoding
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8
https://drafts.csswg.org/css-syntax/#conform-classes
https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://w3c.github.io/html-aria/#el-style
https://w3c.github.io/html-aam/#el-style

interface HTMLStyleElement : HTMLElement {
[HTMLConstructor] constructor();

[CEReactions] attribute DOMString media;

// also has obsolete members
};
HTMLStyleElement includes LinkStyle;

The stylep174 element allows authors to embed CSS style sheets in their documents. The stylep174 element is one of several inputs to
the styling processing model. The element does not representp123 content for the user.

The media attribute says which media the styles apply to. The value must be a valid media query listp88. The user agent must apply the
styles when the mediap175 attribute's value matches the environmentp88 and the other relevant conditions apply, and must not apply
them otherwise.

The default, if the mediap175 attribute is omitted, is "all", meaning that by default styles apply to all media.

The title attribute on stylep174 elements defines CSS style sheet sets. If the stylep174 element has no titlep175 attribute, then it has
no title; the titlep139 attribute of ancestors does not apply to the stylep174 element. If the stylep174 element is not in a document
tree, then the titlep175 attribute is ignored. [CSSOM]p1286

The child text content of a stylep174 element must be that of a conformant style sheet.

The user agent must run the update a style blockp175 algorithm whenever one of the following conditions occur:

• The element is popped off the stack of open elementsp1093 of an HTML parserp1079 or XML parserp1188.

• The element is not on the stack of open elementsp1093 of an HTML parserp1079 or XML parserp1188, and it becomes
connectedp45 or disconnectedp45.

• The element's children changed steps run.

The update a style block algorithm is as follows:

1. Let element be the stylep174 element.

2. If element has an associated CSS style sheet, remove the CSS style sheet in question.

3. If element's root is neither a shadow root nor a documentp114, then return.

4. If element's typep1235 attribute is present and its value is neither the empty string nor an ASCII case-insensitive match for
"text/cssp1283", then return.

5. If the Should element's inline behavior be blocked by Content Security Policy? algorithm returns "Blocked" when executed
upon the stylep174 element, "style", and the stylep174 element's child text content, then return. [CSP]p1285

6. Create a CSS style sheet with the following properties:

The styles might be further limited in scope, e.g. in CSS with the use of @media blocks. This specification does not override such
further restrictions or requirements.

Note

The titlep175 attribute on stylep174 elements, like the titlep159 attribute on linkp157 elements, differs from the global titlep139

attribute in that a stylep174 block without a title does not inherit the title of the parent element: it merely has no title.

Note

In particular, a typep1235 value with parameters, such as "text/css; charset=utf-8", will cause this algorithm to return
early.

Note

✔ MDN

⚠ MDN

175

https://drafts.csswg.org/cssom/#the-linkstyle-interface
https://drafts.csswg.org/cssom/#css-style-sheet-set
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-child-text-content
https://drafts.csswg.org/css-syntax/#conform-classes
https://dom.spec.whatwg.org/#concept-node-children-changed-ext
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#remove-a-css-style-sheet
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-root
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/webappsec-csp/#should-block-inline
https://dom.spec.whatwg.org/#concept-child-text-content
https://drafts.csswg.org/cssom/#create-a-css-style-sheet

type
text/cssp1283

owner node
element

media
The mediap175 attribute of element.

title
The titlep175 attribute of element, if element is in a document tree, or the empty string otherwise.

alternate flag
Unset.

origin-clean flag
Set.

location
parent CSS style sheet
owner CSS rule

null

disabled flag
Left at its default value.

CSS rules
Left uninitialized.

This doesn't seem right. Presumably we should be using the element's child text content? Tracked as issue #2997.

Once the attempts to obtain the style sheet's critical subresourcesp44, if any, are complete, or, if the style sheet has no critical
subresourcesp44, once the style sheet has been parsed and processed, the user agent must run these steps:

1. Let element be the stylep174 element associated with the style sheet in question.

2. Let success be true.

3. If the attempts to obtain any of the style sheet's critical subresourcesp44 failed for any reason (e.g., DNS error, HTTP 404
response, a connection being prematurely closed, unsupported Content-Type), set success to false.

4. Queue an element taskp946 on the networking task sourcep952 given element and the following steps:

1. If success is true, fire an event named loadp1282 at element.

2. Otherwise, fire an event named errorp1281 at element.

3. If element contributes a script-blocking style sheet p177:

1. Assert: element's node document's script-blocking style sheet counterp178 is greater than 0.

This is a reference to the (possibly absent at this time) attribute, rather than a copy of the attribute's current value.
CSSOM defines what happens when the attribute is dynamically set, changed, or removed.

Note

Again, this is a reference to the attribute.
Note

Note that content-specific errors, e.g., CSS parse errors or PNG decoding errors, do not affect success.
Note

176

https://drafts.csswg.org/cssom/#concept-css-style-sheet-type
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-node
https://drafts.csswg.org/cssom/#concept-css-style-sheet-media
https://drafts.csswg.org/cssom/#concept-css-style-sheet-title
https://dom.spec.whatwg.org/#in-a-document-tree
https://drafts.csswg.org/cssom/#concept-css-style-sheet-alternate-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-origin-clean-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-location
https://drafts.csswg.org/cssom/#concept-css-style-sheet-parent-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-css-rule
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-css-rules
https://dom.spec.whatwg.org/#concept-child-text-content
https://github.com/whatwg/html/issues/2997
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document

2. Decrement element's node document's script-blocking style sheet counterp178 by 1.

The element must delay the load eventp1165 of the element's node document until all the attempts to obtain the style sheet's critical
subresourcesp44, if any, are complete.

The media IDL attribute must reflectp94 the content attribute of the same name.

The LinkStyle interface is also implemented by this element. [CSSOM]p1286

If the style sheet referenced no other resources (e.g., it was an internal style sheet given by a stylep174 element with no @import
rules), then the style rules must be immediatelyp42 made available to script; otherwise, the style rules must only be made available to
script once the event loopp944 reaches its update the renderingp947 step.

An element el in the context of a Documentp114 of an HTML parserp1079 or XML parserp1188 contributes a script-blocking style sheet
if all of the following conditions are true:

• el was created by that Documentp114 's parser.

• el is either a stylep174 element or a linkp157 element that was an external resource link that contributes to the styling
processing modelp306 when the el was created by the parser.

• If the el is a linkp157 element, it's mediap159 attribute's value matches the environmentp88.

• el's style sheet was enabled when the element was created by the parser.

• The last time the event loopp944 reached step 1p946, el's root was that Documentp114.

• The user agent hasn't given up on loading that particular style sheet yet. A user agent may give up on loading a style sheet
at any time.

This specification does not specify a style system, but CSS is expected to be supported by most web browsers. [CSS]p1285

Note

The following document has its stress emphasis styled as bright red text rather than italics text, while leaving titles of works and
Latin words in their default italics. It shows how using appropriate elements enables easier restyling of documents.

<!DOCTYPE html>
<html lang="en-US">
<head>
<title>My favorite book</title>
<style>
body { color: black; background: white; }
em { font-style: normal; color: red; }

</style>
</head>
<body>
<p>My favorite book of all time has got to be
<cite>A Cat's Life</cite>. It is a book by P. Rahmel that talks
about the <i lang="la">Felis Catus</i> in modern human society.</p>

</body>
</html>

Example

Giving up on a style sheet before the style sheet loads, if the style sheet eventually does still load, means that the script
might end up operating with incorrect information. For example, if a style sheet sets the color of an element to green,
but a script that inspects the resulting style is executed before the sheet is loaded, the script will find that the element is
black (or whatever the default color is), and might thus make poor choices (e.g., deciding to use black as the color

Note

4.2.7 Interactions of styling and scripting §p17

7

177

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/cssom/#the-linkstyle-interface
https://dom.spec.whatwg.org/#concept-tree-root

It is expected that counterparts to the above rules also apply to <?xml-stylesheet?> PIs and HTTP `Link` headers. However, this
has not yet been thoroughly investigated.

A Documentp114 has a script-blocking style sheet counter, which is a number, initially 0.

A Documentp114 has a style sheet that is blocking scripts if its script-blocking style sheet counterp178 is greater than 0, or if that
Documentp114 has a non-null browsing contextp811 whose container documentp814 is non-null and has a script-blocking style sheet
counterp178 greater than 0.

A Documentp114 has no style sheet that is blocking scripts if it does not have a style sheet that is blocking scripts p178 as defined in
the previous paragraph.

Categoriesp128:
Sectioning rootp199.

Contexts in which this element can be usedp128:
As the second element in an htmlp152 element.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
A bodyp178 element's start tagp1069 can be omitted if the element is empty, or if the first thing inside the bodyp178 element is not
ASCII whitespace or a commentp1078, except if the first thing inside the bodyp178 element is a metap164, linkp157, scriptp614,
stylep174, or templatep629 element.
A bodyp178 element's end tagp1070 can be omitted if the bodyp178 element is not immediately followed by a commentp1078.

Content attributesp128:
Global attributesp136

onafterprintp962

onbeforeprintp963

onbeforeunloadp963

onhashchangep963

onlanguagechangep963

onmessagep963

onmessageerrorp963

onofflinep963

ononlinep963

onpagehidep963

onpageshowp963

onpopstatep963

onrejectionhandledp963

onstoragep963

onunhandledrejectionp963

onunloadp963

Accessibility considerationsp129:
For authors.
For implementers.

elsewhere on the page, instead of green). Implementers have to balance the likelihood of a script using incorrect
information with the performance impact of doing nothing while waiting for a slow network request to finish.

4.3 Sections §p17

8

4.3.1 The body element §p17

8

✔ MDN

✔ MDN

✔ MDN

178

https://www.w3.org/TR/xml-stylesheet/#the-xml-stylesheet-processing-instruction
https://tools.ietf.org/html/rfc8288#section-3
https://infra.spec.whatwg.org/#ascii-whitespace
https://w3c.github.io/html-aria/#el-body
https://w3c.github.io/html-aam/#el-body

DOM interfacep129:

[Exposed=Window]
interface HTMLBodyElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

HTMLBodyElement includes WindowEventHandlers;

The bodyp178 element representsp123 the contents of the document.

In conforming documents, there is only one bodyp178 element. The document.bodyp118 IDL attribute provides scripts with easy access to
a document's bodyp178 element.

The bodyp178 element exposes as event handler content attributesp955 a number of the event handlersp954 of the Windowp824 object. It
also mirrors their event handler IDL attributesp955.

The event handlersp954 of the Windowp824 object named by the Window-reflecting body element event handler setp962, exposed on the
bodyp178 element, replace the generic event handlersp954 with the same names normally supported by HTML elementsp44.

Some DOM operations (for example, parts of the drag and dropp794 model) are defined in terms of "the body elementp118". This
refers to a particular element in the DOM, as per the definition of the term, and not any arbitrary bodyp178 element.

Note

Thus, for example, a bubbling errorp1281 event dispatched on a child of the body elementp118 of a Documentp114 would first trigger
the onerrorp962 event handler content attributesp955 of that element, then that of the root htmlp152 element, and only then would it
trigger the onerrorp962 event handler content attributep955 on the bodyp178 element. This is because the event would bubble from
the target, to the bodyp178, to the htmlp152, to the Documentp114, to the Windowp824, and the event handlerp954 on the bodyp178 is
watching the Windowp824 not the bodyp178. A regular event listener attached to the bodyp178 using addEventListener(), however,
would be run when the event bubbled through the bodyp178 and not when it reaches the Windowp824 object.

Example

This page updates an indicator to show whether or not the user is online:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Online or offline?</title>
<script>
function update(online) {

document.getElementById('status').textContent =
online ? 'Online' : 'Offline';

}
</script>

</head>
<body ononline="update(true)"

onoffline="update(false)"
onload="update(navigator.onLine)">

<p>You are: (Unknown)</p>
</body>

</html>

Example

IDL

179

Categoriesp128:
Flow contentp131.
Sectioning contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where sectioning contentp131 is expected.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The articlep180 element representsp123 a complete, or self-contained, composition in a document, page, application, or site and that is,
in principle, independently distributable or reusable, e.g. in syndication. This could be a forum post, a magazine or newspaper article, a
blog entry, a user-submitted comment, an interactive widget or gadget, or any other independent item of content.

When articlep180 elements are nested, the inner articlep180 elements represent articles that are in principle related to the contents
of the outer article. For instance, a blog entry on a site that accepts user-submitted comments could represent the comments as
articlep180 elements nested within the articlep180 element for the blog entry.

Author information associated with an articlep180 element (q.v. the addressp197 element) does not apply to nested articlep180

elements.

When the main content of the page (i.e. excluding footers, headers, navigation blocks, and sidebars) is all one single self-contained
composition, that content may be marked with an articlep180, but it is technically redundant in that case (since it's self-evident that
the page is a single composition, as it is a single document).

When used specifically with content to be redistributed in syndication, the articlep180 element is similar in purpose to the entry
element in Atom. [ATOM]p1285

Note

The schema.org microdata vocabulary can be used to provide the publication date for an articlep180 element, using one of the
CreativeWork subtypes.

Note

This example shows a blog post using the articlep180 element, with some schema.org annotations:

<article itemscope itemtype="http://schema.org/BlogPosting">
<header>
<h1 itemprop="headline">The Very First Rule of Life</h1>
<p><time itemprop="datePublished" datetime="2009-10-09">3 days ago</time></p>
<link itemprop="url" href="?comments=0">

</header>
<p>If there's a microphone anywhere near you, assume it's hot and
sending whatever you're saying to the world. Seriously.</p>
<p>...</p>

Example

4.3.2 The article element §p18

0

✔ MDN

180

https://w3c.github.io/html-aria/#el-article
https://w3c.github.io/html-aam/#el-article

<footer>
Show comments...

</footer>
</article>

Here is that same blog post, but showing some of the comments:

<article itemscope itemtype="http://schema.org/BlogPosting">
<header>
<h1 itemprop="headline">The Very First Rule of Life</h1>
<p><time itemprop="datePublished" datetime="2009-10-09">3 days ago</time></p>
<link itemprop="url" href="?comments=0">

</header>
<p>If there's a microphone anywhere near you, assume it's hot and
sending whatever you're saying to the world. Seriously.</p>
<p>...</p>
<section>
<h1>Comments</h1>
<article itemprop="comment" itemscope itemtype="http://schema.org/UserComments" id="c1">
<link itemprop="url" href="#c1">
<footer>
<p>Posted by:
George Washington

</p>
<p><time itemprop="commentTime" datetime="2009-10-10">15 minutes ago</time></p>

</footer>
<p>Yeah! Especially when talking about your lobbyist friends!</p>

</article>
<article itemprop="comment" itemscope itemtype="http://schema.org/UserComments" id="c2">
<link itemprop="url" href="#c2">
<footer>
<p>Posted by:
George Hammond

</p>
<p><time itemprop="commentTime" datetime="2009-10-10">5 minutes ago</time></p>

</footer>
<p>Hey, you have the same first name as me.</p>

</article>
</section>

</article>

Notice the use of footerp195 to give the information for each comment (such as who wrote it and when): the footerp195 element
can appear at the start of its section when appropriate, such as in this case. (Using headerp194 in this case wouldn't be wrong
either; it's mostly a matter of authoring preference.)

In this example, articlep180 elements are used to host widgets on a portal page. The widgets are implemented as customized
built-in elementsp703 in order to get specific styling and scripted behavior.

<!DOCTYPE HTML>
<html lang=en>
<title>eHome Portal</title>
<script src="/scripts/widgets.js"></script>
<link rel=stylesheet href="/styles/main.css">
<article is="stock-widget">
<h1>Stocks</h1>
<table>
<thead> <tr> <th> Stock <th> Value <th> Delta
<tbody> <template> <tr> <td> <td> <td> </template>

Example

181

Categoriesp128:
Flow contentp131.
Sectioning contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where sectioning contentp131 is expected.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The sectionp182 element representsp123 a generic section of a document or application. A section, in this context, is a thematic
grouping of content, typically with a heading.

</table>
<p> <input type=button value="Refresh" onclick="this.parentElement.refresh()">

</article>
<article is="news-widget">
<h1>News</h1>

<template>

<p>
<p>

</template>

<p> <input type=button value="Refresh" onclick="this.parentElement.refresh()">

</article>

Examples of sections would be chapters, the various tabbed pages in a tabbed dialog box, or the numbered sections of a thesis. A
web site's home page could be split into sections for an introduction, news items, and contact information.

Example

Authors are encouraged to use the articlep180 element instead of the sectionp182 element when it would make sense to syndicate
the contents of the element.

Note

The sectionp182 element is not a generic container element. When an element is needed only for styling purposes or as a
convenience for scripting, authors are encouraged to use the divp237 element instead. A general rule is that the sectionp182

element is appropriate only if the element's contents would be listed explicitly in the document's outlinep201.

Note

4.3.3 The section element §p18

2

✔ MDN

182

https://w3c.github.io/html-aria/#el-section
https://w3c.github.io/html-aam/#el-section

In the following example, we see an article (part of a larger web page) about apples, containing two short sections.

<article>
<hgroup>
<h1>Apples</h1>
<h2>Tasty, delicious fruit!</h2>

</hgroup>
<p>The apple is the pomaceous fruit of the apple tree.</p>
<section>
<h1>Red Delicious</h1>
<p>These bright red apples are the most common found in many
supermarkets.</p>

</section>
<section>
<h1>Granny Smith</h1>
<p>These juicy, green apples make a great filling for
apple pies.</p>

</section>
</article>

Notice how the use of sectionp182 means that the author can use h1p190 elements throughout, without having to worry about
whether a particular section is at the top level, the second level, the third level, and so on.

Example

Here is a graduation programme with two sections, one for the list of people graduating, and one for the description of the
ceremony. (The markup in this example features an uncommon style sometimes used to minimize the amount of inter-element
whitespacep129.)

<!DOCTYPE Html>
<Html Lang=En
><Head

><Title
>Graduation Ceremony Summer 2022</Title

></Head
><Body

><H1
>Graduation</H1

><Section
><H1

>Ceremony</H1
><P

>Opening Procession</P
><P

>Speech by Validactorian</P
><P

>Speech by Class President</P
><P

>Presentation of Diplomas</P
><P

>Closing Speech by Headmaster</P
></Section
><Section

><H1
>Graduates</H1

>Molly CarpenterAnastasia Luccio<Li

Example

183

Categoriesp128:
Flow contentp131.

>Ebenezar McCoyKarrin MurphyThomas RaithSusan Rodriguez</Section
></Body

></Html>

In this example, a book author has marked up some sections as chapters and some as appendices, and uses CSS to style the
headers in these two classes of section differently.

<style>
section { border: double medium; margin: 2em; }
section.chapter h1 { font: 2em Roboto, Helvetica Neue, sans-serif; }
section.appendix h1 { font: small-caps 2em Roboto, Helvetica Neue, sans-serif; }

</style>
<header>
<hgroup>
<h1>My Book</h1>
<h2>A sample with not much content</h2>

</hgroup>
<p><small>Published by Dummy Publicorp Ltd.</small></p>

</header>
<section class="chapter">
<h1>My First Chapter</h1>
<p>This is the first of my chapters. It doesn't say much.</p>
<p>But it has two paragraphs!</p>

</section>
<section class="chapter">
<h1>It Continues: The Second Chapter</h1>
<p>Bla dee bla, dee bla dee bla. Boom.</p>

</section>
<section class="chapter">
<h1>Chapter Three: A Further Example</h1>
<p>It's not like a battle between brightness and earthtones would go
unnoticed.</p>
<p>But it might ruin my story.</p>

</section>
<section class="appendix">
<h1>Appendix A: Overview of Examples</h1>
<p>These are demonstrations.</p>

</section>
<section class="appendix">
<h1>Appendix B: Some Closing Remarks</h1>
<p>Hopefully this long example shows that you can style
sections, so long as they are used to indicate actual sections.</p>

</section>

Example

4.3.4 The nav element §p18

4

✔ MDN

184

Sectioning contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where sectioning contentp131 is expected.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The navp184 element representsp123 a section of a page that links to other pages or to parts within the page: a section with navigation
links.

Not all groups of links on a page need to be in a navp184 element — the element is primarily intended for sections that consist of
major navigation blocks. In particular, it is common for footers to have a short list of links to various pages of a site, such as the
terms of service, the home page, and a copyright page. The footerp195 element alone is sufficient for such cases; while a navp184

element can be used in such cases, it is usually unnecessary.

Note

User agents (such as screen readers) that are targeted at users who can benefit from navigation information being omitted in the
initial rendering, or who can benefit from navigation information being immediately available, can use this element as a way to
determine what content on the page to initially skip or provide on request (or both).

Note

In the following example, there are two navp184 elements, one for primary navigation around the site, and one for secondary
navigation around the page itself.

<body>
<h1>The Wiki Center Of Exampland</h1>
<nav>

Home
Current Events
...more...

</nav>
<article>
<header>
<h1>Demos in Exampland</h1>
<p>Written by A. N. Other.</p>

</header>
<nav>

Public demonstrations
Demolitions
...more...

</nav>

Example

185

https://w3c.github.io/html-aria/#el-nav
https://w3c.github.io/html-aam/#el-nav

<div>
<section id="public">
<h1>Public demonstrations</h1>
<p>...more...</p>

</section>
<section id="destroy">
<h1>Demolitions</h1>
<p>...more...</p>

</section>
...more...

</div>
<footer>
<p>Edit | Delete | Rename</p>

</footer>
</article>
<footer>
<p><small>© copyright 1998 Exampland Emperor</small></p>

</footer>
</body>

In the following example, the page has several places where links are present, but only one of those places is considered a
navigation section.

<body itemscope itemtype="http://schema.org/Blog">
<header>
<h1>Wake up sheeple!</h1>
<p>News -

Blog -
Forums</p>

<p>Last Modified: 2009-04-01</p>
<nav>
<h1>Navigation</h1>

Index of all articles
Things sheeple need to wake up for today
Sheeple we have managed to wake

</nav>

</header>
<main>
<article itemprop="blogPosts" itemscope itemtype="http://schema.org/BlogPosting">
<header>
<h1 itemprop="headline">My Day at the Beach</h1>

</header>
<div itemprop="articleBody">
<p>Today I went to the beach and had a lot of fun.</p>
...more content...

</div>
<footer>
<p>Posted <time itemprop="datePublished" datetime="2009-10-10">Thursday</time>.</p>

</footer>
</article>
...more blog posts...

</main>
<footer>
<p>Copyright ©
2010
The Example Company

Example

186

Categoriesp128:
Flow contentp131.
Sectioning contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where sectioning contentp131 is expected.

</p>
<p>About -

Privacy Policy -
Contact Us</p>

</footer>
</body>

You can also see microdata annotations in the above example that use the schema.org vocabulary to provide the publication date
and other metadata about the blog post.

A navp184 element doesn't have to contain a list, it can contain other kinds of content as well. In this navigation block, links are
provided in prose:

<nav>
<h1>Navigation</h1>
<p>You are on my home page. To the north lies my
blog, from whence the sounds of battle can be heard. To the east
you can see a large mountain, upon which many school papers are littered. Far up thus mountain
you can spy a little figure who appears to be me, desperately
scribbling a thesis.</p>
<p>To the west are several exits. One fun-looking exit is labeled "games". Another more
boring-looking exit is labeled ISP™.</p>
<p>To the south lies a dark and dank contacts
page. Cobwebs cover its disused entrance, and at one point you
see a rat run quickly out of the page.</p>

</nav>

Example

In this example, navp184 is used in an email application, to let the user switch folders:

<p><input type=button value="Compose" onclick="compose()"></p>
<nav>
<h1>Folders</h1>

 Inbox
 Sent
 Drafts
 Trash
 Customers

</nav>

Example

4.3.5 The aside element §p18

7

✔ MDN

187

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The asidep187 element representsp123 a section of a page that consists of content that is tangentially related to the content around the
asidep187 element, and which could be considered separate from that content. Such sections are often represented as sidebars in
printed typography.

The element can be used for typographical effects like pull quotes or sidebars, for advertising, for groups of navp184 elements, and for
other content that is considered separate from the main content of the page.

It's not appropriate to use the asidep187 element just for parentheticals, since those are part of the main flow of the document.
Note

The following example shows how an aside is used to mark up background material on Switzerland in a much longer news story on
Europe.

<aside>
<h1>Switzerland</h1>
<p>Switzerland, a land-locked country in the middle of geographic
Europe, has not joined the geopolitical European Union, though it is
a signatory to a number of European treaties.</p>

</aside>

Example

The following example shows how an aside is used to mark up a pull quote in a longer article.

...

<p>He later joined a large company, continuing on the same work.
<q>I love my job. People ask me what I do for fun when I'm not at
work. But I'm paid to do my hobby, so I never know what to
answer. Some people wonder what they would do if they didn't have to
work... but I know what I would do, because I was unemployed for a
year, and I filled that time doing exactly what I do now.</q></p>

<aside>
<q> People ask me what I do for fun when I'm not at work. But I'm
paid to do my hobby, so I never know what to answer. </q>

</aside>

<p>Of course his work — or should that be hobby? —
isn't his only passion. He also enjoys other pleasures.</p>

...

Example

Example
188

https://w3c.github.io/html-aria/#el-aside
https://w3c.github.io/html-aam/#el-aside

The following extract shows how asidep187 can be used for blogrolls and other side content on a blog:

<body>
<header>
<h1>My wonderful blog</h1>
<p>My tagline</p>

</header>
<aside>
<!-- this aside contains two sections that are tangentially related
to the page, namely, links to other blogs, and links to blog posts
from this blog -->
<nav>
<h1>My blogroll</h1>

Example Blog

</nav>
<nav>
<h1>Archives</h1>
<ol reversed>
My last post
My first post

</nav>

</aside>
<aside>
<!-- this aside is tangentially related to the page also, it
contains twitter messages from the blog author -->
<h1>Twitter Feed</h1>
<blockquote cite="https://twitter.example.net/t31351234">
I'm on vacation, writing my blog.

</blockquote>
<blockquote cite="https://twitter.example.net/t31219752">
I'm going to go on vacation soon.

</blockquote>
</aside>
<article>
<!-- this is a blog post -->
<h1>My last post</h1>
<p>This is my last post.</p>
<footer>
<p>Permalink

</footer>
</article>
<article>
<!-- this is also a blog post -->
<h1>My first post</h1>
<p>This is my first post.</p>
<aside>
<!-- this aside is about the blog post, since it's inside the
<article> element; it would be wrong, for instance, to put the
blogroll here, since the blogroll isn't really related to this post
specifically, only to the page as a whole -->
<h1>Posting</h1>
<p>While I'm thinking about it, I wanted to say something about
posting. Posting is fun!</p>

</aside>
<footer>
<p>Permalink

</footer>
</article>

189

Categoriesp128:
Flow contentp131.
Heading contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
As a child of an hgroupp191 element.
Where heading contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLHeadingElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

These elements representp123 headings for their sections.

The semantics and meaning of these elements are defined in the section on headings and sectionsp199.

These elements have a rank given by the number in their name. The h1p190 element is said to have the highest rank, the h6p190

element has the lowest rank, and two elements with the same name have equal rank.

<footer>
<p>Archives -
About me -
Copyright</p>

</footer>
</body>

As far as their respective document outlines (their heading and section structures) are concerned, these two snippets are
semantically equivalent:

<body>
<h1>Let's call it a draw(ing surface)</h1>
<h2>Diving in</h2>
<h2>Simple shapes</h2>
<h2>Canvas coordinates</h2>
<h3>Canvas coordinates diagram</h3>
<h2>Paths</h2>

Example

IDL

4.3.6 The h1, h2, h3, h4, h5, and h6 elements §p19

0

✔ MDN

✔ MDN

190

https://w3c.github.io/html-aria/#el-h1-h6
https://w3c.github.io/html-aam/#el-h1-h6

Categoriesp128:
Flow contentp131.
Heading contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where heading contentp132 is expected.

Content modelp128:
One or more h1p190, h2p190, h3p190, h4p190, h5p190, h6p190 elements, optionally intermixed with script-supporting elementsp133.

</body>

<body>
<h1>Let's call it a draw(ing surface)</h1>
<section>
<h1>Diving in</h1>

</section>
<section>
<h1>Simple shapes</h1>

</section>
<section>
<h1>Canvas coordinates</h1>
<section>
<h1>Canvas coordinates diagram</h1>

</section>
</section>
<section>
<h1>Paths</h1>

</section>
</body>

Authors might prefer the former style for its terseness, or the latter style for its convenience in the face of heavy editing; which is
best is purely an issue of preferred authoring style.

The two styles can be combined, for compatibility with legacy tools while still future-proofing for when that compatibility is no
longer needed. This third snippet again has the same outline as the previous two:

<body>
<h1>Let's call it a draw(ing surface)</h1>
<section>
<h2>Diving in</h2>

</section>
<section>
<h2>Simple shapes</h2>

</section>
<section>
<h2>Canvas coordinates</h2>
<section>
<h3>Canvas coordinates diagram</h3>

</section>
</section>
<section>
<h2>Paths</h2>

</section>
</body>

4.3.7 The hgroup element §p19

1

✔ MDN

191

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The hgroupp191 element representsp123 the heading of a section, which consists of all the h1p190–h6p190 element children of the
hgroupp191 element. The element is used to group a set of h1p190–h6p190 elements when the heading has multiple levels, such as
subheadings, alternative titles, or taglines.

The rankp190 of an hgroupp191 element is the rank of the highest-ranked h1p190–h6p190 element descendant of the hgroupp191 element, if
there are any such elements, or otherwise the same as for an h1p190 element (the highest rank). Other h1p190–h6p190 elements of
heading contentp132 in the hgroupp191 element indicate subheadings or subtitles or (secondary) alternative titles.

The section on headings and sectionsp199 defines how hgroupp191 elements are assigned to individual sections.

Here are some examples of valid headings.

<hgroup>
<h1>The reality dysfunction</h1>
<h2>Space is not the only void</h2>

</hgroup>

<hgroup>
<h1>Dr. Strangelove</h1>
<h2>Or: How I Learned to Stop Worrying and Love the Bomb</h2>

</hgroup>

The point of using hgroupp191 in these examples is to prevent the h2p190 element (which acts as a secondary title) from creating a
separate section of its own in any outlinep201 and to instead cause the contents of the h2p190 to be shown in rendered output from
the outlinep201 algorithm in some way to indicate that it is not the title of a separate section but instead just a secondary title in a
group of titles.

How a user agent exposes such multi-level headings in user interfaces (e.g. in tables of contents or search results) is left open to
implementers, as it is a user interface issue. The first example above could be rendered as:

The reality dysfunction: Space is not the only void

Alternatively, it could look like this:

The reality dysfunction (Space is not the only void)

In interfaces where a title can be rendered on multiple lines, it could be rendered as follows, maybe with the first line in a bigger
font size:

The reality dysfunction
Space is not the only void

Example

The following two examples show ways in which two h1p190 headings could be used within an hgroupp191 element to group the US
and UK names for the same movie.

<hgroup>

Example

192

https://w3c.github.io/html-aria/#el-hgroup
https://w3c.github.io/html-aam/#el-hgroup

<h1>The Avengers</h1>
<h1>Avengers Assemble</h1>

</hgroup>

<hgroup>
<h1>Avengers Assemble</h1>
<h1>The Avengers</h1>

</hgroup>

The first example above shows how the movie names might be grouped in a publication in the US, with the US name The Avengers
as the (primary) title, and the UK name Avengers Assemble as the (secondary) alternative title. The second example above shows
how the movie names might be grouped in a publication in the UK, with the UK name as the (primary) title, and the US name as
the (secondary) alternative title.

In both cases it is important to note the use of the hgroupp191 element to group the two titles indicates that the titles are not
equivalent; instead the first h1p190 gives the (primary) title while the second gives the (secondary) alternative title. Even though
both the title and alternative title are marked up with h1p190 elements, in a rendered view of output from the outlinep201 algorithm,
the second h1p190 in the hgroupp191 will be shown in some way that clearly indicates it is secondary; for example:

In a US publication:

The Avengers (Avengers Assemble)

In a UK publication:

Avengers Assemble (The Avengers)

In the following example, an hgroupp191 element is used to mark up a two-level heading in a wizard-style dialog box:

<dialog onclose="walletSetup.continue(this.returnValue)">
<hgroup>
<h1>Wallet Setup</h1>
<h2>Configure your Wallet funding source</h2>

</hgroup>
<p>Your Wallet can be used to buy wands at the merchant in town, to buy potions from travelling
salesmen you may find in the dungeons, and to pay for mercenaries.</p>
<p>We support two payment sources:</p>
<form method=dialog>
<fieldset oninput="this.getElementsByTagName('input')[0].checked = true">
<legend> <label> <input type=radio name=payment-type value=cc> Credit Card </label> </legend>
<p><label>Name on card: <input name=cc1 autocomplete="section-cc cc-name" placeholder="Y.

Name"></label>
<p><label>Card number: <input name=cc2 inputmode=numeric autocomplete="section-cc cc-number"

placeholder="6331 1019 9999 0016"></label>
<p><label>Expiry Date: <input name=cc3 type=month autocomplete="section-cc cc-exp"

placeholder="2020-02"></label>
<p><label>Security Code: <input name=cc4 inputmode=numeric autocomplete="section-cc cc-csc"

placeholder="246"></label>
</fieldset>
<fieldset oninput="this.getElementsByTagName('input')[0].checked = true">
<legend> <label> <input type=radio name=payment-type value=bank> Checking Account </label>

</legend>
<p><label>Name on account: <input name=bank1 autocomplete="section-bank cc-name"></label>
<p><label>Routing number: <input name=bank2 inputmode=numeric></label>
<p><label>Account number: <input name=bank3 inputmode=numeric></label>

</fieldset>
<button type=submit value="back"> ← Back </button>
<button type=submit value="next"> Next → </button>

</form>

Example

193

Categoriesp128:
Flow contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Flow contentp131, but with no headerp194 or footerp195 element descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
If the nearest ancestor sectioning contentp131 or sectioning rootp199 element is the body elementp118: for authors; for
implementers.
Otherwise: for authors; for implementers.

DOM interfacep129:
Uses HTMLElementp124.

The headerp194 element representsp123 a group of introductory or navigational aids.

</dialog>

A headerp194 element is intended to usually contain the section's heading (an h1p190–h6p190 element or an hgroupp191 element), but
this is not required. The headerp194 element can also be used to wrap a section's table of contents, a search form, or any relevant
logos.

Note

Here are some sample headers. This first one is for a game:

<header>
<p>Welcome to...</p>
<h1>Voidwars!</h1>

</header>

The following snippet shows how the element can be used to mark up a specification's header:

<header>
<hgroup>
<h1>Fullscreen API</h1>
<h2>Living Standard — Last Updated 19 October 2015</h2>

</hgroup>
<dl>
<dt>Participate:</dt>
<dd>GitHub whatwg/fullscreen</dd>
<dt>Commits:</dt>
<dd>GitHub whatwg/fullscreen/

commits</dd>
</dl>

Example

4.3.8 The header element §p19

4

✔ MDN

194

https://w3c.github.io/html-aria/#el-header
https://w3c.github.io/html-aam/#el-header-ancestorbody
https://w3c.github.io/html-aam/#el-header-ancestorbody
https://w3c.github.io/html-aria/#el-header
https://w3c.github.io/html-aam/#el-header

Categoriesp128:
Flow contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Flow contentp131, but with no headerp194 or footerp195 element descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
If the nearest ancestor sectioning contentp131 or sectioning rootp199 element is the body elementp118: for authors; for
implementers.
Otherwise: for authors; for implementers.

DOM interfacep129:
Uses HTMLElementp124.

The footerp195 element representsp123 a footer for its nearest ancestor sectioning contentp131 or sectioning rootp199 element. A footer
typically contains information about its section such as who wrote it, links to related documents, copyright data, and the like.

</header>

The headerp194 element is not sectioning contentp131; it doesn't introduce a new section.
Note

In this example, the page has a page heading given by the h1p190 element, and two subsections whose headings are given by h2p190

elements. The content after the headerp194 element is still part of the last subsection started in the headerp194 element, because
the headerp194 element doesn't take part in the outlinep201 algorithm.

<body>
<header>
<h1>Little Green Guys With Guns</h1>
<nav>

Games
Forum
Download

</nav>
<h2>Important News</h2> <!-- this starts a second subsection -->
<!-- this is part of the subsection entitled "Important News" -->
<p>To play today's games you will need to update your client.</p>
<h2>Games</h2> <!-- this starts a third subsection -->

</header>
<p>You have three active games:</p>
<!-- this is still part of the subsection entitled "Games" -->
...

Example

4.3.9 The footer element §p19

5

✔ MDN

195

https://w3c.github.io/html-aria/#el-footer
https://w3c.github.io/html-aam/#el-footer-ancestorbody
https://w3c.github.io/html-aam/#el-footer-ancestorbody
https://w3c.github.io/html-aria/#el-footer
https://w3c.github.io/html-aam/#el-footer

When the footerp195 element contains entire sections, they representp123 appendices, indexes, long colophons, verbose license
agreements, and other such content.

Footers don't necessarily have to appear at the end of a section, though they usually do.

When the nearest ancestor sectioning contentp131 or sectioning rootp199 element is the body elementp118, then it applies to the whole
page.

Contact information for the author or editor of a section belongs in an addressp197 element, possibly itself inside a footerp195.
Bylines and other information that could be suitable for both a headerp194 or a footerp195 can be placed in either (or neither). The
primary purpose of these elements is merely to help the author write self-explanatory markup that is easy to maintain and style;
they are not intended to impose specific structures on authors.

Note

The footerp195 element is not sectioning contentp131; it doesn't introduce a new section.
Note

Here is a page with two footers, one at the top and one at the bottom, with the same content:

<body>
<footer>Back to index...</footer>
<hgroup>
<h1>Lorem ipsum</h1>
<h2>The ipsum of all lorems</h2>

</hgroup>
<p>A dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<footer>Back to index...</footer>

</body>

Example

Here is an example which shows the footerp195 element being used both for a site-wide footer and for a section footer.

<!DOCTYPE HTML>
<HTML LANG="en"><HEAD>
<TITLE>The Ramblings of a Scientist</TITLE>
<BODY>
<H1>The Ramblings of a Scientist</H1>
<ARTICLE>
<H1>Episode 15</H1>
<VIDEO SRC="/fm/015.ogv" CONTROLS PRELOAD>
<P>Download video.</P>

</VIDEO>
<FOOTER> <!-- footer for article -->
<P>Published <TIME DATETIME="2009-10-21T18:26-07:00">on 2009/10/21 at 6:26pm</TIME></P>

</FOOTER>
</ARTICLE>
<ARTICLE>
<H1>My Favorite Trains</H1>
<P>I love my trains. My favorite train of all time is a Köf.</P>
<P>It is fun to see them pull some coal cars because they look so
dwarfed in comparison.</P>
<FOOTER> <!-- footer for article -->

Example

196

Categoriesp128:
Flow contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

<P>Published <TIME DATETIME="2009-09-15T14:54-07:00">on 2009/09/15 at 2:54pm</TIME></P>
</FOOTER>

</ARTICLE>
<FOOTER> <!-- site wide footer -->
<NAV>
<P>Credits —

Terms of Service —
Blog Index</P>

</NAV>
<P>Copyright © 2009 Gordon Freeman</P>

</FOOTER>
</BODY>
</HTML>

Some site designs have what is sometimes referred to as "fat footers" — footers that contain a lot of material, including images,
links to other articles, links to pages for sending feedback, special offers... in some ways, a whole "front page" in the footer.

This fragment shows the bottom of a page on a site with a "fat footer":

...
<footer>
<nav>
<section>
<h1>Articles</h1>
<p> Go to the gym with
our somersaults class! Our teacher Jim takes you through the paces
in this two-part article. Part
1 · Part 2</p>
<p> Tired of walking on the edge of
a clif<!-- sic -->? Our guest writer Lara shows you how to bumble
your way through the bars. Read
more...</p>
<p> The chips are down, now all
that's left is a potato. What can you do with it? Read more...</p>

</section>

 About us...
 Send feedback!
 Sitemap

</nav>
<p><small>Copyright © 2015 The Snacker —
Terms of Service</small></p>

</footer>
</body>

Example

4.3.10 The address element §p19

7

✔ MDN

197

Content modelp128:
Flow contentp131, but with no heading contentp132 descendants, no sectioning contentp131 descendants, and no headerp194,
footerp195, or addressp197 element descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The addressp197 element representsp123 the contact information for its nearest articlep180 or bodyp178 element ancestor. If that is the
body elementp118, then the contact information applies to the document as a whole.

The addressp197 element must not be used to represent arbitrary addresses (e.g. postal addresses), unless those addresses are in fact
the relevant contact information. (The pp211 element is the appropriate element for marking up postal addresses in general.)

The addressp197 element must not contain information other than contact information.

Typically, the addressp197 element would be included along with other information in a footerp195 element.

The contact information for a node node is a collection of addressp197 elements defined by the first applicable entry from the following
list:

↪ If node is an articlep180 element
↪ If node is a bodyp178 element

The contact information consists of all the addressp197 elements that have node as an ancestor and do not have another
bodyp178 or articlep180 element ancestor that is a descendant of node.

↪ If node has an ancestor element that is an articlep180 element
↪ If node has an ancestor element that is a bodyp178 element

The contact information of node is the same as the contact information of the nearest articlep180 or bodyp178 element ancestor,
whichever is nearest.

↪ If node's node document has a body elementp118

The contact information of node is the same as the contact information of the body elementp118 of the Documentp114.

↪ Otherwise
There is no contact information for node.

User agents may expose the contact information of a node to the user, or use it for other purposes, such as indexing sections based on

For example, a page at the W3C web site related to HTML might include the following contact information:

<ADDRESS>
Dave Raggett,
Arnaud Le Hors,
contact persons for the W3C HTML Activity

</ADDRESS>

Example

For example, the following is non-conforming use of the addressp197 element:

<ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>

Example

198

https://w3c.github.io/html-aria/#el-address
https://w3c.github.io/html-aam/#el-address
https://dom.spec.whatwg.org/#concept-node-document

the sections' contact information.

The h1p190–h6p190 elements and the hgroupp191 element are headings.

The first element of heading contentp132 in an element of sectioning contentp131 representsp123 the heading for that section. Subsequent
headings of equal or higher rankp190 start new (implied) sections, headings of lower rankp190 start implied subsections that are part of
the previous one. In both cases, the element representsp123 the heading of the implied section.

Certain elements are said to be sectioning roots, including blockquotep217 and tdp465 elements. These elements can have their own
outlines, but the sections and headings inside these elements do not contribute to the outlines of their ancestors.

⇒ blockquotep217, bodyp178, detailsp604, dialogp610, fieldsetp562, figurep232, tdp465

Sectioning contentp131 elements are always considered subsections of their nearest ancestor sectioning rootp199 or their nearest
ancestor element of sectioning contentp131, whichever is nearest, regardless of what implied sections other headings may have
created.

Sections may contain headings of any rankp190, but authors are strongly encouraged to either use only h1p190 elements, or to use
elements of the appropriate rankp190 for the section's nesting level.

In this example the footer contains contact information and a copyright notice.

<footer>
<address>
For more details, contact
John Smith.

</address>
<p><small>© copyright 2038 Example Corp.</small></p>

</footer>

Example

For the following fragment:

<body>
<h1>Foo</h1>
<h2>Bar</h2>
<blockquote>
<h3>Bla</h3>

</blockquote>
<p>Baz</p>
<h2>Quux</h2>
<section>
<h3>Thud</h3>

</section>
<p>Grunt</p>

</body>

...the structure would be:

1. Foo (heading of explicit bodyp178 section, containing the "Grunt" paragraph)
1. Bar (heading starting implied section, containing a block quote and the "Baz" paragraph)
2. Quux (heading starting implied section with no content other than the heading itself)
3. Thud (heading of explicit sectionp182 section)

Notice how the sectionp182 ends the earlier implicit section so that a later paragraph ("Grunt") is back at the top level.

Example

4.3.11 Headings and sections §p19

9

199

Authors are also encouraged to explicitly wrap sections in elements of sectioning contentp131, instead of relying on the implicit sections
generated by having multiple headings in one element of sectioning contentp131.

For example, the following is correct:

<body>
<h4>Apples</h4>
<p>Apples are fruit.</p>
<section>
<h2>Taste</h2>
<p>They taste lovely.</p>
<h6>Sweet</h6>
<p>Red apples are sweeter than green ones.</p>
<h1>Color</h1>
<p>Apples come in various colors.</p>

</section>
</body>

However, the same document would be more clearly expressed as:

<body>
<h1>Apples</h1>
<p>Apples are fruit.</p>
<section>
<h2>Taste</h2>
<p>They taste lovely.</p>
<section>
<h3>Sweet</h3>
<p>Red apples are sweeter than green ones.</p>

</section>
</section>
<section>
<h2>Color</h2>
<p>Apples come in various colors.</p>

</section>
</body>

Both of the documents above are semantically identical and would produce the same outline in compliant user agents.

This third example is also semantically identical, and might be easier to maintain (e.g. if sections are often moved around in
editing):

<body>
<h1>Apples</h1>
<p>Apples are fruit.</p>
<section>
<h1>Taste</h1>
<p>They taste lovely.</p>
<section>
<h1>Sweet</h1>
<p>Red apples are sweeter than green ones.</p>

</section>
</section>
<section>
<h1>Color</h1>
<p>Apples come in various colors.</p>

</section>
</body>

This final example would need explicit style rules to be rendered well in legacy browsers. Legacy browsers without CSS support

Example

200

This section defines an algorithm for creating an outline for a sectioning contentp131 element or a sectioning rootp199 element. It is
defined in terms of a walk over the nodes of a DOM tree, in tree order, with each node being visited when it is entered and when it is
exited during the walk.

The outline for a sectioning contentp131 element or a sectioning rootp199 element consists of a list of one or more potentially nested
sectionsp201. The element for which an outlinep201 is created is said to be the outline's owner.

A section is a container that corresponds to some nodes in the original DOM tree. Each section can have one heading associated with
it, and can contain any number of further nested sections. The algorithm for the outline also associates each node in the DOM tree with
a particular section and potentially a heading. (The sections in the outline aren't sectionp182 elements, though some may correspond
to such elements — they are merely conceptual sections.)

The algorithm that must be followed during a walk of a DOM subtree rooted at a sectioning contentp131 element or a sectioning rootp199

would render all the headings as top-level headings.

4.3.11.1 Creating an outline §p20

1

The following markup fragment:

<body>
<hgroup id="document-title">

<h1>HTML</h1>
<h2>Living Standard — Last Updated 12 August 2016</h2>

</hgroup>
<p>Some intro to the document.</p>
<h2>Table of contents</h2>
<ol id=toc>...
<h2>First section</h2>
<p>Some intro to the first section.</p>

</body>

...results in the following outline being created for the bodyp178 node (and thus the entire document):

1. Section created for bodyp178 node.
Associated with heading <hgroup id="document-title">...</hgroup> consisting of primary heading <h1>HTML</h1>
and secondary heading <h2>Living Standard — Last Updated 12 August 2016</h2>.
Also associated with the paragraph <p>Some intro to the document.</p> (though it likely would not be shown in a
rendered view of the outline).
Nested sections:

1. Section implied for first h2p190 element.
Associated with heading <h2>Table of contents</h2>.
Also associated with the ordered list <ol id=toc>... (though it likely would not be shown in a rendered
view of the outline).
No nested sections.

2. Section implied for second h2p190 element.
Associated with heading <h2>First section</h2>.
Also associated with the paragraph <p>Some intro to the first section.</p> (though it likely would not
be shown in a rendered view of the outline).
No nested sections.

The following image shows what a rendered view of the outline might look like.

HTML: Living Standard — Last Updated 12 August 2016HTML: Living Standard — Last Updated 12 August 2016

Table of contentsTable of contents

First sectionFirst section

Example

201

https://dom.spec.whatwg.org/#concept-tree-order

element to determine that element's outlinep201 is as follows:

1. Let current outline target be null. (It holds the element whose outlinep201 is being created.)

2. Let current section be null. (It holds a pointer to a sectionp201, so that elements in the DOM can all be associated with a
section.)

3. Create a stack to hold elements, which is used to handle nesting. Initialize this stack to empty.

4. Walk over the DOM in tree order, starting with the sectioning contentp131 element or sectioning rootp199 element at the root of
the subtree for which an outline is to be created, and trigger the first relevant step below for each element as the walk
enters and exits it.

↪ When exiting an element, if that element is the element at the top of the stack

Pop that element from the stack.

↪ If the top of the stack is a heading contentp132 element or an element with a hiddenp765 attribute
Do nothing.

↪ When entering an element with a hiddenp765 attribute
Push the element being entered onto the stack. (This causes the algorithm to skip that element and any descendants
of the element.)

↪ When entering a sectioning contentp131 element
Run these steps:

1. If current outline target is not null, then:

1. If the current section has no heading, create an implied heading and let that be the heading for
the current section.

2. Push current outline target onto the stack.

2. Let current outline target be the element that is being entered.

3. Let current section be a newly created sectionp201 for the current outline target element.

4. Associate current outline target with current section.

5. Let there be a new outlinep201 for the new current outline target, initialized with just the new current section
as the only sectionp201 in the outline.

↪ When exiting a sectioning contentp131 element, if the stack is not empty
Run these steps:

1. If the current section has no heading, create an implied heading and let that be the heading for the current
section.

2. Pop the top element from the stack, and let the current outline target be that element.

3. Let current section be the last section in the outlinep201 of the current outline target element.

4. Append the outlinep201 of the sectioning contentp131 element being exited to the current section. (This does
not change which section is the last section in the outlinep201.)

↪ When entering a sectioning rootp199 element
Run these steps:

1. If current outline target is not null, push current outline target onto the stack.

2. Let current outline target be the element that is being entered.

3. Let current outline target's parent section be current section.

The element being exited is a heading contentp132 element or an element with a hiddenp765 attribute.
Note

202

https://dom.spec.whatwg.org/#concept-tree-order

4. Let current section be a newly created sectionp201 for the current outline target element.

5. Let there be a new outlinep201 for the new current outline target, initialized with just the new current section
as the only sectionp201 in the outline.

↪ When exiting a sectioning rootp199 element, if the stack is not empty
Run these steps:

1. If the current section has no heading, create an implied heading and let that be the heading for the current
section.

2. Let current section be current outline target's parent section.

3. Pop the top element from the stack, and let the current outline target be that element.

↪ When exiting a sectioning contentp131 element or a sectioning rootp199 element (when the stack is empty)

If the current section has no heading, create an implied heading and let that be the heading for the current section.

Skip to the next step in the overall set of steps. (The walk is over.)

↪ When entering a heading contentp132 element
If the current section has no heading, let the element being entered be the heading for the current section.

Otherwise, if the element being entered has a rankp190 equal to or higher than the heading of the last section of the
outlinep201 of the current outline target, or if the heading of the last section of the outlinep201 of the current outline
target is an implied heading, then create a new sectionp201 and append it to the outlinep201 of the current outline
target element, so that this new section is the new last section of that outline. Let current section be that new section.
Let the element being entered be the new heading for the current section.

Otherwise, run these substeps:

1. Let candidate section be current section.

2. Heading loop: If the element being entered has a rankp190 lower than the rankp190 of the heading of the
candidate section, then create a new sectionp201, and append it to candidate section. (This does not change
which section is the last section in the outline.) Let current section be this new section. Let the element
being entered be the new heading for the current section. Abort these substeps.

3. Let new candidate section be the sectionp201 that contains candidate section in the outlinep201 of current
outline target.

4. Let candidate section be new candidate section.

5. Return to the step labeled heading loop.

Push the element being entered onto the stack. (This causes the algorithm to skip any descendants of the element.)

↪ Otherwise
Do nothing.

The current outline target is the element being exited, and it is the sectioning contentp131 element or a sectioning
rootp199 element at the root of the subtree for which an outline is being generated.

Note

If the element being entered is an hgroupp191 element, that hgroupp191 as a whole is a multi-level heading for the
current section, with the highest-rankedp190 h1p190–h6p190 descendant of the hgroupp191 providing the primary
heading for the current section, and with other h1p190–h6p190 descendants of the hgroupp191 providing secondary
headings for the current section.

Note

Recall that h1p190 has the highest rank, and h6p190 has the lowest rank.
Note

203

In addition, whenever the walk exits a node, after doing the steps above, if the node is not associated with a sectionp201 yet,
associate the node with the sectionp201 current section.

5. Associate all non-element nodes that are in the subtree for which an outline is being created with the sectionp201 with which
their parent element is associated.

6. Associate all nodes in the subtree with the heading of the sectionp201 with which they are associated, if any.

The tree of sections created by the algorithm above, or a proper subset thereof, must be used when generating document outlines, for
example when generating tables of contents.

The outline created for the body elementp118 of a Documentp114 is the outlinep201 of the entire document.

When creating an interactive table of contents, entries should jump the user to the relevant sectioning contentp131 element, if the
sectionp201 was created for a real element in the original document, or to the relevant heading contentp132 element, if the sectionp201 in
the tree was generated for a heading in the above process.

The outline depth of a heading contentp132 element associated with a sectionp201 section is the number of sectionsp201 that are
ancestors of section in the outermost outlinep201 that section finds itself in when the outlinesp201 of its Documentp114 's elements are
created, plus 1. The outline depthp204 of a heading contentp132 element not associated with a sectionp201 is 1.

User agents should provide default headings for sections that do not have explicit section headings.

Selecting the first sectionp201 of the document therefore always takes the user to the top of the document, regardless of where the
first heading in the bodyp178 is to be found.

Note

Consider the following snippet:

<body>
<nav>
<p>Home</p>

</nav>
<p>Hello world.</p>
<aside>
<p>My cat is cute.</p>

</aside>
</body>

Although it contains no headings, this snippet has three sections: a document (the bodyp178) with two subsections (a navp184 and an
asidep187). A user agent could present the outline as follows:

1. Untitled document
1. Navigation
2. Sidebar

These default headings ("Untitled document", "Navigation", "Sidebar") are not specified by this specification, and might vary with
the user's language, the page's language, the user's preferences, the user agent implementer's preferences, etc.

Example

The following JavaScript function shows how the tree walk could be implemented. The root argument is the root of the tree to walk
(either a sectioning contentp131 element or a sectioning rootp199 element), and the enter and exit arguments are callbacks that are
called with the nodes as they are entered and exited. [JAVASCRIPT]p1288

function (root, enter, exit) {
var node = root;
start: while (node) {

enter(node);
if (node.firstChild) {

node = node.firstChild;

Note

204

This section is non-normative.

continue start;
}
while (node) {

exit(node);
if (node == root) {

node = null;
} else if (node.nextSibling) {

node = node.nextSibling;
continue start;

} else {
node = node.parentNode;

}
}

}
}

4.3.11.2 Sample outlines §p20

5

The following document shows a straight-forward application of the outlinep201 algorithm. First, here is the document, which is a
book with very short chapters and subsections:

<!DOCTYPE HTML>
<html lang=en>
<title>The Tax Book (all in one page)</title>
<h1>The Tax Book</h1>
<h2>Earning money</h2>
<p>Earning money is good.</p>
<h3>Getting a job</h3>
<p>To earn money you typically need a job.</p>
<h2>Spending money</h2>
<p>Spending is what money is mainly used for.</p>
<h3>Cheap things</h3>
<p>Buying cheap things often not cost-effective.</p>
<h3>Expensive things</h3>
<p>The most expensive thing is often not the most cost-effective either.</p>
<h2>Investing money</h2>
<p>You can lend your money to other people.</p>
<h2>Losing money</h2>
<p>If you spend money or invest money, sooner or later you will lose money.
<h3>Poor judgement</h3>
<p>Usually if you lose money it's because you made a mistake.</p>

This book would form the following outline:

1. The Tax Book
1. Earning money

1. Getting a job
2. Spending money

1. Cheap things
2. Expensive things

3. Investing money
4. Losing money

1. Poor judgement

Notice that the titlep154 element does not participate in the outline.

Example

205

Here is a similar document, but this time using sectionp182 elements to get the same effect:

<!DOCTYPE HTML>
<html lang=en>
<title>The Tax Book (all in one page)</title>
<h1>The Tax Book</h1>
<section>
<h1>Earning money</h1>
<p>Earning money is good.</p>
<section>
<h1>Getting a job</h1>
<p>To earn money you typically need a job.</p>

</section>
</section>
<section>
<h1>Spending money</h1>
<p>Spending is what money is mainly used for.</p>
<section>
<h1>Cheap things</h1>
<p>Buying cheap things often not cost-effective.</p>

</section>
<section>
<h1>Expensive things</h1>
<p>The most expensive thing is often not the most cost-effective either.</p>

</section>
</section>
<section>
<h1>Investing money</h1>
<p>You can lend your money to other people.</p>

</section>
<section>
<h1>Losing money</h1>
<p>If you spend money or invest money, sooner or later you will lose money.
<section>
<h1>Poor judgement</h1>
<p>Usually if you lose money it's because you made a mistake.</p>

</section>
</section>

This book would form the same outline:

1. The Tax Book
1. Earning money

1. Getting a job
2. Spending money

1. Cheap things
2. Expensive things

3. Investing money
4. Losing money

1. Poor judgement

Example

A document can contain multiple top-level headings:

<!DOCTYPE HTML>
<html lang=en>
<title>Alphabetic Fruit</title>
<h1>Apples</h1>
<p>Pomaceous.</p>
<h1>Bananas</h1>
<p>Edible.</p>
<h1>Carambola</h1>

Example

206

<p>Star.</p>

This would form the following simple outline consisting of three top-level sections:

1. Apples
2. Bananas
3. Carambola

Effectively, the bodyp178 element is split into three.

Mixing both the h1p190–h6p190 model and the sectionp182/h1p190 model can lead to some unintuitive results.

Consider for example the following, which is just the previous example but with the contents of the (implied) bodyp178 wrapped in a
sectionp182:

<!DOCTYPE HTML>
<html lang=en>
<title>Alphabetic Fruit</title>
<section>
<h1>Apples</h1>
<p>Pomaceous.</p>
<h1>Bananas</h1>
<p>Edible.</p>
<h1>Carambola</h1>
<p>Star.</p>

</section>

The resulting outline would be:

1. (untitled page)
1. Apples
2. Bananas
3. Carambola

This result is described as unintuitive because it results in three subsections even though there's only one sectionp182 element.
Effectively, the sectionp182 is split into three, just like the implied bodyp178 element in the previous example.

(In this example, "(untitled page)" is the implied heading for the bodyp178 element, since it has no explicit heading.)

Example

Headings never rise above other sections. Thus, in the following example, the first h1p190 does not actually describe the page
header; it describes the header for the second half of the page:

<!DOCTYPE HTML>
<html lang=en>
<title>Feathers on The Site of Encyclopedic Knowledge</title>
<section>
<h1>A plea from our caretakers</h1>
<p>Please, we beg of you, send help! We're stuck in the server room!</p>

</section>
<h1>Feathers</h1>
<p>Epidermal growths.</p>

The resulting outline would be:

1. (untitled page)
1. A plea from our caretakers

2. Feathers

Example

Example
207

Thus, when an articlep180 element starts with a navp184 block and only later has its heading, the result is that the navp184 block is
not part of the same section as the rest of the articlep180 in the outline. For instance, take this document:

<!DOCTYPE HTML>
<html lang="en">
<title>We're adopting a child! — Ray's blog</title>
<h1>Ray's blog</h1>
<article>
<header>
<nav>
Yesterday;
Last week;
Last month

</nav>
<h1>We're adopting a child!</h1>

</header>
<p>As of today, Janine and I have signed the papers to become
the proud parents of baby Diane! We've been looking forward to
this day for weeks.</p>

</article>
</html>

The resulting outline would be:

1. Ray's blog
1. Untitled article

1. Untitled navigation section
2. We're adopting a child!

Also worthy of note in this example is that the headerp194 element has no effect whatsoever on the document outline.

The hgroupp191 element can be used for subheadings. For example:

<!DOCTYPE HTML>
<html lang="en">
<title>Chronotype: CS Student</title>
<hgroup>
<h1> The morning </h1>
<h2> 06:00 to 12:00 </h2>

</hgroup>
<p>We sleep.</p>
<hgroup>
<h1> The afternoon </h1>
<h2> 12:00 to 18:00 </h2>

</hgroup>
<p>We study.</p>
<hgroup>
<h2>Additional Commentary</h2>
<h3>Because not all this is necessarily true</h3>
<h6>Ok it's almost certainly not true</h6>

</hgroup>
<p>Yeah we probably play, rather than study.</p>
<hgroup>
<h1> The evening </h1>
<h2> 18:00 to 00:00 </h2>

</hgroup>
<p>We play.</p>
<hgroup>
<h1> The night </h1>
<h2> 00:00 to 06:00 </h2>

Example

208

User agents are encouraged to expose page outlines to users to aid in navigation. This is especially true for non-visual media, e.g.
screen readers.

However, to mitigate the difficulties that arise from authors misusing sectioning contentp131, user agents are also encouraged to offer a
mode that navigates the page using heading contentp132 alone.

</hgroup>
<p>We play some more.</p>
</html>

The resulting outline would be:

1. The morning 06:00 to 12:00
2. The afternoon 12:00 to 18:00

1. Additional Commentary Because not all this is necessarily true Ok it's almost certainly not true
3. The evening 18:00 to 00:00
4. The night 00:00 to 06:00

Exactly how this is represented by user agents, as most interface issues, is left as a matter of implementation preference, but the
key part is that the hgroupp191 's descendant h1p190–h6p190 elements are what form the element's heading. Thus, the following would
be equally valid:

1. The morning — 06:00 to 12:00
2. The afternoon — 12:00 to 18:00

1. Additional Commentary — Because not all this is necessarily true — Ok it's almost certainly not true
3. The evening — 18:00 to 00:00
4. The night — 00:00 to 06:00

But so would the following:

1. The morning
2. The afternoon

1. Additional Commentary
3. The evening
4. The night

The following would also be valid, though maybe less practical in most contexts:

1. The morning
06:00 to 12:00

2. The afternoon
12:00 to 18:00

1. Additional Commentary
Because not all this is necessarily true
Ok it's almost certainly not true

3. The evening
18:00 to 00:00

4. The night
00:00 to 06:00

4.3.11.3 Exposing outlines to users §p20

9

For instance, a user agent could map the arrow keys as follows:

Shift+← Left
Go to previous section, including subsections of previous sections

Shift+→ Right
Go to next section, including subsections of the current section

Shift+↑ Up
Go to parent section of the current section

Shift+↓ Down
Go to next section, skipping subsections of the current section

Example

209

This section is non-normative.

PurposeElement
Example

The contents of the document.bodyp178

A complete, or self-contained, composition in a document, page, application, or site and that is, in principle, independently distributable or
reusable, e.g. in syndication. This could be a forum post, a magazine or newspaper article, a blog entry, a user-submitted comment, an interactive
widget or gadget, or any other independent item of content.

articlep180

A generic section of a document or application. A section, in this context, is a thematic grouping of content, typically with a heading.sectionp182

A section of a page that links to other pages or to parts within the page: a section with navigation links.navp184

A section of a page that consists of content that is tangentially related to the content around the asidep187 element, and which could be considered
separate from that content. Such sections are often represented as sidebars in printed typography.

asidep187

A section headingh1p190–h6p190

The heading of a section, which consists of all the h1p190–h6p190 element children of the hgroupp191 element. The element is used to group a set of
h1p190–h6p190 elements when the heading has multiple levels, such as subheadings, alternative titles, or taglines.

hgroupp191

Plus in addition, the user agent could map the j and k keys to navigating to the previous or next element of heading contentp132,
regardless of the section's outline depth and ignoring sections with no headings.

<!DOCTYPE HTML>
<html lang="en">
<head> <title>Steve Hill's Home Page</title> </head>
<body> <p>Hard Trance is My Life.</p> </body>

</html>

<article>

<p>My fave Masif tee so far!</p>
<footer>Posted 2 days ago</footer>

</article>
<article>

<p>Happy 2nd birthday Masif Saturdays!!!</p>
<footer>Posted 3 weeks ago</footer>

</article>

<h1>Biography</h1>
<section>
<h1>The facts</h1>
<p>1500+ shows, 14+ countries</p>

</section>
<section>
<h1>2010/2011 figures per year</h1>
<p>100+ shows, 8+ countries</p>

</section>

<nav>
<p>Home
<p>Bio
<p>Discog

</nav>

<h1>Music</h1>
<p>As any burner can tell you, the event has a lot of trance.</p>
<aside>You can buy the music we played at our playlist page.</aside>
<p>This year we played a kind of trance that originated in Belgium, Germany, and the Netherlands in the mid 90s.</p>

<h1>The Guide To Music On The Playa</h1>
<h2>The Main Stage</h2>
<p>If you want to play on a stage, you should bring one.</p>
<h2>Amplified Music</h2>
<p>Amplifiers up to 300W or 90dB are welcome.</p>

<hgroup>

4.3.12 Usage summary §p21

0

210

PurposeElement
Example

A group of introductory or navigational aids.headerp194

A footer for its nearest ancestor sectioning contentp131 or sectioning rootp199 element. A footer typically contains information about its section such
as who wrote it, links to related documents, copyright data, and the like.

footerp195

This section is non-normative.

A sectionp182 forms part of something else. An articlep180 is its own thing. But how does one know which is which? Mostly the real
answer is "it depends on author intent".

For example, one could imagine a book with a "Granny Smith" chapter that just said "These juicy, green apples make a great filling for
apple pies."; that would be a sectionp182 because there'd be lots of other chapters on (maybe) other kinds of apples.

On the other hand, one could imagine a tweet or reddit comment or tumblr post or newspaper classified ad that just said "Granny
Smith. These juicy, green apples make a great filling for apple pies."; it would then be articlep180s because that was the whole thing.

A comment on an article is not part of the articlep180 on which it is commenting, therefore it is its own articlep180.

Categoriesp128:
Flow contentp131.
Palpable contentp133.

<h1>Burning Music</h1>
<h2>The Guide To Music On The Playa</h2>

</hgroup>
<section>
<hgroup>
<h1>Main Stage</h1>
<h2>The Fiction Of A Music Festival</h2>

</hgroup>
<p>If you want to play on a stage, you should bring one.</p>

</section>
<section>
<hgroup>
<h1>Loudness!</h1>
<h2>Questions About Amplified Music</h2>

</hgroup>
<p>Amplifiers up to 300W or 90dB are welcome.</p>

</section>

<article>
<header>
<h1>Hard Trance is My Life</h1>
<p>By DJ Steve Hill and Technikal</p>

</header>
<p>The album with the amusing punctuation has red artwork.</p>

</article>

<article>
<h1>Hard Trance is My Life</h1>
<p>The album with the amusing punctuation has red artwork.</p>
<footer>
<p>Artists: DJ Steve Hill and Technikal</p>

</footer>
</article>

4.3.12.1 Article or section? §p21

1

4.4 Grouping content §p21

1

4.4.1 The p element §p21

1

✔ MDN

✔ MDN

211

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
A pp211 element's end tagp1070 can be omitted if the pp211 element is immediately followed by an addressp197, articlep180,
asidep187, blockquotep217, detailsp604, divp237, dlp226, fieldsetp562, figcaptionp235, figurep232, footerp195, formp486, h1p190,
h2p190, h3p190, h4p190, h5p190, h6p190, headerp194, hgroupp191, hrp214, mainp235, menup223, navp184, olp220, pp211, prep216, sectionp182,
tablep450, or ulp222 element, or if there is no more content in the parent element and the parent element is an HTML elementp44

that is not an ap238, audiop384, delp312, insp311, mapp442, noscriptp627, or videop380 element, or an autonomous custom
elementp703.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLParagraphElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The pp211 element representsp123 a paragraphp134.

The pp211 element should not be used when a more specific element is more appropriate.

While paragraphs are usually represented in visual media by blocks of text that are physically separated from adjacent blocks
through blank lines, a style sheet or user agent would be equally justified in presenting paragraph breaks in a different manner, for
instance using inline pilcrows (¶).

Note

The following examples are conforming HTML fragments:

<p>The little kitten gently seated herself on a piece of
carpet. Later in her life, this would be referred to as the time the
cat sat on the mat.</p>

<fieldset>
<legend>Personal information</legend>
<p>

<label>Name: <input name="n"></label>
<label><input name="anon" type="checkbox"> Hide from other users</label>

</p>
<p><label>Address: <textarea name="a"></textarea></label></p>

</fieldset>

<p>There was once an example from Femley,

Whose markup was of dubious quality.

The validator complained,

So the author was pained,

To move the error from the markup to the rhyming.</p>

Example

IDL

212

https://w3c.github.io/html-aria/#el-p
https://w3c.github.io/html-aam/#el-p

The following example is technically correct:

<section>
<!-- ... -->
<p>Last modified: 2001-04-23</p>
<p>Author: fred@example.com</p>

</section>

However, it would be better marked-up as:

<section>
<!-- ... -->
<footer>Last modified: 2001-04-23</footer>
<address>Author: fred@example.com</address>

</section>

Or:

<section>
<!-- ... -->
<footer>
<p>Last modified: 2001-04-23</p>
<address>Author: fred@example.com</address>

</footer>
</section>

Example

List elements (in particular, olp220 and ulp222 elements) cannot be children of pp211 elements. When a sentence contains a bulleted
list, therefore, one might wonder how it should be marked up.

The solution is to realize that a paragraphp134, in HTML terms, is not a logical concept, but a structural one. In the fantastic
example above, there are actually five paragraphsp134 as defined by this specification: one before the list, one for each bullet, and
one after the list.

Authors wishing to conveniently style such "logical" paragraphs consisting of multiple "structural" paragraphs can use the divp237

For instance, this fantastic sentence has bullets relating to

• wizards,

• faster-than-light travel, and

• telepathy,

and is further discussed below.

Example

The markup for the above example could therefore be:

<p>For instance, this fantastic sentence has bullets relating to</p>

wizards,
faster-than-light travel, and
telepathy,

<p>and is further discussed below.</p>

Example

Note

213

Categoriesp128:
Flow contentp131.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLHRElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The hrp214 element representsp123 a paragraphp134-level thematic break, e.g. a scene change in a story, or a transition to another topic
within a section of a reference book.

element instead of the pp211 element.

Thus for instance the above example could become the following:

<div>For instance, this fantastic sentence has bullets relating to

wizards,
faster-than-light travel, and
telepathy,

and is further discussed below.</div>

This example still has five structural paragraphs, but now the author can style just the divp237 instead of having to consider
each part of the example separately.

Example

The following fictional extract from a project manual shows two sections that use the hrp214 element to separate topics within the
section.

<section>
<h1>Communication</h1>
<p>There are various methods of communication. This section
covers a few of the important ones used by the project.</p>

Example

IDL

4.4.2 The hr element §p21

4

✔ MDN

✔ MDN

214

https://w3c.github.io/html-aria/#el-hr
https://w3c.github.io/html-aam/#el-hr

<hr>
<p>Communication stones seem to come in pairs and have mysterious
properties:</p>

They can transfer thoughts in two directions once activated
if used alone.
If used with another device, they can transfer one's
consciousness to another body.
If both stones are used with another device, the
consciousnesses switch bodies.

<hr>
<p>Radios use the electromagnetic spectrum in the meter range and
longer.</p>
<hr>
<p>Signal flares use the electromagnetic spectrum in the
nanometer range.</p>

</section>
<section>
<h1>Food</h1>
<p>All food at the project is rationed:</p>
<dl>
<dt>Potatoes</dt>
<dd>Two per day</dd>
<dt>Soup</dt>
<dd>One bowl per day</dd>

</dl>
<hr>
<p>Cooking is done by the chefs on a set rotation.</p>

</section>

There is no need for an hrp214 element between the sections themselves, since the sectionp182 elements and the h1p190 elements
imply thematic changes themselves.

The following extract from Pandora's Star by Peter F. Hamilton shows two paragraphs that precede a scene change and the
paragraph that follows it. The scene change, represented in the printed book by a gap containing a solitary centered star between
the second and third paragraphs, is here represented using the hrp214 element.

<p>Dudley was ninety-two, in his second life, and fast approaching
time for another rejuvenation. Despite his body having the physical
age of a standard fifty-year-old, the prospect of a long degrading
campaign within academia was one he regarded with dread. For a
supposedly advanced civilization, the Intersolar Commonwealth could be
appallingly backward at times, not to mention cruel.</p>
<p><i>Maybe it won't be that bad</i>, he told himself. The lie was
comforting enough to get him through the rest of the night's
shift.</p>
<hr>
<p>The Carlton AllLander drove Dudley home just after dawn. Like the
astronomer, the vehicle was old and worn, but perfectly capable of
doing its job. It had a cheap diesel engine, common enough on a
semi-frontier world like Gralmond, although its drive array was a
thoroughly modern photoneural processor. With its high suspension and
deep-tread tyres it could plough along the dirt track to the
observatory in all weather and seasons, including the metre-deep snow
of Gralmond's winters.</p>

Example

215

Categoriesp128:
Flow contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLPreElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The prep216 element representsp123 a block of preformatted text, in which structure is represented by typographic conventions rather
than by elements.

Some examples of cases where the prep216 element could be used:

• Including an email, with paragraphs indicated by blank lines, lists indicated by lines prefixed with a bullet, and so on.

• Including fragments of computer code, with structure indicated according to the conventions of that language.

• Displaying ASCII art.

To represent a block of computer code, the prep216 element can be used with a codep267 element; to represent a block of computer
output the prep216 element can be used with a sampp269 element. Similarly, the kbdp270 element can be used within a prep216 element to
indicate text that the user is to enter.

The hrp214 element does not affect the document's outlinep201.
Note

In the HTML syntaxp1067, a leading newline character immediately following the prep216 element start tag is stripped.
Note

Authors are encouraged to consider how preformatted text will be experienced when the formatting is lost, as will be the case for
users of speech synthesizers, braille displays, and the like. For cases like ASCII art, it is likely that an alternative presentation, such
as a textual description, would be more universally accessible to the readers of the document.

Note

This element has rendering requirements involving the bidirectional algorithm p150.
Note

IDL

4.4.3 The pre element §p21

6

✔ MDN

✔ MDN

216

https://w3c.github.io/html-aria/#el-pre
https://w3c.github.io/html-aam/#el-pre

Categoriesp128:
Flow contentp131.
Sectioning rootp199.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

In the following snippet, a sample of computer code is presented.

<p>This is the <code>Panel</code> constructor:</p>
<pre><code>function Panel(element, canClose, closeHandler) {

this.element = element;
this.canClose = canClose;
this.closeHandler = function () { if (closeHandler) closeHandler() };

}</code></pre>

Example

In the following snippet, sampp269 and kbdp270 elements are mixed in the contents of a prep216 element to show a session of Zork I.

<pre><samp>You are in an open field west of a big white house with a boarded
front door.
There is a small mailbox here.

></samp> <kbd>open mailbox</kbd>

<samp>Opening the mailbox reveals:
A leaflet.

></samp></pre>

Example

The following shows a contemporary poem that uses the prep216 element to preserve its unusual formatting, which forms an
intrinsic part of the poem itself.

<pre> maxling

it is with a heart
heavy

that i admit loss of a feline
so loved

a friend lost to the
unknown

(night)

~cdr 11dec07</pre>

Example

4.4.4 The blockquote element §p21

7

✔ MDN

✔ MDN

217

Content attributesp128:
Global attributesp136

citep218 — Link to the source of the quotation or more information about the edit

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLQuoteElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString cite;
};

The blockquotep217 element representsp123 a section that is quoted from another source.

Content inside a blockquotep217 must be quoted from another source, whose address, if it has one, may be cited in the cite attribute.

If the citep218 attribute is present, it must be a valid URL potentially surrounded by spacesp88. To obtain the corresponding citation link,
the value of the attribute must be parsedp89 relative to the element's node document. User agents may allow users to follow such
citation links, but they are primarily intended for private use (e.g., by server-side scripts collecting statistics about a site's use of
quotations), not for readers.

The content of a blockquotep217 may be abbreviated or may have context added in the conventional manner for the text's language.

Attribution for the quotation, if any, must be placed outside the blockquotep217 element.

The cite IDL attribute must reflectp94 the element's cite content attribute.

The HTMLQuoteElementp218 interface is also used by the qp247 element.
Note

For example, in English this is traditionally done using square brackets. Consider a page with the sentence "Jane ate the cracker.
She then said she liked apples and fish."; it could be quoted as follows:

<blockquote>
<p>[Jane] then said she liked [...] fish.</p>

</blockquote>

Example

For example, here the attribution is given in a paragraph after the quote:

<blockquote>
<p>I contend that we are both atheists. I just believe in one fewer
god than you do. When you understand why you dismiss all the other
possible gods, you will understand why I dismiss yours.</p>

</blockquote>
<p>— Stephen Roberts</p>

The other examples below show other ways of showing attribution.

Example

Here a blockquotep217 element is used in conjunction with a figurep232 element and its figcaptionp235 to clearly relate a quote to
Example

IDL

218

https://w3c.github.io/html-aria/#el-blockquote
https://w3c.github.io/html-aam/#el-blockquote
https://dom.spec.whatwg.org/#concept-node-document

its attribution (which is not part of the quote and therefore doesn't belong inside the blockquotep217 itself):

<figure>
<blockquote>
<p>The truth may be puzzling. It may take some work to grapple with.
It may be counterintuitive. It may contradict deeply held
prejudices. It may not be consonant with what we desperately want to
be true. But our preferences do not determine what's true. We have a
method, and that method helps us to reach not absolute truth, only
asymptotic approaches to the truth — never there, just closer
and closer, always finding vast new oceans of undiscovered
possibilities. Cleverly designed experiments are the key.</p>

</blockquote>
<figcaption>Carl Sagan, in "<cite>Wonder and Skepticism</cite>", from
the <cite>Skeptical Inquirer</cite> Volume 19, Issue 1 (January-February
1995)</figcaption>

</figure>

This next example shows the use of citep246 alongside blockquotep217:

<p>His next piece was the aptly named <cite>Sonnet 130</cite>:</p>
<blockquote cite="https://quotes.example.org/s/sonnet130.html">

<p>My mistress' eyes are nothing like the sun,

Coral is far more red, than her lips red,

...

Example

This example shows how a forum post could use blockquotep217 to show what post a user is replying to. The articlep180 element
is used for each post, to mark up the threading.

<article>
<h1>Bacon on a crowbar</h1>
<article>
<header>t3yw 12 points 1 hour ago</header>
<p>I bet a narwhal would love that.</p>
<footer>permalink</footer>
<article>
<header>greg 8 points 1 hour ago</header>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>Dude narwhals don't eat bacon.</p>
<footer>permalink</footer>
<article>
<header>t3yw 15 points 1 hour ago</header>
<blockquote>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>Dude narwhals don't eat bacon.</p>

</blockquote>
<p>Next thing you'll be saying they don't get capes and wizard
hats either!</p>
<footer>permalink</footer>
<article>
<article>
<header>boing -5 points 1 hour ago</header>
<p>narwhals are worse than ceiling cat</p>
<footer>permalink</footer>

</article>
</article>

Example

219

Categoriesp128:
Flow contentp131.
If the element's children include at least one lip224 element: Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Zero or more lip224 and script-supportingp133 elements.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

reversedp221 — Number the list backwards
startp221 — Starting valuep221 of the list
typep221 — Kind of list marker

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]

</article>
</article>
<article>
<header>fred 1 points 23 minutes ago</header>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>I bet they'd love to peel a banana too.</p>
<footer>permalink</footer>

</article>
</article>

</article>

This example shows the use of a blockquotep217 for short snippets, demonstrating that one does not have to use pp211 elements
inside blockquotep217 elements:

<p>He began his list of "lessons" with the following:</p>
<blockquote>One should never assume that his side of
the issue will be recognized, let alone that it will
be conceded to have merits.</blockquote>
<p>He continued with a number of similar points, ending with:</p>
<blockquote>Finally, one should be prepared for the threat
of breakdown in negotiations at any given moment and not
be cowed by the possibility.</blockquote>
<p>We shall now discuss these points...

Example

Examples of how to represent a conversation p718 are shown in a later section; it is not appropriate to use the citep246 and
blockquotep217 elements for this purpose.

Note

IDL

4.4.5 The ol element §p22

0

✔ MDN

✔ MDN

220

https://w3c.github.io/html-aria/#el-ol
https://w3c.github.io/html-aam/#el-ol

interface HTMLOListElement : HTMLElement {
[HTMLConstructor] constructor();

[CEReactions] attribute boolean reversed;
[CEReactions] attribute long start;
[CEReactions] attribute DOMString type;

// also has obsolete members
};

The olp220 element representsp123 a list of items, where the items have been intentionally ordered, such that changing the order would
change the meaning of the document.

The items of the list are the lip224 element child nodes of the olp220 element, in tree order.

The reversed attribute is a boolean attributep67. If present, it indicates that the list is a descending list (..., 3, 2, 1). If the attribute is
omitted, the list is an ascending list (1, 2, 3, ...).

The start attribute, if present, must be a valid integerp68. It is used to determine the starting valuep221 of the list.

An olp220 element has a starting value, which is an integer determined as follows:

1. If the olp220 element has a startp221 attribute, then:

1. Let parsed be the result of parsing the value of the attribute as an integer p68.

2. If parsed is not an error, then return parsed.

2. If the olp220 element has a reversedp221 attribute, then return the number of owned li elementsp225.

3. Return 1.

The type attribute can be used to specify the kind of marker to use in the list, in the cases where that matters (e.g. because items are
to be referencedp123 by their number/letter). The attribute, if specified, must have a value that is identical to one of the characters
given in the first cell of one of the rows of the following table. The typep221 attribute represents the state given in the cell in the second
column of the row whose first cell matches the attribute's value; if none of the cells match, or if the attribute is omitted, then the
attribute represents the decimalp221 state.

Keyword State Description Examples for values 1-3 and 3999-4001

1 (U+0031) decimal Decimal numbers 1. 2. 3. ... 3999. 4000. 4001. ...
a (U+0061) lower-alpha Lowercase latin alphabet a. b. c. ... ewu. ewv. eww. ...
A (U+0041) upper-alpha Uppercase latin alphabet A. B. C. ... EWU. EWV. EWW. ...
i (U+0069) lower-roman Lowercase roman numerals i. ii. iii. ... mmmcmxcix. i̅v̅. i̅v̅i. ...
I (U+0049) upper-roman Uppercase roman numerals I. II. III. ... MMMCMXCIX. I̅V̅. I̅V̅I. ...

User agents should render the items of the list in a manner consistent with the state of the typep221 attribute of the olp220 element.
Numbers less than or equal to zero should always use the decimal system regardless of the typep221 attribute.

The reversed and type IDL attributes must reflectp94 the respective content attributes of the same name.

The start IDL attribute must reflectp94 the content attribute of the same name, with a default value of 1.

For CSS user agents, a mapping for this attribute to the 'list-style-type' CSS property is given in the rendering sectionp1205 (the
mapping is straightforward: the states above have the same names as their corresponding CSS values).

Note

It is possible to redefine the default CSS list styles used to implement this attribute in CSS user agents; doing so will affect how list
items are rendered.

Note

✔ MDN

221

https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#string-is
https://drafts.csswg.org/css-lists/#propdef-list-style-type

Categoriesp128:
Flow contentp131.
If the element's children include at least one lip224 element: Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Zero or more lip224 and script-supportingp133 elements.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLUListElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

This means that the startp221 IDL attribute does not necessarily match the list's starting valuep221, in cases where the startp221

content attribute is omitted and the reversedp221 content attribute is specified.

Note

The following markup shows a list where the order matters, and where the olp220 element is therefore appropriate. Compare this
list to the equivalent list in the ulp222 section to see an example of the same items using the ulp222 element.

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>

Switzerland
United Kingdom
United States
Norway

Note how changing the order of the list changes the meaning of the document. In the following example, changing the relative
order of the first two items has changed the birthplace of the author:

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>

United Kingdom
Switzerland
United States
Norway

Example

IDL

4.4.6 The ul element §p22

2

✔ MDN

✔ MDN

222

https://w3c.github.io/html-aria/#el-ul
https://w3c.github.io/html-aam/#el-ul

The ulp222 element representsp123 a list of items, where the order of the items is not important — that is, where changing the order
would not materially change the meaning of the document.

The items of the list are the lip224 element child nodes of the ulp222 element.

Categoriesp128:
Flow contentp131.
If the element's children include at least one lip224 element: Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Zero or more lip224 and script-supportingp133 elements.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLMenuElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The following markup shows a list where the order does not matter, and where the ulp222 element is therefore appropriate.
Compare this list to the equivalent list in the olp220 section to see an example of the same items using the olp220 element.

<p>I have lived in the following countries:</p>

Norway
Switzerland
United Kingdom
United States

Note that changing the order of the list does not change the meaning of the document. The items in the snippet above are given in
alphabetical order, but in the snippet below they are given in order of the size of their current account balance in 2007, without
changing the meaning of the document whatsoever:

<p>I have lived in the following countries:</p>

Switzerland
Norway
United Kingdom
United States

Example

IDL

4.4.7 The menu element §p22

3

⚠ MDN

✔ MDN

223

https://w3c.github.io/html-aria/#el-menu
https://w3c.github.io/html-aam/#el-menu

The menup223 element representsp123 a toolbar consisting of its contents, in the form of an unordered list of items (represented by lip224

elements), each of which represents a command that the user can perform or activate.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
Inside olp220 elements.
Inside ulp222 elements.
Inside menup223 elements.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
An lip224 element's end tagp1070 can be omitted if the lip224 element is immediately followed by another lip224 element or if
there is no more content in the parent element.

Content attributesp128:
Global attributesp136

If the element is not a child of an ulp222 or menup223 element: valuep224 — Ordinal valuep225 of the list item

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLLIElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute long value;

// also has obsolete members
};

The lip224 element representsp123 a list item. If its parent element is an olp220, ulp222, or menup223 element, then the element is an item
of the parent element's list, as defined for those elements. Otherwise, the list item has no defined list-related relationship to any other
lip224 element.

The value attribute, if present, must be a valid integerp68. It is used to determine the ordinal valuep225 of the list item, when the lip224 's
list ownerp225 is an olp220 element.

The menup223 element is simply a semantic alternative to ulp222 to express an unordered list of commands (a "toolbar").
Note

In this example, a text-editing application uses a menup223 element to provide a series of editing commands:

<menu>
<button onclick="copy()"></button>
<button onclick="cut()"></button>
<button onclick="paste()"></button>

</menu>

Note that the styling to make this look like a conventional toolbar menu is up to the application.

Example

IDL

4.4.8 The li element §p22

4

✔ MDN

✔ MDN

224

https://w3c.github.io/html-aria/#el-li
https://w3c.github.io/html-aam/#el-li

Any element whose computed value of 'display' is 'list-item' has a list owner, which is determined as follows:

1. If the element is not being renderedp1192, return null; the element has no list ownerp225.

2. Let ancestor be the element's parent.

3. If the element has an olp220, ulp222, or menup223 ancestor, set ancestor to the closest such ancestor element.

4. Return the closest inclusive ancestor of ancestor that produces a CSS box.

To determine the ordinal value of each element owned by a given list ownerp225 owner, perform the following steps:

1. Let i be 1.

2. If owner is an olp220 element, let numbering be owner's starting valuep221. Otherwise, let numbering be 1.

3. Loop: If i is greater than the number of list items that owner ownsp225, then return; all of owner's owned list itemsp225 have
been assigned ordinal valuesp225.

4. Let item be the ith of owner's owned list itemsp225, in tree order.

5. If item is an lip224 element that has a valuep224 attribute, then:

1. Let parsed be the result of parsing the value of the attribute as an integer p68.

2. If parsed is not an error, then set numbering to parsed.

6. The ordinal valuep225 of item is numbering.

7. If owner is an olp220 element, and owner has a reversedp221 attribute, decrement numbering by 1; otherwise, increment
numbering by 1.

8. Increment i by 1.

9. Go to the step labeled loop.

The value IDL attribute must reflectp94 the value of the valuep224 content attribute.

Such an element will always exist, as at the very least the document element will always produce a CSS box.
Note

The element's valuep225 IDL attribute does not directly correspond to its ordinal valuep225; it simply reflectsp94 the content attribute.
For example, given this list:

Item 1
<li value="3">Item 3
Item 4

The ordinal valuesp225 are 1, 3, and 4, whereas the valuep225 IDL attributes return 0, 3, 0 on getting.

Example

The following example, the top ten movies are listed (in reverse order). Note the way the list is given a title by using a figurep232

element and its figcaptionp235 element.

<figure>
<figcaption>The top 10 movies of all time</figcaption>

<li value="10"><cite>Josie and the Pussycats</cite>, 2001
<li value="9"><cite lang="sh">Црна мачка, бели мачор</cite>, 1998
<li value="8"><cite>A Bug's Life</cite>, 1998

Example

225

https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#css-box
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/css-display/#css-box
https://dom.spec.whatwg.org/#concept-tree-order

Categoriesp128:
Flow contentp131.
If the element's children include at least one name-value group: Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Either: Zero or more groups each consisting of one or more dtp230 elements followed by one or more ddp231 elements, optionally
intermixed with script-supporting elementsp133.
Or: One or more divp237 elements, optionally intermixed with script-supporting elementsp133.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

<li value="7"><cite>Toy Story</cite>, 1995
<li value="6"><cite>Monsters, Inc</cite>, 2001
<li value="5"><cite>Cars</cite>, 2006
<li value="4"><cite>Toy Story 2</cite>, 1999
<li value="3"><cite>Finding Nemo</cite>, 2003
<li value="2"><cite>The Incredibles</cite>, 2004
<li value="1"><cite>Ratatouille</cite>, 2007

</figure>

The markup could also be written as follows, using the reversedp221 attribute on the olp220 element:

<figure>
<figcaption>The top 10 movies of all time</figcaption>
<ol reversed>
<cite>Josie and the Pussycats</cite>, 2001
<cite lang="sh">Црна мачка, бели мачор</cite>, 1998
<cite>A Bug's Life</cite>, 1998
<cite>Toy Story</cite>, 1995
<cite>Monsters, Inc</cite>, 2001
<cite>Cars</cite>, 2006
<cite>Toy Story 2</cite>, 1999
<cite>Finding Nemo</cite>, 2003
<cite>The Incredibles</cite>, 2004
<cite>Ratatouille</cite>, 2007

</figure>

While it is conforming to include heading elements (e.g. h1p190) inside lip224 elements, it likely does not convey the semantics that
the author intended. A heading starts a new section, so a heading in a list implicitly splits the list into spanning multiple sections.

Note

4.4.9 The dl element §p22

6

✔ MDN

✔ MDN

226

https://w3c.github.io/html-aria/#el-dl
https://w3c.github.io/html-aam/#el-dl

DOM interfacep129:

[Exposed=Window]
interface HTMLDListElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The dlp226 element representsp123 an association list consisting of zero or more name-value groups (a description list). A name-value
group consists of one or more names (dtp230 elements, possibly as children of a divp237 element child) followed by one or more values
(ddp231 elements, possibly as children of a divp237 element child), ignoring any nodes other than dtp230 and ddp231 element children, and
dtp230 and ddp231 elements that are children of divp237 element children. Within a single dlp226 element, there should not be more than
one dtp230 element for each name.

Name-value groups may be terms and definitions, metadata topics and values, questions and answers, or any other groups of name-
value data.

The values within a group are alternatives; multiple paragraphs forming part of the same value must all be given within the same
ddp231 element.

The order of the list of groups, and of the names and values within each group, may be significant.

In order to annotate groups with microdatap729 attributes, or other global attributesp136 that apply to whole groups, or just for styling
purposes, each group in a dlp226 element can be wrapped in a divp237 element. This does not change the semantics of the dlp226

element.

The name-value groups of a dlp226 element dl are determined using the following algorithm. A name-value group has a name (a list of
dtp230 elements, initially empty) and a value (a list of ddp231 elements, initially empty).

1. Let groups be an empty list of name-value groups.

2. Let current be a new name-value group.

3. Let seenDd be false.

4. Let child be dl's first child.

5. Let grandchild be null.

6. While child is not null:

1. If child is a divp237 element, then:

1. Let grandchild be child's first child.

2. While grandchild is not null:

1. Process dt or ddp227 for grandchild.

2. Set grandchild to grandchild's next sibling.

2. Otherwise, process dt or ddp227 for child.

3. Set child to child's next sibling.

7. If current is not empty, then append current to groups.

8. Return groups.

To process dt or dd for a node node means to follow these steps:

1. Let groups, current, and seenDd be the same variables as those of the same name in the algorithm that invoked these steps.

2. If node is a dtp230 element, then:

1. If seenDd is true, then append current to groups, set current to a new name-value group, and set seenDd to false.

IDL

227

https://dom.spec.whatwg.org/#concept-tree-first-child
https://dom.spec.whatwg.org/#concept-tree-first-child
https://dom.spec.whatwg.org/#concept-tree-next-sibling
https://dom.spec.whatwg.org/#concept-tree-next-sibling

2. Append node to current's name.

3. Otherwise, if node is a ddp231 element, then append node to current's value and set seenDd to true.

When a name-value group has an empty list as name or value, it is often due to accidentally using ddp231 elements in the place of
dtp230 elements and vice versa. Conformance checkers can spot such mistakes and might be able to advise authors how to
correctly use the markup.

Note

In the following example, one entry ("Authors") is linked to two values ("John" and "Luke").

<dl>
<dt> Authors
<dd> John
<dd> Luke
<dt> Editor
<dd> Frank

</dl>

Example

In the following example, one definition is linked to two terms.

<dl>
<dt lang="en-US"> <dfn>color</dfn> </dt>
<dt lang="en-GB"> <dfn>colour</dfn> </dt>
<dd> A sensation which (in humans) derives from the ability of
the fine structure of the eye to distinguish three differently
filtered analyses of a view. </dd>

</dl>

Example

The following example illustrates the use of the dlp226 element to mark up metadata of sorts. At the end of the example, one group
has two metadata labels ("Authors" and "Editors") and two values ("Robert Rothman" and "Daniel Jackson"). This example also
uses the divp237 element around the groups of dtp230 and ddp231 element, to aid with styling.

<dl>
<div>
<dt> Last modified time </dt>
<dd> 2004-12-23T23:33Z </dd>

</div>
<div>
<dt> Recommended update interval </dt>
<dd> 60s </dd>

</div>
<div>
<dt> Authors </dt>
<dt> Editors </dt>
<dd> Robert Rothman </dd>
<dd> Daniel Jackson </dd>

</div>
</dl>

Example

The following example shows the dlp226 element used to give a set of instructions. The order of the instructions here is important
(in the other examples, the order of the blocks was not important).

Example

228

<p>Determine the victory points as follows (use the
first matching case):</p>
<dl>
<dt> If you have exactly five gold coins </dt>
<dd> You get five victory points </dd>
<dt> If you have one or more gold coins, and you have one or more silver coins </dt>
<dd> You get two victory points </dd>
<dt> If you have one or more silver coins </dt>
<dd> You get one victory point </dd>
<dt> Otherwise </dt>
<dd> You get no victory points </dd>

</dl>

The following snippet shows a dlp226 element being used as a glossary. Note the use of dfnp249 to indicate the word being defined.

<dl>
<dt><dfn>Apartment</dfn>, n.</dt>
<dd>An execution context grouping one or more threads with one or
more COM objects.</dd>
<dt><dfn>Flat</dfn>, n.</dt>
<dd>A deflated tire.</dd>
<dt><dfn>Home</dfn>, n.</dt>
<dd>The user's login directory.</dd>

</dl>

Example

This example uses microdatap729 attributes in a dlp226 element, together with the divp237 element, to annotate the ice cream
desserts at a French restaurant.

<dl>
<div itemscope itemtype="http://schema.org/Product">
<dt itemprop="name">Café ou Chocolat Liégeois
<dd itemprop="offers" itemscope itemtype="http://schema.org/Offer">
3.50
<data itemprop="priceCurrency" value="EUR">€</data>

<dd itemprop="description">
2 boules Café ou Chocolat, 1 boule Vanille, sause café ou chocolat, chantilly

</div>

<div itemscope itemtype="http://schema.org/Product">
<dt itemprop="name">Américaine
<dd itemprop="offers" itemscope itemtype="http://schema.org/Offer">
3.50
<data itemprop="priceCurrency" value="EUR">€</data>

<dd itemprop="description">
1 boule Crème brûlée, 1 boule Vanille, 1 boule Caramel, chantilly

</div>
</dl>

Without the divp237 element the markup would need to use the itemrefp735 attribute to link the data in the ddp231 elements with the
item, as follows.

<dl>
<dt itemscope itemtype="http://schema.org/Product" itemref="1-offer 1-description">
Café ou Chocolat Liégeois

<dd id="1-offer" itemprop="offers" itemscope itemtype="http://schema.org/Offer">

Example

229

Categoriesp128:
None.

Contexts in which this element can be usedp128:
Before ddp231 or dtp230 elements inside dlp226 elements.
Before ddp231 or dtp230 elements inside divp237 elements that are children of a dlp226 element.

Content modelp128:
Flow contentp131, but with no headerp194, footerp195, sectioning contentp131, or heading contentp132 descendants.

Tag omission in text/htmlp128:
A dtp230 element's end tagp1070 can be omitted if the dtp230 element is immediately followed by another dtp230 element or a ddp231

element.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The dtp230 element representsp123 the term, or name, part of a term-description group in a description list (dlp226 element).

3.50
<data itemprop="priceCurrency" value="EUR">€</data>

<dd id="1-description" itemprop="description">
2 boules Café ou Chocolat, 1 boule Vanille, sause café ou chocolat, chantilly

<dt itemscope itemtype="http://schema.org/Product" itemref="2-offer 2-description">
Américaine

<dd id="2-offer" itemprop="offers" itemscope itemtype="http://schema.org/Offer">
3.50
<data itemprop="priceCurrency" value="EUR">€</data>

<dd id="2-description" itemprop="description">
1 boule Crème brûlée, 1 boule Vanille, 1 boule Caramel, chantilly

</dl>

The dlp226 element is inappropriate for marking up dialogue. See some examples of how to mark up dialoguep718.
Note

The dtp230 element itself, when used in a dlp226 element, does not indicate that its contents are a term being defined, but this can
be indicated using the dfnp249 element.

Note

This example shows a list of frequently asked questions (a FAQ) marked up using the dtp230 element for questions and the ddp231

element for answers.

<article>
<h1>FAQ</h1>
<dl>
<dt>What do we want?</dt>

Example

4.4.10 The dt element §p23

0

✔ MDN

230

https://w3c.github.io/html-aria/#el-dt
https://w3c.github.io/html-aam/#el-dt

Categoriesp128:
None.

Contexts in which this element can be usedp128:
After dtp230 or ddp231 elements inside dlp226 elements.
After dtp230 or ddp231 elements inside divp237 elements that are children of a dlp226 element.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
A ddp231 element's end tagp1070 can be omitted if the ddp231 element is immediately followed by another ddp231 element or a dtp230

element, or if there is no more content in the parent element.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The ddp231 element representsp123 the description, definition, or value, part of a term-description group in a description list (dlp226

element).

<dd>Our data.</dd>
<dt>When do we want it?</dt>
<dd>Now.</dd>
<dt>Where is it?</dt>
<dd>We are not sure.</dd>

</dl>
</article>

A dlp226 can be used to define a vocabulary list, like in a dictionary. In the following example, each entry, given by a dtp230 with a
dfnp249, has several ddp231s, showing the various parts of the definition.

<dl>
<dt><dfn>happiness</dfn></dt>
<dd class="pronunciation">/'hæ p. nes/</dd>
<dd class="part-of-speech"><i><abbr>n.</abbr></i></dd>
<dd>The state of being happy.</dd>
<dd>Good fortune; success. <q>Oh happiness! It worked!</q></dd>
<dt><dfn>rejoice</dfn></dt>
<dd class="pronunciation">/ri jois'/</dd>
<dd><i class="part-of-speech"><abbr>v.intr.</abbr></i> To be delighted oneself.</dd>
<dd><i class="part-of-speech"><abbr>v.tr.</abbr></i> To cause one to be delighted.</dd>

</dl>

Example

4.4.11 The dd element §p23

1

✔ MDN

231

https://w3c.github.io/html-aria/#el-dd
https://w3c.github.io/html-aam/#el-dd

Categoriesp128:
Flow contentp131.
Sectioning rootp199.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Either: one figcaptionp235 element followed by flow contentp131.
Or: flow contentp131 followed by one figcaptionp235 element.
Or: flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The figurep232 element representsp123 some flow contentp131, optionally with a caption, that is self-contained (like a complete
sentence) and is typically referencedp123 as a single unit from the main flow of the document.

The element can thus be used to annotate illustrations, diagrams, photos, code listings, etc.

The first figcaptionp235 element child of the element, if any, represents the caption of the figurep232 element's contents. If there is no
child figcaptionp235 element, then there is no caption.

A figurep232 element's contents are part of the surrounding flow. If the purpose of the page is to display the figure, for example a
photograph on an image sharing site, the figurep232 and figcaptionp235 elements can be used to explicitly provide a caption for that
figure. For content that is only tangentially related, or that serves a separate purpose than the surrounding flow, the asidep187 element
should be used (and can itself wrap a figurep232). For example, a pull quote that repeats content from an articlep180 would be more
appropriate in an asidep187 than in a figurep232, because it isn't part of the content, it's a repetition of the content for the purposes of
enticing readers or highlighting key topics.

"Self-contained" in this context does not necessarily mean independent. For example, each sentence in a paragraph is self-
contained; an image that is part of a sentence would be inappropriate for figurep232, but an entire sentence made of images would
be fitting.

Note

When a figurep232 is referred to from the main content of the document by identifying it by its caption (e.g., by figure number), it
enables such content to be easily moved away from that primary content, e.g., to the side of the page, to dedicated pages, or to
an appendix, without affecting the flow of the document.

If a figurep232 element is referencedp123 by its relative position, e.g., "in the photograph above" or "as the next figure shows", then
moving the figure would disrupt the page's meaning. Authors are encouraged to consider using labels to refer to figures, rather
than using such relative references, so that the page can easily be restyled without affecting the page's meaning.

Note

This example shows the figurep232 element to mark up a code listing.

<p>In listing 4 we see the primary core interface
API declaration.</p>

Example

4.4.12 The figure element §p23

2

✔ MDN

232

https://w3c.github.io/html-aria/#el-figure
https://w3c.github.io/html-aam/#el-figure

<figure id="l4">
<figcaption>Listing 4. The primary core interface API declaration.</figcaption>
<pre><code>interface PrimaryCore {
boolean verifyDataLine();
undefined sendData(sequence<byte> data);
undefined initSelfDestruct();

}</code></pre>
</figure>
<p>The API is designed to use UTF-8.</p>

Here we see a figurep232 element to mark up a photo that is the main content of the page (as in a gallery).

<!DOCTYPE HTML>
<html lang="en">
<title>Bubbles at work — My Gallery™</title>
<figure>
<img src="bubbles-work.jpeg"

alt="Bubbles, sitting in his office chair, works on his
latest project intently.">

<figcaption>Bubbles at work</figcaption>
</figure>
<nav>Prev — Next</nav>

Example

In this example, we see an image that is not a figure, as well as an image and a video that are. The first image is literally part of
the example's second sentence, so it's not a self-contained unit, and thus figurep232 would be inappropriate.

<h2>Malinko's comics</h2>

<p>This case centered on some sort of "intellectual property"
infringement related to a comic (see Exhibit A). The suit started
after a trailer ending with these words:

<blockquote>

</blockquote>

<p>...was aired. A lawyer, armed with a Bigger Notebook, launched a
preemptive strike using snowballs. A complete copy of the trailer is
included with Exhibit B.

<figure>

<figcaption>Exhibit A. The alleged <cite>rough copy</cite> comic.</figcaption>

</figure>

<figure>
<video src="ex-b.mov"></video>
<figcaption>Exhibit B. The <cite>Rough Copy</cite> trailer.</figcaption>

</figure>

<p>The case was resolved out of court.

Example

Here, a part of a poem is marked up using figurep232.
Example

233

<figure>
<p>'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.</p>
<figcaption><cite>Jabberwocky</cite> (first verse). Lewis Carroll, 1832-98</figcaption>

</figure>

In this example, which could be part of a much larger work discussing a castle, nested figurep232 elements are used to provide
both a group caption and individual captions for each figure in the group:

<figure>
<figcaption>The castle through the ages: 1423, 1858, and 1999 respectively.</figcaption>
<figure>
<figcaption>Etching. Anonymous, ca. 1423.</figcaption>

</figure>
<figure>
<figcaption>Oil-based paint on canvas. Maria Towle, 1858.</figcaption>

</figure>
<figure>
<figcaption>Film photograph. Peter Jankle, 1999.</figcaption>
<img src="castle1999.jpeg" alt="The castle lies in ruins, the original tower all that remains in

one piece.">
</figure>

</figure>

Example

The previous example could also be more succinctly written as follows (using titlep139 attributes in place of the nested
figurep232/figcaptionp235 pairs):

<figure>
<img src="castle1423.jpeg" title="Etching. Anonymous, ca. 1423."

alt="The castle has one tower, and a tall wall around it.">
<img src="castle1858.jpeg" title="Oil-based paint on canvas. Maria Towle, 1858."

alt="The castle now has two towers and two walls.">
<img src="castle1999.jpeg" title="Film photograph. Peter Jankle, 1999."

alt="The castle lies in ruins, the original tower all that remains in one piece.">
<figcaption>The castle through the ages: 1423, 1858, and 1999 respectively.</figcaption>

</figure>

Example

The figure is sometimes referencedp123 only implicitly from the content:

<article>
<h1>Fiscal negotiations stumble in Congress as deadline nears</h1>
<figure>

<figcaption>Barack Obama and Harry Reid. White House press photograph.</figcaption>

</figure>
<p>Negotiations in Congress to end the fiscal impasse sputtered on Tuesday, leaving both chambers
grasping for a way to reopen the government and raise the country's borrowing authority with a
Thursday deadline drawing near.</p>
...

Example

234

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As the first or last child of a figurep232 element.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The figcaptionp235 element representsp123 a caption or legend for the rest of the contents of the figcaptionp235 element's parent
figurep232 element, if any.

Categoriesp128:
Flow contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected, but only if it is a hierarchically correct main elementp236.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

</article>

The element can contain additional information about the source:

<figcaption>
<p>A duck.</p>
<p><small>Photograph courtesy of 🌟 News.</small></p>

</figcaption>

<figcaption>
<p>Average rent for 3-room apartments, excluding non-profit apartments</p>
<p>Zürich’s Statistics Office — <time datetime=2017-11-14>14 November 2017</time></p>

</figcaption>

Example

4.4.13 The figcaption element §p23

5

4.4.14 The main element §p23

5

✔ MDN

✔ MDN

235

https://w3c.github.io/html-aria/#el-figcaption
https://w3c.github.io/html-aam/#el-figcaption

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The mainp235 element representsp123 the dominant contents of the document.

A document must not have more than one mainp235 element that does not have the hiddenp765 attribute specified.

A hierarchically correct main element is one whose ancestor elements are limited to htmlp152, bodyp178, divp237, formp486 without an
accessible name, and autonomous custom elementsp703. Each mainp235 element must be a hierarchically correct main elementp236.

In this example, the author has used a presentation where each component of the page is rendered in a box. To wrap the main
content of the page (as opposed to the header, the footer, the navigation bar, and a sidebar), the mainp235 element is used.

<!DOCTYPE html>
<html lang="en">
<title>RPG System 17</title>
<style>
header, nav, aside, main, footer {

margin: 0.5em; border: thin solid; padding: 0.5em;
background: #EFF; color: black; box-shadow: 0 0 0.25em #033;

}
h1, h2, p { margin: 0; }
nav, main { float: left; }
aside { float: right; }
footer { clear: both; }

</style>
<header>
<h1>System Eighteen</h1>

</header>
<nav>
← System 17
RPXIX →

</nav>
<aside>
<p>This system has no HP mechanic, so there's no healing.

</aside>
<main>
<h2>Character creation</h2>
<p>Attributes (magic, strength, agility) are purchased at the cost of one point per level.</p>
<h2>Rolls</h2>
<p>Each encounter, roll the dice for all your skills. If you roll more than the opponent, you

win.</p>
</main>
<footer>
<p>Copyright © 2013

</footer>
</html>

In the following example, multiple mainp235 elements are used and script is used to make navigation work without a server
roundtrip and to set the hiddenp765 attribute on those that are not current:

<!doctype html>
<html lang=en-CA>
<meta charset=utf-8>

Example

236

https://w3c.github.io/html-aria/#el-main
https://w3c.github.io/html-aam/#el-main
https://w3c.github.io/aria/#dfn-accessible-name

Categoriesp128:
Flow contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.
As a child of a dlp226 element.

Content modelp128:
If the element is a child of a dlp226 element: one or more dtp230 elements followed by one or more ddp231 elements, optionally
intermixed with script-supporting elementsp133.
If the element is not a child of a dlp226 element: flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLDivElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The divp237 element has no special meaning at all. It representsp123 its children. It can be used with the classp137, langp140, and
titlep139 attributes to mark up semantics common to a group of consecutive elements. It can also be used in a dlp226 element,
wrapping groups of dtp230 and ddp231 elements.

<title> … </title>
<link rel=stylesheet href=spa.css>
<script src=spa.js async></script>
<nav>
Home
About
Contact

</nav>
<main>
<h1>Home</h1>
…

</main>
<main hidden>
<h1>About</h1>
…

</main>
<main hidden>
<h1>Contact</h1>
…

</main>
<footer>Made with ❤️ by Example 👻.</footer>

IDL

4.4.15 The div element §p23

7

✔ MDN

✔ MDN

237

https://w3c.github.io/html-aria/#el-div
https://w3c.github.io/html-aam/#el-div

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
If the element has an hrefp284 attribute: Interactive contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Transparentp133, but there must be no interactive contentp132 descendant, ap238 element descendant, or descendant with the
tabindexp773 attribute specified.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

hrefp284 — Address of the hyperlinkp283

targetp284 — Browsing contextp811 for hyperlinkp283 navigationp866

downloadp284 — Whether to download the resource instead of navigating to it, and its file name if so
pingp284 — URLs to ping
relp284 — Relationship between the location in the document containing the hyperlinkp283 and the destination resource
hreflangp284 — Language of the linked resource
typep284 — Hint for the type of the referenced resource

Authors are strongly encouraged to view the divp237 element as an element of last resort, for when no other element is suitable.
Use of more appropriate elements instead of the divp237 element leads to better accessibility for readers and easier maintainability
for authors.

Note

For example, a blog post would be marked up using articlep180, a chapter using sectionp182, a page's navigation aids using
navp184, and a group of form controls using fieldsetp562.

On the other hand, divp237 elements can be useful for stylistic purposes or to wrap multiple paragraphs within a section that are all
to be annotated in a similar way. In the following example, we see divp237 elements used as a way to set the language of two
paragraphs at once, instead of setting the language on the two paragraph elements separately:

<article lang="en-US">
<h1>My use of language and my cats</h1>
<p>My cat's behavior hasn't changed much since her absence, except
that she plays her new physique to the neighbors regularly, in an
attempt to get pets.</p>
<div lang="en-GB">
<p>My other cat, coloured black and white, is a sweetie. He followed
us to the pool today, walking down the pavement with us. Yesterday
he apparently visited our neighbours. I wonder if he recognises that
their flat is a mirror image of ours.</p>
<p>Hm, I just noticed that in the last paragraph I used British
English. But I'm supposed to write in American English. So I
shouldn't say "pavement" or "flat" or "colour"...</p>

</div>
<p>I should say "sidewalk" and "apartment" and "color"!</p>

</article>

Example

4.5 Text-level semantics §p23

8

4.5.1 The a element §p23

8

✔ MDN

✔ MDN

238

https://url.spec.whatwg.org/#concept-url

referrerpolicyp284 — Referrer policy for fetches initiated by the element

Accessibility considerationsp129:
If the element has an hrefp284 attribute: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLAnchorElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString target;
[CEReactions] attribute DOMString download;
[CEReactions] attribute USVString ping;
[CEReactions] attribute DOMString rel;
[SameObject, PutForwards=value] readonly attribute DOMTokenList relList;
[CEReactions] attribute DOMString hreflang;
[CEReactions] attribute DOMString type;

[CEReactions] attribute DOMString text;

[CEReactions] attribute DOMString referrerPolicy;

// also has obsolete members
};
HTMLAnchorElement includes HTMLHyperlinkElementUtils;

If the ap238 element has an hrefp284 attribute, then it representsp123 a hyperlinkp283 (a hypertext anchor) labeled by its contents.

If the ap238 element has no hrefp284 attribute, then the element representsp123 a placeholder for where a link might otherwise have
been placed, if it had been relevant, consisting of just the element's contents.

The targetp284, downloadp284, pingp284, relp284, hreflangp284, typep284, and referrerpolicyp284 attributes must be omitted if the
hrefp284 attribute is not present.

If the itempropp736 attribute is specified on an ap238 element, then the hrefp284 attribute must also be specified.

The hrefp284, targetp284, downloadp284, pingp284, and referrerpolicyp284 attributes affect what happens when users follow
hyperlinksp290 or download hyperlinksp291 created using the ap238 element. The relp284, hreflangp284, and typep284 attributes may be
used to indicate to the user the likely nature of the target resource before the user follows the link.

The activation behavior of ap238 elements that create hyperlinksp283 is to run the following steps:

1. If the target of the click event is an imgp320 element with an ismapp323 attribute specified, then server-side image map
processing must be performed, as follows:

1. Let x and y be zero.

If a site uses a consistent navigation toolbar on every page, then the link that would normally link to the page itself could be
marked up using an ap238 element:

<nav>

 Home
 News
 <a>Examples
 Legal

</nav>

Example

IDL

239

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-a
https://w3c.github.io/html-aam/#el-a
https://w3c.github.io/html-aria/#el-a-no-href
https://w3c.github.io/html-aam/#el-a-no-href
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://w3c.github.io/uievents/#event-type-click

2. If the click event was a real pointing-device-triggered click event on the imgp320 element, then set x to the
distance in CSS pixels from the left edge of the image to the location of the click, and set y to the distance in CSS
pixels from the top edge of the image to the location of the click.

3. If x is negative, set x to zero.

4. If y is negative, set y to zero.

5. Let hyperlink suffix be a U+003F QUESTION MARK character, the value of x expressed as a base-ten integer using
ASCII digits, a U+002C COMMA character (,), and the value of y expressed as a base-ten integer using ASCII digits.

2. Follow the hyperlinkp290 or download the hyperlinkp291 created by the ap238 element, as determined by the downloadp284

attribute and any expressed user preference, passing hyperlink suffix, if the steps above defined it.

The IDL attributes download, ping, target, rel, hreflang, and type, must reflectp94 the respective content attributes of the same
name.

The IDL attribute relList must reflectp94 the relp284 content attribute.

The IDL attribute referrerPolicy must reflectp94 the referrerpolicyp284 content attribute, limited to only known valuesp95.

The text attribute's getter must return this element's descendant text content.

The textp240 attribute's setter must string replace all with the given value within this element.

a . textp240

Same as textContent.

For web developers (non-normative)

The ap238 element can be wrapped around entire paragraphs, lists, tables, and so forth, even entire sections, so long as there is no
interactive content within (e.g., buttons or other links). This example shows how this can be used to make an entire advertising
block into a link:

<aside class="advertising">
<h1>Advertising</h1>

<section>
<h1>Mellblomatic 9000!</h1>
<p>Turn all your widgets into mellbloms!</p>
<p>Only $9.99 plus shipping and handling.</p>

</section>

<section>
<h1>The Mellblom Browser</h1>
<p>Web browsing at the speed of light.</p>
<p>No other browser goes faster!</p>

</section>

</aside>

Example

The following example shows how a bit of script can be used to effectively make an entire row in a job listing table a hyperlink:

<table>
<tr>
<th>Position
<th>Team
<th>Location

<tr>

Example

✔ MDN✔ MDN

240

https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-click
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://dom.spec.whatwg.org/#dom-node-textcontent
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#string-replace-all

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The emp241 element representsp123 stress emphasis of its contents.

The level of stress that a particular piece of content has is given by its number of ancestor emp241 elements.

The placement of stress emphasis changes the meaning of the sentence. The element thus forms an integral part of the content. The
precise way in which stress is used in this way depends on the language.

<td>Manager
<td>Remotees
<td>Remote

<tr>
<td>Director
<td>Remotees
<td>Remote

<tr>
<td>Astronaut
<td>Architecture
<td>Remote

</table>
<script>
document.querySelector("table").onclick = ({ target }) => {

if (target.parentElement.localName === "tr") {
const link = target.parentElement.querySelector("a");
if (link) {

link.click();
}

}
}
</script>

These examples show how changing the stress emphasis changes the meaning. First, a general statement of fact, with no stress:
Example

4.5.2 The em element §p24

1

✔ MDN

241

https://w3c.github.io/html-aria/#el-em
https://w3c.github.io/html-aam/#el-em

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.

<p>Cats are cute animals.</p>

By emphasizing the first word, the statement implies that the kind of animal under discussion is in question (maybe someone is
asserting that dogs are cute):

<p>Cats are cute animals.</p>

Moving the stress to the verb, one highlights that the truth of the entire sentence is in question (maybe someone is saying cats are
not cute):

<p>Cats are cute animals.</p>

By moving it to the adjective, the exact nature of the cats is reasserted (maybe someone suggested cats were mean animals):

<p>Cats are cute animals.</p>

Similarly, if someone asserted that cats were vegetables, someone correcting this might emphasize the last word:

<p>Cats are cute animals.</p>

By emphasizing the entire sentence, it becomes clear that the speaker is fighting hard to get the point across. This kind of stress
emphasis also typically affects the punctuation, hence the exclamation mark here.

<p>Cats are cute animals!</p>

Anger mixed with emphasizing the cuteness could lead to markup such as:

<p>Cats are cute animals!</p>

The emp241 element isn't a generic "italics" element. Sometimes, text is intended to stand out from the rest of the paragraph, as if it
was in a different mood or voice. For this, the ip272 element is more appropriate.

The emp241 element also isn't intended to convey importance; for that purpose, the strongp242 element is more appropriate.

Note

4.5.3 The strong element §p24

2

✔ MDN

242

https://w3c.github.io/html-aria/#el-strong

For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The strongp242 element representsp123 strong importance, seriousness, or urgency for its contents.

Importance: the strongp242 element can be used in a heading, caption, or paragraph to distinguish the part that really matters from
other parts that might be more detailed, more jovial, or merely boilerplate. (This is distinct from marking up subheadings, for which the
hgroupp191 element is appropriate.)

Seriousness: the strongp242 element can be used to mark up a warning or caution notice.

Urgency: the strongp242 element can be used to denote contents that the user needs to see sooner than other parts of the document.

The relative level of importance of a piece of content is given by its number of ancestor strongp242 elements; each strongp242 element
increases the importance of its contents.

Changing the importance of a piece of text with the strongp242 element does not change the meaning of the sentence.

For example, the first word of the previous paragraph is marked up with strongp242 to distinguish it from the more detailed text in
the rest of the paragraph.

Example

Here, the word "chapter" and the actual chapter number are mere boilerplate, and the actual name of the chapter is marked up
with strongp242:

<h1>Chapter 1: The Praxis</h1>

In the following example, the name of the diagram in the caption is marked up with strongp242, to distinguish it from boilerplate
text (before) and the description (after):

<figcaption>Figure 1. Ant colony dynamics. The ants in this colony are
affected by the heat source (upper left) and the food source (lower right).</figcaption>

In this example, the heading is really "Flowers, Bees, and Honey", but the author has added a light-hearted addition to the
heading. The strongp242 element is thus used to mark up the first part to distinguish it from the latter part.

<h1>Flowers, Bees, and Honey and other things I don't understand</h1>

Example

Here is an example of a warning notice in a game, with the various parts marked up according to how important they are:

<p>Warning. This dungeon is dangerous.
Avoid the ducks. Take any gold you find.
Do not take any of the diamonds,
they are explosive and will destroy anything within
ten meters. You have been warned.</p>

Example

In this example, the strongp242 element is used to denote the part of the text that the user is intended to read first.

<p>Welcome to Remy, the reminder system.</p>
<p>Your tasks for today:</p>

<p>Turn off the oven.</p>
<p>Put out the trash.</p>

Example

243

https://w3c.github.io/html-aam/#el-strong

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The smallp244 element representsp123 side comments such as small print.

The smallp244 element should not be used for extended spans of text, such as multiple paragraphs, lists, or sections of text. It is only
intended for short runs of text. The text of a page listing terms of use, for instance, would not be a suitable candidate for the smallp244

element: in such a case, the text is not a side comment, it is the main content of the page.

The smallp244 element must not be used for subheadings; for that purpose, use the hgroupp191 element.

<p>Do the laundry.</p>

Small print typically features disclaimers, caveats, legal restrictions, or copyrights. Small print is also sometimes used for
attribution, or for satisfying licensing requirements.

Note

The smallp244 element does not "de-emphasize" or lower the importance of text emphasized by the emp241 element or marked as
important with the strongp242 element. To mark text as not emphasized or important, simply do not mark it up with the emp241 or
strongp242 elements respectively.

Note

In this example, the smallp244 element is used to indicate that value-added tax is not included in a price of a hotel room:

<dl>
<dt>Single room
<dd>199 € <small>breakfast included, VAT not included</small>
<dt>Double room
<dd>239 € <small>breakfast included, VAT not included</small>

</dl>

Example

Example

4.5.4 The small element §p24

4

✔ MDN

244

https://w3c.github.io/html-aria/#el-small
https://w3c.github.io/html-aam/#el-small

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The sp245 element representsp123 contents that are no longer accurate or no longer relevant.

In this second example, the smallp244 element is used for a side comment in an article.

<p>Example Corp today announced record profits for the
second quarter <small>(Full Disclosure: Foo News is a subsidiary of
Example Corp)</small>, leading to speculation about a third quarter
merger with Demo Group.</p>

This is distinct from a sidebar, which might be multiple paragraphs long and is removed from the main flow of text. In the following
example, we see a sidebar from the same article. This sidebar also has small print, indicating the source of the information in the
sidebar.

<aside>
<h1>Example Corp</h1>
<p>This company mostly creates small software and Web
sites.</p>
<p>The Example Corp company mission is "To provide entertainment
and news on a sample basis".</p>
<p><small>Information obtained from example.com home
page.</small></p>

</aside>

Example

In this last example, the smallp244 element is marked as being important small print.

<p><small>Continued use of this service will result in a kiss.</small></p>

Example

The sp245 element is not appropriate when indicating document edits; to mark a span of text as having been removed from a
document, use the delp312 element.

Note

4.5.5 The s element §p24

5

✔ MDN

245

https://w3c.github.io/html-aria/#el-s
https://w3c.github.io/html-aam/#el-s

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The citep246 element representsp123 the title of a work (e.g. a book, a paper, an essay, a poem, a score, a song, a script, a film, a TV
show, a game, a sculpture, a painting, a theatre production, a play, an opera, a musical, an exhibition, a legal case report, a computer
program, etc). This can be a work that is being quoted or referencedp123 in detail (i.e. a citation), or it can just be a work that is
mentioned in passing.

A person's name is not the title of a work — even if people call that person a piece of work — and the element must therefore not be
used to mark up people's names. (In some cases, the bp273 element might be appropriate for names; e.g. in a gossip article where the
names of famous people are keywords rendered with a different style to draw attention to them. In other cases, if an element is really
needed, the spanp279 element can be used.)

In this example a recommended retail price has been marked as no longer relevant as the product in question has a new sale
price.

<p>Buy our Iced Tea and Lemonade!</p>
<p><s>Recommended retail price: $3.99 per bottle</s></p>
<p>Now selling for just $2.99 a bottle!</p>

Example

This next example shows a typical use of the citep246 element:

<p>My favorite book is <cite>The Reality Dysfunction</cite> by
Peter F. Hamilton. My favorite comic is <cite>Pearls Before
Swine</cite> by Stephan Pastis. My favorite track is <cite>Jive
Samba</cite> by the Cannonball Adderley Sextet.</p>

Example

This is correct usage:

<p>According to the Wikipedia article <cite>HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

Example

4.5.6 The cite element §p24

6

✔ MDN

246

https://w3c.github.io/html-aria/#el-cite
https://w3c.github.io/html-aam/#el-cite

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

citep248 — Link to the source of the quotation or more information about the edit

The following, however, is incorrect usage, as the citep246 element here is containing far more than the title of the work:

<!-- do not copy this example, it is an example of bad usage! -->
<p>According to <cite>the Wikipedia article on HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

The citep246 element is obviously a key part of any citation in a bibliography, but it is only used to mark the title:

<p><cite>Universal Declaration of Human Rights</cite>, United Nations,
December 1948. Adopted by General Assembly resolution 217 A (III).</p>

Example

A citation is not a quote (for which the qp247 element is appropriate).
Note

This is incorrect usage, because citep246 is not for quotes:

<p><cite>This is wrong!</cite>, said Ian.</p>

This is also incorrect usage, because a person is not a work:

<p><q>This is still wrong!</q>, said <cite>Ian</cite>.</p>

The correct usage does not use a citep246 element:

<p><q>This is correct</q>, said Ian.</p>

As mentioned above, the bp273 element might be relevant for marking names as being keywords in certain kinds of documents:

<p>And then Ian said <q>this might be right, in a
gossip column, maybe!</q>.</p>

Example

4.5.7 The q element §p24

7

✔ MDN

247

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLQuoteElementp218.

The qp247 element representsp123 some phrasing contentp132 quoted from another source.

Quotation punctuation (such as quotation marks) that is quoting the contents of the element must not appear immediately before,
after, or inside qp247 elements; they will be inserted into the rendering by the user agent.

Content inside a qp247 element must be quoted from another source, whose address, if it has one, may be cited in the cite attribute.
The source may be fictional, as when quoting characters in a novel or screenplay.

If the citep248 attribute is present, it must be a valid URL potentially surrounded by spacesp88. To obtain the corresponding citation link,
the value of the attribute must be parsedp89 relative to the element's node document. User agents may allow users to follow such
citation links, but they are primarily intended for private use (e.g., by server-side scripts collecting statistics about a site's use of
quotations), not for readers.

The qp247 element must not be used in place of quotation marks that do not represent quotes; for example, it is inappropriate to use
the qp247 element for marking up sarcastic statements.

The use of qp247 elements to mark up quotations is entirely optional; using explicit quotation punctuation without qp247 elements is just
as correct.

Here is a simple example of the use of the qp247 element:

<p>The man said <q>Things that are impossible just take
longer</q>. I disagreed with him.</p>

Example

Here is an example with both an explicit citation link in the qp247 element, and an explicit citation outside:

<p>The W3C page <cite>About W3C</cite> says the W3C's
mission is <q cite="https://www.w3.org/Consortium/">To lead the
World Wide Web to its full potential by developing protocols and
guidelines that ensure long-term growth for the Web</q>. I
disagree with this mission.</p>

Example

In the following example, the quotation itself contains a quotation:

<p>In <cite>Example One</cite>, he writes <q>The man
said <q>Things that are impossible just take longer</q>. I
disagreed with him</q>. Well, I disagree even more!</p>

Example

In the following example, quotation marks are used instead of the qp247 element:

<p>His best argument was ❝I disagree❞, which
I thought was laughable.</p>

Example

In the following example, there is no quote — the quotation marks are used to name a word. Use of the qp247 element in this case
Example

248

https://w3c.github.io/html-aria/#el-q
https://w3c.github.io/html-aam/#el-q
https://dom.spec.whatwg.org/#concept-node-document

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132, but there must be no dfnp249 element descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Also, the titlep249 attribute has special semanticsp249 on this element: Full term or expansion of abbreviation.

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The dfnp249 element representsp123 the defining instance of a term. The paragraphp134, description list groupp226, or sectionp131 that is
the nearest ancestor of the dfnp249 element must also contain the definition(s) for the termp249 given by the dfnp249 element.

Defining term: if the dfnp249 element has a title attribute, then the exact value of that attribute is the term being defined.
Otherwise, if it contains exactly one element child node and no child Text nodes, and that child element is an abbrp250 element with a
titlep250 attribute, then the exact value of that attribute is the term being defined. Otherwise, it is the descendant text content of the
dfnp249 element that gives the term being defined.

If the titlep249 attribute of the dfnp249 element is present, then it must contain only the term being defined.

An ap238 element that links to a dfnp249 element represents an instance of the term defined by the dfnp249 element.

would be inappropriate.

<p>The word "ineffable" could have been used to describe the disaster
resulting from the campaign's mismanagement.</p>

The titlep139 attribute of ancestor elements does not affect dfnp249 elements.
Note

In the following fragment, the term "Garage Door Opener" is first defined in the first paragraph, then used in the second. In both
cases, its abbreviation is what is actually displayed.

<p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

Example

4.5.8 The dfn element §p24

9

✔ MDN

249

https://w3c.github.io/html-aria/#el-dfn
https://w3c.github.io/html-aam/#el-dfn
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-descendant-text-content

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Also, the titlep250 attribute has special semanticsp250 on this element: Full term or expansion of abbreviation.

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The abbrp250 element representsp123 an abbreviation or acronym, optionally with its expansion. The title attribute may be used to
provide an expansion of the abbreviation. The attribute, if specified, must contain an expansion of the abbreviation, and nothing else.

With the addition of an ap238 element, the referencep123 can be made explicit:

<p>The <dfn id=gdo><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

The paragraph below contains an abbreviation marked up with the abbrp250 element. This paragraph defines the termp249 "Web
Hypertext Application Technology Working Group".

<p>The <dfn id=whatwg><abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr></dfn>
is a loose unofficial collaboration of web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

An alternative way to write this would be:

<p>The <dfn id=whatwg>Web Hypertext Application Technology
Working Group</dfn> (<abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>)
is a loose unofficial collaboration of web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

Example

4.5.9 The abbr element §p25

0

✔ MDN

250

https://w3c.github.io/html-aria/#el-abbr
https://w3c.github.io/html-aam/#el-abbr

If an abbreviation is pluralized, the expansion's grammatical number (plural vs singular) must match the grammatical number of the
contents of the element.

Abbreviations do not have to be marked up using this element. It is expected to be useful in the following cases:

• Abbreviations for which the author wants to give expansions, where using the abbrp250 element with a titlep139 attribute is
an alternative to including the expansion inline (e.g. in parentheses).

• Abbreviations that are likely to be unfamiliar to the document's readers, for which authors are encouraged to either mark up
the abbreviation using an abbrp250 element with a titlep139 attribute or include the expansion inline in the text the first time
the abbreviation is used.

• Abbreviations whose presence needs to be semantically annotated, e.g. so that they can be identified from a style sheet and
given specific styles, for which the abbrp250 element can be used without a titlep139 attribute.

Providing an expansion in a titlep139 attribute once will not necessarily cause other abbrp250 elements in the same document with the
same contents but without a titlep139 attribute to behave as if they had the same expansion. Every abbrp250 element is independent.

This paragraph has two abbreviations. Notice how only one is defined; the other, with no expansion associated with it, does not use
the abbrp250 element.

<p>The
<abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
started working on HTML5 in 2004.</p>

Example

This paragraph links an abbreviation to its definition.

<p>The <abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
community does not have much representation from Asia.</p>

Example

This paragraph marks up an abbreviation without giving an expansion, possibly as a hook to apply styles for abbreviations (e.g.
smallcaps).

<p>Philip` and Dashiva both denied that they were going to
get the issue counts from past revisions of the specification to
backfill the <abbr>WHATWG</abbr> issue graph.</p>

Example

Here the plural is outside the element, so the expansion is in the singular:

<p>Two <abbr title="Working Group">WG</abbr>s worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Here the plural is inside the element, so the expansion is in the plural:

<p>Two <abbr title="Working Groups">WGs</abbr> worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Example

251

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
See prose.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The rubyp252 element allows one or more spans of phrasing content to be marked with ruby annotations. Ruby annotations are short
runs of text presented alongside base text, primarily used in East Asian typography as a guide for pronunciation or to include other
annotations. In Japanese, this form of typography is also known as furigana.

The content model of rubyp252 elements consists of one or more of the following sequences:

1. One or the other of the following:
◦ Phrasing contentp132, but with no rubyp252 elements and with no rubyp252 element descendants
◦ A single rubyp252 element that itself has no rubyp252 element descendants

2. One or the other of the following:
◦ One or more rtp258 elements
◦ An rpp258 element followed by one or more rtp258 elements, each of which is itself followed by an rpp258 element

The rubyp252 and rtp258 elements can be used for a variety of kinds of annotations, including in particular (though by no means limited
to) those described below. For more details on Japanese Ruby in particular, and how to render Ruby for Japanese, see Requirements for
Japanese Text Layout. [JLREQ]p1288

Mono-ruby for individual base characters in Japanese
One or more hiragana or katakana characters (the ruby annotation) are placed with each ideographic character (the base text). This
is used to provide readings of kanji characters.

At the time of writing, CSS does not yet provide a way to fully control the rendering of the HTML rubyp252 element. It is hoped that
CSS will be extended to support the styles described below in due course.

Note

<ruby>B<rt>annotation</ruby>

Example

In this example, notice how each annotation corresponds to a single base character.

<ruby>君<rt>くん</ruby><ruby>子<rt>し</ruby>は<ruby>和<rt>わ</ruby>して<ruby>同<rt>どう</ruby>ぜず。

君くん子しは和わして同どうぜず。

This example can also be written as follows, using one rubyp252 element with two segments of base text and two annotations

Example

4.5.10 The ruby element §p25

2

✔ MDN

252

https://w3c.github.io/html-aria/#el-ruby
https://w3c.github.io/html-aam/#el-ruby

Mono-ruby for compound words (jukugo)
This is similar to the previous case: each ideographic character in the compound word (the base text) has its reading given in
hiragana or katakana characters (the ruby annotation). The difference is that the base text segments form a compound word rather
than being separate from each other.

Jukugo-ruby
This is semantically identical to the previous case (each individual ideographic character in the base compound word has its reading
given in an annotation in hiragana or katakana characters), but the rendering is the more complicated Jukugo Ruby rendering.

Group ruby for describing meanings
The annotation describes the meaning of the base text, rather than (or in addition to) the pronunciation. As such, both the base text
and the annotation can be multiple characters long.

(one for each) rather than two back-to-back rubyp252 elements each with one base text segment and annotation (as in the
markup above):

<ruby>君<rt>くん</rt>子<rt>し</ruby>は<ruby>和<rt>わ</ruby>して<ruby>同<rt>どう</ruby>ぜず。

<ruby>B<rt>annotation</rt>B<rt>annotation</ruby>

Example

In this example, notice again how each annotation corresponds to a single base character. In this example, each compound
word (jukugo) corresponds to a single rubyp252 element.

The rendering here is expected to be that each annotation be placed over (or next to, in vertical text) the corresponding base
character, with the annotations not overhanging any of the adjacent characters.

<ruby>鬼<rt>き</rt>門<rt>もん</rt></ruby>の<ruby>方<rt>ほう</rt>角<rt>がく</rt></ruby>を<ruby>凝<rt>ぎ
ょう</rt>視<rt>し</rt></ruby>する

鬼き門もんの方ほう角がくを凝ぎょう視しする

Example

This is the same example as above for mono-ruby for compound words. The different rendering is expected to be achieved
using different styling (e.g. in CSS), and is not shown here.

<ruby>鬼<rt>き</rt>門<rt>もん</rt></ruby>の<ruby>方<rt>ほう</rt>角<rt>がく</rt></ruby>を<ruby>凝<rt>ぎ
ょう</rt>視<rt>し</rt></ruby>する

Example

For more details on Jukugo Ruby rendering, see Appendix F in the Requirements for Japanese Text Layout. [JLREQ]p1288

Note

<ruby>BASE<rt>annotation</ruby>

Example

Here a compound ideographic word has its corresponding katakana given as an annotation.

<ruby>境界面<rt>インターフェース</ruby>

境界面インターフェース

Example

253

https://www.w3.org/TR/jlreq/#positioning_of_jukugoruby

Group ruby for Jukuji readings
A phonetic reading that corresponds to multiple base characters, because a one-to-one mapping would be difficult. (In English, the
words "Colonel" and "Lieutenant" are examples of words where a direct mapping of pronunciation to individual letters is, in some
dialects, rather unclear.)

Text with both phonetic and semantic annotations (double-sided ruby)
Sometimes, ruby styles described above are combined.

If this results in two annotations covering the same single base segment, then the annotations can just be placed back to back.

In more complication situations such as following examples, a nested rubyp252 element is used to give the inner annotations, and
then that whole rubyp252 is then given an annotation at the "outer" level.

Here a compound ideographic word has its translation in English provided as an annotation.

<ruby lang="ja">編集者<rt lang="en">editor</ruby>

編集者editor

Example

In this example, the name of a species of flowers has a phonetic reading provided using group ruby:

<ruby>紫陽花<rt>あじさい</ruby>

紫陽花あじさい

Example

<ruby>BASE<rt>annotation 1<rt>annotation 2</ruby>

Example

<ruby>B<rt>a<rt>a</ruby><ruby>A<rt>a<rt>a</ruby><ruby>S<rt>a<rt>a</ruby><ruby>E<rt>a<rt>a</ruby>

Example

In this contrived example, some symbols are given names in English and French.

<ruby>
♥ <rt> Heart <rt lang=fr> Cœur </rt>
☘ <rt> Shamrock <rt lang=fr> Trèfle </rt>
✶ <rt> Star <rt lang=fr> Étoile </rt>

</ruby>

Example

<ruby><ruby>B<rt>a</rt>A<rt>n</rt>S<rt>t</rt>E<rt>n</rt></ruby><rt>annotation</ruby>

Example

Here both a phonetic reading and the meaning are given in ruby annotations. The annotation on the nested rubyp252 element
gives a mono-ruby phonetic annotation for each base character, while the annotation in the rtp258 element that is a child of the
outer rubyp252 element gives the meaning using hiragana.

<ruby><ruby>東<rt>とう</rt>南<rt>なん</rt></ruby><rt>たつみ</rt></ruby>の方角

東とう南なんたつみの方角

Example

254

Within a rubyp252 element that does not have a rubyp252 element ancestor, content is segmented and segments are placed into three
categories: base text segments, annotation segments, and ignored segments. Ignored segments do not form part of the document's
semantics (they consist of some inter-element whitespacep129 and rpp258 elements, the latter of which are used for legacy user agents
that do not support ruby at all). Base text segments can overlap (with a limit of two segments overlapping any one position in the
DOM, and with any segment having an earlier start point than an overlapping segment also having an equal or later end point, and any
segment have a later end point than an overlapping segment also having an equal or earlier start point). Annotation segments
correspond to rtp258 elements. Each annotation segment can be associated with a base text segment, and each base text segment can
have annotation segments associated with it. (In a conforming document, each base text segment is associated with at least one
annotation segment, and each annotation segment is associated with one base text segment.) A rubyp252 element representsp123 the
union of the segments of base text it contains, along with the mapping from those base text segments to annotation segments.
Segments are described in terms of DOM ranges; annotation segment ranges always consist of exactly one element. [DOM]p1287

At any particular time, the segmentation and categorization of content of a rubyp252 element is the result that would be obtained from
running the following algorithm:

1. Let base text segments be an empty list of base text segments, each potentially with a list of base text subsegments.

2. Let annotation segments be an empty list of annotation segments, each potentially being associated with a base text
segment or subsegment.

3. Let root be the rubyp252 element for which the algorithm is being run.

4. If root has a rubyp252 element ancestor, then jump to the step labeled end.

5. Let current parent be root.

6. Let index be 0.

7. Let start index be null.

8. Let parent start index be null.

9. Let current base text be null.

10. Start mode: If index is equal to or greater than the number of child nodes in current parent, then jump to the step labeled
end mode.

11. If the indexth node in current parent is an rtp258 or rpp258 element, jump to the step labeled annotation mode.

12. Set start index to the value of index.

13. Base mode: If the indexth node in current parent is a rubyp252 element, and if current parent is the same element as root,
then push a ruby levelp256 and then jump to the step labeled start mode.

14. If the indexth node in current parent is an rtp258 or rpp258 element, then set the current base textp256 and then jump to the
step labeled annotation mode.

15. Increment index by one.

16. Base mode post-increment: If index is equal to or greater than the number of child nodes in current parent, then jump to the
step labeled end mode.

17. Jump back to the step labeled base mode.

18. Annotation mode: If the indexth node in current parent is an rtp258 element, then push a ruby annotationp256 and jump to the
step labeled annotation mode increment.

19. If the indexth node in current parent is an rpp258 element, jump to the step labeled annotation mode increment.

20. If the indexth node in current parent is not a Text node, or is a Text node that is not inter-element whitespacep129, then jump

This is the same example, but the meaning is given in English instead of Japanese:

<ruby><ruby>東<rt>とう</rt>南<rt>なん</rt></ruby><rt lang=en>Southeast</rt></ruby>の方角

東とう南なんSoutheastの方角

Example

255

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

to the step labeled base mode.

21. Annotation mode increment: Let lookahead index be index plus one.

22. Annotation mode white-space skipper: If lookahead index is equal to the number of child nodes in current parent then jump
to the step labeled end mode.

23. If the lookahead indexth node in current parent is an rtp258 element or an rpp258 element, then set index to lookahead index
and jump to the step labeled annotation mode.

24. If the lookahead indexth node in current parent is not a Text node, or is a Text node that is not inter-element whitespacep129,
then jump to the step labeled base mode (without further incrementing index, so the inter-element whitespacep129 seen so
far becomes part of the next base text segment).

25. Increment lookahead index by one.

26. Jump to the step labeled annotation mode white-space skipper.

27. End mode: If current parent is not the same element as root, then pop a ruby levelp256 and jump to the step labeled base
mode post-increment.

28. End: Return base text segments and annotation segments. Any content of the rubyp252 element not described by segments in
either of those lists is implicitly in an ignored segment.

When the steps above say to set the current base text, it means to run the following steps at that point in the algorithm:

1. Let text range be a DOM range whose start is the boundary point (current parent, start index) and whose end is the
boundary point (current parent, index).

2. Let new text segment be a base text segment described by the range annotation range.

3. Add new text segment to base text segments.

4. Let current base text be new text segment.

5. Let start index be null.

When the steps above say to push a ruby level, it means to run the following steps at that point in the algorithm:

1. Let current parent be the indexth node in current parent.

2. Let index be 0.

3. Set saved start index to the value of start index.

4. Let start index be null.

When the steps above say to pop a ruby level, it means to run the following steps at that point in the algorithm:

1. Let index be the position of current parent in root.

2. Let current parent be root.

3. Increment index by one.

4. Set start index to the value of saved start index.

5. Let saved start index be null.

When the steps above say to push a ruby annotation, it means to run the following steps at that point in the algorithm:

1. Let rt be the rtp258 element that is the indexth node of current parent.

2. Let annotation range be a DOM range whose start is the boundary point (current parent, index) and whose end is the
boundary point (current parent, index plus one) (i.e. that contains only rt).

3. Let new annotation segment be an annotation segment described by the range annotation range.

4. If current base text is not null, associate new annotation segment with current base text.

5. Add new annotation segment to annotation segments.
256

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-range-start
https://dom.spec.whatwg.org/#concept-range-bp
https://dom.spec.whatwg.org/#concept-range-end
https://dom.spec.whatwg.org/#concept-range-bp
https://dom.spec.whatwg.org/#concept-range-start
https://dom.spec.whatwg.org/#concept-range-bp
https://dom.spec.whatwg.org/#concept-range-end
https://dom.spec.whatwg.org/#concept-range-bp

In this example, each ideograph in the Japanese text 漢字 is annotated with its reading in hiragana.

...
<ruby>漢<rt>かん</rt>字<rt>じ</rt></ruby>
...

This might be rendered as:

Example

In this example, each ideograph in the traditional Chinese text 漢字 is annotated with its bopomofo reading.

<ruby>漢<rt>ㄏㄢˋ</rt>字<rt>ㄗˋ</rt></ruby>

This might be rendered as:

Example

In this example, each ideograph in the simplified Chinese text 汉字 is annotated with its pinyin reading.

...<ruby>汉<rt>hàn</rt>字<rt>zì</rt></ruby>...

This might be rendered as:

Example

In this more contrived example, the acronym "HTML" has four annotations: one for the whole acronym, briefly describing what it is,
one for the letters "HT" expanding them to "Hypertext", one for the letter "M" expanding it to "Markup", and one for the letter "L"
expanding it to "Language".

<ruby>
<ruby>HT<rt>Hypertext</rt>M<rt>Markup</rt>L<rt>Language</rt></ruby>
<rt>An abstract language for describing documents and applications

</ruby>

Example

257

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a rubyp252 element.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
An rtp258 element's end tagp1070 can be omitted if the rtp258 element is immediately followed by an rtp258 or rpp258 element, or if
there is no more content in the parent element.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The rtp258 element marks the ruby text component of a ruby annotation. When it is the child of a rubyp252 element, it doesn't
representp123 anything itself, but the rubyp252 element uses it as part of determining what it representsp123.

An rtp258 element that is not a child of a rubyp252 element representsp123 the same thing as its children.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a rubyp252 element, either immediately before or immediately after an rtp258 element.

Content modelp128:
Textp132.

Tag omission in text/htmlp128:
An rpp258 element's end tagp1070 can be omitted if the rpp258 element is immediately followed by an rtp258 or rpp258 element, or if
there is no more content in the parent element.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The rpp258 element can be used to provide parentheses or other content around a ruby text component of a ruby annotation, to be
shown by user agents that don't support ruby annotations.

An rpp258 element that is a child of a rubyp252 element representsp123 nothing. An rpp258 element whose parent element is not a rubyp252

element representsp123 its children.

Example

4.5.11 The rt element §p25

8

4.5.12 The rp element §p25

8

✔ MDN

✔ MDN

258

https://w3c.github.io/html-aria/#el-rt
https://w3c.github.io/html-aam/#el-rt
https://w3c.github.io/html-aria/#el-rp
https://w3c.github.io/html-aam/#el-rp

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

valuep260 — Machine-readable value

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLDataElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString value;
};

The example above, in which each ideograph in the text 漢字 is annotated with its phonetic reading, could be expanded to use
rpp258 so that in legacy user agents the readings are in parentheses:

...
<ruby>漢<rp>（</rp><rt>かん</rt><rp>）</rp>字<rp>（</rp><rt>じ</rt><rp>）</rp></ruby>
...

In conforming user agents the rendering would be as above, but in user agents that do not support ruby, the rendering would be:

... 漢（かん）字（じ）...

When there are multiple annotations for a segment, rpp258 elements can also be placed between the annotations. Here is another
copy of an earlier contrived example showing some symbols with names given in English and French, but this time with rpp258

elements as well:

<ruby>
♥<rp>: </rp><rt>Heart</rt><rp>, </rp><rt lang=fr>Cœur</rt><rp>.</rp>
☘<rp>: </rp><rt>Shamrock</rt><rp>, </rp><rt lang=fr>Trèfle</rt><rp>.</rp>
✶<rp>: </rp><rt>Star</rt><rp>, </rp><rt lang=fr>Étoile</rt><rp>.</rp>
</ruby>

This would make the example render as follows in non-ruby-capable user agents:

♥: Heart, Cœur. ☘: Shamrock, Trèfle. ✶: Star, Étoile.

Example

IDL

4.5.13 The data element §p25

9

✔ MDN

✔ MDN

259

https://w3c.github.io/html-aria/#el-data
https://w3c.github.io/html-aam/#el-data

The datap259 element representsp123 its contents, along with a machine-readable form of those contents in the valuep260 attribute.

The value attribute must be present. Its value must be a representation of the element's contents in a machine-readable format.

The element can be used for several purposes.

When combined with microformats or the microdata attributesp729 defined in this specification, the element serves to provide both a
machine-readable value for the purposes of data processors, and a human-readable value for the purposes of rendering in a web
browser. In this case, the format to be used in the valuep260 attribute is determined by the microformats or microdata vocabulary in
use.

The element can also, however, be used in conjunction with scripts in the page, for when a script has a literal value to store alongside
a human-readable value. In such cases, the format to be used depends only on the needs of the script. (The data-*p145 attributes can
also be useful in such situations.)

The value IDL attribute must reflectp94 the content attribute of the same name.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
If the element has a datetimep261 attribute: Phrasing contentp132.
Otherwise: Textp132, but must match requirements described in prose below.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

datetimep261 — Machine-readable value

Accessibility considerationsp129:
For authors.

When the value is date- or time-related, the more specific timep260 element can be used instead.
Note

Here, a short table has its numeric values encoded using the datap259 element so that the table sorting JavaScript library can
provide a sorting mechanism on each column despite the numbers being presented in textual form in one column and in a
decomposed form in another.

<script src="sortable.js"></script>
<table class="sortable">
<thead> <tr> <th> Game <th> Corporations <th> Map Size
<tbody>
<tr> <td> 1830 <td> <data value="8">Eight</data> <td> <data value="93">19+74 hexes (93

total)</data>
<tr> <td> 1856 <td> <data value="11">Eleven</data> <td> <data value="99">12+87 hexes (99

total)</data>
<tr> <td> 1870 <td> <data value="10">Ten</data> <td> <data value="149">4+145 hexes (149

total)</data>
</table>

Example

4.5.14 The time element §p26

0

✔ MDN

✔ MDN

✔ MDN

260

https://w3c.github.io/html-aria/#el-time

For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTimeElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString dateTime;
};

The timep260 element representsp123 its contents, along with a machine-readable form of those contents in the datetimep261 attribute.
The kind of content is limited to various kinds of dates, times, time-zone offsets, and durations, as described below.

The datetime attribute may be present. If present, its value must be a representation of the element's contents in a machine-readable
format.

A timep260 element that does not have a datetimep261 content attribute must not have any element descendants.

The datetime value of a timep260 element is the value of the element's datetimep261 content attribute, if it has one, otherwise the
child text content of the timep260 element.

The datetime valuep261 of a timep260 element must match one of the following syntaxes.

A valid month stringp74

A valid date stringp74

A valid yearless date stringp75

A valid time stringp76

A valid local date and time stringp77

<time>2011-11</time>

Example

<time>2011-11-18</time>

Example

<time>11-18</time>

Example

<time>14:54</time>

Example

<time>14:54:39</time>

Example

<time>14:54:39.929</time>

Example

Example

IDL

261

https://w3c.github.io/html-aam/#el-time
https://dom.spec.whatwg.org/#concept-child-text-content

A valid time-zone offset stringp78

<time>2011-11-18T14:54</time>

<time>2011-11-18T14:54:39</time>

Example

<time>2011-11-18T14:54:39.929</time>

Example

<time>2011-11-18 14:54</time>

Example

<time>2011-11-18 14:54:39</time>

Example

<time>2011-11-18 14:54:39.929</time>

Example

Times with dates but without a time zone offset are useful for specifying events that are observed at the same specific time in
each time zone, throughout a day. For example, the 2020 new year is celebrated at 2020-01-01 00:00 in each time zone, not at
the same precise moment across all time zones. For events that occur at the same time across all time zones, for example a
videoconference meeting, a valid global date and time stringp79 is likely more useful.

Note

<time>Z</time>

Example

<time>+0000</time>

Example

<time>+00:00</time>

Example

<time>-0800</time>

Example

<time>-08:00</time>

Example

For times without dates (or times referring to events that recur on multiple dates), specifying the geographic location that
controls the time is usually more useful than specifying a time zone offset, because geographic locations change time zone
offsets with daylight saving time. In some cases, geographic locations even change time zone, e.g. when the boundaries of
those time zones are redrawn, as happened with Samoa at the end of 2011. There exists a time zone database that describes

Note

262

A valid global date and time stringp79

the boundaries of time zones and what rules apply within each such zone, known as the time zone database. [TZDATABASE]p1291

<time>2011-11-18T14:54Z</time>

Example

<time>2011-11-18T14:54:39Z</time>

Example

<time>2011-11-18T14:54:39.929Z</time>

Example

<time>2011-11-18T14:54+0000</time>

Example

<time>2011-11-18T14:54:39+0000</time>

Example

<time>2011-11-18T14:54:39.929+0000</time>

Example

<time>2011-11-18T14:54+00:00</time>

Example

<time>2011-11-18T14:54:39+00:00</time>

Example

<time>2011-11-18T14:54:39.929+00:00</time>

Example

<time>2011-11-18T06:54-0800</time>

Example

<time>2011-11-18T06:54:39-0800</time>

Example

<time>2011-11-18T06:54:39.929-0800</time>

Example

<time>2011-11-18T06:54-08:00</time>

Example

263

<time>2011-11-18T06:54:39-08:00</time>

Example

<time>2011-11-18T06:54:39.929-08:00</time>

Example

<time>2011-11-18 14:54Z</time>

Example

<time>2011-11-18 14:54:39Z</time>

Example

<time>2011-11-18 14:54:39.929Z</time>

Example

<time>2011-11-18 14:54+0000</time>

Example

<time>2011-11-18 14:54:39+0000</time>

Example

<time>2011-11-18 14:54:39.929+0000</time>

Example

<time>2011-11-18 14:54+00:00</time>

Example

<time>2011-11-18 14:54:39+00:00</time>

Example

<time>2011-11-18 14:54:39.929+00:00</time>

Example

<time>2011-11-18 06:54-0800</time>

Example

<time>2011-11-18 06:54:39-0800</time>

Example

<time>2011-11-18 06:54:39.929-0800</time>

Example

264

A valid week stringp81

Four or more ASCII digits, at least one of which is not U+0030 DIGIT ZERO (0)

A valid duration stringp82

The machine-readable equivalent of the element's contents must be obtained from the element's datetime valuep261 by using
the following algorithm:

1. If parsing a month stringp74 from the element's datetime valuep261 returns a monthp74, that is the machine-readable
equivalent; return.

2. If parsing a date stringp75 from the element's datetime valuep261 returns a datep74, that is the machine-readable equivalent;
return.

3. If parsing a yearless date stringp75 from the element's datetime valuep261 returns a yearless datep75, that is the machine-
readable equivalent; return.

4. If parsing a time stringp76 from the element's datetime valuep261 returns a timep76, that is the machine-readable equivalent;
return.

<time>2011-11-18 06:54-08:00</time>

Example

<time>2011-11-18 06:54:39-08:00</time>

Example

<time>2011-11-18 06:54:39.929-08:00</time>

Example

Times with dates and a time zone offset are useful for specifying specific events, or recurring virtual events where the time is
not anchored to a specific geographic location. For example, the precise time of an asteroid impact, or a particular meeting in a
series of meetings held at 1400 UTC every day, regardless of whether any particular part of the world is observing daylight
saving time or not. For events where the precise time varies by the local time zone offset of a specific geographic location, a
valid local date and time stringp77 combined with that geographic location is likely more useful.

Note

<time>2011-W47</time>

Example

<time>2011</time>

Example

<time>0001</time>

Example

<time>PT4H18M3S</time>

Example

<time>4h 18m 3s</time>

Example

265

https://infra.spec.whatwg.org/#ascii-digit

5. If parsing a local date and time string p77 from the element's datetime valuep261 returns a local date and timep77, that is the
machine-readable equivalent; return.

6. If parsing a time-zone offset stringp78 from the element's datetime valuep261 returns a time-zone offsetp78, that is the
machine-readable equivalent; return.

7. If parsing a global date and time string p80 from the element's datetime valuep261 returns a global date and timep79, that is the
machine-readable equivalent; return.

8. If parsing a week stringp81 from the element's datetime valuep261 returns a weekp80, that is the machine-readable equivalent;
return.

9. If the element's datetime valuep261 consists of only ASCII digits, at least one of which is not U+0030 DIGIT ZERO (0), then the
machine-readable equivalent is the base-ten interpretation of those digits, representing a year; return.

10. If parsing a duration stringp83 from the element's datetime valuep261 returns a durationp81, that is the machine-readable
equivalent; return.

11. There is no machine-readable equivalent.

The dateTime IDL attribute must reflectp94 the element's datetimep261 content attribute.

The algorithms referenced above are intended to be designed such that for any arbitrary string s, only one of the algorithms
returns a value. A more efficient approach might be to create a single algorithm that parses all these data types in one pass;
developing such an algorithm is left as an exercise to the reader.

Note

The timep260 element can be used to encode dates, for example in microformats. The following shows a hypothetical way of
encoding an event using a variant on hCalendar that uses the timep260 element:

<div class="vevent">
http://www.web2con.com/
Web 2.0 Conference:
<time class="dtstart" datetime="2005-10-05">October 5</time> -
<time class="dtend" datetime="2005-10-07">7</time>,
at the Argent Hotel, San Francisco, CA

</div>

Example

Here, a fictional microdata vocabulary based on the Atom vocabulary is used with the timep260 element to mark up a blog post's
publication date.

<article itemscope itemtype="https://n.example.org/rfc4287">
<h1 itemprop="title">Big tasks</h1>
<footer>Published <time itemprop="published" datetime="2009-08-29">two days ago</time>.</footer>
<p itemprop="content">Today, I went out and bought a bike for my kid.</p>

</article>

Example

In this example, another article's publication date is marked up using timep260, this time using the schema.org microdata
vocabulary:

<article itemscope itemtype="http://schema.org/BlogPosting">
<h1 itemprop="headline">Small tasks</h1>
<footer>Published <time itemprop="datePublished" datetime="2009-08-30">yesterday</time>.</footer>
<p itemprop="articleBody">I put a bike bell on her bike.</p>

</article>

Example

✔ MDN

266

https://infra.spec.whatwg.org/#ascii-digit

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The codep267 element representsp123 a fragment of computer code. This could be an XML element name, a file name, a computer
program, or any other string that a computer would recognize.

There is no formal way to indicate the language of computer code being marked up. Authors who wish to mark codep267 elements with
the language used, e.g. so that syntax highlighting scripts can use the right rules, can use the classp137 attribute, e.g. by adding a
class prefixed with "language-" to the element.

In the following snippet, the timep260 element is used to encode a date in the ISO8601 format, for later processing by a script:

<p>Our first date was <time datetime="2006-09-23">a Saturday</time>.</p>

In this second snippet, the value includes a time:

<p>We stopped talking at <time datetime="2006-09-24T05:00-07:00">5am the next morning</time>.</p>

A script loaded by the page (and thus privy to the page's internal convention of marking up dates and times using the timep260

element) could scan through the page and look at all the timep260 elements therein to create an index of dates and times.

Example

For example, this element conveys the string "Friday" with the additional semantic that the 18th of November 2011 is the meaning
that corresponds to "Friday":

Today is <time datetime="2011-11-18">Friday</time>.

Example

In this example, a specific time in the Pacific Standard Time timezone is specified:

Your next meeting is at <time datetime="2011-11-18T15:00-08:00">3pm</time>.

Example

Example

4.5.15 The code element §p26

7

✔ MDN

267

https://w3c.github.io/html-aria/#el-code
https://w3c.github.io/html-aam/#el-code

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The varp268 element representsp123 a variable. This could be an actual variable in a mathematical expression or programming context,
an identifier representing a constant, a symbol identifying a physical quantity, a function parameter, or just be a term used as a
placeholder in prose.

The following example shows how the element can be used in a paragraph to mark up element names and computer code,
including punctuation.

<p>The <code>code</code> element represents a fragment of computer
code.</p>

<p>When you call the <code>activate()</code> method on the
<code>robotSnowman</code> object, the eyes glow.</p>

<p>The example below uses the <code>begin</code> keyword to indicate
the start of a statement block. It is paired with an <code>end</code>
keyword, which is followed by the <code>.</code> punctuation character
(full stop) to indicate the end of the program.</p>

The following example shows how a block of code could be marked up using the prep216 and codep267 elements.

<pre><code class="language-pascal">var i: Integer;
begin

i := 1;
end.</code></pre>

A class is used in that example to indicate the language used.

Example

See the prep216 element for more details.
Note

4.5.16 The var element §p26

8

✔ MDN

268

https://w3c.github.io/html-aria/#el-var
https://w3c.github.io/html-aam/#el-var

For mathematics, in particular for anything beyond the simplest of expressions, MathML is more appropriate. However, the varp268

element can still be used to refer to specific variables that are then mentioned in MathML expressions.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

In the paragraph below, the letter "n" is being used as a variable in prose:

<p>If there are <var>n</var> pipes leading to the ice
cream factory then I expect at least <var>n</var>
flavors of ice cream to be available for purchase!</p>

Example

In this example, an equation is shown, with a legend that references the variables in the equation. The expression itself is marked
up with MathML, but the variables are mentioned in the figure's legend using varp268.

<figure>
<math>
<mi>a</mi>
<mo>=</mo>
<msqrt>
<msup><mi>b</mi><mn>2</mn></msup>
<mi>+</mi>
<msup><mi>c</mi><mn>2</mn></msup>

</msqrt>
</math>
<figcaption>
Using Pythagoras' theorem to solve for the hypotenuse <var>a</var> of
a triangle with sides <var>b</var> and <var>c</var>

</figcaption>
</figure>

Example

Here, the equation describing mass-energy equivalence is used in a sentence, and the varp268 element is used to mark the
variables and constants in that equation:

<p>Then she turned to the blackboard and picked up the chalk. After a few moment's
thought, she wrote <var>E</var> = <var>m</var> <var>c</var>². The teacher
looked pleased.</p>

Example

4.5.17 The samp element §p26

9

✔ MDN

269

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The sampp269 element representsp123 sample or quoted output from another program or computing system.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

See the prep216 and kbdp270 elements for more details.
Note

This element can be contrasted with the outputp553 element, which can be used to provide immediate output in a web application.
Note

This example shows the sampp269 element being used inline:

<p>The computer said <samp>Too much cheese in tray
two</samp> but I didn't know what that meant.</p>

Example

This second example shows a block of sample output from a console program. Nested sampp269 and kbdp270 elements allow for the
styling of specific elements of the sample output using a style sheet. There's also a few parts of the sampp269 that are annotated
with even more detailed markup, to enable very precise styling. To achieve this, spanp279 elements are used.

<pre><samp>jdoe@mowmow:~$ <kbd>ssh demo.example.com</kbd>
Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on pts/1
Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-reslog-v6.189 #1 SMP Tue Feb 1
11:22:36 PST 2005 i686 unknown

jdoe@demo:~$ _</samp></pre>

Example

This third example shows a block of input and its respective output. The example uses both codep267 and sampp269 elements.

<pre>
<code class="language-javascript">console.log(2.3 + 2.4)</code>
<samp>4.699999999999999</samp>
</pre>

Example

4.5.18 The kbd element §p27

0

✔ MDN

270

https://w3c.github.io/html-aria/#el-samp
https://w3c.github.io/html-aam/#el-samp

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The kbdp270 element representsp123 user input (typically keyboard input, although it may also be used to represent other input, such as
voice commands).

When the kbdp270 element is nested inside a sampp269 element, it represents the input as it was echoed by the system.

When the kbdp270 element contains a sampp269 element, it represents input based on system output, for example invoking a menu item.

When the kbdp270 element is nested inside another kbdp270 element, it represents an actual key or other single unit of input as
appropriate for the input mechanism.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
The subp271 element: for authors; for implementers.
The supp271 element: for authors; for implementers.

Here the kbdp270 element is used to indicate keys to press:

<p>To make George eat an apple, press <kbd><kbd>Shift</kbd>+<kbd>F3</kbd></kbd></p>

In this second example, the user is told to pick a particular menu item. The outer kbdp270 element marks up a block of input, with
the inner kbdp270 elements representing each individual step of the input, and the sampp269 elements inside them indicating that the
steps are input based on something being displayed by the system, in this case menu labels:

<p>To make George eat an apple, select
<kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat Apple...</samp></kbd></kbd>

</p>

Such precision isn't necessary; the following is equally fine:

<p>To make George eat an apple, select <kbd>File | Eat Apple...</kbd></p>

Example

4.5.19 The sub and sup elements §p27

1

✔ MDN

271

https://w3c.github.io/html-aria/#el-kbd
https://w3c.github.io/html-aam/#el-kbd
https://w3c.github.io/html-aria/#el-sub
https://w3c.github.io/html-aam/#el-sub
https://w3c.github.io/html-aria/#el-sup
https://w3c.github.io/html-aam/#el-sup

DOM interfacep129:
Use HTMLElementp124.

The supp271 element representsp123 a superscript and the subp271 element representsp123 a subscript.

These elements must be used only to mark up typographical conventions with specific meanings, not for typographical presentation
for presentation's sake. For example, it would be inappropriate for the subp271 and supp271 elements to be used in the name of the
LaTeX document preparation system. In general, authors should use these elements only if the absence of those elements would
change the meaning of the content.

In certain languages, superscripts are part of the typographical conventions for some abbreviations.

The subp271 element can be used inside a varp268 element, for variables that have subscripts.

Mathematical expressions often use subscripts and superscripts. Authors are encouraged to use MathML for marking up mathematics,
but authors may opt to use subp271 and supp271 if detailed mathematical markup is not desired. [MATHML]p1289

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

<p>Their names are
<abbr>M^{lle}</abbr> Gwendoline and
<abbr>M^{me}</abbr> Denise.</p>

Example

Here, the subp271 element is used to represent the subscript that identifies the variable in a family of variables:

<p>The coordinate of the <var>i</var>th point is
(<var>x_{<var>i</var>}</var>, <var>y_{<var>i</var>}</var>).
For example, the 10th point has coordinate
(<var>x₁₀</var>, <var>y₁₀</var>).</p>

Example

<var>E</var>=<var>m</var><var>c</var>²

f(<var>x</var>, <var>n</var>) = log₄<var>x</var>^{<var>n</var>}

Example

4.5.20 The i element §p27

2

✔ MDN

272

https://w3c.github.io/html-aria/#el-i
https://w3c.github.io/html-aam/#el-i

DOM interfacep129:
Uses HTMLElementp124.

The ip272 element representsp123 a span of text in an alternate voice or mood, or otherwise offset from the normal prose in a manner
indicating a different quality of text, such as a taxonomic designation, a technical term, an idiomatic phrase from another language,
transliteration, a thought, or a ship name in Western texts.

Terms in languages different from the main text should be annotated with langp140 attributes (or, in XML, lang attributes in the XML
namespacep140).

Authors can use the classp137 attribute on the ip272 element to identify why the element is being used, so that if the style of a
particular use (e.g. dream sequences as opposed to taxonomic terms) is to be changed at a later date, the author doesn't have to go
through the entire document (or series of related documents) annotating each use.

Authors are encouraged to consider whether other elements might be more applicable than the ip272 element, for instance the emp241

element for marking up stress emphasis, or the dfnp249 element to mark up the defining instance of a term.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

The examples below show uses of the ip272 element:

<p>The <i class="taxonomy">Felis silvestris catus</i> is cute.</p>
<p>The term <i>prose content</i> is defined above.</p>
<p>There is a certain <i lang="fr">je ne sais quoi</i> in the air.</p>

In the following example, a dream sequence is marked up using ip272 elements.

<p>Raymond tried to sleep.</p>
<p><i>The ship sailed away on Thursday</i>, he
dreamt. <i>The ship had many people aboard, including a beautiful
princess called Carey. He watched her, day-in, day-out, hoping she
would notice him, but she never did.</i></p>
<p><i>Finally one night he picked up the courage to speak with
her—</i></p>
<p>Raymond woke with a start as the fire alarm rang out.</p>

Example

Style sheets can be used to format ip272 elements, just like any other element can be restyled. Thus, it is not the case that content
in ip272 elements will necessarily be italicized.

Note

4.5.21 The b element §p27

3

✔ MDN

273

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The bp273 element representsp123 a span of text to which attention is being drawn for utilitarian purposes without conveying any extra
importance and with no implication of an alternate voice or mood, such as key words in a document abstract, product names in a
review, actionable words in interactive text-driven software, or an article lede.

As with the ip272 element, authors can use the classp137 attribute on the bp273 element to identify why the element is being used, so
that if the style of a particular use is to be changed at a later date, the author doesn't have to go through annotating each use.

The bp273 element should be used as a last resort when no other element is more appropriate. In particular, headings should use the
h1p190 to h6p190 elements, stress emphasis should use the emp241 element, importance should be denoted with the strongp242 element,
and text marked or highlighted should use the markp275 element.

The following example shows a use of the bp273 element to highlight key words without marking them up as important:

<p>The frobonitor and barbinator components are fried.</p>

Example

In the following example, objects in a text adventure are highlighted as being special by use of the bp273 element.

<p>You enter a small room. Your sword glows
brighter. A rat scurries past the corner wall.</p>

Example

Another case where the bp273 element is appropriate is in marking up the lede (or lead) sentence or paragraph. The following
example shows how a BBC article about kittens adopting a rabbit as their own could be marked up:

<article>
<h2>Kittens 'adopted' by pet rabbit</h2>
<p><b class="lede">Six abandoned kittens have found an
unexpected new mother figure — a pet rabbit.</p>
<p>Veterinary nurse Melanie Humble took the three-week-old
kittens to her Aberdeen home.</p>

[...]

Example

The following would be incorrect usage:

<p>WARNING! Do not frob the barbinator!</p>

In the previous example, the correct element to use would have been strongp242, not bp273.

Example

Style sheets can be used to format bp273 elements, just like any other element can be restyled. Thus, it is not the case that content
in bp273 elements will necessarily be boldened.

Note

274

https://w3c.github.io/html-aria/#el-b
https://w3c.github.io/html-aam/#el-b
http://news.bbc.co.uk/2/hi/uk_news/scotland/north_east/7101506.stm

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The up275 element representsp123 a span of text with an unarticulated, though explicitly rendered, non-textual annotation, such as
labeling the text as being a proper name in Chinese text (a Chinese proper name mark), or labeling the text as being misspelt.

In most cases, another element is likely to be more appropriate: for marking stress emphasis, the emp241 element should be used; for
marking key words or phrases either the bp273 element or the markp275 element should be used, depending on the context; for marking
book titles, the citep246 element should be used; for labeling text with explicit textual annotations, the rubyp252 element should be
used; for technical terms, taxonomic designation, transliteration, a thought, or for labeling ship names in Western texts, the ip272

element should be used.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

The default rendering of the up275 element in visual presentations clashes with the conventional rendering of hyperlinks
(underlining). Authors are encouraged to avoid using the up275 element where it could be confused for a hyperlink.

Note

In this example, a up275 element is used to mark a word as misspelt:

<p>The <u>see</u> is full of fish.</p>

Example

4.5.22 The u element §p27

5

4.5.23 The mark element §p27

5

✔ MDN

✔ MDN

275

https://w3c.github.io/html-aria/#el-u
https://w3c.github.io/html-aam/#el-u

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The markp275 element representsp123 a run of text in one document marked or highlighted for referencep123 purposes, due to its
relevance in another context. When used in a quotation or other block of text referred to from the prose, it indicates a highlight that
was not originally present but which has been added to bring the reader's attention to a part of the text that might not have been
considered important by the original author when the block was originally written, but which is now under previously unexpected
scrutiny. When used in the main prose of a document, it indicates a part of the document that has been highlighted due to its likely
relevance to the user's current activity.

This example shows how the markp275 element can be used to bring attention to a particular part of a quotation:

<p lang="en-US">Consider the following quote:</p>
<blockquote lang="en-GB">
<p>Look around and you will find, no-one's really
<mark>colour</mark> blind.</p>

</blockquote>
<p lang="en-US">As we can tell from the spelling of the word,
the person writing this quote is clearly not American.</p>

(If the goal was to mark the element as misspelt, however, the up275 element, possibly with a class, would be more appropriate.)

Example

Another example of the markp275 element is highlighting parts of a document that are matching some search string. If someone
looked at a document, and the server knew that the user was searching for the word "kitten", then the server might return the
document with one paragraph modified as follows:

<p>I also have some <mark>kitten</mark>s who are visiting me
these days. They're really cute. I think they like my garden! Maybe I
should adopt a <mark>kitten</mark>.</p>

Example

In the following snippet, a paragraph of text refers to a specific part of a code fragment.

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin

i := <mark>1.1</mark>;
end.</code></pre>

This is separate from syntax highlighting, for which spanp279 is more appropriate. Combining both, one would get:

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin

i := <mark>1.1</mark>;
end.</code></pre>

Example

Example

276

https://w3c.github.io/html-aria/#el-mark
https://w3c.github.io/html-aam/#el-mark

This is another example showing the use of markp275 to highlight a part of quoted text that was originally not emphasized. In this
example, common typographic conventions have led the author to explicitly style markp275 elements in quotes to render in italics.

<style>
blockquote mark, q mark {

font: inherit; font-style: italic;
text-decoration: none;
background: transparent; color: inherit;

}
.bubble em {

font: inherit; font-size: larger;
text-decoration: underline;

}
</style>
<article>
<h1>She knew</h1>
<p>Did you notice the subtle joke in the joke on panel 4?</p>
<blockquote>
<p class="bubble">I didn't want to believe. <mark>Of course
on some level I realized it was a known-plaintext attack.</mark> But I
couldn't admit it until I saw for myself.</p>

</blockquote>
<p>(Emphasis mine.) I thought that was great. It's so pedantic, yet it
explains everything neatly.</p>

</article>

Note, incidentally, the distinction between the emp241 element in this example, which is part of the original text being quoted, and
the markp275 element, which is highlighting a part for comment.

The following example shows the difference between denoting the importance of a span of text (strongp242) as opposed to
denoting the relevance of a span of text (markp275). It is an extract from a textbook, where the extract has had the parts relevant to
the exam highlighted. The safety warnings, important though they may be, are apparently not relevant to the exam.

<h3>Wormhole Physics Introduction</h3>

<p><mark>A wormhole in normal conditions can be held open for a
maximum of just under 39 minutes.</mark> Conditions that can increase
the time include a powerful energy source coupled to one or both of
the gates connecting the wormhole, and a large gravity well (such as a
black hole).</p>

<p><mark>Momentum is preserved across the wormhole. Electromagnetic
radiation can travel in both directions through a wormhole,
but matter cannot.</mark></p>

<p>When a wormhole is created, a vortex normally forms.
Warning: The vortex caused by the wormhole opening will
annihilate anything in its path. Vortexes can be avoided when
using sufficiently advanced dialing technology.</p>

<p><mark>An obstruction in a gate will prevent it from accepting a
wormhole connection.</mark></p>

Example

277

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Also, the dirp142 global attribute has special semantics on this element.

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The bdip278 element representsp123 a span of text that is to be isolated from its surroundings for the purposes of bidirectional text
formatting. [BIDI]p1285

The dirp142 global attribute defaults to autop142 on this element (it never inherits from the parent element like with other
elements).

Note

This element has rendering requirements involving the bidirectional algorithm p150.
Note

This element is especially useful when embedding user-generated content with an unknown directionality.

In this example, usernames are shown along with the number of posts that the user has submitted. If the bdip278 element were not
used, the username of the Arabic user would end up confusing the text (the bidirectional algorithm would put the colon and the
number "3" next to the word "User" rather than next to the word "posts").

User <bdi>jcranmer</bdi>: 12 posts.
User <bdi>hober</bdi>: 5 posts.
User <bdi>إيان</bdi>: 3 posts.

When using the bdip278 element, the username acts as expected.

If the bdip278 element were to be replaced by a bp273 element, the username would confuse the bidirectional algorithm and the third

Example

4.5.24 The bdi element §p27

8

MDN

278

https://w3c.github.io/html-aria/#el-bdi
https://w3c.github.io/html-aam/#el-bdi

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Also, the dirp142 global attribute has special semantics on this element.

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The bdop279 element representsp123 explicit text directionality formatting control for its children. It allows authors to override the
Unicode bidirectional algorithm by explicitly specifying a direction override. [BIDI]p1285

Authors must specify the dirp142 attribute on this element, with the value ltrp142 to specify a left-to-right override and with the value
rtlp142 to specify a right-to-left override. The autop142 value must not be specified.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.

bullet would end up saying "User 3 :", followed by the Arabic name (right-to-left), followed by "posts" and a period.

This element has rendering requirements involving the bidirectional algorithm p150.
Note

4.5.25 The bdo element §p27

9

4.5.26 The span element §p27

9

✔ MDN

✔ MDN

✔ MDN

279

https://w3c.github.io/html-aria/#el-bdo
https://w3c.github.io/html-aam/#el-bdo
https://w3c.github.io/html-aria/#el-span

For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLSpanElement : HTMLElement {

[HTMLConstructor] constructor();
};

The spanp279 element doesn't mean anything on its own, but can be useful when used together with the global attributesp136, e.g.
classp137, langp140, or dirp142. It representsp123 its children.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLBRElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The brp280 element representsp123 a line break.

In this example, a code fragment is marked up using spanp279 elements and classp137 attributes so that its keywords and identifiers
can be color-coded from CSS:

<pre><code class="lang-c">for (j = 0;
j < 256; j++) {

i_t3 = (i_t3 & 0x1ffff) | (j << 17);

i_t6 = (((((((i_t3 >> 3) ^ i_t3) >> 1) ^ i_t3) >> 8) ^ i_t3) >> 5) & 0xff;

if (i_t6 == i_t1)

break;
}</code></pre>

Example

IDL

IDL

4.5.27 The br element §p28

0

✔ MDN

✔ MDN

280

https://w3c.github.io/html-aam/#el-span
https://w3c.github.io/html-aria/#el-br
https://w3c.github.io/html-aam/#el-br

brp280 elements must be used only for line breaks that are actually part of the content, as in poems or addresses.

brp280 elements must not be used for separating thematic groups in a paragraph.

If a paragraphp134 consists of nothing but a single brp280 element, it represents a placeholder blank line (e.g. as in a template). Such
blank lines must not be used for presentation purposes.

Any content inside brp280 elements must not be considered part of the surrounding text.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

While line breaks are usually represented in visual media by physically moving subsequent text to a new line, a style sheet or user
agent would be equally justified in causing line breaks to be rendered in a different manner, for instance as green dots, or as extra
spacing.

Note

The following example is correct usage of the brp280 element:

<p>P. Sherman

42 Wallaby Way

Sydney</p>

Example

The following examples are non-conforming, as they abuse the brp280 element:

<p><a ...>34 comments.

<a ...>Add a comment.</p>

<p><label>Name: <input name="name"></label>

<label>Address: <input name="address"></label></p>

Here are alternatives to the above, which are correct:

<p><a ...>34 comments.</p>
<p><a ...>Add a comment.</p>

<p><label>Name: <input name="name"></label></p>
<p><label>Address: <input name="address"></label></p>

Example

This element has rendering requirements involving the bidirectional algorithm p150.
Note

4.5.28 The wbr element §p28

1

✔ MDN

281

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The wbrp281 element representsp123 a line break opportunity.

Any content inside wbrp281 elements must not be considered part of the surrounding text.

This section is non-normative.

Element Purpose Example

ap238 Hyperlinks

emp241 Stress emphasis

strongp242 Importance

smallp244 Side comments

sp245 Inaccurate text

citep246 Titles of works

qp247 Quotations

dfnp249 Defining instance

abbrp250 Abbreviations

rubyp252,
rtp258, rpp258

Ruby annotations

datap259 Machine-readable equivalent

timep260 Machine-readable equivalent of date-
or time-related data

In the following example, someone is quoted as saying something which, for effect, is written as one long word. However, to
ensure that the text can be wrapped in a readable fashion, the individual words in the quote are separated using a wbrp281 element.

<p>So then she pointed at the tiger and screamed
"there<wbr>is<wbr>no<wbr>way<wbr>you<wbr>are<wbr>ever<wbr>going<wbr>to<wbr>catch<wbr>me"!</p>

Example

var wbr = document.createElement("wbr");
wbr.textContent = "This is wrong";
document.body.appendChild(wbr);

Example

This element has rendering requirements involving the bidirectional algorithm p150.
Note

Visit my drinks page.

I must say I adore lemonade.

This tea is very hot.

These grapes are made into wine. <small>Alcohol is addictive.</small>

Price: <s>£4.50</s> £2.00!

The case <cite>Hugo v. Danielle</cite> is relevant here.

The judge said <q>You can drink water from the fish tank</q> but advised against it.

The term <dfn>organic food</dfn> refers to food produced without synthetic chemicals.

Organic food in Ireland is certified by the <abbr title="Irish Organic Farmers and
Growers Association">IOFGA</abbr>.

<ruby> OJ <rp>(<rt>Orange Juice<rp>)</ruby>

Available starting today! <data value="UPC:022014640201">North Coast Organic Apple
Cider</data>

Available starting on <time datetime="2011-11-18">November 18th</time>!

4.5.29 Usage summary §p28

2

282

https://w3c.github.io/html-aria/#el-wbr
https://w3c.github.io/html-aam/#el-wbr

Element Purpose Example

codep267 Computer code

varp268 Variables

sampp269 Computer output

kbdp270 User input

subp271 Subscripts

supp271 Superscripts

ip272 Alternative voice

bp273 Keywords

up275 Annotations

markp275 Highlight

bdip278 Text directionality isolation

bdop279 Text directionality formatting

spanp279 Other

brp280 Line break

wbrp281 Line breaking opportunity

Links are a conceptual construct, created by ap238, areap443, formp486, and linkp157 elements, that representp123 a connection between
two resources, one of which is the current Documentp114. There are two kinds of links in HTML:

Links to external resources
These are links to resources that are to be used to augment the current document, generally automatically processed by the user
agent. All external resource linksp283 have a fetch and process the linked resourcep163 algorithm which describes how the resource is
obtained.

Hyperlinks
These are links to other resources that are generally exposed to the user by the user agent so that the user can cause the user
agent to navigatep866 to those resources, e.g. to visit them in a browser or download them.

For linkp157 elements with an hrefp158 attribute and a relp158 attribute, links must be created for the keywords of the relp158 attribute,
as defined for those keywords in the link typesp294 section.

Similarly, for ap238 and areap443 elements with an hrefp284 attribute and a relp284 attribute, links must be created for the keywords of
the relp284 attribute as defined for those keywords in the link typesp294 section. Unlike linkp157 elements, however, ap238 and areap443

elements with an hrefp284 attribute that either do not have a relp284 attribute, or whose relp284 attribute has no keywords that are
defined as specifying hyperlinksp283, must also create a hyperlinkp283. This implied hyperlink has no special meaning (it has no link
typep294) beyond linking the element's node document to the resource given by the element's hrefp284 attribute.

Similarly, for formp486 elements with a relp488 attribute, links must be created for the keywords of the relp488 attribute as defined for
those keywords in the link typesp294 section. formp486 elements that do not have a relp488 attribute, or whose relp488 attribute has no
keywords that are defined as specifying hyperlinksp283, must also create a hyperlinkp283.

A hyperlinkp283 can have one or more hyperlink annotations that modify the processing semantics of that hyperlink.

The <code>fruitdb</code> program can be used for tracking fruit production.

If there are <var>n</var> fruit in the bowl, at least <var>n</var>÷2 will be ripe.

The computer said <samp>Unknown error -3</samp>.

Hit <kbd>F1</kbd> to continue.

Water is H₂O.

The Hydrogen in heavy water is usually ²H.

Lemonade consists primarily of <i>Citrus limon</i>.

Take a lemon and squeeze it with a juicer.

The mixture of apple juice and <u class="spelling">eldeflower</u> juice is very
pleasant.

Elderflower cordial, with one <mark>part</mark> cordial to ten <mark>part</mark>s
water, stands a<mark>part</mark> from the rest.

The recommended restaurant is <bdi lang="">My Juice Café (At The Beach)</bdi>.

The proposal is to write English, but in reverse order. "Juice" would become "<bdo
dir=rtl>Juice</bdo>">

In French we call it sirop de sureau.

Simply Orange Juice Company
Apopka, FL 32703
U.S.A.

www.simply<wbr>orange<wbr>juice.com

4.6 Links §p28

3

4.6.1 Introduction §p28

3

283

https://dom.spec.whatwg.org/#concept-node-document

The href attribute on ap238 and areap443 elements must have a value that is a valid URL potentially surrounded by spacesp88.

The target attribute, if present, must be a valid browsing context name or keywordp819. It gives the name of the browsing contextp811

that will be used. User agents use this name when following hyperlinksp290.

When an ap238 or areap443 element's activation behavior is invoked, the user agent may allow the user to indicate a preference
regarding whether the hyperlink is to be used for navigationp866 or whether the resource it specifies is to be downloaded.

In the absence of a user preference, the default should be navigation if the element has no downloadp284 attribute, and should be to
download the specified resource if it does.

Whether determined by the user's preferences or via the presence or absence of the attribute, if the decision is to use the hyperlink for
navigationp866 then the user agent must follow the hyperlinkp290, and if the decision is to use the hyperlink to download a resource, the
user agent must download the hyperlinkp291. These terms are defined in subsequent sections below.

The download attribute, if present, indicates that the author intends the hyperlink to be used for downloading a resourcep291. The
attribute may have a value; the value, if any, specifies the default file name that the author recommends for use in labeling the
resource in a local file system. There are no restrictions on allowed values, but authors are cautioned that most file systems have
limitations with regard to what punctuation is supported in file names, and user agents are likely to adjust file names accordingly.

The ping attribute, if present, gives the URLs of the resources that are interested in being notified if the user follows the hyperlink. The
value must be a set of space-separated tokensp87, each of which must be a valid non-empty URLp88 whose scheme is an HTTP(S)
scheme. The value is used by the user agent for hyperlink auditingp293.

The rel attribute on ap238 and areap443 elements controls what kinds of links the elements create. The attribute's value must be a
unordered set of unique space-separated tokensp87. The allowed keywords and their meaningsp294 are defined below.

relp284 's supported tokens are the keywords defined in HTML link typesp294 which are allowed on ap238 and areap443 elements, impact
the processing model, and are supported by the user agent. The possible supported tokens are noreferrerp304, noopenerp303, and
openerp304. relp284 's supported tokens must only include the tokens from this list that the user agent implements the processing model
for.

The relp284 attribute has no default value. If the attribute is omitted or if none of the values in the attribute are recognized by the user
agent, then the document has no particular relationship with the destination resource other than there being a hyperlink between the
two.

The hreflang attribute on ap238 elements that create hyperlinksp283, if present, gives the language of the linked resource. It is purely
advisory. The value must be a valid BCP 47 language tag. [BCP47]p1285 User agents must not consider this attribute authoritative —
upon fetching the resource, user agents must use only language information associated with the resource to determine its language,
not metadata included in the link to the resource.

The type attribute, if present, gives the MIME type of the linked resource. It is purely advisory. The value must be a valid MIME type
string. User agents must not consider the typep284 attribute authoritative — upon fetching the resource, user agents must not use
metadata included in the link to the resource to determine its type.

The referrerpolicy attribute is a referrer policy attributep91. Its purpose is to set the referrer policy used when following
hyperlinksp290. [REFERRERPOLICY]p1290

interface mixin HTMLHyperlinkElementUtils {
[CEReactions] stringifier attribute USVString href;
readonly attribute USVString origin;
[CEReactions] attribute USVString protocol;

The hrefp284 attribute on ap238 and areap443 elements is not required; when those elements do not have hrefp284 attributes they do
not create hyperlinks.

Note

IDL

4.6.2 Links created by ap238 and areap443 elements §p28

4

4.6.3 API for ap238 and areap443 elements §p28

4

✔ MDN

MDN

✔ MDN

284

https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy

[CEReactions] attribute USVString username;
[CEReactions] attribute USVString password;
[CEReactions] attribute USVString host;
[CEReactions] attribute USVString hostname;
[CEReactions] attribute USVString port;
[CEReactions] attribute USVString pathname;
[CEReactions] attribute USVString search;
[CEReactions] attribute USVString hash;

};

An element implementing the HTMLHyperlinkElementUtilsp284 mixin has an associated url (null or a URL). It is initially null.

An element implementing the HTMLHyperlinkElementUtilsp284 mixin has an associated set the url algorithm, which runs these
steps:

hyperlink . toString()
hyperlink . hrefp286

Returns the hyperlink's URL.
Can be set, to change the URL.

hyperlink . originp286

Returns the hyperlink's URL's origin.

hyperlink . protocolp286

Returns the hyperlink's URL's scheme.
Can be set, to change the URL's scheme.

hyperlink . usernamep286

Returns the hyperlink's URL's username.
Can be set, to change the URL's username.

hyperlink . passwordp287

Returns the hyperlink's URL's password.
Can be set, to change the URL's password.

hyperlink . hostp287

Returns the hyperlink's URL's host and port (if different from the default port for the scheme).
Can be set, to change the URL's host and port.

hyperlink . hostnamep287

Returns the hyperlink's URL's host.
Can be set, to change the URL's host.

hyperlink . portp288

Returns the hyperlink's URL's port.
Can be set, to change the URL's port.

hyperlink . pathnamep288

Returns the hyperlink's URL's path.
Can be set, to change the URL's path.

hyperlink . searchp288

Returns the hyperlink's URL's query (includes leading "?" if non-empty).
Can be set, to change the URL's query (ignores leading "?").

hyperlink . hashp289

Returns the hyperlink's URL's fragment (includes leading "#" if non-empty).
Can be set, to change the URL's fragment (ignores leading "#").

For web developers (non-normative)

285

https://url.spec.whatwg.org/#concept-url

1. If this element's hrefp284 content attribute is absent, set this element's urlp285 to null.

2. Otherwise, parse this element's hrefp284 content attribute value relative to this element's node document. If parsingp89 is
successful, set this element's urlp285 to the result; otherwise, set this element's urlp285 to null.

When elements implementing the HTMLHyperlinkElementUtilsp284 mixin are created, and whenever those elements have their
hrefp284 content attribute set, changed, or removed, the user agent must set the urlp285.

An element implementing the HTMLHyperlinkElementUtilsp284 mixin has an associated reinitialize url algorithm, which runs these
steps:

1. If element's urlp285 is non-null, its scheme is "blob", and its cannot-be-a-base-URL flag is set, terminate these steps.

2. Set the urlp285.

To update href, set the element's hrefp284 content attribute's value to the element's urlp285, serialized.

The href attribute's getter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null and this element has no hrefp284 content attribute, return the empty string.

4. Otherwise, if url is null, return this element's hrefp284 content attribute's value.

5. Return url, serialized.

The hrefp286 attribute's setter must set this element's hrefp284 content attribute's value to the given value.

The origin attribute's getter must run these steps:

1. Reinitialize urlp286.

2. If this element's urlp285 is null, return the empty string.

3. Return the serializationp838 of this element's urlp285 's origin.

The protocol attribute's getter must run these steps:

1. Reinitialize urlp286.

2. If this element's urlp285 is null, return ":".

3. Return this element's urlp285 's scheme, followed by ":".

The protocolp286 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. If this element's urlp285 is null, terminate these steps.

3. Basic URL parse the given value, followed by ":", with this element's urlp285 as url and scheme start state as state override.

4. Update hrefp286.

The username attribute's getter must run these steps:

This is only observable for blob: URLs as parsing them involves a Blob URL Store lookup.
Note

Because the URL parser ignores multiple consecutive colons, providing a value of "https:" (or even "https::::") is the
same as providing a value of "https".

Note

✔ MDN

✔ MDN

✔ MDN

✔ MDN

286

https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/FileAPI/#DefinitionOfScheme
https://url.spec.whatwg.org/#concept-url-parser
https://w3c.github.io/FileAPI/#BlobURLStore
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#scheme-start-state

1. Reinitialize urlp286.

2. If this element's urlp285 is null, return the empty string.

3. Return this element's urlp285 's username.

The usernamep286 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null or url cannot have a username/password/port, then return.

4. Set the username, given url and the given value.

5. Update hrefp286.

The password attribute's getter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null, then return the empty string.

4. Return url's password.

The passwordp287 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null or url cannot have a username/password/port, then return.

4. Set the password, given url and the given value.

5. Update hrefp286.

The host attribute's getter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url or url's host is null, return the empty string.

4. If url's port is null, return url's host, serialized.

5. Return url's host, serialized, followed by ":" and url's port, serialized.

The hostp287 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null or url's cannot-be-a-base-URL flag is set, terminate these steps.

4. Basic URL parse the given value, with url as url and host state as state override.

5. Update hrefp286.

The hostname attribute's getter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url or url's host is null, return the empty string.

✔ MDN

✔ MDN

✔ MDN

287

https://url.spec.whatwg.org/#concept-url-username
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#set-the-username
https://url.spec.whatwg.org/#concept-url-password
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#set-the-password
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#host-state
https://url.spec.whatwg.org/#concept-url-host

4. Return url's host, serialized.

The hostnamep287 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null or url's cannot-be-a-base-URL flag is set, terminate these steps.

4. Basic URL parse the given value, with url as url and hostname state as state override.

5. Update hrefp286.

The port attribute's getter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url or url's port is null, return the empty string.

4. Return url's port, serialized.

The portp288 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null or url cannot have a username/password/port, then return.

4. If the given value is the empty string, then set url's port to null.

5. Otherwise, basic URL parse the given value, with url as url and port state as state override.

6. Update hrefp286.

The pathname attribute's getter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null, return the empty string.

4. If url's cannot-be-a-base-URL flag is set, return the first string in url's path.

5. If url's path is empty, then return the empty string.

6. Return "/", followed by the strings in url's path (including empty strings), separated from each other by "/".

The pathnamep288 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null or url's cannot-be-a-base-URL flag is set, terminate these steps.

4. Set url's path to the empty list.

5. Basic URL parse the given value, with url as url and path start state as state override.

6. Update hrefp286.

The search attribute's getter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

✔ MDN

✔ MDN

✔ MDN

288

https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#hostname-state
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#port-state
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#path-start-state

3. If url is null, or url's query is either null or the empty string, return the empty string.

4. Return "?", followed by url's query.

The searchp288 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null, terminate these steps.

4. If the given value is the empty string, set url's query to null.

5. Otherwise:

1. Let input be the given value with a single leading "?" removed, if any.

2. Set url's query to the empty string.

3. Basic URL parse input, with url as url and query state as state override, and this element's node document's
document's character encoding as encoding override.

6. Update hrefp286.

The hash attribute's getter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null, or url's fragment is either null or the empty string, return the empty string.

4. Return "#", followed by url's fragment.

The hashp289 attribute's setter must run these steps:

1. Reinitialize urlp286.

2. Let url be this element's urlp285.

3. If url is null, then return.

4. If the given value is the empty string, set url's fragment to null.

5. Otherwise:

1. Let input be the given value with a single leading "#" removed, if any.

2. Set url's fragment to the empty string.

3. Basic URL parse input, with url as url and fragment state as state override.

6. Update hrefp286.

An element element cannot navigate if one of the following is true:

• element's node document is not fully activep815

• element is not an ap238 element and is not connected.

To get an element's noopener, given an ap238, areap443, or formp486 element element and a string target, run these steps:

This is also used by form submissionp596 for the formp486 element. The exception for ap238 elements is for compatibility with web
content.

Note

4.6.4 Following hyperlinks §p28

9

✔ MDN

289

https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#query-state
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-encoding
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#fragment-state
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#connected

1. If element's link typesp294 include the noopenerp303 or noreferrerp304 keyword, then return true.

2. If element's link typesp294 do not include the openerp304 keyword and target is an ASCII case-insensitive match for "_blank",
then return true.

3. Return false.

When a user follows a hyperlink created by an element subject, optionally with a hyperlink suffix, the user agent must run the
following steps:

1. If subject cannot navigatep289, then return.

2. Let replace be false.

3. Let source be subject's node document's browsing contextp811.

4. Let targetAttributeValue be the empty string.

5. If subject is an ap238 or areap443 element, then set targetAttributeValue to the result of getting an element's targetp156 given
subject.

6. Let noopener be the result of getting an element's noopenerp289 with subject and targetAttributeValue.

7. Let target and windowType be the result of applying the rules for choosing a browsing contextp820 given targetAttributeValue,
source, and noopener.

8. If target is null, then return.

9. Parsep89 the URL given by subject's hrefp284 attribute, relative to subject's node document.

10. If that is successful, let URL be the resulting URL stringp89.

Otherwise, if parsingp89 the URL failed, the user agent may report the error to the user in a user-agent-specific manner, may
queue an element taskp946 on the DOM manipulation task sourcep952 given subject to navigatep866 the target browsing
contextp811 to an error page to report the error, or may ignore the error and do nothing. In any case, the user agent must
then return.

11. If there is a hyperlink suffix, append it to URL.

12. Let request be a new request whose url is URL and whose referrer policy is the current state of subject's referrerpolicy
content attribute.

13. If subject's link typesp294 includes the noreferrerp304 keyword, then set request's referrer to "no-referrer".

14. Let historyHandling be "replacep866" if windowType is not "existing or none"; otherwise, "defaultp866".

15. Queue an element taskp946 on the DOM manipulation task sourcep952 given subject to navigatep866 target to request with
historyHandlingp866 set to historyHandling and the source browsing contextp866 set to source.

In some cases, resources are intended for later use rather than immediate viewing. To indicate that a resource is intended to be
downloaded for use later, rather than immediately used, the downloadp284 attribute can be specified on the ap238 or areap443 element
that creates the hyperlinkp283 to that resource.

The attribute can furthermore be given a value, to specify the file name that user agents are to use when storing the resource in a file
system. This value can be overridden by the `Content-Disposition` HTTP header's filename parameters. [RFC6266]p1291

In cross-origin situations, the downloadp284 attribute has to be combined with the `Content-Disposition` HTTP header, specifically
with the attachment disposition type, to avoid the user being warned of possibly nefarious activity. (This is to protect users from being
made to download sensitive personal or confidential information without their full understanding.)

The following allowed to download algorithm takes an initiator browsing context and an instantiator browsing context, and returns a
boolean indicating whether or not downloading is allowed:

4.6.5 Downloading resources §p29

0

✔ MDN

290

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-request-referrer
https://tools.ietf.org/html/rfc6266
https://tools.ietf.org/html/rfc6266

1. If the initiator browsing context's sandboxing flagsp844 has the sandboxed downloads browsing context flagp843 set, then
return false.

2. If the instantiator browsing context is non-null, and its sandboxing flagsp844 has the sandboxed downloads browsing context
flagp843 set, then return false.

3. Optionally, the user agent may return false, if it believes doing so would safeguard the user from a potentially hostile
download.

4. Return true.

When a user downloads a hyperlink created by an element subject, optionally with a hyperlink suffix, the user agent must run the
following steps:

1. If subject cannot navigatep289, then return.

2. Run the allowed to downloadp290 algorithm with the subject's node document's browsing contextp811 and null. If the algorithm
returns false, then return.

3. Parsep89 the URL given by subject's hrefp284 attribute, relative to subject's node document.

4. If parsingp89 the URL fails, the user agent may report the error to the user in a user-agent-specific manner, may navigatep866

to an error page to report the error, or may ignore the error and do nothing. In either case, the user agent must return.

5. Otherwise, let URL be the resulting URL stringp89.

6. If there is a hyperlink suffix, append it to URL.

7. Run these steps in parallelp42:

1. Let request be a new request whose url is URL, client is entry settings objectp921, initiator is "download", destination
is the empty string, and whose synchronous flag and use-URL-credentials flag are set.

2. Handle the result of fetching request as a downloadp291.

When a user agent is to handle a resource obtained from a fetch as a download, it should provide the user with a way to save the
resource for later use, if a resource is successfully obtained. Otherwise, it should report any problems downloading the file to the user.

If the user agent needs a file name for a resource being handled as a downloadp291, it should select one using the following algorithm.

1. Let filename be the undefined value.

2. If the resource has a `Content-Disposition` header, that header specifies the attachment disposition type, and the header
includes file name information, then let filename have the value specified by the header, and jump to the step labeled
sanitize below. [RFC6266]p1291

3. Let interface origin be the originp837 of the Documentp114 in which the downloadp291 or navigatep866 action resulting in the
download was initiated, if any.

4. Let resource origin be the originp837 of the URL of the resource being downloaded, unless that URL's scheme component is
data, in which case let resource origin be the same as the interface origin, if any.

5. If there is no interface origin, then let trusted operation be true. Otherwise, let trusted operation be true if resource origin is
the same originp838 as interface origin, and false otherwise.

6. If trusted operation is true and the resource has a `Content-Disposition` header and that header includes file name
information, then let filename have the value specified by the header, and jump to the step labeled sanitize below.
[RFC6266]p1291

7. If the download was not initiated from a hyperlinkp283 created by an ap238 or areap443 element, or if the element of the
hyperlinkp283 from which it was initiated did not have a downloadp284 attribute when the download was initiated, or if there
was such an attribute but its value when the download was initiated was the empty string, then jump to the step labeled no
proposed file name.

This algorithm is intended to mitigate security dangers involved in downloading files from untrusted sites, and user
agents are strongly urged to follow it.

⚠Warning!

291

https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://tools.ietf.org/html/rfc6266
https://url.spec.whatwg.org/#concept-url-scheme
https://tools.ietf.org/html/rfc6266

8. Let proposed filename have the value of the downloadp284 attribute of the element of the hyperlinkp283 that initiated the
download at the time the download was initiated.

9. If trusted operation is true, let filename have the value of proposed filename, and jump to the step labeled sanitize below.

10. If the resource has a `Content-Disposition` header and that header specifies the attachment disposition type, let filename
have the value of proposed filename, and jump to the step labeled sanitize below. [RFC6266]p1291

11. No proposed file name: If trusted operation is true, or if the user indicated a preference for having the resource in question
downloaded, let filename have a value derived from the URL of the resource in an implementation-defined manner, and jump
to the step labeled sanitize below.

12. Let filename be set to the user's preferred file name or to a file name selected by the user agent, and jump to the step
labeled sanitize below.

13. Sanitize: Optionally, allow the user to influence filename. For example, a user agent could prompt the user for a file name,
potentially providing the value of filename as determined above as a default value.

14. Adjust filename to be suitable for the local file system.

15. If the platform conventions do not in any way use extensionsp292 to determine the types of file on the file system, then return
filename as the file name.

16. Let claimed type be the type given by the resource's Content-Type metadatap90, if any is known. Let named type be the type
given by filename's extensionp292, if any is known. For the purposes of this step, a type is a mapping of a MIME type to an
extensionp292.

17. If named type is consistent with the user's preferences (e.g. because the value of filename was determined by prompting the
user), then return filename as the file name.

18. If claimed type and named type are the same type (i.e. the type given by the resource's Content-Type metadatap90 is
consistent with the type given by filename's extensionp292), then return filename as the file name.

19. If the claimed type is known, then alter filename to add an extensionp292 corresponding to claimed type.

Otherwise, if named type is known to be potentially dangerous (e.g. it will be treated by the platform conventions as a native
executable, shell script, HTML application, or executable-macro-capable document) then optionally alter filename to add a
known-safe extensionp292 (e.g. ".txt").

20. Return filename as the file name.

For the purposes of this algorithm, a file extension consists of any part of the file name that platform conventions dictate will be used
for identifying the type of the file. For example, many operating systems use the part of the file name following the last dot (".") in the
file name to determine the type of the file, and from that the manner in which the file is to be opened or executed.

If the algorithm reaches this step, then a download was begun from a different origin than the resource
being downloaded, and the origin did not mark the file as suitable for downloading, and the download was
not initiated by the user. This could be because a downloadp284 attribute was used to trigger the download,
or because the resource in question is not of a type that the user agent supports.

This could be dangerous, because, for instance, a hostile server could be trying to get a user to
unknowingly download private information and then re-upload it to the hostile server, by tricking the user
into thinking the data is from the hostile server.

Thus, it is in the user's interests that the user be somehow notified that the resource in question comes
from quite a different source, and to prevent confusion, any suggested file name from the potentially
hostile interface origin should be ignored.

⚠Warning!

For example, this could involve removing characters that are not legal in file names, or trimming leading and trailing
whitespace.

Example

This last step would make it impossible to download executables, which might not be desirable. As always, implementers
are forced to balance security and usability in this matter.

Note

292

https://tools.ietf.org/html/rfc6266
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#implementation-defined
https://mimesniff.spec.whatwg.org/#mime-type

User agents should ignore any directory or path information provided by the resource itself, its URL, and any downloadp284 attribute, in
deciding where to store the resulting file in the user's file system.

If a hyperlinkp283 created by an ap238 or areap443 element has a pingp284 attribute, and the user follows the hyperlink, and the value of
the element's hrefp284 attribute can be parsedp89, relative to the element's node document, without failure, then the user agent must
take the pingp284 attribute's value, split that string on ASCII whitespace, parsep89 each resulting token relative to the element's node
document, and then run these steps for each resulting URL recordp89 ping URL, ignoring tokens that fail to parse:

1. If ping URL's scheme is not an HTTP(S) scheme, then return.

2. Optionally, return. (For example, the user agent might wish to ignore any or all ping URLs in accordance with the user's
expressed preferences.)

3. Let request be a new request whose url is ping URL, method is `POST`, body is `PING`, client is the environment settings
objectp917 of the Documentp114 containing the hyperlinkp283, destination is the empty string, credentials mode is "include",
referrer is "no-referrer", and whose use-URL-credentials flag is set.

4. Let target URL be the resulting URL stringp89 obtained from parsingp89 the value of the element's hrefp284 attribute and then:

↪ If the URL of the Documentp114 object containing the hyperlink being audited and ping URL have the same
originp838

↪ If the origins are different, but the scheme of the URL of the Documentp114 containing the hyperlink being
audited is not "https"

request must include a `Ping-Fromp1258` header with, as its value, the URL of the document containing the hyperlink,
and a `Ping-Top1259` HTTP header with, as its value, the target URL.

↪ Otherwise
request must include a `Ping-Top1259` HTTP header with, as its value, target URL. request does not include a
`Ping-Fromp1258` header.

5. Fetch request.

This may be done in parallelp42 with the primary fetch, and is independent of the result of that fetch.

User agents should allow the user to adjust this behavior, for example in conjunction with a setting that disables the sending of HTTP
`Referer` (sic) headers. Based on the user's preferences, UAs may either ignorep44 the pingp284 attribute altogether, or selectively
ignore URLs in the list (e.g. ignoring any third-party URLs); this is explicitly accounted for in the steps above.

User agents must ignore any entity bodies returned in the responses. User agents may close the connection prematurely once they
start receiving a response body.

When the pingp284 attribute is present, user agents should clearly indicate to the user that following the hyperlink will also cause
secondary requests to be sent in the background, possibly including listing the actual target URLs.

4.6.5.1 Hyperlink auditing §p29

3

For example, a visual user agent could include the hostnames of the target ping URLs along with the hyperlink's actual URL in a
status bar or tooltip.

Example

The pingp284 attribute is redundant with pre-existing technologies like HTTP redirects and JavaScript in allowing web pages to track
which off-site links are most popular or allowing advertisers to track click-through rates.

However, the pingp284 attribute provides these advantages to the user over those alternatives:

• It allows the user to see the final target URL unobscured.

• It allows the UA to inform the user about the out-of-band notifications.

• It allows the user to disable the notifications without losing the underlying link functionality.

Note

Note

293

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-method
https://fetch.spec.whatwg.org/#concept-request-body
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-scheme
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://fetch.spec.whatwg.org/#concept-fetch
https://tools.ietf.org/html/rfc7231#section-5.5.2

The following table summarizes the link types that are defined by this specification, by their corresponding keywords. This table is non-
normative; the actual definitions for the link types are given in the next few sections.

In this section, the term referenced document refers to the resource identified by the element representing the link, and the term
current document refers to the resource within which the element representing the link finds itself.

To determine which link types apply to a linkp157, ap238, areap443, or formp486 element, the element's rel attribute must be split on
ASCII whitespace. The resulting tokens are the keywords for the link types that apply to that element.

Except where otherwise specified, a keyword must not be specified more than once per relp284 attribute.

Some of the sections that follow the table below list synonyms for certain keywords. The indicated synonyms are to be handled as
specified by user agents, but must not be used in documents (for example, the keyword "copyright").

Keywords are always ASCII case-insensitive, and must be compared as such.

Keywords that are body-ok affect whether linkp157 elements are allowed in the bodyp159. The body-okp294 keywords are dns-
prefetchp298, modulepreloadp301, pingbackp304, preconnectp304, prefetchp305, preloadp305, prerenderp305, and stylesheetp306.

New link types that are to be implemented by web browsers are to be added to this standard. The remainder can be registered as
extensionsp309.

Effect on...Link type
linkp157 ap238 and

areap443
formp486

body-
okp294

Brief description

alternatep295 Hyperlinkp283 not
allowed

· Gives alternate representations of the current document.

canonicalp297 Hyperlinkp283 not allowed · Gives the preferred URL for the current document.
authorp297 Hyperlinkp283 not

allowed
· Gives a link to the author of the current document or article.

bookmarkp297 not allowed Hyperlinkp283 not
allowed

· Gives the permalink for the nearest ancestor section.

dns-prefetchp298 External
Resourcep283

not allowed Yes Specifies that the user agent should preemptively perform DNS resolution for the target
resource's originp837.

externalp298 not allowed Annotationp283 · Indicates that the referenced document is not part of the same site as the current document.
helpp298 Hyperlinkp283 · Provides a link to context-sensitive help.
iconp298 External

Resourcep283
not allowed · Imports an icon to represent the current document.

manifestp301 External
Resourcep283

not allowed · Imports or links to an application manifest. [MANIFEST]p1288

modulepreloadp301 External
Resourcep283

not allowed Yes Specifies that the user agent must preemptively fetch the module scriptp931 and store it in the
document's module mapp115 for later evaluation. Optionally, the module's dependencies can be
fetched as well.

licensep300 Hyperlinkp283 · Indicates that the main content of the current document is covered by the copyright license
described by the referenced document.

nextp309 Hyperlinkp283 · Indicates that the current document is a part of a series, and that the next document in the
series is the referenced document.

nofollowp303 not allowed Annotationp283 · Indicates that the current document's original author or publisher does not endorse the
referenced document.

• It allows the UA to optimize the use of available network bandwidth so that the target page loads faster.

Thus, while it is possible to track users without this feature, authors are encouraged to use the pingp284 attribute so that the user
agent can make the user experience more transparent.

Thus, rel="next" is the same as rel="NEXT".
Example

4.6.6 Link types §p29

4

MDN

294

https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/manifest/#dfn-manifest

Effect on...Link type
linkp157 ap238 and

areap443
formp486

body-
okp294

Brief description

noopenerp303 not allowed Annotationp283 · Creates a top-level browsing contextp814 that is not an auxiliary browsing contextp814 if the
hyperlink would create either of those to begin with (i.e., has an appropriate targetp284

attribute value).
noreferrerp304 not allowed Annotationp283 · No `Referer` (sic) header will be included. Additionally, has the same effect as noopenerp303.
openerp304 not allowed Annotationp283 · Creates an auxiliary browsing contextp814 if the hyperlink would otherwise create a top-level

browsing contextp814 that is not an auxiliary browsing contextp814 (i.e., has "_blank" as
targetp284 attribute value).

pingbackp304 External
Resourcep283

not allowed Yes Gives the address of the pingback server that handles pingbacks to the current document.

preconnectp304 External
Resourcep283

not allowed Yes Specifies that the user agent should preemptively connect to the target resource's originp837.

prefetchp305 External
Resourcep283

not allowed Yes Specifies that the user agent should preemptively fetch and cache the target resource as it is
likely to be required for a followup navigationp866.

preloadp305 External
Resourcep283

not allowed Yes Specifies that the user agent must preemptively fetch and cache the target resource for current
navigationp866 according to the potential destination given by the asp161 attribute (and the
priority associated with the corresponding destination).

prerenderp305 External
Resourcep283

not allowed Yes Specifies that the user agent should preemptively fetch the target resource and process it in a
way that helps deliver a faster response in the future.

prevp309 Hyperlinkp283 · Indicates that the current document is a part of a series, and that the previous document in the
series is the referenced document.

searchp305 Hyperlinkp283 · Gives a link to a resource that can be used to search through the current document and its
related pages.

stylesheetp306 External
Resourcep283

not allowed Yes Imports a style sheet.

tagp308 not allowed Hyperlinkp283 not
allowed

· Gives a tag (identified by the given address) that applies to the current document.

The alternatep295 keyword may be used with linkp157, ap238, and areap443 elements.

The meaning of this keyword depends on the values of the other attributes.

↪ If the element is a linkp157 element and the relp158 attribute also contains the keyword stylesheetp306

The alternatep295 keyword modifies the meaning of the stylesheetp306 keyword in the way described for that keyword. The
alternatep295 keyword does not create a link of its own.

↪ If the alternatep295 keyword is used with the typep284 attribute set to the value application/rss+xml or the value
application/atom+xml

The keyword creates a hyperlinkp283 referencing a syndication feed (though not necessarily syndicating exactly the same
content as the current page).

For the purposes of feed autodiscovery, user agents should consider all linkp157 elements in the document with the

4.6.6.1 Link type "alternate" §p29

5

Here, a set of linkp157 elements provide some style sheets:

<!-- a persistent style sheet -->
<link rel="stylesheet" href="default.css">

<!-- the preferred alternate style sheet -->
<link rel="stylesheet" href="green.css" title="Green styles">

<!-- some alternate style sheets -->
<link rel="alternate stylesheet" href="contrast.css" title="High contrast">
<link rel="alternate stylesheet" href="big.css" title="Big fonts">
<link rel="alternate stylesheet" href="wide.css" title="Wide screen">

Example

⚠ MDN

295

https://tools.ietf.org/html/rfc7231#section-5.5.2
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#concept-request-priority
https://fetch.spec.whatwg.org/#concept-potential-destination-translate
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-fetch

alternatep295 keyword used and with their typep284 attribute set to the value application/rss+xml or the value application/
atom+xml. If the user agent has the concept of a default syndication feed, the first such element (in tree order) should be used
as the default.

↪ Otherwise
The keyword creates a hyperlinkp283 referencing an alternate representation of the current document.

The nature of the referenced document is given by the hreflangp284, and typep284 attributes.

If the alternatep295 keyword is used with the hreflangp284 attribute, and that attribute's value differs from the document
element's languagep140, it indicates that the referenced document is a translation.

If the alternatep295 keyword is used with the typep284 attribute, it indicates that the referenced document is a reformulation of
the current document in the specified format.

The hreflangp284 and typep284 attributes can be combined when specified with the alternatep295 keyword.

This relationship is transitive — that is, if a document links to two other documents with the link type "alternatep295", then, in
addition to implying that those documents are alternative representations of the first document, it is also implying that those
two documents are alternative representations of each other.

The following linkp157 elements give syndication feeds for a blog:

<link rel="alternate" type="application/atom+xml" href="posts.xml" title="Cool Stuff Blog">
<link rel="alternate" type="application/atom+xml" href="posts.xml?category=robots"
title="Cool Stuff Blog: robots category">
<link rel="alternate" type="application/atom+xml" href="comments.xml" title="Cool Stuff Blog:
Comments">

Such linkp157 elements would be used by user agents engaged in feed autodiscovery, with the first being the default (where
applicable).

The following example offers various different syndication feeds to the user, using ap238 elements:

<p>You can access the planets database using Atom feeds:</p>

<a href="recently-visited-planets.xml" rel="alternate" type="application/

atom+xml">Recently Visited Planets
Known Bad

Planets
Unexplored

Planets

These links would not be used in feed autodiscovery.

Example

The following example shows how you can specify versions of the page that use alternative formats, are aimed at other
languages, and that are intended for other media:

<link rel=alternate href="/en/html" hreflang=en type=text/html title="English HTML">
<link rel=alternate href="/fr/html" hreflang=fr type=text/html title="French HTML">
<link rel=alternate href="/en/html/print" hreflang=en type=text/html media=print
title="English HTML (for printing)">
<link rel=alternate href="/fr/html/print" hreflang=fr type=text/html media=print
title="French HTML (for printing)">
<link rel=alternate href="/en/pdf" hreflang=en type=application/pdf title="English PDF">
<link rel=alternate href="/fr/pdf" hreflang=fr type=application/pdf title="French PDF">

Example

296

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element

The authorp297 keyword may be used with linkp157, ap238, and areap443 elements. This keyword creates a hyperlinkp283.

For ap238 and areap443 elements, the authorp297 keyword indicates that the referenced document provides further information about the
author of the nearest articlep180 element ancestor of the element defining the hyperlink, if there is one, or of the page as a whole,
otherwise.

For linkp157 elements, the authorp297 keyword indicates that the referenced document provides further information about the author
for the page as a whole.

Synonyms: For historical reasons, user agents must also treat linkp157, ap238, and areap443 elements that have a rev attribute with the
value "made" as having the authorp297 keyword specified as a link relationship.

The bookmarkp297 keyword may be used with ap238 and areap443 elements. This keyword creates a hyperlinkp283.

The bookmarkp297 keyword gives a permalink for the nearest ancestor articlep180 element of the linking element in question, or of the
section the linking element is most closely associated with p204, if there are no ancestor articlep180 elements.

The canonicalp297 keyword may be used with linkp157 element. This keyword creates a hyperlinkp283.

The canonicalp297 keyword indicates that URL given by the hrefp158 attribute is the preferred URL for the current document. That helps
search engines reduce duplicate content, as described in more detail in The Canonical Link Relation. [RFC6596]p1291

4.6.6.2 Link type "author" §p29

7

The "referenced document" can be, and often is, a mailto: URL giving the email address of the author. [MAILTO]p1288

Note

4.6.6.3 Link type "bookmark" §p29

7

The following snippet has three permalinks. A user agent could determine which permalink applies to which part of the spec by
looking at where the permalinks are given.

...
<body>
<h1>Example of permalinks</h1>
<div id="a">
<h2>First example</h2>
<p>This permalink applies to
only the content from the first H2 to the second H2. The DIV isn't
exactly that section, but it roughly corresponds to it.</p>

</div>
<h2>Second example</h2>
<article id="b">
<p>This permalink applies to
the outer ARTICLE element (which could be, e.g., a blog post).</p>
<article id="c">
<p>This permalink applies to
the inner ARTICLE element (which could be, e.g., a blog comment).</p>

</article>
</article>

</body>
...

Example

4.6.6.4 Link type "canonical" §p29

7

297

https://tools.ietf.org/html/rfc6068#section-2

The dns-prefetchp298 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283. This keyword is
body-okp294.

The dns-prefetchp298 keyword indicates that preemptively performing DNS resolution for the originp837 of the specified resource is
likely to be beneficial, as it is highly likely that the user will require resources located at that originp837, and the user experience would
be improved by preempting the latency costs associated with DNS resolution. User agents must implement the processing model of
the dns-prefetchp298 keyword described in Resource Hints. [RESOURCEHINTS]p1290

There is no default type for resources given by the dns-prefetchp298 keyword.

The externalp298 keyword may be used with ap238, areap443, and formp486 elements. This keyword does not create a hyperlinkp283, but
annotatesp283 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The externalp298 keyword indicates that the link is leading to a document that is not part of the site that the current document forms a
part of.

The helpp298 keyword may be used with linkp157, ap238, areap443, and formp486 elements. This keyword creates a hyperlinkp283.

For ap238, areap443, and formp486 elements, the helpp298 keyword indicates that the referenced document provides further help
information for the parent of the element defining the hyperlink, and its children.

For linkp157 elements, the helpp298 keyword indicates that the referenced document provides help for the page as a whole.

For ap238 and areap443 elements, on some browsers, the helpp298 keyword causes the link to use a different cursor.

The iconp298 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283.

The specified resource is an icon representing the page or site, and should be used by the user agent when representing the page in
the user interface.

Icons could be auditory icons, visual icons, or other kinds of icons. If multiple icons are provided, the user agent must select the most
appropriate icon according to the typep159, mediap159, and sizesp160 attributes. If there are multiple equally appropriate icons, user
agents must use the last one declared in tree order at the time that the user agent collected the list of icons. If the user agent tries to
use an icon but that icon is determined, upon closer examination, to in fact be inappropriate (e.g. because it uses an unsupported
format), then the user agent must try the next-most-appropriate icon as determined by the attributes.

There is no default type for resources given by the iconp298 keyword. However, for the purposes of determining the type of the
resourcep162, user agents must expect the resource to be an image.

4.6.6.5 Link type "dns-prefetch" §p29

8

4.6.6.6 Link type "external" §p29

8

4.6.6.7 Link type "help" §p29

8

In the following example, the form control has associated context-sensitive help. The user agent could use this information, for
example, displaying the referenced document if the user presses the "Help" or "F1" key.

<p><label> Topic: <input name=topic> (Help)</label></p>

Example

4.6.6.8 Link type "icon" §p29

8

User agents are not required to update icons when the list of icons changes, but are encouraged to do so.
Note

MDN

✔ MDN

298

https://dom.spec.whatwg.org/#concept-tree-order

The sizesp160 keywords represent icon sizes in raw pixels (as opposed to CSS pixels).

To parse and process the attribute's value, the user agent must first split the attribute's value on ASCII whitespace, and must then
parse each resulting keyword to determine what it represents.

The any keyword represents that the resource contains a scalable icon, e.g. as provided by an SVG image.

Other keywords must be further parsed as follows to determine what they represent:

• If the keyword doesn't contain exactly one U+0078 LATIN SMALL LETTER X or U+0058 LATIN CAPITAL LETTER X character,
then this keyword doesn't represent anything. Return for that keyword.

• Let width string be the string before the "x" or "X".

• Let height string be the string after the "x" or "X".

• If either width string or height string start with a U+0030 DIGIT ZERO (0) character or contain any characters other than
ASCII digits, then this keyword doesn't represent anything. Return for that keyword.

• Apply the rules for parsing non-negative integers p69 to width string to obtain width.

• Apply the rules for parsing non-negative integers p69 to height string to obtain height.

• The keyword represents that the resource contains a bitmap icon with a width of width device pixels and a height of height
device pixels.

The keywords specified on the sizesp160 attribute must not represent icon sizes that are not actually available in the linked resource.

The linked resource fetch setup stepsp163 for this type of linked resource, given a linkp157 element el and request request, are:

1. Set request's destination to "image".

2. Return true.

In the absence of a linkp157 with the iconp298 keyword, for Documentp114 objects whose URL's scheme is an HTTP(S) scheme, user
agents may instead run these steps in parallelp42:

1. Let request be a new request whose url is the URL record obtained by resolving the URL "/favicon.ico" against the
Documentp114 object's URL, client is the Documentp114 object's relevant settings objectp924, destination is "image", synchronous
flag is set, credentials mode is "include", and whose use-URL-credentials flag is set.

2. Let response be the result of fetching request.

3. Use response's unsafe responsep90 as an icon as if it had been declared using the iconp298 keyword.

An icon that is 50 CSS pixels wide intended for displays with a device pixel density of two device pixels per CSS pixel (2x, 192dpi)
would have a width of 100 raw pixels. This feature does not support indicating that a different resource is to be used for small
high-resolution icons vs large low-resolution icons (e.g. 50×50 2x vs 100×100 1x).

Note

The following snippet shows the top part of an application with several icons.

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>lsForums — Inbox</title>
<link rel=icon href=favicon.png sizes="16x16" type="image/png">
<link rel=icon href=windows.ico sizes="32x32 48x48" type="image/vnd.microsoft.icon">
<link rel=icon href=mac.icns sizes="128x128 512x512 8192x8192 32768x32768">
<link rel=icon href=iphone.png sizes="57x57" type="image/png">
<link rel=icon href=gnome.svg sizes="any" type="image/svg+xml">
<link rel=stylesheet href=lsforums.css>
<script src=lsforums.js></script>

Example

299

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-destination
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch

For historical reasons, the iconp298 keyword may be preceded by the keyword "shortcut". If the "shortcut" keyword is present, the
relp284 attribute's entire value must be an ASCII case-insensitive match for the string "shortcut icon" (with a single U+0020 SPACE
character between the tokens and no other ASCII whitespace).

The licensep300 keyword may be used with linkp157, ap238, areap443, and formp486 elements. This keyword creates a hyperlinkp283.

The licensep300 keyword indicates that the referenced document provides the copyright license terms under which the main content of
the current document is provided.

This specification does not specify how to distinguish between the main content of a document and content that is not deemed to be
part of that main content. The distinction should be made clear to the user.

Synonyms: For historical reasons, user agents must also treat the keyword "copyright" like the licensep300 keyword.

<meta name=application-name content="lsForums">
</head>
<body>
...

4.6.6.9 Link type "license" §p30

0

Consider a photo sharing site. A page on that site might describe and show a photograph, and the page might be marked up as
follows:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Exampl Pictures: Kissat</title>
<link rel="stylesheet" href="/style/default">

</head>
<body>
<h1>Kissat</h1>
<nav>
Return to photo index

</nav>
<figure>

<figcaption>Kissat</figcaption>

</figure>
<p>One of them has six toes!</p>
<p><small>MIT

Licensed</small></p>
<footer>
Home | Photo index
<p><small>© copyright 2009 Exampl Pictures. All Rights Reserved.</small></p>

</footer>
</body>

</html>

In this case the licensep300 applies to just the photo (the main content of the document), not the whole document. In particular not
the design of the page itself, which is covered by the copyright given at the bottom of the document. This could be made clearer in
the styling (e.g. making the license link prominently positioned near the photograph, while having the page copyright in light small
text at the foot of the page).

Example

300

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace

The manifestp301 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283.

The manifestp301 keyword indicates the manifest file that provides metadata associated with the current document.

There is no default type for resources given by the manifestp301 keyword.

The appropriate time to fetch and process the linked resourcep163 for this link type is when the user agent deems it necessary. For
example, when the user chooses to install the web application. In that case, only the first linkp157 element in tree order whose relp158

attribute contains the token manifestp301 may be used.

A user agent must not delay the load eventp1165 for this link type.

The linked resource fetch setup stepsp163 for this type of linked resource, given a linkp157 element el and request request, are:

1. Let context be el's node document's browsing contextp811.

2. If context is null, then return false.

3. If context is not a top-level browsing contextp814, then return false.

4. Set request's initiator to "manifest".

5. Set request's destination to "manifest".

6. Set request's mode to "cors".

7. Set request's credentials mode to the CORS settings attribute credentials modep91 for el's crossoriginp158 content attribute.

8. Return true.

To process this type of linked resourcep164 given a linkp157 element el, boolean success, and response response:

1. If response's Content-Type metadatap90 is not a JSON MIME type, then set success to false.

2. If success is true, then process the manifest given el and response. [MANIFEST]p1288

The modulepreloadp301 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283. This keyword
is body-okp294.

The modulepreloadp301 keyword is a specialized alternative to the preloadp305 keyword, with a processing model geared toward
preloading module scriptsp925. In particular, it uses the specific fetch behavior for module scripts (including, e.g., a different
interpretation of the crossoriginp158 attribute), and places the result into the appropriate module mapp115 for later evaluation. In
contrast, a similar external resource linkp283 using the preloadp305 keyword would place the result in the preload cache, without
affecting the document's module mapp115.

Additionally, implementations can take advantage of the fact that module scriptsp925 declare their dependencies in order to fetch the
specified module's dependency as well. This is intended as an optimization opportunity, since the user agent knows that, in all
likelihood, those dependencies will also be needed later. It will not generally be observable without using technology such as service
workers, or monitoring on the server side. Notably, the appropriate loadp1282 or errorp1281 events will occur after the specified module
is fetched, and will not wait for any dependencies.

The appropriate times to fetch and process the linked resourcep163 for such a link are:

• When the external resource linkp283 is created on a linkp157 element that is already browsing-context connectedp45.

• When the external resource linkp283 's linkp157 element becomes browsing-context connectedp45.

• When the hrefp158 attribute of the linkp157 element of an external resource linkp283 that is already browsing-context
connectedp45 is changed.

4.6.6.10 Link type "manifest" §p30

1

4.6.6.11 Link type "modulepreload" §p30

1

⚠ MDN

301

https://w3c.github.io/manifest/#dfn-installed-web-application
https://dom.spec.whatwg.org/#concept-tree-order
https://fetch.spec.whatwg.org/#concept-request
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-response
https://mimesniff.spec.whatwg.org/#json-mime-type
https://w3c.github.io/manifest/#dfn-processing-a-manifest

The fetch and process the linked resourcep163 algorithm for modulepreloadp301 links, given a linkp157 element el, is as follows:

1. If the hrefp158 attribute's value is the empty string, then return.

2. Let destination be the current state of the asp161 attribute (a destination), or "script" if it is in no state.

3. If destination is not script-like, then queue an element taskp946 on the networking task sourcep952 given the linkp157 element
to fire an event named errorp1281 at the linkp157 element, and return.

4. Parsep89 the URL given by the hrefp158 attribute, relative to the element's node document. If that fails, then return.
Otherwise, let url be the resulting URL recordp89.

5. Let settings object be the linkp157 element's node document's relevant settings objectp924.

6. Let credentials mode be the CORS settings attribute credentials modep91 for the crossoriginp158 attribute.

7. Let cryptographic nonce be the current value of the element's [[CryptographicNonce]]p92 internal slot.

8. Let integrity metadata be the value of the integrityp159 attribute, if it is specified, or the empty string otherwise.

9. Let referrer policy be the current state of the element's referrerpolicyp159 attribute.

10. Let options be a script fetch optionsp926 whose cryptographic noncep926 is cryptographic nonce, integrity metadatap926 is
integrity metadata, parser metadatap926 is "not-parser-inserted", credentials modep926 is credentials mode, and referrer
policyp926 is referrer policy.

11. Fetch a modulepreload module script graphp929 given url, destination, settings object, and options. Wait until the algorithm
asynchronously completes with result.

12. If result is null, then fire an event named errorp1281 at the linkp157 element, and return.

13. Fire an event named loadp1282 at the linkp157 element.

Unlike some other link relations, changing the relevant attributes (such as asp161, crossoriginp158, and referrerpolicyp159) of
such a linkp157 does not trigger a new fetch. This is because the document's module mapp115 has already been populated by a
previous fetch, and so re-fetching would be pointless.

Note

The following snippet shows the top part of an application with several modules preloaded:

<!DOCTYPE html>
<html lang="en">
<title>IRCFog</title>

<link rel="modulepreload" href="app.mjs">
<link rel="modulepreload" href="helpers.mjs">
<link rel="modulepreload" href="irc.mjs">
<link rel="modulepreload" href="fog-machine.mjs">

<script type="module" src="app.mjs">
...

Assume that the module graph for the application is as follows:

app.mjs

irc.mjs fog-machine.js

helpers.mjs

Example

302

https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#request-destination-script-like
https://dom.spec.whatwg.org/#concept-event-fire
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

The nofollowp303 keyword may be used with ap238, areap443, and formp486 elements. This keyword does not create a hyperlinkp283, but
annotatesp283 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The nofollowp303 keyword indicates that the link is not endorsed by the original author or publisher of the page, or that the link to the
referenced document was included primarily because of a commercial relationship between people affiliated with the two pages.

The noopenerp303 keyword may be used with ap238, areap443, and formp486 elements. This keyword does not create a hyperlinkp283, but
annotatesp283 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The keyword indicates that any newly created top-level browsing contextp814 which results from following the hyperlinkp283 will not be
an auxiliary browsing contextp814. E.g., its window.openerp816 attribute will be null.

Here we see the application developer has used modulepreloadp301 to declare all of the modules in their module graph, ensuring
that the user agent initiates fetches for them all. Without such preloading, the user agent might need to go through multiple
network roundtrips before discovering helpers.mjs, if technologies such as HTTP/2 Server Push are not in play. In this way,
modulepreloadp301 linkp157 elements can be used as a sort of "manifest" of the application's modules.

The following code shows how modulepreloadp301 links can be used in conjunction with import() to ensure network fetching is
done ahead of time, so that when import() is called, the module is already ready (but not evaluated) in the module mapp941:

<link rel="modulepreload" href="awesome-viewer.mjs">

<button onclick="import('./awesome-viewer.mjs').then(m => m.view())">
View awesome thing

</button>

Example

4.6.6.12 Link type "nofollow" §p30

3

4.6.6.13 Link type "noopener" §p30

3

See also the processing modelp821 where the branching between an auxiliary browsing contextp814 and a top-level browsing
contextp814 is defined.

Note

This typically creates an auxiliary browsing contextp814 (assuming there is no existing browsing contextp811 whose browsing context
namep819 is "example"):

Help!

This creates a top-level browsing contextp814 that is not an auxiliary browsing contextp814 (assuming the same thing):

Help!

These are equivalent and only navigate the parent browsing contextp814:

Home

Home

Example

✔ MDN

303

https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-import-calls

The noreferrerp304 keyword may be used with ap238, areap443, and formp486 elements. This keyword does not create a hyperlinkp283, but
annotatesp283 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

It indicates that no referrer information is to be leaked when following the link and also implies the noopenerp303 keyword behavior
under the same conditions.

The openerp304 keyword may be used with ap238, areap443, and formp486 elements. This keyword does not create a hyperlinkp283, but
annotatesp283 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The keyword indicates that any newly created top-level browsing contextp814 which results from following the hyperlinkp283 will be an
auxiliary browsing contextp814.

The pingbackp304 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283. This keyword is
body-okp294.

For the semantics of the pingbackp304 keyword, see Pingback 1.0. [PINGBACK]p1290

The preconnectp304 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283. This keyword is
body-okp294.

The preconnectp304 keyword indicates that preemptively initiating a connection to the originp837 of the specified resource is likely to be
beneficial, as it is highly likely that the user will require resources located at that originp837, and the user experience would be improved
by preempting the latency costs associated with establishing the connection. User agents must implement the processing model of the
preconnectp304 keyword described in Resource Hints. [RESOURCEHINTS]p1290

There is no default type for resources given by the preconnectp304 keyword.

4.6.6.14 Link type "noreferrer" §p30

4

See also the processing modelp290 where referrer is directly manipulated.
Note

 has the same behavior as <a href="..." rel="noreferrer noopener"
target="_blank">.

Example

4.6.6.15 Link type "opener" §p30

4

See also the processing modelp290.
Note

In the following example the openerp304 is used to allow the help page popup to navigate its opener, e.g., in case what the user is
looking for can be found elsewhere. An alternative might be to use a named target, rather than _blank, but this has the potential
to clash with existing names.

Help!

Example

4.6.6.16 Link type "pingback" §p30

4

4.6.6.17 Link type "preconnect" §p30

4

✔ MDN

✔ MDN

304

The prefetchp305 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283. This keyword is
body-okp294.

The prefetchp305 keyword indicates that preemptively fetching and caching the specified resource is likely to be beneficial, as it is
highly likely that the user will require this resource for future navigations. User agents must implement the processing model of the
prefetchp305 keyword described in Resource Hints. [RESOURCEHINTS]p1290

There is no default type for resources given by the prefetchp305 keyword.

The preloadp305 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283. This keyword is
body-okp294.

The preloadp305 keyword indicates that the user agent must preemptively fetch and cache the specified resource according to the
potential destination given by the asp161 attribute (and the priority associated with the corresponding destination), as it is highly likely
that the user will require this resource for the current navigation. User agents must implement the processing model of the preloadp305

keyword described in Preload, as well as in this specification's fetch and process the linked resourcep163 algorithm. [PRELOAD]p1290

There is no default type for resources given by the preloadp305 keyword.

The linked resource fetch setup stepsp163 for this type of linked resource, given a linkp157 element el and request request, are:

1. Let as be the current state of el's asp161 attribute.

2. If as does not represent a state, return false.

3. Set request's destination to the result of translating as.

4. If as is "image", then:

1. Let selected source and selected pixel density be the URL and pixel density that results from selecting an image
sourcep342 given el, respectively.

2. If selected source is null, then return false.

3. Parsep89 selected source, relative to el's node document. If that fails, then return false. Otherwise, let url be the
resulting URL recordp89.

4. Set request's url to url.

5. Return true.

The prerenderp305 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283. This keyword is
body-okp294.

The prerenderp305 keyword indicates that the specified resource might be required by the next navigation, and so it may be beneficial
to not only preemptively fetch the resource, but also to process it, e.g. by fetching its subresources or performing some rendering. User
agents must implement the processing model of the prerenderp305 keyword described in Resource Hints. [RESOURCEHINTS]p1290

There is no default type for resources given by the prerenderp305 keyword.

The searchp305 keyword may be used with linkp157, ap238, areap443, and formp486 elements. This keyword creates a hyperlinkp283.

The searchp305 keyword indicates that the referenced document provides an interface specifically for searching the document and its

4.6.6.18 Link type "prefetch" §p30

5

4.6.6.19 Link type "preload" §p30

5

4.6.6.20 Link type "prerender" §p30

5

4.6.6.21 Link type "search" §p30

5

MDN

⚠ MDN

⚠ MDN

305

https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#concept-request-priority
https://fetch.spec.whatwg.org/#concept-potential-destination-translate
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-potential-destination-translate
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch

related resources.

The stylesheetp306 keyword may be used with linkp157 elements. This keyword creates an external resource linkp283 that contributes
to the styling processing model. This keyword is body-okp294.

The specified resource is a CSS style sheet that describes how to present the document.

If the alternatep295 keyword is also specified on the linkp157 element, then the link is an alternative style sheet; in this case, the
titlep139 attribute must be specified on the linkp157 element, with a non-empty value.

The default type for resources given by the stylesheetp306 keyword is text/cssp1283.

The appropriate times to fetch and processp163 this type of link are:

• When the external resource linkp283 is created on a linkp157 element that is already browsing-context connectedp45.

• When the external resource linkp283 's linkp157 element becomes browsing-context connectedp45.

• When the hrefp158 attribute of the linkp157 element of an external resource linkp283 that is already browsing-context
connectedp45 is changed.

• When the disabledp161 attribute of the linkp157 element of an external resource linkp283 that is already browsing-context
connectedp45 is set, changed, or removed.

• When the crossoriginp158 attribute of the linkp157 element of an external resource linkp283 that is already browsing-context
connectedp45 is set, changed, or removed.

• When the typep159 attribute of the linkp157 element of an external resource linkp283 that is already browsing-context
connectedp45 is set or changed to a value that does not or no longer matches the Content-Type metadatap90 of the previous
obtained external resource, if any.

• When the typep159 attribute of the linkp157 element of an external resource linkp283 that is already browsing-context
connectedp45, but was previously not obtained due to the typep159 attribute specifying an unsupported type, is set, removed,
or changed.

• When the external resource linkp283 that is already browsing-context connectedp45 changes from being an alternative style
sheetp306 to not being one, or vice versa.

Quirk: If the document has been set to quirks mode, has the same originp838 as the URL of the external resource, and the Content-Type
metadatap90 of the external resource is not a supported style sheet type, the user agent must instead assume it to be text/cssp1283.

The linked resource fetch setup stepsp163 for this type of linked resource, given a linkp157 element el (ignoring the request) are:

1. If el's disabledp161 attribute is set, then return false.

2. If el contributes a script-blocking style sheet p177, increment el's node document's script-blocking style sheet counterp178 by 1.

3. Return true.

See issue #968 for plans to use the CSSOM fetch a CSS style sheet algorithm instead of the default fetch and process the linked
resourcep163 algorithm.

To process this type of linked resourcep164 given a linkp157 element el, boolean success, and response response, the user agent must
run these steps:

1. If the resource's Content-Type metadatap90 is not text/cssp1283, then set success to false.

OpenSearch description documents can be used with linkp157 elements and the searchp305 link type to enable user agents to
autodiscover search interfaces. [OPENSEARCH]p1289

Note

4.6.6.22 Link type "stylesheet" §p30

6

⚠ MDN

306

https://drafts.csswg.org/cssom/#css-style-sheet
https://dom.spec.whatwg.org/#concept-document-quirks
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request
https://dom.spec.whatwg.org/#concept-node-document
https://github.com/whatwg/html/issues/968
https://drafts.csswg.org/cssom/#fetching-css-style-sheets
https://fetch.spec.whatwg.org/#concept-response

2. If el no longer creates an external resource linkp283 that contributes to the styling processing model, or if, since the resource
in question was fetchedp163, it has become appropriate to fetchp163 it again, then return.

3. If el has an associated CSS style sheet, remove the CSS style sheet.

4. If success is true, then:

1. Create a CSS style sheet with the following properties:

type
text/cssp1283

location
The resulting URL stringp89 determined during the fetch and process the linked resourcep163 algorithm.

owner node
element

media
The mediap159 attribute of element.

title
The titlep159 attribute of element, if element is in a document tree, or the empty string otherwise.

alternate flag
Set if the link is an alternative style sheetp306 and element's explicitly enabledp161 is false; unset otherwise.

origin-clean flag
Set if the resource is CORS-same-originp90; unset otherwise.

parent CSS style sheet
owner CSS rule

null

disabled flag
Left at its default value.

CSS rules
Left uninitialized.

This doesn't seem right. Presumably we should be using the response body? Tracked as issue #2997.

The CSS environment encoding is the result of running the following steps: [CSSSYNTAX]p1287

1. If the element has a charsetp1233 attribute, get an encoding from that attribute's value. If that succeeds,
return the resulting encoding. [ENCODING]p1287

2. Otherwise, return the document's character encoding. [DOM]p1287

2. Fire an event named loadp1282 at el.

This is before any redirects get applied.
Note

This is a reference to the (possibly absent at this time) attribute, rather than a copy of the attribute's
current value. CSSOM defines what happens when the attribute is dynamically set, changed, or removed.

Note

This is similarly a reference to the attribute, rather than a copy of the attribute's current value.
Note

307

https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#remove-a-css-style-sheet
https://drafts.csswg.org/cssom/#create-a-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-type
https://drafts.csswg.org/cssom/#concept-css-style-sheet-location
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-node
https://drafts.csswg.org/cssom/#concept-css-style-sheet-media
https://drafts.csswg.org/cssom/#concept-css-style-sheet-title
https://dom.spec.whatwg.org/#in-a-document-tree
https://drafts.csswg.org/cssom/#concept-css-style-sheet-alternate-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-origin-clean-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-parent-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-css-rule
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-css-rules
https://github.com/whatwg/html/issues/2997
https://drafts.csswg.org/css-syntax/#environment-encoding
https://encoding.spec.whatwg.org/#concept-encoding-get
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-event-fire

5. Otherwise, fire an event named errorp1281 at el.

6. If el contributes a script-blocking style sheet p177, then:

1. Assert: el's node document's script-blocking style sheet counterp178 is greater than 0.

2. Decrement el's node document's script-blocking style sheet counterp178 by 1.

The tagp308 keyword may be used with ap238 and areap443 elements. This keyword creates a hyperlinkp283.

The tagp308 keyword indicates that the tag that the referenced document represents applies to the current document.

4.6.6.23 Link type "tag" §p30

8

Since it indicates that the tag applies to the current document, it would be inappropriate to use this keyword in the markup of a tag
cloudp718, which lists the popular tags across a set of pages.

Note

This document is about some gems, and so it is tagged with "https://en.wikipedia.org/wiki/Gemstone" to unambiguously
categorize it as applying to the "jewel" kind of gems, and not to, say, the towns in the US, the Ruby package format, or the Swiss
locomotive class:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>My Precious</title>

</head>
<body>
<header><h1>My precious</h1> <p>Summer 2012</p></header>
<p>Recently I managed to dispose of a red gem that had been
bothering me. I now have a much nicer blue sapphire.</p>
<p>The red gem had been found in a bauxite stone while I was digging
out the office level, but nobody was willing to haul it away. The
same red gem stayed there for literally years.</p>
<footer>
Tags: Gemstone

</footer>
</body>

</html>

Example

In this document, there are two articles. The "tagp308" link, however, applies to the whole page (and would do so wherever it was
placed, including if it was within the articlep180 elements).

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Gem 4/4</title>

</head>
<body>
<article>
<h1>801: Steinbock</h1>
<p>The number 801 Gem 4/4 electro-diesel has an ibex and was rebuilt in 2002.</p>

</article>
<article>
<h1>802: Murmeltier</h1>
<figure>
<img src="https://upload.wikimedia.org/wikipedia/commons/b/b0/

Example

308

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

Some documents form part of a sequence of documents.

A sequence of documents is one where each document can have a previous sibling and a next sibling. A document with no previous
sibling is the start of its sequence, a document with no next sibling is the end of its sequence.

A document may be part of multiple sequences.

The nextp309 keyword may be used with linkp157, ap238, areap443, and formp486 elements. This keyword creates a hyperlinkp283.

The nextp309 keyword indicates that the document is part of a sequence, and that the link is leading to the document that is the next
logical document in the sequence.

When the nextp309 keyword is used with a linkp157 element, user agents should implement one of the processing models described in
Resource Hints, i.e. should process such links as if they were using one of the dns-prefetchp298, preconnectp304, prefetchp305, or
prerenderp305 keywords. Which resource hint the user agent wishes to use is implementation-dependent; for example, a user agent
may wish to use the less-costly preconnectp304 hint when trying to conserve data, battery power, or processing power, or may wish to
pick a resource hint depending on heuristic analysis of past user behavior in similar scenarios. [RESOURCEHINTS]p1290

The prevp309 keyword may be used with linkp157, ap238, areap443, and formp486 elements. This keyword creates a hyperlinkp283.

The prevp309 keyword indicates that the document is part of a sequence, and that the link is leading to the document that is the
previous logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "previous" like the prevp309 keyword.

Extensions to the predefined set of link types may be registered in the microformats wiki existing-rel-values page. [MFREL]p1289

Anyone is free to edit the microformats wiki existing-rel-values page at any time to add a type. Extension types must be specified with
the following information:

Keyword
The actual value being defined. The value should not be confusingly similar to any other defined value (e.g. differing only in case).

If the value contains a U+003A COLON character (:), it must also be an absolute URL.

Trains_de_la_Bernina_en_hiver_2.jpg"
alt="The 802 was red with pantographs and tall vents on the side.">

<figcaption>The 802 in the 1980s, above Lago Bianco.</figcaption>
</figure>
<p>The number 802 Gem 4/4 electro-diesel has a marmot and was rebuilt in 2003.</p>

</article>
<p class="topic">Gem 4/

4</p>
</body>

</html>

4.6.6.24 Sequential link types §p30

9

4.6.6.24.1 Link type "next" §p30

9

4.6.6.24.2 Link type "prev" §p30

9

4.6.6.25 Other link types §p30

9

309

http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
https://url.spec.whatwg.org/#syntax-url-absolute

Effect on... linkp157

One of the following:

Not allowed
The keyword must not be specified on linkp157 elements.

Hyperlink
The keyword may be specified on a linkp157 element; it creates a hyperlinkp283.

External Resource
The keyword may be specified on a linkp157 element; it creates an external resource linkp283.

Effect on... ap238 and areap443

One of the following:

Not allowed
The keyword must not be specified on ap238 and areap443 elements.

Hyperlink
The keyword may be specified on ap238 and areap443 elements; it creates a hyperlinkp283.

External Resource
The keyword may be specified on ap238 and areap443 elements; it creates an external resource linkp283.

Hyperlink Annotation
The keyword may be specified on ap238 and areap443 elements; it annotatesp283 other hyperlinksp283 created by the element.

Effect on... formp486

One of the following:

Not allowed
The keyword must not be specified on formp486 elements.

Hyperlink
The keyword may be specified on formp486 elements; it creates a hyperlinkp283.

External Resource
The keyword may be specified on formp486 elements; it creates an external resource linkp283.

Hyperlink Annotation
The keyword may be specified on formp486 elements; it annotatesp283 other hyperlinksp283 created by the element.

Brief description
A short non-normative description of what the keyword's meaning is.

Specification
A link to a more detailed description of the keyword's semantics and requirements. It could be another page on the Wiki, or a link to
an external page.

Synonyms
A list of other keyword values that have exactly the same processing requirements. Authors should not use the values defined to be
synonyms, they are only intended to allow user agents to support legacy content. Anyone may remove synonyms that are not used
in practice; only names that need to be processed as synonyms for compatibility with legacy content are to be registered in this
way.

Status
One of the following:

Proposed
The keyword has not received wide peer review and approval. Someone has proposed it and is, or soon will be, using it.

Ratified
The keyword has received wide peer review and approval. It has a specification that unambiguously defines how to handle pages
that use the keyword, including when they use it in incorrect ways.

Discontinued
The keyword has received wide peer review and it has been found wanting. Existing pages are using this keyword, but new pages
should avoid it. The "brief description" and "specification" entries will give details of what authors should use instead, if anything.

If a keyword is found to be redundant with existing values, it should be removed and listed as a synonym for the existing value.

If a keyword is registered in the "proposed" state for a period of a month or more without being used or specified, then it may be

310

removed from the registry.

If a keyword is added with the "proposed" status and found to be redundant with existing values, it should be removed and listed as
a synonym for the existing value. If a keyword is added with the "proposed" status and found to be harmful, then it should be
changed to "discontinued" status.

Anyone can change the status at any time, but should only do so in accordance with the definitions above.

Conformance checkers must use the information given on the microformats wiki existing-rel-values page to establish if a value is
allowed or not: values defined in this specification or marked as "proposed" or "ratified" must be accepted when used on the elements
for which they apply as described in the "Effect on..." field, whereas values marked as "discontinued" or not listed in either this
specification or on the aforementioned page must be rejected as invalid. Conformance checkers may cache this information (e.g. for
performance reasons or to avoid the use of unreliable network connectivity).

When an author uses a new type not defined by either this specification or the Wiki page, conformance checkers should offer to add
the value to the Wiki, with the details described above, with the "proposed" status.

Types defined as extensions in the microformats wiki existing-rel-values page with the status "proposed" or "ratified" may be used with
the rel attribute on linkp157, ap238, and areap443 elements in accordance to the "Effect on..." field. [MFREL]p1289

The insp311 and delp312 elements represent edits to the document.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Transparentp133.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

citep313 — Link to the source of the quotation or more information about the edit
datetimep313 — Date and (optionally) time of the change

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLModElementp313.

The insp311 element representsp123 an addition to the document.

4.7 Edits §p31

1

The following represents the addition of a single paragraph:

<aside>

Example

4.7.1 The ins element §p31

1

✔ MDN

311

http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
https://w3c.github.io/html-aria/#el-ins
https://w3c.github.io/html-aam/#el-ins

insp311 elements should not cross implied paragraphp134 boundaries.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

<ins>
<p> I like fruit. </p>

</ins>
</aside>

As does the following, because everything in the asidep187 element here counts as phrasing contentp132 and therefore there is just
one paragraphp134:

<aside>
<ins>
Apples are tasty.

</ins>
<ins>
So are pears.

</ins>
</aside>

The following example represents the addition of two paragraphs, the second of which was inserted in two parts. The first insp311

element in this example thus crosses a paragraph boundary, which is considered poor form.

<aside>
<!-- don't do this -->
<ins datetime="2005-03-16 00:00Z">
<p> I like fruit. </p>
Apples are tasty.

</ins>
<ins datetime="2007-12-19 00:00Z">
So are pears.

</ins>
</aside>

Here is a better way of marking this up. It uses more elements, but none of the elements cross implied paragraph boundaries.

<aside>
<ins datetime="2005-03-16 00:00Z">
<p> I like fruit. </p>

</ins>
<ins datetime="2005-03-16 00:00Z">
Apples are tasty.

</ins>
<ins datetime="2007-12-19 00:00Z">
So are pears.

</ins>
</aside>

Example

4.7.2 The del element §p31

2

✔ MDN

312

Content modelp128:
Transparentp133.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

citep313 — Link to the source of the quotation or more information about the edit
datetimep313 — Date and (optionally) time of the change

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLModElementp313.

The delp312 element representsp123 a removal from the document.

delp312 elements should not cross implied paragraphp134 boundaries.

The cite attribute may be used to specify the URL of a document that explains the change. When that document is long, for instance
the minutes of a meeting, authors are encouraged to include a fragment pointing to the specific part of that document that discusses
the change.

If the citep313 attribute is present, it must be a valid URL potentially surrounded by spacesp88 that explains the change. To obtain the
corresponding citation link, the value of the attribute must be parsedp89 relative to the element's node document. User agents may
allow users to follow such citation links, but they are primarily intended for private use (e.g., by server-side scripts collecting statistics
about a site's edits), not for readers.

The datetime attribute may be used to specify the time and date of the change.

If present, the datetimep313 attribute's value must be a valid date string with optional timep85.

User agents must parse the datetimep313 attribute according to the parse a date or time stringp85 algorithm. If that doesn't return a
datep74 or a global date and timep79, then the modification has no associated timestamp (the value is non-conforming; it is not a valid
date string with optional timep85). Otherwise, the modification is marked as having been made at the given datep74 or global date and
timep79. If the given value is a global date and timep79 then user agents should use the associated time-zone offset information to
determine which time zone to present the given datetime in.

This value may be shown to the user, but it is primarily intended for private use.

The insp311 and delp312 elements must implement the HTMLModElementp313 interface:

[Exposed=Window]
interface HTMLModElement : HTMLElement {

The following shows a "to do" list where items that have been done are crossed-off with the date and time of their completion.

<h1>To Do</h1>

Empty the dishwasher
<del datetime="2009-10-11T01:25-07:00">Watch Walter Lewin's lectures
<del datetime="2009-10-10T23:38-07:00">Download more tracks
Buy a printer

Example

IDL

4.7.3 Attributes common to insp311 and delp312 elements §p31

3

✔ MDN

313

https://w3c.github.io/html-aria/#el-del
https://w3c.github.io/html-aam/#el-del
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-node-document

[HTMLConstructor] constructor();

[CEReactions] attribute USVString cite;
[CEReactions] attribute DOMString dateTime;

};

The cite IDL attribute must reflectp94 the element's citep313 content attribute. The dateTime IDL attribute must reflectp94 the
element's datetimep313 content attribute.

This section is non-normative.

Since the insp311 and delp312 elements do not affect paragraphingp134, it is possible, in some cases where paragraphs are impliedp134

(without explicit pp211 elements), for an insp311 or delp312 element to span both an entire paragraph or other non-phrasing contentp132

elements and part of another paragraph. For example:

<section>
<ins>
<p>
This is a paragraph that was inserted.

</p>
This is another paragraph whose first sentence was inserted
at the same time as the paragraph above.

</ins>
This is a second sentence, which was there all along.

</section>

By only wrapping some paragraphs in pp211 elements, one can even get the end of one paragraph, a whole second paragraph, and the
start of a third paragraph to be covered by the same insp311 or delp312 element (though this is very confusing, and not considered good
practice):

<section>
This is the first paragraph. <ins>This sentence was
inserted.
<p>This second paragraph was inserted.</p>
This sentence was inserted too.</ins> This is the
third paragraph in this example.
<!-- (don't do this) -->

</section>

However, due to the way implied paragraphsp134 are defined, it is not possible to mark up the end of one paragraph and the start of the
very next one using the same insp311 or delp312 element. You instead have to use one (or two) pp211 element(s) and two insp311 or
delp312 elements, as for example:

<section>
<p>This is the first paragraph. This sentence was
deleted.</p>
<p>This sentence was deleted too. That
sentence needed a separate element.</p>

</section>

Partly because of the confusion described above, authors are strongly encouraged to always mark up all paragraphs with the pp211

element, instead of having insp311 or delp312 elements that cross implied paragraphsp134 boundaries.

4.7.4 Edits and paragraphs §p31

4

314

This section is non-normative.

The content models of the olp220 and ulp222 elements do not allow insp311 and delp312 elements as children. Lists always represent all
their items, including items that would otherwise have been marked as deleted.

To indicate that an item is inserted or deleted, an insp311 or delp312 element can be wrapped around the contents of the lip224 element.
To indicate that an item has been replaced by another, a single lip224 element can have one or more delp312 elements followed by one
or more insp311 elements.

This section is non-normative.

The elements that form part of the table model have complicated content model requirements that do not allow for the insp311 and
delp312 elements, so indicating edits to a table can be difficult.

To indicate that an entire row or an entire column has been added or removed, the entire contents of each cell in that row or column
can be wrapped in insp311 or delp312 elements (respectively).

In the following example, a list that started empty had items added and removed from it over time. The bits in the example that
have been emphasized show the parts that are the "current" state of the list. The list item numbers don't take into account the
edits, though.

<h1>Stop-ship bugs</h1>

<ins datetime="2008-02-12T15:20Z">Bug 225:
Rain detector doesn't work in snow</ins>
<del datetime="2008-03-01T20:22Z"><ins datetime="2008-02-14T12:02Z">Bug 228:
Water buffer overflows in April</ins>
<ins datetime="2008-02-16T13:50Z">Bug 230:
Water heater doesn't use renewable fuels</ins>
<del datetime="2008-02-20T21:15Z"><ins datetime="2008-02-16T14:25Z">Bug 232:
Carbon dioxide emissions detected after startup</ins>

Example

In the following example, a list that started with just fruit was replaced by a list with just colors.

<h1>List of fruits<ins>colors</ins></h1>

Lime<ins>Green</ins>
Apple
Orange
Pear
<ins>Teal</ins>
Lemon<ins>Yellow</ins>
Olive
<ins>Purple</ins>

Example

Here, a table's row has been added:

<table>

Example

4.7.5 Edits and lists §p31

5

4.7.6 Edits and tables §p31

5

315

Generally speaking, there is no good way to indicate more complicated edits (e.g. that a cell was removed, moving all subsequent cells
up or to the left).

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Embedded contentp132.

Contexts in which this element can be usedp128:
Where embedded contentp132 is expected.

Content modelp128:
Zero or more sourcep317 elements, followed by one imgp320 element, optionally intermixed with script-supporting elementsp133.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLPictureElement : HTMLElement {

[HTMLConstructor] constructor();
};

The picturep316 element is a container which provides multiple sources to its contained imgp320 element to allow authors to

<thead>
<tr> <th> Game name <th> Game publisher <th> Verdict

<tbody>
<tr> <td> Diablo 2 <td> Blizzard <td> 8/10
<tr> <td> Portal <td> Valve <td> 10/10
<tr> <td> <ins>Portal 2</ins> <td> <ins>Valve</ins> <td> <ins>10/10</ins>

</table>

Here, a column has been removed (the time at which it was removed is given also, as is a link to the page explaining why):

<table>
<thead>
<tr> <th> Game name <th> Game publisher <th> <del cite="/edits/r192"

datetime="2011-05-02 14:23Z">Verdict
<tbody>
<tr> <td> Diablo 2 <td> Blizzard <td> <del cite="/edits/r192"

datetime="2011-05-02 14:23Z">8/10
<tr> <td> Portal <td> Valve <td> <del cite="/edits/r192"

datetime="2011-05-02 14:23Z">10/10
<tr> <td> Portal 2 <td> Valve <td> <del cite="/edits/r192"

datetime="2011-05-02 14:23Z">10/10
</table>

4.8 Embedded content §p31

6

IDL

4.8.1 The picture element §p31

6

✔ MDN

✔ MDN

316

https://w3c.github.io/html-aria/#el-picture
https://w3c.github.io/html-aam/#el-picture

declaratively control or give hints to the user agent about which image resource to use, based on the screen pixel density, viewport
size, image format, and other factors. It representsp123 its children.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a picturep316 element, before the imgp320 element.
As a child of a media elementp387, before any flow contentp131 or trackp385 elements.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

srcp318 — Address of the resource
typep317 — Type of embedded resource
srcsetp317 — Images to use in different situations, e.g., high-resolution displays, small monitors, etc.
sizesp318 — Image sizes for different page layouts
mediap318 — Applicable media

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLSourceElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString type;
[CEReactions] attribute USVString srcset;
[CEReactions] attribute DOMString sizes;
[CEReactions] attribute DOMString media;

};

The sourcep317 element allows authors to specify multiple alternative source setsp337 for imgp320 elements or multiple alternative media
resourcesp389 for media elementsp387. It does not representp123 anything on its own.

The type attribute may be present. If present, the value must be a valid MIME type string.

The remainder of the requirements depend on whether the parent is a picturep316 element or a media elementp387:

↪ sourcep317 element's parent is a picturep316 element
The srcset attribute must be present, and is a srcset attributep335.

The srcsetp317 attribute contributes the image sourcesp337 to the source setp337, if the sourcep317 element is selected.

The picturep316 element is somewhat different from the similar-looking videop380 and audiop384 elements. While all of them contain
sourcep317 elements, the sourcep317 element's srcp318 attribute has no meaning when the element is nested within a picturep316

element, and the resource selection algorithm is different. Also, the picturep316 element itself does not display anything; it merely
provides a context for its contained imgp320 element that enables it to choose from multiple URLs.

Note

IDL

4.8.2 The source element §p31

7

✔ MDN

✔ MDN

317

https://drafts.csswg.org/css2/#viewport
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/html-aria/#el-source
https://w3c.github.io/html-aam/#el-source
https://mimesniff.spec.whatwg.org/#valid-mime-type

If the srcsetp317 attribute has any image candidate stringsp335 using a width descriptorp335, the sizes attribute must also be
present, and is a sizes attributep335. The sizesp318 attribute contributes the source sizep337 to the source setp337, if the sourcep317

element is selected.

The media attributes may also be present. If present, the value must contain a valid media query listp88. The user agent will skip
to the next sourcep317 element if the value does not match the environmentp88.

The typep317 attribute gives the type of the images in the source setp337, to allow the user agent to skip to the next sourcep317

element if it does not support the given type.

When a sourcep317 element has a following sibling sourcep317 element or imgp320 element with a srcsetp321 attribute specified, it
must have at least one of the following:

• A mediap318 attribute specified with a value that, after stripping leading and trailing ASCII whitespace, is not the empty
string and is not an ASCII case-insensitive match for the string "all".

• A typep317 attribute specified.

The srcp318 attribute must not be present.

↪ sourcep317 element's parent is a media elementp387

The src attribute gives the URL of the media resourcep389. The value must be a valid non-empty URL potentially surrounded by
spacesp88. This attribute must be present.

The typep317 attribute gives the type of the media resourcep389, to help the user agent determine if it can play this media
resourcep389 before fetching it. The codecs parameter, which certain MIME types define, might be necessary to specify exactly
how the resource is encoded. [RFC6381]p1290

If the typep317 attribute is not specified, the user agent will not select a different sourcep317 element if it finds that it does
not support the image format after fetching it.

Note

Dynamically modifying a sourcep317 element and its attribute when the element is already inserted in a videop380 or
audiop384 element will have no effect. To change what is playing, just use the srcp390 attribute on the media elementp387

directly, possibly making use of the canPlayType()p391 method to pick from amongst available resources. Generally,
manipulating sourcep317 elements manually after the document has been parsed is an unnecessarily complicated approach.

Note

The following list shows some examples of how to use the codecs= MIME parameter in the typep317 attribute.

H.264 Constrained baseline profile video (main and extended video compatible) level 3 and Low-Complexity
AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>

H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E, mp4a.40.2"'>

H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'>

H.264 'High' profile video (incompatible with main, baseline, or extended profiles) level 3 and Low-Complexity
AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.64001E, mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8, mp4a.40.2"'>

Example

318

https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://url.spec.whatwg.org/#concept-url

The srcsetp317, sizesp318, and mediap318 attributes must not be present.

If a sourcep317 element is insertedp44 as a child of a media elementp387 that has no srcp390 attribute and whose networkStatep392 has
the value NETWORK_EMPTYp392, the user agent must invoke the media elementp387 's resource selection algorithmp393.

The IDL attributes src, type, srcset, sizes and media must reflectp94 the respective content attributes of the same name.

MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240, mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container

<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8, samr"'>

Theora video and Vorbis audio in Ogg container

<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>

Theora video and Speex audio in Ogg container

<source src='video.ogv' type='video/ogg; codecs="theora, speex"'>

Vorbis audio alone in Ogg container

<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>

Speex audio alone in Ogg container

<source src='audio.spx' type='audio/ogg; codecs=speex'>

FLAC audio alone in Ogg container

<source src='audio.oga' type='audio/ogg; codecs=flac'>

Dirac video and Vorbis audio in Ogg container

<source src='video.ogv' type='video/ogg; codecs="dirac, vorbis"'>

If the author isn't sure if user agents will all be able to render the media resources provided, the author can listen to the errorp1281

event on the last sourcep317 element and trigger fallback behavior:

<script>
function fallback(video) {

// replace <video> with its contents
while (video.hasChildNodes()) {

if (video.firstChild instanceof HTMLSourceElement)
video.removeChild(video.firstChild);

else
video.parentNode.insertBefore(video.firstChild, video);

}
video.parentNode.removeChild(video);

}
</script>
<video controls autoplay>
<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'

onerror="fallback(parentNode)">
...

</video>

Example

319

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Embedded contentp132.
Form-associated elementp486.
If the element has a usemapp445 attribute: Interactive contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where embedded contentp132 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

altp321 — Replacement text for use when images are not available
srcp321 — Address of the resource
srcsetp321 — Images to use in different situations, e.g., high-resolution displays, small monitors, etc.
sizesp321 — Image sizes for different page layouts
crossoriginp321 — How the element handles crossorigin requests
usemapp445 — Name of image mapp445 to use
ismapp323 — Whether the image is a server-side image map
widthp449 — Horizontal dimension
heightp449 — Vertical dimension
referrerpolicyp321 — Referrer policy for fetches initiated by the element
decodingp321 — Decoding hint to use when processing this image for presentation
loadingp321 — Used when determining loading deferral

Accessibility considerationsp129:
If the element has a non-empty altp321 attribute: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep129:

[Exposed=Window,
LegacyFactoryFunction=Image(optional unsigned long width, optional unsigned long height)]

interface HTMLImageElement : HTMLElement {
[HTMLConstructor] constructor();

[CEReactions] attribute DOMString alt;
[CEReactions] attribute USVString src;
[CEReactions] attribute USVString srcset;
[CEReactions] attribute DOMString sizes;
[CEReactions] attribute DOMString? crossOrigin;
[CEReactions] attribute DOMString useMap;
[CEReactions] attribute boolean isMap;
[CEReactions] attribute unsigned long width;
[CEReactions] attribute unsigned long height;
readonly attribute unsigned long naturalWidth;
readonly attribute unsigned long naturalHeight;
readonly attribute boolean complete;
readonly attribute USVString currentSrc;
[CEReactions] attribute DOMString referrerPolicy;
[CEReactions] attribute DOMString decoding;
[CEReactions] attribute DOMString loading;

Promise<undefined> decode();

IDL

4.8.3 The img element §p32

0

✔ MDN

✔ MDN

320

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-img
https://w3c.github.io/html-aam/#el-img
https://w3c.github.io/html-aria/#el-img-empty-alt
https://w3c.github.io/html-aam/#el-img-empty-alt
https://heycam.github.io/webidl/#LegacyFactoryFunction

// also has obsolete members
};

An imgp320 element represents an image.

The image given by the src and srcset attributes, and any previous sibling sourcep317 elements' srcsetp317 attributes if the parent is
a picturep316 element, is the embedded content; the value of the alt attribute provides equivalent content for those who cannot
process images or who have image loading disabled (i.e. it is the imgp320 element's fallback contentp132).

The requirements on the altp321 attribute's value are described in a separate sectionp348.

The srcp321 attribute must be present, and must contain a valid non-empty URL potentially surrounded by spacesp88 referencing a non-
interactive, optionally animated, image resource that is neither paged nor scripted.

The srcsetp321 attribute may also be present, and is a srcset attributep335.

The srcsetp321 attribute and the srcp321 attribute (if width descriptorsp335 are not used) contribute the image sourcesp337 to the source
setp337 (if no sourcep317 element was selected).

If the srcsetp321 attribute is present and has any image candidate stringsp335 using a width descriptorp335, the sizes attribute must
also be present, and is a sizes attributep335. The sizesp321 attribute contributes the source sizep337 to the source setp337 (if no sourcep317

element was selected).

The crossorigin attribute is a CORS settings attributep91. Its purpose is to allow images from third-party sites that allow cross-origin
access to be used with canvasp634.

The referrerpolicy attribute is a referrer policy attributep91. Its purpose is to set the referrer policy used when fetching the image.
[REFERRERPOLICY]p1290

The decoding attribute indicates the preferred method to decodep338 this image. The attribute, if present, must be an image decoding
hintp338. This attribute's missing value defaultp68 and invalid value defaultp68 are both the autop338 state.

The loading attribute is a lazy loading attributep93. Its purpose is to indicate the policy for loading images that are outside the
viewport.

When the loadingp321 attribute's state is changed to the Eagerp93 state, the user agent must run these steps:

1. Let resumptionSteps be the imgp320 element's lazy load resumption stepsp93.

2. If resumptionSteps is null, then return.

3. Set the imgp320 's lazy load resumption stepsp93 to null.

4. Invoke resumptionSteps.

The requirements above imply that images can be static bitmaps (e.g. PNGs, GIFs, JPEGs), single-page vector documents (single-
page PDFs, XML files with an SVG document element), animated bitmaps (APNGs, animated GIFs), animated vector graphics (XML
files with an SVG document element that use declarative SMIL animation), and so forth. However, these definitions preclude SVG
files with script, multipage PDF files, interactive MNG files, HTML documents, plain text documents, and so forth. [PNG]p1290

[GIF]p1287 [JPEG]p1288 [PDF]p1289 [XML]p1293 [APNG]p1285 [SVG]p1291 [MNG]p1289

Note

<div id=very-large></div> <!-- Everything after this div is below the viewport -->

Example

✔ MDN

✔ MDN

321

https://dom.spec.whatwg.org/#document-element
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch

The imgp320 element must not be used as a layout tool. In particular, imgp320 elements should not be used to display transparent
images, as such images rarely convey meaning and rarely add anything useful to the document.

What an imgp320 element represents depends on the srcp321 attribute and the altp321 attribute.

↪ If the srcp321 attribute is set and the altp321 attribute is set to the empty string
The image is either decorative or supplemental to the rest of the content, redundant with some other information in the
document.

If the image is availablep336 and the user agent is configured to display that image, then the element representsp123 the
element's image data.

Otherwise, the element representsp123 nothing, and may be omitted completely from the rendering. User agents may provide
the user with a notification that an image is present but has been omitted from the rendering.

↪ If the srcp321 attribute is set and the altp321 attribute is set to a value that isn't empty
The image is a key part of the content; the altp321 attribute gives a textual equivalent or replacement for the image.

If the image is availablep336 and the user agent is configured to display that image, then the element representsp123 the
element's image data.

Otherwise, the element representsp123 the text given by the altp321 attribute. User agents may provide the user with a
notification that an image is present but has been omitted from the rendering.

↪ If the srcp321 attribute is set and the altp321 attribute is not
The image might be a key part of the content, and there is no textual equivalent of the image available.

If the image is availablep336 and the user agent is configured to display that image, then the element representsp123 the
element's image data.

If the image has a srcp321 attribute whose value is the empty string, then the element representsp123 nothing.

Otherwise, the user agent should display some sort of indicator that there is an image that is not being rendered, and may, if
requested by the user, or if so configured, or when required to provide contextual information in response to navigation, provide
caption information for the image, derived as follows:

1. If the image has a titlep139 attribute whose value is not the empty string, then return the value of that attribute.

In the example above, the images load as follows:

↪ 1.jpeg, 2.jpeg, 4.jpeg
The images load eagerly and delay the window's load event.

↪ 3.jpeg
The image loads when layout is known, due to being in the viewport, however it does not delay the window's load event.

↪ 5.jpeg
The image loads only once scrolled into the viewport, and does not delay the window's load event.

Developers are encouraged to specify an intrinsic aspect ratio via widthp449 and heightp449 attributes on lazy loaded images,
even if CSS sets the image's width and height properties, to prevent the page layout from shifting around after the image
loads.

Note

In a conforming document, the absence of the altp321 attribute indicates that the image is a key part of the content but that
a textual replacement for the image was not available when the image was generated.

Note

322

2. If the image is a descendant of a figurep232 element that has a child figcaptionp235 element, and, ignoring the
figcaptionp235 element and its descendants, the figurep232 element has no flow contentp131 descendants other than
inter-element whitespacep129 and the imgp320 element, then return the contents of the first such figcaptionp235

element.

3. Return nothing. (There is no caption information.)

↪ If the srcp321 attribute is not set and either the altp321 attribute is set to the empty string or the altp321 attribute is
not set at all

The element representsp123 nothing.

↪ Otherwise
The element representsp123 the text given by the altp321 attribute.

The altp321 attribute does not represent advisory information. User agents must not present the contents of the altp321 attribute in the
same way as content of the titlep139 attribute.

User agents may always provide the user with the option to display any image, or to prevent any image from being displayed. User
agents may also apply heuristics to help the user make use of the image when the user is unable to see it, e.g. due to a visual
disability or because they are using a text terminal with no graphics capabilities. Such heuristics could include, for instance, optical
character recognition (OCR) of text found within the image.

The contents of imgp320 elements, if any, are ignored for the purposes of rendering.

The usemapp445 attribute, if present, can indicate that the image has an associated image mapp445.

The ismap attribute, when used on an element that is a descendant of an ap238 element with an hrefp284 attribute, indicates by its
presence that the element provides access to a server-side image map. This affects how events are handled on the corresponding ap238

element.

The ismapp323 attribute is a boolean attributep67. The attribute must not be specified on an element that does not have an ancestor
ap238 element with an hrefp284 attribute.

The imgp320 element supports dimension attributesp449.

The alt, src, srcset and sizes IDL attributes must reflectp94 the respective content attributes of the same name.

The crossOrigin IDL attribute must reflectp94 the crossoriginp321 content attribute, limited to only known valuesp95.

The useMap IDL attribute must reflectp94 the usemapp445 content attribute.

The isMap IDL attribute must reflectp94 the ismapp323 content attribute.

The referrerPolicy IDL attribute must reflectp94 the referrerpolicyp321 content attribute, limited to only known valuesp95.

The decoding IDL attribute must reflectp94 the decodingp321 content attribute, limited to only known valuesp95.

The loading IDL attribute must reflectp94 the loadingp321 content attribute, limited to only known valuesp95.

While user agents are encouraged to repair cases of missing altp321 attributes, authors must not rely on such
behavior. Requirements for providing text to act as an alternative for imagesp348 are described in detail below.

⚠Warning!

The usemapp445 and ismapp323 attributes can result in confusing behavior when used together with sourcep317 elements with the
mediap318 attribute specified in a picturep316 element.

Note

For web developers (non-normative)

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

323

The IDL attributes width and height must return the rendered width and height of the image, in CSS pixels, if the image is being
renderedp1192, and is being rendered to a visual medium; or else the density-corrected intrinsic width and heightp336 of the image, in
CSS pixels, if the image has intrinsic dimensions and is availablep336 but not being rendered to a visual medium; or else 0, if the image
is not availablep336 or does not have intrinsic dimensions. [CSS]p1285

On setting, they must act as if they reflectedp94 the respective content attributes of the same name.

The IDL attributes naturalWidth and naturalHeight must return the density-corrected intrinsic width and heightp336 of the image, in
CSS pixels, if the image has intrinsic dimensions and is availablep336, or else 0. [CSS]p1285

The IDL attribute complete must return true if any of the following conditions is true:

• Both the srcp321 attribute and the srcsetp321 attribute are omitted.
• The srcsetp321 attribute is omitted and the srcp321 attribute's value is the empty string.
• The imgp320 element's current requestp336 's statep336 is completely availablep336 and its pending requestp336 is null.
• The imgp320 element's current requestp336 's statep336 is brokenp336 and its pending requestp336 is null.

Otherwise, the attribute must return false.

The currentSrc IDL attribute must return the imgp320 element's current requestp336 's current URLp336.

The decode() method, when invoked, must perform the following steps:

1. Let promise be a new promise.

2. Queue a microtaskp946 to perform the following steps:

image . widthp324 [= value]
image . heightp324 [= value]

These attributes return the actual rendered dimensions of the image, or zero if the dimensions are not known.
They can be set, to change the corresponding content attributes.

image . naturalWidthp324

image . naturalHeightp324

These attributes return the intrinsic dimensions of the image, or zero if the dimensions are not known.

image . completep324

Returns true if the image has been completely downloaded or if no image is specified; otherwise, returns false.

image . currentSrcp324

Returns the image's absolute URL.

image . decodep324()
This method causes the user agent to decodep338 the image in parallelp42, returning a promise that fulfills when decoding is
complete.
The promise will be rejected with an "EncodingError" DOMException if the image cannot be decoded.

image = new Imagep326([width [, height]])
Returns a new imgp320 element, with the widthp449 and heightp449 attributes set to the values passed in the relevant arguments,
if applicable.

Since the intrinsic dimensions of an image take into account any orientation specified in its metadata, naturalWidthp324 and
naturalHeightp324 reflect the dimensions after applying any rotation needed to correctly orient the image, regardless of the value
of the 'image-orientation' property.

Note

This is done because updating the image datap339 takes place in a microtask as well. Thus, to make code such as

img.src = "stars.jpg";
img.decode();

Note

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

324

https://url.spec.whatwg.org/#syntax-url-absolute
https://heycam.github.io/webidl/#encodingerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-images-3/#the-image-orientation

1. If any of the following conditions are true about this imgp320 element:

▪ its node document is not an active documentp811;
▪ its current requestp336 's statep336 is brokenp336,

then reject promise with an "EncodingError" DOMException.

2. Otherwise, in parallelp42, wait for one of the following cases to occur, and perform the corresponding actions:

↪ This imgp320 element's node document stops being an active documentp811

↪ This imgp320 element's current requestp336 changes or is mutated
↪ This imgp320 element's current requestp336 's statep336 becomes brokenp336

Reject promise with an "EncodingError" DOMException.

↪ This imgp320 element's current requestp336 's statep336 becomes completely availablep336

Decodep338 the image.

If decoding does not need to be performed for this image (for example because it is a vector graphic),
resolve promise with undefined.

If decoding fails (for example due to invalid image data), reject promise with an "EncodingError"
DOMException.

If the decoding process completes successfully, resolve promise with undefined.

User agents should ensure that the decoded media data stays readily available until at least the end of the
next successful update the renderingp947 step in the event loopp944. This is an important part of the API
contract, and should not be broken if at all possible. (Typically, this would only be violated in low-memory
situations that require evicting decoded image data, or when the image is too large to keep in decoded form
for this period of time.)

3. Return promise.

properly decode stars.jpg, we need to delay any processing by one microtask.

Animated images will become completely availablep336 only after all their frames are loaded. Thus, even
though an implementation could decode the first frame before that point, the above steps will not do so,
instead waiting until all frames are available.

Note

Without the decode()p324 method, the process of loading an imgp320 element and then displaying it might look like the following:

const img = new Image();
img.src = "nebula.jpg";
img.onload = () => {

document.body.appendChild(img);
};
img.onerror = () => {

document.body.appendChild(new Text("Could not load the nebula :("));
};

However, this can cause notable dropped frames, as the paint that occurs after inserting the image into the DOM causes a
synchronous decode on the main thread.

This can instead be rewritten using the decode()p324 method:

const img = new Image();
img.src = "nebula.jpg";

Example

325

https://dom.spec.whatwg.org/#concept-node-document
https://heycam.github.io/webidl/#encodingerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-document
https://heycam.github.io/webidl/#encodingerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#encodingerror
https://heycam.github.io/webidl/#dfn-DOMException

A legacy factory function is provided for creating HTMLImageElementp320 objects (in addition to the factory methods from DOM such as
createElement()): Image(width, height). When invoked, the legacy factory function must perform the following steps:

1. Let document be the current global objectp924 's associated Documentp826.

2. Let img be the result of creating an element given document, imgp320, and the HTML namespace.

3. If width is given, then set an attribute value for img using "widthp449" and width.

4. If height is given, then set an attribute value for img using "heightp449" and height.

5. Return img.

img.decode().then(() => {
document.body.appendChild(img);

}).catch(() => {
document.body.appendChild(new Text("Could not load the nebula :("));

});

This latter form avoids the dropped frames of the original, by allowing the user agent to decode the image in parallelp42, and only
inserting it into the DOM (and thus causing it to be painted) once the decoding process is complete.

Because the decode()p324 method attempts to ensure that the decoded image data is available for at least one frame, it can be
combined with the requestAnimationFrame()p996 API. This means it can be used with coding styles or frameworks that ensure that
all DOM modifications are batched together as animation frame callbacksp996:

const container = document.querySelector("#container");

const { containerWidth, containerHeight } = computeDesiredSize();
requestAnimationFrame(() => {
container.style.width = containerWidth;
container.style.height = containerHeight;

});

// ...

const img = new Image();
img.src = "supernova.jpg";
img.decode().then(() => {

requestAnimationFrame(() => container.appendChild(img));
});

Example

A single image can have different appropriate alternative text depending on the context.

In each of the following cases, the same image is used, yet the altp321 text is different each time. The image is the coat of arms of
the Carouge municipality in the canton Geneva in Switzerland.

Here it is used as a supplementary icon:

<p>I lived in Carouge.</p>

Here it is used as an icon representing the town:

<p>Home town: </p>

Here it is used as part of a text on the town:

Example

✔ MDN

326

https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-set-value

<p>Carouge has a coat of arms.</p>
<p></p>
<p>It is used as decoration all over the town.</p>

Here it is used as a way to support a similar text where the description is given as well as, instead of as an alternative to, the
image:

<p>Carouge has a coat of arms.</p>
<p></p>
<p>The coat of arms depicts a lion, sitting in front of a tree.
It is used as decoration all over the town.</p>

Here it is used as part of a story:

<p>She picked up the folder and a piece of paper fell out.</p>
<p><img src="carouge.svg" alt="Shaped like a shield, the paper had a
red background, a green tree, and a yellow lion with its tongue
hanging out and whose tail was shaped like an S."></p>
<p>She stared at the folder. S! The answer she had been looking for all
this time was simply the letter S! How had she not seen that before? It all
came together now. The phone call where Hector had referred to a lion's tail,
the time Maria had stuck her tongue out...</p>

Here it is not known at the time of publication what the image will be, only that it will be a coat of arms of some kind, and thus no
replacement text can be provided, and instead only a brief caption for the image is provided, in the titlep139 attribute:

<p>The last user to have uploaded a coat of arms uploaded this one:</p>
<p></p>

Ideally, the author would find a way to provide real replacement text even in this case, e.g. by asking the previous user. Not
providing replacement text makes the document more difficult to use for people who are unable to view images, e.g. blind users,
or users or very low-bandwidth connections or who pay by the byte, or users who are forced to use a text-only web browser.

Here are some more examples showing the same picture used in different contexts, with different appropriate alternate texts each
time.

<article>
<h1>My cats</h1>
<h2>Fluffy</h2>
<p>Fluffy is my favorite.</p>

<p>She's just too cute.</p>
<h2>Miles</h2>
<p>My other cat, Miles just eats and sleeps.</p>

</article>

<article>
<h1>Photography</h1>
<h2>Shooting moving targets indoors</h2>
<p>The trick here is to know how to anticipate; to know at what speed and
what distance the subject will pass by.</p>
<img src="fluffy.jpg" alt="A cat flying by, chasing a ball of yarn, can be
photographed quite nicely using this technique.">
<h2>Nature by night</h2>
<p>To achieve this, you'll need either an extremely sensitive film, or
immense flash lights.</p>

</article>

Example

327

This section is non-normative.

To embed an image in HTML, when there is only a single image resource, use the imgp320 element and its srcp321 attribute.

However, there are a number of situations for which the author might wish to use multiple image resources that the user agent can
choose from:

• Different users might have different environmental characteristics:

◦ The users' physical screen size might be different from one another.

<article>
<h1>About me</h1>
<h2>My pets</h2>
<p>I've got a cat named Fluffy and a dog named Miles.</p>

<p>My dog Miles and I like go on long walks together.</p>
<h2>music</h2>
<p>After our walks, having emptied my mind, I like listening to Bach.</p>

</article>

<article>
<h1>Fluffy and the Yarn</h1>
<p>Fluffy was a cat who liked to play with yarn. She also liked to jump.</p>
<aside></aside>
<p>She would play in the morning, she would play in the evening.</p>

</article>

4.8.4.1 Introduction §p32

8

<h2>From today's featured article</h2>

<p>Marie Lloyd (1870–1922)
was an English music hall singer, ...

Example

A mobile phone's screen might be 4 inches diagonally, while a laptop's screen might be 14 inches diagonally.

4″

14″

Example

This is only relevant when an image's rendered size depends on the viewport size.
Note

4.8.4 Images §p32

8

328

https://drafts.csswg.org/css2/#viewport

◦ The users' screen pixel density might be different from one another.

◦ The users' zoom level might be different from one another, or might change for a single user over time.

The zoom level and the screen pixel density (the previous point) can both affect the number of physical screen
pixels per CSS pixel. This ratio is usually referred to as device-pixel-ratio.

◦ The users' screen orientation might be different from one another, or might change for a single user over time.

◦ The users' network speed, network latency and bandwidth cost might be different from one another, or might
change for a single user over time.

• Authors might want to show the same image content but with different rendered size depending on, usually, the width of the
viewport. This is usually referred to as viewport-based selection.

A mobile phone's screen might have three times as many physical pixels per inch compared to another mobile
phone's screen, regardless of their physical screen size.

1x 3x

Example

A user might zoom in to a particular image to be able to get a more detailed look.
Example

A tablet can be held upright or rotated 90 degrees, so that the screen is either "portrait" or "landscape".

Portrait
Landscape

Example

A user might be on a fast, low-latency and constant-cost connection while at work, on a slow, low-latency and
constant-cost connection while at home, and on a variable-speed, high-latency and variable-cost connection
anywhere else.

Example

A web page might have a banner at the top that always spans the entire viewport width. In this case, the rendered size
of the image depends on the physical size of the screen (assuming a maximised browser window).

Example

329

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport

• Authors might want to show different image content depending on the rendered size of the image. This is usually referred to
as art direction.

• Authors might want to show the same image content but using different image formats, depending on which image formats
the user agent supports. This is usually referred to as image format-based selection.

The above situations are not mutually exclusive. For example, it is reasonable to combine different resources for different device-pixel-

Another web page might have images in columns, with a single column for screens with a small physical size, two
columns for screens with medium physical size, and three columns for screens with big physical size, with the images
varying in rendered size in each case to fill up the viewport. In this case, the rendered size of an image might be bigger
in the one-column layout compared to the two-column layout, despite the screen being smaller.

Narrow, 1 column

Medium, 2 columns

Wide, 3 columns

Example

When a web page is viewed on a screen with a large physical size (assuming a maximised browser window), the author
might wish to include some less relevant parts surrounding the critical part of the image. When the same web page is
viewed on a screen with a small physical size, the author might wish to show only the critical part of the image.

Example

A web page might have some images in the JPEG, WebP and JPEG XR image formats, with the latter two having better
compression abilities compared to JPEG. Since different user agents can support different image formats, with some
formats offering better compression ratios, the author would like to serve the better formats to user agents that support
them, while providing JPEG fallback for user agents that don't.

Example

330

https://drafts.csswg.org/css2/#viewport

ratiop329 with different resources for art directionp330.

While it is possible to solve these problems using scripting, doing so introduces some other problems:

• Some user agents aggressively download images specified in the HTML markup, before scripts have had a chance to run, so
that web pages complete loading sooner. If a script changes which image to download, the user agent will potentially start
two separate downloads, which can instead cause worse page loading performance.

• If the author avoids specifying any image in the HTML markup and instead instantiates a single download from script, that
avoids the double download problem above but then no image will be downloaded at all for users with scripting disabled and
the aggressive image downloading optimization will also be disabled.

With this in mind, this specification introduces a number of features to address the above problems in a declarative manner.

Device-pixel-ratiop329-based selection when the rendered size of the image is fixed
The srcp321 and srcsetp321 attributes on the imgp320 element can be used, using the x descriptor, to provide multiple images that
only vary in their size (the smaller image is a scaled-down version of the bigger image).

Viewport-based selectionp329

The srcsetp321 and sizesp321 attributes can be used, using the w descriptor, to provide multiple images that only vary in their size
(the smaller image is a scaled-down version of the bigger image).

The x descriptor is not appropriate when the rendered size of the image depends on the viewport width (viewport-based
selectionp329), but can be used together with art directionp330.

Note

<h2>From today's featured article</h2>
<img src="/uploads/100-marie-lloyd.jpg"

srcset="/uploads/150-marie-lloyd.jpg 1.5x, /uploads/200-marie-lloyd.jpg 2x"
alt="" width="100" height="150">

<p>Marie Lloyd (1870–1922)
was an English music hall singer, ...

The user agent can choose any of the given resources depending on the user's screen's pixel density, zoom level, and possibly
other factors such as the user's network conditions.

For backwards compatibility with older user agents that don't yet understand the srcsetp321 attribute, one of the URLs is
specified in the imgp320 element's srcp321 attribute. This will result in something useful (though perhaps lower-resolution than the
user would like) being displayed even in older user agents. For new user agents, the srcp321 attribute participates in the
resource selection, as if it was specified in srcsetp321 with a 1x descriptor.

The image's rendered size is given in the widthp449 and heightp449 attributes, which allows the user agent to allocate space for
the image before it is downloaded.

Example

In this example, a banner image takes up the entire viewport width (using appropriate CSS).

<h1><img sizes="100vw" srcset="wolf-400.jpg 400w, wolf-800.jpg 800w, wolf-1600.jpg 1600w"
src="wolf-400.jpg" alt="The rad wolf"></h1>

The user agent will calculate the effective pixel density of each image from the specified w descriptors and the specified
rendered size in the sizesp321 attribute. It can then choose any of the given resources depending on the user's screen's pixel
density, zoom level, and possibly other factors such as the user's network conditions.

If the user's screen is 320 CSS pixels wide, this is equivalent to specifying wolf-400.jpg 1.25x, wolf-800.jpg 2.5x,
wolf-1600.jpg 5x. On the other hand, if the user's screen is 1200 CSS pixels wide, this is equivalent to specifying
wolf-400.jpg 0.33x, wolf-800.jpg 0.67x, wolf-1600.jpg 1.33x. By using the w descriptors and the sizesp321 attribute,
the user agent can choose the correct image source to download regardless of how large the user's device is.

For backwards compatibility, one of the URLs is specified in the imgp320 element's srcp321 attribute. In new user agents, the

Example

331

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

Art directionp330-based selection
The picturep316 element and the sourcep317 element, together with the mediap318 attribute, can be used, to provide multiple images
that vary the image content (for instance the smaller image might be a cropped version of the bigger image).

srcp321 attribute is ignored when the srcsetp321 attribute uses w descriptors.

In this example, the web page has three layouts depending on the width of the viewport. The narrow layout has one column of
images (the width of each image is about 100%), the middle layout has two columns of images (the width of each image is
about 50%), and the widest layout has three columns of images, and some page margin (the width of each image is about
33%). It breaks between these layouts when the viewport is 30em wide and 50em wide, respectively.

<img sizes="(max-width: 30em) 100vw, (max-width: 50em) 50vw, calc(33vw - 100px)"
srcset="swing-200.jpg 200w, swing-400.jpg 400w, swing-800.jpg 800w, swing-1600.jpg 1600w"
src="swing-400.jpg" alt="Kettlebell Swing">

The sizesp321 attribute sets up the layout breakpoints at 30em and 50em, and declares the image sizes between these
breakpoints to be 100vw, 50vw, or calc(33vw - 100px). These sizes do not necessarily have to match up exactly with the
actual image width as specified in the CSS.

The user agent will pick a width from the sizesp321 attribute, using the first item with a <media-condition> (the part in
parentheses) that evaluates to true, or using the last item (calc(33vw - 100px)) if they all evaluate to false.

For example, if the viewport width is 29em, then (max-width: 30em) evaluates to true and 100vw is used, so the image size, for
the purpose of resource selection, is 29em. If the viewport width is instead 32em, then (max-width: 30em) evaluates to false,
but (max-width: 50em) evaluates to true and 50vw is used, so the image size, for the purpose of resource selection, is 16em
(half the viewport width). Notice that the slightly wider viewport results in a smaller image because of the different layout.

The user agent can then calculate the effective pixel density and choose an appropriate resource similarly to the previous
example.

Example

<picture>
<source media="(min-width: 45em)" srcset="large.jpg">
<source media="(min-width: 32em)" srcset="med.jpg">

</picture>

The user agent will choose the first sourcep317 element for which the media query in the mediap318 attribute matches, and then
choose an appropriate URL from its srcsetp317 attribute.

The rendered size of the image varies depending on which resource is chosen. To specify dimensions that the user agent can
use before having downloaded the image, CSS can be used.

img { width: 300px; height: 300px }
@media (min-width: 32em) { img { width: 500px; height:300px } }
@media (min-width: 45em) { img { width: 700px; height:400px } }

Example

CSS

This example combines art directionp330- and device-pixel-ratiop329-based selection. A banner that takes half the viewport is
provided in two versions, one for wide screens and one for narrow screens.

<h1>
<picture>
<source media="(max-width: 500px)" srcset="banner-phone.jpeg, banner-phone-HD.jpeg 2x">

</picture>
</h1>

Example

332

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport

Image format-based selectionp330

The typep317 attribute on the sourcep317 element can be used, to provide multiple images in different formats.

This section is non-normative.

CSS and media queries can be used to construct graphical page layouts that adapt dynamically to the user's environment, in particular
to different viewport dimensions and pixel densities. For content, however, CSS does not help; instead, we have the imgp320 element's
srcsetp321 attribute and the picturep316 element. This section walks through a sample case showing how to use these features.

Consider a situation where on wide screens (wider than 600 CSS pixels) a 300×150 image named a-rectangle.png is to be used, but
on smaller screens (600 CSS pixels and less), a smaller 100×100 image called a-square.png is to be used. The markup for this would
look like this:

<figure>
<picture>
<source srcset="a-square.png" media="(max-width: 600px)">

</picture>
<figcaption>Barney Frank, 2011</figcaption>

</figure>

The problem with this is that the user agent does not necessarily know what dimensions to use for the image when the image is
loading. To avoid the layout having to be reflowed multiple times as the page is loading, CSS and CSS media queries can be used to
provide the dimensions:

<style>
#a { width: 300px; height: 150px; }
@media (max-width: 600px) { #a { width: 100px; height: 100px; } }

</style>
<figure>
<picture>
<source srcset="a-square.png" media="(max-width: 600px)">

</picture>
<figcaption>Barney Frank, 2011</figcaption>

</figure>

<h2>From today's featured article</h2>
<picture>
<source srcset="/uploads/100-marie-lloyd.webp" type="image/webp">
<source srcset="/uploads/100-marie-lloyd.jxr" type="image/vnd.ms-photo">

</picture>
<p>Marie Lloyd (1870–1922)
was an English music hall singer, ...

In this example, the user agent will choose the first source that has a typep317 attribute with a supported MIME type. If the user
agent supports WebP images, the first sourcep317 element will be chosen. If not, but the user agent does support JPEG XR
images, the second sourcep317 element will be chosen. If neither of those formats are supported, the imgp320 element will be
chosen.

Example

4.8.4.1.1 Adaptive images §p33

3

For details on what to put in the altp321 attribute, see the Requirements for providing text to act as an alternative for images p348

section.

Note

333

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

Alternatively, the widthp449 and heightp449 attributes can be used to provide the width and height for legacy user agents, using CSS
just for the user agents that support picturep316:

<style media="(max-width: 600px)">
#a { width: 100px; height: 100px; }

</style>
<figure>
<picture>
<source srcset="a-square.png" media="(max-width: 600px)">
<img src="a-rectangle.png" width="300" height="150"
alt="Barney Frank wears a suit and glasses." id="a">

</picture>
<figcaption>Barney Frank, 2011</figcaption>

</figure>

The imgp320 element is used with the srcp321 attribute, which gives the URL of the image to use for legacy user agents that do not
support the picturep316 element. This leads to a question of which image to provide in the srcp321 attribute.

If the author wants the biggest image in legacy user agents, the markup could be as follows:

<picture>
<source srcset="pear-mobile.jpeg" media="(max-width: 720px)">
<source srcset="pear-tablet.jpeg" media="(max-width: 1280px)">

</picture>

However, if legacy mobile user agents are more important, one can list all three images in the sourcep317 elements, overriding the
srcp321 attribute entirely.

<picture>
<source srcset="pear-mobile.jpeg" media="(max-width: 720px)">
<source srcset="pear-tablet.jpeg" media="(max-width: 1280px)">
<source srcset="pear-desktop.jpeg">

</picture>

Since at this point the srcp321 attribute is actually being ignored entirely by picturep316-supporting user agents, the srcp321 attribute
can default to any image, including one that is neither the smallest nor biggest:

<picture>
<source srcset="pear-mobile.jpeg" media="(max-width: 720px)">
<source srcset="pear-tablet.jpeg" media="(max-width: 1280px)">
<source srcset="pear-desktop.jpeg">

</picture>

Above the max-width media feature is used, giving the maximum (viewport) dimensions that an image is intended for. It is also
possible to use min-width instead.

<picture>
<source srcset="pear-desktop.jpeg" media="(min-width: 1281px)">
<source srcset="pear-tablet.jpeg" media="(min-width: 721px)">

</picture>

334

https://drafts.csswg.org/css2/#viewport

A srcset attribute is an attribute with requirements defined in this section.

If present, its value must consist of one or more image candidate stringsp335, each separated from the next by a U+002C COMMA
character (,). If an image candidate stringp335 contains no descriptors and no ASCII whitespace after the URL, the following image
candidate stringp335, if there is one, must begin with one or more ASCII whitespace.

An image candidate string consists of the following components, in order, with the further restrictions described below this list:

1. Zero or more ASCII whitespace.

2. A valid non-empty URLp88 that does not start or end with a U+002C COMMA character (,), referencing a non-interactive,
optionally animated, image resource that is neither paged nor scripted.

3. Zero or more ASCII whitespace.

4. Zero or one of the following:

◦ A width descriptor, consisting of: ASCII whitespace, a valid non-negative integerp69 giving a number greater than
zero representing the width descriptor value, and a U+0077 LATIN SMALL LETTER W character.

◦ A pixel density descriptor, consisting of: ASCII whitespace, a valid floating-point numberp69 giving a number
greater than zero representing the pixel density descriptor value, and a U+0078 LATIN SMALL LETTER X
character.

5. Zero or more ASCII whitespace.

There must not be an image candidate stringp335 for an element that has the same width descriptor valuep335 as another image
candidate stringp335 's width descriptor valuep335 for the same element.

There must not be an image candidate stringp335 for an element that has the same pixel density descriptor valuep335 as another image
candidate stringp335 's pixel density descriptor valuep335 for the same element. For the purpose of this requirement, an image candidate
stringp335 with no descriptors is equivalent to an image candidate stringp335 with a 1x descriptor.

If an image candidate stringp335 for an element has the width descriptorp335 specified, all other image candidate stringsp335 for that
element must also have the width descriptorp335 specified.

The specified width in an image candidate stringp335 's width descriptorp335 must match the intrinsic width in the resource given by the
image candidate stringp335 's URL, if it has an intrinsic width.

If an element has a sizes attributep335 present, all image candidate stringsp335 for that element must have the width descriptorp335

specified.

A sizes attribute is an attribute with requirements defined in this section.

If present, the value must be a valid source size listp335.

A valid source size list is a string that matches the following grammar: [CSSVALUES]p1287 [MQ]p1289

<source-size-list> = [<source-size># ,]? <source-size-value>
<source-size> = <media-condition> <source-size-value>
<source-size-value> = <length>

A <source-size-value>p335 must not be negative, and must not use CSS functions other than the math functions.

The <source-size-value>p335 gives the intended layout width of the image. The author can specify different widths for different
environments with <media-condition>s.

4.8.4.2 Attributes common to sourcep317, imgp320, and linkp157 elements §p33

5

4.8.4.2.1 Srcset attributes §p33

5

4.8.4.2.2 Sizes attributes §p33

5

335

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/css-values/#math-function
https://drafts.csswg.org/mediaqueries/#typedef-media-condition

An imgp320 element has a current request and a pending request. The current requestp336 is initially set to a new image requestp336.
The pending requestp336 is initially set to null.

An image request has a state, current URL, and image data.

An image requestp336 's statep336 is one of the following:

Unavailable
The user agent hasn't obtained any image data, or has obtained some or all of the image data but hasn't yet decoded enough of the
image to get the image dimensions.

Partially available
The user agent has obtained some of the image data and at least the image dimensions are available.

Completely available
The user agent has obtained all of the image data and at least the image dimensions are available.

Broken
The user agent has obtained all of the image data that it can, but it cannot even decode the image enough to get the image
dimensions (e.g. the image is corrupted, or the format is not supported, or no data could be obtained).

An image requestp336 's current URLp336 is initially the empty string.

An image requestp336 's image datap336 is the decoded image data.

When an image requestp336 's statep336 is either partially availablep336 or completely availablep336, the image requestp336 is said to be
available.

When an imgp320 element's current requestp336 's statep336 is completely availablep336 and the user agent can decode the media data
without errors, then the imgp320 element is said to be fully decodable.

An image requestp336 's statep336 is initially unavailablep336.

When an imgp320 element's current requestp336 is availablep336, the imgp320 element provides a paint source whose width is the image's
density-corrected intrinsic widthp336 (if any), whose height is the image's density-corrected intrinsic heightp336 (if any), and whose
appearance is the intrinsic appearance of the image.

An imgp320 element is said to use srcset or picture if it has a srcsetp321 attribute specified or if it has a parent that is a picturep316

element.

Each imgp320 element has a last selected source, which must initially be null.

Each image requestp336 has a current pixel density, which must initially be undefined.

When an imgp320 element has a current pixel densityp336 that is not 1.0, the element's image data must be treated as if its resolution, in
device pixels per CSS pixels, was the current pixel densityp336. The image's density-corrected intrinsic width and height are the
intrinsic width and height after taking into account the current pixel densityp336.

Percentages are not allowed in a <source-size-value>p335, to avoid confusion about what it would be relative to. The 'vw' unit can
be used for sizes relative to the viewport width.

Note

4.8.4.3 Processing model §p33

6

For example, if the current pixel densityp336 is 3.125, that means that there are 300 device pixels per CSS inch, and thus if the
image data is 300x600, it has intrinsic dimensions of 96 CSS pixels by 192 CSS pixels.

Example

336

https://drafts.csswg.org/css-values/#vw
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-images-4/#paint-source
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-values/#in
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

All imgp320 and linkp157 elements are associated with a source setp337.

A source set is an ordered set of zero or more image sourcesp337 and a source sizep337.

An image source is a URL, and optionally either a pixel density descriptorp335, or a width descriptorp335.

A source size is a <source-size-value>p335. When a source sizep337 has a unit relative to the viewport, it must be interpreted relative
to the imgp320 element's node document's viewport. Other units must be interpreted the same as in Media Queries. [MQ]p1289

A parse error for algorithms in this section indicates a non-fatal mismatch between input and requirements. User agents are
encouraged to expose parse errorp337s somehow.

Whether the image is fetched successfully or not (e.g. whether the response status was an ok status) must be ignored when
determining the image's type and whether it is a valid image.

The user agent should apply the image sniffing rules to determine the type of the image, with the image's associated Content-Type
headersp90 giving the official type. If these rules are not applied, then the type of the image must be the type given by the image's
associated Content-Type headersp90.

User agents must not support non-image resources with the imgp320 element (e.g. XML files whose document element is an HTML
element). User agents must not run executable code (e.g. scripts) embedded in the image resource. User agents must only display the
first page of a multipage resource (e.g. a PDF file). User agents must not allow the resource to act in an interactive fashion, but should
honour any animation in the resource.

This specification does not specify which image types are to be supported.

By default, images are obtained immediately. User agents may provide users with the option to instead obtain them on-demand. (The
on-demand option might be used by bandwidth-constrained users, for example.)

When obtaining images immediately, the user agent must synchronously update the image datap339 of the imgp320 element, with the
restart animation flag set if so stated, whenever that element is created or has experienced relevant mutationsp337.

When obtaining images on demand, the user agent must update the image datap339 of an imgp320 element whenever it needs the
image data (i.e., on demand), but only if the imgp320 element's current requestp336 's statep336 is unavailablep336. When an imgp320

element has experienced relevant mutationsp337, if the user agent only obtains images on demand, the imgp320 element's current
requestp336 's statep336 must return to unavailablep336.

The relevant mutations for an imgp320 element are as follows:

• The element's srcp321, srcsetp321, widthp449, or sizesp321 attributes are set, changed, or removed.

• The element's srcp321 attribute is set to the same value as the previous value. This must set the restart animation flag for the
update the image datap339 algorithm.

• The element's crossoriginp321 attribute's state is changed.

• The element's referrerpolicyp321 attribute's state is changed.

• The element is insertedp44 into or removedp44 from a picturep316 parent element.

• The element's parent is a picturep316 element and a sourcep317 element is insertedp44 as a previous sibling.

This allows servers to return images with error responses, and have them displayed.
Note

4.8.4.3.1 When to obtain images §p33

7

4.8.4.3.2 Reacting to DOM mutations §p33

7

337

https://url.spec.whatwg.org/#concept-url
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css2/#viewport
https://fetch.spec.whatwg.org/#ok-status
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://dom.spec.whatwg.org/#document-element

• The element's parent is a picturep316 element and a sourcep317 element that was a previous sibling is removedp44.

• The element's parent is a picturep316 element and a sourcep317 element that is a previous sibling has its srcsetp317,
sizesp318, mediap318, or typep317 attributes set, changed, or removed.

• The element's adopting steps are run.

Each Documentp114 object must have a list of available images. Each image in this list is identified by a tuple consisting of an
absolute URL, a CORS settings attributep91 mode, and, if the mode is not No CORSp91, an originp837. Each image furthermore has an
ignore higher-layer caching flag. User agents may copy entries from one Documentp114 object's list of available imagesp338 to
another at any time (e.g. when the Documentp114 is created, user agents can add to it all the images that are loaded in other
Documentp114s), but must not change the keys of entries copied in this way when doing so, and must unset the ignore higher-layer
cachingp338 flag for the copied entry. User agents may also remove images from such lists at any time (e.g. to save memory). User
agents must remove entries in the list of available imagesp338 as appropriate given higher-layer caching semantics for the resource
(e.g. the HTTP `Cache-Control` response header) when the ignore higher-layer cachingp338 flag is unset.

Image data is usually encoded in order to reduce file size. This means that in order for the user agent to present the image to the
screen, the data needs to be decoded. Decoding is the process which converts an image's media data into a bitmap form, suitable for
presentation to the screen. Note that this process can be slow relative to other processes involved in presenting content. Thus, the
user agent can choose when to perform decoding, in order to create the best user experience.

Image decoding is said to be synchronous if it prevents presentation of other content until it is finished. Typically, this has an effect of
atomically presenting the image and any other content at the same time. However, this presentation is delayed by the amount of time
it takes to perform the decode.

Image decoding is said to be asynchronous if it does not prevent presentation of other content. This has an effect of presenting non-
image content faster. However, the image content is missing on screen until the decode finishes. Once the decode is finished, the
screen is updated with the image.

In both synchronous and asynchronous decoding modes, the final content is presented to screen after the same amount of time has
elapsed. The main difference is whether the user agent presents non-image content ahead of presenting the final content.

In order to aid the user agent in deciding whether to perform synchronous or asynchronous decode, the decodingp321 attribute can be
set on imgp320 elements. The possible values of the decodingp321 attribute are the following image decoding hint keywords:

Keyword State Description

sync Sync Indicates a preference to decodep338 this image synchronously for atomic presentation with other content.
async Async Indicates a preference to decodep338 this image asynchronously to avoid delaying presentation of other content.
auto Auto Indicates no preference in decoding mode (the default).

4.8.4.3.3 The list of available images §p33

8

The list of available imagesp338 is intended to enable synchronous switching when changing the srcp321 attribute to a URL that has
previously been loaded, and to avoid re-downloading images in the same document even when they don't allow caching per HTTP.
It is not used to avoid re-downloading the same image while the previous image is still loading.

Note

The user agent can also store the image data separately from the list of available imagesp338.
Note

For example, if a resource has the HTTP response header `Cache-Control: must-revalidate`, and its ignore higher-layer
cachingp338 flag is unset, the user agent would remove it from the list of available imagesp338 but could keep the image data
separately, and use that if the server responds with a 304 Not Modified status.

Example

4.8.4.3.4 Decoding images §p33

8

⚠ MDN

338

https://dom.spec.whatwg.org/#concept-node-adopt-ext
https://url.spec.whatwg.org/#syntax-url-absolute
https://tools.ietf.org/html/rfc7234#section-5.2

When decodingp338 an image, the user agent should respect the preference indicated by the decodingp321 attribute's state. If the state
indicated is autop338, then the user agent is free to choose any decoding behavior.

When the user agent is to update the image data of an imgp320 element, optionally with the restart animations flag set, it must run
the following steps:

1. If the element's node document is not the active documentp811, then:

1. Continue running this algorithm in parallelp42.

2. Wait until the element's node document is the active documentp811.

3. If another instance of this algorithm for this imgp320 element was started after this instance (even if it aborted and
is no longer running), then return.

4. Queue a microtaskp946 to continue this algorithm.

2. If the user agent cannot support images, or its support for images has been disabled, then abort the image requestp342 for
the current requestp336 and the pending requestp336, set current requestp336 's statep336 to unavailablep336, set pending
requestp336 to null, and return.

3. Let selected source be null and selected pixel density be undefined.

4. If the element does not use srcset or picturep336 and it has a srcp321 attribute specified whose value is not the empty
string, then set selected source to the value of the element's srcp321 attribute and set selected pixel density to 1.0.

5. Set the element's last selected sourcep336 to selected source.

6. If selected source is not null, then:

1. Parsep89 selected source, relative to the element's node document. If that is not successful, then abort this inner
set of steps. Otherwise, let urlString be the resulting URL stringp89.

2. Let key be a tuple consisting of urlString, the imgp320 element's crossoriginp321 attribute's mode, and, if that mode
is not No CORSp91, the node document's originp837.

3. If the list of available imagesp338 contains an entry for key, then:

1. Set the ignore higher-layer cachingp338 flag for that entry.

2. Abort the image requestp342 for the current requestp336 and the pending requestp336.

3. Set pending requestp336 to null.

4. Let current requestp336 be a new image requestp336 whose image datap336 is that of the entry and whose
statep336 is completely availablep336.

5. Update the presentation of the image appropriately.

6. Set current requestp336 's current pixel densityp336 to selected pixel density.

7. Queue an element taskp946 on the DOM manipulation task sourcep952 given the imgp320 element and
following steps:

It is also possible to control the decoding behavior using the decode()p324 method. Since the decode()p324 method performs
decodingp338 independently from the process responsible for presenting content to screen, it is unaffected by the decodingp321

attribute.

Note

4.8.4.3.5 Updating the image data §p33

9

This algorithm cannot be called from steps running in parallelp42. If a user agent needs to call this algorithm from steps running in
parallelp42, it needs to queuep945 a task to do so.

Note

339

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

1. If restart animation is set, then restart the animationp1217.

2. Set current requestp336 's current URLp336 to urlString.

3. Fire an event named loadp1282 at the imgp320 element.

8. Abort the update the image datap339 algorithm.

7. Queue a microtaskp946 to perform the rest of this algorithm, allowing the taskp944 that invoked this algorithm to continue.

8. If another instance of this algorithm for this imgp320 element was started after this instance (even if it aborted and is no
longer running), then return.

9. Let selected source and selected pixel density be the URL and pixel density that results from selecting an image sourcep342,
respectively.

10. If selected source is null, then:

1. Set the current requestp336 's statep336 to brokenp336, abort the image requestp342 for the current requestp336 and the
pending requestp336, and set pending requestp336 to null.

2. Queue an element taskp946 on the DOM manipulation task sourcep952 given the imgp320 element and the following
steps:

1. Change the current requestp336 's current URLp336 to the empty string.

2. If the element has a srcp321 attribute or it uses srcset or picturep336, fire an event named errorp1281 at
the imgp320 element.

3. Return.

11. Parsep89 selected source, relative to the element's node document, and let urlString be the resulting URL stringp89. If that is
not successful, then:

1. Abort the image requestp342 for the current requestp336 and the pending requestp336.

2. Set the current requestp336 's statep336 to brokenp336.

3. Set pending requestp336 to null.

4. Queue an element taskp946 on the DOM manipulation task sourcep952 given the imgp320 element and the following
steps:

1. Change the current requestp336 's current URLp336 to selected source.

2. Fire an event named errorp1281 at the imgp320 element.

5. Return.

12. If the pending requestp336 is not null and urlString is the same as the pending requestp336 's current URLp336, then return.

13. If urlString is the same as the current requestp336 's current URLp336 and current requestp336 's statep336 is partially availablep336,
then abort the image requestp342 for the pending requestp336, queue an element taskp946 on the DOM manipulation task
sourcep952 given the imgp320 element to restart the animationp1217 if restart animation is set, and return.

14. If the pending requestp336 is not null, then abort the image requestp342 for the pending requestp336.

15. Set image request to a new image requestp336 whose current URLp336 is urlString.

16. If current requestp336 's statep336 is unavailablep336 or brokenp336, then set the current requestp336 to image request. Otherwise,
set the pending requestp336 to image request.

17. Let request be the result of creating a potential-CORS requestp90 given urlString, "image", and the current state of the
element's crossoriginp321 content attribute.

18. Set request's client to the element's node document's relevant settings objectp924.

Only the last instance takes effect, to avoid multiple requests when, for example, the srcp321, srcsetp321, and
crossoriginp321 attributes are all set in succession.

Note

340

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document

19. If the element uses srcset or picturep336, set request's initiator to "imageset".

20. Set request's referrer policy to the current state of the element's referrerpolicyp321 attribute.

21. Let delay load event be true if the imgp320 's lazy loading attributep93 is in the Eagerp93 state, or if scripting is disabledp924 for
the imgp320, and false otherwise.

22. If the will lazy load element stepsp93 given the imgp320 return true, then:

1. Set the imgp320 's lazy load resumption stepsp93 to the rest of this algorithm starting with the step labeled fetch the
image.

2. Start intersection-observing a lazy loading element p93 for the imgp320 element.

3. Return.

23. Fetch the image: Fetch request. Let this instance of the fetching algorithm be associated with image request.

The resource obtained in this fashion, if any, is image request's image datap336. It can be either CORS-same-originp90 or
CORS-cross-originp90; this affects the originp837 of the image itself (e.g. when used on a canvasp634).

When delay load event is true, fetching the image must delay the load eventp1165 of the element's node document until the
taskp944 that is queuedp945 by the networking task sourcep952 once the resource has been fetched (defined belowp342) has
been run.

24. Continue the remaining steps in parallelp42, but without missing any data from fetching.

25. As soon as possible, jump to the first applicable entry from the following list:

↪ If the resource type is multipart/x-mixed-replacep1251

The next taskp944 that is queuedp945 by the networking task sourcep952 while the image is being fetched must run the
following steps:

1. If image request is the pending requestp336 and at least one body part has been completely decoded, abort
the image requestp342 for the current requestp336, upgrade the pending request to the current requestp342.

2. Otherwise, if image request is the pending requestp336 and the user agent is able to determine that image
request's image is corrupted in some fatal way such that the image dimensions cannot be obtained, abort
the image requestp342 for the current requestp336, upgrade the pending request to the current requestp342,
and set the current requestp336 's statep336 to brokenp336.

3. Otherwise, if image request is the current requestp336, its statep336 is unavailablep336, and the user agent is
able to determine image request's image's width and height, set the current requestp336 's statep336 to
partially availablep336.

4. Otherwise, if image request is the current requestp336, its statep336 is unavailablep336, and the user agent is
able to determine that image request's image is corrupted in some fatal way such that the image
dimensions cannot be obtained, set the current requestp336 's statep336 to brokenp336.

Each taskp944 that is queuedp945 by the networking task sourcep952 while the image is being fetched must update the
presentation of the image, but as each new body part comes in, it must replace the previous image. Once one body
part has been completely decoded, the user agent must set the imgp320 element's current requestp336 's statep336 to
completely availablep336 and queue an element taskp946 on the DOM manipulation task sourcep952 given the imgp320

element to fire an event named loadp1282 at the imgp320 element.

↪ If the resource type and data corresponds to a supported image format, as described belowp337

The next taskp944 that is queuedp945 by the networking task sourcep952 while the image is being fetched must run the
following steps:

1. If the user agent is able to determine image request's image's width and height, and image request is

This, unfortunately, can be used to perform a rudimentary port scan of the user's local network (especially
in conjunction with scripting, though scripting isn't actually necessary to carry out such an attack). User
agents may implement cross-originp837 access control policies that are stricter than those described above
to mitigate this attack, but unfortunately such policies are typically not compatible with existing web
content.

⚠Warning!

341

https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire

pending requestp336, set image request's statep336 to partially availablep336.

2. Otherwise, if the user agent is able to determine image request's image's width and height, and image
request is current requestp336, update the imgp320 element's presentation appropriately and set image
request's statep336 to partially availablep336.

3. Otherwise, if the user agent is able to determine that image request's image is corrupted in some fatal way
such that the image dimensions cannot be obtained, and image request is pending requestp336, abort the
image requestp342 for the current requestp336 and the pending requestp336, upgrade the pending request to
the current requestp342, set current requestp336 's statep336 to brokenp336, and fire an event named errorp1281

at the imgp320 element.

4. Otherwise, if the user agent is able to determine that image request's image is corrupted in some fatal way
such that the image dimensions cannot be obtained, and image request is current requestp336, abort the
image requestp342 for image request and fire an event named errorp1281 at the imgp320 element.

That taskp944, and each subsequent taskp944, that is queuedp945 by the networking task sourcep952 while the image is
being fetched, if image request is the current requestp336, must update the presentation of the image appropriately
(e.g., if the image is a progressive JPEG, each packet can improve the resolution of the image).

Furthermore, the last taskp944 that is queuedp945 by the networking task sourcep952 once the resource has been fetched
must additionally run these steps:

1. If image request is the pending requestp336, abort the image requestp342 for the current requestp336, upgrade
the pending request to the current requestp342 and update the imgp320 element's presentation appropriately.

2. Set image request to the completely availablep336 state.

3. Add the image to the list of available imagesp338 using the key key, with the ignore higher-layer cachingp338

flag set.

4. Fire an event named loadp1282 at the imgp320 element.

↪ Otherwise
The image data is not in a supported file format; the user agent must set image request's statep336 to brokenp336,
abort the image requestp342 for the current requestp336 and the pending requestp336, upgrade the pending request to
the current requestp342 if image request is the pending requestp336, and then queue an element taskp946 on the DOM
manipulation task sourcep952 given the imgp320 element to fire an event named errorp1281 at the imgp320 element.

While a user agent is running the above algorithm for an element x, there must be a strong reference from the element's node
document to the element x, even if that element is not connected.

To abort the image request for an image requestp336 image request means to run the following steps:

1. Forget image request's image datap336, if any.

2. Abort any instance of the fetching algorithm for image request, discarding any pending tasks generated by that algorithm.

To upgrade the pending request to the current request for an imgp320 element means to run the following steps:

1. Let the imgp320 element's current requestp336 be the pending requestp336.

2. Let the imgp320 element's pending requestp336 be null.

When asked to select an image source for a given imgp320 or linkp157 element el, user agents must do the following:

1. Update the source setp343 for el.

2. If el's source setp337 is empty, return null as the URL and undefined as the pixel density.

3. Otherwise, take el's source setp337 and let it be source set.

4. If an entry b in source set has the same associated pixel density descriptorp335 as an earlier entry a in source set, then

4.8.4.3.6 Selecting an image source §p34

2

342

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#connected
https://fetch.spec.whatwg.org/#concept-fetch

remove entry b. Repeat this step until none of the entries in source set have the same associated pixel density descriptorp335

as an earlier entry.

5. In a user agent-specific manner, choose one image sourcep337 from source set. Let this be selected source.

6. Return selected source and its associated pixel density.

When asked to update the source set for a given imgp320 or linkp157 element el, user agents must do the following:

1. Set el's source setp337 to an empty source setp337.

2. Let elements be « el ».

3. If el is an imgp320 element whose parent node is a picturep316 element, then replace the contents of elements with el's parent
node's child elements, retaining relative order.

4. Let width be null.

5. If el is an imgp320 element with a widthp449 attribute, and parsing that attribute's value using the rules for parsing dimension
valuesp71 doesn't generate an error or a percentage value, then set width to the returned integer value.

6. For each child in elements:

1. If child is el:

1. Let source set be an empty source setp337.

2. If child has a srcsetp321 or imagesrcsetp160 attribute, parse child's srcset attributep344 and set source set
to the returned source setp337.

3. Parse child's sizes attributep346 with the fallback width width, and let source set's source sizep337 be the
returned value.

4. If child has a srcp321 or hrefp158 attribute whose value is not the empty string and source set does not
contain an image sourcep337 with a pixel density descriptorp335 value of 1, and no image sourcep337 with a
width descriptorp335, append child's srcp321 or hrefp158 attribute value to source set.

5. Normalize the source densitiesp346 of source set.

6. Let el's source setp337 be source set.

7. Return.

2. Assert: child is not a linkp157 element.

3. If child is not a sourcep317 element, continue to the next child. Otherwise, child is a sourcep317 element.

4. If child does not have a srcsetp317 attribute, continue to the next child.

5. Parse child's srcset attributep344 and let the returned source setp337 be source set.

6. If source set has zero image sourcesp337, continue to the next child.

7. If child has a mediap318 attribute, and its value does not match the environmentp88, continue to the next child.

8. Parse child's sizes attributep346 with the fallback width width, and let source set's source sizep337 be the returned
value.

9. If child has a typep317 attribute, and its value is an unknown or unsupported MIME type, continue to the next child.

10. Normalize the source densitiesp346 of source set.

4.8.4.3.7 Updating the source set §p34

3

If el is a linkp157 element, then elements contains only el, so this step will be reached immediately
and the rest of the algorithm will not run.

Note

343

https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-iterate
https://mimesniff.spec.whatwg.org/#mime-type

11. Let el's source setp337 be source set.

12. Return.

When asked to parse a srcset attribute from an element, parse the value of the element's srcset attributep335 as follows:

1. Let input be the value passed to this algorithm.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let candidates be an initially empty source setp337.

4. Splitting loop: Collect a sequence of code points that are ASCII whitespace or U+002C COMMA characters from input given
position. If any U+002C COMMA characters were collected, that is a parse errorp337.

5. If position is past the end of input, return candidates.

6. Collect a sequence of code points that are not ASCII whitespace from input given position, and let that be url.

7. Let descriptors be a new empty list.

8. If url ends with U+002C (,), then:

1. Remove all trailing U+002C COMMA characters from url. If this removed more than one character, that is a parse
errorp337.

Otherwise:

1. Descriptor tokenizer: Skip ASCII whitespace within input given position.

2. Let current descriptor be the empty string.

3. Let state be in descriptor.

4. Let c be the character at position. Do the following depending on the value of state. For the purpose of this step,
"EOF" is a special character representing that position is past the end of input.

↪ In descriptor
Do the following, depending on the value of c:

↪ ASCII whitespace
If current descriptor is not empty, append current descriptor to descriptors and let current descriptor
be the empty string. Set state to after descriptor.

↪ U+002C COMMA (,)
Advance position to the next character in input. If current descriptor is not empty, append current
descriptor to descriptors. Jump to the step labeled descriptor parser.

↪ U+0028 LEFT PARENTHESIS (()
Append c to current descriptor. Set state to in parens.

↪ EOF
If current descriptor is not empty, append current descriptor to descriptors. Jump to the step labeled
descriptor parser.

↪ Anything else
Append c to current descriptor.

Each imgp320 element independently considers its previous sibling sourcep317 elements plus the imgp320 element itself for selecting
an image sourcep337, ignoring any other (invalid) elements, including other imgp320 elements in the same picturep316 element, or
sourcep317 elements that are following siblings of the relevant imgp320 element.

Note

4.8.4.3.8 Parsing a srcset attribute §p34

4

344

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

↪ In parens
Do the following, depending on the value of c:

↪ U+0029 RIGHT PARENTHESIS ())
Append c to current descriptor. Set state to in descriptor.

↪ EOF
Append current descriptor to descriptors. Jump to the step labeled descriptor parser.

↪ Anything else
Append c to current descriptor.

↪ After descriptor
Do the following, depending on the value of c:

↪ ASCII whitespace
Stay in this state.

↪ EOF
Jump to the step labeled descriptor parser.

↪ Anything else
Set state to in descriptor. Set position to the previous character in input.

Advance position to the next character in input. Repeat this step.

9. Descriptor parser: Let error be no.

10. Let width be absent.

11. Let density be absent.

12. Let future-compat-h be absent.

13. For each descriptor in descriptors, run the appropriate set of steps from the following list:

↪ If the descriptor consists of a valid non-negative integerp69 followed by a U+0077 LATIN SMALL LETTER W
character

1. If the user agent does not support the sizesp321 attribute, let error be yes.

2. If width and density are not both absent, then let error be yes.

3. Apply the rules for parsing non-negative integers p69 to the descriptor. If the result is zero, let error be yes.
Otherwise, let width be the result.

↪ If the descriptor consists of a valid floating-point numberp69 followed by a U+0078 LATIN SMALL LETTER X
character

1. If width, density and future-compat-h are not all absent, then let error be yes.

2. Apply the rules for parsing floating-point number values p70 to the descriptor. If the result is less than zero,
let error be yes. Otherwise, let density be the result.

In order to be compatible with future additions, this algorithm supports multiple descriptors and descriptors
with parens.

Note

A conforming user agent will support the sizesp321 attribute. However, user agents typically implement
and ship features in an incremental manner in practice.

Note

If density is zero, the intrinsic dimensions will be infinite. User agents are expected to have limits in how
big images can be rendered, which is allowed by the hardware limitationsp48 clause.

Note

345

https://infra.spec.whatwg.org/#ascii-whitespace
https://drafts.csswg.org/css-images/#intrinsic-dimensions

↪ If the descriptor consists of a valid non-negative integerp69 followed by a U+0068 LATIN SMALL LETTER H
character

This is a parse errorp337.

1. If future-compat-h and density are not both absent, then let error be yes.

2. Apply the rules for parsing non-negative integers p69 to the descriptor. If the result is zero, let error be yes.
Otherwise, let future-compat-h be the result.

↪ Anything else
Let error be yes.

14. If future-compat-h is not absent and width is absent, let error be yes.

15. If error is still no, then append a new image sourcep337 to candidates whose URL is url, associated with a width width if not
absent and a pixel density density if not absent. Otherwise, there is a parse errorp337.

16. Return to the step labeled splitting loop.

When asked to parse a sizes attribute from an element, with a fallback width width, parse a comma-separated list of component
values from the value of the element's sizes attributep335 (or the empty string, if the attribute is absent), and let unparsed sizes list be
the result. [CSSSYNTAX]p1287

For each unparsed size in unparsed sizes list:

1. Remove all consecutive <whitespace-token>s from the end of unparsed size. If unparsed size is now empty, that is a parse
errorp337; continue to the next iteration of this algorithm.

2. If the last component value in unparsed size is a valid non-negative <source-size-value>p335, let size be its value and remove
the component value from unparsed size. Any CSS function other than the math functions is invalid. Otherwise, there is a
parse errorp337; continue to the next iteration of this algorithm.

3. Remove all consecutive <whitespace-token>s from the end of unparsed size. If unparsed size is now empty, return size and
exit this algorithm. If this was not the last item in unparsed sizes list, that is a parse errorp337.

4. Parse the remaining component values in unparsed size as a <media-condition>. If it does not parse correctly, or it does
parse correctly but the <media-condition> evaluates to false, continue to the next iteration of this algorithm. [MQ]p1289

5. Return size and exit this algorithm.

If the above algorithm exhausts unparsed sizes list without returning a size value, follow these steps:

1. If width is not null, return a <length> with the value width and the unit 'px'.

2. Return 100vw.

An image sourcep337 can have a pixel density descriptorp335, a width descriptorp335, or no descriptor at all accompanying its URL.
Normalizing a source setp337 gives every image sourcep337 a pixel density descriptorp335.

When asked to normalize the source densities of a source setp337 source set, the user agent must do the following:

1. Let source size be source set's source sizep337.

4.8.4.3.9 Parsing a sizes attribute §p34

6

While a valid source size listp335 only contains a bare <source-size-value>p335 (without an accompanying <media-condition>) as
the last entry in the <source-size-list>p335, the parsing algorithm technically allows such at any point in the list, and will accept it
immediately as the size if the preceding entries in the list weren't used. This is to enable future extensions, and protect against
simple author errors such as a final trailing comma.

Note

4.8.4.3.10 Normalizing the source densities §p34

6

346

https://drafts.csswg.org/css-syntax/#parse-a-comma-separated-list-of-component-values
https://drafts.csswg.org/css-syntax/#parse-a-comma-separated-list-of-component-values
https://drafts.csswg.org/css-syntax/#typedef-whitespace-token
https://drafts.csswg.org/css-syntax/#component-value
https://drafts.csswg.org/css-syntax/#component-value
https://drafts.csswg.org/css-values/#math-function
https://drafts.csswg.org/css-syntax/#typedef-whitespace-token
https://drafts.csswg.org/css-syntax/#component-value
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/mediaqueries/#typedef-media-condition

2. For each image sourcep337 in source set:

1. If the image sourcep337 has a pixel density descriptorp335, continue to the next image sourcep337.

2. Otherwise, if the image sourcep337 has a width descriptorp335, replace the width descriptorp335 with a pixel density
descriptorp335 with a valuep335 of the width descriptor valuep335 divided by the source sizep337 and a unit of x.

3. Otherwise, give the image sourcep337 a pixel density descriptorp335 of 1x.

The user agent may at any time run the following algorithm to update an imgp320 element's image in order to react to changes in the
environment. (User agents are not required to ever run this algorithm; for example, if the user is not looking at the page any more, the
user agent might want to wait until the user has returned to the page before determining which image to use, in case the environment
changes again in the meantime.)

1. Await a stable statep949. The synchronous sectionp949 consists of all the remaining steps of this algorithm until the algorithm
says the synchronous sectionp949 has ended. (Steps in synchronous sectionsp949 are marked with ⌛.)

2. ⌛ If the imgp320 element does not use srcset or picturep336, its node document is not the active documentp811, has image
data whose resource type is multipart/x-mixed-replacep1251, or the pending requestp336 is not null, then return.

3. ⌛ Let selected source and selected pixel density be the URL and pixel density that results from selecting an image sourcep342,
respectively.

4. ⌛ If selected source is null, then return.

5. ⌛ If selected source and selected pixel density are the same as the element's last selected sourcep336 and current pixel
densityp336, then return.

6. ⌛ Parsep89 selected source, relative to the element's node document, and let urlString be the resulting URL stringp89. If that is
not successful, then return.

7. ⌛ Let corsAttributeState be the state of the element's crossoriginp321 content attribute.

8. ⌛ Let origin be the originp837 of the imgp320 element's node document.

9. ⌛ Let client be the imgp320 element's node document's relevant settings objectp924.

10. ⌛ Let key be a tuple consisting of urlString, corsAttributeState, and, if corsAttributeState is not No CORSp91, origin.

11. ⌛ Let image request be a new image requestp336 whose current URLp336 is urlString

12. ⌛ Let the element's pending requestp336 be image request.

13. End the synchronous sectionp949, continuing the remaining steps in parallelp42.

14. If the list of available imagesp338 contains an entry for key, then set image request's image datap336 to that of the entry.
Continue to the next step.

Otherwise:

1. Let request be the result of creating a potential-CORS requestp90 given urlString, "image", and corsAttributeState.

2. Set request's client to client, initiator to "imageset", and set request's synchronous flag.

If the source sizep337 is zero, the density would be infinity, which results in the intrinsic dimensions being zero
by zero.

Note

4.8.4.3.11 Reacting to environment changes §p34

7

User agents are encouraged to run this algorithm in particular when the user changes the viewport's size (e.g. by resizing the
window or changing the page zoom), and when an imgp320 element is inserted into a documentp44, so that the density-corrected
intrinsic width and heightp336 match the new viewport, and so that the correct image is chosen when art directionp330 is involved.

Note

347

https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#synchronous-flag

3. Set request's referrer policy to the current state of the element's referrerpolicyp321 attribute.

4. Let response be the result of fetching request.

5. If response's unsafe responsep90 is a network error or if the image format is unsupported (as determined by
applying the image sniffing rules, again as mentioned earlier), or if the user agent is able to determine that image
request's image is corrupted in some fatal way such that the image dimensions cannot be obtained, or if the
resource type is multipart/x-mixed-replacep1251, then let pending requestp336 be null and abort these steps.

6. Otherwise, response's unsafe responsep90 is image request's image datap336. It can be either CORS-same-originp90

or CORS-cross-originp90; this affects the originp837 of the image itself (e.g., when used on a canvasp634).

15. Queue an element taskp946 on the DOM manipulation task sourcep952 given the imgp320 element and the following steps:

1. If the imgp320 element has experienced relevant mutationsp337 since this algorithm started, then let pending
requestp336 be null and abort these steps.

2. Let the imgp320 element's last selected sourcep336 be selected source and the imgp320 element's current pixel
densityp336 be selected pixel density.

3. Set the image request's statep336 to completely availablep336.

4. Add the image to the list of available imagesp338 using the key key, with the ignore higher-layer cachingp338 flag set.

5. Upgrade the pending request to the current requestp342.

6. Update the imgp320 element's presentation appropriately.

7. Fire an event named loadp1282 at the imgp320 element.

Except where otherwise specified, the altp321 attribute must be specified and its value must not be empty; the value must be an
appropriate replacement for the image. The specific requirements for the altp321 attribute depend on what the image is intended to
represent, as described in the following sections.

The most general rule to consider when writing alternative text is the following: the intent is that replacing every image with the
text of its altp321 attribute not change the meaning of the page.

So, in general, alternative text can be written by considering what one would have written had one not been able to include the image.

A corollary to this is that the altp321 attribute's value should never contain text that could be considered the image's caption, title, or
legend. It is supposed to contain replacement text that could be used by users instead of the image; it is not meant to supplement the
image. The titlep139 attribute can be used for supplemental information.

Another corollary is that the altp321 attribute's value should not repeat information that is already provided in the prose next to the
image.

When an ap238 element that creates a hyperlinkp283, or a buttonp535 element, has no textual content but contains one or more images,
the altp321 attributes must contain text that together convey the purpose of the link or button.

4.8.4.4 Requirements for providing text to act as an alternative for images §p34

8

4.8.4.4.1 General guidelines §p34

8

One way to think of alternative text is to think about how you would read the page containing the image to someone over the
phone, without mentioning that there is an image present. Whatever you say instead of the image is typically a good start for
writing the alternative text.

Note

4.8.4.4.2 A link or button containing nothing but the image §p34

8

Example

348

https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-network-error
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://dom.spec.whatwg.org/#concept-event-fire

Sometimes something can be more clearly stated in graphical form, for example as a flowchart, a diagram, a graph, or a simple map
showing directions. In such cases, an image can be given using the imgp320 element, but the lesser textual version must still be given,
so that users who are unable to view the image (e.g. because they have a very slow connection, or because they are using a text-only
browser, or because they are listening to the page being read out by a hands-free automobile voice web browser, or simply because
they are blind) are still able to understand the message being conveyed.

The text must be given in the altp321 attribute, and must convey the same message as the image specified in the srcp321 attribute.

It is important to realize that the alternative text is a replacement for the image, not a description of the image.

In this example, a user is asked to pick their preferred color from a list of three. Each color is given by an image, but for users who
have configured their user agent not to display images, the color names are used instead:

<h1>Pick your color</h1>

In this example, each button has a set of images to indicate the kind of color output desired by the user. The first image is used in
each case to give the alternative text.

<button name="rgb"><img src="blue"
alt=""></button>
<button name="cmyk"><img src="yellow"
alt=""></button>

Since each image represents one part of the text, it could also be written like this:

<button name="rgb"><img src="blue"
alt="B"></button>
<button name="cmyk"><img src="yellow"
alt="Y"></button>

However, with other alternative text, this might not work, and putting all the alternative text into one image in each case might
make more sense:

<button name="rgb"><img src="blue"
alt=""></button>
<button name="cmyk"><img src="yellow"
alt=""></button>

Example

4.8.4.4.3 A phrase or paragraph with an alternative graphical representation: charts, diagrams, graphs, maps,
illustrations

§p34

9

In the following example we have a flowchart in image form, with text in the altp321 attribute rephrasing the flowchart in prose
form:

<p>In the common case, the data handled by the tokenization stage
comes from the network, but it can also come from script.</p>
<p><img src="images/parsing-model-overview.svg" alt="The Network
passes data to the Input Stream Preprocessor, which passes it to the
Tokenizer, which passes it to the Tree Construction stage. From there,

Example

349

https://html.spec.whatwg.org/images/parsing-model-overview.svg

A document can contain information in iconic form. The icon is intended to help users of visual browsers to recognize features at a
glance.

In some cases, the icon is supplemental to a text label conveying the same meaning. In those cases, the altp321 attribute must be
present but must be empty.

In other cases, the icon has no text next to it describing what it means; the icon is supposed to be self-explanatory. In those cases, an
equivalent textual label must be given in the altp321 attribute.

data goes to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to the
Tokenizer."></p>

Here's another example, showing a good solution and a bad solution to the problem of including an image in a description.

First, here's the good solution. This sample shows how the alternative text should just be what you would have put in the prose if
the image had never existed.

<!-- This is the correct way to do things. -->
<p>
You are standing in an open field west of a house.

There is a small mailbox here.

</p>

Second, here's the bad solution. In this incorrect way of doing things, the alternative text is simply a description of the image,
instead of a textual replacement for the image. It's bad because when the image isn't shown, the text doesn't flow as well as in the
first example.

<!-- This is the wrong way to do things. -->
<p>
You are standing in an open field west of a house.

There is a small mailbox here.

</p>

Text such as "Photo of white house with boarded door" would be equally bad alternative text (though it could be suitable for the
titlep139 attribute or in the figcaptionp235 element of a figurep232 with this image).

Example

4.8.4.4.4 A short phrase or label with an alternative graphical representation: icons, logos §p35

0

Here the icons are next to text that conveys the same meaning, so they have an empty altp321 attribute:

<nav>
<p> Help</p>
<p>
Configuration Tools</p>

</nav>

Example

Here, posts on a news site are labeled with an icon indicating their topic.

<body>

Example

350

Many pages include logos, insignia, flags, or emblems, which stand for a particular entity such as a company, organization, project,
band, software package, country, or some such.

If the logo is being used to represent the entity, e.g. as a page heading, the altp321 attribute must contain the name of the entity being
represented by the logo. The altp321 attribute must not contain text like the word "logo", as it is not the fact that it is a logo that is
being conveyed, it's the entity itself.

If the logo is being used next to the name of the entity that it represents, then the logo is supplemental, and its altp321 attribute must
instead be empty.

If the logo is merely used as decorative material (as branding, or, for example, as a side image in an article that mentions the entity to
which the logo belongs), then the entry below on purely decorative images applies. If the logo is actually being discussed, then it is
being used as a phrase or paragraph (the description of the logo) with an alternative graphical representation (the logo itself), and the
first entry above applies.

<article>
<header>
<h1>Ratatouille wins <i>Best Movie of the Year</i> award</h1>
<p></p>

</header>
<p>Pixar has won yet another <i>Best Movie of the Year</i> award,
making this its 8th win in the last 12 years.</p>

</article>
<article>
<header>
<h1>Latest TWiT episode is online</h1>
<p></p>

</header>
<p>The latest TWiT episode has been posted, in which we hear
several tech news stories as well as learning much more about the
iPhone. This week, the panelists compare how reflective their
iPhones' Apple logos are.</p>

</article>
</body>

In the following snippets, all four of the above cases are present. First, we see a logo used to represent a company:

<h1></h1>

Next, we see a paragraph which uses a logo right next to the company name, and so doesn't have any alternative text:

<article>
<h2>News</h2>
<p>We have recently been looking at buying the <img src="alpha.gif"
alt=""> ΑΒΓ company, a small Greek company
specializing in our type of product.</p>

In this third snippet, we have a logo being used in an aside, as part of the larger article discussing the acquisition:

<aside><p></p></aside>
<p>The ΑΒΓ company has had a good quarter, and our
pie chart studies of their accounts suggest a much bigger blue slice
than its green and orange slices, which is always a good sign.</p>

</article>

Finally, we have an opinion piece talking about a logo, and the logo is therefore described in detail in the alternative text.

Example

351

Sometimes, an image just consists of text, and the purpose of the image is not to highlight the actual typographic effects used to
render the text, but just to convey the text itself.

In such cases, the altp321 attribute must be present but must consist of the same text as written in the image itself.

When an image is used to represent a character that cannot otherwise be represented in Unicode, for example gaiji, itaiji, or new
characters such as novel currency symbols, the alternative text should be a more conventional way of writing the same thing, e.g.
using the phonetic hiragana or katakana to give the character's pronunciation.

An image should not be used if characters would serve an identical purpose. Only when the text cannot be directly represented using
text, e.g., because of decorations or because there is no appropriate character (as in the case of gaiji), would an image be appropriate.

<p>Consider for a moment their logo:</p>

<p><img src="/images/logo" alt="It consists of a green circle with a
green question mark centered inside it."></p>

<p>How unoriginal can you get? I mean, oooooh, a question mark, how
revolutionary, how utterly ground-breaking, I'm
sure everyone will rush to adopt those specifications now! They could
at least have tried for some sort of, I don't know, sequence of
rounded squares with varying shades of green and bold white outlines,
at least that would look good on the cover of a blue book.</p>

This example shows how the alternative text should be written such that if the image isn't availablep336, and the text is used
instead, the text flows seamlessly into the surrounding text, as if the image had never been there in the first place.

4.8.4.4.5 Text that has been rendered to a graphic for typographical effect §p35

2

Consider a graphic containing the text "Earth Day", but with the letters all decorated with flowers and plants. If the text is merely
being used as a heading, to spice up the page for graphical users, then the correct alternative text is just the same text "Earth
Day", and no mention need be made of the decorations:

<h1></h1>

Example

An illuminated manuscript might use graphics for some of its images. The alternative text in such a situation is just the character
that the image represents.

<p>nce upon a time and a long long time ago, late at
night, when it was dark, over the hills, through the woods, across a great ocean, in a land far
away, in a small house, on a hill, under a full moon...

Example

In this example from 1997, a new-fangled currency symbol that looks like a curly E with two bars in the middle instead of one is
represented using an image. The alternative text gives the character's pronunciation.

<p>Only 5.99!

Example

If an author is tempted to use an image because their default system font does not support a given character, then web Fonts are
a better solution than images.

Note

352

In many cases, the image is actually just supplementary, and its presence merely reinforces the surrounding text. In these cases, the
altp321 attribute must be present but its value must be the empty string.

In general, an image falls into this category if removing the image doesn't make the page any less useful, but including the image
makes it a lot easier for users of visual browsers to understand the concept.

4.8.4.4.6 A graphical representation of some of the surrounding text §p35

3

A flowchart that repeats the previous paragraph in graphical form:

<p>The Network passes data to the Input Stream Preprocessor, which
passes it to the Tokenizer, which passes it to the Tree Construction
stage. From there, data goes to both the DOM and to Script Execution.
Script Execution is linked to the DOM, and, using document.write(),
passes data to the Tokenizer.</p>
<p></p>

In these cases, it would be wrong to include alternative text that consists of just a caption. If a caption is to be included, then either
the titlep139 attribute can be used, or the figurep232 and figcaptionp235 elements can be used. In the latter case, the image
would in fact be a phrase or paragraph with an alternative graphical representation, and would thus require alternative text.

<!-- Using the title="" attribute -->
<p>The Network passes data to the Input Stream Preprocessor, which
passes it to the Tokenizer, which passes it to the Tree Construction
stage. From there, data goes to both the DOM and to Script Execution.
Script Execution is linked to the DOM, and, using document.write(),
passes data to the Tokenizer.</p>
<p><img src="images/parsing-model-overview.svg" alt=""

title="Flowchart representation of the parsing model."></p>

<!-- Using <figure> and <figcaption> -->
<p>The Network passes data to the Input Stream Preprocessor, which
passes it to the Tokenizer, which passes it to the Tree Construction
stage. From there, data goes to both the DOM and to Script Execution.
Script Execution is linked to the DOM, and, using document.write(),
passes data to the Tokenizer.</p>
<figure>
<img src="images/parsing-model-overview.svg" alt="The Network leads to
the Input Stream Preprocessor, which leads to the Tokenizer, which
leads to the Tree Construction stage. The Tree Construction stage
leads to two items. The first is Script Execution, which leads via
document.write() back to the Tokenizer. The second item from which
Tree Construction leads is the DOM. The DOM is related to the Script
Execution.">
<figcaption>Flowchart representation of the parsing model.</figcaption>

</figure>

<!-- This is WRONG. Do not do this. Instead, do what the above examples do. -->
<p>The Network passes data to the Input Stream Preprocessor, which
passes it to the Tokenizer, which passes it to the Tree Construction
stage. From there, data goes to both the DOM and to Script Execution.
Script Execution is linked to the DOM, and, using document.write(),
passes data to the Tokenizer.</p>
<p><img src="images/parsing-model-overview.svg"

alt="Flowchart representation of the parsing model."></p>
<!-- Never put the image's caption in the alt="" attribute! -->

Example

A graph that repeats the previous paragraph in graphical form:
Example

353

Sometimes, an image is not critical to the content, but is nonetheless neither purely decorative nor entirely redundant with the text. In
these cases, the altp321 attribute must be present, and its value should either be the empty string, or a textual representation of the
information that the image conveys. If the image has a caption giving the image's title, then the altp321 attribute's value must not be
empty (as that would be quite confusing for non-visual readers).

<p>According to a study covering several billion pages,
about 62% of documents on the web in 2007 triggered the Quirks
rendering mode of web browsers, about 30% triggered the Almost
Standards mode, and about 9% triggered the Standards mode.</p>
<p></p>

4.8.4.4.7 Ancillary images §p35

4

Consider a news article about a political figure, in which the individual's face was shown in an image that, through a style sheet, is
floated to the right. The image is not purely decorative, as it is relevant to the story. The image is not entirely redundant with the
story either, as it shows what the politician looks like. Whether any alternative text need be provided is an authoring decision, in
part influenced by whether the image colors the interpretation of the prose.

In this first variant, the image is shown without context, and no alternative text is provided:

<p> Ahead of today's referendum,
the First Minister of Scotland, Alex Salmond, wrote an open letter to all
registered voters. In it, he admitted that all countries make mistakes.</p>

If the picture is just a face, there might be no value in describing it. It's of no interest to the reader whether the individual has red
hair or blond hair, whether the individual has white skin or black skin, whether the individual has one eye or two eyes.

However, if the picture is more dynamic, for instance showing the politician as angry, or particularly happy, or devastated, some
alternative text would be useful in setting the tone of the article, a tone that might otherwise be missed:

<p>
Ahead of today's referendum, the First Minister of Scotland, Alex Salmond,
wrote an open letter to all registered voters. In it, he admitted that all
countries make mistakes.</p>

<p>
Ahead of today's referendum, the First Minister of Scotland, Alex Salmond,
wrote an open letter to all registered voters. In it, he admitted that all
countries make mistakes.</p>

Whether the individual was "sad" or "ecstatic" makes a difference to how the rest of the paragraph is to be interpreted: is he likely
saying that he is resigned to the populace making a bad choice in the upcoming referendum, or is he saying that the election was
a mistake but the likely turnout will make it irrelevant? The interpretation varies based on the image.

Example

If the image has a caption, then including alternative text avoids leaving the non-visual user confused as to what the caption refers
to.

<p>Ahead of today's referendum, the First Minister of Scotland, Alex Salmond,
wrote an open letter to all registered voters. In it, he admitted that all
countries make mistakes.</p>
<figure>
<img src="alexsalmond.jpeg"

alt="A high forehead, cheerful disposition, and dark hair round out Alex Salmond's face.">
<figcaption> Alex Salmond, SNP. Photo © 2014 PolitiPhoto. </figcaption>

Example

354

If an image is decorative but isn't especially page-specific — for example an image that forms part of a site-wide design scheme — the
image should be specified in the site's CSS, not in the markup of the document.

However, a decorative image that isn't discussed by the surrounding text but still has some relevance can be included in a page using
the imgp320 element. Such images are decorative, but still form part of the content. In these cases, the altp321 attribute must be
present but its value must be the empty string.

When a picture has been sliced into smaller image files that are then displayed together to form the complete picture again, one of the
images must have its altp321 attribute set as per the relevant rules that would be appropriate for the picture as a whole, and then all
the remaining images must have their altp321 attribute set to the empty string.

</figure>

4.8.4.4.8 A purely decorative image that doesn't add any information §p35

5

Examples where the image is purely decorative despite being relevant would include things like a photo of the Black Rock City
landscape in a blog post about an event at Burning Man, or an image of a painting inspired by a poem, on a page reciting that
poem. The following snippet shows an example of the latter case (only the first verse is included in this snippet):

<h1>The Lady of Shalott</h1>
<p></p>
<p>On either side the river lie

Long fields of barley and of rye,

That clothe the wold and meet the sky;

And through the field the road run by

To many-tower'd Camelot;

And up and down the people go,

Gazing where the lilies blow

Round an island there below,

The island of Shalott.</p>

Example

4.8.4.4.9 A group of images that form a single larger picture with no links §p35

5

In the following example, a picture representing a company logo for XYZ Corp has been split into two pieces, the first containing
the letters "XYZ" and the second with the word "Corp". The alternative text ("XYZ Corp") is all in the first image.

<h1></h1>

Example

In the following example, a rating is shown as three filled stars and two empty stars. While the alternative text could have been
"★★★☆☆", the author has instead decided to more helpfully give the rating in the form "3 out of 5". That is the alternative text of
the first image, and the rest have blank alternative text.

<p>Rating: <meter max=5 value=3><img src="1" alt="3 out of 5"
><img src="0" alt=""
></meter></p>

Example

355

Generally, image mapsp445 should be used instead of slicing an image for links.

However, if an image is indeed sliced and any of the components of the sliced picture are the sole contents of links, then one image
per link must have alternative text in its altp321 attribute representing the purpose of the link.

In some cases, the image is a critical part of the content. This could be the case, for instance, on a page that is part of a photo gallery.
The image is the whole point of the page containing it.

How to provide alternative text for an image that is a key part of the content depends on the image's provenance.

The general case
When it is possible for detailed alternative text to be provided, for example if the image is part of a series of screenshots in a
magazine review, or part of a comic strip, or is a photograph in a blog entry about that photograph, text that can serve as a
substitute for the image must be given as the contents of the altp321 attribute.

4.8.4.4.10 A group of images that form a single larger picture with links §p35

6

In the following example, a picture representing the flying spaghetti monster emblem, with each of the left noodly appendages and
the right noodly appendages in different images, so that the user can pick the left side or the right side in an adventure.

<h1>The Church</h1>
<p>You come across a flying spaghetti monster. Which side of His
Noodliness do you wish to reach out for?</p>
<p><img src="fsm-middle.png" alt=""
></p>

Example

4.8.4.4.11 A key part of the content §p35

6

A screenshot in a gallery of screenshots for a new OS, with some alternative text:

<figure>
<img src="KDE%20Light%20desktop.png"

alt="The desktop is blue, with icons along the left hand side in
two columns, reading System, Home, K-Mail, etc. A window is
open showing that menus wrap to a second line if they
cannot fit in the window. The window has a list of icons
along the top, with an address bar below it, a list of
icons for tabs along the left edge, a status bar on the
bottom, and two panes in the middle. The desktop has a bar
at the bottom of the screen with a few buttons, a pager, a
list of open applications, and a clock.">

<figcaption>Screenshot of a KDE desktop.</figcaption>
</figure>

Example

A graph in a financial report:

<img src="sales.gif"
title="Sales graph"
alt="From 1998 to 2005, sales increased by the following percentages
with each year: 624%, 75%, 138%, 40%, 35%, 9%, 21%">

Note that "sales graph" would be inadequate alternative text for a sales graph. Text that would be a good caption is not
generally suitable as replacement text.

Example

356

Images that defy a complete description
In certain cases, the nature of the image might be such that providing thorough alternative text is impractical. For example, the
image could be indistinct, or could be a complex fractal, or could be a detailed topographical map.

In these cases, the altp321 attribute must contain some suitable alternative text, but it may be somewhat brief.

Sometimes there simply is no text that can do justice to an image. For example, there is little that can be said to usefully
describe a Rorschach inkblot test. However, a description, even if brief, is still better than nothing:

<figure>
<img src="/commons/a/a7/Rorschach1.jpg" alt="A shape with left-right
symmetry with indistinct edges, with a small gap in the center, two
larger gaps offset slightly from the center, with two similar gaps
under them. The outline is wider in the top half than the bottom
half, with the sides extending upwards higher than the center, and
the center extending below the sides.">
<figcaption>A black outline of the first of the ten cards
in the Rorschach inkblot test.</figcaption>

</figure>

Note that the following would be a very bad use of alternative text:

<!-- This example is wrong. Do not copy it. -->
<figure>
<img src="/commons/a/a7/Rorschach1.jpg" alt="A black outline
of the first of the ten cards in the Rorschach inkblot test.">
<figcaption>A black outline of the first of the ten cards
in the Rorschach inkblot test.</figcaption>

</figure>

Including the caption in the alternative text like this isn't useful because it effectively duplicates the caption for users who don't
have images, taunting them twice yet not helping them any more than if they had only read or heard the caption once.

Example

Another example of an image that defies full description is a fractal, which, by definition, is infinite in detail.

The following example shows one possible way of providing alternative text for the full view of an image of the Mandelbrot set.

<img src="ms1.jpeg" alt="The Mandelbrot set appears as a cardioid with
its cusp on the real axis in the positive direction, with a smaller
bulb aligned along the same center line, touching it in the negative
direction, and with these two shapes being surrounded by smaller bulbs
of various sizes.">

Example

Similarly, a photograph of a person's face, for example in a biography, can be considered quite relevant and key to the content,
but it can be hard to fully substitute text for:

<section class="bio">
<h1>A Biography of Isaac Asimov</h1>
<p>Born Isaak Yudovich Ozimov in 1920, Isaac was a prolific author.</p>
<p><img src="headpics/asimov.jpeg" alt="Isaac Asimov had dark hair, a tall forehead, and wore

glasses.
Later in life, he wore long white sideburns.">
<p>Asimov was born in Russia, and moved to the US when he was three years old.</p>
<p>...

</section>

In such cases it is unnecessary (and indeed discouraged) to include a reference to the presence of the image itself in the

Example

357

Images whose contents are not known
In some unfortunate cases, there might be no alternative text available at all, either because the image is obtained in some
automated fashion without any associated alternative text (e.g. a Webcam), or because the page is being generated by a script
using user-provided images where the user did not provide suitable or usable alternative text (e.g. photograph sharing sites), or
because the author does not themself know what the images represent (e.g. a blind photographer sharing an image on their blog).

In such cases, the altp321 attribute may be omitted, but one of the following conditions must be met as well:

• The imgp320 element is in a figurep232 element that contains a figcaptionp235 element that contains content other than
inter-element whitespacep129, and, ignoring the figcaptionp235 element and its descendants, the figurep232 element has
no flow contentp131 descendants other than inter-element whitespacep129 and the imgp320 element.

• The titlep139 attribute is present and has a non-empty value.

alternative text, since such text would be redundant with the browser itself reporting the presence of the image. For example, if
the alternative text was "A photo of Isaac Asimov", then a conforming user agent might read that out as "(Image) A photo of
Isaac Asimov" rather than the more useful "(Image) Isaac Asimov had dark hair, a tall forehead, and wore glasses...".

Relying on the titlep139 attribute is currently discouraged as many user agents do not expose the attribute in an
accessible manner as required by this specification (e.g. requiring a pointing device such as a mouse to cause a
tooltip to appear, which excludes keyboard-only users and touch-only users, such as anyone with a modern phone or
tablet).

Note

Such cases are to be kept to an absolute minimum. If there is even the slightest possibility of the author having the ability to
provide real alternative text, then it would not be acceptable to omit the altp321 attribute.

Note

A photo on a photo-sharing site, if the site received the image with no metadata other than the caption, could be marked up as
follows:

<figure>

<figcaption>Bubbles traveled everywhere with us.</figcaption>

</figure>

It would be better, however, if a detailed description of the important parts of the image obtained from the user and included on
the page.

Example

A blind user's blog in which a photo taken by the user is shown. Initially, the user might not have any idea what the photo they
took shows:

<article>
<h1>I took a photo</h1>
<p>I went out today and took a photo!</p>
<figure>

<figcaption>A photograph taken blindly from my front porch.</figcaption>

</figure>
</article>

Eventually though, the user might obtain a description of the image from their friends and could then include alternative text:

<article>
<h1>I took a photo</h1>
<p>I went out today and took a photo!</p>
<figure>

Example

358

Generally authors should avoid using imgp320 elements for purposes other than showing images.

If an imgp320 element is being used for purposes other than showing an image, e.g. as part of a service to count page views, then the
altp321 attribute must be the empty string.

In such cases, the widthp449 and heightp449 attributes should both be set to zero.

<img src="photo2.jpeg" alt="The photograph shows my squirrel
feeder hanging from the edge of my roof. It is half full, but there
are no squirrels around. In the background, out-of-focus trees fill the
shot. The feeder is made of wood with a metal grate, and it contains
peanuts. The edge of the roof is wooden too, and is painted white
with light blue streaks.">
<figcaption>A photograph taken blindly from my front porch.</figcaption>

</figure>
</article>

Sometimes the entire point of the image is that a textual description is not available, and the user is to provide the description.
For instance, the point of a CAPTCHA image is to see if the user can literally read the graphic. Here is one way to mark up a
CAPTCHA (note the titlep139 attribute):

<p><label>What does this image say?

<input type=text name=captcha></label>
(If you cannot see the image, you can use an audio test instead.)</p>

Another example would be software that displays images and asks for alternative text precisely for the purpose of then writing a
page with correct alternative text. Such a page could have a table of images, like this:

<table>
<thead>
<tr> <th> Image <th> Description

<tbody>
<tr>
<td>
<td> <input name="alt2421">

<tr>
<td>
<td> <input name="alt2422">

</table>

Notice that even in this example, as much useful information as possible is still included in the titlep139 attribute.

Example

Since some users cannot use images at all (e.g. because they have a very slow connection, or because they are using a text-
only browser, or because they are listening to the page being read out by a hands-free automobile voice web browser, or simply
because they are blind), the altp321 attribute is only allowed to be omitted rather than being provided with replacement text
when no alternative text is available and none can be made available, as in the above examples. Lack of effort from the part of
the author is not an acceptable reason for omitting the altp321 attribute.

Note

4.8.4.4.12 An image not intended for the user §p35

9

359

This section does not apply to documents that are publicly accessible, or whose target audience is not necessarily personally known to
the author, such as documents on a web site, emails sent to public mailing lists, or software documentation.

When an image is included in a private communication (such as an HTML email) aimed at a specific person who is known to be able to
view images, the altp321 attribute may be omitted. However, even in such cases authors are strongly urged to include alternative text
(as appropriate according to the kind of image involved, as described in the above entries), so that the email is still usable should the
user use a mail client that does not support images, or should the document be forwarded on to other users whose abilities might not
include easily seeing images.

Markup generators (such as WYSIWYG authoring tools) should, wherever possible, obtain alternative text from their users. However, it
is recognized that in many cases, this will not be possible.

For images that are the sole contents of links, markup generators should examine the link target to determine the title of the target, or
the URL of the target, and use information obtained in this manner as the alternative text.

For images that have captions, markup generators should use the figurep232 and figcaptionp235 elements, or the titlep139 attribute,
to provide the image's caption.

As a last resort, implementers should either set the altp321 attribute to the empty string, under the assumption that the image is a
purely decorative image that doesn't add any information but is still specific to the surrounding content, or omit the altp321 attribute
altogether, under the assumption that the image is a key part of the content.

Markup generators may specify a generator-unable-to-provide-required-alt attribute on imgp320 elements for which they have
been unable to obtain alternative text and for which they have therefore omitted the altp321 attribute. The value of this attribute must
be the empty string. Documents containing such attributes are not conforming, but conformance checkers will silently ignorep360 this
error.

Markup generators should generally avoid using the image's own file name as the alternative text. Similarly, markup generators should
avoid generating alternative text from any content that will be equally available to presentation user agents (e.g., web browsers).

A conformance checker must report the lack of an altp321 attribute as an error unless one of the conditions listed below applies:

• The imgp320 element is in a figurep232 element that satisfies the conditions described abovep358.

• The imgp320 element has a titlep139 attribute with a value that is not the empty string (also as described abovep358).

• The conformance checker has been configured to assume that the document is an email or document intended for a specific
person who is known to be able to view images.

• The imgp320 element has a (non-conforming) generator-unable-to-provide-required-altp360 attribute whose value is the
empty string. A conformance checker that is not reporting the lack of an altp321 attribute as an error must also not report the
presence of the empty generator-unable-to-provide-required-altp360 attribute as an error. (This case does not
represent a case where the document is conforming, only that the generator could not determine appropriate alternative text

4.8.4.4.13 An image in an email or private document intended for a specific person who is known to be able to view
images

§p36

0

4.8.4.4.14 Guidance for markup generators §p36

0

This is intended to avoid markup generators from being pressured into replacing the error of omitting the altp321 attribute with the
even more egregious error of providing phony alternative text, because state-of-the-art automated conformance checkers cannot
distinguish phony alternative text from correct alternative text.

Note

This is because once a page is generated, it will typically not be updated, whereas the browsers that later read the page can be
updated by the user, therefore the browser is likely to have more up-to-date and finely-tuned heuristics than the markup generator
did when generating the page.

Note

4.8.4.4.15 Guidance for conformance checkers §p36

0

360

— validators are not required to show an error in this case, because such an error might encourage markup generators to
include bogus alternative text purely in an attempt to silence validators. Naturally, conformance checkers may report the
lack of an altp321 attribute as an error even in the presence of the generator-unable-to-provide-required-altp360

attribute; for example, there could be a user option to report all conformance errors even those that might be the more or
less inevitable result of using a markup generator.)

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Embedded contentp132.
Interactive contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where embedded contentp132 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

srcp362 — Address of the resource
srcdocp362 — A document to render in the iframep361

namep365 — Name of nested browsing contextp814

sandboxp365 — Security rules for nested content
allowp367 — Permissions policy to be applied to the iframep361 's contents
allowfullscreenp367 — Whether to allow the iframep361 's contents to use requestFullscreen()
allowpaymentrequestp367 — Whether the iframep361 's contents are allowed to use the PaymentRequest interface to make
payment requests
widthp449 — Horizontal dimension
heightp449 — Vertical dimension
referrerpolicyp368 — Referrer policy for fetches initiated by the element
loadingp368 — Used when determining loading deferral

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLIFrameElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString srcdoc;
[CEReactions] attribute DOMString name;
[SameObject, PutForwards=value] readonly attribute DOMTokenList sandbox;
[CEReactions] attribute DOMString allow;
[CEReactions] attribute boolean allowFullscreen;
[CEReactions] attribute boolean allowPaymentRequest;
[CEReactions] attribute DOMString width;
[CEReactions] attribute DOMString height;
[CEReactions] attribute DOMString referrerPolicy;
[CEReactions] attribute DOMString loading;
readonly attribute Document? contentDocument;

IDL

4.8.5 The iframe element §p36

1

✔ MDN

✔ MDN

361

https://w3c.github.io/webappsec-feature-policy/#permissions-policy
https://fullscreen.spec.whatwg.org/#dom-element-requestfullscreen
https://w3c.github.io/payment-request/#dom-paymentrequest
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-iframe
https://w3c.github.io/html-aam/#el-iframe
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist

readonly attribute WindowProxy? contentWindow;
Document? getSVGDocument();

// also has obsolete members
};

The iframep361 element representsp123 its nested browsing contextp814.

The src attribute gives the URL of a page that the element's nested browsing contextp814 is to contain. The attribute, if present, must
be a valid non-empty URL potentially surrounded by spacesp88. If the itempropp736 attribute is specified on an iframep361 element, then
the srcp362 attribute must also be specified.

The srcdoc attribute gives the content of the page that the element's nested browsing contextp814 is to contain. The value of the
attribute is the source of an iframe srcdoc document.

The srcdocp362 attribute, if present, must have a value using the HTML syntaxp1067 that consists of the following syntactic components,
in the given order:

1. Any number of commentsp1078 and ASCII whitespace.

2. Optionally, a DOCTYPEp1067.

3. Any number of commentsp1078 and ASCII whitespace.

4. The document element, in the form of an htmlp152 elementp1068.

5. Any number of commentsp1078 and ASCII whitespace.

The above requirements apply in XML documents as well.
Note

Here a blog uses the srcdocp362 attribute in conjunction with the sandboxp365 attribute described below to provide users of user
agents that support this feature with an extra layer of protection from script injection in the blog post comments:

<article>
<h1>I got my own magazine!</h1>
<p>After much effort, I've finally found a publisher, and so now I
have my own magazine! Isn't that awesome?! The first issue will come
out in September, and we have articles about getting food, and about
getting in boxes, it's going to be great!</p>
<footer>
<p>Written by cap, 1 hour ago.

</footer>
<article>
<footer> Thirteen minutes ago, ch wrote: </footer>
<iframe sandbox srcdoc="<p>did you get a cover picture yet?"></iframe>

</article>
<article>
<footer> Nine minutes ago, cap wrote: </footer>
<iframe sandbox srcdoc="<p>Yeah, you can see it in my gallery."></iframe>
</article>
<article>
<footer> Five minutes ago, ch wrote: </footer>
<iframe sandbox srcdoc="<p>hey that's earl's table.

<p>you should get earl&amp;me on the next cover."></iframe>
</article>

Notice the way that quotes have to be escaped (otherwise the srcdocp362 attribute would end prematurely), and the way raw

Example

✔ MDN

362

https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#xml-document

When an iframep361 element element is inserted into a documentp44 whose browsing contextp811 is non-null, the user agent must run
these steps:

1. Create a new nested browsing contextp814 for element.

2. Process the iframe attributesp363 for element, with initialInsertionp363 set to true.

When an iframep361 element is removed from a documentp44, the user agent must discardp831 the element's nested browsing
contextp814, if it is not null, and then set the element's nested browsing contextp814 to null.

Whenever an iframep361 element with a non-null nested browsing contextp814 has its srcdocp362 attribute set, changed, or removed, the
user agent must process the iframe attributesp363.

Similarly, whenever an iframep361 element with a non-null nested browsing contextp814 but with no srcdocp362 attribute specified has
its srcp362 attribute set, changed, or removed, the user agent must process the iframe attributesp363.

To process the iframe attributes for an element element, with an optional boolean initialInsertion (default false):

1. If element's srcdocp362 attribute is specified, then:

1. Set element's current navigation was lazy loadedp365 boolean to false.

2. If the will lazy load element stepsp93 given element return true, then:

1. Set element's lazy load resumption stepsp93 to the rest of this algorithm starting with the step labeled
navigate to the srcdoc resource.

2. Set element's current navigation was lazy loadedp365 boolean to true.

3. Start intersection-observing a lazy loading element p93 for element.

ampersands (e.g. in URLs or in prose) mentioned in the sandboxed content have to be doubly escaped — once so that the
ampersand is preserved when originally parsing the srcdocp362 attribute, and once more to prevent the ampersand from being
misinterpreted when parsing the sandboxed content.

Furthermore, notice that since the DOCTYPEp1067 is optional in iframe srcdoc documentsp362, and the htmlp152, headp153, and
bodyp178 elements have optional start and end tagsp1071, and the titlep154 element is also optional in iframe srcdoc
documentsp362, the markup in a srcdocp362 attribute can be relatively succinct despite representing an entire document, since only
the contents of the bodyp178 element need appear literally in the syntax. The other elements are still present, but only by
implication.

In the HTML syntaxp1067, authors need only remember to use U+0022 QUOTATION MARK characters (") to wrap the attribute
contents and then to escape all U+0026 AMPERSAND (&) and U+0022 QUOTATION MARK (") characters, and to specify the
sandboxp365 attribute, to ensure safe embedding of content. (And remember to escape ampersands before quotation marks, to
ensure quotation marks become " and not &quot;.)

Note

In XML the U+003C LESS-THAN SIGN character (<) needs to be escaped as well. In order to prevent attribute-value normalization,
some of XML's whitespace characters — specifically U+0009 CHARACTER TABULATION (tab), U+000A LINE FEED (LF), and U+000D
CARRIAGE RETURN (CR) — also need to be escaped. [XML]p1293

Note

If the srcp362 attribute and the srcdocp362 attribute are both specified together, the srcdocp362 attribute takes priority. This allows
authors to provide a fallback URL for legacy user agents that do not support the srcdocp362 attribute.

Note

This happens without any unloadp1282 events firing (the element's nested browsing contextp814 and its Documentp114 are
discardedp831, not unloadedp886).

Note

363

https://www.w3.org/TR/xml/#AVNormalize
https://url.spec.whatwg.org/#concept-url

4. Return.

3. Navigate to the srcdoc resource: navigate an iframe or framep364 given element and a new response whose url list
consists of about:srcdocp88, header list consists of `Content-Type`/`text/htmlp1250`, body is the value of
element's srcdocp362 attribute, and CSP list is a clone of element's node document's CSP listp115.

The resulting Documentp114 must be considered an iframe srcdoc documentp362.

2. Otherwise, if initialInsertion is false, run the otherwise steps for iframe or frame elementsp364 given element.

The otherwise steps for iframe or frame elements, given an element element, are:

1. If element has no srcp362 attribute specified, or its value is the empty string, let url be the URL "about:blankp51".

Otherwise, parsep89 the value of element's srcp362 attribute, relative to element's node document.

If that is not successful, then let url be the URL "about:blankp51". Otherwise, let url be the resulting URL recordp89.

2. If there exists an ancestor browsing contextp814 of element's nested browsing contextp814 whose active documentp811 's URL,
ignoring fragments, is equal to url, then return.

3. Let resource be a new request whose url is url and whose referrer policy is the current state of element's referrerpolicyp368

content attribute.

4. If element is an iframep361 element, then set element's current navigation was lazy loadedp365 boolean to false.

5. If element is an iframep361 element, and the will lazy load element stepsp93 given element return true, then:

1. Set element's lazy load resumption stepsp93 to the rest of this algorithm starting with the step labeled navigate to
the resource.

2. Set element's current navigation was lazy loadedp365 boolean to true.

3. Start intersection-observing a lazy loading element p93 for element.

4. Return.

6. Navigate to the resource: navigate an iframe or framep364 given element and resource.

To navigate an iframe or frame given an element element and a resource resource:

1. Let historyHandling be "defaultp866".

2. If element's nested browsing contextp814 's session historyp849 contains only one Documentp114, and that was the
about:blankp51 Documentp114 created when element's nested browsing contextp814 was created, then set historyHandling to
"replacep866".

3. If element's nested browsing contextp814 's active documentp811 is not completely loadedp885, then set historyHandling to
"replacep866".

4. Navigatep866 element's nested browsing contextp814 to resource, with historyHandlingp866 set to historyHandling and the
source browsing contextp866 set to element's node document's browsing contextp811.

Each Documentp114 has an iframe load in progress flag and a mute iframe load flag. When a Documentp114 is created, these flags
must be unset for that Documentp114.

To run the iframe load event steps, given an iframep361 element element:

1. Assert: element's nested browsing contextp814 is not null.

2. Let childDocument be the active documentp811 of element's nested browsing contextp814.

3. If childDocument has its mute iframe loadp364 flag set, then return.

4. Set childDocument's iframe load in progressp364 flag.

A loadp1282 event is also fired at the iframep361 element when it is created if no other data is loaded in it.
Note

364

https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url-list
https://fetch.spec.whatwg.org/#concept-response-header-list
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-response-csp-list
https://infra.spec.whatwg.org/#list-clone
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://dom.spec.whatwg.org/#concept-node-document

5. Fire an event named loadp1282 at element.

6. Unset childDocument's iframe load in progressp364 flag.

If an element type potentially delays the load event, then for each element element of that type, the user agent must delay the
load eventp1165 of element's node document if element's nested browsing contextp814 is non-null and any of the following are true:

• element's nested browsing contextp814 's active documentp811 is not ready for post-load tasksp1165.

• Anything is delaying the load eventp1165 of element's nested browsing contextp814 's active documentp811.

• element's nested browsing contextp814 is in the delaying load events modep815.

Each iframep361 element has an associated current navigation was lazy loaded boolean, initially false. It is set and unset in the
process the iframe attributesp363 algorithm.

An iframep361 element whose current navigation was lazy loadedp365 boolean is false potentially delays the load eventp365.

The name attribute, if present, must be a valid browsing context namep819. The given value is used to name the element's nested
browsing contextp814 if present when that is created.

The sandbox attribute, when specified, enables a set of extra restrictions on any content hosted by the iframep361. Its value must be an
unordered set of unique space-separated tokensp87 that are ASCII case-insensitive. The allowed values are allow-formsp844, allow-
modalsp844, allow-orientation-lockp844, allow-pointer-lockp844, allow-popupsp843, allow-popups-to-escape-sandboxp844, allow-
presentationp844, allow-same-originp843, allow-scriptsp844, allow-top-navigationp843, allow-top-navigation-by-user-
activationp843, and allow-downloadsp844.

When the attribute is set, the content is treated as being from a unique originp837, forms, scripts, and various potentially annoying APIs
are disabled, links are prevented from targeting other browsing contextsp811, and plugins are secured. The allow-same-originp843

keyword causes the content to be treated as being from its real origin instead of forcing it into a unique origin; the allow-top-
navigationp843 keyword allows the content to navigatep866 its top-level browsing contextp814; the allow-top-navigation-by-user-
activationp843 keyword behaves similarly but allows such navigationp866 only when the browsing context's active windowp811 has
transient activationp767; and the allow-formsp844, allow-modalsp844, allow-orientation-lockp844, allow-pointer-lockp844, allow-
popupsp843, allow-presentationp844, allow-scriptsp844, and allow-popups-to-escape-sandboxp844 keywords re-enable forms, modal
dialogs, screen orientation lock, the pointer lock API, popups, the presentation API, scripts, and the creation of unsandboxed auxiliary
browsing contextsp814 respectively. [POINTERLOCK]p1290 [SCREENORIENTATION]p1291 [PRESENTATION]p1290

The allow-top-navigationp843 and allow-top-navigation-by-user-activationp843 keywords must not both be specified, as doing
so is redundant; only allow-top-navigationp843 will have an effect in such non-conformant markup.

This, in conjunction with scripting, can be used to probe the URL space of the local network's HTTP servers. User
agents may implement cross-originp837 access control policies that are stricter than those described above to
mitigate this attack, but unfortunately such policies are typically not compatible with existing web content.

⚠Warning!

If, during the handling of the loadp1282 event, element's nested browsing contextp814 is again navigatedp866, that will further delay
the load eventp1165.

Note

If, when the element is created, the srcdocp362 attribute is not set, and the srcp362 attribute is either also not set or set but its
value cannot be parsedp89, the browsing context will remain at the initial about:blankp51 page.

Note

If the user navigatesp866 away from this page, the iframep361 's nested browsing contextp814 's WindowProxyp834 object will proxy new
Windowp824 objects for new Documentp114 objects, but the srcp362 attribute will not change.

Note

✔ MDN

365

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#ascii-case-insensitive

When an iframep361 element with a sandboxp365 attribute has its nested browsing contextp814 created (before the initial about:blankp51

Documentp114 is created), and when an iframep361 element's sandboxp365 attribute is set or changed while it has a nested browsing
contextp814, the user agent must parse the sandboxing directivep843 using the attribute's value as the input and the iframep361

element's iframe sandboxing flag setp844 as the output.

When an iframep361 element's sandboxp365 attribute is removed while it has a non-null nested browsing contextp814, the user agent
must empty the iframep361 element's iframe sandboxing flag setp844.

Setting both the allow-scriptsp844 and allow-same-originp843 keywords together when the embedded page has the
same originp838 as the page containing the iframep361 allows the embedded page to simply remove the sandboxp365

attribute and then reload itself, effectively breaking out of the sandbox altogether.

⚠Warning!

These flags only take effect when the nested browsing contextp814 of the iframep361 element is navigatedp866.
Removing them, or removing the entire sandboxp365 attribute, has no effect on an already-loaded page.

⚠Warning!

Potentially hostile files should not be served from the same server as the file containing the iframep361 element.
Sandboxing hostile content is of minimal help if an attacker can convince the user to just visit the hostile content
directly, rather than in the iframep361. To limit the damage that can be caused by hostile HTML content, it should be
served from a separate dedicated domain. Using a different domain ensures that scripts in the files are unable to
attack the site, even if the user is tricked into visiting those pages directly, without the protection of the sandboxp365

attribute.

⚠Warning!

In this example, some completely-unknown, potentially hostile, user-provided HTML content is embedded in a page. Because it is
served from a separate domain, it is affected by all the normal cross-site restrictions. In addition, the embedded page has scripting
disabled, plugins disabled, forms disabled, and it cannot navigate any frames or windows other than itself (or any frames or
windows it itself embeds).

<p>We're not scared of you! Here is your content, unedited:</p>
<iframe sandbox src="https://usercontent.example.net/getusercontent.cgi?id=12193"></iframe>

It is important to use a separate domain so that if the attacker convinces the user to visit that page directly, the
page doesn't run in the context of the site's origin, which would make the user vulnerable to any attack found in
the page.

⚠Warning!

Example

In this example, a gadget from another site is embedded. The gadget has scripting and forms enabled, and the origin sandbox
restrictions are lifted, allowing the gadget to communicate with its originating server. The sandbox is still useful, however, as it
disables plugins and popups, thus reducing the risk of the user being exposed to malware and other annoyances.

<iframe sandbox="allow-same-origin allow-forms allow-scripts"
src="https://maps.example.com/embedded.html"></iframe>

Example

Suppose a file A contained the following fragment:

<iframe sandbox="allow-same-origin allow-forms" src=B></iframe>

Suppose that file B contained an iframe also:

<iframe sandbox="allow-scripts" src=C></iframe>

Example

366

The allow attribute, when specified, determines the container policy that will be used when the permissions policyp115 for a
Documentp114 in the iframep361 's nested browsing contextp814 is initialized. Its value must be a serialized permissions policy.
[PERMISSIONSPOLICY]p1289

The allowfullscreen attribute is a boolean attributep67. When specified, it indicates that Documentp114 objects in the iframep361

element's nested browsing contextp814 will be initialized with a permissions policyp115 which allows the "fullscreen" feature to be used
from any originp837. This is enforced by the process permissions policy attributes algorithm. [PERMISSIONSPOLICY]p1289

The allowpaymentrequest attribute is a boolean attributep67. When specified, it indicates that Documentp114 objects in the iframep361

element's nested browsing contextp814 will be initialized with a permissions policyp115 which allows the "payment" feature to be used to
make payment requests from any originp837. This is enforced by the Process permissions policy attributes algorithm.
[PERMISSIONSPOLICY]p1289

To determine whether a Documentp114 object document is allowed to use the policy-controlled-feature feature, run these steps:

Further, suppose that file C contained a link:

Link

For this example, suppose all the files were served as text/htmlp1250.

Page C in this scenario has all the sandboxing flags set. Scripts are disabled, because the iframep361 in A has scripts disabled, and
this overrides the allow-scriptsp844 keyword set on the iframep361 in B. Forms are also disabled, because the inner iframep361 (in
B) does not have the allow-formsp844 keyword set.

Suppose now that a script in A removes all the sandboxp365 attributes in A and B. This would change nothing immediately. If the
user clicked the link in C, loading page D into the iframep361 in B, page D would now act as if the iframep361 in B had the allow-
same-originp843 and allow-formsp844 keywords set, because that was the state of the nested browsing contextp814 in the
iframep361 in A when page B was loaded.

Generally speaking, dynamically removing or changing the sandboxp365 attribute is ill-advised, because it can make it quite hard to
reason about what will be allowed and what will not.

In this example, an iframep361 is used to embed a map from an online navigation service. The allowp367 attribute is used to enable
the Geolocation API within the nested context.

<iframe src="https://maps.example.com/" allow="geolocation"></iframe>

Example

Here, an iframep361 is used to embed a player from a video site. The allowfullscreenp367 attribute is needed to enable the player
to show its video fullscreen.

<article>
<header>
<p> Fred Flintstone</p>
<p>12:44 — Private

Post</p>
</header>
<p>Check out my new ride!</p>
<iframe src="https://video.example.com/embed?id=92469812" allowfullscreen></iframe>

</article>

Example

None of these attributes, allowp367, allowfullscreenp367 or allowpaymentrequestp367, can grant access to a feature in an
iframep361 element's nested browsing contextp814 if the element's node document is not already allowed to use that feature.

Note

367

https://w3c.github.io/webappsec-feature-policy/#container-policy
https://w3c.github.io/webappsec-feature-policy/#serialized-permissions-policy
https://w3c.github.io/webappsec-feature-policy/#process-permissions-policy-attributes
https://w3c.github.io/webappsec-feature-policy/#process-permissions-policy-attributes
https://dom.spec.whatwg.org/#concept-node-document

1. If document's browsing contextp811 is null, then return false.

2. If document's browsing contextp811 's active documentp811 is not document, then return false.

3. If the result of running is feature enabled in document for origin on feature, document, and document's originp837 is
"Enabled", then return true.

4. Return false.

The iframep361 element supports dimension attributesp449 for cases where the embedded content has specific dimensions (e.g. ad units
have well-defined dimensions).

An iframep361 element never has fallback contentp132, as it will always create a new nested browsing contextp814, regardless of whether
the specified initial contents are successfully used.

The referrerpolicy attribute is a referrer policy attributep91. Its purpose is to set the referrer policy used when processing the iframe
attributesp363. [REFERRERPOLICY]p1290

The loading attribute is a lazy loading attributep93. Its purpose is to indicate the policy for loading iframep361 elements that are outside
the viewport.

When the loadingp368 attribute's state is changed to the Eagerp93 state, the user agent must run these steps:

1. Let resumptionSteps be the iframep361 element's lazy load resumption stepsp93.

2. If resumptionSteps is null, then return.

3. Set the iframep361 's lazy load resumption stepsp93 to null.

4. Invoke resumptionSteps.

Descendants of iframep361 elements represent nothing. (In legacy user agents that do not support iframep361 elements, the contents
would be parsed as markup that could act as fallback content.)

The IDL attributes src, srcdoc, name, sandbox, and allow must reflectp94 the respective content attributes of the same name.

The supported tokens for sandboxp368 's DOMTokenList are the allowed values defined in the sandboxp365 attribute and supported by the
user agent.

The allowFullscreen IDL attribute must reflectp94 the allowfullscreenp367 content attribute.

The allowPaymentRequest IDL attribute must reflectp94 the allowpaymentrequestp367 content attribute.

The referrerPolicy IDL attribute must reflectp94 the referrerpolicyp368 content attribute, limited to only known valuesp95.

The loading IDL attribute must reflectp94 the loadingp368 content attribute, limited to only known valuesp95.

The contentDocument IDL attribute, on getting, must return the iframep361 element's content documentp815.

The contentWindow IDL attribute must return the WindowProxyp834 object of the iframep361 element's nested browsing contextp814, if its
nested browsing contextp814 is non-null, or null otherwise.

Because they only influence the permissions policyp115 of the nested browsing contextp814 's active documentp811, the
allowp367, allowfullscreenp367 and allowpaymentrequestp367 attributes only take effect when the nested browsing
contextp814 of the iframep361 is navigatedp866. Adding or removing them has no effect on an already-loaded document.

⚠Warning!

The HTML parserp1079 treats markup inside iframep361 elements as text.
Note

✔ MDN

MDN

✔ MDN

✔ MDN

✔ MDN

368

https://w3c.github.io/webappsec-feature-policy/#is-feature-enabled
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#interface-domtokenlist

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Embedded contentp132.
Interactive contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where embedded contentp132 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

srcp369 — Address of the resource
typep370 — Type of embedded resource
widthp449 — Horizontal dimension
heightp449 — Vertical dimension
Any other attribute that has no namespace (see prose).

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLEmbedElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString width;
[CEReactions] attribute DOMString height;
Document? getSVGDocument();

// also has obsolete members
};

Depending on the type of content instantiated by the embedp369 element, the node may also support other interfaces.

The embedp369 element provides an integration point for an external (typically non-HTML) application or interactive content.

The src attribute gives the URL of the resource being embedded. The attribute, if present, must contain a valid non-empty URL
potentially surrounded by spacesp88.

Here is an example of a page using an iframep361 to include advertising from an advertising broker:

<iframe src="https://ads.example.com/?customerid=923513721&format=banner"
width="468" height="60"></iframe>

Example

Authors should avoid referencing untrusted resources, as such a resource can be used to instantiate plugins or run
⚠Warning!

IDL

4.8.6 The embed element §p36

9

✔ MDN

✔ MDN

369

https://w3c.github.io/html-aria/#el-embed
https://w3c.github.io/html-aam/#el-embed
https://url.spec.whatwg.org/#concept-url

If the itempropp736 attribute is specified on an embedp369 element, then the srcp369 attribute must also be specified.

The type attribute, if present, gives the MIME type by which the plugin to instantiate is selected. The value must be a valid MIME type
string. If both the typep370 attribute and the srcp369 attribute are present, then the typep370 attribute must specify the same type as the
explicit Content-Type metadatap90 of the resource given by the srcp369 attribute.

While any of the following conditions are occurring, any pluginp45 instantiated for the element must be removed, and the embedp369

element representsp123 nothing:

• The element has neither a srcp369 attribute nor a typep370 attribute.
• The element has a media elementp387 ancestor.
• The element has an ancestor objectp373 element that is not showing its fallback contentp132.

An embedp369 element is said to be potentially active when the following conditions are all met simultaneously:

• The element is in a document or was in a document the last time the event loopp944 reached step 1p946.
• The element's node document is fully activep815.
• The element has either a srcp369 attribute set or a typep370 attribute set (or both).
• The element's srcp369 attribute is either absent or its value is not the empty string.
• The element is not a descendant of a media elementp387.
• The element is not a descendant of an objectp373 element that is not showing its fallback contentp132.
• The element is being renderedp1192, or was being renderedp1192 the last time the event loopp944 reached step 1p946.

Whenever an embedp369 element that was not potentially activep370 becomes potentially activep370, and whenever a potentially
activep370 embedp369 element that is remaining potentially activep370 and has its srcp370 attribute set, changed, or removed or its
typep370 attribute set, changed, or removed, the user agent must queue an element taskp946 on the embed task source given the
element to run the embed element setup stepsp370 for that element.

The embed element setup steps for a given embedp369 element element are as follows:

1. If another taskp944 has since been queued to run the embed element setup stepsp370 for element, then return.

2. If the Should element be blocked a priori by Content Security Policy? algorithm returns "Blocked" when executed on element,
then return. [CSP]p1285

3. If element has a srcp369 attribute set, then:

1. Let url be the result of parsingp89 the value of element's srcp369 attribute, relative to element's node document.

2. If url is failure, then return.

3. Let request be a new request whose url is url, client is element's node document's relevant settings objectp924,
destination is "embed", credentials mode is "include", mode is "navigate", and whose use-URL-credentials flag is
set.

4. Fetch request.

Fetching the resource must delay the load eventp1165 of element's node document.

To process response for the response response:

1. If another taskp944 has since been queued to run the embed element setup stepsp370 for element, then
return.

2. If response is a network error, then fire an event named loadp1282 at element, and return.

3. Let type be the result of determining the type of contentp371 given element and response.

4. Switch on type:

↪ null

1. Display no pluginp371 for element.

↪ image/svg+xmlp1283

1. If element's nested browsing contextp814 is null, then create a new nested browsing

scripts, even if the author has used features such as the Flash "allowScriptAccess" parameter.

370

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/webappsec-csp/#should-plugin-element-be-blocked-a-priori-by-content-security-policy
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error
https://dom.spec.whatwg.org/#concept-event-fire

contextp814 for element.

2. Navigatep866 element's nested browsing contextp814 to response, with
historyHandlingp866 set to "replacep866" and the source browsing contextp866 set to
element's node document's browsing contextp811.

3. element now representsp123 its nested browsing contextp814.

↪ Otherwise

1. Display a pluginp371 for element, given type and response.

4. Otherwise:

1. Let type be the value of element's typep370 attribute.

2. If type is a type that a pluginp45 supports, then display a pluginp371 for element given type.

3. Otherwise, display no pluginp371 for element.

To determine the type of the content given an embedp369 element element and a response response, run the following steps:

1. If element has a typep370 attribute, and that attribute's value is a type that a pluginp45 supports, then return the value of the
typep370 attribute.

2. If the path component of response's url matches a pattern that a pluginp45 supports, then return the type that that plugin can
handle.

3. If response has explicit Content-Type metadatap90, and that value is a type that a pluginp45 supports, then return that value.

4. Return null.

To display a plugin for an embedp369 element element, given a string type and optionally a response response:

1. If element's nested browsing contextp814 is not null, then:

1. Discardp831 element's nested browsing contextp814.

2. Set element's nested browsing contextp814 to null.

2. Find and instantiate an appropriate pluginp45 based on type, replacing any previously-instantiated plugin for element. If
response was given, forward it to the plugin.

3. element now representsp123 this pluginp45 instance.

4. Once the plugin, and response if given, are completely loaded, queue an element taskp946 on the DOM manipulation task
sourcep952 give element to fire an event named loadp1282 at element.

To display no plugin for an embedp369 element element:

1. If element's nested browsing contextp814 is not null, then:

1. Discardp831 element's nested browsing contextp814.

2. Set element's nested browsing contextp814 to null.

element's srcp369 attribute does not get updated if the browsing context gets further
navigated to other locations.

Note

For example, a plugin might say that it can handle URLs with path components that end with the four character string
".swf".

Example

It is intentional that the above algorithm allows response to have a non-ok status. This allows servers to return data for plugins
even with error responses (e.g., HTTP 500 Internal Server Error codes can still contain plugin data).

Note

371

https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-response
https://url.spec.whatwg.org/#concept-url-path
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-path
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#concept-response
https://dom.spec.whatwg.org/#concept-event-fire

2. Display an indication that no pluginp45 could be found for element, replacing any previously-instantiated plugin for element.

3. element now representsp123 nothing.

Whenever an embedp369 element that was potentially activep370 stops being potentially activep370, any pluginp45 that had been
instantiated for that element must be unloaded.

When a pluginp45 is to be instantiated but it cannot be securedp45 and the sandboxed plugins browsing context flagp842 is set on the
embedp369 element's node document's active sandboxing flag setp844, then the user agent must not instantiate the pluginp45, and must
instead render the embedp369 element in a manner that conveys that the pluginp45 was disabled. The user agent may offer the user the
option to override the sandbox and instantiate the pluginp45 anyway; if the user invokes such an option, the user agent must act as if
the conditions above did not apply for the purposes of this element.

The embedp369 element potentially delays the load eventp365.

Any namespace-less attribute other than namep1233, alignp1236, hspacep1236, and vspacep1236 may be specified on the embedp369 element,
so long as its name is XML-compatiblep44 and contains no ASCII upper alphas. These attributes are then passed as parameters to the
pluginp45.

The user agent should pass the names and values of all the attributes of the embedp369 element that have no namespace to the
pluginp45 used, when one is instantiated.

The HTMLEmbedElementp369 object representing the element must expose the scriptable interface of the pluginp45 instantiated for the
embedp369 element, if any.

The embedp369 element supports dimension attributesp449.

The IDL attributes src and type each must reflectp94 the respective content attributes of the same name.

The embedp369 element has no fallback contentp132; its descendants are ignored.
Note

Plugins that cannot be securedp45 are disabled in sandboxed browsing contexts because they might not honor the
restrictions imposed by the sandbox (e.g. they might allow scripting even when scripting in the sandbox is
disabled). User agents should convey the danger of overriding the sandbox to the user if an option to do so is
provided.

⚠Warning!

All attributes in HTML documents get lowercased automatically, so the restriction on uppercase letters doesn't affect such
documents.

Note

The four exceptions are to exclude legacy attributes that have side-effects beyond just sending parameters to the pluginp45.
Note

Here's a way to embed a resource that requires a proprietary plugin, like Flash:

<embed src="catgame.swf">

If the user does not have the plugin (for example if the plugin vendor doesn't support the user's platform), then the user will be
unable to use the resource.

To pass the plugin a parameter "quality" with the value "high", an attribute can be specified:

<embed src="catgame.swf" quality="high">

This would be equivalent to the following, when using an objectp373 element instead:

Example

372

https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://dom.spec.whatwg.org/#html-document

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Embedded contentp132.
If the element has a usemapp445 attribute: Interactive contentp132.
Listedp486 and submittablep486 form-associated elementp486.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where embedded contentp132 is expected.

Content modelp128:
Zero or more paramp378 elements, then, transparentp133.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

datap374 — Address of the resource
typep374 — Type of embedded resource
namep374 — Name of nested browsing contextp814

usemapp445 — Name of image mapp445 to use
formp566 — Associates the element with a formp486 element
widthp449 — Horizontal dimension
heightp449 — Vertical dimension

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLObjectElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString data;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString useMap;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString width;
[CEReactions] attribute DOMString height;
readonly attribute Document? contentDocument;
readonly attribute WindowProxy? contentWindow;
Document? getSVGDocument();

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();

<object data="catgame.swf">
<param name="quality" value="high">

</object>

IDL

4.8.7 The object element §p37

3

✔ MDN

✔ MDN

373

https://w3c.github.io/html-aria/#el-object
https://w3c.github.io/html-aam/#el-object

undefined setCustomValidity(DOMString error);

// also has obsolete members
};

Depending on the type of content instantiated by the objectp373 element, the node also supports other interfaces.

The objectp373 element can represent an external resource, which, depending on the type of the resource, will either be treated as an
image, as a child browsing contextp814, or as an external resource to be processed by a pluginp45.

The data attribute, if present, specifies the URL of the resource. If present, the attribute must be a valid non-empty URL potentially
surrounded by spacesp88.

The type attribute, if present, specifies the type of the resource. If present, the attribute must be a valid MIME type string.

At least one of either the datap374 attribute or the typep374 attribute must be present.

If the itempropp736 attribute is specified on an objectp373 element, then the datap374 attribute must also be specified.

The name attribute, if present, must be a valid browsing context namep819. The given value is used to name the element's nested
browsing contextp814, if applicable, and if present when the element's nested browsing contextp814 is created.

Whenever one of the following conditions occur:

• the element is created,

• the element is popped off the stack of open elementsp1093 of an HTML parserp1079 or XML parserp1188,

• the element is not on the stack of open elementsp1093 of an HTML parserp1079 or XML parserp1188, and it is either inserted into
a documentp44 or removed from a documentp44,

• the element's node document changes whether it is fully activep815,

• one of the element's ancestor objectp373 elements changes to or from showing its fallback contentp132,

• the element's classidp1234 attribute is set, changed, or removed,

• the element's classidp1234 attribute is not present, and its datap374 attribute is set, changed, or removed,

• neither the element's classidp1234 attribute nor its datap374 attribute are present, and its typep374 attribute is set, changed,
or removed,

• the element changes from being renderedp1192 to not being rendered, or vice versa,

...the user agent must queue an element taskp946 on the DOM manipulation task sourcep952 given the objectp373 element to run the
following steps to (re)determine what the objectp373 element represents. This taskp944 being queuedp945 or actively running must delay
the load eventp1165 of the element's node document.

1. If the user has indicated a preference that this objectp373 element's fallback contentp132 be shown instead of the element's
usual behavior, then jump to the step below labeled fallback.

2. If the element has an ancestor media elementp387, or has an ancestor objectp373 element that is not showing its fallback
contentp132, or if the element is not in a document whose browsing contextp811 is non-null, or if the element's node document
is not fully activep815, or if the element is still in the stack of open elementsp1093 of an HTML parserp1079 or XML parserp1188, or
if the element is not being renderedp1192, or if the Should element be blocked a priori by Content Security Policy? algorithm
returns "Blocked" when executed on the element, then jump to the step below labeled fallback. [CSP]p1285

Authors should avoid referencing untrusted resources, as such a resource can be used to instantiate plugins or run
scripts, even if the author has used features such as the Flash "allowScriptAccess" parameter.

⚠Warning!

For example, a user could ask for the element's fallback contentp132 to be shown because that content uses a format that
the user finds more accessible.

Note

374

https://url.spec.whatwg.org/#concept-url
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/webappsec-csp/#should-plugin-element-be-blocked-a-priori-by-content-security-policy

3. If the classidp1234 attribute is present, and has a value that isn't the empty string, then: if the user agent can find a pluginp45

suitable according to the value of the classidp1234 attribute, and either plugins aren't being sandboxedp377 or that pluginp45

can be securedp45, then that pluginp45 should be usedp377, and the value of the datap374 attribute, if any, should be passed to
the pluginp45. If no suitable pluginp45 can be found, or if the pluginp45 reports an error, jump to the step below labeled
fallback.

4. If the datap374 attribute is present and its value is not the empty string, then:

1. If the typep374 attribute is present and its value is not a type that the user agent supports, and is not a type that
the user agent can find a pluginp45 for, then the user agent may jump to the step below labeled fallback without
fetching the content to examine its real type.

2. Parsep89 the URL specified by the datap374 attribute, relative to the element's node document.

3. If that failed, fire an event named errorp1281 at the element, then jump to the step below labeled fallback.

4. Let request be a new request whose url is the resulting URL recordp89, client is the element's node document's
relevant settings objectp924, destination is "object", credentials mode is "include", mode is "navigate", and
whose use-URL-credentials flag is set.

5. Fetch request.

Fetching the resource must delay the load eventp1165 of the element's node document until the taskp944 that is
queuedp945 by the networking task sourcep952 once the resource has been fetched (defined next) has been run.

For the purposes of the application cachep892 networking model, this fetch operation is not for a child browsing
contextp814 (though it might end up being used for one after all, as defined below).

6. If the resource is not yet available (e.g. because the resource was not available in the cache, so that loading the
resource required making a request over the network), then jump to the step below labeled fallback. The taskp944

that is queuedp945 by the networking task sourcep952 once the resource is available must restart this algorithm from
this step. Resources can load incrementally; user agents may opt to consider a resource "available" whenever
enough data has been obtained to begin processing the resource.

7. If the load failed (e.g. there was an HTTP 404 error, there was a DNS error), fire an event named errorp1281 at the
element, then jump to the step below labeled fallback.

8. Determine the resource type, as follows:

1. Let the resource type be unknown.

2. If the user agent is configured to strictly obey Content-Type headers for this resource, and the resource
has associated Content-Type metadatap90, then let the resource type be the type specified in the
resource's Content-Type metadatap90, and jump to the step below labeled handler.

3. If there is a typep374 attribute present on the objectp373 element, and that attribute's value is not a type
that the user agent supports, but it is a type that a pluginp45 supports, then let the resource type be the
type specified in that typep374 attribute, and jump to the step below labeled handler.

4. Run the appropriate set of steps from the following list:

↪ If the resource has associated Content-Type metadatap90

1. Let binary be false.

2. If the type specified in the resource's Content-Type metadatap90 is "text/plain", and
the result of applying the rules for distinguishing if a resource is text or binary to the
resource is that the resource is not text/plain, then set binary to true.

3. If the type specified in the resource's Content-Type metadatap90 is "application/
octet-stream", then set binary to true.

This can introduce a vulnerability, wherein a site is trying to embed a resource that uses
a particular plugin, but the remote site overrides that and instead furnishes the user
agent with a resource that triggers a different plugin with different security
characteristics.

⚠Warning!

375

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://tools.ietf.org/html/rfc2046#section-4.1.3
https://mimesniff.spec.whatwg.org/#rules-for-text-or-binary
https://tools.ietf.org/html/rfc2046#section-4.1.3
https://tools.ietf.org/html/rfc2046#section-4.5.1
https://tools.ietf.org/html/rfc2046#section-4.5.1

4. If binary is false, then let the resource type be the type specified in the resource's
Content-Type metadatap90, and jump to the step below labeled handler.

5. If there is a typep374 attribute present on the objectp373 element, and its value is not
application/octet-stream, then run the following steps:

1. If the attribute's value is a type that a pluginp45 supports, or the attribute's
value is a type that starts with "image/" that is not also an XML MIME type,
then let the resource type be the type specified in that typep374 attribute.

2. Jump to the step below labeled handler.

↪ Otherwise, if the resource does not have associated Content-Type metadatap90

1. If there is a typep374 attribute present on the objectp373 element, then let the tentative
type be the type specified in that typep374 attribute.

Otherwise, let tentative type be the computed type of the resource.

2. If tentative type is not application/octet-stream, then let resource type be tentative
type and jump to the step below labeled handler.

5. If applying the URL parser algorithm to the URL of the specified resource (after any redirects) results in a
URL record whose path component matches a pattern that a pluginp45 supports, then let resource type be
the type that that plugin can handle.

9. Handler: Handle the content as given by the first of the following cases that matches:

↪ If the resource type is not a type that the user agent supports, but it is a type that a pluginp45

supports
If the objectp373 element's nested browsing contextp814 is non-null, then it must be discardedp831 and then
set to null.

If plugins are being sandboxedp377 and the plugin that supports resource type cannot be securedp45, jump to
the step below labeled fallback.

Otherwise, the user agent should use the plugin that supports resource typep377 and pass the content of the
resource to that pluginp45. If the pluginp45 reports an error, then jump to the step below labeled fallback.

↪ If the resource type is an XML MIME type, or if the resource type does not start with "image/"
If the objectp373 element's nested browsing contextp814 is null, then create a new nested browsing
contextp814 for the element.

If the URL of the given resource is not about:blankp51, then navigatep866 the element's nested browsing
contextp814 to that resource, with historyHandlingp866 set to "replacep866" and the source browsing
contextp866 set to the objectp373 element's node document's browsing contextp811. (The datap374 attribute of
the objectp373 element doesn't get updated if the browsing context gets further navigated to other
locations.)

The objectp373 element representsp123 its nested browsing contextp814.

For example, a plugin might say that it can handle resources with path components that end with the
four character string ".swf".

Example

It is possible for this step to finish, or for one of the substeps above to jump straight to the next step, with
resource type still being unknown. In both cases, the next step will trigger fallback.

Note

In certain situations, e.g., if the resource was fetched from an application cachep892 but it is an HTML file
with a manifestp152 attribute that points to a different application cache manifestp892, the navigationp866

of the browsing contextp811 will be restarted so as to load the resource afresh from the network or a
different application cachep892. Even if the resource is then found to have a different type, it is still used

Note

376

https://tools.ietf.org/html/rfc2046#section-4.5.1
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://tools.ietf.org/html/rfc2046#section-4.5.1
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-path
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document

↪ If the resource type starts with "image/", and support for images has not been disabled
If the objectp373 element's nested browsing contextp814 is non-null, then it must be discardedp831 and then
set to null.

Apply the image sniffing rules to determine the type of the image.

The objectp373 element representsp123 the specified image.

If the image cannot be rendered, e.g. because it is malformed or in an unsupported format, jump to the step
below labeled fallback.

↪ Otherwise
The given resource type is not supported. Jump to the step below labeled fallback.

10. The element's contents are not part of what the objectp373 element represents.

11. If the objectp373 element does not represent its nested browsing contextp814, then once the resource is completely
loaded, queue an element taskp946 on the DOM manipulation task sourcep952 given the objectp373 element to fire an
event named loadp1282 at the element.

12. Return.

5. If the datap374 attribute is absent but the typep374 attribute is present, and the user agent can find a pluginp45 suitable
according to the value of the typep374 attribute, and either plugins aren't being sandboxedp377 or the pluginp45 can be
securedp45, then that pluginp45 should be usedp377. If these conditions cannot be met, or if the pluginp45 reports an error, jump
to the step below labeled fallback. Otherwise return; once the plugin is completely loaded, queue an element taskp946 on the
DOM manipulation task sourcep952 given the objectp373 element to fire an event named loadp1282 at the element.

6. Fallback: The objectp373 element representsp123 the element's children, ignoring any leading paramp378 element children. This
is the element's fallback contentp132. If the element has an instantiated pluginp45, then unload it. If the element's nested
browsing contextp814 is non-null, then it must be discardedp831 and then set to null.

When the algorithm above instantiates a pluginp45, the user agent should pass to the pluginp45 used the names and values of all the
attributes on the element, in the order they were added to the element, with the attributes added by the parser being ordered in
source order, followed by a parameter named "PARAM" whose value is null, followed by all the names and values of parametersp379

given by paramp378 elements that are children of the objectp373 element, in tree order. If the pluginp45 supports a scriptable interface,
the HTMLObjectElementp373 object representing the element should expose that interface. The objectp373 element representsp123 the
pluginp45. The pluginp45 is not a nested browsing contextp811.

Plugins are considered sandboxed for the purpose of an objectp373 element if the sandboxed plugins browsing context flagp842 is set on
the objectp373 element's node document's active sandboxing flag setp844.

Due to the algorithm above, the contents of objectp373 elements act as fallback contentp132, used only when referenced resources can't
be shown (e.g. because it returned a 404 error). This allows multiple objectp373 elements to be nested inside each other, targeting
multiple user agents with different capabilities, with the user agent picking the first one it supports.

The objectp373 element potentially delays the load eventp365.

The usemapp445 attribute, if present while the objectp373 element represents an image, can indicate that the object has an associated
image mapp445. The attribute must be ignored if the objectp373 element doesn't represent an image.

The formp566 attribute is used to explicitly associate the objectp373 element with its form ownerp566.

as part of a browsing contextp811: only the navigatep866 algorithm is restarted, not this objectp373

algorithm.

If the previous step ended with the resource type being unknown, this is the case that is triggered.
Note

If the element does represent its nested browsing contextp814, then an analogous task will be queued when the
created Documentp114 is completely finished loadingp885.

Note

377

https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-node-document

Constraint validation: objectp373 elements are always barred from constraint validationp590.

The objectp373 element supports dimension attributesp449.

The IDL attributes data, type and name each must reflectp94 the respective content attributes of the same name. The useMap IDL
attribute must reflectp94 the usemapp445 content attribute.

The contentDocument IDL attribute, on getting, must return the objectp373 element's content documentp815.

The contentWindow IDL attribute must return the WindowProxyp834 object of the objectp373 element's nested browsing contextp814, if its
nested browsing contextp814 is non-null; otherwise, it must return null.

The willValidatep593, validityp593, and validationMessagep595 attributes, and the checkValidity()p594, reportValidity()p595, and
setCustomValidity()p593 methods, are part of the constraint validation APIp592. The formp568 IDL attribute is part of the element's
forms API.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of an objectp373 element, before any flow contentp131.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

namep379 — Name of parameter
valuep379 — Value of parameter

In this example, an HTML page is embedded in another using the objectp373 element.

<figure>
<object data="clock.html"></object>
<figcaption>My HTML Clock</figcaption>

</figure>

Example

The following example shows how a plugin can be used in HTML (in this case the Flash plugin, to show a video file). Fallback is
provided for users who do not have Flash enabled, in this case using the videop380 element to show the video for those using user
agents that support videop380, and finally providing a link to the video for those who have neither Flash nor a videop380-capable
browser.

<p>Look at my video:
<object type="application/x-shockwave-flash">
<param name=movie value="https://video.example.com/library/watch.swf">
<param name=allowfullscreen value=true>
<param name=flashvars value="https://video.example.com/vids/315981">
<video controls src="https://video.example.com/vids/315981">
View video.

</video>
</object>

</p>

Example

4.8.8 The param element §p37

8

✔ MDN

✔ MDN

✔ MDN

✔ MDN

378

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLParamElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString value;

// also has obsolete members
};

The paramp378 element defines parameters for plugins invoked by objectp373 elements. It does not representp123 anything on its own.

The name attribute gives the name of the parameter.

The value attribute gives the value of the parameter.

Both attributes must be present. They may have any value.

If both attributes are present, and if the parent element of the paramp378 is an objectp373 element, then the element defines a
parameter with the given name-value pair.

If either the name or value of a parameterp379 defined by a paramp378 element that is the child of an objectp373 element that
representsp123 an instantiated pluginp45 changes, and if that pluginp45 is communicating with the user agent using an API that features
the ability to update the pluginp45 when the name or value of a parameterp379 so changes, then the user agent must appropriately
exercise that ability to notify the pluginp45 of the change.

The IDL attributes name and value must both reflectp94 the respective content attributes of the same name.

The following example shows how the paramp378 element can be used to pass a parameter to a plugin, in this case the O3D plugin.

<!DOCTYPE HTML>
<html lang="en">

<head>
<title>O3D Utah Teapot</title>

</head>
<body>
<p>
<object type="application/vnd.o3d.auto">
<param name="o3d_features" value="FloatingPointTextures">
<img src="o3d-teapot.png"

title="3D Utah Teapot illustration rendered using O3D."
alt="When O3D renders the Utah Teapot, it appears as a squat
teapot with a shiny metallic finish on which the
surroundings are reflected, with a faint shadow caused by
the lighting.">

<p>To see the teapot actually rendered by O3D on your
computer, please download and install the O3D plugin.</p>

</object>
<script src="o3d-teapot.js"></script>

</p>
</body>

</html>

Example

IDL

379

https://w3c.github.io/html-aria/#el-param
https://w3c.github.io/html-aam/#el-param

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Embedded contentp132.
If the element has a controlsp436 attribute: Interactive contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where embedded contentp132 is expected.

Content modelp128:
If the element has a srcp390 attribute: zero or more trackp385 elements, then transparentp133, but with no media elementp387

descendants.
If the element does not have a srcp390 attribute: zero or more sourcep317 elements, then zero or more trackp385 elements, then
transparentp133, but with no media elementp387 descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

srcp390 — Address of the resource
crossoriginp390 — How the element handles crossorigin requests
posterp381 — Poster frame to show prior to video playback
preloadp401 — Hints how much buffering the media resourcep389 will likely need
autoplayp407 — Hint that the media resourcep389 can be started automatically when the page is loaded
playsinlinep381 — Encourage the user agent to display video content within the element's playback area
loopp405 — Whether to loop the media resourcep389

mutedp437 — Whether to mute the media resourcep389 by default
controlsp436 — Show user agent controls
widthp449 — Horizontal dimension
heightp449 — Vertical dimension

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLVideoElement : HTMLMediaElement {

[HTMLConstructor] constructor();

[CEReactions] attribute unsigned long width;
[CEReactions] attribute unsigned long height;
readonly attribute unsigned long videoWidth;
readonly attribute unsigned long videoHeight;
[CEReactions] attribute USVString poster;
[CEReactions] attribute boolean playsInline;

};

A videop380 element is used for playing videos or movies, and audio files with captions.

Content may be provided inside the videop380 element. User agents should not show this content to the user; it is intended for older
web browsers which do not support videop380, so that legacy video plugins can be tried, or to show text to the users of these older
browsers informing them of how to access the video contents.

In particular, this content is not intended to address accessibility concerns. To make video content accessible to the partially
sighted, the blind, the hard-of-hearing, the deaf, and those with other physical or cognitive disabilities, a variety of features are
available. Captions can be provided, either embedded in the video stream or as external files using the trackp385 element. Sign-

Note

IDL

4.8.9 The video element §p38

0

✔ MDN

✔ MDN

380

https://w3c.github.io/html-aria/#el-video
https://w3c.github.io/html-aam/#el-video

The videop380 element is a media elementp387 whose media datap389 is ostensibly video data, possibly with associated audio data.

The srcp390, crossoriginp390, preloadp401, autoplayp407, loopp405, mutedp437, and controlsp436 attributes are the attributes common to
all media elementsp389.

The poster attribute gives the URL of an image file that the user agent can show while no video data is available. The attribute, if
present, must contain a valid non-empty URL potentially surrounded by spacesp88.

If the specified resource is to be used, then, when the element is created or when the posterp381 attribute is set, changed, or removed,
the user agent must run the following steps to determine the element's poster frame (regardless of the value of the element's show
poster flagp404):

1. If there is an existing instance of this algorithm running for this videop380 element, abort that instance of this algorithm
without changing the poster framep381.

2. If the posterp381 attribute's value is the empty string or if the attribute is absent, then there is no poster framep381; return.

3. Parsep89 the posterp381 attribute's value relative to the element's node document. If this fails, then there is no poster
framep381; return.

4. Let request be a new request whose url is the resulting URL recordp89, client is the element's node document's relevant
settings objectp924, destination is "image", credentials mode is "include", and whose use-URL-credentials flag is set.

5. Fetch request. This must delay the load eventp1165 of the element's node document.

6. If an image is thus obtained, the poster framep381 is that image. Otherwise, there is no poster framep381.

The playsinline attribute is a boolean attributep67. If present, it serves as a hint to the user agent that the video ought to be
displayed "inline" in the document by default, constrained to the element's playback area, instead of being displayed fullscreen or in
an independent resizable window.

A videop380 element represents what is given for the first matching condition in the list below:

↪ When no video data is available (the element's readyStatep407 attribute is either HAVE_NOTHINGp405, or HAVE_METADATAp405

but no video data has yet been obtained at all, or the element's readyStatep407 attribute is any subsequent value but
the media resourcep389 does not have a video channel)

The videop380 element representsp123 its poster framep381, if any, or else transparent black with no intrinsic dimensions.

↪ When the videop380 element is pausedp408, the current playback positionp404 is the first frame of video, and the
element's show poster flagp404 is set

The videop380 element representsp123 its poster framep381, if any, or else the first frame of the video.

↪ When the videop380 element is pausedp408, and the frame of video corresponding to the current playback positionp404

is not available (e.g. because the video is seeking or buffering)
↪ When the videop380 element is neither potentially playingp408 nor pausedp408 (e.g. when seeking or stalled)

The videop380 element representsp123 the last frame of the video to have been rendered.

language tracks can be embedded in the video stream. Audio descriptions can be embedded in the video stream or in text form
using a WebVTT file referenced using the trackp385 element and synthesized into speech by the user agent. WebVTT can also be
used to provide chapter titles. For users who would rather not use a media element at all, transcripts or other textual alternatives
can be provided by simply linking to them in the prose near the videop380 element. [WEBVTT]p1292

The image given by the posterp381 attribute, the poster framep381, is intended to be a representative frame of the video (typically
one of the first non-blank frames) that gives the user an idea of what the video is like.

Note

The absence of the playsinlinep381 attributes does not imply that the video will display fullscreen by default. Indeed, most user
agents have chosen to play all videos inline by default, and in such user agents the playsinlinep381 attribute has no effect.

Note

381

https://w3c.github.io/webvtt/#webvtt-file
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#intrinsic-dimensions

↪ When the videop380 element is pausedp408

The videop380 element representsp123 the frame of video corresponding to the current playback positionp404.

↪ Otherwise (the videop380 element has a video channel and is potentially playingp408)
The videop380 element representsp123 the frame of video at the continuously increasing "current" positionp404. When the current
playback positionp404 changes such that the last frame rendered is no longer the frame corresponding to the current playback
positionp404 in the video, the new frame must be rendered.

Frames of video must be obtained from the video track that was selectedp421 when the event loopp944 last reached step 1p946.

The videop380 element also representsp123 any text track cuesp423 whose text track cue active flagp424 is set and whose text trackp421 is
in the showingp423 mode, and any audio from the media resourcep389, at the current playback positionp404.

Any audio associated with the media resourcep389 must, if played, be played synchronized with the current playback positionp404, at the
element's effective media volumep437. The user agent must play the audio from audio tracks that were enabledp420 when the event
loopp944 last reached step 1.

In addition to the above, the user agent may provide messages to the user (such as "buffering", "no video loaded", "error", or more
detailed information) by overlaying text or icons on the video or other areas of the element's playback area, or in another appropriate
manner.

User agents that cannot render the video may instead make the element representp123 a link to an external video playback utility or to
the video data itself.

When a videop380 element's media resourcep389 has a video channel, the element provides a paint source whose width is the media
resourcep389 's intrinsic widthp382, whose height is the media resourcep389 's intrinsic heightp382, and whose appearance is the frame of
video corresponding to the current playback positionp404, if that is available, or else (e.g. when the video is seeking or buffering) its
previous appearance, if any, or else (e.g. because the video is still loading the first frame) blackness.

The intrinsic width and intrinsic height of the media resourcep389 are the dimensions of the resource in CSS pixels after taking into
account the resource's dimensions, aspect ratio, clean aperture, resolution, and so forth, as defined for the format used by the
resource. If an anamorphic format does not define how to apply the aspect ratio to the video data's dimensions to obtain the "correct"
dimensions, then the user agent must apply the ratio by increasing one dimension and leaving the other unchanged.

The videoWidth IDL attribute must return the intrinsic widthp382 of the video in CSS pixels. The videoHeight IDL attribute must return
the intrinsic heightp382 of the video in CSS pixels. If the element's readyStatep407 attribute is HAVE_NOTHINGp405, then the attributes
must return 0.

Whenever the intrinsic widthp382 or intrinsic heightp382 of the video changes (including, for example, because the selected video
trackp421 was changed), if the element's readyStatep407 attribute is not HAVE_NOTHINGp405, the user agent must queue a media element
taskp389 given the media elementp387 to fire an event named resizep440 at the media elementp387.

The videop380 element supports dimension attributesp449.

In the absence of style rules to the contrary, video content should be rendered inside the element's playback area such that the video
content is shown centered in the playback area at the largest possible size that fits completely within it, with the video content's
aspect ratio being preserved. Thus, if the aspect ratio of the playback area does not match the aspect ratio of the video, the video will
be shown letterboxed or pillarboxed. Areas of the element's playback area that do not contain the video represent nothing.

Which frame in a video stream corresponds to a particular playback position is defined by the video stream's format.
Note

video . videoWidthp382

video . videoHeightp382

These attributes return the intrinsic dimensions of the video, or zero if the dimensions are not known.

For web developers (non-normative)

In user agents that implement CSS, the above requirement can be implemented by using the style rule suggested in the rendering
sectionp1216.

Note

✔ MDN

382

https://drafts.csswg.org/css-images-4/#paint-source
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://dom.spec.whatwg.org/#concept-event-fire

The intrinsic width of a videop380 element's playback area is the intrinsic width of the poster framep381, if that is available and the
element currently representsp123 its poster frame; otherwise, it is the intrinsic widthp382 of the video resource, if that is available;
otherwise the intrinsic width is missing.

The intrinsic height of a videop380 element's playback area is the intrinsic height of the poster framep381, if that is available and the
element currently representsp123 its poster frame; otherwise it is the intrinsic heightp382 of the video resource, if that is available;
otherwise the intrinsic height is missing.

The default object size is a width of 300 CSS pixels and a height of 150 CSS pixels. [CSSIMAGES]p1286

User agents should provide controls to enable or disable the display of closed captions, audio description tracks, and other additional
data associated with the video stream, though such features should, again, not interfere with the page's normal rendering.

User agents may allow users to view the video content in manners more suitable to the user, such as fullscreen or in an independent
resizable window. User agents may even trigger such a viewing mode by default upon playing a video, although they should not do so
when the playsinlinep381 attribute is specified. As with the other user interface features, controls to enable this should not interfere
with the page's normal rendering unless the user agent is exposing a user interfacep436. In such an independent viewing mode,
however, user agents may make full user interfaces visible, even if the controlsp436 attribute is absent.

User agents may allow video playback to affect system features that could interfere with the user's experience; for example, user
agents could disable screensavers while video playback is in progress.

The poster IDL attribute must reflectp94 the posterp381 content attribute.

The playsInline IDL attribute must reflectp94 the playsinlinep381 content attribute.

This example shows how to detect when a video has failed to play correctly:

<script>
function failed(e) {

// video playback failed - show a message saying why
switch (e.target.error.code) {

case e.target.error.MEDIA_ERR_ABORTED:
alert('You aborted the video playback.');
break;

case e.target.error.MEDIA_ERR_NETWORK:
alert('A network error caused the video download to fail part-way.');
break;

case e.target.error.MEDIA_ERR_DECODE:
alert('The video playback was aborted due to a corruption problem or because the video used

features your browser did not support.');
break;

case e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:
alert('The video could not be loaded, either because the server or network failed or

because the format is not supported.');
break;

default:
alert('An unknown error occurred.');
break;

}
}

</script>
<p><video src="tgif.vid" autoplay controls onerror="failed(event)"></video></p>
<p>Download the video file.</p>

Example

383

https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-images/#default-object-size
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Embedded contentp132.
If the element has a controlsp436 attribute: Interactive contentp132.
If the element has a controlsp436 attribute: Palpable contentp133.

Contexts in which this element can be usedp128:
Where embedded contentp132 is expected.

Content modelp128:
If the element has a srcp390 attribute: zero or more trackp385 elements, then transparentp133, but with no media elementp387

descendants.
If the element does not have a srcp390 attribute: zero or more sourcep317 elements, then zero or more trackp385 elements, then
transparentp133, but with no media elementp387 descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

srcp390 — Address of the resource
crossoriginp390 — How the element handles crossorigin requests
preloadp401 — Hints how much buffering the media resourcep389 will likely need
autoplayp407 — Hint that the media resourcep389 can be started automatically when the page is loaded
loopp405 — Whether to loop the media resourcep389

mutedp437 — Whether to mute the media resourcep389 by default
controlsp436 — Show user agent controls

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window,
LegacyFactoryFunction=Audio(optional DOMString src)]

interface HTMLAudioElement : HTMLMediaElement {
[HTMLConstructor] constructor();

};

An audiop384 element representsp123 a sound or audio stream.

Content may be provided inside the audiop384 element. User agents should not show this content to the user; it is intended for older
web browsers which do not support audiop384, so that legacy audio plugins can be tried, or to show text to the users of these older
browsers informing them of how to access the audio contents.

The audiop384 element is a media elementp387 whose media datap389 is ostensibly audio data.

The srcp390, crossoriginp390, preloadp401, autoplayp407, loopp405, mutedp437, and controlsp436 attributes are the attributes common to
all media elementsp389.

In particular, this content is not intended to address accessibility concerns. To make audio content accessible to the deaf or to
those with other physical or cognitive disabilities, a variety of features are available. If captions or a sign language video are
available, the videop380 element can be used instead of the audiop384 element to play the audio, allowing users to enable the visual
alternatives. Chapter titles can be provided to aid navigation, using the trackp385 element and a WebVTT file. And, naturally,
transcripts or other textual alternatives can be provided by simply linking to them in the prose near the audiop384 element.
[WEBVTT]p1292

Note

IDL

4.8.10 The audio element §p38

4

✔ MDN

✔ MDN

384

https://w3c.github.io/html-aria/#el-audio
https://w3c.github.io/html-aam/#el-audio
https://heycam.github.io/webidl/#LegacyFactoryFunction
https://w3c.github.io/webvtt/#webvtt-file

A legacy factory function is provided for creating HTMLAudioElementp384 objects (in addition to the factory methods from DOM such as
createElement()): Audio(src). When invoked, the legacy factory function must perform the following steps:

1. Let document be the current global objectp924 's associated Documentp826.

2. Let audio be the result of creating an element given document, audiop384, and the HTML namespace.

3. Set an attribute value for audio using "preloadp401" and "autop402".

4. If src is given, then set an attribute value for audio using "srcp390" and src. (This will cause the user agent to invokep390 the
object's resource selection algorithmp393 before returning.)

5. Return audio.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a media elementp387, before any flow contentp131.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

kindp386 — The type of text track
srcp386 — Address of the resource
srclangp386 — Language of the text track
labelp386 — User-visible label
defaultp386 — Enable the track if no other text trackp421 is more suitable

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTrackElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString kind;
[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString srclang;
[CEReactions] attribute DOMString label;
[CEReactions] attribute boolean default;

const unsigned short NONE = 0;
const unsigned short LOADING = 1;
const unsigned short LOADED = 2;
const unsigned short ERROR = 3;
readonly attribute unsigned short readyState;

audio = new Audiop385([url])
Returns a new audiop384 element, with the srcp390 attribute set to the value passed in the argument, if applicable.

For web developers (non-normative)

IDL

4.8.11 The track element §p38

5

✔ MDN

✔ MDN

✔ MDN

385

https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://w3c.github.io/html-aria/#el-track
https://w3c.github.io/html-aam/#el-track

readonly attribute TextTrack track;
};

The trackp385 element allows authors to specify explicit external timed text tracksp421 for media elementsp387. It does not representp123

anything on its own.

The kind attribute is an enumerated attributep68. The following table lists the keywords defined for this attribute. The keyword given in
the first cell of each row maps to the state given in the second cell.

Keyword State Brief description

subtitles Subtitles Transcription or translation of the dialogue, suitable for when the sound is available but not understood (e.g. because the user
does not understand the language of the media resourcep389 's audio track). Overlaid on the video.

captions Captions Transcription or translation of the dialogue, sound effects, relevant musical cues, and other relevant audio information, suitable for
when sound is unavailable or not clearly audible (e.g. because it is muted, drowned-out by ambient noise, or because the user is
deaf). Overlaid on the video; labeled as appropriate for the hard-of-hearing.

descriptions Descriptions Textual descriptions of the video component of the media resourcep389, intended for audio synthesis when the visual component is
obscured, unavailable, or not usable (e.g. because the user is interacting with the application without a screen while driving, or
because the user is blind). Synthesized as audio.

chapters Chapters
metadata

metadata Metadata

Tracks intended for use from script. Not displayed by the user agent.

The attribute may be omitted. The missing value defaultp68 is the subtitlesp386 state. The invalid value defaultp68 is the metadatap386

state.

The src attribute gives the URL of the text track data. The value must be a valid non-empty URL potentially surrounded by spacesp88.
This attribute must be present.

If the element has a srcp386 attribute whose value is not the empty string and whose value, when the attribute was set, could be
successfully parsedp89 relative to the element's node document, then the element's track URL is the resulting URL stringp89.
Otherwise, the element's track URLp386 is the empty string.

If the element's track URLp386 identifies a WebVTT resource, and the element's kindp386 attribute is not in the chapters metadatap386 or
metadatap386 state, then the WebVTT file must be a WebVTT file using cue text. [WEBVTT]p1292

The srclang attribute gives the language of the text track data. The value must be a valid BCP 47 language tag. This attribute must be
present if the element's kindp386 attribute is in the subtitlesp386 state. [BCP47]p1285

If the element has a srclangp386 attribute whose value is not the empty string, then the element's track language is the value of the
attribute. Otherwise, the element has no track languagep386.

The label attribute gives a user-readable title for the track. This title is used by user agents when listing subtitlep386, captionp386, and
audio descriptionp386 tracks in their user interface.

The value of the labelp386 attribute, if the attribute is present, must not be the empty string. Furthermore, there must not be two
trackp385 element children of the same media elementp387 whose kindp386 attributes are in the same state, whose srclangp386

attributes are both missing or have values that represent the same language, and whose labelp386 attributes are again both missing or
both have the same value.

If the element has a labelp386 attribute whose value is not the empty string, then the element's track label is the value of the
attribute. Otherwise, the element's track labelp386 is an empty string.

The default attribute is a boolean attributep67, which, if specified, indicates that the track is to be enabled if the user's preferences do
not indicate that another track would be more appropriate.

Each media elementp387 must have no more than one trackp385 element child whose kindp386 attribute is in the subtitlesp386 or
captionsp386 state and whose defaultp386 attribute is specified.

Each media elementp387 must have no more than one trackp385 element child whose kindp386 attribute is in the descriptionp386 state
and whose defaultp386 attribute is specified.

Each media elementp387 must have no more than one trackp385 element child whose kindp386 attribute is in the chapters metadatap386

state and whose defaultp386 attribute is specified.

386

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/webvtt/#webvtt-file-using-cue-text

The readyState attribute must return the numeric value corresponding to the text track readiness statep422 of the trackp385 element's
text trackp421, as defined by the following list:

NONE (numeric value 0)
The text track not loadedp422 state.

LOADING (numeric value 1)
The text track loadingp422 state.

LOADED (numeric value 2)
The text track loadedp422 state.

ERROR (numeric value 3)
The text track failed to loadp422 state.

The track IDL attribute must, on getting, return the trackp385 element's text trackp421 's corresponding TextTrackp429 object.

The src, srclang, label, and default IDL attributes must reflectp94 the respective content attributes of the same name. The kind IDL
attribute must reflectp94 the content attribute of the same name, limited to only known valuesp95.

HTMLMediaElementp388 objects (audiop384 and videop380, in this specification) are simply known as media elements.

enum CanPlayTypeResult { "" /* empty string */, "maybe", "probably" };
typedef (MediaStream or MediaSource or Blob) MediaProvider;

There is no limit on the number of trackp385 elements whose kindp386 attribute is in the metadatap386 state and whose defaultp386

attribute is specified.

Note

track . readyStatep387

Returns the text track readiness statep422, represented by a number from the following list:
track . NONEp387 (0)

The text track not loadedp422 state.
track . LOADINGp387 (1)

The text track loadingp422 state.
track . LOADEDp387 (2)

The text track loadedp422 state.
track . ERRORp387 (3)

The text track failed to loadp422 state.

track . trackp387

Returns the TextTrackp429 object corresponding to the text trackp421 of the trackp385 element.

For web developers (non-normative)

This video has subtitles in several languages:

<video src="brave.webm">
<track kind=subtitles src=brave.en.vtt srclang=en label="English">
<track kind=captions src=brave.en.hoh.vtt srclang=en label="English for the Hard of Hearing">
<track kind=subtitles src=brave.fr.vtt srclang=fr lang=fr label="Français">
<track kind=subtitles src=brave.de.vtt srclang=de lang=de label="Deutsch">

</video>

(The langp140 attributes on the last two describe the language of the labelp386 attribute, not the language of the subtitles
themselves. The language of the subtitles is given by the srclangp386 attribute.)

Example

IDL

4.8.12 Media elements §p38

7

✔ MDN

✔ MDN

✔ MDN

387

https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-mediastream
https://w3c.github.io/media-source/#idl-def-mediasource
https://w3c.github.io/FileAPI/#dfn-Blob

[Exposed=Window]
interface HTMLMediaElement : HTMLElement {

// error state
readonly attribute MediaError? error;

// network state
[CEReactions] attribute USVString src;
attribute MediaProvider? srcObject;
readonly attribute USVString currentSrc;
[CEReactions] attribute DOMString? crossOrigin;
const unsigned short NETWORK_EMPTY = 0;
const unsigned short NETWORK_IDLE = 1;
const unsigned short NETWORK_LOADING = 2;
const unsigned short NETWORK_NO_SOURCE = 3;
readonly attribute unsigned short networkState;
[CEReactions] attribute DOMString preload;
readonly attribute TimeRanges buffered;
undefined load();
CanPlayTypeResult canPlayType(DOMString type);

// ready state
const unsigned short HAVE_NOTHING = 0;
const unsigned short HAVE_METADATA = 1;
const unsigned short HAVE_CURRENT_DATA = 2;
const unsigned short HAVE_FUTURE_DATA = 3;
const unsigned short HAVE_ENOUGH_DATA = 4;
readonly attribute unsigned short readyState;
readonly attribute boolean seeking;

// playback state
attribute double currentTime;
undefined fastSeek(double time);
readonly attribute unrestricted double duration;
object getStartDate();
readonly attribute boolean paused;
attribute double defaultPlaybackRate;
attribute double playbackRate;
attribute boolean preservesPitch;
readonly attribute TimeRanges played;
readonly attribute TimeRanges seekable;
readonly attribute boolean ended;
[CEReactions] attribute boolean autoplay;
[CEReactions] attribute boolean loop;
Promise<undefined> play();
undefined pause();

// controls
[CEReactions] attribute boolean controls;
attribute double volume;
attribute boolean muted;
[CEReactions] attribute boolean defaultMuted;

// tracks
[SameObject] readonly attribute AudioTrackList audioTracks;
[SameObject] readonly attribute VideoTrackList videoTracks;
[SameObject] readonly attribute TextTrackList textTracks;
TextTrack addTextTrack(TextTrackKind kind, optional DOMString label = "", optional DOMString language

= "");
};

388

https://heycam.github.io/webidl/#idl-object

The media element attributes, srcp390, crossoriginp390, preloadp401, autoplayp407, loopp405, mutedp437, and controlsp436, apply to
all media elementsp387. They are defined in this section.

Media elementsp387 are used to present audio data, or video and audio data, to the user. This is referred to as media data in this
section, since this section applies equally to media elementsp387 for audio or for video. The term media resource is used to refer to
the complete set of media data, e.g. the complete video file, or complete audio file.

A media resourcep389 can have multiple audio and video tracks. For the purposes of a media elementp387, the video data of the media
resourcep389 is only that of the currently selected track (if any) as given by the element's videoTracksp417 attribute when the event
loopp944 last reached step 1p946, and the audio data of the media resourcep389 is the result of mixing all the currently enabled tracks (if
any) given by the element's audioTracksp417 attribute when the event loopp944 last reached step 1p946.

Each media elementp387 has a unique media element event task source.

To queue a media element task with a media elementp387 element and a series of steps steps, queue an element taskp946 on the
media elementp387 's media element event task sourcep389 given element and steps.

All media elementsp387 have an associated error status, which records the last error the element encountered since its resource
selection algorithmp393 was last invoked. The error attribute, on getting, must return the MediaErrorp389 object created for this last
error, or null if there has not been an error.

[Exposed=Window]
interface MediaError {

const unsigned short MEDIA_ERR_ABORTED = 1;
const unsigned short MEDIA_ERR_NETWORK = 2;
const unsigned short MEDIA_ERR_DECODE = 3;
const unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED = 4;

readonly attribute unsigned short code;
readonly attribute DOMString message;

};

Every MediaErrorp389 object has a message, which is a string, and a code, which is one of the following:

MEDIA_ERR_ABORTED (numeric value 1)
The fetching process for the media resourcep389 was aborted by the user agent at the user's request.

MEDIA_ERR_NETWORK (numeric value 2)
A network error of some description caused the user agent to stop fetching the media resourcep389, after the resource was

Both audiop384 and videop380 elements can be used for both audio and video. The main difference between the two is simply that
the audiop384 element has no playback area for visual content (such as video or captions), whereas the videop380 element does.

Note

4.8.12.1 Error codes §p38

9

media . errorp389

Returns a MediaErrorp389 object representing the current error state of the element.
Returns null if there is no error.

For web developers (non-normative)

media . errorp389 . codep390

Returns the current error's error code, from the list below.

media . errorp389 . messagep390

Returns a specific informative diagnostic message about the error condition encountered. The message and message format are
not generally uniform across different user agents. If no such message is available, then the empty string is returned.

For web developers (non-normative)

IDL

✔ MDN
✔ MDN

389

established to be usable.

MEDIA_ERR_DECODE (numeric value 3)
An error of some description occurred while decoding the media resourcep389, after the resource was established to be usable.

MEDIA_ERR_SRC_NOT_SUPPORTED (numeric value 4)
The media resourcep389 indicated by the srcp390 attribute or assigned media provider objectp390 was not suitable.

To create a MediaError, given an error code which is one of the above values, return a new MediaErrorp389 object whose codep389 is
the given error code and whose messagep389 is a string containing any details the user agent is able to supply about the cause of the
error condition, or the empty string if the user agent is unable to supply such details. This message string must not contain only the
information already available via the supplied error code; for example, it must not simply be a translation of the code into a string
format. If no additional information is available beyond that provided by the error code, the messagep389 must be set to the empty
string.

The code attribute of a MediaErrorp389 object must return this MediaErrorp389 object's codep389.

The message attribute of a MediaErrorp389 object must return this MediaErrorp389 object's messagep389.

The src content attribute on media elementsp387 gives the URL of the media resource (video, audio) to show. The attribute, if present,
must contain a valid non-empty URL potentially surrounded by spacesp88.

If the itempropp736 attribute is specified on the media elementp387, then the srcp390 attribute must also be specified.

The crossorigin content attribute on media elementsp387 is a CORS settings attributep91.

If a media elementp387 is created with a srcp390 attribute, the user agent must immediatelyp42 invoke the media elementp387 's resource
selection algorithmp393.

If a srcp390 attribute of a media elementp387 is set or changed, the user agent must invoke the media elementp387 's media element load
algorithmp392. (Removing the srcp390 attribute does not do this, even if there are sourcep317 elements present.)

The src IDL attribute on media elementsp387 must reflectp94 the content attribute of the same name.

The crossOrigin IDL attribute must reflectp94 the crossoriginp390 content attribute, limited to only known valuesp95.

A media provider object is an object that can represent a media resourcep389, separate from a URL. MediaStream objects,
MediaSource objects, and Blob objects are all media provider objectsp390.

Each media elementp387 can have an assigned media provider object, which is a media provider objectp390. When a media
elementp387 is created, it has no assigned media provider objectp390.

The currentSrc IDL attribute must initially be set to the empty string. Its value is changed by the resource selection algorithmp393

defined below.

The srcObject IDL attribute, on getting, must return the element's assigned media provider objectp390, if any, or null otherwise. On
setting, it must set the element's assigned media provider objectp390 to the new value, and then invoke the element's media element
load algorithmp392.

4.8.12.2 Location of the media resource §p39

0

media . srcObjectp390 [= source]
Allows the media elementp387 to be assigned a media provider objectp390.

media . currentSrcp390

Returns the URL of the current media resourcep389, if any.
Returns the empty string when there is no media resourcep389, or it doesn't have a URL.

For web developers (non-normative)

There are three ways to specify a media resourcep389: the srcObjectp390 IDL attribute, the srcp390 content attribute, and sourcep317

Note

✔ MDN

MDN

✔ MDN

✔ MDN

✔ MDN⚠ MDN

390

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-mediastream
https://w3c.github.io/media-source/#idl-def-mediasource
https://w3c.github.io/FileAPI/#dfn-Blob
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

A media resourcep389 can be described in terms of its type, specifically a MIME type, in some cases with a codecs parameter. (Whether
the codecs parameter is allowed or not depends on the MIME type.) [RFC6381]p1290

Types are usually somewhat incomplete descriptions; for example "video/mpeg" doesn't say anything except what the container type
is, and even a type like "video/mp4; codecs="avc1.42E01E, mp4a.40.2"" doesn't include information like the actual bitrate (only the
maximum bitrate). Thus, given a type, a user agent can often only know whether it might be able to play media of that type (with
varying levels of confidence), or whether it definitely cannot play media of that type.

A type that the user agent knows it cannot render is one that describes a resource that the user agent definitely does not
support, for example because it doesn't recognize the container type, or it doesn't support the listed codecs.

The MIME type "application/octet-stream" with no parameters is never a type that the user agent knows it cannot renderp391. User
agents must treat that type as equivalent to the lack of any explicit Content-Type metadatap90 when it is used to label a potential
media resourcep389.

The canPlayType(type) method must return the empty string if type is a type that the user agent knows it cannot renderp391 or is
the type "application/octet-stream"; it must return "probably" if the user agent is confident that the type represents a media
resourcep389 that it can render if used in with this audiop384 or videop380 element; and it must return "maybe" otherwise. Implementors
are encouraged to return "maybep391" unless the type can be confidently established as being supported or not. Generally, a user agent
should never return "probablyp391" for a type that allows the codecs parameter if that parameter is not present.

elements. The IDL attribute takes priority, followed by the content attribute, followed by the elements.

4.8.12.3 MIME types §p39

1

Only the MIME type "application/octet-stream" with no parameters is special-cased here; if any parameter appears with it, it
will be treated just like any other MIME type. This is a deviation from the rule that unknown MIME type parameters should be
ignored.

Note

media . canPlayTypep391(type)
Returns the empty string (a negative response), "maybe", or "probably" based on how confident the user agent is that it can
play media resources of the given type.

For web developers (non-normative)

This script tests to see if the user agent supports a (fictional) new format to dynamically decide whether to use a videop380 element
or a plugin:

<section id="video">
<p>Download video</p>

</section>
<script>
var videoSection = document.getElementById('video');
var videoElement = document.createElement('video');
var support = videoElement.canPlayType('video/x-new-fictional-format;codecs="kittens,bunnies"');
if (support != "probably" && "New Fictional Video Plugin" in navigator.plugins) {

// not confident of browser support
// but we have a plugin
// so use plugin instead
videoElement = document.createElement("embed");

} else if (support == "") {
// no support from browser and no plugin
// do nothing
videoElement = null;

}
if (videoElement) {

Example

✔ MDN

391

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://tools.ietf.org/html/rfc2046#section-4.5.1
https://mimesniff.spec.whatwg.org/#mime-type
https://tools.ietf.org/html/rfc2046#section-4.5.1
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://tools.ietf.org/html/rfc2046#section-4.5.1

As media elementsp387 interact with the network, their current network activity is represented by the networkState attribute. On
getting, it must return the current network state of the element, which must be one of the following values:

NETWORK_EMPTY (numeric value 0)
The element has not yet been initialized. All attributes are in their initial states.

NETWORK_IDLE (numeric value 1)
The element's resource selection algorithmp393 is active and has selected a resourcep389, but it is not actually using the network at
this time.

NETWORK_LOADING (numeric value 2)
The user agent is actively trying to download data.

NETWORK_NO_SOURCE (numeric value 3)
The element's resource selection algorithmp393 is active, but it has not yet found a resourcep389 to use.

The resource selection algorithmp393 defined below describes exactly when the networkStatep392 attribute changes value and what
events fire to indicate changes in this state.

All media elementsp387 have a can autoplay flag, which must begin in the true state, and a delaying-the-load-event flag, which
must begin in the false state. While the delaying-the-load-event flagp392 is true, the element must delay the load eventp1165 of its
document.

When the load() method on a media elementp387 is invoked, the user agent must run the media element load algorithmp392.

The media element load algorithm consists of the following steps.

1. Abort any already-running instance of the resource selection algorithmp393 for this element.

2. Let pending tasks be a list of all tasksp944 from the media elementp387 's media element event task sourcep389 in one of the
task queuesp944.

3. For each task in pending tasks that would resolve pending play promisesp411 or reject pending play promisesp411, immediately

while (videoSection.hasChildNodes())
videoSection.removeChild(videoSection.firstChild);

videoElement.setAttribute("src", "playing-cats.nfv");
videoSection.appendChild(videoElement);

}
</script>

The typep317 attribute of the sourcep317 element allows the user agent to avoid downloading resources that use formats it cannot
render.

Note

4.8.12.4 Network states §p39

2

media . networkStatep392

Returns the current state of network activity for the element, from the codes in the list below.

For web developers (non-normative)

4.8.12.5 Loading the media resource §p39

2

media . loadp392()
Causes the element to reset and start selecting and loading a new media resourcep389 from scratch.

For web developers (non-normative)

✔ MDN

✔ MDN

392

resolve or reject those promises in the order the corresponding tasks were queued.

4. Remove each taskp944 in pending tasks from its task queuep944

5. If the media elementp387 's networkStatep392 is set to NETWORK_LOADINGp392 or NETWORK_IDLEp392, queue a media element
taskp389 given the media elementp387 to fire an event named abortp439 at the media elementp387.

6. If the media elementp387 's networkStatep392 is not set to NETWORK_EMPTYp392, then:

1. Queue a media element taskp389 given the media elementp387 to fire an event named emptiedp439 at the media
elementp387.

2. If a fetching process is in progress for the media elementp387, the user agent should stop it.

3. If the media elementp387 's assigned media provider objectp390 is a MediaSource object, then detach it.

4. Forget the media element's media-resource-specific tracksp401.

5. If readyStatep407 is not set to HAVE_NOTHINGp405, then set it to that state.

6. If the pausedp408 attribute is false, then:

1. Set the pausedp408 attribute to true.

2. Take pending play promisesp410 and reject pending play promisesp411 with the result and an "AbortError"
DOMException.

7. If seekingp415 is true, set it to false.

8. Set the current playback positionp404 to 0.

Set the official playback positionp404 to 0.

If this changed the official playback positionp404, then queue a media element taskp389 given the media elementp387

to fire an event named timeupdatep440 at the media elementp387.

9. Set the timeline offsetp405 to Not-a-Number (NaN).

10. Update the durationp405 attribute to Not-a-Number (NaN).

7. Set the playbackRatep410 attribute to the value of the defaultPlaybackRatep410 attribute.

8. Set the errorp389 attribute to null and the can autoplay flagp392 to true.

9. Invoke the media elementp387 's resource selection algorithmp393.

10.

The resource selection algorithm for a media elementp387 is as follows. This algorithm is always invoked as part of a taskp944, but
one of the first steps in the algorithm is to return and continue running the remaining steps in parallelp42. In addition, this algorithm
interacts closely with the event loopp944 mechanism; in particular, it has synchronous sectionsp949 (which are triggered as part of the
event loopp944 algorithm). Steps in such sections are marked with ⌛.

1. Set the element's networkStatep392 attribute to the NETWORK_NO_SOURCEp392 value.

2. Set the element's show poster flagp404 to true.

3. Set the media elementp387 's delaying-the-load-event flagp392 to true (this delays the load eventp1165).

4. Await a stable statep949, allowing the taskp944 that invoked this algorithm to continue. The synchronous sectionp949 consists of

Basically, pending events and callbacks are discarded and promises in-flight to be resolved/rejected are resolved/
rejected immediately when the media element starts loading a new resource.

Note

The user agent will notp405 fire a durationchangep440 event for this particular change of the duration.
Note

Playback of any previously playing media resourcep389 for this element stops.
Note

393

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/media-source/#idl-def-mediasource
https://w3c.github.io/media-source/#mediasource-detach
https://heycam.github.io/webidl/#aborterror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire

all the remaining steps of this algorithm until the algorithm says the synchronous sectionp949 has ended. (Steps in
synchronous sectionsp949 are marked with ⌛.)

5. ⌛ If the media elementp387 's blocked-on-parserp423 flag is false, then populate the list of pending text tracksp423.

6. ⌛ If the media elementp387 has an assigned media provider objectp390, then let mode be object.

⌛ Otherwise, if the media elementp387 has no assigned media provider objectp390 but has a srcp390 attribute, then let mode be
attribute.

⌛ Otherwise, if the media elementp387 does not have an assigned media provider objectp390 and does not have a srcp390

attribute, but does have a sourcep317 element child, then let mode be children and let candidate be the first such sourcep317

element child in tree order.

⌛ Otherwise the media elementp387 has no assigned media provider objectp390 and has neither a srcp390 attribute nor a
sourcep317 element child:

1. ⌛ Set the networkStatep392 to NETWORK_EMPTYp392.

2. ⌛ Set the element's delaying-the-load-event flagp392 to false. This stops delaying the load eventp1165.

3. End the synchronous sectionp949 and return.

7. ⌛ Set the media elementp387 's networkStatep392 to NETWORK_LOADINGp392.

8. ⌛ Queue a media element taskp389 given the media elementp387 to fire an event named loadstartp439 at the media
elementp387.

9. Run the appropriate steps from the following list:

↪ If mode is object

1. ⌛ Set the currentSrcp390 attribute to the empty string.

2. End the synchronous sectionp949, continuing the remaining steps in parallelp42.

3. Run the resource fetch algorithmp396 with the assigned media provider objectp390. If that algorithm returns
without aborting this one, then the load failed.

4. Failed with media provider: Reaching this step indicates that the media resource failed to load. Take pending
play promisesp410 and queue a media element taskp389 given the media elementp387 to run the dedicated
media source failure stepsp396 with the result.

5. Wait for the taskp944 queued by the previous step to have executed.

6. Return. The element won't attempt to load another resource until this algorithm is triggered again.

↪ If mode is attribute

1. ⌛ If the srcp390 attribute's value is the empty string, then end the synchronous sectionp949, and jump down
to the failed with attribute step below.

2. ⌛ Let urlString and urlRecord be the resulting URL stringp89 and the resulting URL recordp89, respectively,
that would have resulted from parsingp89 the URL specified by the srcp390 attribute's value relative to the
media elementp387 's node document when the srcp390 attribute was last changed.

3. ⌛ If urlString was obtained successfully, set the currentSrcp390 attribute to urlString.

4. End the synchronous sectionp949, continuing the remaining steps in parallelp42.

5. If urlRecord was obtained successfully, run the resource fetch algorithmp396 with urlRecord. If that algorithm
returns without aborting this one, then the load failed.

6. Failed with attribute: Reaching this step indicates that the media resource failed to load or that the given
URL could not be parsedp89. Take pending play promisesp410 and queue a media element taskp389 given the
media elementp387 to run the dedicated media source failure stepsp396 with the result.

7. Wait for the taskp944 queued by the previous step to have executed.

8. Return. The element won't attempt to load another resource until this algorithm is triggered again.
394

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-event-fire
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url

↪ Otherwise (mode is children)

1. ⌛ Let pointer be a position defined by two adjacent nodes in the media elementp387 's child list, treating the
start of the list (before the first child in the list, if any) and end of the list (after the last child in the list, if
any) as nodes in their own right. One node is the node before pointer, and the other node is the node after
pointer. Initially, let pointer be the position between the candidate node and the next node, if there are any,
or the end of the list, if it is the last node.

As nodes are insertedp44 and removedp44 into the media elementp387, pointer must be updated as follows:

If a new node is insertedp44 between the two nodes that define pointer
Let pointer be the point between the node before pointer and the new node. In other words, insertions at
pointer go after pointer.

If the node before pointer is removed
Let pointer be the point between the node after pointer and the node before the node after pointer. In
other words, pointer doesn't move relative to the remaining nodes.

If the node after pointer is removed
Let pointer be the point between the node before pointer and the node after the node before pointer. Just
as with the previous case, pointer doesn't move relative to the remaining nodes.

Other changes don't affect pointer.

2. ⌛ Process candidate: If candidate does not have a srcp318 attribute, or if its srcp318 attribute's value is the
empty string, then end the synchronous sectionp949, and jump down to the failed with elements step below.

3. ⌛ Let urlString and urlRecord be the resulting URL stringp89 and the resulting URL recordp89, respectively,
that would have resulted from parsingp89 the URL specified by candidate's srcp318 attribute's value relative
to the candidate's node document when the srcp318 attribute was last changed.

4. ⌛ If urlString was not obtained successfully, then end the synchronous sectionp949, and jump down to the
failed with elements step below.

5. ⌛ If candidate has a typep317 attribute whose value, when parsed as a MIME type (including any codecs
described by the codecs parameter, for types that define that parameter), represents a type that the user
agent knows it cannot renderp391, then end the synchronous sectionp949, and jump down to the failed with
elements step below.

6. ⌛ Set the currentSrcp390 attribute to urlString.

7. End the synchronous sectionp949, continuing the remaining steps in parallelp42.

8. Run the resource fetch algorithmp396 with urlRecord. If that algorithm returns without aborting this one, then
the load failed.

9. Failed with elements: Queue a media element taskp389 given the media elementp387 to fire an event named
errorp440 at candidate.

10. Await a stable statep949. The synchronous sectionp949 consists of all the remaining steps of this algorithm
until the algorithm says the synchronous sectionp949 has ended. (Steps in synchronous sectionsp949 are
marked with ⌛.)

11. ⌛ Forget the media element's media-resource-specific tracksp401.

12. ⌛ Find next candidate: Let candidate be null.

13. ⌛ Search loop: If the node after pointer is the end of the list, then jump to the waiting step below.

14. ⌛ If the node after pointer is a sourcep317 element, let candidate be that element.

15. ⌛ Advance pointer so that the node before pointer is now the node that was after pointer, and the node after
pointer is the node after the node that used to be after pointer, if any.

16. ⌛ If candidate is null, jump back to the search loop step. Otherwise, jump back to the process candidate
step.

17. ⌛ Waiting: Set the element's networkStatep392 attribute to the NETWORK_NO_SOURCEp392 value.

18. ⌛ Set the element's show poster flagp404 to true.
395

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://mimesniff.spec.whatwg.org/#mime-type
https://dom.spec.whatwg.org/#concept-event-fire

19. ⌛ Queue a media element taskp389 given the media elementp387 given the element to set the element's
delaying-the-load-event flagp392 to false. This stops delaying the load eventp1165.

20. End the synchronous sectionp949, continuing the remaining steps in parallelp42.

21. Wait until the node after pointer is a node other than the end of the list. (This step might wait forever.)

22. Await a stable statep949. The synchronous sectionp949 consists of all the remaining steps of this algorithm
until the algorithm says the synchronous sectionp949 has ended. (Steps in synchronous sectionsp949 are
marked with ⌛.)

23. ⌛ Set the element's delaying-the-load-event flagp392 back to true (this delays the load eventp1165 again, in
case it hasn't been fired yet).

24. ⌛ Set the networkStatep392 back to NETWORK_LOADINGp392.

25. ⌛ Jump back to the find next candidate step above.

The dedicated media source failure steps with a list of promises promises are the following steps:

1. Set the errorp389 attribute to the result of creating a MediaErrorp390 with MEDIA_ERR_SRC_NOT_SUPPORTEDp390.

2. Forget the media element's media-resource-specific tracksp401.

3. Set the element's networkStatep392 attribute to the NETWORK_NO_SOURCEp392 value.

4. Set the element's show poster flagp404 to true.

5. Fire an event named errorp439 at the media elementp387.

6. Reject pending play promisesp411 with promises and a "NotSupportedError" DOMException.

7. Set the element's delaying-the-load-event flagp392 to false. This stops delaying the load eventp1165.

The resource fetch algorithm for a media elementp387 and a given URL record or media provider objectp390 is as follows:

1. If the algorithm was invoked with media provider objectp390 or a URL record whose object is a media provider objectp390, then
let mode be local. Otherwise let mode be remote.

2. If mode is remote, then let the current media resource be the resource given by the URL record passed to this algorithm;
otherwise, let the current media resource be the resource given by the media provider objectp390. Either way, the current
media resource is now the element's media resourcep389.

3. Remove all media-resource-specific text tracksp424 from the media elementp387 's list of pending text tracksp423, if any.

4. Run the appropriate steps from the following list:

↪ If mode is remote

1. Optionally, run the following substeps. This is the expected behavior if the user agent intends to not attempt
to fetch the resource until the user requests it explicitly (e.g. as a way to implement the preloadp401

attribute's nonep402 keyword).

1. Set the networkStatep392 to NETWORK_IDLEp392.

2. Queue a media element taskp389 given the media elementp387 to fire an event named suspendp439

at the element.

3. Queue a media element taskp389 given the media elementp387 to set the element's delaying-the-
load-event flagp392 to false. This stops delaying the load eventp1165.

4. Wait for the task to be run.

5. Wait for an implementation-defined event (e.g., the user requesting that the media element begin
playback).

6. Set the element's delaying-the-load-event flagp392 back to true (this delays the load eventp1165

again, in case it hasn't been fired yet).

7. Set the networkStatep392 to NETWORK_LOADINGp392.

396

https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-object
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#implementation-defined

2. Let destination be "audio" if the media elementp387 is an audiop384 element and to "video" otherwise.

Let request be the result of creating a potential-CORS requestp90 given current media resource's URL record,
destination, and the media elementp387 's crossoriginp390 content attribute value.

Set request's client to the media elementp387 's node document's relevant settings objectp924.

Fetch request.

The response's unsafe responsep90 obtained in this fashion, if any, contains the media datap389. It can be
CORS-same-originp90 or CORS-cross-originp90; this affects whether subtitles referenced in the media datap389

are exposed in the API and, for videop380 elements, whether a canvasp634 gets tainted when the video is
drawn on it.

The stall timeout is an implementation-defined length of time, which should be about three seconds. When
a media elementp387 that is actively attempting to obtain media datap389 has failed to receive any data for a
duration equal to the stall timeoutp397, the user agent must queue a media element taskp389 given the media
elementp387 to fire an event named stalledp439 at the element.

User agents may allow users to selectively block or slow media datap389 downloads. When a media
elementp387 's download has been blocked altogether, the user agent must act as if it was stalled (as
opposed to acting as if the connection was closed). The rate of the download may also be throttled
automatically by the user agent, e.g. to balance the download with other connections sharing the same
bandwidth.

User agents may decide to not download more content at any time, e.g. after buffering five minutes of a one
hour media resource, while waiting for the user to decide whether to play the resource or not, while waiting
for user input in an interactive resource, or when the user navigates away from the page. When a media
elementp387 's download has been suspended, the user agent must queue a media element taskp389 given
the media elementp387 to set the networkStatep392 to NETWORK_IDLEp392 and fire an event named
suspendp439 at the element. If and when downloading of the resource resumes, the user agent must queue a
media element taskp389 given the media elementp387 to set the networkStatep392 to NETWORK_LOADINGp392.
Between the queuing of these tasks, the load is suspended (so progressp439 events don't fire, as described
above).

When a user agent decides to completely suspend a download, e.g., if it is waiting until the user starts
playback before downloading any further content, the user agent must queue a media element taskp389

given the media elementp387 to set the element's delaying-the-load-event flagp392 to false. This stops
delaying the load eventp1165.

The user agent may use whatever means necessary to fetch the resource (within the constraints put
forward by this and other specifications); for example, reconnecting to the server in the face of network
errors, using HTTP range retrieval requests, or switching to a streaming protocol. The user agent must
consider a resource erroneous only if it has given up trying to fetch it.

To determine the format of the media resourcep389, the user agent must use the rules for sniffing audio and
video specifically.

While the load is not suspended (see below), every 350ms (±200ms) or for every byte received, whichever
is least frequent, queue a media element taskp389 given the media elementp387 to fire an event named
progressp439 at the element.

The networking task sourcep952 tasksp944 to process the data as it is being fetched must each immediatelyp42

queue a media element taskp389 given the media elementp387 to run the first appropriate steps from the
media data processing steps listp398 below. (A new task is used for this so that the work described below
occurs relative to the appropriate media element event task sourcep389 rather than using the networking
task sourcep952.)

When the networking task sourcep952 has queuedp945 the last taskp944 as part of fetching the media
resourcep389 (i.e. once the download has completed), if the fetching process completes without errors,
including decoding the media data, and if all of the data is available to the user agent without network
access, then, the user agent must move on to the final step below. This might never happen, e.g. when

The preloadp401 attribute provides a hint regarding how much buffering the author thinks is advisable,
even in the absence of the autoplayp407 attribute.

Note

397

https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-fetch
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://dom.spec.whatwg.org/#concept-event-fire

streaming an infinite resource such as web radio, or if the resource is longer than the user agent's ability to
cache data.

While the user agent might still need network access to obtain parts of the media resourcep389, the user
agent must remain on this step.

↪ Otherwise (mode is local)
The resource described by the current media resource, if any, contains the media datap389. It is CORS-same-originp90.

If the current media resource is a raw data stream (e.g. from a File object), then to determine the format of the
media resourcep389, the user agent must use the rules for sniffing audio and video specifically. Otherwise, if the data
stream is pre-decoded, then the format is the format given by the relevant specification.

Whenever new data for the current media resource becomes available, queue a media element taskp389 given the
media elementp387 to run the first appropriate steps from the media data processing steps listp398 below.

When the current media resource is permanently exhausted (e.g. all the bytes of a Blob have been processed), if
there were no decoding errors, then the user agent must move on to the final step below. This might never happen,
e.g. if the current media resource is a MediaStream.

The media data processing steps list is as follows:

↪ If the media datap389 cannot be fetched at all, due to network errors, causing the user agent to give up
trying to fetch the resource

↪ If the media datap389 can be fetched but is found by inspection to be in an unsupported format, or can
otherwise not be rendered at all

DNS errors, HTTP 4xx and 5xx errors (and equivalents in other protocols), and other fatal network errors that occur
before the user agent has established whether the current media resource is usable, as well as the file using an
unsupported container format, or using unsupported codecs for all the data, must cause the user agent to execute the
following steps:

1. The user agent should cancel the fetching process.

2. Abort this subalgorithm, returning to the resource selection algorithmp393.

↪ If the media resourcep389 is found to have an audio track

1. Create an AudioTrackp418 object to represent the audio track.

2. Update the media elementp387 's audioTracksp417 attribute's AudioTrackListp417 object with the new
AudioTrackp418 object.

3. Let enable be unknown.

4. If either the media resourcep389 or the URL of the current media resource indicate a particular set of audio
tracks to enable, or if the user agent has information that would facilitate the selection of specific audio
tracks to improve the user's experience, then: if this audio track is one of the ones to enable, then set
enable to true, otherwise, set enable to false.

5. If enable is still unknown, then, if the media elementp387 does not yet have an enabledp420 audio track, then
set enable to true, otherwise, set enable to false.

6. If enable is true, then enable this audio track, otherwise, do not enable this audio track.

7. Fire an event named addtrackp440 at this AudioTrackListp417 object, using TrackEventp439, with the

For example, if the user agent has discarded the first half of a video, the user agent will remain at this
step even once the playback has endedp409, because there is always the chance the user will seek back
to the start. In fact, in this situation, once playback has endedp409, the user agent will end up firing a
suspendp439 event, as described earlier.

Example

This could be triggered by media fragment syntax, but it could also be triggered e.g. by the user agent
selecting a 5.1 surround sound audio track over a stereo audio track.

Example

398

https://w3c.github.io/FileAPI/#dfn-file
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-mediastream
https://url.spec.whatwg.org/#concept-url
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://dom.spec.whatwg.org/#concept-event-fire

trackp439 attribute initialized to the new AudioTrackp418 object.

↪ If the media resourcep389 is found to have a video track

1. Create a VideoTrackp418 object to represent the video track.

2. Update the media elementp387 's videoTracksp417 attribute's VideoTrackListp418 object with the new
VideoTrackp418 object.

3. Let enable be unknown.

4. If either the media resourcep389 or the URL of the current media resource indicate a particular set of video
tracks to enable, or if the user agent has information that would facilitate the selection of specific video
tracks to improve the user's experience, then: if this video track is the first such video track, then set enable
to true, otherwise, set enable to false.

5. If enable is still unknown, then, if the media elementp387 does not yet have a selectedp421 video track, then
set enable to true, otherwise, set enable to false.

6. If enable is true, then select this track and unselect any previously selected video tracks, otherwise, do not
select this video track. If other tracks are unselected, then a change event will be fired.p421

7. Fire an event named addtrackp440 at this VideoTrackListp418 object, using TrackEventp439, with the
trackp439 attribute initialized to the new VideoTrackp418 object.

↪ Once enough of the media datap389 has been fetched to determine the duration of the media resourcep389,
its dimensions, and other metadata

This indicates that the resource is usable. The user agent must follow these substeps:

1. Establish the media timelinep403 for the purposes of the current playback positionp404 and the earliest
possible positionp404, based on the media datap389.

2. Update the timeline offsetp405 to the date and time that corresponds to the zero time in the media
timelinep403 established in the previous step, if any. If no explicit time and date is given by the media
resourcep389, the timeline offsetp405 must be set to Not-a-Number (NaN).

3. Set the current playback positionp404 and the official playback positionp404 to the earliest possible
positionp404.

4. Update the durationp405 attribute with the time of the last frame of the resource, if known, on the media
timelinep403 established above. If it is not known (e.g. a stream that is in principle infinite), update the
durationp405 attribute to the value positive Infinity.

5. For videop380 elements, set the videoWidthp382 and videoHeightp382 attributes, and queue a media element
taskp389 given the media elementp387 to fire an event named resizep440 at the media elementp387.

6. Set the readyStatep407 attribute to HAVE_METADATAp405.

7. Let jumped be false.

8. If the media elementp387 's default playback start positionp404 is greater than zero, then seekp415 to that time,

This could again be triggered by media fragment syntax.
Example

The user agent willp405 queue a media element taskp389 given the media elementp387 to fire an event
named durationchangep440 at the element at this point.

Note

Further resizep440 events will be fired if the dimensions subsequently change.
Note

A loadedmetadatap439 DOM event will be firedp406 as part of setting the readyStatep407 attribute to a
new value.

Note

399

https://url.spec.whatwg.org/#concept-url
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

and let jumped be true.

9. Let the media elementp387 's default playback start positionp404 be zero.

10. Let the initial playback position be zero.

11. If either the media resourcep389 or the URL of the current media resource indicate a particular start time,
then set the initial playback position to that time and, if jumped is still false, seekp415 to that time.

12. If there is no enabledp420 audio track, then enable an audio track. This will cause a change event to be
firedp420.

13. If there is no selectedp421 video track, then select a video track. This will cause a change event to be
firedp421.

Once the readyStatep407 attribute reaches HAVE_CURRENT_DATAp406, after the loadeddata event has been firedp406, set
the element's delaying-the-load-event flagp392 to false. This stops delaying the load eventp1165.

↪ Once the entire media resourcep389 has been fetched (but potentially before any of it has been decoded)
Fire an event named progressp439 at the media elementp387.

Set the networkStatep392 to NETWORK_IDLEp392 and fire an event named suspendp439 at the media elementp387.

If the user agent ever discards any media datap389 and then needs to resume the network activity to obtain it again,
then it must queue a media element taskp389 given the media elementp387 to set the networkStatep392 to
NETWORK_LOADINGp392.

↪ If the connection is interrupted after some media datap389 has been received, causing the user agent to
give up trying to fetch the resource

Fatal network errors that occur after the user agent has established whether the current media resource is usable (i.e.
once the media elementp387 's readyStatep407 attribute is no longer HAVE_NOTHINGp405) must cause the user agent to
execute the following steps:

1. The user agent should cancel the fetching process.

2. Set the errorp389 attribute to the result of creating a MediaErrorp390 with MEDIA_ERR_NETWORKp389.

3. Set the element's networkStatep392 attribute to the NETWORK_IDLEp392 value.

4. Set the element's delaying-the-load-event flagp392 to false. This stops delaying the load eventp1165.

5. Fire an event named errorp439 at the media elementp387.

6. Abort the overall resource selection algorithmp393.

For example, with media formats that support media fragment syntax, the fragment can be used to
indicate a start position.

Example

A user agent that is attempting to reduce network usage while still fetching the metadata for each media
resourcep389 would also stop buffering at this point, following the rules described previouslyp397, which involve the
networkStatep392 attribute switching to the NETWORK_IDLEp392 value and a suspendp439 event firing.

Note

The user agent is required to determine the duration of the media resourcep389 and go through this step before
playing.

Note

If the user agent can keep the media resourcep389 loaded, then the algorithm will continue to its final step below,
which aborts the algorithm.

Note

400

https://url.spec.whatwg.org/#concept-url
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

↪ If the media datap389 is corrupted
Fatal errors in decoding the media datap389 that occur after the user agent has established whether the current media
resource is usable (i.e. once the media elementp387 's readyStatep407 attribute is no longer HAVE_NOTHINGp405) must
cause the user agent to execute the following steps:

1. The user agent should cancel the fetching process.

2. Set the errorp389 attribute to the result of creating a MediaErrorp390 with MEDIA_ERR_DECODEp390.

3. Set the element's networkStatep392 attribute to the NETWORK_IDLEp392 value.

4. Set the element's delaying-the-load-event flagp392 to false. This stops delaying the load eventp1165.

5. Fire an event named errorp439 at the media elementp387.

6. Abort the overall resource selection algorithmp393.

↪ If the media datap389 fetching process is aborted by the user
The fetching process is aborted by the user, e.g. because the user pressed a "stop" button, the user agent must
execute the following steps. These steps are not followed if the load()p392 method itself is invoked while these steps
are running, as the steps above handle that particular kind of abort.

1. The user agent should cancel the fetching process.

2. Set the errorp389 attribute to the result of creating a MediaErrorp390 with MEDIA_ERR_ABORTEDp389.

3. Fire an event named abortp439 at the media elementp387.

4. If the media elementp387 's readyStatep407 attribute has a value equal to HAVE_NOTHINGp405, set the element's
networkStatep392 attribute to the NETWORK_EMPTYp392 value, set the element's show poster flagp404 to true,
and fire an event named emptiedp439 at the element.

Otherwise, set the element's networkStatep392 attribute to the NETWORK_IDLEp392 value.

5. Set the element's delaying-the-load-event flagp392 to false. This stops delaying the load eventp1165.

6. Abort the overall resource selection algorithmp393.

↪ If the media datap389 can be fetched but has non-fatal errors or uses, in part, codecs that are unsupported,
preventing the user agent from rendering the content completely correctly but not preventing playback
altogether

The server returning data that is partially usable but cannot be optimally rendered must cause the user agent to
render just the bits it can handle, and ignore the rest.

↪ If the media resourcep389 is found to declare a media-resource-specific text trackp424 that the user agent
supports

If the media datap389 is CORS-same-originp90, run the steps to expose a media-resource-specific text trackp425 with the
relevant data.

5. Final step: If the user agent ever reaches this step (which can only happen if the entire resource gets loaded and kept
available): abort the overall resource selection algorithmp393.

When a media elementp387 is to forget the media element's media-resource-specific tracks, the user agent must remove from
the media elementp387 's list of text tracksp421 all the media-resource-specific text tracksp424, then empty the media elementp387 's
audioTracksp417 attribute's AudioTrackListp417 object, then empty the media elementp387 's videoTracksp417 attribute's
VideoTrackListp418 object. No events (in particular, no removetrackp440 events) are fired as part of this; the errorp439 and emptiedp439

events, fired by the algorithms that invoke this one, can be used instead.

The preload attribute is an enumerated attributep68. The following table lists the keywords and states for the attribute — the keywords
in the left column map to the states in the cell in the second column on the same row as the keyword. The attribute can be changed

Cross-origin videos do not expose their subtitles, since that would allow attacks such as hostile sites reading
subtitles from confidential videos on a user's intranet.

Note

401

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

even once the media resourcep389 is being buffered or played; the descriptions in the table below are to be interpreted with that in
mind.

Keyword State Brief description

none None Hints to the user agent that either the author does not expect the user to need the media resource, or that the server wants to minimize
unnecessary traffic. This state does not provide a hint regarding how aggressively to actually download the media resource if buffering
starts anyway (e.g. once the user hits "play").

metadata Metadata Hints to the user agent that the author does not expect the user to need the media resource, but that fetching the resource metadata
(dimensions, track list, duration, etc), and maybe even the first few frames, is reasonable. If the user agent precisely fetches no more
than the metadata, then the media elementp387 will end up with its readyStatep407 attribute set to HAVE_METADATAp405; typically though,
some frames will be obtained as well and it will probably be HAVE_CURRENT_DATAp406 or HAVE_FUTURE_DATAp406. When the media resource
is playing, hints to the user agent that bandwidth is to be considered scarce, e.g. suggesting throttling the download so that the media
data is obtained at the slowest possible rate that still maintains consistent playback.

auto Automatic Hints to the user agent that the user agent can put the user's needs first without risk to the server, up to and including optimistically
downloading the entire resource.

The empty string is also a valid keyword, and maps to the Automaticp402 state. The attribute's missing value defaultp68 and invalid
value defaultp68 are implementation-defined, though the Metadatap402 state is suggested as a compromise between reducing server
load and providing an optimal user experience.

The preloadp401 attribute is intended to provide a hint to the user agent about what the author thinks will lead to the best user
experience. The attribute may be ignored altogether, for example based on explicit user preferences or based on the available
connectivity.

The preload IDL attribute must reflectp94 the content attribute of the same name, limited to only known valuesp95.

The buffered attribute must return a new static normalized TimeRanges objectp438 that represents the ranges of the media
resourcep389, if any, that the user agent has buffered, at the time the attribute is evaluated. Users agents must accurately determine
the ranges available, even for media streams where this can only be determined by tedious inspection.

User agents may discard previously buffered data.

Authors might switch the attribute from "nonep402" or "metadatap402" to "autop402" dynamically once the user begins playback. For
example, on a page with many videos this might be used to indicate that the many videos are not to be downloaded unless
requested, but that once one is requested it is to be downloaded aggressively.

Note

The autoplayp407 attribute can override the preloadp401 attribute (since if the media plays, it naturally has to buffer first,
regardless of the hint given by the preloadp401 attribute). Including both is not an error, however.

Note

media . bufferedp402

Returns a TimeRangesp438 object that represents the ranges of the media resourcep389 that the user agent has buffered.

For web developers (non-normative)

Typically this will be a single range anchored at the zero point, but if, e.g. the user agent uses HTTP range requests in response to
seeking, then there could be multiple ranges.

Note

Thus, a time position included within a range of the objects return by the bufferedp402 attribute at one time can end up being not
included in the range(s) of objects returned by the same attribute at later times.

Note

Returning a new object each time is a bad pattern for attribute getters and is only enshrined here as it would be
costly to change it. It is not to be copied to new APIs.

⚠Warning!

402

https://infra.spec.whatwg.org/#implementation-defined

A media resourcep389 has a media timeline that maps times (in seconds) to positions in the media resourcep389. The origin of a
timeline is its earliest defined position. The duration of a timeline is its last defined position.

Establishing the media timeline: if the media resourcep389 somehow specifies an explicit timeline whose origin is not negative (i.e.
gives each frame a specific time offset and gives the first frame a zero or positive offset), then the media timelinep403 should be that
timeline. (Whether the media resourcep389 can specify a timeline or not depends on the media resource'sp389 format.) If the media
resourcep389 specifies an explicit start time and date, then that time and date should be considered the zero point in the media
timelinep403; the timeline offsetp405 will be the time and date, exposed using the getStartDate()p405 method.

If the media resourcep389 has a discontinuous timeline, the user agent must extend the timeline used at the start of the resource across
the entire resource, so that the media timelinep403 of the media resourcep389 increases linearly starting from the earliest possible
positionp404 (as defined below), even if the underlying media datap389 has out-of-order or even overlapping time codes.

In the rare case of a media resourcep389 that does not have an explicit timeline, the zero time on the media timelinep403 should
correspond to the first frame of the media resourcep389. In the even rarer case of a media resourcep389 with no explicit timings
of any kind, not even frame durations, the user agent must itself determine the time for each frame in an implementation-
defined manner.

If, in the case of a resource with no timing information, the user agent will nonetheless be able to seek to an earlier point than the first
frame originally provided by the server, then the zero time should correspond to the earliest seekable time of the media resourcep389;
otherwise, it should correspond to the first frame received from the server (the point in the media resourcep389 at which the user agent
began receiving the stream).

4.8.12.6 Offsets into the media resource §p40

3

media . durationp405

Returns the length of the media resourcep389, in seconds, assuming that the start of the media resourcep389 is at time zero.
Returns NaN if the duration isn't available.
Returns Infinity for unbounded streams.

media . currentTimep404 [= value]
Returns the official playback positionp404, in seconds.
Can be set, to seek to the given time.

For web developers (non-normative)

For example, if two clips have been concatenated into one video file, but the video format exposes the original times for the two
clips, the video data might expose a timeline that goes, say, 00:15..00:29 and then 00:05..00:38. However, the user agent would
not expose those times; it would instead expose the times as 00:15..00:29 and 00:29..01:02, as a single video.

Example

An example of a file format with no explicit timeline but with explicit frame durations is the Animated GIF format. An example of a
file format with no explicit timings at all is the JPEG-push format (multipart/x-mixed-replacep1251 with JPEG frames, often used
as the format for MJPEG streams).

Note

At the time of writing, there is no known format that lacks explicit frame time offsets yet still supports seeking to a frame before
the first frame sent by the server.

Note

Consider a stream from a TV broadcaster, which begins streaming on a sunny Friday afternoon in October, and always sends
connecting user agents the media data on the same media timeline, with its zero time set to the start of this stream. Months later,
user agents connecting to this stream will find that the first frame they receive has a time with millions of seconds. The
getStartDate()p405 method would always return the date that the broadcast started; this would allow controllers to display real
times in their scrubber (e.g. "2:30pm") rather than a time relative to when the broadcast began ("8 months, 4 hours, 12 minutes,
and 23 seconds").

Example

403

https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined

In any case, the user agent must ensure that the earliest possible positionp404 (as defined below) using the established media
timelinep403, is greater than or equal to zero.

The media timelinep403 also has an associated clock. Which clock is used is user-agent defined, and may be media
resourcep389-dependent, but it should approximate the user's wall clock.

Media elementsp387 have a current playback position, which must initially (i.e. in the absence of media datap389) be zero seconds.
The current playback positionp404 is a time on the media timelinep403.

Media elementsp387 also have an official playback position, which must initially be set to zero seconds. The official playback
positionp404 is an approximation of the current playback positionp404 that is kept stable while scripts are running.

Media elementsp387 also have a default playback start position, which must initially be set to zero seconds. This time is used to
allow the element to be seeked even before the media is loaded.

Each media elementp387 has a show poster flag. When a media elementp387 is created, this flag must be set to true. This flag is used
to control when the user agent is to show a poster frame for a videop380 element instead of showing the video contents.

The currentTime attribute must, on getting, return the media elementp387 's default playback start positionp404, unless that is zero, in
which case it must return the element's official playback positionp404. The returned value must be expressed in seconds. On setting, if
the media elementp387 's readyStatep407 is HAVE_NOTHINGp405, then it must set the media elementp387 's default playback start
positionp404 to the new value; otherwise, it must set the official playback positionp404 to the new value and then seekp415 to the new
value. The new value must be interpreted as being in seconds.

If the media resourcep389 is a streaming resource, then the user agent might be unable to obtain certain parts of the resource after it
has expired from its buffer. Similarly, some media resourcesp389 might have a media timelinep403 that doesn't start at zero. The earliest
possible position is the earliest position in the stream or resource that the user agent can ever obtain again. It is also a time on the
media timelinep403.

When the earliest possible positionp404 changes, then: if the current playback positionp404 is before the earliest possible positionp404, the
user agent must seekp415 to the earliest possible positionp404; otherwise, if the user agent has not fired a timeupdatep440 event at the
element in the past 15 to 250ms and is not still running event handlers for such an event, then the user agent must queue a media
element taskp389 given the media elementp387 to fire an event named timeupdatep440 at the element.

Consider a stream that carries a video with several concatenated fragments, broadcast by a server that does not allow user agents
to request specific times but instead just streams the video data in a predetermined order, with the first frame delivered always
being identified as the frame with time zero. If a user agent connects to this stream and receives fragments defined as covering
timestamps 2010-03-20 23:15:00 UTC to 2010-03-21 00:05:00 UTC and 2010-02-12 14:25:00 UTC to 2010-02-12 14:35:00 UTC, it
would expose this with a media timelinep403 starting at 0s and extending to 3,600s (one hour). Assuming the streaming server
disconnected at the end of the second clip, the durationp405 attribute would then return 3,600. The getStartDate()p405 method
would return a Date object with a time corresponding to 2010-03-20 23:15:00 UTC. However, if a different user agent connected
five minutes later, it would (presumably) receive fragments covering timestamps 2010-03-20 23:20:00 UTC to 2010-03-21
00:05:00 UTC and 2010-02-12 14:25:00 UTC to 2010-02-12 14:35:00 UTC, and would expose this with a media timelinep403 starting
at 0s and extending to 3,300s (fifty five minutes). In this case, the getStartDate()p405 method would return a Date object with a
time corresponding to 2010-03-20 23:20:00 UTC.

In both of these examples, the seekablep416 attribute would give the ranges that the controller would want to actually display in its
UI; typically, if the servers don't support seeking to arbitrary times, this would be the range of time from the moment the user
agent connected to the stream up to the latest frame that the user agent has obtained; however, if the user agent starts
discarding earlier information, the actual range might be shorter.

The earliest possible positionp404 is not explicitly exposed in the API; it corresponds to the start time of the first range in the
seekablep416 attribute's TimeRangesp438 object, if any, or the current playback positionp404 otherwise.

Note

Because of the above requirement and the requirement in the resource fetch algorithmp396 that kicks in when the metadata of the
clip becomes knownp399, the current playback positionp404 can never be less than the earliest possible positionp404.

Note

✔ MDN

404

https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-date-objects
https://dom.spec.whatwg.org/#concept-event-fire

If at any time the user agent learns that an audio or video track has ended and all media datap389 relating to that track corresponds to
parts of the media timelinep403 that are before the earliest possible positionp404, the user agent may queue a media element taskp389

given the media elementp387 to run these steps:

1. Remove the track from the audioTracksp417 attribute's AudioTrackListp417 object or the videoTracksp417 attribute's
VideoTrackListp418 object as appropriate.

2. Fire an event named removetrackp440 at the media elementp387 's aforementioned AudioTrackListp417 or VideoTrackListp418

object, using TrackEventp439, with the trackp439 attribute initialized to the AudioTrackp418 or VideoTrackp418 object
representing the track.

The duration attribute must return the time of the end of the media resourcep389, in seconds, on the media timelinep403. If no media
datap389 is available, then the attributes must return the Not-a-Number (NaN) value. If the media resourcep389 is not known to be
bounded (e.g. streaming radio, or a live event with no announced end time), then the attribute must return the positive Infinity value.

The user agent must determine the duration of the media resourcep389 before playing any part of the media datap389 and before setting
readyStatep407 to a value equal to or greater than HAVE_METADATAp405, even if doing so requires fetching multiple parts of the resource.

When the length of the media resourcep389 changes to a known value (e.g. from being unknown to known, or from a previously
established length to a new length) the user agent must queue a media element taskp389 given the media elementp387 to fire an event
named durationchangep440 at the media elementp387. (The event is not fired when the duration is reset as part of loading a new media
resource.) If the duration is changed such that the current playback positionp404 ends up being greater than the time of the end of the
media resourcep389, then the user agent must also seekp415 to the time of the end of the media resourcep389.

Some video files also have an explicit date and time corresponding to the zero time in the media timelinep403, known as the timeline
offset. Initially, the timeline offsetp405 must be set to Not-a-Number (NaN).

The getStartDate() method must return a new Date objectp54 representing the current timeline offsetp405.

The loop attribute is a boolean attributep67 that, if specified, indicates that the media elementp387 is to seek back to the start of the
media resourcep389 upon reaching the end.

The loop IDL attribute must reflectp94 the content attribute of the same name.

Media elementsp387 have a ready state, which describes to what degree they are ready to be rendered at the current playback
positionp404. The possible values are as follows; the ready state of a media element at any particular time is the greatest value
describing the state of the element:

HAVE_NOTHING (numeric value 0)
No information regarding the media resourcep389 is available. No data for the current playback positionp404 is available. Media
elementsp387 whose networkStatep392 attribute are set to NETWORK_EMPTYp392 are always in the HAVE_NOTHINGp405 state.

HAVE_METADATA (numeric value 1)
Enough of the resource has been obtained that the duration of the resource is available. In the case of a videop380 element, the
dimensions of the video are also available. No media datap389 is available for the immediate current playback positionp404.

If an "infinite" stream ends for some reason, then the duration would change from positive Infinity to the time of the last frame or
sample in the stream, and the durationchangep440 event would be fired. Similarly, if the user agent initially estimated the media
resourcep389 's duration instead of determining it precisely, and later revises the estimate based on new information, then the
duration would change and the durationchangep440 event would be fired.

Example

4.8.12.7 Ready states §p40

5

media . readyStatep407

Returns a value that expresses the current state of the element with respect to rendering the current playback positionp404, from
the codes in the list below.

For web developers (non-normative)

✔ MDN

✔ MDN

405

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

HAVE_CURRENT_DATA (numeric value 2)
Data for the immediate current playback positionp404 is available, but either not enough data is available that the user agent could
successfully advance the current playback positionp404 in the direction of playbackp412 at all without immediately reverting to the
HAVE_METADATAp405 state, or there is no more data to obtain in the direction of playbackp412. For example, in video this corresponds
to the user agent having data from the current frame, but not the next frame, when the current playback positionp404 is at the end
of the current frame; and to when playback has endedp409.

HAVE_FUTURE_DATA (numeric value 3)
Data for the immediate current playback positionp404 is available, as well as enough data for the user agent to advance the current
playback positionp404 in the direction of playbackp412 at least a little without immediately reverting to the HAVE_METADATAp405 state,
and the text tracks are readyp423. For example, in video this corresponds to the user agent having data for at least the current frame
and the next frame when the current playback positionp404 is at the instant in time between the two frames, or to the user agent
having the video data for the current frame and audio data to keep playing at least a little when the current playback positionp404 is
in the middle of a frame. The user agent cannot be in this state if playback has endedp409, as the current playback positionp404 can
never advance in this case.

HAVE_ENOUGH_DATA (numeric value 4)
All the conditions described for the HAVE_FUTURE_DATAp406 state are met, and, in addition, either of the following conditions is also
true:

• The user agent estimates that data is being fetched at a rate where the current playback positionp404, if it were to advance
at the element's playbackRatep410, would not overtake the available data before playback reaches the end of the media
resourcep389.

• The user agent has entered a state where waiting longer will not result in further data being obtained, and therefore
nothing would be gained by delaying playback any further. (For example, the buffer might be full.)

When the ready state of a media elementp387 whose networkStatep392 is not NETWORK_EMPTYp392 changes, the user agent must follow
the steps given below:

1. Apply the first applicable set of substeps from the following list:

↪ If the previous ready state was HAVE_NOTHINGp405, and the new ready state is HAVE_METADATAp405

Queue a media element taskp389 given the media elementp387 to fire an event named loadedmetadatap439 at the
element.

↪ If the previous ready state was HAVE_METADATAp405 and the new ready state is HAVE_CURRENT_DATAp406 or greater
If this is the first time this occurs for this media elementp387 since the load()p392 algorithm was last invoked, the user
agent must queue a media element taskp389 given the media elementp387 to fire an event named loadeddatap439 at
the element.

If the new ready state is HAVE_FUTURE_DATAp406 or HAVE_ENOUGH_DATAp406, then the relevant steps below must then be
run also.

↪ If the previous ready state was HAVE_FUTURE_DATAp406 or more, and the new ready state is
HAVE_CURRENT_DATAp406 or less

If the media elementp387 was potentially playingp408 before its readyStatep407 attribute changed to a value lower than
HAVE_FUTURE_DATAp406, and the element has not ended playbackp409, and playback has not stopped due to errorsp409,
paused for user interactionp409, or paused for in-band contentp409, the user agent must queue a media element

In practice, the difference between HAVE_METADATAp405 and HAVE_CURRENT_DATAp406 is negligible. Really the only time the difference
is relevant is when painting a videop380 element onto a canvasp634, where it distinguishes the case where something will be drawn
(HAVE_CURRENT_DATAp406 or greater) from the case where nothing is drawn (HAVE_METADATAp405 or less). Similarly, the difference
between HAVE_CURRENT_DATAp406 (only the current frame) and HAVE_FUTURE_DATAp406 (at least this frame and the next) can be
negligible (in the extreme, only one frame). The only time that distinction really matters is when a page provides an interface for
"frame-by-frame" navigation.

Note

Before this task is run, as part of the event loopp944 mechanism, the rendering will have been updated to resize
the videop380 element if appropriate.

Note

406

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

taskp389 given the media elementp387 to fire an event named timeupdatep440 at the element, and queue a media
element taskp389 given the media elementp387 to fire an event named waitingp440 at the element.

↪ If the previous ready state was HAVE_CURRENT_DATAp406 or less, and the new ready state is
HAVE_FUTURE_DATAp406

The user agent must queue a media element taskp389 given the media elementp387 to fire an event named canplayp439

at the element.

If the element's pausedp408 attribute is false, the user agent must notify about playingp411 for the element.

↪ If the new ready state is HAVE_ENOUGH_DATAp406

If the previous ready state was HAVE_CURRENT_DATAp406 or less, the user agent must queue a media element taskp389

given the media elementp387 to fire an event named canplayp439 at the element, and, if the element's pausedp408

attribute is false, notify about playingp411 for the element.

The user agent must queue a media element taskp389 given the media elementp387 to fire an event named
canplaythroughp439 at the element.

If the element is not eligible for autoplayp408, then the user agent must abort these substeps.

The user agent may run the following substeps:

1. Set the pausedp408 attribute to false.

2. If the element's show poster flagp404 is true, set it to false and run the time marches onp413 steps.

3. Queue a media element taskp389 given the element to fire an event named playp440 at the element.

4. Notify about playingp411 for the element.

Alternatively, if the element is a videop380 element, the user agent may start observing whether the element
intersects the viewportp1192. When the element starts intersecting the viewportp1192, if the element is still eligible for
autoplayp408, run the substeps above. Optionally, when the element stops intersecting the viewportp1192, if the can
autoplay flagp392 is still true and the autoplayp407 attribute is still specified, run the following substeps:

1. Run the internal pause stepsp412 and set the can autoplay flagp392 to true.

2. Queue a media element taskp389 given the element to fire an event named pausep440 at the element.

The readyState IDL attribute must, on getting, return the value described above that describes the current ready state of the media
elementp387.

The autoplay attribute is a boolean attributep67. When present, the user agent (as described in the algorithm described herein) will
automatically begin playback of the media resourcep389 as soon as it can do so without stopping.

The substeps for playing and pausing can run multiple times as the element starts or stops intersecting the
viewportp1192, as long as the can autoplay flagp392 is true.

Note

User agents do not need to support autoplay, and it is suggested that user agents honor user preferences on the
matter. Authors are urged to use the autoplayp407 attribute rather than using script to force the video to play, so
as to allow the user to override the behavior if so desired.

Note

It is possible for the ready state of a media element to jump between these states discontinuously. For example, the state of a
media element can jump straight from HAVE_METADATAp405 to HAVE_ENOUGH_DATAp406 without passing through the
HAVE_CURRENT_DATAp406 and HAVE_FUTURE_DATAp406 states.

Note

Authors are urged to use the autoplayp407 attribute rather than using script to trigger automatic playback, as this allows the user
to override the automatic playback when it is not desired, e.g. when using a screen reader. Authors are also encouraged to

Note

✔ MDN

407

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

The autoplay IDL attribute must reflectp94 the content attribute of the same name.

The paused attribute represents whether the media elementp387 is paused or not. The attribute must initially be true.

A media elementp387 is a blocked media element if its readyStatep407 attribute is in the HAVE_NOTHINGp405 state, the
HAVE_METADATAp405 state, or the HAVE_CURRENT_DATAp406 state, or if the element has paused for user interactionp409 or paused for in-
band contentp409.

A media elementp387 is said to be potentially playing when its pausedp408 attribute is false, the element has not ended playbackp409,
playback has not stopped due to errorsp409, and the element is not a blocked media elementp408.

A media elementp387 is said to be eligible for autoplay when all of the following conditions are met:

• Its can autoplay flagp392 is true.
• Its pausedp408 attribute is true.
• It has an autoplayp407 attribute specified.
• Its node document's active sandboxing flag setp844 does not have the sandboxed automatic features browsing context flagp842

set.

consider not using the automatic playback behavior at all, and instead to let the user agent wait for the user to start playback
explicitly.

4.8.12.8 Playing the media resource §p40

8

media . pausedp408

Returns true if playback is paused; false otherwise.

media . endedp409

Returns true if playback has reached the end of the media resourcep389.

media . defaultPlaybackRatep410 [= value]
Returns the default rate of playback, for when the user is not fast-forwarding or reversing through the media resourcep389.
Can be set, to change the default rate of playback.
The default rate has no direct effect on playback, but if the user switches to a fast-forward mode, when they return to the
normal playback mode, it is expected that the rate of playback will be returned to the default rate of playback.

media . playbackRatep410 [= value]
Returns the current rate playback, where 1.0 is normal speed.
Can be set, to change the rate of playback.

media . preservesPitchp410

Returns true if pitch-preserving algorithms are used when the playbackRatep410 is not 1.0. The default value is true.
Can be set to false to have the media resourcep389 's audio pitch change up or down depending on the playbackRatep410. This is
useful for aesthetic and performance reasons.

media . playedp410

Returns a TimeRangesp438 object that represents the ranges of the media resourcep389 that the user agent has played.

media . playp411()
Sets the pausedp408 attribute to false, loading the media resourcep389 and beginning playback if necessary. If the playback had
ended, will restart it from the start.

media . pausep412()
Sets the pausedp408 attribute to true, loading the media resourcep389 if necessary.

For web developers (non-normative)

A waitingp440 DOM event can be firedp406 as a result of an element that is potentially playingp408 stopping playback due to its
readyStatep407 attribute changing to a value lower than HAVE_FUTURE_DATAp406.

Note

✔ MDN

✔ MDN

408

https://dom.spec.whatwg.org/#concept-node-document

• Its node document is allowed to usep367 the "autoplayp67" feature.

A media elementp387 is said to be allowed to play if the user agent and the system allow media playback in the current context.

A media elementp387 is said to have ended playback when:

• The element's readyStatep407 attribute is HAVE_METADATAp405 or greater, and

• Either:

◦ The current playback positionp404 is the end of the media resourcep389, and

◦ The direction of playbackp412 is forwards, and

◦ The media elementp387 does not have a loopp405 attribute specified.

Or:

◦ The current playback positionp404 is the earliest possible positionp404, and

◦ The direction of playbackp412 is backwards.

The ended attribute must return true if, the last time the event loopp944 reached step 1p946, the media elementp387 had ended
playbackp409 and the direction of playbackp412 was forwards, and false otherwise.

A media elementp387 is said to have stopped due to errors when the element's readyStatep407 attribute is HAVE_METADATAp405 or
greater, and the user agent encounters a non-fatal errorp401 during the processing of the media datap389, and due to that error, is not
able to play the content at the current playback positionp404.

A media elementp387 is said to have paused for user interaction when its pausedp408 attribute is false, the readyStatep407 attribute
is either HAVE_FUTURE_DATAp406 or HAVE_ENOUGH_DATAp406 and the user agent has reached a point in the media resourcep389 where the
user has to make a selection for the resource to continue.

It is possible for a media elementp387 to have both ended playbackp409 and paused for user interactionp409 at the same time.

When a media elementp387 that is potentially playingp408 stops playing because it has paused for user interactionp409, the user agent
must queue a media element taskp389 given the media elementp387 to fire an event named timeupdatep440 at the element.

A media elementp387 is said to have paused for in-band content when its pausedp408 attribute is false, the readyStatep407 attribute is
either HAVE_FUTURE_DATAp406 or HAVE_ENOUGH_DATAp406 and the user agent has suspended playback of the media resourcep389 in order
to play content that is temporally anchored to the media resourcep389 and has a nonzero length, or to play content that is temporally
anchored to a segment of the media resourcep389 but has a length longer than that segment.

When the current playback positionp404 reaches the end of the media resourcep389 when the direction of playbackp412 is forwards, then
the user agent must follow these steps:

1. If the media elementp387 has a loopp405 attribute specified, then seekp415 to the earliest possible positionp404 of the media
resourcep389 and return.

2. As defined above, the endedp409 IDL attribute starts returning true once the event loopp944 returns to step 1p946.

3. Queue a media element taskp389 given the media elementp387 and the following steps:

1. Fire an event named timeupdatep440 at the media elementp387.

For example, a user agent could allow playback only when the media elementp387 's Windowp824 object has transient activationp767,
but an exception could be made to allow playback while mutedp437.

Example

One example of when a media elementp387 would be paused for in-band contentp409 is when the user agent is playing audio
descriptionsp386 from an external WebVTT file, and the synthesized speech generated for a cue is longer than the time between the
text track cue start timep424 and the text track cue end timep424.

Example

✔ MDN

409

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

2. If the media elementp387 has ended playbackp409, the direction of playbackp412 is forwards, and pausedp408 is false,
then:

1. Set the pausedp408 attribute to true.

2. Fire an event named pausep440 at the media elementp387.

3. Take pending play promisesp410 and reject pending play promisesp411 with the result and an "AbortError"
DOMException.

3. Fire an event named endedp440 at the media elementp387.

When the current playback positionp404 reaches the earliest possible positionp404 of the media resourcep389 when the direction of
playbackp412 is backwards, then the user agent must only queue a media element taskp389 given the media elementp387 to fire an event
named timeupdatep440 at the element.

The defaultPlaybackRate attribute gives the desired speed at which the media resourcep389 is to play, as a multiple of its intrinsic
speed. The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it hasn't yet been set; on setting the
attribute must be set to the new value.

The playbackRate attribute gives the effective playback rate, which is the speed at which the media resourcep389 plays, as a multiple
of its intrinsic speed. If it is not equal to the defaultPlaybackRatep410, then the implication is that the user is using a feature such as
fast forward or slow motion playback. The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it hasn't
yet been set; on setting, the user agent must follow these steps:

1. If the given value is not supported by the user agent, then throw a "NotSupportedError" DOMException.

2. Set playbackRatep410 to the new value, and if the element is potentially playingp408, change the playback speed.

When the defaultPlaybackRatep410 or playbackRatep410 attributes change value (either by being set by script or by being changed
directly by the user agent, e.g. in response to user control) the user agent must queue a media element taskp389 given the media
elementp387 to fire an event named ratechangep440 at the media elementp387. The user agent must process attribute changes smoothly
and must not introduce any perceivable gaps or muting of playback in response.

The preservesPitch getter steps are to return true if a pitch-preserving algorithm is in effect during playback. The setter steps are to
correspondingly switch the pitch-preserving algorithm on or off, without any perceivable gaps or muting of playback. By default, such a
pitch-preserving algorithm must be in effect (i.e., the getter will initially return true).

The played attribute must return a new static normalized TimeRanges objectp438 that represents the ranges of points on the media
timelinep403 of the media resourcep389 reached through the usual monotonic increase of the current playback positionp404 during normal
playback, if any, at the time the attribute is evaluated.

Each media elementp387 has a list of pending play promises, which must initially be empty.

To take pending play promises for a media elementp387, the user agent must run the following steps:

1. Let promises be an empty list of promises.

The word "reaches" here does not imply that the current playback positionp404 needs to have changed during normal playback; it
could be via seekingp415, for instance.

Note

The defaultPlaybackRatep410 is used by the user agent when it exposes a user interface to the userp436.
Note

Returning a new object each time is a bad pattern for attribute getters and is only enshrined here as it would be
costly to change it. It is not to be copied to new APIs.

⚠Warning!

✔ MDN

✔ MDN

410

https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#aborterror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire

2. Copy the media elementp387 's list of pending play promisesp410 to promises.

3. Clear the media elementp387 's list of pending play promisesp410.

4. Return promises.

To resolve pending play promises for a media elementp387 with a list of promises promises, the user agent must resolve each
promise in promises with undefined.

To reject pending play promises for a media elementp387 with a list of promise promises and an exception name error, the user
agent must reject each promise in promises with error.

To notify about playing for a media elementp387, the user agent must run the following steps:

1. Take pending play promisesp410 and let promises be the result.

2. Queue a media element taskp389 given the element and the following steps:

1. Fire an event named playingp440 at the element.

2. Resolve pending play promisesp411 with promises.

When the play() method on a media elementp387 is invoked, the user agent must run the following steps.

1. If the media elementp387 is not allowed to playp409, return a promise rejected with a "NotAllowedError" DOMException.

2. If the media elementp387 's errorp389 attribute is not null and its codep389 is MEDIA_ERR_SRC_NOT_SUPPORTEDp390, return a
promise rejected with a "NotSupportedError" DOMException.

3. Let promise be a new promise and append promise to the list of pending play promisesp410.

4. Run the internal play stepsp411 for the media elementp387.

5. Return promise.

The internal play steps for a media elementp387 are as follows:

1. If the media elementp387 's networkStatep392 attribute has the value NETWORK_EMPTYp392, invoke the media elementp387 's
resource selection algorithmp393.

2. If the playback has endedp409 and the direction of playbackp412 is forwards, seekp415 to the earliest possible positionp404 of the
media resourcep389.

3. If the media elementp387 's pausedp408 attribute is true, then:

1. Change the value of pausedp408 to false.

2. If the show poster flagp404 is true, set the element's show poster flagp404 to false and run the time marches onp413

steps.

3. Queue a media element taskp389 given the media elementp387 to fire an event named playp440 at the element.

4. If the media elementp387 's readyStatep407 attribute has the value HAVE_NOTHINGp405, HAVE_METADATAp405, or
HAVE_CURRENT_DATAp406, queue a media element taskp389 given the media elementp387 to fire an event named
waitingp440 at the element.

Otherwise, the media elementp387 's readyStatep407 attribute has the value HAVE_FUTURE_DATAp406 or
HAVE_ENOUGH_DATAp406: notify about playingp411 for the element.

4. Otherwise, if the media elementp387 's readyStatep407 attribute has the value HAVE_FUTURE_DATAp406 or

This means that the dedicated media source failure stepsp396 have run. Playback is not possible until the media element
load algorithmp392 clears the errorp389 attribute.

Note

This will causep416 the user agent to queue a media element taskp389 given the media elementp387 to fire an event named
timeupdatep440 at the media elementp387.

Note

✔ MDN

411

https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#notallowederror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

HAVE_ENOUGH_DATAp406, take pending play promisesp410 and queue a media element taskp389 given the media elementp387 to
resolve pending play promisesp411 with the result.

5. Set the media elementp387 's can autoplay flagp392 to false.

When the pause() method is invoked, and when the user agent is required to pause the media elementp387, the user agent must run
the following steps:

1. If the media elementp387 's networkStatep392 attribute has the value NETWORK_EMPTYp392, invoke the media elementp387 's
resource selection algorithmp393.

2. Run the internal pause stepsp412 for the media elementp387.

The internal pause steps for a media elementp387 are as follows:

1. Set the media elementp387 's can autoplay flagp392 to false.

2. If the media elementp387 's pausedp408 attribute is false, run the following steps:

1. Change the value of pausedp408 to true.

2. Take pending play promisesp410 and let promises be the result.

3. Queue a media element taskp389 on the given the media elementp387 and the following steps:

1. Fire an event named timeupdatep440 at the element.

2. Fire an event named pausep440 at the element.

3. Reject pending play promisesp411 with promises and an "AbortError" DOMException.

4. Set the official playback positionp404 to the current playback positionp404.

If the element's playbackRatep410 is positive or zero, then the direction of playback is forwards. Otherwise, it is backwards.

When a media elementp387 is potentially playingp408 and its Documentp114 is a fully activep815 Documentp114, its current playback
positionp404 must increase monotonically at the element's playbackRatep410 units of media time per unit time of the media
timelinep403 's clock. (This specification always refers to this as an increase, but that increase could actually be a decrease if the
element's playbackRatep410 is negative.)

Any time the user agent provides a stable statep949, the official playback positionp404 must be set to the current playback positionp404.

While the direction of playbackp412 is backwards, any corresponding audio must be mutedp437. While the element's playbackRatep410 is
so low or so high that the user agent cannot play audio usefully, the corresponding audio must also be mutedp437. If the element's
playbackRatep410 is not 1.0 and preservesPitchp410 is true, the user agent must apply pitch adjustment to preserve the original pitch
of the audio. Otherwise, the user agent must speed up or slow down the audio without any pitch adjustment.

When a media elementp387 is potentially playingp408, its audio data played must be synchronized with the current playback positionp404,

The media element is already playing. However, it's possible that promise will be rejectedp411 before the queued task is
run.

Note

The element's playbackRatep410 can be 0.0, in which case the current playback positionp404 doesn't move, despite playback not
being paused (pausedp408 doesn't become true, and the pausep440 event doesn't fire).

Note

This specification doesn't define how the user agent achieves the appropriate playback rate — depending on the protocol and
media available, it is plausible that the user agent could negotiate with the server to have the server provide the media data at the
appropriate rate, so that (except for the period between when the rate is changed and when the server updates the stream's
playback rate) the client doesn't actually have to drop or interpolate any frames.

Note

✔ MDN

412

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#aborterror
https://heycam.github.io/webidl/#dfn-DOMException

at the element's effective media volumep437. The user agent must play the audio from audio tracks that were enabled when the event
loopp944 last reached step 1p946.

When a media elementp387 is not potentially playingp408, audio must not play for the element.

Media elementsp387 that are potentially playingp408 while not in a document must not play any video, but should play any audio
component. Media elements must not stop playing just because all references to them have been removed; only once a media element
is in a state where no further audio could ever be played by that element may the element be garbage collected.

Each media elementp387 has a list of newly introduced cues, which must be initially empty. Whenever a text track cuep423 is added
to the list of cuesp423 of a text trackp421 that is in the list of text tracksp421 for a media elementp387, that cuep423 must be added to the
media elementp387 's list of newly introduced cuesp413. Whenever a text trackp421 is added to the list of text tracksp421 for a media
elementp387, all of the cuesp423 in that text trackp421 's list of cuesp423 must be added to the media elementp387 's list of newly introduced
cuesp413. When a media elementp387 's list of newly introduced cuesp413 has new cues added while the media elementp387 's show poster
flagp404 is not set, then the user agent must run the time marches onp413 steps.

When a text track cuep423 is removed from the list of cuesp423 of a text trackp421 that is in the list of text tracksp421 for a media
elementp387, and whenever a text trackp421 is removed from the list of text tracksp421 of a media elementp387, if the media elementp387 's
show poster flagp404 is not set, then the user agent must run the time marches onp413 steps.

When the current playback positionp404 of a media elementp387 changes (e.g. due to playback or seeking), the user agent must run the
time marches onp413 steps. To support use cases that depend on the timing accuracy of cue event firing, such as synchronizing
captions with shot changes in a video, user agents should fire cue events as close as possible to their position on the media timeline,
and ideally within 20 milliseconds. If the current playback positionp404 changes while the steps are running, then the user agent must
wait for the steps to complete, and then must immediately rerun the steps. These steps are thus run as often as possible or needed.

The time marches on steps are as follows:

1. Let current cues be a list of cuesp423, initialized to contain all the cuesp423 of all the hiddenp422 or showingp423 text tracksp421 of
the media elementp387 (not the disabledp422 ones) whose start timesp424 are less than or equal to the current playback
positionp404 and whose end timesp424 are greater than the current playback positionp404.

2. Let other cues be a list of cuesp423, initialized to contain all the cuesp423 of hiddenp422 and showingp423 text tracksp421 of the
media elementp387 that are not present in current cues.

3. Let last time be the current playback positionp404 at the time this algorithm was last run for this media elementp387, if this is
not the first time it has run.

4. If the current playback positionp404 has, since the last time this algorithm was run, only changed through its usual monotonic
increase during normal playback, then let missed cues be the list of cuesp423 in other cues whose start timesp424 are greater
than or equal to last time and whose end timesp424 are less than or equal to the current playback positionp404. Otherwise, let
missed cues be an empty list.

5. Remove all the cuesp423 in missed cues that are also in the media elementp387 's list of newly introduced cuesp413, and then
empty the element's list of newly introduced cuesp413.

6. If the time was reached through the usual monotonic increase of the current playback positionp404 during normal playback,
and if the user agent has not fired a timeupdatep440 event at the element in the past 15 to 250ms and is not still running
event handlers for such an event, then the user agent must queue a media element taskp389 given the media elementp387 to
fire an event named timeupdatep440 at the element. (In the other cases, such as explicit seeks, relevant events get fired as
part of the overall process of changing the current playback positionp404.)

It is possible for an element to which no explicit references exist to play audio, even if such an element is not still actively playing:
for instance, it could be unpaused but stalled waiting for content to buffer, or it could be still buffering, but with a suspendp439

event listener that begins playback. Even a media element whose media resourcep389 has no audio tracks could eventually play
audio again if it had an event listener that changes the media resourcep389.

Note

If one iteration takes a long time, this can cause short duration cuesp423 to be skipped over as the user agent rushes ahead to
"catch up", so these cues will not appear in the activeCuesp431 list.

Note

413

https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#concept-event-fire

7. If all of the cuesp423 in current cues have their text track cue active flagp424 set, none of the cuesp423 in other cues have their
text track cue active flagp424 set, and missed cues is empty, then return.

8. If the time was reached through the usual monotonic increase of the current playback positionp404 during normal playback,
and there are cuesp423 in other cues that have their text track cue pause-on-exit flagp424 set and that either have their text
track cue active flagp424 set or are also in missed cues, then immediatelyp42 pausep412 the media elementp387.

9. Let events be a list of tasksp944, initially empty. Each taskp944 in this list will be associated with a text trackp421, a text track
cuep423, and a time, which are used to sort the list before the tasksp944 are queued.

Let affected tracks be a list of text tracksp421, initially empty.

When the steps below say to prepare an event named event for a text track cuep423 target with a time time, the user agent
must run these steps:

1. Let track be the text trackp421 with which the text track cuep423 target is associated.

2. Create a taskp944 to fire an event named event at target.

3. Add the newly created taskp944 to events, associated with the time time, the text trackp421 track, and the text track
cuep423 target.

4. Add track to affected tracks.

10. For each text track cuep423 in missed cues, prepare an eventp414 named enterp441 for the TextTrackCuep433 object with the
text track cue start timep424.

11. For each text track cuep423 in other cues that either has its text track cue active flagp424 set or is in missed cues, prepare an
eventp414 named exitp441 for the TextTrackCuep433 object with the later of the text track cue end timep424 and the text track
cue start timep424.

12. For each text track cuep423 in current cues that does not have its text track cue active flagp424 set, prepare an eventp414

named enterp441 for the TextTrackCuep433 object with the text track cue start timep424.

13. Sort the tasksp944 in events in ascending time order (tasksp944 with earlier times first).

Further sort tasksp944 in events that have the same time by the relative text track cue orderp424 of the text track cuesp423

associated with these tasksp944.

Finally, sort tasksp944 in events that have the same time and same text track cue orderp424 by placing tasksp944 that fire
enterp441 events before those that fire exitp441 events.

14. Queue a media element taskp389 given the media elementp387 for each taskp944 in events, in list order.

15. Sort affected tracks in the same order as the text tracksp421 appear in the media elementp387 's list of text tracksp421, and
remove duplicates.

16. For each text trackp421 in affected tracks, in the list order, queue a media element taskp389 given the media elementp387 to fire
an event named cuechangep440 at the TextTrackp429 object, and, if the text trackp421 has a corresponding trackp385 element,
to then fire an event named cuechangep440 at the trackp385 element as well.

17. Set the text track cue active flagp424 of all the cuesp423 in the current cues, and unset the text track cue active flagp424 of all
the cuesp423 in the other cues.

18. Run the rules for updating the text track renderingp423 of each of the text tracksp421 in affected tracks that are showingp423,
providing the text trackp421 's text track languagep422 as the fallback language if it is not the empty string. For example, for
text tracksp421 based on WebVTT, the rules for updating the display of WebVTT text tracks. [WEBVTT]p1292

The event thus is not to be fired faster than about 66Hz or slower than 4Hz (assuming the event handlers don't take
longer than 250ms to run). User agents are encouraged to vary the frequency of the event based on the system load and
the average cost of processing the event each time, so that the UI updates are not any more frequent than the user
agent can comfortably handle while decoding the video.

Note

In the other cases, such as explicit seeks, playback is not paused by going past the end time of a cuep423, even if that
cuep423 has its text track cue pause-on-exit flagp424 set.

Note

414

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks

For the purposes of the algorithm above, a text track cuep423 is considered to be part of a text trackp421 only if it is listed in the text
track list of cuesp423, not merely if it is associated with the text trackp421.

When a media elementp387 is removed from a Documentp44, the user agent must run the following steps:

1. Await a stable statep949, allowing the taskp944 that removed the media elementp387 from the Documentp114 to continue. The
synchronous sectionp949 consists of all the remaining steps of this algorithm. (Steps in the synchronous sectionp949 are
marked with ⌛.)

2. ⌛ If the media elementp387 is in a document, return.

3. ⌛ Run the internal pause stepsp412 for the media elementp387.

The seeking attribute must initially have the value false.

The fastSeek() method must seekp415 to the time given by the method's argument, with the approximate-for-speed flag set.

When the user agent is required to seek to a particular new playback position in the media resourcep389, optionally with the
approximate-for-speed flag set, it means that the user agent must run the following steps. This algorithm interacts closely with the
event loopp944 mechanism; in particular, it has a synchronous sectionp949 (which is triggered as part of the event loopp944 algorithm).
Steps in that section are marked with ⌛.

1. Set the media elementp387 's show poster flagp404 to false.

2. If the media elementp387 's readyStatep407 is HAVE_NOTHINGp405, return.

3. If the element's seekingp415 IDL attribute is true, then another instance of this algorithm is already running. Abort that other
instance of the algorithm without waiting for the step that it is running to complete.

4. Set the seekingp415 IDL attribute to true.

5. If the seek was in response to a DOM method call or setting of an IDL attribute, then continue the script. The remainder of
these steps must be run in parallelp42. With the exception of the steps marked with ⌛, they could be aborted at any time by
another instance of this algorithm being invoked.

6. If the new playback position is later than the end of the media resourcep389, then let it be the end of the media resourcep389

instead.

7. If the new playback position is less than the earliest possible positionp404, let it be that position instead.

8. If the (possibly now changed) new playback position is not in one of the ranges given in the seekablep416 attribute, then let it
be the position in one of the ranges given in the seekablep416 attribute that is the nearest to the new playback position. If
two positions both satisfy that constraint (i.e. the new playback position is exactly in the middle between two ranges in the

If the media elementp387 's node document stops being a fully activep815 document, then the playback will stopp412 until the
document is active again.

Note

4.8.12.9 Seeking §p41

5

media . seekingp415

Returns true if the user agent is currently seeking.

media . seekablep416

Returns a TimeRangesp438 object that represents the ranges of the media resourcep389 to which it is possible for the user agent to
seek.

media . fastSeekp415(time)
Seeks to near the given time as fast as possible, trading precision for speed. (To seek to a precise time, use the currentTimep404

attribute.)
This does nothing if the media resource has not been loaded.

For web developers (non-normative)

MDN

415

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#in-a-document

seekablep416 attribute) then use the position that is closest to the current playback positionp404. If there are no ranges given
in the seekablep416 attribute then set the seekingp415 IDL attribute to false and return.

9. If the approximate-for-speed flag is set, adjust the new playback position to a value that will allow for playback to resume
promptly. If new playback position before this step is before current playback positionp404, then the adjusted new playback
position must also be before the current playback positionp404. Similarly, if the new playback position before this step is after
current playback positionp404, then the adjusted new playback position must also be after the current playback positionp404.

10. Queue a media element taskp389 given the media elementp387 to fire an event named seekingp440 at the element.

11. Set the current playback positionp404 to the new playback position.

12. Wait until the user agent has established whether or not the media datap389 for the new playback position is available, and, if
it is, until it has decoded enough data to play back that position.

13. Await a stable statep949. The synchronous sectionp949 consists of all the remaining steps of this algorithm. (Steps in the
synchronous sectionp949 are marked with ⌛.)

14. ⌛ Set the seekingp415 IDL attribute to false.

15. ⌛ Run the time marches onp413 steps.

16. ⌛ Queue a media element taskp389 given the media elementp387 to fire an event named timeupdatep440 at the element.

17. ⌛ Queue a media element taskp389 given the media elementp387 to fire an event named seekedp440 at the element.

The seekable attribute must return a new static normalized TimeRanges objectp438 that represents the ranges of the media
resourcep389, if any, that the user agent is able to seek to, at the time the attribute is evaluated.

For example, the user agent could snap to a nearby key frame, so that it doesn't have to spend time decoding then
discarding intermediate frames before resuming playback.

Example

If the media elementp387 was potentially playingp408 immediately before it started seeking, but seeking caused its
readyStatep407 attribute to change to a value lower than HAVE_FUTURE_DATAp406, then a waitingp440 event will be
firedp406 at the element.

Note

This step sets the current playback positionp404, and thus can immediately trigger other conditions, such as the rules
regarding when playback "reaches the end of the media resourcep409" (part of the logic that handles looping), even
before the user agent is actually able to render the media data for that position (as determined in the next step).

Note

The currentTimep404 attribute returns the official playback positionp404, not the current playback positionp404, and
therefore gets updated before script execution, separate from this algorithm.

Note

If the user agent can seek to anywhere in the media resourcep389, e.g. because it is a simple movie file and the user agent and the
server support HTTP Range requests, then the attribute would return an object with one range, whose start is the time of the first
frame (the earliest possible positionp404, typically zero), and whose end is the same as the time of the first frame plus the
durationp405 attribute's value (which would equal the time of the last frame, and might be positive Infinity).

Note

The range might be continuously changing, e.g. if the user agent is buffering a sliding window on an infinite stream. This is the
behavior seen with DVRs viewing live TV, for instance.

Note

Returning a new object each time is a bad pattern for attribute getters and is only enshrined here as it would be
costly to change it. It is not to be copied to new APIs.

⚠Warning!

✔ MDN

416

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

User agents should adopt a very liberal and optimistic view of what is seekable. User agents should also buffer recent content where
possible to enable seeking to be fast.

Media resourcesp389 might be internally scripted or interactive. Thus, a media elementp387 could play in a non-linear fashion. If this
happens, the user agent must act as if the algorithm for seekingp415 was used whenever the current playback positionp404 changes in a
discontinuous fashion (so that the relevant events fire).

A media resourcep389 can have multiple embedded audio and video tracks. For example, in addition to the primary video and audio
tracks, a media resourcep389 could have foreign-language dubbed dialogues, director's commentaries, audio descriptions, alternative
angles, or sign-language overlays.

The audioTracks attribute of a media elementp387 must return a livep45 AudioTrackListp417 object representing the audio tracks
available in the media elementp387 's media resourcep389.

The videoTracks attribute of a media elementp387 must return a livep45 VideoTrackListp418 object representing the video tracks
available in the media elementp387 's media resourcep389.

The AudioTrackListp417 and VideoTrackListp418 interfaces are used by attributes defined in the previous section.

[Exposed=Window]
interface AudioTrackList : EventTarget {

readonly attribute unsigned long length;
getter AudioTrack (unsigned long index);
AudioTrack? getTrackById(DOMString id);

attribute EventHandler onchange;
attribute EventHandler onaddtrack;
attribute EventHandler onremovetrack;

};

[Exposed=Window]

For instance, consider a large video file served on an HTTP server without support for HTTP Range requests. A browser could
implement this by only buffering the current frame and data obtained for subsequent frames, never allow seeking, except for
seeking to the very start by restarting the playback. However, this would be a poor implementation. A high quality implementation
would buffer the last few minutes of content (or more, if sufficient storage space is available), allowing the user to jump back and
rewatch something surprising without any latency, and would in addition allow arbitrary seeking by reloading the file from the start
if necessary, which would be slower but still more convenient than having to literally restart the video and watch it all the way
through just to get to an earlier unbuffered spot.

Example

4.8.12.10 Media resources with multiple media tracks §p41

7

media . audioTracksp417

Returns an AudioTrackListp417 object representing the audio tracks available in the media resourcep389.

media . videoTracksp417

Returns a VideoTrackListp418 object representing the video tracks available in the media resourcep389.

For web developers (non-normative)

There are only ever one AudioTrackListp417 object and one VideoTrackListp418 object per media elementp387, even if another
media resourcep389 is loaded into the element: the objects are reused. (The AudioTrackp418 and VideoTrackp418 objects are not,
though.)

Note

4.8.12.10.1 AudioTrackListp417 and VideoTrackListp418 objects §p41

7

IDL

MDNMDN

✔ MDN

✔ MDN

417

https://dom.spec.whatwg.org/#interface-eventtarget

interface AudioTrack {
readonly attribute DOMString id;
readonly attribute DOMString kind;
readonly attribute DOMString label;
readonly attribute DOMString language;
attribute boolean enabled;

};

[Exposed=Window]
interface VideoTrackList : EventTarget {

readonly attribute unsigned long length;
getter VideoTrack (unsigned long index);
VideoTrack? getTrackById(DOMString id);
readonly attribute long selectedIndex;

attribute EventHandler onchange;
attribute EventHandler onaddtrack;
attribute EventHandler onremovetrack;

};

[Exposed=Window]
interface VideoTrack {

readonly attribute DOMString id;
readonly attribute DOMString kind;
readonly attribute DOMString label;
readonly attribute DOMString language;
attribute boolean selected;

};

media . audioTracksp417 . lengthp419

media . videoTracksp417 . lengthp419

Returns the number of tracks in the list.

audioTrack = media . audioTracksp417[index]
videoTrack = media . videoTracksp417[index]

Returns the specified AudioTrackp418 or VideoTrackp418 object.

audioTrack = media . audioTracksp417 . getTrackByIdp419(id)
videoTrack = media . videoTracksp417 . getTrackByIdp419(id)

Returns the AudioTrackp418 or VideoTrackp418 object with the given identifier, or null if no track has that identifier.

audioTrack . idp419

videoTrack . idp419

Returns the ID of the given track. This is the ID that can be used with a fragment if the format supports media fragment syntax,
and that can be used with the getTrackById() method.

audioTrack . kindp419

videoTrack . kindp419

Returns the category the given track falls into. The possible track categoriesp420 are given below.

audioTrack . labelp420

videoTrack . labelp420

Returns the label of the given track, if known, or the empty string otherwise.

audioTrack . languagep420

videoTrack . languagep420

Returns the language of the given track, if known, or the empty string otherwise.

audioTrack . enabledp420 [= value]
Returns true if the given track is active, and false otherwise.

For web developers (non-normative)

418

https://dom.spec.whatwg.org/#interface-eventtarget
https://url.spec.whatwg.org/#concept-url-fragment
https://www.w3.org/TR/media-frags/#media-fragment-syntax

An AudioTrackListp417 object represents a dynamic list of zero or more audio tracks, of which zero or more can be enabled at a time.
Each audio track is represented by an AudioTrackp418 object.

A VideoTrackListp418 object represents a dynamic list of zero or more video tracks, of which zero or one can be selected at a time.
Each video track is represented by a VideoTrackp418 object.

Tracks in AudioTrackListp417 and VideoTrackListp418 objects must be consistently ordered. If the media resourcep389 is in a format
that defines an order, then that order must be used; otherwise, the order must be the relative order in which the tracks are declared in
the media resourcep389. The order used is called the natural order of the list.

The AudioTrackListp417 length and VideoTrackListp418 length attribute getters must return the number of tracks represented by
their objects at the time of getting.

The supported property indices of AudioTrackListp417 and VideoTrackListp418 objects at any instant are the numbers from zero to the
number of tracks represented by the respective object minus one, if any tracks are represented. If an AudioTrackListp417 or
VideoTrackListp418 object represents no tracks, it has no supported property indices.

To determine the value of an indexed property for a given index index in an AudioTrackListp417 or VideoTrackListp418 object list, the
user agent must return the AudioTrackp418 or VideoTrackp418 object that represents the indexth track in list.

The AudioTrackListp417 getTrackById(id) and VideoTrackListp418 getTrackById(id) methods must return the first AudioTrackp418

or VideoTrackp418 object (respectively) in the AudioTrackListp417 or VideoTrackListp418 object (respectively) whose identifier is equal
to the value of the id argument (in the natural order of the list, as defined above). When no tracks match the given argument, the
methods must return null.

The AudioTrackp418 and VideoTrackp418 objects represent specific tracks of a media resourcep389. Each track can have an identifier,
category, label, and language. These aspects of a track are permanent for the lifetime of the track; even if a track is removed from a
media resourcep389 's AudioTrackListp417 or VideoTrackListp418 objects, those aspects do not change.

In addition, AudioTrackp418 objects can each be enabled or disabled; this is the audio track's enabled state. When an AudioTrackp418 is
created, its enabled state must be set to false (disabled). The resource fetch algorithmp396 can override this.

Similarly, a single VideoTrackp418 object per VideoTrackListp418 object can be selected, this is the video track's selection state. When
a VideoTrackp418 is created, its selection state must be set to false (not selected). The resource fetch algorithmp396 can override this.

The AudioTrackp418 id and VideoTrackp418 id attributes must return the identifier of the track, if it has one, or the empty string
otherwise. If the media resourcep389 is in a format that supports media fragment syntax, the identifier returned for a particular track
must be the same identifier that would enable the track if used as the name of a track in the track dimension of such a fragment.
[INBAND]p1288

The AudioTrackp418 kind and VideoTrackp418 kind attributes must return the category of the track, if it has one, or the empty string

Can be set, to change whether the track is enabled or not. If multiple audio tracks are enabled simultaneously, they are mixed.

media . videoTracksp417 . selectedIndexp420

Returns the index of the currently selected track, if any, or −1 otherwise.

videoTrack . selectedp421 [= value]
Returns true if the given track is active, and false otherwise.
Can be set, to change whether the track is selected or not. Either zero or one video track is selected; selecting a new track while
a previous one is selected will unselect the previous one.

Each track in one of these objects thus has an index; the first has the index 0, and each subsequent track is numbered one higher
than the previous one. If a media resourcep389 dynamically adds or removes audio or video tracks, then the indices of the tracks
will change dynamically. If the media resourcep389 changes entirely, then all the previous tracks will be removed and replaced with
new tracks.

Note

For example, in Ogg files, this would be the Name header field of the track. [OGGSKELETONHEADERS]p1289
Example

✔ MDN

✔ MDN

✔ MDN

✔ MDN

419

https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-determine-the-value-of-an-indexed-property
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://url.spec.whatwg.org/#concept-url-fragment

otherwise.

The category of a track is the string given in the first column of the table below that is the most appropriate for the track based on the
definitions in the table's second and third columns, as determined by the metadata included in the track in the media resourcep389. The
cell in the third column of a row says what the category given in the cell in the first column of that row applies to; a category is only
appropriate for an audio track if it applies to audio tracks, and a category is only appropriate for video tracks if it applies to video
tracks. Categories must only be returned for AudioTrackp418 objects if they are appropriate for audio, and must only be returned for
VideoTrackp418 objects if they are appropriate for video.

For Ogg files, the Role header field of the track gives the relevant metadata. For DASH media resources, the Role element conveys the
information. For WebM, only the FlagDefault element currently maps to a value. Sourcing In-band Media Resource Tracks from Media
Containers into HTML has further details. [OGGSKELETONHEADERS]p1289 [DASH]p1287 [WEBMCG]p1292 [INBAND]p1288

Return values for AudioTrackp418 's kindp419 and VideoTrackp418 's kindp419

Category Definition Applies
to...

Examples

"alternative" A possible alternative to the main track, e.g. a
different take of a song (audio), or a different angle
(video).

Audio
and
video.

Ogg: "audio/alternate" or "video/alternate"; DASH: "alternate" without "main"
and "commentary" roles, and, for audio, without the "dub" role (other roles
ignored).

"captions" A version of the main video track with captions burnt
in. (For legacy content; new content would use text
tracks.)

Video
only.

DASH: "caption" and "main" roles together (other roles ignored).

"descriptions" An audio description of a video track. Audio
only.

Ogg: "audio/audiodesc".

"main" The primary audio or video track. Audio
and
video.

Ogg: "audio/main" or "video/main"; WebM: the "FlagDefault" element is set;
DASH: "main" role without "caption", "subtitle", and "dub" roles (other roles
ignored).

"main-desc" The primary audio track, mixed with audio
descriptions.

Audio
only.

AC3 audio in MPEG-2 TS: bsmod=2 and full_svc=1.

"sign" A sign-language interpretation of an audio track. Video
only.

Ogg: "video/sign".

"subtitles" A version of the main video track with subtitles burnt
in. (For legacy content; new content would use text
tracks.)

Video
only.

DASH: "subtitle" and "main" roles together (other roles ignored).

"translation" A translated version of the main audio track. Audio
only.

Ogg: "audio/dub". DASH: "dub" and "main" roles together (other roles
ignored).

"commentary" Commentary on the primary audio or video track, e.g.
a director's commentary.

Audio
and
video.

DASH: "commentary" role without "main" role (other roles ignored).

"" (empty
string)

No explicit kind, or the kind given by the track's
metadata is not recognized by the user agent.

Audio
and
video.

The AudioTrackp418 label and VideoTrackp418 label attributes must return the label of the track, if it has one, or the empty string
otherwise. [INBAND]p1288

The AudioTrackp418 language and VideoTrackp418 language attributes must return the BCP 47 language tag of the language of the
track, if it has one, or the empty string otherwise. If the user agent is not able to express that language as a BCP 47 language tag (for
example because the language information in the media resourcep389 's format is a free-form string without a defined interpretation),
then the method must return the empty string, as if the track had no language. [INBAND]p1288

The AudioTrackp418 enabled attribute, on getting, must return true if the track is currently enabled, and false otherwise. On setting, it
must enable the track if the new value is true, and disable it otherwise. (If the track is no longer in an AudioTrackListp417 object, then
the track being enabled or disabled has no effect beyond changing the value of the attribute on the AudioTrackp418 object.)

Whenever an audio track in an AudioTrackListp417 that was disabled is enabled, and whenever one that was enabled is disabled, the
user agent must queue a media element taskp389 given the media elementp387 to fire an event named changep440 at the
AudioTrackListp417 object.

An audio track that has no data for a particular position on the media timelinep403, or that does not exist at that position, must be
interpreted as being silent at that point on the timeline.

The VideoTrackListp418 selectedIndex attribute must return the index of the currently selected track, if any. If the
VideoTrackListp418 object does not currently represent any tracks, or if none of the tracks are selected, it must instead return −1.

✔ MDN
✔ MDN

✔ MDN

✔ MDN

✔ MDN

420

https://dom.spec.whatwg.org/#concept-event-fire

The VideoTrackp418 selected attribute, on getting, must return true if the track is currently selected, and false otherwise. On setting, it
must select the track if the new value is true, and unselect it otherwise. If the track is in a VideoTrackListp418, then all the other
VideoTrackp418 objects in that list must be unselected. (If the track is no longer in a VideoTrackListp418 object, then the track being
selected or unselected has no effect beyond changing the value of the attribute on the VideoTrackp418 object.)

Whenever a track in a VideoTrackListp418 that was previously not selected is selected, and whenever the selected track in a
VideoTrackListp418 is unselected without a new track being selected in its stead, the user agent must queue a media element taskp389

given the media elementp387 to fire an event named changep440 at the VideoTrackListp418 object. This taskp944 must be queuedp946

before the taskp944 that fires the resizep440 event, if any.

A video track that has no data for a particular position on the media timelinep403 must be interpreted as being transparent black at that
point on the timeline, with the same dimensions as the last frame before that position, or, if the position is before all the data for that
track, the same dimensions as the first frame for that track. A track that does not exist at all at the current position must be treated as
if it existed but had no data.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the AudioTrackListp417 and VideoTrackListp418 interfaces:

Event handlerp954 Event handler event typep957

onchange changep440

onaddtrack addtrackp440

onremovetrack removetrackp440

The audioTracksp417 and videoTracksp417 attributes allow scripts to select which track should play, but it is also possible to select
specific tracks declaratively, by specifying particular tracks in the fragment of the URL of the media resourcep389. The format of the
fragment depends on the MIME type of the media resourcep389. [RFC2046]p1290 [URL]p1292

A media elementp387 can have a group of associated text tracks, known as the media elementp387 's list of text tracks. The text
tracksp421 are sorted as follows:

1. The text tracksp421 corresponding to trackp385 element children of the media elementp387, in tree order.
2. Any text tracksp421 added using the addTextTrack()p430 method, in the order they were added, oldest first.
3. Any media-resource-specific text tracksp424 (text tracksp421 corresponding to data in the media resourcep389), in the order

defined by the media resourcep389 's format specification.

A text trackp421 consists of:

The kind of text track
This decides how the track is handled by the user agent. The kind is represented by a string. The possible strings are:

For instance, if a video has a track that is only introduced after one hour of playback, and the user selects that track then goes
back to the start, then the user agent will act as if that track started at the start of the media resourcep389 but was simply
transparent until one hour in.

Example

4.8.12.10.2 Selecting specific audio and video tracks declaratively §p42

1

In this example, a video that uses a format that supports media fragment syntax is embedded in such a way that the alternative
angles labeled "Alternative" are enabled instead of the default video track.

<video src="myvideo#track=Alternative"></video>

Example

4.8.12.11 Timed text tracks §p42

1

4.8.12.11.1 Text track model §p42

1

✔ MDN

✔ MDN

✔ MDN

421

https://dom.spec.whatwg.org/#concept-event-fire
https://drafts.csswg.org/css-color/#transparent-black
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment
https://mimesniff.spec.whatwg.org/#mime-type
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://dom.spec.whatwg.org/#concept-tree-order

• subtitles
• captions
• descriptions
• chapters
• metadata

The kind of trackp421 can change dynamically, in the case of a text trackp421 corresponding to a trackp385 element.

A label
This is a human-readable string intended to identify the track for the user.

The label of a trackp422 can change dynamically, in the case of a text trackp421 corresponding to a trackp385 element.

When a text track labelp422 is the empty string, the user agent should automatically generate an appropriate label from the text
track's other properties (e.g. the kind of text track and the text track's language) for use in its user interface. This automatically-
generated label is not exposed in the API.

An in-band metadata track dispatch type
This is a string extracted from the media resourcep389 specifically for in-band metadata tracks to enable such tracks to be
dispatched to different scripts in the document.

Other than for in-band metadata text tracks, the in-band metadata track dispatch typep422 is the empty string. How this value is
populated for different media formats is described in steps to expose a media-resource-specific text trackp425.

A language
This is a string (a BCP 47 language tag) representing the language of the text track's cues. [BCP47]p1285

The language of a text trackp422 can change dynamically, in the case of a text trackp421 corresponding to a trackp385 element.

A readiness state
One of the following:

Not loaded
Indicates that the text track's cues have not been obtained.

Loading
Indicates that the text track is loading and there have been no fatal errors encountered so far. Further cues might still be added
to the track by the parser.

Loaded
Indicates that the text track has been loaded with no fatal errors.

Failed to load
Indicates that the text track was enabled, but when the user agent attempted to obtain it, this failed in some way (e.g. URL could
not be parsedp89, network error, unknown text track format). Some or all of the cues are likely missing and will not be obtained.

The readiness statep422 of a text trackp421 changes dynamically as the track is obtained.

A mode
One of the following:

Disabled
Indicates that the text track is not active. Other than for the purposes of exposing the track in the DOM, the user agent is
ignoring the text track. No cues are active, no events are fired, and the user agent will not attempt to obtain the track's cues.

Hidden
Indicates that the text track is active, but that the user agent is not actively displaying the cues. If no attempt has yet been
made to obtain the track's cues, the user agent will perform such an attempt momentarily. The user agent is maintaining a list of

For example, a traditional TV station broadcast streamed on the web and augmented with web-specific interactive features
could include text tracks with metadata for ad targeting, trivia game data during game shows, player states during sports
games, recipe information during food programs, and so forth. As each program starts and ends, new tracks might be added or
removed from the stream, and as each one is added, the user agent could bind them to dedicated script modules using the
value of this attribute.

Example

422

https://url.spec.whatwg.org/#concept-url

which cues are active, and events are being fired accordingly.

Showing
Indicates that the text track is active. If no attempt has yet been made to obtain the track's cues, the user agent will perform
such an attempt momentarily. The user agent is maintaining a list of which cues are active, and events are being fired
accordingly. In addition, for text tracks whose kindp421 is subtitlesp422 or captionsp422, the cues are being overlaid on the video
as appropriate; for text tracks whose kindp421 is descriptionsp422, the user agent is making the cues available to the user in a
non-visual fashion; and for text tracks whose kindp421 is chaptersp422, the user agent is making available to the user a
mechanism by which the user can navigate to any point in the media resourcep389 by selecting a cue.

A list of zero or more cues
A list of text track cuesp423, along with rules for updating the text track rendering. For example, for WebVTT, the rules for
updating the display of WebVTT text tracks. [WEBVTT]p1292

The list of cues of a text trackp423 can change dynamically, either because the text trackp421 has not yet been loadedp422 or is still
loadingp422, or due to DOM manipulation.

Each text trackp421 has a corresponding TextTrackp429 object.

Each media elementp387 has a list of pending text tracks, which must initially be empty, a blocked-on-parser flag, which must
initially be false, and a did-perform-automatic-track-selection flag, which must also initially be false.

When the user agent is required to populate the list of pending text tracks of a media elementp387, the user agent must add to the
element's list of pending text tracksp423 each text trackp421 in the element's list of text tracksp421 whose text track modep422 is not
disabledp422 and whose text track readiness statep422 is loadingp422.

Whenever a trackp385 element's parent node changes, the user agent must remove the corresponding text trackp421 from any list of
pending text tracksp423 that it is in.

Whenever a text trackp421 's text track readiness statep422 changes to either loadedp422 or failed to loadp422, the user agent must remove
it from any list of pending text tracksp423 that it is in.

When a media elementp387 is created by an HTML parserp1079 or XML parserp1188, the user agent must set the element's blocked-on-
parserp423 flag to true. When a media elementp387 is popped off the stack of open elementsp1093 of an HTML parserp1079 or XML
parserp1188, the user agent must honor user preferences for automatic text track selectionp426, populate the list of pending text
tracksp423, and set the element's blocked-on-parserp423 flag to false.

The text tracksp421 of a media elementp387 are ready when both the element's list of pending text tracksp423 is empty and the
element's blocked-on-parserp423 flag is false.

Each media elementp387 has a pending text track change notification flag, which must initially be unset.

Whenever a text trackp421 that is in a media elementp387 's list of text tracksp421 has its text track modep422 change value, the user agent
must run the following steps for the media elementp387:

1. If the media elementp387 's pending text track change notification flagp423 is set, return.

2. Set the media elementp387 's pending text track change notification flagp423.

3. Queue a media element taskp389 given the media elementp387 to run these steps:

1. Unset the media elementp387 's pending text track change notification flagp423.

2. Fire an event named changep440 at the media elementp387 's textTracksp429 attribute's TextTrackListp429 object.

4. If the media elementp387 's show poster flagp404 is not set, run the time marches onp413 steps.

The task sourcep945 for the tasksp944 listed in this section is the DOM manipulation task sourcep952.

A text track cue is the unit of time-sensitive data in a text trackp421, corresponding for instance for subtitles and captions to the text
that appears at a particular time and disappears at another time.

Each text track cuep423 consists of:
423

https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://dom.spec.whatwg.org/#concept-event-fire

An identifier
An arbitrary string.

A start time
The time, in seconds and fractions of a second, that describes the beginning of the range of the media datap389 to which the cue
applies.

An end time
The time, in seconds and fractions of a second, that describes the end of the range of the media datap389 to which the cue applies.

A pause-on-exit flag
A boolean indicating whether playback of the media resourcep389 is to pause when the end of the range to which the cue applies is
reached.

Some additional format-specific data
Additional fields, as needed for the format, including the actual data of the cue. For example, WebVTT has a text track cue writing
direction and so forth. [WEBVTT]p1292

Each text track cuep423 has a corresponding TextTrackCuep433 object (or more specifically, an object that inherits from
TextTrackCuep433 — for example, WebVTT cues use the VTTCue interface). A text track cuep423 's in-memory representation can be
dynamically changed through this TextTrackCuep433 API. [WEBVTT]p1292

A text track cuep423 is associated with rules for updating the text track renderingp423, as defined by the specification for the specific
kind of text track cuep423. These rules are used specifically when the object representing the cue is added to a TextTrackp429 object
using the addCue()p432 method.

In addition, each text track cuep423 has two pieces of dynamic information:

The active flag
This flag must be initially unset. The flag is used to ensure events are fired appropriately when the cue becomes active or inactive,
and to make sure the right cues are rendered.

The user agent must synchronously unset this flag whenever the text track cuep423 is removed from its text trackp421 's text track list
of cuesp423; whenever the text trackp421 itself is removed from its media elementp387 's list of text tracksp421 or has its text track
modep422 changed to disabledp422; and whenever the media elementp387 's readyStatep407 is changed back to HAVE_NOTHINGp405.
When the flag is unset in this way for one or more cues in text tracksp421 that were showingp423 prior to the relevant incident, the
user agent must, after having unset the flag for all the affected cues, apply the rules for updating the text track renderingp423 of
those text tracksp421. For example, for text tracksp421 based on WebVTT, the rules for updating the display of WebVTT text tracks.
[WEBVTT]p1292

The display state
This is used as part of the rendering model, to keep cues in a consistent position. It must initially be empty. Whenever the text track
cue active flagp424 is unset, the user agent must empty the text track cue display statep424.

The text track cuesp423 of a media elementp387 's text tracksp421 are ordered relative to each other in the text track cue order, which is
determined as follows: first group the cuesp423 by their text trackp421, with the groups being sorted in the same order as their text
tracksp421 appear in the media elementp387 's list of text tracksp421; then, within each group, cuesp423 must be sorted by their start
timep424, earliest first; then, any cuesp423 with the same start timep424 must be sorted by their end timep424, latest first; and finally, any
cuesp423 with identical end timesp424 must be sorted in the order they were last added to their respective text track list of cuesp423,
oldest first (so e.g. for cues from a WebVTT file, that would initially be the order in which the cues were listed in the file). [WEBVTT]p1292

A media-resource-specific text track is a text trackp421 that corresponds to data found in the media resourcep389.

Rules for processing and rendering such data are defined by the relevant specifications, e.g. the specification of the video format if the

The text track cue start timep424 and text track cue end timep424 can be negative. (The current playback positionp404 can never be
negative, though, so cues entirely before time zero cannot be active.)

Note

4.8.12.11.2 Sourcing in-band text tracks §p42

4

424

https://w3c.github.io/webvtt/#webvtt-cue-writing-direction
https://w3c.github.io/webvtt/#webvtt-cue-writing-direction
https://w3c.github.io/webvtt/#vttcue
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks

media resourcep389 is a video. Details for some legacy formats can be found in Sourcing In-band Media Resource Tracks from Media
Containers into HTML. [INBAND]p1288

When a media resourcep389 contains data that the user agent recognizes and supports as being equivalent to a text trackp421, the user
agent runsp401 the steps to expose a media-resource-specific text track with the relevant data, as follows.

1. Associate the relevant data with a new text trackp421 and its corresponding new TextTrackp429 object. The text trackp421 is a
media-resource-specific text trackp424.

2. Set the new text trackp421 's kindp421, labelp422, and languagep422 based on the semantics of the relevant data, as defined by
the relevant specification. If there is no label in that data, then the labelp422 must be set to the empty string.

3. Associate the text track list of cuesp423 with the rules for updating the text track renderingp423 appropriate for the format in
question.

4. If the new text trackp421 's kindp421 is chaptersp422 or metadatap422, then set the text track in-band metadata track dispatch
typep422 as follows, based on the type of the media resourcep389:

↪ If the media resourcep389 is an Ogg file
The text track in-band metadata track dispatch type p422 must be set to the value of the Name header field.
[OGGSKELETONHEADERS]p1289

↪ If the media resourcep389 is a WebM file
The text track in-band metadata track dispatch type p422 must be set to the value of the CodecID element.
[WEBMCG]p1292

↪ If the media resourcep389 is an MPEG-2 file
Let stream type be the value of the "stream_type" field describing the text track's type in the file's program map
section, interpreted as an 8-bit unsigned integer. Let length be the value of the "ES_info_length" field for the track in
the same part of the program map section, interpreted as an integer as defined by Generic coding of moving pictures
and associated audio information. Let descriptor bytes be the length bytes following the "ES_info_length" field. The
text track in-band metadata track dispatch type p422 must be set to the concatenation of the stream type byte and the
zero or more descriptor bytes bytes, expressed in hexadecimal using ASCII upper hex digits. [MPEG2]p1289

↪ If the media resourcep389 is an MPEG-4 file
Let the first stsd box of the first stbl box of the first minf box of the first mdia box of the text trackp421 's trak box in
the first moov box of the file be the stsd box, if any. If the file has no stsd box, or if the stsd box has neither a mett box
nor a metx box, then the text track in-band metadata track dispatch type p422 must be set to the empty string.
Otherwise, if the stsd box has a mett box then the text track in-band metadata track dispatch type p422 must be set to
the concatenation of the string "mett", a U+0020 SPACE character, and the value of the first mime_format field of the
first mett box of the stsd box, or the empty string if that field is absent in that box. Otherwise, if the stsd box has no
mett box but has a metx box then the text track in-band metadata track dispatch type p422 must be set to the
concatenation of the string "metx", a U+0020 SPACE character, and the value of the first namespace field of the first
metx box of the stsd box, or the empty string if that field is absent in that box. [MPEG4]p1289

5. Populate the new text trackp421 's list of cuesp423 with the cues parsed so far, following the guidelines for exposing cuesp428,
and begin updating it dynamically as necessary.

6. Set the new text trackp421 's readiness statep422 to loadedp422.

7. Set the new text trackp421 's modep422 to the mode consistent with the user's preferences and the requirements of the
relevant specification for the data.

8. Add the new text trackp421 to the media elementp387 's list of text tracksp421.

9. Fire an event named addtrackp440 at the media elementp387 's textTracksp429 attribute's TextTrackListp429 object, using
TrackEventp439, with the trackp439 attribute initialized to the text trackp421 's TextTrackp429 object.

For instance, if there are no other active subtitles, and this is a forced subtitle track (a subtitle track giving subtitles in
the audio track's primary language, but only for audio that is actually in another language), then those subtitles might be
activated here.

Note

425

https://infra.spec.whatwg.org/#ascii-upper-hex-digit
https://dom.spec.whatwg.org/#concept-event-fire

When a trackp385 element is created, it must be associated with a new text trackp421 (with its value set as defined below) and its
corresponding new TextTrackp429 object.

The text track kindp421 is determined from the state of the element's kindp386 attribute according to the following table; for a state
given in a cell of the first column, the kindp421 is the string given in the second column:

State String

Subtitlesp386 subtitlesp422

Captionsp386 captionsp422

Descriptionsp386 descriptionsp422

Chapters metadatap386 chaptersp422

Metadatap386 metadatap422

The text track labelp422 is the element's track labelp386.

The text track languagep422 is the element's track languagep386, if any, or the empty string otherwise.

As the kindp386, labelp386, and srclangp386 attributes are set, changed, or removed, the text trackp421 must update accordingly, as per
the definitions above.

The text track readiness statep422 is initially not loadedp422, and the text track modep422 is initially disabledp422.

The text track list of cuesp423 is initially empty. It is dynamically modified when the referenced file is parsed. Associated with the list are
the rules for updating the text track renderingp423 appropriate for the format in question; for WebVTT, this is the rules for updating the
display of WebVTT text tracks. [WEBVTT]p1292

When a trackp385 element's parent element changes and the new parent is a media elementp387, then the user agent must add the
trackp385 element's corresponding text trackp421 to the media elementp387 's list of text tracksp421, and then queue a media element
taskp389 given the media elementp387 to fire an event named addtrackp440 at the media elementp387 's textTracksp429 attribute's
TextTrackListp429 object, using TrackEventp439, with the trackp439 attribute initialized to the text trackp421 's TextTrackp429 object.

When a trackp385 element's parent element changes and the old parent was a media elementp387, then the user agent must remove
the trackp385 element's corresponding text trackp421 from the media elementp387 's list of text tracksp421, and then queue a media
element taskp389 given the media elementp387 to fire an event named removetrackp440 at the media elementp387 's textTracksp429

attribute's TextTrackListp429 object, using TrackEventp439, with the trackp439 attribute initialized to the text trackp421 's TextTrackp429

object.

When a text trackp421 corresponding to a trackp385 element is added to a media elementp387 's list of text tracksp421, the user agent
must queue a media element taskp389 given the media elementp387 to run the following steps for the media elementp387:

1. If the element's blocked-on-parserp423 flag is true, then return.

2. If the element's did-perform-automatic-track-selectionp423 flag is true, then return.

3. Honor user preferences for automatic text track selectionp426 for this element.

When the user agent is required to honor user preferences for automatic text track selection for a media elementp387, the user
agent must run the following steps:

1. Perform automatic text track selectionp427 for subtitlesp422 and captionsp422.

2. Perform automatic text track selectionp427 for descriptionsp422.

3. If there are any text tracksp421 in the media elementp387 's list of text tracksp421 whose text track kindp421 is chaptersp422 or
metadatap422 that correspond to trackp385 elements with a defaultp386 attribute set whose text track modep422 is set to
disabledp422, then set the text track modep422 of all such tracks to hiddenp422

4. Set the element's did-perform-automatic-track-selectionp423 flag to true.

4.8.12.11.3 Sourcing out-of-band text tracks §p42

6

Changes to the track URLp386 are handled in the algorithm below.
Note

426

https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

When the steps above say to perform automatic text track selection for one or more text track kindsp421, it means to run the
following steps:

1. Let candidates be a list consisting of the text tracksp421 in the media elementp387 's list of text tracksp421 whose text track
kindp421 is one of the kinds that were passed to the algorithm, if any, in the order given in the list of text tracksp421.

2. If candidates is empty, then return.

3. If any of the text tracksp421 in candidates have a text track modep422 set to showingp423, return.

4. If the user has expressed an interest in having a track from candidates enabled based on its text track kindp421, text track
languagep422, and text track labelp422, then set its text track modep422 to showingp423.

Otherwise, if there are any text tracksp421 in candidates that correspond to trackp385 elements with a defaultp386 attribute
set whose text track modep422 is set to disabledp422, then set the text track modep422 of the first such track to showingp423.

When a text trackp421 corresponding to a trackp385 element experiences any of the following circumstances, the user agent must start
the track processing modelp427 for that text trackp421 and its trackp385 element:

• The trackp385 element is created.

• The text trackp421 has its text track modep422 changed.

• The trackp385 element's parent element changes and the new parent is a media elementp387.

When a user agent is to start the track processing model for a text trackp421 and its trackp385 element, it must run the following
algorithm. This algorithm interacts closely with the event loopp944 mechanism; in particular, it has a synchronous sectionp949 (which is
triggered as part of the event loopp944 algorithm). The steps in that section are marked with ⌛.

1. If another occurrence of this algorithm is already running for this text trackp421 and its trackp385 element, return, letting that
other algorithm take care of this element.

2. If the text trackp421 's text track modep422 is not set to one of hiddenp422 or showingp423, then return.

3. If the text trackp421 's trackp385 element does not have a media elementp387 as a parent, return.

4. Run the remainder of these steps in parallelp42, allowing whatever caused these steps to run to continue.

5. Top: Await a stable statep949. The synchronous sectionp949 consists of the following steps. (The steps in the synchronous
sectionp949 are marked with ⌛.)

6. ⌛ Set the text track readiness statep422 to loadingp422.

7. ⌛ Let URL be the track URLp386 of the trackp385 element.

8. ⌛ If the trackp385 element's parent is a media elementp387 then let corsAttributeState be the state of the parent media
elementp387 's crossoriginp390 content attribute. Otherwise, let corsAttributeState be No CORSp91.

9. End the synchronous sectionp949, continuing the remaining steps in parallelp42.

10. If URL is not the empty string, then:

1. Let request be the result of creating a potential-CORS requestp90 given URL, "track", and corsAttributeState, and
with the same-origin fallback flag set.

2. Set request's client to the trackp385 element's node document's relevant settings objectp924.

3. Fetch request.

The tasksp944 queuedp945 by the fetching algorithm on the networking task sourcep952 to process the data as it is being
fetched must determine the type of the resource. If the type of the resource is not a supported text track format, the load will
fail, as described below. Otherwise, the resource's data must be passed to the appropriate parser (e.g., the WebVTT parser)
as it is received, with the text track list of cuesp423 being used for that parser's output. [WEBVTT]p1292

For example, the user could have set a browser preference to the effect of "I want French captions whenever possible",
or "If there is a subtitle track with 'Commentary' in the title, enable it", or "If there are audio description tracks available,
enable one, ideally in Swiss German, but failing that in Standard Swiss German or Standard German".

Note

427

https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/webvtt/#webvtt-parser

This specification does not currently say whether or how to check the MIME types of text tracks, or whether or how to
perform file type sniffing using the actual file data. Implementors differ in their intentions on this matter and it is
therefore unclear what the right solution is. In the absence of any requirement here, the HTTP specifications' strict
requirement to follow the Content-Type header prevails ("Content-Type specifies the media type of the underlying data."
... "If and only if the media type is not given by a Content-Type field, the recipient MAY attempt to guess the media type
via inspection of its content and/or the name extension(s) of the URI used to identify the resource.").

If fetching fails for any reason (network error, the server returns an error code, CORS fails, etc), or if URL is the empty string,
then queue an element taskp946 on the DOM manipulation task sourcep952 given the media elementp387 to first change the
text track readiness statep422 to failed to loadp422 and then fire an event named errorp441 at the trackp385 element.

If fetching does not fail, but the type of the resource is not a supported text track format, or the file was not successfully
processed (e.g., the format in question is an XML format and the file contained a well-formedness error that XML requires be
detected and reported to the application), then the taskp944 that is queuedp946 on the networking task sourcep952 in which the
aforementioned problem is found must change the text track readiness statep422 to failed to loadp422 and fire an event named
errorp441 at the trackp385 element.

If fetching does not fail, and the file was successfully processed, then the final taskp944 that is queuedp946 by the networking
task sourcep952, after it has finished parsing the data, must change the text track readiness statep422 to loadedp422, and fire an
event named loadp441 at the trackp385 element.

If, while fetching is ongoing, either:

◦ the track URLp386 changes so that it is no longer equal to URL, while the text track modep422 is set to hiddenp422 or
showingp423; or

◦ the text track modep422 changes to hiddenp422 or showingp423, while the track URLp386 is not equal to URL

...then the user agent must abort fetching, discarding any pending tasksp944 generated by that algorithm (and in particular,
not adding any cues to the text track list of cuesp423 after the moment the URL changed), and then queue an element
taskp946 on the DOM manipulation task sourcep952 given the trackp385 element that first changes the text track readiness
statep422 to failed to loadp422 and then fires an event named errorp441 at the trackp385 element.

11. Wait until the text track readiness statep422 is no longer set to loadingp422.

12. Wait until the track URLp386 is no longer equal to URL, at the same time as the text track modep422 is set to hiddenp422 or
showingp423.

13. Jump to the step labeled top.

Whenever a trackp385 element has its srcp386 attribute set, changed, or removed, the user agent must immediatelyp42 empty the
element's text trackp421 's text track list of cuesp423. (This also causes the algorithm above to stop adding cues from the resource being
obtained using the previously given URL, if any.)

How a specific format's text track cues are to be interpreted for the purposes of processing by an HTML user agent is defined by that
format. In the absence of such a specification, this section provides some constraints within which implementations can attempt to
consistently expose such formats.

To support the text trackp421 model of HTML, each unit of timed data is converted to a text track cuep423. Where the mapping of the
format's features to the aspects of a text track cuep423 as defined in this specification are not defined, implementations must ensure
that the mapping is consistent with the definitions of the aspects of a text track cuep423 as defined above, as well as with the following
constraints:

The text track cue identifierp424

Should be set to the empty string if the format has no obvious analogue to a per-cue identifier.

The appropriate parser will incrementally update the text track list of cuesp423 during these networking task sourcep952

tasksp944, as each such task is run with whatever data has been received from the network).

Note

4.8.12.11.4 Guidelines for exposing cues in various formats as text track cuesp423 §p42

8

428

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-event-fire

The text track cue pause-on-exit flagp424

Should be set to false.

[Exposed=Window]
interface TextTrackList : EventTarget {

readonly attribute unsigned long length;
getter TextTrack (unsigned long index);
TextTrack? getTrackById(DOMString id);

attribute EventHandler onchange;
attribute EventHandler onaddtrack;
attribute EventHandler onremovetrack;

};

A TextTrackListp429 object represents a dynamically updating list of text tracksp421 in a given order.

The textTracks attribute of media elementsp387 must return a TextTrackListp429 object representing the TextTrackp429 objects of the
text tracksp421 in the media elementp387 's list of text tracksp421, in the same order as in the list of text tracksp421.

The length attribute of a TextTrackListp429 object must return the number of text tracksp421 in the list represented by the
TextTrackListp429 object.

The supported property indices of a TextTrackListp429 object at any instant are the numbers from zero to the number of text
tracksp421 in the list represented by the TextTrackListp429 object minus one, if any. If there are no text tracksp421 in the list, there are
no supported property indices.

To determine the value of an indexed property of a TextTrackListp429 object for a given index index, the user agent must return the
indexth text trackp421 in the list represented by the TextTrackListp429 object.

The getTrackById(id) method must return the first TextTrackp429 in the TextTrackListp429 object whose idp431 IDL attribute would
return a value equal to the value of the id argument. When no tracks match the given argument, the method must return null.

enum TextTrackMode { "disabled", "hidden", "showing" };
enum TextTrackKind { "subtitles", "captions", "descriptions", "chapters", "metadata" };

[Exposed=Window]
interface TextTrack : EventTarget {

readonly attribute TextTrackKind kind;
readonly attribute DOMString label;
readonly attribute DOMString language;

readonly attribute DOMString id;
readonly attribute DOMString inBandMetadataTrackDispatchType;

attribute TextTrackMode mode;

4.8.12.11.5 Text track API §p42

9

media . textTracksp429 . length
Returns the number of text tracksp421 associated with the media elementp387 (e.g. from trackp385 elements). This is the number
of text tracksp421 in the media elementp387 's list of text tracksp421.

media . textTracks[p429 n]
Returns the TextTrackp429 object representing the nth text trackp421 in the media elementp387 's list of text tracksp421.

textTrack = media . textTracksp429 . getTrackByIdp429(id)
Returns the TextTrackp429 object with the given identifier, or null if no track has that identifier.

For web developers (non-normative)

IDL

IDL

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

429

https://dom.spec.whatwg.org/#interface-eventtarget
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-determine-the-value-of-an-indexed-property
https://dom.spec.whatwg.org/#interface-eventtarget

readonly attribute TextTrackCueList? cues;
readonly attribute TextTrackCueList? activeCues;

undefined addCue(TextTrackCue cue);
undefined removeCue(TextTrackCue cue);

attribute EventHandler oncuechange;
};

The addTextTrack(kind, label, language) method of media elementsp387, when invoked, must run the following steps:

1. Create a new TextTrackp429 object.

2. Create a new text trackp421 corresponding to the new object, and set its text track kindp421 to kind, its text track labelp422 to
label, its text track languagep422 to language, its text track readiness statep422 to the text track loadedp422 state, its text track

textTrack = media . addTextTrackp430(kind [, label [, language]])
Creates and returns a new TextTrackp429 object, which is also added to the media elementp387 's list of text tracksp421.

textTrack . kindp431

Returns the text track kindp421 string.

textTrack . labelp431

Returns the text track labelp422, if there is one, or the empty string otherwise (indicating that a custom label probably needs to
be generated from the other attributes of the object if the object is exposed to the user).

textTrack . languagep431

Returns the text track languagep422 string.

textTrack . idp431

Returns the ID of the given track.
For in-band tracks, this is the ID that can be used with a fragment if the format supports media fragment syntax, and that can
be used with the getTrackById()p429 method.
For TextTrackp429 objects corresponding to trackp385 elements, this is the ID of the trackp385 element.

textTrack . inBandMetadataTrackDispatchTypep431

Returns the text track in-band metadata track dispatch type p422 string.

textTrack . modep431 [= value]
Returns the text track modep422, represented by a string from the following list:
"disabledp431"

The text track disabledp422 mode.
"hiddenp431"

The text track hiddenp422 mode.
"showingp431"

The text track showingp423 mode.
Can be set, to change the mode.

textTrack . cuesp431

Returns the text track list of cuesp423, as a TextTrackCueListp433 object.

textTrack . activeCuesp431

Returns the text track cuesp423 from the text track list of cuesp423 that are currently active (i.e. that start before the current
playback positionp404 and end after it), as a TextTrackCueListp433 object.

textTrack . addCuep432(cue)
Adds the given cue to textTrack's text track list of cuesp423.

textTrack . removeCuep432(cue)
Removes the given cue from textTrack's text track list of cuesp423.

For web developers (non-normative)

430

https://url.spec.whatwg.org/#concept-url-fragment
https://www.w3.org/TR/media-frags/#media-fragment-syntax

modep422 to the text track hiddenp422 mode, and its text track list of cuesp423 to an empty list.

Initially, the text track list of cuesp423 is not associated with any rules for updating the text track renderingp423. When a text
track cuep423 is added to it, the text track list of cuesp423 has its rules permanently set accordingly.

3. Add the new text trackp421 to the media elementp387 's list of text tracksp421.

4. Queue a media element taskp389 given the media elementp387 to fire an event named addtrackp440 at the media elementp387 's
textTracksp429 attribute's TextTrackListp429 object, using TrackEventp439, with the trackp439 attribute initialized to the new
text trackp421 's TextTrackp429 object.

5. Return the new TextTrackp429 object.

The kind attribute must return the text track kindp421 of the text trackp421 that the TextTrackp429 object represents.

The label attribute must return the text track labelp422 of the text trackp421 that the TextTrackp429 object represents.

The language attribute must return the text track languagep422 of the text trackp421 that the TextTrackp429 object represents.

The id attribute returns the track's identifier, if it has one, or the empty string otherwise. For tracks that correspond to trackp385

elements, the track's identifier is the value of the element's idp137 attribute, if any. For in-band tracks, the track's identifier is specified
by the media resourcep389. If the media resourcep389 is in a format that supports media fragment syntax, the identifier returned for a
particular track must be the same identifier that would enable the track if used as the name of a track in the track dimension of such a
fragment.

The inBandMetadataTrackDispatchType attribute must return the text track in-band metadata track dispatch type p422 of the text
trackp421 that the TextTrackp429 object represents.

The mode attribute, on getting, must return the string corresponding to the text track modep422 of the text trackp421 that the
TextTrackp429 object represents, as defined by the following list:

"disabled"
The text track disabledp422 mode.

"hidden"
The text track hiddenp422 mode.

"showing"
The text track showingp423 mode.

On setting, if the new value isn't equal to what the attribute would currently return, the new value must be processed as follows:

↪ If the new value is "disabledp431"
Set the text track modep422 of the text trackp421 that the TextTrackp429 object represents to the text track disabledp422 mode.

↪ If the new value is "hiddenp431"
Set the text track modep422 of the text trackp421 that the TextTrackp429 object represents to the text track hiddenp422 mode.

↪ If the new value is "showingp431"
Set the text track modep422 of the text trackp421 that the TextTrackp429 object represents to the text track showingp423 mode.

If the text track modep422 of the text trackp421 that the TextTrackp429 object represents is not the text track disabledp422 mode, then the
cues attribute must return a livep45 TextTrackCueListp433 object that represents the subset of the text track list of cuesp423 of the text
trackp421 that the TextTrackp429 object represents whose end timesp424 occur at or after the earliest possible position when the script
startedp431, in text track cue orderp424. Otherwise, it must return null. For each TextTrackp429 object, when an object is returned, the
same TextTrackCueListp433 object must be returned each time.

The earliest possible position when the script started is whatever the earliest possible positionp404 was the last time the event
loopp944 reached step 1.

If the text track modep422 of the text trackp421 that the TextTrackp429 object represents is not the text track disabledp422 mode, then the
activeCues attribute must return a livep45 TextTrackCueListp433 object that represents the subset of the text track list of cuesp423 of
the text trackp421 that the TextTrackp429 object represents whose active flag was set when the script started p432, in text track cue
orderp424. Otherwise, it must return null. For each TextTrackp429 object, when an object is returned, the same TextTrackCueListp433

✔ MDN

431

https://dom.spec.whatwg.org/#concept-event-fire
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://url.spec.whatwg.org/#concept-url-fragment

object must be returned each time.

A text track cuep423 's active flag was set when the script started if its text track cue active flagp424 was set the last time the event
loopp944 reached step 1p946.

The addCue(cue) method of TextTrackp429 objects, when invoked, must run the following steps:

1. If the text track list of cuesp423 does not yet have any associated rules for updating the text track renderingp423, then
associate the text track list of cuesp423 with the rules for updating the text track renderingp423 appropriate to cue.

2. If text track list of cuesp423 ' associated rules for updating the text track renderingp423 are not the same rules for updating the
text track renderingp423 as appropriate for cue, then throw an "InvalidStateError" DOMException.

3. If the given cue is in a text track list of cuesp423, then remove cue from that text track list of cuesp423.

4. Add cue to the TextTrackp429 object's text trackp421 's text track list of cuesp423.

The removeCue(cue) method of TextTrackp429 objects, when invoked, must run the following steps:

1. If the given cue is not in the TextTrackp429 object's text trackp421 's text track list of cuesp423, then throw a "NotFoundError"
DOMException.

2. Remove cue from the TextTrackp429 object's text trackp421 's text track list of cuesp423.

[Exposed=Window]

In this example, an audiop384 element is used to play a specific sound-effect from a sound file containing many sound effects. A cue
is used to pause the audio, so that it ends exactly at the end of the clip, even if the browser is busy running some script. If the
page had relied on script to pause the audio, then the start of the next clip might be heard if the browser was not able to run the
script at the exact time specified.

var sfx = new Audio('sfx.wav');
var sounds = sfx.addTextTrack('metadata');

// add sounds we care about
function addFX(start, end, name) {

var cue = new VTTCue(start, end, '');
cue.id = name;
cue.pauseOnExit = true;
sounds.addCue(cue);

}
addFX(12.783, 13.612, 'dog bark');
addFX(13.612, 15.091, 'kitten mew'))

function playSound(id) {
sfx.currentTime = sounds.getCueById(id).startTime;
sfx.play();

}

// play a bark as soon as we can
sfx.oncanplaythrough = function () {

playSound('dog bark');
}
// meow when the user tries to leave,
// and have the browser ask them to stay
window.onbeforeunload = function (e) {

playSound('kitten mew');
e.preventDefault();

}

Example

IDL

432

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notfounderror
https://heycam.github.io/webidl/#dfn-DOMException

interface TextTrackCueList {
readonly attribute unsigned long length;
getter TextTrackCue (unsigned long index);
TextTrackCue? getCueById(DOMString id);

};

A TextTrackCueListp433 object represents a dynamically updating list of text track cuesp423 in a given order.

The length attribute must return the number of cuesp423 in the list represented by the TextTrackCueListp433 object.

The supported property indices of a TextTrackCueListp433 object at any instant are the numbers from zero to the number of cuesp423

in the list represented by the TextTrackCueListp433 object minus one, if any. If there are no cuesp423 in the list, there are no supported
property indices.

To determine the value of an indexed property for a given index index, the user agent must return the indexth text track cuep423 in the
list represented by the TextTrackCueListp433 object.

The getCueById(id) method, when called with an argument other than the empty string, must return the first text track cuep423 in the
list represented by the TextTrackCueListp433 object whose text track cue identifierp424 is id, if any, or null otherwise. If the argument is
the empty string, then the method must return null.

[Exposed=Window]
interface TextTrackCue : EventTarget {

readonly attribute TextTrack? track;

attribute DOMString id;
attribute double startTime;
attribute double endTime;
attribute boolean pauseOnExit;

attribute EventHandler onenter;
attribute EventHandler onexit;

};

cuelist . lengthp433

Returns the number of cuesp423 in the list.

cuelist[index]
Returns the text track cuep423 with index index in the list. The cues are sorted in text track cue orderp424.

cuelist . getCueByIdp433(id)
Returns the first text track cuep423 (in text track cue orderp424) with text track cue identifierp424 id.
Returns null if none of the cues have the given identifier or if the argument is the empty string.

For web developers (non-normative)

cue . trackp434

Returns the TextTrackp429 object to which this text track cuep423 belongs, if any, or null otherwise.

cue . idp434 [= value]
Returns the text track cue identifierp424.
Can be set.

cue . startTimep434 [= value]
Returns the text track cue start timep424, in seconds.
Can be set.

For web developers (non-normative)

IDL ⚠ MDN

433

https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-determine-the-value-of-an-indexed-property
https://dom.spec.whatwg.org/#interface-eventtarget

The track attribute, on getting, must return the TextTrackp429 object of the text trackp421 in whose list of cuesp423 the text track cuep423

that the TextTrackCuep433 object represents finds itself, if any; or null otherwise.

The id attribute, on getting, must return the text track cue identifierp424 of the text track cuep423 that the TextTrackCuep433 object
represents. On setting, the text track cue identifierp424 must be set to the new value.

The startTime attribute, on getting, must return the text track cue start timep424 of the text track cuep423 that the TextTrackCuep433

object represents, in seconds. On setting, the text track cue start timep424 must be set to the new value, interpreted in seconds; then, if
the TextTrackCuep433 object's text track cuep423 is in a text trackp421 's list of cuesp423, and that text trackp421 is in a media elementp387 's
list of text tracksp421, and the media elementp387 's show poster flagp404 is not set, then run the time marches onp413 steps for that media
elementp387.

The endTime attribute, on getting, must return the text track cue end timep424 of the text track cuep423 that the TextTrackCuep433

object represents, in seconds. On setting, the text track cue end timep424 must be set to the new value, interpreted in seconds; then, if
the TextTrackCuep433 object's text track cuep423 is in a text trackp421 's list of cuesp423, and that text trackp421 is in a media elementp387 's
list of text tracksp421, and the media elementp387 's show poster flagp404 is not set, then run the time marches onp413 steps for that media
elementp387.

The pauseOnExit attribute, on getting, must return true if the text track cue pause-on-exit flagp424 of the text track cuep423 that the
TextTrackCuep433 object represents is set; or false otherwise. On setting, the text track cue pause-on-exit flagp424 must be set if the
new value is true, and must be unset otherwise.

The following are the event handlersp954 that (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the TextTrackListp429 interface:

Event handlerp954 Event handler event typep957

onchange changep440

onaddtrack addtrackp440

onremovetrack removetrackp440

The following are the event handlersp954 that (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the TextTrackp429 interface:

Event handlerp954 Event handler event typep957

oncuechange cuechangep440

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the TextTrackCuep433 interface:

Event handlerp954 Event handler event typep957

onenter enterp441

onexit exitp441

This section is non-normative.

cue . endTimep434 [= value]
Returns the text track cue end timep424, in seconds.
Can be set.

cue . pauseOnExitp434 [= value]
Returns true if the text track cue pause-on-exit flagp424 is set, false otherwise.
Can be set.

4.8.12.11.6 Event handlers for objects of the text track APIs §p43

4

4.8.12.11.7 Best practices for metadata text tracks §p43

4

434

Text tracks can be used for storing data relating to the media data, for interactive or augmented views.

For example, a page showing a sports broadcast could include information about the current score. Suppose a robotics competition
was being streamed live. The image could be overlayed with the scores, as follows:

RED ALLIANCE
78

BLUE ALLIANCE
66

QUAL MATCH 37 FRIDAY 14:21
In order to make the score display render correctly whenever the user seeks to an arbitrary point in the video, the metadata text track
cues need to be as long as is appropriate for the score. For example, in the frame above, there would be maybe one cue that lasts the
length of the match that gives the match number, one cue that lasts until the blue alliance's score changes, and one cue that lasts
until the red alliance's score changes. If the video is just a stream of the live event, the time in the bottom right would presumably be
automatically derived from the current video time, rather than based on a cue. However, if the video was just the highlights, then that
might be given in cues also.

The following shows what fragments of this could look like in a WebVTT file:

WEBVTT

...

05:10:00.000 --> 05:12:15.000
matchtype:qual
matchnumber:37

...

05:11:02.251 --> 05:11:17.198
red:78

05:11:03.672 --> 05:11:54.198
blue:66

05:11:17.198 --> 05:11:25.912
red:80

05:11:25.912 --> 05:11:26.522
red:83

435

05:11:26.522 --> 05:11:26.982
red:86

05:11:26.982 --> 05:11:27.499
red:89

...

The key here is to notice that the information is given in cues that span the length of time to which the relevant event applies. If,
instead, the scores were given as zero-length (or very brief, nearly zero-length) cues when the score changes, for example saying
"red+2" at 05:11:17.198, "red+3" at 05:11:25.912, etc, problems arise: primarily, seeking is much harder to implement, as the script
has to walk the entire list of cues to make sure that no notifications have been missed; but also, if the cues are short it's possible the
script will never see that they are active unless it listens to them specifically.

When using cues in this manner, authors are encouraged to use the cuechangep440 event to update the current annotations. (In
particular, using the timeupdatep440 event would be less appropriate as it would require doing work even when the cues haven't
changed, and, more importantly, would introduce a higher latency between when the metadata cues become active and when the
display is updated, since timeupdatep440 events are rate-limited.)

Other specifications or formats that need a URL to identify the return values of the AudioTrackp418 kindp419 or VideoTrackp418 kindp419

IDL attributes, or identify the kind of text trackp421, must use the about:html-kindp88 URL.

The controls attribute is a boolean attributep67. If present, it indicates that the author has not provided a scripted controller and would
like the user agent to provide its own set of controls.

If the attribute is present, or if scripting is disabledp924 for the media elementp387, then the user agent should expose a user
interface to the user. This user interface should include features to begin playback, pause playback, seek to an arbitrary position in
the content (if the content supports arbitrary seeking), change the volume, change the display of closed captions or embedded sign-
language tracks, select different audio tracks or turn on audio descriptions, and show the media content in manners more suitable to
the user (e.g. fullscreen video or in an independent resizable window). Other controls may also be made available.

Even when the attribute is absent, however, user agents may provide controls to affect playback of the media resource (e.g. play,
pause, seeking, track selection, and volume controls), but such features should not interfere with the page's normal rendering. For
example, such features could be exposed in the media elementp387 's context menu, platform media keys, or a remote control. The user
agent may implement this simply by exposing a user interface to the userp436 as described above (as if the controlsp436 attribute was
present).

If the user agent exposes a user interface to the userp436 by displaying controls over the media elementp387, then the user agent should
suppress any user interaction events while the user agent is interacting with this interface. (For example, if the user clicks on a video's
playback control, mousedown events and so forth would not simultaneously be fired at elements on the page.)

Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for seeking, for changing the rate of playback, for
fast-forwarding or rewinding, for listing, enabling, and disabling text tracks, and for muting or changing the volume of the audio), user
interface features exposed by the user agent must be implemented in terms of the DOM API described above, so that, e.g., all the
same events fire.

Features such as fast-forward or rewind must be implemented by only changing the playbackRate attribute (and not the
defaultPlaybackRate attribute).

Seeking must be implemented in terms of seekingp415 to the requested position in the media elementp387 's media timelinep403. For
media resources where seeking to an arbitrary position would be slow, user agents are encouraged to use the approximate-for-speed
flag when seeking in response to the user manipulating an approximate position interface such as a seek bar.

The controls IDL attribute must reflectp94 the content attribute of the same name.

4.8.12.12 Identifying a track kind through a URL §p43

6

4.8.12.13 User interface §p43

6

✔ MDN

436

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/uievents/#event-type-mousedown

A media elementp387 has a playback volume, which is a fraction in the range 0.0 (silent) to 1.0 (loudest). Initially, the volume should
be 1.0, but user agents may remember the last set value across sessions, on a per-site basis or otherwise, so the volume may start at
other values.

The volume IDL attribute must return the playback volumep437 of any audio portions of the media elementp387. On setting, if the new
value is in the range 0.0 to 1.0 inclusive, the media elementp387 's playback volumep437 must be set to the new value. If the new value is
outside the range 0.0 to 1.0 inclusive, then, on setting, an "IndexSizeError" DOMException must be thrown instead.

A media elementp387 can also be muted. If anything is muting the element, then it is muted. (For example, when the direction of
playbackp412 is backwards, the element is muted.)

The muted IDL attribute must return the value to which it was last set. When a media elementp387 is created, if the element has a
mutedp437 content attribute specified, then the mutedp437 IDL attribute should be set to true; otherwise, the user agents may set the
value to the user's preferred value (e.g. remembering the last set value across sessions, on a per-site basis or otherwise). While the
mutedp437 IDL attribute is set to true, the media elementp387 must be mutedp437.

Whenever either of the values that would be returned by the volumep437 and mutedp437 IDL attributes change, the user agent must
queue a media element taskp389 given the media elementp387 to fire an event named volumechangep440 at the media elementp387. Then,
if the media elementp387 is not allowed to playp409, the user agent must run the internal pause stepsp412 for the media elementp387.

An element's effective media volume is determined as follows:

1. If the user has indicated that the user agent is to override the volume of the element, then return the volume desired by the
user.

2. If the element's audio output is mutedp437, then return zero.

3. Let volume be the playback volumep437 of the audio portions of the media elementp387, in range 0.0 (silent) to 1.0 (loudest).

4. Return volume, interpreted relative to the range 0.0 to 1.0, with 0.0 being silent, and 1.0 being the loudest setting, values in
between increasing in loudness. The range need not be linear. The loudest setting may be lower than the system's loudest
possible setting; for example the user could have set a maximum volume.

The muted content attribute on media elementsp387 is a boolean attributep67 that controls the default state of the audio output of the
media resourcep389, potentially overriding user preferences.

The defaultMuted IDL attribute must reflectp94 the mutedp437 content attribute.

media . volumep437 [= value]
Returns the current playback volume, as a number in the range 0.0 to 1.0, where 0.0 is the quietest and 1.0 the loudest.
Can be set, to change the volume.
Throws an "IndexSizeError" DOMException if the new value is not in the range 0.0 .. 1.0.

media . mutedp437 [= value]
Returns true if audio is muted, overriding the volumep437 attribute, and false if the volumep437 attribute is being honored.
Can be set, to change whether the audio is muted or not.

For web developers (non-normative)

This attribute has no dynamic effect (it only controls the default state of the element).
Note

This video (an advertisement) autoplays, but to avoid annoying users, it does so without sound, and allows the user to turn the
sound on. The user agent can pause the video if it's unmuted without a user interaction.

<video src="adverts.cgi?kind=video" controls autoplay loop muted></video>

Example

✔ MDN

✔ MDN

✔ MDN

437

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire

Objects implementing the TimeRangesp438 interface represent a list of ranges (periods) of time.

[Exposed=Window]
interface TimeRanges {

readonly attribute unsigned long length;
double start(unsigned long index);
double end(unsigned long index);

};

The length IDL attribute must return the number of ranges represented by the object.

The start(index) method must return the position of the start of the indexth range represented by the object, in seconds measured
from the start of the timeline that the object covers.

The end(index) method must return the position of the end of the indexth range represented by the object, in seconds measured from
the start of the timeline that the object covers.

These methods must throw "IndexSizeError" DOMExceptions if called with an index argument greater than or equal to the number of
ranges represented by the object.

When a TimeRangesp438 object is said to be a normalized TimeRanges object, the ranges it represents must obey the following
criteria:

• The start of a range must be greater than the end of all earlier ranges.

• The start of a range must be less than or equal to the end of that same range.

In other words, the ranges in such an object are ordered, don't overlap, and don't touch (adjacent ranges are folded into one bigger
range). A range can be empty (referencing just a single moment in time), e.g. to indicate that only one frame is currently buffered in
the case that the user agent has discarded the entire media resourcep389 except for the current frame, when a media elementp387 is
paused.

Ranges in a TimeRangesp438 object must be inclusive.

The timelines used by the objects returned by the bufferedp402, seekablep416 and playedp410 IDL attributes of media elementsp387 must
be that element's media timelinep403.

[Exposed=Window]

4.8.12.14 Time ranges §p43

8

media . lengthp438

Returns the number of ranges in the object.

time = media . startp438(index)
Returns the time for the start of the range with the given index.
Throws an "IndexSizeError" DOMException if the index is out of range.

time = media . endp438(index)
Returns the time for the end of the range with the given index.
Throws an "IndexSizeError" DOMException if the index is out of range.

For web developers (non-normative)

Thus, the end of a range would be equal to the start of a following adjacent (touching but not overlapping) range. Similarly, a
range covering a whole timeline anchored at zero would have a start equal to zero and an end equal to the duration of the
timeline.

Example

4.8.12.15 The TrackEventp439 interface §p43

8

IDL

IDL

✔ MDN

✔ MDN
✔ MDN

✔ MDN

⚠ MDN

438

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException

interface TrackEvent : Event {
constructor(DOMString type, optional TrackEventInit eventInitDict = {});

readonly attribute (VideoTrack or AudioTrack or TextTrack)? track;
};

dictionary TrackEventInit : EventInit {
(VideoTrack or AudioTrack or TextTrack)? track = null;

};

The track attribute must return the value it was initialized to. It represents the context information for the event.

This section is non-normative.

The following events fire on media elementsp387 as part of the processing model described above:

Event name Interface Fired when... Preconditions

loadstart Event The user agent begins looking for media
datap389, as part of the resource selection
algorithmp393.

networkStatep392 equals NETWORK_LOADINGp392

progress Event The user agent is fetching media datap389. networkStatep392 equals NETWORK_LOADINGp392

suspend Event The user agent is intentionally not currently
fetching media datap389.

networkStatep392 equals NETWORK_IDLEp392

abort Event The user agent stops fetching the media
datap389 before it is completely downloaded,
but not due to an error.

errorp389 is an object with the code MEDIA_ERR_ABORTEDp389. networkStatep392

equals either NETWORK_EMPTYp392 or NETWORK_IDLEp392, depending on when the
download was aborted.

error Event An error occurs while fetching the media
datap389 or the type of the resource is not
supported media format.

errorp389 is an object with the code MEDIA_ERR_NETWORKp389 or higher.
networkStatep392 equals either NETWORK_EMPTYp392 or NETWORK_IDLEp392, depending
on when the download was aborted.

emptied Event A media elementp387 whose networkStatep392

was previously not in the NETWORK_EMPTYp392

state has just switched to that state (either
because of a fatal error during load that's
about to be reported, or because the
load()p392 method was invoked while the
resource selection algorithmp393 was already
running).

networkStatep392 is NETWORK_EMPTYp392; all the IDL attributes are in their initial
states.

stalled Event The user agent is trying to fetch media
datap389, but data is unexpectedly not
forthcoming.

networkStatep392 is NETWORK_LOADINGp392.

loadedmetadata Event The user agent has just determined the
duration and dimensions of the media
resourcep389 and the text tracks are readyp423.

readyStatep407 is newly equal to HAVE_METADATAp405 or greater for the first time.

loadeddata Event The user agent can render the media datap389

at the current playback positionp404 for the
first time.

readyStatep407 newly increased to HAVE_CURRENT_DATAp406 or greater for the first
time.

canplay Event The user agent can resume playback of the
media datap389, but estimates that if playback
were to be started now, the media
resourcep389 could not be rendered at the
current playback rate up to its end without
having to stop for further buffering of
content.

readyStatep407 newly increased to HAVE_FUTURE_DATAp406 or greater.

canplaythrough Event The user agent estimates that if playback
were to be started now, the media
resourcep389 could be rendered at the current

readyStatep407 is newly equal to HAVE_ENOUGH_DATAp406.

event . trackp439

Returns the track object (TextTrackp429, AudioTrackp418, or VideoTrackp418) to which the event relates.

For web developers (non-normative)

4.8.12.16 Events summary §p43

9

⚠ MDN

MDN

MDN

✔ MDN

MDN

MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

439

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

Event name Interface Fired when... Preconditions

playback rate all the way to its end without
having to stop for further buffering.

playing Event Playback is ready to start after having been
paused or delayed due to lack of media
datap389.

readyStatep407 is newly equal to or greater than HAVE_FUTURE_DATAp406 and
pausedp408 is false, or pausedp408 is newly false and readyStatep407 is equal to or
greater than HAVE_FUTURE_DATAp406. Even if this event fires, the element might still
not be potentially playingp408, e.g. if the element is paused for user interactionp409 or
paused for in-band contentp409.

waiting Event Playback has stopped because the next frame
is not available, but the user agent expects
that frame to become available in due course.

readyStatep407 is equal to or less than HAVE_CURRENT_DATAp406, and pausedp408 is
false. Either seekingp415 is true, or the current playback positionp404 is not contained
in any of the ranges in bufferedp402. It is possible for playback to stop for other
reasons without pausedp408 being false, but those reasons do not fire this event (and
when those situations resolve, a separate playingp440 event is not fired either): e.g.,
playback has endedp409, or playback stopped due to errorsp409, or the element has
paused for user interactionp409 or paused for in-band contentp409.

seeking Event The seekingp415 IDL attribute changed to
true, and the user agent has started seeking
to a new position.

seeked Event The seekingp415 IDL attribute changed to
false after the current playback positionp404

was changed.
ended Event Playback has stopped because the end of the

media resourcep389 was reached.
currentTimep404 equals the end of the media resourcep389; endedp409 is true.

durationchange Event The durationp405 attribute has just been
updated.

timeupdate Event The current playback positionp404 changed as
part of normal playback or in an especially
interesting way, for example discontinuously.

play Event The element is no longer paused. Fired after
the play()p411 method has returned, or when
the autoplayp407 attribute has caused
playback to begin.

pausedp408 is newly false.

pause Event The element has been paused. Fired after the
pause()p412 method has returned.

pausedp408 is newly true.

ratechange Event Either the defaultPlaybackRatep410 or the
playbackRatep410 attribute has just been
updated.

resize Event One or both of the videoWidthp382 and
videoHeightp382 attributes have just been
updated.

Media elementp387 is a videop380 element; readyStatep407 is not HAVE_NOTHINGp405

volumechange Event Either the volumep437 attribute or the
mutedp437 attribute has changed. Fired after
the relevant attribute's setter has returned.

The following event fires on sourcep317 element:

Event name Interface Fired when...

error Event An error occurs while fetching the media datap389 or the type of the resource is not supported media format.

The following events fire on AudioTrackListp417, VideoTrackListp418, and TextTrackListp429 objects:

Event name Interface Fired when...

change Event One or more tracks in the track list have been enabled or disabled.
addtrack TrackEventp439 A track has been added to the track list.
removetrack TrackEventp439 A track has been removed from the track list.

The following event fires on TextTrackp429 objects and trackp385 elements:

Event name Interface Fired when...

cuechange Event One or more cues in the track have become active or stopped being active.

The following events fire on trackp385 elements:

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

440

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

Event name Interface Fired when...

error Event An error occurs while fetching the track data or the type of the resource is not supported text track format.
load Event A track data has been fetched and successfully processed.

The following events fire on TextTrackCuep433 objects:

Event name Interface Fired when...

enter Event The cue has become active.
exit Event The cue has stopped being active.

The main security and privacy implications of the videop380 and audiop384 elements come from the ability to embed media cross-origin.
There are two directions that threats can flow: from hostile content to a victim page, and from a hostile page to victim content.

If a victim page embeds hostile content, the threat is that the content might contain scripted code that attempts to interact with the
Documentp114 that embeds the content. To avoid this, user agents must ensure that there is no access from the content to the
embedding page. In the case of media content that uses DOM concepts, the embedded content must be treated as if it was in its own
unrelated top-level browsing contextp814.

If a hostile page embeds victim content, the threat is that the embedding page could obtain information from the content that it would
not otherwise have access to. The API does expose some information: the existence of the media, its type, its duration, its size, and the
performance characteristics of its host. Such information is already potentially problematic, but in practice the same information can
more or less be obtained using the imgp320 element, and so it has been deemed acceptable.

However, significantly more sensitive information could be obtained if the user agent further exposes metadata within the content,
such as subtitles. That information is therefore only exposed if the video resource uses CORS. The crossoriginp390 attribute allows
authors to enable CORS. [FETCH]p1287

This section is non-normative.

Playing audio and video resources on small devices such as set-top boxes or mobile phones is often constrained by limited hardware
resources in the device. For example, a device might only support three simultaneous videos. For this reason, it is a good practice to
release resources held by media elementsp387 when they are done playing, either by being very careful about removing all references
to the element and allowing it to be garbage collected, or, even better, by removing the element's srcp390 attribute and any sourcep317

element descendants, and invoking the element's load()p392 method.

Similarly, when the playback rate is not exactly 1.0, hardware, software, or format limitations can cause video frames to be dropped
and audio to be choppy or muted.

4.8.12.17 Security and privacy considerations §p44

1

For instance, if an SVG animation was embedded in a videop380 element, the user agent would not give it access to the DOM of the
outer page. From the perspective of scripts in the SVG resource, the SVG file would appear to be in a lone top-level browsing
context with no parent.

Example

Without this restriction, an attacker could trick a user running within a corporate network into visiting a site that attempts to load a
video from a previously leaked location on the corporation's intranet. If such a video included confidential plans for a new product,
then being able to read the subtitles would present a serious confidentiality breach.

Example

4.8.12.18 Best practices for authors using media elements §p44

1

441

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

This section is non-normative.

How accurately various aspects of the media elementp387 API are implemented is considered a quality-of-implementation issue.

For example, when implementing the bufferedp402 attribute, how precise an implementation reports the ranges that have been
buffered depends on how carefully the user agent inspects the data. Since the API reports ranges as times, but the data is obtained in
byte streams, a user agent receiving a variable-bitrate stream might only be able to determine precise times by actually decoding all
of the data. User agents aren't required to do this, however; they can instead return estimates (e.g. based on the average bitrate seen
so far) which get revised as more information becomes available.

As a general rule, user agents are urged to be conservative rather than optimistic. For example, it would be bad to report that
everything had been buffered when it had not.

Another quality-of-implementation issue would be playing a video backwards when the codec is designed only for forward playback
(e.g. there aren't many key frames, and they are far apart, and the intervening frames only have deltas from the previous frame). User
agents could do a poor job, e.g. only showing key frames; however, better implementations would do more work and thus do a better
job, e.g. actually decoding parts of the video forwards, storing the complete frames, and then playing the frames backwards.

Similarly, while implementations are allowed to drop buffered data at any time (there is no requirement that a user agent keep all the
media data obtained for the lifetime of the media element), it is again a quality of implementation issue: user agents with sufficient
resources to keep all the data around are encouraged to do so, as this allows for a better user experience. For example, if the user is
watching a live stream, a user agent could allow the user only to view the live video; however, a better user agent would buffer
everything and allow the user to seek through the earlier material, pause it, play it forwards and backwards, etc.

When a media elementp387 that is paused is removed from a documentp44 and not reinserted before the next time the event loopp944

reaches step 1p946, implementations that are resource constrained are encouraged to take that opportunity to release all hardware
resources (like video planes, networking resources, and data buffers) used by the media elementp387. (User agents still have to keep
track of the playback position and so forth, though, in case playback is later restarted.)

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Transparentp133.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

namep443 — Name of image mapp445 to referencep123 from the usemapp445 attribute

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLMapElement : HTMLElement {

[HTMLConstructor] constructor();

4.8.12.19 Best practices for implementers of media elements §p44

2

IDL

4.8.13 The map element §p44

2

✔ MDN

✔ MDN

442

https://w3c.github.io/html-aria/#el-map
https://w3c.github.io/html-aam/#el-map

[CEReactions] attribute DOMString name;
[SameObject] readonly attribute HTMLCollection areas;

};

The mapp442 element, in conjunction with an imgp320 element and any areap443 element descendants, defines an image mapp445. The
element representsp123 its children.

The name attribute gives the map a name so that it can be referencedp123. The attribute must be present and must have a non-empty
value with no ASCII whitespace. The value of the namep443 attribute must not be equal to the value of the namep443 attribute of another
mapp442 element in the same tree. If the idp137 attribute is also specified, both attributes must have the same value.

The areas attribute must return an HTMLCollection rooted at the mapp442 element, whose filter matches only areap443 elements.

The IDL attribute name must reflectp94 the content attribute of the same name.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected, but only if there is a mapp442 element ancestor.

map . areasp443

Returns an HTMLCollection of the areap443 elements in the mapp442.

For web developers (non-normative)

Image maps can be defined in conjunction with other content on the page, to ease maintenance. This example is of a page with an
image map at the top of the page and a corresponding set of text links at the bottom.

<!DOCTYPE HTML>
<HTML LANG="EN">
<TITLE>Babies™: Toys</TITLE>
<HEADER>
<H1>Toys</H1>
<IMG SRC="/images/menu.gif"

ALT="Babies™ navigation menu. Select a department to go to its page."
USEMAP="#NAV">

</HEADER>
...

<FOOTER>
<MAP NAME="NAV">
<P>
Clothes
<AREA ALT="Clothes" COORDS="0,0,100,50" HREF="/clothes/"> |
Toys
<AREA ALT="Toys" COORDS="100,0,200,50" HREF="/toys/"> |
Food
<AREA ALT="Food" COORDS="200,0,300,50" HREF="/food/"> |
Books
<AREA ALT="Books" COORDS="300,0,400,50" HREF="/books/">

</P>
</MAP>

</FOOTER>

Example

4.8.14 The area element §p44

3

✔ MDN

✔ MDN

443

https://dom.spec.whatwg.org/#interface-htmlcollection
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

altp444 — Replacement text for use when images are not available
coordsp445 — Coordinates for the shape to be created in an image mapp445

shapep444 — The kind of shape to be created in an image mapp445

hrefp284 — Address of the hyperlinkp283

targetp284 — Browsing contextp811 for hyperlinkp283 navigationp866

downloadp284 — Whether to download the resource instead of navigating to it, and its file name if so
pingp284 — URLs to ping
relp284 — Relationship between the location in the document containing the hyperlinkp283 and the destination resource
referrerpolicyp284 — Referrer policy for fetches initiated by the element

Accessibility considerationsp129:
If the element has an hrefp284 attribute: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLAreaElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString alt;
[CEReactions] attribute DOMString coords;
[CEReactions] attribute DOMString shape;
[CEReactions] attribute DOMString target;
[CEReactions] attribute DOMString download;
[CEReactions] attribute USVString ping;
[CEReactions] attribute DOMString rel;
[SameObject, PutForwards=value] readonly attribute DOMTokenList relList;
[CEReactions] attribute DOMString referrerPolicy;

// also has obsolete members
};
HTMLAreaElement includes HTMLHyperlinkElementUtils;

The areap443 element representsp123 either a hyperlink with some text and a corresponding area on an image mapp445, or a dead area
on an image map.

An areap443 element with a parent node must have a mapp442 element ancestor.

If the areap443 element has an hrefp284 attribute, then the areap443 element represents a hyperlinkp283. In this case, the alt attribute
must be present. It specifies the text of the hyperlink. Its value must be text that, when presented with the texts specified for the other
hyperlinks of the image mapp445, and with the alternative text of the image, but without the image itself, provides the user with the
same kind of choice as the hyperlink would when used without its text but with its shape applied to the image. The altp444 attribute
may be left blank if there is another areap443 element in the same image mapp445 that points to the same resource and has a non-blank
altp444 attribute.

If the areap443 element has no hrefp284 attribute, then the area represented by the element cannot be selected, and the altp444

attribute must be omitted.

In both cases, the shapep444 and coordsp445 attributes specify the area.

The shape attribute is an enumerated attributep68. The following table lists the keywords defined for this attribute. The states given in
the first cell of the rows with keywords give the states to which those keywords map. Some of the keywords are non-conforming, as
noted in the last column.

IDL

444

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-area
https://w3c.github.io/html-aam/#el-area
https://w3c.github.io/html-aria/#el-area-no-href
https://w3c.github.io/html-aam/#el-area-no-href
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist

State Keywords Notes

circleCircle statep445

circ Non-conforming
Default statep445 default

polyPolygon statep445

polygon Non-conforming
rectRectangle statep445

rectangle Non-conforming

The attribute may be omitted. The missing value defaultp68 and invalid value defaultp68 are the rectanglep445 state.

The coords attribute must, if specified, contain a valid list of floating-point numbersp72. This attribute gives the coordinates for the
shape described by the shapep444 attribute. The processing for this attribute is described as part of the image mapp445 processing
model.

In the circle state, areap443 elements must have a coordsp445 attribute present, with three integers, the last of which must be non-
negative. The first integer must be the distance in CSS pixels from the left edge of the image to the center of the circle, the second
integer must be the distance in CSS pixels from the top edge of the image to the center of the circle, and the third integer must be the
radius of the circle, again in CSS pixels.

In the default state state, areap443 elements must not have a coordsp445 attribute. (The area is the whole image.)

In the polygon state, areap443 elements must have a coordsp445 attribute with at least six integers, and the number of integers must
be even. Each pair of integers must represent a coordinate given as the distances from the left and the top of the image in CSS pixels
respectively, and all the coordinates together must represent the points of the polygon, in order.

In the rectangle state, areap443 elements must have a coordsp445 attribute with exactly four integers, the first of which must be less
than the third, and the second of which must be less than the fourth. The four points must represent, respectively, the distance from
the left edge of the image to the left side of the rectangle, the distance from the top edge to the top side, the distance from the left
edge to the right side, and the distance from the top edge to the bottom side, all in CSS pixels.

When user agents allow users to follow hyperlinksp290 or download hyperlinksp291 created using the areap443 element, as described in
the next section, the hrefp284, targetp284, downloadp284, and pingp284 attributes decide how the link is followed. The relp284 attribute
may be used to indicate to the user the likely nature of the target resource before the user follows the link.

The targetp284, downloadp284, pingp284, relp284, and referrerpolicyp284 attributes must be omitted if the hrefp284 attribute is not
present.

If the itempropp736 attribute is specified on an areap443 element, then the hrefp284 attribute must also be specified.

The activation behavior of areap443 elements is to follow the hyperlinkp290 or download the hyperlinkp291 created by the areap443

element, if any, and as determined by the downloadp284 attribute and any expressed user preference.

The IDL attributes alt, coords, target, download, ping, and rel, each must reflectp94 the respective content attributes of the same
name.

The IDL attribute shape must reflectp94 the shapep444 content attribute.

The IDL attribute relList must reflectp94 the relp284 content attribute.

The IDL attribute referrerPolicy must reflectp94 the referrerpolicyp284 content attribute, limited to only known valuesp95.

An image map allows geometric areas on an image to be associated with hyperlinksp283.

An image, in the form of an imgp320 element or an objectp373 element representing an image, may be associated with an image map (in
the form of a mapp442 element) by specifying a usemap attribute on the imgp320 or objectp373 element. The usemapp445 attribute, if
specified, must be a valid hash-name referencep88 to a mapp442 element.

4.8.15.1 Authoring §p44

5

4.8.15 Image maps §p44

5

✔ MDN

✔ MDN

445

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

If an imgp320 element or an objectp373 element representing an image has a usemapp445 attribute specified, user agents must process it
as follows:

1. Parse the attribute's value using the rules for parsing a hash-name referencep88 to a mapp442 element, with the element as the
context node. This will return either an element (the map) or null.

2. If that returned null, then return. The image is not associated with an image map after all.

3. Otherwise, the user agent must collect all the areap443 elements that are descendants of the map. Let those be the areas.

Having obtained the list of areap443 elements that form the image map (the areas), interactive user agents must process the list in one
of two ways.

If the user agent intends to show the text that the imgp320 element represents, then it must use the following steps.

1. Remove all the areap443 elements in areas that have no hrefp284 attribute.

2. Remove all the areap443 elements in areas that have no altp444 attribute, or whose altp444 attribute's value is the empty
string, if there is another areap443 element in areas with the same value in the hrefp284 attribute and with a non-empty
altp444 attribute.

3. Each remaining areap443 element in areas represents a hyperlinkp283. Those hyperlinks should all be made available to the
user in a manner associated with the text of the imgp320.

Consider an image that looks as follows:

If we wanted just the colored areas to be clickable, we could do it as follows:

<p>
Please select a shape:
<img src="shapes.png" usemap="#shapes"

alt="Four shapes are available: a red hollow box, a green circle, a blue triangle, and a
yellow four-pointed star.">
<map name="shapes">
<area shape=rect coords="50,50,100,100"> <!-- the hole in the red box -->
<area shape=rect coords="25,25,125,125" href="red.html" alt="Red box.">
<area shape=circle coords="200,75,50" href="green.html" alt="Green circle.">
<area shape=poly coords="325,25,262,125,388,125" href="blue.html" alt="Blue triangle.">
<area shape=poly coords="450,25,435,60,400,75,435,90,450,125,465,90,500,75,465,60"

href="yellow.html" alt="Yellow star.">
</map>

</p>

Example

4.8.15.2 Processing model §p44

6

In user agents that do not support images, or that have images disabled, objectp373 elements cannot represent images, and thus
this section never applies (the fallback contentp132 is shown instead). The following steps therefore only apply to imgp320 elements.

Note

446

In this context, user agents may represent areap443 and imgp320 elements with no specified alt attributes, or whose alt
attributes are the empty string or some other non-visible text, in an implementation-defined fashion intended to indicate the
lack of suitable author-provided text.

If the user agent intends to show the image and allow interaction with the image to select hyperlinks, then the image must be
associated with a set of layered shapes, taken from the areap443 elements in areas, in reverse tree order (so the last specified areap443

element in the map is the bottom-most shape, and the first element in the map, in tree order, is the top-most shape).

Each areap443 element in areas must be processed as follows to obtain a shape to layer onto the image:

1. Find the state that the element's shapep444 attribute represents.

2. Use the rules for parsing a list of floating-point numbers p72 to parse the element's coordsp445 attribute, if it is present, and let
the result be the coords list. If the attribute is absent, let the coords list be the empty list.

3. If the number of items in the coords list is less than the minimum number given for the areap443 element's current state, as
per the following table, then the shape is empty; return.

State Minimum number of items

Circle statep445 3
Default statep445 0
Polygon statep445 6
Rectangle statep445 4

4. Check for excess items in the coords list as per the entry in the following list corresponding to the shapep444 attribute's state:

↪ Circle statep445

Drop any items in the list beyond the third.

↪ Default statep445

Drop all items in the list.

↪ Polygon statep445

Drop the last item if there's an odd number of items.

↪ Rectangle statep445

Drop any items in the list beyond the fourth.

5. If the shapep444 attribute represents the rectangle statep445, and the first number in the list is numerically greater than the
third number in the list, then swap those two numbers around.

6. If the shapep444 attribute represents the rectangle statep445, and the second number in the list is numerically greater than the
fourth number in the list, then swap those two numbers around.

7. If the shapep444 attribute represents the circle statep445, and the third number in the list is less than or equal to zero, then the
shape is empty; return.

8. Now, the shape represented by the element is the one described for the entry in the list below corresponding to the state of
the shapep444 attribute:

↪ Circle statep445

Let x be the first number in coords, y be the second number, and r be the third number.

The shape is a circle whose center is x CSS pixels from the left edge of the image and y CSS pixels from the top edge
of the image, and whose radius is r CSS pixels.

↪ Default statep445

The shape is a rectangle that exactly covers the entire image.

↪ Polygon statep445

Let xi be the (2i)th entry in coords, and yi be the (2i+1)th entry in coords (the first entry in coords being the one with
index 0).

Let the coordinates be (xi, yi), interpreted in CSS pixels measured from the top left of the image, for all integer values
of i from 0 to (N/2)-1, where N is the number of items in coords.

447

https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

The shape is a polygon whose vertices are given by the coordinates, and whose interior is established using the even-
odd rule. [GRAPHICS]p1288

↪ Rectangle statep445

Let x1 be the first number in coords, y1 be the second number, x2 be the third number, and y2 be the fourth number.

The shape is a rectangle whose top-left corner is given by the coordinate (x1, y1) and whose bottom right corner is
given by the coordinate (x2, y2), those coordinates being interpreted as CSS pixels from the top left corner of the
image.

For historical reasons, the coordinates must be interpreted relative to the displayed image after any stretching caused by the
CSS 'width' and 'height' properties (or, for non-CSS browsers, the image element's width and height attributes — CSS
browsers map those attributes to the aforementioned CSS properties).

Pointing device interaction with an image associated with a set of layered shapes per the above algorithm must result in the relevant
user interaction events being first fired to the top-most shape covering the point that the pointing device indicated, if any, or to the
image element itself, if there is no shape covering that point. User agents may also allow individual areap443 elements representing
hyperlinksp283 to be selected and activated (e.g. using a keyboard).

Image maps are livep45; if the DOM is mutated, then the user agent must act as if it had rerun the algorithms for image maps.

The MathML math element falls into the embedded contentp132, phrasing contentp132, flow contentp131, and palpable contentp133

categories for the purposes of the content models in this specification.

When the MathML annotation-xml element contains elements from the HTML namespace, such elements must all be flow contentp131.

When the MathML token elements (mi, mo, mn, ms, and mtext) are descendants of HTML elements, they may contain phrasing
contentp132 elements from the HTML namespace.

User agents must handle text other than inter-element whitespacep129 found in MathML elements whose content models do not allow
straight text by pretending for the purposes of MathML content models, layout, and rendering that the text is actually wrapped in a
MathML mtext element. (Such text is not, however, conforming.)

User agents must act as if any MathML element whose contents does not match the element's content model was replaced, for the
purposes of MathML layout and rendering, by a MathML merror element containing some appropriate error message.

The semantics of MathML elements are defined by MathML and other applicable specificationsp65. [MATHML]p1289

Browser zoom features and transforms applied using CSS or SVG do not affect the coordinates.
Note

Because a mapp442 element (and its areap443 elements) can be associated with multiple imgp320 and objectp373 elements, it is
possible for an areap443 element to correspond to multiple focusable areasp770 of the document.

Note

Here is an example of the use of MathML in an HTML document:

<!DOCTYPE html>
<html lang="en">
<head>
<title>The quadratic formula</title>

</head>
<body>
<h1>The quadratic formula</h1>
<p>
<math>

Example

4.8.16 MathML §p44

8

✔ MDN

448

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://www.w3.org/Math/draft-spec/chapter5.html#mixing.elements.annotation.xml
https://infra.spec.whatwg.org/#html-namespace
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mi
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mo
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mn
https://www.w3.org/Math/draft-spec/chapter3.html#presm.ms
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mtext
https://infra.spec.whatwg.org/#html-namespace
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mtext
https://www.w3.org/Math/draft-spec/chapter3.html#presm.merror

The SVG svg element falls into the embedded contentp132, phrasing contentp132, flow contentp131, and palpable contentp133 categories
for the purposes of the content models in this specification.

When the SVG foreignObject element contains elements from the HTML namespace, such elements must all be flow contentp131.

The content model for the SVG title element inside HTML documents is phrasing contentp132. (This further constrains the
requirements given in SVG 2.)

The semantics of SVG elements are defined by SVG 2 and other applicable specificationsp65. [SVG]p1291

The getSVGDocument() method must run the following steps:

1. Let document be this element's content documentp815.

2. If document is non-null and was created by the page load processing model for XML filesp877 section because the computed
type of the resource in the navigatep866 algorithm was image/svg+xmlp1283, then return document.

3. Return null.

Author requirements: The width and height attributes on imgp320, iframep361, embedp369, objectp373, videop380, and, when their
typep495 attribute is in the Image Buttonp518 state, inputp493 elements may be specified to give the dimensions of the visual content of
the element (the width and height respectively, relative to the nominal direction of the output medium), in CSS pixels. The attributes, if
specified, must have values that are valid non-negative integersp69.

<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo form="prefix">−</mo> <mi>b</mi>
<mo>±</mo>
<msqrt>
<msup> <mi>b</mi> <mn>2</mn> </msup>
<mo>−</mo>
<mn>4</mn> <mo></mo> <mi>a</mi> <mo></mo> <mi>c</mi>

</msqrt>
</mrow>
<mrow>
<mn>2</mn> <mo></mo> <mi>a</mi>

</mrow>
</mfrac>

</math>
</p>

</body>
</html>

doc = iframe . getSVGDocumentp449()
doc = embed . getSVGDocumentp449()
doc = object . getSVGDocumentp449()

Returns the Documentp114 object, in the case of iframep361, embedp369, or objectp373 elements being used to embed SVG.

For web developers (non-normative)

4.8.17 SVG §p44

9

4.8.18 Dimension attributes §p44

9

✔ MDN

449

https://svgwg.org/svg2-draft/struct.html#SVGElement
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://infra.spec.whatwg.org/#html-namespace
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#html-document
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://drafts.csswg.org/css-values/#px

The specified dimensions given may differ from the dimensions specified in the resource itself, since the resource may have a
resolution that differs from the CSS pixel resolution. (On screens, CSS pixels have a resolution of 96ppi, but in general the CSS pixel
resolution depends on the reading distance.) If both attributes are specified, then one of the following statements must be true:

• specified width - 0.5 ≤ specified height * target ratio ≤ specified width + 0.5

• specified height - 0.5 ≤ specified width / target ratio ≤ specified height + 0.5

• specified height = specified width = 0

The target ratio is the ratio of the intrinsic width to the intrinsic height in the resource. The specified width and specified height are the
values of the widthp449 and heightp449 attributes respectively.

The two attributes must be omitted if the resource in question does not have both an intrinsic width and an intrinsic height.

If the two attributes are both zero, it indicates that the element is not intended for the user (e.g. it might be a part of a service to count
page views).

User agent requirements: User agents are expected to use these attributes as hints for the renderingp1218.

The width and height IDL attributes on the iframep361, embedp369, objectp373, and videop380 elements must reflectp94 the respective
content attributes of the same name.

Categoriesp128:
Flow contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
In this order: optionally a captionp458 element, followed by zero or more colgroupp459 elements, followed optionally by a
theadp462 element, followed by either zero or more tbodyp461 elements or one or more trp464 elements, followed optionally by a
tfootp463 element, optionally intermixed with one or more script-supporting elementsp133.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

The dimension attributes are not intended to be used to stretch the image.
Note

For iframep361, embedp369, and objectp373 the IDL attributes are DOMString; for videop380 the IDL attributes are unsigned long.
Note

The corresponding IDL attributes for imgp324 and inputp499 elements are defined in those respective elements' sections, as they are
slightly more specific to those elements' other behaviors.

Note

4.9 Tabular data §p45

0

4.9.1 The table element §p45

0

✔ MDN

✔ MDN

✔ MDN

450

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-height
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-unsigned-long
https://w3c.github.io/html-aria/#el-table
https://w3c.github.io/html-aam/#el-table

DOM interfacep129:

[Exposed=Window]
interface HTMLTableElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute HTMLTableCaptionElement? caption;
HTMLTableCaptionElement createCaption();
[CEReactions] undefined deleteCaption();

[CEReactions] attribute HTMLTableSectionElement? tHead;
HTMLTableSectionElement createTHead();
[CEReactions] undefined deleteTHead();

[CEReactions] attribute HTMLTableSectionElement? tFoot;
HTMLTableSectionElement createTFoot();
[CEReactions] undefined deleteTFoot();

[SameObject] readonly attribute HTMLCollection tBodies;
HTMLTableSectionElement createTBody();

[SameObject] readonly attribute HTMLCollection rows;
HTMLTableRowElement insertRow(optional long index = -1);
[CEReactions] undefined deleteRow(long index);

// also has obsolete members
};

The tablep450 element representsp123 data with more than one dimension, in the form of a tablep470.

The tablep450 element takes part in the table modelp470. Tables have rows, columns, and cells given by their descendants. The rows
and columns form a grid; a table's cells must completely cover that grid without overlap.

Authors are encouraged to provide information describing how to interpret complex tables. Guidance on how to provide such
informationp455 is given below.

Tables must not be used as layout aids. Historically, some web authors have misused tables in HTML as a way to control their page
layout. This usage is non-conforming, because tools attempting to extract tabular data from such documents would obtain very
confusing results. In particular, users of accessibility tools like screen readers are likely to find it very difficult to navigate pages with
tables used for layout.

Tables can be complicated to understand and navigate. To help users with this, user agents should clearly delineate cells in a table
from each other, unless the user agent has classified the table as a (non-conforming) layout table.

User agents, especially those that do table analysis on arbitrary content, are encouraged to find heuristics to determine which tables
actually contain data and which are merely being used for layout. This specification does not define a precise heuristic, but the
following are suggested as possible indicators:

Precise rules for determining whether this conformance requirement is met are described in the description of the table modelp470.
Note

There are a variety of alternatives to using HTML tables for layout, primarily using CSS positioning and the CSS table model.
[CSS]p1285

Note

Authors and implementers are encouraged to consider using some of the table design techniquesp458 described below to make
tables easier to navigate for users.

Note

IDL

451

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

Feature Indication

The use of the rolep63 attribute with the value presentation Probably a layout table
The use of the non-conforming borderp1237 attribute with the non-conforming
value 0

Probably a layout table

The use of the non-conforming cellspacingp1237 and cellpaddingp1237

attributes with the value 0
Probably a layout table

The use of captionp458, theadp462, or thp467 elements Probably a non-layout table
The use of the headersp469 and scopep467 attributes Probably a non-layout table
The use of the non-conforming borderp1237 attribute with a value other than 0 Probably a non-layout table
Explicit visible borders set using CSS Probably a non-layout table

The use of the summaryp1235 attribute Not a good indicator (both layout and non-layout tables have historically been
given this attribute)

If a tablep450 element has a (non-conforming) summaryp1235 attribute, and the user agent has not classified the table as a layout table,
the user agent may report the contents of that attribute to the user.

It is quite possible that the above suggestions are wrong. Implementors are urged to provide feedback elaborating on their
experiences with trying to create a layout table detection heuristic.

Note

table . captionp453 [= value]
Returns the table's captionp458 element.
Can be set, to replace the captionp458 element.

caption = table . createCaptionp453()
Ensures the table has a captionp458 element, and returns it.

table . deleteCaptionp453()
Ensures the table does not have a captionp458 element.

table . tHeadp453 [= value]
Returns the table's theadp462 element.
Can be set, to replace the theadp462 element. If the new value is not a theadp462 element, throws a "HierarchyRequestError"
DOMException.

thead = table . createTHeadp453()
Ensures the table has a theadp462 element, and returns it.

table . deleteTHeadp453()
Ensures the table does not have a theadp462 element.

table . tFootp453 [= value]
Returns the table's tfootp463 element.
Can be set, to replace the tfootp463 element. If the new value is not a tfootp463 element, throws a "HierarchyRequestError"
DOMException.

tfoot = table . createTFootp453()
Ensures the table has a tfootp463 element, and returns it.

table . deleteTFootp453()
Ensures the table does not have a tfootp463 element.

table . tBodiesp453

Returns an HTMLCollection of the tbodyp461 elements of the table.

tbody = table . createTBodyp453()
Creates a tbodyp461 element, inserts it into the table, and returns it.

table . rowsp453

Returns an HTMLCollection of the trp464 elements of the table.

For web developers (non-normative)

452

https://w3c.github.io/aria/#presentation
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

In all of the following attribute and method definitions, when an element is to be table-created, that means to create an element
given the tablep450 element's node document, the given local name, and the HTML namespace.

The caption IDL attribute must return, on getting, the first captionp458 element child of the tablep450 element, if any, or null
otherwise. On setting, the first captionp458 element child of the tablep450 element, if any, must be removed, and the new value, if not
null, must be inserted as the first node of the tablep450 element.

The createCaption() method must return the first captionp458 element child of the tablep450 element, if any; otherwise a new
captionp458 element must be table-createdp453, inserted as the first node of the tablep450 element, and then returned.

The deleteCaption() method must remove the first captionp458 element child of the tablep450 element, if any.

The tHead IDL attribute must return, on getting, the first theadp462 element child of the tablep450 element, if any, or null otherwise. On
setting, if the new value is null or a theadp462 element, the first theadp462 element child of the tablep450 element, if any, must be
removed, and the new value, if not null, must be inserted immediately before the first element in the tablep450 element that is neither
a captionp458 element nor a colgroupp459 element, if any, or at the end of the table if there are no such elements. If the new value is
neither null nor a theadp462 element, then a "HierarchyRequestError" DOMException must be thrown instead.

The createTHead() method must return the first theadp462 element child of the tablep450 element, if any; otherwise a new theadp462

element must be table-createdp453 and inserted immediately before the first element in the tablep450 element that is neither a
captionp458 element nor a colgroupp459 element, if any, or at the end of the table if there are no such elements, and then that new
element must be returned.

The deleteTHead() method must remove the first theadp462 element child of the tablep450 element, if any.

The tFoot IDL attribute must return, on getting, the first tfootp463 element child of the tablep450 element, if any, or null otherwise. On
setting, if the new value is null or a tfootp463 element, the first tfootp463 element child of the tablep450 element, if any, must be
removed, and the new value, if not null, must be inserted at the end of the table. If the new value is neither null nor a tfootp463

element, then a "HierarchyRequestError" DOMException must be thrown instead.

The createTFoot() method must return the first tfootp463 element child of the tablep450 element, if any; otherwise a new tfootp463

element must be table-createdp453 and inserted at the end of the table, and then that new element must be returned.

The deleteTFoot() method must remove the first tfootp463 element child of the tablep450 element, if any.

The tBodies attribute must return an HTMLCollection rooted at the tablep450 node, whose filter matches only tbodyp461 elements that
are children of the tablep450 element.

The createTBody() method must table-createp453 a new tbodyp461 element, insert it immediately after the last tbodyp461 element child
in the tablep450 element, if any, or at the end of the tablep450 element if the tablep450 element has no tbodyp461 element children, and
then must return the new tbodyp461 element.

The rows attribute must return an HTMLCollection rooted at the tablep450 node, whose filter matches only trp464 elements that are
either children of the tablep450 element, or children of theadp462, tbodyp461, or tfootp463 elements that are themselves children of the
tablep450 element. The elements in the collection must be ordered such that those elements whose parent is a theadp462 are included
first, in tree order, followed by those elements whose parent is either a tablep450 or tbodyp461 element, again in tree order, followed
finally by those elements whose parent is a tfootp463 element, still in tree order.

tr = table . insertRowp454([index])
Creates a trp464 element, along with a tbodyp461 if required, inserts them into the table at the position given by the argument,
and returns the trp464.
The position is relative to the rows in the table. The index −1, which is the default if the argument is omitted, is equivalent to
inserting at the end of the table.
If the given position is less than −1 or greater than the number of rows, throws an "IndexSizeError" DOMException.

table . deleteRowp454(index)
Removes the trp464 element with the given position in the table.
The position is relative to the rows in the table. The index −1 is equivalent to deleting the last row of the table.
If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws an
"IndexSizeError" DOMException.

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

453

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

The behavior of the insertRow(index) method depends on the state of the table. When it is called, the method must act as required
by the first item in the following list of conditions that describes the state of the table and the index argument:

↪ If index is less than −1 or greater than the number of elements in rowsp453 collection:
The method must throw an "IndexSizeError" DOMException.

↪ If the rowsp453 collection has zero elements in it, and the tablep450 has no tbodyp461 elements in it:
The method must table-createp453 a tbodyp461 element, then table-createp453 a trp464 element, then append the trp464 element
to the tbodyp461 element, then append the tbodyp461 element to the tablep450 element, and finally return the trp464 element.

↪ If the rowsp453 collection has zero elements in it:
The method must table-createp453 a trp464 element, append it to the last tbodyp461 element in the table, and return the trp464

element.

↪ If index is −1 or equal to the number of items in rowsp453 collection:
The method must table-createp453 a trp464 element, and append it to the parent of the last trp464 element in the rowsp453

collection. Then, the newly created trp464 element must be returned.

↪ Otherwise:
The method must table-createp453 a trp464 element, insert it immediately before the indexth trp464 element in the rowsp453

collection, in the same parent, and finally must return the newly created trp464 element.

When the deleteRow(index) method is called, the user agent must run the following steps:

1. If index is less than −1 or greater than or equal to the number of elements in the rowsp453 collection, then throw an
"IndexSizeError" DOMException.

2. If index is −1, then remove the last element in the rowsp453 collection from its parent, or do nothing if the rowsp453 collection
is empty.

3. Otherwise, remove the indexth element in the rowsp453 collection from its parent.

Here is an example of a table being used to mark up a Sudoku puzzle. Observe the lack of headers, which are not necessary in
such a table.

<style>
#sudoku { border-collapse: collapse; border: solid thick; }
#sudoku colgroup, table#sudoku tbody { border: solid medium; }
#sudoku td { border: solid thin; height: 1.4em; width: 1.4em; text-align: center; padding: 0; }

</style>
<h1>Today's Sudoku</h1>
<table id="sudoku">
<colgroup><col><col><col>
<colgroup><col><col><col>
<colgroup><col><col><col>
<tbody>
<tr> <td> 1 <td> <td> 3 <td> 6 <td> <td> 4 <td> 7 <td> <td> 9
<tr> <td> <td> 2 <td> <td> <td> 9 <td> <td> <td> 1 <td>
<tr> <td> 7 <td> <td> <td> <td> <td> <td> <td> <td> 6

<tbody>
<tr> <td> 2 <td> <td> 4 <td> <td> 3 <td> <td> 9 <td> <td> 8
<tr> <td> <td> <td> <td> <td> <td> <td> <td> <td>
<tr> <td> 5 <td> <td> <td> 9 <td> <td> 7 <td> <td> <td> 1

<tbody>
<tr> <td> 6 <td> <td> <td> <td> 5 <td> <td> <td> <td> 2
<tr> <td> <td> <td> <td> <td> 7 <td> <td> <td> <td>
<tr> <td> 9 <td> <td> <td> 8 <td> <td> 2 <td> <td> <td> 5

</table>

Example

✔ MDN

454

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#concept-node-remove

For tables that consist of more than just a grid of cells with headers in the first row and headers in the first column, and for any table in
general where the reader might have difficulty understanding the content, authors should include explanatory information introducing
the table. This information is useful for all users, but is especially useful for users who cannot see the table, e.g. users of screen
readers.

Such explanatory information should introduce the purpose of the table, outline its basic cell structure, highlight any trends or
patterns, and generally teach the user how to use the table.

For instance, the following table:

Characteristics with positive and
negative sides

Negative Characteristic Positive

Sad Mood Happy
Failing Grade Passing

...might benefit from a description explaining the way the table is laid out, something like "Characteristics are given in the second
column, with the negative side in the left column and the positive side in the right column".

There are a variety of ways to include this information, such as:

In prose, surrounding the table

In the table's captionp458

4.9.1.1 Techniques for describing tables §p45

5

<p>In the following table, characteristics are given in the second
column, with the negative side in the left column and the positive
side in the right column.</p>
<table>
<caption>Characteristics with positive and negative sides</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>

Example

<table>
<caption>
Characteristics with positive and negative sides.
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic

Example

455

In the table's captionp458, in a detailsp604 element

Next to the table, in the same figurep232

<th> Positive
<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>

<table>
<caption>
Characteristics with positive and negative sides.
<details>
<summary>Help</summary>
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</details>
</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>

Example

<figure>
<figcaption>Characteristics with positive and negative sides</figcaption>
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>
<table>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad

Example

456

Next to the table, in a figurep232's figcaptionp235

Authors may also use other techniques, or combinations of the above techniques, as appropriate.

The best option, of course, rather than writing a description explaining the way the table is laid out, is to adjust the table such that no
explanation is needed.

<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>
</figure>

<figure>
<figcaption>
Characteristics with positive and negative sides
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</figcaption>
<table>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>
</figure>

Example

In the case of the table used in the examples above, a simple rearrangement of the table so that the headers are on the top and
left sides removes the need for an explanation as well as removing the need for the use of headersp469 attributes:

<table>
<caption>Characteristics with positive and negative sides</caption>
<thead>
<tr>
<th> Characteristic
<th> Negative
<th> Positive

<tbody>
<tr>
<th> Mood
<td> Sad
<td> Happy

Example

457

Good table design is key to making tables more readable and usable.

In visual media, providing column and row borders and alternating row backgrounds can be very effective to make complicated tables
more readable.

For tables with large volumes of numeric content, using monospaced fonts can help users see patterns, especially in situations where a
user agent does not render the borders. (Unfortunately, for historical reasons, not rendering borders on tables is a common default.)

In speech media, table cells can be distinguished by reporting the corresponding headers before reading the cell's contents, and by
allowing users to navigate the table in a grid fashion, rather than serializing the entire contents of the table in source order.

Authors are encouraged to use CSS to achieve these effects.

User agents are encouraged to render tables using these techniques whenever the page does not use CSS and the table is not
classified as a layout table.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As the first element child of a tablep450 element.

Content modelp128:
Flow contentp131, but with no descendant tablep450 elements.

Tag omission in text/htmlp128:
A captionp458 element's end tagp1070 can be omitted if the captionp458 element is not immediately followed by ASCII whitespace
or a commentp1078.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTableCaptionElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The captionp458 element representsp123 the title of the tablep450 that is its parent, if it has a parent and that is a tablep450 element.

The captionp458 element takes part in the table modelp470.

<tr>
<th> Grade
<td> Failing
<td> Passing

</table>

4.9.1.2 Techniques for table design §p45

8

IDL

4.9.2 The caption element §p45

8

✔ MDN

✔ MDN

458

https://infra.spec.whatwg.org/#ascii-whitespace
https://w3c.github.io/html-aria/#el-caption
https://w3c.github.io/html-aam/#el-caption

When a tablep450 element is the only content in a figurep232 element other than the figcaptionp235, the captionp458 element should
be omitted in favor of the figcaptionp235.

A caption can introduce context for a table, making it significantly easier to understand.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a tablep450 element, after any captionp458 elements and before any theadp462, tbodyp461, tfootp463, and trp464

elements.

Content modelp128:
If the spanp460 attribute is present: Nothingp130.
If the spanp460 attribute is absent: Zero or more colp460 and templatep629 elements.

Tag omission in text/htmlp128:
A colgroupp459 element's start tagp1069 can be omitted if the first thing inside the colgroupp459 element is a colp460 element, and
if the element is not immediately preceded by another colgroupp459 element whose end tagp1070 has been omitted. (It can't be
omitted if the element is empty.)
A colgroupp459 element's end tagp1070 can be omitted if the colgroupp459 element is not immediately followed by ASCII

Consider, for instance, the following table:

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 1011
6 7 8 9 101112

In the abstract, this table is not clear. However, with a caption giving the table's number (for referencep123 in the main prose) and
explaining its use, it makes more sense:

<caption>
<p>Table 1.
<p>This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first die,
the first column the value of the second die. The total is given in
the cell that corresponds to the values of the two dice.
</caption>

This provides the user with more context:

Table 1.

This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first
die, the first column the value of the second die. The total
is given in the cell that corresponds to the values of the
two dice.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 1011
6 7 8 9 101112

Example

4.9.3 The colgroup element §p45

9

✔ MDN

✔ MDN

459

https://infra.spec.whatwg.org/#ascii-whitespace

whitespace or a commentp1078.

Content attributesp128:
Global attributesp136

spanp460 — Number of columns spanned by the element

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTableColElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute unsigned long span;

// also has obsolete members
};

The colgroupp459 element representsp123 a groupp470 of one or more columnsp470 in the tablep450 that is its parent, if it has a parent and
that is a tablep450 element.

If the colgroupp459 element contains no colp460 elements, then the element may have a span content attribute specified, whose value
must be a valid non-negative integerp69 greater than zero and less than or equal to 1000.

The colgroupp459 element and its spanp460 attribute take part in the table modelp470.

The span IDL attribute must reflectp94 the content attribute of the same name. It is clamped to the rangep95 [1, 1000], and its default
value is 1.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a colgroupp459 element that doesn't have a spanp460 attribute.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

spanp460 — Number of columns spanned by the element

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLTableColElementp460, as defined for colgroupp459 elements.

If a colp460 element has a parent and that is a colgroupp459 element that itself has a parent that is a tablep450 element, then the
colp460 element representsp123 one or more columnsp470 in the column groupp470 represented by that colgroupp459.

The element may have a span content attribute specified, whose value must be a valid non-negative integerp69 greater than zero and
less than or equal to 1000.

IDL

4.9.4 The col element §p46

0

✔ MDN

460

https://infra.spec.whatwg.org/#ascii-whitespace
https://w3c.github.io/html-aria/#el-colgroup
https://w3c.github.io/html-aam/#el-colgroup
https://w3c.github.io/html-aria/#el-col
https://w3c.github.io/html-aam/#el-col

The colp460 element and its spanp460 attribute take part in the table modelp470.

The span IDL attribute must reflectp94 the content attribute of the same name. It is clamped to the rangep95 [1, 1000], and its default
value is 1.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a tablep450 element, after any captionp458, colgroupp459, and theadp462 elements, but only if there are no trp464

elements that are children of the tablep450 element.

Content modelp128:
Zero or more trp464 and script-supportingp133 elements.

Tag omission in text/htmlp128:
A tbodyp461 element's start tagp1069 can be omitted if the first thing inside the tbodyp461 element is a trp464 element, and if the
element is not immediately preceded by a tbodyp461, theadp462, or tfootp463 element whose end tagp1070 has been omitted. (It
can't be omitted if the element is empty.)
A tbodyp461 element's end tagp1070 can be omitted if the tbodyp461 element is immediately followed by a tbodyp461 or tfootp463

element, or if there is no more content in the parent element.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTableSectionElement : HTMLElement {

[HTMLConstructor] constructor();

[SameObject] readonly attribute HTMLCollection rows;
HTMLTableRowElement insertRow(optional long index = -1);
[CEReactions] undefined deleteRow(long index);

// also has obsolete members
};

The HTMLTableSectionElementp461 interface is also used for theadp462 and tfootp463 elements.

The tbodyp461 element representsp123 a blockp470 of rowsp470 that consist of a body of data for the parent tablep450 element, if the
tbodyp461 element has a parent and it is a tablep450.

The tbodyp461 element takes part in the table modelp470.

tbody . rowsp462

Returns an HTMLCollection of the trp464 elements of the table section.

tr = tbody . insertRowp462([index])
Creates a trp464 element, inserts it into the table section at the position given by the argument, and returns the trp464.
The position is relative to the rows in the table section. The index −1, which is the default if the argument is omitted, is
equivalent to inserting at the end of the table section.
If the given position is less than −1 or greater than the number of rows, throws an "IndexSizeError" DOMException.

For web developers (non-normative)

IDL

4.9.5 The tbody element §p46

1

✔ MDN

✔ MDN

461

https://w3c.github.io/html-aria/#el-tbody
https://w3c.github.io/html-aam/#el-tbody
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException

The rows attribute must return an HTMLCollection rooted at this element, whose filter matches only trp464 elements that are children
of this element.

The insertRow(index) method must act as follows:

1. If index is less than −1 or greater than the number of elements in the rowsp462 collection, throw an "IndexSizeError"
DOMException.

2. Let table row be the result of creating an element given this element's node document, trp464, and the HTML namespace.

3. If index is −1 or equal to the number of items in the rowsp462 collection, then append table row to this element.

4. Otherwise, insert table row as a child of this element, immediately before the indexth trp464 element in the rowsp462

collection.

5. Return table row.

The deleteRow(index) method must, when invoked, act as follows:

1. If index is less than −1 or greater than or equal to the number of elements in the rowsp462 collection, then throw an
"IndexSizeError" DOMException.

2. If index is −1, then remove the last element in the rowsp462 collection from this element, or do nothing if the rowsp462

collection is empty.

3. Otherwise, remove the indexth element in the rowsp462 collection from this element.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a tablep450 element, after any captionp458, and colgroupp459 elements and before any tbodyp461, tfootp463, and
trp464 elements, but only if there are no other theadp462 elements that are children of the tablep450 element.

Content modelp128:
Zero or more trp464 and script-supportingp133 elements.

Tag omission in text/htmlp128:
A theadp462 element's end tagp1070 can be omitted if the theadp462 element is immediately followed by a tbodyp461 or tfootp463

element.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLTableSectionElementp461, as defined for tbodyp461 elements.

The theadp462 element representsp123 the blockp470 of rowsp470 that consist of the column labels (headers) for the parent tablep450

element, if the theadp462 element has a parent and it is a tablep450.

tbody . deleteRowp462(index)
Removes the trp464 element with the given position in the table section.
The position is relative to the rows in the table section. The index −1 is equivalent to deleting the last row of the table section.
If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws an
"IndexSizeError" DOMException.

4.9.6 The thead element §p46

2

✔ MDN

462

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-htmlcollection
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-insert
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#concept-node-remove
https://w3c.github.io/html-aria/#el-thead
https://w3c.github.io/html-aam/#el-thead

The theadp462 element takes part in the table modelp470.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a tablep450 element, after any captionp458, colgroupp459, theadp462, tbodyp461, and trp464 elements, but only if there
are no other tfootp463 elements that are children of the tablep450 element.

Content modelp128:
Zero or more trp464 and script-supportingp133 elements.

Tag omission in text/htmlp128:
A tfootp463 element's end tagp1070 can be omitted if there is no more content in the parent element.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLTableSectionElementp461, as defined for tbodyp461 elements.

The tfootp463 element representsp123 the blockp470 of rowsp470 that consist of the column summaries (footers) for the parent tablep450

This example shows a theadp462 element being used. Notice the use of both thp467 and tdp465 elements in the theadp462 element:
the first row is the headers, and the second row is an explanation of how to fill in the table.

<table>
<caption> School auction sign-up sheet </caption>
<thead>
<tr>
<th><label for=e1>Name</label>
<th><label for=e2>Product</label>
<th><label for=e3>Picture</label>
<th><label for=e4>Price</label>

<tr>
<td>Your name here
<td>What are you selling?
<td>Link to a picture
<td>Your reserve price

<tbody>
<tr>
<td>Ms Danus
<td>Doughnuts
<td>
<td>$45

<tr>
<td><input id=e1 type=text name=who required form=f>
<td><input id=e2 type=text name=what required form=f>
<td><input id=e3 type=url name=pic form=f>
<td><input id=e4 type=number step=0.01 min=0 value=0 required form=f>

</table>
<form id=f action="/auction.cgi">
<input type=button name=add value="Submit">

</form>

Example

4.9.7 The tfoot element §p46

3

✔ MDN

463

https://w3c.github.io/html-aria/#el-tfoot
https://w3c.github.io/html-aam/#el-tfoot

element, if the tfootp463 element has a parent and it is a tablep450.

The tfootp463 element takes part in the table modelp470.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a theadp462 element.
As a child of a tbodyp461 element.
As a child of a tfootp463 element.
As a child of a tablep450 element, after any captionp458, colgroupp459, and theadp462 elements, but only if there are no tbodyp461

elements that are children of the tablep450 element.

Content modelp128:
Zero or more tdp465, thp467, and script-supportingp133 elements.

Tag omission in text/htmlp128:
A trp464 element's end tagp1070 can be omitted if the trp464 element is immediately followed by another trp464 element, or if
there is no more content in the parent element.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTableRowElement : HTMLElement {

[HTMLConstructor] constructor();

readonly attribute long rowIndex;
readonly attribute long sectionRowIndex;
[SameObject] readonly attribute HTMLCollection cells;
HTMLTableCellElement insertCell(optional long index = -1);
[CEReactions] undefined deleteCell(long index);

// also has obsolete members
};

The trp464 element representsp123 a rowp470 of cellsp470 in a tablep470.

The trp464 element takes part in the table modelp470.

tr . rowIndexp465

Returns the position of the row in the table's rowsp453 list.
Returns −1 if the element isn't in a table.

tr . sectionRowIndexp465

Returns the position of the row in the table section's rowsp462 list.
Returns −1 if the element isn't in a table section.

tr . cellsp465

Returns an HTMLCollection of the tdp465 and thp467 elements of the row.

For web developers (non-normative)

IDL

4.9.8 The tr element §p46

4

✔ MDN

✔ MDN

464

https://w3c.github.io/html-aria/#el-tr
https://w3c.github.io/html-aam/#el-tr
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

The rowIndex attribute must, if this element has a parent tablep450 element, or a parent tbodyp461, theadp462, or tfootp463 element and
a grandparent tablep450 element, return the index of this trp464 element in that tablep450 element's rowsp453 collection. If there is no
such tablep450 element, then the attribute must return −1.

The sectionRowIndex attribute must, if this element has a parent tablep450, tbodyp461, theadp462, or tfootp463 element, return the
index of the trp464 element in the parent element's rows collection (for tables, that's HTMLTableElementp451 's rowsp453 collection; for
table sections, that's HTMLTableSectionElementp461 's rowsp462 collection). If there is no such parent element, then the attribute must
return −1.

The cells attribute must return an HTMLCollection rooted at this trp464 element, whose filter matches only tdp465 and thp467 elements
that are children of the trp464 element.

The insertCell(index) method must act as follows:

1. If index is less than −1 or greater than the number of elements in the cellsp465 collection, then throw an "IndexSizeError"
DOMException.

2. Let table cell be the result of creating an element given this trp464 element's node document, tdp465, and the HTML
namespace.

3. If index is equal to −1 or equal to the number of items in cellsp465 collection, then append table cell to this trp464 element.

4. Otherwise, insert table cell as a child of this trp464 element, immediately before the indexth tdp465 or thp467 element in the
cellsp465 collection.

5. Return table cell.

The deleteCell(index) method must act as follows:

1. If index is less than −1 or greater than or equal to the number of elements in the cellsp465 collection, then throw an
"IndexSizeError" DOMException.

2. If index is −1, then remove the last element in the cellsp465 collection from its parent, or do nothing if the cellsp465

collection is empty.

3. Otherwise, remove the indexth element in the cellsp465 collection from its parent.

Categoriesp128:
Sectioning rootp199.

Contexts in which this element can be usedp128:
As a child of a trp464 element.

Content modelp128:
Flow contentp131.

cell = tr . insertCellp465([index])
Creates a tdp465 element, inserts it into the table row at the position given by the argument, and returns the tdp465.
The position is relative to the cells in the row. The index −1, which is the default if the argument is omitted, is equivalent to
inserting at the end of the row.
If the given position is less than −1 or greater than the number of cells, throws an "IndexSizeError" DOMException.

tr . deleteCellp465(index)
Removes the tdp465 or thp467 element with the given position in the row.
The position is relative to the cells in the row. The index −1 is equivalent to deleting the last cell of the row.
If the given position is less than −1 or greater than the index of the last cell, or if there are no cells, throws an
"IndexSizeError" DOMException.

4.9.9 The td element §p46

5

✔ MDN

✔ MDN

✔ MDN

465

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-htmlcollection
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-insert
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#concept-node-remove

Tag omission in text/htmlp128:
A tdp465 element's end tagp1070 can be omitted if the tdp465 element is immediately followed by a tdp465 or thp467 element, or if
there is no more content in the parent element.

Content attributesp128:
Global attributesp136

colspanp469 — Number of columns that the cell is to span
rowspanp469 — Number of rows that the cell is to span
headersp469 — The header cells for this cell

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTableCellElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute unsigned long colSpan;
[CEReactions] attribute unsigned long rowSpan;
[CEReactions] attribute DOMString headers;
readonly attribute long cellIndex;

[CEReactions] attribute DOMString scope; // only conforming for th elements
[CEReactions] attribute DOMString abbr; // only conforming for th elements

// also has obsolete members
};

The HTMLTableCellElementp466 interface is also used for thp467 elements.

The tdp465 element representsp123 a data cellp470 in a table.

The tdp465 element and its colspanp469, rowspanp469, and headersp469 attributes take part in the table modelp470.

User agents, especially in non-visual environments or where displaying the table as a 2D grid is impractical, may give the user context
for the cell when rendering the contents of a cell; for instance, giving its position in the table modelp470, or listing the cell's header cells
(as determined by the algorithm for assigning header cellsp473). When a cell's header cells are being listed, user agents may use the
value of abbrp468 attributes on those header cells, if any, instead of the contents of the header cells themselves.

In this example, we see a snippet of a web application consisting of a grid of editable cells (essentially a simple spreadsheet). One
of the cells has been configured to show the sum of the cells above it. Three have been marked as headings, which use thp467

elements instead of tdp465 elements. A script would attach event handlers to these elements to maintain the total.

<table>
<tr>
<th><input value="Name">
<th><input value="Paid ($)">

<tr>
<td><input value="Jeff">
<td><input value="14">

<tr>
<td><input value="Britta">
<td><input value="9">

<tr>
<td><input value="Abed">
<td><input value="25">

<tr>
<td><input value="Shirley">

Example

IDL

466

https://w3c.github.io/html-aria/#el-td
https://w3c.github.io/html-aam/#el-td

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a trp464 element.

Content modelp128:
Flow contentp131, but with no headerp194, footerp195, sectioning contentp131, or heading contentp132 descendants.

Tag omission in text/htmlp128:
A thp467 element's end tagp1070 can be omitted if the thp467 element is immediately followed by a tdp465 or thp467 element, or if
there is no more content in the parent element.

Content attributesp128:
Global attributesp136

colspanp469 — Number of columns that the cell is to span
rowspanp469 — Number of rows that the cell is to span
headersp469 — The header cells for this cell
scopep467 — Specifies which cells the header cell applies to
abbrp468 — Alternative label to use for the header cell when referencing the cell in other contexts

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLTableCellElementp466, as defined for tdp465 elements.

The thp467 element representsp123 a header cellp470 in a table.

The thp467 element may have a scope content attribute specified. The scopep467 attribute is an enumerated attributep68 with five states,
four of which have explicit keywords:

The row keyword, which maps to the row state
The row state means the header cell applies to some of the subsequent cells in the same row(s).

The col keyword, which maps to the column state
The column state means the header cell applies to some of the subsequent cells in the same column(s).

The rowgroup keyword, which maps to the row group state
The row group state means the header cell applies to all the remaining cells in the row group. A thp467 element's scopep467 attribute
must not be in the row groupp467 state if the element is not anchored in a row groupp470.

<td><input value="2">
<tr>
<td><input value="Annie">
<td><input value="5">

<tr>
<td><input value="Troy">
<td><input value="5">

<tr>
<td><input value="Pierce">
<td><input value="1000">

<tr>
<th><input value="Total">
<td><output value="1060">

</table>

4.9.10 The th element §p46

7

✔ MDN

467

https://w3c.github.io/html-aria/#el-th
https://w3c.github.io/html-aam/#el-th

The colgroup keyword, which maps to the column group state
The column group state means the header cell applies to all the remaining cells in the column group. A thp467 element's scopep467

attribute must not be in the column groupp468 state if the element is not anchored in a column groupp470.

The auto state
The auto state makes the header cell apply to a set of cells selected based on context.

The scopep467 attribute's missing value defaultp68 and invalid value defaultp68 are the auto state.

The thp467 element may have an abbr content attribute specified. Its value must be an alternative label for the header cell, to be used
when referencing the cell in other contexts (e.g. when describing the header cells that apply to a data cell). It is typically an
abbreviated form of the full header cell, but can also be an expansion, or merely a different phrasing.

The thp467 element and its colspanp469, rowspanp469, headersp469, and scopep467 attributes take part in the table modelp470.

The following example shows how the scopep467 attribute's rowgroupp467 value affects which data cells a header cell applies to.

Here is a markup fragment showing a table:

<table>
<thead>
<tr> <th> ID <th> Measurement <th> Average <th> Maximum

<tbody>
<tr> <td> <th scope=rowgroup> Cats <td> <td>
<tr> <td> 93 <th scope=row> Legs <td> 3.5 <td> 4
<tr> <td> 10 <th scope=row> Tails <td> 1 <td> 1

<tbody>
<tr> <td> <th scope=rowgroup> English speakers <td> <td>
<tr> <td> 32 <th scope=row> Legs <td> 2.67 <td> 4
<tr> <td> 35 <th scope=row> Tails <td> 0.33 <td> 1

</table>

This would result in the following table:

ID Measurement Average Maximum

Cats
93 Legs 3.5 4
10 Tails 1 1

English speakers
32 Legs 2.67 4
35 Tails 0.33 1

The headers in the first row all apply directly down to the rows in their column.

The headers with the explicit scopep467 attributes apply to all the cells in their row group other than the cells in the first column.

The remaining headers apply just to the cells to the right of them.

Example

468

The tdp465 and thp467 elements may have a colspan content attribute specified, whose value must be a valid non-negative integerp69

greater than zero and less than or equal to 1000.

The tdp465 and thp467 elements may also have a rowspan content attribute specified, whose value must be a valid non-negative
integerp69 less than or equal to 65534. For this attribute, the value zero means that the cell is to span all the remaining rows in the row
group.

These attributes give the number of columns and rows respectively that the cell is to span. These attributes must not be used to
overlap cells, as described in the description of the table modelp470.

The tdp465 and thp467 element may have a headers content attribute specified. The headersp469 attribute, if specified, must contain a
string consisting of an unordered set of unique space-separated tokensp87, none of which are identical to another token and each of
which must have the value of an ID of a thp467 element taking part in the same tablep470 as the tdp465 or thp467 element (as defined by
the table modelp470).

A thp467 element with ID id is said to be directly targeted by all tdp465 and thp467 elements in the same tablep470 that have headersp469

attributes whose values include as one of their tokens the ID id. A thp467 element A is said to be targeted by a thp467 or tdp465 element B
if either A is directly targeted by B or if there exists an element C that is itself targeted by the element B and A is directly targeted by
C.

A thp467 element must not be targeted by itself.

The colspanp469, rowspanp469, and headersp469 attributes take part in the table modelp470.

The colSpan IDL attribute must reflectp94 the colspanp469 content attribute. It is clamped to the rangep95 [1, 1000], and its default
value is 1.

The rowSpan IDL attribute must reflectp94 the rowspanp469 content attribute. It is clamped to the rangep95 [0, 65534], and its default
value is 1.

The headers IDL attribute must reflectp94 the content attribute of the same name.

cell . cellIndexp470

Returns the position of the cell in the row's cellsp465 list. This does not necessarily correspond to the x-position of the cell in the
table, since earlier cells might cover multiple rows or columns.
Returns −1 if the element isn't in a row.

For web developers (non-normative)

4.9.11 Attributes common to tdp465 and thp467 elements §p46

9

469

https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id

The cellIndex IDL attribute must, if the element has a parent trp464 element, return the index of the cell's element in the parent
element's cellsp465 collection. If there is no such parent element, then the attribute must return −1.

The scope IDL attribute must reflectp94 the content attribute of the same name, limited to only known valuesp95.

The abbr IDL attribute must reflectp94 the content attribute of the same name.

The various table elements and their content attributes together define the table model.

A table consists of cells aligned on a two-dimensional grid of slots with coordinates (x, y). The grid is finite, and is either empty or has
one or more slots. If the grid has one or more slots, then the x coordinates are always in the range 0 ≤ x < xwidth, and the y
coordinates are always in the range 0 ≤ y < yheight. If one or both of xwidth and yheight are zero, then the table is empty (has no slots).
Tables correspond to tablep450 elements.

A cell is a set of slots anchored at a slot (cellx, celly), and with a particular width and height such that the cell covers all the slots with
coordinates (x, y) where cellx ≤ x < cellx+width and celly ≤ y < celly+height. Cells can either be data cells or header cells. Data cells
correspond to tdp465 elements, and header cells correspond to thp467 elements. Cells of both types can have zero or more associated
header cells.

It is possible, in certain error cases, for two cells to occupy the same slot.

A row is a complete set of slots from x=0 to x=xwidth-1, for a particular value of y. Rows usually correspond to trp464 elements, though
a row groupp470 can have some implied rowsp470 at the end in some cases involving cellsp470 spanning multiple rows.

A column is a complete set of slots from y=0 to y=yheight-1, for a particular value of x. Columns can correspond to colp460 elements.
In the absence of colp460 elements, columns are implied.

A row group is a set of rowsp470 anchored at a slot (0, groupy) with a particular height such that the row group covers all the slots with
coordinates (x, y) where 0 ≤ x < xwidth and groupy ≤ y < groupy+height. Row groups correspond to tbodyp461, theadp462, and tfootp463

elements. Not every row is necessarily in a row group.

A column group is a set of columnsp470 anchored at a slot (groupx, 0) with a particular width such that the column group covers all the
slots with coordinates (x, y) where groupx ≤ x < groupx+width and 0 ≤ y < yheight. Column groups correspond to colgroupp459

elements. Not every column is necessarily in a column group.

Row groupsp470 cannot overlap each other. Similarly, column groupsp470 cannot overlap each other.

A cellp470 cannot cover slots that are from two or more row groupsp470. It is, however, possible for a cell to be in multiple column
groupsp470. All the slots that form part of one cell are part of zero or one row groupsp470 and zero or more column groupsp470.

In addition to cellsp470, columnsp470, rowsp470, row groupsp470, and column groupsp470, tablesp470 can have a captionp458 element
associated with them. This gives the table a heading, or legend.

A table model error is an error with the data represented by tablep450 elements and their descendants. Documents must not have
table model errors.

To determine which elements correspond to which slots in a tablep470 associated with a tablep450 element, to determine the dimensions
of the table (xwidth and yheight), and to determine if there are any table model errorsp470, user agents must use the following algorithm:

1. Let xwidth be zero.

2. Let yheight be zero.

3. Let pending tfootp463 elements be a list of tfootp463 elements, initially empty.

4. Let the table be the tablep470 represented by the tablep450 element. The xwidth and yheight variables give the table's
dimensions. The table is initially empty.

4.9.12.1 Forming a table §p47

0

4.9.12 Processing model §p47

0

470

5. If the tablep450 element has no children elements, then return the table (which will be empty).

6. Associate the first captionp458 element child of the tablep450 element with the table. If there are no such children, then it has
no associated captionp458 element.

7. Let the current element be the first element child of the tablep450 element.

If a step in this algorithm ever requires the current element to be advanced to the next child of the table when there is
no such next child, then the user agent must jump to the step labeled end, near the end of this algorithm.

8. While the current element is not one of the following elements, advancep471 the current element to the next child of the
tablep450:

◦ colgroupp459

◦ theadp462

◦ tbodyp461

◦ tfootp463

◦ trp464

9. If the current element is a colgroupp459, follow these substeps:

1. Column groups: Process the current element according to the appropriate case below:

↪ If the current element has any colp460 element children
Follow these steps:

1. Let xstart have the value of xwidth.

2. Let the current column be the first colp460 element child of the colgroupp459 element.

3. Columns: If the current column colp460 element has a spanp460 attribute, then parse its value using
the rules for parsing non-negative integers p69.

If the result of parsing the value is not an error or zero, then let span be that value.

Otherwise, if the colp460 element has no spanp460 attribute, or if trying to parse the attribute's
value resulted in an error or zero, then let span be 1.

If span is greater than 1000, let it be 1000 instead.

4. Increase xwidth by span.

5. Let the last span columnsp470 in the table correspond to the current column colp460 element.

6. If current column is not the last colp460 element child of the colgroupp459 element, then let the
current column be the next colp460 element child of the colgroupp459 element, and return to the
step labeled columns.

7. Let all the last columnsp470 in the table from x=xstart to x=xwidth-1 form a new column groupp470,
anchored at the slot (xstart, 0), with width xwidth-xstart, corresponding to the colgroupp459 element.

↪ If the current element has no colp460 element children

1. If the colgroupp459 element has a spanp460 attribute, then parse its value using the rules for
parsing non-negative integersp69.

If the result of parsing the value is not an error or zero, then let span be that value.

Otherwise, if the colgroupp459 element has no spanp460 attribute, or if trying to parse the
attribute's value resulted in an error or zero, then let span be 1.

If span is greater than 1000, let it be 1000 instead.

2. Increase xwidth by span.

3. Let the last span columnsp470 in the table form a new column groupp470, anchored at the slot
(xwidth-span, 0), with width span, corresponding to the colgroupp459 element.

2. Advancep471 the current element to the next child of the tablep450.

3. While the current element is not one of the following elements, advancep471 the current element to the next child
471

of the tablep450:

▪ colgroupp459

▪ theadp462

▪ tbodyp461

▪ tfootp463

▪ trp464

4. If the current element is a colgroupp459 element, jump to the step labeled column groups above.

10. Let ycurrent be zero.

11. Let the list of downward-growing cells be an empty list.

12. Rows: While the current element is not one of the following elements, advancep471 the current element to the next child of
the tablep450:

◦ theadp462

◦ tbodyp461

◦ tfootp463

◦ trp464

13. If the current element is a trp464, then run the algorithm for processing rowsp472, advancep471 the current element to the next
child of the tablep450, and return to the step labeled rows.

14. Run the algorithm for ending a row groupp472.

15. If the current element is a tfootp463, then add that element to the list of pending tfootp463 elements, advancep471 the current
element to the next child of the tablep450, and return to the step labeled rows.

16. The current element is either a theadp462 or a tbodyp461.

Run the algorithm for processing row groupsp472.

17. Advancep471 the current element to the next child of the tablep450.

18. Return to the step labeled rows.

19. End: For each tfootp463 element in the list of pending tfootp463 elements, in tree order, run the algorithm for processing row
groupsp472.

20. If there exists a rowp470 or columnp470 in the table containing only slotsp470 that do not have a cellp470 anchored to them, then
this is a table model errorp470.

21. Return the table.

The algorithm for processing row groups, which is invoked by the set of steps above for processing theadp462, tbodyp461, and
tfootp463 elements, is:

1. Let ystart have the value of yheight.

2. For each trp464 element that is a child of the element being processed, in tree order, run the algorithm for processing
rowsp472.

3. If yheight > ystart, then let all the last rowsp470 in the table from y=ystart to y=yheight-1 form a new row groupp470, anchored at
the slot with coordinate (0, ystart), with height yheight-ystart, corresponding to the element being processed.

4. Run the algorithm for ending a row groupp472.

The algorithm for ending a row group, which is invoked by the set of steps above when starting and ending a block of rows, is:

1. While ycurrent is less than yheight, follow these steps:

1. Run the algorithm for growing downward-growing cellsp473.

2. Increase ycurrent by 1.

2. Empty the list of downward-growing cells.

The algorithm for processing rows, which is invoked by the set of steps above for processing trp464 elements, is:

472

https://dom.spec.whatwg.org/#concept-tree-order

1. If yheight is equal to ycurrent, then increase yheight by 1. (ycurrent is never greater than yheight.)

2. Let xcurrent be 0.

3. Run the algorithm for growing downward-growing cellsp473.

4. If the trp464 element being processed has no tdp465 or thp467 element children, then increase ycurrent by 1, abort this set of
steps, and return to the algorithm above.

5. Let current cell be the first tdp465 or thp467 element child in the trp464 element being processed.

6. Cells: While xcurrent is less than xwidth and the slot with coordinate (xcurrent, ycurrent) already has a cell assigned to it,
increase xcurrent by 1.

7. If xcurrent is equal to xwidth, increase xwidth by 1. (xcurrent is never greater than xwidth.)

8. If the current cell has a colspanp469 attribute, then parse that attribute's valuep69, and let colspan be the result.

If parsing that value failed, or returned zero, or if the attribute is absent, then let colspan be 1, instead.

If colspan is greater than 1000, let it be 1000 instead.

9. If the current cell has a rowspanp469 attribute, then parse that attribute's valuep69, and let rowspan be the result.

If parsing that value failed or if the attribute is absent, then let rowspan be 1, instead.

If rowspan is greater than 65534, let it be 65534 instead.

10. If rowspan is zero and the tablep450 element's node document is not set to quirks mode, then let cell grows downward be
true, and set rowspan to 1. Otherwise, let cell grows downward be false.

11. If xwidth < xcurrent+colspan, then let xwidth be xcurrent+colspan.

12. If yheight < ycurrent+rowspan, then let yheight be ycurrent+rowspan.

13. Let the slots with coordinates (x, y) such that xcurrent ≤ x < xcurrent+colspan and ycurrent ≤ y < ycurrent+rowspan be covered
by a new cellp470 c, anchored at (xcurrent, ycurrent), which has width colspan and height rowspan, corresponding to the current
cell element.

If the current cell element is a thp467 element, let this new cell c be a header cell; otherwise, let it be a data cell.

To establish which header cells apply to the current cell element, use the algorithm for assigning header cellsp473 described in
the next section.

If any of the slots involved already had a cellp470 covering them, then this is a table model errorp470. Those slots now have two
cells overlapping.

14. If cell grows downward is true, then add the tuple {c, xcurrent, colspan} to the list of downward-growing cells.

15. Increase xcurrent by colspan.

16. If current cell is the last tdp465 or thp467 element child in the trp464 element being processed, then increase ycurrent by 1, abort
this set of steps, and return to the algorithm above.

17. Let current cell be the next tdp465 or thp467 element child in the trp464 element being processed.

18. Return to the step labeled cells.

When the algorithms above require the user agent to run the algorithm for growing downward-growing cells, the user agent
must, for each {cell, cellx, width} tuple in the list of downward-growing cells, if any, extend the cellp470 cell so that it also covers the
slots with coordinates (x, ycurrent), where cellx ≤ x < cellx+width.

Each cell can be assigned zero or more header cells. The algorithm for assigning header cells to a cell principal cell is as follows.

1. Let header list be an empty list of cells.

2. Let (principalx, principaly) be the coordinate of the slot to which the principal cell is anchored.

4.9.12.2 Forming relationships between data cells and header cells §p47

3

473

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-quirks

3.↪ If the principal cell has a headersp469 attribute specified

1. Take the value of the principal cell's headersp469 attribute and split it on ASCII whitespace, letting id list be
the list of tokens obtained.

2. For each token in the id list, if the first element in the Documentp114 with an ID equal to the token is a cell in
the same tablep470, and that cell is not the principal cell, then add that cell to header list.

↪ If principal cell does not have a headersp469 attribute specified

1. Let principalwidth be the width of the principal cell.

2. Let principalheight be the height of the principal cell.

3. For each value of y from principaly to principaly+principalheight-1, run the internal algorithm for scanning
and assigning header cellsp474, with the principal cell, the header list, the initial coordinate (principalx,y),
and the increments Δx=−1 and Δy=0.

4. For each value of x from principalx to principalx+principalwidth-1, run the internal algorithm for scanning and
assigning header cellsp474, with the principal cell, the header list, the initial coordinate (x,principaly), and the
increments Δx=0 and Δy=−1.

5. If the principal cell is anchored in a row groupp470, then add all header cells that are row group headersp475

and are anchored in the same row group with an x-coordinate less than or equal to
principalx+principalwidth-1 and a y-coordinate less than or equal to principaly+principalheight-1 to header
list.

6. If the principal cell is anchored in a column groupp470, then add all header cells that are column group
headersp475 and are anchored in the same column group with an x-coordinate less than or equal to
principalx+principalwidth-1 and a y-coordinate less than or equal to principaly+principalheight-1 to header
list.

4. Remove all the empty cellsp475 from the header list.

5. Remove any duplicates from the header list.

6. Remove principal cell from the header list if it is there.

7. Assign the headers in the header list to the principal cell.

The internal algorithm for scanning and assigning header cells, given a principal cell, a header list, an initial coordinate (initialx,
initialy), and Δx and Δy increments, is as follows:

1. Let x equal initialx.

2. Let y equal initialy.

3. Let opaque headers be an empty list of cells.

4.↪ If principal cell is a header cell
Let in header block be true, and let headers from current header block be a list of cells containing just the principal
cell.

↪ Otherwise
Let in header block be false and let headers from current header block be an empty list of cells.

5. Loop: Increment x by Δx; increment y by Δy.

6. If either x or y are less than 0, then abort this internal algorithm.

7. If there is no cell covering slot (x, y), or if there is more than one cell covering slot (x, y), return to the substep labeled loop.

8. Let current cell be the cell covering slot (x, y).

For each invocation of this algorithm, one of Δx and Δy will be −1, and the other will be 0.
Note

474

https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://dom.spec.whatwg.org/#concept-id

9.↪ If current cell is a header cell

1. Set in header block to true.

2. Add current cell to headers from current header block.

3. Let blocked be false.

4.↪ If Δx is 0
If there are any cells in the opaque headers list anchored with the same x-coordinate as the current
cell, and with the same width as current cell, then let blocked be true.

If the current cell is not a column headerp475, then let blocked be true.

↪ If Δy is 0
If there are any cells in the opaque headers list anchored with the same y-coordinate as the current
cell, and with the same height as current cell, then let blocked be true.

If the current cell is not a row headerp475, then let blocked be true.

5. If blocked is false, then add the current cell to the headers list.

↪ If current cell is a data cell and in header block is true
Set in header block to false. Add all the cells in headers from current header block to the opaque headers list, and
empty the headers from current header block list.

10. Return to the step labeled loop.

A header cell anchored at the slot with coordinate (x, y) with width width and height height is said to be a column header if any of the
following conditions are true:

• The cell's scopep467 attribute is in the columnp467 state, or

• The cell's scopep467 attribute is in the autop468 state, and there are no data cells in any of the cells covering slots with
y-coordinates y .. y+height-1.

A header cell anchored at the slot with coordinate (x, y) with width width and height height is said to be a row header if any of the
following conditions are true:

• The cell's scopep467 attribute is in the rowp467 state, or

• The cell's scopep467 attribute is in the autop468 state, the cell is not a column headerp475, and there are no data cells in any of
the cells covering slots with x-coordinates x .. x+width-1.

A header cell is said to be a column group header if its scopep467 attribute is in the column groupp468 state.

A header cell is said to be a row group header if its scopep467 attribute is in the row groupp467 state.

A cell is said to be an empty cell if it contains no elements and its child text content, if any, consists only of ASCII whitespace.

This section is non-normative.

The following shows how might one mark up the bottom part of table 45 of the Smithsonian physical tables, Volume 71:

<table>
<caption>Specification values: Steel, Castings,
Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.</caption>
<thead>
<tr>
<th rowspan=2>Grade.</th>
<th rowspan=2>Yield Point.</th>
<th colspan=2>Ultimate tensile strength</th>

4.9.13 Examples §p47

5

475

https://dom.spec.whatwg.org/#concept-child-text-content
https://infra.spec.whatwg.org/#ascii-whitespace

<th rowspan=2>Per cent elong. 50.8mm or 2 in.</th>
<th rowspan=2>Per cent reduct. area.</th>

</tr>
<tr>
<th>kg/mm²</th>
<th>lb/in²</th>

</tr>
</thead>
<tbody>
<tr>
<td>Hard</td>
<td>0.45 ultimate</td>
<td>56.2</td>
<td>80,000</td>
<td>15</td>
<td>20</td>

</tr>
<tr>
<td>Medium</td>
<td>0.45 ultimate</td>
<td>49.2</td>
<td>70,000</td>
<td>18</td>
<td>25</td>

</tr>
<tr>
<td>Soft</td>
<td>0.45 ultimate</td>
<td>42.2</td>
<td>60,000</td>
<td>22</td>
<td>30</td>

</tr>
</tbody>

</table>

This table could look like this:

Specification values: Steel, Castings, Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.
Ultimate tensile strength

Grade. Yield Point.
kg/mm2 lb/in2

Per cent
elong.

50.8 mm
or 2 in.

Per cent
reduct.
area.

Hard. 0.45 ultimate 56.2 80,000 15 20
Medium . . . 0.45 ultimate 49.2 70,000 18 25
Soft 0.45 ultimate 42.2 60,000 22 30

The following shows how one might mark up the gross margin table on page 46 of Apple, Inc's 10-K filing for fiscal year 2008:

<table>
<thead>
<tr>
<th>
<th>2008
<th>2007
<th>2006

<tbody>
<tr>
<th>Net sales
<td>$ 32,479
<td>$ 24,006
<td>$ 19,315

476

<tr>
<th>Cost of sales
<td> 21,334
<td> 15,852
<td> 13,717

<tbody>
<tr>
<th>Gross margin
<td>$ 11,145
<td>$ 8,154
<td>$ 5,598

<tfoot>
<tr>
<th>Gross margin percentage
<td>34.3%
<td>34.0%
<td>29.0%

</table>

This table could look like this:

20082008 20072007 20062006

Net sales . $ 32,479 $ 24,006 $ 19,315
Cost of sales . 21,334 15,852 13,717
Gross margin . $ 11,145 $ 8,154 $ 5,598

Gross margin percentage 34.3% 34.0% 29.0%

The following shows how one might mark up the operating expenses table from lower on the same page of that document:

<table>
<colgroup> <col>
<colgroup> <col> <col> <col>
<thead>
<tr> <th> <th>2008 <th>2007 <th>2006

<tbody>
<tr> <th scope=rowgroup> Research and development

<td> $ 1,109 <td> $ 782 <td> $ 712
<tr> <th scope=row> Percentage of net sales

<td> 3.4% <td> 3.3% <td> 3.7%
<tbody>
<tr> <th scope=rowgroup> Selling, general, and administrative

<td> $ 3,761 <td> $ 2,963 <td> $ 2,433
<tr> <th scope=row> Percentage of net sales

<td> 11.6% <td> 12.3% <td> 12.6%
</table>

This table could look like this:

20082008 20072007 20062006

Research and development $ 1,109 $ 782 $ 712
Percentage of net sales . 3.4% 3.3% 3.7%

Selling, general, and administrative $ 3,761 $ 2,963 $ 2,433
Percentage of net sales . 11.6% 12.3% 12.6%

477

This section is non-normative.

A form is a component of a web page that has form controls, such as text, buttons, checkboxes, range, or color picker controls. A user
can interact with such a form, providing data that can then be sent to the server for further processing (e.g. returning the results of a
search or calculation). No client-side scripting is needed in many cases, though an API is available so that scripts can augment the user
experience or use forms for purposes other than submitting data to a server.

Writing a form consists of several steps, which can be performed in any order: writing the user interface, implementing the server-side
processing, and configuring the user interface to communicate with the server.

This section is non-normative.

For the purposes of this brief introduction, we will create a pizza ordering form.

Any form starts with a formp486 element, inside which are placed the controls. Most controls are represented by the inputp493 element,
which by default provides a text control. To label a control, the labelp490 element is used; the label text and the control itself go inside
the labelp490 element. Each part of a form is considered a paragraphp134, and is typically separated from other parts using pp211

elements. Putting this together, here is how one might ask for the customer's name:

<form>
<p><label>Customer name: <input></label></p>

</form>

To let the user select the size of the pizza, we can use a set of radio buttons. Radio buttons also use the inputp493 element, this time
with a typep495 attribute with the value radiop514. To make the radio buttons work as a group, they are given a common name using the
namep568 attribute. To group a batch of controls together, such as, in this case, the radio buttons, one can use the fieldsetp562 element.
The title of such a group of controls is given by the first element in the fieldsetp562, which has to be a legendp565 element.

<form>
<p><label>Customer name: <input></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
</form>

To pick toppings, we can use checkboxes. These use the inputp493 element with a typep495 attribute with the value checkboxp513:

<form>
<p><label>Customer name: <input></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>

4.10 Forms §p47

8

4.10.1.1 Writing a form's user interface §p47

8

Changes from the previous step are highlighted.
Note

4.10.1 Introduction §p47

8

✔ MDN

478

<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
</form>

The pizzeria for which this form is being written is always making mistakes, so it needs a way to contact the customer. For this
purpose, we can use form controls specifically for telephone numbers (inputp493 elements with their typep495 attribute set to telp500)
and email addresses (inputp493 elements with their typep495 attribute set to emailp502):

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>Email address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
</form>

We can use an inputp493 element with its typep495 attribute set to timep507 to ask for a delivery time. Many of these form controls have
attributes to control exactly what values can be specified; in this case, three attributes of particular interest are minp526, maxp526, and
stepp527. These set the minimum time, the maximum time, and the interval between allowed values (in seconds). This pizzeria only
delivers between 11am and 9pm, and doesn't promise anything better than 15 minute increments, which we can mark up as follows:

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>Email address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>

</form>

The textareap548 element can be used to provide a multiline text control. In this instance, we are going to use it to provide a space for
the customer to give delivery instructions:

<form>

479

<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>Email address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
<p><label>Delivery instructions: <textarea></textarea></label></p>

</form>

Finally, to make the form submittable we use the buttonp535 element:

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>Email address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
<p><label>Delivery instructions: <textarea></textarea></label></p>
<p><button>Submit order</button></p>

</form>

This section is non-normative.

The exact details for writing a server-side processor are out of scope for this specification. For the purposes of this introduction, we will
assume that the script at https://pizza.example.com/order.cgi is configured to accept submissions using the application/x-
www-form-urlencodedp572 format, expecting the following parameters sent in an HTTP POST body:

custname
Customer's name

custtel
Customer's telephone number

custemail
Customer's email address

4.10.1.2 Implementing the server-side processing for a form §p48

0

480

size
The pizza size, either small, medium, or large

topping
A topping, specified once for each selected topping, with the allowed values being bacon, cheese, onion, and mushroom

delivery
The requested delivery time

comments
The delivery instructions

This section is non-normative.

Form submissions are exposed to servers in a variety of ways, most commonly as HTTP GET or POST requests. To specify the exact
method used, the methodp571 attribute is specified on the formp486 element. This doesn't specify how the form data is encoded, though;
to specify that, you use the enctypep572 attribute. You also have to specify the URL of the service that will handle the submitted data,
using the actionp571 attribute.

For each form control you want submitted, you then have to give a name that will be used to refer to the data in the submission. We
already specified the name for the group of radio buttons; the same attribute (namep568) also specifies the submission name. Radio
buttons can be distinguished from each other in the submission by giving them different values, using the valuep497 attribute.

Multiple controls can have the same name; for example, here we give all the checkboxes the same name, and the server distinguishes
which checkbox was checked by seeing which values are submitted with that name — like the radio buttons, they are also given
unique values with the valuep497 attribute.

Given the settings in the previous section, this all becomes:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname"></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>Email address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size value="small"> Small </label></p>
<p><label> <input type=radio name=size value="medium"> Medium </label></p>
<p><label> <input type=radio name=size value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery"></label></p>
<p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
<p><button>Submit order</button></p>

</form>

For example, if the customer entered "Denise Lawrence" as their name, "555-321-8642" as their telephone number, did not specify an

4.10.1.3 Configuring a form to communicate with a server §p48

1

There is no particular significance to the way some of the attributes have their values quoted and others don't. The HTML syntax
allows a variety of equally valid ways to specify attributes, as discussed in the syntax sectionp1070.

Note

481

https://url.spec.whatwg.org/#concept-url

email address, asked for a medium-sized pizza, selected the Extra Cheese and Mushroom toppings, entered a delivery time of 7pm,
and left the delivery instructions text control blank, the user agent would submit the following to the online web service:

custname=Denise+Lawrence&custtel=555-321-8642&custemail=&size=medium&topping=cheese&topping=mushroom&de
livery=19%3A00&comments=

This section is non-normative.

Forms can be annotated in such a way that the user agent will check the user's input before the form is submitted. The server still has
to verify the input is valid (since hostile users can easily bypass the form validation), but it allows the user to avoid the wait incurred by
having the server be the sole checker of the user's input.

The simplest annotation is the requiredp523 attribute, which can be specified on inputp493 elements to indicate that the form is not to
be submitted until a value is given. By adding this attribute to the customer name, pizza size, and delivery time fields, we allow the
user agent to notify the user when the user submits the form without filling in those fields:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>Email address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size required value="small"> Small </label></p>
<p><label> <input type=radio name=size required value="medium"> Medium </label></p>
<p><label> <input type=radio name=size required value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
<p><button>Submit order</button></p>

</form>

It is also possible to limit the length of the input, using the maxlengthp569 attribute. By adding this to the textareap548 element, we can
limit users to 1000 characters, preventing them from writing huge essays to the busy delivery drivers instead of staying focused and to
the point:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>Email address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size required value="small"> Small </label></p>
<p><label> <input type=radio name=size required value="medium"> Medium </label></p>
<p><label> <input type=radio name=size required value="large"> Large </label></p>

</fieldset>
<fieldset>

4.10.1.4 Client-side form validation §p48

2

✔ MDN

482

<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
<p><button>Submit order</button></p>

</form>

This section is non-normative.

Some browsers attempt to aid the user by automatically filling form controls rather than having the user reenter their information each
time. For example, a field asking for the user's telephone number can be automatically filled with the user's phone number.

To help the user agent with this, the autocompletep573 attribute can be used to describe the field's purpose. In the case of this form, we
have three fields that can be usefully annotated in this way: the information about who the pizza is to be delivered to. Adding this
information looks like this:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required autocomplete="shipping name"></label></p>
<p><label>Telephone: <input type=tel name="custtel" autocomplete="shipping tel"></label></p>
<p><label>Email address: <input type=email name="custemail" autocomplete="shipping email"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size required value="small"> Small </label></p>
<p><label> <input type=radio name=size required value="medium"> Medium </label></p>
<p><label> <input type=radio name=size required value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
<p><button>Submit order</button></p>

</form>

This section is non-normative.

Some devices, in particular those with virtual keyboards can provide the user with multiple input modalities. For example, when typing
in a credit card number the user may wish to only see keys for digits 0-9, while when typing in their name they may wish to see a form

When a form is submitted, invalidp1281 events are fired at each form control that is invalid. This can be useful for displaying a
summary of the problems with the form, since typically the browser itself will only report one problem at a time.

Note

4.10.1.5 Enabling client-side automatic filling of form controls §p48

3

4.10.1.6 Improving the user experience on mobile devices §p48

3

483

field that by default capitalizes each word.

Using the inputmodep792 attribute we can select appropriate input modalities:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required autocomplete="shipping name"></label></p>
<p><label>Telephone: <input type=tel name="custtel" autocomplete="shipping tel"></label></p>
<p><label>Buzzer code: <input name="custbuzz" inputmode="numeric"></label></p>
<p><label>Email address: <input type=email name="custemail" autocomplete="shipping email"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size required value="small"> Small </label></p>
<p><label> <input type=radio name=size required value="medium"> Medium </label></p>
<p><label> <input type=radio name=size required value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
<p><button>Submit order</button></p>

</form>

This section is non-normative.

The typep495, autocompletep573, and inputmodep792 attributes can seem confusingly similar. For instance, in all three cases, the string
"email" is a valid value. This section attempts to illustrate the difference between the three attributes and provides advice suggesting
how to use them.

The typep495 attribute on inputp493 elements decides what kind of control the user agent will use to expose the field. Choosing between
different values of this attribute is the same choice as choosing whether to use an inputp493 element, a textareap548 element, a
selectp537 element, etc.

The autocompletep573 attribute, in contrast, describes what the value that the user will enter actually represents. Choosing between
different values of this attribute is the same choice as choosing what the label for the element will be.

First, consider telephone numbers. If a page is asking for a telephone number from the user, the right form control to use is <input
type=tel>p500. However, which autocompletep573 value to use depends on which phone number the page is asking for, whether they
expect a telephone number in the international format or just the local format, and so forth.

For example, a page that forms part of a checkout process on an e-commerce site for a customer buying a gift to be shipped to a friend
might need both the buyer's telephone number (in case of payment issues) and the friend's telephone number (in case of delivery
issues). If the site expects international phone numbers (with the country code prefix), this could thus look like this:

<p><label>Your phone number: <input type=tel name=custtel autocomplete="billing tel"></label>
<p><label>Recipient's phone number: <input type=tel name=shiptel autocomplete="shipping tel"></label>
<p>Please enter complete phone numbers including the country code prefix, as in "+1 555 123 4567".

But if the site only supports British customers and recipients, it might instead look like this (notice the use of tel-nationalp577 rather
than telp577):

4.10.1.7 The difference between the field type, the autofill field name, and the input modality §p48

4

484

<p><label>Your phone number: <input type=tel name=custtel autocomplete="billing tel-national"></label>
<p><label>Recipient's phone number: <input type=tel name=shiptel autocomplete="shipping
tel-national"></label>
<p>Please enter complete UK phone numbers, as in "(01632) 960 123".

Now, consider a person's preferred languages. The right autocompletep573 value is languagep577. However, there could be a number of
different form controls used for the purpose: a text control (<input type=text>p499), a drop-down list (<select>p537), radio buttons
(<input type=radio>p514), etc. It only depends on what kind of interface is desired.

Finally, consider names. If a page just wants one name from the user, then the relevant control is <input type=text>p499. If the page
is asking for the user's full name, then the relevant autocompletep573 value is namep575.

<p><label>Japanese name: <input name="j" type="text" autocomplete="section-jp name"></label>
<label>Romanized name: <input name="e" type="text" autocomplete="section-en name"></label>

In this example, the "section-*p573" keywords in the autocompletep573 attributes' values tell the user agent that the two fields expect
different names. Without them, the user agent could automatically fill the second field with the value given in the first field when the
user gave a value to the first field.

Separate from the choices regarding typep495 and autocompletep573, the inputmodep792 attribute decides what kind of input modality
(e.g., virtual keyboard) to use, when the control is a text control.

Consider credit card numbers. The appropriate input type is not <input type=number>p509, as explained belowp510; it is instead <input
type=text>p499. To encourage the user agent to use a numeric input modality anyway (e.g., a virtual keyboard displaying only digits),
the page would use

<p><label>Credit card number:
<input name="cc" type="text" inputmode="numeric" pattern="[0-9]{8,19}"

autocomplete="cc-number">
</label></p>

This section is non-normative.

In this pizza delivery example, the times are specified in the format "HH:MM": two digits for the hour, in 24-hour format, and two digits
for the time. (Seconds could also be specified, though they are not necessary in this example.)

In some locales, however, times are often expressed differently when presented to users. For example, in the United States, it is still
common to use the 12-hour clock with an am/pm indicator, as in "2pm". In France, it is common to separate the hours from the
minutes using an "h" character, as in "14h00".

Similar issues exist with dates, with the added complication that even the order of the components is not always consistent — for
example, in Cyprus the first of February 2003 would typically be written "1/2/03", while that same date in Japan would typically be
written as "2003年02月01日" — and even with numbers, where locales differ, for example, in what punctuation is used as the decimal
separator and the thousands separator.

It is therefore important to distinguish the time, date, and number formats used in HTML and in form submissions, which are always
the formats defined in this specification (and based on the well-established ISO 8601 standard for computer-readable date and time
formats), from the time, date, and number formats presented to the user by the browser and accepted as input from the user by the
browser.

The format used "on the wire", i.e., in HTML markup and in form submissions, is intended to be computer-readable and consistent
irrespective of the user's locale. Dates, for instance, are always written in the format "YYYY-MM-DD", as in "2003-02-01". While some
users might see this format, others might see it as "01.02.2003" or "February 1, 2003".

The "-jp" and "-en" parts of the keywords are opaque to the user agent; the user agent cannot guess, from those, that the two
names are expected to be in Japanese and English respectively.

Note

4.10.1.8 Date, time, and number formats §p48

5

485

The time, date, or number given by the page in the wire format is then translated to the user's preferred presentation (based on user
preferences or on the locale of the page itself), before being displayed to the user. Similarly, after the user inputs a time, date, or
number using their preferred format, the user agent converts it back to the wire format before putting it in the DOM or submitting it.

This allows scripts in pages and on servers to process times, dates, and numbers in a consistent manner without needing to support
dozens of different formats, while still supporting the users' needs.

Mostly for historical reasons, elements in this section fall into several overlapping (but subtly different) categories in addition to the
usual ones like flow contentp131, phrasing contentp132, and interactive contentp132.

A number of the elements are form-associated elements, which means they can have a form ownerp566.

⇒ buttonp535, fieldsetp562, inputp493, objectp373, outputp553, selectp537, textareap548, imgp320, form-associated custom
elementsp704

The form-associated elementsp486 fall into several subcategories:

Listed elements
Denotes elements that are listed in the form.elementsp488 and fieldset.elementsp563 APIs. These elements also have a formp566

content attribute, and a matching formp568 IDL attribute, that allow authors to specify an explicit form ownerp566.

⇒ buttonp535, fieldsetp562, inputp493, objectp373, outputp553, selectp537, textareap548, form-associated custom
elementsp704

Submittable elements
Denotes elements that can be used for constructing the entry listp599 when a formp486 element is submittedp596.

⇒ buttonp535, inputp493, objectp373, selectp537, textareap548, form-associated custom elementsp704

Some submittable elementsp486 can be, depending on their attributes, buttons. The prose below defines when an element is a
button. Some buttons are specifically submit buttons.

Resettable elements
Denotes elements that can be affected when a formp486 element is resetp603.

⇒ inputp493, outputp553, selectp537, textareap548, form-associated custom elementsp704

Autocapitalize-inheriting elements
Denotes elements that inherit the autocapitalizep791 attribute from their form ownerp566.

⇒ buttonp535, fieldsetp562, inputp493, outputp553, selectp537, textareap548

Some elements, not all of them form-associatedp486, are categorized as labelable elements. These are elements that can be
associated with a labelp490 element.

⇒ buttonp535, inputp493 (if the typep495 attribute is not in the Hiddenp499 state), meterp557, outputp553, progressp555,
selectp537, textareap548, form-associated custom elementsp704

Categoriesp128:
Flow contentp131.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

See also the implementation notesp521 regarding localization of form controls.
Note

4.10.2 Categories §p48

6

4.10.3 The form element §p48

6

✔ MDN

✔ MDN

486

Content modelp128:
Flow contentp131, but with no formp486 element descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

accept-charsetp487 — Character encodings to use for form submissionp595

actionp571 — URL to use for form submissionp595

autocompletep488 — Default setting for autofill feature for controls in the form
enctypep572 — Entry list encoding type to use for form submissionp595

methodp571 — Variant to use for form submissionp595

namep487 — Name of form to use in the document.formsp119 API
novalidatep572 — Bypass form control validation for form submissionp595

targetp572 — Browsing contextp811 for form submissionp595

relp488

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window,
LegacyOverrideBuiltIns,
LegacyUnenumerableNamedProperties]

interface HTMLFormElement : HTMLElement {
[HTMLConstructor] constructor();

[CEReactions] attribute DOMString acceptCharset;
[CEReactions] attribute USVString action;
[CEReactions] attribute DOMString autocomplete;
[CEReactions] attribute DOMString enctype;
[CEReactions] attribute DOMString encoding;
[CEReactions] attribute DOMString method;
[CEReactions] attribute DOMString name;
[CEReactions] attribute boolean noValidate;
[CEReactions] attribute DOMString target;
[CEReactions] attribute DOMString rel;
[SameObject, PutForwards=value] readonly attribute DOMTokenList relList;

[SameObject] readonly attribute HTMLFormControlsCollection elements;
readonly attribute unsigned long length;
getter Element (unsigned long index);
getter (RadioNodeList or Element) (DOMString name);

undefined submit();
undefined requestSubmit(optional HTMLElement? submitter = null);
[CEReactions] undefined reset();
boolean checkValidity();
boolean reportValidity();

};

The formp486 element representsp123 a hyperlinkp283 that can be manipulated through a collection of form-associated elementsp486,
some of which can represent editable values that can be submitted to a server for processing.

The accept-charset attribute gives the character encodings that are to be used for the submission. If specified, the value must be an
ASCII case-insensitive match for "UTF-8". [ENCODING]p1287

The name attribute represents the formp486 's name within the formsp119 collection. The value must not be the empty string, and the
value must be unique amongst the formp486 elements in the formsp119 collection that it is in, if any.

IDL

487

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/html-aria/#el-form
https://w3c.github.io/html-aam/#el-form
https://heycam.github.io/webidl/#LegacyOverrideBuiltIns
https://heycam.github.io/webidl/#LegacyUnenumerableNamedProperties
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://infra.spec.whatwg.org/#ascii-case-insensitive

The autocomplete attribute is an enumerated attributep68. The attribute has two states. The on keyword maps to the on state, and the
off keyword maps to the off state. The attribute may also be omitted. The missing value defaultp68 and the invalid value defaultp68 are
the onp488 state. The offp488 state indicates that by default, form controls in the form will have their autofill field namep579 set to
"offp574"; the onp488 state indicates that by default, form controls in the form will have their autofill field namep579 set to "onp575".

The actionp571, enctypep572, methodp571, novalidatep572, and targetp572 attributes are attributes for form submissionp570.

The rel attribute on formp486 elements controls what kinds of links the elements create. The attribute's value must be a unordered set
of unique space-separated tokensp87. The allowed keywords and their meaningsp294 are defined in an earlier section.

relp488 's supported tokens are the keywords defined in HTML link typesp294 which are allowed on formp486 elements, impact the
processing model, and are supported by the user agent. The possible supported tokens are noreferrerp304, noopenerp303, and
openerp304. relp488 's supported tokens must only include the tokens from this list that the user agent implements the processing model
for.

The autocomplete IDL attribute must reflectp94 the content attribute of the same name, limited to only known valuesp95.

The name and rel IDL attributes must reflectp94 the content attribute of the same name.

The acceptCharset IDL attribute must reflectp94 the accept-charsetp487 content attribute.

The relList IDL attribute must reflectp94 the relp488 content attribute.

The elements IDL attribute must return an HTMLFormControlsCollectionp98 rooted at the formp486 element's root, whose filter
matches listed elementsp486 whose form ownerp566 is the formp486 element, with the exception of inputp493 elements whose typep495

attribute is in the Image Buttonp518 state, which must, for historical reasons, be excluded from this particular collection.

form . elementsp488

Returns an HTMLFormControlsCollectionp98 of the form controls in the form (excluding image buttons for historical reasons).

form . lengthp489

Returns the number of form controls in the form (excluding image buttons for historical reasons).

form[index]
Returns the indexth element in the form (excluding image buttons for historical reasons).

form[name]
Returns the form control (or, if there are several, a RadioNodeListp98 of the form controls) in the form with the given ID or
namep568 (excluding image buttons for historical reasons); or, if there are none, returns the imgp320 element with the given ID.
Once an element has been referenced using a particular name, that name will continue being available as a way to reference
that element in this method, even if the element's actual ID or namep568 changes, for as long as the element remains in the tree.
If there are multiple matching items, then a RadioNodeListp98 object containing all those elements is returned.

form . submitp490()
Submits the form, bypassing interactive constraint validationp591 and without firing a submitp1282 event.

form . requestSubmitp490([submitter])
Requests to submit the form. Unlike submit()p490, this method includes interactive constraint validationp591 and firing a
submitp1282 event, either of which can cancel submission.
The submitter argument can be used to point to a specific submit buttonp486, whose formactionp571, formenctypep572,
formmethodp571, formnovalidatep572, and formtargetp572 attributes can impact submission. Additionally, the submitter will be
included when constructing the entry listp599 for submission; normally, buttons are excluded.

form . resetp490()
Resets the form.

form . checkValidityp490()
Returns true if the form's controls are all valid; otherwise, returns false.

form . reportValidityp490()
Returns true if the form's controls are all valid; otherwise, returns false and informs the user.

For web developers (non-normative)

✔ MDN

✔ MDN

✔ MDN
✔ MDN

488

https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree-root

The length IDL attribute must return the number of nodes represented by the elementsp488 collection.

The supported property indices at any instant are the indices supported by the object returned by the elementsp488 attribute at that
instant.

To determine the value of an indexed property for a formp486 element, the user agent must return the value returned by the item
method on the elementsp488 collection, when invoked with the given index as its argument.

Each formp486 element has a mapping of names to elements called the past names map. It is used to persist names of controls even
when they change names.

The supported property names consist of the names obtained from the following algorithm, in the order obtained from this algorithm:

1. Let sourced names be an initially empty ordered list of tuples consisting of a string, an element, a source, where the source
is either id, name, or past, and, if the source is past, an age.

2. For each listed elementp486 candidate whose form ownerp566 is the formp486 element, with the exception of any inputp493

elements whose typep495 attribute is in the Image Buttonp518 state:

1. If candidate has an idp137 attribute, add an entry to sourced names with that idp137 attribute's value as the string,
candidate as the element, and id as the source.

2. If candidate has a namep568 attribute, add an entry to sourced names with that namep568 attribute's value as the
string, candidate as the element, and name as the source.

3. For each imgp320 element candidate whose form ownerp566 is the formp486 element:

1. If candidate has an idp137 attribute, add an entry to sourced names with that idp137 attribute's value as the string,
candidate as the element, and id as the source.

2. If candidate has a namep1233 attribute, add an entry to sourced names with that namep1233 attribute's value as the
string, candidate as the element, and name as the source.

4. For each entry past entry in the past names mapp489 add an entry to sourced names with the past entry's name as the string,
past entry's element as the element, past as the source, and the length of time past entry has been in the past names
mapp489 as the age.

5. Sort sourced names by tree order of the element entry of each tuple, sorting entries with the same element by putting
entries whose source is id first, then entries whose source is name, and finally entries whose source is past, and sorting
entries with the same element and source by their age, oldest first.

6. Remove any entries in sourced names that have the empty string as their name.

7. Remove any entries in sourced names that have the same name as an earlier entry in the map.

8. Return the list of names from sourced names, maintaining their relative order.

To determine the value of a named property name for a formp486 element, the user agent must run the following steps:

1. Let candidates be a livep45 RadioNodeListp98 object containing all the listed elementsp486, whose form ownerp566 is the
formp486 element, that have either an idp137 attribute or a namep568 attribute equal to name, with the exception of inputp493

elements whose typep495 attribute is in the Image Buttonp518 state, in tree order.

2. If candidates is empty, let candidates be a livep45 RadioNodeListp98 object containing all the imgp320 elements, whose form
ownerp566 is the formp486 element, that have either an idp137 attribute or a namep1233 attribute equal to name, in tree order.

3. If candidates is empty, name is the name of one of the entries in the formp486 element's past names mapp489: return the
object associated with name in that map.

4. If candidates contains more than one node, return candidates.

5. Otherwise, candidates contains exactly one node. Add a mapping from name to the node in candidates in the formp486

element's past names mapp489, replacing the previous entry with the same name, if any.

6. Return the node in candidates.

If an element listed in a formp486 element's past names mapp489 changes form ownerp566, then its entries must be removed from that
489

https://dom.spec.whatwg.org/#represented-by-the-collection
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-determine-the-value-of-an-indexed-property
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://heycam.github.io/webidl/#dfn-supported-property-names
https://dom.spec.whatwg.org/#concept-tree-order
https://heycam.github.io/webidl/#dfn-determine-the-value-of-a-named-property
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

map.

The submit() method, when invoked, must submitp596 the formp486 element from the formp486 element itself, with the submitted from
submit()p490 method flag set.

The requestSubmit(submitter) method, when invoked, must run the following steps:

1. If submitter is not null, then:

1. If submitter is not a submit buttonp486, then throw a TypeError.

2. If submitter's form ownerp566 is not this formp486 element, then throw a "NotFoundError" DOMException.

2. Otherwise, set submitter to this formp486 element.

3. Submitp596 this formp486 element, from submitter.

The reset() method, when invoked, must run the following steps:

1. If the formp486 element is marked as locked for resetp490, then return.

2. Mark the formp486 element as locked for reset.

3. Resetp603 the formp486 element.

4. Unmark the formp486 element as locked for resetp490.

If the checkValidity() method is invoked, the user agent must statically validate the constraintsp591 of the formp486 element, and
return true if the constraint validation return a positive result, and false if it returned a negative result.

If the reportValidity() method is invoked, the user agent must interactively validate the constraintsp591 of the formp486 element, and
return true if the constraint validation return a positive result, and false if it returned a negative result.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Interactive contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132, but with no descendant labelable elementsp486 unless it is the element's labeled controlp491, and no
descendant labelp490 elements.

Tag omission in text/htmlp128:
Neither tag is omissible.

This example shows two search forms:

<form action="https://www.google.com/search" method="get">
<label>Google: <input type="search" name="q"></label> <input type="submit" value="Search...">

</form>
<form action="https://www.bing.com/search" method="get">
<label>Bing: <input type="search" name="q"></label> <input type="submit" value="Search...">

</form>

Example

4.10.4 The label element §p49

0

✔ MDNMDN

✔ MDN

✔ MDN

✔ MDN

490

https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://heycam.github.io/webidl/#notfounderror
https://heycam.github.io/webidl/#dfn-DOMException

Content attributesp128:
Global attributesp136

forp491 — Associate the label with form control

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLLabelElement : HTMLElement {

[HTMLConstructor] constructor();

readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString htmlFor;
readonly attribute HTMLElement? control;

};

The labelp490 element representsp123 a caption in a user interface. The caption can be associated with a specific form control, known as
the labelp490 element's labeled control, either using the forp491 attribute, or by putting the form control inside the labelp490 element
itself.

Except where otherwise specified by the following rules, a labelp490 element has no labeled controlp491.

The for attribute may be specified to indicate a form control with which the caption is to be associated. If the attribute is specified, the
attribute's value must be the ID of a labelable elementp486 in the same tree as the labelp490 element. If the attribute is specified and
there is an element in the tree whose ID is equal to the value of the forp491 attribute, and the first such element in tree order is a
labelable elementp486, then that element is the labelp490 element's labeled controlp491.

If the forp491 attribute is not specified, but the labelp490 element has a labelable elementp486 descendant, then the first such
descendant in tree order is the labelp490 element's labeled controlp491.

The labelp490 element's exact default presentation and behavior, in particular what its activation behavior might be, if anything,
should match the platform's label behavior. The activation behavior of a labelp490 element for events targeted at interactive
contentp132 descendants of a labelp490 element, and any descendants of those interactive contentp132 descendants, must be to do
nothing.

Form-associated custom elementsp704 are labelable elementsp486, so for user agents where the labelp490 element's activation
behavior impacts the labeled controlp491, both built-in and custom elements will be impacted.

Note

For example, on platforms where clicking a label activates the form control, clicking the labelp490 in the following snippet could
trigger the user agent to fire a click eventp965 at the inputp493 element, as if the element itself had been triggered by the user:

<label><input type=checkbox name=lost> Lost</label>

Similarly, assuming my-checkbox was declared as as a form-associated custom elementp704 (like in this examplep697), then the code

<label><my-checkbox name=lost></my-checkbox> Lost</label>

would have the same behavior, firing a click eventp965 at the my-checkbox element.

On other platforms, the behavior in both cases might be just to focus the control, or to do nothing.

Example

The following example shows three form controls each with a label, two of which have small text showing the right format for users
to use.

Example

IDL

491

https://w3c.github.io/html-aria/#el-label
https://w3c.github.io/html-aam/#el-label
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

The htmlFor IDL attribute must reflectp94 the forp491 content attribute.

The control IDL attribute must return the labelp490 element's labeled controlp491, if any, or null if there isn't one.

The form IDL attribute must run the following steps:

1. If the labelp490 element has no labeled controlp491, then return null.

2. If the labelp490 element's labeled controlp491 is not a form-associated elementp486, then return null.

3. Return the labelp490 element's labeled controlp491 's form ownerp566 (which can still be null).

Labelable elementsp486 and all inputp493 elements have a livep45 NodeList object associated with them that represents the list of
labelp490 elements, in tree order, whose labeled controlp491 is the element in question. The labels IDL attribute of labelable
elementsp486 that are not form-associated custom elementsp704, and the labelsp492 IDL attribute of inputp493 elements, on getting,
must return that NodeList object, and that same value must always be returned, unless this element is an inputp493 element whose
typep495 attribute is in the Hiddenp499 state, in which case it must instead return null.

Form-associated custom elementsp704 don't have a labelsp492 IDL attribute. Instead, their ElementInternalsp714 object has a labels
IDL attribute. On getting, it must throw a "NotSupportedError" DOMException if the target elementp715 is not a form-associated
custom elementp704. Otherwise, it must return that NodeList object, and that same value must always be returned.

<p><label>Full name: <input name=fn> <small>Format: First Last</small></label></p>
<p><label>Age: <input name=age type=number min=0></label></p>
<p><label>Post code: <input name=pc> <small>Format: AB12 3CD</small></label></p>

label . controlp492

Returns the form control that is associated with this element.

label . formp492

Returns the form ownerp566 of the form control that is associated with this element.
Returns null if there isn't one.

For web developers (non-normative)

The formp492 IDL attribute on the labelp490 element is different from the formp566 IDL attribute on listedp486 form-associated
elementsp486, and the labelp490 element does not have a formp566 content attribute.

Note

control . labelsp492

Returns a NodeList of all the labelp490 elements that the form control is associated with.

For web developers (non-normative)

This (non-conforming) example shows what happens to the NodeList and what labelsp492 returns when an inputp493 element has
its typep495 attribute changed.

<!doctype html>
<p><label><input></label></p>
<script>
const input = document.querySelector('input');
const labels = input.labels;
console.assert(labels.length === 1);

input.type = 'hidden';
console.assert(labels.length === 0); // the input is no longer the label's labeled control
console.assert(input.labels === null);

Example

✔ MDN
✔ MDN

✔ MDN

✔ MDN

492

https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-nodelist
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
If the typep495 attribute is not in the Hiddenp499 state: Interactive contentp132.
If the typep495 attribute is not in the Hiddenp499 state: Listedp486, labelablep486, submittablep486, resettablep486, and autocapitalize-
inheritingp486 form-associated elementp486.
If the typep495 attribute is in the Hiddenp499 state: Listedp486, submittablep486, resettablep486, and autocapitalize-inheritingp486

form-associated elementp486.
If the typep495 attribute is not in the Hiddenp499 state: Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Nothingp130.

Tag omission in text/htmlp128:
No end tagp1070.

Content attributesp128:
Global attributesp136

acceptp516 — Hint for expected file type in file upload controlsp515

altp519 — Replacement text for use when images are not available
autocompletep573 — Hint for form autofill feature
checkedp497 — Whether the control is checked
dirnamep568 — Name of form control to use for sending the element's directionalityp142 in form submissionp595

disabledp570 — Whether the form control is disabled
formp566 — Associates the element with a formp486 element
formactionp571 — URL to use for form submissionp595

formenctypep572 — Entry list encoding type to use for form submissionp595

formmethodp571 — Variant to use for form submissionp595

formnovalidatep572 — Bypass form control validation for form submissionp595

formtargetp572 — Browsing contextp811 for form submissionp595

heightp449 — Vertical dimension
listp528 — List of autocomplete options
maxp526 — Maximum value
maxlengthp522 — Maximum length of value
minp526 — Minimum value
minlengthp522 — Minimum length of value
multiplep524 — Whether to allow multiple values
namep568 — Name of the element to use for form submissionp595 and in the form.elementsp488 API
patternp525 — Pattern to be matched by the form control's value
placeholderp530 — User-visible label to be placed within the form control
readonlyp522 — Whether to allow the value to be edited by the user
requiredp523 — Whether the control is required for form submissionp595

sizep522 — Size of the control
srcp518 — Address of the resource
stepp527 — Granularity to be matched by the form control's value
typep495 — Type of form control
valuep497 — Value of the form control

input.type = 'checkbox';
console.assert(labels.length === 1); // the input is once again the label's labeled control
console.assert(input.labels === labels); // same value as returned originally

</script>

4.10.5 The input element §p49

3

✔ MDN

✔ MDN

493

https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length

widthp449 — Horizontal dimension
Also, the titlep526 attribute has special semanticsp526 on this element: Description of pattern (when used with patternp525

attribute).

Accessibility considerationsp129:
typep495 attribute in the Hiddenp499 state: for authors; for implementers.
typep495 attribute in the Textp499 state: for authors; for implementers.
typep495 attribute in the Searchp499 state: for authors; for implementers.
typep495 attribute in the Telephonep500 state: for authors; for implementers.
typep495 attribute in the URLp501 state: for authors; for implementers.
typep495 attribute in the Emailp502 state: for authors; for implementers.
typep495 attribute in the Passwordp503 state: for authors; for implementers.
typep495 attribute in the Datep504 state: for authors; for implementers.
typep495 attribute in the Monthp505 state: for authors; for implementers.
typep495 attribute in the Weekp506 state: for authors; for implementers.
typep495 attribute in the Timep507 state: for authors; for implementers.
typep495 attribute in the Local Date and Timep508 state: for authors; for implementers.
typep495 attribute in the Numberp509 state: for authors; for implementers.
typep495 attribute in the Rangep510 state: for authors; for implementers.
typep495 attribute in the Colorp513 state: for authors; for implementers.
typep495 attribute in the Checkboxp513 state: for authors; for implementers.
typep495 attribute in the Radio Buttonp514 state: for authors; for implementers.
typep495 attribute in the File Uploadp515 state: for authors; for implementers.
typep495 attribute in the Submit Buttonp518 state: for authors; for implementers.
typep495 attribute in the Image Buttonp518 state: for authors; for implementers.
typep495 attribute in the Reset Buttonp520 state: for authors; for implementers.
typep495 attribute in the Buttonp521 state: for authors; for implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLInputElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString accept;
[CEReactions] attribute DOMString alt;
[CEReactions] attribute DOMString autocomplete;
[CEReactions] attribute boolean defaultChecked;
attribute boolean checked;
[CEReactions] attribute DOMString dirName;
[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
attribute FileList? files;
[CEReactions] attribute USVString formAction;
[CEReactions] attribute DOMString formEnctype;
[CEReactions] attribute DOMString formMethod;
[CEReactions] attribute boolean formNoValidate;
[CEReactions] attribute DOMString formTarget;
[CEReactions] attribute unsigned long height;
attribute boolean indeterminate;
readonly attribute HTMLElement? list;
[CEReactions] attribute DOMString max;
[CEReactions] attribute long maxLength;
[CEReactions] attribute DOMString min;
[CEReactions] attribute long minLength;
[CEReactions] attribute boolean multiple;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString pattern;
[CEReactions] attribute DOMString placeholder;
[CEReactions] attribute boolean readOnly;
[CEReactions] attribute boolean required;
[CEReactions] attribute unsigned long size;

IDL

494

https://w3c.github.io/html-aria/#el-input-hidden
https://w3c.github.io/html-aam/#el-input-hidden
https://w3c.github.io/html-aria/#el-input-text
https://w3c.github.io/html-aam/#el-input-text
https://w3c.github.io/html-aria/#el-input-search
https://w3c.github.io/html-aam/#el-input-search
https://w3c.github.io/html-aria/#el-input-tel
https://w3c.github.io/html-aam/#el-input-tel
https://w3c.github.io/html-aria/#el-input-url
https://w3c.github.io/html-aam/#el-input-url
https://w3c.github.io/html-aria/#el-input-email
https://w3c.github.io/html-aam/#el-input-email
https://w3c.github.io/html-aria/#el-input-password
https://w3c.github.io/html-aam/#el-input-password
https://w3c.github.io/html-aria/#el-input-date
https://w3c.github.io/html-aam/#el-input-date
https://w3c.github.io/html-aria/#el-input-month
https://w3c.github.io/html-aam/#el-input-month
https://w3c.github.io/html-aria/#el-input-week
https://w3c.github.io/html-aam/#el-input-week
https://w3c.github.io/html-aria/#el-input-time
https://w3c.github.io/html-aam/#el-input-time
https://w3c.github.io/html-aria/#el-input-datetime-local
https://w3c.github.io/html-aam/#el-input-datetime-local
https://w3c.github.io/html-aria/#el-input-number
https://w3c.github.io/html-aam/#el-input-number
https://w3c.github.io/html-aria/#el-input-range
https://w3c.github.io/html-aam/#el-input-range
https://w3c.github.io/html-aria/#el-input-color
https://w3c.github.io/html-aam/#el-input-color
https://w3c.github.io/html-aria/#el-input-checkbox
https://w3c.github.io/html-aam/#el-input-checkbox
https://w3c.github.io/html-aria/#el-input-radio
https://w3c.github.io/html-aam/#el-input-radio
https://w3c.github.io/html-aria/#el-input-file
https://w3c.github.io/html-aam/#el-input-file
https://w3c.github.io/html-aria/#el-input-submit
https://w3c.github.io/html-aam/#el-input-submit
https://w3c.github.io/html-aria/#el-input-image
https://w3c.github.io/html-aam/#el-input-image
https://w3c.github.io/html-aria/#el-input-reset
https://w3c.github.io/html-aam/#el-input-reset
https://w3c.github.io/html-aria/#el-input-button
https://w3c.github.io/html-aam/#el-input-button
https://w3c.github.io/FileAPI/#filelist-section

[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString step;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString defaultValue;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString value;
attribute object? valueAsDate;
attribute unrestricted double valueAsNumber;
[CEReactions] attribute unsigned long width;

undefined stepUp(optional long n = 1);
undefined stepDown(optional long n = 1);

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

readonly attribute NodeList? labels;

undefined select();
attribute unsigned long? selectionStart;
attribute unsigned long? selectionEnd;
attribute DOMString? selectionDirection;
undefined setRangeText(DOMString replacement);
undefined setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional

SelectionMode selectionMode = "preserve");
undefined setSelectionRange(unsigned long start, unsigned long end, optional DOMString

direction);

// also has obsolete members
};

The inputp493 element representsp123 a typed data field, usually with a form control to allow the user to edit the data.

The type attribute controls the data type (and associated control) of the element. It is an enumerated attributep68. The following table
lists the keywords and states for the attribute — the keywords in the left column map to the states in the cell in the second column on
the same row as the keyword.

Keyword State Data type Control type

hidden Hiddenp499 An arbitrary string n/a
text Textp499 Text with no line breaks A text control
search Searchp499 Text with no line breaks Search control
tel Telephonep500 Text with no line breaks A text control
url URLp501 An absolute URL A text control
email Emailp502 An email address or list of email addresses A text control
password Passwordp503 Text with no line breaks (sensitive information) A text control that

obscures data entry
date Datep504 A date (year, month, day) with no time zone A date control
month Monthp505 A date consisting of a year and a month with no time zone A month control
week Weekp506 A date consisting of a week-year number and a week number with no time zone A week control
time Timep507 A time (hour, minute, seconds, fractional seconds) with no time zone A time control
datetime-
local

Local Date and
Timep508

A date and time (year, month, day, hour, minute, second, fraction of a second) with no time zone A date and time control

number Numberp509 A numerical value A text control or spinner
control

range Rangep510 A numerical value, with the extra semantic that the exact value is not important A slider control or similar
color Colorp513 An sRGB color with 8-bit red, green, and blue components A color picker

495

https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#idl-object
https://dom.spec.whatwg.org/#interface-nodelist

Keyword State Data type Control type

checkbox Checkboxp513 A set of zero or more values from a predefined list A checkbox
radio Radio Buttonp514 An enumerated value A radio button
file File Uploadp515 Zero or more files each with a MIME type and optionally a file name A label and a button
submit Submit

Buttonp518
An enumerated value, with the extra semantic that it must be the last value selected and initiates
form submission

A button

image Image
Buttonp518

A coordinate, relative to a particular image's size, with the extra semantic that it must be the last
value selected and initiates form submission

Either a clickable image, or
a button

reset Reset Buttonp520 n/a A button
button Buttonp521 n/a A button

The missing value defaultp68 and the invalid value defaultp68 are the Textp499 state.

Which of the acceptp516, altp519, autocompletep573, checkedp497, dirnamep568, formactionp571, formenctypep572, formmethodp571,
formnovalidatep572, formtargetp572, heightp449, listp528, maxp526, maxlengthp522, minp526, minlengthp522, multiplep524, patternp525,
placeholderp530, readonlyp522, requiredp523, sizep522, srcp518, stepp527, and widthp449 content attributes, the checkedp532, filesp533,
valueAsDatep533, valueAsNumberp533, and listp534 IDL attributes, the select()p587 method, the selectionStartp587, selectionEndp587,
and selectionDirectionp588, IDL attributes, the setRangeText()p588 and setSelectionRange()p588 methods, the stepUp()p533 and
stepDown()p533 methods, and the inputp1281 and changep1281 events apply to an inputp493 element depends on the state of its typep495

attribute. The subsections that define each type also clearly define in normative "bookkeeping" sections which of these feature apply,
and which do not apply, to each type. The behavior of these features depends on whether they apply or not, as defined in their
various sections (q.v. for content attributesp521, for APIsp531, for eventsp534).

The following table is non-normative and summarizes which of those content attributes, IDL attributes, methods, and events applyp496

to each state:

Hiddenp499 Textp499,
Searchp499

URLp501,
Telephonep500

Emailp502 Passwordp503 Datep504,
Monthp505,
Weekp506,
Timep507

Local
Date
and

Timep508

Numberp509 Rangep510 Colorp513 Checkboxp513,
Radio

Buttonp514
Upload

Content attributes
acceptp516 · · · · · · · · · · ·
altp519 · · · · · · · · · · ·
autocompletep573 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes ·
checkedp497 · · · · · · · · · · Yes
dirnamep568 · Yes · · · · · · · · ·
formactionp571 · · · · · · · · · · ·
formenctypep572 · · · · · · · · · · ·
formmethodp571 · · · · · · · · · · ·
formnovalidatep572 · · · · · · · · · · ·
formtargetp572 · · · · · · · · · · ·
heightp449 · · · · · · · · · · ·
listp528 · Yes Yes Yes · Yes Yes Yes Yes Yes ·
maxp526 · · · · · Yes Yes Yes Yes · ·
maxlengthp522 · Yes Yes Yes Yes · · · · · ·
minp526 · · · · · Yes Yes Yes Yes · ·
minlengthp522 · Yes Yes Yes Yes · · · · · ·
multiplep524 · · · Yes · · · · · · ·
patternp525 · Yes Yes Yes Yes · · · · · ·
placeholderp530 · Yes Yes Yes Yes · · Yes · · ·
readonlyp522 · Yes Yes Yes Yes Yes Yes Yes · · ·
requiredp523 · Yes Yes Yes Yes Yes Yes Yes · · Yes
sizep522 · Yes Yes Yes Yes · · · · · ·
srcp518 · · · · · · · · · · ·
stepp527 · · · · · Yes Yes Yes Yes · ·
widthp449 · · · · · · · · · · ·

IDL attributes and methods
checkedp532 · · · · · · · · · · Yes
filesp533 · · · · · · · · · · ·

496

https://mimesniff.spec.whatwg.org/#mime-type

Hiddenp499 Textp499,
Searchp499

URLp501,
Telephonep500

Emailp502 Passwordp503 Datep504,
Monthp505,
Weekp506,
Timep507

Local
Date
and

Timep508

Numberp509 Rangep510 Colorp513 Checkboxp513,
Radio

Buttonp514
Upload

valuep532 defaultp532 valuep532 valuep532 valuep532 valuep532 valuep532 valuep532 valuep532 valuep532 valuep532 default/onp532 filename
valueAsDatep533 · · · · · Yes · · · · ·
valueAsNumberp533 · · · · · Yes Yes Yes Yes · ·
listp534 · Yes Yes Yes · Yes Yes Yes Yes Yes ·
select()p587 · Yes Yes Yes† Yes Yes† Yes† Yes† · Yes† ·
selectionStartp587 · Yes Yes · Yes · · · · · ·
selectionEndp587 · Yes Yes · Yes · · · · · ·
selectionDirectionp588 · Yes Yes · Yes · · · · · ·
setRangeText()p588 · Yes Yes · Yes · · · · · ·
setSelectionRange()p588 · Yes Yes · Yes · · · · · ·
stepDown()p533 · · · · · Yes Yes Yes Yes · ·
stepUp()p533 · · · · · Yes Yes Yes Yes · ·

Events
inputp1281 event · Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
changep1281 event · Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

† If the control has no selectable text, the select()p587 method results in a no-op, with no "InvalidStateError" DOMException.

Some states of the typep495 attribute define a value sanitization algorithm.

Each inputp493 element has a valuep566, which is exposed by the valuep532 IDL attribute. Some states define an algorithm to convert
a string to a number, an algorithm to convert a number to a string, an algorithm to convert a string to a Date object, and
an algorithm to convert a Date object to a string, which are used by maxp526, minp526, stepp527, valueAsDatep533,
valueAsNumberp533, and stepUp()p533.

An inputp493 element's dirty value flagp566 must be set to true whenever the user interacts with the control in a way that changes the
valuep566. (It is also set to true when the value is programmatically changed, as described in the definition of the valuep532 IDL
attribute.)

The value content attribute gives the default valuep566 of the inputp493 element. When the valuep497 content attribute is added, set, or
removed, if the control's dirty value flagp566 is false, the user agent must set the valuep566 of the element to the value of the valuep497

content attribute, if there is one, or the empty string otherwise, and then run the current value sanitization algorithmp497, if one is
defined.

Each inputp493 element has a checkednessp566, which is exposed by the checkedp532 IDL attribute.

Each inputp493 element has a boolean dirty checkedness flag. When it is true, the element is said to have a dirty checkedness.
The dirty checkedness flagp497 must be initially set to false when the element is created, and must be set to true whenever the user
interacts with the control in a way that changes the checkednessp566.

The checked content attribute is a boolean attributep67 that gives the default checkednessp566 of the inputp493 element. When the
checkedp497 content attribute is added, if the control does not have dirty checkednessp497, the user agent must set the checkednessp566

of the element to true; when the checkedp497 content attribute is removed, if the control does not have dirty checkednessp497, the user
agent must set the checkednessp566 of the element to false.

The reset algorithmp604 for inputp493 elements is to set the dirty value flagp566 and dirty checkedness flagp497 back to false, set the
valuep566 of the element to the value of the valuep497 content attribute, if there is one, or the empty string otherwise, set the
checkednessp566 of the element to true if the element has a checkedp497 content attribute and false if it does not, empty the list of
selected filesp515, and then invoke the value sanitization algorithmp497, if the typep495 attribute's current state defines one.

Each inputp493 element can be mutablep566. Except where otherwise specified, an inputp493 element is always mutablep566. Similarly,
except where otherwise specified, the user agent should not allow the user to modify the element's valuep566 or checkednessp566.

When an inputp493 element is disabledp570, it is not mutablep566.

The readonlyp522 attribute can also in some cases (e.g. for the Datep504 state, but not the Checkboxp513 state) stop an inputp493

element from being mutablep566.

Note

497

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

The cloning steps for inputp493 elements must propagate the valuep566, dirty value flagp566, checkednessp566, and dirty checkedness
flagp497 from the node being cloned to the copy.

The activation behavior for inputp493 elements are these steps:

1. If this element is not mutablep566 and is not in the Checkboxp513 state and is not in the Radiop514 state, then return.

2. Run this element's input activation behavior, if any, and do nothing otherwise.

The legacy-pre-activation behavior for inputp493 elements are these steps:

1. If this element's typep495 attribute is in the Checkbox statep513, then set this element's checkednessp566 to its opposite value
(i.e. true if it is false, false if it is true) and set this element's indeterminatep499 IDL attribute to false.

2. If this element's typep495 attribute is in the Radio Button statep514, then get a reference to the element in this element's radio
button groupp514 that has its checkednessp566 set to true, if any, and then set this element's checkednessp566 to true.

The legacy-canceled-activation behavior for inputp493 elements are these steps:

1. If the element's typep495 attribute is in the Checkbox statep513, then set the element's checkednessp566 and the element's
indeterminatep499 IDL attribute back to the values they had before the legacy-pre-activation behavior was run.

2. If this element's typep495 attribute is in the Radio Button statep514, then if the element to which a reference was obtained in
the legacy-pre-activation behavior, if any, is still in what is now this element's radio button groupp514, if it still has one, and if
so, setting that element's checkednessp566 to true; or else, if there was no such element, or that element is no longer in this
element's radio button groupp514, or if this element no longer has a radio button groupp514, setting this element's
checkednessp566 to false.

When an inputp493 element is first created, the element's rendering and behavior must be set to the rendering and behavior defined
for the typep495 attribute's state, and the value sanitization algorithmp497, if one is defined for the typep495 attribute's state, must be
invoked.

When an inputp493 element's typep495 attribute changes state, the user agent must run the following steps:

1. If the previous state of the element's typep495 attribute put the valuep532 IDL attribute in the valuep532 mode, and the
element's valuep566 is not the empty string, and the new state of the element's typep495 attribute puts the valuep532 IDL
attribute in either the defaultp532 mode or the default/onp532 mode, then set the element's valuep497 content attribute to the
element's valuep566.

2. Otherwise, if the previous state of the element's typep495 attribute put the valuep532 IDL attribute in any mode other than the
valuep532 mode, and the new state of the element's typep495 attribute puts the valuep532 IDL attribute in the valuep532 mode,
then set the valuep566 of the element to the value of the valuep497 content attribute, if there is one, or the empty string
otherwise, and then set the control's dirty value flagp566 to false.

3. Otherwise, if the previous state of the element's typep495 attribute put the valuep532 IDL attribute in any mode other than the
filenamep532 mode, and the new state of the element's typep495 attribute puts the valuep532 IDL attribute in the filenamep532

mode, then set the valuep566 of the element to the empty string.

4. Update the element's rendering and behavior to the new state's.

5. Signal a type change for the element. (The Radio Buttonp514 state uses this, in particular.)

6. Invoke the value sanitization algorithmp497, if one is defined for the typep495 attribute's new state.

7. Let previouslySelectable be true if setRangeText()p588 previously appliedp496 to the element, and false otherwise.

8. Let nowSelectable be true if setRangeText()p588 now appliesp496 to the element, and false otherwise.

9. If previouslySelectable is false and nowSelectable is true, set the element's text entry cursor positionp586 to the beginning of
the text control, and set its selection directionp587 to "none".

The namep568 attribute represents the element's name. The dirnamep568 attribute controls how the element's directionalityp142 is
submitted. The disabledp570 attribute is used to make the control non-interactive and to prevent its value from being submitted. The
formp566 attribute is used to explicitly associate the inputp493 element with its form ownerp566. The autocompletep573 attribute controls

498

https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-pre-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-canceled-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-pre-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-pre-activation-behavior

how the user agent provides autofill behavior.

The indeterminate IDL attribute must initially be set to false. On getting, it must return the last value it was set to. On setting, it must
be set to the new value. It has no effect except for changing the appearance of checkboxp513 controls.

The accept, alt, max, min, multiple, pattern, placeholder, required, size, src, and step IDL attributes must reflectp94 the
respective content attributes of the same name. The dirName IDL attribute must reflectp94 the dirnamep568 content attribute. The
readOnly IDL attribute must reflectp94 the readonlyp522 content attribute. The defaultChecked IDL attribute must reflectp94 the
checkedp497 content attribute. The defaultValue IDL attribute must reflectp94 the valuep497 content attribute.

The type IDL attribute must reflectp94 the respective content attribute of the same name, limited to only known valuesp95. The
maxLength IDL attribute must reflectp94 the maxlengthp522 content attribute, limited to only non-negative numbersp95. The minLength
IDL attribute must reflectp94 the minlengthp522 content attribute, limited to only non-negative numbersp95.

The IDL attributes width and height must return the rendered width and height of the image, in CSS pixels, if an image is being
renderedp1192, and is being rendered to a visual medium; or else the intrinsic width and height of the image, in CSS pixels, if an image
is availablep519 but not being rendered to a visual medium; or else 0, if no image is availablep519. When the inputp493 element's typep495

attribute is not in the Image Buttonp518 state, then no image is availablep519. [CSS]p1285

On setting, they must act as if they reflectedp94 the respective content attributes of the same name.

The willValidatep593, validityp593, and validationMessagep595 IDL attributes, and the checkValidity()p594, reportValidity()p595,
and setCustomValidity()p593 methods, are part of the constraint validation APIp592. The labelsp492 IDL attribute provides a list of the
element's labelp490s. The select()p587, selectionStartp587, selectionEndp587, selectionDirectionp588, setRangeText()p588, and
setSelectionRange()p588 methods and IDL attributes expose the element's text selection. The disabledp570, formp568, and namep568 IDL
attributes are part of the element's forms API.

When an inputp493 element's typep495 attribute is in the Hiddenp499 state, the rules in this section apply.

The inputp493 element representsp123 a value that is not intended to be examined or manipulated by the user.

Constraint validation: If an inputp493 element's typep495 attribute is in the Hiddenp499 state, it is barred from constraint validationp590.

If the namep568 attribute is present and has a value that is identical to "_charset_p568", then the element's valuep497 attribute must be
omitted.

Bookkeeping details

▪The autocompletep573 content attribute appliesp496 to this element.
▪The valuep532 IDL attribute appliesp496 to this element and is in mode defaultp532.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, listp528, maxp526, maxlengthp522, minp526, minlengthp522, multiplep524,
patternp525, placeholderp530, readonlyp522, requiredp523, sizep522, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, listp534, selectionStartp587, selectionEndp587,
selectionDirectionp588, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587, setRangeText()p588, setSelectionRange()p588, stepDown()p533,
and stepUp()p533 methods.

▪The inputp1281 and changep1281 events do not applyp496.

When an inputp493 element's typep495 attribute is in the Textp499 state or the Searchp499 state, the rules in this section apply.

The inputp493 element representsp123 a one line plain text edit control for the element's valuep566.

4.10.5.1 States of the typep495 attribute §p49

9

4.10.5.1.1 Hidden state (type=hidden) §p49

9

4.10.5.1.2 Text (type=text) state and Search state (type=search) §p49

9

The difference between the Textp499 state and the Searchp499 state is primarily stylistic: on platforms where search controls are
distinguished from regular text controls, the Searchp499 state might result in an appearance consistent with the platform's search

Note

✔ MDN

✔ MDN

✔ MDN

499

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-values/#px
https://infra.spec.whatwg.org/#string-is

If the element is mutablep566, its valuep566 should be editable by the user. User agents must not allow users to insert U+000A LINE
FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the element's valuep566.

If the element is mutablep566, the user agent should allow the user to change the writing direction of the element, setting it either to a
left-to-right writing direction or a right-to-left writing direction. If the user does so, the user agent must then run the following steps:

1. Set the element's dirp142 attribute to "ltrp142" if the user selected a left-to-right writing direction, and "rtlp142" if the user
selected a right-to-left writing direction.

2. Queue an element taskp946 on the user interaction task sourcep952 given the element to fire an event named inputp1281 at the
element, with the bubbles and composed attributes initialized to true.

The valuep497 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters.

The value sanitization algorithmp497 is as follows: Strip newlines from the valuep566.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, dirnamep568, listp528,
maxlengthp522, minlengthp522, patternp525, placeholderp530, readonlyp522, requiredp523, and sizep522 content attributes; listp534, selectionStartp587,
selectionEndp587, selectionDirectionp588, and valuep532 IDL attributes; select()p587, setRangeText()p588, and setSelectionRange()p588 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, formactionp571, formenctypep572,
formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxp526, minp526, multiplep524, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, valueAsDatep533, and valueAsNumberp533 IDL attributes;
stepDown()p533 and stepUp()p533 methods.

When an inputp493 element's typep495 attribute is in the Telephonep500 state, the rules in this section apply.

The inputp493 element representsp123 a control for editing a telephone number given in the element's valuep566.

If the element is mutablep566, its valuep566 should be editable by the user. User agents may change the spacing and, with care, the
punctuation of valuesp566 that the user enters. User agents must not allow users to insert U+000A LINE FEED (LF) or U+000D
CARRIAGE RETURN (CR) characters into the element's valuep566.

The valuep497 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters.

The value sanitization algorithmp497 is as follows: Strip newlines from the valuep566.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxlengthp522,
minlengthp522, patternp525, placeholderp530, readonlyp522, requiredp523, and sizep522 content attributes; listp534, selectionStartp587, selectionEndp587,
selectionDirectionp588, and valuep532 IDL attributes; select()p587, setRangeText()p588, and setSelectionRange()p588 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxp526, minp526, multiplep524, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, valueAsDatep533, and valueAsNumberp533 IDL attributes;
stepDown()p533 and stepUp()p533 methods.

controls rather than appearing like a regular text control.

4.10.5.1.3 Telephone state (type=tel) §p50

0

Unlike the URLp501 and Emailp502 types, the Telephonep500 type does not enforce a particular syntax. This is intentional; in practice,
telephone number fields tend to be free-form fields, because there are a wide variety of valid phone numbers. Systems that need
to enforce a particular format are encouraged to use the patternp525 attribute or the setCustomValidity()p593 method to hook
into the client-side validation mechanism.

Note

✔ MDN

500

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://infra.spec.whatwg.org/#strip-newlines
https://infra.spec.whatwg.org/#strip-newlines

When an inputp493 element's typep495 attribute is in the URLp501 state, the rules in this section apply.

The inputp493 element representsp123 a control for editing a single absolute URL given in the element's valuep566.

If the element is mutablep566, the user agent should allow the user to change the URL represented by its valuep566. User agents may
allow the user to set the valuep566 to a string that is not a valid absolute URL, but may also or instead automatically escape characters
entered by the user so that the valuep566 is always a valid absolute URL (even if that isn't the actual value seen and edited by the user
in the interface). User agents should allow the user to set the valuep566 to the empty string. User agents must not allow users to insert
U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the valuep566.

The valuep497 attribute, if specified and not empty, must have a value that is a valid URL potentially surrounded by spacesp88 that is
also an absolute URL.

The value sanitization algorithmp497 is as follows: Strip newlines from the valuep566, then strip leading and trailing ASCII
whitespace from the valuep566.

Constraint validation: While the valuep566 of the element is neither the empty string nor a valid absolute URL, the element is
suffering from a type mismatchp590.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxlengthp522,
minlengthp522, patternp525, placeholderp530, readonlyp522, requiredp523, and sizep522 content attributes; listp534, selectionStartp587, selectionEndp587,
selectionDirectionp588, and valuep532 IDL attributes; select()p587, setRangeText()p588, and setSelectionRange()p588 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxp526, minp526, multiplep524, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, valueAsDatep533, and valueAsNumberp533 IDL attributes;
stepDown()p533 and stepUp()p533 methods.

4.10.5.1.4 URL state (type=url) §p50

1

If a document contained the following markup:

<input type="url" name="location" list="urls">
<datalist id="urls">
<option label="MIME: Format of Internet Message Bodies" value="https://tools.ietf.org/html/

rfc2045">
<option label="HTML" value="https://html.spec.whatwg.org/">
<option label="DOM" value="https://dom.spec.whatwg.org/">
<option label="Fullscreen" value="https://fullscreen.spec.whatwg.org/">
<option label="Media Session" value="https://mediasession.spec.whatwg.org/">
<option label="The Single UNIX Specification, Version 3" value="http://www.unix.org/version3/">

</datalist>

...and the user had typed "spec.w", and the user agent had also found that the user had visited
https://url.spec.whatwg.org/#url-parsing and https://streams.spec.whatwg.org/ in the recent past, then the rendering
might look like this:

spec.w| ▼
https://html.spec.whatwg.org/
https://mediasession.spec.whatwg.org/
https://fullscreen.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://url.spec.whatwg.org/#url-parsing
https://streams.spec.whatwg.org/

HTML
Media Session

Fullscreen
DOM

The first four URLs in this sample consist of the four URLs in the author-specified list that match the text the user has entered,

Example

✔ MDN

501

https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#strip-newlines
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute

When an inputp493 element's typep495 attribute is in the Emailp502 state, the rules in this section apply.

How the Emailp502 state operates depends on whether the multiplep524 attribute is specified or not.

↪ When the multiplep524 attribute is not specified on the element
The inputp493 element representsp123 a control for editing an email address given in the element's valuep566.

If the element is mutablep566, the user agent should allow the user to change the email address represented by its valuep566.
User agents may allow the user to set the valuep566 to a string that is not a valid email addressp503. The user agent should act in
a manner consistent with expecting the user to provide a single email address. User agents should allow the user to set the
valuep566 to the empty string. User agents must not allow users to insert U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN
(CR) characters into the valuep566. User agents may transform the valuep566 for display and editing; in particular, user agents
should convert punycode in the domain labels of the valuep566 to IDN in the display and vice versa.

Constraint validation: While the user interface is representing input that the user agent cannot convert to punycode, the
control is suffering from bad inputp591.

The valuep497 attribute, if specified and not empty, must have a value that is a single valid email addressp503.

The value sanitization algorithmp497 is as follows: Strip newlines from the valuep566, then strip leading and trailing ASCII
whitespace from the valuep566.

Constraint validation: While the valuep566 of the element is neither the empty string nor a single valid email addressp503, the
element is suffering from a type mismatchp590.

↪ When the multiplep524 attribute is specified on the element
The inputp493 element representsp123 a control for adding, removing, and editing the email addresses given in the element's
valuesp566.

If the element is mutablep566, the user agent should allow the user to add, remove, and edit the email addresses represented by
its valuesp566. User agents may allow the user to set any individual value in the list of valuesp566 to a string that is not a valid
email addressp503, but must not allow users to set any individual value to a string containing U+002C COMMA (,), U+000A LINE
FEED (LF), or U+000D CARRIAGE RETURN (CR) characters. User agents should allow the user to remove all the addresses in the
element's valuesp566. User agents may transform the valuesp566 for display and editing; in particular, user agents should convert
punycode in the domain labels of the valuep566 to IDN in the display and vice versa.

Constraint validation: While the user interface describes a situation where an individual value contains a U+002C COMMA (,)
or is representing input that the user agent cannot convert to punycode, the control is suffering from bad inputp591.

Whenever the user changes the element's valuesp566, the user agent must run the following steps:

1. Let latest values be a copy of the element's valuesp566.

2. Strip leading and trailing ASCII whitespace from each value in latest values.

3. Let the element's valuep566 be the result of concatenating all the values in latest values, separating each value from
the next by a single U+002C COMMA character (,), maintaining the list's order.

The valuep497 attribute, if specified, must have a value that is a valid email address listp503.

The value sanitization algorithmp497 is as follows:

sorted in some implementation-defined manner (maybe by how frequently the user refers to those URLs). Note how the UA is using
the knowledge that the values are URLs to allow the user to omit the scheme part and perform intelligent matching on the domain
name.

The last two URLs (and probably many more, given the scrollbar's indications of more values being available) are the matches from
the user agent's session history data. This data is not made available to the page DOM. In this particular case, the UA has no titles
to provide for those values.

4.10.5.1.5 Email state (type=email) §p50

2

502

https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#strip-newlines
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace

1. Split on commas the element's valuep566, strip leading and trailing ASCII whitespace from each resulting token, if any,
and let the element's valuesp566 be the (possibly empty) resulting list of (possibly empty) tokens, maintaining the
original order.

2. Let the element's valuep566 be the result of concatenating the element's valuesp566, separating each value from the
next by a single U+002C COMMA character (,), maintaining the list's order.

Constraint validation: While the valuep566 of the element is not a valid email address listp503, the element is suffering from a
type mismatchp590.

When the multiplep524 attribute is set or removed, the user agent must run the value sanitization algorithmp497.

A valid email address is a string that matches the email production of the following ABNF, the character set for which is Unicode.
This ABNF implements the extensions described in RFC 1123. [ABNF]p1285 [RFC5322]p1290 [RFC1034]p1290 [RFC1123]p1290

email = 1*(atext / ".") "@" label *("." label)
label = let-dig [[ldh-str] let-dig] ; limited to a length of 63 characters by RFC 1034
section 3.5
atext = < as defined in RFC 5322 section 3.2.3 >
let-dig = < as defined in RFC 1034 section 3.5 >
ldh-str = < as defined in RFC 1034 section 3.5 >

A valid email address list is a set of comma-separated tokensp87, where each token is itself a valid email addressp503. To obtain the
list of tokens from a valid email address listp503, an implementation must split the string on commas.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxlengthp522,
minlengthp522, multiplep524, patternp525, placeholderp530, readonlyp522, requiredp523, and sizep522 content attributes; listp534 and valuep532 IDL attributes;
select()p587 method.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxp526, minp526, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, selectionStartp587, selectionEndp587,
selectionDirectionp588, valueAsDatep533, and valueAsNumberp533 IDL attributes; setRangeText()p588, setSelectionRange()p588, stepDown()p533 and
stepUp()p533 methods.

When an inputp493 element's typep495 attribute is in the Passwordp503 state, the rules in this section apply.

The inputp493 element representsp123 a one line plain text edit control for the element's valuep566. The user agent should obscure the
value so that people other than the user cannot see it.

If the element is mutablep566, its valuep566 should be editable by the user. User agents must not allow users to insert U+000A LINE
FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the valuep566.

The valuep497 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters.

This requirement is a willful violationp27 of RFC 5322, which defines a syntax for email addresses that is simultaneously too strict
(before the "@" character), too vague (after the "@" character), and too lax (allowing comments, whitespace characters, and
quoted strings in manners unfamiliar to most users) to be of practical use here.

Note

The following JavaScript- and Perl-compatible regular expression is an implementation of the above definition.

/^[a-zA-Z0-9.!#$%&'*+\/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-
zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$/

Note

4.10.5.1.6 Password state (type=password) §p50

3

✔ MDN

503

https://infra.spec.whatwg.org/#split-on-commas
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://tools.ietf.org/html/rfc1034#section-3.5
https://tools.ietf.org/html/rfc1034#section-3.5
https://tools.ietf.org/html/rfc5322#section-3.2.3
https://tools.ietf.org/html/rfc1034#section-3.5
https://tools.ietf.org/html/rfc1034#section-3.5
https://infra.spec.whatwg.org/#split-on-commas

The value sanitization algorithmp497 is as follows: Strip newlines from the valuep566.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, maxlengthp522,
minlengthp522, patternp525, placeholderp530, readonlyp522, requiredp523, and sizep522 content attributes; selectionStartp587, selectionEndp587,
selectionDirectionp588, and valuep532 IDL attributes; select()p587, setRangeText()p588, and setSelectionRange()p588 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, listp528, maxp526, minp526, multiplep524, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, listp534, valueAsDatep533, and valueAsNumberp533 IDL
attributes; stepDown()p533 and stepUp()p533 methods.

When an inputp493 element's typep495 attribute is in the Datep504 state, the rules in this section apply.

The inputp493 element representsp123 a control for setting the element's valuep566 to a string representing a specific datep74.

If the element is mutablep566, the user agent should allow the user to change the datep74 represented by its valuep566, as obtained by
parsing a datep75 from it. User agents must not allow the user to set the valuep566 to a non-empty string that is not a valid date
stringp74. If the user agent provides a user interface for selecting a datep74, then the valuep566 must be set to a valid date stringp74

representing the user's selection. User agents should allow the user to set the valuep566 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid date stringp74, the
control is suffering from bad inputp591.

The valuep497 attribute, if specified and not empty, must have a value that is a valid date stringp74.

The value sanitization algorithmp497 is as follows: If the valuep566 of the element is not a valid date stringp74, then set it to the
empty string instead.

The minp526 attribute, if specified, must have a value that is a valid date stringp74. The maxp526 attribute, if specified, must have a value
that is a valid date stringp74.

The stepp527 attribute is expressed in days. The step scale factorp527 is 86,400,000 (which converts the days to milliseconds, as used in
the other algorithms). The default stepp527 is 1 day.

When the element is suffering from a step mismatchp591, the user agent may round the element's valuep566 to the nearest datep74 for
which the element would not suffer from a step mismatchp591.

The algorithm to convert a string to a numberp497, given a string input, is as follows: If parsing a datep75 from input results in
an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight UTC on the morning of 1970-01-01
(the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning of the parsed datep74, ignoring leap
seconds.

The algorithm to convert a number to a stringp497, given a number input, is as follows: Return a valid date stringp74 that
represents the datep74 that, in UTC, is current input milliseconds after midnight UTC on the morning of 1970-01-01 (the time
represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date objectp497, given a string input, is as follows: If parsing a datep75 from input
results in an error, then return an error; otherwise, return a new Date objectp54 representing midnight UTC on the morning of the
parsed datep74.

The algorithm to convert a Date object to a stringp497, given a Date object input, is as follows: Return a valid date stringp74

that represents the datep74 current at the time represented by input in the UTC time zone.

4.10.5.1.7 Date state (type=date) §p50

4

See the introduction sectionp485 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp521 regarding localization of form controls.

Note

✔ MDN

504

https://infra.spec.whatwg.org/#strip-newlines
https://tc39.es/ecma262/#sec-date-objects

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxp526, minp526,
readonlyp522, requiredp523, and stepp527 content attributes; listp534, valuep532, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587,
stepDown()p533, and stepUp()p533 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxlengthp522, minlengthp522, multiplep524, patternp525, placeholderp530,
sizep522, srcp518, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, selectionStartp587, selectionEndp587, and selectionDirectionp588 IDL
attributes; setRangeText()p588, and setSelectionRange()p588 methods.

When an inputp493 element's typep495 attribute is in the Monthp505 state, the rules in this section apply.

The inputp493 element representsp123 a control for setting the element's valuep566 to a string representing a specific monthp74.

If the element is mutablep566, the user agent should allow the user to change the monthp74 represented by its valuep566, as obtained by
parsing a monthp74 from it. User agents must not allow the user to set the valuep566 to a non-empty string that is not a valid month
stringp74. If the user agent provides a user interface for selecting a monthp74, then the valuep566 must be set to a valid month stringp74

representing the user's selection. User agents should allow the user to set the valuep566 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid month stringp74, the
control is suffering from bad inputp591.

The valuep497 attribute, if specified and not empty, must have a value that is a valid month stringp74.

The value sanitization algorithmp497 is as follows: If the valuep566 of the element is not a valid month stringp74, then set it to the
empty string instead.

The minp526 attribute, if specified, must have a value that is a valid month stringp74. The maxp526 attribute, if specified, must have a
value that is a valid month stringp74.

The stepp527 attribute is expressed in months. The step scale factorp527 is 1 (there is no conversion needed as the algorithms use
months). The default stepp527 is 1 month.

When the element is suffering from a step mismatchp591, the user agent may round the element's valuep566 to the nearest monthp74 for
which the element would not suffer from a step mismatchp591.

The algorithm to convert a string to a numberp497, given a string input, is as follows: If parsing a monthp74 from input results
in an error, then return an error; otherwise, return the number of months between January 1970 and the parsed monthp74.

The algorithm to convert a number to a stringp497, given a number input, is as follows: Return a valid month stringp74 that

The Datep504 state (and other date- and time-related states described in subsequent sections) is not intended for the entry of
values for which a precise date and time relative to the contemporary calendar cannot be established. For example, it would be
inappropriate for the entry of times like "one millisecond after the big bang", "the early part of the Jurassic period", or "a winter
around 250 BCE".

For the input of dates before the introduction of the Gregorian calendar, authors are encouraged to not use the Datep504 state (and
the other date- and time-related states described in subsequent sections), as user agents are not required to support converting
dates and times from earlier periods to the Gregorian calendar, and asking users to do so manually puts an undue burden on users.
(This is complicated by the manner in which the Gregorian calendar was phased in, which occurred at different times in different
countries, ranging from partway through the 16th century all the way to early in the 20th.) Instead, authors are encouraged to
provide fine-grained input controls using the selectp537 element and inputp493 elements with the Numberp509 state.

Note

4.10.5.1.8 Month state (type=month) §p50

5

See the introduction sectionp485 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp521 regarding localization of form controls.

Note

MDN

505

represents the monthp74 that has input months between it and January 1970.

The algorithm to convert a string to a Date objectp497, given a string input, is as follows: If parsing a monthp74 from input
results in an error, then return an error; otherwise, return a new Date objectp54 representing midnight UTC on the morning of the first
day of the parsed monthp74.

The algorithm to convert a Date object to a stringp497, given a Date object input, is as follows: Return a valid month stringp74

that represents the monthp74 current at the time represented by input in the UTC time zone.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxp526, minp526,
readonlyp522, requiredp523, and stepp527 content attributes; listp534, valuep532, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587,
stepDown()p533, and stepUp()p533 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxlengthp522, minlengthp522, multiplep524, patternp525, placeholderp530,
sizep522, srcp518, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, selectionStartp587, selectionEndp587, and
selectionDirectionp588 IDL attributes; setRangeText()p588, and setSelectionRange()p588 methods.

When an inputp493 element's typep495 attribute is in the Weekp506 state, the rules in this section apply.

The inputp493 element representsp123 a control for setting the element's valuep566 to a string representing a specific weekp80.

If the element is mutablep566, the user agent should allow the user to change the weekp80 represented by its valuep566, as obtained by
parsing a weekp81 from it. User agents must not allow the user to set the valuep566 to a non-empty string that is not a valid week
stringp81. If the user agent provides a user interface for selecting a weekp80, then the valuep566 must be set to a valid week stringp81

representing the user's selection. User agents should allow the user to set the valuep566 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid week stringp81, the
control is suffering from bad inputp591.

The valuep497 attribute, if specified and not empty, must have a value that is a valid week stringp81.

The value sanitization algorithmp497 is as follows: If the valuep566 of the element is not a valid week stringp81, then set it to the
empty string instead.

The minp526 attribute, if specified, must have a value that is a valid week stringp81. The maxp526 attribute, if specified, must have a value
that is a valid week stringp81.

The stepp527 attribute is expressed in weeks. The step scale factorp527 is 604,800,000 (which converts the weeks to milliseconds, as
used in the other algorithms). The default stepp527 is 1 week. The default step basep527 is −259,200,000 (the start of week 1970-W01).

When the element is suffering from a step mismatchp591, the user agent may round the element's valuep566 to the nearest weekp80 for
which the element would not suffer from a step mismatchp591.

The algorithm to convert a string to a numberp497, given a string input, is as follows: If parsing a week stringp81 from input
results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight UTC on the morning of
1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning of the Monday of the
parsed weekp80, ignoring leap seconds.

The algorithm to convert a number to a stringp497, given a number input, is as follows: Return a valid week stringp81 that
represents the weekp80 that, in UTC, is current input milliseconds after midnight UTC on the morning of 1970-01-01 (the time
represented by the value "1970-01-01T00:00:00.0Z").

4.10.5.1.9 Week state (type=week) §p50

6

See the introduction sectionp485 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp521 regarding localization of form controls.

Note

✔ MDN

506

https://tc39.es/ecma262/#sec-date-objects

The algorithm to convert a string to a Date objectp497, given a string input, is as follows: If parsing a weekp81 from input
results in an error, then return an error; otherwise, return a new Date objectp54 representing midnight UTC on the morning of the
Monday of the parsed weekp80.

The algorithm to convert a Date object to a stringp497, given a Date object input, is as follows: Return a valid week stringp81

that represents the weekp80 current at the time represented by input in the UTC time zone.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxp526, minp526,
readonlyp522, requiredp523, and stepp527 content attributes; listp534, valuep532, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587,
stepDown()p533, and stepUp()p533 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxlengthp522, minlengthp522, multiplep524, patternp525, placeholderp530,
sizep522, srcp518, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, selectionStartp587, selectionEndp587, and
selectionDirectionp588 IDL attributes; setRangeText()p588, and setSelectionRange()p588 methods.

When an inputp493 element's typep495 attribute is in the Timep507 state, the rules in this section apply.

The inputp493 element representsp123 a control for setting the element's valuep566 to a string representing a specific timep76.

If the element is mutablep566, the user agent should allow the user to change the timep76 represented by its valuep566, as obtained by
parsing a timep76 from it. User agents must not allow the user to set the valuep566 to a non-empty string that is not a valid time
stringp76. If the user agent provides a user interface for selecting a timep76, then the valuep566 must be set to a valid time stringp76

representing the user's selection. User agents should allow the user to set the valuep566 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid time stringp76, the
control is suffering from bad inputp591.

The valuep497 attribute, if specified and not empty, must have a value that is a valid time stringp76.

The value sanitization algorithmp497 is as follows: If the valuep566 of the element is not a valid time stringp76, then set it to the
empty string instead.

The form control has a periodic domainp526.

The minp526 attribute, if specified, must have a value that is a valid time stringp76. The maxp526 attribute, if specified, must have a value
that is a valid time stringp76.

The stepp527 attribute is expressed in seconds. The step scale factorp527 is 1000 (which converts the seconds to milliseconds, as used in
the other algorithms). The default stepp527 is 60 seconds.

When the element is suffering from a step mismatchp591, the user agent may round the element's valuep566 to the nearest timep76 for
which the element would not suffer from a step mismatchp591.

The algorithm to convert a string to a numberp497, given a string input, is as follows: If parsing a timep76 from input results in
an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight to the parsed timep76 on a day with
no time changes.

The algorithm to convert a number to a stringp497, given a number input, is as follows: Return a valid time stringp76 that
represents the timep76 that is input milliseconds after midnight on a day with no time changes.

The algorithm to convert a string to a Date objectp497, given a string input, is as follows: If parsing a timep76 from input
results in an error, then return an error; otherwise, return a new Date objectp54 representing the parsed timep76 in UTC on 1970-01-01.

4.10.5.1.10 Time state (type=time) §p50

7

See the introduction sectionp485 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp521 regarding localization of form controls.

Note

✔ MDN

507

https://tc39.es/ecma262/#sec-date-objects

The algorithm to convert a Date object to a stringp497, given a Date object input, is as follows: Return a valid time stringp76

that represents the UTC timep76 component that is represented by input.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxp526, minp526,
readonlyp522, requiredp523, and stepp527 content attributes; listp534, valuep532, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587,
stepDown()p533, and stepUp()p533 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxlengthp522, minlengthp522, multiplep524, patternp525, placeholderp530,
sizep522, srcp518, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, selectionStartp587, selectionEndp587, and
selectionDirectionp588 IDL attributes; setRangeText()p588, and setSelectionRange()p588 methods.

When an inputp493 element's typep495 attribute is in the Local Date and Timep508 state, the rules in this section apply.

The inputp493 element representsp123 a control for setting the element's valuep566 to a string representing a local date and timep77, with
no time-zone offset information.

If the element is mutablep566, the user agent should allow the user to change the date and timep77 represented by its valuep566, as
obtained by parsing a date and timep77 from it. User agents must not allow the user to set the valuep566 to a non-empty string that is
not a valid normalized local date and time stringp77. If the user agent provides a user interface for selecting a local date and timep77,
then the valuep566 must be set to a valid normalized local date and time stringp77 representing the user's selection. User agents should
allow the user to set the valuep566 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid normalized local date
and time stringp77, the control is suffering from bad inputp591.

The valuep497 attribute, if specified and not empty, must have a value that is a valid local date and time stringp77.

The value sanitization algorithmp497 is as follows: If the valuep566 of the element is a valid local date and time stringp77, then set it
to a valid normalized local date and time stringp77 representing the same date and time; otherwise, set it to the empty string instead.

The minp526 attribute, if specified, must have a value that is a valid local date and time stringp77. The maxp526 attribute, if specified, must
have a value that is a valid local date and time stringp77.

The stepp527 attribute is expressed in seconds. The step scale factorp527 is 1000 (which converts the seconds to milliseconds, as used in
the other algorithms). The default stepp527 is 60 seconds.

When the element is suffering from a step mismatchp591, the user agent may round the element's valuep566 to the nearest local date
and timep77 for which the element would not suffer from a step mismatchp591.

The algorithm to convert a string to a numberp497, given a string input, is as follows: If parsing a date and timep77 from input
results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight on the morning of
1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0") to the parsed local date and timep77, ignoring leap
seconds.

The algorithm to convert a number to a stringp497, given a number input, is as follows: Return a valid normalized local date
and time stringp77 that represents the date and time that is input milliseconds after midnight on the morning of 1970-01-01 (the time
represented by the value "1970-01-01T00:00:00.0").

4.10.5.1.11 Local Date and Time state (type=datetime-local) §p50

8

See the introduction sectionp485 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp521 regarding localization of form controls.

Note

See the note on historical datesp505 in the Datep504 state section.
Note

✔ MDN

508

https://tc39.es/ecma262/#sec-date-objects

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxp526, minp526,
readonlyp522, requiredp523, and stepp527 content attributes; listp534, valuep532, and valueAsNumberp533 IDL attributes; select()p587, stepDown()p533, and
stepUp()p533 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxlengthp522, minlengthp522, multiplep524, patternp525, placeholderp530,
sizep522, srcp518, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, selectionStartp587, selectionEndp587,
selectionDirectionp588, and valueAsDatep533 IDL attributes; setRangeText()p588, and setSelectionRange()p588 methods.

When an inputp493 element's typep495 attribute is in the Numberp509 state, the rules in this section apply.

The inputp493 element representsp123 a control for setting the element's valuep566 to a string representing a number.

If the element is mutablep566, the user agent should allow the user to change the number represented by its valuep566, as obtained from
applying the rules for parsing floating-point number values p70 to it. User agents must not allow the user to set the valuep566 to a non-
empty string that is not a valid floating-point numberp69. If the user agent provides a user interface for selecting a number, then the
valuep566 must be set to the best representation of the number representing the user's selection as a floating-point number p69. User
agents should allow the user to set the valuep566 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid floating-point
numberp69, the control is suffering from bad inputp591.

The valuep497 attribute, if specified and not empty, must have a value that is a valid floating-point numberp69.

The value sanitization algorithmp497 is as follows: If the valuep566 of the element is not a valid floating-point numberp69, then set it
to the empty string instead.

The minp526 attribute, if specified, must have a value that is a valid floating-point numberp69. The maxp526 attribute, if specified, must
have a value that is a valid floating-point numberp69.

The following example shows part of a flight booking application. The application uses an inputp493 element with its typep495

attribute set to datetime-localp508, and it then interprets the given date and time in the time zone of the selected airport.

<fieldset>
<legend>Destination</legend>
<p><label>Airport: <input type=text name=to list=airports></label></p>
<p><label>Departure time: <input type=datetime-local name=totime step=3600></label></p>

</fieldset>
<datalist id=airports>
<option value=ATL label="Atlanta">
<option value=MEM label="Memphis">
<option value=LHR label="London Heathrow">
<option value=LAX label="Los Angeles">
<option value=FRA label="Frankfurt">

</datalist>

Example

4.10.5.1.12 Number state (type=number) §p50

9

This specification does not define what user interface user agents are to use; user agent vendors are encouraged to consider what
would best serve their users' needs. For example, a user agent in Persian or Arabic markets might support Persian and Arabic
numeric input (converting it to the format required for submission as described above). Similarly, a user agent designed for
Romans might display the value in Roman numerals rather than in decimal; or (more realistically) a user agent designed for the
French market might display the value with apostrophes between thousands and commas before the decimals, and allow the user
to enter a value in that manner, internally converting it to the submission format described above.

Note

✔ MDN

509

The step scale factorp527 is 1. The default stepp527 is 1 (allowing only integers to be selected by the user, unless the step basep527 has a
non-integer value).

When the element is suffering from a step mismatchp591, the user agent may round the element's valuep566 to the nearest number for
which the element would not suffer from a step mismatchp591. If there are two such numbers, user agents are encouraged to pick the
one nearest positive infinity.

The algorithm to convert a string to a numberp497, given a string input, is as follows: If applying the rules for parsing
floating-point number valuesp70 to input results in an error, then return an error; otherwise, return the resulting number.

The algorithm to convert a number to a stringp497, given a number input, is as follows: Return a valid floating-point
numberp69 that represents input.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxp526, minp526,
placeholderp530, readonlyp522, requiredp523, and stepp527 content attributes; listp534, valuep532, and valueAsNumberp533 IDL attributes; select()p587,
stepDown()p533, and stepUp()p533 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxlengthp522, minlengthp522, multiplep524, patternp525, sizep522, srcp518,
and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, selectionStartp587, selectionEndp587,
selectionDirectionp588, and valueAsDatep533 IDL attributes; setRangeText()p588, and setSelectionRange()p588 methods.

When an inputp493 element's typep495 attribute is in the Rangep510 state, the rules in this section apply.

The inputp493 element representsp123 a control for setting the element's valuep566 to a string representing a number, but with the
caveat that the exact value is not important, letting UAs provide a simpler interface than they do for the Numberp509 state.

If the element is mutablep566, the user agent should allow the user to change the number represented by its valuep566, as obtained from
applying the rules for parsing floating-point number values p70 to it. User agents must not allow the user to set the valuep566 to a string
that is not a valid floating-point numberp69. If the user agent provides a user interface for selecting a number, then the valuep566 must
be set to a best representation of the number representing the user's selection as a floating-point number p69. User agents must not
allow the user to set the valuep566 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid floating-point
numberp69, the control is suffering from bad inputp591.

The valuep497 attribute, if specified, must have a value that is a valid floating-point numberp69.

Here is an example of using a numeric input control:

<label>How much do you want to charge? $<input type=number min=0 step=0.01 name=price></label>

As described above, a user agent might support numeric input in the user's local format, converting it to the format required for
submission as described above. This might include handling grouping separators (as in "872,000,000,000") and various decimal
separators (such as "3,99" vs "3.99") or using local digits (such as those in Arabic, Devanagari, Persian, and Thai).

Example

The type=number state is not appropriate for input that happens to only consist of numbers but isn't strictly speaking a number.
For example, it would be inappropriate for credit card numbers or US postal codes. A simple way of determining whether to use
type=number is to consider whether it would make sense for the input control to have a spinbox interface (e.g. with "up" and
"down" arrows). Getting a credit card number wrong by 1 in the last digit isn't a minor mistake, it's as wrong as getting every digit
incorrect. So it would not make sense for the user to select a credit card number using "up" and "down" buttons. When a spinbox
interface is not appropriate, type=text is probably the right choice (possibly with an inputmodep792 or patternp525 attribute).

Note

4.10.5.1.13 Range state (type=range) §p51

0

✔ MDN

510

The value sanitization algorithmp497 is as follows: If the valuep566 of the element is not a valid floating-point numberp69, then set it
to the best representation, as a floating-point number p69, of the default valuep511.

The default value is the minimump526 plus half the difference between the minimump526 and the maximump526, unless the
maximump526 is less than the minimump526, in which case the default valuep511 is the minimump526.

When the element is suffering from an underflowp590, the user agent must set the element's valuep566 to the best representation, as a
floating-point numberp69, of the minimump526.

When the element is suffering from an overflowp591, if the maximump526 is not less than the minimump526, the user agent must set the
element's valuep566 to a valid floating-point numberp69 that represents the maximump526.

When the element is suffering from a step mismatchp591, the user agent must round the element's valuep566 to the nearest number for
which the element would not suffer from a step mismatchp591, and which is greater than or equal to the minimump526, and, if the
maximump526 is not less than the minimump526, which is less than or equal to the maximump526, if there is a number that matches
these constraints. If two numbers match these constraints, then user agents must use the one nearest to positive infinity.

For example, the markup <input type="range" min=0 max=100 step=20 value=50> results in a range control whose initial value
is 60.

Example

Here is an example of a range control using an autocomplete list with the listp528 attribute. This could be useful if there are values
along the full range of the control that are especially important, such as preconfigured light levels or typical speed limits in a range
control used as a speed control. The following markup fragment:

<input type="range" min="-100" max="100" value="0" step="10" name="power" list="powers">
<datalist id="powers">
<option value="0">
<option value="-30">
<option value="30">
<option value="++50">

</datalist>

...with the following style sheet applied:

input { height: 75px; width: 49px; background: #D5CCBB; color: black; }

...might render as:

Note how the UA determined the orientation of the control from the ratio of the style-sheet-specified height and width properties.
The colors were similarly derived from the style sheet. The tick marks, however, were derived from the markup. In particular, the
stepp527 attribute has not affected the placement of tick marks, the UA deciding to only use the author-specified completion values
and then adding longer tick marks at the extremes.

Note also how the invalid value ++50 was completely ignored.

Example

CSS

For another example, consider the following markup fragment:

<input name=x type=range min=100 max=700 step=9.09090909 value=509.090909>

A user agent could display in a variety of ways, for instance:

Example

511

The minp526 attribute, if specified, must have a value that is a valid floating-point numberp69. The default minimump526 is 0. The maxp526

attribute, if specified, must have a value that is a valid floating-point numberp69. The default maximump526 is 100.

The step scale factorp527 is 1. The default stepp527 is 1 (allowing only integers, unless the minp526 attribute has a non-integer value).

The algorithm to convert a string to a numberp497, given a string input, is as follows: If applying the rules for parsing
floating-point number valuesp70 to input results in an error, then return an error; otherwise, return the resulting number.

The algorithm to convert a number to a stringp497, given a number input, is as follows: Return the best representation, as a
floating-point numberp69, of input.

Bookkeeping details

▪The following common inputp493 element content attributes, IDL attributes, and methods applyp496 to the element: autocompletep573, listp528, maxp526, minp526,
and stepp527 content attributes; listp534, valuep532, and valueAsNumberp533 IDL attributes; stepDown()p533 and stepUp()p533 methods.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxlengthp522, minlengthp522, multiplep524, patternp525, placeholderp530,

Or, alternatively, for instance:

The user agent could pick which one to display based on the dimensions given in the style sheet. This would allow it to maintain
the same resolution for the tick marks, despite the differences in width.

Finally, here is an example of a range control with two labeled values:

<input type="range" name="a" list="a-values">
<datalist id="a-values">
<option value="10" label="Low">
<option value="90" label="High">
</datalist>

With styles that make the control draw vertically, it might look as follows:

Example

In this state, the range and step constraints are enforced even during user input, and there is no way to set the value to the empty
string.

Note

512

readonlyp522, requiredp523, sizep522, srcp518, and widthp449.
▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, selectionStartp587, selectionEndp587,
selectionDirectionp588, and valueAsDatep533 IDL attributes; select()p587, setRangeText()p588, and setSelectionRange()p588 methods.

When an inputp493 element's typep495 attribute is in the Colorp513 state, the rules in this section apply.

The inputp493 element representsp123 a color well control, for setting the element's valuep566 to a string representing a simple colorp85.

If the element is mutablep566, the user agent should allow the user to change the color represented by its valuep566, as obtained from
applying the rules for parsing simple color values p85 to it. User agents must not allow the user to set the valuep566 to a string that is not
a valid lowercase simple colorp85. If the user agent provides a user interface for selecting a color, then the valuep566 must be set to the
result of using the rules for serializing simple color values p86 to the user's selection. User agents must not allow the user to set the
valuep566 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid lowercase simple
colorp85, the control is suffering from bad inputp591.

The valuep497 attribute, if specified and not empty, must have a value that is a valid simple colorp85.

The value sanitization algorithmp497 is as follows: If the valuep566 of the element is a valid simple colorp85, then set it to the
valuep566 of the element converted to ASCII lowercase; otherwise, set it to the string "#000000".

Bookkeeping details

▪The following common inputp493 element content attributes and IDL attributes applyp496 to the element: autocompletep573 and listp528 content attributes;
listp534 and valuep532 IDL attributes; select()p587 method.

▪The valuep532 IDL attribute is in mode valuep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, maxp526, maxlengthp522, minp526, minlengthp522, multiplep524, patternp525,
placeholderp530, readonlyp522, requiredp523, sizep522, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, selectionStartp587, selectionEndp587,
selectionDirectionp588, valueAsDatep533 and, valueAsNumberp533 IDL attributes; setRangeText()p588, setSelectionRange()p588, stepDown()p533, and
stepUp()p533 methods.

When an inputp493 element's typep495 attribute is in the Checkboxp513 state, the rules in this section apply.

The inputp493 element representsp123 a two-state control that represents the element's checkednessp566 state. If the element's
checkednessp566 state is true, the control represents a positive selection, and if it is false, a negative selection. If the element's
indeterminatep499 IDL attribute is set to true, then the control's selection should be obscured as if the control was in a third,
indeterminate, state.

The input activation behaviorp498 is to run the following steps:

1. If the element is not connected, then return.

2. Fire an event named inputp1281 at the element with the bubbles and composed attributes initialized to true.

3. Fire an event named changep1281 at the element with the bubbles attribute initialized to true.

4.10.5.1.14 Color state (type=color) §p51

3

In this state, there is always a color picked, and there is no way to set the value to the empty string.
Note

4.10.5.1.15 Checkbox state (type=checkbox) §p51

3

The control is never a true tri-state control, even if the element's indeterminatep499 IDL attribute is set to true. The
indeterminatep499 IDL attribute only gives the appearance of a third state.

Note

✔ MDN

✔ MDN

513

https://infra.spec.whatwg.org/#ascii-lowercase
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles

Constraint validation: If the element is requiredp523 and its checkednessp566 is false, then the element is suffering from being
missingp590.

Bookkeeping details

▪The following common inputp493 element content attributes and IDL attributes applyp496 to the element: checkedp497, and requiredp523 content attributes;
checkedp532 and valuep532 IDL attributes.

▪The valuep532 IDL attribute is in mode default/onp532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, autocompletep573, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, listp528, maxp526, maxlengthp522, minp526, minlengthp522, multiplep524,
patternp525, placeholderp530, readonlyp522, sizep522, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: filesp533, listp534, selectionStartp587, selectionEndp587, selectionDirectionp588,
valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587, setRangeText()p588, setSelectionRange()p588, stepDown()p533, and stepUp()p533

methods.

When an inputp493 element's typep495 attribute is in the Radio Buttonp514 state, the rules in this section apply.

The inputp493 element representsp123 a control that, when used in conjunction with other inputp493 elements, forms a radio button
groupp514 in which only one control can have its checkednessp566 state set to true. If the element's checkednessp566 state is true, the
control represents the selected control in the group, and if it is false, it indicates a control in the group that is not selected.

The radio button group that contains an inputp493 element a also contains all the other inputp493 elements b that fulfill all of the
following conditions:

• The inputp493 element b's typep495 attribute is in the Radio Buttonp514 state.

• Either a and b have the same form ownerp566, or they both have no form ownerp566.

• Both a and b are in the same tree.

• They both have a namep568 attribute, their namep568 attributes are not empty, and the value of a's namep568 attribute equals the
value of b's namep568 attribute.

A tree must not contain an inputp493 element whose radio button groupp514 contains only that element.

When any of the following phenomena occur, if the element's checkednessp566 state is true after the occurrence, the checkednessp566

state of all the other elements in the same radio button groupp514 must be set to false:

• The element's checkednessp566 state is set to true (for whatever reason).

• The element's namep568 attribute is set, changed, or removed.

• The element's form ownerp566 changes.

• A type change is signalledp498 for the element.

The input activation behaviorp498 is to run the following steps:

1. If the element is not connected, then return.

2. Fire an event named inputp1281 at the element with the bubbles and composed attributes initialized to true.

3. Fire an event named changep1281 at the element with the bubbles attribute initialized to true.

Constraint validation: If an element in the radio button groupp514 is requiredp523, and all of the inputp493 elements in the radio button
groupp514 have a checkednessp566 that is false, then the element is suffering from being missingp590.

input . indeterminatep499 [= value]
When set, overrides the rendering of checkboxp513 controls so that the current value is not visible.

For web developers (non-normative)

4.10.5.1.16 Radio Button state (type=radio) §p51

4

✔ MDN

514

https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles

Bookkeeping details

▪The following common inputp493 element content attributes and IDL attributes applyp496 to the element: checkedp497 and requiredp523 content attributes;
checkedp532 and valuep532 IDL attributes.

▪The valuep532 IDL attribute is in mode default/onp532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, autocompletep573, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, listp528, maxp526, maxlengthp522, minp526, minlengthp522, multiplep524,
patternp525, placeholderp530, readonlyp522, sizep522, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: filesp533, listp534, selectionStartp587, selectionEndp587, selectionDirectionp588,
valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587, setRangeText()p588, setSelectionRange()p588, stepDown()p533, and stepUp()p533

methods.

When an inputp493 element's typep495 attribute is in the File Uploadp515 state, the rules in this section apply.

The inputp493 element representsp123 a list of selected files, each file consisting of a file name, a file type, and a file body (the
contents of the file).

File names must not contain path componentsp515, even in the case that a user has selected an entire directory hierarchy or multiple
files with the same name from different directories. Path components, for the purposes of the File Uploadp515 state, are those parts of
file names that are separated by U+005C REVERSE SOLIDUS character (\) characters.

Unless the multiplep524 attribute is set, there must be no more than one file in the list of selected filesp515.

The element's input activation behaviorp498 is to run the following steps:

1. If the algorithm is invoked when the element's Windowp824 object does not have transient activationp767, then return without
doing anything else.

2. Run these steps in parallelp42:

1. Optionally, wait until any prior execution of this algorithm has terminated.

2. Display a prompt to the user requesting that the user specify some files. If the multiplep524 attribute is not set,
there must be no more than one file selected; otherwise, any number may be selected. Files can be from the
filesystem or created on the fly, e.g., a picture taken from a camera connected to the user's device.

3. Wait for the user to have made their selection.

4. Update the file selectionp516 for the inputp493 element.

The following example, for some reason, has specified that puppers are both requiredp523 and disabledp570:

<form>
<p><label><input type="radio" name="dog-type" value="pupper" required disabled> Pupper</label>
<p><label><input type="radio" name="dog-type" value="doggo"> Doggo</label>
<p><button>Make your choice</button>

</form>

If the user tries to submit this form without first selecting "Doggo", then both inputp493 elements will be suffering from being
missingp590, since an element in the radio button groupp514 is requiredp523 (viz. the first element), and both of the elements in the
radio button group have a false checkednessp566.

On the other hand, if the user selects "Doggo" and then submits the form, then neither inputp493 element will be suffering from
being missingp590, since while one of them is requiredp523, not all of them have a false checkednessp566.

Example

If none of the radio buttons in a radio button groupp514 are checked, then they will all be initially unchecked in the interface, until
such time as one of them is checked (either by the user or by script).

Note

4.10.5.1.17 File Upload state (type=file) §p51

5

✔ MDN

✔ MDN

515

If the element is mutablep566, the user agent should allow the user to change the files on the list in other ways also, e.g., adding or
removing files by drag-and-drop. When the user does so, the user agent must update the file selectionp516 for the element.

If the element is not mutablep566, the user agent must not allow the user to change the element's selection.

To update the file selection for an element element:

1. Queue an element taskp946 on the user interaction task sourcep952 given element and the following steps:

1. Update element's selected filesp515 so that it represents the user's selection.

2. Fire an event named inputp1281 at the inputp493 element, with the bubbles and composed attributes initialized to
true.

3. Fire an event named changep1281 at the inputp493 element, with the bubbles attribute initialized to true.

Constraint validation: If the element is requiredp523 and the list of selected filesp515 is empty, then the element is suffering from
being missingp590.

The accept attribute may be specified to provide user agents with a hint of what file types will be accepted.

If specified, the attribute must consist of a set of comma-separated tokensp87, each of which must be an ASCII case-insensitive match
for one of the following:

The string "audio/*"
Indicates that sound files are accepted.

The string "video/*"
Indicates that video files are accepted.

The string "image/*"
Indicates that image files are accepted.

A valid MIME type string with no parameters
Indicates that files of the specified type are accepted.

A string whose first character is a U+002E FULL STOP character (.)
Indicates that files with the specified file extension are accepted.

The tokens must not be ASCII case-insensitive matches for any of the other tokens (i.e. duplicates are not allowed). To obtain the list of
tokens from the attribute, the user agent must split the attribute value on commas.

User agents may use the value of this attribute to display a more appropriate user interface than a generic file picker. For instance,
given the value image/*, a user agent could offer the user the option of using a local camera or selecting a photograph from their
photo collection; given the value audio/*, a user agent could offer the user the option of recording a clip using a headset microphone.

User agents should prevent the user from selecting files that are not accepted by one (or more) of these tokens.

Authors are encouraged to specify both any MIME types and any corresponding extensions when looking for data in a specific
format.

Note

For example, consider an application that converts Microsoft Word documents to Open Document Format files. Since Microsoft
Word documents are described with a wide variety of MIME types and extensions, the site can list several, as follows:

<input type="file" accept=".doc,.docx,.xml,application/msword,application/
vnd.openxmlformats-officedocument.wordprocessingml.document">

On platforms that only use file extensions to describe file types, the extensions listed here can be used to filter the allowed
documents, while the MIME types can be used with the system's type registration table (mapping MIME types to extensions used
by the system), if any, to determine any other extensions to allow. Similarly, on a system that does not have file names or
extensions but labels documents with MIME types internally, the MIME types can be used to pick the allowed files, while the

Example

✔ MDN

516

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#split-on-commas

Bookkeeping details

▪The following common inputp493 element content attributes and IDL attributes applyp496 to the element: acceptp516, multiplep524, and requiredp523 content
attributes; filesp533 and valuep532 IDL attributes; select()p587 method.

▪The valuep532 IDL attribute is in mode filenamep532.
▪The inputp1281 and changep1281 events applyp496.
▪The following content attributes must not be specified and do not applyp496 to the element: altp519, autocompletep573, checkedp497, dirnamep568, formactionp571,
formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, listp528, maxp526, maxlengthp522, minp526, minlengthp522, patternp525,
placeholderp530, readonlyp522, sizep522, srcp518, stepp527, and widthp449.

▪The element's valuep497 attribute must be omitted.
▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, listp534, selectionStartp587, selectionEndp587,
selectionDirectionp588, valueAsDatep533, and valueAsNumberp533 IDL attributes; setRangeText()p588, setSelectionRange()p588, stepDown()p533, and
stepUp()p533 methods.

extensions can be used if the system has an extension registration table that maps known extensions to MIME types used by the
system.

Extensions tend to be ambiguous (e.g. there are an untold number of formats that use the ".dat" extension, and
users can typically quite easily rename their files to have a ".doc" extension even if they are not Microsoft Word
documents), and MIME types tend to be unreliable (e.g. many formats have no formally registered types, and many
formats are in practice labeled using a number of different MIME types). Authors are reminded that, as usual, data
received from a client should be treated with caution, as it may not be in an expected format even if the user is not
hostile and the user agent fully obeyed the acceptp516 attribute's requirements.

⚠Warning!

For historical reasons, the valuep532 IDL attribute prefixes the file name with the string "C:\fakepath\". Some legacy user agents
actually included the full path (which was a security vulnerability). As a result of this, obtaining the file name from the valuep532 IDL
attribute in a backwards-compatible way is non-trivial. The following function extracts the file name in a suitably compatible
manner:

function extractFilename(path) {
if (path.substr(0, 12) == "C:\\fakepath\\")

return path.substr(12); // modern browser
var x;
x = path.lastIndexOf('/');
if (x >= 0) // Unix-based path

return path.substr(x+1);
x = path.lastIndexOf('\\');
if (x >= 0) // Windows-based path

return path.substr(x+1);
return path; // just the file name

}

This can be used as follows:

<p><input type=file name=image onchange="updateFilename(this.value)"></p>
<p>The name of the file you picked is: (none)</p>
<script>
function updateFilename(path) {

var name = extractFilename(path);
document.getElementById('filename').textContent = name;

}
</script>

Example

MDN

517

When an inputp493 element's typep495 attribute is in the Submit Buttonp518 state, the rules in this section apply.

The inputp493 element representsp123 a button that, when activated, submits the form. If the element has a valuep497 attribute,
the button's label must be the value of that attribute; otherwise, it must be an implementation-defined string that means
"Submit" or some such. The element is a buttonp486, specifically a submit buttonp486.

The element's input activation behaviorp498 is as follows: if the element has a form ownerp566, and the element's node document is fully
activep815, submitp596 the form ownerp566 from the inputp493 element; otherwise, do nothing.

The formactionp571, formenctypep572, formmethodp571, formnovalidatep572, and formtargetp572 attributes are attributes for form
submissionp570.

Bookkeeping details

▪The following common inputp493 element content attributes and IDL attributes applyp496 to the element: formactionp571, formenctypep572, formmethodp571,
formnovalidatep572, and formtargetp572 content attributes; valuep532 IDL attribute.

▪The valuep532 IDL attribute is in mode defaultp532.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, autocompletep573, checkedp497, dirnamep568,
heightp449, listp528, maxp526, maxlengthp522, minp526, minlengthp522, multiplep524, patternp525, placeholderp530, readonlyp522, requiredp523, sizep522, srcp518,
stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, listp534, selectionStartp587, selectionEndp587,
selectionDirectionp588, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587, setRangeText()p588, setSelectionRange()p588, stepDown()p533,
and stepUp()p533 methods.

▪The inputp1281 and changep1281 events do not applyp496.

When an inputp493 element's typep495 attribute is in the Image Buttonp518 state, the rules in this section apply.

The inputp493 element representsp123 either an image from which a user can select a coordinate and submit the form, or alternatively a
button from which the user can submit the form. The element is a buttonp486, specifically a submit buttonp486.

The image is given by the src attribute. The srcp518 attribute must be present, and must contain a valid non-empty URL potentially
surrounded by spacesp88 referencing a non-interactive, optionally animated, image resource that is neither paged nor scripted.

When any of the these events occur

• the inputp493 element's typep495 attribute is first set to the Image Buttonp518 state (possibly when the element is first
created), and the srcp518 attribute is present

• the inputp493 element's typep495 attribute is changed back to the Image Buttonp518 state, and the srcp518 attribute is present,
and its value has changed since the last time the typep495 attribute was in the Image Buttonp518 state

• the inputp493 element's typep495 attribute is in the Image Buttonp518 state, and the srcp518 attribute is set or changed

then unless the user agent cannot support images, or its support for images has been disabled, or the user agent only fetches images
on demand, or the srcp518 attribute's value is the empty string, the user agent must parsep89 the value of the srcp518 attribute value,

4.10.5.1.18 Submit Button state (type=submit) §p51

8

Since the default label is implementation-defined, and the width of the button typically depends on the button's label, the button's
width can leak a few bits of fingerprintable information. These bits are likely to be strongly correlated to the identity of the user
agent and the user's locale.

Note

The formnovalidatep572 attribute can be used to make submit buttons that do not trigger the constraint validation.
Note

4.10.5.1.19 Image Button state (type=image) §p51

8

The coordinate is sent to the server during form submissionp599 by sending two entries for the element, derived from the name of
the control but with ".x" and ".y" appended to the name with the x and y components of the coordinate respectively.

Note

✔ MDN

✔ MDN

518

https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-node-document

relative to the element's node document, and if that is successful, then:

1. Let request be a new request whose url is the resulting URL recordp89, client is the element's node document's relevant
settings objectp924, destination is "image", credentials mode is "include", and whose use-URL-credentials flag is set.

2. Fetch request.

Fetching the image must delay the load eventp1165 of the element's node document until the taskp944 that is queuedp945 by the
networking task sourcep952 once the resource has been fetched (defined below) has been run.

If the image was successfully obtained, with no network errors, and the image's type is a supported image type, and the image is a
valid image of that type, then the image is said to be available. If this is true before the image is completely downloaded, each
taskp944 that is queuedp945 by the networking task sourcep952 while the image is being fetched must update the presentation of the
image appropriately.

The user agent should apply the image sniffing rules to determine the type of the image, with the image's associated Content-Type
headersp90 giving the official type. If these rules are not applied, then the type of the image must be the type given by the image's
associated Content-Type headersp90.

User agents must not support non-image resources with the inputp493 element. User agents must not run executable code embedded
in the image resource. User agents must only display the first page of a multipage resource. User agents must not allow the resource
to act in an interactive fashion, but should honor any animation in the resource.

The taskp944 that is queuedp945 by the networking task sourcep952 once the resource has been fetched, must, if the download was
successful and the image is availablep519, queue an element taskp946 on the user interaction task sourcep952 given the inputp493

element to fire an event named loadp1282 at the inputp493 element; and otherwise, if the fetching process fails without a response from
the remote server, or completes but the image is not a valid or supported image, queue an element taskp946 on the user interaction
task sourcep952 given the inputp493 element to fire an event named errorp1281 on the inputp493 element.

The alt attribute provides the textual label for the button for users and user agents who cannot use the image. The altp519 attribute
must be present, and must contain a non-empty string giving the label that would be appropriate for an equivalent button if the image
was unavailable.

The inputp493 element supports dimension attributesp449.

If the srcp518 attribute is set, and the image is availablep519 and the user agent is configured to display that image, then: The element
representsp123 a control for selecting a coordinatep519 from the image specified by the srcp518 attribute; if the element is mutablep566,
the user agent should allow the user to select this coordinatep519, and the element's input activation behaviorp498 is as follows: if the
element has a form ownerp566, and the element's node document is fully activep815, take the user's selected coordinatep519, and
submitp596 the inputp493 element's form ownerp566 from the inputp493 element. If the user activates the control without explicitly
selecting a coordinate, then the coordinate (0,0) must be assumed.

Otherwise, the element representsp123 a submit button whose label is given by the value of the altp519 attribute; the element's input
activation behaviorp498 is as follows: if the element has a form ownerp566, and the element's node document is fully activep815, set the
selected coordinatep519 to (0,0), and submitp596 the inputp493 element's form ownerp566 from the inputp493 element.

In either case, if the element has no form ownerp566 or the element's node document is not fully activep815, then its input activation
behaviorp498 must be to do nothing..

The selected coordinate must consist of an x-component and a y-component. The coordinates represent the position relative to the
edge of the image, with the coordinate space having the positive x direction to the right, and the positive y direction downwards.

The x-component must be a valid integerp68 representing a number x in the range −(borderleft+paddingleft) ≤ x ≤
width+borderright+paddingright, where width is the rendered width of the image, borderleft is the width of the border on the left of the
image, paddingleft is the width of the padding on the left of the image, borderright is the width of the border on the right of the image,
and paddingright is the width of the padding on the right of the image, with all dimensions given in CSS pixels.

The y-component must be a valid integerp68 representing a number y in the range −(bordertop+paddingtop) ≤ y ≤
height+borderbottom+paddingbottom, where height is the rendered height of the image, bordertop is the width of the border above the
image, paddingtop is the width of the padding above the image, borderbottom is the width of the border below the image, and
paddingbottom is the width of the padding below the image, with all dimensions given in CSS pixels.

519

https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-node-document
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

Where a border or padding is missing, its width is zero CSS pixels.

The formactionp571, formenctypep572, formmethodp571, formnovalidatep572, and formtargetp572 attributes are attributes for form
submissionp570.

Bookkeeping details

▪The following common inputp493 element content attributes and IDL attributes applyp496 to the element: altp519, formactionp571, formenctypep572,
formmethodp571, formnovalidatep572, formtargetp572, heightp449, srcp518, and widthp449 content attributes; valuep532 IDL attribute.

▪The valuep532 IDL attribute is in mode defaultp532.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, autocompletep573, checkedp497, dirnamep568, listp528,
maxp526, maxlengthp522, minp526, minlengthp522, multiplep524, patternp525, placeholderp530, readonlyp522, requiredp523, sizep522, and stepp527.

▪The element's valuep497 attribute must be omitted.
▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, listp534, selectionStartp587, selectionEndp587,
selectionDirectionp588, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587, setRangeText()p588, setSelectionRange()p588, stepDown()p533,
and stepUp()p533 methods.

▪The inputp1281 and changep1281 events do not applyp496.

When an inputp493 element's typep495 attribute is in the Reset Buttonp520 state, the rules in this section apply.

The inputp493 element representsp123 a button that, when activated, resets the form. If the element has a valuep497 attribute,
the button's label must be the value of that attribute; otherwise, it must be an implementation-defined string that means
"Reset" or some such. The element is a buttonp486.

The element's input activation behaviorp498, if the element has a form ownerp566 and the element's node document is fully activep815, is
to resetp603 the form ownerp566; otherwise, it is to do nothing.

image . widthp499 [= value]
image . heightp499 [= value]

These attributes return the actual rendered dimensions of the image, or zero if the dimensions are not known.
They can be set, to change the corresponding content attributes.

For web developers (non-normative)

Many aspects of this state's behavior are similar to the behavior of the imgp320 element. Readers are encouraged to read that
section, where many of the same requirements are described in more detail.

Note

Take the following form:

<form action="process.cgi">
<input type=image src=map.png name=where alt="Show location list">

</form>

If the user clicked on the image at coordinate (127,40) then the URL used to submit the form would be
"process.cgi?where.x=127&where.y=40".

(In this example, it's assumed that for users who don't see the map, and who instead just see a button labeled "Show location list",
clicking the button will cause the server to show a list of locations to pick from instead of the map.)

Example

4.10.5.1.20 Reset Button state (type=reset) §p52

0

Since the default label is implementation-defined, and the width of the button typically depends on the button's label, the button's
width can leak a few bits of fingerprintable information. These bits are likely to be strongly correlated to the identity of the user
agent and the user's locale.

Note

✔ MDN

520

https://drafts.csswg.org/css-values/#px
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-node-document

Constraint validation: The element is barred from constraint validationp590.

Bookkeeping details

▪The valuep532 IDL attribute appliesp496 to this element and is in mode defaultp532.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, autocompletep573, checkedp497, dirnamep568,
formactionp571, formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, listp528, maxp526, maxlengthp522, minp526, minlengthp522,
multiplep524, patternp525, placeholderp530, readonlyp522, requiredp523, sizep522, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, listp534, selectionStartp587, selectionEndp587,
selectionDirectionp588, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587, setRangeText()p588, setSelectionRange()p588, stepDown()p533,
and stepUp()p533 methods.

▪The inputp1281 and changep1281 events do not applyp496.

When an inputp493 element's typep495 attribute is in the Buttonp521 state, the rules in this section apply.

The inputp493 element representsp123 a button with no default behavior. A label for the button must be provided in the valuep497

attribute, though it may be the empty string. If the element has a valuep497 attribute, the button's label must be the value of that
attribute; otherwise, it must be the empty string. The element is a buttonp486.

The element has no input activation behaviorp498.

Constraint validation: The element is barred from constraint validationp590.

Bookkeeping details

▪The valuep532 IDL attribute appliesp496 to this element and is in mode defaultp532.
▪The following content attributes must not be specified and do not applyp496 to the element: acceptp516, altp519, autocompletep573, checkedp497, dirnamep568,
formactionp571, formenctypep572, formmethodp571, formnovalidatep572, formtargetp572, heightp449, listp528, maxp526, maxlengthp522, minp526, minlengthp522,
multiplep524, patternp525, placeholderp530, readonlyp522, requiredp523, sizep522, srcp518, stepp527, and widthp449.

▪The following IDL attributes and methods do not applyp496 to the element: checkedp532, filesp533, listp534, selectionStartp587, selectionEndp587,
selectionDirectionp588, valueAsDatep533, and valueAsNumberp533 IDL attributes; select()p587, setRangeText()p588, setSelectionRange()p588, stepDown()p533,
and stepUp()p533 methods.

▪The inputp1281 and changep1281 events do not applyp496.

This section is non-normative.

The formats shown to the user in date, time, and number controls is independent of the format used for form submission.

Browsers are encouraged to use user interfaces that present dates, times, and numbers according to the conventions of either the
locale implied by the inputp493 element's languagep140 or the user's preferred locale. Using the page's locale will ensure consistency
with page-provided data.

These attributes only applyp496 to an inputp493 element if its typep495 attribute is in a state whose definition declares that the attribute
appliesp496. When an attribute doesn't applyp496 to an inputp493 element, user agents must ignorep44 the attribute, regardless of the
requirements and definitions below.

4.10.5.1.21 Button state (type=button) §p52

1

4.10.5.2 Implementation notes regarding localization of form controls §p52

1

For example, it would be confusing to users if an American English page claimed that a Cirque De Soleil show was going to be
showing on 02/03, but their browser, configured to use the British English locale, only showed the date 03/02 in the ticket purchase
date picker. Using the page's locale would at least ensure that the date was presented in the same format everywhere. (There's
still a risk that the user would end up arriving a month late, of course, but there's only so much that can be done about such
cultural differences...)

Example

4.10.5.3 Common inputp493 element attributes §p52

1

✔ MDN

521

The maxlength attribute, when it appliesp496, is a form control maxlength attributep569.

The minlength attribute, when it appliesp496, is a form control minlength attributep569.

If the inputp493 element has a maximum allowed value lengthp569, then the length of the value of the element's valuep497 attribute
must be equal to or less than the element's maximum allowed value lengthp569.

The size attribute gives the number of characters that, in a visual rendering, the user agent is to allow the user to see while editing
the element's valuep566.

The sizep522 attribute, if specified, must have a value that is a valid non-negative integerp69 greater than zero.

If the attribute is present, then its value must be parsed using the rules for parsing non-negative integers p69, and if the result is a
number greater than zero, then the user agent should ensure that at least that many characters are visible.

The sizep499 IDL attribute is limited to only non-negative numbers greater than zerop95 and has a default value of 20.

The readonly attribute is a boolean attributep67 that controls whether or not the user can edit the form control. When specified, the
element is not mutablep566.

Constraint validation: If the readonlyp522 attribute is specified on an inputp493 element, the element is barred from constraint
validationp590.

4.10.5.3.1 The maxlengthp522 and minlengthp522 attributes §p52

2

The following extract shows how a messaging client's text entry could be arbitrarily restricted to a fixed number of characters, thus
forcing any conversation through this medium to be terse and discouraging intelligent discourse.

<label>What are you doing? <input name=status maxlength=140></label>

Example

Here, a password is given a minimum length:

<p><label>Username: <input name=u required></label>
<p><label>Password: <input name=p required minlength=12></label>

Example

4.10.5.3.2 The sizep522 attribute §p52

2

4.10.5.3.3 The readonlyp522 attribute §p52

2

The difference between disabledp570 and readonlyp522 is that read-only controls can still function, whereas disabled controls
generally do not function as controls until they are enabled. This is spelled out in more detail elsewhere in this specification with
normative requirements that refer to the disabledp570 concept (for example, the element's activation behavior, whether or not it is
a focusable areap770, or when constructing the entry listp599). Any other behavior related to user interaction with disabled controls,
such as whether text can be selected or copied, is not defined in this standard.

Only text controls can be made read-only, since for other controls (such as checkboxes and buttons) there is no useful distinction
between being read-only and being disabled, so the readonlyp522 attribute does not applyp496.

Note

In the following example, the existing product identifiers cannot be modified, but they are still displayed as part of the form, for
consistency with the row representing a new product (where the identifier is not yet filled in).

Example

✔ MDN
✔ MDN

✔ MDN

522

https://infra.spec.whatwg.org/#string-length
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

The required attribute is a boolean attributep67. When specified, the element is required.

Constraint validation: If the element is requiredp523, and its valuep532 IDL attribute appliesp496 and is in the mode valuep532, and the
element is mutablep566, and the element's valuep566 is the empty string, then the element is suffering from being missingp590.

<form action="products.cgi" method="post" enctype="multipart/form-data">
<table>
<tr> <th> Product ID <th> Product name <th> Price <th> Action
<tr>
<td> <input readonly="readonly" name="1.pid" value="H412">
<td> <input required="required" name="1.pname" value="Floor lamp Ulke">
<td> $<input required="required" type="number" min="0" step="0.01" name="1.pprice"

value="49.99">
<td> <button formnovalidate="formnovalidate" name="action" value="delete:1">Delete</button>

<tr>
<td> <input readonly="readonly" name="2.pid" value="FG28">
<td> <input required="required" name="2.pname" value="Table lamp Ulke">
<td> $<input required="required" type="number" min="0" step="0.01" name="2.pprice"

value="24.99">
<td> <button formnovalidate="formnovalidate" name="action" value="delete:2">Delete</button>

<tr>
<td> <input required="required" name="3.pid" value="" pattern="[A-Z0-9]+">
<td> <input required="required" name="3.pname" value="">
<td> $<input required="required" type="number" min="0" step="0.01" name="3.pprice" value="">
<td> <button formnovalidate="formnovalidate" name="action" value="delete:3">Delete</button>

</table>
<p> <button formnovalidate="formnovalidate" name="action" value="add">Add</button> </p>
<p> <button name="action" value="update">Save</button> </p>

</form>

4.10.5.3.4 The requiredp523 attribute §p52

3

The following form has two required fields, one for an email address and one for a password. It also has a third field that is only
considered valid if the user types the same password in the password field and this third field.

<h1>Create new account</h1>
<form action="/newaccount" method=post

oninput="up2.setCustomValidity(up2.value != up.value ? 'Passwords do not match.' : '')">
<p>
<label for="username">Email address:</label>
<input id="username" type=email required name=un>

<p>
<label for="password1">Password:</label>
<input id="password1" type=password required name=up>

<p>
<label for="password2">Confirm password:</label>
<input id="password2" type=password name=up2>

<p>
<input type=submit value="Create account">

</form>

Example

For radio buttons, the requiredp523 attribute is satisfied if any of the radio buttons in the groupp514 is selected. Thus, in the
following example, any of the radio buttons can be checked, not just the one marked as required:

Example

523

The multiple attribute is a boolean attributep67 that indicates whether the user is to be allowed to specify more than one value.

<fieldset>
<legend>Did the movie pass the Bechdel test?</legend>
<p><label><input type="radio" name="bechdel" value="no-characters"> No, there are not even two

female characters in the movie. </label>
<p><label><input type="radio" name="bechdel" value="no-names"> No, the female characters never

talk to each other. </label>
<p><label><input type="radio" name="bechdel" value="no-topic"> No, when female characters talk to

each other it's always about a male character. </label>
<p><label><input type="radio" name="bechdel" value="yes" required> Yes. </label>
<p><label><input type="radio" name="bechdel" value="unknown"> I don't know. </label>

</fieldset>

To avoid confusion as to whether a radio button groupp514 is required or not, authors are encouraged to specify the attribute on all
the radio buttons in a group. Indeed, in general, authors are encouraged to avoid having radio button groups that do not have any
initially checked controls in the first place, as this is a state that the user cannot return to, and is therefore generally considered a
poor user interface.

4.10.5.3.5 The multiplep524 attribute §p52

4

The following extract shows how an email client's "To" field could accept multiple email addresses.

<label>To: <input type=email multiple name=to></label>

If the user had, amongst many friends in their user contacts database, two friends "Spider-Man" (with address
"spider@parker.example.net") and "Scarlet Witch" (with address "scarlet@avengers.example.net"), then, after the user has typed
"s", the user agent might suggest these two email addresses to the user.

Send Save Now Discard

To: s| ▼
spider@parker.example.net
scarlet@avengers.example.net

Spider-Man
Scarlet Witch

The page could also link in the user's contacts database from the site:

<label>To: <input type=email multiple name=to list=contacts></label>
...
<datalist id="contacts">
<option value="hedral@damowmow.com">
<option value="pillar@example.com">
<option value="astrophy@cute.example">
<option value="astronomy@science.example.org">

</datalist>

Suppose the user had entered "bob@example.net" into this text control, and then started typing a second email address starting
with "s". The user agent might show both the two friends mentioned earlier, as well as the "astrophy" and "astronomy" values
given in the datalistp543 element.

Example

✔ MDN

524

The pattern attribute specifies a regular expression against which the control's valuep566, or, when the multiplep524 attribute
appliesp496 and is set, the control's valuesp566, are to be checked.

If specified, the attribute's value must match the JavaScript Pattern[+U, +N] production.

The compiled pattern regular expression of an inputp493 element, if it exists, is a JavaScript RegExp object. It is determined as
follows:

1. If the element does not have a patternp525 attribute specified, then return nothing. The element has no compiled pattern
regular expressionp525.

2. Let pattern be the value of the patternp525 attribute of the element.

3. Let regexpCompletion be RegExpCreate(pattern, "u"). [JAVASCRIPT]p1288

4. If regexpCompletion is an abrupt completion, then return nothing. The element has no compiled pattern regular
expressionp525.

5. Let anchoredPattern be the string "^(?:", followed by pattern, followed by ")$".

6. Return ! RegExpCreate(anchoredPattern, "u").

A RegExp object regexp matches a string input, if ! RegExpBuiltinExec(regexp, input) is not null.

Constraint validation: If the element's valuep566 is not the empty string, and either the element's multiplep524 attribute is not
specified or it does not applyp496 to the inputp493 element given its typep495 attribute's current state, and the element has a compiled
pattern regular expressionp525 but that regular expression does not matchp525 the element's valuep566, then the element is suffering
from a pattern mismatchp590.

Constraint validation: If the element's valuep566 is not the empty string, and the element's multiplep524 attribute is specified and
appliesp496 to the inputp493 element, and the element has a compiled pattern regular expressionp525 but that regular expression does
not matchp525 each of the element's valuesp566, then the element is suffering from a pattern mismatchp590.

Send Save Now Discard

To: bob@example.net, s| ▼
spider@parker.example.net
scarlet@avengers.example.net
astronomy@science.example.org
astrophy@cute.example

Spider-Man
Scarlet Witch

The following extract shows how an email client's "Attachments" field could accept multiple files for upload.

<label>Attachments: <input type=file multiple name=att></label>

Example

4.10.5.3.6 The patternp525 attribute §p52

5

User agents are encouraged to log this error in a developer console, to aid debugging.
Note

The reasoning behind these steps, instead of just using the value of the patternp525 attribute directly, is twofold. First, we want to
ensure that when matched against a string, the regular expression's start is anchored to the start of the string and its end to the
end of the string. Second, we want to ensure that the regular expression is valid in standalone form, instead of only becoming valid
after being surrounded by the "^(?:" and ")$" anchors.

Note

✔ MDN

525

https://tc39.es/ecma262/#prod-Pattern
https://tc39.es/ecma262/#sec-regexp-regular-expression-objects
https://tc39.es/ecma262/#sec-regexpcreate
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-regexpcreate
https://tc39.es/ecma262/#sec-regexp-regular-expression-objects
https://tc39.es/ecma262/#sec-regexpbuiltinexec

When an inputp493 element has a patternp525 attribute specified, authors should include a title attribute to give a description of the
pattern. User agents may use the contents of this attribute, if it is present, when informing the user that the pattern is not matched, or
at any other suitable time, such as in a tooltip or read out by assistive technology when the control gains focusp771.

When a control has a patternp525 attribute, the titlep526 attribute, if used, must describe the pattern. Additional information could also
be included, so long as it assists the user in filling in the control. Otherwise, assistive technology would be impaired.

UAs may still show the titlep139 in non-error situations (for example, as a tooltip when hovering over the control), so authors should
be careful not to word titlep526s as if an error has necessarily occurred.

Some form controls can have explicit constraints applied limiting the allowed range of values that the user can provide. Normally, such
a range would be linear and continuous. A form control can have a periodic domain, however, in which case the form control's
broadest possible range is finite, and authors can specify explicit ranges within it that span the boundaries.

The min and max attributes indicate the allowed range of values for the element.

Their syntax is defined by the section that defines the typep495 attribute's current state.

If the element has a minp526 attribute, and the result of applying the algorithm to convert a string to a number p497 to the value of the
minp526 attribute is a number, then that number is the element's minimum; otherwise, if the typep495 attribute's current state defines a
default minimum, then that is the minimump526; otherwise, the element has no minimump526.

The minp526 attribute also defines the step basep527.

If the element has a maxp526 attribute, and the result of applying the algorithm to convert a string to a number p497 to the value of the
maxp526 attribute is a number, then that number is the element's maximum; otherwise, if the typep495 attribute's current state defines
a default maximum, then that is the maximump526; otherwise, the element has no maximump526.

If the element does not have a periodic domainp526, the maxp526 attribute's value (the maximump526) must not be less than the minp526

attribute's value (its minimump526).

For example, the following snippet:

<label> Part number:
<input pattern="[0-9][A-Z]{3}" name="part"

title="A part number is a digit followed by three uppercase letters."/>
</label>

...could cause the UA to display an alert such as:

A part number is a digit followed by three uppercase letters.
You cannot submit this form when the field is incorrect.

Example

For instance, if the title attribute contained the caption of the control, assistive technology could end up saying something like The
text you have entered does not match the required pattern. Birthday, which is not useful.

Example

4.10.5.3.7 The minp526 and maxp526 attributes §p52

6

Specifically, the broadest range of a type=timep507 control is midnight to midnight (24 hours), and authors can set both continuous
linear ranges (such as 9pm to 11pm) and discontinuous ranges spanning midnight (such as 11pm to 1am).

Example

If an element that does not have a periodic domainp526 has a maximump526 that is less than its minimump526, then so long as the
element has a valuep566, it will either be suffering from an underflowp590 or suffering from an overflowp591.

Note

526

An element has a reversed range if it has a periodic domainp526 and its maximump526 is less than its minimump526.

An element has range limitations if it has a defined minimump526 or a defined maximump526.

Constraint validation: When the element has a minimump526 and does not have a reversed rangep527, and the result of applying the
algorithm to convert a string to a number p497 to the string given by the element's valuep566 is a number, and the number obtained from
that algorithm is less than the minimump526, the element is suffering from an underflowp590.

Constraint validation: When the element has a maximump526 and does not have a reversed rangep527, and the result of applying the
algorithm to convert a string to a number p497 to the string given by the element's valuep566 is a number, and the number obtained from
that algorithm is more than the maximump526, the element is suffering from an overflowp591.

Constraint validation: When an element has a reversed rangep527, and the result of applying the algorithm to convert a string to a
numberp497 to the string given by the element's valuep566 is a number, and the number obtained from that algorithm is more than the
maximump526 and less than the minimump526, the element is simultaneously suffering from an underflowp590 and suffering from an
overflowp591.

The step attribute indicates the granularity that is expected (and required) of the valuep566 or valuesp566, by limiting the allowed
values. The section that defines the typep495 attribute's current state also defines the default step, the step scale factor, and in
some cases the default step base, which are used in processing the attribute as described below.

The stepp527 attribute, if specified, must either have a value that is a valid floating-point numberp69 that parsesp70 to a number that is
greater than zero, or must have a value that is an ASCII case-insensitive match for the string "any".

The attribute provides the allowed value step for the element, as follows:

1. If the attribute does not applyp496, then there is no allowed value stepp527.

2. Otherwise, if the attribute is absent, then the allowed value stepp527 is the default stepp527 multiplied by the step scale
factorp527.

3. Otherwise, if the attribute's value is an ASCII case-insensitive match for the string "any", then there is no allowed value
stepp527.

4. Otherwise, if the rules for parsing floating-point number values p70, when they are applied to the attribute's value, return an
error, zero, or a number less than zero, then the allowed value stepp527 is the default stepp527 multiplied by the step scale
factorp527.

5. Otherwise, the allowed value stepp527 is the number returned by the rules for parsing floating-point number values p70 when
they are applied to the attribute's value, multiplied by the step scale factorp527.

The step base is the value returned by the following algorithm:

The following date control limits input to dates that are before the 1980s:

<input name=bday type=date max="1979-12-31">

Example

The following number control limits input to whole numbers greater than zero:

<input name=quantity required="" type="number" min="1" value="1">

Example

The following time control limits input to those minutes that occur between 9pm and 6am, defaulting to midnight:

<input name="sleepStart" type=time min="21:00" max="06:00" step="60" value="00:00">

Example

4.10.5.3.8 The stepp527 attribute §p52

7

527

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

1. If the element has a minp526 content attribute, and the result of applying the algorithm to convert a string to a number p497 to
the value of the minp526 content attribute is not an error, then return that result.

2. If the element has a valuep497 content attribute, and the result of applying the algorithm to convert a string to a number p497

to the value of the valuep497 content attribute is not an error, then return that result.

3. If a default step basep527 is defined for this element given its typep495 attribute's state, then return it.

4. Return zero.

Constraint validation: When the element has an allowed value stepp527, and the result of applying the algorithm to convert a string
to a numberp497 to the string given by the element's valuep566 is a number, and that number subtracted from the step basep527 is not an
integral multiple of the allowed value stepp527, the element is suffering from a step mismatchp591.

The list attribute is used to identify an element that lists predefined options suggested to the user.

If present, its value must be the ID of a datalistp543 element in the same tree.

The suggestions source element is the first element in the tree in tree order to have an ID equal to the value of the listp528

attribute, if that element is a datalistp543 element. If there is no listp528 attribute, or if there is no element with that ID, or if the first
element with that ID is not a datalistp543 element, then there is no suggestions source elementp528.

If there is a suggestions source elementp528, then, when the user agent is allowing the user to edit the inputp493 element's valuep566,
the user agent should offer the suggestions represented by the suggestions source elementp528 to the user in a manner suitable for the
type of control used. If appropriate, the user agent should use the suggestion's labelp546 and valuep546 to identify the suggestion to the
user.

User agents are encouraged to filter the suggestions represented by the suggestions source elementp528 when the number of
suggestions is large, including only the most relevant ones (e.g. based on the user's input so far). No precise threshold is defined, but
capping the list at four to seven values is reasonable. If filtering based on the user's input, user agents should use substring matching
against both the suggestions' labelp546 and valuep546.

The following range control only accepts values in the range 0..1, and allows 256 steps in that range:

<input name=opacity type=range min=0 max=1 step=0.00392156863>

Example

The following control allows any time in the day to be selected, with any accuracy (e.g. thousandth-of-a-second accuracy or more):

<input name=favtime type=time step=any>

Normally, time controls are limited to an accuracy of one minute.

Example

4.10.5.3.9 The listp528 attribute §p52

8

This text field allows you to choose a type of JavaScript function.

<input type="text" list="function-types">
<datalist id="function-types">

<option value="function">function</option>
<option value="async function">async function</option>
<option value="function*">generator function</option>
<option value="=>">arrow function</option>
<option value="async =>">async arrow function</option>
<option value="async function*">async generator function</option>

</datalist>

Example

528

https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id

How user selections of suggestions are handled depends on whether the element is a control accepting a single value only, or whether
it accepts multiple values:

↪ If the element does not have a multiplep524 attribute specified or if the multiplep524 attribute does not applyp496

When the user selects a suggestion, the inputp493 element's valuep566 must be set to the selected suggestion's valuep546, as if
the user had written that value themself.

↪ If the element's typep495 attribute is in the Emailp502 state and the element has a multiplep524 attribute specified
When the user selects a suggestion, the user agent must either add a new entry to the inputp493 element's valuesp566, whose
value is the selected suggestion's valuep546, or change an existing entry in the inputp493 element's valuesp566 to have the value
given by the selected suggestion's valuep546, as if the user had themself added an entry with that value, or edited an existing
entry to be that value. Which behavior is to be applied depends on the user interface in an implementation-defined manner.

If the listp528 attribute does not applyp496, there is no suggestions source elementp528.

For user agents that follow the above suggestions, both the labelp546 and valuep546 would be shown:

▼
function
async function
function*
=>
async =>
async function*

function
async function

generator function
arrow function

async arrow function
async generator function

Then, typing "arrow" or "=>" would filter the list to the entries with labels "arrow function" and "async arrow function". Typing
"generator" or "*" would filter the list to the entries with labels "generator function" and "async generator function".

As always, user agents are free to make user interface decisions which are appropriate for their particular requirements and for the
user's particular circumstances. However, this has historically been an area of confusion for implementers, web developers, and
users alike, so we've given some "should" suggestions above.

Note

This URL field offers some suggestions.

<label>Homepage: <input name=hp type=url list=hpurls></label>
<datalist id=hpurls>
<option value="https://www.google.com/" label="Google">
<option value="https://www.reddit.com/" label="Reddit">

</datalist>

Other URLs from the user's history might show also; this is up to the user agent.

Example

This example demonstrates how to design a form that uses the autocompletion list feature while still degrading usefully in legacy
user agents.

If the autocompletion list is merely an aid, and is not important to the content, then simply using a datalistp543 element with
children optionp545 elements is enough. To prevent the values from being rendered in legacy user agents, they need to be placed
inside the valuep546 attribute instead of inline.

<p>

Example

529

https://infra.spec.whatwg.org/#implementation-defined

The placeholder attribute represents a short hint (a word or short phrase) intended to aid the user with data entry when the control
has no value. A hint could be a sample value or a brief description of the expected format. The attribute, if specified, must have a
value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters.

The placeholderp530 attribute should not be used as an alternative to a labelp490. For a longer hint or other advisory text, the
titlep139 attribute is more appropriate.

User agents should present this hint to the user, after having stripped newlines from it, when the element's valuep566 is the empty
string, especially if the control is not focusedp771.

If a user agent normally doesn't show this hint to the user when the control is focusedp771, then the user agent should nonetheless
show the hint for the control if it was focused as a result of the autofocusp782 attribute, since in that case the user will not have had an
opportunity to examine the control before focusing it.

<label>
Enter a breed:
<input type="text" name="breed" list="breeds">
<datalist id="breeds">
<option value="Abyssinian">
<option value="Alpaca">
<!-- ... -->

</datalist>
</label>

</p>

However, if the values need to be shown in legacy UAs, then fallback content can be placed inside the datalistp543 element, as
follows:

<p>
<label>
Enter a breed:
<input type="text" name="breed" list="breeds">

</label>
<datalist id="breeds">
<label>
or select one from the list:
<select name="breed">
<option value=""> (none selected)
<option>Abyssinian
<option>Alpaca
<!-- ... -->

</select>
</label>

</datalist>
</p>

The fallback content will only be shown in UAs that don't support datalistp543. The options, on the other hand, will be detected by
all UAs, even though they are not children of the datalistp543 element.

Note that if an optionp545 element used in a datalistp543 is selectedp547, it will be selected by default by legacy UAs (because it
affects the selectp537), but it will not have any effect on the inputp493 element in UAs that support datalistp543.

4.10.5.3.10 The placeholderp530 attribute §p53

0

These mechanisms are very similar but subtly different: the hint given by the control's labelp490 is shown at all times; the short
hint given in the placeholderp530 attribute is shown before the user enters a value; and the hint in the titlep139 attribute is shown
when the user requests further help.

Note

✔ MDN

530

https://infra.spec.whatwg.org/#strip-newlines

Here is an example of a mail configuration user interface that uses the placeholderp530 attribute:

<fieldset>
<legend>Mail Account</legend>
<p><label>Name: <input type="text" name="fullname" placeholder="John Ratzenberger"></label></p>
<p><label>Address: <input type="email" name="address" placeholder="john@example.net"></label></p>
<p><label>Password: <input type="password" name="password"></label></p>
<p><label>Description: <input type="text" name="desc" placeholder="My Email Account"></label></p>

</fieldset>

Example

In situations where the control's content has one directionality but the placeholder needs to have a different directionality,
Unicode's bidirectional-algorithm formatting characters can be used in the attribute value:

<input name=t1 type=tel placeholder="‫ 1 الهاتف رقم ‮">
<input name=t2 type=tel placeholder="‫ 2 الهاتف رقم ‮">

For slightly more clarity, here's the same example using numeric character references instead of inline Arabic:

<input name=t1 type=tel
placeholder="‫رقم الهاتف 1‮">
<input name=t2 type=tel
placeholder="‫رقم الهاتف 2‮">

Example

4.10.5.4 Common inputp493 element APIs §p53

1

input . valuep532 [= value]
Returns the current valuep566 of the form control.
Can be set, to change the value.
Throws an "InvalidStateError" DOMException if it is set to any value other than the empty string when the control is a file
upload control.

input . checkedp532 [= value]
Returns the current checkednessp566 of the form control.
Can be set, to change the checkednessp566.

input . filesp533 [= files]
Returns a FileList object listing the selected filesp515 of the form control.
Returns null if the control isn't a file control.
Can be set to a FileList object to change the selected filesp515 of the form control. For instance, as the result of a drag-and-
drop operation.

input . valueAsDatep533 [= value]
Returns a Date object representing the form control's valuep566, if applicable; otherwise, returns null.
Can be set, to change the value.
Throws an "InvalidStateError" DOMException if the control isn't date- or time-based.

input . valueAsNumberp533 [= value]
Returns a number representing the form control's valuep566, if applicable; otherwise, returns NaN.
Can be set, to change the value. Setting this to NaN will set the underlying value to the empty string.
Throws an "InvalidStateError" DOMException if the control is neither date- or time-based nor numeric.

For web developers (non-normative)

531

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#filelist-section
https://tc39.es/ecma262/#sec-date-objects
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

The value IDL attribute allows scripts to manipulate the valuep566 of an inputp493 element. The attribute is in one of the following
modes, which define its behavior:

value
On getting, return the current valuep566 of the element.

On setting:

1. Let oldValue be the element's valuep566.

2. Set the element's valuep566 to the new value.

3. Set the element's dirty value flagp566 to true.

4. Invoke the value sanitization algorithmp497, if the element's typep495 attribute's current state defines one.

5. If the element's valuep566 (after applying the value sanitization algorithmp497) is different from oldValue, and the element
has a text entry cursor positionp586, move the text entry cursor positionp586 to the end of the text control, unselecting any
selected text and resetting the selection directionp587 to "none".

default
On getting, if the element has a valuep497 content attribute, return that attribute's value; otherwise, return the empty string.

On setting, set the value of the element's valuep497 content attribute to the new value.

default/on
On getting, if the element has a valuep497 content attribute, return that attribute's value; otherwise, return the string "on".

On setting, set the value of the element's valuep497 content attribute to the new value.

filename
On getting, return the string "C:\fakepath\" followed by the name of the first file in the list of selected filesp515, if any, or the empty
string if the list is empty.

On setting, if the new value is the empty string, empty the list of selected filesp515; otherwise, throw an "InvalidStateError"
DOMException.

The checked IDL attribute allows scripts to manipulate the checkednessp566 of an inputp493 element. On getting, it must return the
current checkednessp566 of the element; and on setting, it must set the element's checkednessp566 to the new value and set the
element's dirty checkedness flagp497 to true.

input . stepUpp533([n])
input . stepDownp533([n])

Changes the form control's valuep566 by the value given in the stepp527 attribute, multiplied by n. The default value for n is 1.
Throws "InvalidStateError" DOMException if the control is neither date- or time-based nor numeric, or if the stepp527

attribute's value is "any".

input . listp534

Returns the datalistp543 element indicated by the listp528 attribute.

This "fakepath" requirement is a sad accident of history. See the example in the File Upload state section p517 for more
information.

Note

Since path componentsp515 are not permitted in file names in the list of selected filesp515, the "\fakepath\" cannot be mistaken
for a path component.

Note

532

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

The files IDL attribute allows scripts to access the element's selected filesp515.

On getting, if the IDL attribute appliesp496, it must return a FileList object that represents the current selected filesp515. The same
object must be returned until the list of selected filesp515 changes. If the IDL attribute does not applyp496, then it must instead return
null. [FILEAPI]p1287

On setting, it must run these steps:

1. If the IDL attribute does not applyp496 or the given value is null, then return.

2. Replace the element's selected filesp515 with the given value.

The valueAsDate IDL attribute represents the valuep566 of the element, interpreted as a date.

On getting, if the valueAsDatep533 attribute does not applyp496, as defined for the inputp493 element's typep495 attribute's current state,
then return null. Otherwise, run the algorithm to convert a string to a Date objectp497 defined for that state to the element's valuep566; if
the algorithm returned a Date object, then return it, otherwise, return null.

On setting, if the valueAsDatep533 attribute does not applyp496, as defined for the inputp493 element's typep495 attribute's current state,
then throw an "InvalidStateError" DOMException; otherwise, if the new value is not null and not a Date object throw a TypeError
exception; otherwise if the new value is null or a Date object representing the NaN time value, then set the valuep566 of the element to
the empty string; otherwise, run the algorithm to convert a Date object to a stringp497, as defined for that state, on the new value, and
set the valuep566 of the element to the resulting string.

The valueAsNumber IDL attribute represents the valuep566 of the element, interpreted as a number.

On getting, if the valueAsNumberp533 attribute does not applyp496, as defined for the inputp493 element's typep495 attribute's current
state, then return a Not-a-Number (NaN) value. Otherwise, run the algorithm to convert a string to a number p497 defined for that state
to the element's valuep566; if the algorithm returned a number, then return it, otherwise, return a Not-a-Number (NaN) value.

On setting, if the new value is infinite, then throw a TypeError exception. Otherwise, if the valueAsNumberp533 attribute does not
applyp496, as defined for the inputp493 element's typep495 attribute's current state, then throw an "InvalidStateError" DOMException.
Otherwise, if the new value is a Not-a-Number (NaN) value, then set the valuep566 of the element to the empty string. Otherwise, run
the algorithm to convert a number to a string p497, as defined for that state, on the new value, and set the valuep566 of the element to
the resulting string.

The stepDown(n) and stepUp(n) methods, when invoked, must run the following algorithm:

1. If the stepDown()p533 and stepUp()p533 methods do not applyp496, as defined for the inputp493 element's typep495 attribute's
current state, then throw an "InvalidStateError" DOMException.

2. If the element has no allowed value stepp527, then throw an "InvalidStateError" DOMException.

3. If the element has a minimump526 and a maximump526 and the minimump526 is greater than the maximump526, then return.

4. If the element has a minimump526 and a maximump526 and there is no value greater than or equal to the element's
minimump526 and less than or equal to the element's maximump526 that, when subtracted from the step basep527, is an
integral multiple of the allowed value stepp527, then return.

5. If applying the algorithm to convert a string to a number p497 to the string given by the element's valuep566 does not result in
an error, then let value be the result of that algorithm. Otherwise, let value be zero.

6. Let valueBeforeStepping be value.

7. If value subtracted from the step basep527 is not an integral multiple of the allowed value stepp527, then set value to the
nearest value that, when subtracted from the step basep527, is an integral multiple of the allowed value stepp527, and that is
less than value if the method invoked was the stepDown()p533 method, and more than value otherwise.

Otherwise (value subtracted from the step basep527 is an integral multiple of the allowed value stepp527):

1. Let n be the argument.

2. Let delta be the allowed value stepp527 multiplied by n.

✔ MDN

533

https://w3c.github.io/FileAPI/#filelist-section
https://tc39.es/ecma262/#sec-date-objects
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

3. If the method invoked was the stepDown()p533 method, negate delta.

4. Let value be the result of adding delta to value.

8. If the element has a minimump526, and value is less than that minimump526, then set value to the smallest value that, when
subtracted from the step basep527, is an integral multiple of the allowed value stepp527, and that is more than or equal to
minimum.

9. If the element has a maximump526, and value is greater than that maximump526, then set value to the largest value that,
when subtracted from the step basep527, is an integral multiple of the allowed value stepp527, and that is less than or equal to
maximum.

10. If either the method invoked was the stepDown()p533 method and value is greater than valueBeforeStepping, or the method
invoked was the stepUp()p533 method and value is less than valueBeforeStepping, then return.

11. Let value as string be the result of running the algorithm to convert a number to a string p497, as defined for the inputp493

element's typep495 attribute's current state, on value.

12. Set the valuep566 of the element to value as string.

The list IDL attribute must return the current suggestions source elementp528, if any, or null otherwise.

When the inputp1281 and changep1281 events applyp496 (which is the case for all inputp493 controls other than buttonsp486 and those with
the typep495 attribute in the Hiddenp499 state), the events are fired to indicate that the user has interacted with the control. The
inputp1281 event fires whenever the user has modified the data of the control. The changep1281 event fires when the value is committed,
if that makes sense for the control, or else when the control loses focusp777. In all cases, the inputp1281 event comes before the
corresponding changep1281 event (if any).

When an inputp493 element has a defined input activation behaviorp498, the rules for dispatching these events, if they applyp496, are
given in the section above that defines the typep495 attribute's state. (This is the case for all inputp493 controls with the typep495

attribute in the Checkboxp513 state, the Radio Buttonp514 state, or the File Uploadp515 state.)

For inputp493 elements without a defined input activation behaviorp498, but to which these events applyp496, and for which the user
interface involves both interactive manipulation and an explicit commit action, then when the user changes the element's valuep566,
the user agent must queue an element taskp946 on the user interaction task sourcep952 given the inputp493 element to fire an event
named inputp1281 at the inputp493 element, with the bubbles and composed attributes initialized to true, and any time the user
commits the change, the user agent must queue an element taskp946 on the user interaction task sourcep952 given the inputp493

element to fire an event named changep1281 at the inputp493 element, with the bubbles attribute initialized to true.

For inputp493 elements without a defined input activation behaviorp498, but to which these events applyp496, and for which the user
interface involves an explicit commit action but no intermediate manipulation, then any time the user commits a change to the
element's valuep566, the user agent must queue an element taskp946 on the user interaction task sourcep952 given the inputp493 element
to first fire an event named inputp1281 at the inputp493 element, with the bubbles and composed attributes initialized to true, and then
fire an event named changep1281 at the inputp493 element, with the bubbles attribute initialized to true.

This ensures that invoking the stepUp()p533 method on the inputp493 element in the following example does not change
the valuep566 of that element:

<input type=number value=1 max=0>

Example

4.10.5.5 Common event behaviors §p53

4

An example of a user interface involving both interactive manipulation and a commit action would be a Rangep510 controls that use
a slider, when manipulated using a pointing device. While the user is dragging the control's knob, inputp1281 events would fire
whenever the position changed, whereas the changep1281 event would only fire when the user let go of the knob, committing to a
specific value.

Example

534

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles

For inputp493 elements without a defined input activation behaviorp498, but to which these events applyp496, any time the user causes
the element's valuep566 to change without an explicit commit action, the user agent must queue an element taskp946 on the user
interaction task sourcep952 given the inputp493 element to fire an event named inputp1281 at the inputp493 element, with the bubbles
and composed attributes initialized to true. The corresponding changep1281 event, if any, will be fired when the control loses focusp777.

In the case of tasksp944 that just fire an inputp1281 event, user agents may wait for a suitable break in the user's interaction before
queuingp946 the tasks; for example, a user agent could wait for the user to have not hit a key for 100ms, so as to only fire the event
when the user pauses, instead of continuously for each keystroke.

When the user agent is to change an inputp493 element's valuep566 on behalf of the user (e.g. as part of a form prefilling feature), the
user agent must queue an element taskp946 on the user interaction task sourcep952 given the inputp493 element to first update the
valuep566 accordingly, then fire an event named inputp1281 at the inputp493 element, with the bubbles and composed attributes
initialized to true, then fire an event named changep1281 at the inputp493 element, with the bubbles attribute initialized to true.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Interactive contentp132.
Listedp486, labelablep486, submittablep486, and autocapitalize-inheritingp486 form-associated elementp486.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132, but there must be no interactive contentp132 descendant and no descendant with the tabindexp773

attribute specified.

Tag omission in text/htmlp128:
Neither tag is omissible.

An example of a user interface with a commit action would be a Colorp513 control that consists of a single button that brings up a
color wheel: if the valuep566 only changes when the dialog is closed, then that would be the explicit commit action. On the other
hand, if manipulating the control changes the color interactively, then there might be no commit action.

Example

Another example of a user interface with a commit action would be a Datep504 control that allows both text-based user input and
user selection from a drop-down calendar: while text input might not have an explicit commit step, selecting a date from the drop
down calendar and then dismissing the drop down would be a commit action.

Example

Examples of a user changing the element's valuep566 would include the user typing into a text control, pasting a new value into the
control, or undoing an edit in that control. Some user interactions do not cause changes to the value, e.g., hitting the "delete" key
in an empty text control, or replacing some text in the control with text from the clipboard that happens to be exactly the same
text.

Example

A Rangep510 control in the form of a slider that the user has focusedp771 and is interacting with using a keyboard would be another
example of the user changing the element's valuep566 without a commit step.

Example

These events are not fired in response to changes made to the values of form controls by scripts. (This is to make it easier to
update the values of form controls in response to the user manipulating the controls, without having to then filter out the script's
own changes to avoid an infinite loop.)

Note

4.10.6 The button element §p53

5

✔ MDN

✔ MDN

535

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles

Content attributesp128:
Global attributesp136

disabledp570 — Whether the form control is disabled
formp566 — Associates the element with a formp486 element
formactionp571 — URL to use for form submissionp595

formenctypep572 — Entry list encoding type to use for form submissionp595

formmethodp571 — Variant to use for form submissionp595

formnovalidatep572 — Bypass form control validation for form submissionp595

formtargetp572 — Browsing contextp811 for form submissionp595

namep568 — Name of the element to use for form submissionp595 and in the form.elementsp488 API
typep536 — Type of button
valuep537 — Value to be used for form submissionp595

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLButtonElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute USVString formAction;
[CEReactions] attribute DOMString formEnctype;
[CEReactions] attribute DOMString formMethod;
[CEReactions] attribute boolean formNoValidate;
[CEReactions] attribute DOMString formTarget;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

readonly attribute NodeList labels;
};

The buttonp535 element representsp123 a button labeled by its contents.

The element is a buttonp486.

The type attribute controls the behavior of the button when it is activated. It is an enumerated attributep68. The following table lists the
keywords and states for the attribute — the keywords in the left column map to the states in the cell in the second column on the same
row as the keyword.

Keyword State Brief description

submit Submit Buttonp537 Submits the form.
reset Reset Buttonp537 Resets the form.
button Buttonp537 Does nothing.

The missing value defaultp68 and invalid value defaultp68 are the Submit Buttonp537 state.

If the typep536 attribute is in the Submit Buttonp537 state, the element is specifically a submit buttonp486.

Constraint validation: If the typep536 attribute is in the Reset Buttonp537 state or the Buttonp537 state, the element is barred from

IDL

536

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/html-aria/#el-button
https://w3c.github.io/html-aam/#el-button
https://dom.spec.whatwg.org/#interface-nodelist

constraint validationp590.

A buttonp535 element's activation behavior is to run the steps defined in the following list for the current state of this element's typep536

attribute, if this element is not disabledp570, and do nothing otherwise:

Submit Button
If the element has a form ownerp566 and the element's node document is fully activep815, the element must submitp596 the form
ownerp566 from the buttonp535 element.

Reset Button
If the element has a form ownerp566 and the element's node document is fully activep815, the element must resetp603 the form
ownerp566.

Button
Do nothing.

The formp566 attribute is used to explicitly associate the buttonp535 element with its form ownerp566. The namep568 attribute represents
the element's name. The disabledp570 attribute is used to make the control non-interactive and to prevent its value from being
submitted. The formactionp571, formenctypep572, formmethodp571, formnovalidatep572, and formtargetp572 attributes are attributes for
form submissionp570.

The formactionp571, formenctypep572, formmethodp571, formnovalidatep572, and formtargetp572 must not be specified if the element's
typep536 attribute is not in the Submit Buttonp537 state.

The value attribute gives the element's value for the purposes of form submission. The element's valuep566 is the value of the
element's valuep537 attribute, if there is one, or the empty string otherwise.

The value IDL attribute must reflectp94 the content attribute of the same name.

The type IDL attribute must reflectp94 the content attribute of the same name, limited to only known valuesp95.

The willValidatep593, validityp593, and validationMessagep595 IDL attributes, and the checkValidity()p594, reportValidity()p595,
and setCustomValidity()p593 methods, are part of the constraint validation APIp592. The labelsp492 IDL attribute provides a list of the
element's labelp490s. The disabledp570, formp568, and namep568 IDL attributes are part of the element's forms API.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Interactive contentp132.
Listedp486, labelablep486, submittablep486, resettablep486, and autocapitalize-inheritingp486 form-associated elementp486.

The formnovalidatep572 attribute can be used to make submit buttons that do not trigger the constraint validation.
Note

A button (and its value) is only included in the form submission if the button itself was used to initiate the form submission.
Note

The following button is labeled "Show hint" and pops up a dialog box when activated:

<button type=button
onclick="alert('This 15-20 minute piece was composed by George Gershwin.')">

Show hint
</button>

Example

4.10.7 The select element §p53

7

✔ MDN

✔ MDN

537

https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Zero or more optionp545, optgroupp544, and script-supportingp133 elements.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

autocompletep573 — Hint for form autofill feature
disabledp570 — Whether the form control is disabled
formp566 — Associates the element with a formp486 element
multiplep539 — Whether to allow multiple values
namep568 — Name of the element to use for form submissionp595 and in the form.elementsp488 API
requiredp539 — Whether the control is required for form submissionp595

sizep539 — Size of the control

Accessibility considerationsp129:
If the element has a multiplep539 attribute or a sizep539 attribute with a value > 1: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLSelectElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString autocomplete;
[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute boolean multiple;
[CEReactions] attribute DOMString name;
[CEReactions] attribute boolean required;
[CEReactions] attribute unsigned long size;

readonly attribute DOMString type;

[SameObject] readonly attribute HTMLOptionsCollection options;
[CEReactions] attribute unsigned long length;
getter Element? item(unsigned long index);
HTMLOptionElement? namedItem(DOMString name);
[CEReactions] undefined add((HTMLOptionElement or HTMLOptGroupElement) element, optional

(HTMLElement or long)? before = null);
[CEReactions] undefined remove(); // ChildNode overload
[CEReactions] undefined remove(long index);
[CEReactions] setter undefined (unsigned long index, HTMLOptionElement? option);

[SameObject] readonly attribute HTMLCollection selectedOptions;
attribute long selectedIndex;
attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

readonly attribute NodeList labels;

IDL

538

https://w3c.github.io/html-aria/#el-select-multiple-or-size-greater-1
https://w3c.github.io/html-aam/#el-select-listbox
https://w3c.github.io/html-aria/#el-select
https://w3c.github.io/html-aam/#el-select-combobox
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-nodelist

};

The selectp537 element represents a control for selecting amongst a set of options.

The multiple attribute is a boolean attributep67. If the attribute is present, then the selectp537 element representsp123 a control for
selecting zero or more options from the list of optionsp539. If the attribute is absent, then the selectp537 element representsp123 a
control for selecting a single option from the list of optionsp539.

The size attribute gives the number of options to show to the user. The sizep539 attribute, if specified, must have a value that is a
valid non-negative integerp69 greater than zero.

The display size of a selectp537 element is the result of applying the rules for parsing non-negative integers p69 to the value of
element's sizep539 attribute, if it has one and parsing it is successful. If applying those rules to the attribute's value is not successful, or
if the sizep539 attribute is absent, then the element's display sizep539 is 4 if the element's multiplep539 content attribute is present, and
1 otherwise.

The list of options for a selectp537 element consists of all the optionp545 element children of the selectp537 element, and all the
optionp545 element children of all the optgroupp544 element children of the selectp537 element, in tree order.

The required attribute is a boolean attributep67. When specified, the user will be required to select a value before submitting the form.

If a selectp537 element has a requiredp539 attribute specified, does not have a multiplep539 attribute specified, and has a display
sizep539 of 1; and if the valuep546 of the first optionp545 element in the selectp537 element's list of optionsp539 (if any) is the empty
string, and that optionp545 element's parent node is the selectp537 element (and not an optgroupp544 element), then that optionp545 is
the selectp537 element's placeholder label option.

If a selectp537 element has a requiredp539 attribute specified, does not have a multiplep539 attribute specified, and has a display
sizep539 of 1, then the selectp537 element must have a placeholder label optionp539.

Constraint validation: If the element has its requiredp539 attribute specified, and either none of the optionp545 elements in the
selectp537 element's list of optionsp539 have their selectednessp547 set to true, or the only optionp545 element in the selectp537

element's list of optionsp539 with its selectednessp547 set to true is the placeholder label optionp539, then the element is suffering from
being missingp590.

If the multiplep539 attribute is absent, and the element is not disabledp570, then the user agent should allow the user to pick an
optionp545 element in its list of optionsp539 that is itself not disabledp546. Upon this optionp545 element being picked (either through a
click, or through unfocusing the element after changing its value, or through a menu commandp609, or through any other mechanism),
and before the relevant user interaction event is queued (e.g. before the click event), the user agent must set the selectednessp547 of
the picked optionp545 element to true, set its dirtinessp547 to true, and then send select update notificationsp540.

If the multiplep539 attribute is absent, whenever an optionp545 element in the selectp537 element's list of optionsp539 has its
selectednessp547 set to true, and whenever an optionp545 element with its selectednessp547 set to true is added to the selectp537

element's list of optionsp539, the user agent must set the selectednessp547 of all the other optionp545 elements in its list of optionsp539 to
false.

If the multiplep539 attribute is absent and the element's display sizep539 is greater than 1, then the user agent should also allow the
user to request that the optionp545 whose selectednessp547 is true, if any, be unselected. Upon this request being conveyed to the user
agent, and before the relevant user interaction event is queued (e.g. before the click event), the user agent must set the
selectednessp547 of that optionp545 element to false, set its dirtinessp547 to true, and then send select update notificationsp540.

If nodes are insertedp44 or nodes are removedp44 causing the list of optionsp539 to gain or lose one or more optionp545 elements, or if an
optionp545 element in the list of optionsp539 asks for a reset, then, if the selectp537 element's multiplep539 attribute is absent, the
user agent must run the first applicable set of steps from the following list:

↪ If the selectp537 element's display sizep539 is 1, and no optionp545 elements in the selectp537 element's list of
optionsp539 have their selectednessp547 set to true

Set the selectednessp547 of the first optionp545 element in the list of optionsp539 in tree order that is not disabledp546, if any, to

In practice, the requirement stated in the paragraph above can only apply when a selectp537 element does not have a sizep539

attribute with a value greater than 1.

Note

539

https://dom.spec.whatwg.org/#concept-tree-order
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#concept-tree-order

true.

↪ If two or more optionp545 elements in the selectp537 element's list of optionsp539 have their selectednessp547 set to
true

Set the selectednessp547 of all but the last optionp545 element with its selectednessp547 set to true in the list of optionsp539 in tree
order to false.

If the multiplep539 attribute is present, and the element is not disabledp570, then the user agent should allow the user to toggle the
selectednessp547 of the optionp545 elements in its list of optionsp539 that are themselves not disabledp546. Upon such an element being
toggledp540 (either through a click, or through a menu commandp609, or any other mechanism), and before the relevant user interaction
event is queued (e.g. before a related click event), the selectednessp547 of the optionp545 element must be changed (from true to
false or false to true), the dirtinessp547 of the element must be set to true, and the user agent must send select update
notificationsp540.

When the user agent is to send select update notifications, queue an element taskp946 on the user interaction task sourcep952 given
the selectp537 element to run these steps:

1. Fire an event named inputp1281 at the selectp537 element, with the bubbles and composed attributes initialized to true.

2. Fire an event named changep1281 at the selectp537 element, with the bubbles attribute initialized to true.

The reset algorithmp604 for selectp537 elements is to go through all the optionp545 elements in the element's list of optionsp539, set their
selectednessp547 to true if the optionp545 element has a selectedp547 attribute, and false otherwise, set their dirtinessp547 to false, and
then have the optionp545 elements ask for a resetp539.

The formp566 attribute is used to explicitly associate the selectp537 element with its form ownerp566. The namep568 attribute represents
the element's name. The disabledp570 attribute is used to make the control non-interactive and to prevent its value from being
submitted. The autocompletep573 attribute controls how the user agent provides autofill behavior.

A selectp537 element that is not disabledp570 is mutablep566.

select . typep541

Returns "select-multiple" if the element has a multiplep539 attribute, and "select-one" otherwise.

select . optionsp541

Returns an HTMLOptionsCollectionp100 of the list of optionsp539.

select . lengthp541 [= value]
Returns the number of elements in the list of optionsp539.
When set to a smaller number, truncates the number of optionp545 elements in the selectp537.
When set to a greater number, adds new blank optionp545 elements to the selectp537.

element = select . itemp541(index)
select[index]

Returns the item with index index from the list of optionsp539. The items are sorted in tree order.

element = select . namedItemp541(name)
Returns the first item with ID or namep1233 name from the list of optionsp539.
Returns null if no element with that ID could be found.

select . addp541(element [, before])
Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before the item with that number, or an element from
the list of optionsp539, in which case element is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at the end of the list.
This method will throw a "HierarchyRequestError" DOMException if element is an ancestor of the element into which it is to be
inserted.

select . selectedOptionsp541

Returns an HTMLCollection of the list of optionsp539 that are selected.

For web developers (non-normative)

540

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-htmlcollection

The type IDL attribute, on getting, must return the string "select-one" if the multiplep539 attribute is absent, and the string "select-
multiple" if the multiplep539 attribute is present.

The options IDL attribute must return an HTMLOptionsCollectionp100 rooted at the selectp537 node, whose filter matches the
elements in the list of optionsp539.

The optionsp541 collection is also mirrored on the HTMLSelectElementp538 object. The supported property indices at any instant are the
indices supported by the object returned by the optionsp541 attribute at that instant.

The length IDL attribute must return the number of nodes represented by the optionsp541 collection. On setting, it must act like the
attribute of the same name on the optionsp541 collection.

The item(index) method must return the value returned by the method of the same name on the optionsp541 collection, when
invoked with the same argument.

The namedItem(name) method must return the value returned by the method of the same name on the optionsp541 collection, when
invoked with the same argument.

When the user agent is to set the value of a new indexed property or set the value of an existing indexed property for a selectp537

element, it must instead run the corresponding algorithmp101 on the selectp537 element's optionsp541 collection.

Similarly, the add() method must act like its namesake method on that same optionsp541 collection.

The remove() method must act like its namesake method on that same optionsp541 collection when it has arguments, and like its
namesake method on the ChildNode interface implemented by the HTMLSelectElementp538 ancestor interface Element when it has no
arguments.

The selectedOptions IDL attribute must return an HTMLCollection rooted at the selectp537 node, whose filter matches the elements
in the list of optionsp539 that have their selectednessp547 set to true.

The selectedIndex IDL attribute, on getting, must return the indexp547 of the first optionp545 element in the list of optionsp539 in tree
order that has its selectednessp547 set to true, if any. If there isn't one, then it must return −1.

On setting, the selectedIndexp541 attribute must set the selectednessp547 of all the optionp545 elements in the list of optionsp539 to
false, and then the optionp545 element in the list of optionsp539 whose indexp547 is the given new value, if any, must have its
selectednessp547 set to true and its dirtinessp547 set to true.

The value IDL attribute, on getting, must return the valuep546 of the first optionp545 element in the list of optionsp539 in tree order that
has its selectednessp547 set to true, if any. If there isn't one, then it must return the empty string.

On setting, the valuep541 attribute must set the selectednessp547 of all the optionp545 elements in the list of optionsp539 to false, and
then the first optionp545 element in the list of optionsp539, in tree order, whose valuep546 is equal to the given new value, if any, must
have its selectednessp547 set to true and its dirtinessp547 set to true.

select . selectedIndexp541 [= value]
Returns the index of the first selected item, if any, or −1 if there is no selected item.
Can be set, to change the selection.

select . valuep541 [= value]
Returns the valuep546 of the first selected item, if any, or the empty string if there is no selected item.
Can be set, to change the selection.

This can result in no element having a selectednessp547 set to true even in the case of the selectp537 element having no
multiplep539 attribute and a display sizep539 of 1.

Note

This can result in no element having a selectednessp547 set to true even in the case of the selectp537 element having no
multiplep539 attribute and a display sizep539 of 1.

Note

✔ MDN✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

541

https://heycam.github.io/webidl/#dfn-supported-property-indices
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://heycam.github.io/webidl/#dfn-set-the-value-of-a-new-indexed-property
https://heycam.github.io/webidl/#dfn-set-the-value-of-an-existing-indexed-property
https://dom.spec.whatwg.org/#interface-childnode
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

The multiple, required, and size IDL attributes must reflectp94 the respective content attributes of the same name. The sizep542 IDL
attribute has a default value of zero.

The willValidatep593, validityp593, and validationMessagep595 IDL attributes, and the checkValidity()p594, reportValidity()p595,
and setCustomValidity()p593 methods, are part of the constraint validation APIp592. The labelsp492 IDL attribute provides a list of the
element's labelp490s. The disabledp570, formp568, and namep568 IDL attributes are part of the element's forms API.

For historical reasons, the default value of the sizep542 IDL attribute does not return the actual size used, which, in the absence of
the sizep539 content attribute, is either 1 or 4 depending on the presence of the multiplep539 attribute.

Note

The following example shows how a selectp537 element can be used to offer the user with a set of options from which the user can
select a single option. The default option is preselected.

<p>
<label for="unittype">Select unit type:</label>
<select id="unittype" name="unittype">
<option value="1"> Miner </option>
<option value="2"> Puffer </option>
<option value="3" selected> Snipey </option>
<option value="4"> Max </option>
<option value="5"> Firebot </option>

</select>
</p>

When there is no default option, a placeholder can be used instead:

<select name="unittype" required>
<option value=""> Select unit type </option>
<option value="1"> Miner </option>
<option value="2"> Puffer </option>
<option value="3"> Snipey </option>
<option value="4"> Max </option>
<option value="5"> Firebot </option>

</select>

Example

Here, the user is offered a set of options from which they can select any number. By default, all five options are selected.

<p>
<label for="allowedunits">Select unit types to enable on this map:</label>
<select id="allowedunits" name="allowedunits" multiple>
<option value="1" selected> Miner </option>
<option value="2" selected> Puffer </option>
<option value="3" selected> Snipey </option>
<option value="4" selected> Max </option>
<option value="5" selected> Firebot </option>

</select>
</p>

Example

Sometimes, a user has to select one or more items. This example shows such an interface.

<label>
Select the songs from that you would like on your Act II Mix Tape:
<select multiple required name="act2">
<option value="s1">It Sucks to Be Me (Reprise)

Example

542

Categoriesp128:
Flow contentp131.
Phrasing contentp132.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Either: phrasing contentp132.
Or: Zero or more optionp545 and script-supportingp133 elements.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLDataListElement : HTMLElement {

[HTMLConstructor] constructor();

[SameObject] readonly attribute HTMLCollection options;
};

The datalistp543 element represents a set of optionp545 elements that represent predefined options for other controls. In the
rendering, the datalistp543 element representsp123 nothing and it, along with its children, should be hidden.

The datalistp543 element can be used in two ways. In the simplest case, the datalistp543 element has just optionp545 element
children.

<option value="s2">There is Life Outside Your Apartment
<option value="s3">The More You Ruv Someone
<option value="s4">Schadenfreude
<option value="s5">I Wish I Could Go Back to College
<option value="s6">The Money Song
<option value="s7">School for Monsters
<option value="s8">The Money Song (Reprise)
<option value="s9">There's a Fine, Fine Line (Reprise)
<option value="s10">What Do You Do With a B.A. in English? (Reprise)
<option value="s11">For Now

</select>
</label>

<label>
Animal:
<input name=animal list=animals>
<datalist id=animals>
<option value="Cat">
<option value="Dog">

Example

IDL

4.10.8 The datalist element §p54

3

✔ MDN

MDN

543

https://w3c.github.io/html-aria/#el-datalist
https://w3c.github.io/html-aam/#el-datalist
https://dom.spec.whatwg.org/#interface-htmlcollection

In the more elaborate case, the datalistp543 element can be given contents that are to be displayed for down-level clients that don't
support datalistp543. In this case, the optionp545 elements are provided inside a selectp537 element inside the datalistp543 element.

The datalistp543 element is hooked up to an inputp493 element using the listp528 attribute on the inputp493 element.

Each optionp545 element that is a descendant of the datalistp543 element, that is not disabledp546, and whose valuep546 is a string that
isn't the empty string, represents a suggestion. Each suggestion has a valuep546 and a labelp546.

The options IDL attribute must return an HTMLCollection rooted at the datalistp543 node, whose filter matches optionp545 elements.

Constraint validation: If an element has a datalistp543 element ancestor, it is barred from constraint validationp590.

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As a child of a selectp537 element.

Content modelp128:
Zero or more optionp545 and script-supportingp133 elements.

Tag omission in text/htmlp128:
An optgroupp544 element's end tagp1070 can be omitted if the optgroupp544 element is immediately followed by another
optgroupp544 element, or if there is no more content in the parent element.

Content attributesp128:
Global attributesp136

disabledp545 — Whether the form control is disabled
labelp545 — User-visible label

Accessibility considerationsp129:
For authors.

</datalist>
</label>

<label>
Animal:
<input name=animal list=animals>

</label>
<datalist id=animals>
<label>
or select from the list:
<select name=animal>
<option value="">
<option>Cat
<option>Dog

</select>
</label>

</datalist>

Example

datalist . optionsp544

Returns an HTMLCollection of the optionp545 elements of the datalistp543 element.

For web developers (non-normative)

4.10.9 The optgroup element §p54

4

✔ MDN

✔ MDN

544

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://w3c.github.io/html-aria/#el-optgroup

For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLOptGroupElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean disabled;
[CEReactions] attribute DOMString label;

};

The optgroupp544 element representsp123 a group of optionp545 elements with a common label.

The element's group of optionp545 elements consists of the optionp545 elements that are children of the optgroupp544 element.

When showing optionp545 elements in selectp537 elements, user agents should show the optionp545 elements of such groups as being
related to each other and separate from other optionp545 elements.

The disabled attribute is a boolean attributep67 and can be used to disablep546 a group of optionp545 elements together.

The label attribute must be specified. Its value gives the name of the group, for the purposes of the user interface. User agents should
use this attribute's value when labeling the group of optionp545 elements in a selectp537 element.

The disabled and label attributes must reflectp94 the respective content attributes of the same name.

Categoriesp128:
None.

There is no way to select an optgroupp544 element. Only optionp545 elements can be selected. An optgroupp544 element merely
provides a label for a group of optionp545 elements.

Note

The following snippet shows how a set of lessons from three courses could be offered in a selectp537 drop-down widget:

<form action="courseselector.dll" method="get">
<p>Which course would you like to watch today?
<p><label>Course:
<select name="c">
<optgroup label="8.01 Physics I: Classical Mechanics">
<option value="8.01.1">Lecture 01: Powers of Ten
<option value="8.01.2">Lecture 02: 1D Kinematics
<option value="8.01.3">Lecture 03: Vectors

<optgroup label="8.02 Electricity and Magnestism">
<option value="8.02.1">Lecture 01: What holds our world together?
<option value="8.02.2">Lecture 02: Electric Field
<option value="8.02.3">Lecture 03: Electric Flux

<optgroup label="8.03 Physics III: Vibrations and Waves">
<option value="8.03.1">Lecture 01: Periodic Phenomenon
<option value="8.03.2">Lecture 02: Beats
<option value="8.03.3">Lecture 03: Forced Oscillations with Damping

</select>
</label>
<p><input type=submit value="▶ Play">

</form>

Example

IDL

4.10.10 The option element §p54

5

✔ MDN

✔ MDN

545

https://w3c.github.io/html-aam/#el-optgroup

Contexts in which this element can be usedp128:
As a child of a selectp537 element.
As a child of a datalistp543 element.
As a child of an optgroupp544 element.

Content modelp128:
If the element has a labelp546 attribute and a valuep546 attribute: Nothingp130.
If the element has a labelp546 attribute but no valuep546 attribute: Textp132.
If the element has no labelp546 attribute and is not a child of a datalistp543 element: Textp132 that is not inter-element
whitespacep129.
If the element has no labelp546 attribute and is a child of a datalistp543 element: Textp132.

Tag omission in text/htmlp128:
An optionp545 element's end tagp1070 can be omitted if the optionp545 element is immediately followed by another optionp545

element, or if it is immediately followed by an optgroupp544 element, or if there is no more content in the parent element.

Content attributesp128:
Global attributesp136

disabledp546 — Whether the form control is disabled
labelp546 — User-visible label
selectedp547 — Whether the option is selected by default
valuep546 — Value to be used for form submissionp595

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window,
LegacyFactoryFunction=Option(optional DOMString text = "", optional DOMString value, optional

boolean defaultSelected = false, optional boolean selected = false)]
interface HTMLOptionElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString label;
[CEReactions] attribute boolean defaultSelected;
attribute boolean selected;
[CEReactions] attribute DOMString value;

[CEReactions] attribute DOMString text;
readonly attribute long index;

};

The optionp545 element representsp123 an option in a selectp537 element or as part of a list of suggestions in a datalistp543 element.

In certain circumstances described in the definition of the selectp537 element, an optionp545 element can be a selectp537 element's
placeholder label optionp539. A placeholder label optionp539 does not represent an actual option, but instead represents a label for the
selectp537 control.

The disabled attribute is a boolean attributep67. An optionp545 element is disabled if its disabledp546 attribute is present or if it is a
child of an optgroupp544 element whose disabledp545 attribute is present.

An optionp545 element that is disabledp546 must prevent any click events that are queuedp945 on the user interaction task sourcep952

from being dispatched on the element.

The label attribute provides a label for element. The label of an optionp545 element is the value of the labelp546 content attribute, if
there is one and its value is not the empty string, or, otherwise, the value of the element's textp547 IDL attribute.

The labelp546 content attribute, if specified, must not be empty.

The value attribute provides a value for element. The value of an optionp545 element is the value of the valuep546 content attribute, if

IDL

546

https://w3c.github.io/html-aria/#el-option
https://w3c.github.io/html-aam/#el-option
https://heycam.github.io/webidl/#LegacyFactoryFunction
https://w3c.github.io/uievents/#event-type-click

there is one, or, if there is not, the value of the element's textp547 IDL attribute.

The selected attribute is a boolean attributep67. It represents the default selectednessp547 of the element.

The dirtiness of an optionp545 element is a boolean state, initially false. It controls whether adding or removing the selectedp547

content attribute has any effect.

The selectedness of an optionp545 element is a boolean state, initially false. Except where otherwise specified, when the element is
created, its selectednessp547 must be set to true if the element has a selectedp547 attribute. Whenever an optionp545 element's
selectedp547 attribute is added, if its dirtinessp547 is false, its selectednessp547 must be set to true. Whenever an optionp545 element's
selectedp547 attribute is removed, if its dirtinessp547 is false, its selectednessp547 must be set to false.

A selectp537 element whose multiplep539 attribute is not specified must not have more than one descendant optionp545 element with
its selectedp547 attribute set.

An optionp545 element's index is the number of optionp545 elements that are in the same list of optionsp539 but that come before it in
tree order. If the optionp545 element is not in a list of optionsp539, then the optionp545 element's indexp547 is zero.

The disabled IDL attribute must reflectp94 the content attribute of the same name. The defaultSelected IDL attribute must reflectp94

the selectedp547 content attribute.

The label IDL attribute, on getting, if there is a labelp546 content attribute, must return that attribute's value; otherwise, it must return
the element's labelp546. On setting, the element's labelp546 content attribute must be set to the new value.

The value IDL attribute, on getting, must return the element's valuep546. On setting, the element's valuep546 content attribute must be
set to the new value.

The selected IDL attribute, on getting, must return true if the element's selectednessp547 is true, and false otherwise. On setting, it
must set the element's selectednessp547 to the new value, set its dirtinessp547 to true, and then cause the element to ask for a resetp539.

The index IDL attribute must return the element's indexp547.

The text IDL attribute, on getting, must return the result of stripping and collapsing ASCII whitespace from the concatenation of data
of all the Text node descendants of the optionp545 element, in tree order, excluding any that are descendants of descendants of the

The Option()p548 constructor, when called with three or fewer arguments, overrides the initial state of the selectednessp547 state to
always be false even if the third argument is true (implying that a selectedp547 attribute is to be set). The fourth argument can be
used to explicitly set the initial selectednessp547 state when using the constructor.

Note

option . selectedp547

Returns true if the element is selected, and false otherwise.
Can be set, to override the current state of the element.

option . indexp547

Returns the index of the element in its selectp537 element's optionsp541 list.

option . formp548

Returns the element's formp486 element, if any, or null otherwise.

option . textp547

Same as textContent, except that spaces are collapsed and scriptp614 elements are skipped.

option = new Optionp548([text [, value [, defaultSelected [, selected]]]])
Returns a new optionp545 element.
The text argument sets the contents of the element.
The value argument sets the valuep546 attribute.
The defaultSelected argument sets the selectedp547 attribute.
The selected argument sets whether or not the element is selected. If it is omitted, even if the defaultSelected argument is true,
the element is not selected.

For web developers (non-normative)

547

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#dom-node-textcontent
https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-tree-order

optionp545 element that are themselves scriptp614 or SVG script elements.

The textp547 attribute's setter must string replace all with the given value within this element.

The form IDL attribute's behavior depends on whether the optionp545 element is in a selectp537 element or not. If the optionp545 has a
selectp537 element as its parent, or has an optgroupp544 element as its parent and that optgroupp544 element has a selectp537 element
as its parent, then the formp548 IDL attribute must return the same value as the formp568 IDL attribute on that selectp537 element.
Otherwise, it must return null.

A legacy factory function is provided for creating HTMLOptionElementp546 objects (in addition to the factory methods from DOM such as
createElement()): Option(text, value, defaultSelected, selected). When invoked, the legacy factory function must perform
the following steps:

1. Let document be the current global objectp924 's associated Documentp826.

2. Let option be the result of creating an element given document, optionp545, and the HTML namespace.

3. If text is not the empty string, then append to option a new Text node whose data is text.

4. If value is given, then set an attribute value for option using "valuep546" and value.

5. If defaultSelected is true, then set an attribute value for option using "selectedp547" and the empty string.

6. If selected is true, then set option's selectednessp547 to true; otherwise set its selectednessp547 to false (even if
defaultSelected is true).

7. Return option.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Interactive contentp132.
Listedp486, labelablep486, submittablep486, resettablep486, and autocapitalize-inheritingp486 form-associated elementp486.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Textp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

autocompletep573 — Hint for form autofill feature
colsp550 — Maximum number of characters per line
dirnamep568 — Name of form control to use for sending the element's directionalityp142 in form submissionp595

disabledp570 — Whether the form control is disabled
formp566 — Associates the element with a formp486 element
maxlengthp551 — Maximum length of value
minlengthp551 — Minimum length of value
namep568 — Name of the element to use for form submissionp595 and in the form.elementsp488 API
placeholderp551 — User-visible label to be placed within the form control
readonlyp549 — Whether to allow the value to be edited by the user
requiredp551 — Whether the control is required for form submissionp595

rowsp550 — Number of lines to show
wrapp551 — How the value of the form control is to be wrapped for form submissionp595

4.10.11 The textarea element §p54

8

✔ MDN

✔ MDN

548

https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://dom.spec.whatwg.org/#string-replace-all
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTextAreaElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString autocomplete;
[CEReactions] attribute unsigned long cols;
[CEReactions] attribute DOMString dirName;
[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute long maxLength;
[CEReactions] attribute long minLength;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString placeholder;
[CEReactions] attribute boolean readOnly;
[CEReactions] attribute boolean required;
[CEReactions] attribute unsigned long rows;
[CEReactions] attribute DOMString wrap;

readonly attribute DOMString type;
[CEReactions] attribute DOMString defaultValue;
attribute [LegacyNullToEmptyString] DOMString value;
readonly attribute unsigned long textLength;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

readonly attribute NodeList labels;

undefined select();
attribute unsigned long selectionStart;
attribute unsigned long selectionEnd;
attribute DOMString selectionDirection;
undefined setRangeText(DOMString replacement);
undefined setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional

SelectionMode selectionMode = "preserve");
undefined setSelectionRange(unsigned long start, unsigned long end, optional DOMString

direction);
};

The textareap548 element representsp123 a multiline plain text edit control for the element's raw value. The contents of the control
represent the control's default value.

The raw valuep549 of a textareap548 control must be initially the empty string.

The readonly attribute is a boolean attributep67 used to control whether the text can be edited by the user or not.

This element has rendering requirements involving the bidirectional algorithm p150.
Note

Example

IDL

549

https://w3c.github.io/html-aria/#el-textarea
https://w3c.github.io/html-aam/#el-textarea
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://dom.spec.whatwg.org/#interface-nodelist

Constraint validation: If the readonlyp549 attribute is specified on a textareap548 element, the element is barred from constraint
validationp590.

A textareap548 element is mutablep566 if it is neither disabledp570 nor has a readonlyp549 attribute specified.

When a textareap548 is mutablep566, its raw valuep549 should be editable by the user: the user agent should allow the user to edit,
insert, and remove text, and to insert and remove line breaks in the form of U+000A LINE FEED (LF) characters. Any time the user
causes the element's raw valuep549 to change, the user agent must queue an element taskp946 on the user interaction task sourcep952

given the textareap548 element to fire an event named inputp1281 at the textareap548 element, with the bubbles and composed
attributes initialized to true. User agents may wait for a suitable break in the user's interaction before queuing the task; for example, a
user agent could wait for the user to have not hit a key for 100ms, so as to only fire the event when the user pauses, instead of
continuously for each keystroke.

A textareap548 element's dirty value flagp566 must be set to true whenever the user interacts with the control in a way that changes the
raw valuep549.

The cloning steps for textareap548 elements must propagate the raw valuep549 and dirty value flagp566 from the node being cloned to
the copy.

The children changed steps for textareap548 elements must, if the element's dirty value flagp566 is false, set the element's raw
valuep549 to its child text content.

The reset algorithmp604 for textareap548 elements is to set the dirty value flagp566 back to false, and set the raw valuep549 of element to
its child text content.

When a textareap548 element is popped off the stack of open elementsp1093 of an HTML parserp1079 or XML parserp1188, then the user
agent must invoke the element's reset algorithmp604.

If the element is mutablep566, the user agent should allow the user to change the writing direction of the element, setting it either to a
left-to-right writing direction or a right-to-left writing direction. If the user does so, the user agent must then run the following steps:

1. Set the element's dirp142 attribute to "ltrp142" if the user selected a left-to-right writing direction, and "rtlp142" if the user
selected a right-to-left writing direction.

2. Queue an element taskp946 on the user interaction task sourcep952 given the textareap548 element to fire an event named
inputp1281 at the textareap548 element, with the bubbles and composed attributes initialized to true.

The cols attribute specifies the expected maximum number of characters per line. If the colsp550 attribute is specified, its value must
be a valid non-negative integerp69 greater than zero. If applying the rules for parsing non-negative integers p69 to the attribute's value
results in a number greater than zero, then the element's character width is that value; otherwise, it is 20.

The user agent may use the textareap548 element's character widthp550 as a hint to the user as to how many characters the server
prefers per line (e.g. for visual user agents by making the width of the control be that many characters). In visual renderings, the user
agent should wrap the user's input in the rendering so that each line is no wider than this number of characters.

The rows attribute specifies the number of lines to show. If the rowsp550 attribute is specified, its value must be a valid non-negative
integerp69 greater than zero. If applying the rules for parsing non-negative integers p69 to the attribute's value results in a number
greater than zero, then the element's character height is that value; otherwise, it is 2.

In this example, a text control is marked read-only because it represents a read-only file:

Filename: <code>/etc/bash.bashrc</code>
<textarea name="buffer" readonly>
System-wide .bashrc file for interactive bash(1) shells.

To enable the settings / commands in this file for login shells as well,
this file has to be sourced in /etc/profile.

If not running interactively, don't do anything
[-z "$PS1"] && return

...</textarea>

550

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#concept-node-children-changed-ext
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed

Visual user agents should set the height of the control to the number of lines given by character heightp550.

The wrap attribute is an enumerated attributep68 with two keywords and states: the soft keyword which maps to the Softp551 state, and
the hard keyword which maps to the Hardp551 state. The missing value defaultp68 and invalid value defaultp68 are the Softp551 state.

The Soft state indicates that the text in the textareap548 is not to be wrapped when it is submitted (though it can still be wrapped in
the rendering).

The Hard state indicates that the text in the textareap548 is to have newlines added by the user agent so that the text is wrapped
when it is submitted.

If the element's wrapp551 attribute is in the Hardp551 state, the colsp550 attribute must be specified.

For historical reasons, the element's value is normalized in three different ways for three different purposes. The raw valuep549 is the
value as it was originally set. It is not normalized. The API valuep566 is the value used in the valuep552 IDL attribute, textLengthp552 IDL
attribute, and by the maxlengthp569 and minlengthp569 content attributes. It is normalized so that line breaks use U+000A LINE FEED
(LF) characters. Finally, there is the valuep566, as used in form submission and other processing models in this specification. It is
normalized so that line breaks use U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF) character pairs, and in addition, if necessary
given the element's wrapp551 attribute, additional line breaks are inserted to wrap the text at the given width.

The algorithm for obtaining the element's API valuep566 is to return the element's raw valuep549, with newlines normalized.

The element's valuep566 is defined to be the element's raw valuep549 with the textarea wrapping transformationp551 applied. The
textarea wrapping transformation is the following algorithm, as applied to a string:

1. Replace every occurrence of a U+000D CARRIAGE RETURN (CR) character not followed by a U+000A LINE FEED (LF)
character, and every occurrence of a U+000A LINE FEED (LF) character not preceded by a U+000D CARRIAGE RETURN (CR)
character, by a two-character string consisting of a U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF) character pair.

2. If the element's wrapp551 attribute is in the Hardp551 state, insert U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF)
character pairs into the string using an implementation-defined algorithm so that each line has no more than character
widthp550 characters. For the purposes of this requirement, lines are delimited by the start of the string, the end of the string,
and U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF) character pairs.

The maxlength attribute is a form control maxlength attributep569.

If the textareap548 element has a maximum allowed value lengthp569, then the element's children must be such that the length of the
value of the element's descendant text content with newlines normalized is equal to or less than the element's maximum allowed
value lengthp569.

The minlength attribute is a form control minlength attributep569.

The required attribute is a boolean attributep67. When specified, the user will be required to enter a value before submitting the form.

Constraint validation: If the element has its requiredp551 attribute specified, and the element is mutablep566, and the element's
valuep566 is the empty string, then the element is suffering from being missingp590.

The placeholder attribute represents a short hint (a word or short phrase) intended to aid the user with data entry when the control
has no value. A hint could be a sample value or a brief description of the expected format.

The placeholderp551 attribute should not be used as an alternative to a labelp490. For a longer hint or other advisory text, the
titlep139 attribute is more appropriate.

User agents should present this hint to the user when the element's valuep566 is the empty string and the control is not focusedp771

(e.g. by displaying it inside a blank unfocused control). All U+000D CARRIAGE RETURN U+000A LINE FEED character pairs (CRLF) in the
hint, as well as all other U+000D CARRIAGE RETURN (CR) and U+000A LINE FEED (LF) characters in the hint, must be treated as line
breaks when rendering the hint.

The namep568 attribute represents the element's name. The dirnamep568 attribute controls how the element's directionalityp142 is

These mechanisms are very similar but subtly different: the hint given by the control's labelp490 is shown at all times; the short
hint given in the placeholderp551 attribute is shown before the user enters a value; and the hint in the titlep139 attribute is shown
when the user requests further help.

Note

551

https://infra.spec.whatwg.org/#normalize-newlines
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#string-length
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://infra.spec.whatwg.org/#normalize-newlines

submitted. The disabledp570 attribute is used to make the control non-interactive and to prevent its value from being submitted. The
formp566 attribute is used to explicitly associate the textareap548 element with its form ownerp566. The autocompletep573 attribute
controls how the user agent provides autofill behavior.

The cols, placeholder, required, rows, and wrap IDL attributes must reflectp94 the respective content attributes of the same name.
The colsp552 and rowsp552 attributes are limited to only non-negative numbers greater than zero with fallbackp95. The colsp552 IDL
attribute's default value is 20. The rowsp552 IDL attribute's default value is 2. The dirName IDL attribute must reflectp94 the dirnamep568

content attribute. The maxLength IDL attribute must reflectp94 the maxlengthp551 content attribute, limited to only non-negative
numbersp95. The minLength IDL attribute must reflectp94 the minlengthp551 content attribute, limited to only non-negative numbersp95.
The readOnly IDL attribute must reflectp94 the readonlyp549 content attribute.

The type IDL attribute must return the value "textarea".

The defaultValue attribute's getter must return the element's child text content.

The defaultValuep552 attribute's setter must string replace all with the given value within this element.

The value IDL attribute must, on getting, return the element's API valuep566. On setting, it must perform the following steps:

1. Let oldAPIValue be this element's API valuep566.

2. Set this element's raw valuep549 to the new value.

3. Set this element's dirty value flagp566 to true.

4. If the new API valuep566 is different from oldAPIValue, then move the text entry cursor positionp586 to the end of the text
control, unselecting any selected text and resetting the selection directionp587 to "none".

The textLength IDL attribute must return the length of the element's API valuep566.

The willValidatep593, validityp593, and validationMessagep595 IDL attributes, and the checkValidity()p594, reportValidity()p595,
and setCustomValidity()p593 methods, are part of the constraint validation APIp592. The labelsp492 IDL attribute provides a list of the
element's labelp490s. The select()p587, selectionStartp587, selectionEndp587, selectionDirectionp588, setRangeText()p588, and
setSelectionRange()p588 methods and IDL attributes expose the element's text selection. The disabledp570, formp568, and namep568 IDL
attributes are part of the element's forms API.

textarea . typep552

Returns the string "textarea".

textarea . valuep552

Returns the current value of the element.
Can be set, to change the value.

For web developers (non-normative)

Here is an example of a textareap548 being used for unrestricted free-form text input in a form:

<p>If you have any comments, please let us know: <textarea cols=80 name=comments></textarea></p>

To specify a maximum length for the comments, one can use the maxlengthp551 attribute:

<p>If you have any short comments, please let us know: <textarea cols=80 name=comments
maxlength=200></textarea></p>

To give a default value, text can be included inside the element:

<p>If you have any comments, please let us know: <textarea cols=80 name=comments>You
rock!</textarea></p>

You can also give a minimum length. Here, a letter needs to be filled out by the user; a template (which is shorter than the

Example

552

https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#string-replace-all
https://infra.spec.whatwg.org/#string-length

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Listedp486, labelablep486, resettablep486, and autocapitalize-inheritingp486 form-associated elementp486.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

forp554 — Specifies controls from which the output was calculated
formp566 — Associates the element with a formp486 element
namep568 — Name of the element to use in the form.elementsp488 API.

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]

minimum length) is provided, but is insufficient to submit the form:

<textarea required minlength="500">Dear Madam Speaker,

Regarding your letter dated ...

...

Yours Sincerely,

...</textarea>

A placeholder can be given as well, to suggest the basic form to the user, without providing an explicit template:

<textarea placeholder="Dear Francine,

They closed the parks this week, so we won't be able to
meet your there. Should we just have dinner?

Love,
Daddy"></textarea>

To have the browser submit the directionalityp142 of the element along with the value, the dirnamep568 attribute can be specified:

<p>If you have any comments, please let us know (you may use either English or Hebrew for your
comments):
<textarea cols=80 name=comments dirname=comments.dir></textarea></p>

IDL

4.10.12 The output element §p55

3

✔ MDN

✔ MDN

553

https://w3c.github.io/html-aria/#el-output
https://w3c.github.io/html-aam/#el-output

interface HTMLOutputElement : HTMLElement {
[HTMLConstructor] constructor();

[SameObject, PutForwards=value] readonly attribute DOMTokenList htmlFor;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString name;

readonly attribute DOMString type;
[CEReactions] attribute DOMString defaultValue;
[CEReactions] attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

readonly attribute NodeList labels;
};

The outputp553 element representsp123 the result of a calculation performed by the application, or the result of a user action.

The for content attribute allows an explicit relationship to be made between the result of a calculation and the elements that
represent the values that went into the calculation or that otherwise influenced the calculation. The forp554 attribute, if specified, must
contain a string consisting of an unordered set of unique space-separated tokensp87, none of which are identical to another token and
each of which must have the value of an ID of an element in the same tree.

The formp566 attribute is used to explicitly associate the outputp553 element with its form ownerp566. The namep568 attribute represents
the element's name. The outputp553 element is associated with a form so that it can be easily referencedp123 from the event handlers of
form controls; the element's value itself is not submitted when the form is submitted.

The element has a default value override (null or a string). Initially it must be null.

The element's default value is determined by the following steps:

1. If this element's default value overridep554 is non-null, then return it.

2. Return this element's descendant text content.

The reset algorithmp604 for outputp553 elements is to run these steps:

1. String replace all with this element's default valuep554 within this element.

2. Set this element's default value overridep554 to null.

This element can be contrasted with the sampp269 element, which is the appropriate element for quoting the output of other
programs run previously.

Note

output . valuep555 [= value]
Returns the element's current value.
Can be set, to change the value.

output . defaultValuep555 [= value]
Returns the element's current default value.
Can be set, to change the default value.

output . typep555

Returns the string "output".

For web developers (non-normative)

554

https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#interface-nodelist
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#string-replace-all

The value attribute's getter must return this element's descendant text content.

The valuep555 attribute's setter must run these steps:

1. Set this element's default value overridep554 to its default valuep554.

2. String replace all with the given value within this element.

The defaultValue attribute's getter must return the result of running this element's default valuep554.

The defaultValuep555 attribute's setter must run these steps:

1. If this element's default value overridep554 is null, then string replace all with the given value within this element and return.

2. Set this element's default value overridep554 to the given value.

The type attribute's getter must return "output".

The htmlFor IDL attribute must reflectp94 the forp554 content attribute.

The willValidatep593, validityp593, and validationMessagep595 IDL attributes, and the checkValidity()p594, reportValidity()p595,
and setCustomValidity()p593 methods, are part of the constraint validation APIp592. The labelsp492 IDL attribute provides a list of the
element's labelp490s. The formp568 and namep568 IDL attributes are part of the element's forms API.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Labelable elementp486.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Phrasing contentp132, but there must be no progressp555 element descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

A simple calculator could use outputp553 for its display of calculated results:

<form onsubmit="return false" oninput="o.value = a.valueAsNumber + b.valueAsNumber">
<input id=a type=number step=any> +
<input id=b type=number step=any> =
<output id=o for="a b"></output>

</form>

Example

In this example, an outputp553 element is used to report the results of a calculation performed by a remote server, as they come in:

<output id="result"></output>
<script>
var primeSource = new WebSocket('ws://primes.example.net/');
primeSource.onmessage = function (event) {

document.getElementById('result').value = event.data;
}

</script>

Example

4.10.13 The progress element §p55

5

✔ MDN

✔ MDN

555

https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#string-replace-all
https://dom.spec.whatwg.org/#string-replace-all

Content attributesp128:
Global attributesp136

valuep556 — Current value of the element
maxp556 — Upper bound of range

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLProgressElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute double value;
[CEReactions] attribute double max;
readonly attribute double position;
readonly attribute NodeList labels;

};

The progressp555 element representsp123 the completion progress of a task. The progress is either indeterminate, indicating that
progress is being made but that it is not clear how much more work remains to be done before the task is complete (e.g. because the
task is waiting for a remote host to respond), or the progress is a number in the range zero to a maximum, giving the fraction of work
that has so far been completed.

There are two attributes that determine the current task completion represented by the element. The value attribute specifies how
much of the task has been completed, and the max attribute specifies how much work the task requires in total. The units are arbitrary
and not specified.

Authors are encouraged to also include the current value and the maximum value inline as text inside the element, so that the
progress is made available to users of legacy user agents.

The valuep556 and maxp556 attributes, when present, must have values that are valid floating-point numbersp69. The valuep556 attribute,
if present, must have a value equal to or greater than zero, and less than or equal to the value of the maxp556 attribute, if present, or
1.0, otherwise. The maxp556 attribute, if present, must have a value greater than zero.

To make a determinate progress bar, add a valuep556 attribute with the current progress (either a number from 0.0 to 1.0, or, if the
maxp556 attribute is specified, a number from 0 to the value of the maxp556 attribute). To make an indeterminate progress bar,
remove the valuep556 attribute.

Note

Here is a snippet of a web application that shows the progress of some automated task:

<section>
<h2>Task Progress</h2>
<p>Progress: <progress id="p" max=100>0%</progress></p>
<script>
var progressBar = document.getElementById('p');
function updateProgress(newValue) {

progressBar.value = newValue;
progressBar.getElementsByTagName('span')[0].textContent = newValue;

}
</script>

</section>

(The updateProgress() method in this example would be called by some other code on the page to update the actual progress
bar as the task progressed.)

Example

IDL

556

https://w3c.github.io/html-aria/#el-progress
https://w3c.github.io/html-aam/#el-progress
https://dom.spec.whatwg.org/#interface-nodelist

User agent requirements: If the valuep556 attribute is omitted, then the progress bar is an indeterminate progress bar. Otherwise, it
is a determinate progress bar.

If the progress bar is a determinate progress bar and the element has a maxp556 attribute, the user agent must parse the maxp556

attribute's value according to the rules for parsing floating-point number values p70. If this does not result in an error, and if the parsed
value is greater than zero, then the maximum value of the progress bar is that value. Otherwise, if the element has no maxp556

attribute, or if it has one but parsing it resulted in an error, or if the parsed value was less than or equal to zero, then the maximum
valuep557 of the progress bar is 1.0.

If the progress bar is a determinate progress bar, user agents must parse the valuep556 attribute's value according to the rules for
parsing floating-point number valuesp70. If this does not result in an error and the parsed value is greater than zero, then the value of
the progress bar is that parsed value. Otherwise, if parsing the valuep556 attribute's value resulted in an error or a number less than or
equal to zero, then the valuep557 of the progress bar is zero.

If the progress bar is a determinate progress bar, then the current value is the maximum valuep557, if valuep557 is greater than the
maximum valuep557, and valuep557 otherwise.

UA requirements for showing the progress bar: When representing a progressp555 element to the user, the UA should indicate
whether it is a determinate or indeterminate progress bar, and in the former case, should indicate the relative position of the current
valuep557 relative to the maximum valuep557.

If the progress bar is an indeterminate progress bar, then the position IDL attribute must return −1. Otherwise, it must return the
result of dividing the current valuep557 by the maximum valuep557.

If the progress bar is an indeterminate progress bar, then the value IDL attribute, on getting, must return 0. Otherwise, it must return
the current valuep557. On setting, the given value must be converted to the best representation of the number as a floating-point
numberp69 and then the valuep557 content attribute must be set to that string.

The max IDL attribute must reflectp94 the content attribute of the same name, limited to numbers greater than zerop96. The default
value for maxp557 is 1.0.

The labelsp492 IDL attribute provides a list of the element's labelp490s.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Labelable elementp486.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

The progressp555 element is the wrong element to use for something that is just a gauge, as opposed to task progress. For
instance, indicating disk space usage using progressp555 would be inappropriate. Instead, the meterp557 element is available for
such use cases.

Note

progress . positionp557

For a determinate progress bar (one with known current and maximum values), returns the result of dividing the current value
by the maximum value.
For an indeterminate progress bar, returns −1.

For web developers (non-normative)

Setting the valuep557 IDL attribute to itself when the corresponding content attribute is absent would change the progress bar from
an indeterminate progress bar to a determinate progress bar with no progress.

Note

4.10.14 The meter element §p55

7

✔ MDN

✔ MDN

557

Content modelp128:
Phrasing contentp132, but there must be no meterp557 element descendants.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

valuep558 — Current value of the element
minp558 — Lower bound of range
maxp558 — Upper bound of range
lowp558 — High limit of low range
highp558 — Low limit of high range
optimump558 — Optimum value in gauge

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLMeterElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute double value;
[CEReactions] attribute double min;
[CEReactions] attribute double max;
[CEReactions] attribute double low;
[CEReactions] attribute double high;
[CEReactions] attribute double optimum;
readonly attribute NodeList labels;

};

The meterp557 element representsp123 a scalar measurement within a known range, or a fractional value; for example disk usage, the
relevance of a query result, or the fraction of a voting population to have selected a particular candidate.

This is also known as a gauge.

The meterp557 element should not be used to indicate progress (as in a progress bar). For that role, HTML provides a separate
progressp555 element.

There are six attributes that determine the semantics of the gauge represented by the element.

The min attribute specifies the lower bound of the range, and the max attribute specifies the upper bound. The value attribute specifies
the value to have the gauge indicate as the "measured" value.

The other three attributes can be used to segment the gauge's range into "low", "medium", and "high" parts, and to indicate which
part of the gauge is the "optimum" part. The low attribute specifies the range that is considered to be the "low" part, and the high
attribute specifies the range that is considered to be the "high" part. The optimum attribute gives the position that is "optimum"; if that
is higher than the "high" value then this indicates that the higher the value, the better; if it's lower than the "low" mark then it
indicates that lower values are better, and naturally if it is in between then it indicates that neither high nor low values are good.

Authoring requirements: The valuep558 attribute must be specified. The valuep558, minp558, lowp558, highp558, maxp558, and optimump558

attributes, when present, must have values that are valid floating-point numbersp69.

In addition, the attributes' values are further constrained:

Let value be the valuep558 attribute's number.

The meterp557 element also does not represent a scalar value of arbitrary range — for example, it would be wrong to use this to
report a weight, or height, unless there is a known maximum value.

Note

IDL

558

https://w3c.github.io/html-aria/#el-meter
https://w3c.github.io/html-aam/#el-meter
https://dom.spec.whatwg.org/#interface-nodelist

If the minp558 attribute is specified, then let minimum be that attribute's value; otherwise, let it be zero.

If the maxp558 attribute is specified, then let maximum be that attribute's value; otherwise, let it be 1.0.

The following inequalities must hold, as applicable:

• minimum ≤ value ≤ maximum
• minimum ≤ lowp558 ≤ maximum (if lowp558 is specified)
• minimum ≤ highp558 ≤ maximum (if highp558 is specified)
• minimum ≤ optimump558 ≤ maximum (if optimump558 is specified)
• lowp558 ≤ highp558 (if both lowp558 and highp558 are specified)

Authors are encouraged to include a textual representation of the gauge's state in the element's contents, for users of user agents that
do not support the meterp557 element.

When used with microdatap729, the meterp557 element's valuep558 attribute provides the element's machine-readable value.

There is no explicit way to specify units in the meterp557 element, but the units may be specified in the titlep139 attribute in free-form
text.

User agent requirements: User agents must parse the minp558, maxp558, valuep558, lowp558, highp558, and optimump558 attributes using
the rules for parsing floating-point number values p70.

User agents must then use all these numbers to obtain values for six points on the gauge, as follows. (The order in which these are
evaluated is important, as some of the values refer to earlier ones.)

If no minimum or maximum is specified, then the range is assumed to be 0..1, and the value thus has to be within that range.
Note

The following examples show three gauges that would all be three-quarters full:

Storage space usage: <meter value=6 max=8>6 blocks used (out of 8 total)</meter>
Voter turnout: <meter value=0.75></meter>
Tickets sold: <meter min="0" max="100" value="75"></meter>

The following example is incorrect use of the element, because it doesn't give a range (and since the default maximum is 1, both
of the gauges would end up looking maxed out):

<p>The grapefruit pie had a radius of <meter value=12>12cm</meter>
and a height of <meter value=2>2cm</meter>.</p> <!-- BAD! -->

Instead, one would either not include the meter element, or use the meter element with a defined range to give the dimensions in
context compared to other pies:

<p>The grapefruit pie had a radius of 12cm and a height of
2cm.</p>
<dl>
<dt>Radius: <dd> <meter min=0 max=20 value=12>12cm</meter>
<dt>Height: <dd> <meter min=0 max=10 value=2>2cm</meter>

</dl>

Example

The example above could be extended to mention the units:

<dl>
<dt>Radius: <dd> <meter min=0 max=20 value=12 title="centimeters">12cm</meter>
<dt>Height: <dd> <meter min=0 max=10 value=2 title="centimeters">2cm</meter>

</dl>

Example

559

The minimum value
If the minp558 attribute is specified and a value could be parsed out of it, then the minimum value is that value. Otherwise, the
minimum value is zero.

The maximum value
If the maxp558 attribute is specified and a value could be parsed out of it, then the candidate maximum value is that value.
Otherwise, the candidate maximum value is 1.0.

If the candidate maximum value is greater than or equal to the minimum value, then the maximum value is the candidate
maximum value. Otherwise, the maximum value is the same as the minimum value.

The actual value
If the valuep558 attribute is specified and a value could be parsed out of it, then that value is the candidate actual value. Otherwise,
the candidate actual value is zero.

If the candidate actual value is less than the minimum value, then the actual value is the minimum value.

Otherwise, if the candidate actual value is greater than the maximum value, then the actual value is the maximum value.

Otherwise, the actual value is the candidate actual value.

The low boundary
If the lowp558 attribute is specified and a value could be parsed out of it, then the candidate low boundary is that value. Otherwise,
the candidate low boundary is the same as the minimum value.

If the candidate low boundary is less than the minimum value, then the low boundary is the minimum value.

Otherwise, if the candidate low boundary is greater than the maximum value, then the low boundary is the maximum value.

Otherwise, the low boundary is the candidate low boundary.

The high boundary
If the highp558 attribute is specified and a value could be parsed out of it, then the candidate high boundary is that value. Otherwise,
the candidate high boundary is the same as the maximum value.

If the candidate high boundary is less than the low boundary, then the high boundary is the low boundary.

Otherwise, if the candidate high boundary is greater than the maximum value, then the high boundary is the maximum value.

Otherwise, the high boundary is the candidate high boundary.

The optimum point
If the optimump558 attribute is specified and a value could be parsed out of it, then the candidate optimum point is that value.
Otherwise, the candidate optimum point is the midpoint between the minimum value and the maximum value.

If the candidate optimum point is less than the minimum value, then the optimum point is the minimum value.

Otherwise, if the candidate optimum point is greater than the maximum value, then the optimum point is the maximum value.

Otherwise, the optimum point is the candidate optimum point.

All of which will result in the following inequalities all being true:

• minimum value ≤ actual value ≤ maximum value
• minimum value ≤ low boundary ≤ high boundary ≤ maximum value
• minimum value ≤ optimum point ≤ maximum value

UA requirements for regions of the gauge: If the optimum point is equal to the low boundary or the high boundary, or anywhere in
between them, then the region between the low and high boundaries of the gauge must be treated as the optimum region, and the low
and high parts, if any, must be treated as suboptimal. Otherwise, if the optimum point is less than the low boundary, then the region
between the minimum value and the low boundary must be treated as the optimum region, the region from the low boundary up to the
high boundary must be treated as a suboptimal region, and the remaining region must be treated as an even less good region. Finally,
if the optimum point is higher than the high boundary, then the situation is reversed; the region between the high boundary and the
maximum value must be treated as the optimum region, the region from the high boundary down to the low boundary must be treated
as a suboptimal region, and the remaining region must be treated as an even less good region.

560

UA requirements for showing the gauge: When representing a meterp557 element to the user, the UA should indicate the relative
position of the actual value to the minimum and maximum values, and the relationship between the actual value and the three regions
of the gauge.

User agents may combine the value of the titlep139 attribute and the other attributes to provide context-sensitive help or inline text
detailing the actual values.

The value IDL attribute, on getting, must return the actual valuep560. On setting, the given value must be converted to the best
representation of the number as a floating-point number p69 and then the valuep558 content attribute must be set to that string.

The following markup:

<h3>Suggested groups</h3>
<menu>
Hide suggested groups

</menu>

<p><a href="/group/comp.infosystems.www.authoring.stylesheets/

view">comp.infosystems.www.authoring.stylesheets -
join</p>

<p>Group description: Layout/presentation on the WWW.</p>
<p><meter value="0.5">Moderate activity,</meter> Usenet, 618 subscribers</p>

<p>netscape.public.mozilla.xpinstall

-
join</p>

<p>Group description: Mozilla XPInstall discussion.</p>
<p><meter value="0.25">Low activity,</meter> Usenet, 22 subscribers</p>

<p>mozilla.dev.general -

join</p>
<p><meter value="0.25">Low activity,</meter> Usenet, 66 subscribers</p>

Might be rendered as follows:

Example

For example, the following snippet:

<meter min=0 max=60 value=23.2 title=seconds></meter>

...might cause the user agent to display a gauge with a tooltip saying "Value: 23.2 out of 60." on one line and "seconds" on a
second line.

Example

561

The min IDL attribute, on getting, must return the minimum valuep560. On setting, the given value must be converted to the best
representation of the number as a floating-point number p69 and then the minp558 content attribute must be set to that string.

The max IDL attribute, on getting, must return the maximum valuep560. On setting, the given value must be converted to the best
representation of the number as a floating-point number p69 and then the maxp558 content attribute must be set to that string.

The low IDL attribute, on getting, must return the low boundaryp560. On setting, the given value must be converted to the best
representation of the number as a floating-point number p69 and then the lowp558 content attribute must be set to that string.

The high IDL attribute, on getting, must return the high boundaryp560. On setting, the given value must be converted to the best
representation of the number as a floating-point number p69 and then the highp558 content attribute must be set to that string.

The optimum IDL attribute, on getting, must return the optimum valuep560. On setting, the given value must be converted to the best
representation of the number as a floating-point number p69 and then the optimump558 content attribute must be set to that string.

The labelsp492 IDL attribute provides a list of the element's labelp490s.

Categoriesp128:
Flow contentp131.
Sectioning rootp199.
Listedp486 and autocapitalize-inheritingp486 form-associated elementp486.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Optionally a legendp565 element, followed by flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

disabledp563 — Whether the descendant form controls, except any inside legendp565, are disabled
formp566 — Associates the element with a formp486 element
namep568 — Name of the element to use in the form.elementsp488 API.

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLFieldSetElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString name;

readonly attribute DOMString type;

The following example shows how a gauge could fall back to localized or pretty-printed text.

<p>Disk usage: <meter min=0 value=170261928 max=233257824>170 261 928 bytes used
out of 233 257 824 bytes available</meter></p>

Example

IDL

4.10.15 The fieldset element §p56

2

✔ MDN

✔ MDN

562

https://w3c.github.io/html-aria/#el-fieldset
https://w3c.github.io/html-aam/#el-fieldset

[SameObject] readonly attribute HTMLCollection elements;

readonly attribute boolean willValidate;
[SameObject] readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

};

The fieldsetp562 element representsp123 a set of form controls (or other content) grouped together, optionally with a caption. The
caption is given by the first legendp565 element that is a child of the fieldsetp562 element, if any. The remainder of the descendants
form the group.

The disabled attribute, when specified, causes all the form control descendants of the fieldsetp562 element, excluding those that are
descendants of the fieldsetp562 element's first legendp565 element child, if any, to be disabledp570.

A fieldsetp562 element is a disabled fieldset if it matches any of the following conditions:

• Its disabledp563 attribute is specified

• It is a descendant of another fieldsetp562 element whose disabledp563 attribute is specified, and is not a descendant of that
fieldsetp562 element's first legendp565 element child, if any.

The formp566 attribute is used to explicitly associate the fieldsetp562 element with its form ownerp566. The namep568 attribute represents
the element's name.

The disabled IDL attribute must reflectp94 the content attribute of the same name.

The type IDL attribute must return the string "fieldset".

The elements IDL attribute must return an HTMLCollection rooted at the fieldsetp562 element, whose filter matches listed
elementsp486.

The willValidatep593, validityp593, and validationMessagep595 attributes, and the checkValidity()p594, reportValidity()p595, and
setCustomValidity()p593 methods, are part of the constraint validation APIp592. The formp568 and namep568 IDL attributes are part of the
element's forms API.

fieldset . typep563

Returns the string "fieldset".

fieldset . elementsp563

Returns an HTMLCollection of the form controls in the element.

For web developers (non-normative)

This example shows a fieldsetp562 element being used to group a set of related controls:

<fieldset>
<legend>Display</legend>
<p><label><input type=radio name=c value=0 checked> Black on White</label>
<p><label><input type=radio name=c value=1> White on Black</label>
<p><label><input type=checkbox name=g> Use grayscale</label>
<p><label>Enhance contrast <input type=range name=e list=contrast min=0 max=100 value=0

step=1></label>
<datalist id=contrast>
<option label=Normal value=0>
<option label=Maximum value=100>

</datalist>

Example

✔ MDN

563

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

</fieldset>

The following snippet shows a fieldset with a checkbox in the legend that controls whether or not the fieldset is enabled. The
contents of the fieldset consist of two required text controls and an optional year/month control.

<fieldset name="clubfields" disabled>
<legend> <label>
<input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
Use Club Card

</label> </legend>
<p><label>Name on card: <input name=clubname required></label></p>
<p><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></p>
<p><label>Expiry date: <input name=clubexp type=month></label></p>

</fieldset>

Example

You can also nest fieldsetp562 elements. Here is an example expanding on the previous one that does so:

<fieldset name="clubfields" disabled>
<legend> <label>
<input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
Use Club Card

</label> </legend>
<p><label>Name on card: <input name=clubname required></label></p>
<fieldset name="numfields">
<legend> <label>
<input type=radio checked name=clubtype onchange="form.numfields.disabled = !checked">
My card has numbers on it

</label> </legend>
<p><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></p>

</fieldset>
<fieldset name="letfields" disabled>
<legend> <label>
<input type=radio name=clubtype onchange="form.letfields.disabled = !checked">
My card has letters on it

</label> </legend>
<p><label>Card code: <input name=clublet required pattern="[A-Za-z]+"></label></p>

</fieldset>
</fieldset>

In this example, if the outer "Use Club Card" checkbox is not checked, everything inside the outer fieldsetp562, including the two
radio buttons in the legends of the two nested fieldsetp562s, will be disabled. However, if the checkbox is checked, then the radio
buttons will both be enabled and will let you select which of the two inner fieldsetp562s is to be enabled.

Example

This example shows a grouping of controls where the legendp565 element both labels the grouping, and the nested heading
element surfaces the grouping in the document outline:

<fieldset>
<legend> <h2>
How can we best reach you?

</h2> </legend>
<p> <label>
<input type=radio checked name=contact_pref>
Phone

</label> </p>

Example

564

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As the first child of a fieldsetp562 element.

Content modelp128:
Phrasing contentp132, optionally intermixed with heading contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLLegendElement : HTMLElement {

[HTMLConstructor] constructor();

readonly attribute HTMLFormElement? form;

// also has obsolete members
};

The legendp565 element representsp123 a caption for the rest of the contents of the legendp565 element's parent fieldsetp562 element, if
any.

The form IDL attribute's behavior depends on whether the legendp565 element is in a fieldsetp562 element or not. If the legendp565 has
a fieldsetp562 element as its parent, then the formp565 IDL attribute must return the same value as the formp568 IDL attribute on that
fieldsetp562 element. Otherwise, it must return null.

<p> <label>
<input type=radio name=contact_pref>
Text

</label> </p>
<p> <label>
<input type=radio name=contact_pref>
Email

</label> </p>
</fieldset>

legend . formp565

Returns the element's formp486 element, if any, or null otherwise.

For web developers (non-normative)

IDL

4.10.16 The legend element §p56

5

✔ MDN

✔ MDN

565

https://dom.spec.whatwg.org/#concept-tree-first-child
https://w3c.github.io/html-aria/#el-legend
https://w3c.github.io/html-aam/#el-legend

Most form controls have a value and a checkedness. (The latter is only used by inputp493 elements.) These are used to describe how
the user interacts with the control.

A control's valuep566 is its internal state. As such, it might not match the user's current input.

inputp493 and textareap548 elements have a dirty value flag. This is used to track the interaction between the valuep566 and default
value. If it is false, valuep566 mirrors the default value. If it is true, the default value is ignored.

To define the behavior of constraint validation in the face of the inputp493 element's multiplep524 attribute, inputp493 elements can
also have separately defined values.

To define the behavior of the maxlengthp569 and minlengthp569 attributes, as well as other APIs specific to the textareap548 element, all
form control with a valuep566 also have an algorithm for obtaining an API value. By default this algorithm is to simply return the
control's valuep566.

The selectp537 element does not have a valuep566; the selectednessp547 of its optionp545 elements is what is used instead.

A form control can be designated as mutable.

A form-associated elementp486 can have a relationship with a formp486 element, which is called the element's form owner. If a form-
associated elementp486 is not associated with a formp486 element, its form ownerp566 is said to be null.

A form-associated elementp486 has an associated parser inserted flag.

A form-associated elementp486 is, by default, associated with its nearest ancestor formp486 element (as described below), but, if it is
listedp486, may have a form attribute specified to override this.

If a listedp486 form-associated elementp486 has a formp566 attribute specified, then that attribute's value must be the ID of a formp486

element in the element's tree.

4.10.17.1 A form control's value §p56

6

For instance, if a user enters the word "three" into a numeric fieldp509 that expects digits, the user's input would be the string
"three" but the control's valuep566 would remain unchanged. Or, if a user enters the email address " awesome@example.com" (with
leading whitespace) into an email fieldp502, the user's input would be the string " awesome@example.com" but the browser's UI for
email fields might translate that into a valuep566 of "awesome@example.com" (without the leading whitespace).

Example

4.10.17.2 Mutability §p56

6

This determines (by means of definitions and requirements in this specification that rely on whether an element is so designated)
whether or not the user can modify the valuep566 or checkednessp566 of a form control, or whether or not a control can be
automatically prefilled.

Note

4.10.17.3 Association of controls and forms §p56

6

This feature allows authors to work around the lack of support for nested formp486 elements.
Note

The rules in this section are complicated by the fact that although conforming documents or trees will never contain nested
formp486 elements, it is quite possible (e.g., using a script that performs DOM manipulation) to generate trees that have such
nested elements. They are also complicated by rules in the HTML parser that, for historical reasons, can result in a form-associated
elementp486 being associated with a formp486 element that is not its ancestor.

Note

4.10.17 Form control infrastructure §p56

6

✔ MDN

566

https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree

When a form-associated elementp486 is created, its form ownerp566 must be initialized to null (no owner).

When a form-associated elementp486 is to be associated with a form, its form ownerp566 must be set to that form.

When a form-associated elementp486 or one of its ancestors is insertedp44, then:

1. If the form-associated elementp486 's parser inserted flagp566 is set, then return.

2. Reset the form ownerp567 of the form-associated elementp486.

When a form-associated elementp486 or one of its ancestors is removedp44, then:

1. If the form-associated elementp486 has a form ownerp566 and the form-associated elementp486 and its form ownerp566 are no
longer in the same tree, then reset the form ownerp567 of the form-associated elementp486.

When a listedp486 form-associated elementp486 's formp566 attribute is set, changed, or removed, then the user agent must reset the form
ownerp567 of that element.

When a listedp486 form-associated elementp486 has a formp566 attribute and the ID of any of the elements in the tree changes, then the
user agent must reset the form ownerp567 of that form-associated elementp486.

When a listedp486 form-associated elementp486 has a formp566 attribute and an element with an ID is inserted intop44 or removed fromp44

the Documentp114, then the user agent must reset the form ownerp567 of that form-associated elementp486.

When the user agent is to reset the form owner of a form-associated elementp486 element, it must run the following steps:

1. Unset element's parser inserted flagp566.

2. If all of the following conditions are true

◦ element's form ownerp566 is not null
◦ element is not listedp486 or its formp566 content attribute is not present
◦ element's form ownerp566 is its nearest formp486 element ancestor after the change to the ancestor chain

then do nothing, and return.

3. Set element's form ownerp566 to null.

4. If element is listedp486, has a formp566 content attribute, and is connected, then:

1. If the first element in element's tree, in tree order, to have an ID that is identical to element's formp566 content
attribute's value, is a formp486 element, then associatep567 the element with that formp486 element.

5. Otherwise, if element has an ancestor formp486 element, then associatep567 element with the nearest such ancestor formp486

element.

In the following non-conforming snippet:

...
<form id="a">
<div id="b"></div>

</form>
<script>
document.getElementById('b').innerHTML =

'<table><tr><td></form><form id="c"><input id="d"></table>' +
'<input id="e">';

</script>
...

The form ownerp566 of "d" would be the inner nested form "c", while the form ownerp566 of "e" would be the outer form "a".

This happens as follows: First, the "e" node gets associated with "c" in the HTML parserp1079. Then, the innerHTML algorithm moves
the nodes from the temporary document to the "b" element. At this point, the nodes see their ancestor chain change, and thus all
the "magic" associations done by the parser are reset to normal ancestor associations.

Example

567

https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://infra.spec.whatwg.org/#string-is
https://w3c.github.io/DOM-Parsing/#dom-element-innerhtml

Listedp486 form-associated elementsp486 except for form-associated custom elementsp704 have a form IDL attribute, which, on getting,
must return the element's form ownerp566, or null if there isn't one.

Form-associated custom elementsp704 don't have formp568 IDL attribute. Instead, their ElementInternalsp714 object has a form IDL
attribute. On getting, it must throw a "NotSupportedError" DOMException if the target elementp715 is not a form-associated custom
elementp704. Otherwise, it must return the element's form ownerp566, or null if there isn't one.

The name content attribute gives the name of the form control, as used in form submissionp595 and in the formp486 element's
elementsp488 object. If the attribute is specified, its value must not be the empty string or isindex.

Other than isindex, any non-empty value for namep487 is allowed. The name _charset_ is special: if used as the name of a Hiddenp499

control with no valuep497 attribute, then during submission the valuep497 attribute is automatically given a value consisting of the
submission character encoding.

The name IDL attribute must reflectp94 the namep568 content attribute.

The dirname attribute on a form control element enables the submission of the directionalityp142 of the element, and gives the name of

This example is a non-conforming document, though, as it is a violation of the content models to nest formp486 elements, and there
is a parse errorp1081 for the </form> tag.

element . formp568

Returns the element's form ownerp566.
Returns null if there isn't one.

For web developers (non-normative)

4.10.18.1 Naming form controls: the namep568 attribute §p56

8

A number of user agents historically implemented special support for first-in-form text controls with the name isindex, and this
specification previously defined related user agent requirements for it. However, some user agents subsequently dropped that
special support, and the related requirements were removed from this specification. So, to avoid problematic reinterpretations in
legacy user agents, the name isindex is no longer allowed.

Note

DOM clobbering is a common cause of security issues. Avoid using the names of built-in form properties with the namep568 content
attribute.

In this example, the inputp493 element overrides the built-in methodp571 property:

let form = document.createElement("form");
let input = document.createElement("input");
form.appendChild(input);

form.method; // => "get"
input.name = "method"; // DOM clobbering occurs here
form.method === input; // => true

Since the input name takes precedence over built-in form properties, the JavaScript reference form.method will point to the
inputp493 element named "method" instead of the built-in methodp571 property.

Note

4.10.18.2 Submitting element directionality: the dirnamep568 attribute §p56

8

4.10.18 Attributes common to form controls §p56

8

✔ MDN

568

https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException

the control that contains this value during form submissionp595. If such an attribute is specified, its value must not be the empty string.

A form control maxlength attribute, controlled by the dirty value flagp566, declares a limit on the number of characters a user can
input. The "number of characters" is measured using length and, in the case of textareap548 elements, with all newlines normalized to
a single character (as opposed to CRLF pairs).

If an element has its form control maxlength attributep569 specified, the attribute's value must be a valid non-negative integerp69. If the
attribute is specified and applying the rules for parsing non-negative integers p69 to its value results in a number, then that number is
the element's maximum allowed value length. If the attribute is omitted or parsing its value results in an error, then there is no
maximum allowed value lengthp569.

Constraint validation: If an element has a maximum allowed value lengthp569, its dirty value flagp566 is true, its valuep566 was last
changed by a user edit (as opposed to a change made by a script), and the length of the element's API valuep566 is greater than the
element's maximum allowed value lengthp569, then the element is suffering from being too longp590.

User agents may prevent the user from causing the element's API valuep566 to be set to a value whose length is greater than the
element's maximum allowed value lengthp569.

A form control minlength attribute, controlled by the dirty value flagp566, declares a lower bound on the number of characters a
user can input. The "number of characters" is measured using length and, in the case of textareap548 elements, with all newlines
normalized to a single character (as opposed to CRLF pairs).

If an element has its form control minlength attributep569 specified, the attribute's value must be a valid non-negative integerp69. If the
attribute is specified and applying the rules for parsing non-negative integers p69 to its value results in a number, then that number is
the element's minimum allowed value length. If the attribute is omitted or parsing its value results in an error, then there is no
minimum allowed value lengthp569.

In this example, a form contains a text control and a submission button:

<form action="addcomment.cgi" method=post>
<p><label>Comment: <input type=text name="comment" dirname="comment.dir" required></label></p>
<p><button name="mode" type=submit value="add">Post Comment</button></p>

</form>

When the user submits the form, the user agent includes three fields, one called "comment", one called "comment.dir", and one
called "mode"; so if the user types "Hello", the submission body might be something like:

comment=Hello&comment.dir=ltr&mode=add

If the user manually switches to a right-to-left writing direction and enters "مرحبا", the submission body might be something like:

comment=%D9%85%D8%B1%D8%AD%D8%A8%D8%A7&comment.dir=rtl&mode=add

Example

4.10.18.3 Limiting user input length: the maxlengthp569 attribute §p56

9

In the case of textareap548 elements, the API valuep566 and valuep566 differ. In particular, newline normalization is applied before
the maximum allowed value lengthp569 is checked (whereas the textarea wrapping transformationp551 is not applied).

Note

4.10.18.4 Setting minimum input length requirements: the minlengthp569 attribute §p56

9

The minlengthp569 attribute does not imply the required attribute. If the form control has no required attribute, then the value
can still be omitted; the minlengthp569 attribute only kicks in once the user has entered a value at all. If the empty string is not
allowed, then the required attribute also needs to be set.

Note

569

https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#normalize-newlines
https://infra.spec.whatwg.org/#string-length

If an element has both a maximum allowed value lengthp569 and a minimum allowed value lengthp569, the minimum allowed value
lengthp569 must be smaller than or equal to the maximum allowed value lengthp569.

Constraint validation: If an element has a minimum allowed value lengthp569, its dirty value flagp566 is true, its valuep566 was last
changed by a user edit (as opposed to a change made by a script), its valuep566 is not the empty string, and the length of the element's
API valuep566 is less than the element's minimum allowed value lengthp569, then the element is suffering from being too shortp590.

The disabled content attribute is a boolean attributep67.

A form control is disabled if any of the following conditions are met:

1. The element is a buttonp535, inputp493, selectp537, textareap548, or form-associated custom elementp704, and the
disabledp570 attribute is specified on this element (regardless of its value).

2. The element is a descendant of a fieldsetp562 element whose disabledp563 attribute is specified, and is not a descendant of
that fieldsetp562 element's first legendp565 element child, if any.

A form control that is disabledp570 must prevent any click events that are queuedp945 on the user interaction task sourcep952 from
being dispatched on the element.

Constraint validation: If an element is disabledp570, it is barred from constraint validationp590.

The disabled IDL attribute must reflectp94 the disabledp570 content attribute.

Attributes for form submission can be specified both on formp486 elements and on submit buttonsp486 (elements that represent
buttons that submit forms, e.g. an inputp493 element whose typep495 attribute is in the Submit Buttonp518 state).

The attributes for form submissionp570 that may be specified on formp486 elements are actionp571, enctypep572, methodp571,
novalidatep572, and targetp572.

The corresponding attributes for form submissionp570 that may be specified on submit buttonsp486 are formactionp571, formenctypep572,
formmethodp571, formnovalidatep572, and formtargetp572. When omitted, they default to the values given on the corresponding
attributes on the formp486 element.

In this example, there are four text controls. The first is required, and has to be at least 5 characters long. The other three are
optional, but if the user fills one in, the user has to enter at least 10 characters.

<form action="/events/menu.cgi" method="post">
<p><label>Name of Event: <input required minlength=5 maxlength=50 name=event></label></p>
<p><label>Describe what you would like for breakfast, if anything:

<textarea name="breakfast" minlength="10"></textarea></label></p>
<p><label>Describe what you would like for lunch, if anything:

<textarea name="lunch" minlength="10"></textarea></label></p>
<p><label>Describe what you would like for dinner, if anything:

<textarea name="dinner" minlength="10"></textarea></label></p>
<p><input type=submit value="Submit Request"></p>

</form>

Example

4.10.18.5 Enabling and disabling form controls: the disabledp570 attribute §p57

0

The disabledp546 attribute for optionp545 elements and the disabledp545 attribute for optgroupp544 elements are defined
separately.

Note

4.10.18.6 Form submission attributes §p57

0

✔ MDN

✔ MDN

570

https://infra.spec.whatwg.org/#string-length
https://w3c.github.io/uievents/#event-type-click

The action and formaction content attributes, if specified, must have a value that is a valid non-empty URL potentially surrounded by
spacesp88.

The action of an element is the value of the element's formactionp571 attribute, if the element is a submit buttonp486 and has such an
attribute, or the value of its form ownerp566 's actionp571 attribute, if it has one, or else the empty string.

The method and formmethod content attributes are enumerated attributesp68 with the following keywords and states:

• The keyword get, mapping to the state GET, indicating the HTTP GET method.

• The keyword post, mapping to the state POST, indicating the HTTP POST method.

• The keyword dialog, mapping to the state dialog, indicating that submitting the formp486 is intended to close the dialogp610

box in which the form finds itself, if any, and otherwise not submit.

The methodp571 attribute's invalid value defaultp68 and missing value defaultp68 are both the GETp571 state.

The formmethodp571 attribute's invalid value defaultp68 is the GETp571 state. It has no missing value defaultp68.

The method of an element is one of those states. If the element is a submit buttonp486 and has a formmethodp571 attribute, then the
element's methodp571 is that attribute's state; otherwise, it is the form ownerp566 's methodp571 attribute's state.

Here the methodp571 attribute is used to explicitly specify the default value, "getp571", so that the search query is submitted in the
URL:

<form method="get" action="/search.cgi">
<p><label>Search terms: <input type=search name=q></label></p>
<p><input type=submit></p>

</form>

Example

On the other hand, here the methodp571 attribute is used to specify the value "postp571", so that the user's message is submitted in
the HTTP request's body:

<form method="post" action="/post-message.cgi">
<p><label>Message: <input type=text name=m></label></p>
<p><input type=submit value="Submit message"></p>

</form>

Example

In this example, a formp486 is used with a dialogp610. The methodp571 attribute's "dialogp571" keyword is used to have the dialog
automatically close when the form is submitted.

<dialog id="ship">
<form method=dialog>
<p>A ship has arrived in the harbour.</p>
<button type=submit value="board">Board the ship</button>
<button type=submit value="call">Call to the captain</button>

</form>
</dialog>
<script>
var ship = document.getElementById('ship');
ship.showModal();
ship.onclose = function (event) {

if (ship.returnValue == 'board') {
// ...

} else {
// ...

Example

571

The enctype and formenctype content attributes are enumerated attributesp68 with the following keywords and states:

• The "application/x-www-form-urlencoded" keyword and corresponding state.

• The "multipart/form-data" keyword and corresponding state.

• The "text/plain" keyword and corresponding state.

The enctypep572 attribute's invalid value defaultp68 and missing value defaultp68 are both the application/x-www-form-
urlencodedp572 state.

The formenctypep572 attribute's invalid value defaultp68 is the application/x-www-form-urlencodedp572 state. It has no missing value
defaultp68.

The enctype of an element is one of those three states. If the element is a submit buttonp486 and has a formenctypep572 attribute, then
the element's enctypep572 is that attribute's state; otherwise, it is the form ownerp566 's enctypep572 attribute's state.

The target and formtarget content attributes, if specified, must have values that are valid browsing context names or keywordsp819.

The novalidate and formnovalidate content attributes are boolean attributesp67. If present, they indicate that the form is not to be
validated during submission.

The no-validate state of an element is true if the element is a submit buttonp486 and the element's formnovalidatep572 attribute is
present, or if the element's form ownerp566 's novalidatep572 attribute is present, and false otherwise.

The action IDL attribute must reflectp94 the content attribute of the same name, except that on getting, when the content attribute is
missing or its value is the empty string, the element's node document's URL must be returned instead. The target IDL attribute must
reflectp94 the content attribute of the same name. The method and enctype IDL attributes must reflectp94 the respective content
attributes of the same name, limited to only known valuesp95. The encoding IDL attribute must reflectp94 the enctypep572 content
attribute, limited to only known valuesp95. The noValidate IDL attribute must reflectp94 the novalidatep572 content attribute. The
formAction IDL attribute must reflectp94 the formactionp571 content attribute, except that on getting, when the content attribute is
missing or its value is the empty string, the element's node document's URL must be returned instead. The formEnctype IDL attribute
must reflectp94 the formenctypep572 content attribute, limited to only known valuesp95. The formMethod IDL attribute must reflectp94 the
formmethodp571 content attribute, limited to only known valuesp95. The formNoValidate IDL attribute must reflectp94 the
formnovalidatep572 content attribute. The formTarget IDL attribute must reflectp94 the formtargetp572 content attribute.

}
};

</script>

This attribute is useful to include "save" buttons on forms that have validation constraints, to allow users to save their progress
even though they haven't fully entered the data in the form. The following example shows a simple form that has two required
fields. There are three buttons: one to submit the form, which requires both fields to be filled in; one to save the form so that the
user can come back and fill it in later; and one to cancel the form altogether.

<form action="editor.cgi" method="post">
<p><label>Name: <input required name=fn></label></p>
<p><label>Essay: <textarea required name=essay></textarea></label></p>
<p><input type=submit name=submit value="Submit essay"></p>
<p><input type=submit formnovalidate name=save value="Save essay"></p>
<p><input type=submit formnovalidate name=cancel value="Cancel"></p>

</form>

Example

✔ MDN

572

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-url

User agents sometimes have features for helping users fill forms in, for example prefilling the user's address based on earlier user
input. The autocomplete content attribute can be used to hint to the user agent how to, or indeed whether to, provide such a feature.

There are two ways this attribute is used. When wearing the autofill expectation mantle, the autocompletep573 attribute describes
what input is expected from users. When wearing the autofill anchor mantle, the autocompletep573 attribute describes the meaning
of the given value.

On an inputp493 element whose typep495 attribute is in the Hiddenp499 state, the autocompletep573 attribute wears the autofill anchor
mantlep573. In all other cases, it wears the autofill expectation mantlep573.

When wearing the autofill expectation mantlep573, the autocompletep573 attribute, if specified, must have a value that is an ordered set
of space-separated tokensp87 consisting of either a single token that is an ASCII case-insensitive match for the string "offp574", or a
single token that is an ASCII case-insensitive match for the string "onp575", or autofill detail tokensp573.

When wearing the autofill anchor mantlep573, the autocompletep573 attribute, if specified, must have a value that is an ordered set of
space-separated tokensp87 consisting of just autofill detail tokensp573 (i.e. the "onp575" and "offp574" keywords are not allowed).

Autofill detail tokens are the following, in the order given below:

1. Optionally, a token whose first eight characters are an ASCII case-insensitive match for the string "section-", meaning that
the field belongs to the named group.

2. Optionally, a token that is an ASCII case-insensitive match for one of the following strings:

◦ "shipping", meaning the field is part of the shipping address or contact information
◦ "billing", meaning the field is part of the billing address or contact information

3. Either of the following two options:

◦ A token that is an ASCII case-insensitive match for one of the following autofill fieldp575 names, excluding those that
are inappropriate for the controlp575:

▪ "namep575"
▪ "honorific-prefixp575"
▪ "given-namep575"
▪ "additional-namep575"
▪ "family-namep575"
▪ "honorific-suffixp575"

4.10.18.7 Autofill §p57

3

4.10.18.7.1 Autofilling form controls: the autocompletep573 attribute §p57

3

For example, if there are two shipping addresses in the form, then they could be marked up as:

<fieldset>
<legend>Ship the blue gift to...</legend>
<p> <label> Address: <textarea name=ba autocomplete="section-blue shipping

street-address"></textarea> </label>
<p> <label> City: <input name=bc autocomplete="section-blue shipping

address-level2"> </label>
<p> <label> Postal Code: <input name=bp autocomplete="section-blue shipping postal-code">

</label>
</fieldset>
<fieldset>
<legend>Ship the red gift to...</legend>
<p> <label> Address: <textarea name=ra autocomplete="section-red shipping

street-address"></textarea> </label>
<p> <label> City: <input name=rc autocomplete="section-red shipping

address-level2"> </label>
<p> <label> Postal Code: <input name=rp autocomplete="section-red shipping postal-code">

</label>
</fieldset>

Example

MDN

573

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

▪ "nicknamep576"
▪ "usernamep576"
▪ "new-passwordp576"
▪ "current-passwordp576"
▪ "one-time-codep576"
▪ "organization-titlep576"
▪ "organizationp576"
▪ "street-addressp576"
▪ "address-line1p576"
▪ "address-line2p576"
▪ "address-line3p576"
▪ "address-level4p576"
▪ "address-level3p576"
▪ "address-level2p576"
▪ "address-level1p576"
▪ "countryp576"
▪ "country-namep576"
▪ "postal-codep576"
▪ "cc-namep576"
▪ "cc-given-namep576"
▪ "cc-additional-namep576"
▪ "cc-family-namep576"
▪ "cc-numberp576"
▪ "cc-expp576"
▪ "cc-exp-monthp576"
▪ "cc-exp-yearp576"
▪ "cc-cscp576"
▪ "cc-typep576"
▪ "transaction-currencyp576"
▪ "transaction-amountp577"
▪ "languagep577"
▪ "bdayp577"
▪ "bday-dayp577"
▪ "bday-monthp577"
▪ "bday-yearp577"
▪ "sexp577"
▪ "urlp577"
▪ "photop577"

(See the table below for descriptions of these values.)

◦ The following, in the given order:

1. Optionally, a token that is an ASCII case-insensitive match for one of the following strings:

▪ "home", meaning the field is for contacting someone at their residence
▪ "work", meaning the field is for contacting someone at their workplace
▪ "mobile", meaning the field is for contacting someone regardless of location
▪ "fax", meaning the field describes a fax machine's contact details
▪ "pager", meaning the field describes a pager's or beeper's contact details

2. A token that is an ASCII case-insensitive match for one of the following autofill fieldp575 names, excluding
those that are inappropriate for the controlp575:

▪ "telp577"
▪ "tel-country-codep577"
▪ "tel-nationalp577"
▪ "tel-area-codep577"
▪ "tel-localp577"
▪ "tel-local-prefixp577"
▪ "tel-local-suffixp577"
▪ "tel-extensionp577"
▪ "emailp577"
▪ "imppp577"

(See the table below for descriptions of these values.)

As noted earlier, the meaning of the attribute and its keywords depends on the mantle that the attribute is wearing.

↪ When wearing the autofill expectation mantlep573...
The "off" keyword indicates either that the control's input data is particularly sensitive (for example the activation code for a
nuclear weapon); or that it is a value that will never be reused (for example a one-time-key for a bank login) and the user will
therefore have to explicitly enter the data each time, instead of being able to rely on the UA to prefill the value for them; or that
the document provides its own autocomplete mechanism and does not want the user agent to provide autocompletion values.

574

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

The "on" keyword indicates that the user agent is allowed to provide the user with autocompletion values, but does not provide
any further information about what kind of data the user might be expected to enter. User agents would have to use heuristics
to decide what autocompletion values to suggest.

The autofill fieldp575 listed above indicate that the user agent is allowed to provide the user with autocompletion values, and
specifies what kind of value is expected. The meaning of each such keyword is described in the table below.

If the autocompletep573 attribute is omitted, the default value corresponding to the state of the element's form ownerp566 's
autocompletep488 attribute is used instead (either "onp575" or "offp574"). If there is no form ownerp566, then the value "onp575" is
used.

↪ When wearing the autofill anchor mantlep573...
The autofill fieldp575 listed above indicate that the value of the particular kind of value specified is that value provided for this
element. The meaning of each such keyword is described in the table below.

The autofill field keywords relate to each other as described in the table below. Each field name listed on a row of this table
corresponds to the meaning given in the cell for that row in the column labeled "Meaning". Some fields correspond to subparts of other
fields; for example, a credit card expiry date can be expressed as one field giving both the month and year of expiry ("cc-expp576"), or
as two fields, one giving the month ("cc-exp-monthp576") and one the year ("cc-exp-yearp576"). In such cases, the names of the
broader fields cover multiple rows, in which the narrower fields are defined.

Some fields are only appropriate for certain form controls. An autofill fieldp575 name is inappropriate for a control if the control does
not belong to the group listed for that autofill fieldp575 in the fifth column of the first row describing that autofill fieldp575 in the table
below. What controls fall into each group is described below the table.

Field name Meaning Canonical Format Canonical Format
Example

Control
group

"name" Full name Free-form text, no
newlines

Sir Timothy John
Berners-Lee, OM,
KBE, FRS, FREng,
FRSA

Textp577

"honorific-
prefix"

Prefix or title (e.g. "Mr.", "Ms.", "Dr.", "Mlle") Free-form text, no
newlines

Sir Textp577

"given-name" Given name (in some Western cultures, also known as the first name) Free-form text, no
newlines

Timothy Textp577

"additional-
name"

Additional names (in some Western cultures, also known as middle names,
forenames other than the first name)

Free-form text, no
newlines

John Textp577

"family-name" Family name (in some Western cultures, also known as the last name or
surname)

Free-form text, no
newlines

Berners-Lee Textp577

"honorific-
suffix"

Suffix (e.g. "Jr.", "B.Sc.", "MBASW", "II") Free-form text, no
newlines

OM, KBE, FRS,
FREng, FRSA

Textp577

In this example the page has explicitly specified the currency and amount of the transaction. The form requests a credit
card and other billing details. The user agent could use this information to suggest a credit card that it knows has sufficient
balance and that supports the relevant currency.

<form method=post action="step2.cgi">
<input type=hidden autocomplete=transaction-currency value="CHF">
<input type=hidden autocomplete=transaction-amount value="15.00">
<p><label>Credit card number: <input type=text inputmode=numeric

autocomplete=cc-number></label>
<p><label>Expiry Date: <input type=month autocomplete=cc-exp></label>
<p><input type=submit value="Continue...">

</form>

Example

Generally, authors are encouraged to use the broader fields rather than the narrower fields, as the narrower fields tend to expose
Western biases. For example, while it is common in some Western cultures to have a given name and a family name, in that order
(and thus often referred to as a first name and a surname), many cultures put the family name first and the given name second,
and many others simply have one name (a mononym). Having a single field is therefore more flexible.

Note

575

Field name Meaning Canonical Format Canonical Format
Example

Control
group

"nickname" Nickname, screen name, handle: a typically short name used instead of
the full name

Free-form text, no
newlines

Tim Textp577

"organization-
title"

Job title (e.g. "Software Engineer", "Senior Vice President", "Deputy
Managing Director")

Free-form text, no
newlines

Professor Textp577

"username" A username Free-form text, no
newlines

timbl Usernamep578

"new-password" A new password (e.g. when creating an account or changing a password) Free-form text, no
newlines

GUMFXbadyrS3 Passwordp577

"current-
password"

The current password for the account identified by the usernamep576 field
(e.g. when logging in)

Free-form text, no
newlines

qwerty Passwordp577

"one-time-code" One-time code used for verifying user identity Free-form text, no
newlines

123456 Passwordp577

"organization" Company name corresponding to the person, address, or contact
information in the other fields associated with this field

Free-form text, no
newlines

World Wide Web
Consortium

Textp577

"street-address" Street address (multiple lines, newlines preserved) Free-form text 32 Vassar Street
MIT Room 32-G524

Multilinep577

"address-
line1"

Free-form text, no
newlines

32 Vassar Street Textp577

"address-
line2"

Free-form text, no
newlines

MIT Room 32-G524 Textp577

"address-
line3"

Street address (one line per field)

Free-form text, no
newlines

Textp577

"address-level4" The most fine-grained administrative levelp578, in addresses with four
administrative levels

Free-form text, no
newlines

Textp577

"address-level3" The third administrative levelp578, in addresses with three or more
administrative levels

Free-form text, no
newlines

Textp577

"address-level2" The second administrative levelp578, in addresses with two or more
administrative levels; in the countries with two administrative levels, this
would typically be the city, town, village, or other locality within which the
relevant street address is found

Free-form text, no
newlines

Cambridge Textp577

"address-level1" The broadest administrative levelp578 in the address, i.e. the province
within which the locality is found; for example, in the US, this would be the
state; in Switzerland it would be the canton; in the UK, the post town

Free-form text, no
newlines

MA Textp577

"country" Country code Valid ISO 3166-1-alpha-2
country code
[ISO3166]p1288

US Textp577

"country-name" Country name Free-form text, no
newlines; derived from
country in some casesp583

US Textp577

"postal-code" Postal code, post code, ZIP code, CEDEX code (if CEDEX, append "CEDEX",
and the arrondissement, if relevant, to the address-level2p576 field)

Free-form text, no
newlines

02139 Textp577

"cc-name" Full name as given on the payment instrument Free-form text, no
newlines

Tim Berners-Lee Textp577

"cc-given-
name"

Given name as given on the payment instrument (in some Western
cultures, also known as the first name)

Free-form text, no
newlines

Tim Textp577

"cc-
additional-
name"

Additional names given on the payment instrument (in some Western
cultures, also known as middle names, forenames other than the first
name)

Free-form text, no
newlines

Textp577

"cc-family-
name"

Family name given on the payment instrument (in some Western cultures,
also known as the last name or surname)

Free-form text, no
newlines

Berners-Lee Textp577

"cc-number" Code identifying the payment instrument (e.g. the credit card number) ASCII digits 4114360123456785 Textp577

"cc-exp" Expiration date of the payment instrument Valid month stringp74 2014-12 Monthp578

"cc-exp-
month"

Month component of the expiration date of the payment instrument Valid integerp68 in the
range 1..12

12 Numericp578

"cc-exp-year" Year component of the expiration date of the payment instrument Valid integerp68 greater
than zero

2014 Numericp578

"cc-csc" Security code for the payment instrument (also known as the card
security code (CSC), card validation code (CVC), card verification value
(CVV), signature panel code (SPC), credit card ID (CCID), etc)

ASCII digits 419 Textp577

"cc-type" Type of payment instrument Free-form text, no
newlines

Visa Textp577

"transaction-
currency"

The currency that the user would prefer the transaction to use ISO 4217 currency code
[ISO4217]p1288

GBP Textp577

576

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

Field name Meaning Canonical Format Canonical Format
Example

Control
group

"transaction-
amount"

The amount that the user would like for the transaction (e.g. when
entering a bid or sale price)

Valid floating-point
numberp69

401.00 Numericp578

"language" Preferred language Valid BCP 47 language tag
[BCP47]p1285

en Textp577

"bday" Birthday Valid date stringp74 1955-06-08 Datep578

"bday-day" Day component of birthday Valid integerp68 in the
range 1..31

8 Numericp578

"bday-month" Month component of birthday Valid integerp68 in the
range 1..12

6 Numericp578

"bday-year" Year component of birthday Valid integerp68 greater
than zero

1955 Numericp578

"sex" Gender identity (e.g. Female, Fa'afafine) Free-form text, no
newlines

Male Textp577

"url" Home page or other web page corresponding to the company, person,
address, or contact information in the other fields associated with this
field

Valid URL string https://www.w3.org/
People/Berners-Lee/

URLp578

"photo" Photograph, icon, or other image corresponding to the company, person,
address, or contact information in the other fields associated with this
field

Valid URL string https://www.w3.org/
Press/Stock/Berners-
Lee/
2001-europaeum-
eighth.jpg

URLp578

"tel" Full telephone number, including country code ASCII digits and U+0020
SPACE characters, prefixed
by a U+002B PLUS SIGN
character (+)

+1 617 253 5702 Telp578

"tel-country-
code"

Country code component of the telephone number ASCII digits prefixed by a
U+002B PLUS SIGN
character (+)

+1 Textp577

"tel-
national"

Telephone number without the county code component, with a country-
internal prefix applied if applicable

ASCII digits and U+0020
SPACE characters

617 253 5702 Textp577

"tel-area-
code"

Area code component of the telephone number, with a country-internal
prefix applied if applicable

ASCII digits 617 Textp577

"tel-
local"

Telephone number without the country code and area code components ASCII digits 2535702 Textp577

"tel-
local-
prefix"

First part of the component of the telephone number that follows the area
code, when that component is split into two components

ASCII digits 253 Textp577

"tel-
local-
suffix"

Second part of the component of the telephone number that follows the
area code, when that component is split into two components

ASCII digits 5702 Textp577

"tel-extension" Telephone number internal extension code ASCII digits 1000 Textp577

"email" Email address Valid email addressp503 timbl@w3.org Usernamep578

"impp" URL representing an instant messaging protocol endpoint (for example,
"aim:goim?screenname=example" or "xmpp:fred@example.net")

Valid URL string irc://example.org/
timbl,isuser

URLp578

The groups correspond to controls as follows:

Text
inputp493 elements with a typep495 attribute in the Hiddenp499 state
inputp493 elements with a typep495 attribute in the Textp499 state
inputp493 elements with a typep495 attribute in the Searchp499 state
textareap548 elements
selectp537 elements

Multiline
inputp493 elements with a typep495 attribute in the Hiddenp499 state
textareap548 elements
selectp537 elements

Password
inputp493 elements with a typep495 attribute in the Hiddenp499 state
inputp493 elements with a typep495 attribute in the Textp499 state
inputp493 elements with a typep495 attribute in the Searchp499 state

577

https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#valid-url-string
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://url.spec.whatwg.org/#valid-url-string

inputp493 elements with a typep495 attribute in the Passwordp503 state
textareap548 elements
selectp537 elements

URL
inputp493 elements with a typep495 attribute in the Hiddenp499 state
inputp493 elements with a typep495 attribute in the Textp499 state
inputp493 elements with a typep495 attribute in the Searchp499 state
inputp493 elements with a typep495 attribute in the URLp501 state
textareap548 elements
selectp537 elements

Username
inputp493 elements with a typep495 attribute in the Hiddenp499 state
inputp493 elements with a typep495 attribute in the Textp499 state
inputp493 elements with a typep495 attribute in the Searchp499 state
inputp493 elements with a typep495 attribute in the Emailp502 state
textareap548 elements
selectp537 elements

Tel
inputp493 elements with a typep495 attribute in the Hiddenp499 state
inputp493 elements with a typep495 attribute in the Textp499 state
inputp493 elements with a typep495 attribute in the Searchp499 state
inputp493 elements with a typep495 attribute in the Telephonep500 state
textareap548 elements
selectp537 elements

Numeric
inputp493 elements with a typep495 attribute in the Hiddenp499 state
inputp493 elements with a typep495 attribute in the Textp499 state
inputp493 elements with a typep495 attribute in the Searchp499 state
inputp493 elements with a typep495 attribute in the Numberp509 state
textareap548 elements
selectp537 elements

Month
inputp493 elements with a typep495 attribute in the Hiddenp499 state
inputp493 elements with a typep495 attribute in the Textp499 state
inputp493 elements with a typep495 attribute in the Searchp499 state
inputp493 elements with a typep495 attribute in the Monthp505 state
textareap548 elements
selectp537 elements

Date
inputp493 elements with a typep495 attribute in the Hiddenp499 state
inputp493 elements with a typep495 attribute in the Textp499 state
inputp493 elements with a typep495 attribute in the Searchp499 state
inputp493 elements with a typep495 attribute in the Datep504 state
textareap548 elements
selectp537 elements

Address levels: The "address-level1p576" – "address-level4p576" fields are used to describe the locality of the street address.
Different locales have different numbers of levels. For example, the US uses two levels (state and town), the UK uses one or two
depending on the address (the post town, and in some cases the locality), and China can use three (province, city, district). The
"address-level1p576" field represents the widest administrative division. Different locales order the fields in different ways; for
example, in the US the town (level 2) precedes the state (level 1); while in Japan the prefecture (level 1) precedes the city (level 2)
which precedes the district (level 3). Authors are encouraged to provide forms that are presented in a way that matches the country's
conventions (hiding, showing, and rearranging fields accordingly as the user changes the country).

578

Each inputp493 element to which the autocompletep573 attribute appliesp496, each selectp537 element, and each textareap548 element,
has an autofill hint set, an autofill scope, an autofill field name, and an IDL-exposed autofill value.

The autofill field namep579 specifies the specific kind of data expected in the field, e.g. "street-addressp576" or "cc-expp576".

The autofill hint setp579 identifies what address or contact information type the user agent is to look at, e.g. "shippingp573 faxp574" or
"billingp573".

The autofill scopep579 identifies the group of fields whose information concerns the same subject, and consists of the autofill hint setp579

with, if applicable, the "section-*" prefix, e.g. "billing", "section-parent shipping", or "section-child shipping home".

These values are defined as the result of running the following algorithm:

1. If the element has no autocompletep573 attribute, then jump to the step labeled default.

2. Let tokens be the result of splitting the attribute's value on ASCII whitespace.

3. If tokens is empty, then jump to the step labeled default.

4. Let index be the index of the last token in tokens.

5. If the indexth token in tokens is not an ASCII case-insensitive match for one of the tokens given in the first column of the
following table, or if the number of tokens in tokens is greater than the maximum number given in the cell in the second
column of that token's row, then jump to the step labeled default. Otherwise, let field be the string given in the cell of the
first column of the matching row, and let category be the value of the cell in the third column of that same row.

Token Maximum number of tokens Category

"offp574" 1 Off
"onp575" 1 Automatic

"namep575" 3 Normal
"honorific-prefixp575" 3 Normal
"given-namep575" 3 Normal
"additional-namep575" 3 Normal
"family-namep575" 3 Normal
"honorific-suffixp575" 3 Normal
"nicknamep576" 3 Normal
"organization-titlep576" 3 Normal
"usernamep576" 3 Normal
"new-passwordp576" 3 Normal
"current-passwordp576" 3 Normal
"one-time-codep576" 3 Normal
"organizationp576" 3 Normal
"street-addressp576" 3 Normal
"address-line1p576" 3 Normal
"address-line2p576" 3 Normal
"address-line3p576" 3 Normal
"address-level4p576" 3 Normal
"address-level3p576" 3 Normal
"address-level2p576" 3 Normal
"address-level1p576" 3 Normal
"countryp576" 3 Normal
"country-namep576" 3 Normal
"postal-codep576" 3 Normal
"cc-namep576" 3 Normal
"cc-given-namep576" 3 Normal
"cc-additional-namep576" 3 Normal
"cc-family-namep576" 3 Normal
"cc-numberp576" 3 Normal
"cc-expp576" 3 Normal

4.10.18.7.2 Processing model §p57

9

579

https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive

Token Maximum number of tokens Category

"cc-exp-monthp576" 3 Normal
"cc-exp-yearp576" 3 Normal
"cc-cscp576" 3 Normal
"cc-typep576" 3 Normal
"transaction-currencyp576" 3 Normal
"transaction-amountp577" 3 Normal
"languagep577" 3 Normal
"bdayp577" 3 Normal
"bday-dayp577" 3 Normal
"bday-monthp577" 3 Normal
"bday-yearp577" 3 Normal
"sexp577" 3 Normal
"urlp577" 3 Normal
"photop577" 3 Normal

"telp577" 4 Contact
"tel-country-codep577" 4 Contact
"tel-nationalp577" 4 Contact
"tel-area-codep577" 4 Contact
"tel-localp577" 4 Contact
"tel-local-prefixp577" 4 Contact
"tel-local-suffixp577" 4 Contact
"tel-extensionp577" 4 Contact
"emailp577" 4 Contact
"imppp577" 4 Contact

6. If category is Off or Automatic but the element's autocompletep573 attribute is wearing the autofill anchor mantlep573, then
jump to the step labeled default.

7. If category is Off, let the element's autofill field namep579 be the string "off", let its autofill hint setp579 be empty, and let its
IDL-exposed autofill valuep579 be the string "off". Then, return.

8. If category is Automatic, let the element's autofill field namep579 be the string "on", let its autofill hint setp579 be empty, and
let its IDL-exposed autofill valuep579 be the string "on". Then, return.

9. Let scope tokens be an empty list.

10. Let hint tokens be an empty set.

11. Let IDL value have the same value as field.

12. If the indexth token in tokens is the first entry, then skip to the step labeled done.

13. Decrement index by one.

14. If category is Contact and the indexth token in tokens is an ASCII case-insensitive match for one of the strings in the
following list, then run the substeps that follow:

◦ "homep574"
◦ "workp574"
◦ "mobilep574"
◦ "faxp574"
◦ "pagerp574"

The substeps are:

1. Let contact be the matching string from the list above.

2. Insert contact at the start of scope tokens.

3. Add contact to hint tokens.

4. Let IDL value be the concatenation of contact, a U+0020 SPACE character, and the previous value of IDL value
(which at this point will always be field).

580

https://infra.spec.whatwg.org/#ascii-case-insensitive

5. If the indexth entry in tokens is the first entry, then skip to the step labeled done.

6. Decrement index by one.

15. If the indexth token in tokens is an ASCII case-insensitive match for one of the strings in the following list, then run the
substeps that follow:

◦ "shippingp573"
◦ "billingp573"

The substeps are:

1. Let mode be the matching string from the list above.

2. Insert mode at the start of scope tokens.

3. Add mode to hint tokens.

4. Let IDL value be the concatenation of mode, a U+0020 SPACE character, and the previous value of IDL value
(which at this point will either be field or the concatenation of contact, a space, and field).

5. If the indexth entry in tokens is the first entry, then skip to the step labeled done.

6. Decrement index by one.

16. If the indexth entry in tokens is not the first entry, then jump to the step labeled default.

17. If the first eight characters of the indexth token in tokens are not an ASCII case-insensitive match for the string
"section-p573", then jump to the step labeled default.

18. Let section be the indexth token in tokens, converted to ASCII lowercase.

19. Insert section at the start of scope tokens.

20. Let IDL value be the concatenation of section, a U+0020 SPACE character, and the previous value of IDL value.

21. Done: Let the element's autofill hint setp579 be hint tokens.

22. Let the element's autofill scopep579 be scope tokens.

23. Let the element's autofill field namep579 be field.

24. Let the element's IDL-exposed autofill valuep579 be IDL value.

25. Return.

26. Default: Let the element's IDL-exposed autofill valuep579 be the empty string, and its autofill hint setp579 and autofill scopep579

be empty.

27. If the element's autocompletep573 attribute is wearing the autofill anchor mantlep573, then let the element's autofill field
namep579 be the empty string and return.

28. Let form be the element's form ownerp566, if any, or null otherwise.

29. If form is not null and form's autocompletep488 attribute is in the offp488 state, then let the element's autofill field namep579 be
"offp574".

Otherwise, let the element's autofill field namep579 be "onp575".

For the purposes of autofill, a control's data depends on the kind of control:

An inputp493 element with its typep495 attribute in the Emailp502 state and with the multiplep524 attribute specified
The element's valuesp566.

Any other inputp493 element
A textareap548 element

The element's valuep566.

A selectp537 element with its multiplep539 attribute specified
The optionp545 elements in the selectp537 element's list of optionsp539 that have their selectednessp547 set to true.

581

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-lowercase

Any other selectp537 element
The optionp545 element in the selectp537 element's list of optionsp539 that has its selectednessp547 set to true.

How to process the autofill hint setp579, autofill scopep579, and autofill field namep579 depends on the mantle that the autocompletep573

attribute is wearing.

↪ When wearing the autofill expectation mantlep573...
When an element's autofill field namep579 is "offp574", the user agent should not remember the control's datap581, and should not
offer past values to the user.

When an element's autofill field namep579 is not "offp574", the user agent may store the control's datap581, and may offer
previously stored values to the user.

In addition, when an element's autofill field namep579 is "offp574", values are resetp882 when traversing the historyp881.
Note

Banks frequently do not want UAs to prefill login information:

<p><label>Account: <input type="text" name="ac" autocomplete="off"></label></p>
<p><label>PIN: <input type="password" name="pin" autocomplete="off"></label></p>

Example

For example, suppose a user visits a page with this control:

<select name="country">
<option>Afghanistan
<option>Albania
<option>Algeria
<option>Andorra
<option>Angola
<option>Antigua and Barbuda
<option>Argentina
<option>Armenia
<!-- ... -->
<option>Yemen
<option>Zambia
<option>Zimbabwe

</select>

This might render as follows:

Suppose that on the first visit to this page, the user selects "Zambia". On the second visit, the user agent could duplicate
the entry for Zambia at the top of the list, so that the interface instead looks like this:

Example

582

When the autofill field namep579 is "onp575", the user agent should attempt to use heuristics to determine the most appropriate
values to offer the user, e.g. based on the element's namep568 value, the position of the element in its tree, what other fields
exist in the form, and so forth.

When the autofill field namep579 is one of the names of the autofill fieldsp575 described above, the user agent should provide
suggestions that match the meaning of the field name as given in the table earlier in this section. The autofill hint setp579 should
be used to select amongst multiple possible suggestions.

↪ When wearing the autofill anchor mantlep573...
When the autofill field namep579 is not the empty string, then the user agent must act as if the user had specified the control's
datap581 for the given autofill hint setp579, autofill scopep579, and autofill field namep579 combination.

When the user agent autofills form controls, elements with the same form ownerp566 and the same autofill scopep579 must use data
relating to the same person, address, payment instrument, and contact details. When a user agent autofills "countryp576" and
"country-namep576" fields with the same form ownerp566 and autofill scopep579, and the user agent has a value for the countryp576"
field(s), then the "country-namep576" field(s) must be filled using a human-readable name for the same country. When a user agent fills
in multiple fields at once, all fields with the same autofill field namep579, form ownerp566 and autofill scopep579 must be filled with the
same value.

For example, if a user once entered one address into fields that used the "shippingp573" keyword, and another address into
fields that used the "billingp573" keyword, then in subsequent forms only the first address would be suggested for form
controls whose autofill hint setp579 contains the keyword "shippingp573". Both addresses might be suggested, however, for
address-related form controls whose autofill hint setp579 does not contain either keyword.

Example

Suppose a user agent knows of two phone numbers, +1 555 123 1234 and +1 555 666 7777. It would not be conforming for the
user agent to fill a field with autocomplete="shipping tel-local-prefix" with the value "123" and another field in the same
form with autocomplete="shipping tel-local-suffix" with the value "7777". The only valid prefilled values given the
aforementioned information would be "123" and "1234", or "666" and "7777", respectively.

Example

Similarly, if a form for some reason contained both a "cc-expp576" field and a "cc-exp-monthp576" field, and the user agent prefilled
the form, then the month component of the former would have to match the latter.

Example

This requirement interacts with the autofill anchor mantlep573 also. Consider the following markup snippet:

<form>
<input type=hidden autocomplete="nickname" value="TreePlate">
<input type=text autocomplete="nickname">

</form>

The only value that a conforming user agent could suggest in the text control is "TreePlate", the value given by the hidden
inputp493 element.

Example

583

https://dom.spec.whatwg.org/#concept-tree

The "section-*" tokens in the autofill scopep579 are opaque; user agents must not attempt to derive meaning from the precise values
of these tokens.

The autocompletion mechanism must be implemented by the user agent acting as if the user had modified the control's datap581, and
must be done at a time where the element is mutablep566 (e.g. just after the element has been inserted into the document, or when the
user agent stops parsingp1165). User agents must only prefill controls using values that the user could have entered.

A user agent prefilling a form control must not discriminate between form controls that are in a document tree and those that are
connected; that is, it is not conforming to make the decision on whether or not to autofill based on whether the element's root is a
shadow root versus a Documentp114.

A user agent prefilling a form control's valuep566 must not cause that control to suffer from a type mismatchp590, suffer from being too
longp590, suffer from being too shortp590, suffer from an underflowp590, suffer from an overflowp591, or suffer from a step mismatchp591. A
user agent prefilling a form control's valuep566 must not cause that control to suffer from a pattern mismatchp590 either. Where possible
given the control's constraints, user agents must use the format given as canonical in the aforementioned table. Where it's not
possible for the canonical format to be used, user agents should use heuristics to attempt to convert values so that they can be used.

For example, it would not be conforming if the user agent decided that it should offer the address it knows to be the user's
daughter's address for "section-child" and the addresses it knows to be the user's spouses' addresses for "section-spouse".

Example

For example, if a selectp537 element only has optionp545 elements with values "Steve" and "Rebecca", "Jay", and "Bob", and has an
autofill field namep579 "given-namep575", but the user agent's only idea for what to prefill the field with is "Evan", then the user
agent cannot prefill the field. It would not be conforming to somehow set the selectp537 element to the value "Evan", since the
user could not have done so themselves.

Example

For example, if the user agent knows that the user's middle name is "Ines", and attempts to prefill a form control that looks like
this:

<input name=middle-initial maxlength=1 autocomplete="additional-name">

...then the user agent could convert "Ines" to "I" and prefill it that way.

Example

A more elaborate example would be with month values. If the user agent knows that the user's birthday is the 27th of July 2012,
then it might try to prefill all of the following controls with slightly different values, all driven from this information:

<input name=b type=month
autocomplete="bday">

2012-07 The day is dropped since the Monthp505 state only accepts a month/year combination. (Note that this
example is non-conforming, because the autofill field namep579 bdayp577 is not allowed with the
Monthp505 state.)

<select name=c
autocomplete="bday">
<option>Jan
<option>Feb
...
<option>Jul
<option>Aug
...

</select>

July The user agent picks the month from the listed options, either by noticing there are twelve options and
picking the 7th, or by recognizing that one of the strings (three characters "Jul" followed by a newline
and a space) is a close match for the name of the month (July) in one of the user agent's supported
languages, or through some other similar mechanism.

<input name=a type=number
min=1 max=12
autocomplete="bday-month">

7 User agent converts "July" to a month number in the range 1..12, like the field.

<input name=a type=number
min=0 max=11
autocomplete="bday-month">

6 User agent converts "July" to a month number in the range 0..11, like the field.

Example

584

https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-root

A user agent may allow the user to override an element's autofill field namep579, e.g. to change it from "offp574" to "onp575" to allow
values to be remembered and prefilled despite the page author's objections, or to always "offp574", never remembering values.

More specifically, user agents may in particular consider replacing the autofill field namep579 of form controls that match the
description given in the first column of the following table, when their autofill field namep579 is either "onp575" or "offp574", with the
value given in the second cell of that row. If this table is used, the replacements must be done in tree order, since all but the first row
references the autofill field namep579 of earlier elements. When the descriptions below refer to form controls being preceded or
followed by others, they mean in the list of listed elementsp486 that share the same form ownerp566.

Form control New autofill field
namep579

an inputp493 element whose typep495 attribute is in the Textp499 state that is followed by an inputp493 element whose typep495 attribute is
in the Passwordp503 state

"usernamep576"

an inputp493 element whose typep495 attribute is in the Passwordp503 state that is preceded by an inputp493 element whose autofill field
namep579 is "usernamep576"

"current-
passwordp576"

an inputp493 element whose typep495 attribute is in the Passwordp503 state that is preceded by an inputp493 element whose autofill field
namep579 is "current-passwordp576"

"new-passwordp576"

an inputp493 element whose typep495 attribute is in the Passwordp503 state that is preceded by an inputp493 element whose autofill field
namep579 is "new-passwordp576"

"new-passwordp576"

The autocomplete IDL attribute, on getting, must return the element's IDL-exposed autofill valuep579, and on setting, must reflectp94

the content attribute of the same name.

The inputp493 and textareap548 elements define several attributes and methods for handling their selection. Their shared algorithms
are defined here.

<input name=a type=number
min=1 max=11
autocomplete="bday-month">

User agent doesn't fill in the field, since it can't make a good guess as to what the form expects.

element . selectp587()
Selects everything in the text control.

element . selectionStartp587 [= value]
Returns the offset to the start of the selection.
Can be set, to change the start of the selection.

element . selectionEndp587 [= value]
Returns the offset to the end of the selection.
Can be set, to change the end of the selection.

element . selectionDirectionp588 [= value]
Returns the current direction of the selection.
Can be set, to change the direction of the selection.
The possible values are "forward", "backward", and "none".

element . setSelectionRangep588(start, end [, direction])
Changes the selection to cover the given substring in the given direction. If the direction is omitted, it will be reset to be the
platform default (none or forward).

element . setRangeTextp588(replacement [, start, end [, selectionMode]])
Replaces a range of text with the new text. If the start and end arguments are not provided, the range is assumed to be the
selection.
The final argument determines how the selection will be set after the text has been replaced. The possible values are:

For web developers (non-normative)

4.10.19 APIs for the text control selections §p58

5

585

https://dom.spec.whatwg.org/#concept-tree-order

All inputp493 elements to which these APIs applyp496, and all textareap548 elements, have either a selection or a text entry cursor
position at all times (even for elements that are not being renderedp1192), measured in offsets into the code units of the control's
relevant valuep586. The initial state must consist of a text entry cursorp586 at the beginning of the control.

For inputp493 elements, these APIs must operate on the element's valuep566. For textareap548 elements, these APIs must operate on
the element's API valuep566. In the below algorithms, we call the value string being operated on the relevant value.

Whenever the relevant valuep586 changes for an element to which these APIs apply, run these steps:

1. If the element has a selectionp586:

1. If the start of the selection is now past the end of the relevant valuep586, set it to the end of the relevant valuep586.

2. If the end of the selection is now past the end of the relevant valuep586, set it to the end of the relevant valuep586.

3. If the user agent does not support empty selection, and both the start and end of the selection are now pointing to
the end of the relevant valuep586, then instead set the element's text entry cursor positionp586 to the end of the
relevant valuep586, removing any selection.

2. Otherwise, the element must have a text entry cursor positionp586 position. If it is now past the end of the relevant valuep586,
set it to the end of the relevant valuep586.

Where possible, user interface features for changing the text selectionp586 in inputp493 and textareap548 elements must be
implemented using the set the selection rangep588 algorithm so that, e.g., all the same events fire.

The selectionsp586 of inputp493 and textareap548 elements have a selection direction, which is either "forward", "backward", or
"none". The exact meaning of the selection direction depends on the platform. This direction is set when the user manipulates the

"selectp589"
Selects the newly inserted text.

"startp589"
Moves the selection to just before the inserted text.

"endp589"
Moves the selection to just after the selected text.

"preservep589"
Attempts to preserve the selection. This is the default.

The use of API valuep566 instead of raw valuep549 for textareap548 elements means that U+000D (CR) characters are normalized
away. For example,

<textarea id="demo"></textarea>
<script>
demo.value = "A\r\nB";
demo.setRangeText("replaced", 0, 2);
assert(demo.value === "replacedB");

</script>

If we had operated on the raw valuep549 of "A\r\nB", then we would have replaced the characters "A\r", ending up with a result of
"replaced\nB". But since we used the API valuep566 of "A\nB", we replaced the characters "A\n", giving "replacedB".

Example

Characters with no visible rendering, such as U+200D ZERO WIDTH JOINER, still count as characters. Thus, for instance, the
selection can include just an invisible character, and the text insertion cursor can be placed to one side or another of such a
character.

Note

In some cases where the relevant valuep586 changes, other parts of the specification will also modify the text entry cursor
positionp586, beyond just the clamping steps above. For example, see the valuep552 setter for textareap548.

Note

586

https://infra.spec.whatwg.org/#code-unit

selection. The initial selection directionp586 must be "none" if the platform supports that direction, or "forward" otherwise.

To set the selection direction of an element to a given direction, update the element's selection directionp586 to the given direction,
unless the direction is "none" and the platform does not support that direction; in that case, update the element's selection
directionp586 to "forward".

The select() method, when invoked, must run the following steps:

1. If this element is an inputp493 element, and either select()p587 does not applyp496 to this element or the corresponding
control has no selectable text, return.

2. Set the selection rangep588 with 0 and infinity.

The selectionStart attribute's getter must run the following steps:

1. If this element is an inputp493 element, and selectionStartp587 does not applyp496 to this element, return null.

2. If there is no selectionp586, return the code unit offset within the relevant valuep586 to the character that immediately follows
the text entry cursorp586.

3. Return the code unit offset within the relevant valuep586 to the character that immediately follows the start of the
selectionp586.

The selectionStartp587 attribute's setter must run the following steps:

1. If this element is an inputp493 element, and selectionStartp587 does not applyp496 to this element, throw an
"InvalidStateError" DOMException.

2. Let end be the value of this element's selectionEndp587 attribute.

3. If end is less than the given value, set end to the given value.

4. Set the selection rangep588 with the given value, end, and the value of this element's selectionDirectionp588 attribute.

The selectionEnd attribute's getter must run the following steps:

1. If this element is an inputp493 element, and selectionEndp587 does not applyp496 to this element, return null.

2. If there is no selectionp586, return the code unit offset within the relevant valuep586 to the character that immediately follows
the text entry cursorp586.

3. Return the code unit offset within the relevant valuep586 to the character that immediately follows the end of the
selectionp586.

The selectionEndp587 attribute's setter must run the following steps:

1. If this element is an inputp493 element, and selectionEndp587 does not applyp496 to this element, throw an
"InvalidStateError" DOMException.

2. Set the selection rangep588 with the value of this element's selectionStartp587 attribute, the given value, and the value of

On Windows, the direction indicates the position of the caret relative to the selection: a "forward" selection has the caret at the
end of the selection and a "backward" selection has the caret at the start of the selection. Windows has no "none" direction.

On Mac, the direction indicates which end of the selection is affected when the user adjusts the size of the selection using the
arrow keys with the Shift modifier: the "forward" direction means the end of the selection is modified, and the "backward"
direction means the start of the selection is modified. The "none" direction is the default on Mac, it indicates that no particular
direction has yet been selected. The user sets the direction implicitly when first adjusting the selection, based on which directional
arrow key was used.

Note

For instance, in a user agent where <input type=color>p513 is rendered as a color well with a picker, as opposed to a
text control accepting a hexadecimal color code, there would be no selectable text, and thus calls to the method are
ignored.

Example

MDN

587

https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

this element's selectionDirectionp588 attribute.

The selectionDirection attribute's getter must run the following steps:

1. If this element is an inputp493 element, and selectionDirectionp588 does not applyp496 to this element, return null.

2. Return this element's selection directionp586.

The selectionDirectionp588 attribute's setter must run the following steps:

1. If this element is an inputp493 element, and selectionDirectionp588 does not applyp496 to this element, throw an
"InvalidStateError" DOMException.

2. Set the selection rangep588 with the value of this element's selectionStartp587 attribute, the value of this element's
selectionEndp587 attribute, and the given value.

The setSelectionRange(start, end, direction) method, when invoked, must run the following steps:

1. If this element is an inputp493 element, and setSelectionRange()p588 does not applyp496 to this element, throw an
"InvalidStateError" DOMException.

2. Set the selection rangep588 with start, end, and direction.

To set the selection range with an integer or null start, an integer or null or the special value infinity end, and optionally a string
direction, run the following steps:

1. If start is null, let start be zero.

2. If end is null, let end be zero.

3. Set the selectionp586 of the text control to the sequence of code units within the relevant valuep586 starting with the code unit
at the startth position (in logical order) and ending with the code unit at the (end-1)th position. Arguments greater than the
length of the relevant valuep586 of the text control (including the special value infinity) must be treated as pointing at the end
of the text control. If end is less than or equal to start then the start of the selection and the end of the selection must both
be placed immediately before the character with offset end. In UAs where there is no concept of an empty selection, this
must set the cursor to be just before the character with offset end.

4. If direction is not identical to either "backward" or "forward", or if the direction argument was not given, set direction to
"none".

5. Set the selection directionp587 of the text control to direction.

6. If the previous steps caused the selectionp586 of the text control to be modified (in either extent or directionp586), then queue
an element taskp946 on the user interaction task sourcep952 given the element to fire an event named selectp1282 at the
element, with the bubbles attribute initialized to true.

The setRangeText(replacement, start, end, selectMode) method, when invoked, must run the following steps:

1. If this element is an inputp493 element, and setRangeText()p588 does not applyp496 to this element, throw an
"InvalidStateError" DOMException.

2. Set this element's dirty value flagp566 to true.

3. If the method has only one argument, then let start and end have the values of the selectionStartp587 attribute and the
selectionEndp587 attribute respectively.

Otherwise, let start, end have the values of the second and third arguments respectively.

4. If start is greater than end, then throw an "IndexSizeError" DOMException.

5. If start is greater than the length of the relevant valuep586 of the text control, then set it to the length of the relevant
valuep586 of the text control.

6. If end is greater than the length of the relevant valuep586 of the text control, then set it to the length of the relevant valuep586

of the text control.

7. Let selection start be the current value of the selectionStartp587 attribute.

8. Let selection end be the current value of the selectionEndp587 attribute.

✔ MDN

✔ MDN

588

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length

9. If start is less than end, delete the sequence of code units within the element's relevant valuep586 starting with the code unit
at the startth position and ending with the code unit at the (end-1)th position.

10. Insert the value of the first argument into the text of the relevant valuep586 of the text control, immediately before the startth
code unit.

11. Let new length be the length of the value of the first argument.

12. Let new end be the sum of start and new length.

13. Run the appropriate set of substeps from the following list:

↪ If the fourth argument's value is "select"
Let selection start be start.

Let selection end be new end.

↪ If the fourth argument's value is "start"
Let selection start and selection end be start.

↪ If the fourth argument's value is "end"
Let selection start and selection end be new end.

↪ If the fourth argument's value is "preserve"
↪ If the method has only one argument

1. Let old length be end minus start.

2. Let delta be new length minus old length.

3. If selection start is greater than end, then increment it by delta. (If delta is negative, i.e. the new text is
shorter than the old text, then this will decrease the value of selection start.)

Otherwise: if selection start is greater than start, then set it to start. (This snaps the start of the selection to
the start of the new text if it was in the middle of the text that it replaced.)

4. If selection end is greater than end, then increment it by delta in the same way.

Otherwise: if selection end is greater than start, then set it to new end. (This snaps the end of the selection
to the end of the new text if it was in the middle of the text that it replaced.)

14. Set the selection rangep588 with selection start and selection end.

The setRangeText()p588 method uses the following enumeration:

enum SelectionMode {
"select",
"start",
"end",
"preserve" // default

};

To obtain the currently selected text, the following JavaScript suffices:

var selectionText = control.value.substring(control.selectionStart, control.selectionEnd);

...where control is the inputp493 or textareap548 element.

Example

To add some text at the start of a text control, while maintaining the text selection, the three attributes must be preserved:
Example

IDL

589

https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#string-length

A submittable elementp486 is a candidate for constraint validation except when a condition has barred the element from
constraint validation. (For example, an element is barred from constraint validationp590 if it is an objectp373 element.)

An element can have a custom validity error message defined. Initially, an element must have its custom validity error messagep590

set to the empty string. When its value is not the empty string, the element is suffering from a custom errorp591. It can be set using the
setCustomValidity()p593 method, except for form-associated custom elementsp704. Form-associated custom elementsp704 can have a
custom validity error messagep590 set via their ElementInternalsp714 object's setValidity()p717 method. The user agent should use
the custom validity error messagep590 when alerting the user to the problem with the control.

An element can be constrained in various ways. The following is the list of validity states that a form control can be in, making the
control invalid for the purposes of constraint validation. (The definitions below are non-normative; other parts of this specification
define more precisely when each state applies or does not.)

Suffering from being missing
When a control has no valuep566 but has a required attribute (inputp493 requiredp523, textareap548 requiredp551); or, more
complicated rules for selectp537 elements and controls in radio button groupsp514, as specified in their sections.

When the setValidity()p717 method sets valueMissing flag to true for a form-associated custom elementp704.

Suffering from a type mismatch
When a control that allows arbitrary user input has a valuep566 that is not in the correct syntax (Emailp502, URLp501).

When the setValidity()p717 method sets typeMismatch flag to true for a form-associated custom elementp704.

Suffering from a pattern mismatch
When a control has a valuep566 that doesn't satisfy the patternp525 attribute.

When the setValidity()p717 method sets patternMismatch flag to true for a form-associated custom elementp704.

Suffering from being too long
When a control has a valuep566 that is too long for the form control maxlength attributep569 (inputp493 maxlengthp522, textareap548

maxlengthp551).

When the setValidity()p717 method sets tooLong flag to true for a form-associated custom elementp704.

Suffering from being too short
When a control has a valuep566 that is too short for the form control minlength attributep569 (inputp493 minlengthp522, textareap548

minlengthp551).

When the setValidity()p717 method sets tooShort flag to true for a form-associated custom elementp704.

Suffering from an underflow
When a control has a valuep566 that is not the empty string and is too low for the minp526 attribute.

When the setValidity()p717 method sets rangeUnderflow flag to true for a form-associated custom elementp704.

var oldStart = control.selectionStart;
var oldEnd = control.selectionEnd;
var oldDirection = control.selectionDirection;
var prefix = "http://";
control.value = prefix + control.value;
control.setSelectionRange(oldStart + prefix.length, oldEnd + prefix.length, oldDirection);

...where control is the inputp493 or textareap548 element.

4.10.20.1 Definitions §p59

0

4.10.20 Constraints §p59

0

590

Suffering from an overflow
When a control has a valuep566 that is not the empty string and is too high for the maxp526 attribute.

When the setValidity()p717 method sets rangeOverflow flag to true for a form-associated custom elementp704.

Suffering from a step mismatch
When a control has a valuep566 that doesn't fit the rules given by the stepp527 attribute.

When the setValidity()p717 method sets stepMismatch flag to true for a form-associated custom elementp704.

Suffering from bad input
When a control has incomplete input and the user agent does not think the user ought to be able to submit the form in its current
state.

When the setValidity()p717 method sets badInput flag to true for a form-associated custom elementp704.

Suffering from a custom error
When a control's custom validity error messagep590 (as set by the element's setCustomValidity()p593 method or
ElementInternalsp714 's setValidity()p717 method) is not the empty string.

An element satisfies its constraints if it is not suffering from any of the above validity statesp590.

When the user agent is required to statically validate the constraints of formp486 element form, it must run the following steps,
which return either a positive result (all the controls in the form are valid) or a negative result (there are invalid controls) along with a
(possibly empty) list of elements that are invalid and for which no script has claimed responsibility:

1. Let controls be a list of all the submittable elementsp486 whose form ownerp566 is form, in tree order.

2. Let invalid controls be an initially empty list of elements.

3. For each element field in controls, in tree order:

1. If field is not a candidate for constraint validationp590, then move on to the next element.

2. Otherwise, if field satisfies its constraintsp591, then move on to the next element.

3. Otherwise, add field to invalid controls.

4. If invalid controls is empty, then return a positive result.

5. Let unhandled invalid controls be an initially empty list of elements.

6. For each element field in invalid controls, if any, in tree order:

1. Let notCanceled be the result of firing an event named invalidp1281 at field, with the cancelable attribute
initialized to true.

2. If notCanceled is true, then add field to unhandled invalid controls.

7. Return a negative result with the list of elements in the unhandled invalid controls list.

If a user agent is to interactively validate the constraints of formp486 element form, then the user agent must run the following
steps:

1. Statically validate the constraintsp591 of form, and let unhandled invalid controls be the list of elements returned if the result
was negative.

2. If the result was positive, then return that result.

An element can still suffer from these states even when the element is disabledp570; thus these states can be represented in the
DOM even if validating the form during submission wouldn't indicate a problem to the user.

Note

4.10.20.2 Constraint validation §p59

1

591

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

3. Report the problems with the constraints of at least one of the elements given in unhandled invalid controls to the user.

◦ User agents may focus one of those elements in the process, by running the focusing stepsp776 for that element,
and may change the scrolling position of the document, or perform some other action that brings the element to
the user's attention. For elements that are form-associated custom elementsp704, user agents should use their
validation anchorp717 instead, for the purposes of these actions.

◦ User agents may report more than one constraint violation.

◦ User agents may coalesce related constraint violation reports if appropriate (e.g. if multiple radio buttons in a
groupp514 are marked as required, only one error need be reported).

◦ If one of the controls is not being renderedp1192 (e.g. it has the hiddenp765 attribute set) then user agents may
report a script error.

4. Return a negative result.

4.10.20.3 The constraint validation API §p59

2

element . willValidatep593

Returns true if the element will be validated when the form is submitted; false otherwise.

element . setCustomValidityp593(message)
Sets a custom error, so that the element would fail to validate. The given message is the message to be shown to the user when
reporting the problem to the user.
If the argument is the empty string, clears the custom error.

element . validityp593 . valueMissingp594

Returns true if the element has no value but is a required field; false otherwise.

element . validityp593 . typeMismatchp594

Returns true if the element's value is not in the correct syntax; false otherwise.

element . validityp593 . patternMismatchp594

Returns true if the element's value doesn't match the provided pattern; false otherwise.

element . validityp593 . tooLongp594

Returns true if the element's value is longer than the provided maximum length; false otherwise.

element . validityp593 . tooShortp594

Returns true if the element's value, if it is not the empty string, is shorter than the provided minimum length; false otherwise.

element . validityp593 . rangeUnderflowp594

Returns true if the element's value is lower than the provided minimum; false otherwise.

element . validityp593 . rangeOverflowp594

Returns true if the element's value is higher than the provided maximum; false otherwise.

element . validityp593 . stepMismatchp594

Returns true if the element's value doesn't fit the rules given by the stepp527 attribute; false otherwise.

element . validityp593 . badInputp594

Returns true if the user has provided input in the user interface that the user agent is unable to convert to a value; false
otherwise.

element . validityp593 . customErrorp594

Returns true if the element has a custom error; false otherwise.

element . validityp593 . validp594

Returns true if the element's value has no validity problems; false otherwise.

valid = element . checkValidityp594()
Returns true if the element's value has no validity problems; false otherwise. Fires an invalidp1281 event at the element in the
latter case.

For web developers (non-normative)

✔ MDN

592

The willValidate attribute's getter must return true, if this element is a candidate for constraint validationp590, and false otherwise
(i.e., false if any conditions are barring it from constraint validationp590).

The willValidate attribute of ElementInternalsp714 interface, on getting, must throw a "NotSupportedError" DOMException if the
target elementp715 is not a form-associated custom elementp704. Otherwise, it must return true if the target elementp715 is a candidate
for constraint validationp590, and false otherwise.

The setCustomValidity(message) method, when invoked, must set the custom validity error messagep590 to message.

The validity attribute's getter must return a ValidityStatep593 object that represents the validity statesp590 of this element. This
object is livep45.

The validity attribute of ElementInternalsp714 interface, on getting, must throw a "NotSupportedError" DOMException if the target
elementp715 is not a form-associated custom elementp704. Otherwise, it must return a ValidityStatep593 object that represents the
validity statesp590 of the target elementp715. This object is livep45.

[Exposed=Window]
interface ValidityState {

readonly attribute boolean valueMissing;
readonly attribute boolean typeMismatch;
readonly attribute boolean patternMismatch;
readonly attribute boolean tooLong;
readonly attribute boolean tooShort;
readonly attribute boolean rangeUnderflow;
readonly attribute boolean rangeOverflow;
readonly attribute boolean stepMismatch;
readonly attribute boolean badInput;
readonly attribute boolean customError;
readonly attribute boolean valid;

};

A ValidityStatep593 object has the following attributes. On getting, they must return true if the corresponding condition given in the
following list is true, and false otherwise.

valid = element . reportValidityp595()
Returns true if the element's value has no validity problems; otherwise, returns false, fires an invalidp1281 event at the element,
and (if the event isn't canceled) reports the problem to the user.

element . validationMessagep595

Returns the error message that would be shown to the user if the element was to be checked for validity.

In the following example, a script checks the value of a form control each time it is edited, and whenever it is not a valid value,
uses the setCustomValidity()p593 method to set an appropriate message.

<label>Feeling: <input name=f type="text" oninput="check(this)"></label>
<script>
function check(input) {

if (input.value == "good" ||
input.value == "fine" ||
input.value == "tired") {

input.setCustomValidity('"' + input.value + '" is not a feeling.');
} else {

// input is fine -- reset the error message
input.setCustomValidity('');

}
}

</script>

Example

IDL

✔ MDN

✔ MDN

✔ MDN

✔ MDN

593

https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException

valueMissing
The control is suffering from being missingp590.

typeMismatch
The control is suffering from a type mismatchp590.

patternMismatch
The control is suffering from a pattern mismatchp590.

tooLong
The control is suffering from being too longp590.

tooShort
The control is suffering from being too shortp590.

rangeUnderflow
The control is suffering from an underflowp590.

rangeOverflow
The control is suffering from an overflowp591.

stepMismatch
The control is suffering from a step mismatchp591.

badInput
The control is suffering from bad inputp591.

customError
The control is suffering from a custom errorp591.

valid
None of the other conditions are true.

The check validity steps for an element element are:

1. If element is a candidate for constraint validationp590 and does not satisfy its constraintsp591, then:

1. Fire an event named invalidp1281 at element, with the cancelable attribute initialized to true (though canceling
has no effect).

2. Return false.

2. Return true.

The checkValidity() method, when invoked, must run the check validity stepsp594 on this element.

The checkValidity() method of the ElementInternalsp714 interface must run these steps:

1. Let element be this ElementInternalsp714 's target elementp715.

2. If element is not a form-associated custom elementp704, then throw a "NotSupportedError" DOMException.

3. Run the check validity stepsp594 on element.

The report validity steps for an element element are:

1. If element is a candidate for constraint validationp590 and does not satisfy its constraintsp591, then:

1. Let report be the result of firing an event named invalidp1281 at element, with the cancelable attribute initialized
to true.

2. If report is true, then report the problems with the constraints of this element to the user. When reporting the
problem with the constraints to the user, the user agent may run the focusing stepsp776 for element, and may
change the scrolling position of the document, or perform some other action that brings element to the user's
attention. User agents may report more than one constraint violation, if element suffers from multiple problems at

✔ MDN

✔ MDN

✔ MDN

✔ MDN

594

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

once. If element is not being renderedp1192, then the user agent may, instead of notifying the user, report the
errorp936 for the running scriptp936.

3. Return false.

2. Return true.

The reportValidity() method, when invoked, must run the report validity stepsp594 on this element.

The reportValidity() method of the ElementInternalsp714 interface must run these steps:

1. Let element be this ElementInternalsp714 's target elementp715.

2. If element is not a form-associated custom elementp704, then throw a "NotSupportedError" DOMException.

3. Run the report validity stepsp594 on element.

The validationMessage attribute's getter must run these steps:

1. If this element is not a candidate for constraint validationp590 or if this element satisfies its constraintsp591, then return the
empty string.

2. Return a suitably localized message that the user agent would show the user if this were the only form control with a validity
constraint problem. If the user agent would not actually show a textual message in such a situation (e.g., it would show a
graphical cue instead), then return a suitably localized message that expresses (one or more of) the validity constraint(s)
that the control does not satisfy. If the element is a candidate for constraint validationp590 and is suffering from a custom
errorp591, then the custom validity error messagep590 should be present in the return value.

Servers should not rely on client-side validation. Client-side validation can be intentionally bypassed by hostile users, and
unintentionally bypassed by users of older user agents or automated tools that do not implement these features. The constraint
validation features are only intended to improve the user experience, not to provide any kind of security mechanism.

This section is non-normative.

When a form is submitted, the data in the form is converted into the structure specified by the enctypep572, and then sent to the
destination specified by the actionp571 using the given methodp571.

For example, take the following form:

<form action="/find.cgi" method=get>
<input type=text name=t>
<input type=search name=q>
<input type=submit>

</form>

If the user types in "cats" in the first field and "fur" in the second, and then hits the submit button, then the user agent will load
/find.cgi?t=cats&q=fur.

On the other hand, consider this form:

<form action="/find.cgi" method=post enctype="multipart/form-data">
<input type=text name=t>
<input type=search name=q>
<input type=submit>

</form>

4.10.20.4 Security §p59

5

4.10.21.1 Introduction §p59

5

4.10.21 Form submission §p59

5

✔ MDN

✔ MDN

595

https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException

Given the same user input, the result on submission is quite different: the user agent instead does an HTTP POST to the given URL,
with as the entity body something like the following text:

------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="t"

cats
------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="q"

fur
------kYFrd4jNJEgCervE--

A formp486 element's default button is the first submit buttonp486 in tree order whose form ownerp566 is that formp486 element.

If the user agent supports letting the user submit a form implicitly (for example, on some platforms hitting the "enter" key while a text
control is focusedp771 implicitly submits the form), then doing so for a form, whose default buttonp596 has activation behavior and is not
disabledp570, must cause the user agent to fire a click eventp965 at that default buttonp596.

If the form has no submit buttonp486, then the implicit submission mechanism must do nothing if the form has more than one field that
blocks implicit submission, and must submitp596 the formp486 element from the formp486 element itself otherwise.

For the purpose of the previous paragraph, an element is a field that blocks implicit submission of a formp486 element if it is an
inputp493 element whose form ownerp566 is that formp486 element and whose typep495 attribute is in one of the following states: Textp499,
Searchp499, URLp501, Telephonep500, Emailp502, Passwordp503, Datep504, Monthp505, Weekp506, Timep507, Local Date and Timep508, Numberp509

Each formp486 element has a constructing entry list boolean, initially false.

Each formp486 element has a firing submission events boolean, initially false.

When a formp486 element form is submitted from an element submitter (typically a button), optionally with a submitted from
submit()p490 method flag set, the user agent must run the following steps:

1. If form cannot navigatep289, then return.

2. If form's constructing entry listp596 is true, then return.

3. Let form document be form's node document.

4. If form document's active sandboxing flag setp844 has its sandboxed forms browsing context flagp842 set, then return.

5. Let form browsing context be the browsing contextp811 of form document.

6. If the submitted from submit()p490 method flag is not set, then:

1. If form's firing submission eventsp596 is true, then return.

2. Set form's firing submission eventsp596 to true.

3. If the submitter element's no-validate statep572 is false, then interactively validate the constraintsp591 of form and
examine the result. If the result is negative (i.e., the constraint validation concluded that there were invalid fields
and probably informed the user of this), then:

1. Set form's firing submission eventsp596 to false.

4.10.21.2 Implicit submission §p59

6

There are pages on the web that are only usable if there is a way to implicitly submit forms, so user agents are strongly
encouraged to support this.

Note

4.10.21.3 Form submission algorithm §p59

6

596

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-node-document

2. Return.

4. Let submitterButton be null if submitter is form. Otherwise, let submitterButton be submitter.

5. Let continue be the result of firing an event named submitp1282 at form using SubmitEventp603, with the
submitterp603 attribute initialized to submitterButton, the bubbles attribute initialized to true, and the cancelable
attribute initialized to true.

6. Set form's firing submission eventsp596 to false.

7. If continue is false, then return.

8. If form cannot navigatep289, then return.

7. Let encoding be the result of picking an encoding for the formp601.

8. Let entry list be the result of constructing the entry listp599 with form, submitter, and encoding.

9. If form cannot navigatep289, then return.

10. Let action be the submitter element's actionp571.

11. If action is the empty string, let action be the URL of the form document.

12. Parsep89 the URL action, relative to the submitter element's node document. If this fails, return.

13. Let parsed action be the resulting URL recordp89.

14. Let scheme be the scheme of parsed action.

15. Let enctype be the submitter element's enctypep572.

16. Let method be the submitter element's methodp571.

17. Let target be the submitter element's formtargetp572 attribute value, if the element is a submit buttonp486 and has such an
attribute. Otherwise, let it be the result of getting an element's targetp156 given submitter's form ownerp566.

18. Let noopener be the result of getting an element's noopenerp289 with form and targetAttributeValue.

19. Let target browsing context and windowType be the result of applying the rules for choosing a browsing contextp820 using
target, form browsing context, and noopener.

20. Let historyHandling be "replacep866" if windowType is either "new and unrestricted" or "new with no opener"; otherwise
"defaultp866".

21. If target browsing context is null, then return.

22. If form document has not yet completely loadedp885 and the submitted from submit()p490 method flag is set, then set
historyHandling to "replacep866".

23. If the value of method is dialogp571 then jump to the submit dialogp599 steps.

Otherwise, select the appropriate row in the table below based on the value of scheme as given by the first cell of each row.
Then, select the appropriate cell on that row based on the value of method as given in the first cell of each column. Then,
jump to the steps named in that cell and defined below the table.

GETp571 POSTp571

http Mutate action URLp598 Submit as entity bodyp598

https Mutate action URLp598 Submit as entity bodyp598

ftp Get action URLp598 Get action URLp598

javascript Get action URLp598 Get action URLp598

Cannot navigatep289 is run again as dispatching the submitp1282 event could have changed the outcome.
Note

Cannot navigatep289 is run again as dispatching the formdatap1281 event in constructing the entry listp599 could have
changed the outcome.

Note

597

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-scheme

GETp571 POSTp571

data Mutate action URLp598 Get action URLp598

mailto Mail with headersp599 Mail as bodyp599

If scheme is not one of those listed in this table, then the behavior is not defined by this specification. User agents should, in
the absence of another specification defining this, act in a manner analogous to that defined in this specification for similar
schemes.

Each formp486 element has a planned navigation, which is either null or a taskp944; when the formp486 is first created, its
planned navigationp598 must be set to null. In the behaviors described below, when the user agent is required to plan to
navigate to a particular resource destination, it must run the following steps:

1. If destination is not a request, then set destination to a new request whose URL is destination.

2. If the formp486 element's link typesp294 include the noreferrerp304 keyword, then set destination's referrer to "no-
referrer".

3. If the formp486 has a non-null planned navigationp598, remove it from its task queuep944.

4. Queue an element taskp946 on the DOM manipulation task sourcep952 given the formp486 element and the following
steps:

1. Set the formp486 's planned navigationp598 to null.

2. Navigatep866 target browsing context to destination, with historyHandlingp866 set to historyHandling.

5. Set the formp486 's planned navigationp598 to the just-queued taskp944.

The behaviors are as follows:

Mutate action URL
Let query be the result of running the application/x-www-form-urlencoded serializer with entry list and encoding.

Set parsed action's query component to query.

Plan to navigatep598 to parsed action.

Submit as entity body
Switch on enctype:

↪ application/x-www-form-urlencodedp572

Let body be the result of running the application/x-www-form-urlencoded serializer with entry list and encoding.

Set body to the result of encoding body.

Let MIME type be "application/x-www-form-urlencoded".

↪ multipart/form-datap572

Let body be the result of running the multipart/form-data encoding algorithmp602 with entry list and encoding.

Let MIME type be the concatenation of the string "multipart/form-data;", a U+0020 SPACE character, the string
"boundary=", and the multipart/form-data boundary stringp602 generated by the multipart/form-data
encoding algorithmp602.

↪ text/plainp572

Let body be the result of running the text/plain encoding algorithmp602 with entry list.

Set body to the result of encoding body using encoding.

Let MIME type be "text/plain".

Plan to navigatep598 to a new request whose url is parsed action, method is method, header list consists of `Content-
Type`/MIME type, and body is body.

Get action URL
Plan to navigatep598 to parsed action.

598

https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-referrer
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://encoding.spec.whatwg.org/#utf-8-encode
https://url.spec.whatwg.org/#concept-urlencoded
https://encoding.spec.whatwg.org/#encode
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-method
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-request-body

Mail with headers
Let headers be the result of running the application/x-www-form-urlencoded serializer with entry list and encoding.

Replace occurrences of U+002B PLUS SIGN characters (+) in headers with the string "%20".

Set parsed action's query to headers.

Plan to navigatep598 to parsed action.

Mail as body
Switch on enctype:

↪ text/plainp572

Let body be the result of running the text/plain encoding algorithmp602 with entry list.

Set body to the result of running UTF-8 percent-encode on body using the default encode set. [URL]p1292

↪ Otherwise
Let body be the result of running the application/x-www-form-urlencoded serializer with entry list and encoding.

If parsed action's query is null, then set it to the empty string.

If parsed action's query is not the empty string, then append a single U+0026 AMPERSAND character (&) to it.

Append "body=" to parsed action's query.

Append body to parsed action's query.

Plan to navigatep598 to parsed action.

Submit dialog
Let subject be the nearest ancestor dialogp610 element of form, if any.

If there isn't one, or if it does not have an openp611 attribute, do nothing. Otherwise, proceed as follows:

If submitter is an inputp493 element whose typep495 attribute is in the Image Buttonp518 state, then let result be the string
formed by concatenating the selected coordinatep519 's x-component, expressed as a base-ten number using ASCII digits, a
U+002C COMMA character (,), and the selected coordinatep519 's y-component, expressed in the same way as the
x-component.

Otherwise, if submitter has a valuep566, then let result be that valuep566.

Otherwise, there is no result.

Then, close the dialogp612 subject. If there is a result, let that be the return value.

The algorithm to construct the entry list given a form, an optional submitter, and an optional encoding, is as follows. If not specified
otherwise, submitter is null.

1. If form's constructing entry listp596 is true, then return null.

2. Set form's constructing entry listp596 to true.

3. Let controls be a list of all the submittable elementsp486 whose form ownerp566 is form, in tree order.

4. Let entry list be a new empty list of entries.

5. For each element field in controls, in tree order:

entry list is discarded.
Note

4.10.21.4 Constructing the entry list §p59

9

599

https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#string-utf-8-percent-encode
https://url.spec.whatwg.org/#default-encode-set
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://infra.spec.whatwg.org/#ascii-digit
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#list
https://xhr.spec.whatwg.org/#concept-formdata-entry
https://dom.spec.whatwg.org/#concept-tree-order

1. If any of the following is true:

▪ The field element has a datalistp543 element ancestor.

▪ The field element is disabledp570.

▪ The field element is a buttonp486 but it is not submitter.

▪ The field element is an inputp493 element whose typep495 attribute is in the Checkboxp513 state and
whose checkednessp566 is false.

▪ The field element is an inputp493 element whose typep495 attribute is in the Radio Buttonp514 state and
whose checkednessp566 is false.

▪ The field element is an objectp373 element that is not using a pluginp45.

Then continue.

2. If the field element is an inputp493 element whose typep495 attribute is in the Image Buttonp518 state, then:

1. If the field element has a namep568 attribute specified and its value is not the empty string, let name be
that value followed by a single U+002E FULL STOP character (.). Otherwise, let name be the empty
string.

2. Let namex be the string consisting of the concatenation of name and a single U+0078 LATIN SMALL
LETTER X character (x).

3. Let namey be the string consisting of the concatenation of name and a single U+0079 LATIN SMALL
LETTER Y character (y).

4. The field element is submitter, and before this algorithm was invoked the user indicated a coordinatep519.
Let x be the x-component of the coordinate selected by the user, and let y be the y-component of the
coordinate selected by the user.

5. Append an entryp601 to entry list with namex and x.

6. Append an entryp601 to entry list with namey and y.

7. Continue.

3. If the field is a form-associated custom elementp704, then perform the entry construction algorithmp717 given field
and entry list, then continue.

4. If either the field element does not have a namep568 attribute specified, or its namep568 attribute's value is the empty
string, then continue.

5. Let name be the value of the field element's namep568 attribute.

6. If the field element is a selectp537 element, then for each optionp545 element in the selectp537 element's list of
optionsp539 whose selectednessp547 is true and that is not disabledp546, append an entryp601 to entry list with name
and the valuep546 of the optionp545 element.

7. Otherwise, if the field element is an inputp493 element whose typep495 attribute is in the Checkboxp513 state or the
Radio Buttonp514 state, then:

1. If the field element has a valuep497 attribute specified, then let value be the value of that attribute;
otherwise, let value be the string "on".

2. Append an entryp601 to entry list with name and value.

8. Otherwise, if the field element is an inputp493 element whose typep495 attribute is in the File Uploadp515 state, then:

1. If there are no selected filesp515, then append an entryp601 to entry list with name and a new File object
with an empty name, application/octet-stream as type, and an empty body.

2. Otherwise, for each file in selected filesp515, append an entryp601 to entry list with name and a File object
representing the file.

9. Otherwise, if the field element is an objectp373 element: try to obtain a form submission value from the pluginp45,
and if that is successful, append an entryp601 to entry list with name and the returned form submission value.

600

https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://w3c.github.io/FileAPI/#dfn-file
https://tools.ietf.org/html/rfc2046#section-4.5.1
https://w3c.github.io/FileAPI/#dfn-file

10. Otherwise, if the field element is an inputp493 element whose typep495 attribute is in the Hiddenp499 state and name
is "_charset_p568":

1. Let charset be the name of encoding if encoding is given, and "UTF-8" otherwise.

2. Append an entryp601 to entry list with name and charset.

11. Otherwise, if the field element is a textareap548 element, append an entryp601 to entry list with name and the
valuep566 of the field element, and the prevent line break normalization flag set.

12. Otherwise, append an entryp601 to entry list with name and the valuep566 of the field element.

13. If the element has a dirnamep568 attribute, and that attribute's value is not the empty string, then:

1. Let dirname be the value of the element's dirnamep568 attribute.

2. Let dir be the string "ltr" if the directionalityp142 of the element is 'ltrp142 ', and "rtl" otherwise (i.e.,
when the directionalityp142 of the element is 'rtlp142 ').

3. Append an entryp601 to entry list with dirname and dir.

6. Let form data be a new FormData object associated with entry list.

7. Fire an event named formdatap1281 at form using FormDataEventp603, with the formDatap603 attribute initialized to form data
and the bubbles attribute initialized to true.

8. Set form's constructing entry listp596 to false.

9. Return a clone of entry list.

To append an entry to entry list, given name, value, and optional prevent line break normalization flag, run these steps:

1. For name, replace every occurrence of U+000D (CR) not followed by U+000A (LF), and every occurrence of U+000A (LF) not
preceded by U+000D (CR), by a string consisting of a U+000D (CR) and U+000A (LF).

2. Replace name with the result of converting to a sequence of Unicode scalar values.

3. If value is not a File object, then:

1. If the prevent line break normalization flag is unset, then replace every occurrence of U+000D (CR) not followed by
U+000A (LF), and every occurrence of U+000A (LF) not preceded by U+000D (CR) in value, by a string consisting
of a U+000D (CR) and U+000A (LF).

2. Replace value with the result of converting to a sequence of Unicode scalar values.

4. Create an entry with name and value, and append it to entry list.

If the user agent is to pick an encoding for a form, it must run the following steps:

1. Let encoding be the document's character encoding.

2. If the formp486 element has an accept-charsetp487 attribute, set encoding to the return value of running these substeps:

1. Let input be the value of the formp486 element's accept-charsetp487 attribute.

In the case of the valuep566 of textareap548 elements, the line break normalization is already performed during
the conversion of the control's raw valuep549 into the control's valuep566 (which also performs any necessary
line wrapping).

Note

An element can only have a dirnamep568 attribute if it is a textareap548 element or an inputp493 element whose
typep495 attribute is in either the Textp499 state or the Searchp499 state.

Note

4.10.21.5 Selecting a form submission encoding §p60

1

601

https://encoding.spec.whatwg.org/#name
https://xhr.spec.whatwg.org/#formdata
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://infra.spec.whatwg.org/#list-clone
https://heycam.github.io/webidl/#dfn-obtain-unicode
https://w3c.github.io/FileAPI/#dfn-file
https://heycam.github.io/webidl/#dfn-obtain-unicode
https://xhr.spec.whatwg.org/#create-an-entry
https://infra.spec.whatwg.org/#list-append
https://dom.spec.whatwg.org/#concept-document-encoding

2. Let candidate encoding labels be the result of splitting input on ASCII whitespace.

3. Let candidate encodings be an empty list of character encodings.

4. For each token in candidate encoding labels in turn (in the order in which they were found in input), get an
encoding for the token and, if this does not result in failure, append the encoding to candidate encodings.

5. If candidate encodings is empty, return UTF-8.

6. Return the first encoding in candidate encodings.

3. Return the result of getting an output encoding from encoding.

See URL for details on application/x-www-form-urlencoded. [URL]p1292

The multipart/form-data encoding algorithm, given an entry list and encoding, is as follows:

1. Let result be the empty string.

2. For each entry in entry list:

1. For each character in the entry's name and value that cannot be expressed using the selected character encoding,
replace the character by a string consisting of a U+0026 AMPERSAND character (&), a U+0023 NUMBER SIGN
character (#), one or more ASCII digits representing the code point of the character in base ten, and finally a
U+003B (;).

3. Encode the (now mutated) entry list using the rules described by RFC 7578, Returning Values from Forms: multipart/form-
data, and return the resulting byte stream. [RFC7578]p1291

Each entry in entry list is a field, the name of the entry is the field name and the value of the entry is the field value.

The order of parts must be the same as the order of fields in entry list. Multiple entries with the same name must be treated
as distinct fields.

The parts of the generated multipart/form-datap1283 resource that correspond to non-file fields must not have a `Content-
Typep90` header specified. Their names and values must be encoded using the character encoding selected above.

File names included in the generated multipart/form-datap1283 resource (as part of file fields) must use the character
encoding selected above, though the precise name may be approximated if necessary (e.g. newlines could be removed from
file names, quotes could be changed to "%22", and characters not expressible in the selected character encoding could be
replaced by other characters).

The boundary used by the user agent in generating the return value of this algorithm is the multipart/form-data
boundary string. (This value is used to generate the MIME type of the form submission payload generated by this
algorithm.)

For details on how to interpret multipart/form-datap1283 payloads, see RFC 7578. [RFC7578]p1291

The text/plain encoding algorithm, given an entry list, is as follows:

1. Let result be the empty string.

2. For each entry in entry list:

1. If the entry's value is a File object, then set its value to the File object's name.

2. Append the entry's name to result.

4.10.21.6 URL-encoded form data §p60

2

4.10.21.7 Multipart form data §p60

2

4.10.21.8 Plain text form data §p60

2

602

https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#get-an-output-encoding
https://url.spec.whatwg.org/#concept-urlencoded
https://xhr.spec.whatwg.org/#concept-formdata-entry
https://infra.spec.whatwg.org/#ascii-digit
https://xhr.spec.whatwg.org/#concept-formdata-entry
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-name

3. Append a single U+003D EQUALS SIGN character (=) to result.

4. Append the entry's value to result.

5. Append a U+000D CARRIAGE RETURN (CR) U+000A LINE FEED (LF) character pair to result.

3. Return result.

Payloads using the text/plain format are intended to be human readable. They are not reliably interpretable by computer, as the
format is ambiguous (for example, there is no way to distinguish a literal newline in a value from the newline at the end of the value).

[Exposed=Window]
interface SubmitEvent : Event {

constructor(DOMString type, optional SubmitEventInit eventInitDict = {});

readonly attribute HTMLElement? submitter;
};

dictionary SubmitEventInit : EventInit {
HTMLElement? submitter = null;

};

The submitter attribute must return the value it was initialized to.

[Exposed=Window]
interface FormDataEvent : Event {

constructor(DOMString type, FormDataEventInit eventInitDict);

readonly attribute FormData formData;
};

dictionary FormDataEventInit : EventInit {
required FormData formData;

};

The formData attribute must return the value it was initialized to. It represents a FormData object associated to the entry list that is
constructedp599 when the formp486 is submitted.

When a formp486 element form is reset, run these steps:

4.10.21.9 The SubmitEventp603 interface §p60

3

event . submitterp603

Returns the element representing the submit buttonp486 that triggered the form submissionp595, or null if the submission was not
triggered by a button.

For web developers (non-normative)

4.10.21.10 The FormDataEventp603 interface §p60

3

event . formDatap603

Returns a FormData object representing names and values of elements associated to the target formp486. Operations on the
FormData object will affect form data to be submitted.

For web developers (non-normative)

IDL

IDL

4.10.22 Resetting a form §p60

3

MDN

MDN

MDN

MDN

MDN

603

https://tools.ietf.org/html/rfc2046#section-4.1.3
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#interface-event
https://xhr.spec.whatwg.org/#formdata
https://dom.spec.whatwg.org/#dictdef-eventinit
https://xhr.spec.whatwg.org/#formdata
https://xhr.spec.whatwg.org/#formdata
https://xhr.spec.whatwg.org/#formdata
https://xhr.spec.whatwg.org/#formdata

1. Let reset be the result of firing an event named resetp1282 at form, with the bubbles and cancelable attributes initialized to
true.

2. If reset is true, then invoke the reset algorithmp604 of each resettable elementp486 whose form ownerp566 is form.

Each resettable elementp486 defines its own reset algorithm. Changes made to form controls as part of these algorithms do not count
as changes caused by the user (and thus, e.g., do not cause inputp1281 events to fire).

Categoriesp128:
Flow contentp131.
Sectioning rootp199.
Interactive contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
One summaryp607 element followed by flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

openp604 — Whether the details are visible

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLDetailsElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean open;
};

The detailsp604 element representsp123 a disclosure widget from which the user can obtain additional information or controls.

The first summaryp607 element child of the element, if any, representsp123 the summary or legend of the details. If there is no child
summaryp607 element, the user agent should provide its own legend (e.g. "Details").

The rest of the element's contents representsp123 the additional information or controls.

The open content attribute is a boolean attributep67. If present, it indicates that both the summary and the additional information is to
be shown to the user. If the attribute is absent, only the summary is to be shown.

When the element is created, if the attribute is absent, the additional information should be hidden; if the attribute is present, that
information should be shown. Subsequently, if the attribute is removed, then the information should be hidden; if the attribute is
added, the information should be shown.

4.11 Interactive elements §p60

4

The detailsp604 element is not appropriate for footnotes. Please see the section on footnotesp721 for details on how to mark up
footnotes.

Note

IDL

4.11.1 The details element §p60

4

✔ MDN

✔ MDN

604

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://w3c.github.io/html-aria/#el-details
https://w3c.github.io/html-aam/#el-details

The user agent should allow the user to request that the additional information be shown or hidden. To honor a request for the details
to be shown, the user agent must set the openp604 attribute on the element to the empty string. To honor a request for the information
to be hidden, the user agent must remove the openp604 attribute from the element.

Whenever the openp604 attribute is added to or removed from a detailsp604 element, the user agent must queue an element taskp946

on the DOM manipulation task sourcep952 given then detailsp604 element that runs the following steps, which are known as the details
notification task steps, for this detailsp604 element:

1. If another taskp944 has been queuedp946 to run the details notification task stepsp605 for this detailsp604 element, then return.

2. Fire an event named togglep1282 at the detailsp604 element.

The open IDL attribute must reflectp94 the openp604 content attribute.

This ability to request that additional information be shown or hidden may simply be the activation behavior of the appropriate
summaryp607 element, in the case such an element exists. However, if no such element exists, user agents can still provide this
ability through some other user interface affordance.

Note

When the openp604 attribute is toggled several times in succession, these steps essentially get coalesced so that only one
event is fired.

Note

The following example shows the detailsp604 element being used to hide technical details in a progress report.

<section class="progress window">
<h1>Copying "Really Achieving Your Childhood Dreams"</h1>
<details>
<summary>Copying... <progress max="375505392" value="97543282"></progress> 25%</summary>
<dl>
<dt>Transfer rate:</dt> <dd>452KB/s</dd>
<dt>Local filename:</dt> <dd>/home/rpausch/raycd.m4v</dd>
<dt>Remote filename:</dt> <dd>/var/www/lectures/raycd.m4v</dd>
<dt>Duration:</dt> <dd>01:16:27</dd>
<dt>Color profile:</dt> <dd>SD (6-1-6)</dd>
<dt>Dimensions:</dt> <dd>320×240</dd>

</dl>
</details>

</section>

Example

The following shows how a detailsp604 element can be used to hide some controls by default:

<details>
<summary><label for=fn>Name & Extension:</label></summary>
<p><input type=text id=fn name=fn value="Pillar Magazine.pdf">
<p><label><input type=checkbox name=ext checked> Hide extension</label>

</details>

One could use this in conjunction with other detailsp604 in a list to allow the user to collapse a set of fields down to a small set of
headings, with the ability to open each one.

Example

605

https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-event-fire

In these examples, the summary really just summarizes what the controls can change, and not the actual values, which is less than
ideal.

Because the openp604 attribute is added and removed automatically as the user interacts with the control, it can be used in CSS to
style the element differently based on its state. Here, a style sheet is used to animate the color of the summary when the element
is opened or closed:

<style>
details > summary { transition: color 1s; color: black; }
details[open] > summary { color: red; }

</style>
<details>
<summary>Automated Status: Operational</summary>
<p>Velocity: 12m/s</p>

Example

606

Categoriesp128:
None.

Contexts in which this element can be usedp128:
As the first child of a detailsp604 element.

Content modelp128:
Phrasing contentp132, optionally intermixed with heading contentp132.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The summaryp607 element representsp123 a summary, caption, or legend for the rest of the contents of the summaryp607 element's parent
detailsp604 element, if any.

A summaryp607 element is a summary for its parent details if the following algorithm returns true:

1. If this summaryp607 element has no parent, then return false.

2. Let parent be this summaryp607 element's parent.

3. If parent is not a detailsp604 element, then return false.

4. If parent's first summaryp607 element child is not this summaryp607 element, then return false.

5. Return true.

The activation behavior of summaryp607 elements is to run the following steps:

1. If this summaryp607 element is not the summary for its parent detailsp607, then return.

2. Let parent be this summaryp607 element's parent.

3. If the openp604 attribute is present on parent, then remove it. Otherwise, set parent's openp604 attribute to the empty string.

A command is the abstraction behind menu items, buttons, and links. Once a command is defined, other parts of the interface can
refer to the same command, allowing many access points to a single feature to share facets such as the Disabled Statep608.

<p>Direction: North</p>
</details>

This will then run the details notification task stepsp605.
Note

4.11.3.1 Facets §p60

7

4.11.2 The summary element §p60

7

4.11.3 Commands §p60

7

✔ MDN

607

https://dom.spec.whatwg.org/#concept-tree-first-child
https://w3c.github.io/html-aria/#el-summary
https://w3c.github.io/html-aam/#el-summary
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://dom.spec.whatwg.org/#concept-element-attributes-set-value

Commands are defined to have the following facets:

Label
The name of the command as seen by the user.

Access Key
A key combination selected by the user agent that triggers the command. A command might not have an Access Key.

Hidden State
Whether the command is hidden or not (basically, whether it should be shown in menus).

Disabled State
Whether the command is relevant and can be triggered or not.

Action
The actual effect that triggering the command will have. This could be a scripted event handler, a URL to which to navigatep866, or a
form submission.

User agents may expose the commandsp607 that match the following criteria:

• The Hidden Statep608 facet is false (visible)
• The element is in a document with a non-null browsing contextp811.
• Neither the element nor any of its ancestors has a hiddenp765 attribute specified.

User agents are encouraged to do this especially for commands that have Access Keysp608, as a way to advertise those keys to the
user.

An ap238 element with an hrefp284 attribute defines a commandp607.

The Labelp608 of the command is the element's descendant text content.

The Access Keyp608 of the command is the element's assigned access keyp786, if any.

The Hidden Statep608 of the command is true (hidden) if the element has a hiddenp765 attribute, and false otherwise.

The Disabled Statep608 facet of the command is true if the element or one of its ancestors is inertp766, and false otherwise.

The Actionp608 of the command is to fire a click eventp965 at the element.

A buttonp535 element always defines a commandp607.

The Labelp608, Access Keyp608, Hidden Statep608, and Actionp608 facets of the command are determined as for a elementsp608 (see the
previous section).

The Disabled Statep608 of the command is true if the element or one of its ancestors is inertp766, or if the element's disabledp570 state is
set, and false otherwise.

An inputp493 element whose typep495 attribute is in one of the Submit Buttonp518, Reset Buttonp520, Image Buttonp518, Buttonp521, Radio
Buttonp514, or Checkboxp513 states defines a commandp607.

The Labelp608 of the command is determined as follows:

For example, such commands could be listed in the user agent's menu bar.
Example

4.11.3.2 Using the a element to define a command §p60

8

4.11.3.3 Using the button element to define a command §p60

8

4.11.3.4 Using the input element to define a command §p60

8

608

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#concept-descendant-text-content

• If the typep495 attribute is in one of the Submit Buttonp518, Reset Buttonp520, Image Buttonp518, or Buttonp521 states, then the
Labelp608 is the string given by the valuep497 attribute, if any, and a UA-dependent, locale-dependent value that the UA uses
to label the button itself if the attribute is absent.

• Otherwise, if the element is a labeled controlp491, then the Labelp608 is the descendant text content of the first labelp490

element in tree order whose labeled controlp491 is the element in question. (In JavaScript terms, this is given by
element.labels[0].textContent.)

• Otherwise, if the valuep497 attribute is present, then the Labelp608 is the value of that attribute.

• Otherwise, the Labelp608 is the empty string.

The Access Keyp608 of the command is the element's assigned access keyp786, if any.

The Hidden Statep608 of the command is true (hidden) if the element has a hiddenp765 attribute, and false otherwise.

The Disabled Statep608 of the command is true if the element or one of its ancestors is inertp766, or if the element's disabledp570 state is
set, and false otherwise.

The Actionp608 of the command is to fire a click eventp965 at the element.

An optionp545 element with an ancestor selectp537 element and either no valuep546 attribute or a valuep546 attribute that is not the
empty string defines a commandp607.

The Labelp608 of the command is the value of the optionp545 element's labelp546 attribute, if there is one, or else the optionp545

element's descendant text content, with ASCII whitespace stripped and collapsed.

The Access Keyp608 of the command is the element's assigned access keyp786, if any.

The Hidden Statep608 of the command is true (hidden) if the element has a hiddenp765 attribute, and false otherwise.

The Disabled Statep608 of the command is true if the element is disabledp546, or if its nearest ancestor selectp537 element is
disabledp570, or if it or one of its ancestors is inertp766, and false otherwise.

If the optionp545 's nearest ancestor selectp537 element has a multiplep539 attribute, the Actionp608 of the command is to togglep540 the
optionp545 element. Otherwise, the Actionp608 is to pickp539 the optionp545 element.

A legendp565 element defines a commandp607 if all of the following are true:

• It has an assigned access keyp786.

• It is a child of a fieldsetp562 element.

• Its parent has a descendant that defines a commandp607 that is neither a labelp490 element nor a legendp565 element. This
element, if it exists, is the legend element's accesskey delegatee.

The Labelp608 of the command is the element's descendant text content.

The Access Keyp608 of the command is the element's assigned access keyp786.

The Hidden Statep608, Disabled Statep608, and Actionp608 facets of the command are the same as the respective facets of the legend
element's accesskey delegateep609.

Even though the valuep497 attribute on inputp493 elements in the Image Buttonp518 state is non-conformant, the attribute can still
contribute to the Labelp608 determination, if it is present and the Image Button's altp519 attribute is missing.

Note

4.11.3.5 Using the option element to define a command §p60

9

4.11.3.6 Using the accesskey attribute on a legend element to define a command §p60

9

609

https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace
https://dom.spec.whatwg.org/#concept-descendant-text-content

An element that has an assigned access keyp786 defines a commandp607.

If one of the earlier sections that define elements that define commandsp607 define that this element defines a commandp607, then that
section applies to this element, and this section does not. Otherwise, this section applies to that element.

The Labelp608 of the command depends on the element. If the element is a labeled controlp491, the descendant text content of the first
labelp490 element in tree order whose labeled controlp491 is the element in question is the Labelp608 (in JavaScript terms, this is given by
element.labels[0].textContent). Otherwise, the Labelp608 is the element's descendant text content.

The Access Keyp608 of the command is the element's assigned access keyp786.

The Hidden Statep608 of the command is true (hidden) if the element has a hiddenp765 attribute, and false otherwise.

The Disabled Statep608 of the command is true if the element or one of its ancestors is inertp766, and false otherwise.

The Actionp608 of the command is to run the following steps:

1. Run the focusing stepsp776 for the element.

2. Fire a click eventp965 at the element.

Categoriesp128:
Flow contentp131.
Sectioning rootp199.

Contexts in which this element can be usedp128:
Where flow contentp131 is expected.

Content modelp128:
Flow contentp131.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

openp611 — Whether the dialog box is showing

Accessibility considerationsp129:
For authors.
For implementers.

In this example, the legendp565 element specifies an accesskeyp785, which, when activated, will delegate to the inputp493 element
inside the legendp565 element.

<fieldset>
<legend accesskey=p>
<label>I want <input name=pizza type=number step=1 value=1 min=0>
pizza(s) with these toppings</label>

</legend>
<label><input name=pizza-cheese type=checkbox checked> Cheese</label>
<label><input name=pizza-ham type=checkbox checked> Ham</label>
<label><input name=pizza-pineapple type=checkbox> Pineapple</label>

</fieldset>

Example

4.11.3.7 Using the accesskey attribute to define a command on other elements §p61

0

4.11.4 The dialog element §p61

0

MDN

MDN

610

https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://w3c.github.io/html-aria/#el-dialog
https://w3c.github.io/html-aam/#el-dialog

DOM interfacep129:

[Exposed=Window]
interface HTMLDialogElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean open;
attribute DOMString returnValue;
[CEReactions] undefined show();
[CEReactions] undefined showModal();
[CEReactions] undefined close(optional DOMString returnValue);

};

The dialogp610 element represents a part of an application that a user interacts with to perform a task, for example a dialog box,
inspector, or window.

The open attribute is a boolean attributep67. When specified, it indicates that the dialogp610 element is active and that the user can
interact with it.

A dialogp610 element without an openp611 attribute specified should not be shown to the user. This requirement may be implemented
indirectly through the style layer. For example, user agents that support the suggested default renderingp47 implement this
requirement using the CSS rules described in the rendering sectionp1192.

The tabindexp773 attribute must not be specified on dialogp610 elements.

When the show() method is invoked, the user agent must run the following steps:

1. If the element already has an openp611 attribute, then return.

2. Add an openp611 attribute to the dialogp610 element, whose value is the empty string.

3. Set the dialogp610 to the normal alignmentp613 mode.

4. Run the dialog focusing stepsp612 for the dialogp610 element.

Removing the openp611 attribute will usually hide the dialog. However, doing so has a number of strange additional consequences:

• The closep1281 event will not be fired.

• The close()p612 method, and any user-agent provided cancelation interfacep613, will no longer be able to close the dialog.

• If the dialog was shown using its showModal()p612 method, the Documentp114 will still be blockedp766.

For these reasons, it is generally better to never remove the openp611 attribute manually. Instead, use the close()p612 method to
close the dialog, or the hiddenp765 attribute to hide it.

Note

dialog . showp611()
Displays the dialogp610 element.

dialog . showModalp612()
Displays the dialogp610 element and makes it the top-most modal dialog.
This method honors the autofocusp782 attribute.

dialog . closep612([result])
Closes the dialogp610 element.
The argument, if provided, provides a return value.

dialog . returnValuep613 [= result]
Returns the dialogp610 's return value.
Can be set, to update the return value.

For web developers (non-normative)

IDL

MDN

MDN
611

When the showModal() method is invoked, the user agent must run the following steps:

1. Let subject be the dialogp610 element on which the method was invoked.

2. If subject already has an openp611 attribute, then throw an "InvalidStateError" DOMException.

3. If subject is not connected, then throw an "InvalidStateError" DOMException.

4. Add an openp611 attribute to subject, whose value is the empty string.

5. Set the dialogp610 to the centered alignmentp613 mode.

6. Let subject's node document be blocked by the modal dialogp766 subject.

7. If subject's node document's top layer does not already contain subject, then add subject to subject's node document's top
layer.

8. Run the dialog focusing stepsp612 for subject.

The dialog focusing steps for a dialogp610 element subject are as follows:

1. If subject is inertp766, return.

2. Let control be the first descendant element of subject, in tree order, that is not inertp766 and has the autofocusp782 attribute
specified.

If there isn't one, then let control be the first non-inertp766 descendant element of subject, in tree order.

If there isn't one of those either, then let control be subject.

3. Run the focusing stepsp776 for control.

4. Let topDocument be the active documentp811 of control's node document's browsing contextp811 's top-level browsing
contextp814.

5. If control's node document's originp837 is not the samep838 as the originp837 of topDocument, then return.

6. Empty topDocument's autofocus candidatesp782.

7. Set topDocument's autofocus processed flagp782 to true.

If at any time a dialogp610 element is removed from a Documentp44, then if that dialogp610 is in that Documentp114 's top layer, it must be
removed from it.

When the close() method is invoked, the user agent must close the dialogp612 that the method was invoked on. If the method was
invoked with an argument, that argument must be used as the return value; otherwise, there is no return value.

When a dialogp610 element subject is to be closed, optionally with a return value result, the user agent must run the following steps:

1. If subject does not have an openp611 attribute, then return.

2. Remove subject's openp611 attribute.

3. If the argument result was provided, then set the returnValuep613 attribute to the value of result.

4. If subject is in its Documentp114 's top layer, then remove it.

5. Queue an element taskp946 on the user interaction task sourcep952 given the subject element to fire an event named
closep1281 at subject.

This will cause the focused area of the documentp771 to become inertp766 (unless that currently focused area is a shadow-
including descendant of subject). In such cases, the focus fixup rulep777 will kick in and reset the focused area of the
documentp771 to the viewport for now. In a couple steps we will attempt to find a better candidate to focus.

Note

If control is not focusablep772, this will do nothing. For modal dialogs, this means that any earlier modificationsp612 to the
focused area of the documentp771 will apply.

Note

MDN

MDN
612

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#connected
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-node-document
https://fullscreen.spec.whatwg.org/#top-layer
https://infra.spec.whatwg.org/#list-contain
https://fullscreen.spec.whatwg.org/#top-layer-add
https://dom.spec.whatwg.org/#concept-node-document
https://fullscreen.spec.whatwg.org/#top-layer
https://fullscreen.spec.whatwg.org/#top-layer
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#list-empty
https://fullscreen.spec.whatwg.org/#top-layer
https://infra.spec.whatwg.org/#list-remove
https://fullscreen.spec.whatwg.org/#top-layer
https://infra.spec.whatwg.org/#list-remove
https://dom.spec.whatwg.org/#concept-event-fire

The returnValue IDL attribute, on getting, must return the last value to which it was set. On setting, it must be set to the new value.
When the element is created, it must be set to the empty string.

Canceling dialogs: When Documentp114 is blocked by a modal dialogp766 dialog, user agents may provide a user interface that, upon
activation, queues an element taskp946 on the user interaction task sourcep952 given the dialog element to run these steps:

1. Let close be the result of firing an event named cancelp1281 at dialog, with the cancelable attribute initialized to true.

2. If close is true and dialog has an openp611 attribute, then close the dialogp612 with no return value.

A dialogp610 element is in one of two modes: normal alignment or centered alignment. When a dialogp610 element is created, it
must be placed in the normal alignmentp613 mode. In this mode, normal CSS requirements apply to the element. The centered
alignmentp613 mode is only used for dialogp610 elements that are in the top layer. [FULLSCREEN]p1287 [CSS]p1285

When an element subject is placed in centered alignmentp613 mode, and when it is in that mode and has new rendering boxes created,
the user agent must set up the element such that its static position of the edge that corresponds to subject's parent's block-start edge,
for the purposes of calculating the used value of the appropriate box offset property ('top', 'right', 'bottom', or 'left'), is the value that
would place the element's margin edge on the side that corresponds to subject's parent's block-start side as far from the same-side
edge of the viewport as the element's opposing side margin edge from that same-side edge of the viewport, if the element's dimension
('width' or 'height') in subject's parent's block flow direction is less than the same-axis dimension of the viewport, and otherwise is the
value that would place the element's margin edge on the side that corresponds to subject's parent's block-start side at the same-side
edge of the viewport.

If there is a dialogp610 element with centered alignmentp613 and that is being renderedp1192 when its browsing contextp811 changes
viewport dimensions (as measured in CSS pixels), or when this dialogp610 element's parent changes block flow direction, then the user
agent must recreate the element's boxes, recalculating its edge that corresponds to this dialogp610 element's parent's block-start edge
as in the previous paragraph.

This static position of a dialogp610 element's edge with centered alignmentp613 must remain the element's static position of that edge
until its boxes are recreated. (The element's static position is only used in calculating the used value of the appropriate box offset
property ('top', 'right', 'bottom', or 'left') in certain situations; it's not used, for instance, to position the element if its 'position' property
is set to 'static'.)

User agents in visual interactive media should allow the user to pan the viewport to access all parts of a dialogp610 element's border
box, even if the element is larger than the viewport and the viewport would otherwise not have a scroll mechanism (e.g. because the
viewport's 'overflow' property is set to 'hidden').

The open IDL attribute must reflectp94 the openp611 content attribute.

An example of such a UI mechanism would be the user pressing the "Escape" key.
Note

This dialog box has some small print. The strongp242 element is used to draw the user's attention to the more important part.

<dialog>
<h1>Add to Wallet</h1>
<p><label for=amt>How many gold coins do you want to add to your

wallet?</label></p>
<p><input id=amt name=amt type=number min=0 step=0.01 value=100></p>
<p><small>You add coins at your own risk.</small></p>
<p><label><input name=round type=checkbox> Only add perfectly round coins </label></p>
<p><input type=button onclick="submit()" value="Add Coins"></p>

</dialog>

Example

MDN

613

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://fullscreen.spec.whatwg.org/#top-layer
https://drafts.csswg.org/css-writing-modes/#block-start
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css2/#propdef-top
https://drafts.csswg.org/css2/#propdef-right
https://drafts.csswg.org/css2/#propdef-bottom
https://drafts.csswg.org/css2/#propdef-left
https://drafts.csswg.org/css2/#margin-edge
https://drafts.csswg.org/css-writing-modes/#block-start
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#margin-edge
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css-writing-modes/#block-flow-direction
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#margin-edge
https://drafts.csswg.org/css-writing-modes/#block-start
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-writing-modes/#block-flow-direction
https://drafts.csswg.org/css-writing-modes/#block-start
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css2/#propdef-top
https://drafts.csswg.org/css2/#propdef-right
https://drafts.csswg.org/css2/#propdef-bottom
https://drafts.csswg.org/css2/#propdef-left
https://drafts.csswg.org/css-position/#position-property
https://drafts.csswg.org/css-position/#valdef-position-static
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#border-box
https://drafts.csswg.org/css2/#border-box
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css-overflow/#valdef-overflow-hidden

Scripts allow authors to add interactivity to their documents.

Authors are encouraged to use declarative alternatives to scripting where possible, as declarative mechanisms are often more
maintainable, and many users disable scripting.

Authors are also encouraged to make their applications degrade gracefully in the absence of scripting support.

Categoriesp128:
Metadata contentp131.
Flow contentp131.
Phrasing contentp132.
Script-supporting elementp133.

Contexts in which this element can be usedp128:
Where metadata contentp131 is expected.
Where phrasing contentp132 is expected.
Where script-supporting elementsp133 are expected.

Content modelp128:
If there is no srcp615 attribute, depends on the value of the typep615 attribute, but must match script content restrictionsp624.
If there is a srcp615 attribute, the element must be either empty or contain only script documentationp626 that also matches
script content restrictionsp624.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

srcp615 — Address of the resource
typep615 — Type of script
nomodulep615 — Prevents execution in user agents that support module scriptsp925

asyncp615 — Execute script when available, without blocking while fetching
deferp615 — Defer script execution
crossoriginp616 — How the element handles crossorigin requests
integrityp616 — Integrity metadata used in Subresource Integrity checks [SRI]p1291

referrerpolicyp616 — Referrer policy for fetches initiated by the element

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLScriptElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString type;

4.12 Scripting §p61

4

For example, instead of using script to show or hide a section to show more details, the detailsp604 element could be used.
Example

For example, if an author provides a link in a table header to dynamically resort the table, the link could also be made to function
without scripts by requesting the sorted table from the server.

Example

IDL

4.12.1 The script element §p61

4

✔ MDN

✔ MDN

614

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-script
https://w3c.github.io/html-aam/#el-script

[CEReactions] attribute boolean noModule;
[CEReactions] attribute boolean async;
[CEReactions] attribute boolean defer;
[CEReactions] attribute DOMString? crossOrigin;
[CEReactions] attribute DOMString text;
[CEReactions] attribute DOMString integrity;
[CEReactions] attribute DOMString referrerPolicy;

// also has obsolete members
};

The scriptp614 element allows authors to include dynamic script and data blocks in their documents. The element does not
representp123 content for the user.

The type attribute allows customization of the type of script represented:

• Omitting the attribute, setting it to the empty string, or setting it to a JavaScript MIME type essence match, means that the
script is a classic scriptp925, to be interpreted according to the JavaScript Script top-level production. Classic scripts are
affected by the asyncp615 and deferp615 attributes, but only when the srcp615 attribute is set. Authors should omit the typep615

attribute instead of redundantly setting it.

• Setting the attribute to an ASCII case-insensitive match for the string "module" means that the script is a module scriptp925,
to be interpreted according to the JavaScript Module top-level production. Module scripts are not affected by the deferp615

attribute, but are affected by the asyncp615 attribute (regardless of the state of the srcp615 attribute).

• Setting the attribute to any other value means that the script is a data block, which is not processed. None of the scriptp614

attributes (except typep615 itself) have any effect on data blocks. Authors must use a valid MIME type string that is not a
JavaScript MIME type essence match to denote data blocks.

Classic scriptsp925 and module scriptsp925 can be embedded inline, or be imported from an external file using the src attribute, which if
specified gives the URL of the external script resource to use. If srcp615 is specified, it must be a valid non-empty URL potentially
surrounded by spacesp88. The contents of inline scriptp614 elements, or the external script resource, must conform with the
requirements of the JavaScript specification's Script or Module productions, for classic scriptsp925 and module scriptsp925 respectively.
[JAVASCRIPT]p1288

When used to include data blocksp615, the data must be embedded inline, the format of the data must be given using the typep615

attribute, and the contents of the scriptp614 element must conform to the requirements defined for the format used. The srcp615,
asyncp615, nomodulep615, deferp615, crossoriginp616, integrityp616, and referrerpolicyp616 attributes must not be specified.

The nomodule attribute is a boolean attributep67 that prevents a script from being executed in user agents that support module
scriptsp925. This allows selective execution of module scriptsp925 in modern user agents and classic scriptsp925 in older user agents, as
shown belowp618. The nomodulep615 attribute must not be specified on module scriptsp925 (and will be ignored if it is).

The async and defer attributes are boolean attributesp67 that indicate how the script should be evaluated. Classic scriptsp925 may
specify deferp615 or asyncp615, but must not specify either unless the srcp615 attribute is present. Module scriptsp925 may specify the
asyncp615 attribute, but must not specify the deferp615 attribute.

There are several possible modes that can be selected using these attributes, and depending on the script's type.

For classic scriptsp925, if the asyncp615 attribute is present, then the classic script will be fetched in parallelp42 to parsing and evaluated
as soon as it is available (potentially before parsing completes). If the asyncp615 attribute is not present but the deferp615 attribute is
present, then the classic script will be fetched in parallelp42 and evaluated when the page has finished parsing. If neither attribute is
present, then the script is fetched and evaluated immediately, blocking parsing until these are both complete.

For module scriptsp925, if the asyncp615 attribute is present, then the module script and all its dependencies will be fetched in parallelp42

to parsing, and the module script will be evaluated as soon as it is available (potentially before parsing completes). Otherwise, the

The requirement that data blocksp615 must be denoted using a valid MIME type string is in place to avoid potential future collisions.
If this specification ever adds additional types of scriptp925, they will be triggered by setting the typep615 attribute to something
which is not a MIME type, like how the "module" value denotes module scriptsp925. By using a valid MIME type string now, you
ensure that your data block will not ever be reinterpreted as a different script type, even in future user agents.

Note

✔ MDN

✔ MDN

615

https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://tc39.es/ecma262/#prod-Script
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://tc39.es/ecma262/#prod-Module
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://url.spec.whatwg.org/#concept-url
https://tc39.es/ecma262/#prod-Script
https://tc39.es/ecma262/#prod-Module

module script and its dependencies will be fetched in parallelp42 to parsing and evaluated when the page has finished parsing. (The
deferp615 attribute has no effect on module scripts.)

This is all summarized in the following schematic diagram:

<script> Scripting:
HTML Parser:

<script defer> Scripting:
HTML Parser:

<script async> Scripting:
HTML Parser:

<script type="module"> Scripting:
HTML Parser:

<script type="module" async> Scripting:
HTML Parser:

parser fetch execution runtime →

The deferp615 attribute may be specified even if the asyncp615 attribute is specified, to cause legacy web browsers that only support
deferp615 (and not asyncp615) to fall back to the deferp615 behavior instead of the blocking behavior that is the default.

The crossorigin attribute is a CORS settings attributep91. For classic scriptsp925, it controls whether error information will be exposed,
when the script is obtained from other originsp837. For module scriptsp925, it controls the credentials mode used for cross-origin
requests.

The integrity attribute represents the integrity metadata for requests which this element is responsible for. The value is text. The
integrityp616 attribute must not be specified when the srcp615 attribute is not specified. [SRI]p1291

The referrerpolicy attribute is a referrer policy attributep91. Its purpose is to set the referrer policy used when fetching the script, as
well as any scripts imported from it. [REFERRERPOLICY]p1290

Changing the srcp615, typep615, nomodulep615, asyncp615, deferp615, crossoriginp616, integrityp616, and referrerpolicyp616 attributes
dynamically has no direct effect; these attributes are only used at specific times described below.

The IDL attributes src, type, defer, and integrity, must each reflectp94 the respective content attributes of the same name.

The referrerPolicy IDL attribute must reflectp94 the referrerpolicyp616 content attribute, limited to only known valuesp95.

The crossOrigin IDL attribute must reflectp94 the crossoriginp616 content attribute, limited to only known valuesp95.

The noModule IDL attribute must reflectp94 the nomodulep615 content attribute.

The exact processing details for these attributes are, for mostly historical reasons, somewhat non-trivial, involving a number of
aspects of HTML. The implementation requirements are therefore by necessity scattered throughout the specification. The
algorithms below (in this section) describe the core of this processing, but these algorithms reference and are referenced by the
parsing rules for scriptp614 startp1136 and endp1149 tags in HTML, in foreign contentp1164, and in XMLp1189, the rules for the
document.write()p970 method, the handling of scriptingp913, etc.

Note

Unlike classic scriptsp925, module scriptsp925 require the use of the CORS protocol for cross-origin fetching.
Note

An example of a scriptp614 element's referrer policy being used when fetching imported scripts but not other subresources:

<script referrerpolicy="origin">
fetch('/api/data'); // not fetched with <script>'s referrer policy
import('./utils.mjs'); // is fetched with <script>'s referrer policy ("origin" in this case)

</script>

Example

MDN

616

https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch

The async IDL attribute controls whether the element will execute asynchronously or not. If the element's "non-blocking"p619 flag is set,
then, on getting, the asyncp617 IDL attribute must return true, and on setting, the "non-blocking"p619 flag must first be unset, and then
the content attribute must be removed if the IDL attribute's new value is false, and must be set to the empty string if the IDL
attribute's new value is true. If the element's "non-blocking"p619 flag is not set, the IDL attribute must reflectp94 the asyncp615 content
attribute.

The text attribute's getter must return this scriptp614 element's child text content.

The textp617 attribute's setter must string replace all with the given value within this scriptp614 element.

script . textp617 [= value]
Returns the child text content of the element.
Can be set, to replace the element's children with the given value.

For web developers (non-normative)

When inserted using the document.write()p970 method, scriptp614 elements usuallyp1136 execute (typically blocking further script
execution or HTML parsing). When inserted using the innerHTML and outerHTML attributes, they do not execute at all.

Note

In this example, two scriptp614 elements are used. One embeds an external classic scriptp925, and the other includes some data as
a data blockp615.

<script src="game-engine.js"></script>
<script type="text/x-game-map">
........U.........e
o............A....e
.....A.....AAA....e
.A..AAA...AAAAA...e
</script>

The data in this case might be used by the script to generate the map of a video game. The data doesn't have to be used that way,
though; maybe the map data is actually embedded in other parts of the page's markup, and the data block here is just used by the
site's search engine to help users who are looking for particular features in their game maps.

Example

The following sample shows how a scriptp614 element can be used to define a function that is then used by other parts of the
document, as part of a classic scriptp925. It also shows how a scriptp614 element can be used to invoke script while the document is
being parsed, in this case to initialize the form's output.

<script>
function calculate(form) {

var price = 52000;
if (form.elements.brakes.checked)

price += 1000;
if (form.elements.radio.checked)

price += 2500;
if (form.elements.turbo.checked)

price += 5000;
if (form.elements.sticker.checked)

price += 250;
form.elements.result.value = price;

}
</script>
<form name="pricecalc" onsubmit="return false" onchange="calculate(this)">
<fieldset>
<legend>Work out the price of your car</legend>
<p>Base cost: £52000.</p>

Example

617

https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#string-replace-all
https://w3c.github.io/DOM-Parsing/#dom-element-innerhtml
https://w3c.github.io/DOM-Parsing/#dom-element-outerhtml

<p>Select additional options:</p>

<label><input type=checkbox name=brakes> Ceramic brakes (£1000)</label>
<label><input type=checkbox name=radio> Satellite radio (£2500)</label>
<label><input type=checkbox name=turbo> Turbo charger (£5000)</label>
<label><input type=checkbox name=sticker> "XZ" sticker (£250)</label>

<p>Total: £<output name=result></output></p>

</fieldset>
<script>
calculate(document.forms.pricecalc);

</script>
</form>

The following sample shows how a scriptp614 element can be used to include an external module scriptp925.

<script type="module" src="app.mjs"></script>

This module, and all its dependencies (expressed through JavaScript import statements in the source file), will be fetched. Once
the entire resulting module graph has been imported, and the document has finished parsing, the contents of app.mjs will be
evaluated.

Additionally, if code from another scriptp614 element in the same Windowp824 imports the module from app.mjs (e.g. via import
"./app.mjs";), then the same module scriptp925 created by the former scriptp614 element will be imported.

Example

This example shows how to include a module scriptp925 for modern user agents, and a classic scriptp925 for older user agents:

<script type="module" src="app.mjs"></script>
<script nomodule defer src="classic-app-bundle.js"></script>

In modern user agents that support module scriptsp925, the scriptp614 element with the nomodulep615 attribute will be ignored, and
the scriptp614 element with a typep615 of "module" will be fetched and evaluated (as a module scriptp925). Conversely, older user
agents will ignore the scriptp614 element with a typep615 of "module", as that is an unknown script type for them — but they will
have no problem fetching and evaluating the other scriptp614 element (as a classic scriptp925), since they do not implement the
nomodulep615 attribute.

Example

The following sample shows how a scriptp614 element can be used to write an inline module scriptp925 that performs a number of
substitutions on the document's text, in order to make for a more interesting reading experience (e.g. on a news site):
[XKCD1288]p1293

<script type="module">
import { walkAllTextNodeDescendants } from "./dom-utils.mjs";

const substitutions = new Map([
["witnesses", "these dudes I know"]
["allegedly", "kinda probably"]
["new study", "Tumblr post"]
["rebuild", "avenge"]
["space", "spaaace"]
["Google glass", "Virtual Boy"]
["smartphone", "Pokédex"]
["electric", "atomic"]
["Senator", "Elf-Lord"]

Example

618

A scriptp614 element has several associated pieces of state.

A scriptp614 element has a flag indicating whether or not it has been "already started". Initially, scriptp614 elements must have this
flag unset (script blocks, when created, are not "already started"). The cloning steps for scriptp614 elements must set the "already
started" flag on the copy if it is set on the element being cloned.

A scriptp614 element has a parser document, which is either null or a Documentp114. Initially, its value must be null. It is set by the
HTML parserp1079 and the XML parserp1188 on scriptp614 elements they insert, and affects the processing of those elements. scriptp614

elements with non-null parser documentsp619 are known as "parser-inserted".

A scriptp614 element has a flag indicating whether the element will be "non-blocking". Initially, scriptp614 elements must have this
flag set. It is unset by the HTML parserp1079 and the XML parserp1188 on scriptp614 elements they insert. In addition, whenever a
scriptp614 element whose "non-blocking"p619 flag is set has an asyncp615 content attribute added, the element's "non-blocking"p619 flag
must be unset.

A scriptp614 element has a flag indicating whether or not the script block is "ready to be parser-executed". Initially, scriptp614

elements must have this flag unset (script blocks, when created, are not "ready to be parser-executed"). This flag is used only for
elements that are also "parser-inserted"p619, to let the parser know when to execute the script.

The script's type for a scriptp614 element is either "classic" or "module". It is determined when the script is preparedp620, based on
the typep615 attribute of the element at that time.

A scriptp614 element has a preparation-time document, which is a Documentp114 determined near the beginning of the prepare a
scriptp620 algorithm. It is used to prevent scripts that move between documents during preparationp620 from executingp623.

A scriptp614 element has a flag indicating whether or not the script is from an external file. It is determined when the script is
preparedp620, based on the srcp615 attribute of the element at that time.

The script's script for a scriptp614 element is either null or a scriptp925 resulting from preparingp620 the element. This is set
asynchronously after the classic script or module graph is fetched. Once it is set, either to a scriptp925 in the case of success or to null
in the case of failure, the fetching algorithms will note that the script is ready, which can trigger other actions. The user agent must
delay the load eventp1165 of the element's node document until the script is readyp619.

When a scriptp614 element that is not "parser-inserted"p619 experiences one of the events listed in the following list, the user agent
must immediatelyp42 preparep620 the scriptp614 element:

["car", "cat"]
["election", "eating contest"]
["Congressional leaders", "river spirits"]
["homeland security", "Homestar Runner"]
["could not be reached for comment", "is guilty and everyone knows it"]

]);

function substitute(textNode) {
for (const [before, after] of substitutions.entries()) {

textNode.data = textNode.data.replace(new RegExp(`\\b${before}\\b`, "ig"), after);
}

}

walkAllTextNodeDescendants(document.body, substitute);
</script>

Some notable features gained by using a module script include the ability to import functions from other JavaScript modules, strict
mode by default, and how top-level declarations do not introduce new properties onto the global objectp918. Also note that no
matter where this scriptp614 element appears in the document, it will not be evaluated until both document parsing has complete
and its dependency (dom-utils.mjs) has been fetched and evaluated.

4.12.1.1 Processing model §p61

9

619

https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#concept-node-document

• The scriptp614 element becomes connectedp45.

• The scriptp614 element is connected and a node or document fragment is insertedp44 into the scriptp614 element, after any
scriptp614 elements insertedp44 at that time.

• The scriptp614 element is connected and has a srcp615 attribute set where previously the element had no such attribute.

To prepare a script, the user agent must act as follows:

1. If the scriptp614 element is marked as having "already started"p619, then return. The script is not executed.

2. Let parser document be the element's parser documentp619.

3. Set the element's parser documentp619 to null.

4. If parser document is non-null and the element does not have an asyncp615 attribute, then set the element's "non-
blocking"p619 flag to true.

5. Let source text be the element's child text content.

6. If the element has no srcp615 attribute, and source text is the empty string, then return. The script is not executed.

7. If the element is not connected, then return. The script is not executed.

8. If either:

◦ the scriptp614 element has a typep615 attribute and its value is the empty string, or
◦ the scriptp614 element has no typep615 attribute but it has a languagep1235 attribute and that attribute's value is

the empty string, or
◦ the scriptp614 element has neither a typep615 attribute nor a languagep1235 attribute, then

...let the script block's type string for this scriptp614 element be "text/javascript".

Otherwise, if the scriptp614 element has a typep615 attribute, let the script block's type string for this scriptp614 element be
the value of that attribute with leading and trailing ASCII whitespace stripped.

Otherwise, the element has a non-empty languagep1235 attribute; let the script block's type string for this scriptp614 element
be the concatenation of the string "text/" followed by the value of the languagep1235 attribute.

Determine the script's typep619 as follows:

◦ If the script block's type string is a JavaScript MIME type essence match, the script's typep619 is "classic".

◦ If the script block's type string is an ASCII case-insensitive match for the string "module", the script's typep619 is
"module".

◦ If neither of the above conditions are true, then return. No script is executed.

9. If parser document is non-null, then set the element's parser documentp619 back to parser document and set the element's
"non-blocking"p619 flag to false.

10. Set the element's "already started"p619 flag.

11. Set the element's preparation-time documentp619 to its node document.

12. If parser document is non-null, and parser document is not equal to the element's preparation-time documentp619, then

This is done so that if parser-inserted scriptp614 elements fail to run when the parser tries to run them, e.g. because
they are empty or specify an unsupported scripting language, another script can later mutate them and cause them to
run again.

Note

This is done so that if a parser-inserted scriptp614 element fails to run when the parser tries to run it, but it is later
executed after a script dynamically updates it, it will execute in a non-blocking fashion even if the asyncp615 attribute
isn't set.

Note

The languagep1235 attribute is never conforming, and is always ignored if there is a typep615 attribute present.
Note

620

https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#connected
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-node-document

return.

13. If scripting is disabledp924 for the scriptp614 element, then return. The script is not executed.

14. If the scriptp614 element has a nomodulep615 content attribute and the script's typep619 is "classic", then return. The script is
not executed.

15. If the scriptp614 element does not have a srcp615 content attribute, and the Should element's inline behavior be blocked by
Content Security Policy? algorithm returns "Blocked" when executed upon the scriptp614 element, "script", and source
text, then return. The script is not executed. [CSP]p1285

16. If the scriptp614 element has an eventp1235 attribute and a forp1235 attribute, and the script's typep619 is "classic", then:

1. Let for be the value of the forp1235 attribute.

2. Let event be the value of the eventp1235 attribute.

3. Strip leading and trailing ASCII whitespace from event and for.

4. If for is not an ASCII case-insensitive match for the string "window", then return. The script is not executed.

5. If event is not an ASCII case-insensitive match for either the string "onload" or the string "onload()", then return.
The script is not executed.

17. If the scriptp614 element has a charsetp1233 attribute, then let encoding be the result of getting an encoding from the value
of the charsetp1233 attribute.

If the scriptp614 element does not have a charsetp1233 attribute, or if getting an encoding failed, let encoding be the same as
the encoding of the scriptp614 element's node document.

18. Let classic script CORS setting be the current state of the element's crossoriginp616 content attribute.

19. Let module script credentials mode be the CORS settings attribute credentials modep91 for the element's crossoriginp616

content attribute.

20. Let cryptographic nonce be the element's [[CryptographicNonce]]p92 internal slot's value.

21. If the scriptp614 element has an integrityp616 attribute, then let integrity metadata be that attribute's value.

Otherwise, let integrity metadata be the empty string.

22. Let referrer policy be the current state of the element's referrerpolicyp616 content attribute.

23. Let parser metadata be "parser-inserted" if the scriptp614 element is "parser-inserted"p619, and "not-parser-inserted"
otherwise.

24. Let options be a script fetch optionsp926 whose cryptographic noncep926 is cryptographic nonce, integrity metadatap926 is
integrity metadata, parser metadatap926 is parser metadata, credentials modep926 is module script credentials mode, and
referrer policyp926 is referrer policy.

25. Let settings object be the element's node document's relevant settings objectp924.

26. If the element has a srcp615 content attribute, then:

1. Let src be the value of the element's srcp615 attribute.

The definition of scripting is disabledp924 means that, amongst others, the following scripts will not execute: scripts in
XMLHttpRequest's responseXML documents, scripts in DOMParserp971-created documents, scripts in documents created
by XSLTProcessorp50 's transformToDocumentp50 feature, and scripts that are first inserted by a script into a Documentp114

that was created using the createDocument() API. [XHR]p1292 [DOMPARSING]p1287 [XSLTP]p1293 [DOM]p1287

Note

This means specifying nomodulep615 on a module scriptp925 has no effect; the algorithm continues onward.
Note

If the script's typep619 is "module", this encoding will be ignored.
Note

621

https://xhr.spec.whatwg.org/#xmlhttprequest
https://xhr.spec.whatwg.org/#dom-xmlhttprequest-responsexml
https://dom.spec.whatwg.org/#dom-domimplementation-createdocument
https://w3c.github.io/webappsec-csp/#should-block-inline
https://w3c.github.io/webappsec-csp/#should-block-inline
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#concept-encoding-get
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

2. If src is the empty string, queue a taskp945 to fire an event named errorp1281 at the element, and return.

3. Set the element's from an external filep619 flag.

4. Parsep89 src relative to the element's node document.

5. If the previous step failed, queue a taskp945 to fire an event named errorp1281 at the element, and return.
Otherwise, let url be the resulting URL recordp89.

6. Switch on the script's typep619:

↪ "classic"
Fetch a classic scriptp927 given url, settings object, options, classic script CORS setting, and encoding.

↪ "module"
Fetch an external module script graphp929 given url, settings object, and options.

When the chosen algorithm asynchronously completes, set the script's scriptp619 to the result. At that time, the
script is readyp619.

For performance reasons, user agents may start fetching the classic script or module graph (as defined above) as
soon as the srcp615 attribute is set, instead, in the hope that the element will be inserted into the document (and
that the crossoriginp616 attribute won't change value in the meantime). Either way, once the element is inserted
into the documentp44, the load must have started as described in this step. If the UA performs such prefetching, but
the element is never inserted in the document, or the srcp615 attribute is dynamically changed, or the
crossoriginp616 attribute is dynamically changed, then the user agent will not execute the script so obtained, and
the fetching process will have been effectively wasted.

27. If the element does not have a srcp615 content attribute, run these substeps:

1. Let base URL be the scriptp614 element's node document's document base URLp88.

2. Switch on the script's typep619:

↪ "classic"

1. Let script be the result of creating a classic scriptp933 using source text, settings object, base URL,
and options.

2. Set the script's scriptp619 to script.

3. The script is readyp619.

↪ "module"

1. Fetch an inline module script graphp929, given source text, base URL, settings object, and options.
When this asynchronously completes, set the script's scriptp619 to the result. At that time, the
script is readyp619.

28. Then, follow the first of the following options that describes the situation:

↪ If the script's typep619 is "classic", and the element has a srcp615 attribute, and the element has a deferp615

attribute, and the element is "parser-inserted"p619, and the element does not have an asyncp615 attribute
↪ If the script's typep619 is "module", and the element is "parser-inserted"p619, and the element does not have

an asyncp615 attribute
Add the element to the end of the list of scripts that will execute when the document has finished parsing
associated with the Documentp114 of the parser that created the element.

When the script is readyp619, set the element's "ready to be parser-executed"p619 flag. The parser will handle executing
the script.

↪ If the script's typep619 is "classic", and the element has a srcp615 attribute, and the element is "parser-
inserted"p619, and the element does not have an asyncp615 attribute

The element is the pending parsing-blocking scriptp623 of the Documentp114 of the parser that created the element.
(There can only be one such script per Documentp114 at a time.)

When the script is readyp619, set the element's "ready to be parser-executed"p619 flag. The parser will handle executing
622

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document

the script.

↪ If the script's typep619 is "classic", and the element has a srcp615 attribute, and the element does not have
an asyncp615 attribute, and the element does not have the "non-blocking"p619 flag set

↪ If the script's typep619 is "module", and the element does not have an asyncp615 attribute, and the element
does not have the "non-blocking"p619 flag set

Add the element to the end of the list of scripts that will execute in order as soon as possible associated with
the element's preparation-time documentp619.

When the script is readyp619, run the following steps:

1. If the element is not now the first element in the list of scripts that will execute in order as soon as
possiblep623 to which it was added above, then mark the element as ready but return without executing the
script yet.

2. Execution: Execute the script blockp623 corresponding to the first script element in this list of scripts that will
execute in order as soon as possiblep623.

3. Remove the first element from this list of scripts that will execute in order as soon as possiblep623.

4. If this list of scripts that will execute in order as soon as possiblep623 is still not empty and the first entry has
already been marked as ready, then jump back to the step labeled execution.

↪ If the script's typep619 is "classic", and the element has a srcp615 attribute
↪ If the script's typep619 is "module"

The element must be added to the set of scripts that will execute as soon as possible of the element's
preparation-time documentp619.

When the script is readyp619, execute the script blockp623 and then remove the element from the set of scripts that will
execute as soon as possiblep623.

↪ If the element does not have a srcp615 attribute, and the element is "parser-inserted"p619, and either the
parser that created the scriptp614 is an XML parserp1188 or it's an HTML parserp1079 whose script nesting
levelp1081 is not greater than one, and the element's parser documentp619 has a style sheet that is blocking
scriptsp178

The element is the pending parsing-blocking scriptp623 of its parser documentp619. (There can only be one such script
per Documentp114 at a time.)

Set the element's "ready to be parser-executed"p619 flag. The parser will handle executing the script.

↪ Otherwise
Immediatelyp42 execute the script blockp623, even if other scripts are already executing.

The pending parsing-blocking script of a Documentp114 is used by the Documentp114 's parser(s).

To execute a script block given a scriptp614 element scriptElement:

1. Let document be scriptElement's node document.

2. If scriptElement's preparation-time documentp619 is not equal to document, then return.

3. If the script's scriptp619 is null for scriptElement, then fire an event named errorp1281 at scriptElement, and return.

4. If scriptElement is from an external filep619, or the script's typep619 for scriptElement is "module", then increment document's
ignore-destructive-writes counterp970.

If a scriptp614 element that blocks a parser gets moved to another Documentp114 before it would normally have stopped blocking
that parser, it nonetheless continues blocking that parser until the condition that causes it to be blocking the parser no longer
applies (e.g., if the script is a pending parsing-blocking scriptp623 because the original Documentp114 has a style sheet that is
blocking scriptsp178 when it was parsed, but then the script is moved to another Documentp114 before the blocking style sheet(s)
loaded, the script still blocks the parser until the style sheets are all loaded, at which time the script executes and the parser is
unblocked).

Note

623

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire

5. Switch on the script's typep619 for scriptElement:

↪ "classic"

1. Let oldCurrentScript be the value to which document's currentScriptp120 object was most recently set.

2. If scriptElement's root is not a shadow root, then set document's currentScriptp120 attribute to
scriptElement. Otherwise, set it to null.

3. Run the classic scriptp934 given by the script's scriptp619 for scriptElement.

4. Set document's currentScriptp120 attribute to oldCurrentScript.

↪ "module"

1. Assert: document's currentScriptp120 attribute is null.

2. Run the module scriptp935 given by the script's scriptp619 for scriptElement.

6. Decrement the ignore-destructive-writes counterp970 of document, if it was incremented in the earlier step.

7. If scriptElement is from an external filep619, then fire an event named loadp1282 at scriptElement.

User agents are not required to support JavaScript. This standard needs to be updated if a language other than JavaScript comes along
and gets similar wide adoption by web browsers. Until such a time, implementing other languages is in conflict with this standard,
given the processing model defined for the scriptp614 element.

Servers should use text/javascriptp1283 for JavaScript resources. Servers should not use other JavaScript MIME types for JavaScript
resources, and must not use non-JavaScript MIME types.

For external JavaScript resources, MIME type parameters in `Content-Typep90` headers are generally ignored. (In some cases the
`charset` parameter has an effect.) However, for the scriptp614 element's typep615 attribute they are significant; it uses the JavaScript
MIME type essence match concept.

Furthermore, again for external JavaScript resources, special considerations apply around `Content-Typep90` header processing as
detailed in the prepare a scriptp620 algorithm and Fetch. [FETCH]p1287

The scriptp614 element's descendant text content must match the script production in the following ABNF, the character set for
which is Unicode. [ABNF]p1285

This does not use the in a document tree check, as scriptElement could have been removed from the
document prior to execution, and in that scenario currentScriptp120 still needs to point to it.

Note

4.12.1.2 Scripting languages §p62

4

For example, scripts with their typep615 attribute set to "text/javascript; charset=utf-8" will not be evaluated, even though
that is a valid JavaScript MIME type when parsed.

Note

4.12.1.3 Restrictions for contents of script elements §p62

4

The easiest and safest way to avoid the rather strange restrictions described in this section is to always escape an ASCII case-
insensitive match for "<!--" as "<\!--", "<script" as "<\script", and "</script" as "<\/script" when these sequences appear
in literals in scripts (e.g. in strings, regular expressions, or comments), and to avoid writing code that uses such constructs in
expressions. Doing so avoids the pitfalls that the restrictions in this section are prone to triggering: namely, that, for historical
reasons, parsing of scriptp614 blocks in HTML is a strange and exotic practice that acts unintuitively in the face of these
sequences.

Note

624

https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-event-fire
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://dom.spec.whatwg.org/#concept-descendant-text-content

script = outer *(comment-open inner comment-close outer)

outer = < any string that doesn't contain a substring that matches not-in-outer >
not-in-outer = comment-open
inner = < any string that doesn't contain a substring that matches not-in-inner >
not-in-inner = comment-close / script-open

comment-open = "<!--"
comment-close = "-->"
script-open = "<" s c r i p t tag-end

s = %x0053 ; U+0053 LATIN CAPITAL LETTER S
s =/ %x0073 ; U+0073 LATIN SMALL LETTER S
c = %x0043 ; U+0043 LATIN CAPITAL LETTER C
c =/ %x0063 ; U+0063 LATIN SMALL LETTER C
r = %x0052 ; U+0052 LATIN CAPITAL LETTER R
r =/ %x0072 ; U+0072 LATIN SMALL LETTER R
i = %x0049 ; U+0049 LATIN CAPITAL LETTER I
i =/ %x0069 ; U+0069 LATIN SMALL LETTER I
p = %x0050 ; U+0050 LATIN CAPITAL LETTER P
p =/ %x0070 ; U+0070 LATIN SMALL LETTER P
t = %x0054 ; U+0054 LATIN CAPITAL LETTER T
t =/ %x0074 ; U+0074 LATIN SMALL LETTER T

tag-end = %x0009 ; U+0009 CHARACTER TABULATION (tab)
tag-end =/ %x000A ; U+000A LINE FEED (LF)
tag-end =/ %x000C ; U+000C FORM FEED (FF)
tag-end =/ %x0020 ; U+0020 SPACE
tag-end =/ %x002F ; U+002F SOLIDUS (/)
tag-end =/ %x003E ; U+003E GREATER-THAN SIGN (>)

When a scriptp614 element contains script documentationp626, there are further restrictions on the contents of the element, as
described in the section below.

The following script illustrates this issue. Suppose you have a script that contains a string, as in:

var example = 'Consider this string: <!-- <script>';
console.log(example);

If one were to put this string directly in a scriptp614 block, it would violate the restrictions above:

<script>
var example = 'Consider this string: <!-- <script>';
console.log(example);

</script>

The bigger problem, though, and the reason why it would violate those restrictions, is that actually the script would get parsed
weirdly: the script block above is not terminated. That is, what looks like a "</script>" end tag in this snippet is actually still part
of the scriptp614 block. The script doesn't execute (since it's not terminated); if it somehow were to execute, as it might if the
markup looked as follows, it would fail because the script (highlighted here) is not valid JavaScript:

<script>
var example = 'Consider this string: <!-- <script>';
console.log(example);

</script>
<!-- despite appearances, this is actually part of the script still! -->
<script>
... // this is the same script block still...

</script>

Example

625

If a scriptp614 element's srcp615 attribute is specified, then the contents of the scriptp614 element, if any, must be such that the value
of the textp617 IDL attribute, which is derived from the element's contents, matches the documentation production in the following
ABNF, the character set for which is Unicode. [ABNF]p1285

documentation = *(*(space / tab / comment) [line-comment] newline)
comment = slash star *(not-star / star not-slash) 1*star slash
line-comment = slash slash *not-newline

; characters
tab = %x0009 ; U+0009 CHARACTER TABULATION (tab)
newline = %x000A ; U+000A LINE FEED (LF)
space = %x0020 ; U+0020 SPACE
star = %x002A ; U+002A ASTERISK (*)
slash = %x002F ; U+002F SOLIDUS (/)
not-newline = %x0000-0009 / %x000B-10FFFF

; a scalar value other than U+000A LINE FEED (LF)
not-star = %x0000-0029 / %x002B-10FFFF

; a scalar value other than U+002A ASTERISK (*)
not-slash = %x0000-002E / %x0030-10FFFF

; a scalar value other than U+002F SOLIDUS (/)

What is going on here is that for legacy reasons, "<!--" and "<script" strings in scriptp614 elements in HTML need to be balanced
in order for the parser to consider closing the block.

By escaping the problematic strings as mentioned at the top of this section, the problem is avoided entirely:

<script>
// Note: `\s` is an escape sequence for `s`.
var example = 'Consider this string: <\!-- <\script>';
console.log(example);

</script>
<!-- this is just a comment between script blocks -->
<script>
... // this is a new script block

</script>

It is possible for these sequences to naturally occur in script expressions, as in the following examples:

if (x<!--y) { ... }
if (player<script) { ... }

In such cases the characters cannot be escaped, but the expressions can be rewritten so that the sequences don't occur, as in:

if (x < !--y) { ... }
if (!--y > x) { ... }
if (!(--y) > x) { ... }
if (player < script) { ... }
if (script > player) { ... }

Doing this also avoids a different pitfall as well: for related historical reasons, the string "<!--" in classic scriptsp925 is actually
treated as a line comment start, just like "//".

4.12.1.4 Inline documentation for external scripts §p62

6

This corresponds to putting the contents of the element in JavaScript comments.
Note

626

https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#scalar-value

This section is non-normative.

This specification does not define how XSLT interacts with the scriptp614 element. However, in the absence of another specification
actually defining this, here are some guidelines for implementers, based on existing implementations:

• When an XSLT transformation program is triggered by an <?xml-stylesheet?> processing instruction and the browser
implements a direct-to-DOM transformation, scriptp614 elements created by the XSLT processor need to have its parser
documentp619 set correctly, and run in document order (modulo scripts marked deferp615 or asyncp615), immediatelyp42, as the
transformation is occurring.

• The XSLTProcessorp50 transformToDocument()p50 method adds elements to a Documentp114 object with a null browsing
contextp811, and, accordingly, any scriptp614 elements they create need to have their "already started"p619 flag set in the
prepare a scriptp620 algorithm and never get executed (scripting is disabledp924). Such scriptp614 elements still need to have
their parser documentp619 set, though, such that their asyncp617 IDL attribute will return false in the absence of an asyncp615

content attribute.

• The XSLTProcessorp50 transformToFragment()p50 method needs to create a fragment that is equivalent to one built
manually by creating the elements using document.createElementNS(). For instance, it needs to create scriptp614

elements with null parser documentp619 and that don't have their "already started"p619 flag set, so that they will execute
when the fragment is inserted into a document.

The main distinction between the first two cases and the last case is that the first two operate on Documentp114s and the last operates
on a fragment.

Categoriesp128:
Metadata contentp131.
Flow contentp131.
Phrasing contentp132.

Contexts in which this element can be usedp128:
In a headp153 element of an HTML document, if there are no ancestor noscriptp627 elements.
Where phrasing contentp132 is expected in HTML documents, if there are no ancestor noscriptp627 elements.

Content modelp128:
When scripting is disabledp924, in a headp153 element: in any order, zero or more linkp157 elements, zero or more stylep174

elements, and zero or more metap164 elements.
When scripting is disabledp924, not in a headp153 element: transparentp133, but there must be no noscriptp627 element
descendants.

This requirement is in addition to the earlier restrictions on the syntax of contents of scriptp614 elements.
Note

This allows authors to include documentation, such as license information or API information, inside their documents while still
referring to external script files. The syntax is constrained so that authors don't accidentally include what looks like valid script
while also providing a srcp615 attribute.

<script src="cool-effects.js">
// create new instances using:
// var e = new Effect();
// start the effect using .play, stop using .stop:
// e.play();
// e.stop();

</script>

Example

4.12.1.5 Interaction of scriptp614 elements and XSLT §p62

7

4.12.2 The noscript element §p62

7

✔ MDN

627

https://dom.spec.whatwg.org/#dom-document-createelementns
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#html-document

Otherwise: text that conforms to the requirements given in the prose.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:
Uses HTMLElementp124.

The noscriptp627 element representsp123 nothing if scripting is enabledp924, and representsp123 its children if scripting is disabledp924. It
is used to present different markup to user agents that support scripting and those that don't support scripting, by affecting how the
document is parsed.

When used in HTML documents, the allowed content model is as follows:

In a headp153 element, if scripting is disabledp924 for the noscriptp627 element
The noscriptp627 element must contain only linkp157, stylep174, and metap164 elements.

In a headp153 element, if scripting is enabledp924 for the noscriptp627 element
The noscriptp627 element must contain only text, except that invoking the HTML fragment parsing algorithmp1177 with the
noscriptp627 element as the contextp1177 element and the text contents as the input must result in a list of nodes that consists only
of linkp157, stylep174, and metap164 elements that would be conforming if they were children of the noscriptp627 element, and no
parse errorsp1081.

Outside of headp153 elements, if scripting is disabledp924 for the noscriptp627 element
The noscriptp627 element's content model is transparentp133, with the additional restriction that a noscriptp627 element must not
have a noscriptp627 element as an ancestor (that is, noscriptp627 can't be nested).

Outside of headp153 elements, if scripting is enabledp924 for the noscriptp627 element
The noscriptp627 element must contain only text, except that the text must be such that running the following algorithm results in a
conforming document with no noscriptp627 elements and no scriptp614 elements, and such that no step in the algorithm throws an
exception or causes an HTML parserp1079 to flag a parse errorp1081:

1. Remove every scriptp614 element from the document.

2. Make a list of every noscriptp627 element in the document. For every noscriptp627 element in that list, perform the
following steps:

1. Let s be the child text content of the noscriptp627 element.

2. Set the outerHTML attribute of the noscriptp627 element to the value of s. (This, as a side-effect, causes the
noscriptp627 element to be removed from the document.) [DOMPARSING]p1287

The noscriptp627 element must not be used in XML documents.

The noscriptp627 element has no other requirements. In particular, children of the noscriptp627 element are not exempt from form
submissionp595, scripting, and so forth, even when scripting is enabledp924 for the element.

All these contortions are required because, for historical reasons, the noscriptp627 element is handled differently by the HTML
parserp1079 based on whether scripting was enabled or notp1096 when the parser was invoked.

Note

The noscriptp627 element is only effective in the HTML syntaxp1067, it has no effect in the XML syntaxp1188. This is because the way
it works is by essentially "turning off" the parser when scripts are enabled, so that the contents of the element are treated as pure
text and not as real elements. XML does not define a mechanism by which to do this.

Note

628

https://w3c.github.io/html-aria/#el-noscript
https://w3c.github.io/html-aam/#el-noscript
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-child-text-content
https://w3c.github.io/DOM-Parsing/#dom-element-outerhtml
https://dom.spec.whatwg.org/#xml-document

Categoriesp128:
Metadata contentp131.
Flow contentp131.

In the following example, a noscriptp627 element is used to provide fallback for a script.

<form action="calcSquare.php">
<p>
<label for=x>Number</label>:
<input id="x" name="x" type="number">

</p>
<script>
var x = document.getElementById('x');
var output = document.createElement('p');
output.textContent = 'Type a number; it will be squared right then!';
x.form.appendChild(output);
x.form.onsubmit = function () { return false; }
x.oninput = function () {

var v = x.valueAsNumber;
output.textContent = v + ' squared is ' + v * v;

};
</script>
<noscript>
<input type=submit value="Calculate Square">

</noscript>
</form>

When script is disabled, a button appears to do the calculation on the server side. When script is enabled, the value is computed
on-the-fly instead.

The noscriptp627 element is a blunt instrument. Sometimes, scripts might be enabled, but for some reason the page's script might
fail. For this reason, it's generally better to avoid using noscriptp627, and to instead design the script to change the page from
being a scriptless page to a scripted page on the fly, as in the next example:

<form action="calcSquare.php">
<p>
<label for=x>Number</label>:
<input id="x" name="x" type="number">

</p>
<input id="submit" type=submit value="Calculate Square">
<script>
var x = document.getElementById('x');
var output = document.createElement('p');
output.textContent = 'Type a number; it will be squared right then!';
x.form.appendChild(output);
x.form.onsubmit = function () { return false; }
x.oninput = function () {

var v = x.valueAsNumber;
output.textContent = v + ' squared is ' + v * v;

};
var submit = document.getElementById('submit');
submit.parentNode.removeChild(submit);

</script>
</form>

The above technique is also useful in XML documents, since noscriptp627 is not allowed there.

Example

4.12.3 The template element §p62

9

✔ MDN

✔ MDN

629

https://dom.spec.whatwg.org/#xml-document

Phrasing contentp132.
Script-supporting elementp133.

Contexts in which this element can be usedp128:
Where metadata contentp131 is expected.
Where phrasing contentp132 is expected.
Where script-supporting elementsp133 are expected.
As a child of a colgroupp459 element that doesn't have a spanp460 attribute.

Content modelp128:
Nothingp130 (for clarification, see examplep630).

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLTemplateElement : HTMLElement {

[HTMLConstructor] constructor();

readonly attribute DocumentFragment content;
};

The templatep629 element is used to declare fragments of HTML that can be cloned and inserted in the document by script.

In a rendering, the templatep629 element representsp123 nothing.

The template contentsp631 of a templatep629 element are not children of the element itselfp1069.

It is also possible, as a result of DOM manipulation, for a templatep629 element to contain Text nodes and element nodes; however,
having any is a violation of the templatep629 element's content model, since its content model is defined as nothingp130.

Note

For example, consider the following document:

<!doctype html>
<html lang="en">
<head>
<title>Homework</title>

<body>
<template id="template"><p>Smile!</p></template>
<script>
let num = 3;
const fragment = document.getElementById('template').content.cloneNode(true);
while (num-- > 1) {

fragment.firstChild.before(fragment.firstChild.cloneNode(true));
fragment.firstChild.textContent += fragment.lastChild.textContent;

}
document.body.appendChild(fragment);

</script>
</html>

Example

IDL

630

https://w3c.github.io/html-aria/#el-template
https://w3c.github.io/html-aam/#el-template
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-text

Each templatep629 element has an associated DocumentFragment object that is its template contents. The template contentsp631

have no conformance requirementsp123. When a templatep629 element is created, the user agent must run the following steps to
establish the template contentsp631:

1. Let doc be the templatep629 element's node document's appropriate template contents owner documentp631.

2. Create a DocumentFragment object whose node document is doc and host is the templatep629 element.

3. Set the templatep629 element's template contentsp631 to the newly created DocumentFragment object.

A Documentp114 doc's appropriate template contents owner document is the Documentp114 returned by the following algorithm:

1. If doc is not a Documentp114 created by this algorithm, then:

1. If doc does not yet have an associated inert template document, then:

1. Let new doc be a new Documentp114 (whose browsing contextp811 is null). This is "a Documentp114 created
by this algorithm" for the purposes of the step above.

2. If doc is an HTML document, mark new doc as an HTML document also.

3. Let doc's associated inert template documentp631 be new doc.

2. Set doc to doc's associated inert template documentp631.

2. Return doc.

The adopting steps (with node and oldDocument as parameters) for templatep629 elements are the following:

1. Let doc be node's node document's appropriate template contents owner documentp631.

2. Adopt node's template contentsp631 (a DocumentFragment object) into doc.

The content IDL attribute must return the templatep629 element's template contentsp631.

The cloning steps for a templatep629 element node being cloned to a copy copy must run the following steps:

1. If the clone children flag is not set in the calling clone algorithm, return.

2. Let copied contents be the result of cloning all the children of node's template contentsp631, with document set to copy's
template contentsp631 's node document, and with the clone children flag set.

3. Append copied contents to copy's template contentsp631.

The pp211 element in the templatep629 is not a child of the templatep629 in the DOM; it is a child of the DocumentFragment returned
by the templatep629 element's contentp631 IDL attribute.

If the script were to call appendChild() on the templatep629 element, that would add a child to the templatep629 element (as for
any other element); however, doing so is a violation of the templatep629 element's content model.

template . contentp631

Returns the template contentsp631 (a DocumentFragment).

For web developers (non-normative)

Each Documentp114 not created by this algorithm thus gets a single Documentp114 to act as its proxy for owning the
template contentsp631 of all its templatep629 elements, so that they aren't in a browsing contextp811 and thus remain inert
(e.g. scripts do not run). Meanwhile, templatep629 elements inside Documentp114 objects that are created by this algorithm
just reuse the same Documentp114 owner for their contents.

Note

node's node document is the Documentp114 object that node was just adopted into.
Note

✔ MDN

631

https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#dom-node-appendchild
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-node-adopt-ext
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-adopt
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#concept-node-clone
https://dom.spec.whatwg.org/#concept-node-clone
https://dom.spec.whatwg.org/#concept-node-document

This section is non-normative.

This specification does not define how XSLT and XPath interact with the templatep629 element. However, in the absence of another
specification actually defining this, here are some guidelines for implementers, which are intended to be consistent with other
processing described in this specification:

• An XSLT processor based on an XML parser that acts as described in this specificationp1188 needs to act as if templatep629

elements contain as descendants their template contentsp631 for the purposes of the transform.

• An XSLT processor that outputs a DOM needs to ensure that nodes that would go into a templatep629 element are instead
placed into the element's template contentsp631.

• XPath evaluation using the XPath DOM API when applied to a Documentp114 parsed using the HTML parserp1079 or the XML
parserp1188 described in this specification needs to ignore template contentsp631.

In this example, a script populates a table four-column with data from a data structure, using a templatep629 to provide the
element structure instead of manually generating the structure from markup.

<!DOCTYPE html>
<html lang='en'>
<title>Cat data</title>
<script>
// Data is hard-coded here, but could come from the server
var data = [

{ name: 'Pillar', color: 'Ticked Tabby', sex: 'Female (neutered)', legs: 3 },
{ name: 'Hedral', color: 'Tuxedo', sex: 'Male (neutered)', legs: 4 },

];
</script>
<table>
<thead>
<tr>
<th>Name <th>Color <th>Sex <th>Legs

<tbody>
<template id="row">
<tr><td><td><td><td>

</template>
</table>
<script>
var template = document.querySelector('#row');
for (var i = 0; i < data.length; i += 1) {

var cat = data[i];
var clone = template.content.cloneNode(true);
var cells = clone.querySelectorAll('td');
cells[0].textContent = cat.name;
cells[1].textContent = cat.color;
cells[2].textContent = cat.sex;
cells[3].textContent = cat.legs;
template.parentNode.appendChild(clone);

}
</script>

This example uses cloneNode() on the templatep629 's contents; it could equivalently have used document.importNode(), which
does the same thing. The only difference between these two APIs is when the node document is updated: with cloneNode() it is
updated when the nodes are appended with appendChild(), with document.importNode() it is updated when the nodes are
cloned.

Example

4.12.3.1 Interaction of templatep629 elements with XSLT and XPath §p63

2

632

https://dom.spec.whatwg.org/#dom-node-clonenode
https://dom.spec.whatwg.org/#dom-document-importnode
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#dom-node-clonenode
https://dom.spec.whatwg.org/#dom-node-appendchild
https://dom.spec.whatwg.org/#dom-document-importnode

Categoriesp128:
Flow contentp131.
Phrasing contentp132.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Transparentp133

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

namep633 — Name of shadow tree slot

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

[Exposed=Window]
interface HTMLSlotElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
sequence<Node> assignedNodes(optional AssignedNodesOptions options = {});
sequence<Element> assignedElements(optional AssignedNodesOptions options = {});

};

dictionary AssignedNodesOptions {
boolean flatten = false;

};

The slotp633 element defines a slot. It is typically used in a shadow tree. A slotp633 element representsp123 its assigned nodes, if any,
and its contents otherwise.

The name content attribute may contain any string value. It represents a slot's name.

The namep633 attribute is used to assign slots to other elements: a slotp633 element with a namep633 attribute creates a named slot to
which any element is assigned if that element has a slotp137 attribute whose value matches that namep633 attribute's value, and the
slotp633 element is a child of the shadow tree whose root's host has that corresponding slotp137 attribute value.

Note

slot . namep634

Can be used to get and set slot's name.

slot . assignedNodesp634()
Returns slot's assigned nodes.

slot . assignedNodesp634({ flatten: true })
Returns slot's assigned nodes, if any, and slot's children otherwise, and does the same for any slotp633 elements encountered
therein, recursively, until there are no slotp633 elements left.

slot . assignedElementsp634()
Returns slot's assigned nodes, limited to elements.

slot . assignedElementsp634({ flatten: true })
Returns the same as assignedNodes({ flatten: true })p634, limited to elements.

For web developers (non-normative)

IDL

4.12.4 The slot element §p63

3

✔ MDN

✔ MDN

✔ MDN

633

https://w3c.github.io/html-aria/#el-slot
https://w3c.github.io/html-aam/#el-slot
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#slot-name
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#slot-name
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#slot-assigned-nodes

The name IDL attribute must reflectp94 the content attribute of the same name.

The assignedNodes(options) method, when invoked, must run these steps:

1. If the value of options's flatten member is false, then return this element's assigned nodes.

2. Return the result of finding flattened slottables with this element.

The assignedElements(options) method, when invoked, must run these steps:

1. If the value of options's flatten member is false, then return this element's assigned nodes, filtered to contain only Element
nodes.

2. Return the result of finding flattened slottables with this element, filtered to contain only Element nodes.

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Embedded contentp132.
Palpable contentp133.

Contexts in which this element can be usedp128:
Where embedded contentp132 is expected.

Content modelp128:
Transparentp133, but with no interactive contentp132 descendants except for ap238 elements, imgp320 elements with usemapp445

attributes, buttonp535 elements, inputp493 elements whose typep495 attribute are in the Checkboxp513 or Radio Buttonp514 states,
inputp493 elements that are buttonsp486, and selectp537 elements with a multiplep539 attribute or a display sizep539 greater than
1.

Tag omission in text/htmlp128:
Neither tag is omissible.

Content attributesp128:
Global attributesp136

widthp635 — Horizontal dimension
heightp635 — Vertical dimension

Accessibility considerationsp129:
For authors.
For implementers.

DOM interfacep129:

typedef (CanvasRenderingContext2D or ImageBitmapRenderingContext or WebGLRenderingContext or
WebGL2RenderingContext) RenderingContext;

[Exposed=Window]
interface HTMLCanvasElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute unsigned long width;
[CEReactions] attribute unsigned long height;

RenderingContext? getContext(DOMString contextId, optional any options = null);

USVString toDataURL(optional DOMString type = "image/png", optional any quality);
undefined toBlob(BlobCallback _callback, optional DOMString type = "image/png", optional any

quality);
OffscreenCanvas transferControlToOffscreen();

};

IDL

4.12.5 The canvas element §p63

4

✔ MDN

MDN

✔ MDN

✔ MDN

634

https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#find-flattened-slotables
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#find-flattened-slotables
https://dom.spec.whatwg.org/#interface-element
https://w3c.github.io/html-aria/#el-canvas
https://w3c.github.io/html-aam/#el-canvas
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext

callback BlobCallback = undefined (Blob? blob);

The canvasp634 element provides scripts with a resolution-dependent bitmap canvas, which can be used for rendering graphs, game
graphics, art, or other visual images on the fly.

Authors should not use the canvasp634 element in a document when a more suitable element is available. For example, it is
inappropriate to use a canvasp634 element to render a page heading: if the desired presentation of the heading is graphically intense, it
should be marked up using appropriate elements (typically h1p190) and then styled using CSS and supporting technologies such as
shadow trees.

When authors use the canvasp634 element, they must also provide content that, when presented to the user, conveys essentially the
same function or purpose as the canvasp634 's bitmap. This content may be placed as content of the canvasp634 element. The contents
of the canvasp634 element, if any, are the element's fallback contentp132.

In interactive visual media, if scripting is enabledp924 for the canvasp634 element, and if support for canvasp634 elements has been
enabled, then the canvasp634 element representsp123 embedded contentp132 consisting of a dynamically created image, the element's
bitmap.

In non-interactive, static, visual media, if the canvasp634 element has been previously associated with a rendering context (e.g. if the
page was viewed in an interactive visual medium and is now being printed, or if some script that ran during the page layout process
painted on the element), then the canvasp634 element representsp123 embedded contentp132 with the element's current bitmap and size.
Otherwise, the element represents its fallback contentp132 instead.

In non-visual media, and in visual media if scripting is disabledp924 for the canvasp634 element or if support for canvasp634 elements has
been disabled, the canvasp634 element representsp123 its fallback contentp132 instead.

When a canvasp634 element representsp123 embedded contentp132, the user can still focus descendants of the canvasp634 element (in the
fallback contentp132). When an element is focusedp771, it is the target of keyboard interaction events (even though the element itself is
not visible). This allows authors to make an interactive canvas keyboard-accessible: authors should have a one-to-one mapping of
interactive regions to focusable areasp770 in the fallback contentp132. (Focus has no effect on mouse interaction events.) [UIEVENTS]p1292

An element whose nearest canvasp634 element ancestor is being renderedp1192 and representsp123 embedded contentp132 is an element
that is being used as relevant canvas fallback content.

The canvasp634 element has two attributes to control the size of the element's bitmap: width and height. These attributes, when
specified, must have values that are valid non-negative integersp69. The rules for parsing non-negative integers p69 must be used to
obtain their numeric values. If an attribute is missing, or if parsing its value returns an error, then the default value must be used
instead. The widthp635 attribute defaults to 300, and the heightp635 attribute defaults to 150.

When setting the value of the widthp635 or heightp635 attribute, if the context modep636 of the canvasp634 element is set to
placeholderp636, the user agent must throw an "InvalidStateError" DOMException and leave the attribute's value unchanged.

The intrinsic dimensions of the canvasp634 element when it representsp123 embedded contentp132 are equal to the dimensions of the
element's bitmap.

The user agent must use a square pixel density consisting of one pixel of image data per coordinate space unit for the bitmaps of a
canvasp634 and its rendering contexts.

The bitmaps of canvasp634 elements, the bitmaps of ImageBitmapp990 objects, as well as some of the bitmaps of rendering contexts,
such as those described in the sections on the CanvasRenderingContext2Dp638 and ImageBitmapRenderingContextp687 objects below,
have an origin-clean flag, which can be set to true or false. Initially, when the canvasp634 element or ImageBitmapp990 object is
created, its bitmap's origin-cleanp635 flag must be set to true.

A canvasp634 element can have a rendering context bound to it. Initially, it does not have a bound rendering context. To keep track of

A canvasp634 element can be sized arbitrarily by a style sheet, its bitmap is then subject to the 'object-fit' CSS property.
Note

✔ MDN

635

https://w3c.github.io/FileAPI/#dfn-Blob
https://dom.spec.whatwg.org/#concept-shadow-tree
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-images/#the-object-fit

whether it has a rendering context or not, and what kind of rendering context it is, a canvasp634 also has a canvas context mode,
which is initially none but can be changed to either placeholder, 2d, bitmaprenderer, webgl, or webgl2 by algorithms defined in
this specification.

When its canvas context modep636 is nonep636, a canvasp634 element has no rendering context, and its bitmap must be transparent
black with an intrinsic width equal to the numeric valuep635 of the element's widthp635 attribute and an intrinsic height equal to the
numeric valuep635 of the element's heightp635 attribute, those values being interpreted in CSS pixels, and being updated as the
attributes are set, changed, or removed.

When its canvas context modep636 is placeholderp636, a canvasp634 element has no rendering context. It serves as a placeholder for an
OffscreenCanvasp689 object, and the content of the canvasp634 element is updated by calling the commit()p690 method of the
OffscreenCanvasp689 object's rendering context.

When a canvasp634 element represents embedded contentp132, it provides a paint source whose width is the element's intrinsic width,
whose height is the element's intrinsic height, and whose appearance is the element's bitmap.

Whenever the widthp635 and heightp635 content attributes are set, removed, changed, or redundantly set to the value they already
have, then the user agent must perform the action from the row of the following table that corresponds to the canvasp634 element's
context modep636.

Context Modep636 Action

2dp636 Follow the steps to set bitmap dimensionsp644 to the numeric valuesp635 of the widthp635 and heightp635 content attributes.

webglp636 or
webgl2p636

Follow the behavior defined in the WebGL specifications. [WEBGL]p1292

bitmaprendererp636 If the context's bitmap modep688 is set to blankp688, run the steps to set an ImageBitmapRenderingContext's output bitmapp688, passing
the canvasp634 element's rendering context.

placeholderp636 Do nothing.

nonep636 Do nothing.

The width and height IDL attributes must reflectp94 the respective content attributes of the same name, with the same defaults.

The getContext(contextId, options) method of the canvasp634 element, when invoked, must run these steps:

1. If options is not an object, then set options to null.

2. Set options to the result of converting options to a JavaScript value.

3. Run the steps in the cell of the following table whose column header matches this canvasp634 element's canvas context
modep636 and whose row header matches contextId:

nonep636 2dp636 bitmaprendererp636 webglp636 or
webgl2p636

placeholderp636

"2d" Follow the 2D context creation algorithmp644 defined Return the
same object

Return null. Return null. Throw an
"InvalidStateError"

context = canvas . getContextp636(contextId [, options])
Returns an object that exposes an API for drawing on the canvas. contextId specifies the desired API: "2dp636",
"bitmaprendererp637", "webglp637", or "webgl2p637". options is handled by that API.
This specification defines the "2dp636" and "bitmaprendererp637" contexts below. The WebGL specifications define the
"webglp637" and "webgl2p637" contexts. [WEBGL]p1292

Returns null if contextId is not supported, or if the canvas has already been initialized with another context type (e.g., trying to
get a "2dp636" context after getting a "webglp637" context).

For web developers (non-normative)

✔ MDN

636

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images-4/#paint-source
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-height
https://heycam.github.io/webidl/#idl-object
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#invalidstateerror

nonep636 2dp636 bitmaprendererp636 webglp636 or
webgl2p636

placeholderp636

in the section below, passing it this canvasp634

element and options, to obtain a
CanvasRenderingContext2Dp638 object; if this does
not throw an exception, then set this canvasp634

element's context modep636 to 2dp636, and return the
CanvasRenderingContext2Dp638 object.

as was
returned the
last time the
method was
invoked with
this same first
argument.

DOMException.

"bitmaprenderer" Follow the ImageBitmapRenderingContext creation
algorithmp689 defined in the section below, passing
it this canvasp634 element and options, to obtain an
ImageBitmapRenderingContextp687 object; then set
this canvasp634 element's context modep636 to
bitmaprendererp636, and return the
ImageBitmapRenderingContextp687 object.

Return null. Return the same
object as was
returned the last
time the method was
invoked with this
same first argument.

Return null. Throw an
"InvalidStateError"
DOMException.

"webgl" or
"webgl2", if the
user agent
supports the
WebGL feature
in its current
configuration

Follow the instructions given in the WebGL
specifications' Context Creation sections to obtain a
WebGLRenderingContext,
WebGL2RenderingContext, or null; if the returned
value is null, then return null; otherwise, set this
canvasp634 element's context modep636 to webglp636

or webgl2p636, and return the
WebGLRenderingContext or
WebGL2RenderingContext object. [WEBGL]p1292

Return null. Return null. Return the
same object
as was
returned the
last time the
method was
invoked with
this same first
argument.

Throw an
"InvalidStateError"
DOMException.

An unsupported
value*

Return null. Return null. Return null. Return null. Throw an
"InvalidStateError"
DOMException.

* For example, the "webglp637" or "webgl2p637" value in the case of a user agent having exhausted the graphics hardware's abilities and
having no software fallback implementation.

The toDataURL(type, quality) method, when invoked, must run these steps:

1. If this canvasp634 element's bitmap's origin-cleanp635 flag is set to false, then throw a "SecurityError" DOMException.

2. If this canvasp634 element's bitmap has no pixels (i.e. either its horizontal dimension or its vertical dimension is zero) then
return the string "data:,". (This is the shortest data: URL; it represents the empty string in a text/plain resource.)

url = canvas . toDataURLp637([type [, quality]])
Returns a data: URL for the image in the canvas.
The first argument, if provided, controls the type of the image to be returned (e.g. PNG or JPEG). The default is "image/pngp1283";
that type is also used if the given type isn't supported. The second argument applies if the type is an image format that
supports variable quality (such as "image/jpegp1283"), and is a number in the range 0.0 to 1.0 inclusive indicating the desired
quality level for the resulting image.
When trying to use types other than "image/pngp1283", authors can check if the image was really returned in the requested
format by checking to see if the returned string starts with one of the exact strings "data:image/png," or "data:image/png;".
If it does, the image is PNG, and thus the requested type was not supported. (The one exception to this is if the canvas has
either no height or no width, in which case the result might simply be "data:,".)

canvas . toBlobp638(callback [, type [, quality]])
Creates a Blob object representing a file containing the image in the canvas, and invokes a callback with a handle to that
object.
The second argument, if provided, controls the type of the image to be returned (e.g. PNG or JPEG). The default is "image/
pngp1283"; that type is also used if the given type isn't supported. The third argument applies if the type is an image format that
supports variable quality (such as "image/jpegp1283"), and is a number in the range 0.0 to 1.0 inclusive indicating the desired
quality level for the resulting image.

canvas . transferControlToOffscreenp638()
Returns a newly created OffscreenCanvasp689 object that uses the canvasp634 element as a placeholder. Once the canvasp634

element has become a placeholder for an OffscreenCanvasp689 object, its intrinsic size can no longer be changed, and it cannot
have a rendering context. The content of the placeholder canvas is updated by calling the commit()p690 method of the
OffscreenCanvasp689 object's rendering context.

For web developers (non-normative)

✔ MDN

637

https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tools.ietf.org/html/rfc2397#section-2
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tools.ietf.org/html/rfc2397#section-2

3. Let file be a serialization of this canvas element's bitmap as a filep695, passing type and quality if given.

4. If file is null then return "data:,".

5. Return a data: URL representing file. [RFC2397]p1290

The toBlob(callback, type, quality) method, when invoked, must run these steps:

1. If this canvasp634 element's bitmap's origin-cleanp635 flag is set to false, then throw a "SecurityError" DOMException.

2. Let result be null.

3. If this canvasp634 element's bitmap has pixels (i.e., neither its horizontal dimension nor its vertical dimension is zero), then
set result to a copy of this canvasp634 element's bitmap.

4. Run these steps in parallelp42:

1. If result is non-null, then set result to a serialization of result as a filep695 with type and quality if given.

2. Queue an element taskp946 on the canvas blob serialization task source given the canvasp634 element to run
these steps:

1. If result is non-null, then set result to a new Blob object, created in the relevant Realmp924 of this
canvasp634 element, representing result. [FILEAPI]p1287

2. Invoke callback with « result ».

The transferControlToOffscreen() method, when invoked, must run these steps:

1. If this canvasp634 element's context modep636 is not set to nonep636, throw an "InvalidStateError" DOMException.

2. Let offscreenCanvas be a new OffscreenCanvasp689 object with its width and height equal to the values of the widthp635 and
heightp635 content attributes of this canvasp634 element.

3. Set the placeholder canvas elementp690 of offscreenCanvas to be a weak reference to this canvasp634 element.

4. Set this canvasp634 element's context modep636 to placeholderp636.

5. Return offscreenCanvas.

typedef (HTMLImageElement or
SVGImageElement) HTMLOrSVGImageElement;

typedef (HTMLOrSVGImageElement or
HTMLVideoElement or
HTMLCanvasElement or
ImageBitmap or
OffscreenCanvas) CanvasImageSource;

enum CanvasFillRule { "nonzero", "evenodd" };

dictionary CanvasRenderingContext2DSettings {
boolean alpha = true;
boolean desynchronized = false;

};

enum ImageSmoothingQuality { "low", "medium", "high" };

[Exposed=Window]
interface CanvasRenderingContext2D {

// back-reference to the canvas
readonly attribute HTMLCanvasElement canvas;

4.12.5.1 The 2D rendering context §p63

8

IDL

✔ MDN

MDN

✔ MDN

MDN

638

https://tools.ietf.org/html/rfc2397#section-2
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#invoke-a-callback-function
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://svgwg.org/svg2-draft/embedded.html#InterfaceSVGImageElement

CanvasRenderingContext2DSettings getContextAttributes();
};
CanvasRenderingContext2D includes CanvasState;
CanvasRenderingContext2D includes CanvasTransform;
CanvasRenderingContext2D includes CanvasCompositing;
CanvasRenderingContext2D includes CanvasImageSmoothing;
CanvasRenderingContext2D includes CanvasFillStrokeStyles;
CanvasRenderingContext2D includes CanvasShadowStyles;
CanvasRenderingContext2D includes CanvasFilters;
CanvasRenderingContext2D includes CanvasRect;
CanvasRenderingContext2D includes CanvasDrawPath;
CanvasRenderingContext2D includes CanvasUserInterface;
CanvasRenderingContext2D includes CanvasText;
CanvasRenderingContext2D includes CanvasDrawImage;
CanvasRenderingContext2D includes CanvasImageData;
CanvasRenderingContext2D includes CanvasPathDrawingStyles;
CanvasRenderingContext2D includes CanvasTextDrawingStyles;
CanvasRenderingContext2D includes CanvasPath;

interface mixin CanvasState {
// state
undefined save(); // push state on state stack
undefined restore(); // pop state stack and restore state

};

interface mixin CanvasTransform {
// transformations (default transform is the identity matrix)
undefined scale(unrestricted double x, unrestricted double y);
undefined rotate(unrestricted double angle);
undefined translate(unrestricted double x, unrestricted double y);
undefined transform(unrestricted double a, unrestricted double b, unrestricted double c, unrestricted

double d, unrestricted double e, unrestricted double f);

[NewObject] DOMMatrix getTransform();
undefined setTransform(unrestricted double a, unrestricted double b, unrestricted double c,

unrestricted double d, unrestricted double e, unrestricted double f);
undefined setTransform(optional DOMMatrix2DInit transform = {});
undefined resetTransform();

};

interface mixin CanvasCompositing {
// compositing
attribute unrestricted double globalAlpha; // (default 1.0)
attribute DOMString globalCompositeOperation; // (default source-over)

};

interface mixin CanvasImageSmoothing {
// image smoothing
attribute boolean imageSmoothingEnabled; // (default true)
attribute ImageSmoothingQuality imageSmoothingQuality; // (default low)

};

interface mixin CanvasFillStrokeStyles {
// colors and styles (see also the CanvasPathDrawingStyles and CanvasTextDrawingStyles interfaces)
attribute (DOMString or CanvasGradient or CanvasPattern) strokeStyle; // (default black)
attribute (DOMString or CanvasGradient or CanvasPattern) fillStyle; // (default black)
CanvasGradient createLinearGradient(double x0, double y0, double x1, double y1);
CanvasGradient createRadialGradient(double x0, double y0, double r0, double x1, double y1, double r1);

639

https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit

CanvasPattern? createPattern(CanvasImageSource image, [LegacyNullToEmptyString] DOMString repetition);

};

interface mixin CanvasShadowStyles {
// shadows
attribute unrestricted double shadowOffsetX; // (default 0)
attribute unrestricted double shadowOffsetY; // (default 0)
attribute unrestricted double shadowBlur; // (default 0)
attribute DOMString shadowColor; // (default transparent black)

};

interface mixin CanvasFilters {
// filters
attribute DOMString filter; // (default "none")

};

interface mixin CanvasRect {
// rects
undefined clearRect(unrestricted double x, unrestricted double y, unrestricted double w, unrestricted

double h);
undefined fillRect(unrestricted double x, unrestricted double y, unrestricted double w, unrestricted

double h);
undefined strokeRect(unrestricted double x, unrestricted double y, unrestricted double w,

unrestricted double h);
};

interface mixin CanvasDrawPath {
// path API (see also CanvasPath)
undefined beginPath();
undefined fill(optional CanvasFillRule fillRule = "nonzero");
undefined fill(Path2D path, optional CanvasFillRule fillRule = "nonzero");
undefined stroke();
undefined stroke(Path2D path);
undefined clip(optional CanvasFillRule fillRule = "nonzero");
undefined clip(Path2D path, optional CanvasFillRule fillRule = "nonzero");
boolean isPointInPath(unrestricted double x, unrestricted double y, optional CanvasFillRule fillRule

= "nonzero");
boolean isPointInPath(Path2D path, unrestricted double x, unrestricted double y, optional

CanvasFillRule fillRule = "nonzero");
boolean isPointInStroke(unrestricted double x, unrestricted double y);
boolean isPointInStroke(Path2D path, unrestricted double x, unrestricted double y);

};

interface mixin CanvasUserInterface {
undefined drawFocusIfNeeded(Element element);
undefined drawFocusIfNeeded(Path2D path, Element element);
undefined scrollPathIntoView();
undefined scrollPathIntoView(Path2D path);

};

interface mixin CanvasText {
// text (see also the CanvasPathDrawingStyles and CanvasTextDrawingStyles interfaces)
undefined fillText(DOMString text, unrestricted double x, unrestricted double y, optional

unrestricted double maxWidth);
undefined strokeText(DOMString text, unrestricted double x, unrestricted double y, optional

unrestricted double maxWidth);
TextMetrics measureText(DOMString text);

};

interface mixin CanvasDrawImage {

640

https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://drafts.csswg.org/css-color/#transparent-black
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element

// drawing images
undefined drawImage(CanvasImageSource image, unrestricted double dx, unrestricted double dy);
undefined drawImage(CanvasImageSource image, unrestricted double dx, unrestricted double dy,

unrestricted double dw, unrestricted double dh);
undefined drawImage(CanvasImageSource image, unrestricted double sx, unrestricted double sy,

unrestricted double sw, unrestricted double sh, unrestricted double dx, unrestricted double dy,
unrestricted double dw, unrestricted double dh);
};

interface mixin CanvasImageData {
// pixel manipulation
ImageData createImageData(long sw, long sh);
ImageData createImageData(ImageData imagedata);
ImageData getImageData(long sx, long sy, long sw, long sh);
undefined putImageData(ImageData imagedata, long dx, long dy);
undefined putImageData(ImageData imagedata, long dx, long dy, long dirtyX, long dirtyY, long

dirtyWidth, long dirtyHeight);
};

enum CanvasLineCap { "butt", "round", "square" };
enum CanvasLineJoin { "round", "bevel", "miter" };
enum CanvasTextAlign { "start", "end", "left", "right", "center" };
enum CanvasTextBaseline { "top", "hanging", "middle", "alphabetic", "ideographic", "bottom" };
enum CanvasDirection { "ltr", "rtl", "inherit" };

interface mixin CanvasPathDrawingStyles {
// line caps/joins
attribute unrestricted double lineWidth; // (default 1)
attribute CanvasLineCap lineCap; // (default "butt")
attribute CanvasLineJoin lineJoin; // (default "miter")
attribute unrestricted double miterLimit; // (default 10)

// dashed lines
undefined setLineDash(sequence<unrestricted double> segments); // default empty
sequence<unrestricted double> getLineDash();
attribute unrestricted double lineDashOffset;

};

interface mixin CanvasTextDrawingStyles {
// text
attribute DOMString font; // (default 10px sans-serif)
attribute CanvasTextAlign textAlign; // (default: "start")
attribute CanvasTextBaseline textBaseline; // (default: "alphabetic")
attribute CanvasDirection direction; // (default: "inherit")

};

interface mixin CanvasPath {
// shared path API methods
undefined closePath();
undefined moveTo(unrestricted double x, unrestricted double y);
undefined lineTo(unrestricted double x, unrestricted double y);
undefined quadraticCurveTo(unrestricted double cpx, unrestricted double cpy, unrestricted double x,

unrestricted double y);
undefined bezierCurveTo(unrestricted double cp1x, unrestricted double cp1y, unrestricted double cp2x,

unrestricted double cp2y, unrestricted double x, unrestricted double y);
undefined arcTo(unrestricted double x1, unrestricted double y1, unrestricted double x2, unrestricted

double y2, unrestricted double radius);
undefined rect(unrestricted double x, unrestricted double y, unrestricted double w, unrestricted

double h);
undefined arc(unrestricted double x, unrestricted double y, unrestricted double radius, unrestricted

double startAngle, unrestricted double endAngle, optional boolean anticlockwise = false);

641

undefined ellipse(unrestricted double x, unrestricted double y, unrestricted double radiusX,
unrestricted double radiusY, unrestricted double rotation, unrestricted double startAngle, unrestricted
double endAngle, optional boolean anticlockwise = false);
};

[Exposed=(Window,Worker)]
interface CanvasGradient {

// opaque object
undefined addColorStop(double offset, DOMString color);

};

[Exposed=(Window,Worker)]
interface CanvasPattern {

// opaque object
undefined setTransform(optional DOMMatrix2DInit transform = {});

};

[Exposed=(Window,Worker)]
interface TextMetrics {

// x-direction
readonly attribute double width; // advance width
readonly attribute double actualBoundingBoxLeft;
readonly attribute double actualBoundingBoxRight;

// y-direction
readonly attribute double fontBoundingBoxAscent;
readonly attribute double fontBoundingBoxDescent;
readonly attribute double actualBoundingBoxAscent;
readonly attribute double actualBoundingBoxDescent;
readonly attribute double emHeightAscent;
readonly attribute double emHeightDescent;
readonly attribute double hangingBaseline;
readonly attribute double alphabeticBaseline;
readonly attribute double ideographicBaseline;

};

[Exposed=(Window,Worker),
Serializable]

interface ImageData {
constructor(unsigned long sw, unsigned long sh);
constructor(Uint8ClampedArray data, unsigned long sw, optional unsigned long sh);

readonly attribute unsigned long width;
readonly attribute unsigned long height;
readonly attribute Uint8ClampedArray data;

};

[Exposed=(Window,Worker)]
interface Path2D {

constructor(optional (Path2D or DOMString) path);

undefined addPath(Path2D path, optional DOMMatrix2DInit transform = {});
};
Path2D includes CanvasPath;

To maintain compatibility with existing web content, user agents need to enumerate methods defined in CanvasUserInterfacep640

immediately after the stroke()p670 method on CanvasRenderingContext2Dp638 objects.

Note

For web developers (non-normative)

642

https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit
https://heycam.github.io/webidl/#idl-Uint8ClampedArray
https://heycam.github.io/webidl/#idl-Uint8ClampedArray
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit

A CanvasRenderingContext2Dp638 object has an output bitmap that is initialized when the object is created.

The output bitmapp643 has an origin-cleanp635 flag, which can be set to true or false. Initially, when one of these bitmaps is created, its
origin-cleanp635 flag must be set to true.

The CanvasRenderingContext2Dp638 object also has an alpha boolean. When a CanvasRenderingContext2Dp638 object's alphap643 is
false, then its alpha channel must be fixed to 1.0 (fully opaque) for all pixels, and attempts to change the alpha component of any pixel
must be silently ignored.

The CanvasRenderingContext2Dp638 object also has a desynchronized boolean. When a CanvasRenderingContext2Dp638 object's
desynchronizedp643 is true, then the user agent may optimize the rendering of the canvas to reduce the latency, as measured from
input events to rasterization, by desynchronizing the canvas paint cycle from the event loop, bypassing the ordinary user agent
rendering algorithm, or both. Insofar as this mode involves bypassing the usual paint mechanisms, rasterization, or both, it might
introduce visible tearing artifacts.

The getContextAttributes() method, when invoked, must return a CanvasRenderingContext2DSettingsp638 dictionary containing
the following members:

• alphap643, set to this context's alphap643.

• desynchronizedp643, set to this context's desynchronizedp643.

The CanvasRenderingContext2Dp638 2D rendering context represents a flat linear Cartesian surface whose origin (0,0) is at the top left
corner, with the coordinate space having x values increasing when going right, and y values increasing when going down. The
x-coordinate of the right-most edge is equal to the width of the rendering context's output bitmapp643 in CSS pixels; similarly, the

context = canvas . getContextp636('2d' [, { [alphap644: true] [, desynchronizedp644: false] }])
Returns a CanvasRenderingContext2Dp638 object that is permanently bound to a particular canvasp634 element.
If the alphap644 member is false, then the context is forced to always be opaque.
If the desynchronizedp644 member is true, then the context might be desynchronizedp643.

context . canvasp644

Returns the canvasp634 element.

attributes = canvas . getContextAttributesp643()
Returns an object whose:

• alphap643 member is true if the context has an alpha channel, or false if it was forced to be opaque.

• desynchronizedp644 member is true if the context can be desynchronizedp643.

Thus, the bitmap of such a context starts off as opaque black instead of transparent black; clearRect()p666 always results in
opaque black pixels, every fourth byte from getImageData()p676 is always 255, the putImageData()p677 method effectively ignores
every fourth byte in its input, and so on. However, the alpha component of styles and images drawn onto the canvas are still
honoured up to the point where they would impact the output bitmapp643 's alpha channel; for instance, drawing a 50% transparent
white square on a freshly created output bitmapp643 with its alphap643 set to false will result in a fully-opaque gray square.

Note

The user agent usually renders on a buffer which is not being displayed, quickly swapping it and the one being scanned out for
presentation; the former buffer is called back buffer and the latter front buffer. A popular technique for reducing latency is called
front buffer rendering, also known as single buffer rendering, where rendering happens in parallel and racily with the scanning out
process. This technique reduces the latency at the price of potentially introducing tearing artifacts and can be used to implement
in total or part of the desynchronizedp643 boolean. [MULTIPLEBUFFERING]p1289

Note

The desynchronizedp643 boolean can be useful when implementing certain kinds of applications, such as drawing applications,
where the latency between input and rasterization is critical.

Note

643

https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-values/#px

y-coordinate of the bottom-most edge is equal to the height of the rendering context's output bitmapp643 in CSS pixels.

The size of the coordinate space does not necessarily represent the size of the actual bitmaps that the user agent will use internally or
during rendering. On high-definition displays, for instance, the user agent may internally use bitmaps with four device pixels per unit in
the coordinate space, so that the rendering remains at high quality throughout. Anti-aliasing can similarly be implemented using
oversampling with bitmaps of a higher resolution than the final image on the display.

The 2D context creation algorithm, which is passed a target (a canvasp634 element) and options, consists of running these steps:

1. Let settings be the result of converting options to the dictionary type CanvasRenderingContext2DSettingsp638. (This can
throw an exception.).

2. Let context be a new CanvasRenderingContext2Dp638 object.

3. Initialize context's canvasp644 attribute to point to target.

4. Set context's output bitmapp643 to the same bitmap as target's bitmap (so that they are shared).

5. Set bitmap dimensionsp644 to the numeric valuesp635 of target's widthp635 and heightp635 content attributes.

6. Set context's alphap643 to settings's alpha.

7. Set context's desynchronizedp643 to settings's desynchronized.

8. Return context.

When the user agent is to set bitmap dimensions to width and height, it must run these steps:

1. Reset the rendering context to its default statep646.

2. Resize the output bitmapp643 to the new width and height and clear it to transparent black.

3. Let canvas be the canvasp634 element to which the rendering context's canvasp644 attribute was initialized.

4. If the numeric valuep635 of canvas's widthp635 content attribute differs from width, then set canvas's widthp635 content
attribute to the shortest possible string representing width as a valid non-negative integerp69.

5. If the numeric valuep635 of canvas's heightp635 content attribute differs from height, then set canvas's heightp635 content
attribute to the shortest possible string representing height as a valid non-negative integerp69.

The canvas attribute must return the value it was initialized to when the object was created.

Using CSS pixels to describe the size of a rendering context's output bitmapp643 does not mean that when rendered the canvas will
cover an equivalent area in CSS pixels. CSS pixels are reused for ease of integration with CSS features, such as text layout.

In other words, the canvasp634 element below's rendering context has a 200x200 output bitmapp643 (which internally uses CSS
pixels as a unit for ease of integration with CSS) and is rendered as 100x100 CSS pixels:

<canvas width=200 height=200 style=width:100px;height:100px>

Example

Only one square appears to be drawn in the following example:

// canvas is a reference to a <canvas> element
var context = canvas.getContext('2d');
context.fillRect(0,0,50,50);
canvas.setAttribute('width', '300'); // clears the canvas
context.fillRect(0,100,50,50);
canvas.width = canvas.width; // clears the canvas
context.fillRect(100,0,50,50); // only this square remains

Example

✔ MDN
644

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://heycam.github.io/webidl/#es-type-mapping
https://drafts.csswg.org/css-color/#transparent-black

The CanvasFillRulep638 enumeration is used to select the fill rule algorithm by which to determine if a point is inside or outside a
path.

The value "nonzero" value indicates the nonzero winding rule, wherein a point is considered to be outside a shape if the number of
times a half-infinite straight line drawn from that point crosses the shape's path going in one direction is equal to the number of times
it crosses the path going in the other direction.

The "evenodd" value indicates the even-odd rule, wherein a point is considered to be outside a shape if the number of times a half-
infinite straight line drawn from that point crosses the shape's path is even.

If a point is not outside a shape, it is inside the shape.

The ImageSmoothingQualityp638 enumeration is used to express a preference for the interpolation quality to use when smoothing
images.

The "low" value indicates a preference for a low level of image interpolation quality. Low-quality image interpolation may be more
computationally efficient than higher settings.

The "medium" value indicates a preference for a medium level of image interpolation quality.

The "high" value indicates a preference for a high level of image interpolation quality. High-quality image interpolation may be more
computationally expensive than lower settings.

This section is non-normative.

The output bitmapp643, when it is not directly displayed by the user agent, implementations can, instead of updating this bitmap,
merely remember the sequence of drawing operations that have been applied to it until such time as the bitmap's actual data is
needed (for example because of a call to drawImage()p673, or the createImageBitmap()p992 factory method). In many cases, this will
be more memory efficient.

The bitmap of a canvasp634 element is the one bitmap that's pretty much always going to be needed in practice. The output bitmapp643

of a rendering context, when it has one, is always just an alias to a canvasp634 element's bitmap.

Additional bitmaps are sometimes needed, e.g. to enable fast drawing when the canvas is being painted at a different size than its
intrinsic size, or to enable double buffering so that graphics updates, like page scrolling for example, can be processed concurrently
while canvas draw commands are being executed.

Objects that implement the CanvasStatep639 interface maintain a stack of drawing states. Drawing states consist of:

• The current transformation matrixp659.
• The current clipping regionp670.
• The current values of the following attributes: strokeStylep663, fillStylep663, globalAlphap679, lineWidthp647, lineCapp647,

lineJoinp647, miterLimitp647, lineDashOffsetp647, shadowOffsetXp680, shadowOffsetYp680, shadowBlurp680, shadowColorp680,
filterp681, globalCompositeOperationp679, fontp651, textAlignp652, textBaselinep652, directionp652,
imageSmoothingEnabledp680, imageSmoothingQualityp680.

• The current dash listp647.

Bilinear scaling is an example of a relatively fast, lower-quality image-smoothing algorithm. Bicubic or Lanczos scaling are
examples of image-smoothing algorithms that produce higher-quality output. This specification does not mandate that specific
interpolation algorithms be used.

Note

4.12.5.1.1 Implementation notes §p64

5

4.12.5.1.2 The canvas state §p64

5

The current default pathp669 and the rendering context's bitmaps are not part of the drawing state. The current default pathp669 is
persistent, and can only be reset using the beginPath()p670 method. The bitmaps depend on whether and how the rendering

Note

645

https://drafts.csswg.org/css-images/#intrinsic-dimensions

The save() method, when invoked, must push a copy of the current drawing state onto the drawing state stack.

The restore() method, when invoked, must pop the top entry in the drawing state stack, and reset the drawing state it describes. If
there is no saved state, then the method must do nothing.

When the user agent is to reset the rendering context to its default state, it must clear the drawing state stack and everything
that drawing statep645 consists of to initial values.

context is bound to a canvasp634 element.

context . savep646()
Pushes the current state onto the stack.

context . restorep646()
Pops the top state on the stack, restoring the context to that state.

For web developers (non-normative)

4.12.5.1.3 Line styles §p64

6

context . lineWidthp647 [= value]
styles . lineWidthp647 [= value]

Returns the current line width.
Can be set, to change the line width. Values that are not finite values greater than zero are ignored.

context . lineCapp647 [= value]
styles . lineCapp647 [= value]

Returns the current line cap style.
Can be set, to change the line cap style.
The possible line cap styles are "butt", "round", and "square". Other values are ignored.

context . lineJoinp647 [= value]
styles . lineJoinp647 [= value]

Returns the current line join style.
Can be set, to change the line join style.
The possible line join styles are "bevel", "round", and "miter". Other values are ignored.

context . miterLimitp647 [= value]
styles . miterLimitp647 [= value]

Returns the current miter limit ratio.
Can be set, to change the miter limit ratio. Values that are not finite values greater than zero are ignored.

context . setLineDashp647(segments)
styles . setLineDashp647(segments)

Sets the current line dash pattern (as used when stroking). The argument is a list of distances for which to alternately have the
line on and the line off.

segments = context . getLineDashp647()
segments = styles . getLineDashp647()

Returns a copy of the current line dash pattern. The array returned will always have an even number of entries (i.e. the pattern
is normalized).

context . lineDashOffsetp647

styles . lineDashOffsetp647

Returns the phase offset (in the same units as the line dash pattern).
Can be set, to change the phase offset. Values that are not finite values are ignored.

For web developers (non-normative)

✔ MDN
✔ MDN

646

Objects that implement the CanvasPathDrawingStylesp641 interface have attributes and methods (defined in this section) that control
how lines are treated by the object.

The lineWidth attribute gives the width of lines, in coordinate space units. On getting, it must return the current value. On setting,
zero, negative, infinite, and NaN values must be ignored, leaving the value unchanged; other values must change the current value to
the new value.

When the object implementing the CanvasPathDrawingStylesp641 interface is created, the lineWidthp647 attribute must initially have
the value 1.0.

The lineCap attribute defines the type of endings that UAs will place on the end of lines. The three valid values are "butt", "round",
and "square".

On getting, it must return the current value. On setting, the current value must be changed to the new value.

When the object implementing the CanvasPathDrawingStylesp641 interface is created, the lineCapp647 attribute must initially have the
value "butt".

The lineJoin attribute defines the type of corners that UAs will place where two lines meet. The three valid values are "bevel",
"round", and "miter".

On getting, it must return the current value. On setting, the current value must be changed to the new value.

When the object implementing the CanvasPathDrawingStylesp641 interface is created, the lineJoinp647 attribute must initially have
the value "miter".

When the lineJoinp647 attribute has the value "miter", strokes use the miter limit ratio to decide how to render joins. The miter limit
ratio can be explicitly set using the miterLimit attribute. On getting, it must return the current value. On setting, zero, negative,
infinite, and NaN values must be ignored, leaving the value unchanged; other values must change the current value to the new value.

When the object implementing the CanvasPathDrawingStylesp641 interface is created, the miterLimitp647 attribute must initially have
the value 10.0.

Each CanvasPathDrawingStylesp641 object has a dash list, which is either empty or consists of an even number of non-negative
numbers. Initially, the dash listp647 must be empty.

The setLineDash() method, when invoked, must run these steps:

1. Let a be the argument.

2. If any value in a is not finite (e.g. an Infinity or a NaN value), or if any value is negative (less than zero), then return (without
throwing an exception; user agents could show a message on a developer console, though, as that would be helpful for
debugging).

3. If the number of elements in a is odd, then let a be the concatenation of two copies of a.

4. Let the object's dash listp647 be a.

When the getLineDash() method is invoked, it must return a sequence whose values are the values of the object's dash listp647, in the
same order.

It is sometimes useful to change the "phase" of the dash pattern, e.g. to achieve a "marching ants" effect. The phase can be set using
the lineDashOffset attribute. On getting, it must return the current value. On setting, infinite and NaN values must be ignored,
leaving the value unchanged; other values must change the current value to the new value.

When the object implementing the CanvasPathDrawingStylesp641 interface is created, the lineDashOffsetp647 attribute must initially
have the value 0.0.

When a user agent is to trace a path, given an object style that implements the CanvasPathDrawingStylesp641 interface, it must run
the following algorithm. This algorithm returns a new pathp654.

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN✔ MDN

647

1. Let path be a copy of the path being traced.

2. Prune all zero-length line segmentsp654 from path.

3. Remove from path any subpaths containing no lines (i.e. subpaths with just one point).

4. Replace each point in each subpath of path other than the first point and the last point of each subpath by a join that joins
the line leading to that point to the line leading out of that point, such that the subpaths all consist of two points (a starting
point with a line leading out of it, and an ending point with a line leading into it), one or more lines (connecting the points
and the joins), and zero or more joins (each connecting one line to another), connected together such that each subpath is a
series of one or more lines with a join between each one and a point on each end.

5. Add a straight closing line to each closed subpath in path connecting the last point and the first point of that subpath;
change the last point to a join (from the previously last line to the newly added closing line), and change the first point to a
join (from the newly added closing line to the first line).

6. If style's dash listp647 is empty, then jump to the step labeled convert.

7. Let pattern width be the concatenation of all the entries of style's dash listp647, in coordinate space units.

8. For each subpath subpath in path, run the following substeps. These substeps mutate the subpaths in path in vivo.

1. Let subpath width be the length of all the lines of subpath, in coordinate space units.

2. Let offset be the value of style's lineDashOffsetp647, in coordinate space units.

3. While offset is greater than pattern width, decrement it by pattern width.

While offset is less than zero, increment it by pattern width.

4. Define L to be a linear coordinate line defined along all lines in subpath, such that the start of the first line in the
subpath is defined as coordinate 0, and the end of the last line in the subpath is defined as coordinate subpath
width.

5. Let position be zero minus offset.

6. Let index be 0.

7. Let current state be off (the other states being on and zero-on).

8. Dash on: Let segment length be the value of style's dash listp647 's indexth entry.

9. Increment position by segment length.

10. If position is greater than subpath width, then end these substeps for this subpath and start them again for the
next subpath; if there are no more subpaths, then jump to the step labeled convert instead.

11. If segment length is nonzero, then let current state be on.

12. Increment index by one.

13. Dash off: Let segment length be the value of style's dash listp647 's indexth entry.

14. Let start be the offset position on L.

15. Increment position by segment length.

16. If position is less than zero, then jump to the step labeled post-cut.

17. If start is less than zero, then let start be zero.

18. If position is greater than subpath width, then let end be the offset subpath width on L. Otherwise, let end be the
offset position on L.

19. Jump to the first appropriate step:

↪ If segment length is zero and current state is off
Do nothing, just continue to the next step.

↪ If current state is off
Cut the line on which end finds itself short at end and place a point there, cutting in two the subpath that it

648

was in; remove all line segments, joins, points, and subpaths that are between start and end; and finally
place a single point at start with no lines connecting to it.

The point has a directionality for the purposes of drawing line caps (see below). The directionality is the
direction that the original line had at that point (i.e. when L was defined above).

↪ Otherwise
Cut the line on which start finds itself into two at start and place a point there, cutting in two the subpath
that it was in, and similarly cut the line on which end finds itself short at end and place a point there, cutting
in two the subpath that it was in, and then remove all line segments, joins, points, and subpaths that are
between start and end.

If start and end are the same point, then this results in just the line being cut in two and two points being
inserted there, with nothing being removed, unless a join also happens to be at that point, in which case the
join must be removed.

20. Post-cut: If position is greater than subpath width, then jump to the step labeled convert.

21. If segment length is greater than zero, then let positioned-at-on-dash be false.

22. Increment index by one. If it is equal to the number of entries in style's dash listp647, then let index be 0.

23. Return to the step labeled dash on.

9. Convert: This is the step that converts the path to a new path that represents its stroke.

Create a new pathp654 that describes the edge of the areas that would be covered if a straight line of length equal to style's
lineWidthp647 was swept along each subpath in path while being kept at an angle such that the line is orthogonal to the path
being swept, replacing each point with the end cap necessary to satisfy style's lineCapp647 attribute as described previously
and elaborated below, and replacing each join with the join necessary to satisfy style's lineJoinp647 type, as defined below.

Caps: Each point has a flat edge perpendicular to the direction of the line coming out of it. This is then augmented according
to the value of style's lineCapp647. The "butt" value means that no additional line cap is added. The "round" value means
that a semi-circle with the diameter equal to style's lineWidthp647 width must additionally be placed on to the line coming
out of each point. The "square" value means that a rectangle with the length of style's lineWidthp647 width and the width of
half style's lineWidthp647 width, placed flat against the edge perpendicular to the direction of the line coming out of the
point, must be added at each point.

Points with no lines coming out of them must have two caps placed back-to-back as if it was really two points connected to
each other by an infinitesimally short straight line in the direction of the point's directionality (as defined above).

Joins: In addition to the point where a join occurs, two additional points are relevant to each join, one for each line: the two
corners found half the line width away from the join point, one perpendicular to each line, each on the side furthest from the
other line.

A triangle connecting these two opposite corners with a straight line, with the third point of the triangle being the join point,
must be added at all joins. The lineJoinp647 attribute controls whether anything else is rendered. The three aforementioned
values have the following meanings:

The "bevel" value means that this is all that is rendered at joins.

The "round" value means that an arc connecting the two aforementioned corners of the join, abutting (and not overlapping)
the aforementioned triangle, with the diameter equal to the line width and the origin at the point of the join, must be added
at joins.

The "miter" value means that a second triangle must (if it can given the miter length) be added at the join, with one line
being the line between the two aforementioned corners, abutting the first triangle, and the other two being continuations of
the outside edges of the two joining lines, as long as required to intersect without going over the miter length.

The miter length is the distance from the point where the join occurs to the intersection of the line edges on the outside of
the join. The miter limit ratio is the maximum allowed ratio of the miter length to half the line width. If the miter length would
cause the miter limit ratio (as set by style's miterLimitp647 attribute) to be exceeded, then this second triangle must not be
added.

The subpaths in the newly created path must be oriented such that for any point, the number of times a half-infinite straight
line drawn from that point crosses a subpath is even if and only if the number of times a half-infinite straight line drawn from
that same point crosses a subpath going in one direction is equal to the number of times it crosses a subpath going in the

649

other direction.

10. Return the newly created path.

Objects that implement the CanvasTextDrawingStylesp641 interface have attributes (defined in this section) that control how text is
laid out (rasterized or outlined) by the object. Such objects can also have a font style source object. For
CanvasRenderingContext2Dp638 objects, this is the canvasp634 element given by the value of the context's canvasp644 attribute. For
OffscreenCanvasRenderingContext2Dp693 objects, this is the associated OffscreenCanvas objectp693.

Font resolution for the font style source objectp650 requires a font source. This is determined for a given object implementing
CanvasTextDrawingStylesp641 by the following steps: [CSSFONTLOAD]p1286

1. If object's font style source objectp650 is a canvasp634 element, return the element's node document.

2. Otherwise, object's font style source objectp650 is an OffscreenCanvasp689 object:

1. Let global be object's relevant global objectp924.

2. If global is a Windowp824 object, then return global's associated Documentp826.

3. Assert: global implements WorkerGlobalScopep1044.

4. Return global.

4.12.5.1.4 Text styles §p65

0

context . fontp651 [= value]
styles . fontp651 [= value]

Returns the current font settings.
Can be set, to change the font. The syntax is the same as for the CSS 'font' property; values that cannot be parsed as CSS font
values are ignored.
Relative keywords and lengths are computed relative to the font of the canvasp634 element.

context . textAlignp652 [= value]
styles . textAlignp652 [= value]

Returns the current text alignment settings.
Can be set, to change the alignment. The possible values are and their meanings are given below. Other values are ignored. The
default is "start".

context . textBaselinep652 [= value]
styles . textBaselinep652 [= value]

Returns the current baseline alignment settings.
Can be set, to change the baseline alignment. The possible values and their meanings are given below. Other values are
ignored. The default is "alphabeticp653".

context . directionp652 [= value]
styles . directionp652 [= value]

Returns the current directionality.
Can be set, to change the directionality. The possible values and their meanings are given below. Other values are ignored. The
default is "inheritp653".

For web developers (non-normative)

This is an example of font resolution with a regular canvasp634 element with ID c1.

const font = new FontFace("MyCanvasFont", "url(mycanvasfont.ttf)");
documents.fonts.add(font);

Example

650

https://drafts.csswg.org/css-fonts/#font-prop
https://drafts.csswg.org/css-font-loading/#font-source
https://dom.spec.whatwg.org/#concept-node-document

The font IDL attribute, on setting, must be parsed as a CSS <'font'> value (but without supporting property-independent style sheet
syntax like 'inherit'), and the resulting font must be assigned to the context, with the 'line-height' component forced to 'normal', with
the 'font-size' component converted to CSS pixels, and with system fonts being computed to explicit values. If the new value is
syntactically incorrect (including using property-independent style sheet syntax like 'inherit' or 'initial'), then it must be ignored,
without assigning a new font value. [CSS]p1285

Font family names must be interpreted in the context of the font style source objectp650 when the font is to be used; any fonts
embedded using @font-face or loaded using FontFacep62 objects that are visible to the font style source objectp650 must therefore be
available once they are loaded. (Each font style source objectp650 has a font source, which determines what fonts are available.) If a
font is used before it is fully loaded, or if the font style source objectp650 does not have that font in scope at the time the font is to be
used, then it must be treated as if it was an unknown font, falling back to another as described by the relevant CSS specifications.
[CSSFONTS]p1286 [CSSFONTLOAD]p1286

On getting, the fontp651 attribute must return the serialized form of the current font of the context (with no 'line-height' component).
[CSSOM]p1286

When the object implementing the CanvasTextDrawingStylesp641 interface is created, the font of the context must be set to 10px
sans-serif. When the 'font-size' component is set to lengths using percentages, 'em' or 'ex' units, or the 'larger' or 'smaller' keywords,
these must be interpreted relative to the computed value of the 'font-size' property of the font style source objectp650 at the time that

const context = document.getElementById("c1").getContext("2d");
document.fonts.ready.then(function() {

context.font = "64px MyCanvasFont";
context.fillText("hello", 0, 0);

});

In this example, the canvas will display text using mycanvasfont.ttf as its font.

This is an example of how font resolution can happen using OffscreenCanvasp689. Assuming a canvasp634 element with ID c2 which
is transferred to a worker like so:

const offscreenCanvas = document.getElementById("c2").transferControlToOffscreen();
worker.postMesage(offscreenCanvas, [offscreenCanvas]);

Then, in the worker:

self.onmessage = function(ev) {
const transferredCanvas = ev.data;
const context = transferredCanvas.getContext("2d");
const font = new FontFace("MyFont", "url(myfont.ttf)");
self.fonts.add(font);
self.fonts.ready.then(function() {

context.font = "64px MyFont";
context.fillText("hello", 0, 0);

});
};

In this example, the canvas will display a text using myfont.ttf. Notice that the font is only loaded inside the worker, and not in
the document context.

Example

For example, after the following statement:

context.font = 'italic 400 12px/2 Unknown Font, sans-serif';

...the expression context.font would evaluate to the string "italic 12px "Unknown Font", sans-serif". The "400" font-weight
doesn't appear because that is the default value. The line-height doesn't appear because it is forced to "normal", the default value.

Example

✔ MDN

651

https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.csswg.org/css2/#propdef-line-height
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-font-loading/#font-source
https://drafts.csswg.org/cssom/#serialize-a-css-value
https://drafts.csswg.org/css2/#propdef-line-height
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-values/#em
https://drafts.csswg.org/css-values/#ex
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-fonts/#font-size-prop

the attribute is set, if it is an element. When the 'font-weight' component is set to the relative values 'bolder' and 'lighter', these must
be interpreted relative to the computed value of the 'font-weight' property of the font style source objectp650 at the time that the
attribute is set, if it is an element. If the computed values are undefined for a particular case (e.g. because the font style source
objectp650 is not an element or is not being renderedp1192), then the relative keywords must be interpreted relative to the normal-weight
10px sans-serif default.

The textAlign IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new
value. When the object implementing the CanvasTextDrawingStylesp641 interface is created, the textAlignp652 attribute must initially
have the value startp652.

The textBaseline IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new
value. When the object implementing the CanvasTextDrawingStylesp641 interface is created, the textBaselinep652 attribute must
initially have the value alphabeticp653.

The direction IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new
value. When the object implementing the CanvasTextDrawingStylesp641 interface is created, the directionp652 attribute must initially
have the value "inheritp653".

The textAlignp652 attribute's allowed keywords are as follows:

start
Align to the start edge of the text (left side in left-to-right text, right side in right-to-left text).

end
Align to the end edge of the text (right side in left-to-right text, left side in right-to-left text).

left
Align to the left.

right
Align to the right.

center
Align to the center.

The textBaselinep652 attribute's allowed keywords correspond to alignment points in the font:

The keywords map to these alignment points as follows:

top
The top of the em square

✔ MDN

✔ MDN

MDN

652

https://drafts.csswg.org/css-fonts/#font-weight-prop
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-fonts/#font-weight-prop
https://drafts.csswg.org/css-cascade/#computed-value

hanging
The hanging baseline

middle
The middle of the em square

alphabetic
The alphabetic baseline

ideographic
The ideographic-under baseline

bottom
The bottom of the em square

The directionp652 attribute's allowed keywords are as follows:

ltr
Treat input to the text preparation algorithmp653 as left-to-right text.

rtl
Treat input to the text preparation algorithmp653 as right-to-left text.

inherit
Default to the directionality of the canvasp634 element or Documentp114 as appropriate.

The text preparation algorithm is as follows. It takes as input a string text , a CanvasTextDrawingStylesp641 object target, and an
optional length maxWidth. It returns an array of glyph shapes, each positioned on a common coordinate space, a physical alignment
whose value is one of left, right, and center, and an inline box. (Most callers of this algorithm ignore the physical alignment and the
inline box.)

1. If maxWidth was provided but is less than or equal to zero or equal to NaN, then return an empty array.

2. Replace all ASCII whitespace in text with U+0020 SPACE characters.

3. Let font be the current font of target, as given by that object's fontp651 attribute.

4. Apply the appropriate step from the following list to determine the value of direction:

↪ If the target object's directionp652 attribute has the value "ltrp653"
Let direction be 'ltrp142 '.

↪ If the target object's directionp652 attribute has the value "rtlp653"
Let direction be 'rtlp142 '.

↪ If the target object's font style source objectp650 is an element
Let direction be the directionalityp142 of the target object's font style source objectp650.

↪ If the target object's font style source objectp650 is a Documentp114 with a non-null document element
Let direction be the directionalityp142 of the target object's font style source objectp650 's document element.

↪ Otherwise
Let direction be 'ltrp142 '.

5. Form a hypothetical infinitely-wide CSS line box containing a single inline box containing the text text, with all the properties
at their initial values except the 'font' property of the inline box set to font, the 'direction' property of the inline box set to
direction, and the 'white-space' property set to 'pre'. [CSS]p1285

6. If maxWidth was provided and the hypothetical width of the inline box in the hypothetical line box is greater than maxWidth
CSS pixels, then change font to have a more condensed font (if one is available or if a reasonably readable one can be
synthesized by applying a horizontal scale factor to the font) or a smaller font, and return to the previous step.

7. The anchor point is a point on the inline box, and the physical alignment is one of the values left, right, and center. These
variables are determined by the textAlignp652 and textBaselinep652 values as follows:

Horizontal position:

653

https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/css2/#line-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-fonts/#font-prop
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#line-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#inline-box

If textAlignp652 is leftp652

If textAlignp652 is startp652 and direction is 'ltr'
If textAlignp652 is endp652 and direction is 'rtl'

Let the anchor point's horizontal position be the left edge of the inline box, and let physical alignment be left.

If textAlignp652 is rightp652

If textAlignp652 is endp652 and direction is 'ltr'
If textAlignp652 is startp652 and direction is 'rtl'

Let the anchor point's horizontal position be the right edge of the inline box, and let physical alignment be right.

If textAlignp652 is centerp652

Let the anchor point's horizontal position be half way between the left and right edges of the inline box, and let physical
alignment be center.

Vertical position:

If textBaselinep652 is topp652

Let the anchor point's vertical position be the top of the em box of the first available font of the inline box.

If textBaselinep652 is hangingp653

Let the anchor point's vertical position be the hanging baseline of the first available font of the inline box.

If textBaselinep652 is middlep653

Let the anchor point's vertical position be half way between the bottom and the top of the em box of the first available
font of the inline box.

If textBaselinep652 is alphabeticp653

Let the anchor point's vertical position be the alphabetic baseline of the first available font of the inline box.

If textBaselinep652 is ideographicp653

Let the anchor point's vertical position be the ideographic-under baseline of the first available font of the inline box.

If textBaselinep652 is bottomp653

Let the anchor point's vertical position be the bottom of the em box of the first available font of the inline box.

8. Let result be an array constructed by iterating over each glyph in the inline box from left to right (if any), adding to the array,
for each glyph, the shape of the glyph as it is in the inline box, positioned on a coordinate space using CSS pixels with its
origin is at the anchor point.

9. Return result, physical alignment, and the inline box.

Objects that implement the CanvasPathp641 interface have a pathp654. A path has a list of zero or more subpaths. Each subpath
consists of a list of one or more points, connected by straight or curved line segments, and a flag indicating whether the subpath is
closed or not. A closed subpath is one where the last point of the subpath is connected to the first point of the subpath by a straight
line. Subpaths with only one point are ignored when painting the path.

Pathsp654 have a need new subpath flag. When this flag is set, certain APIs create a new subpath rather than extending the previous
one. When a pathp654 is created, its need new subpathp654 flag must be set.

When an object implementing the CanvasPathp641 interface is created, its pathp654 must be initialized to zero subpaths.

4.12.5.1.5 Building paths §p65

4

context . moveTop657(x, y)
path . moveTop657(x, y)

Creates a new subpath with the given point.

context . closePathp657()
path . closePathp657()

Marks the current subpath as closed, and starts a new subpath with a point the same as the start and end of the newly closed
subpath.

For web developers (non-normative)

654

https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px

context . lineTop657(x, y)
path . lineTop657(x, y)

Adds the given point to the current subpath, connected to the previous one by a straight line.

context . quadraticCurveTop657(cpx, cpy, x, y)
path . quadraticCurveTop657(cpx, cpy, x, y)

Adds the given point to the current subpath, connected to the previous one by a quadratic Bézier curve with the given control
point.

context . bezierCurveTop657(cp1x, cp1y, cp2x, cp2y, x, y)
path . bezierCurveTop657(cp1x, cp1y, cp2x, cp2y, x, y)

Adds the given point to the current subpath, connected to the previous one by a cubic Bézier curve with the given control
points.

context . arcTop657(x1, y1, x2, y2, radius)
path . arcTop657(x1, y1, x2, y2, radius)

Adds an arc with the given control points and radius to the current subpath, connected to the previous point by a straight line.
Throws an "IndexSizeError" DOMException if the given radius is negative.

655

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException

The following methods allow authors to manipulate the pathsp654 of objects implementing the CanvasPathp641 interface.

For objects implementing the CanvasDrawPathp640 and CanvasTransformp639 interfaces, the points passed to the methods, and the
resulting lines added to current default pathp669 by these methods, must be transformed according to the current transformation

context . arcp658(x, y, radius, startAngle, endAngle [, anticlockwise])
path . arcp658(x, y, radius, startAngle, endAngle [, anticlockwise])

Adds points to the subpath such that the arc described by the circumference of the circle described by the arguments, starting
at the given start angle and ending at the given end angle, going in the given direction (defaulting to clockwise), is added to the
path, connected to the previous point by a straight line.
Throws an "IndexSizeError" DOMException if the given radius is negative.

context . ellipsep658(x, y, radiusX, radiusY, rotation, startAngle, endAngle [, anticlockwise])
path . ellipsep658(x, y, radiusX, radiusY, rotation, startAngle, endAngle [, anticlockwise])

Adds points to the subpath such that the arc described by the circumference of the ellipse described by the arguments, starting
at the given start angle and ending at the given end angle, going in the given direction (defaulting to clockwise), is added to the
path, connected to the previous point by a straight line.
Throws an "IndexSizeError" DOMException if the given radius is negative.

context . rectp658(x, y, w, h)
path . rectp658(x, y, w, h)

Adds a new closed subpath to the path, representing the given rectangle.

656

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException

matrixp659 before being added to the path.

The moveTo(x, y) method, when invoked, must run these steps:

1. If either of the arguments are infinite or NaN, then return.

2. Create a new subpath with the specified point as its first (and only) point.

When the user agent is to ensure there is a subpath for a coordinate (x, y) on a pathp654, the user agent must check to see if the
pathp654 has its need new subpathp654 flag set. If it does, then the user agent must create a new subpath with the point (x, y) as its first
(and only) point, as if the moveTo()p657 method had been called, and must then unset the pathp654 's need new subpathp654 flag.

The closePath() method, when invoked, must do nothing if the object's path has no subpaths. Otherwise, it must mark the last
subpath as closed, create a new subpath whose first point is the same as the previous subpath's first point, and finally add this new
subpath to the path.

New points and the lines connecting them are added to subpaths using the methods described below. In all cases, the methods only
modify the last subpath in the object's path.

The lineTo(x, y) method, when invoked, must run these steps:

1. If either of the arguments are infinite or NaN, then return.

2. If the object's path has no subpaths, then ensure there is a subpathp657 for (x, y).

3. Otherwise, connect the last point in the subpath to the given point (x, y) using a straight line, and then add the given point
(x, y) to the subpath.

The quadraticCurveTo(cpx, cpy, x, y) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Ensure there is a subpathp657 for (cpx, cpy)

3. Connect the last point in the subpath to the given point (x, y) using a quadratic Bézier curve with control point (cpx, cpy).
[BEZIER]p1285

4. Add the given point (x, y) to the subpath.

The bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Ensure there is a subpathp657 for (cp1x, cp1y).

3. Connect the last point in the subpath to the given point (x, y) using a cubic Bézier curve with control points (cp1x, cp1y) and
(cp2x, cp2y). [BEZIER]p1285

4. Add the point (x, y) to the subpath.

The arcTo(x1, y1, x2, y2, radius) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Ensure there is a subpathp657 for (x1, y1).

3. If radius is negative, then throw an "IndexSizeError" DOMException.

4. Let the point (x0, y0) be the last point in the subpath, transformed by the inverse of the current transformation matrixp659 (so
that it is in the same coordinate system as the points passed to the method).

If the last subpath had more than one point in its list of points, then this is equivalent to adding a straight line connecting the last
point back to the first point of the last subpath, thus "closing" the subpath.

Note

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

657

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException

5. If the point (x0, y0) is equal to the point (x1, y1), or if the point (x1, y1) is equal to the point (x2, y2), or if radius is zero, then
add the point (x1, y1) to the subpath, and connect that point to the previous point (x0, y0) by a straight line.

6. Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line, then add the point (x1, y1) to the
subpath, and connect that point to the previous point (x0, y0) by a straight line.

7. Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius, and that has one point
tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1), and that has a different point
tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2). The points at which this circle
touches these two lines are called the start and end tangent points respectively. Connect the point (x0, y0) to the start
tangent point by a straight line, adding the start tangent point to the subpath, and then connect the start tangent point to
the end tangent point by The Arc, adding the end tangent point to the subpath.

The arc(x, y, radius, startAngle, endAngle, anticlockwise) method, when invoked, must run the ellipse method stepsp658

with this, x, y, radius, radius, 0, startAngle, endAngle, and anticlockwise.

The ellipse(x, y, radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise) method, when invoked, must run the
ellipse method stepsp658 with this, x, y, radiusX, radiusY, rotation, startAngle, endAngle, and anticlockwise.

The ellipse method steps, given canvasPath, x, y, radiusX, radiusY, rotation, startAngle, endAngle, and anticlockwise, are:

1. If any of the arguments are infinite or NaN, then return.

2. If either radiusX or radiusY are negative, then throw an "IndexSizeError" DOMException.

3. If canvasPath's path has any subpaths, then add a straight line from the last point in the subpath to the start point of the arc.

4. Add the start and end points of the arc to the subpath, and connect them with an arc. The arc and its start and end points
are defined as follows:

Consider an ellipse that has its origin at (x, y), that has a major-axis radius radiusX and a minor-axis radius radiusY, and that
is rotated about its origin such that its semi-major axis is inclined rotation radians clockwise from the x-axis.

If anticlockwise is false and endAngle-startAngle is equal to or greater than 2π, or, if anticlockwise is true and
startAngle-endAngle is equal to or greater than 2π, then the arc is the whole circumference of this ellipse, and the point at
startAngle along this circle's circumference, measured in radians clockwise from the ellipse's semi-major axis, acts as both
the start point and the end point.

Otherwise, the points at startAngle and endAngle along this circle's circumference, measured in radians clockwise from the
ellipse's semi-major axis, are the start and end points respectively, and the arc is the path along the circumference of this
ellipse from the start point to the end point, going anti-clockwise if anticlockwise is true, and clockwise otherwise. Since the
points are on the ellipse, as opposed to being simply angles from zero, the arc can never cover an angle greater than 2π
radians.

The rect(x, y, w, h) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Create a new subpath containing just the four points (x, y), (x+w, y), (x+w, y+h), (x, y+h), in that order, with those four
points connected by straight lines.

3. Mark the subpath as closed.

4. Create a new subpath with the point (x, y) as the only point in the subpath.

This makes it equivalent to ellipse()p658 except that both radii are equal and rotation is 0.
Note

Even if the arc covers the entire circumference of the ellipse and there are no other points in the subpath, the path is not
closed unless the closePath()p657 method is appropriately invoked.

Note

✔ MDN

✔ MDN

✔ MDN

658

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException

Path2Dp642 objects can be used to declare paths that are then later used on objects implementing the CanvasDrawPathp640 interface. In
addition to many of the APIs described in earlier sections, Path2Dp642 objects have methods to combine paths, and to add text to paths.

The Path2D(path) constructor, when invoked, must run these steps:

1. Let output be a new Path2Dp642 object.

2. If path is not given, then return output.

3. If path is a Path2Dp642 object, then add all subpaths of path to output and return output. (In other words, it returns a copy of
the argument.)

4. Let svgPath be the result of parsing and interpreting path according to SVG 2's rules for path data. [SVG]p1291

5. Let (x, y) be the last point in svgPath.

6. Add all the subpaths, if any, from svgPath to output.

7. Create a new subpath in output with (x, y) as the only point in the subpath.

8. Return output.

The addPath(b, transform) method, when invoked on a Path2Dp642 object a, must run these steps:

1. If the Path2Dp642 object b has no subpaths, then return.

2. Let matrix be the result of creating a DOMMatrix from the 2D dictionary transform.

3. If one or more of matrix's m11 element, m12 element, m21 element, m22 element, m41 element, or m42 element are
infinite or NaN, then return.

4. Create a copy of all the subpaths in b. Let this copy be known as c.

5. Transform all the coordinates and lines in c by the transform matrix matrix.

6. Let (x, y) be the last point in the last subpath of c.

7. Add all the subpaths in c to a.

8. Create a new subpath in a with (x, y) as the only point in the subpath.

Objects that implement the CanvasTransformp639 interface have a current transformation matrix, as well as methods (described in
this section) to manipulate it. When an object implementing the CanvasTransformp639 interface is created, its transformation matrix
must be initialized to the identity matrix.

The current transformation matrixp659 is applied to coordinates when creating the current default pathp669, and when painting text,

4.12.5.1.6 Path2Dp642 objects §p65

9

path = new Path2Dp659()
Creates a new empty Path2Dp642 object.

path = new Path2Dp659(path)
When path is a Path2Dp642 object, returns a copy.
When path is a string, creates the path described by the argument, interpreted as SVG path data. [SVG]p1291

path . addPathp659(path [, transform])
Adds to the path the path given by the argument.

For web developers (non-normative)

The resulting path could be empty. SVG defines error handling rules for parsing and applying path data.
Note

4.12.5.1.7 Transformations §p65

9

✔ MDN

✔ MDN

✔ MDN

659

https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-2d-dictionary
https://drafts.fxtf.org/geometry/#matrix-m11-element
https://drafts.fxtf.org/geometry/#matrix-m12-element
https://drafts.fxtf.org/geometry/#matrix-m21-element
https://drafts.fxtf.org/geometry/#matrix-m22-element
https://drafts.fxtf.org/geometry/#matrix-m41-element
https://drafts.fxtf.org/geometry/#matrix-m42-element

shapes, and Path2Dp642 objects, on objects implementing the CanvasTransformp639 interface.

The transformations must be performed in reverse order.

The scale(x, y) method, when invoked, must run these steps:

1. If either of the arguments are infinite or NaN, then return.

2. Add the scaling transformation described by the arguments to the current transformation matrixp659. The x argument
represents the scale factor in the horizontal direction and the y argument represents the scale factor in the vertical direction.
The factors are multiples.

The rotate(angle) method, when invoked, must run these steps:

1. If angle is infinite or NaN, then return.

2. Add the rotation transformation described by the argument to the current transformation matrixp659. The angle argument
represents a clockwise rotation angle expressed in radians.

The translate(x, y) method, when invoked, must run these steps:

1. If either of the arguments are infinite or NaN, then return.

2. Add the translation transformation described by the arguments to the current transformation matrixp659. The x argument
represents the translation distance in the horizontal direction and the y argument represents the translation distance in the
vertical direction. The arguments are in coordinate space units.

The transform(a, b, c, d, e, f) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Replace the current transformation matrixp659 with the result of multiplying the current transformation matrix with the matrix
described by:

For instance, if a scale transformation that doubles the width is applied to the canvas, followed by a rotation transformation that
rotates drawing operations by a quarter turn, and a rectangle twice as wide as it is tall is then drawn on the canvas, the actual
result will be a square.

Note

context . scalep660(x, y)
Changes the current transformation matrixp659 to apply a scaling transformation with the given characteristics.

context . rotatep660(angle)
Changes the current transformation matrixp659 to apply a rotation transformation with the given characteristics. The angle is in
radians.

context . translatep660(x, y)
Changes the current transformation matrixp659 to apply a translation transformation with the given characteristics.

context . transformp660(a, b, c, d, e, f)
Changes the current transformation matrixp659 to apply the matrix given by the arguments as described below.

matrix = context . getTransformp661()
Returns a copy of the current transformation matrixp659, as a newly created DOMMatrix object.

context . setTransformp661(a, b, c, d, e, f)
Changes the current transformation matrixp659 to the matrix given by the arguments as described below.

context . setTransformp661(transform)
Changes the current transformation matrixp659 to the matrix represented by the passed DOMMatrix2DInit dictionary.

context . resetTransformp661()
Changes the current transformation matrixp659 to the identity matrix.

For web developers (non-normative)

✔ MDN

✔ MDN

✔ MDN

✔ MDN

660

https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit

a c e

b d f

0 0 1

The getTransform() method, when invoked, must return a newly created DOMMatrix representing a copy of the current transformation
matrixp659 matrix of the context.

The setTransform(a, b, c, d, e, f) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Reset the current transformation matrixp659 to the identity matrix.

3. Invoke the transformp660(a, b, c, d, e, f) method with the same arguments.

The setTransform(transform) method, when invoked, must run these steps:

1. Let matrix be the result of creating a DOMMatrix from the 2D dictionary transform.

2. If one or more of matrix's m11 element, m12 element, m21 element, m22 element, m41 element, or m42 element are
infinite or NaN, then return.

3. Reset the current transformation matrixp659 to matrix.

The resetTransform() method, when invoked, must reset the current transformation matrixp659 to the identity matrix.

Some methods on the CanvasDrawImagep640 and CanvasFillStrokeStylesp639 interfaces take the union type CanvasImageSourcep638

as an argument.

This union type allows objects implementing any of the following interfaces to be used as image sources:

• HTMLOrSVGImageElementp638 (imgp320 or SVG image elements)

• HTMLVideoElementp380 (videop380 elements)

• HTMLCanvasElementp634 (canvasp634 elements)

• ImageBitmapp990

The arguments a, b, c, d, e, and f are sometimes called m11, m12, m21, m22, dx, and dy or m11, m21, m12, m22, dx, and dy.
Care ought to be taken in particular with the order of the second and third arguments (b and c) as their order varies from API to API
and APIs sometimes use the notation m12/m21 and sometimes m21/m12 for those positions.

Note

This returned object is not live, so updating it will not affect the current transformation matrixp659, and updating the current
transformation matrixp659 will not affect an already returned DOMMatrix.

Note

Given a matrix of the form created by the transform()p660 and setTransform()p661 methods, i.e.,

a c e
b d f
0 0 1

the resulting transformed coordinates after transform matrix multiplication will be

xnew = a x + c y + e
ynew = b x + d y + f

Note

4.12.5.1.8 Image sources for 2D rendering contexts §p66

1

✔ MDN

✔ MDN

✔ MDN

661

https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-2d-dictionary
https://drafts.fxtf.org/geometry/#matrix-m11-element
https://drafts.fxtf.org/geometry/#matrix-m12-element
https://drafts.fxtf.org/geometry/#matrix-m21-element
https://drafts.fxtf.org/geometry/#matrix-m22-element
https://drafts.fxtf.org/geometry/#matrix-m41-element
https://drafts.fxtf.org/geometry/#matrix-m42-element
https://svgwg.org/svg2-draft/embedded.html#ImageElement

To check the usability of the image argument, where image is a CanvasImageSourcep638 object, run these steps:

1. Switch on image:

↪ HTMLOrSVGImageElementp638

If image's current requestp336 's statep336 is brokenp336, then throw an "InvalidStateError" DOMException.

If image is not fully decodablep336, then return bad.

If image has an intrinsic width or intrinsic height (or both) equal to zero, then return bad.

↪ HTMLVideoElementp380

If image's readyStatep407 attribute is either HAVE_NOTHINGp405 or HAVE_METADATAp405, then return bad.

↪ HTMLCanvasElementp634

↪ OffscreenCanvasp689

If image has either a horizontal dimension or a vertical dimension equal to zero, then throw an "InvalidStateError"
DOMException.

↪ ImageBitmapp990

If image's [[Detached]]p104 internal slot value is set to true, then throw an "InvalidStateError" DOMException.

2. Return good.

When a CanvasImageSourcep638 object represents an HTMLOrSVGImageElementp638, the element's image must be used as the source
image.

Specifically, when a CanvasImageSourcep638 object represents an animated image in an HTMLOrSVGImageElementp638, the user agent
must use the default image of the animation (the one that the format defines is to be used when animation is not supported or is
disabled), or, if there is no such image, the first frame of the animation, when rendering the image for CanvasRenderingContext2Dp638

APIs.

When a CanvasImageSourcep638 object represents an HTMLVideoElementp380, then the frame at the current playback positionp404 when
the method with the argument is invoked must be used as the source image when rendering the image for
CanvasRenderingContext2Dp638 APIs, and the source image's dimensions must be the intrinsic widthp382 and intrinsic heightp382 of the
media resourcep389 (i.e. after any aspect-ratio correction has been applied).

When a CanvasImageSourcep638 object represents an HTMLCanvasElementp634, the element's bitmap must be used as the source image.

When a CanvasImageSourcep638 object represents an element that is being renderedp1192 and that element has been resized, the
original image data of the source image must be used, not the image as it is rendered (e.g. widthp449 and heightp449 attributes on the
source element have no effect on how the object is interpreted when rendering the image for CanvasRenderingContext2Dp638 APIs).

When a CanvasImageSourcep638 object represents an ImageBitmapp990, the object's bitmap image data must be used as the source
image.

An object image is not origin-clean if, switching on image:

↪ HTMLOrSVGImageElementp638

↪ HTMLVideoElementp380

image's originp837 is not same originp838 with entry settings objectp921 's originp917.

↪ HTMLCanvasElementp634

↪ ImageBitMapp990

image's bitmap's origin-cleanp635 flag is false.

Although not formally specified as such, SVG image elements are expected to be implemented nearly identical to imgp320 elements.
That is, SVG image elements share the fundamental concepts and features of imgp320 elements.

Note

The ImageBitmapp990 interface can be created from a number of other image-representing types, including ImageDatap642.
Note

662

https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-height
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

Objects that implement the CanvasFillStrokeStylesp639 interface have attributes and methods (defined in this section) that control
how shapes are treated by the object.

The fillStyle attribute represents the color or style to use inside shapes, and the strokeStyle attribute represents the color or style
to use for the lines around the shapes.

Both attributes can be either strings, CanvasGradientp642s, or CanvasPatternp642s. On setting, strings must be parsedp58 with this
canvasp634 element and the color assigned, and CanvasGradientp642 and CanvasPatternp642 objects must be assigned themselves. If
parsing the value results in failure, then it must be ignored, and the attribute must retain its previous value. If the new value is a
CanvasPatternp642 object that is marked as not origin-cleanp665, then the CanvasRenderingContext2Dp638 's origin-cleanp635 flag must
be set to false.

When set to a CanvasPatternp642 or CanvasGradientp642 object, the assignment is livep45, meaning that changes made to the object
after the assignment do affect subsequent stroking or filling of shapes.

On getting, if the value is a color, then the serialization of the colorp663 must be returned. Otherwise, if it is not a color but a
CanvasGradientp642 or CanvasPatternp642, then the respective object must be returned. (Such objects are opaque and therefore only
useful for assigning to other attributes or for comparison to other gradients or patterns.)

The serialization of a color for a color value is a string, computed as follows: if it has alpha equal to 1.0, then the string is a
lowercase six-digit hex value, prefixed with a "#" character (U+0023 NUMBER SIGN), with the first two digits representing the red
component, the next two digits representing the green component, and the last two digits representing the blue component, the digits
being ASCII lower hex digits. Otherwise, the color value has alpha less than 1.0, and the string is the color value in the CSS rgba()
functional-notation format: the literal string "rgba" (U+0072 U+0067 U+0062 U+0061) followed by a U+0028 LEFT PARENTHESIS, a
base-ten integer in the range 0-255 representing the red component (using ASCII digits in the shortest form possible), a literal U+002C
COMMA and U+0020 SPACE, an integer for the green component, a comma and a space, an integer for the blue component, another
comma and space, a U+0030 DIGIT ZERO, if the alpha value is greater than zero then a U+002E FULL STOP (representing the decimal
point), if the alpha value is greater than zero then one or more ASCII digits representing the fractional part of the alpha, and finally a
U+0029 RIGHT PARENTHESIS. User agents must express the fractional part of the alpha value, if any, with the level of precision
necessary for the alpha value, when reparsed, to be interpreted as the same alpha value.

When the context is created, the fillStylep663 and strokeStylep663 attributes must initially have the string value #000000.

When the value is a color, it must not be affected by the transformation matrix when used to draw on bitmaps.

There are two types of gradients, linear gradients and radial gradients, both represented by objects implementing the opaque
CanvasGradientp642 interface.

Once a gradient has been created (see below), stops are placed along it to define how the colors are distributed along the gradient.
The color of the gradient at each stop is the color specified for that stop. Between each such stop, the colors and the alpha component
must be linearly interpolated over the RGBA space without premultiplying the alpha value to find the color to use at that offset. Before
the first stop, the color must be the color of the first stop. After the last stop, the color must be the color of the last stop. When there
are no stops, the gradient is transparent black.

4.12.5.1.9 Fill and stroke styles §p66

3

context . fillStylep663 [= value]
Returns the current style used for filling shapes.
Can be set, to change the fill style.
The style can be either a string containing a CSS color, or a CanvasGradientp642 or CanvasPatternp642 object. Invalid values are
ignored.

context . strokeStylep663 [= value]
Returns the current style used for stroking shapes.
Can be set, to change the stroke style.
The style can be either a string containing a CSS color, or a CanvasGradientp642 or CanvasPatternp642 object. Invalid values are
ignored.

For web developers (non-normative)

For web developers (non-normative)

✔ MDN

663

https://infra.spec.whatwg.org/#ascii-lower-hex-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://drafts.csswg.org/css-color/#transparent-black

The addColorStop(offset, color) method on the CanvasGradientp642, when invoked, must run these steps:

1. If the offset is less than 0 or greater than 1, then throw an "IndexSizeError" DOMException.

2. Let parsed color be the result of parsingp58 color.

3. If parsed color is failure, throw a "SyntaxError" DOMException.

4. Place a new stop on the gradient, at offset offset relative to the whole gradient, and with the color parsed color.

If multiple stops are added at the same offset on a gradient, then they must be placed in the order added, with the first one
closest to the start of the gradient, and each subsequent one infinitesimally further along towards the end point (in effect
causing all but the first and last stop added at each point to be ignored).

The createLinearGradient(x0, y0, x1, y1) method takes four arguments that represent the start point (x0, y0) and end point (x1,
y1) of the gradient. The method, when invoked, must return a linear CanvasGradientp642 initialized with the specified line.

Linear gradients must be rendered such that all points on a line perpendicular to the line that crosses the start and end points have the
color at the point where those two lines cross (with the colors coming from the interpolation and extrapolationp663 described above).
The points in the linear gradient must be transformed as described by the current transformation matrixp659 when rendering.

If x0 = x1 and y0 = y1, then the linear gradient must paint nothing.

The createRadialGradient(x0, y0, r0, x1, y1, r1) method takes six arguments, the first three representing the start circle with
origin (x0, y0) and radius r0, and the last three representing the end circle with origin (x1, y1) and radius r1. The values are in
coordinate space units. If either of r0 or r1 are negative, then an "IndexSizeError" DOMException must be thrown. Otherwise, the
method, when invoked, must return a radial CanvasGradientp642 initialized with the two specified circles.

Radial gradients must be rendered by following these steps:

1. If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing. Return.

2. Let x(ω) = (x1-x0)ω + x0

Let y(ω) = (y1-y0)ω + y0

Let r(ω) = (r1-r0)ω + r0

Let the color at ω be the color at that position on the gradient (with the colors coming from the interpolation and
extrapolationp663 described above).

3. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and ending with the value of ω
nearest to negative infinity, draw the circumference of the circle with radius r(ω) at position (x(ω), y(ω)), with the color at ω,
but only painting on the parts of the bitmap that have not yet been painted on by earlier circles in this step for this rendering

gradient . addColorStopp664(offset, color)
Adds a color stop with the given color to the gradient at the given offset. 0.0 is the offset at one end of the gradient, 1.0 is the
offset at the other end.
Throws an "IndexSizeError" DOMException if the offset is out of range. Throws a "SyntaxError" DOMException if the color
cannot be parsed.

gradient = context . createLinearGradientp664(x0, y0, x1, y1)
Returns a CanvasGradientp642 object that represents a linear gradient that paints along the line given by the coordinates
represented by the arguments.

gradient = context . createRadialGradientp664(x0, y0, r0, x1, y1, r1)
Returns a CanvasGradientp642 object that represents a radial gradient that paints along the cone given by the circles
represented by the arguments.
If either of the radii are negative, throws an "IndexSizeError" DOMException exception.

No element is passed to the parser because CanvasGradientp642 objects are canvasp634-neutral — a CanvasGradientp642

object created by one canvasp634 can be used by another, and there is therefore no way to know which is the "element in
question" at the time that the color is specified.

Note

✔ MDN

✔ MDN

✔ MDN

664

https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException

of the gradient.

The resulting radial gradient must then be transformed as described by the current transformation matrixp659 when rendering.

Gradients must be painted only where the relevant stroking or filling effects requires that they be drawn.

Patterns are represented by objects implementing the opaque CanvasPatternp642 interface.

The createPattern(image, repetition) method, when invoked, must run these steps:

1. Let usability be the result of checking the usability ofp662 image.

2. If result is bad, then return null.

3. Assert: result is good.

4. If repetition is the empty string, then set it to "repeat".

5. If repetition is not identical to one of "repeat", "repeat-x", "repeat-y", or "no-repeat", then throw a "SyntaxError"
DOMException.

6. Let pattern be a new CanvasPatternp642 object with the image image and the repetition behavior given by repetition.

7. If image is not origin-cleanp662, then mark pattern as not origin-clean.

8. Return pattern.

Modifying the image used when creating a CanvasPatternp642 object after calling the createPattern()p665 method must not affect the
pattern(s) rendered by the CanvasPatternp642 object.

Patterns have a transformation matrix, which controls how the pattern is used when it is painted. Initially, a pattern's transformation
matrix must be the identity matrix.

The setTransform(transform) method, when invoked, must run these steps:

1. Let matrix be the result of creating a DOMMatrix from the 2D dictionary transform.

2. If one or more of matrix's m11 element, m12 element, m21 element, m22 element, m41 element, or m42 element are
infinite or NaN, then return.

3. Reset the pattern's transformation matrix to matrix.

When a pattern is to be rendered within an area, the user agent must run the following steps to determine what is rendered:

1. Create an infinite transparent black bitmap.

2. Place a copy of the image on the bitmap, anchored such that its top left corner is at the origin of the coordinate space, with
one coordinate space unit per CSS pixel of the image, then place repeated copies of this image horizontally to the left and

This effectively creates a cone, touched by the two circles defined in the creation of the gradient, with the part of the cone before
the start circle (0.0) using the color of the first offset, the part of the cone after the end circle (1.0) using the color of the last
offset, and areas outside the cone untouched by the gradient (transparent black).

Note

pattern = context . createPatternp665(image, repetition)
Returns a CanvasPatternp642 object that uses the given image and repeats in the direction(s) given by the repetition argument.
The allowed values for repetition are repeat (both directions), repeat-x (horizontal only), repeat-y (vertical only), and no-
repeat (neither). If the repetition argument is empty, the value repeat is used.
If the image isn't yet fully decoded, then nothing is drawn. If the image is a canvas with no data, throws an
"InvalidStateError" DOMException.

pattern . setTransformp665(transform)
Sets the transformation matrix that will be used when rendering the pattern during a fill or stroke painting operation.

For web developers (non-normative)

✔ MDN

✔ MDN

665

https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#string-is
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-2d-dictionary
https://drafts.fxtf.org/geometry/#matrix-m11-element
https://drafts.fxtf.org/geometry/#matrix-m12-element
https://drafts.fxtf.org/geometry/#matrix-m21-element
https://drafts.fxtf.org/geometry/#matrix-m22-element
https://drafts.fxtf.org/geometry/#matrix-m41-element
https://drafts.fxtf.org/geometry/#matrix-m42-element
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-values/#px

right, if the repetition behavior is "repeat-x", or vertically up and down, if the repetition behavior is "repeat-y", or in all four
directions all over the bitmap, if the repetition behavior is "repeat".

If the original image data is a bitmap image, then the value painted at a point in the area of the repetitions is computed by
filtering the original image data. When scaling up, if the imageSmoothingEnabledp680 attribute is set to false, then the image
must be rendered using nearest-neighbor interpolation. Otherwise, the user agent may use any filtering algorithm (for
example bilinear interpolation or nearest-neighbor). User agents which support multiple filtering algorithms may use the
value of the imageSmoothingQualityp680 attribute to guide the choice of filtering algorithm. When such a filtering algorithm
requires a pixel value from outside the original image data, it must instead use the value from wrapping the pixel's
coordinates to the original image's dimensions. (That is, the filter uses 'repeat' behavior, regardless of the value of the
pattern's repetition behavior.)

3. Transform the resulting bitmap according to the pattern's transformation matrix.

4. Transform the resulting bitmap again, this time according to the current transformation matrixp659.

5. Replace any part of the image outside the area in which the pattern is to be rendered with transparent black.

6. The resulting bitmap is what is to be rendered, with the same origin and same scale.

If a radial gradient or repeated pattern is used when the transformation matrix is singular, then the resulting style must be transparent
black (otherwise the gradient or pattern would be collapsed to a point or line, leaving the other pixels undefined). Linear gradients and
solid colors always define all points even with singular transformation matrices.

Objects that implement the CanvasRectp640 interface provide the following methods for immediately drawing rectangles to the bitmap.
The methods each take four arguments; the first two give the x and y coordinates of the top left of the rectangle, and the second two
give the width w and height h of the rectangle, respectively.

The current transformation matrixp659 must be applied to the following four coordinates, which form the path that must then be closed
to get the specified rectangle: (x, y), (x+w, y), (x+w, y+h), (x, y+h).

Shapes are painted without affecting the current default pathp669, and are subject to the clipping regionp670, and, with the exception of
clearRect()p666, also shadow effectsp680, global alphap679, and global composition operatorsp679.

The clearRect(x, y, w, h) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Let pixels be the set of pixels in the specified rectangle that also intersect the current clipping regionp670.

3. Clear the pixels in pixels to a transparent black, erasing any previous image.

The fillRect(x, y, w, h) method, when invoked, must must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. If either w or h are zero, then return.

4.12.5.1.10 Drawing rectangles to the bitmap §p66

6

context . clearRectp666(x, y, w, h)
Clears all pixels on the bitmap in the given rectangle to transparent black.

context . fillRectp666(x, y, w, h)
Paints the given rectangle onto the bitmap, using the current fill style.

context . strokeRectp667(x, y, w, h)
Paints the box that outlines the given rectangle onto the bitmap, using the current stroke style.

For web developers (non-normative)

If either height or width are zero, this method has no effect, since the set of pixels would be empty.
Note

✔ MDN

✔ MDN

666

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black

3. Paint the specified rectangular area using the fillStylep663.

The strokeRect(x, y, w, h) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Take the result of tracing the pathp647 described below, using the CanvasPathDrawingStylesp641 interface's line styles, and
fill it with the strokeStylep663.

If both w and h are zero, the path has a single subpath with just one point (x, y), and no lines, and this method thus has no effect (the
trace a pathp647 algorithm returns an empty path in that case).

If just one of either w or h is zero, then the path has a single subpath consisting of two points, with coordinates (x, y) and (x+w, y+h),
in that order, connected by a single straight line.

Otherwise, the path has a single subpath consisting of four points, with coordinates (x, y), (x+w, y), (x+w, y+h), and (x, y+h),
connected to each other in that order by straight lines.

Objects that implement the CanvasTextp640 interface provide the following methods for rendering text.

The fillText() and strokeText() methods take three or four arguments, text, x, y, and optionally maxWidth, and render the given
text at the given (x, y) coordinates ensuring that the text isn't wider than maxWidth if specified, using the current fontp651,
textAlignp652, and textBaselinep652 values. Specifically, when the methods are invoked, the user agent must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Run the text preparation algorithmp653, passing it text, the object implementing the CanvasTextp640 interface, and, if the
maxWidth argument was provided, that argument. Let glyphs be the result.

3. Move all the shapes in glyphs to the right by x CSS pixels and down by y CSS pixels.

4. Paint the shapes given in glyphs, as transformed by the current transformation matrixp659, with each CSS pixel in the
coordinate space of glyphs mapped to one coordinate space unit.

For fillText()p667, fillStylep663 must be applied to the shapes and strokeStylep663 must be ignored. For

4.12.5.1.11 Drawing text to the bitmap §p66

7

context . fillTextp667(text, x, y [, maxWidth])
context . strokeTextp667(text, x, y [, maxWidth])

Fills or strokes (respectively) the given text at the given position. If a maximum width is provided, the text will be scaled to fit
that width if necessary.

metrics = context . measureTextp668(text)
Returns a TextMetricsp642 object with the metrics of the given text in the current font.

metrics . widthp668

metrics . actualBoundingBoxLeftp668

metrics . actualBoundingBoxRightp668

metrics . fontBoundingBoxAscentp668

metrics . fontBoundingBoxDescentp668

metrics . actualBoundingBoxAscentp668

metrics . actualBoundingBoxDescentp668

metrics . emHeightAscentp668

metrics . emHeightDescentp669

metrics . hangingBaselinep669

metrics . alphabeticBaselinep669

metrics . ideographicBaselinep669

Returns the measurement described below.

For web developers (non-normative)

✔ MDN

✔ MDN

✔ MDN

667

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

strokeText()p667, the reverse holds: strokeStylep663 must be applied to the result of tracingp647 the shapes using the object
implementing the CanvasTextp640 interface for the line styles, and fillStylep663 must be ignored.

These shapes are painted without affecting the current path, and are subject to shadow effectsp680, global alphap679, the
clipping regionp670, and global composition operatorsp679.

The measureText() method takes one argument, text. When the method is invoked, the user agent must run the text
preparation algorithmp653, passing it text and the object implementing the CanvasTextp640 interface, and then using the
returned inline box must return a new TextMetricsp642 object with members behaving as described in the following list:
[CSS]p1285

width attribute
The width of that inline box, in CSS pixels. (The text's advance width.)

actualBoundingBoxLeft attribute
The distance parallel to the baseline from the alignment point given by the textAlignp652 attribute to the left side of the bounding
rectangle of the given text, in CSS pixels; positive numbers indicating a distance going left from the given alignment point.

actualBoundingBoxRight attribute
The distance parallel to the baseline from the alignment point given by the textAlignp652 attribute to the right side of the bounding
rectangle of the given text, in CSS pixels; positive numbers indicating a distance going right from the given alignment point.

fontBoundingBoxAscent attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the ascent metric of the first available font, in
CSS pixels; positive numbers indicating a distance going up from the given baseline.

fontBoundingBoxDescent attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the descent metric of the first available font, in
CSS pixels; positive numbers indicating a distance going down from the given baseline.

actualBoundingBoxAscent attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the top of the bounding rectangle of the given
text, in CSS pixels; positive numbers indicating a distance going up from the given baseline.

actualBoundingBoxDescent attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the bottom of the bounding rectangle of the
given text, in CSS pixels; positive numbers indicating a distance going down from the given baseline.

emHeightAscent attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the highest top of the em squares in the inline
box, in CSS pixels; positive numbers indicating that the given baseline is below the top of that em square (so this value will usually
be positive). Zero if the given baseline is the top of that em square; half the font size if the given baseline is the middle of that em
square.

The sum of this value and the next (actualBoundingBoxRightp668) can be wider than the width of the inline box (widthp668), in
particular with slanted fonts where characters overhang their advance width.

Note

This value and the next are useful when rendering a background that have to have a consistent height even if the exact text
being rendered changes. The actualBoundingBoxAscentp668 attribute (and its corresponding attribute for the descent) are
useful when drawing a bounding box around specific text.

Note

This number can vary greatly based on the input text, even if the first font specified covers all the characters in the input. For
example, the actualBoundingBoxAscentp668 of a lowercase "o" from an alphabetic baseline would be less than that of an
uppercase "F". The value can easily be negative; for example, the distance from the top of the em box (textBaselinep652 value
"topp652") to the top of the bounding rectangle when the given text is just a single comma "," would likely (unless the font is
quite unusual) be negative.

Note

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

668

https://infra.spec.whatwg.org/#tracking-vector
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#ascent-metric
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#descent-metric
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px

emHeightDescent attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the lowest bottom of the em squares in the
inline box, in CSS pixels; positive numbers indicating that the given baseline is above the bottom of that em square. (Zero if the
given baseline is the bottom of that em square.)

hangingBaseline attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the hanging baseline of the inline box, in CSS
pixels; positive numbers indicating that the given baseline is below the hanging baseline. (Zero if the given baseline is the hanging
baseline.)

alphabeticBaseline attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the alphabetic baseline of the inline box, in CSS
pixels; positive numbers indicating that the given baseline is below the alphabetic baseline. (Zero if the given baseline is the
alphabetic baseline.)

ideographicBaseline attribute
The distance from the horizontal line indicated by the textBaselinep652 attribute to the ideographic-under baseline of the inline
box, in CSS pixels; positive numbers indicating that the given baseline is below the ideographic-under baseline. (Zero if the given
baseline is the ideographic-under baseline.)

Objects that implement the CanvasDrawPathp640 interface have a current default path. There is only one current default pathp669, it is
not part of the drawing statep645. The current default pathp669 is a pathp654, as described above.

Glyphs rendered using fillText()p667 and strokeText()p667 can spill out of the box given by the font size (the em square size)
and the width returned by measureText()p668 (the text width). Authors are encouraged to use the bounding box values described
above if this is an issue.

Note

A future version of the 2D context API might provide a way to render fragments of documents, rendered using CSS, straight to the
canvas. This would be provided in preference to a dedicated way of doing multiline layout.

Note

4.12.5.1.12 Drawing paths to the canvas §p66

9

context . beginPathp670()
Resets the current default pathp669.

context . fillp670([fillRule])
context . fillp670(path [, fillRule])

Fills the subpaths of the current default pathp669 or the given path with the current fill style, obeying the given fill rule.

context . strokep670()
context . strokep670(path)

Strokes the subpaths of the current default pathp669 or the given path with the current stroke style.

context . clipp670([fillRule])
context . clipp670(path [, fillRule])

Further constrains the clipping region to the current default pathp669 or the given path, using the given fill rule to determine
what points are in the path.

context . isPointInPathp670(x, y [, fillRule])
context . isPointInPathp670(path, x, y [, fillRule])

Returns true if the given point is in the current default pathp669 or the given path, using the given fill rule to determine what
points are in the path.

For web developers (non-normative)

✔ MDN

✔ MDN

✔ MDN

✔ MDN

669

https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css-inline/#ideographic-under-baseline

The beginPath() method, when invoked, must empty the list of subpaths in the context's current default pathp669 so that the it once
again has zero subpaths.

Where the following method definitions use the term intended path, it means the Path2Dp642 argument, if one was provided, or the
current default pathp669 otherwise.

When the intended path is a Path2Dp642 object, the coordinates and lines of its subpaths must be transformed according to the current
transformation matrixp659 on the object implementing the CanvasTransformp639 interface when used by these methods (without
affecting the Path2Dp642 object itself). When the intended path is the current default pathp669, it is not affected by the transform. (This is
because transformations already affect the current default pathp669 when it is constructed, so applying it when it is painted as well
would result in a double transformation.)

The fill() method, when invoked, must fill all the subpaths of the intended path, using fillStylep663, and using the fill rulep645

indicated by the fillRule argument. Open subpaths must be implicitly closed when being filled (without affecting the actual subpaths).

The stroke() method, when invoked, must tracep647 the intended path, using this CanvasPathDrawingStylesp641 object for the line
styles, and then fill the resulting path using the strokeStylep663 attribute, using the nonzero winding rulep645.

Paths, when filled or stroked, must be painted without affecting the current default pathp669 or any Path2Dp642 objects, and must be
subject to shadow effectsp680, global alphap679, the clipping regionp670, and global composition operatorsp679. (The effect of
transformations is described above and varies based on which path is being used.)

The clip() method, when invoked, must create a new clipping region by calculating the intersection of the current clipping region
and the area described by the intended path, using the fill rulep645 indicated by the fillRule argument. Open subpaths must be implicitly
closed when computing the clipping region, without affecting the actual subpaths. The new clipping region replaces the current
clipping region.

When the context is initialized, the clipping region must be set to the largest infinite surface (i.e. by default, no clipping occurs).

The isPointInPath() method, when invoked, must return true if the point given by the x and y coordinates passed to the method,
when treated as coordinates in the canvas coordinate space unaffected by the current transformation, is inside the intended path as
determined by the fill rulep645 indicated by the fillRule argument; and must return false otherwise. Open subpaths must be implicitly
closed when computing the area inside the path, without affecting the actual subpaths. Points on the path itself must be considered to
be inside the path. If either of the arguments are infinite or NaN, then the method must return false.

The isPointInStroke() method, when invoked, must return true if the point given by the x and y coordinates passed to the method,
when treated as coordinates in the canvas coordinate space unaffected by the current transformation, is inside the path that results
from tracingp647 the intended path, using the nonzero winding rulep645, and using the CanvasPathDrawingStylesp641 interface for the
line styles; and must return false otherwise. Points on the resulting path must be considered to be inside the path. If either of the
arguments are infinite or NaN, then the method must return false.

context . isPointInStrokep670(x, y)
context . isPointInStrokep670(path, x, y)

Returns true if the given point would be in the region covered by the stroke of the current default pathp669 or the given path,
given the current stroke style.

As a result of how the algorithm to trace a pathp647 is defined, overlapping parts of the paths in one stroke operation are treated as
if their union was what was painted.

Note

The stroke style is affected by the transformation during painting, even if the intended path is the current default pathp669.
Note

Example

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

670

This canvasp634 element has a couple of checkboxes. The path-related commands are highlighted:

<canvas height=400 width=750>
<label><input type=checkbox id=showA> Show As</label>
<label><input type=checkbox id=showB> Show Bs</label>
<!-- ... -->

</canvas>
<script>
function drawCheckbox(context, element, x, y, paint) {

context.save();
context.font = '10px sans-serif';
context.textAlign = 'left';
context.textBaseline = 'middle';
var metrics = context.measureText(element.labels[0].textContent);
if (paint) {

context.beginPath();
context.strokeStyle = 'black';
context.rect(x-5, y-5, 10, 10);
context.stroke();
if (element.checked) {

context.fillStyle = 'black';
context.fill();

}
context.fillText(element.labels[0].textContent, x+5, y);

}
context.beginPath();
context.rect(x-7, y-7, 12 + metrics.width+2, 14);

context.drawFocusIfNeeded(element);
context.restore();

}
function drawBase() { /* ... */ }
function drawAs() { /* ... */ }
function drawBs() { /* ... */ }
function redraw() {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');
context.clearRect(0, 0, canvas.width, canvas.height);
drawCheckbox(context, document.getElementById('showA'), 20, 40, true);
drawCheckbox(context, document.getElementById('showB'), 20, 60, true);
drawBase();
if (document.getElementById('showA').checked)

drawAs();
if (document.getElementById('showB').checked)

drawBs();
}
function processClick(event) {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');
var x = event.clientX;
var y = event.clientY;
var node = event.target;
while (node) {

x -= node.offsetLeft - node.scrollLeft;
y -= node.offsetTop - node.scrollTop;
node = node.offsetParent;

}
drawCheckbox(context, document.getElementById('showA'), 20, 40, false);
if (context.isPointInPath(x, y))

document.getElementById('showA').checked = !(document.getElementById('showA').checked);
drawCheckbox(context, document.getElementById('showB'), 20, 60, false);

671

Objects that implement the CanvasUserInterfacep640 interface provide the following methods to control drawing focus rings and
scrolling paths into view.

The drawFocusIfNeeded(element) method, when invoked, must run these steps:

1. If element is not focusedp771 or is not a descendant of the element with whose context the method is associated, then return.

2. Draw a focus ring of the appropriate style along the intended path, following platform conventions.

The focus ring should not be subject to the shadow effectsp680, the global alphap679, the global composition operatorsp679, or
any of the members in the CanvasFillStrokeStylesp639, CanvasPathDrawingStylesp641, CanvasTextDrawingStylesp641

interfaces, but should be subject to the clipping regionp670. (The effect of transformations is described above and varies
based on which path is being used.)

3. Inform the userp673 that the focus is at the location given by the intended path. User agents may wait until the next time the
event loopp944 reaches its update the renderingp947 step to optionally inform the user.

User agents should not implicitly close open subpaths in the intended path when drawing the focus ring.

if (context.isPointInPath(x, y))
document.getElementById('showB').checked = !(document.getElementById('showB').checked);

redraw();
}
document.getElementsByTagName('canvas')[0].addEventListener('focus', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('blur', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('change', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('click', processClick, false);
redraw();

</script>

4.12.5.1.13 Drawing focus rings and scrolling paths into view §p67

2

context . drawFocusIfNeededp672(element)
context . drawFocusIfNeededp672(path, element)

If the given element is focusedp771, draws a focus ring around the current default pathp669 or the given path, following the
platform conventions for focus rings.

context . scrollPathIntoViewp673()
context . scrollPathIntoViewp673(path)

Scrolls the current default pathp669 or the given path into view. This is especially useful on devices with small screens, where the
whole canvas might not be visible at once.

For web developers (non-normative)

Some platforms only draw focus rings around elements that have been focused from the keyboard, and not those
focused from the mouse. Other platforms simply don't draw focus rings around some elements at all unless relevant
accessibility features are enabled. This API is intended to follow these conventions. User agents that implement
distinctions based on the manner in which the element was focused are encouraged to classify focus driven by the
focus()p782 method based on the kind of user interaction event from which the call was triggered (if any).

Note

This might be a moot point, however. For example, if the focus ring is drawn as an axis-aligned bounding rectangle around the
points in the intended path, then whether the subpaths are closed or not has no effect. This specification intentionally does not
specify precisely how focus rings are to be drawn: user agents are expected to honor their platform's native conventions.

Note

✔ MDN

⚠ MDN672

The scrollPathIntoView() method, when invoked, must run these steps:

1. Let specifiedRectangle be the rectangle of the bounding box of the intended path.

2. Let notionalChild be a hypothetical element that is a rendered child of the canvasp634 element whose dimensions are those of
specifiedRectangle.

3. Scroll notionalChild into view with behavior set to "auto", block set to "start", and inline set to "nearest".

4. Optionally, inform the userp673 that the caret or selection (or both) cover specifiedRectangle of the canvas. The user agent
may wait until the next time the event loopp944 reaches its update the renderingp947 step to optionally inform the user.

"Inform the user", as used in this section, does not imply any persistent state change. It could mean, for instance, calling a system
accessibility API to notify assistive technologies such as magnification tools so that the user's magnifier moves to the given area of the
canvas. However, it does not associate the path with the element, or provide a region for tactile feedback, etc.

Objects that implement the CanvasDrawImagep640 interface have the drawImage method to draw images.

This method can be invoked with three different sets of arguments:

• drawImage(image, dx, dy)
• drawImage(image, dx, dy, dw, dh)
• drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

When the drawImage()p673 method is invoked, the user agent must run these steps:

1. If any of the arguments are infinite or NaN, then return.

4.12.5.1.14 Drawing images §p67

3

context . drawImagep673(image, dx, dy)
context . drawImagep673(image, dx, dy, dw, dh)
context . drawImagep673(image, sx, sy, sw, sh, dx, dy, dw, dh)

Draws the given image onto the canvas. The arguments are interpreted as follows:

If the image isn't yet fully decoded, then nothing is drawn. If the image is a canvas with no data, throws an
"InvalidStateError" DOMException.

For web developers (non-normative)

✔ MDN

673

https://drafts.csswg.org/cssom-view/#scroll-an-element-into-view
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

2. Let usability be the result of checking the usability of imagep662.

3. If usability is bad, then return (without drawing anything).

4. Establish the source and destination rectangles as follows:

If not specified, the dw and dh arguments must default to the values of sw and sh, interpreted such that one CSS pixel in the
image is treated as one unit in the output bitmapp643 's coordinate space. If the sx, sy, sw, and sh arguments are omitted,
then they must default to 0, 0, the image's intrinsic width in image pixels, and the image's intrinsic height in image pixels,
respectively. If the image has no intrinsic dimensions, then the concrete object size must be used instead, as determined
using the CSS "Concrete Object Size Resolution" algorithm, with the specified size having neither a definite width nor height,
nor any additional constraints, the object's intrinsic properties being those of the image argument, and the default object
size being the size of the output bitmapp643. [CSSIMAGES]p1286

The source rectangle is the rectangle whose corners are the four points (sx, sy), (sx+sw, sy), (sx+sw, sy+sh), (sx, sy+sh).

The destination rectangle is the rectangle whose corners are the four points (dx, dy), (dx+dw, dy), (dx+dw, dy+dh), (dx,
dy+dh).

When the source rectangle is outside the source image, the source rectangle must be clipped to the source image and the
destination rectangle must be clipped in the same proportion.

5. If one of the sw or sh arguments is zero, then return. Nothing is painted.

6. Paint the region of the image argument specified by the source rectangle on the region of the rendering context's output
bitmapp643 specified by the destination rectangle, after applying the current transformation matrixp659 to the destination
rectangle.

The image data must be processed in the original direction, even if the dimensions given are negative.

When scaling up, if the imageSmoothingEnabledp680 attribute is set to true, the user agent should attempt to apply a
smoothing algorithm to the image data when it is scaled. User agents which support multiple filtering algorithms may use
the value of the imageSmoothingQualityp680 attribute to guide the choice of filtering algorithm when the
imageSmoothingEnabledp680 attribute is set to true. Otherwise, the image must be rendered using nearest-neighbor
interpolation.

If the original image data is a bitmap image, then the value painted at a point in the destination rectangle is computed by
filtering the original image data. The user agent may use any filtering algorithm (for example bilinear interpolation or
nearest-neighbor). When the filtering algorithm requires a pixel value from outside the original image data, it must instead
use the value from the nearest edge pixel. (That is, the filter uses 'clamp-to-edge' behavior.) When the filtering algorithm
requires a pixel value from outside the source rectangle but inside the original image data, then the value from the original
image data must be used.

Images are painted without affecting the current path, and are subject to shadow effectsp680, global alphap679, the clipping
regionp670, and global composition operatorsp679.

When the destination rectangle is outside the destination image (the output bitmapp643), the pixels that land outside the
output bitmapp643 are discarded, as if the destination was an infinite canvas whose rendering was clipped to the
dimensions of the output bitmapp643.

Note

This specification does not define the precise algorithm to use when scaling an image down, or when scaling an image
up when the imageSmoothingEnabledp680 attribute is set to true.

Note

When a canvasp634 element is drawn onto itself, the drawing modelp682 requires the source to be copied before the image
is drawn, so it is possible to copy parts of a canvasp634 element onto overlapping parts of itself.

Note

Thus, scaling an image in parts or in whole will have the same effect. This does mean that when sprites coming from a
single sprite sheet are to be scaled, adjacent images in the sprite sheet can interfere. This can be avoided by ensuring
each sprite in the sheet is surrounded by a border of transparent black, or by copying sprites to be scaled into temporary
canvasp634 elements and drawing the scaled sprites from there.

Note

674

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-images/#default-sizing
https://drafts.csswg.org/css-images/#default-object-size
https://drafts.csswg.org/css-images/#default-object-size
https://drafts.csswg.org/css-color/#transparent-black

7. If image is not origin-cleanp662, then set the CanvasRenderingContext2Dp638 's origin-cleanp635 flag to false.

Objects that implement the CanvasImageDatap641 interface provide the following methods for reading and writing pixel data to the
bitmap.

The ImageData() constructors and the createImageData() methods are used to instantiate new ImageDatap642 objects.

When the ImageData()p675 constructor is invoked with two numeric arguments sw and sh, it must run these steps:

1. If one or both of sw and sh are zero, then throw an "IndexSizeError" DOMException.

2. Create an ImageData objectp676 with parameter pixelsPerRow set to sw, and rows set to sh.

3. Initialize the image data of the newly created ImageDatap642 object to transparent black.

4. Return the newly created ImageDatap642 object.

When the ImageData()p675 constructor is invoked with its first argument being an Uint8ClampedArray source and its second and
optional third arguments being numeric arguments sw and sh, it must run these steps:

1. Let length be the number of bytes in source.

4.12.5.1.15 Pixel manipulation §p67

5

imagedata = new ImageDatap675(sw, sh)
imagedata = context . createImageDatap675(sw, sh)

Returns an ImageDatap642 object with the given dimensions. All the pixels in the returned object are transparent black.
Throws an "IndexSizeError" DOMException if either of the width or height arguments are zero.

imagedata = context . createImageDatap675(imagedata)
Returns an ImageDatap642 object with the same dimensions as the argument. All the pixels in the returned object are transparent
black.

imagedata = new ImageDatap675(data, sw [, sh])
Returns an ImageDatap642 object using the data provided in the Uint8ClampedArray argument, interpreted using the given
dimensions.
As each pixel in the data is represented by four numbers, the length of the data needs to be a multiple of four times the given
width. If the height is provided as well, then the length needs to be exactly the width times the height times 4.
Throws an "IndexSizeError" DOMException if the given data and dimensions can't be interpreted consistently, or if either
dimension is zero.

imagedata = context . getImageDatap676(sx, sy, sw, sh)
Returns an ImageDatap642 object containing the image data for the given rectangle of the bitmap.
Throws an "IndexSizeError" DOMException if the either of the width or height arguments are zero.

imagedata . widthp676

imagedata . heightp676

Returns the actual dimensions of the data in the ImageDatap642 object, in pixels.

imagedata . datap676

Returns the one-dimensional array containing the data in RGBA order, as integers in the range 0 to 255.

context . putImageDatap677(imagedata, dx, dy [, dirtyX, dirtyY, dirtyWidth, dirtyHeight])
Paints the data from the given ImageDatap642 object onto the bitmap. If a dirty rectangle is provided, only the pixels from that
rectangle are painted.
The globalAlphap679 and globalCompositeOperationp679 attributes, as well as the shadow attributes, are ignored for the
purposes of this method call; pixels in the canvas are replaced wholesale, with no composition, alpha blending, no shadows, etc.
Throws an "InvalidStateError" DOMException if the imagedata object's datap676 attribute value's [[ViewedArrayBuffer]]
internal slot is detached.

For web developers (non-normative)

MDN

675

https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#idl-Uint8ClampedArray
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#idl-Uint8ClampedArray

2. If length is not a nonzero integral multiple of four, then throw an "InvalidStateError" DOMException.

3. Let length be length divided by four.

4. If length is not an integral multiple of sw, then throw an "IndexSizeError" DOMException.

5. Let height be length divided by sw.

6. If the sh argument was not omitted, and its value is not equal to height, then throw an "IndexSizeError" DOMException.

7. Create an ImageData objectp676, with parameter pixelsPerRow set to sw, rows set to sh, and using source. Return the newly
created ImageDatap642 object.

When the createImageData()p675 method is invoked with two numeric arguments sw and sh, it must create an ImageData objectp676,
with parameter pixelsPerRow set to the absolute magnitude of sw, and parameter rows set to the absolute magnitude of sh. Initialize
the image data of the new ImageDatap642 object to transparent black. If both sw and sh are nonzero, then return the new ImageDatap642

object. If one or both of sw and sh are zero, then throw an "IndexSizeError" DOMException instead.

When the createImageData()p675 method is invoked with a single imagedata argument, it must create an ImageData objectp676, with
parameter pixelsPerRow set to the value of the widthp676 attribute of the ImageDatap642 object passed as the argument, and the rows
parameter set to the value of the heightp676 attribute. Initialize the image data of the new ImageDatap642 object to transparent black.
Return the newly created ImageDatap642 object.

The getImageData(sx, sy, sw, sh) method, when invoked, must, if either the sw or sh arguments are zero, throw an
"IndexSizeError" DOMException; otherwise, if the CanvasRenderingContext2Dp638 's origin-cleanp635 flag is set to false, it must throw
a "SecurityError" DOMException; otherwise, it must create an ImageData objectp676, with parameter pixelsPerRow set to sw, and
parameter rows set to sh. Set the pixel values of the image data of the newly created ImageDatap642 object to represent the output
bitmapp643 for the area of that bitmap denoted by the rectangle whose corners are the four points (sx, sy), (sx+sw, sy), (sx+sw,
sy+sh), (sx, sy+sh), in the bitmap's coordinate space units. Pixels outside the output bitmapp643 must be set to transparent black. Pixel
values must not be premultiplied by alpha.

When the user agent is required to create an ImageData object, given a positive integer number of rows rows, a positive integer
number of pixels per row pixelsPerRow, and an optional Uint8ClampedArray source, it must run these steps:

1. Let imageData be a new uninitialized ImageDatap642 object.

2. If source is specified, then assign the data attribute of imageData to source.

3. If source is not specified, then initialize the datap676 attribute of imageData to a new Uint8ClampedArray object. The
Uint8ClampedArray object must use a new Canvas Pixel ArrayBufferp677 for its storage, and must have a zero start offset
and a length equal to the length of its storage, in bytes. The Canvas Pixel ArrayBufferp677 must have the correct size to
store rows × pixelsPerRow pixels.

If the Canvas Pixel ArrayBufferp677 cannot be allocated, then rethrow the RangeError thrown by JavaScript, and return.

4. Initialize the width attribute of imageData to pixelsPerRow.

5. Initialize the height attribute of imageData to rows.

6. Return imageData.

ImageDatap642 objects are serializable objectsp102. Their serialization stepsp102, given value and serialized, are:

1. Set serialized.[[Data]] to the sub-serializationp107 of the value of value's datap676 attribute.

2. Set serialized.[[Width]] to the value of value's widthp676 attribute.

At this step, the length is guaranteed to be greater than zero (otherwise the second step above would have aborted the
steps), so if sw is zero, this step will throw the exception and return.

Note

The resulting object's data is not a copy of source, it's the actual Uint8ClampedArray object passed as the first argument
to the constructor.

Note

✔ MDN

✔ MDN

676

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#idl-Uint8ClampedArray
https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#idl-Uint8ClampedArray
https://heycam.github.io/webidl/#idl-Uint8ClampedArray
https://heycam.github.io/webidl/#idl-Uint8ClampedArray
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror

3. Set serialized.[[Height]] to the value of value's heightp676 attribute.

Their deserialization stepsp103, given serialized and value, are:

1. Initialize value's datap676 attribute to the sub-deserializationp110 of serialized.[[Data]].

2. Initialize value's widthp676 attribute to serialized.[[Width]].

3. Initialize value's heightp676 attribute to serialized.[[Height]].

A Canvas Pixel ArrayBuffer is an ArrayBuffer whose data is represented in left-to-right order, row by row top to bottom, starting
with the top left, with each pixel's red, green, blue, and alpha components being given in that order for each pixel. Each component of
each pixel represented in this array must be in the range 0..255, representing the 8 bit value for that component. The components
must be assigned consecutive indices starting with 0 for the top left pixel's red component.

The putImageData() method writes data from ImageDatap642 structures back to the rendering context's output bitmapp643. Its
arguments are: imagedata, dx, dy, dirtyX, dirtyY, dirtyWidth, and dirtyHeight.

When the last four arguments to this method are omitted, they must be assumed to have the values 0, 0, the widthp676 member of the
imagedata structure, and the heightp676 member of the imagedata structure, respectively.

The method, when invoked, must act as follows:

1. Let buffer be imagedata's datap676 attribute value's [[ViewedArrayBuffer]] internal slot.

2. If IsDetachedBuffer(buffer) is true, then throw an "InvalidStateError" DOMException.

3. If dirtyWidth is negative, then let dirtyX be dirtyX+dirtyWidth, and let dirtyWidth be equal to the absolute magnitude of
dirtyWidth.

If dirtyHeight is negative, then let dirtyY be dirtyY+dirtyHeight, and let dirtyHeight be equal to the absolute magnitude of
dirtyHeight.

4. If dirtyX is negative, then let dirtyWidth be dirtyWidth+dirtyX, and let dirtyX be zero.

If dirtyY is negative, then let dirtyHeight be dirtyHeight+dirtyY, and let dirtyY be zero.

5. If dirtyX+dirtyWidth is greater than the widthp676 attribute of the imagedata argument, then let dirtyWidth be the value of
that widthp676 attribute, minus the value of dirtyX.

If dirtyY+dirtyHeight is greater than the heightp676 attribute of the imagedata argument, then let dirtyHeight be the value of
that heightp676 attribute, minus the value of dirtyY.

6. If, after those changes, either dirtyWidth or dirtyHeight are negative or zero, then return without affecting any bitmaps.

7. For all integer values of x and y where dirtyX ≤ x < dirtyX+dirtyWidth and dirtyY ≤ y < dirtyY+dirtyHeight, copy the four
channels of the pixel with coordinate (x, y) in the imagedata data structure's Canvas Pixel ArrayBufferp677 to the pixel with
coordinate (dx+x, dy+y) in the rendering context's output bitmapp643.

The current path, transformation matrixp659, shadow attributesp680, global alphap679, the clipping regionp670, and global composition
operatorp679 must not affect the methods described in this section.

Due to the lossy nature of converting to and from premultiplied alpha color values, pixels that have just been set using
putImageData()p677 might be returned to an equivalent getImageData()p676 as different values.

Note

In the following example, the script generates an ImageDatap642 object so that it can draw onto it.

// canvas is a reference to a <canvas> element
var context = canvas.getContext('2d');

// create a blank slate
var data = context.createImageData(canvas.width, canvas.height);

Example

✔ MDN

677

https://heycam.github.io/webidl/#idl-ArrayBuffer
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

// create some plasma
FillPlasma(data, 'green'); // green plasma

// add a cloud to the plasma
AddCloud(data, data.width/2, data.height/2); // put a cloud in the middle

// paint the plasma+cloud on the canvas
context.putImageData(data, 0, 0);

// support methods
function FillPlasma(data, color) { ... }
function AddCloud(data, x, y) { ... }

Here is an example of using getImageData()p676 and putImageData()p677 to implement an edge detection filter.

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Edge detection demo</title>
<script>
var image = new Image();
function init() {

image.onload = demo;
image.src = "image.jpeg";

}
function demo() {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');

// draw the image onto the canvas
context.drawImage(image, 0, 0);

// get the image data to manipulate
var input = context.getImageData(0, 0, canvas.width, canvas.height);

// get an empty slate to put the data into
var output = context.createImageData(canvas.width, canvas.height);

// alias some variables for convenience
// In this case input.width and input.height
// match canvas.width and canvas.height
// but we'll use the former to keep the code generic.
var w = input.width, h = input.height;
var inputData = input.data;
var outputData = output.data;

// edge detection
for (var y = 1; y < h-1; y += 1) {

for (var x = 1; x < w-1; x += 1) {
for (var c = 0; c < 3; c += 1) {

var i = (y*w + x)*4 + c;
outputData[i] = 127 + -inputData[i - w*4 - 4] - inputData[i - w*4] - inputData[i -

w*4 + 4] +
-inputData[i - 4] + 8*inputData[i] - inputData[i + 4]

+
-inputData[i + w*4 - 4] - inputData[i + w*4] - inputData[i +

w*4 + 4];
}

Example

678

All drawing operations on an object which implements the CanvasCompositingp639 interface are affected by the global compositing
attributes, globalAlphap679 and globalCompositeOperationp679.

The globalAlpha attribute gives an alpha value that is applied to shapes and images before they are composited onto the output
bitmapp643. The value must be in the range from 0.0 (fully transparent) to 1.0 (no additional transparency). If an attempt is made to set
the attribute to a value outside this range, including Infinity and Not-a-Number (NaN) values, then the attribute must retain its previous
value. When the context is created, the globalAlphap679 attribute must initially have the value 1.0.

The globalCompositeOperation attribute sets the current composition operator, which controls how shapes and images are
drawn onto the output bitmapp643, once they have had globalAlphap679 and the current transformation matrix applied. The possible
values are those defined in Compositing and Blending, and include the values source-over and copy. [COMPOSITE]p1285

These values are all case-sensitive — they must be used exactly as defined. User agents must not recognize values that are not
identical to one of the values given in Compositing and Blending. [COMPOSITE]p1285

On setting, if the user agent does not recognize the specified value, it must be ignored, leaving the value of
globalCompositeOperationp679 unaffected. Otherwise, the attribute must be set to the given new value.

When the context is created, the globalCompositeOperationp679 attribute must initially have the value source-overp679.

outputData[(y*w + x)*4 + 3] = 255; // alpha
}

}

// put the image data back after manipulation
context.putImageData(output, 0, 0);

}
</script>

</head>
<body onload="init()">
<canvas></canvas>

</body>
</html>

4.12.5.1.16 Compositing §p67

9

context . globalAlphap679 [= value]
Returns the current alpha value applied to rendering operations.
Can be set, to change the alpha value. Values outside of the range 0.0 .. 1.0 are ignored.

context . globalCompositeOperationp679 [= value]
Returns the current composition operation, from the values defined in Compositing and Blending. [COMPOSITE]p1285.
Can be set, to change the composition operation. Unknown values are ignored.

For web developers (non-normative)

4.12.5.1.17 Image smoothing §p67

9

context . imageSmoothingEnabledp680 [= value]
Returns whether pattern fills and the drawImage()p673 method will attempt to smooth images if their pixels don't line up exactly
with the display, when scaling images up.
Can be set, to change whether images are smoothed (true) or not (false).

For web developers (non-normative)

✔ MDN

✔ MDN

679

https://infra.spec.whatwg.org/#string-is

Objects that implement the CanvasImageSmoothingp639 interface have attributes that control how image smoothing is performed.

The imageSmoothingEnabled attribute, on getting, must return the last value it was set to. On setting, it must be set to the new value.
When the object implementing the CanvasImageSmoothingp639 interface is created, the attribute must be set to true.

The imageSmoothingQuality attribute, on getting, must return the last value it was set to. On setting, it must be set to the new value.
When the object implementing the CanvasImageSmoothingp639 interface is created, the attribute must be set to "lowp645".

All drawing operations on an object which implements the CanvasShadowStylesp640 interface are affected by the four global shadow
attributes.

The shadowColor attribute sets the color of the shadow.

When the context is created, the shadowColorp680 attribute initially must be transparent black.

On getting, the serialization of the colorp663 must be returned.

On setting, the new value must be parsedp58 with this canvasp634 element and the color assigned. If parsing the value results in failure
then it must be ignored, and the attribute must retain its previous value. [CSSCOLOR]p1286

The shadowOffsetX and shadowOffsetY attributes specify the distance that the shadow will be offset in the positive horizontal and
positive vertical distance respectively. Their values are in coordinate space units. They are not affected by the current transformation
matrix.

When the context is created, the shadow offset attributes must initially have the value 0.

On getting, they must return their current value. On setting, the attribute being set must be set to the new value, except if the value is
infinite or NaN, in which case the new value must be ignored.

The shadowBlur attribute specifies the level of the blurring effect. (The units do not map to coordinate space units, and are not
affected by the current transformation matrix.)

When the context is created, the shadowBlurp680 attribute must initially have the value 0.

On getting, the attribute must return its current value. On setting the attribute must be set to the new value, except if the value is
negative, infinite or NaN, in which case the new value must be ignored.

context . imageSmoothingQualityp680 [= value]
Returns the current image-smoothing-quality preference.
Can be set, to change the preferred quality of image smoothing. The possible values are "lowp645", "mediump645" and "highp645".
Unknown values are ignored.

4.12.5.1.18 Shadows §p68

0

context . shadowColorp680 [= value]
Returns the current shadow color.
Can be set, to change the shadow color. Values that cannot be parsed as CSS colors are ignored.

context . shadowOffsetXp680 [= value]
context . shadowOffsetYp680 [= value]

Returns the current shadow offset.
Can be set, to change the shadow offset. Values that are not finite numbers are ignored.

context . shadowBlurp680 [= value]
Returns the current level of blur applied to shadows.
Can be set, to change the blur level. Values that are not finite numbers greater than or equal to zero are ignored.

For web developers (non-normative)

✔ MDN

✔ MDN

✔ MDN

✔ MDN

680

https://drafts.csswg.org/css-color/#transparent-black

Shadows are only drawn if the opacity component of the alpha component of the color of shadowColorp680 is nonzero and either the
shadowBlurp680 is nonzero, or the shadowOffsetXp680 is nonzero, or the shadowOffsetYp680 is nonzero.

When shadows are drawnp681, they must be rendered as follows:

1. Let A be an infinite transparent black bitmap on which the source image for which a shadow is being created has been
rendered.

2. Let B be an infinite transparent black bitmap, with a coordinate space and an origin identical to A.

3. Copy the alpha channel of A to B, offset by shadowOffsetXp680 in the positive x direction, and shadowOffsetYp680 in the
positive y direction.

4. If shadowBlurp680 is greater than 0:

1. Let σ be half the value of shadowBlurp680.

2. Perform a 2D Gaussian Blur on B, using σ as the standard deviation.

User agents may limit values of σ to an implementation-specific maximum value to avoid exceeding hardware limitations
during the Gaussian blur operation.

5. Set the red, green, and blue components of every pixel in B to the red, green, and blue components (respectively) of the
color of shadowColorp680.

6. Multiply the alpha component of every pixel in B by the alpha component of the color of shadowColorp680.

7. The shadow is in the bitmap B, and is rendered as part of the drawing modelp682 described below.

If the current composition operation is copyp679, then shadows effectively won't render (since the shape will overwrite the shadow).

All drawing operations on an object which implements the CanvasFiltersp640 interface are affected by the global filter attribute.

The filterp681 attribute, on getting, must return the last value it was successfully set to. The value must not be re-serialized. On
setting, if the new value is 'none' (not the empty string, null, or undefined), filters must be disabled for the context. Otherwise, the
value must be parsed as a <filter-function-list> value. If the value cannot be parsed as a <filter-function-list> value, where using
property-independent style sheet syntax like 'inherit' or 'initial' is considered an invalid value, then it must be ignored, and the
attribute must retain its previous value. When creating the object implementing the CanvasFiltersp640 interface, the attribute must be
set to 'none'.

A <filter-function-list> value consists of a sequence of one or more filter functions or references to SVG filters. The input to the filter is
used as the input to the first item in the list. Subsequent items take the output of the previous item as their input. [FILTERS]p1287

Coordinates used in the value of the filterp681 attribute are interpreted such that one pixel is equivalent to one SVG user space unit
and to one canvas coordinate space unit. Filter coordinates are not affected by the current transformation matrixp659. The current
transformation matrix affects only the input to the filter. Filters are applied in the output bitmapp643 's coordinate space.

When the value of the filterp681 attribute defines lengths using percentages or using 'em' or 'ex' units, these must be interpreted
relative to the computed value of the 'font-size' property of the font style source objectp650 at the time that the attribute is set, if it is
an element. If the computed values are undefined for a particular case (e.g. because the font style source objectp650 is not an element
or is not being renderedp1192), then the relative keywords must be interpreted relative to the default value of the fontp651 attribute. The
'larger' and 'smaller' keywords are not supported.

If the value of the filterp681 attribute refers to an SVG filter in the same document, and this SVG filter changes, then the changed
filter is used for the next draw operation.

4.12.5.1.19 Filters §p68

1

context . filterp681 [= value]
Returns the current filter.
Can be set, to change the filter. Values that cannot be parsed as a <filter-function-list> value are ignored.

For web developers (non-normative)

MDN

681

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.fxtf.org/filter-effects/#typedef-filter-function-list
https://drafts.fxtf.org/filter-effects/#typedef-filter-function-list
https://drafts.fxtf.org/filter-effects/#typedef-filter-function-list
https://drafts.fxtf.org/filter-effects/#typedef-filter-function-list
https://drafts.csswg.org/css-values/#em
https://drafts.csswg.org/css-values/#ex
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-cascade/#computed-value

If the value of the filterp681 attribute refers to an SVG filter in an external resource document and that document is not loaded when
a drawing operation is invoked, then the drawing operation must proceed with no filtering.

This section is non-normative.

Since drawing is performed using filter value 'none' until an externally-defined filter has finished loading, authors might wish to
determine whether such a filter has finished loading before proceeding with a drawing operation. One way to accomplish this is to load
the externally-defined filter elsewhere within the same page in some element that sends a load event (for example, an SVG use
element), and wait for the load event to be dispatched.

When a shape or image is painted, user agents must follow these steps, in the order given (or act as if they do):

1. Render the shape or image onto an infinite transparent black bitmap, creating image A, as described in the previous
sections. For shapes, the current fill, stroke, and line styles must be honored, and the stroke must itself also be subjected to
the current transformation matrix.

2. When the filter attribute is set to a value other than 'none' and all the externally-defined filters it references, if any, are in
documents that are currently loaded, then use image A as the input to the filterp681, creating image B. Otherwise, let B be
an alias for A.

3. When shadows are drawnp681, render the shadow from image B, using the current shadow styles, creating image C.

4. When shadows are drawnp681, multiply the alpha component of every pixel in C by globalAlphap679.

5. When shadows are drawnp681, composite C within the clipping regionp670 over the current output bitmapp643 using the current
composition operatorp679.

6. Multiply the alpha component of every pixel in B by globalAlphap679.

7. Composite B within the clipping regionp670 over the current output bitmapp643 using the current composition operatorp679.

When compositing onto the output bitmapp643, pixels that would fall outside of the output bitmapp643 must be discarded.

When a canvas is interactive, authors should include focusablep772 elements in the element's fallback content corresponding to each
focusablep772 part of the canvas, as in the example abovep670.

When rendering focus rings, to ensure that focus rings have the appearance of native focus rings, authors should use the
drawFocusIfNeeded()p672 method, passing it the element for which a ring is being drawn. This method only draws the focus ring if the
element is focusedp771, so that it can simply be called whenever drawing the element, without checking whether the element is
focused or not first.

In addition to drawing focus rings, authors should use the scrollPathIntoView()p673 method when an element in the canvas is
focused, to make sure it is visible on the screen (if applicable).

Authors should avoid implementing text editing controls using the canvasp634 element. Doing so has a large number of disadvantages:

• Mouse placement of the caret has to be reimplemented.

• Keyboard movement of the caret has to be reimplemented (possibly across lines, for multiline text input).

• Scrolling of the text control has to be implemented (horizontally for long lines, vertically for multiline input).

• Native features such as copy-and-paste have to be reimplemented.

• Native features such as spell-checking have to be reimplemented.

4.12.5.1.20 Working with externally-defined SVG filters §p68

2

4.12.5.1.21 Drawing model §p68

2

4.12.5.1.22 Best practices §p68

2

682

https://svgwg.org/svg2-draft/struct.html#UseElement
https://drafts.csswg.org/css-color/#transparent-black

• Native features such as drag-and-drop have to be reimplemented.

• Native features such as page-wide text search have to be reimplemented.

• Native features specific to the user, for example custom text services, have to be reimplemented. This is close to impossible
since each user might have different services installed, and there is an unbounded set of possible such services.

• Bidirectional text editing has to be reimplemented.

• For multiline text editing, line wrapping has to be implemented for all relevant languages.

• Text selection has to be reimplemented.

• Dragging of bidirectional text selections has to be reimplemented.

• Platform-native keyboard shortcuts have to be reimplemented.

• Platform-native input method editors (IMEs) have to be reimplemented.

• Undo and redo functionality has to be reimplemented.

• Accessibility features such as magnification following the caret or selection have to be reimplemented.

This is a huge amount of work, and authors are most strongly encouraged to avoid doing any of it by instead using the inputp493

element, the textareap548 element, or the contenteditablep787 attribute.

This section is non-normative.

4.12.5.1.23 Examples §p68

3

Here is an example of a script that uses canvas to draw pretty glowing lines.

<canvas width="800" height="450"></canvas>
<script>

var context = document.getElementsByTagName('canvas')[0].getContext('2d');

var lastX = context.canvas.width * Math.random();
var lastY = context.canvas.height * Math.random();
var hue = 0;
function line() {

context.save();
context.translate(context.canvas.width/2, context.canvas.height/2);
context.scale(0.9, 0.9);
context.translate(-context.canvas.width/2, -context.canvas.height/2);
context.beginPath();
context.lineWidth = 5 + Math.random() * 10;
context.moveTo(lastX, lastY);
lastX = context.canvas.width * Math.random();
lastY = context.canvas.height * Math.random();
context.bezierCurveTo(context.canvas.width * Math.random(),

context.canvas.height * Math.random(),
context.canvas.width * Math.random(),
context.canvas.height * Math.random(),
lastX, lastY);

hue = hue + 10 * Math.random();
context.strokeStyle = 'hsl(' + hue + ', 50%, 50%)';
context.shadowColor = 'white';
context.shadowBlur = 10;
context.stroke();
context.restore();

Example

683

data:text/html;charset=utf-8;base64,PCFET0NUWVBFIEhUTUw%2BDQo8aHRtbCBsYW5nPSJlbiI%2BDQogPGhlYWQ%2BDQogIDx0aXRsZT5QcmV0dHkgR2xvd2luZyBMaW5lczwvdGl0bGU%2BDQogPC9oZWFkPg0KIDxib2R5Pg0KPGNhbnZhcyB3aWR0aD0iODAwIiBoZWlnaHQ9IjQ1MCI%2BPC9jYW52YXM%2BDQo8c2NyaXB0Pg0KDQogdmFyIGNvbnRleHQgPSBkb2N1bWVudC5nZXRFbGVtZW50c0J5VGFnTmFtZSgnY2FudmFzJylbMF0uZ2V0Q29udGV4dCgnMmQnKTsNCg0KIHZhciBsYXN0WCA9IGNvbnRleHQuY2FudmFzLndpZHRoICogTWF0aC5yYW5kb20oKTsNCiB2YXIgbGFzdFkgPSBjb250ZXh0LmNhbnZhcy5oZWlnaHQgKiBNYXRoLnJhbmRvbSgpOw0KIHZhciBodWUgPSAwOw0KIGZ1bmN0aW9uIGxpbmUoKSB7DQogICBjb250ZXh0LnNhdmUoKTsNCiAgIGNvbnRleHQudHJhbnNsYXRlKGNvbnRleHQuY2FudmFzLndpZHRoLzIsIGNvbnRleHQuY2FudmFzLmhlaWdodC8yKTsNCiAgIGNvbnRleHQuc2NhbGUoMC45LCAwLjkpOw0KICAgY29udGV4dC50cmFuc2xhdGUoLWNvbnRleHQuY2FudmFzLndpZHRoLzIsIC1jb250ZXh0LmNhbnZhcy5oZWlnaHQvMik7DQogICBjb250ZXh0LmJlZ2luUGF0aCgpOw0KICAgY29udGV4dC5saW5lV2lkdGggPSA1ICsgTWF0aC5yYW5kb20oKSAqIDEwOw0KICAgY29udGV4dC5tb3ZlVG8obGFzdFgsIGxhc3RZKTsNCiAgIGxhc3RYID0gY29udGV4dC5jYW52YXMud2lkdGggKiBNYXRoLnJhbmRvbSgpOw0KICAgbGFzdFkgPSBjb250ZXh0LmNhbnZhcy5oZWlnaHQgKiBNYXRoLnJhbmRvbSgpOw0KICAgY29udGV4dC5iZXppZXJDdXJ2ZVRvKGNvbnRleHQuY2FudmFzLndpZHRoICogTWF0aC5yYW5kb20oKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICBjb250ZXh0LmNhbnZhcy5oZWlnaHQgKiBNYXRoLnJhbmRvbSgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgIGNvbnRleHQuY2FudmFzLndpZHRoICogTWF0aC5yYW5kb20oKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICBjb250ZXh0LmNhbnZhcy5oZWlnaHQgKiBNYXRoLnJhbmRvbSgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgIGxhc3RYLCBsYXN0WSk7DQoNCiAgIGh1ZSA9IGh1ZSArIDEwICogTWF0aC5yYW5kb20oKTsNCiAgIGNvbnRleHQuc3Ryb2tlU3R5bGUgPSAnaHNsKCcgKyBodWUgKyAnLCA1MCUsIDUwJSknOw0KICAgY29udGV4dC5zaGFkb3dDb2xvciA9ICd3aGl0ZSc7DQogICBjb250ZXh0LnNoYWRvd0JsdXIgPSAxMDsNCiAgIGNvbnRleHQuc3Ryb2tlKCk7DQogICBjb250ZXh0LnJlc3RvcmUoKTsNCiB9DQogc2V0SW50ZXJ2YWwobGluZSwgNTApOw0KDQogZnVuY3Rpb24gYmxhbmsoKSB7DQogICBjb250ZXh0LmZpbGxTdHlsZSA9ICdyZ2JhKDAsMCwwLDAuMSknOw0KICAgY29udGV4dC5maWxsUmVjdCgwLCAwLCBjb250ZXh0LmNhbnZhcy53aWR0aCwgY29udGV4dC5jYW52YXMuaGVpZ2h0KTsNCiB9DQogc2V0SW50ZXJ2YWwoYmxhbmssIDQwKTsNCg0KPC9zY3JpcHQ%2BDQogPC9ib2R5Pg0KPC9odG1sPg0K

}
setInterval(line, 50);

function blank() {
context.fillStyle = 'rgba(0,0,0,0.1)';
context.fillRect(0, 0, context.canvas.width, context.canvas.height);

}
setInterval(blank, 40);

</script>

The 2D rendering context for canvasp634 is often used for sprite-based games. The following example demonstrates this:

Blue Robot Player Sprite by JohnColburn. Licensed under the
terms of the Creative Commons Attribution Share-Alike 3.0
Unported license. This work is itself licensed under a Creative
Commons Attribution-ShareAlike 3.0 Unported License.

Walk Stop

Here is the source for this example:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Blue Robot Demo</title>
<style>

html { overflow: hidden; min-height: 200px; min-width: 380px; }
body { height: 200px; position: relative; margin: 8px; }
.buttons { position: absolute; bottom: 0px; left: 0px; margin: 4px; }

</style>
<canvas width="380" height="200"></canvas>
<script>
var Landscape = function (context, width, height) {

this.offset = 0;
this.width = width;
this.advance = function (dx) {

this.offset += dx;
};
this.horizon = height * 0.7;
// This creates the sky gradient (from a darker blue to white at the bottom)
this.sky = context.createLinearGradient(0, 0, 0, this.horizon);
this.sky.addColorStop(0.0, 'rgb(55,121,179)');
this.sky.addColorStop(0.7, 'rgb(121,194,245)');
this.sky.addColorStop(1.0, 'rgb(164,200,214)');
// this creates the grass gradient (from a darker green to a lighter green)
this.earth = context.createLinearGradient(0, this.horizon, 0, height);
this.earth.addColorStop(0.0, 'rgb(81,140,20)');
this.earth.addColorStop(1.0, 'rgb(123,177,57)');
this.paintBackground = function (context, width, height) {

Example

684

https://johncolburn.deviantart.com/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

// first, paint the sky and grass rectangles
context.fillStyle = this.sky;
context.fillRect(0, 0, width, this.horizon);
context.fillStyle = this.earth;
context.fillRect(0, this.horizon, width, height-this.horizon);
// then, draw the cloudy banner
// we make it cloudy by having the draw text off the top of the
// canvas, and just having the blurred shadow shown on the canvas
context.save();
context.translate(width-((this.offset+(this.width*3.2)) % (this.width*4.0))+0, 0);
context.shadowColor = 'white';
context.shadowOffsetY = 30+this.horizon/3; // offset down on canvas
context.shadowBlur = '5';
context.fillStyle = 'white';
context.textAlign = 'left';
context.textBaseline = 'top';
context.font = '20px sans-serif';
context.fillText('WHATWG ROCKS', 10, -30); // text up above canvas
context.restore();
// then, draw the background tree
context.save();
context.translate(width-((this.offset+(this.width*0.2)) % (this.width*1.5))+30, 0);
context.beginPath();
context.fillStyle = 'rgb(143,89,2)';
context.lineStyle = 'rgb(10,10,10)';
context.lineWidth = 2;
context.rect(0, this.horizon+5, 10, -50); // trunk
context.fill();
context.stroke();
context.beginPath();
context.fillStyle = 'rgb(78,154,6)';
context.arc(5, this.horizon-60, 30, 0, Math.PI*2); // leaves
context.fill();
context.stroke();
context.restore();

};
this.paintForeground = function (context, width, height) {

// draw the box that goes in front
context.save();
context.translate(width-((this.offset+(this.width*0.7)) % (this.width*1.1))+0, 0);
context.beginPath();
context.rect(0, this.horizon - 5, 25, 25);
context.fillStyle = 'rgb(220,154,94)';
context.lineStyle = 'rgb(10,10,10)';
context.lineWidth = 2;
context.fill();
context.stroke();
context.restore();

};
};

</script>
<script>
var BlueRobot = function () {

this.sprites = new Image();
this.sprites.src = 'blue-robot.png'; // this sprite sheet has 8 cells
this.targetMode = 'idle';
this.walk = function () {

this.targetMode = 'walk';
};
this.stop = function () {

685

this.targetMode = 'idle';
};
this.frameIndex = {

'idle': [0], // first cell is the idle frame
'walk': [1,2,3,4,5,6], // the walking animation is cells 1-6
'stop': [7], // last cell is the stopping animation

};
this.mode = 'idle';
this.frame = 0; // index into frameIndex
this.tick = function () {

// this advances the frame and the robot
// the return value is how many pixels the robot has moved
this.frame += 1;
if (this.frame >= this.frameIndex[this.mode].length) {

// we've reached the end of this animation cycle
this.frame = 0;
if (this.mode != this.targetMode) {

// switch to next cycle
if (this.mode == 'walk') {

// we need to stop walking before we decide what to do next
this.mode = 'stop';

} else if (this.mode == 'stop') {
if (this.targetMode == 'walk')

this.mode = 'walk';
else

this.mode = 'idle';
} else if (this.mode == 'idle') {

if (this.targetMode == 'walk')
this.mode = 'walk';

}
}

}
if (this.mode == 'walk')

return 8;
return 0;

},
this.paint = function (context, x, y) {

if (!this.sprites.complete) return;
// draw the right frame out of the sprite sheet onto the canvas
// we assume each frame is as high as the sprite sheet
// the x,y coordinates give the position of the bottom center of the sprite
context.drawImage(this.sprites,

this.frameIndex[this.mode][this.frame] * this.sprites.height, 0,
this.sprites.height, this.sprites.height,

x-this.sprites.height/2, y-this.sprites.height, this.sprites.height,
this.sprites.height);

};
};

</script>
<script>
var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');
var landscape = new Landscape(context, canvas.width, canvas.height);
var blueRobot = new BlueRobot();
// paint when the browser wants us to, using requestAnimationFrame()
function paint() {

context.clearRect(0, 0, canvas.width, canvas.height);
landscape.paintBackground(context, canvas.width, canvas.height);
blueRobot.paint(context, canvas.width/2, landscape.horizon*1.1);
landscape.paintForeground(context, canvas.width, canvas.height);

686

ImageBitmapRenderingContextp687 is a performance-oriented interface that provides a low overhead method for displaying the
contents of ImageBitmapp990 objects. It uses transfer semantics to reduce overall memory consumption. It also streamlines
performance by avoiding intermediate compositing, unlike the drawImage()p673 method of CanvasRenderingContext2Dp638.

Using an imgp320 element as an intermediate for getting an image resource into a canvas, for example, would result in two copies of the
decoded image existing in memory at the same time: the imgp320 element's copy, and the one in the canvas's backing store. This
memory cost can be prohibitive when dealing with extremely large images. This can be avoided by using
ImageBitmapRenderingContextp687.

[Exposed=(Window,Worker)]
interface ImageBitmapRenderingContext {

readonly attribute (HTMLCanvasElement or OffscreenCanvas) canvas;
undefined transferFromImageBitmap(ImageBitmap? bitmap);

};

requestAnimationFrame(paint);
}
paint();
// but tick every 100ms, so that we don't slow down when we don't paint
setInterval(function () {

var dx = blueRobot.tick();
landscape.advance(dx);

}, 100);
</script>
<p class="buttons">
<input type=button value="Walk" onclick="blueRobot.walk()">
<input type=button value="Stop" onclick="blueRobot.stop()">

<footer>
<small> Blue Robot Player Sprite by JohnColburn.
Licensed under the terms of the Creative Commons Attribution Share-Alike 3.0 Unported

license.</small>
<small> This work is itself licensed under a <a rel="license" href="https://creativecommons.org/

licenses/by-sa/3.0/">Creative
Commons Attribution-ShareAlike 3.0 Unported License.</small>

</footer>

4.12.5.2 The ImageBitmapp990 rendering context §p68

7

4.12.5.2.1 Introduction §p68

7

Using ImageBitmapRenderingContextp687, here is how to transcode an image to the JPEG format in a memory- and CPU-efficient
way:

createImageBitmap(inputImageBlob).then(image => {
const canvas = document.createElement('canvas');
const context = canvas.getContext('bitmaprenderer');
context.transferFromImageBitmap(image);

canvas.toBlob(outputJPEGBlob => {
// Do something with outputJPEGBlob.

}, 'image/jpeg');
});

Example

4.12.5.2.2 The ImageBitmapRenderingContextp687 interface §p68

7

IDL

MDN

687

dictionary ImageBitmapRenderingContextSettings {
boolean alpha = true;

};

The canvas attribute must return the value it was initialized to when the object was created.

An ImageBitmapRenderingContextp687 object has an output bitmap, which is a reference to bitmap datap991.

An ImageBitmapRenderingContextp687 object has a bitmap mode, which can be set to valid or blank. A value of validp688 indicates
that the context's output bitmapp688 refers to bitmap datap991 that was acquired via transferFromImageBitmap()p689. A value blankp688

indicates that the context's output bitmapp688 is a default transparent bitmap.

An ImageBitmapRenderingContextp687 object also has an alpha flag, which can be set to true or false. When an
ImageBitmapRenderingContextp687 object has its alphap688 flag set to false, the contents of the canvasp634 element to which the
context is bound are obtained by compositing the context's output bitmapp688 onto an opaque black bitmap of the same size using the
source-over composite operation. If the alphap688 flag is set to true, then the output bitmapp688 is used as the contents of the
canvasp634 element to which the context is bound. [COMPOSITE]p1285

When a user agent is required to set an ImageBitmapRenderingContext's output bitmap, with a context argument that is an
ImageBitmapRenderingContextp687 object and an optional argument bitmap that refers to bitmap datap991, it must run these steps:

1. If a bitmap argument was not provided, then:

1. Set context's bitmap modep688 to blankp688.

2. Let canvas be the canvasp634 element to which context is bound.

3. Set context's output bitmapp688 to be transparent black with an intrinsic width equal to the numeric valuep635 of
canvas's widthp635 attribute and an intrinsic height equal to the numeric valuep635 of canvas's heightp635 attribute,
those values being interpreted in CSS pixels.

4. Set the output bitmapp688 's origin-cleanp635 flag to true.

2. If a bitmap argument was provided, then:

1. Set context's bitmap modep688 to validp688.

2. Set context's output bitmapp688 to refer to the same underlying bitmap data as bitmap, without making a copy.

context = canvas . getContextp636('bitmaprenderer' [, { [alphap689: false] }])
Returns an ImageBitmapRenderingContextp687 object that is permanently bound to a particular canvasp634 element.
If the alphap689 setting is provided and set to false, then the canvas is forced to always be opaque.

context . canvasp688

Returns the canvasp634 element that the context is bound to.

context . transferFromImageBitmapp689(imageBitmap)
Transfers the underlying bitmap datap991 from imageBitmap to context, and the bitmap becomes the contents of the canvasp634

element to which context is bound.

context . transferFromImageBitmapp689(null)
Replaces contents of the canvasp634 element to which context is bound with a transparent black bitmap whose size corresponds
to the widthp635 and heightp635 content attributes of the canvasp634 element.

For web developers (non-normative)

The step of compositing over an opaque black bitmap ought to be elided whenever equivalent results can be obtained more
efficiently by other means.

Note

The origin-cleanp635 flag of bitmap is included in the bitmap data to be referenced by context's output
Note

688

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-values/#px

The ImageBitmapRenderingContext creation algorithm, which is passed a target and options, consists of running these steps:

1. Let settings be the result of converting options to the dictionary type ImageBitmapRenderingContextSettingsp688. (This can
throw an exception.)

2. Let context be a new ImageBitmapRenderingContextp687 object.

3. Initialize context's canvasp644 attribute to point to target.

4. Set context's output bitmapp688 to the same bitmap as target's bitmap (so that they are shared).

5. Run the steps to set an ImageBitmapRenderingContext's output bitmapp688 with context.

6. Initialize context's alphap688 flag to true.

7. Process each of the members of settings as follows:

alpha
If false, then set context's alphap688 flag to false.

8. Return context.

The transferFromImageBitmap(imageBitmap) method, when invoked, must run these steps:

1. Let bitmapContext be the ImageBitmapRenderingContextp687 object on which the transferFromImageBitmap()p689 method
was called.

2. If imageBitmap is null, then run the steps to set an ImageBitmapRenderingContext's output bitmapp688, with bitmapContext
as the context argument and no bitmap argument, then return.

3. If the value of imageBitmap's [[Detached]]p104 internal slot is set to true, then throw an "InvalidStateError" DOMException.

4. Run the steps to set an ImageBitmapRenderingContext's output bitmapp688, with the context argument equal to
bitmapContext, and the bitmap argument referring to imageBitmap's underlying bitmap datap991.

5. Set the value of imageBitmap's [[Detached]]p104 internal slot to true.

6. Unset imageBitmap's bitmap datap991.

typedef (OffscreenCanvasRenderingContext2D or ImageBitmapRenderingContext or WebGLRenderingContext or
WebGL2RenderingContext) OffscreenRenderingContext;

dictionary ImageEncodeOptions {
DOMString type = "image/png";
unrestricted double quality;

};

enum OffscreenRenderingContextId { "2d", "bitmaprenderer", "webgl", "webgl2" };

[Exposed=(Window,Worker), Transferable]
interface OffscreenCanvas : EventTarget {

constructor([EnforceRange] unsigned long long width, [EnforceRange] unsigned long long height);

attribute [EnforceRange] unsigned long long width;
attribute [EnforceRange] unsigned long long height;

bitmapp688.

4.12.5.3 The OffscreenCanvasp689 interface §p68

9

IDL

MDN

⚠ MDN

689

https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://dom.spec.whatwg.org/#interface-eventtarget

OffscreenRenderingContext? getContext(OffscreenRenderingContextId contextId, optional any options =
null);

ImageBitmap transferToImageBitmap();
Promise<Blob> convertToBlob(optional ImageEncodeOptions options = {});

};

OffscreenCanvasp689 objects are used to create rendering contexts, much like an HTMLCanvasElementp634, but with no connection to
the DOM. This makes it possible to use canvas rendering contexts in workersp1028.

An OffscreenCanvasp689 object may hold a weak reference to a placeholder canvas element, which is typically in the DOM, whose
embedded content is provided by the OffscreenCanvasp689 object. The bitmap of the OffscreenCanvasp689 object is pushed to the
placeholder canvas elementp690 by calling the commit() method of the OffscreenCanvasp689 object's rendering context. All rendering
context types that can be created by an OffscreenCanvasp689 object must implement a commit()p690 method. The exact behavior of
the commit method (e.g. whether it copies or transfers bitmaps) may vary, as defined by the rendering contexts' respective
specifications. Only the 2D context for offscreen canvasesp693 is defined in this specification.

An OffscreenCanvasp689 object has an internal bitmap that is initialized when the object is created. The width and height of the
bitmapp690 are equal to the values of the widthp691 and heightp691 attributes of the OffscreenCanvasp689 object. Initially, all the
bitmap's pixels are transparent black.

An OffscreenCanvasp689 object can have a rendering context bound to it. Initially, it does not have a bound rendering context. To keep
track of whether it has a rendering context or not, and what kind of rendering context it is, an OffscreenCanvasp689 object also has a
context mode, which is initially none but can be changed to either 2d, bitmaprenderer, webgl, webgl2, or detached by
algorithms defined in this specification.

The constructor OffscreenCanvas(width, height), when invoked, must create a new OffscreenCanvasp689 object with its bitmapp690

initialized to a rectangular array of transparent black pixels of the dimensions specified by width and height; and its widthp691 and
heightp691 attributes initialized to width and height respectively.

OffscreenCanvasp689 objects are transferablep103. Their transfer stepsp104, given value and dataHolder, are as follows:

1. If value's context modep690 is not equal to nonep690, then throw an "InvalidStateError" DOMException.

2. Set value's context modep690 to detachedp690.

3. Let width and height be the dimensions of value's bitmapp690.

4. Unset value's bitmapp690.

5. Set dataHolder.[[Width]] to width and dataHolder.[[Height]] to height.

6. Set dataHolder.[[PlaceholderCanvas]] to be a weak reference to value's placeholder canvas elementp690, if value has one, or
null if it does not.

OffscreenCanvasp689 is an EventTarget so that WebGL can fire webglcontextlost and webglcontextrestored events at it.
[WEBGL]p1292

Note

offscreenCanvas = new OffscreenCanvasp690(width, height)
Returns a new OffscreenCanvasp689 object that is not linked to a placeholder canvas elementp690, and whose bitmap's size is
determined by the width and height arguments.

context = offscreenCanvas . getContextp691(contextId [, options])
Returns an object that exposes an API for drawing on the OffscreenCanvasp689 object. contextId specifies the desired API:
"2dp691", "bitmaprendererp691", "webglp691", or "webgl2p691". options is handled by that API.
This specification defines the "2dp636" context below, which is similar but distinct from the "2dp691" context that is created from a
canvasp634 element. The WebGL specifications define the "webglp691" and "webgl2p691" contexts. [WEBGL]p1292

Returns null if the canvas has already been initialized with another context type (e.g., trying to get a "2dp691" context after
getting a "webglp691" context).

For web developers (non-normative)

⚠ MDN

⚠ MDN

690

https://w3c.github.io/FileAPI/#dfn-Blob
https://dom.spec.whatwg.org/#interface-eventtarget
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

Their transfer-receiving stepsp104, given dataHolder and value, are:

1. Initialize value's bitmapp690 to a rectangular array of transparent black pixels with width given by dataHolder.[[Width]] and
height given by dataHolder.[[Height]].

2. If dataHolder.[[PlaceholderCanvas]] is not null, set value's placeholder canvas elementp690 to
dataHolder.[[PlaceholderCanvas]] (while maintaining the weak reference semantics).

The getContext(contextId, options) method of an OffscreenCanvasp689 object, when invoked, must run these steps:

1. If options is not an object, then set options to null.

2. Set options to the result of converting options to a JavaScript value.

3. Run the steps in the cell of the following table whose column header matches this OffscreenCanvasp689 object's context
modep690 and whose row header matches contextId:

nonep690 2dp690 bitmaprendererp690 webglp690 or
webgl2p690

detachedp690

"2d" Follow the offscreen 2D context creation
algorithmp693 defined in the section below, passing it
this OffscreenCanvasp689 object and options, to
obtain an OffscreenCanvasRenderingContext2Dp693

object; if this does not throw an exception, then set
this OffscreenCanvasp689 object's context modep690

to 2dp690, and return the new
OffscreenCanvasRenderingContext2Dp693 object.

Return the
same object
as was
returned the
last time the
method was
invoked with
this same
first
argument.

Return null. Return null. Throw an
"InvalidStateError"
DOMException.

"bitmaprenderer" Follow the ImageBitmapRenderingContext creation
algorithmp689 defined in the section above, passing it
this OffscreenCanvasp689 object and options, to
obtain an ImageBitmapRenderingcontextp687 object;
if this does not throw an exception, then set this
OffscreenCanvasp689 object's context modep690 to
bitmaprendererp690, and return the new
ImageBitmapRenderingcontextp687 object.

Return null. Return the same
object as was
returned the last
time the method was
invoked with this
same first argument.

Return null. Throw an
"InvalidStateError"
DOMException.

"webgl" or
"webgl2"

Follow the instructions given in the WebGL
specifications' Context Creation sections to obtain
either a WebGLRenderingContext,
WebGL2RenderingContext, or null; if the returned
value is null, then return null; otherwise, set this
OffscreenCanvasp689 object's context modep690 to
webglp690 or webgl2p690, and return the
WebGLRenderingContext or
WebGL2RenderingContext object. [WEBGL]p1292

Return null. Return null. Return the
same value
as was
returned the
last time the
method was
invoked with
this same
first
argument.

Throw an
"InvalidStateError"
DOMException.

If either the width or height attributes of an OffscreenCanvasp689 object are set (to a new value or to the same value as before) and
the OffscreenCanvasp689 object's context modep690 is 2dp690, then replace the OffscreenCanvasp689 object's bitmapp690 with a new
transparent black bitmap and reset the rendering context to its default statep646. The new bitmap's dimensions are equal to the new
values of the widthp691 and heightp691 attributes.

The resizing behavior for "webglp691" and "webgl2p691" contexts is defined in the WebGL specifications. [WEBGL]p1292

offscreenCanvas . widthp691 [= value]
offscreenCanvas . heightp691 [= value]

These attributes return the dimensions of the OffscreenCanvasp689 object's bitmapp690.
They can be set, to replace the bitmapp690 with a new, transparent black bitmap of the specified dimensions (effectively resizing
it).

For web developers (non-normative)

If an OffscreenCanvasp689 object whose dimensions were changed has a placeholder canvas elementp690, then the placeholder
Note

⚠ MDN

⚠ MDN

691

https://drafts.csswg.org/css-color/#transparent-black
https://heycam.github.io/webidl/#idl-object
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black

The convertToBlob(options) method, when invoked, must run the following steps:

1. If the value of this OffscreenCanvasp689 object's [[Detached]]p104 internal slot is set to true, then return a promise rejected
with an "InvalidStateError" DOMException.

2. If this OffscreenCanvasp689 object's context modep690 is 2dp690 and the rendering context's bitmapp693 's origin-cleanp693 flag is
set to false, then return a promise rejected with a "SecurityError" DOMException.

3. If this OffscreenCanvasp689 object's bitmapp690 has no pixels (i.e., either its horizontal dimension or its vertical dimension is
zero) then return a promise rejected with an "IndexSizeError" DOMException.

4. Let bitmap be a copy of this OffscreenCanvasp689 object's bitmapp690.

5. Let result be a new promise object.

6. Run these steps in parallelp42:

1. Let file be a serialization of bitmap as a filep695, with options's type and quality if present.

2. Queue an element taskp946 on the canvas blob serialization task sourcep638 given the canvasp634 element to run
these steps:

1. If file is null, then reject result with an "EncodingError" DOMException.

2. Otherwise, resolve result with a new Blob object, created in the relevant Realmp924 of this
OffscreenCanvasp689 object, representing file. [FILEAPI]p1287

7. Return result.

The transferToImageBitmap() method, when invoked, must run the following steps:

1. If the value of this OffscreenCanvasp689 object's [[Detached]]p104 internal slot is set to true, then throw an
"InvalidStateError" DOMException.

2. If this OffscreenCanvasp689 object's context modep690 is set to nonep690, then throw an "InvalidStateError" DOMException.

3. Let image be a newly created ImageBitmapp990 object that references the same underlying bitmap data as this
OffscreenCanvasp689 object's bitmapp690.

4. Set this OffscreenCanvasp689 object's bitmapp690 to reference a newly created bitmap of the same dimensions as the
previous bitmap, and with its pixels initialized to transparent black, or opaque black if the rendering context's alphap693 flag is
set to false.

5. Return image.

canvas elementp690 's intrinsic size will only be updated via the commit()p690 method of the OffscreenCanvasp689 object's rendering
context.

promise = offscreenCanvas . convertToBlobp692([options])
Returns a promise that will fulfill with a new Blob object representing a file containing the image in the OffscreenCanvasp689

object.
The argument, if provided, is a dictionary that controls the encoding options of the image file to be created. The typep692 field
specifies the file format and has a default value of "image/pngp1283"; that type is also used if the requested type isn't supported.
If the image format supports variable quality (such as "image/jpegp1283"), then the qualityp692 field is a number in the range
0.0 to 1.0 inclusive indicating the desired quality level for the resulting image.

canvas . transferToImageBitmapp692()
Returns a newly created ImageBitmapp990 object with the image in the OffscreenCanvasp689 object. The image in the
OffscreenCanvasp689 object is replaced with a new blank image.

For web developers (non-normative)

This means that if the rendering context of this OffscreenCanvasp689 is a WebGLRenderingContext, the value of
preserveDrawingBuffer will have no effect. [WEBGL]p1292

Note

⚠ MDN

⚠ MDN

692

https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#indexsizeerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#encodingerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#opaque-black
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLContextAttributes

[Exposed=(Window,Worker)]
interface OffscreenCanvasRenderingContext2D {

undefined commit();
readonly attribute OffscreenCanvas canvas;

};

OffscreenCanvasRenderingContext2D includes CanvasState;
OffscreenCanvasRenderingContext2D includes CanvasTransform;
OffscreenCanvasRenderingContext2D includes CanvasCompositing;
OffscreenCanvasRenderingContext2D includes CanvasImageSmoothing;
OffscreenCanvasRenderingContext2D includes CanvasFillStrokeStyles;
OffscreenCanvasRenderingContext2D includes CanvasShadowStyles;
OffscreenCanvasRenderingContext2D includes CanvasFilters;
OffscreenCanvasRenderingContext2D includes CanvasRect;
OffscreenCanvasRenderingContext2D includes CanvasDrawPath;
OffscreenCanvasRenderingContext2D includes CanvasText;
OffscreenCanvasRenderingContext2D includes CanvasDrawImage;
OffscreenCanvasRenderingContext2D includes CanvasImageData;
OffscreenCanvasRenderingContext2D includes CanvasPathDrawingStyles;
OffscreenCanvasRenderingContext2D includes CanvasTextDrawingStyles;
OffscreenCanvasRenderingContext2D includes CanvasPath;

The OffscreenCanvasRenderingContext2Dp693 object is a rendering context for drawing to the bitmapp690 of an OffscreenCanvasp689

object. It is similar to the CanvasRenderingContext2Dp638 object, with the following differences:

• there is no support for user interfacep640 features;

• its canvasp694 attribute refers to an OffscreenCanvasp689 object rather than a canvasp634 element;

• it has a commit()p694 method for pushing the rendered image to the context's OffscreenCanvasp689 object's placeholder
canvas elementp690.

An OffscreenCanvasRenderingContext2Dp693 object has a bitmap that is initialized when the object is created.

The bitmapp693 has an origin-clean flag, which can be set to true or false. Initially, when one of these bitmaps is created, its origin-
cleanp693 flag must be set to true.

An OffscreenCanvasRenderingContext2Dp693 object also has an alpha flag, which can be set to true or false. Initially, when the
context is created, its alpha flag must be set to true. When an OffscreenCanvasRenderingContext2Dp693 object has its alphap693 flag
set to false, then its alpha channel must be fixed to 1.0 (fully opaque) for all pixels, and attempts to change the alpha component of
any pixel must be silently ignored.

An OffscreenCanvasRenderingContext2Dp693 object has an associated OffscreenCanvas object, which is the OffscreenCanvasp689

object from which the OffscreenCanvasRenderingContext2Dp693 object was created.

The offscreen 2D context creation algorithm, which is passed a target (an OffscreenCanvasp689 object) and optionally some
arguments, consists of running the following steps:

1. If the algorithm was passed some arguments, let arg be the first such argument. Otherwise, let arg be undefined.

2. Let settings be the result of converting options to the dictionary type CanvasRenderingContext2DSettingsp638. (This can
throw an exception.).

4.12.5.3.1 The offscreen 2D rendering context §p69

3

offscreenCanvasRenderingContext2D . commitp694()
Copies the rendering context's bitmapp693 to the bitmap of the placeholder canvas elementp690 of the associated
OffscreenCanvas objectp693. The copy operation is synchronous. Calling this method is not needed for the transfer, since it
happens automatically during the event loopp944 execution.

offscreenCanvas = offscreenCanvasRenderingContext2D . canvasp694

Returns the associated OffscreenCanvas objectp693.

For web developers (non-normative)

IDL

693

https://heycam.github.io/webidl/#es-type-mapping

3. Let context be a new OffscreenCanvasRenderingContext2Dp693 object.

4. Set context's associated OffscreenCanvas objectp693 to target.

5. Process each of the members of settings as follows:

alphap644

If false, set context's alphap693 flag to false.

6. Set context's bitmapp693 to a newly created bitmap with the dimensions specified by the widthp691 and heightp691 attributes
of target, and set target's bitmap to the same bitmap (so that they are shared).

7. If context's alphap693 flag is set to true, initialize all the pixels of context's bitmapp693 to transparent black. Otherwise,
initialize the pixels to opaque black.

8. Return context.

The commit() method, when invoked, must run the following steps:

1. If this OffscreenCanvasRenderingContext2Dp693 's associated OffscreenCanvas objectp693 does not have a placeholder
canvas elementp690, then return.

2. Let image be a copy of this OffscreenCanvasRenderingContext2Dp693 's bitmapp693, including the value of its origin-cleanp693

flag.

3. Queue an element taskp946 on the DOM manipulation task sourcep952 given the placeholder canvas elementp690 to set the
placeholder canvas elementp690 's output bitmapp643 to be a reference to image.

The canvas attribute, on getting, must return this OffscreenCanvasRenderingContext2Dp693 's associated OffscreenCanvas objectp693.

The canvasp634 APIs must perform color correction at only two points: when rendering images with their own gamma correction and
color space information onto a bitmap, to convert the image to the color space used by the bitmaps (e.g. using the 2D Context's
drawImage()p673 method with an HTMLOrSVGImageElementp638 object), and when rendering the actual canvas bitmap to the output
device.

The toDataURL()p637 method, when invoked, must not include color space information in the resources they return. Where the output
format allows it, the color of pixels in resources created by toDataURL()p637 must match those returned by the getImageData()p676

method.

In user agents that support CSS, the color space used by a canvasp634 element must match the color space used for processing any

If image has different dimensions than the bitmap previously referenced as the placeholder canvas elementp690 's output
bitmapp643, then this task will result in a change in the placeholder canvas elementp690 's intrinsic size, which can affect
document layout.

Note

Implementations are encouraged to short-circuit the graphics update steps of the window event loopp944 for the purposes of
updating the contents of a placeholder canvas elementp690 to the display. This could mean, for example, that the commit()p694

method can copy the bitmap contents directly to a graphics buffer that is mapped to the physical display location of the
placeholder canvas elementp690. This or similar short-circuiting approaches can significantly reduce display latency, especially in
cases where the commit()p694 method is invoked from a worker event loopp944 and the window event loopp944 of the placeholder
canvas elementp690 is busy. However, such shortcuts can not have any script-observable side-effects. This means that the
committed bitmap still needs to be sent to the placeholder canvas elementp690, in case the element is used as a
CanvasImageSourcep638, as an ImageBitmapSourcep990, or in case toDataURL()p637 or toBlob()p638 are called on it.

Note

4.12.5.4 Color spaces and color correction §p69

4

Thus, in the 2D context, colors used to draw shapes onto the canvas will exactly match colors obtained through the
getImageData()p676 method.

Note

694

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-images/#intrinsic-dimensions

colors for that element in CSS.

The gamma correction and color space information of images must be handled in such a way that an image rendered directly using an
imgp320 element would use the same colors as one painted on a canvasp634 element that is then itself rendered. Furthermore, the
rendering of images that have no color correction information (such as those returned by the toDataURL()p637 method) must be
rendered with no color correction.

When a user agent is to create a serialization of the bitmap as a file, given a type and an optional quality, it must create an image
file in the format given by type. If an error occurs during the creation of the image file (e.g. an internal encoder error), then the result
of the serialization is null. [PNG]p1290

The image file's pixel data must be the bitmap's pixel data scaled to one image pixel per coordinate space unit, and if the file format
used supports encoding resolution metadata, the resolution must be given as 96dpi (one image pixel per CSS pixel).

If type is supplied, then it must be interpreted as a MIME type giving the format to use. If the type has any parameters, then it must be
treated as not supported.

User agents must support PNG ("image/pngp1283"). User agents may support other types. If the user agent does not support the
requested type, then it must create the file using the PNG format. [PNG]p1290

User agents must convert the provided type to ASCII lowercase before establishing if they support that type.

For image types that do not support an alpha channel, the serialized image must be the bitmap image composited onto an opaque
black background using the source-over operator.

If type is an image format that supports variable quality (such as "image/jpegp1283"), quality is given, and type is not "image/pngp1283",
then, if Type(quality) is Number, and quality is in the range 0.0 to 1.0 inclusive, the user agent must treat quality as the desired quality
level. Otherwise, the user agent must use its default quality value, as if the quality argument had not been given.

This section is non-normative.

Information leakage can occur if scripts from one originp837 can access information (e.g. read pixels) from images from another origin
(one that isn't the samep838).

To mitigate this, bitmaps used with canvasp634 elements and ImageBitmapp990 objects are defined to have a flag indicating whether
they are origin-cleanp635. All bitmaps start with their origin-cleanp635 set to true. The flag is set to false when cross-origin images are

Thus, in the 2D context, calling the drawImage()p673 method to render the output of the toDataURL()p637 method to the canvas,
given the appropriate dimensions, has no visible effect.

Note

4.12.5.5 Serializing bitmaps to a file §p69

5

For example, the value "image/pngp1283" would mean to generate a PNG image, the value "image/jpegp1283" would mean to
generate a JPEG image, and the value "image/svg+xmlp1283" would mean to generate an SVG image (which would require that the
user agent track how the bitmap was generated, an unlikely, though potentially awesome, feature).

Example

The use of type-testing here, instead of simply declaring quality as a Web IDL double, is a historical artifact.
Note

Different implementations can have slightly different interpretations of "quality". When the quality is not specified, an
implementation-specific default is used that represents a reasonable compromise between compression ratio, image quality, and
encoding time.

Note

4.12.5.6 Security with canvasp634 elements §p69

5

695

https://drafts.csswg.org/css-values/#px
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#ascii-lowercase
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#opaque-black
https://tc39.es/ecma262/#sec-ecmascript-data-types-and-values

used.

The toDataURL()p637, toBlob()p638, and getImageData()p676 methods check the flag and will throw a "SecurityError" DOMException
rather than leak cross-origin data.

The value of the origin-cleanp635 flag is propagated from a source canvasp634 element's bitmap to a new ImageBitmapp990 object by
createImageBitmap()p992. Conversely, a destination canvasp634 element's bitmap will have its origin-cleanp635 flags set to false by
drawImagep673 if the source image is an ImageBitmapp990 object whose bitmap has its origin-cleanp635 flag set to false.

The flag can be reset in certain situations; for example, when changing the value of the widthp635 or the heightp635 content attribute of
the canvasp634 element to which a CanvasRenderingContext2Dp638 is bound, the bitmap is cleared and its origin-cleanp635 flag is reset.

When using an ImageBitmapRenderingContextp687, the value of the origin-cleanp635 flag is propagated from ImageBitmapp990 objects
when they are transferred to the canvasp634 via transferFromImageBitmap()p689.

This section is non-normative.

Custom elementsp703 provide a way for authors to build their own fully-featured DOM elements. Although authors could always use
non-standard elements in their documents, with application-specific behavior added after the fact by scripting or similar, such
elements have historically been non-conforming and not very functional. By definingp706 a custom element, authors can inform the
parser how to properly construct an element and how elements of that class should react to changes.

Custom elements are part of a larger effort to "rationalise the platform", by explaining existing platform features (like the elements of
HTML) in terms of lower-level author-exposed extensibility points (like custom element definition). Although today there are many
limitations on the capabilities of custom elements—both functionally and semantically—that prevent them from fully explaining the
behaviors of HTML's existing elements, we hope to shrink this gap over time.

This section is non-normative.

For the purposes of illustrating how to create an autonomous custom elementp703, let's define a custom element that encapsulates
rendering a small icon for a country flag. Our goal is to be able to use it like so:

<flag-icon country="nl"></flag-icon>

To do this, we first declare a class for the custom element, extending HTMLElementp124:

class FlagIcon extends HTMLElement {
constructor() {

super();
this._countryCode = null;

}

static get observedAttributes() { return ["country"]; }

attributeChangedCallback(name, oldValue, newValue) {
// name will always be "country" due to observedAttributes
this._countryCode = newValue;
this._updateRendering();

}
connectedCallback() {

4.13 Custom elements §p69

6

4.13.1.1 Creating an autonomous custom element §p69

6

4.13.1 Introduction §p69

6

✔ MDN

696

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException

this._updateRendering();
}

get country() {
return this._countryCode;

}
set country(v) {

this.setAttribute("country", v);
}

_updateRendering() {
// Left as an exercise for the reader. But, you'll probably want to
// check this.ownerDocument.defaultView to see if we've been
// inserted into a document with a browsing context, and avoid
// doing any work if not.

}
}

We then need to use this class to define the element:

customElements.define("flag-icon", FlagIcon);

At this point, our above code will work! The parser, whenever it sees the flag-icon tag, will construct a new instance of our FlagIcon
class, and tell our code about its new country attribute, which we then use to set the element's internal state and update its rendering
(when appropriate).

You can also create flag-icon elements using the DOM API:

const flagIcon = document.createElement("flag-icon")
flagIcon.country = "jp"
document.body.appendChild(flagIcon)

Finally, we can also use the custom element constructorp703 itself. That is, the above code is equivalent to:

const flagIcon = new FlagIcon()
flagIcon.country = "jp"
document.body.appendChild(flagIcon)

This section is non-normative.

Adding a static formAssociated property, with a true value, makes an autonomous custom elementp703 a form-associated custom
elementp704. The ElementInternalsp714 interface helps you to implement functions and properties common to form control elements.

class MyCheckbox extends HTMLElement {
static get formAssociated() { return true; }

constructor() {
super();
this._internals = this.attachInternals();
this._checked = false;
this.addEventListener('click', this._onClick.bind(this));

}

get form() { return this._internals.form; }
get name() { return this.getAttribute('name'); }
get type() { return this.localName; }

4.13.1.2 Creating a form-associated custom element §p69

7

697

get checked() { return this._checked; }
set checked(flag) {

this._checked = !!flag;
this._internals.setFormValue(this._checked ? 'on' : null);

}

_onClick(event) {
this.checked = !this._checked;

}
}
customElements.define('my-checkbox', MyCheckbox);

You can use the custom element my-checkbox like a built-in form-associated element. For example, putting it in formp486 or labelp490

associates the my-checkbox element with them, and submitting the formp486 will send data provided by my-checkbox implementation.

<form action="..." method="...">
<label><my-checkbox name="agreed"></my-checkbox> I read the agreement.</label>
<input type="submit">

</form>

This section is non-normative.

Customized built-in elementsp703 are a distinct kind of custom elementp703, which are defined slightly differently and used very
differently compared to autonomous custom elementsp703. They exist to allow reuse of behaviors from the existing elements of HTML,
by extending those elements with new custom functionality. This is important since many of the existing behaviors of HTML elements
can unfortunately not be duplicated by using purely autonomous custom elementsp703. Instead, customized built-in elementsp703 allow
the installation of custom construction behavior, lifecycle hooks, and prototype chain onto existing elements, essentially "mixing in"
these capabilities on top of the already-existing element.

Customized built-in elementsp703 require a distinct syntax from autonomous custom elementsp703 because user agents and other
software key off an element's local name in order to identify the element's semantics and behavior. That is, the concept of customized
built-in elementsp703 building on top of existing behavior depends crucially on the extended elements retaining their original local
name.

In this example, we'll be creating a customized built-in elementp703 named plastic-button, which behaves like a normal button but
gets fancy animation effects added whenever you click on it. We start by defining a class, just like before, although this time we extend
HTMLButtonElementp536 instead of HTMLElementp124:

class PlasticButton extends HTMLButtonElement {
constructor() {

super();

this.addEventListener("click", () => {
// Draw some fancy animation effects!

});
}

}

When defining our custom element, we have to also specify the extends option:

customElements.define("plastic-button", PlasticButton, { extends: "button" });

In general, the name of the element being extended cannot be determined simply by looking at what element interface it extends, as
many elements share the same interface (such as qp247 and blockquotep217 both sharing HTMLQuoteElementp218).

To construct our customized built-in elementp703 from parsed HTML source text, we use the isp703 attribute on a buttonp535 element:

4.13.1.3 Creating a customized built-in element §p69

8

698

<button is="plastic-button">Click Me!</button>

Trying to use a customized built-in elementp703 as an autonomous custom elementp703 will not work; that is, <plastic-button>Click
me?</plastic-button> will simply create an HTMLElementp124 with no special behavior.

If you need to create a customized built-in element programmatically, you can use the following form of createElement():

const plasticButton = document.createElement("button", { is: "plastic-button" });
plasticButton.textContent = "Click me!";

And as before, the constructor will also work:

const plasticButton2 = new PlasticButton();
console.log(plasticButton2.localName); // will output "button"
console.assert(plasticButton2 instanceof PlasticButton);
console.assert(plasticButton2 instanceof HTMLButtonElement);

Note that when creating a customized built-in element programmatically, the isp703 attribute will not be present in the DOM, since it
was not explicitly set. However, it will be added to the output when serializing p1176:

console.assert(!plasticButton.hasAttribute("is"));
console.log(plasticButton.outerHTML); // will output '<button is="plastic-button"></button>'

Regardless of how it is created, all of the ways in which buttonp535 is special apply to such "plastic buttons" as well: their focus
behavior, ability to participate in form submissionp596, the disabledp570 attribute, and so on.

Customized built-in elementsp703 are designed to allow extension of existing HTML elements that have useful user-agent supplied
behavior or APIs. As such, they can only extend existing HTML elements defined in this specification, and cannot extend legacy
elements such as bgsoundp1232, blinkp1233, isindexp1232, keygenp1232, multicolp1233, nextidp1232, or spacerp1233 that have been defined
to use HTMLUnknownElementp124 as their element interface.

One reason for this requirement is future-compatibility: if a customized built-in elementp703 was defined that extended a currently-
unknown element, for example combobox, this would prevent this specification from defining a combobox element in the future, as
consumers of the derived customized built-in elementp703 would have come to depend on their base element having no interesting
user-agent-supplied behavior.

This section is non-normative.

As specified below, and alluded to above, simply defining and using an element called taco-button does not mean that such elements
representp123 buttons. That is, tools such as web browsers, search engines, or accessibility technology will not automatically treat the
resulting element as a button just based on its defined name.

To convey the desired button semantics to a variety of users, while still using an autonomous custom elementp703, a number of
techniques would need to be employed:

• The addition of the tabindexp773 attribute would make the taco-button focusablep772. Note that if the taco-button were to
become logically disabled, the tabindexp773 attribute would need to be removed.

• The addition of various ARIA attributes helps convey semantics to accessibility technology. For example, setting the rolep63

attribute to "button" will convey the semantics that this is a button, enabling users to successfully interact with the control
using usual button-like interactions in their accessibility technology. Setting the aria-label attribute is necessary to give the
button an accessible name, instead of having accessibility technology traverse its child text nodes and announce them. And
setting aria-disabled to "true" when the button is logically disabled conveys to accessibility technology the button's
disabled state.

• The addition of event handlers to handle commonly-expected button behaviors helps convey the semantics of the button to
web browser users. In this case, the most relevant event handler would be one that proxies appropriate keydown events to
become click events, so that you can activate the button both with keyboard and by clicking.

4.13.1.4 Drawbacks of autonomous custom elements §p69

9

699

https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-element-interface
https://w3c.github.io/aria/#button
https://w3c.github.io/aria/#aria-label
https://w3c.github.io/aria/#dfn-accessible-name
https://w3c.github.io/aria/#aria-disabled
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-click

• In addition to any default visual styling provided for taco-button elements, the visual styling will also need to be updated to
reflect changes in logical state, such as becoming disabled; that is, whatever style sheet has rules for taco-button will also
need to have rules for taco-button[disabled].

With these points in mind, a full-featured taco-button that took on the responsibility of conveying button semantics (including the
ability to be disabled) might look something like this:

class TacoButton extends HTMLElement {
static get observedAttributes() { return ["disabled"]; }

constructor() {
super();

this.addEventListener("keydown", e => {
if (e.keyCode === 32 || e.keyCode === 13) {

this.dispatchEvent(new MouseEvent("click", {
bubbles: true,
cancelable: true

}));
}

});

this.addEventListener("click", e => {
if (this.disabled) {

e.preventDefault();
e.stopPropagation();

}
});

this._observer = new MutationObserver(() => {
this.setAttribute("aria-label", this.textContent);

});
}

connectedCallback() {
this.setAttribute("role", "button");
this.setAttribute("tabindex", "0");

this._observer.observe(this, {
childList: true,
characterData: true,
subtree: true

});
}

disconnectedCallback() {
this._observer.disconnect();

}

get disabled() {
return this.hasAttribute("disabled");

}

set disabled(v) {
if (v) {

this.setAttribute("disabled", "");
} else {

this.removeAttribute("disabled");
}

}

attributeChangedCallback() {

700

// only is called for the disabled attribute due to observedAttributes
if (this.disabled) {

this.removeAttribute("tabindex");
this.setAttribute("aria-disabled", "true");

} else {
this.setAttribute("tabindex", "0");
this.setAttribute("aria-disabled", "false");

}
}

}

Even with this rather-complicated element definition, the element is not a pleasure to use for consumers: it will be continually
"sprouting" tabindexp773 and aria-*p63 attributes of its own volition. This is because as of now there is no way to specify default
accessibility semantics or focus behavior for custom elements, forcing the use of these attributes to do so (even though they are
usually reserved for allowing the consumer to override default behavior).

In contrast, a simple customized built-in elementp703, as shown in the previous section, would automatically inherit the semantics and
behavior of the buttonp535 element, with no need to implement these behaviors manually. In general, for any elements with nontrivial
behavior and semantics that build on top of existing elements of HTML, customized built-in elementsp703 will be easier to develop,
maintain, and consume.

This section is non-normative.

Because element definitionp706 can occur at any time, a non-custom element could be created, and then later become a custom
elementp703 after an appropriate definitionp705 is registered. We call this process "upgrading" the element, from a normal element into a
custom element.

Upgradesp709 enable scenarios where it may be preferable for custom element definitionsp705 to be registered after relevant elements
have been initially created, such as by the parser. They allow progressive enhancement of the content in the custom element. For
example, in the following HTML document the element definition for img-viewer is loaded asynchronously:

<!DOCTYPE html>
<html lang="en">
<title>Image viewer example</title>

<img-viewer filter="Kelvin">

</img-viewer>

<script src="js/elements/img-viewer.js" async></script>

The definition for the img-viewer element here is loaded using a scriptp614 element marked with the asyncp615 attribute, placed after
the <img-viewer> tag in the markup. While the script is loading, the img-viewer element will be treated as an undefined element,
similar to a spanp279. Once the script loads, it will define the img-viewer element, and the existing img-viewer element on the page
will be upgraded, applying the custom element's definition (which presumably includes applying an image filter identified by the string
"Kelvin", enhancing the image's visual appearance).

Note that upgradesp709 only apply to elements in the document tree. (Formally, elements that are connected.) An element that is not
inserted into a document will stay un-upgraded. An example illustrates this point:

<!DOCTYPE html>
<html lang="en">
<title>Upgrade edge-cases example</title>

<example-element></example-element>

<script>

4.13.1.5 Upgrading elements after their creation §p70

1

701

https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#connected

"use strict";

const inDocument = document.querySelector("example-element");
const outOfDocument = document.createElement("example-element");

// Before the element definition, both are HTMLElement:
console.assert(inDocument instanceof HTMLElement);
console.assert(outOfDocument instanceof HTMLElement);

class ExampleElement extends HTMLElement {}
customElements.define("example-element", ExampleElement);

// After element definition, the in-document element was upgraded:
console.assert(inDocument instanceof ExampleElement);
console.assert(!(outOfDocument instanceof ExampleElement));

document.body.appendChild(outOfDocument);

// Now that we've moved the element into the document, it too was upgraded:
console.assert(outOfDocument instanceof ExampleElement);

</script>

When authoring custom element constructorsp703, authors are bound by the following conformance requirements:

• A parameter-less call to super() must be the first statement in the constructor body, to establish the correct prototype chain
and this value before any further code is run.

• A return statement must not appear anywhere inside the constructor body, unless it is a simple early-return (return or
return this).

• The constructor must not use the document.write()p970 or document.open()p969 methods.

• The element's attributes and children must not be inspected, as in the non-upgradep709 case none will be present, and relying
on upgrades makes the element less usable.

• The element must not gain any attributes or children, as this violates the expectations of consumers who use the
createElement or createElementNS methods.

• In general, work should be deferred to connectedCallback as much as possible—especially work involving fetching
resources or rendering. However, note that connectedCallback can be called more than once, so any initialization work that
is truly one-time will need a guard to prevent it from running twice.

• In general, the constructor should be used to set up initial state and default values, and to set up event listeners and
possibly a shadow root.

Several of these requirements are checked during element creation, either directly or indirectly, and failing to follow them will result in
a custom element that cannot be instantiated by the parser or DOM APIs. This is true even if the work is done inside a constructor-
initiated microtaskp945, as a microtask checkpointp949 can occur immediately after construction.

When authoring custom element reactionsp711, authors should avoid manipulating the node tree as this can lead to unexpected results.

An element's connectedCallback can be queued before the element is disconnected, but as the callback queue is still processed,
it results in a connectedCallback for an element that is no longer connected:

class CParent extends HTMLElement {
connectedCallback() {

this.firstChild.remove();
}

Example

4.13.2 Requirements for custom element constructors and reactions §p70

2

702

https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#dom-document-createelementns
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-create-element

A custom element is an element that is custom. Informally, this means that its constructor and prototype are defined by the author,
instead of by the user agent. This author-supplied constructor function is called the custom element constructor.

Two distinct types of custom elementsp703 can be defined:

1. An autonomous custom element, which is defined with no extends option. These types of custom elements have a local
name equal to their defined namep705.

2. A customized built-in element, which is defined with an extends option. These types of custom elements have a local
name equal to the value passed in their extends option, and their defined namep705 is used as the value of the is attribute,
which therefore must be a valid custom element namep704.

After a custom elementp703 is created, changing the value of the isp703 attribute does not change the element's behavior, as it is saved
on the element as its is value.

Autonomous custom elementsp703 have the following element definition:

Categoriesp128:
Flow contentp131.
Phrasing contentp132.
Palpable contentp133.
For form-associated custom elementsp704: Listedp486, labelablep486, submittablep486, and resettablep486 form-associated
elementp486.

Contexts in which this element can be usedp128:
Where phrasing contentp132 is expected.

Content modelp128:
Transparentp133.

Content attributesp128:
Global attributesp136, except the isp703 attribute
formp566, for form-associated custom elementsp704 — Associates the element with a formp486 element
disabledp570, for form-associated custom elementsp704 — Whether the form control is disabled
readonlyp704, for form-associated custom elementsp704 — Affects willValidatep593, plus any behavior added by the custom
element author
namep568, for form-associated custom elementsp704 — Name of the element to use for form submissionp595 and in the
form.elementsp488 API
Any other attribute that has no namespace (see prose).

}
customElements.define("c-parent", CParent);

class CChild extends HTMLElement {
connectedCallback() {

console.log("CChild connectedCallback: isConnected =", this.isConnected);
}

}
customElements.define("c-child", CChild);

const parent = new CParent(),
child = new CChild();

parent.append(child);
document.body.append(parent);

// Logs:
// CChild connectedCallback: isConnected = false

4.13.3 Core concepts §p70

3

MDN

703

https://dom.spec.whatwg.org/#concept-element-custom
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-element-is-value

Accessibility considerationsp129:
For form-associated custom elementsp704: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep129:
Supplied by the element's author (inherits from HTMLElementp124)

An autonomous custom elementp703 does not have any special meaning: it representsp123 its children. A customized built-in elementp703

inherits the semantics of the element that it extends.

Any namespace-less attribute that is relevant to the element's functioning, as determined by the element's author, may be specified
on an autonomous custom elementp703, so long as the attribute name is XML-compatiblep44 and contains no ASCII upper alphas. The
exception is the isp703 attribute, which must not be specified on an autonomous custom elementp703 (and which will have no effect if it
is).

Customized built-in elementsp703 follow the normal requirements for attributes, based on the elements they extend. To add custom
attribute-based behavior, use data-*p145 attributes.

An autonomous custom elementp703 is called a form-associated custom element if the element is associated with a custom element
definitionp705 whose form-associatedp705 field is set to true.

The namep568 attribute represents the form-associated custom elementp704 's name. The disabledp570 attribute is used to make the form-
associated custom elementp704 non-interactive and to prevent its submission valuep716 from being submitted. The formp566 attribute is
used to explicitly associate the form-associated custom elementp704 with its form ownerp566.

The readonly attribute of form-associated custom elementsp704 specifies that the element is barred from constraint validationp590. User
agents don't provide any other behavior for the attribute, but custom element authors should, where possible, use its presence to
make their control non-editable in some appropriate fashion, similar to the behavior for the readonlyp522 attribute on built-in form
controls.

Constraint validation: If the readonlyp704 attribute is specified on a form-associated custom elementp704, the element is barred from
constraint validationp590.

The reset algorithmp604 for form-associated custom elementsp704 is to enqueue a custom element callback reactionp713 with the
element, callback name "formResetCallback", and an empty argument list.

A valid custom element name is a sequence of characters name that meets all of the following requirements:

• name must match the PotentialCustomElementNamep704 production:

PotentialCustomElementName ::=
[a-z] (PCENCharp704)* '-' (PCENCharp704)*

PCENChar ::=
"-" | "." | [0-9] | "_" | [a-z] | #xB7 | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x37D] | [#x37F-#x1FFF] |
[#x200C-#x200D] | [#x203F-#x2040] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] |
[#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

This uses the EBNF notation from the XML specification. [XML]p1293

• name must not be any of the following:

◦ annotation-xml
◦ color-profile
◦ font-face
◦ font-face-src
◦ font-face-uri
◦ font-face-format
◦ font-face-name
◦ missing-glyph

The list of names above is the summary of all hyphen-containing element names from the applicable specificationsp65,
namely SVG 2 and MathML. [SVG]p1291 [MATHML]p1289

Note

704

https://w3c.github.io/html-aria/#el-form-associated-custom-element
https://w3c.github.io/html-aam/#el-form-associated-custom-element
https://w3c.github.io/html-aria/#el-autonomous-custom-element
https://w3c.github.io/html-aam/#el-autonomous-custom-element
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://www.w3.org/TR/xml/#sec-notation

A custom element definition describes a custom elementp703 and consists of:

A name
A valid custom element namep704

A local name
A local name

A constructor
A Web IDL CustomElementConstructorp706 callback function type value wrapping the custom element constructorp703

A list of observed attributes
A sequence<DOMString>

A collection of lifecycle callbacks
A map, whose keys are the strings "connectedCallback", "disconnectedCallback", "adoptedCallback",
"attributeChangedCallback", "formAssociatedCallback", "formDisabledCallback", "formResetCallback", and
"formStateRestoreCallback". The corresponding values are either a Web IDL Function callback function type value, or null. By
default the value of each entry is null.

A construction stack
A list, initially empty, that is manipulated by the upgrade an elementp709 algorithm and the HTML element constructorsp125. Each
entry in the list will be either an element or an already constructed marker.

A form-associated boolean
If this is true, user agent treats elements associated to this custom element definitionp705 as form-associated custom elementsp704.

A disable internals boolean
Controls attachInternals()p716.

A disable shadow boolean
Controls attachShadow().

To look up a custom element definition, given a document, namespace, localName, and is, perform the following steps. They will
return either a custom element definitionp705 or null:

1. If namespace is not the HTML namespace, return null.

2. If document's browsing contextp811 is null, return null.

3. Let registry be document's relevant global objectp924 's CustomElementRegistryp706 object.

4. If there is custom element definitionp705 in registry with namep705 and local namep705 both equal to localName, return that
custom element definitionp705.

5. If there is a custom element definitionp705 in registry with namep705 equal to is and local namep705 equal to localName, return
that custom element definitionp705.

6. Return null.

These requirements ensure a number of goals for valid custom element namesp704:

• They start with an ASCII lower alpha, ensuring that the HTML parser will treat them as tags instead of as text.

• They do not contain any ASCII upper alphas, ensuring that the user agent can always treat HTML elements ASCII-case-
insensitively.

• They contain a hyphen, used for namespacing and to ensure forward compatibility (since no elements will be added to
HTML, SVG, or MathML with hyphen-containing local names in the future).

• They can always be created with createElement() and createElementNS(), which have restrictions that go beyond the
parser's.

Apart from these restrictions, a large variety of names is allowed, to give maximum flexibility for use cases like <math-α> or
<emotion-😍>.

Note

705

https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#dom-document-createelementns
https://heycam.github.io/webidl/#common-Function
https://dom.spec.whatwg.org/#dom-element-attachshadow
https://infra.spec.whatwg.org/#html-namespace

Each Windowp824 object is associated with a unique instance of a CustomElementRegistryp706 object, allocated when the Windowp824

object is created.

The customElements attribute of the Windowp824 interface must return the CustomElementRegistryp706 object for that Windowp824

object.

[Exposed=Window]
interface CustomElementRegistry {

[CEReactions] undefined define(DOMString name, CustomElementConstructor constructor, optional
ElementDefinitionOptions options = {});

(CustomElementConstructor or undefined) get(DOMString name);
Promise<undefined> whenDefined(DOMString name);
[CEReactions] undefined upgrade(Node root);

};

callback CustomElementConstructor = HTMLElement ();

dictionary ElementDefinitionOptions {
DOMString extends;

};

Every CustomElementRegistryp706 has a set of custom element definitionsp705, initially empty. In general, algorithms in this
specification look up elements in the registry by any of namep705, local namep705, or constructorp705.

Every CustomElementRegistryp706 also has an element definition is running flag which is used to prevent reentrant invocations of
element definitionp706. It is initially unset.

Every CustomElementRegistryp706 also has a when-defined promise map, mapping valid custom element namesp704 to promises. It
is used to implement the whenDefined()p708 method.

Element definition is a process of adding a custom element definitionp705 to the CustomElementRegistryp706. This is accomplished by
the define()p706 method. When invoked, the define(name, constructor, options) method must run these steps:

1. If IsConstructor(constructor) is false, then throw a TypeError.

Custom element registries are associated with Windowp824 objects, instead of Documentp114 objects, since each custom element
constructorp703 inherits from the HTMLElementp124 interface, and there is exactly one HTMLElementp124 interface per Windowp824

object.

Note

window . customElementsp706 . definep706(name, constructor)
Defines a new custom elementp703, mapping the given name to the given constructor as an autonomous custom elementp703.

window . customElementsp706 . definep706(name, constructor, { extends: baseLocalName })
Defines a new custom elementp703, mapping the given name to the given constructor as a customized built-in elementp703 for
the element typep44 identified by the supplied baseLocalName. A "NotSupportedError" DOMException will be thrown upon
trying to extend a custom elementp703 or an unknown element.

window . customElementsp706 . getp708(name)
Retrieves the custom element constructorp703 defined for the given namep705. Returns undefined if there is no custom element
definitionp705 with the given namep705.

window . customElementsp706 . whenDefinedp708(name)
Returns a promise that will be fulfilled when a custom elementp703 becomes defined with the given name. (If such a custom
elementp703 is already defined, the returned promise will be immediately fulfilled.) Returns a promise rejected with a
"SyntaxError" DOMException if not given a valid custom element namep704.

window . customElementsp706 . upgradep709(root)
Tries to upgradep711 all shadow-including inclusive descendant elements of root, even if they are not connected.

For web developers (non-normative)

IDL

4.13.4 The CustomElementRegistryp706 interface §p70

6

✔ MDN

✔ MDN

✔ MDN

706

https://dom.spec.whatwg.org/#interface-node
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#connected
https://tc39.es/ecma262/#sec-isconstructor
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

2. If name is not a valid custom element namep704, then throw a "SyntaxError" DOMException.

3. If this CustomElementRegistryp706 contains an entry with namep705 name, then throw a "NotSupportedError"
DOMException.

4. If this CustomElementRegistryp706 contains an entry with constructorp705 constructor, then throw a "NotSupportedError"
DOMException.

5. Let localName be name.

6. Let extends be the value of the extends member of options, or null if no such member exists.

7. If extends is not null, then:

1. If extends is a valid custom element namep704, then throw a "NotSupportedError" DOMException.

2. If the element interface for extends and the HTML namespace is HTMLUnknownElementp124 (e.g., if extends does not
indicate an element definition in this specification), then throw a "NotSupportedError" DOMException.

3. Set localName to extends.

8. If this CustomElementRegistryp706 's element definition is runningp706 flag is set, then throw a "NotSupportedError"
DOMException.

9. Set this CustomElementRegistryp706 's element definition is runningp706 flag.

10. Let formAssociated be false.

11. Let disableInternals be false.

12. Let disableShadow be false.

13. Let observedAttributes be an empty sequence<DOMString>.

14. Run the following substeps while catching any exceptions:

1. Let prototype be Get(constructor, "prototype"). Rethrow any exceptions.

2. If Type(prototype) is not Object, then throw a TypeError exception.

3. Let lifecycleCallbacks be a map with the keys "connectedCallback", "disconnectedCallback",
"adoptedCallback", and "attributeChangedCallback", each of which belongs to an entry whose value is null.

4. For each of the keys callbackName in lifecycleCallbacks, in the order listed in the previous step:

1. Let callbackValue be Get(prototype, callbackName). Rethrow any exceptions.

2. If callbackValue is not undefined, then set the value of the entry in lifecycleCallbacks with key
callbackName to the result of converting callbackValue to the Web IDL Function callback type. Rethrow
any exceptions from the conversion.

5. If the value of the entry in lifecycleCallbacks with key "attributeChangedCallback" is not null, then:

1. Let observedAttributesIterable be Get(constructor, "observedAttributes"). Rethrow any exceptions.

2. If observedAttributesIterable is not undefined, then set observedAttributes to the result of converting
observedAttributesIterable to a sequence<DOMString>. Rethrow any exceptions from the conversion.

6. Let disabledFeatures be an empty sequence<DOMString>.

7. Let disabledFeaturesIterable be Get(constructor, "disabledFeatures"). Rethrow any exceptions.

8. If disabledFeaturesIterable is not undefined, then set disabledFeatures to the result of converting
disabledFeaturesIterable to a sequence<DOMString>. Rethrow any exceptions from the conversion.

9. Set disableInternals to true if disabledFeatures contains "internals".

10. Set disableShadow to true if disabledFeatures contains "shadow".

11. Let formAssociatedValue be Get(constructor, "formAssociated"). Rethrow any exceptions.

12. Set formAssociated to the result of converting formAssociatedValue to a boolean. Rethrow any exceptions from the

707

https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-element-interface
https://infra.spec.whatwg.org/#html-namespace
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-get-o-p
https://tc39.es/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-get-o-p
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#common-Function
https://tc39.es/ecma262/#sec-get-o-p
https://heycam.github.io/webidl/#es-type-mapping
https://tc39.es/ecma262/#sec-get-o-p
https://heycam.github.io/webidl/#es-type-mapping
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-contain
https://tc39.es/ecma262/#sec-get-o-p
https://heycam.github.io/webidl/#es-type-mapping

conversion.

13. If formAssociated is true, for each of "formAssociatedCallback", "formResetCallback",
"formDisabledCallback", and "formStateRestoreCallback" callbackName:

1. Let callbackValue be Get(prototype, callbackName). Rethrow any exceptions.

2. If callbackValue is not undefined, then set the value of the entry in lifecycleCallbacks with key
callbackName to the result of converting callbackValue to the Web IDL Function callback type. Rethrow
any exceptions from the conversion.

Then, perform the following substep, regardless of whether the above steps threw an exception or not:

1. Unset this CustomElementRegistryp706 's element definition is runningp706 flag.

Finally, if the first set of substeps threw an exception, then rethrow that exception (thus terminating this algorithm).
Otherwise, continue onward.

15. Let definition be a new custom element definitionp705 with namep705 name, local namep705 localName, constructorp705

constructor, observed attributesp705 observedAttributes, lifecycle callbacksp705 lifecycleCallbacks, form-associatedp705

formAssociated, disable internalsp705 disableInternals, and disable shadowp705 disableShadow.

16. Add definition to this CustomElementRegistryp706.

17. Let document be this CustomElementRegistryp706 's relevant global objectp924 's associated Documentp826.

18. Let upgrade candidates be all elements that are shadow-including descendants of document, whose namespace is the HTML
namespace and whose local name is localName, in shadow-including tree order. Additionally, if extends is non-null, only
include elements whose is value is equal to name.

19. For each element element in upgrade candidates, enqueue a custom element upgrade reactionp713 given element and
definition.

20. If this CustomElementRegistryp706 's when-defined promise mapp706 contains an entry with key name:

1. Let promise be the value of that entry.

2. Resolve promise with undefined.

3. Delete the entry with key name from this CustomElementRegistryp706 's when-defined promise mapp706.

When invoked, the get(name) method must run these steps:

1. If this CustomElementRegistryp706 contains an entry with namep705 name, then return that entry's constructorp705.

2. Otherwise, return undefined.

When invoked, the whenDefined(name) method must run these steps:

1. If name is not a valid custom element namep704, then return a new promise rejected with a "SyntaxError" DOMException.

2. If this CustomElementRegistryp706 contains an entry with namep705 name, then return a new promise resolved with
undefined.

3. Let map be this CustomElementRegistryp706 's when-defined promise mapp706.

4. If map does not contain an entry with key name, create an entry in map with key name and whose value is a new promise.

5. Let promise be the value of the entry in map with key name.

6. Return promise.

The whenDefined()p708 method can be used to avoid performing an action until all appropriate custom elementsp703 are defined. In
this example, we combine it with the :definedp724 pseudo-class to hide a dynamically-loaded article's contents until we're sure
that all of the autonomous custom elementsp703 it uses are defined.

articleContainer.hidden = true;

Example

✔ MDN

✔ MDN

708

https://tc39.es/ecma262/#sec-get-o-p
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#common-Function
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-element-is-value
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-element-defined

When invoked, the upgrade(root) method must run these steps:

1. Let candidates be a list of all of root's shadow-including inclusive descendant elements, in shadow-including tree order.

2. For each candidate of candidates, try to upgradep711 candidate.

To upgrade an element, given as input a custom element definitionp705 definition and an element element, run the following steps:

1. If element's custom element state is not "undefined" or "uncustomized", then return.

fetch(articleURL)
.then(response => response.text())
.then(text => {

articleContainer.innerHTML = text;

return Promise.all(
[...articleContainer.querySelectorAll(":not(:defined)")]

.map(el => customElements.whenDefined(el.localName))
);

})
.then(() => {

articleContainer.hidden = false;
});

The upgrade()p709 method allows upgrading of elements at will. Normally elements are automatically upgraded when they become
connected, but this method can be used if you need to upgrade before you're ready to connect the element.

const el = document.createElement("spider-man");

class SpiderMan extends HTMLElement {}
customElements.define("spider-man", SpiderMan);

console.assert(!(el instanceof SpiderMan)); // not yet upgraded

customElements.upgrade(el);
console.assert(el instanceof SpiderMan); // upgraded!

Example

One scenario where this can occur due to reentrant invocation of this algorithm, as in the following example:

<!DOCTYPE html>
<x-foo id="a"></x-foo>
<x-foo id="b"></x-foo>

<script>
// Defining enqueues upgrade reactions for both "a" and "b"
customElements.define("x-foo", class extends HTMLElement {

constructor() {
super();

const b = document.querySelector("#b");
b.remove();

Example

4.13.5 Upgrades §p70

9

MDN

709

https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-element-custom-element-state

2. Set element's custom element definition to definition.

3. Set element's custom element state to "failed".

4. For each attribute in element's attribute list, in order, enqueue a custom element callback reactionp713 with element, callback
name "attributeChangedCallback", and an argument list containing attribute's local name, null, attribute's value, and
attribute's namespace.

5. If element is connected, then enqueue a custom element callback reactionp713 with element, callback name
"connectedCallback", and an empty argument list.

6. Add element to the end of definition's construction stackp705.

7. Let C be definition's constructorp705.

8. Run the following substeps while catching any exceptions:

1. If definition's disable shadowp705 is true and element's shadow root is non-null, then throw a "NotSupportedError"
DOMException.

2. Let constructResult be the result of constructing C, with no arguments.

3. If SameValue(constructResult, element) is false, then throw a TypeError.

Then, perform the following substep, regardless of whether the above steps threw an exception or not:

1. Remove the last entry from the end of definition's construction stackp705.

// While this constructor is running for "a", "b" is still
// undefined, and so inserting it into the document will enqueue a
// second upgrade reaction for "b" in addition to the one enqueued
// by defining x-foo.
document.body.appendChild(b);

}
})
</script>

This step will thus bail out the algorithm early when upgrade an elementp709 is invoked with "b" a second time.

It will be set to "custom" after the upgrade succeedsp711. For now, we set it to "failed" so that any reentrant invocations
will hit the above early-exit stepp709.

Note

This is needed as attachShadow() does not use look up a custom element definitionp705 while
attachInternals()p716 does.

Note

If C non-conformantlyp702 uses an API decorated with the [CEReactions]p713 extended attribute, then the
reactions enqueued at the beginning of this algorithm will execute during this step, before C finishes and
control returns to this algorithm. Otherwise, they will execute after C and the rest of the upgrade process
finishes.

Note

This can occur if C constructs another instance of the same custom element before calling super(), or if C uses
JavaScript's return-override feature to return an arbitrary HTMLElementp124 object from the constructor.

Note

Assuming C calls super() (as it will if it is conformantp702), and that the call succeeds, this will be the already
constructed markerp705 that replaced the element we pushed at the beginning of this algorithm. (The HTML

Note

710

https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-element-attribute
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#dom-element-attachshadow
https://heycam.github.io/webidl/#construct-a-callback-function
https://tc39.es/ecma262/#sec-samevalue
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

Finally, if the above steps threw an exception, then:

1. Set element's custom element definition to null.

2. Empty element's custom element reaction queuep712.

3. Rethrow the exception (thus terminating this algorithm).

9. If element is a form-associated custom elementp704, then:

1. Reset the form ownerp567 of element. If element is associated with a formp486 element, then enqueue a custom
element callback reactionp713 with element, callback name "formAssociatedCallback", and « the associated
formp486 ».

2. If element is disabledp570, then enqueue a custom element callback reactionp713 with element, callback name
"formDisabledCallback" and « true ».

10. Set element's custom element state to "custom".

To try to upgrade an element, given as input an element element, run the following steps:

1. Let definition be the result of looking up a custom element definitionp705 given element's node document, element's
namespace, element's local name, and element's is value.

2. If definition is not null, then enqueue a custom element upgrade reactionp713 given element and definition.

A custom elementp703 possesses the ability to respond to certain occurrences by running author code:

• When upgradedp709, its constructorp703 is run, with no arguments.

• When it becomes connectedp45, its connectedCallback is called, with no arguments.

• When it becomes disconnectedp45, its disconnectedCallback is called, with no arguments.

• When it is adopted into a new document, its adoptedCallback is called, given the old document and new document as
arguments.

• When any of its attributes are changed, appended, removed, or replaced, its attributeChangedCallback is called, given the
attribute's local name, old value, new value, and namespace as arguments. (An attribute's old or new value is considered to
be null when the attribute is added or removed, respectively.)

• When the user agent resets the form ownerp567 of a form-associated custom elementp704 and doing so changes the form
owner, its formAssociatedCallback is called, given the new form owner (or null if no owner) as an argument.

• When the form owner of a form-associated custom elementp704 is resetp603, its formResetCallback is called.

• When the disabledp570 state of a form-associated custom elementp704 is changed, its formDisabledCallback is called, given
the new state as an argument.

• When user agent updates a form-associated custom elementp704 's value on behalf of a user, its formStateRestoreCallback
is called, given the new value and a string indicating a reason, "restore" or "autocomplete", as arguments.

We call these reactions collectively custom element reactions.

The way in which custom element reactionsp711 are invoked is done with special care, to avoid running author code during the middle

element constructorp125 carries out this replacement.)

If C does not call super() (i.e. it is not conformantp702), or if any step in the HTML element constructorp125

throws, then this entry will still be element.

If the above steps threw an exception, then element's custom element state will remain "failed".
Note

4.13.6 Custom element reactions §p71

1

711

https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#concept-node-adopt
https://dom.spec.whatwg.org/#concept-element-attributes-change
https://dom.spec.whatwg.org/#concept-element-attributes-append
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://dom.spec.whatwg.org/#concept-element-attributes-replace

of delicate operations. Effectively, they are delayed until "just before returning to user script". This means that for most purposes they
appear to execute synchronously, but in the case of complicated composite operations (like cloning, or range manipulation), they will
instead be delayed until after all the relevant user agent processing steps have completed, and then run together as a batch.

Additionally, the precise ordering of these reactions is managed via a somewhat-complicated stack-of-queues system, described below.
The intention behind this system is to guarantee that custom element reactionsp711 always are invoked in the same order as their
triggering actions, at least within the local context of a single custom elementp703. (Because custom element reactionp711 code can
perform its own mutations, it is not possible to give a global ordering guarantee across multiple elements.)

Each similar-origin window agentp913 has a custom element reactions stack, which is initially empty. A similar-origin window
agentp913 's current element queue is the element queuep712 at the top of its custom element reactions stackp712. Each item in the
stack is an element queue, which is initially empty as well. Each item in an element queuep712 is an element. (The elements are not
necessarily custom yet, since this queue is used for upgradesp709 as well.)

Each custom element reactions stackp712 has an associated backup element queue, which an initially-empty element queuep712.
Elements are pushed onto the backup element queuep712 during operations that affect the DOM without going through an API
decorated with [CEReactions]p713, or through the parser's create an element for the tokenp1127 algorithm. An example of this is a user-
initiated editing operation which modifies the descendants or attributes of an editable element. To prevent reentrancy when processing
the backup element queuep712, each custom element reactions stackp712 also has a processing the backup element queue flag,
initially unset.

All elements have an associated custom element reaction queue, initially empty. Each item in the custom element reaction
queuep712 is of one of two types:

• An upgrade reaction, which will upgradep709 the custom element and contains a custom element definitionp705; or

• A callback reaction, which will call a lifecycle callback, and contains a callback function as well as a list of arguments.

This is all summarized in the following schematic diagram:

custom element
reactions stack

⋯

backup element queue
processing backup
element queue flag

element queue

<x-a> <x-b> <x-c> ⋯

custom element reaction queue

Upgrade Attribute
changed

Attribute
changed Connected

To enqueue an element on the appropriate element queue, given an element element, run the following steps:

1. Let reactionsStack be element's relevant agentp914 's custom element reactions stackp712.

2. If reactionsStack is empty, then:

1. Add element to reactionsStack's backup element queuep712.
712

https://dom.spec.whatwg.org/#concept-node-clone
https://dom.spec.whatwg.org/#concept-range
https://dom.spec.whatwg.org/#concept-element-custom
https://w3c.github.io/editing/docs/execCommand/#editable

2. If reactionsStack's processing the backup element queuep712 flag is set, then return.

3. Set reactionsStack's processing the backup element queuep712 flag.

4. Queue a microtaskp946 to perform the following steps:

1. Invoke custom element reactionsp713 in reactionsStack's backup element queuep712.

2. Unset reactionsStack's processing the backup element queuep712 flag.

3. Otherwise, add element to element's relevant agentp914 's current element queuep712.

To enqueue a custom element callback reaction, given a custom elementp703 element, a callback name callbackName, and a list
of arguments args, run the following steps:

1. Let definition be element's custom element definition.

2. Let callback be the value of the entry in definition's lifecycle callbacksp705 with key callbackName.

3. If callback is null, then return

4. If callbackName is "attributeChangedCallback", then:

1. Let attributeName be the first element of args.

2. If definition's observed attributesp705 does not contain attributeName, then return.

5. Add a new callback reactionp712 to element's custom element reaction queuep712, with callback function callback and
arguments args.

6. Enqueue an element on the appropriate element queuep712 given element.

To enqueue a custom element upgrade reaction, given an element element and custom element definitionp705 definition, run the
following steps:

1. Add a new upgrade reactionp712 to element's custom element reaction queuep712, with custom element definitionp705

definition.

2. Enqueue an element on the appropriate element queuep712 given element.

To invoke custom element reactions in an element queuep712 queue, run the following steps:

1. For each custom elementp703 element in queue:

1. Let reactions be element's custom element reaction queuep712.

2. Repeat until reactions is empty:

1. Remove the first element of reactions, and let reaction be that element. Switch on reaction's type:

↪ upgrade reactionp712

Upgradep709 element using reaction's custom element definitionp705.

↪ callback reactionp712

Invoke reaction's callback function with reaction's arguments, and with element as the callback
this value.

If this throws an exception, catch it, and report the exceptionp937.

To ensure custom element reactionsp711 are triggered appropriately, we introduce the [CEReactions] IDL extended attribute. It
indicates that the relevant algorithm is to be supplemented with additional steps in order to appropriately track and invoke custom
element reactionsp711.

The [CEReactions]p713 extended attribute must take no arguments, and must not appear on anything other than an operation,
attribute, setter, or deleter. Additionally, it must not appear on readonly attributes.

Operations, attributes, setters, or deleters annotated with the [CEReactions]p713 extended attribute must run the following steps in
place of the ones specified in their description:

713

https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://heycam.github.io/webidl/#invoke-a-callback-function
https://heycam.github.io/webidl/#dfn-callback-this-value
https://heycam.github.io/webidl/#dfn-callback-this-value
https://heycam.github.io/webidl/#dfn-extended-attribute

1. Push a new element queuep712 onto this object's relevant agentp914 's custom element reactions stackp712.

2. Run the originally-specified steps for this construct, catching any exceptions. If the steps return a value, let value be the
returned value. If they throw an exception, let exception be the thrown exception.

3. Let queue be the result of popping from this object's relevant agentp914 's custom element reactions stackp712.

4. Invoke custom element reactionsp713 in queue.

5. If an exception exception was thrown by the original steps, rethrow exception.

6. If a value value was returned from the original steps, return value.

Any nonstandard APIs introduced by the user agent that could modify the DOM in such a way as to cause enqueuing a custom element
callback reactionp713 or enqueuing a custom element upgrade reactionp713, for example by modifying any attributes or child elements,
must also be decorated with the [CEReactions]p713 attribute.

[Exposed=Window]
interface ElementInternals {

// Form-associated custom elements

undefined setFormValue((File or USVString or FormData)? value,
optional (File or USVString or FormData)? state);

readonly attribute HTMLFormElement? form;

undefined setValidity(optional ValidityStateFlags flags = {},
optional DOMString message,
optional HTMLElement anchor);

readonly attribute boolean willValidate;

The intent behind this extended attribute is somewhat subtle. One way of accomplishing its goals would be to say that every
operation, attribute, setter, and deleter on the platform must have these steps inserted, and to allow implementers to optimize
away unnecessary cases (where no DOM mutation is possible that could cause custom element reactionsp711 to occur).

However, in practice this imprecision could lead to non-interoperable implementations of custom element reactionsp711, as some
implementations might forget to invoke these steps in some cases. Instead, we settled on the approach of explicitly annotating all
relevant IDL constructs, as a way of ensuring interoperable behavior and helping implementations easily pinpoint all cases where
these steps are necessary.

Note

As of the time of this writing, the following nonstandard or not-yet-standardized APIs are known to fall into this category:

• HTMLElementp124 's outerText IDL attribute

• HTMLInputElementp494 's webkitdirectory and incremental IDL attributes

• HTMLLinkElementp158 's scope IDL attribute

• ShadowRoot's innerHTML IDL attribute

Note

element . attachInternals()p716

Returns an ElementInternalsp714 object targeting the custom elementp703 element. Throws an exception if element is not a
custom elementp703, if the "internals" feature was disabled as part of the element definition, or if it is called twice on the same
element.

For web developers (non-normative)

IDL

4.13.7 The ElementInternalsp714 interface §p71

4

714

https://infra.spec.whatwg.org/#stack-push
https://infra.spec.whatwg.org/#stack-pop
https://dom.spec.whatwg.org/#interface-shadowroot
https://w3c.github.io/FileAPI/#dfn-file
https://heycam.github.io/webidl/#idl-USVString
https://xhr.spec.whatwg.org/#formdata
https://w3c.github.io/FileAPI/#dfn-file
https://heycam.github.io/webidl/#idl-USVString
https://xhr.spec.whatwg.org/#formdata

readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();

readonly attribute NodeList labels;
};

dictionary ValidityStateFlags {
boolean valueMissing = false;
boolean typeMismatch = false;
boolean patternMismatch = false;
boolean tooLong = false;
boolean tooShort = false;
boolean rangeUnderflow = false;
boolean rangeOverflow = false;
boolean stepMismatch = false;
boolean badInput = false;
boolean customError = false;

};

Each ElementInternalsp714 has a target element, which is a custom elementp703. ElementInternalsp714 provides various operations
and attributes to allow control over internal features which the user agent provides to all elements.

internals . setFormValuep716(value)
Sets both the statep716 and submission valuep716 of internals's target elementp715 to value.
If value is null, the element won't participate in form submission.

internals . setFormValuep716(value, state)
Sets the submission valuep716 of internals's target elementp715 to value, and its statep716 to state.
If value is null, the element won't participate in form submission.

internals . formp568

Returns the form ownerp566 of internals's target elementp715.

internals . setValidityp717(flags, message [, anchor])
Marks internals's target elementp715 as suffering from the constraints indicated by the flags argument, and sets the element's
validation message to message. If anchor is specified, the user agent might use it to indicate problems with the constraints of
internals's target elementp715 when the form ownerp566 is validated interactively or reportValidity()p595 is called.

internals . setValidityp717({})
Marks internals's target elementp715 as satisfying its constraintsp591.

internals . willValidatep593

Returns true if internals's target elementp715 will be validated when the form is submitted; false otherwise.

internals . validityp593

Returns the ValidityStatep593 object for internals's target elementp715.

internals . validationMessagep717

Returns the error message that would be shown to the user if internals's target elementp715 was to be checked for validity.

valid = internals . checkValidity()p594

Returns true if internals's target elementp715 has no validity problems; false otherwise. Fires an invalidp1281 event at the
element in the latter case.

valid = internals . reportValidity()p595

Returns true if internals's target elementp715 has no validity problems; otherwise, returns false, fires an invalidp1281 event at the
element, and (if the event isn't canceled) reports the problem to the user.

internals . labelsp492

Returns a NodeList of all the labelp490 elements that internals's target elementp715 is associated with.

For web developers (non-normative)

715

https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist

Each HTMLElementp124 has an attached internals boolean, initially false.

The attachInternals() method on an HTMLElementp124 element, when invoked, must run the following steps:

1. If element's is value is not null, then throw a "NotSupportedError" DOMException.

2. Let definition be the result of looking up a custom element definitionp705 given element's node document, its namespace, its
local name, and null as is value.

3. If definition is null, then throw an "NotSupportedError" DOMException.

4. If definition's disable internalsp705 is true, then throw a "NotSupportedError" DOMException.

5. If element's attached internalsp716 is true, then throw an "NotSupportedError" DOMException.

6. Set element's attached internalsp716 to true.

7. Create a new ElementInternalsp714 instance targetingp715 element, and return it.

Each form-associated custom elementp704 has submission value. It is used to provide one or more entries on form submission, and
The initial value of submission valuep716 is null, and submission valuep716 can be null, a string, a File, or a list of entries.

Each form-associated custom elementp704 has state. It is information with which the user agent can restore a user's input for the
element. The initial value of statep716 is null, and statep716 can be null, a string, a File, or a list of entries.

The setFormValue()p716 method is used by the custom element author to set the element's submission valuep716 and statep716, thus
communicating these to the user agent.

When the user agent believes it is a good idea to restore a form-associated custom elementp704 's statep716, for example after
navigation or restarting the user agent, they may enqueue a custom element callback reactionp713 with that element, callback name
"formStateRestoreCallback", and an argument list containing the state to be restored, and "restore".

If the user agent has a form-filling assist feature, then when the feature is invoked, it may enqueue a custom element callback
reactionp713 with a form-associated custom elementp704, callback name "formStateRestoreCallback", and an argument list containing
the state value determined by history of state value and some heuristics, and "autocomplete".

In general, the statep716 is information specified by a user, and the submission valuep716 is a value after canonicalization or sanitization,
suitable for submission to the server. The following examples makes this concrete:

The setFormValue(value, state) method of the ElementInternalsp714 interface must run the following steps:

1. Let element be this ElementInternalsp714 's target elementp715.

2. If element is not a form-associated custom elementp704, then throw a "NotSupportedError" DOMException.

3. Set target elementp715 's submission valuep716 to value if value is not a FormData object, or to a clone of the entry list
associated with value otherwise.

4. If the state argument of the function is omitted, set element's statep716 to its submission valuep716.

5. Otherwise, if state is a FormData object, set element's statep716 to clone of the entry list associated with state.

6. Otherwise, set element's statep716 to state.

Suppose that we have a form-associated custom elementp704 which asks a user to specify a date. The user specifies "3/15/2019",
but the control wishes to submit "2019-03-15" to the server. "3/15/2019" would be a statep716 of the element, and "2019-03-15"
would be a submission valuep716.

Example

Suppose you develop a custom element emulating a the behavior of the existing checkboxp513 inputp493 type. Its submission
valuep716 would be the value of its value content attribute, or the string "on". Its statep716 would be one of "checked",
"unchecked", "checked/indeterminate", or "unchecked/indeterminate".

Example

716

https://dom.spec.whatwg.org/#concept-element-is-value
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-element-is-value
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://xhr.spec.whatwg.org/#concept-formdata-entry
https://w3c.github.io/FileAPI/#dfn-file
https://infra.spec.whatwg.org/#list
https://xhr.spec.whatwg.org/#concept-formdata-entry
https://w3c.github.io/FileAPI/#dfn-file
https://infra.spec.whatwg.org/#list
https://xhr.spec.whatwg.org/#concept-formdata-entry
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://xhr.spec.whatwg.org/#formdata
https://infra.spec.whatwg.org/#list-clone
https://xhr.spec.whatwg.org/#formdata
https://infra.spec.whatwg.org/#list-clone

Each form-associated custom elementp704 has validity flags named valueMissing, typeMismatch, patternMismatch, tooLong,
tooShort, rangeUnderflow, rangeOverflow, stepMismatch, and customError. They are false initially.

Each form-associated custom elementp704 has a validation message string. It is the empty string initially.

Each form-associated custom elementp704 has a validation anchor element. It is null initially.

The setValidity(flags, message, anchor) method of the ElementInternalsp714 interface must run the following steps:

1. Let element be this ElementInternalsp714 's target elementp715.

2. If element is not a form-associated custom elementp704, then throw a "NotSupportedError" DOMException.

3. If flags contains one or more true values and message is not given or is the empty string, then throw a TypeError.

4. For each entry flag → value of flags, set element's validity flag with the name flag to value.

5. Set element's validation messagep717 to the empty string if message is not given or all of element's validity flags are false, or
to message otherwise.

6. If element's customError validity flag is true, then set element's custom validity error messagep590 to element's validation
messagep717. Otherwise, set element's custom validity error messagep590 to the empty string.

7. Set element's validation anchorp717 to null if anchor is not given. Otherwise, if anchor is not a shadow-including descendant
of element, then throw a "NotFoundError" DOMException. Otherwise, set element's validation anchorp717 to anchor.

The validationMessage attribute of ElementInternalsp714 interface, on getting, must return the validation messagep717 of this
ElementInternalsp714 's target elementp715.

When entry construction algorithm for a form-associated custom elementp704 is invoked, given an element element and a list entry
list, run the following steps:

1. If element's submission valuep716 is a list of entries, then append each item of element's submission valuep716 to entry list,
and return.

2. If the element does not have a namep568 attribute specified, or its namep568 attribute's value is the empty string, then return.

3. If the element's submission valuep716 is not null, append an entryp601 to entry list with the namep568 attribute value and the
submission valuep716.

This specification does not provide a machine-readable way of describing bread-crumb navigation menus. Authors are encouraged to
just use a series of links in a paragraph. The navp184 element can be used to mark the section containing these paragraphs as being
navigation blocks.

In this case, user agent does not refer to the namep568 content attribute value. An implementation of form-associated
custom elementp704 is responsible to decide names of entries. They can be the namep568 content attribute value, they can
be strings based on the namep568 content attribute value, or they can be unrelated to the namep568 content attribute.

Note

4.14 Common idioms without dedicated elements §p71

7

In the following example, the current page can be reached via two paths.

<nav>
<p>
Main ▸
Products ▸
Dishwashers ▸
<a>Second hand

Example

4.14.1 Bread crumb navigation §p71

7

717

https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://heycam.github.io/webidl/#notfounderror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#list
https://xhr.spec.whatwg.org/#concept-formdata-entry
https://infra.spec.whatwg.org/#list-append
https://xhr.spec.whatwg.org/#concept-formdata-entry

This specification does not define any markup specifically for marking up lists of keywords that apply to a group of pages (also known
as tag clouds). In general, authors are encouraged to either mark up such lists using ulp222 elements with explicit inline counts that are
then hidden and turned into a presentational effect using a style sheet, or to use SVG.

This specification does not define a specific element for marking up conversations, meeting minutes, chat transcripts, dialogues in
screenplays, instant message logs, and other situations where different players take turns in discourse.

Instead, authors are encouraged to mark up conversations using pp211 elements and punctuation. Authors who need to mark the
speaker for styling purposes are encouraged to use spanp279 or bp273. Paragraphs with their text wrapped in the ip272 element can be

</p>
<p>
Main ▸
Second hand ▸
<a>Dishwashers

</p>
</nav>

Here, three tags are included in a short tag cloud:

<style>
.tag-cloud > li > span { display: none; }
.tag-cloud > li { display: inline; }
.tag-cloud-1 { font-size: 0.7em; }
.tag-cloud-2 { font-size: 0.9em; }
.tag-cloud-3 { font-size: 1.1em; }
.tag-cloud-4 { font-size: 1.3em; }
.tag-cloud-5 { font-size: 1.5em; }

@media speech {
.tag-cloud > li > span { display:inline }

}
</style>
...
<ul class="tag-cloud">
<li class="tag-cloud-4">apple (popular)
<li class="tag-cloud-2">kiwi (rare)
<li class="tag-cloud-5">pear (very

popular)

The actual frequency of each tag is given using the titlep139 attribute. A CSS style sheet is provided to convert the markup into a
cloud of differently-sized words, but for user agents that do not support CSS or are not visual, the markup contains annotations like
"(popular)" or "(rare)" to categorize the various tags by frequency, thus enabling all users to benefit from the information.

The ulp222 element is used (rather than olp220) because the order is not particularly important: while the list is in fact ordered
alphabetically, it would convey the same information if ordered by, say, the length of the tag.

The tagp308 relp284-keyword is not used on these ap238 elements because they do not represent tags that apply to the page itself;
they are just part of an index listing the tags themselves.

Example

4.14.2 Tag clouds §p71

8

4.14.3 Conversations §p71

8

718

used for marking up stage directions.

This example demonstrates this using an extract from Abbot and Costello's famous sketch, Who's on first:

<p> Costello: Look, you gotta first baseman?
<p> Abbott: Certainly.
<p> Costello: Who's playing first?
<p> Abbott: That's right.
<p> Costello becomes exasperated.
<p> Costello: When you pay off the first baseman every month, who gets the money?
<p> Abbott: Every dollar of it.

Example

The following extract shows how an IM conversation log could be marked up, using the datap259 element to provide Unix
timestamps for each line. Note that the timestamps are provided in a format that the timep260 element does not support, so the
datap259 element is used instead (namely, Unix time_t timestamps). Had the author wished to mark up the data using one of the
date and time formats supported by the timep260 element, that element could have been used instead of datap259. This could be
advantageous as it would allow data analysis tools to detect the timestamps unambiguously, without coordination with the page
author.

<p> <data value="1319898155">14:22</data> egof I'm not that nerdy, I've only seen 30% of
the star trek episodes
<p> <data value="1319898192">14:23</data> kaj if you know what percentage of the star trek
episodes you have seen, you are inarguably nerdy
<p> <data value="1319898200">14:23</data> egof it's unarguably
<p> <data value="1319898228">14:23</data> <i>* kaj blinks</i>
<p> <data value="1319898260">14:24</data> kaj you are not helping your case

Example

HTML does not have a good way to mark up graphs, so descriptions of interactive conversations from games are more difficult to
mark up. This example shows one possible convention using dlp226 elements to list the possible responses at each point in the
conversation. Another option to consider is describing the conversation in the form of a DOT file, and outputting the result as an
SVG image to place in the document. [DOT]p1287

<p> Next, you meet a fisher. You can say one of several greetings:
<dl>
<dt> "Hello there!"
<dd>
<p> She responds with "Hello, how may I help you?"; you can respond with:
<dl>
<dt> "I would like to buy a fish."
<dd> <p> She sells you a fish and the conversation finishes.
<dt> "Can I borrow your boat?"
<dd>
<p> She is surprised and asks "What are you offering in return?".
<dl>
<dt> "Five gold." (if you have enough)
<dt> "Ten gold." (if you have enough)
<dt> "Fifteen gold." (if you have enough)
<dd> <p> She lends you her boat. The conversation ends.
<dt> "A fish." (if you have one)
<dt> "A newspaper." (if you have one)
<dt> "A pebble." (if you have one)
<dd> <p> "No thanks", she replies. Your conversation options
at this point are the same as they were after asking to borrow
her boat, minus any options you've suggested before.

</dl>
</dd>

Example

719

</dl>
</dd>
<dt> "Vote for me in the next election!"
<dd> <p> She turns away. The conversation finishes.
<dt> "Madam, are you aware that your fish are running away?"
<dd>
<p> She looks at you skeptically and says "Fish cannot run, miss".
<dl>
<dt> "You got me!"
<dd> <p> The fisher sighs and the conversation ends.
<dt> "Only kidding."
<dd> <p> "Good one!" she retorts. Your conversation options at this
point are the same as those following "Hello there!" above.
<dt> "Oh, then what are they doing?"
<dd> <p> She looks at her fish, giving you an opportunity to steal
her boat, which you do. The conversation ends.

</dl>
</dd>

</dl>

In some games, conversations are simpler: each character merely has a fixed set of lines that they say. In this example, a game
FAQ/walkthrough lists some of the known possible responses for each character:

<section>
<h1>Dialogue</h1>
<p><small>Some characters repeat their lines in order each time you interact
with them, others randomly pick from amongst their lines. Those who respond in
order have numbered entries in the lists below.</small>
<h2>The Shopkeeper</h2>

How may I help you?
Fresh apples!
A loaf of bread for madam?

<h2>The pilot</h2>
<p>Before the accident:

I'm about to fly out, sorry!
Sorry, I'm just waiting for flight clearance and then I'll be off!

<p>After the accident:

I'm about to fly out, sorry!
Ok, I'm not leaving right now, my plane is being cleaned.
Ok, it's not being cleaned, it needs a minor repair first.
Ok, ok, stop bothering me! Truth is, I had a crash.

<h2>Clan Leader</h2>
<p>During the first clan meeting:

Hey, have you seen my daughter? I bet she's up to something nefarious again...
Nice weather we're having today, eh?
The name is Bailey, Jeff Bailey. How can I help you today?
A glass of water? Fresh from the well!

<p>After the earthquake:

Everyone is safe in the shelter, we just have to put out the fire!

Example

720

HTML does not have a dedicated mechanism for marking up footnotes. Here are the suggested alternatives.

For short inline annotations, the titlep139 attribute could be used.

For longer annotations, the ap238 element should be used, pointing to an element later in the document. The convention is that the
contents of the link be a number in square brackets.

I'll go and tell the fire brigade, you keep hosing it down!

</section>

In this example, two parts of a dialogue are annotated with footnote-like content using the titlep139 attribute.

<p> Customer: Hello! I wish to register a complaint. Hello. Miss?
<p> Shopkeeper: <span title="Colloquial pronunciation of 'What do you'"
>Watcha mean, miss?
<p> Customer: Uh, I'm sorry, I have a cold. I wish to make a complaint.
<p> Shopkeeper: Sorry, we're
closing for lunch.

Example

Unfortunately, relying on the titlep139 attribute is currently discouraged as many user agents do not expose the attribute in an
accessible manner as required by this specification (e.g. requiring a pointing device such as a mouse to cause a tooltip to appear,
which excludes keyboard-only users and touch-only users, such as anyone with a modern phone or tablet).

Note

If the titlep139 attribute is used, CSS can be used to draw the reader's attention to the elements with the attribute.
Note

For example, the following CSS places a dashed line below elements that have a titlep139 attribute.

[title] { border-bottom: thin dashed; }

Example

CSS

In this example, a footnote in the dialogue links to a paragraph below the dialogue. The paragraph then reciprocally links back to
the dialogue, allowing the user to return to the location of the footnote.

<p> Announcer: Number 16: The <i>hand</i>.
<p> Interviewer: Good evening. I have with me in the studio tonight
Mr Norman St John Polevaulter, who for the past few years has been
contradicting people. Mr Polevaulter, why do you
contradict people?
<p> Norman: I don't. ^{[1]}
<p> Interviewer: You told me you did!
...
<section>
<p id="fn1">[1] This is, naturally, a lie,

Example

4.14.4 Footnotes §p72

1

721

For side notes, longer annotations that apply to entire sections of the text rather than just specific words or sentences, the asidep187

element should be used.

For figures or tables, footnotes can be included in the relevant figcaptionp235 or captionp458 element, or in surrounding prose.

but paradoxically if it were true he could not say so without
contradicting the interviewer and thus making it false.</p>

</section>

In this example, a sidebar is given after a dialogue, giving it some context.

<p> Customer: I will not buy this record, it is scratched.
<p> Shopkeeper: I'm sorry?
<p> Customer: I will not buy this record, it is scratched.
<p> Shopkeeper: No no no, this's'a tobacconist's.
<aside>
<p>In 1970, the British Empire lay in ruins, and foreign
nationalists frequented the streets — many of them Hungarians
(not the streets — the foreign nationals). Sadly, Alexander
Yalt has been publishing incompetently-written phrase books.

</aside>

Example

In this example, a table has cells with footnotes that are given in prose. A figurep232 element is used to give a single legend to the
combination of the table and its footnotes.

<figure>
<figcaption>Table 1. Alternative activities for knights.</figcaption>
<table>
<tr>
<th> Activity
<th> Location
<th> Cost

<tr>
<td> Dance
<td> Wherever possible
<td> £0^{1}

<tr>
<td> Routines, chorus scenes^{2}
<td> Undisclosed
<td> Undisclosed

<tr>
<td> Dining^{3}
<td> Camelot
<td> Cost of ham, jam, and spam^{4}

</table>
<p id="fn1">1. Assumed.</p>
<p id="fn2">2. Footwork impeccable.</p>
<p id="fn3">3. Quality described as "well".</p>
<p id="fn4">4. A lot.</p>

</figure>

Example

722

An element is said to be actually disabled if it is one of the following:

• a buttonp535 element that is disabledp570

• an inputp493 element that is disabledp570

• a selectp537 element that is disabledp570

• a textareap548 element that is disabledp570

• an optgroupp544 element that has a disabledp545 attribute

• an optionp545 element that is disabledp546

• a fieldsetp562 element that is a disabled fieldsetp563

• a form-associated custom elementp704 that is disabledp570

CSS Values and Units leaves the case-sensitivity of attribute names for the purpose of the 'attr()' function to be defined by the host
language. [CSSVALUES]p1287

When comparing the attribute name part of a CSS 'attr()' function to the names of namespace-less attributes on HTML elementsp44 in
HTML documents, the name part of the CSS 'attr()' function must first be converted to ASCII lowercase. The same function when
compared to other attributes must be compared according to its original case. In both cases, to match the values must be identical to
each other (and therefore the comparison is case sensitive).

Selectors leaves the case-sensitivity of element names, attribute names, and attribute values to be defined by the host language.
[SELECTORS]p1291

When comparing a CSS element type selector to the names of HTML elementsp44 in HTML documents, the CSS element type selector
must first be converted to ASCII lowercase. The same selector when compared to other elements must be compared according to its
original case. In both cases, to match the values must be identical to each other (and therefore the comparison is case sensitive).

When comparing the name part of a CSS attribute selector to the names of attributes on HTML elementsp44 in HTML documents, the
name part of the CSS attribute selector must first be converted to ASCII lowercase. The same selector when compared to other
attributes must be compared according to its original case. In both cases, the comparison is case-sensitive.

Attribute selectors on an HTML elementp44 in an HTML document must treat the values of attributes with the following names as ASCII
case-insensitive:

• accept
• accept-charset
• align
• alink
• axis
• bgcolor

4.15 Disabled elements §p72

3

This definition is used to determine what elements are focusablep772 and which elements match the :enabledp726 and
:disabledp726 pseudo classes.

Note

4.16 Matching HTML elements using selectors and CSS §p72

3

This is the same as comparing the name part of a CSS attribute selector, specified in the next section.
Note

4.16.1 Case-sensitivity of the CSS 'attr()' function §p72

3

4.16.2 Case-sensitivity of selectors §p72

3

723

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/css-values/#funcdef-attr
https://drafts.csswg.org/css-values/#funcdef-attr
https://drafts.csswg.org/css-values/#funcdef-attr
https://dom.spec.whatwg.org/#html-document
https://drafts.csswg.org/css-values/#funcdef-attr
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#string-is
https://drafts.csswg.org/selectors/#attribute-selector
https://drafts.csswg.org/selectors/#type-selector
https://dom.spec.whatwg.org/#html-document
https://drafts.csswg.org/selectors/#type-selector
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#string-is
https://drafts.csswg.org/selectors/#attribute-selector
https://dom.spec.whatwg.org/#html-document
https://drafts.csswg.org/selectors/#attribute-selector
https://infra.spec.whatwg.org/#ascii-lowercase
https://drafts.csswg.org/selectors/#attribute-selector
https://dom.spec.whatwg.org/#html-document
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

• charset
• checked
• clear
• codetype
• color
• compact
• declare
• defer
• dir
• direction
• disabled
• enctype
• face
• frame
• hreflang
• http-equiv
• lang
• language
• link
• media
• method
• multiple
• nohref
• noresize
• noshade
• nowrap
• readonly
• rel
• rev
• rules
• scope
• scrolling
• selected
• shape
• target
• text
• type
• valign
• valuetype
• vlink

All other attribute values and everything else must be treated as entirely identical to each other for the purposes of selector matching.
This includes:

• IDs and classes in no-quirks mode and limited-quirks mode
• the names of elements not in the HTML namespace
• the names of HTML elementsp44 in XML documents
• the names of attributes of elements not in the HTML namespace
• the names of attributes of HTML elementsp44 in XML documents
• the names of attributes that themselves have namespaces

There are a number of dynamic selectors that can be used with HTML. This section defines when these selectors match HTML
elements. [SELECTORS]p1291 [CSSUI]p1287

:defined
The :definedp724 pseudo-class must match any element that is defined.

For example, the selector [bgcolor="#ffffff"] will match any HTML element with a bgcolor attribute with values including
#ffffff, #FFFFFF and #fffFFF. This happens even if bgcolor has no effect for a given element (e.g., divp237).

The selector [type=a s] will match any HTML element with a type attribute whose value is a, but not whose value is A, due to the
s flag.

Example

Selectors defines that ID and class selectors (such as #foo and .bar), when matched against elements in documents that are in
quirks mode, will be matched in an ASCII case-insensitive manner. However, this does not apply for attribute selectors with "id" or
"class" as the name part. The selector [class="foobar"] will treat its value as case-sensitive even in quirks mode.

Note

4.16.3 Pseudo-classes §p72

4

MDN

✔ MDN

724

https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-class
https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#xml-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-document-quirks
https://drafts.csswg.org/selectors/#pseudo-class
https://dom.spec.whatwg.org/#concept-element-defined

:link
:visited

All ap238 elements that have an hrefp284 attribute, all areap443 elements that have an hrefp284 attribute, and all linkp157 elements
that have an hrefp158 attribute, must match one of :linkp725 and :visitedp725.

Other specifications might apply more specific rules regarding how these elements are to match these pseudo-classes, to mitigate
some privacy concerns that apply with straightforward implementations of this requirement.

:active
The :activep725 pseudo-class is defined to match an element “while an element is being activated by the user”.

To determine whether a particular element is being activatedp725 for the purposes of defining the :activep725 pseudo-class only, an
HTML user agent must use the first relevant entry in the following list.

If the element has a descendant that is currently matching the :activep725 pseudo-class
The element is being activatedp725.

If the element is the labeled controlp491 of a labelp490 element that is currently matching :activep725

The element is being activatedp725.

If the element is a buttonp535 element
If the element is an inputp493 element whose typep495 attribute is in the Submit Buttonp518, Image Buttonp518, Reset
Buttonp520, or Buttonp521 state

The element is being activatedp725 if it is in a formal activation statep725 and it is not disabledp570.

If the element is an ap238 element that has an hrefp284 attribute
If the element is an areap443 element that has an hrefp284 attribute
If the element is a linkp157 element that has an hrefp158 attribute
If the element is focusablep772

The element is being activatedp725 if it is in a formal activation statep725.

If the element is being actively pointed atp725

The element is being activatedp725.

An element is said to be in a formal activation state between the time the user begins to indicate an intent to trigger the
element's activation behavior and either the time the user stops indicating an intent to trigger the element's activation behavior, or
the time the element's activation behavior has finished running, which ever comes first.

An element is said to be being actively pointed at while the user indicates the element using a pointing device while that
pointing device is in the "down" state (e.g. for a mouse, between the time the mouse button is pressed and the time it is depressed;
for a finger in a multitouch environment, while the finger is touching the display surface).

:hover
The :hoverp725 pseudo-class is defined to match an element “while the user designates an element with a pointing device”. For the
purposes of defining the :hoverp725 pseudo-class only, an HTML user agent must consider an element as being one that the user
designates if it is:

• An element that the user indicates using a pointing device.

• An element that has a descendant that the user indicates using a pointing device.

• An element that is the labeled controlp491 of a labelp490 element that is currently matching :hoverp725.

For example, if the user is using a keyboard to push a buttonp535 element by pressing the space bar, the element would
match this pseudo-class in between the time that the element received the keydown event and the time the element
received the keyup event.

Example

Consider in particular a fragment such as:
Example

✔ MDN

✔ MDN

✔ MDN

✔ MDN

725

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keyup
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

:focus
For the purposes of the CSS :focusp726 pseudo-class, an element has the focus when:

• its top-level browsing contextp814 has the system focus;

• it is not itself a browsing context containerp814; and

• at least one of the following is true:

◦ it is one of the elements listed in the focus chainp771 of the currently focused area of the top-level browsing
contextp771, or

◦ its shadow root shadowRoot is not null and shadowRoot is the root of at least one element that has the
focusp726.

:target
For the purposes of the CSS :targetp726 pseudo-class, the Documentp114 's target elements are a list containing the Documentp114 's
target elementp881, if it is not null, or containing no elements, if it is. [SELECTORS]p1291

:enabled
The :enabledp726 pseudo-class must match any buttonp535, inputp493, selectp537, textareap548, optgroupp544, optionp545,
fieldsetp562 element, or form-associated custom elementp704 that is not actually disabledp723.

:disabled
The :disabledp726 pseudo-class must match any element that is actually disabledp723.

:checked
The :checkedp726 pseudo-class must match any element falling into one of the following categories:

• inputp493 elements whose typep495 attribute is in the Checkboxp513 state and whose checkednessp566 state is true

• inputp493 elements whose typep495 attribute is in the Radio Buttonp514 state and whose checkednessp566 state is true

• optionp545 elements whose selectednessp547 is true

:indeterminate
The :indeterminatep726 pseudo-class must match any element falling into one of the following categories:

• inputp493 elements whose typep495 attribute is in the Checkboxp513 state and whose indeterminatep499 IDL attribute is set
to true

• inputp493 elements whose typep495 attribute is in the Radio Buttonp514 state and whose radio button groupp514 contains no
inputp493 elements whose checkednessp566 state is true.

• progressp555 elements with no valuep556 content attribute

:default
The :defaultp726 pseudo-class must match any element falling into one of the following categories:

• Submit buttonsp486 that are default buttonsp596 of their form ownerp566.

• inputp493 elements to which the checkedp497 attribute applies and that have a checkedp497 attribute

• optionp545 elements that have a selectedp547 attribute

<p> <label for=c> <input id=a> </label> <input id=c> </p>

If the user designates the element with ID "a" with their pointing device, then the pp211 element (and all its ancestors not shown
in the snippet above), the labelp490 element, the element with ID "a", and the element with ID "c" will match the :hoverp725

pseudo-class. The element with ID "a" matches it from condition 1, the labelp490 and pp211 elements match it because of
condition 2 (one of their descendants is designated), and the element with ID "c" matches it through condition 3 (its labelp490

element matches :hoverp725). However, the element with ID "b" does not match :hoverp725: its descendant is not designated,
even though it matches :hoverp725.

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

726

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#concept-tree-root
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

:placeholder-shown
The :placeholder-shownp727 pseudo-class must match any element falling into one of the following categories:

• inputp493 elements that have a placeholderp530 attribute whose value is currently being presented to the user.

• textareap548 elements that have a placeholderp551 attribute whose value is currently being presented to the user.

:valid
The :validp727 pseudo-class must match any element falling into one of the following categories:

• elements that are candidates for constraint validationp590 and that satisfy their constraintsp591

• formp486 elements that are not the form ownerp566 of any elements that themselves are candidates for constraint
validationp590 but do not satisfy their constraintsp591

• fieldsetp562 elements that have no descendant elements that themselves are candidates for constraint validationp590 but
do not satisfy their constraintsp591

:invalid
The :invalidp727 pseudo-class must match any element falling into one of the following categories:

• elements that are candidates for constraint validationp590 but that do not satisfy their constraintsp591

• formp486 elements that are the form ownerp566 of one or more elements that themselves are candidates for constraint
validationp590 but do not satisfy their constraintsp591

• fieldsetp562 elements that have of one or more descendant elements that themselves are candidates for constraint
validationp590 but do not satisfy their constraintsp591

:in-range
The :in-rangep727 pseudo-class must match all elements that are candidates for constraint validationp590, have range
limitationsp527, and that are neither suffering from an underflowp590 nor suffering from an overflowp591.

:out-of-range
The :out-of-rangep727 pseudo-class must match all elements that are candidates for constraint validationp590, have range
limitationsp527, and that are either suffering from an underflowp590 or suffering from an overflowp591.

:required
The :requiredp727 pseudo-class must match any element falling into one of the following categories:

• inputp493 elements that are requiredp523

• selectp537 elements that have a requiredp539 attribute

• textareap548 elements that have a requiredp551 attribute

:optional
The :optionalp727 pseudo-class must match any element falling into one of the following categories:

• inputp493 elements to which the requiredp523 attribute applies that are not requiredp523

• selectp537 elements that do not have a requiredp539 attribute

• textareap548 elements that do not have a requiredp551 attribute

:read-only
:read-write

The :read-writep727 pseudo-class must match any element falling into one of the following categories, which for the purposes of
Selectors are thus considered user-alterable: [SELECTORS]p1291

• inputp493 elements to which the readonlyp522 attribute applies, and that are mutablep566 (i.e. that do not have the
readonlyp522 attribute specified and that are not disabledp570)

• textareap548 elements that do not have a readonlyp549 attribute, and that are not disabledp570

• elements that are editing hostsp789 or editable and are neither inputp493 elements nor textareap548 elements

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

727

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://w3c.github.io/editing/docs/execCommand/#editable

The :read-onlyp727 pseudo-class must match all other HTML elementsp44.

:dir(ltr)
The :dir(ltr)p728 pseudo-class must match all elements whose directionalityp142 is 'ltrp142 '.

:dir(rtl)
The :dir(rtl)p728 pseudo-class must match all elements whose directionalityp142 is 'rtlp142 '.

This specification does not define when an element matches the :lang() dynamic pseudo-class, as it is defined in sufficient detail
in a language-agnostic fashion in Selectors. [SELECTORS]p1291

Note

⚠ MDN

728

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

This section is non-normative.

Sometimes, it is desirable to annotate content with specific machine-readable labels, e.g. to allow generic scripts to provide services
that are customized to the page, or to enable content from a variety of cooperating authors to be processed by a single script in a
consistent manner.

For this purpose, authors can use the microdata features described in this section. Microdata allows nested groups of name-value pairs
to be added to documents, in parallel with the existing content.

This section is non-normative.

At a high level, microdata consists of a group of name-value pairs. The groups are called itemsp734, and each name-value pair is a
property. Items and properties are represented by regular elements.

To create an item, the itemscopep734 attribute is used.

To add a property to an item, the itempropp736 attribute is used on one of the item'sp734 descendants.

Markup without the microdata-related attributes does not have any effect on the microdata model.

Properties generally have values that are strings.

5 Microdata §p72

9

5.1 Introduction §p72

9

Here there are two items, each of which has the property "name":

<div itemscope>
<p>My name is Elizabeth.</p>

</div>

<div itemscope>
<p>My name is Daniel.</p>

</div>

Example

These two examples are exactly equivalent, at a microdata level, as the previous two examples respectively:

<div itemscope>
<p>My name is Elizabeth.</p>

</div>

<section>
<div itemscope>
<aside>
<p>My name is Daniel.</p>

</aside>
</div>

</section>

Example

5.1.1 Overview §p72

9

5.1.2 The basic syntax §p72

9

729

When a string value is a URL, it is expressed using the ap238 element and its hrefp284 attribute, the imgp320 element and its srcp321

attribute, or other elements that link to or embed external resources.

When a string value is in some machine-readable format unsuitable for human consumption, it is expressed using the valuep260

attribute of the datap259 element, with the human-readable version given in the element's contents.

For numeric data, the meterp557 element and its valuep558 attribute can be used instead.

Similarly, for date- and time-related data, the timep260 element and its datetimep261 attribute can be used instead.

Properties can also themselves be groups of name-value pairs, by putting the itemscopep734 attribute on the element that declares the
property.

Here the item has three properties:

<div itemscope>
<p>My name is Neil.</p>
<p>My band is called Four Parts Water.</p>
<p>I am British.</p>

</div>

Example

In this example, the item has one property, "image", whose value is a URL:

<div itemscope>

</div>

Example

Here, there is an item with a property whose value is a product ID. The ID is not human-friendly, so the product's name is used the
human-visible text instead of the ID.

<h1 itemscope>
<data itemprop="product-id" value="9678AOU879">The Instigator 2000</data>

</h1>

Example

Here a rating is given using a meterp557 element.

<div itemscope itemtype="http://schema.org/Product">
Panasonic White 60L Refrigerator

<div itemprop="aggregateRating"

itemscope itemtype="http://schema.org/AggregateRating">
<meter itemprop="ratingValue" min=0 value=3.5 max=5>Rated 3.5/5</meter>
(based on 11 customer reviews)

</div>
</div>

Example

In this example, the item has one property, "birthday", whose value is a date:

<div itemscope>
I was born on <time itemprop="birthday" datetime="2009-05-10">May 10th 2009</time>.

</div>

Example

730

https://url.spec.whatwg.org/#concept-url

Items that are not part of others are called top-level microdata itemsp739.

Properties that are not descendants of the element with the itemscopep734 attribute can be associated with the itemp734 using the
itemrefp735 attribute. This attribute takes a list of IDs of elements to crawl in addition to crawling the children of the element with the
itemscopep734 attribute.

An itemp734 can have multiple properties with the same name and different values.

An element introducing a property can also introduce multiple properties at once, to avoid duplication when some of the properties
have the same value.

In this example, the outer item represents a person, and the inner one represents a band:

<div itemscope>
<p>Name: Amanda</p>
<p>Band: Jazz Band (<span

itemprop="size">12 players)</p>
</div>

The outer item here has two properties, "name" and "band". The "name" is "Amanda", and the "band" is an item in its own right,
with two properties, "name" and "size". The "name" of the band is "Jazz Band", and the "size" is "12".

The outer item in this example is a top-level microdata item.

Example

This example is the same as the previous one, but all the properties are separated from their itemsp734:

<div itemscope id="amanda" itemref="a b"></div>
<p id="a">Name: Amanda</p>
<div id="b" itemprop="band" itemscope itemref="c"></div>
<div id="c">
<p>Band: Jazz Band</p>
<p>Size: 12 players</p>

</div>

This gives the same result as the previous example. The first item has two properties, "name", set to "Amanda", and "band", set to
another item. That second item has two further properties, "name", set to "Jazz Band", and "size", set to "12".

Example

This example describes an ice cream, with two flavors:

<div itemscope>
<p>Flavors in my favorite ice cream:</p>

<li itemprop="flavor">Lemon sorbet
<li itemprop="flavor">Apricot sorbet

</div>

This thus results in an item with two properties, both "flavor", having the values "Lemon sorbet" and "Apricot sorbet".

Example

Here we see an item with two properties, "favorite-color" and "favorite-fruit", both set to the value "orange":

<div itemscope>
orange

</div>

Example

731

It's important to note that there is no relationship between the microdata and the content of the document where the microdata is
marked up.

This section is non-normative.

The examples in the previous section show how information could be marked up on a page that doesn't expect its microdata to be re-
used. Microdata is most useful, though, when it is used in contexts where other authors and readers are able to cooperate to make new
uses of the markup.

For this purpose, it is necessary to give each itemp734 a type, such as "https://example.com/person", or "https://example.org/cat", or
"https://band.example.net/". Types are identified as URLs.

The type for an itemp734 is given as the value of an itemtypep734 attribute on the same element as the itemscopep734 attribute.

The type gives the context for the properties, thus selecting a vocabulary: a property named "class" given for an item with the type
"https://census.example/person" might refer to the economic class of an individual, while a property named "class" given for an item
with the type "https://example.com/school/teacher" might refer to the classroom a teacher has been assigned. Several types can share
a vocabulary. For example, the types "https://example.org/people/teacher" and "https://example.org/people/engineer" could
be defined to use the same vocabulary (though maybe some properties would not be especially useful in both cases, e.g. maybe the
"https://example.org/people/engineer" type might not typically be used with the "classroom" property). Multiple types defined to
use the same vocabulary can be given for a single item by listing the URLs as a space-separated list in the attribute' value. An item
cannot be given two types if they do not use the same vocabulary, however.

There is no semantic difference, for instance, between the following two examples:

<figure>

<figcaption>The Castle (1986)</figcaption>

</figure>

<meta itemprop="name" content="The Castle">
<figure>

<figcaption>The Castle (1986)</figcaption>

</figure>

Both have a figure with a caption, and both, completely unrelated to the figure, have an item with a name-value pair with the
name "name" and the value "The Castle". The only difference is that if the user drags the caption out of the document, in the
former case, the item will be included in the drag-and-drop data. In neither case is the image in any way associated with the item.

Example

Here, the item's type is "https://example.org/animals#cat":

<section itemscope itemtype="https://example.org/animals#cat">
<h1 itemprop="name">Hedral</h1>
<p itemprop="desc">Hedral is a male american domestic
shorthair, with a fluffy black fur with white paws and belly.</p>

</section>

In this example the "https://example.org/animals#cat" item has three properties, a "name" ("Hedral"), a "desc" ("Hedral is..."), and
an "img" ("hedral.jpeg").

Example

5.1.3 Typed items §p73

2

732

https://url.spec.whatwg.org/#concept-url

This section is non-normative.

Sometimes, an itemp734 gives information about a topic that has a global identifier. For example, books can be identified by their ISBN
number.

Vocabularies (as identified by the itemtypep734 attribute) can be designed such that itemsp734 get associated with their global identifier
in an unambiguous way by expressing the global identifiers as URLs given in an itemidp735 attribute.

The exact meaning of the URLs given in itemidp735 attributes depends on the vocabulary used.

This section is non-normative.

Using microdata means using a vocabulary. For some purposes, an ad-hoc vocabulary is adequate. For others, a vocabulary will need
to be designed. Where possible, authors are encouraged to re-use existing vocabularies, as this makes content re-use easier.

When designing new vocabularies, identifiers can be created either using URLs, or, for properties, as plain words (with no dots or
colons). For URLs, conflicts with other vocabularies can be avoided by only using identifiers that correspond to pages that the author
has control over.

Properties whose names are just plain words can only be used within the context of the types for which they are intended; properties
named using URLs can be reused in items of any type. If an item has no type, and is not part of another item, then if its properties
have names that are just plain words, they are not intended to be globally unique, and are instead only intended for limited use.
Generally speaking, authors are encouraged to use either properties with globally unique names (URLs) or ensure that their items are
typed.

Here, an item is talking about a particular book:

<dl itemscope
itemtype="https://vocab.example.net/book"
itemid="urn:isbn:0-330-34032-8">

<dt>Title
<dd itemprop="title">The Reality Dysfunction
<dt>Author
<dd itemprop="author">Peter F. Hamilton
<dt>Publication date
<dd><time itemprop="pubdate" datetime="1996-01-26">26 January 1996</time>

</dl>

The "https://vocab.example.net/book" vocabulary in this example would define that the itemidp735 attribute takes a urn: URL
pointing to the ISBN of the book.

Example

For instance, if Jon and Adam both write content at example.com, at https://example.com/~jon/... and
https://example.com/~adam/... respectively, then they could select identifiers of the form "https://example.com/~jon/name"
and "https://example.com/~adam/name" respectively.

Example

Here, an item is an "https://example.org/animals#cat", and most of the properties have names that are words defined in the
context of that type. There are also a few additional properties whose names come from other vocabularies.

<section itemscope itemtype="https://example.org/animals#cat">
<h1 itemprop="name https://example.com/fn">Hedral</h1>
<p itemprop="desc">Hedral is a male american domestic

Example

5.1.4 Global identifiers for items §p73

3

5.1.5 Selecting names when defining vocabularies §p73

3

733

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://tools.ietf.org/html/rfc2141#section-2
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

The microdata model consists of groups of name-value pairs known as itemsp734.

Each group is known as an itemp734. Each itemp734 can have item typesp734, a global identifierp735 (if the vocabulary specified by the
item typesp734 support global identifiers for itemsp735), and a list of name-value pairs. Each name in the name-value pair is known as a
propertyp739, and each propertyp739 has one or more valuesp738. Each valuep738 is either a string or itself a group of name-value pairs (an
itemp734). The names are unordered relative to each other, but if a particular name has multiple values, they do have a relative order.

Every HTML elementp44 may have an itemscope attribute specified. The itemscopep734 attribute is a boolean attributep67.

An element with the itemscopep734 attribute specified creates a new item, a group of name-value pairs.

Elements with an itemscopep734 attribute may have an itemtype attribute specified, to give the item typesp734 of the itemp734.

The itemtypep734 attribute, if specified, must have a value that is an unordered set of unique space-separated tokensp87, none of which
are identical to another token and each of which is a valid URL string that is an absolute URL, and all of which are defined to use the
same vocabulary. The attribute's value must have at least one token.

The item types of an itemp734 are the tokens obtained by splitting the element's itemtype attribute's value on ASCII whitespace. If the
itemtypep734 attribute is missing or parsing it in this way finds no tokens, the itemp734 is said to have no item typesp734.

The item typesp734 must all be types defined in applicable specificationsp65 and must all be defined to use the same vocabulary.

Except if otherwise specified by that specification, the URLs given as the item typesp734 should not be automatically dereferenced.

Item typesp734 are opaque identifiers, and user agents must not dereference unknown item typesp734, or otherwise deconstruct them, in
order to determine how to process itemsp734 that use them.

The itemtypep734 attribute must not be specified on elements that do not have an itemscopep734 attribute specified.

shorthair, with a fluffy black fur with white paws and belly.</p>

</section>

This example has one item with the type "https://example.org/animals#cat" and the following properties:

Property Value
name Hedral
https://example.com/fn Hedral
desc Hedral is a male american domestic shorthair, with a fluffy black fur with white paws and belly.
https://example.com/color black
https://example.com/color white
img .../hedral.jpeg

5.2 Encoding microdata §p73

4

A specification could define that its item typep734 can be dereferenced to provide the user with help information, for example. In
fact, vocabulary authors are encouraged to provide useful information at the given URL.

Note

5.2.1 The microdata model §p73

4

5.2.2 Items §p73

4

✔ MDN

✔ MDN

734

https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

An itemp734 is said to be a typed item when either it has an item typep734, or it is the valuep738 of a propertyp739 of a typed itemp735.
The relevant types for a typed itemp735 is the itemp734 's item typesp734, if it has any, or else is the relevant typesp735 of the itemp734 for
which it is a propertyp739 's valuep738.

Elements with an itemscopep734 attribute and an itemtypep734 attribute that references a vocabulary that is defined to support global
identifiers for items may also have an itemid attribute specified, to give a global identifier for the itemp734, so that it can be related
to other itemsp734 on pages elsewhere on the web.

The itemidp735 attribute, if specified, must have a value that is a valid URL potentially surrounded by spacesp88.

The global identifier of an itemp734 is the value of its element's itemidp735 attribute, if it has one, parsedp89 relative to the node
document of the element on which the attribute is specified. If the itemidp735 attribute is missing or if resolving it fails, it is said to
have no global identifierp735.

The itemidp735 attribute must not be specified on elements that do not have both an itemscopep734 attribute and an itemtypep734

attribute specified, and must not be specified on elements with an itemscopep734 attribute whose itemtypep734 attribute specifies a
vocabulary that does not support global identifiers for itemsp735, as defined by that vocabulary's specification.

The exact meaning of a global identifierp735 is determined by the vocabulary's specification. It is up to such specifications to define
whether multiple items with the same global identifier (whether on the same page or on different pages) are allowed to exist, and what
the processing rules for that vocabulary are with respect to handling the case of multiple items with the same ID.

Elements with an itemscopep734 attribute may have an itemref attribute specified, to give a list of additional elements to crawl to find
the name-value pairs of the itemp734.

The itemrefp735 attribute, if specified, must have a value that is an unordered set of unique space-separated tokensp87 none of which
are identical to another token and consisting of IDs of elements in the same tree.

The itemrefp735 attribute must not be specified on elements that do not have an itemscopep734 attribute specified.

The itemrefp735 attribute is not part of the microdata data model. It is merely a syntactic construct to aid authors in adding
annotations to pages where the data to be annotated does not follow a convenient tree structure. For example, it allows authors to
mark up data in a table so that each column defines a separate itemp734, while keeping the properties in the cells.

Note

This example shows a simple vocabulary used to describe the products of a model railway manufacturer. The vocabulary has just
five property names:

product-code
An integer that names the product in the manufacturer's catalog.

name
A brief description of the product.

scale
One of "HO", "1", or "Z" (potentially with leading or trailing whitespace), indicating the scale of the product.

digital
If present, one of "Digital", "Delta", or "Systems" (potentially with leading or trailing whitespace) indicating that the product has
a digital decoder of the given type.

track-type
For track-specific products, one of "K", "M", "C" (potentially with leading or trailing whitespace) indicating the type of track for
which the product is intended.

This vocabulary has four defined item typesp734:

https://md.example.com/loco
Rolling stock with an engine

Example

✔ MDN

✔ MDN

735

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree

Every HTML elementp44 may have an itempropp736 attribute specified, if doing so adds one or more propertiesp739 to one or more
itemsp734 (as defined below).

The itempropp736 attribute, if specified, must have a value that is an unordered set of unique space-separated tokensp87 none of which

https://md.example.com/passengers
Passenger rolling stock

https://md.example.com/track
Track pieces

https://md.example.com/lighting
Equipment with lighting

Each itemp734 that uses this vocabulary can be given one or more of these types, depending on what the product is.

Thus, a locomotive might be marked up as:

<dl itemscope itemtype="https://md.example.com/loco
https://md.example.com/lighting">

<dt>Name:
<dd itemprop="name">Tank Locomotive (DB 80)
<dt>Product code:
<dd itemprop="product-code">33041
<dt>Scale:
<dd itemprop="scale">HO
<dt>Digital:
<dd itemprop="digital">Delta

</dl>

A turnout lantern retrofit kit might be marked up as:

<dl itemscope itemtype="https://md.example.com/track
https://md.example.com/lighting">

<dt>Name:
<dd itemprop="name">Turnout Lantern Kit
<dt>Product code:
<dd itemprop="product-code">74470
<dt>Purpose:
<dd>For retrofitting 2 C Track
turnouts. <meta itemprop="scale" content="HO">

</dl>

A passenger car with no lighting might be marked up as:

<dl itemscope itemtype="https://md.example.com/passengers">
<dt>Name:
<dd itemprop="name">Express Train Passenger Car (DB Am 203)
<dt>Product code:
<dd itemprop="product-code">8710
<dt>Scale:
<dd itemprop="scale">Z

</dl>

Great care is necessary when creating new vocabularies. Often, a hierarchical approach to types can be taken that results in a
vocabulary where each item only ever has a single type, which is generally much simpler to manage.

5.2.3 Names: the itemprop attribute §p73

6

✔ MDN

736

are identical to another token, representing the names of the name-value pairs that it adds. The attribute's value must have at least
one token.

Each token must be either:

• If the item is a typed itemp735: a defined property name allowed in this situation according to the specification that defines
the relevant typesp735 for the item, or

• A valid URL string that is an absolute URL defined as an item property name allowed in this situation by a vocabulary
specification, or

• A valid URL string that is an absolute URL, used as a proprietary item property name (i.e. one used by the author for private
purposes, not defined in a public specification), or

• If the item is not a typed itemp735: a string that contains no U+002E FULL STOP characters (.) and no U+003A COLON
characters (:), used as a proprietary item property name (i.e. one used by the author for private purposes, not defined in a
public specification).

Specifications that introduce defined property namesp737 must ensure all such property names contain no U+002E FULL STOP
characters (.), no U+003A COLON characters (:), and no ASCII whitespace.

When an element with an itempropp736 attribute adds a propertyp739 to multiple itemsp734, the requirement above regarding the tokens
applies for each itemp734 individually.

The property names of an element are the tokens that the element's itempropp736 attribute is found to contain when its value is split
on ASCII whitespace, with the order preserved but with duplicates removed (leaving only the first occurrence of each name).

Within an itemp734, the properties are unordered with respect to each other, except for properties with the same name, which are
ordered in the order they are given by the algorithm that defines the properties of an itemp739.

The rules above disallow U+003A COLON characters (:) in non-URL values because otherwise they could not be distinguished from
URLs. Values with U+002E FULL STOP characters (.) are reserved for future extensions. ASCII whitespace are disallowed because
otherwise the values would be parsed as multiple tokens.

Note

In the following example, the "a" property has the values "1" and "2", in that order, but whether the "a" property comes before the
"b" property or not is not important:

<div itemscope>
<p itemprop="a">1</p>
<p itemprop="a">2</p>
<p itemprop="b">test</p>

</div>

Thus, the following is equivalent:

<div itemscope>
<p itemprop="b">test</p>
<p itemprop="a">1</p>
<p itemprop="a">2</p>

</div>

As is the following:

<div itemscope>
<p itemprop="a">1</p>
<p itemprop="b">test</p>
<p itemprop="a">2</p>

</div>

Example

737

https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#split-on-ascii-whitespace

The property value of a name-value pair added by an element with an itempropp736 attribute is as given for the first matching case in
the following list:

↪ If the element also has an itemscopep734 attribute
The value is the itemp734 created by the element.

↪ If the element is a metap164 element
The value is the value of the element's contentp165 attribute, if any, or the empty string if there is no such attribute.

↪ If the element is an audiop384, embedp369, iframep361, imgp320, sourcep317, trackp385, or videop380 element
The value is the resulting URL stringp89 that results from parsingp89 the value of the element's src attribute relative to the node
document of the element at the time the attribute is set, or the empty string if there is no such attribute or if parsingp89 it
results in an error.

↪ If the element is an ap238, areap443, or linkp157 element
The value is the resulting URL stringp89 that results from parsingp89 the value of the element's href attribute relative to the node
document of the element at the time the attribute is set, or the empty string if there is no such attribute or if parsingp89 it
results in an error.

↪ If the element is an objectp373 element
The value is the resulting URL stringp89 that results from parsingp89 the value of the element's data attribute relative to the node
document of the element at the time the attribute is set, or the empty string if there is no such attribute or if parsingp89 it
results in an error.

↪ If the element is a datap259 element
The value is the value of the element's valuep260 attribute, if it has one, or the empty string otherwise.

↪ If the element is a meterp557 element
The value is the value of the element's valuep558 attribute, if it has one, or the empty string otherwise.

↪ If the element is a timep260 element
The value is the element's datetime valuep261.

↪ Otherwise
The value is the element's descendant text content.

The URL property elements are the ap238, areap443, audiop384, embedp369, iframep361, imgp320, linkp157, objectp373, sourcep317,
trackp385, and videop380 elements.

If a property's valuep738, as defined by the property's definition, is an absolute URL, the property must be specified using a URL
property elementp738.

And the following:

<div id="x">
<p itemprop="a">1</p>

</div>
<div itemscope itemref="x">
<p itemprop="b">test</p>
<p itemprop="a">2</p>

</div>

These requirements do not apply just because a property value happens to match the syntax for a URL. They only apply if the
property is explicitly defined as taking such a value.

Note

5.2.4 Values §p73

8

738

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://url.spec.whatwg.org/#syntax-url-absolute

To find the properties of an item defined by the element root, the user agent must run the following steps. These steps are also
used to flag microdata errorsp739.

1. Let results, memory, and pending be empty lists of elements.

2. Add the element root to memory.

3. Add the child elements of root, if any, to pending.

4. If root has an itemrefp735 attribute, split the value of that itemref attribute on ASCII whitespace. For each resulting token ID,
if there is an element in the tree of root with the ID ID, then add the first such element to pending.

5. While pending is not empty:

1. Remove an element from pending and let current be that element.

2. If current is already in memory, there is a microdata errorp739; continue.

3. Add current to memory.

4. If current does not have an itemscopep734 attribute, then: add all the child elements of current to pending.

5. If current has an itempropp736 attribute specified and has one or more property namesp737, then add current to
results.

6. Sort results in tree order.

7. Return results.

A document must not contain any itemsp734 for which the algorithm to find the properties of an itemp739 finds any microdata errors.

An itemp734 is a top-level microdata item if its element does not have an itempropp736 attribute.

All itemrefp735 attributes in a Documentp114 must be such that there are no cycles in the graph formed from representing each itemp734

in the Documentp114 as a node in the graph and each propertyp739 of an item whose valuep738 is another item as an edge in the graph
connecting those two items.

A document must not contain any elements that have an itempropp736 attribute that would not be found to be a property of any of the
itemsp734 in that document were their propertiesp739 all to be determined.

For example, a book about the first moon landing could be called "mission:moon". A "title" property from a vocabulary that defines
a title as being a string would not expect the title to be given in an ap238 element, even though it looks like a URL. On the other
hand, if there was a (rather narrowly scoped!) vocabulary for "books whose titles look like URLs" which had a "title" property
defined to take a URL, then the property would expect the title to be given in an ap238 element (or one of the other URL property
elementsp738), because of the requirement above.

Example

In this example, a single license statement is applied to two works, using itemrefp735 from the items representing the works:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Photo gallery</title>

</head>
<body>
<h1>My photos</h1>
<figure itemscope itemtype="http://n.whatwg.org/work" itemref="licenses">

<figcaption itemprop="title">The house I found.</figcaption>

Example

5.2.5 Associating names with items §p73

9

739

https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree-order

Currently, the itemscopep734, itempropp736, and other microdata attributes are only defined for HTML elementsp44. This means that
attributes with the literal names "itemscope", "itemprop", etc, do not cause microdata processing to occur on elements in other
namespaces, such as SVG.

The vocabularies in this section are primarily intended to demonstrate how a vocabulary is specified, though they are also usable in
their own right.

</figure>
<figure itemscope itemtype="http://n.whatwg.org/work" itemref="licenses">
<img itemprop="work" src="images/mailbox.jpeg" alt="Outside the house is a mailbox. It has a

leaflet inside.">
<figcaption itemprop="title">The mailbox.</figcaption>

</figure>
<footer>
<p id="licenses">All images licensed under the <a itemprop="license"
href="http://www.opensource.org/licenses/mit-license.php">MIT
license.</p>

</footer>
</body>

</html>

The above results in two items with the type "http://n.whatwg.org/work", one with:

work
images/house.jpeg

title
The house I found.

license
http://www.opensource.org/licenses/mit-license.php

...and one with:

work
images/mailbox.jpeg

title
The mailbox.

license
http://www.opensource.org/licenses/mit-license.php

Thus, in the following example there is only one item, not two.

<p itemscope></p> <!-- this is an item (with no properties and no type) -->
<svg itemscope></svg> <!-- this is not, it's just an SVG svg element with an invalid unknown
attribute -->

Example

5.3 Sample microdata vocabularies §p74

0

5.2.6 Microdata and other namespaces §p74

0

740

https://svgwg.org/svg2-draft/struct.html#SVGElement

An item with the item typep734 http://microformats.org/profile/hcard represents a person's or organization's contact information.

This vocabulary does not support global identifiers for itemsp735.

The following are the type's defined property namesp737. They are based on the vocabulary defined in vCard Format Specification
(vCard) and its extensions, where more information on how to interpret the values can be found. [RFC6350]p1291

kind
Describes what kind of contact the item represents.

The valuep738 must be text that is identical to one of the kind stringsp748.

A single property with the name kindp741 may be present within each itemp734 with the type http://microformats.org/profile/
hcardp741.

fn
Gives the formatted text corresponding to the name of the person or organization.

The valuep738 must be text.

Exactly one property with the name fnp741 must be present within each itemp734 with the type http://microformats.org/profile/
hcardp741.

n
Gives the structured name of the person or organization.

The valuep738 must be an itemp734 with zero or more of each of the family-namep741, given-namep741, additional-namep741,
honorific-prefixp741, and honorific-suffixp742 properties.

Exactly one property with the name np741 must be present within each itemp734 with the type http://microformats.org/profile/
hcardp741.

family-name (inside np741)
Gives the family name of the person, or the full name of the organization.

The valuep738 must be text.

Any number of properties with the name family-namep741 may be present within the itemp734 that forms the valuep738 of the np741

property of an itemp734 with the type http://microformats.org/profile/hcardp741.

given-name (inside np741)
Gives the given-name of the person.

The valuep738 must be text.

Any number of properties with the name given-namep741 may be present within the itemp734 that forms the valuep738 of the np741

property of an itemp734 with the type http://microformats.org/profile/hcardp741.

additional-name (inside np741)
Gives the any additional names of the person.

The valuep738 must be text.

Any number of properties with the name additional-namep741 may be present within the itemp734 that forms the valuep738 of the
np741 property of an itemp734 with the type http://microformats.org/profile/hcardp741.

honorific-prefix (inside np741)
Gives the honorific prefix of the person.

The valuep738 must be text.

Any number of properties with the name honorific-prefixp741 may be present within the itemp734 that forms the valuep738 of the

5.3.1 vCard §p74

1

741

https://infra.spec.whatwg.org/#string-is

np741 property of an itemp734 with the type http://microformats.org/profile/hcardp741.

honorific-suffix (inside np741)
Gives the honorific suffix of the person.

The valuep738 must be text.

Any number of properties with the name honorific-suffixp742 may be present within the itemp734 that forms the valuep738 of the
np741 property of an itemp734 with the type http://microformats.org/profile/hcardp741.

nickname
Gives the nickname of the person or organization.

The valuep738 must be text.

Any number of properties with the name nicknamep742 may be present within each itemp734 with the type
http://microformats.org/profile/hcardp741.

photo
Gives a photograph of the person or organization.

The valuep738 must be an absolute URL.

Any number of properties with the name photop742 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

bday
Gives the birth date of the person or organization.

The valuep738 must be a valid date stringp74.

A single property with the name bdayp742 may be present within each itemp734 with the type http://microformats.org/profile/
hcardp741.

anniversary
Gives the birth date of the person or organization.

The valuep738 must be a valid date stringp74.

A single property with the name anniversaryp742 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

sex
Gives the biological sex of the person.

The valuep738 must be one of F, meaning "female", M, meaning "male", N, meaning "none or not applicable", O, meaning "other", or
U, meaning "unknown".

A single property with the name sexp742 may be present within each itemp734 with the type http://microformats.org/profile/
hcardp741.

gender-identity
Gives the gender identity of the person.

The valuep738 must be text.

A single property with the name gender-identityp742 may be present within each itemp734 with the type
http://microformats.org/profile/hcardp741.

The nickname is the descriptive name given instead of or in addition to the one belonging to a person, place, or thing. It can
also be used to specify a familiar form of a proper name specified by the fnp741 or np741 properties.

Note

742

https://url.spec.whatwg.org/#syntax-url-absolute

adr
Gives the delivery address of the person or organization.

The valuep738 must be an itemp734 with zero or more typep743, post-office-boxp743, extended-addressp743, and street-addressp743

properties, and optionally a localityp743 property, optionally a regionp743 property, optionally a postal-codep744 property, and
optionally a country-namep744 property.

If no typep743 properties are present within an itemp734 that forms the valuep738 of an adrp743 property of an itemp734 with the type
http://microformats.org/profile/hcardp741, then the address type stringp748 workp748 is implied.

Any number of properties with the name adrp743 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

type (inside adrp743)
Gives the type of delivery address.

The valuep738 must be text that is identical to one of the address type stringsp748.

Any number of properties with the name typep743 may be present within the itemp734 that forms the valuep738 of an adrp743 property
of an itemp734 with the type http://microformats.org/profile/hcardp741, but within each such adrp743 property itemp734 there
must only be one typep743 property per distinct value.

post-office-box (inside adrp743)
Gives the post office box component of the delivery address of the person or organization.

The valuep738 must be text.

Any number of properties with the name post-office-boxp743 may be present within the itemp734 that forms the valuep738 of an
adrp743 property of an itemp734 with the type http://microformats.org/profile/hcardp741.

extended-address (inside adrp743)
Gives an additional component of the delivery address of the person or organization.

The valuep738 must be text.

Any number of properties with the name extended-addressp743 may be present within the itemp734 that forms the valuep738 of an
adrp743 property of an itemp734 with the type http://microformats.org/profile/hcardp741.

street-address (inside adrp743)
Gives the street address component of the delivery address of the person or organization.

The valuep738 must be text.

Any number of properties with the name street-addressp743 may be present within the itemp734 that forms the valuep738 of an
adrp743 property of an itemp734 with the type http://microformats.org/profile/hcardp741.

locality (inside adrp743)
Gives the locality component (e.g. city) of the delivery address of the person or organization.

The valuep738 must be text.

A single property with the name localityp743 may be present within the itemp734 that forms the valuep738 of an adrp743 property of
an itemp734 with the type http://microformats.org/profile/hcardp741.

region (inside adrp743)
Gives the region component (e.g. state or province) of the delivery address of the person or organization.

vCard urges authors not to use this field.
Note

vCard urges authors not to use this field.
Note

743

https://infra.spec.whatwg.org/#string-is

The valuep738 must be text.

A single property with the name regionp743 may be present within the itemp734 that forms the valuep738 of an adrp743 property of an
itemp734 with the type http://microformats.org/profile/hcardp741.

postal-code (inside adrp743)
Gives the postal code component of the delivery address of the person or organization.

The valuep738 must be text.

A single property with the name postal-codep744 may be present within the itemp734 that forms the valuep738 of an adrp743 property
of an itemp734 with the type http://microformats.org/profile/hcardp741.

country-name (inside adrp743)
Gives the country name component of the delivery address of the person or organization.

The valuep738 must be text.

A single property with the name country-namep744 may be present within the itemp734 that forms the valuep738 of an adrp743 property
of an itemp734 with the type http://microformats.org/profile/hcardp741.

tel
Gives the telephone number of the person or organization.

The valuep738 must be either text that can be interpreted as a telephone number as defined in the CCITT specifications E.163 and
X.121, or an itemp734 with zero or more typep744 properties and exactly one valuep744 property. [E163]p1287 [X121]p1292

If no typep744 properties are present within an itemp734 that forms the valuep738 of a telp744 property of an itemp734 with the type
http://microformats.org/profile/hcardp741, or if the valuep738 of such a telp744 property is text, then the telephone type
stringp748 voicep748 is implied.

Any number of properties with the name telp744 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

type (inside telp744)
Gives the type of telephone number.

The valuep738 must be text that is identical to one of the telephone type stringsp748.

Any number of properties with the name typep744 may be present within the itemp734 that forms the valuep738 of a telp744 property of
an itemp734 with the type http://microformats.org/profile/hcardp741, but within each such telp744 property itemp734 there must
only be one typep744 property per distinct value.

value (inside telp744)
Gives the actual telephone number of the person or organization.

The valuep738 must be text that can be interpreted as a telephone number as defined in the CCITT specifications E.163 and X.121.
[E163]p1287 [X121]p1292

Exactly one property with the name valuep744 must be present within the itemp734 that forms the valuep738 of a telp744 property of
an itemp734 with the type http://microformats.org/profile/hcardp741.

email
Gives the email address of the person or organization.

The valuep738 must be text.

Any number of properties with the name emailp744 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

impp
Gives a URL for instant messaging and presence protocol communications with the person or organization.

The valuep738 must be an absolute URL.
744

https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute

Any number of properties with the name imppp744 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

lang
Gives a language understood by the person or organization.

The valuep738 must be a valid BCP 47 language tag. [BCP47]p1285.

Any number of properties with the name langp745 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

tz
Gives the time zone of the person or organization.

The valuep738 must be text and must match the following syntax:

1. Either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. A valid non-negative integerp69 that is exactly two digits long and that represents a number in the range 00..23.

3. A U+003A COLON character (:).

4. A valid non-negative integerp69 that is exactly two digits long and that represents a number in the range 00..59.

Any number of properties with the name tzp745 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

geo
Gives the geographical position of the person or organization.

The valuep738 must be text and must match the following syntax:

1. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. One or more ASCII digits.

3. Optionally*, a U+002E FULL STOP character (.) followed by one or more ASCII digits.

4. A U+003B SEMICOLON character (;).

5. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

6. One or more ASCII digits.

7. Optionally*, a U+002E FULL STOP character (.) followed by one or more ASCII digits.

The optional components marked with an asterisk (*) should be included, and should have six digits each.

Any number of properties with the name geop745 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

title
Gives the job title, functional position or function of the person or organization.

The valuep738 must be text.

Any number of properties with the name titlep745 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

role
Gives the role, occupation, or business category of the person or organization.

The value specifies latitude and longitude, in that order (i.e., "LAT LON" ordering), in decimal degrees. The longitude represents
the location east and west of the prime meridian as a positive or negative real number, respectively. The latitude represents the
location north and south of the equator as a positive or negative real number, respectively.

Note

745

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

The valuep738 must be text.

Any number of properties with the name rolep745 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

logo
Gives the logo of the person or organization.

The valuep738 must be an absolute URL.

Any number of properties with the name logop746 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

agent
Gives the contact information of another person who will act on behalf of the person or organization.

The valuep738 must be either an itemp734 with the type http://microformats.org/profile/hcardp741, or an absolute URL, or text.

Any number of properties with the name agentp746 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

org
Gives the name and units of the organization.

The valuep738 must be either text or an itemp734 with one organization-namep746 property and zero or more organization-unitp746

properties.

Any number of properties with the name orgp746 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

organization-name (inside orgp746)
Gives the name of the organization.

The valuep738 must be text.

Exactly one property with the name organization-namep746 must be present within the itemp734 that forms the valuep738 of an
orgp746 property of an itemp734 with the type http://microformats.org/profile/hcardp741.

organization-unit (inside orgp746)
Gives the name of the organization unit.

The valuep738 must be text.

Any number of properties with the name organization-unitp746 may be present within the itemp734 that forms the valuep738 of the
orgp746 property of an itemp734 with the type http://microformats.org/profile/hcardp741.

member
Gives a URL that represents a member of the group.

The valuep738 must be an absolute URL.

Any number of properties with the name memberp746 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741 if the itemp734 also has a property with the name kindp741 whose value is "groupp748".

related
Gives a relationship to another entity.

The valuep738 must be an itemp734 with one urlp746 property and one relp747 properties.

Any number of properties with the name relatedp746 may be present within each itemp734 with the type
http://microformats.org/profile/hcardp741.

url (inside relatedp746)
Gives the URL for the related entity.

746

https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#concept-url

The valuep738 must be an absolute URL.

Exactly one property with the name urlp746 must be present within the itemp734 that forms the valuep738 of a relatedp746 property of
an itemp734 with the type http://microformats.org/profile/hcardp741.

rel (inside relatedp746)
Gives the relationship between the entity and the related entity.

The valuep738 must be text that is identical to one of the relationship stringsp748.

Exactly one property with the name relp747 must be present within the itemp734 that forms the valuep738 of a relatedp746 property of
an itemp734 with the type http://microformats.org/profile/hcardp741.

categories
Gives the name of a category or tag that the person or organization could be classified as.

The valuep738 must be text.

Any number of properties with the name categoriesp747 may be present within each itemp734 with the type
http://microformats.org/profile/hcardp741.

note
Gives supplemental information or a comment about the person or organization.

The valuep738 must be text.

Any number of properties with the name notep747 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

rev
Gives the revision date and time of the contact information.

The valuep738 must be text that is a valid global date and time stringp79.

Any number of properties with the name revp747 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

sound
Gives a sound file relating to the person or organization.

The valuep738 must be an absolute URL.

Any number of properties with the name soundp747 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

uid
Gives a globally unique identifier corresponding to the person or organization.

The valuep738 must be text.

A single property with the name uidp747 may be present within each itemp734 with the type http://microformats.org/profile/
hcardp741.

url
Gives a URL relating to the person or organization.

The valuep738 must be an absolute URL.

Any number of properties with the name urlp747 may be present within each itemp734 with the type http://microformats.org/
profile/hcardp741.

The value distinguishes the current revision of the information for other renditions of the information.
Note

747

https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute

The kind strings are:

individual
Indicates a single entity (e.g. a person).

group
Indicates multiple entities (e.g. a mailing list).

org
Indicates a single entity that is not a person (e.g. a company).

location
Indicates a geographical place (e.g. an office building).

The address type strings are:

home
Indicates a delivery address for a residence.

work
Indicates a delivery address for a place of work.

The telephone type strings are:

home
Indicates a residential number.

work
Indicates a telephone number for a place of work.

text
Indicates that the telephone number supports text messages (SMS).

voice
Indicates a voice telephone number.

fax
Indicates a facsimile telephone number.

cell
Indicates a cellular telephone number.

video
Indicates a video conferencing telephone number.

pager
Indicates a paging device telephone number.

textphone
Indicates a telecommunication device for people with hearing or speech difficulties.

The relationship strings are:

emergency
An emergency contact.

agent
Another entity that acts on behalf of this entity.

748

contact
acquaintance
friend
met
worker
colleague
resident
neighbor
child
parent
sibling
spouse
kin
muse
crush
date
sweetheart
me

Has the meaning defined in XFN. [XFN]p1292

Given a list of nodes nodes in a Documentp114, a user agent must run the following algorithm to extract any vCard data represented
by those nodes (only the first vCard is returned):

1. If none of the nodes in nodes are itemsp734 with the item typep734 http://microformats.org/profile/hcardp741, then there
is no vCard. Abort the algorithm, returning nothing.

2. Let node be the first node in nodes that is an itemp734 with the item typep734 http://microformats.org/profile/hcardp741.

3. Let output be an empty string.

4. Add a vCard linep751 with the type "BEGIN" and the value "VCARD" to output.

5. Add a vCard linep751 with the type "PROFILE" and the value "VCARD" to output.

6. Add a vCard linep751 with the type "VERSION" and the value "4.0" to output.

7. Add a vCard linep751 with the type "SOURCE" and the result of escaping the vCard text stringp752 that is the document's URL as
the value to output.

8. If the title elementp117 is not null, add a vCard linep751 with the type "NAME" and with the result of escaping the vCard text
stringp752 obtained from the the title elementp117 's descendant text content as the value to output.

9. Let sex be the empty string.

10. Let gender-identity be the empty string.

11. For each element element that is a property of the itemp739 node: for each name name in element's property namesp737, run
the following substeps:

1. Let parameters be an empty set of name-value pairs.

2. Run the appropriate set of substeps from the following list. The steps will set a variable value, which is used in the
next step.

If the property's valuep738 is an itemp734 subitem and name is np741

1. Let value be the empty string.

2. Append to value the result of collecting the first vCard subpropertyp752 named family-namep741 in
subitem.

5.3.1.1 Conversion to vCard §p74

9

749

https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-descendant-text-content

3. Append a U+003B SEMICOLON character (;) to value.

4. Append to value the result of collecting the first vCard subpropertyp752 named given-namep741 in
subitem.

5. Append a U+003B SEMICOLON character (;) to value.

6. Append to value the result of collecting the first vCard subpropertyp752 named additional-namep741 in
subitem.

7. Append a U+003B SEMICOLON character (;) to value.

8. Append to value the result of collecting the first vCard subpropertyp752 named honorific-prefixp741

in subitem.

9. Append a U+003B SEMICOLON character (;) to value.

10. Append to value the result of collecting the first vCard subpropertyp752 named honorific-suffixp742

in subitem.

If the property's valuep738 is an itemp734 subitem and name is adrp743

1. Let value be the empty string.

2. Append to value the result of collecting vCard subpropertiesp752 named post-office-boxp743 in
subitem.

3. Append a U+003B SEMICOLON character (;) to value.

4. Append to value the result of collecting vCard subpropertiesp752 named extended-addressp743 in
subitem.

5. Append a U+003B SEMICOLON character (;) to value.

6. Append to value the result of collecting vCard subpropertiesp752 named street-addressp743 in
subitem.

7. Append a U+003B SEMICOLON character (;) to value.

8. Append to value the result of collecting the first vCard subpropertyp752 named localityp743 in
subitem.

9. Append a U+003B SEMICOLON character (;) to value.

10. Append to value the result of collecting the first vCard subpropertyp752 named regionp743 in subitem.

11. Append a U+003B SEMICOLON character (;) to value.

12. Append to value the result of collecting the first vCard subpropertyp752 named postal-codep744 in
subitem.

13. Append a U+003B SEMICOLON character (;) to value.

14. Append to value the result of collecting the first vCard subpropertyp752 named country-namep744 in
subitem.

15. If there is a property named typep743 in subitem, and the first such property has a valuep738 that is not
an itemp734 and whose value consists only of ASCII alphanumerics, then add a parameter named
"TYPE" whose value is the valuep738 of that property to parameters.

If the property's valuep738 is an itemp734 subitem and name is orgp746

1. Let value be the empty string.

2. Append to value the result of collecting the first vCard subpropertyp752 named organization-namep746

in subitem.

3. For each property named organization-unitp746 in subitem, run the following steps:

1. If the valuep738 of the property is an itemp734, then skip this property.

750

https://infra.spec.whatwg.org/#ascii-alphanumeric

2. Append a U+003B SEMICOLON character (;) to value.

3. Append the result of escaping the vCard text stringp752 given by the valuep738 of the property
to value.

If the property's valuep738 is an itemp734 subitem with the item typep734 http://microformats.org/
profile/hcardp741 and name is relatedp746

1. Let value be the empty string.

2. If there is a property named urlp746 in subitem, and its element is a URL property elementp738, then
append the result of escaping the vCard text stringp752 given by the valuep738 of the first such property
to value, and add a parameter with the name "VALUE" and the value "URI" to parameters.

3. If there is a property named relp747 in subitem, and the first such property has a valuep738 that is not
an itemp734 and whose value consists only of ASCII alphanumerics, then add a parameter named
"RELATION" whose value is the valuep738 of that property to parameters.

If the property's valuep738 is an itemp734 and name is none of the above

1. Let value be the result of collecting the first vCard subpropertyp752 named value in subitem.

2. If there is a property named type in subitem, and the first such property has a valuep738 that is not an
itemp734 and whose value consists only of ASCII alphanumeric, then add a parameter named "TYPE"
whose value is the valuep738 of that property to parameters.

If the property's valuep738 is not an itemp734 and its name is sexp742

If this is the first such property to be found, set sex to the property's valuep738.

If the property's valuep738 is not an itemp734 and its name is gender-identityp742

If this is the first such property to be found, set gender-identity to the property's valuep738.

Otherwise (the property's valuep738 is not an itemp734)

1. Let value be the property's valuep738.

2. If element is one of the URL property elementsp738, add a parameter with the name "VALUE" and the
value "URI" to parameters.

3. Otherwise, if name is bdayp742 or anniversaryp742 and the value is a valid date stringp74, add a
parameter with the name "VALUE" and the value "DATE" to parameters.

4. Otherwise, if name is revp747 and the value is a valid global date and time stringp79, add a parameter
with the name "VALUE" and the value "DATE-TIME" to parameters.

5. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C REVERSE
SOLIDUS character (\).

6. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE SOLIDUS character (\).

7. Unless name is geop745, prefix every U+003B SEMICOLON character (;) in value with a U+005C
REVERSE SOLIDUS character (\).

8. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF) in value with a
U+005C REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

9. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED (LF) character in
value with a U+005C REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N
character (n).

3. Add a vCard linep751 with the type name, the parameters parameters, and the value value to output.

12. If either sex or gender-identity has a value that is not the empty string, add a vCard linep751 with the type "GENDER" and the
value consisting of the concatenation of sex, a U+003B SEMICOLON character (;), and gender-identity to output.

13. Add a vCard linep751 with the type "END" and the value "VCARD" to output.

When the above algorithm says that the user agent is to add a vCard line consisting of a type type, optionally some parameters, and
a value value to a string output, it must run the following steps:

751

https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-alphanumeric

1. Let line be an empty string.

2. Append type, converted to ASCII uppercase, to line.

3. If there are any parameters, then for each parameter, in the order that they were added, run these substeps:

1. Append a U+003B SEMICOLON character (;) to line.

2. Append the parameter's name to line.

3. Append a U+003D EQUALS SIGN character (=) to line.

4. Append the parameter's value to line.

4. Append a U+003A COLON character (:) to line.

5. Append value to line.

6. Let maximum length be 75.

7. While line's code point length is greater than maximum length:

1. Append the first maximum length code points of line to output.

2. Remove the first maximum length code points from line.

3. Append a U+000D CARRIAGE RETURN character (CR) to output.

4. Append a U+000A LINE FEED character (LF) to output.

5. Append a U+0020 SPACE character to output.

6. Let maximum length be 74.

8. Append (what remains of) line to output.

9. Append a U+000D CARRIAGE RETURN character (CR) to output.

10. Append a U+000A LINE FEED character (LF) to output.

When the steps above require the user agent to obtain the result of collecting vCard subproperties named subname in subitem,
the user agent must run the following steps:

1. Let value be the empty string.

2. For each property named subname in the item subitem, run the following substeps:

1. If the valuep738 of the property is itself an itemp734, then skip this property.

2. If this is not the first property named subname in subitem (ignoring any that were skipped by the previous step),
then append a U+002C COMMA character (,) to value.

3. Append the result of escaping the vCard text stringp752 given by the valuep738 of the property to value.

3. Return value.

When the steps above require the user agent to obtain the result of collecting the first vCard subproperty named subname in
subitem, the user agent must run the following steps:

1. If there are no properties named subname in subitem, then return the empty string.

2. If the valuep738 of the first property named subname in subitem is an itemp734, then return the empty string.

3. Return the result of escaping the vCard text stringp752 given by the valuep738 of the first property named subname in subitem.

When the above algorithms say the user agent is to escape the vCard text string value, the user agent must use the following
steps:

1. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C REVERSE SOLIDUS character (\).

2. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE SOLIDUS character (\).

752

https://infra.spec.whatwg.org/#ascii-uppercase
https://infra.spec.whatwg.org/#string-code-point-length

3. Prefix every U+003B SEMICOLON character (;) in value with a U+005C REVERSE SOLIDUS character (\).

4. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF) in value with a U+005C REVERSE
SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

5. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED (LF) character in value with a U+005C
REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

6. Return the mutated value.

This section is non-normative.

This algorithm can generate invalid vCard output, if the input does not conform to the rules described for the
http://microformats.org/profile/hcardp741 item typep734 and defined property namesp737.

Note

5.3.1.2 Examples §p75

3

Here is a long example vCard for a fictional character called "Jack Bauer":

<section id="jack" itemscope itemtype="http://microformats.org/profile/hcard">
<h1 itemprop="fn">

Jack
Bauer

</h1>

<p itemprop="org" itemscope>
Counter-Terrorist Unit
(Los Angeles Division)

</p>
<p>

10201 W. Pico Blvd.

Los Angeles,
CA
90064

United States

34.052339;-118.410623

</p>
<h2>Assorted Contact Methods</h2>

<li itemprop="tel" itemscope>
+1 (310) 597 3781 work
<meta itemprop="type" content="voice">

I'm on Wikipedia
so you can leave a message on my user talk page.
Jack Bauer Facts
<li itemprop="email">j.bauer@la.ctu.gov.invalid
<li itemprop="tel" itemscope>
+1 (310) 555 3781
<meta itemprop="type" content="cell">mobile phone

<ins datetime="2008-07-20 21:00:00+01:00">

Example

753

An item with the item typep734 http://microformats.org/profile/hcalendar#vevent represents an event.

This vocabulary does not support global identifiers for itemsp735.

The following are the type's defined property namesp737. They are based on the vocabulary defined in Internet Calendaring and
Scheduling Core Object Specification (iCalendar), where more information on how to interpret the values can be found. [RFC5545]p1290

<meta itemprop="rev" content="2008-07-20 21:00:00+01:00">
<p itemprop="tel" itemscope>Update!
My new home phone number is
01632 960 123.</p>

</ins>
</section>

The odd line wrapping is needed because newlines are meaningful in microdata: newlines would be preserved in a conversion to,
for example, the vCard format.

This example shows a site's contact details (using the addressp197 element) containing an address with two street components:

<address itemscope itemtype="http://microformats.org/profile/hcard">
<strong itemprop="fn">Alfred
Person

1600 Amphitheatre Parkway

Building 43, Second Floor

Mountain View,
CA 94043

</address>

Example

The vCard vocabulary can be used to just mark up people's names:

<span itemscope itemtype="http://microformats.org/profile/hcard"
><span itemprop="given-name"
>George Washington

This creates a single item with a two name-value pairs, one with the name "fn" and the value "George Washington", and the other
with the name "n" and a second item as its value, the second item having the two name-value pairs "given-name" and "family-
name" with the values "George" and "Washington" respectively. This is defined to map to the following vCard:

BEGIN:VCARD
PROFILE:VCARD
VERSION:4.0
SOURCE:document's address
FN:George Washington
N:Washington;George;;;
END:VCARD

Example

Only the parts of the iCalendar vocabulary relating to events are used here; this vocabulary cannot express a complete iCalendar
Note

5.3.2 vEvent §p75

4

754

attach
Gives the address of an associated document for the event.

The valuep738 must be an absolute URL.

Any number of properties with the name attachp755 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

categories
Gives the name of a category or tag that the event could be classified as.

The valuep738 must be text.

Any number of properties with the name categoriesp755 may be present within each itemp734 with the type
http://microformats.org/profile/hcalendar#veventp754.

class
Gives the access classification of the information regarding the event.

The valuep738 must be text with one of the following values:

• public
• private
• confidential

A single property with the name classp755 may be present within each itemp734 with the type http://microformats.org/profile/
hcalendar#veventp754.

comment
Gives a comment regarding the event.

The valuep738 must be text.

Any number of properties with the name commentp755 may be present within each itemp734 with the type
http://microformats.org/profile/hcalendar#veventp754.

description
Gives a detailed description of the event.

The valuep738 must be text.

A single property with the name descriptionp755 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

geo
Gives the geographical position of the event.

The valuep738 must be text and must match the following syntax:

1. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. One or more ASCII digits.

3. Optionally*, a U+002E FULL STOP character (.) followed by one or more ASCII digits.

4. A U+003B SEMICOLON character (;).

5. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

instance.

This is merely advisory and cannot be considered a confidentiality measure.
⚠Warning!

755

https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

6. One or more ASCII digits.

7. Optionally*, a U+002E FULL STOP character (.) followed by one or more ASCII digits.

The optional components marked with an asterisk (*) should be included, and should have six digits each.

A single property with the name geop755 may be present within each itemp734 with the type http://microformats.org/profile/
hcalendar#veventp754.

location
Gives the location of the event.

The valuep738 must be text.

A single property with the name locationp756 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

resources
Gives a resource that will be needed for the event.

The valuep738 must be text.

Any number of properties with the name resourcesp756 may be present within each itemp734 with the type
http://microformats.org/profile/hcalendar#veventp754.

status
Gives the confirmation status of the event.

The valuep738 must be text with one of the following values:

• tentative
• confirmed
• cancelled

A single property with the name statusp756 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

summary
Gives a short summary of the event.

The valuep738 must be text.

User agents should replace U+000A LINE FEED (LF) characters in the valuep738 by U+0020 SPACE characters when using the value.

A single property with the name summaryp756 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

dtend
Gives the date and time by which the event ends.

If the property with the name dtendp756 is present within an itemp734 with the type http://microformats.org/profile/
hcalendar#veventp754 that has a property with the name dtstartp757 whose value is a valid date stringp74, then the valuep738 of the
property with the name dtendp756 must be text that is a valid date stringp74 also. Otherwise, the valuep738 of the property must be
text that is a valid global date and time stringp79.

In either case, the valuep738 be later in time than the value of the dtstartp757 property of the same itemp734.

The value specifies latitude and longitude, in that order (i.e., "LAT LON" ordering), in decimal degrees. The longitude represents
the location east and west of the prime meridian as a positive or negative real number, respectively. The latitude represents the
location north and south of the equator as a positive or negative real number, respectively.

Note

The time given by the dtendp756 property is not inclusive. For day-long events, therefore, the dtendp756 property's valuep738 will
Note

756

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

A single property with the name dtendp756 may be present within each itemp734 with the type http://microformats.org/profile/
hcalendar#veventp754, so long as that http://microformats.org/profile/hcalendar#veventp754 does not have a property with
the name durationp757.

dtstart
Gives the date and time at which the event starts.

The valuep738 must be text that is either a valid date stringp74 or a valid global date and time stringp79.

Exactly one property with the name dtstartp757 must be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

duration
Gives the duration of the event.

The valuep738 must be text that is a valid vevent duration stringp758.

The duration represented is the sum of all the durations represented by integers in the value.

A single property with the name durationp757 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754, so long as that http://microformats.org/profile/hcalendar#veventp754 does not have a
property with the name dtendp756.

transp
Gives whether the event is to be considered as consuming time on a calendar, for the purpose of free-busy time searches.

The valuep738 must be text with one of the following values:

• opaque
• transparent

A single property with the name transpp757 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

contact
Gives the contact information for the event.

The valuep738 must be text.

Any number of properties with the name contactp757 may be present within each itemp734 with the type
http://microformats.org/profile/hcalendar#veventp754.

url
Gives a URL for the event.

The valuep738 must be an absolute URL.

A single property with the name urlp757 may be present within each itemp734 with the type http://microformats.org/profile/
hcalendar#veventp754.

uid
Gives a globally unique identifier corresponding to the event.

The valuep738 must be text.

A single property with the name uidp757 may be present within each itemp734 with the type http://microformats.org/profile/
hcalendar#veventp754.

exdate
Gives a date and time at which the event does not occur despite the recurrence rules.

be the day after the end of the event.

757

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute

The valuep738 must be text that is either a valid date stringp74 or a valid global date and time stringp79.

Any number of properties with the name exdatep757 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

rdate
Gives a date and time at which the event recurs.

The valuep738 must be text that is one of the following:

• A valid date stringp74.

• A valid global date and time stringp79.

• A valid global date and time stringp79 followed by a U+002F SOLIDUS character (/) followed by a second valid global date
and time stringp79 representing a later time.

• A valid global date and time stringp79 followed by a U+002F SOLIDUS character (/) followed by a valid vevent duration
stringp758.

Any number of properties with the name rdatep758 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

rrule
Gives a rule for finding dates and times at which the event occurs.

The valuep738 must be text that matches the RECUR value type defined in iCalendar. [RFC5545]p1290

A single property with the name rrulep758 may be present within each itemp734 with the type http://microformats.org/profile/
hcalendar#veventp754.

created
Gives the date and time at which the event information was first created in a calendaring system.

The valuep738 must be text that is a valid global date and time stringp79.

A single property with the name createdp758 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

last-modified
Gives the date and time at which the event information was last modified in a calendaring system.

The valuep738 must be text that is a valid global date and time stringp79.

A single property with the name last-modifiedp758 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

sequence
Gives a revision number for the event information.

The valuep738 must be text that is a valid non-negative integerp69.

A single property with the name sequencep758 may be present within each itemp734 with the type http://microformats.org/
profile/hcalendar#veventp754.

A string is a valid vevent duration string if it matches the following pattern:

1. A U+0050 LATIN CAPITAL LETTER P character (P).

2. One of the following:
◦ A valid non-negative integerp69 followed by a U+0057 LATIN CAPITAL LETTER W character (W). The integer

represents a duration of that number of weeks.
◦ At least one, and possible both in this order, of the following:

1. A valid non-negative integerp69 followed by a U+0044 LATIN CAPITAL LETTER D character (D). The integer
represents a duration of that number of days.

758

2. A U+0054 LATIN CAPITAL LETTER T character (T) followed by any one of the following, or the first and
second of the following in that order, or the second and third of the following in that order, or all three of
the following in this order:

1. A valid non-negative integerp69 followed by a U+0048 LATIN CAPITAL LETTER H character (H).
The integer represents a duration of that number of hours.

2. A valid non-negative integerp69 followed by a U+004D LATIN CAPITAL LETTER M character (M).
The integer represents a duration of that number of minutes.

3. A valid non-negative integerp69 followed by a U+0053 LATIN CAPITAL LETTER S character (S).
The integer represents a duration of that number of seconds.

Given a list of nodes nodes in a Documentp114, a user agent must run the following algorithm to extract any vEvent data
represented by those nodes:

1. If none of the nodes in nodes are itemsp734 with the type http://microformats.org/profile/hcalendar#veventp754, then
there is no vEvent data. Abort the algorithm, returning nothing.

2. Let output be an empty string.

3. Add an iCalendar linep760 with the type "BEGIN" and the value "VCALENDAR" to output.

4. Add an iCalendar linep760 with the type "PRODID" and the value equal to a user-agent-specific string representing the user
agent to output.

5. Add an iCalendar linep760 with the type "VERSION" and the value "2.0" to output.

6. For each node node in nodes that is an itemp734 with the type http://microformats.org/profile/hcalendar#veventp754,
run the following steps:

1. Add an iCalendar linep760 with the type "BEGIN" and the value "VEVENT" to output.

2. Add an iCalendar linep760 with the type "DTSTAMP" and a value consisting of an iCalendar DATE-TIME string
representing the current date and time, with the annotation "VALUE=DATE-TIME", to output. [RFC5545]p1290

3. For each element element that is a property of the itemp739 node: for each name name in element's property
namesp737, run the appropriate set of substeps from the following list:

If the property's valuep738 is an itemp734

Skip the property.

If the property is dtendp756

If the property is dtstartp757

If the property is exdatep757

If the property is rdatep758

If the property is createdp758

If the property is last-modifiedp758

Let value be the result of stripping all U+002D HYPHEN-MINUS (-) and U+003A COLON (:) characters from the
property's valuep738.

If the property's valuep738 is a valid date stringp74 then add an iCalendar linep760 with the type name and the
value value to output, with the annotation "VALUE=DATE".

Otherwise, if the property's valuep738 is a valid global date and time stringp79 then add an iCalendar linep760 with
the type name and the value value to output, with the annotation "VALUE=DATE-TIME".

Otherwise skip the property.

Otherwise
Add an iCalendar linep760 with the type name and the property's valuep738 to output.

4. Add an iCalendar linep760 with the type "END" and the value "VEVENT" to output.

5.3.2.1 Conversion to iCalendar §p75

9

759

7. Add an iCalendar linep760 with the type "END" and the value "VCALENDAR" to output.

When the above algorithm says that the user agent is to add an iCalendar line consisting of a type type, a value value, and
optionally an annotation, to a string output, it must run the following steps:

1. Let line be an empty string.

2. Append type, converted to ASCII uppercase, to line.

3. If there is an annotation:

1. Append a U+003B SEMICOLON character (;) to line.

2. Append the annotation to line.

4. Append a U+003A COLON character (:) to line.

5. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C REVERSE SOLIDUS character (\).

6. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE SOLIDUS character (\).

7. Prefix every U+003B SEMICOLON character (;) in value with a U+005C REVERSE SOLIDUS character (\).

8. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF) in value with a U+005C REVERSE
SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

9. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED (LF) character in value with a U+005C
REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

10. Append value to line.

11. Let maximum length be 75.

12. While line's code point length is greater than maximum length:

1. Append the first maximum length code points of line to output.

2. Remove the first maximum length code points from line.

3. Append a U+000D CARRIAGE RETURN character (CR) to output.

4. Append a U+000A LINE FEED character (LF) to output.

5. Append a U+0020 SPACE character to output.

6. Let maximum length be 74.

13. Append (what remains of) line to output.

14. Append a U+000D CARRIAGE RETURN character (CR) to output.

15. Append a U+000A LINE FEED character (LF) to output.

This section is non-normative.

This algorithm can generate invalid iCalendar output, if the input does not conform to the rules described for the
http://microformats.org/profile/hcalendar#veventp754 item typep734 and defined property namesp737.

Note

5.3.2.2 Examples §p76

0

Here is an example of a page that uses the vEvent vocabulary to mark up an event:

<body itemscope itemtype="http://microformats.org/profile/hcalendar#vevent">
...

Example

760

https://infra.spec.whatwg.org/#ascii-uppercase
https://infra.spec.whatwg.org/#string-code-point-length

An item with the item typep734 http://n.whatwg.org/work represents a work (e.g. an article, an image, a video, a song, etc). This
type is primarily intended to allow authors to include licensing information for works.

The following are the type's defined property namesp737.

work
Identifies the work being described.

The valuep738 must be an absolute URL.

Exactly one property with the name workp761 must be present within each itemp734 with the type http://n.whatwg.org/workp761.

title
Gives the name of the work.

A single property with the name titlep761 may be present within each itemp734 with the type http://n.whatwg.org/workp761.

author
Gives the name or contact information of one of the authors or creators of the work.

The valuep738 must be either an itemp734 with the type http://microformats.org/profile/hcardp741, or text.

Any number of properties with the name authorp761 may be present within each itemp734 with the type http://n.whatwg.org/
workp761.

<h1 itemprop="summary">Bluesday Tuesday: Money Road</h1>
...
<time itemprop="dtstart" datetime="2009-05-05T19:00:00Z">May 5th @ 7pm</time>
(until <time itemprop="dtend" datetime="2009-05-05T21:00:00Z">9pm</time>)
...
<a href="http://livebrum.co.uk/2009/05/05/bluesday-tuesday-money-road"

rel="bookmark" itemprop="url">Link to this page
...
<p>Location: The RoadHouse</p>
...
<p><input type=button value="Add to Calendar"

onclick="location = getCalendar(this)"></p>
...
<meta itemprop="description" content="via livebrum.co.uk">

</body>

The getCalendar() function is left as an exercise for the reader.

The same page could offer some markup, such as the following, for copy-and-pasting into blogs:

<div itemscope itemtype="http://microformats.org/profile/hcalendar#vevent">
<p>I'm going to
<strong itemprop="summary">Bluesday Tuesday: Money Road,
<time itemprop="dtstart" datetime="2009-05-05T19:00:00Z">May 5th at 7pm</time>
to <time itemprop="dtend" datetime="2009-05-05T21:00:00Z">9pm</time>,
at The RoadHouse!</p>
<p><a href="http://livebrum.co.uk/2009/05/05/bluesday-tuesday-money-road"

itemprop="url">See this event on livebrum.co.uk.</p>
<meta itemprop="description" content="via livebrum.co.uk">

</div>

5.3.3 Licensing works §p76

1

761

https://url.spec.whatwg.org/#syntax-url-absolute

license
Identifies one of the licenses under which the work is available.

The valuep738 must be an absolute URL.

Any number of properties with the name licensep762 may be present within each itemp734 with the type http://n.whatwg.org/
workp761.

This section is non-normative.

Given a list of nodes nodes in a Documentp114, a user agent must run the following algorithm to extract the microdata from those
nodes into a JSON form:

1. Let result be an empty object.

2. Let items be an empty array.

3. For each node in nodes, check if the element is a top-level microdata itemp739, and if it is then get the objectp762 for that
element and add it to items.

4. Add an entry to result called "items" whose value is the array items.

5. Return the result of serializing result to JSON in the shortest possible way (meaning no whitespace between tokens, no
unnecessary zero digits in numbers, and only using Unicode escapes in strings for characters that do not have a dedicated
escape sequence), and with a lowercase "e" used, when appropriate, in the representation of any numbers. [JSON]p1288

When the user agent is to get the object for an item item, optionally with a list of elements memory, it must run the following
substeps:

1. Let result be an empty object.

5.3.3.1 Examples §p76

2

This example shows an embedded image entitled My Pond, licensed under the Creative Commons Attribution-Share Alike 4.0
International License and the MIT license simultaneously.

<figure itemscope itemtype="http://n.whatwg.org/work">

<figcaption>
<p><cite itemprop="title">My Pond</cite></p>
<p><small>Licensed under the <a itemprop="license"
href="https://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-Share Alike 4.0 International License
and the <a itemprop="license"
href="http://www.opensource.org/licenses/mit-license.php">MIT
license.</small>

</figcaption>
</figure>

Example

5.4 Converting HTML to other formats §p76

2

This algorithm returns an object with a single property that is an array, instead of just returning an array, so that it is possible to
extend the algorithm in the future if necessary.

Note

5.4.1 JSON §p76

2

762

https://url.spec.whatwg.org/#syntax-url-absolute

2. If no memory was passed to the algorithm, let memory be an empty list.

3. Add item to memory.

4. If the item has any item typesp734, add an entry to result called "type" whose value is an array listing the item typesp734 of
item, in the order they were specified on the itemtypep734 attribute.

5. If the item has a global identifierp735, add an entry to result called "id" whose value is the global identifierp735 of item.

6. Let properties be an empty object.

7. For each element element that has one or more property namesp737 and is one of the properties of the itemp739 item, in the
order those elements are given by the algorithm that returns the properties of an itemp739, run the following substeps:

1. Let value be the property valuep738 of element.

2. If value is an itemp734, then: If value is in memory, then let value be the string "ERROR". Otherwise, get the
objectp762 for value, passing a copy of memory, and then replace value with the object returned from those steps.

3. For each name name in element's property namesp737, run the following substeps:

1. If there is no entry named name in properties, then add an entry named name to properties whose value
is an empty array.

2. Append value to the entry named name in properties.

8. Add an entry to result called "properties" whose value is the object properties.

9. Return result.

For example, take this markup:

<!DOCTYPE HTML>
<html lang="en">
<title>My Blog</title>
<article itemscope itemtype="http://schema.org/BlogPosting">
<header>
<h1 itemprop="headline">Progress report</h1>
<p><time itemprop="datePublished" datetime="2013-08-29">today</time></p>
<link itemprop="url" href="?comments=0">

</header>
<p>All in all, he's doing well with his swim lessons. The biggest thing was he had trouble
putting his head in, but we got it down.</p>
<section>
<h1>Comments</h1>
<article itemprop="comment" itemscope itemtype="http://schema.org/UserComments" id="c1">
<link itemprop="url" href="#c1">
<footer>
<p>Posted by:
Greg

</p>
<p><time itemprop="commentTime" datetime="2013-08-29">15 minutes ago</time></p>

</footer>
<p>Ha!</p>

</article>
<article itemprop="comment" itemscope itemtype="http://schema.org/UserComments" id="c2">
<link itemprop="url" href="#c2">
<footer>
<p>Posted by:
Charlotte

</p>
<p><time itemprop="commentTime" datetime="2013-08-29">5 minutes ago</time></p>

</footer>
<p>When you say "we got it down"...</p>

Example

763

</article>
</section>

</article>

It would be turned into the following JSON by the algorithm above (supposing that the page's URL was
https://blog.example.com/progress-report):

{
"items": [

{
"type": ["http://schema.org/BlogPosting"],
"properties": {

"headline": ["Progress report"],
"datePublished": ["2013-08-29"],
"url": ["https://blog.example.com/progress-report?comments=0"],
"comment": [

{
"type": ["http://schema.org/UserComments"],
"properties": {

"url": ["https://blog.example.com/progress-report#c1"],
"creator": [

{
"type": ["http://schema.org/Person"],
"properties": {

"name": ["Greg"]
}

}
],
"commentTime": ["2013-08-29"]

}
},
{

"type": ["http://schema.org/UserComments"],
"properties": {

"url": ["https://blog.example.com/progress-report#c2"],
"creator": [

{
"type": ["http://schema.org/Person"],
"properties": {

"name": ["Charlotte"]
}

}
],
"commentTime": ["2013-08-29"]

}
}

]
}

}
]

}

764

All HTML elementsp44 may have the hiddenp765 content attribute set. The hiddenp765 attribute is a boolean attributep67. When specified
on an element, it indicates that the element is not yet, or is no longer, directly relevant to the page's current state, or that it is being
used to declare content to be reused by other parts of the page as opposed to being directly accessed by the user. User agents should
not render elements that have the hiddenp765 attribute specified. This requirement may be implemented indirectly through the style
layer. For example, an HTML+CSS user agent could implement these requirements using the rules suggested in the Rendering
sectionp1193.

The hiddenp765 attribute must not be used to hide content that could legitimately be shown in another presentation. For example, it is
incorrect to use hiddenp765 to hide panels in a tabbed dialog, because the tabbed interface is merely a kind of overflow presentation —
one could equally well just show all the form controls in one big page with a scrollbar. It is similarly incorrect to use this attribute to
hide content just from one presentation — if something is marked hiddenp765, it is hidden from all presentations, including, for instance,
screen readers.

Elements that are not themselves hiddenp765 must not hyperlinkp283 to elements that are hiddenp765. The for attributes of labelp490

and outputp553 elements that are not themselves hiddenp765 must similarly not refer to elements that are hiddenp765. In both cases,
such references would cause user confusion.

Elements and scripts may, however, refer to elements that are hiddenp765 in other contexts.

6 User interaction §p76

5

6.1 The hidden attribute §p76

5

Because this attribute is typically implemented using CSS, it's also possible to override it using CSS. For instance, a rule that
applies 'display: block' to all elements will cancel the effects of the hiddenp765 attribute. Authors therefore have to take care when
writing their style sheets to make sure that the attribute is still styled as expected.

Note

In the following skeletal example, the attribute is used to hide the web game's main screen until the user logs in:

<h1>The Example Game</h1>
<section id="login">
<h2>Login</h2>
<form>
...
<!-- calls login() once the user's credentials have been checked -->

</form>
<script>
function login() {

// switch screens
document.getElementById('login').hidden = true;
document.getElementById('game').hidden = false;

}
</script>

</section>
<section id="game" hidden>
...

</section>

Example

For example, it would be incorrect to use the hrefp284 attribute to link to a section marked with the hiddenp765 attribute. If the
content is not applicable or relevant, then there is no reason to link to it.

It would be fine, however, to use the ARIA aria-describedby attribute to refer to descriptions that are themselves hiddenp765.
While hiding the descriptions implies that they are not useful alone, they could be written in such a way that they are useful in the

Example

✔ MDN

765

https://w3c.github.io/aria/#aria-describedby

Elements in a section hidden by the hiddenp765 attribute are still active, e.g. scripts and form controls in such sections still execute and
submit respectively. Only their presentation to the user changes.

The hidden IDL attribute must reflectp94 the content attribute of the same name.

A node (in particular elements and text nodes) can be marked as inert. When a node is inertp766, then the user agent must act as if the
node was absent for the purposes of targeting user interaction events, may ignore the node for the purposes of find-in-pagep793, and
may prevent the user from selecting text in that node. User agents should allow the user to override the restrictions on search and text
selection, however.

While a browsing context containerp814 is marked as inertp766, its nested browsing contextp814 's active documentp811, and all nodes in
that Documentp114, must be marked as inertp766.

An element is expressly inert if it is inertp766 and its node document is not inertp766.

A Documentp114 document is blocked by a modal dialog subject if subject is the topmost dialogp610 element in document's top layer.
While document is so blocked, every node that is connected to document, with the exception of the subject element and its shadow-
including descendants, must be marked inertp766. (The elements excepted by this paragraph can additionally be marked inertp766

through other means; being part of a modal dialog does not "protect" a node from being marked inertp766.)

To prevent abuse of certain APIs that could be annoying to users (e.g., opening popups or vibrating phones), user agents allow these
APIs only when the user is actively interacting with the web page or has interacted with the page at least once. This "active
interaction" state is maintained through the mechanisms defined in this section.

specific context of being referenced from the elements that they describe.

Similarly, a canvasp634 element with the hiddenp765 attribute could be used by a scripted graphics engine as an off-screen buffer,
and a form control could refer to a hidden formp486 element using its formp566 attribute.

6.2 Inert subtrees §p76

6

This section does not define or create any content attribute named "inert". This section merely defines an abstract concept of
inertnessp766.

Note

For example, consider a page that consists of just a single inertp766 paragraph positioned in the middle of a bodyp178. If a user
moves their pointing device from the bodyp178 over to the inertp766 paragraph and clicks on the paragraph, no mouseover event
would be fired, and the mousemove and click events would be fired on the bodyp178 element rather than the paragraph.

Example

When a node is inert, it generally cannot be focused. Inert nodes that are commandsp607 will also get disabled.
Note

The dialogp610 element's showModal()p612 method causes this mechanism to trigger, by adding the dialogp610 element to its node
document's top layer.

Note

6.3 Tracking user activation §p76

6

✔ MDN

766

https://w3c.github.io/uievents/#event-type-mouseover
https://w3c.github.io/uievents/#event-type-mousemove
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#concept-node-document
https://fullscreen.spec.whatwg.org/#top-layer
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://fullscreen.spec.whatwg.org/#top-layer-add
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://fullscreen.spec.whatwg.org/#top-layer

For the purpose of tracking user activation, each Windowp824 W has a last activation timestamp. This is a number indicating the last
time W got an activation notificationp767. It corresponds to a DOMHighResTimeStamp value except for two cases: positive infinity
indicates that W has never been activated, while negative infinity indicates that a user activation-gated APIp768 has consumedp768 the
last user activation of W. The initial value is positive infinity.

A user agent also defines a transient activation duration, which is a constant number indicating how long a user activation is
available for certain user activation-gated APIsp768 (e.g., for opening popups).

These two values imply two boolean user activation states for W:

Sticky activation
When the current high resolution time is greater than or equal to the last activation timestampp767 in W, W is said to have sticky
activationp767.

This is W's historical activation state, indicating whether the user has ever interacted in W. It starts false, then changes to true (and
never changes back to false) when W gets the very first activation notificationp767.

Transient activation
When the current high resolution time is greater than or equal to the last activation timestampp767 in W, and less than the last
activation timestampp767 in W plus the transient activation durationp767, then W is said to have transient activationp767.

This is W's current activation state, indicating whether the user has interacted in W recently. This starts with a false value, and
remains true for a limited time after every activation notificationp767 W gets.

The transient activationp767 state is considered expired if it becomes false because the transient activation durationp767 time has
elapsed since the last user activation. Note that it can become false even before the expiry time through an activation
consumptionp768.

When a user interaction in a browsing contextp811 B causes firing of an activation triggering input eventp767 in B's active documentp811

D, the user agent must perform the following activation notification steps before dispatching the event:

1. Let browsingContexts be a list consisting of:

◦ B,

◦ all ancestor browsing contextsp814 of B, and

◦ all the descendant browsing contextsp814 of D that have active documentsp811 from the same originp838 as that of D.

2. Let windows be the list of Windowp824 objects constructed by taking the active windowp811 of each item in browsingContexts.

3. For each window in windows, set window's last activation timestampp767 to the current high resolution time.

An activation triggering input event is any event whose isTrusted attribute is true and whose type is one of:

• changep1281

• click
• contextmenup1281

• dblclick
• mouseup
• pointerup
• resetp1282

• submitp1282

• touchend

The transient activation durationp767 is expected be at most a few seconds, so that the user can possibly perceive the link between
an interaction with the page and the page calling the activation-gated API.

Note

6.3.1 Data model §p76

7

6.3.2 Processing model §p76

7

767

https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://dom.spec.whatwg.org/#concept-event-dispatch
https://infra.spec.whatwg.org/#list-iterate
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://dom.spec.whatwg.org/#dom-event-istrusted
https://dom.spec.whatwg.org/#dom-event-type
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-dblclick
https://w3c.github.io/uievents/#event-type-mouseup
https://w3c.github.io/pointerevents/#the-pointerup-event
https://w3c.github.io/touch-events/#event-touchend

The event set is inconsistent across major browsers. See issue #3849.

Activation consuming APIsp768 defined in this and other specifications can consume user activation by performing the following
steps, given a Windowp824 W:

1. If W's browsing contextp826 is null, then return.

2. Let top be W's browsing contextp826 's top-level browsing contextp814.

3. Let browsingContexts be the list of the descendant browsing contextsp814 of top's active documentp811.

4. Append top to browsingContexts.

5. Let windows be the list of Windowp824 objects constructed by taking the active windowp811 of each item in browsingContexts.

6. For each window in windows, if window's last activation timestampp767 is not positive infinity, then set window's last
activation timestampp767 to negative infinity.

The spec is not clear about how to traverse a tree of documents. See issue #5020.

APIs that are dependent on user activation are classified into three different levels. The levels are as follows, sorted by their "strength
of dependence" on user activation (from weakest to strongest):

Sticky activation-gated APIs
These APIs require the sticky activationp767 state to be true, so they are blocked until the very first user activation.

Transient activation-gated APIs
These APIs require the transient activationp767 state to be true, but they don't consumep768 it, so multiple calls are allowed per user
activation until the transient state expiresp767.

Transient activation-consuming APIs
These APIs require the transient activationp767 state to be true, and they consume user activationp768 in each call to prevent multiple
calls per user activation.

Certain elements in HTML have an activation behavior, which means that the user can activate them. This is always caused by a click
event.

The user agent should allow the user to manually trigger elements that have an activation behavior, for instance using keyboard or
voice input, or through mouse clicks. When the user triggers an element with a defined activation behavior in a manner other than
clicking it, the default action of the interaction event must be to fire a click eventp965 at the element.

Note the asymmetry in the sets of browsing contextsp811 in the page that are affected by an activation notificationp767 vs an
activation consumptionp768: an activation consumption changes (to false) the transient activationp767 states for all browsing
contexts in the page, but an activation notification changes (to true) the states for a subset of those browsing contexts. The
exhaustive nature of consumption here is deliberate: it prevents malicious sites from making multiple calls to an activation
consuming APIp768 from a single user activation (possibly by exploiting a deep hierarchy of iframep361s).

Note

6.4 Activation behavior of elements §p76

8

element . clickp769()
Acts as if the element was clicked.

For web developers (non-normative)

6.3.3 APIs gated by user activation §p76

8

768

https://github.com/whatwg/html/issues/3849
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://github.com/whatwg/html/issues/5020
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

Each element has an associated click in progress flag, which is initially unset.

The click() method must run the following steps:

1. If this element is a form control that is disabledp570, then return.

2. If this element's click in progress flagp769 is set, then return.

3. Set this element's click in progress flagp769.

4. Fire a synthetic mouse eventp965 named click at this element, with the not trusted flag set.

5. Unset this element's click in progress flagp769.

This section is non-normative.

An HTML user interface typically consists of multiple interactive widgets, such as form controls, scrollable regions, links, dialog boxes,
browser tabs, and so forth. These widgets form a hierarchy, with some (e.g. browser tabs, dialog boxes) containing others (e.g. links,
form controls).

When interacting with an interface using a keyboard, key input is channeled from the system, through the hierarchy of interactive
widgets, to an active widget, which is said to be focusedp771.

6.5 Focus §p76

9

Consider an HTML application running in a browser tab running in a graphical environment. Suppose this application had a page
with some text controls and links, and was currently showing a modal dialog, which itself had a text control and a button.

The hierarchy of focusable widgets, in this scenario, would include the browser window, which would have, amongst its children,
the browser tab containing the HTML application. The tab itself would have as its children the various links and text controls, as
well as the dialog. The dialog itself would have as its children the text control and the button.

Example

6.5.1 Introduction §p76

9

769

https://w3c.github.io/uievents/#event-type-click

Keyboard events are always targeted at this focusedp771 element.

The term focusable area is used to refer to regions of the interface that can become the target of keyboard input. Focusable areas
can be elements, parts of elements, or other regions managed by the user agent.

Each focusable areap770 has a DOM anchor, which is a Node object that represents the position of the focusable areap770 in the DOM.
(When the focusable areap770 is itself a Node, it is its own DOM anchorp770.) The DOM anchorp770 is used in some APIs as a substitute for
the focusable areap770 when there is no other DOM object to represent the focusable areap770.

The following table describes what objects can be focusable areasp770. The cells in the left column describe objects that can be
focusable areasp770; the cells in the right column describe the DOM anchorsp770 for those elements. (The cells that span both columns
are non-normative examples.)

Focusable areap770 DOM anchorp770

Examples

Elements that meet all the following criteria:

• the element's tabindex valuep774 is non-null, or the element is determined by the user
agent to be focusable;

• the element is either not a shadow host, or has a shadow root whose delegates focus is
false;

• the element is not actually disabledp723;
• the element is not expressly inertp766;
• the element is either being renderedp1192 or being used as relevant canvas fallback

contentp635.

The element itself.

The shapes of areap443 elements in an image mapp445 associated with an imgp320 element that is being
renderedp1192 and is not expressly inertp766.

The imgp320 element.

The user-agent provided subwidgets of elements that are being renderedp1192 and are not actually
disabledp723 or expressly inertp766.

The element for which the focusable areap770

is a subwidget.

The scrollable regions of elements that are being renderedp1192 and are not expressly inertp766. The element for which the box that the
scrollable region scrolls was created.

If the widget with focusp771 in this example was the text control in the dialog box, then key input would be channeled from the
graphical system to ① the web browser, then to ② the tab, then to ③ the dialog, and finally to ④ the text control.

iframep361, <input type=text>p499, sometimes p238 (depending on platform conventions).
Example

In the following example, the areap443 element creates two shapes, one on each image. The DOM anchorp770 of the first shape is the first imgp320 element, and
the DOM anchorp770 of the second shape is the second imgp320 element.

<map id=wallmap><area alt="Enter Door" coords="10,10,100,200" href="door.html"></map>
...

...

Example

The controls in the user interfacep436 for a videop380 element, the up and down buttons in a spin-control version of <input type=number>p509, the part of a
detailsp604 element's rendering that enables the element to be opened or closed using keyboard input.

Example

The CSS 'overflow' property's 'scroll' value typically creates a scrollable region.
Example

6.5.2 Data model §p77

0

770

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://drafts.csswg.org/css-overflow/#propdef-overflow

Focusable areap770 DOM anchorp770

Examples

The viewport of a Documentp114 that has a non-null browsing contextp811 and is not inertp766. The Documentp114 for which the viewport was
created.

Any other element or part of an element determined by the user agent to be a focusable area,
especially to aid with accessibility or to better match platform conventions.

The element.

One focusable areap770 in each Documentp114 is designated the focused area of the document. Which control is so designated
changes over time, based on algorithms in this specification.

The currently focused area of a top-level browsing context topLevelBC at any particular time is the focusable areap770 returned
by this algorithm:

1. Let candidate be topLevelBC's active documentp811.

2. While candidate's focused areap771 is a browsing context containerp814 with a non-null nested browsing contextp814: set
candidate to the active documentp811 of that browsing context containerp814 's nested browsing contextp814.

3. If candidate's focused areap771 is non-null, set candidate to candidate's focused areap771.

4. Return candidate.

An element that is the DOM anchorp770 of a focusable areap770 is said to gain focus when that focusable areap770 becomes the
currently focused area of a top-level browsing contextp771. When an element is the DOM anchorp770 of a focusable areap770 of the
currently focused area of a top-level browsing contextp771, it is focused.

The focus chain of a focusable areap770 subject is the ordered list constructed as follows:

1. Let current object be subject.

2. Let output be an empty list.

3. Loop: Append current object to output.

4. If current object is an areap443 element's shape, append that areap443 element to output.

Otherwise, if current object is a focusable areap770 whose DOM anchorp770 is an element that is not current object itself,
append that DOM anchorp770 element to output.

5. If current object is a Documentp114 whose browsing contextp811 is a child browsing contextp814, then set current object to
current object's browsing contextp811 's containerp814 and return to the step labeled loop.

6. Return output.

The contents of an iframep361.
Example

A user agent could make all list item bullets sequentially focusablep772, so that a user can more easily navigate lists.
Example

Similarly, a user agent could make all elements with titlep139 attributes sequentially focusablep772, so that their advisory information can be accessed.
Example

A browsing context containerp814 (e.g. an iframep361) is a focusable areap770, but key events routed to a browsing context
containerp814 get immediately routed to its nested browsing contextp814 's active documentp811. Similarly, in sequential focus
navigation a browsing context containerp814 essentially acts merely as a placeholder for its nested browsing contextp814 's active
documentp811.

Note

771

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport

All elements that are focusable areasp770 are said to be focusable.

There are two special types of focusability for focusable areasp770:

• A focusable areap770 is said to be sequentially focusable if it is included in its Documentp114 's sequential focus navigation
orderp779 and the user agent determines that it is sequentially focusable.

• A focusable areap770 is said to be click focusable if the user agent determines that it is click focusable. User agents should
consider focusable areas with non-null tabindex valuesp774 to be click focusable.

When a user activatesp768 a click focusablep772 focusable areap770, the user agent must run the focusing stepsp776 on the focusable
areap770 with focus trigger set to "click".

A node is a focus navigation scope owner if it is a documentp114, a shadow host or a slotp633.

Each focus navigation scope ownerp772 has a focus navigation scope, which is a list of elements. Its contents are determined as
follows:

Every element element has an associated focus navigation owner, which is either null or a focus navigation scope ownerp772. It is
determined by the following algorithm:

1. If element's parent is null, then return null.

2. If element's parent is a shadow host, then return element's assigned slot.

3. If element's parent is a shadow root, then return the parent's host.

4. If element's parent is the document element, then return the parent's node document.

5. Return element's parent's associated focus navigation ownerp772.

The chain starts with subject and (if subject is or can be the currently focused area of a top-level browsing context p771)
continues up the focus hierarchy up to the Documentp114 of the top-level browsing contextp814.

Note

Elements which are not focusablep772 are not focusable areasp770, and thus not sequentially focusablep772 and not click
focusablep772.

Note

Being focusablep772 is a statement about whether an element can be focused programmatically, e.g. via the focus()p782 method or
autofocusp782 attribute. In contrast, sequentially focusablep772 and click focusablep772 govern how the user agent responds to user
interaction: respectively, to sequential focus navigationp779 and as activation behaviorp0.

The user agent might determine that an element is not sequentially focusablep772 even if it is focusablep772 and is included in its
Documentp114 's sequential focus navigation orderp779, according to user preferences. For example, macOS users can set the user
agent to skip non-form control elements, or can skip links when doing sequential focus navigationp779 with just the Tab key (as
opposed to using both the Option and Tab keys).

Similarly, the user agent might determine that an element is not click focusablep772 even if it is focusablep772. For example, in some
user agents, clicking on a non-editable form control does not focus it, i.e. the user agent has determined that such controls are not
click focusable.

Thus, an element can be focusablep772, but neither sequentially focusablep772 nor click focusablep772. For example, in some user
agents, a non-editable form-control with a negative-integer tabindex valuep774 would not be focusable via user interaction, only via
programmatic APIs.

Note

Note that focusing is not an activation behavior, i.e. calling the click()p769 method on an element or dispatching a synthetic click
event on it won't cause the element to get focused.

Note

772

https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#slotable-assigned-slot
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-document

Then, the contents of a given focus navigation scope ownerp772 owner's focus navigation scopep772 are all elements whose associated
focus navigation ownerp772 is owner.

A tabindex-ordered focus navigation scope is a list of focusable areasp770 and focus navigation scope ownersp772. Every focus
navigation scope ownerp772 owner has tabindex-ordered focus navigation scopep773, whose contents are determined as follows:

• It contains all elements in owner's focus navigation scopep772 that are themselves focus navigation scope ownersp772, except
the elements whose tabindex valuep774 is a negative integer.

• It contains all of the focusable areasp770 whose DOM anchorp770 is an element in owner's focus navigation scopep772, except
the focusable areasp770 whose tabindex valuep774 is a negative integer.

The order within a tabindex-ordered focus navigation scopep773 is determined by each element's tabindex valuep774, as described in the
section below.

A flattened tabindex-ordered focus navigation scope is a list of focusable areasp770. Every focus navigation scope ownerp772

owner owns a distinct flattened tabindex-ordered focus navigation scopep773, whose contents are determined by the following
algorithm:

1. Let result be a clone of owner's tabindex-ordered focus navigation scopep773.

2. For each item of result:

1. If item is not a focus navigation scope ownerp772, then continue.

2. If item is not a focusable areap770, then replace item with all of the items in item's flattened tabindex-ordered focus
navigation scopep773.

3. Otherwise, insert the contents of item's flattened tabindex-ordered focus navigation scopep773 after item.

The tabindex content attribute allows authors to make an element and regions that have the element as its DOM anchorp770 be
focusable areasp770, allow or prevent them from being sequentially focusablep772, and determine their relative ordering for sequential
focus navigationp779.

The name "tab index" comes from the common use of the Tab key to navigate through the focusable elements. The term "tabbing"
refers to moving forward through sequentially focusablep772 focusable areasp770.

The tabindexp773 attribute, if specified, must have a value that is a valid integerp68. Positive numbers specify the relative position of
the element's focusable areasp770 in the sequential focus navigation orderp779, and negative numbers indicate that the control is not
sequentially focusablep772.

Developers should use caution when using values other than 0 or −1 for their tabindexp773 attributes as this is complicated to do
correctly.

The order of elements within a focus navigation scopep772 does not impact any of the algorithms in this specification. Ordering only
becomes important for the tabindex-ordered focus navigation scope p773 and flattened tabindex-ordered focus navigation scope p773

concepts defined below.

Note

The rules there do not give a precise ordering, as they are composed mostly of "should" statements and relative orderings.
Note

The following provides a non-normative summary of the behaviors of the possible tabindexp773 attribute values. The below
processing model gives the more precise rules.

omitted (or non-integer values)
The user agent will decide whether the element is focusablep772, and if it is, whether it is sequentially focusablep772 or click

Note

6.5.3 The tabindexp773 attribute §p77

3

✔ MDN

773

https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#iteration-continue

The tabindex value of an element is the value of its tabindexp773 attribute, parsed using the rules for parsing integersp68. If parsing
fails or the attribute is not specified, then the tabindex valuep774 is null.

The tabindex valuep774 of a focusable areap770 is the tabindex valuep774 of its DOM anchorp770.

The tabindex valuep774 of an element must be interpreted as follows:

If the value is null
The user agent should follow platform conventions to determine if the element should be considered as a focusable areap770 and if
so, whether the element and any focusable areasp770 that have the element as their DOM anchorp770 are sequentially focusablep772,
and if so, what their relative position in their tabindex-ordered focus navigation scopep773 is to be. If the element is a focus
navigation scope ownerp772, it must be included in its tabindex-ordered focus navigation scopep773 even if it is not a focusable
areap770.

The relative ordering within a tabindex-ordered focus navigation scopep773 for elements and focusable areasp770 that belong to the
same focus navigation scopep772 and whose tabindex valuep774 is null should be in shadow-including tree order.

Modulo platform conventions, it is suggested that the following elements should be considered as focusable areasp770 and be
sequentially focusablep772:

• ap238 elements that have an hrefp284 attribute

• linkp157 elements that have an hrefp158 attribute

• buttonp535 elements

• inputp493 elements whose typep495 attribute are not in the Hiddenp499 state

• selectp537 elements

• textareap548 elements

• summaryp607 elements that are the first summaryp607 element child of a detailsp604 element

• Elements with a draggablep809 attribute set, if that would enable the user agent to allow the user to begin a drag
operations for those elements without the use of a pointing device

• Editing hostsp789

• Browsing context containersp814

If the value is a negative integer
The user agent must consider the element as a focusable areap770, but should omit the element from any tabindex-ordered focus
navigation scopep773.

focusablep772 (or both).

−1 (or other negative integer values)
Causes the element to be focusablep772, and indicates that the author would prefer the element to be click focusablep772 but not
sequentially focusablep772. The user agent might ignore this preference for click and sequential focusability, e.g., for specific
element types according to platform conventions, or for keyboard-only users.

0
Causes the element to be focusablep772, and indicates that the author would prefer the element to be both click focusablep772

and sequentially focusablep772. The user agent might ignore this preference for click and sequential focusabiity.

positive integer values
Behaves the same as 0, but in addition creates a relative ordering within a tabindex-ordered focus navigation scope p773, so that
elements with higher tabindexp773 attribute value come later.

Note that the tabindexp773 attribute cannot be used to make an element non-focusable. The only way a page author can do that is
by disablingp723 the element, or making it inertp766.

774

https://dom.spec.whatwg.org/#concept-shadow-including-tree-order

If the value is a zero
The user agent must allow the element to be considered as a focusable areap770 and should allow the element and any focusable
areasp770 that have the element as their DOM anchorp770 to be sequentially focusablep772.

The relative ordering within a tabindex-ordered focus navigation scopep773 for elements and focusable areasp770 that belong to the
same focus navigation scopep772 and whose tabindex valuep774 is zero should be in shadow-including tree order.

If the value is greater than zero
The user agent must allow the element to be considered as a focusable areap770 and should allow the element and any focusable
areasp770 that have the element as their DOM anchorp770 to be sequentially focusablep772, and should place the element —
referenced as candidate below — and the aforementioned focusable areasp770 in the tabindex-ordered focus navigation scopep773

where the element is a part of so that, relative to other elements and focusable areasp770 that belong to the same focus navigation
scopep772, they are:

• before any focusable areap770 whose DOM anchorp770 is an element whose tabindexp773 attribute has been omitted or
whose value, when parsed, returns an error,

• before any focusable areap770 whose DOM anchorp770 is an element whose tabindexp773 attribute has a value equal to or
less than zero,

• after any focusable areap770 whose DOM anchorp770 is an element whose tabindexp773 attribute has a value greater than
zero but less than the value of the tabindexp773 attribute on candidate,

• after any focusable areap770 whose DOM anchorp770 is an element whose tabindexp773 attribute has a value equal to the
value of the tabindexp773 attribute on candidate but that is located earlier than candidate in shadow-including tree order,

• before any focusable areap770 whose DOM anchorp770 is an element whose tabindexp773 attribute has a value equal to the
value of the tabindexp773 attribute on candidate but that is located later than candidate in shadow-including tree order,
and

• before any focusable areap770 whose DOM anchorp770 is an element whose tabindexp773 attribute has a value greater than
the value of the tabindexp773 attribute on candidate.

The tabIndex IDL attribute must reflectp94 the value of the tabindexp773 content attribute. The default value is 0 if the element is an
ap238, areap443, buttonp535, framep1240, iframep361, inputp493, objectp373, selectp537, textareap548, or SVG a element, or is a summaryp607

element that is a summary for its parent detailsp607. The default value is −1 otherwise.

To get the focusable area for a focus target that is either an element that is not a focusable areap770, or is a browsing contextp811,
given an optional string focus trigger, run the first matching set of steps from the following list:

↪ If focus target is an areap443 element with one or more shapes that are focusable areasp770

Return the shape corresponding to the first imgp320 element in tree order that uses the image map to which the areap443 element
belongs.

↪ If focus target is an element with one or more scrollable regions that are focusable areasp770

Return the element's first scrollable region, according to a pre-order, depth-first traversal of the flat tree. [CSSSCOPING]p1287

↪ If focus target is the document element of its Documentp114

Return the Documentp114 's viewport.

One valid reason to ignore the requirement that sequential focus navigation not allow the author to lead to the element would
be if the user's only mechanism for moving the focus is sequential focus navigation. For instance, a keyboard-only user would
be unable to click on a text control with a negative tabindexp773, so that user's user agent would be well justified in allowing the
user to tab to the control regardless.

Note

The varying default value based on element type is a historical artifact.
Note

6.5.4 Processing model §p77

5

✔ MDN

775

https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://svgwg.org/svg2-draft/linking.html#AElement
https://dom.spec.whatwg.org/#concept-tree-order
https://drafts.csswg.org/css-scoping/#flat-tree
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/css2/#viewport

↪ If focus target is a browsing contextp811

Return the browsing contextp811 's active documentp811.

↪ If focus target is a browsing context containerp814 with a non-null nested browsing contextp814

Return the browsing context containerp814 's nested browsing contextp814 's active documentp811.

↪ If focus target is a shadow host whose shadow root's delegates focus is true

1. If focus target is a shadow-including inclusive ancestor of the currently focused area of a top-level browsing
contextp771 's DOM anchorp770, then return null.

2. Otherwise:

1. If focus trigger is "click", then let possible focus delegates be the list of all click focusablep772 focusable
areasp770 whose DOM anchorp770 is a descendant of focus target in the flat tree.

2. Otherwise, let possible focus delegates be the list of all focusable areasp770 whose DOM anchorp770 is a
descendant of focus target in the flat tree.

3. Return the first focusable areap770 in tree order of their DOM anchorsp770 in possible focus delegates, or null
if possible focus delegates is empty.

↪ Otherwise
Return null.

The focusing steps for an object new focus target that is either a focusable areap770, or an element that is not a focusable areap770, or
a browsing contextp811, are as follows. They can optionally be run with a fallback target and a string focus trigger.

1. If new focus target is not a focusable areap770, then set new focus target to the result of getting the focusable areap775 for
new focus target, given focus trigger if it was passed.

2. If new focus target is null, then:

1. If no fallback target was specified, then return.

2. Otherwise, set new focus target to the fallback target.

3. If new focus target is a browsing context containerp814 with non-null nested browsing contextp814, then set new focus target to
the nested browsing contextp814 's active documentp811, and redo this step.

4. If new focus target is a focusable areap770 and its DOM anchorp770 is inertp766, then return.

5. If new focus target is the currently focused area of a top-level browsing contextp771, then return.

6. Let old chain be the focus chainp771 of the currently focused area of the top-level browsing contextp771 in which new focus
target finds itself.

7. Let new chain be the focus chainp771 of new focus target.

8. Run the focus update stepsp777 with old chain, new chain, and new focus target respectively.

User agents must immediatelyp42 run the focusing stepsp776 for a focusable areap770 or browsing contextp811 candidate whenever the
user attempts to move the focus to candidate.

The unfocusing steps for an object old focus target that is either a focusable areap770 or an element that is not a focusable areap770

are as follows:

1. If old focus target is inertp766, then return.

2. If old focus target is an areap443 element and one of its shapes is the currently focused area of a top-level browsing
contextp771, or, if old focus target is an element with one or more scrollable regions, and one of them is the currently focused
area of a top-level browsing contextp771, then let old focus target be that currently focused area of a top-level browsing

For sequential focusabilityp772, the handling of shadow hosts and delegates focus is done when constructing the sequential
focus navigation orderp779. That is, the focusing stepsp776 will never be called on such shadow hosts as part of sequential
focus navigation.

Note

776

https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
https://drafts.csswg.org/css-scoping/#flat-tree
https://drafts.csswg.org/css-scoping/#flat-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#element-shadow-host

contextp771.

3. Let old chain be the focus chainp771 of the currently focused area of a top-level browsing contextp771.

4. If old focus target is not one of the entries in old chain, then return.

5. If old focus target is a focusable areap770, then let new focus target be its Documentp114 's viewport.

Otherwise, let new focus target be null.

6. If new focus target is not null, then run the focusing stepsp776 for new focus target.

When the currently focused area of a top-level browsing contextp771 is somehow unfocused without another element being explicitly
focused in its stead, the user agent must immediatelyp42 run the unfocusing stepsp776 for that object.

Focus fixup rule: When the designated focused area of the documentp771 is removed from that Documentp114 in some way (e.g. it
stops being a focusable areap770, it is removed from the DOM, it becomes expressly inertp766, etc.), designate the Documentp114 's
viewport to be the new focused area of the documentp771.

The focus update steps, given an old chain, a new chain, and a new focus target respectively, are as follows:

1. If the last entry in old chain and the last entry in new chain are the same, pop the last entry from old chain and the last entry
from new chain and redo this step.

2. For each entry entry in old chain, in order, run these substeps:

1. If entry is an inputp493 element, and the changep1281 event appliesp496 to the element, and the element does not
have a defined activation behavior, and the user has changed the element's valuep566 or its list of selected filesp515

while the control was focused without committing that change (such that it is different to what it was when the
control was first focused), then fire an event named changep1281 at the element, with the bubbles attribute
initialized to true.

2. If entry is an element, let blur event target be entry.

If entry is a Documentp114 object, let blur event target be that Documentp114 object's relevant global objectp924.

Otherwise, let blur event target be null.

3. If entry is the last entry in old chain, and entry is an Element, and the last entry in new chain is also an Element,
then let related blur target be the last entry in new chain. Otherwise, let related blur target be null.

4. If blur event target is not null, fire a focus eventp778 named blurp1281 at blur event target, with related blur target as
the related target.

3. Apply any relevant platform-specific conventions for focusing new focus target. (For example, some platforms select the

The unfocusing stepsp776 do not always result in the focus changing, even when applied to the currently focused area of a top-level
browsing contextp771. For example, if the currently focused area of a top-level browsing context p771 is a viewport, then it will usually
keep its focus regardless until another focusable areap770 is explicitly focused with the focusing stepsp776.

Note

For example, this might happen because an element is removed from its Documentp114, or has a hiddenp765 attribute added. It might
also happen to an inputp493 element when the element gets disabledp570.

Example

In a Documentp114 whose focused areap771 is a buttonp535 element, removing, disabling, or hiding that button would cause the
page's new focused areap771 to be the viewport of the Documentp114. This would, in turn, be reflected through the
activeElementp781 API as the body elementp118.

Example

In some cases, e.g. if entry is an areap443 element's shape, a scrollable region, or a viewport, no event is fired.
Note

777

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://drafts.csswg.org/css2/#viewport

contents of a text control when that control is focused.)

4. For each entry entry in new chain, in reverse order, run these substeps:

1. If entry is a focusable areap770: designate entry as the focused area of the documentp771.

2. If entry is an element, let focus event target be entry.

If entry is a Documentp114 object, let focus event target be that Documentp114 object's relevant global objectp924.

Otherwise, let focus event target be null.

3. If entry is the last entry in new chain, and entry is an Element, and the last entry in old chain is also an Element,
then let related focus target be the last entry in old chain. Otherwise, let related focus target be null.

4. If focus event target is not null, fire a focus eventp778 named focusp1281 at focus event target, with related focus
target as the related target.

To fire a focus event named e at an element t with a given related target r, fire an event named e at t, using FocusEvent, with the
relatedTarget attribute initialized to r, the view attribute initialized to t's node document's relevant global objectp924, and the
composed flag set.

When a key event is to be routed in a top-level browsing contextp814, the user agent must run the following steps:

1. Let target area be the currently focused area of the top-level browsing contextp771.

2. If target area is a focusable areap770, let target node be target area's DOM anchorp770. Otherwise, target area is a dialogp610;
let target node be target area.

3. If target node is a Documentp114 that has a body elementp118, then let target node be the body elementp118 of that
Documentp114.

Otherwise, if target node is a Documentp114 object that has a non-null document element, then let target node be that
document element.

4. If target node is not inertp766, then:

1. Let canHandle be the result of dispatching the key event at target node.

2. If canHandle is true, then let target area handle the key event. This might include firing a click eventp965 at target
node.

The has focus steps, given a Documentp114 object target, are as follows:

1. Let candidate be target's top-level browsing contextp814 's active documentp811.

2. While true:

1. If candidate is target, then return true.

2. If the focused areap771 of candidate is a browsing context containerp814 with a non-null nested browsing contextp814,
then set candidate to the active documentp811 of that browsing context containerp814 's nested browsing contextp814.

3. Otherwise, return false.

In some cases, e.g. if entry is an areap443 element's shape, a scrollable region, or a viewport, no event is fired.
Note

It is possible for the currently focused area of a top-level browsing context p771 to be inertp766, for example if a modal
dialog is shownp612, and then that dialogp610 element is made inertp766. It is likely to be the result of a logic error in the
application, though.

Note

778

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#focusevent
https://w3c.github.io/uievents/#dom-focusevent-relatedtarget
https://w3c.github.io/uievents/#dom-uievent-view
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#composed-flag
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-event-dispatch

Each Documentp114 has a sequential focus navigation order, which orders some or all of the focusable areasp770 in the Documentp114

relative to each other. Its contents and ordering are given by the flattened tabindex-ordered focus navigation scopep773 of the
Documentp114.

If a focusable areap770 is omitted from the sequential focus navigation orderp779 of its Documentp114, then it is unreachable via sequential
focus navigationp779.

There can also be a sequential focus navigation starting point. It is initially unset. The user agent may set it when the user
indicates that it should be moved.

When the user requests that focus move from the currently focused area of a top-level browsing contextp771 to the next or previous
focusable areap770 (e.g. as the default action of pressing the tab key), or when the user requests that focus sequentially move to a top-
level browsing contextp814 in the first place (e.g. from the browser's location bar), the user agent must use the following algorithm:

1. Let starting point be the currently focused area of a top-level browsing contextp771, if the user requested to move focus
sequentially from there, or else the top-level browsing contextp814 itself, if the user instead requested to move focus from
outside the top-level browsing contextp814.

2. If there is a sequential focus navigation starting point p779 defined and it is inside starting point, then let starting point be the
sequential focus navigation starting point p779 instead.

3. Let direction be forward if the user requested the next control, and backward if the user requested the previous control.

4. Loop: Let selection mechanism be sequential if the starting point is a browsing contextp811 or if starting point is in its
Documentp114 's sequential focus navigation orderp779.

Otherwise, starting point is not in its Documentp114 's sequential focus navigation orderp779; let selection mechanism be DOM.

5. Let candidate be the result of running the sequential navigation search algorithmp780 with starting point, direction, and
selection mechanism as the arguments.

6. If candidate is not null, then run the focusing stepsp776 for candidate and return.

7. Otherwise, unset the sequential focus navigation starting point p779.

8. If starting point is the top-level browsing contextp814, or a focusable areap770 in the top-level browsing contextp814, the user
agent should transfer focus to its own controls appropriately (if any), honouring direction, and then return.

If the user agent has no sequentially focusablep772 controls — a kiosk-mode browser, for instance — then the user agent may
instead restart these steps with the starting point being the top-level browsing contextp814 itself.

9. Otherwise, starting point is a focusable areap770 in a child browsing contextp814. Set starting point to that child browsing
contextp814 's containerp814 and return to the step labeled loop.

Per the rules defining the flattened tabindex-ordered focus navigation scope p773, the ordering is not necessarily related to the tree
order of the Documentp114.

Note

For example, the user agent could set it to the position of the user's click if the user clicks on the document contents.
Example

User agents are required to set the sequential focus navigation starting point p779 to the target elementp881 when navigating to a
fragmentp880.

Note

Typically, pressing tab requests the next control, and pressing shift+tab requests the previous control.
Note

For example, if direction is backward, then the last sequentially focusablep772 control before the browser's rendering area
would be the control to focus.

Example

6.5.5 Sequential focus navigation §p77

9

779

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

The sequential navigation search algorithm consists of the following steps. This algorithm takes three arguments: starting point,
direction, and selection mechanism.

1. Pick the appropriate cell from the following table, and follow the instructions in that cell.

The appropriate cell is the one that is from the column whose header describes direction and from the first row whose header
describes starting point and selection mechanism.

direction is forward direction is backward

starting point
is a browsing
contextp811

Let candidate be the first suitable sequentially focusable
areap780 in starting point's active documentp811, if any; or else
null

Let candidate be the last suitable sequentially focusable areap780

in starting point's active documentp811, if any; or else null

selection
mechanism is
DOM

Let candidate be the first suitable sequentially focusable
areap780 in the home documentp780 following starting point, if
any; or else null

Let candidate be the last suitable sequentially focusable areap780

in the home documentp780 preceding starting point, if any; or
else null

selection
mechanism is
sequential

Let candidate be the first suitable sequentially focusable
areap780 in the home sequential focus navigation orderp780

following starting point, if any; or else null

Let candidate be the last suitable sequentially focusable areap780

in the home sequential focus navigation orderp780 preceding
starting point, if any; or else null

A suitable sequentially focusable area is a focusable areap770 whose DOM anchorp770 is not inertp766 and is sequentially
focusablep772.

The home document is the Documentp114 to which starting point belongs.

The home sequential focus navigation order is the sequential focus navigation orderp779 to which starting point belongs.

2. If candidate is a browsing context containerp814 with a non-null nested browsing contextp814, then let new candidate be the
result of running the sequential navigation search algorithmp780 with candidate's nested browsing contextp814 as the first
argument, direction as the second, and sequential as the third.

If new candidate is null, then let starting point be candidate, and return to the top of this algorithm. Otherwise, let candidate
be new candidate.

3. Return candidate.

dictionary FocusOptions {
boolean preventScroll = false;

};

The home sequential focus navigation order p780 is the home documentp780 's sequential focus navigation orderp779, but is
only used when the starting point is in that sequential focus navigation orderp779 (when it's not, selection mechanism will
be DOM).

Note

documentOrShadowRoot . activeElementp781

Returns the deepest element in the document through which or to which key events are being routed. This is, roughly speaking,
the focused element in the document.
For the purposes of this API, when a child browsing contextp814 is focused, its containerp814 is focusedp771 in the parent browsing
contextp814. For example, if the user moves the focus to a text control in an iframep361, the iframep361 is the element returned
by the activeElementp781 API in the iframep361 's node document.
Similarly, when the focused element is in a different node tree than documentOrShadowRoot, the element returned will be the
host that's located in the same node tree as documentOrShadowRoot if documentOrShadowRoot is a shadow-including inclusive
ancestor of the focused element, and null if not.

document . hasFocusp781()
Returns true if key events are being routed through or to the document; otherwise, returns false. Roughly speaking, this
corresponds to the document, or a document nested inside this one, being focused.

For web developers (non-normative)

IDL

6.5.6 Focus management APIs §p78

0

780

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-tree
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#concept-node-tree
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor

The activeElement attribute's getter must run these steps:

1. Let candidate be the DOM anchorp770 of the focused areap771 of this DocumentOrShadowRootp115 's node document.

2. Set candidate to the result of retargeting candidate against this DocumentOrShadowRootp115.

3. If candidate's root is not this DocumentOrShadowRootp115, then return null.

4. If candidate is not a Documentp114 object, then return candidate.

5. If candidate has a body elementp118, then return that body elementp118.

6. If candidate's document element is non-null, then return that document element.

7. Return null.

The hasFocus() method on the Documentp114 object, when invoked, must return the result of running the has focus stepsp778 with the
Documentp114 object as the argument.

The focus() method, when invoked, must run these steps:

1. Let current be this Windowp824 object's browsing contextp826.

2. If current is null, then return.

3. Run the focusing stepsp776 with current.

4. If current is a top-level browsing contextp814, user agents are encouraged to trigger some sort of notification to indicate to
the user that the page is attempting to gain focus.

The blur() method, when invoked, provides a hint to the user agent that the script believes the user probably is not currently
interested in the contents of this Windowp824 object's browsing contextp826, if non-null, but that the contents might become interesting
again in the future.

User agents are encouraged to ignore calls to this blur()p781 method entirely.

window . focusp781()
Moves the focus to the window's browsing contextp826, if any.

element . focusp782([{ preventScrollp782: true }])
Moves the focus to the element.
If the element is a browsing context containerp814, moves the focus to its nested browsing contextp814 instead.
By default, this method also scrolls the element into view. Providing the preventScrollp782 option and setting it to true prevents
this behavior.

element . blurp782()
Moves the focus to the viewport. Use of this method is discouraged; if you want to focus the viewport, call the focus()p782

method on the Documentp114 's document element.
Do not use this method to hide the focus ring if you find the focus ring unsightly. Instead, use a CSS rule to override the 'outline'
property, and provide a different way to show what element is focused. Be aware that if an alternative focusing style isn't made
available, the page will be significantly less usable for people who primarily navigate pages using a keyboard, or those with
reduced vision who use focus outlines to help them navigate the page.

For example, to hide the outline from links and instead use a yellow background to indicate focus, you could use:

:link:focus, :visited:focus { outline: none; background: yellow; color: black; }

Example

CSS

Historically, the focus()p781 and blur()p781 methods actually affected the system-level focus of the system widget (e.g., tab or
window) that contained the browsing contextp811, but hostile sites widely abuse this behavior to the user's detriment.

Note

✔ MDN

✔ MDN✔ MDN

✔ MDN

✔ MDN

781

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/css-ui/#outline
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#retarget
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element

The focus(options) method on elements, when invoked, must run the following steps:

1. If the element is marked as locked for focusp782, then return.

2. Mark the element as locked for focus.

3. Run the focusing stepsp776 for the element.

4. If the value of the preventScroll dictionary member of options is false, then scroll the element into view with scroll
behavior "auto", block flow direction position set to an implementation-defined value, and inline base direction position set
to an implementation-defined value.

5. Unmark the element as locked for focusp782.

The blur() method, when invoked, should run the unfocusing stepsp776 for the element on which the method was called. User agents
may selectively or uniformly ignore calls to this method for usability reasons.

The autofocus content attribute allows the author to indicate that an element is to be focused as soon as the page is loaded or as
soon as the dialogp610 within which it finds itself is shown, allowing the user to just start typing without having to manually focus the
main element.

The autofocusp782 attribute is a boolean attributep67.

An element's nearest ancestor autofocus scoping root element is the element itself if the element is a dialogp610 element, or
else is the element's nearest ancestor dialogp610 element, if any, or else is the element's last inclusive ancestor element.

There must not be two elements with the same nearest ancestor autofocus scoping root elementp782 that both have the autofocusp782

attribute specified.

Each Documentp114 has an autofocus candidates list, initially empty.

Each Documentp114 has an autofocus processed flag boolean, initially false.

When an element with the autofocusp782 attribute specified is inserted into a documentp44, run the following steps:

1. If the user has indicated (for example, by starting to type in a form control) that they do not wish focus to be changed, then
optionally return.

2. Let target be the element's node document.

3. If target's browsing contextp811 is null, then return.

4. If target's active sandboxing flag setp844 has the sandboxed automatic features browsing context flagp842, then return.

5. Let topDocument be the active documentp811 of target's browsing contextp811 's top-level browsing contextp814.

6. If target's originp837 is not the samep838 as the originp837 of topDocument, then return.

7. If topDocument's autofocus processed flagp782 is false, then remove the element from topDocument's autofocus
candidatesp782, and append the element to topDocument's autofocus candidatesp782.

To flush autofocus candidates for a document topDocument, run these steps:

For example, if the blur()p782 method is unwisely being used to remove the focus ring for aesthetics reasons, the page would
become unusable by keyboard users. Ignoring calls to this method would thus allow keyboard users to interact with the page.

Example

We do not check if an element is a focusable areap770 before storing it in the autofocus candidatesp782 list, because even if it is not
a focusable area when it is inserted, it could become one by the time flush autofocus candidatesp782 sees it.

Note

6.5.7 The autofocusp782 attribute §p78

2

✔ MDN

✔ MDN

782

https://drafts.csswg.org/cssom-view/#scroll-an-element-into-view
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-append

1. If topDocument's autofocus processed flagp782 is true, then return.

2. Let candidates be topDocument's autofocus candidatesp782.

3. If candidates is empty, then return.

4. If topDocument's focused areap771 is not topDocument itself, or topDocument's URL's fragment is not empty, then:

1. Empty candidates.

2. Set topDocument's autofocus processed flagp782 to true.

3. Return.

5. While candidates is not empty:

1. Let element be candidates[0].

2. Let doc be element's node document.

3. If doc is not fully activep815, then remove element from candidates, and continue.

4. If doc's browsing contextp811 's top-level browsing contextp814 is not same as topDocument's browsing contextp811,
then remove element from candidates, and continue.

5. If doc's script-blocking style sheet counterp178 is greater than 0, then return.

6. Remove element from candidates.

7. Let inclusiveAncestorDocuments be a list consisting of doc, plus the active documentsp811 of each of doc's browsing
contextp811 's ancestor browsing contextsp814.

8. If URL's fragment of any Documentp114 in inclusiveAncestorDocuments is not empty, then continue.

9. Let target be element.

10. If target is not a focusable areap770, then set target to the result of getting the focusable areap775 for target.

11. If target is not null, then:

1. Empty candidates.

2. Set topDocument's autofocus processed flagp782 to true.

3. Run the focusing stepsp776 for target.

The autofocus IDL attribute must reflectp94 the content attribute of the same name.

In this case, element is the currently-best candidate, but doc is not ready for autofocusing. We'll try again next
time flush autofocus candidatesp782 is called.

Note

Autofocus candidatesp782 can contain elements which are not focusable areasp770. In addition to the special
cases handled in the get the focusable areap775 algorithm, this can happen because a non-focusable areap770

element with an autofocusp782 attribute was inserted into a documentp44 and it never became focusable, or
because the element was focusable but its status changed while it was stored in autofocus candidatesp782.

Note

This handles the automatic focusing during document load. The show()p611 and showModal()p612 methods of dialogp610 elements
also processes the autofocusp782 attribute.

Note

Focusing the element does not imply that the user agent has to focus the browser window if it has lost focus.
Note

Example

✔ MDN

783

https://infra.spec.whatwg.org/#list-is-empty
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment
https://infra.spec.whatwg.org/#list-empty
https://infra.spec.whatwg.org/#list-is-empty
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-empty

This section is non-normative.

Each element that can be activated or focused can be assigned a single key combination to activate it, using the accesskeyp785

attribute.

The exact shortcut is determined by the user agent, based on information about the user's keyboard, what keyboard shortcuts already
exist on the platform, and what other shortcuts have been specified on the page, using the information provided in the accesskeyp785

attribute as a guide.

In order to ensure that a relevant keyboard shortcut is available on a wide variety of input devices, the author can provide a number of
alternatives in the accesskeyp785 attribute.

Each alternative consists of a single character, such as a letter or digit.

User agents can provide users with a list of the keyboard shortcuts, but authors are encouraged to do so also. The accessKeyLabelp786

IDL attribute returns a string representing the actual key combination assigned by the user agent.

In the following snippet, the text control would be focused when the document was loaded.

<input maxlength="256" name="q" value="" autofocus>
<input type="submit" value="Search">

The autofocusp782 attribute applies to all elements, not just to form controls. This allows examples such as the following:

<div contenteditable autofocus>Edit me!<div>

Example

6.6 Assigning keyboard shortcuts §p78

4

In this example, an author has provided a button that can be invoked using a shortcut key. To support full keyboards, the author
has provided "C" as a possible key. To support devices equipped only with numeric keypads, the author has provided "1" as another
possibly key.

<input type=button value=Collect onclick="collect()"
accesskey="C 1" id=c>

Example

To tell the user what the shortcut key is, the author has this script here opted to explicitly add the key combination to the button's
label:

function addShortcutKeyLabel(button) {
if (button.accessKeyLabel != '')

button.value += ' (' + button.accessKeyLabel + ')';
}
addShortcutKeyLabel(document.getElementById('c'));

Browsers on different platforms will show different labels, even for the same key combination, based on the convention prevalent
on that platform. For example, if the key combination is the Control key, the Shift key, and the letter C, a Windows browser might
display "Ctrl+Shift+C", whereas a Mac browser might display "^⇧C", while an Emacs browser might just display "C-C". Similarly, if
the key combination is the Alt key and the Escape key, Windows might use "Alt+Esc", Mac might use "⌥⎋", and an Emacs browser
might use "M-ESC" or "ESC ESC".

Example

6.6.1 Introduction §p78

4

784

All HTML elementsp44 may have the accesskeyp785 content attribute set. The accesskeyp785 attribute's value is used by the user agent
as a guide for creating a keyboard shortcut that activates or focuses the element.

If specified, the value must be an ordered set of unique space-separated tokensp87 none of which are identical to another token and
each of which must be exactly one code point in length.

In general, therefore, it is unwise to attempt to parse the value returned from the accessKeyLabelp786 IDL attribute.

In the following example, a variety of links are given with access keys so that keyboard users familiar with the site can more
quickly navigate to the relevant pages:

<nav>
<p>
Activities |
Technical Reports

|
Site Index |
About Consortium |
Contact

</p>
</nav>

Example

In the following example, the search field is given two possible access keys, "s" and "0" (in that order). A user agent on a device
with a full keyboard might pick Ctrl+Alt+S as the shortcut key, while a user agent on a small device with just a numeric keypad
might pick just the plain unadorned key 0:

<form action="/search">
<label>Search: <input type="search" name="q" accesskey="s 0"></label>
<input type="submit">

</form>

Example

In the following example, a button has possible access keys described. A script then tries to update the button's label to advertise
the key combination the user agent selected.

<input type=submit accesskey="N @ 1" value="Compose">
...
<script>
function labelButton(button) {

if (button.accessKeyLabel)
button.value += ' (' + button.accessKeyLabel + ')';

}
var inputs = document.getElementsByTagName('input');
for (var i = 0; i < inputs.length; i += 1) {

if (inputs[i].type == "submit")
labelButton(inputs[i]);

}
</script>

On one user agent, the button's label might become "Compose (⌘N)". On another, it might become "Compose (Alt+⇧+1)". If the
user agent doesn't assign a key, it will be just "Compose". The exact string depends on what the assigned access keyp786 is, and on

Example

6.6.2 The accesskey attribute §p78

5

✔ MDN

785

https://infra.spec.whatwg.org/#string-is

An element's assigned access key is a key combination derived from the element's accesskeyp785 content attribute. Initially, an
element must not have an assigned access keyp786.

Whenever an element's accesskeyp785 attribute is set, changed, or removed, the user agent must update the element's assigned
access keyp786 by running the following steps:

1. If the element has no accesskeyp785 attribute, then skip to the fallback step below.

2. Otherwise, split the attribute's value on ASCII whitespace, and let keys be the resulting tokens.

3. For each value in keys in turn, in the order the tokens appeared in the attribute's value, run the following substeps:

1. If the value is not a string exactly one code point in length, then skip the remainder of these steps for this value.

2. If the value does not correspond to a key on the system's keyboard, then skip the remainder of these steps for this
value.

3. If the user agent can find a mix of zero or more modifier keys that, combined with the key that
corresponds to the value given in the attribute, can be used as the access key, then the user agent may
assign that combination of keys as the element's assigned access keyp786 and return.

4. Fallback: Optionally, the user agent may assign a key combination of its choosing as the element's assigned access
keyp786 and then return.

5. If this step is reached, the element has no assigned access keyp786.

Once a user agent has selected and assigned an access key for an element, the user agent should not change the element's assigned
access keyp786 unless the accesskeyp785 content attribute is changed or the element is moved to another Documentp114.

When the user presses the key combination corresponding to the assigned access keyp786 for an element, if the element defines a
commandp607, the command's Hidden Statep608 facet is false (visible), the command's Disabled Statep608 facet is also false (enabled),
the element is in a document that has a non-null browsing contextp811, and neither the element nor any of its ancestors has a
hiddenp765 attribute specified, then the user agent must trigger the Actionp608 of the command.

The accessKey IDL attribute must reflectp94 the accesskeyp785 content attribute.

The accessKeyLabel IDL attribute must return a string that represents the element's assigned access keyp786, if any. If the element
does not have one, then the IDL attribute must return the empty string.

interface mixin ElementContentEditable {
[CEReactions] attribute DOMString contentEditable;
[CEReactions] attribute DOMString enterKeyHint;
readonly attribute boolean isContentEditable;
[CEReactions] attribute DOMString inputMode;

how the user agent represents that key combination.

User agents might exposep608 elements that have an accesskeyp785 attribute in other ways as well, e.g. in a menu displayed in
response to a specific key combination.

Note

6.7 Editing §p78

6

IDL

6.6.3 Processing model §p78

6

6.7.1 Making document regions editable: The contenteditablep787 content attribute §p78

6

⚠ MDN

✔ MDN

786

https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#tracking-vector
https://dom.spec.whatwg.org/#in-a-document

};

The contenteditable content attribute is an enumerated attributep68 whose keywords are the empty string, true, and false. The
empty string and the true keyword map to the true state. The false keyword maps to the false state. In addition, there is a third
state, the inherit state, which is the missing value defaultp68 and the invalid value defaultp68.

The true state indicates that the element is editable. The inherit state indicates that the element is editable if its parent is. The false
state indicates that the element is not editable.

For example, consider a page that has a formp486 and a textareap548 to publish a new article, where the user is expected to write
the article using HTML:

<form method=POST>
<fieldset>
<legend>New article</legend>
<textarea name=article><p>Hello world.</p></textarea>

</fieldset>
<p><button>Publish</button></p>

</form>

When scripting is enabled, the textareap548 element could be replaced with a rich text control instead, using the
contenteditablep787 attribute:

<form method=POST>
<fieldset>
<legend>New article</legend>
<textarea id=textarea name=article><p>Hello world.</p></textarea>
<div id=div style="white-space: pre-wrap" hidden><p>Hello world.</p></div>
<script>
let textarea = document.getElementById("textarea");
let div = document.getElementById("div");
textarea.hidden = true;
div.hidden = false;
div.contentEditable = "true";
div.oninput = (e) => {

textarea.value = div.innerHTML;
};

</script>
</fieldset>
<p><button>Publish</button></p>

</form>

Features to enable, e.g., inserting links, can be implemented using the document.execCommand() API, or using Selection APIs and
other DOM APIs. [EXECCOMMAND]p1287 [SELECTION]p1291 [DOM]p1287

Example

The contenteditablep787 attribute can also be used to great effect:

<!doctype html>
<html lang=en>
<title>Live CSS editing!</title>
<style style=white-space:pre contenteditable>
html { margin:.2em; font-size:2em; color:lime; background:purple }
head, title, style { display:block }
body { display:none }
</style>

Example

For web developers (non-normative)

✔ MDN

787

https://w3c.github.io/editing/docs/execCommand/#execcommand%28%29
https://w3c.github.io/selection-api/#selection-interface

The contentEditable IDL attribute, on getting, must return the string "true" if the content attribute is set to the true state, "false" if
the content attribute is set to the false state, and "inherit" otherwise. On setting, if the new value is an ASCII case-insensitive match
for the string "inherit" then the content attribute must be removed, if the new value is an ASCII case-insensitive match for the string
"true" then the content attribute must be set to the string "true", if the new value is an ASCII case-insensitive match for the string
"false" then the content attribute must be set to the string "false", and otherwise the attribute setter must throw a "SyntaxError"
DOMException.

The isContentEditable IDL attribute, on getting, must return true if the element is either an editing hostp789 or editable, and false
otherwise.

Documentp114 objects have an associated design mode enabled, which is a boolean. It is initially false.

The designMode getter steps are to return "on" if this's design mode enabledp788 is true; otherwise "off".

The designModep788 setter steps are:

1. Let value be the given value, converted to ASCII lowercase.

2. If value is "on" and this's design mode enabledp788 is false, then:

1. Set this's design mode enabledp788 to true.

2. Reset this's active range's start and end boundary points to be at the start of this.

3. Run the focusing stepsp776 for this's document element, if non-null.

3. If value is "off", then set this's design mode enabledp788 to false.

Authors are encouraged to set the 'white-space' property on editing hostsp789 and on markup that was originally created through these
editing mechanisms to the value 'pre-wrap'. Default HTML whitespace handling is not well suited to WYSIWYG editing, and line
wrapping will not work correctly in some corner cases if 'white-space' is left at its default value.

element . contentEditablep788 [= value]
Returns "true", "false", or "inherit", based on the state of the contenteditablep787 attribute.
Can be set, to change that state.
Throws a "SyntaxError" DOMException if the new value isn't one of those strings.

element . isContentEditablep788

Returns true if the element is editable; otherwise, returns false.

document . designModep788 [= value]
Returns "on" if the document is editable, and "off" if it isn't.
Can be set, to change the document's current state. This focuses the document and resets the selection in that document.

For web developers (non-normative)

As an example of problems that occur if the default 'normal' value is used instead, consider the case of the user typing
"yellow␣␣ball", with two spaces (here represented by "␣") between the words. With the editing rules in place for the default value
of 'white-space' ('normal'), the resulting markup will either consist of "yellow ball" or "yellow ball"; i.e., there
will be a non-breaking space between the two words in addition to the regular space. This is necessary because the 'normal' value
for 'white-space' requires adjacent regular spaces to be collapsed together.

Example

6.7.2 Making entire documents editable: the designModep788 getter and setter §p78

8

6.7.3 Best practices for in-page editors §p78

8

✔ MDN

✔ MDN

788

https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/editing/docs/execCommand/#editable
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#ascii-lowercase
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://w3c.github.io/editing/docs/execCommand/#active-range
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://dom.spec.whatwg.org/#document-element
https://heycam.github.io/webidl/#this
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#white-space-property

An editing host is either an HTML elementp44 with its contenteditablep787 attribute in the true state, or a child HTML elementp44 of a
Documentp114 whose design mode enabledp788 is true.

The definition of the terms active range, editing host of, and editable, the user interface requirements of elements that are editing
hostsp789 or editable, the execCommand(), queryCommandEnabled(), queryCommandIndeterm(), queryCommandState(),
queryCommandSupported(), and queryCommandValue() methods, text selections, and the delete the selection algorithm are defined
in execCommand. [EXECCOMMAND]p1287

User agents can support the checking of spelling and grammar of editable text, either in form controls (such as the value of
textareap548 elements), or in elements in an editing hostp789 (e.g. using contenteditablep787).

For each element, user agents must establish a default behavior, either through defaults or through preferences expressed by the
user. There are three possible default behaviors for each element:

true-by-default
The element will be checked for spelling and grammar if its contents are editable and spellchecking is not explicitly disabled
through the spellcheckp789 attribute.

false-by-default
The element will never be checked for spelling and grammar unless spellchecking is explicitly enabled through the spellcheckp789

attribute.

inherit-by-default
The element's default behavior is the same as its parent element's. Elements that have no parent element cannot have this as their
default behavior.

The spellcheck attribute is an enumerated attributep68 whose keywords are the empty string, true and false. The empty string and
the true keyword map to the true state. The false keyword maps to the false state. In addition, there is a third state, the default
state, which is the missing value defaultp68 and the invalid value defaultp68.

The spellcheck IDL attribute, on getting, must return true if the element's spellcheckp789 content attribute is in the true state, or if
the element's spellcheckp789 content attribute is in the default state and the element's default behaviorp789 is true-by-defaultp789, or if

In the former case, "yellow⍽" might wrap to the next line ("⍽" being used here to represent a non-breaking space) even though
"yellow" alone might fit at the end of the line; in the latter case, "⍽ball", if wrapped to the start of the line, would have visible
indentation from the non-breaking space.

When 'white-space' is set to 'pre-wrap', however, the editing rules will instead simply put two regular spaces between the words,
and should the two words be split at the end of a line, the spaces would be neatly removed from the rendering.

The true state indicates that the element is to have its spelling and grammar checked. The default state indicates that the element
is to act according to a default behavior, possibly based on the parent element's own spellcheckp789 state, as defined below. The
false state indicates that the element is not to be checked.

Note

element . spellcheckp789 [= value]
Returns true if the element is to have its spelling and grammar checked; otherwise, returns false.
Can be set, to override the default and set the spellcheckp789 content attribute.

For web developers (non-normative)

6.7.4 Editing APIs §p78

9

6.7.5 Spelling and grammar checking §p78

9

✔ MDN

789

https://drafts.csswg.org/css-text/#white-space-property
https://dom.spec.whatwg.org/#concept-tree-child
https://w3c.github.io/editing/docs/execCommand/#active-range
https://w3c.github.io/editing/docs/execCommand/#editing-host-of
https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#execcommand%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandenabled%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandindeterm%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandstate%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandsupported%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandvalue%28%29
https://w3c.github.io/editing/docs/execCommand/#delete-the-selection

the element's spellcheckp789 content attribute is in the default state and the element's default behaviorp789 is inherit-by-defaultp789

and the element's parent element's spellcheckp789 IDL attribute would return true; otherwise, if none of those conditions applies, then
the attribute must instead return false.

On setting, if the new value is true, then the element's spellcheckp789 content attribute must be set to the literal string "true",
otherwise it must be set to the literal string "false".

User agents must only consider the following pieces of text as checkable for the purposes of this feature:

• The valuep566 of inputp493 elements whose typep495 attributes are in the Textp499, Searchp499, URLp501, or Emailp502 states and
that are mutablep566 (i.e. that do not have the readonlyp522 attribute specified and that are not disabledp570).

• The valuep566 of textareap548 elements that do not have a readonlyp549 attribute and that are not disabledp570.

• Text in Text nodes that are children of editing hostsp789 or editable elements.

• Text in attributes of editable elements.

For text that is part of a Text node, the element with which the text is associated is the element that is the immediate parent of the
first character of the word, sentence, or other piece of text. For text in attributes, it is the attribute's element. For the values of
inputp493 and textareap548 elements, it is the element itself.

To determine if a word, sentence, or other piece of text in an applicable element (as defined above) is to have spelling- and grammar-
checking enabled, the UA must use the following algorithm:

1. If the user has disabled the checking for this text, then the checking is disabled.

2. Otherwise, if the user has forced the checking for this text to always be enabled, then the checking is enabled.

3. Otherwise, if the element with which the text is associated has a spellcheckp789 content attribute, then: if that attribute is in
the true state, then checking is enabled; otherwise, if that attribute is in the false state, then checking is disabled.

4. Otherwise, if there is an ancestor element with a spellcheckp789 content attribute that is not in the default state, then: if the
nearest such ancestor's spellcheckp789 content attribute is in the true state, then checking is enabled; otherwise, checking is
disabled.

5. Otherwise, if the element's default behaviorp789 is true-by-defaultp789, then checking is enabled.

6. Otherwise, if the element's default behaviorp789 is false-by-defaultp789, then checking is disabled.

7. Otherwise, if the element's parent element has its checking enabled, then checking is enabled.

8. Otherwise, checking is disabled.

If the checking is enabled for a word/sentence/text, the user agent should indicate spelling and grammar errors in that text. User
agents should take into account the other semantics given in the document when suggesting spelling and grammar corrections. User
agents may use the language of the element to determine what spelling and grammar rules to use, or may use the user's preferred
language settings. UAs should use inputp493 element attributes such as patternp525 to ensure that the resulting value is valid, where
possible.

If checking is disabled, the user agent should not indicate spelling or grammar errors for that text.

The spellcheckp789 IDL attribute is not affected by user preferences that override the spellcheckp789 content attribute, and
therefore might not reflect the actual spellchecking state.

Note

The element with ID "a" in the following example would be the one used to determine if the word "Hello" is checked for spelling
errors. In this example, it would not be.

<div contenteditable="true">
Hello!

</div>

Example

790

https://dom.spec.whatwg.org/#interface-text
https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#editable
https://dom.spec.whatwg.org/#interface-text

Some methods of entering text, for example virtual keyboards on mobile devices, and also voice input, often assist users by
automatically capitalizing the first letter of sentences (when composing text in a language with this convention). A virtual keyboard
that implements autocapitalization might automatically switch to showing uppercase letters (but allow the user to toggle it back to
lowercase) when a letter that should be autocapitalized is about to be typed. Other types of input, for example voice input, may
perform autocapitalization in a way that does not give users an option to intervene first. The autocapitalizep791 attribute allows
authors to control such behavior.

The autocapitalizep791 attribute, as typically implemented, does not affect behavior when typing on a physical keyboard. (For this
reason, as well as the ability for users to override the autocapitalization behavior in some cases or edit the text after initial input, the
attribute must not be relied on for any sort of input validation.)

The autocapitalizep791 attribute can be used on an editing hostp789 to control autocapitalization behavior for the hosted editable
region, on an inputp493 or textareap548 element to control the behavior for inputting text into that element, or on a formp486 element to
control the default behavior for all autocapitalize-inheriting elementsp486 associated with the formp486 element.

The autocapitalizep791 attribute never causes autocapitalization to be enabled for inputp493 elements whose typep495 attribute is in
one of the URLp501, Emailp502, or Passwordp503 states. (This behavior is included in the used autocapitalization hintp792 algorithm below.)

The autocapitalization processing model is based on selecting among five autocapitalization hints, defined as follows:

default
The user agent and input method should use make their own determination of whether or not to enable autocapitalization.

none
No autocapitalization should be applied (all letters should default to lowercase).

sentences
The first letter of each sentence should default to a capital letter; all other letters should default to lowercase.

words
The first letter of each word should default to a capital letter; all other letters should default to lowercase.

characters
All letters should default to uppercase.

The autocapitalize attribute is an enumerated attributep68 whose states are the possible autocapitalization hintsp791. The
autocapitalization hintp791 specified by the attribute's state combines with other considerations to form the used autocapitalization
hintp792, which informs the behavior of the user agent. The keywords for this attribute and their state mappings are as follows:

Keyword State

off

none

nonep791

on sentencesp791

The element with ID "b" in the following example would have checking enabled (the leading space character in the attribute's
value on the inputp493 element causes the attribute to be ignored, so the ancestor's value is used instead, regardless of the
default).

<p spellcheck="true">
<label>Name: <input spellcheck=" false" id="b"></label>

</p>

This specification does not define the user interface for spelling and grammar checkers. A user agent could offer on-demand
checking, could perform continuous checking while the checking is enabled, or could use other interfaces.

Note

6.7.6 Autocapitalization §p79

1

MDN

791

Keyword State

sentences

words wordsp791

characters charactersp791

The invalid value defaultp68 is the sentencesp791 state. The missing value defaultp68 is the defaultp791 state.

To compute the own autocapitalization hint of an element element, run the following steps:

1. If the autocapitalizep791 content attribute is present on element, and its value is not the empty string, return the state of
the attribute.

2. If element is an autocapitalize-inheriting elementp486 and has a non-null form ownerp566, return the own autocapitalization
hintp792 of element's form ownerp566.

3. Return defaultp791.

The autocapitalize IDL attribute, on getting, must return the string value corresponding to own autocapitalization hintp792 of the
element, with the exception that the defaultp791 state maps to the empty string. On setting, it must set the autocapitalizep791 content
attribute to the given new value.

User agents that support customizable autocapitalization behavior for a text input method and wish to allow web developers to control
this functionality should, during text input into an element, compute the used autocapitalization hint for the element. This will be
an autocapitalization hintp791 that describes the recommended autocapitalization behavior for text input into the element.

User agents or input methods may choose to ignore or override the used autocapitalization hintp792 in certain circumstances.

The used autocapitalization hintp792 for an element element is computed using the following algorithm:

1. If element is an inputp493 element whose typep495 attribute is in one of the URLp501, Emailp502, or Passwordp503 states, then
return defaultp791.

2. If element is an inputp493 element or a textareap548 element, then return element's own autocapitalization hintp792.

3. If element is an editing hostp789 or an editable element, then return the own autocapitalization hintp792 of the editing host of
element.

4. Assert: this step is never reached, since text input only occurs in elements that meet one of the above criteria.

User agents can support the inputmodep792 attribute on form controls (such as the value of textareap548 elements), or in elements in
an editing hostp789 (e.g., using contenteditablep787).

The inputmode content attribute is an enumerated attributep68 that specifies what kind of input mechanism would be most helpful for
users entering content.

Keyword Description

none The user agent should not display a virtual keyboard. This keyword is useful for content that renders its own keyboard control.
text The user agent should display a virtual keyboard capable of text input in the user's locale.

element . autocapitalizep792 [= value]
Returns the current autocapitalization state for the element, or an empty string if it hasn't been set. Note that for inputp493 and
textareap548 elements that inherit their state from a formp486 element, this will return the autocapitalization state of the formp486

element, but for an element in an editable region, this will not return the autocapitalization state of the editing host (unless this
element is, in fact, the editing hostp789).
Can be set, to set the autocapitalizep791 content attribute (and thereby change the autocapitalization behavior for the
element).

For web developers (non-normative)

6.7.7 Input modalities: the inputmodep792 attribute §p79

2

✔ MDN

792

https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#editing-host-of

Keyword Description

tel The user agent should display a virtual keyboard capable of telephone number input. This should including keys for the digits 0 to 9, the "#"
character, and the "*" character. In some locales, this can also include alphabetic mnemonic labels (e.g., in the US, the key labeled "2" is historically
also labeled with the letters A, B, and C).

url The user agent should display a virtual keyboard capable of text input in the user's locale, with keys for aiding in the input of URLs, such as that for
the "/" and "." characters and for quick input of strings commonly found in domain names such as "www." or ".com".

email The user agent should display a virtual keyboard capable of text input in the user's locale, with keys for aiding in the input of email addresses, such as
that for the "@" character and the "." character.

numeric The user agent should display a virtual keyboard capable of numeric input. This keyword is useful for PIN entry.
decimal The user agent should display a virtual keyboard capable of fractional numeric input. Numeric keys and the format separator for the locale should be

shown.
search The user agent should display a virtual keyboard optimized for search.

The inputMode IDL attribute must reflectp94 the inputmodep792 content attribute, limited to only known valuesp95.

When inputmodep792 is unspecified (or is in a state not supported by the user agent), the user agent should determine the default
virtual keyboard to be shown. Contextual information such as the input typep495 or patternp525 attributes should be used to determine
which type of virtual keyboard should be presented to the user.

User agents can support the enterkeyhintp793 attribute on form controls (such as the value of textareap548 elements), or in elements
in an editing hostp789 (e.g., using contenteditablep787).

The enterkeyhint content attribute is an enumerated attributep68 that specifies what action label (or icon) to present for the enter key
on virtual keyboards. This allows authors to customize the presentation of the enter key in order to make it more helpful for users.

Keyword Description

enter The user agent should present a cue for the operation 'enter', typically inserting a new line.
done The user agent should present a cue for the operation 'done', typically meaning there is nothing more to input and the input method editor (IME) will

be closed.
go The user agent should present a cue for the operation 'go', typically meaning to take the user to the target of the text they typed.
next The user agent should present a cue for the operation 'next', typically taking the user to the next field that will accept text.
previous The user agent should present a cue for the operation 'previous', typically taking the user to the previous field that will accept text.
search The user agent should present a cue for the operation 'search', typically taking the user to the results of searching for the text they have typed.
send The user agent should present a cue for the operation 'send', typically delivering the text to its target.

The enterKeyHint IDL attribute must reflectp94 the enterkeyhintp793 content attribute, limited to only known valuesp95.

When enterkeyhintp793 is unspecified (or is in a state not supported by the user agent), the user agent should determine the default
action label (or icon) to present. Contextual information such as the inputmodep792, typep495, or patternp525 attributes should be used
to determine which action label (or icon) to present on the virtual keyboard.

This section defines find-in-page — a common user-agent mechanism which allows users to search through the contents of the page
for particular information.

Access to find-in-pagep793 feature is provided via a find-in-page interface. This is a user-agent provided user interface, which allows
the user to specify input and the parameters of the search. This interface can appear as a result of a shortcut or a menu selection.

A combination of text input and settings in the find-in-page interfacep793 represents the user query. This typically includes the text that
the user wants to search for, as well as optional settings (e.g., the ability to restrict the search to whole words only).

The user-agent processes page contents for a given queryp793, and identifies zero or more matches, which are content ranges that
satisfy the user queryp793.

6.8 Find-in-page §p79

3

6.7.8 Input modalities: the enterkeyhintp793 attribute §p79

3

6.8.1 Introduction §p79

3

793

https://url.spec.whatwg.org/#concept-url

One of the matchesp793 is identified to the user as the active match. It is highlighted and scrolled into view. The user can navigate
through the matchesp793 by advancing the active matchp794 using the find-in-page interfacep793.

Issue #3539 tracks standardizing how find-in-pagep793 underlies the currently-unspecified window.find() API.

The find-in-page process is invoked in the context of a document, and may have an effect on the selection of that document.
Specifically, the range that defines the active matchp794 can dictate the current selection. These selection updates, however, can
happen at different times during the find-in-page process (e.g. upon the find-in-page interfacep793 dismissal or upon a change in the
active matchp794 range).

This section defines an event-based drag-and-drop mechanism.

This specification does not define exactly what a drag-and-drop operation actually is.

On a visual medium with a pointing device, a drag operation could be the default action of a mousedown event that is followed by a
series of mousemove events, and the drop could be triggered by the mouse being released.

When using an input modality other than a pointing device, users would probably have to explicitly indicate their intention to perform a
drag-and-drop operation, stating what they wish to drag and where they wish to drop it, respectively.

However it is implemented, drag-and-drop operations must have a starting point (e.g. where the mouse was clicked, or the start of the
selection or element that was selected for the drag), may have any number of intermediate steps (elements that the mouse moves
over during a drag, or elements that the user picks as possible drop points as they cycle through possibilities), and must either have an
end point (the element above which the mouse button was released, or the element that was finally selected), or be canceled. The end
point must be the last element selected as a possible drop point before the drop occurs (so if the operation is not canceled, there must
be at least one element in the middle step).

This section is non-normative.

To make an element draggable, give the element a draggablep809 attribute, and set an event listener for dragstartp809 that stores the
data being dragged.

The event handler typically needs to check that it's not a text selection that is being dragged, and then needs to store data into the
DataTransferp797 object and set the allowed effects (copy, move, link, or some combination).

For example:

<p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)">
<li draggable="true" data-value="fruit-apple">Apples
<li draggable="true" data-value="fruit-orange">Oranges
<li draggable="true" data-value="fruit-pear">Pears

<script>

var internalDNDType = 'text/x-example'; // set this to something specific to your site
function dragStartHandler(event) {

if (event.target instanceof HTMLLIElement) {
// use the element's data-value="" attribute as the value to be moving:
event.dataTransfer.setData(internalDNDType, event.target.dataset.value);

6.9 Drag and drop §p79

4

6.8.2 Interaction with selection §p79

4

6.9.1 Introduction §p79

4

✔ MDN

794

https://github.com/whatwg/html/issues/3539
https://w3c.github.io/selection-api/#dfn-selection
https://w3c.github.io/uievents/#event-type-mousedown
https://w3c.github.io/uievents/#event-type-mousemove

event.dataTransfer.effectAllowed = 'move'; // only allow moves
} else {

event.preventDefault(); // don't allow selection to be dragged
}

}
</script>

To accept a drop, the drop target has to listen to the following events:

1. The dragenterp809 event handler reports whether or not the drop target is potentially willing to accept the drop, by canceling
the event.

2. The dragoverp809 event handler specifies what feedback will be shown to the user, by setting the dropEffectp798 attribute of
the DataTransferp797 associated with the event. This event also needs to be canceled.

3. The dropp809 event handler has a final chance to accept or reject the drop. If the drop is accepted, the event handler must
perform the drop operation on the target. This event needs to be canceled, so that the dropEffectp798 attribute's value can
be used by the source. Otherwise, the drop operation is rejected.

For example:

<p>Drop your favorite fruits below:</p>
<ol ondragenter="dragEnterHandler(event)" ondragover="dragOverHandler(event)"

ondrop="dropHandler(event)">

<script>

var internalDNDType = 'text/x-example'; // set this to something specific to your site
function dragEnterHandler(event) {

var items = event.dataTransfer.items;
for (var i = 0; i < items.length; ++i) {

var item = items[i];
if (item.kind == 'string' && item.type == internalDNDType) {

event.preventDefault();
return;

}
}

}
function dragOverHandler(event) {

event.dataTransfer.dropEffect = 'move';
event.preventDefault();

}
function dropHandler(event) {

var li = document.createElement('li');
var data = event.dataTransfer.getData(internalDNDType);
if (data == 'fruit-apple') {

li.textContent = 'Apples';
} else if (data == 'fruit-orange') {

li.textContent = 'Oranges';
} else if (data == 'fruit-pear') {

li.textContent = 'Pears';
} else {

li.textContent = 'Unknown Fruit';
}
event.target.appendChild(li);

}
</script>

To remove the original element (the one that was dragged) from the display, the dragendp809 event can be used.

For our example here, that means updating the original markup to handle that event:

795

<p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)" ondragend="dragEndHandler(event)">
...as before...

<script>

function dragStartHandler(event) {
// ...as before...

}
function dragEndHandler(event) {

if (event.dataTransfer.dropEffect == 'move') {
// remove the dragged element
event.target.parentNode.removeChild(event.target);

}
}

</script>

The data that underlies a drag-and-drop operation, known as the drag data store, consists of the following information:

• A drag data store item list, which is a list of items representing the dragged data, each consisting of the following
information:

The drag data item kind
The kind of data:

Text
Text.

File
Binary data with a file name.

The drag data item type string
A Unicode string giving the type or format of the data, generally given by a MIME type. Some values that are not MIME
types are special-cased for legacy reasons. The API does not enforce the use of MIME types; other values can be used as
well. In all cases, however, the values are all converted to ASCII lowercase by the API.

There is a limit of one text item per item type stringp796.

The actual data
A Unicode or binary string, in some cases with a file name (itself a Unicode string), as per the drag data item kindp796.

The drag data store item listp796 is ordered in the order that the items were added to the list; most recently added last.

• The following information, used to generate the UI feedback during the drag:

◦ User-agent-defined default feedback information, known as the drag data store default feedback.

◦ Optionally, a bitmap image and the coordinate of a point within that image, known as the drag data store
bitmap and drag data store hot spot coordinate.

• A drag data store mode, which is one of the following:

Read/write mode
For the dragstartp809 event. New data can be added to the drag data storep796.

Read-only mode
For the dropp809 event. The list of items representing dragged data can be read, including the data. No new data can be
added.

Protected mode
For all other events. The formats and kinds in the drag data storep796 list of items representing dragged data can be

6.9.2 The drag data store §p79

6

796

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#ascii-lowercase

enumerated, but the data itself is unavailable and no new data can be added.

• A drag data store allowed effects state, which is a string.

When a drag data storep796 is created, it must be initialized such that its drag data store item listp796 is empty, it has no drag data
store default feedbackp796, it has no drag data store bitmapp796 and drag data store hot spot coordinatep796, its drag data store
modep796 is protected modep796, and its drag data store allowed effects statep797 is the string "uninitializedp798".

DataTransferp797 objects are used to expose the drag data storep796 that underlies a drag-and-drop operation.

[Exposed=Window]
interface DataTransfer {

constructor();

attribute DOMString dropEffect;
attribute DOMString effectAllowed;

[SameObject] readonly attribute DataTransferItemList items;

undefined setDragImage(Element image, long x, long y);

/* old interface */
readonly attribute FrozenArray<DOMString> types;
DOMString getData(DOMString format);
undefined setData(DOMString format, DOMString data);
undefined clearData(optional DOMString format);
[SameObject] readonly attribute FileList files;

};

dataTransfer = new DataTransferp798()
Creates a new DataTransferp797 object with an empty drag data storep796.

dataTransfer . dropEffectp798 [= value]
Returns the kind of operation that is currently selected. If the kind of operation isn't one of those that is allowed by the
effectAllowedp798 attribute, then the operation will fail.
Can be set, to change the selected operation.
The possible values are "nonep798", "copyp798", "linkp798", and "movep798".

dataTransfer . effectAllowedp798 [= value]
Returns the kinds of operations that are to be allowed.
Can be set (during the dragstartp809 event), to change the allowed operations.
The possible values are "nonep798", "copyp798", "copyLinkp798", "copyMovep798", "linkp798", "linkMovep798", "movep798", "allp798",
and "uninitializedp798",

dataTransfer . itemsp798

Returns a DataTransferItemListp800 object, with the drag data.

dataTransfer . setDragImagep798(element, x, y)
Uses the given element to update the drag feedback, replacing any previously specified feedback.

dataTransfer . typesp798

Returns a frozen array listing the formats that were set in the dragstartp809 event. In addition, if any files are being dragged,
then one of the types will be the string "Files".

data = dataTransfer . getDatap799(format)
Returns the specified data. If there is no such data, returns the empty string.

For web developers (non-normative)

IDL

6.9.3 The DataTransferp797 interface §p79

7 ✔ MDN

797

https://w3c.github.io/FileAPI/#filelist-section
https://heycam.github.io/webidl/#dfn-frozen-array-type

DataTransferp797 objects that are created as part of drag-and-drop eventsp809 are only valid while those events are being fired.

A DataTransferp797 object is associated with a drag data storep796 while it is valid.

A DataTransferp797 object has an associated types array, which is a FrozenArray<DOMString>, initially empty. When the contents of
the DataTransferp797 object's drag data store item listp796 change, or when the DataTransferp797 object becomes no longer associated
with a drag data storep796, run the following steps:

1. Let L be an empty sequence.

2. If the DataTransferp797 object is still associated with a drag data storep796, then:

1. For each item in the DataTransferp797 object's drag data store item listp796 whose kindp796 is text, add an entry to L
consisting of the item's type stringp796.

2. If there are any items in the DataTransferp797 object's drag data store item listp796 whose kindp796 is File, then add
an entry to L consisting of the string "Files". (This value can be distinguished from the other values because it is
not lowercase.)

3. Set the DataTransferp797 object's types arrayp798 to the result of creating a frozen array from L.

The DataTransfer() constructor, when invoked, must return a newly created DataTransferp797 object initialized as follows:

1. Set the drag data storep796 's item listp796 to be an empty list.

2. Set the drag data storep796 's modep796 to read/write modep796.

3. Set the dropEffectp798 and effectAllowedp798 to "none".

The dropEffect attribute controls the drag-and-drop feedback that the user is given during a drag-and-drop operation. When the
DataTransferp797 object is created, the dropEffectp798 attribute is set to a string value. On getting, it must return its current value. On
setting, if the new value is one of "none", "copy", "link", or "move", then the attribute's current value must be set to the new value.
Other values must be ignored.

The effectAllowed attribute is used in the drag-and-drop processing model to initialize the dropEffectp798 attribute during the
dragenterp809 and dragoverp809 events. When the DataTransferp797 object is created, the effectAllowedp798 attribute is set to a string
value. On getting, it must return its current value. On setting, if drag data storep796 's modep796 is the read/write modep796 and the new
value is one of "none", "copy", "copyLink", "copyMove", "link", "linkMove", "move", "all", or "uninitialized", then the attribute's
current value must be set to the new value. Otherwise it must be left unchanged.

The items attribute must return a DataTransferItemListp800 object associated with the DataTransferp797 object.

The setDragImage(element, x, y) method must run the following steps:

1. If the DataTransferp797 object is no longer associated with a drag data storep796, return. Nothing happens.

2. If the drag data storep796 's modep796 is not the read/write modep796, return. Nothing happens.

3. If element is an imgp320 element, then set the drag data store bitmapp796 to the element's image (at its intrinsic size);
otherwise, set the drag data store bitmapp796 to an image generated from the given element (the exact mechanism for doing
so is not currently specified).

4. Set the drag data store hot spot coordinatep796 to the given x, y coordinate.

The types attribute must return this DataTransferp797 object's types arrayp798.

dataTransfer . setDatap799(format, data)
Adds the specified data.

dataTransfer . clearDatap799([format])
Removes the data of the specified formats. Removes all data if the argument is omitted.

dataTransfer . filesp799

Returns a FileList of the files being dragged, if any.

⚠ MDN

✔ MDN

✔ MDN

MDN

✔ MDN

✔ MDN
✔ MDN

798

https://w3c.github.io/FileAPI/#filelist-section
https://heycam.github.io/webidl/#dfn-frozen-array-type
https://heycam.github.io/webidl/#dfn-create-frozen-array
https://drafts.csswg.org/css-images/#intrinsic-dimensions

The getData(format) method must run the following steps:

1. If the DataTransferp797 object is no longer associated with a drag data storep796, then return the empty string.

2. If the drag data storep796 's modep796 is the protected modep796, then return the empty string.

3. Let format be the first argument, converted to ASCII lowercase.

4. Let convert-to-URL be false.

5. If format equals "text", change it to "text/plain".

6. If format equals "url", change it to "text/uri-list" and set convert-to-URL to true.

7. If there is no item in the drag data store item listp796 whose kindp796 is text and whose type stringp796 is equal to format,
return the empty string.

8. Let result be the data of the item in the drag data store item listp796 whose kindp796 is Plain Unicode string and whose type
stringp796 is equal to format.

9. If convert-to-URL is true, then parse result as appropriate for text/uri-list data, and then set result to the first URL from
the list, if any, or the empty string otherwise. [RFC2483]p1290

10. Return result.

The setData(format, data) method must run the following steps:

1. If the DataTransferp797 object is no longer associated with a drag data storep796, return. Nothing happens.

2. If the drag data storep796 's modep796 is not the read/write modep796, return. Nothing happens.

3. Let format be the first argument, converted to ASCII lowercase.

4. If format equals "text", change it to "text/plain".

If format equals "url", change it to "text/uri-list".

5. Remove the item in the drag data store item listp796 whose kindp796 is text and whose type stringp796 is equal to format, if
there is one.

6. Add an item to the drag data store item listp796 whose kindp796 is text, whose type stringp796 is equal to format, and whose
data is the string given by the method's second argument.

The clearData() method must run the following steps:

1. If the DataTransferp797 object is no longer associated with a drag data storep796, return. Nothing happens.

2. If the drag data storep796 's modep796 is not the read/write modep796, return. Nothing happens.

3. If the method was called with no arguments, remove each item in the drag data store item listp796 whose kindp796 is Plain
Unicode string, and return.

4. Let format be the first argument, converted to ASCII lowercase.

5. If format equals "text", change it to "text/plain".

If format equals "url", change it to "text/uri-list".

6. Remove the item in the drag data store item listp796 whose kindp796 is text and whose type stringp796 is equal to format, if
there is one.

The files attribute must return a livep45 FileList sequence consisting of File objects representing the files found by the following
steps. Furthermore, for a given FileList object and a given underlying file, the same File object must be used each time.

1. Start with an empty list L.

The clearData()p799 method does not affect whether any files were included in the drag, so the typesp798 attribute's list might still
not be empty after calling clearData()p799 (it would still contain the "Files" string if any files were included in the drag).

Note

✔ MDN

✔ MDN

✔ MDN

799

https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#dfn-file

2. If the DataTransferp797 object is no longer associated with a drag data storep796, the FileList is empty. Return the empty
list L.

3. If the drag data storep796 's modep796 is the protected modep796, Return the empty list L.

4. For each item in the drag data store item listp796 whose kindp796 is File , add the item's data (the file, in particular its name
and contents, as well as its typep796) to the list L.

5. The files found by these steps are those in the list L.

Each DataTransferp797 object is associated with a DataTransferItemListp800 object.

[Exposed=Window]
interface DataTransferItemList {

readonly attribute unsigned long length;
getter DataTransferItem (unsigned long index);
DataTransferItem? add(DOMString data, DOMString type);
DataTransferItem? add(File data);
undefined remove(unsigned long index);
undefined clear();

};

While the DataTransferItemListp800 object's DataTransferp797 object is associated with a drag data storep796, the
DataTransferItemListp800 object's mode is the same as the drag data store modep796. When the DataTransferItemListp800 object's
DataTransferp797 object is not associated with a drag data storep796, the DataTransferItemListp800 object's mode is the disabled
mode. The drag data storep796 referenced in this section (which is used only when the DataTransferItemListp800 object is not in the
disabled mode) is the drag data storep796 with which the DataTransferItemListp800 object's DataTransferp797 object is associated.

The length attribute must return zero if the object is in the disabled mode; otherwise it must return the number of items in the drag
data store item listp796.

When a DataTransferItemListp800 object is not in the disabled mode, its supported property indices are the numbers in the range 0 ..
n-1, where n is the number of items in the drag data store item listp796.

To determine the value of an indexed property i of a DataTransferItemListp800 object, the user agent must return a
DataTransferItemp801 object representing the ith item in the drag data storep796. The same object must be returned each time a
particular item is obtained from this DataTransferItemListp800 object. The DataTransferItemp801 object must be associated with the
same DataTransferp797 object as the DataTransferItemListp800 object when it is first created.

This version of the API does not expose the types of the files during the drag.
Note

6.9.3.1 The DataTransferItemListp800 interface §p80

0

items . lengthp800

Returns the number of items in the drag data storep796.

items[index]
Returns the DataTransferItemp801 object representing the indexth entry in the drag data storep796.

items . removep801(index)
Removes the indexth entry in the drag data storep796.

items . clearp801()
Removes all the entries in the drag data storep796.

items . addp801(data)
items . addp801(data, type)

Adds a new entry for the given data to the drag data storep796. If the data is plain text then a type string has to be provided also.

For web developers (non-normative)

IDL

✔ MDN

✔ MDN

✔ MDN

✔ MDN

800

https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#dfn-file
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-determine-the-value-of-an-indexed-property

The add() method must run the following steps:

1. If the DataTransferItemListp800 object is not in the read/write modep796, return null.

2. Jump to the appropriate set of steps from the following list:

↪ If the first argument to the method is a string
If there is already an item in the drag data store item listp796 whose kindp796 is text and whose type stringp796 is equal
to the value of the method's second argument, converted to ASCII lowercase, then throw a "NotSupportedError"
DOMException.

Otherwise, add an item to the drag data store item listp796 whose kindp796 is text, whose type stringp796 is equal to the
value of the method's second argument, converted to ASCII lowercase, and whose data is the string given by the
method's first argument.

↪ If the first argument to the method is a File
Add an item to the drag data store item listp796 whose kindp796 is File, whose type stringp796 is the type of the File,
converted to ASCII lowercase, and whose data is the same as the File's data.

3. Determine the value of the indexed propertyp800 corresponding to the newly added item, and return that value (a newly
created DataTransferItemp801 object).

The remove() method, when invoked with the argument i, must run these steps:

1. If the DataTransferItemListp800 object is not in the read/write modep796, throw an "InvalidStateError" DOMException.

2. Remove the ith item from the drag data storep796.

The clear() method, if the DataTransferItemListp800 object is in the read/write modep796, must remove all the items from the drag
data storep796. Otherwise, it must do nothing.

Each DataTransferItemp801 object is associated with a DataTransferp797 object.

[Exposed=Window]
interface DataTransferItem {

readonly attribute DOMString kind;
readonly attribute DOMString type;
undefined getAsString(FunctionStringCallback? _callback);
File? getAsFile();

};

callback FunctionStringCallback = undefined (DOMString data);

While the DataTransferItemp801 object's DataTransferp797 object is associated with a drag data storep796 and that drag data storep796 's
drag data store item listp796 still contains the item that the DataTransferItemp801 object represents, the DataTransferItemp801 object's
mode is the same as the drag data store modep796. When the DataTransferItemp801 object's DataTransferp797 object is not associated

6.9.3.2 The DataTransferItemp801 interface §p80

1

item . kindp802

Returns the drag data item kindp796, one of: "string", "file".

item . typep802

Returns the drag data item type stringp796.

item . getAsStringp802(callback)
Invokes the callback with the string data as the argument, if the drag data item kindp796 is text.

file = item . getAsFilep802()
Returns a File object, if the drag data item kindp796 is File.

For web developers (non-normative)

IDL

✔ MDN

✔ MDN

✔ MDN

801

https://infra.spec.whatwg.org/#ascii-lowercase
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-lowercase
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-type
https://w3c.github.io/FileAPI/#dfn-file
https://infra.spec.whatwg.org/#ascii-lowercase
https://w3c.github.io/FileAPI/#dfn-file
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-file

with a drag data storep796, or if the item that the DataTransferItemp801 object represents has been removed from the relevant drag
data store item listp796, the DataTransferItemp801 object's mode is the disabled mode. The drag data storep796 referenced in this
section (which is used only when the DataTransferItemp801 object is not in the disabled mode) is the drag data storep796 with which
the DataTransferItemp801 object's DataTransferp797 object is associated.

The kind attribute must return the empty string if the DataTransferItemp801 object is in the disabled mode; otherwise it must return
the string given in the cell from the second column of the following table from the row whose cell in the first column contains the drag
data item kindp796 of the item represented by the DataTransferItemp801 object:

Kind String

Text "string"
File "file"

The type attribute must return the empty string if the DataTransferItemp801 object is in the disabled mode; otherwise it must return
the drag data item type stringp796 of the item represented by the DataTransferItemp801 object.

The getAsString(callback) method must run the following steps:

1. If the callback is null, return.

2. If the DataTransferItemp801 object is not in the read/write modep796 or the read-only modep796, return. The callback is never
invoked.

3. If the drag data item kindp796 is not text, then return. The callback is never invoked.

4. Otherwise, queue a taskp945 to invoke callback, passing the actual data of the item represented by the DataTransferItemp801

object as the argument.

The getAsFile() method must run the following steps:

1. If the DataTransferItemp801 object is not in the read/write modep796 or the read-only modep796, then return null.

2. If the drag data item kindp796 is not File, then return null.

3. Return a new File object representing the actual data of the item represented by the DataTransferItemp801 object.

The drag-and-drop processing model involves several events. They all use the DragEventp802 interface.

[Exposed=Window]
interface DragEvent : MouseEvent {

constructor(DOMString type, optional DragEventInit eventInitDict = {});

readonly attribute DataTransfer? dataTransfer;
};

dictionary DragEventInit : MouseEventInit {
DataTransfer? dataTransfer = null;

};

event . dataTransferp803

Returns the DataTransferp797 object for the event.

For web developers (non-normative)

Although, for consistency with other event interfaces, the DragEventp802 interface has a constructor, it is not particularly useful. In
particular, there's no way to create a useful DataTransferp797 object from script, as DataTransferp797 objects have a processing
and security model that is coordinated by the browser during drag-and-drops.

Note

IDL

6.9.4 The DragEventp802 interface §p80

2

✔ MDN

✔ MDN
✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

802

https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/uievents/#mouseevent
https://w3c.github.io/uievents/#dictdef-mouseeventinit

The dataTransfer attribute of the DragEventp802 interface must return the value it was initialized to. It represents the context
information for the event.

When a user agent is required to fire a DND event named e at an element, using a particular drag data storep796, and optionally with
a specific related target, the user agent must run the following steps:

1. Let dataDragStoreWasChanged be false.

2. If no specific related target was provided, set related target to null.

3. Let window be the relevant global objectp924 of the Documentp114 object of the specified target element.

4. If e is dragstartp809, then set the drag data store modep796 to the read/write modep796 and set dataDragStoreWasChanged to
true.

If e is dropp809, set the drag data store modep796 to the read-only modep796.

5. Let dataTransfer be a newly created DataTransferp797 object associated with the given drag data storep796.

6. Set the effectAllowedp798 attribute to the drag data storep796 's drag data store allowed effects statep797.

7. Set the dropEffectp798 attribute to "nonep798" if e is dragstartp809, dragp809, or dragleavep809; to the value corresponding to
the current drag operationp806 if e is dropp809 or dragendp809; and to a value based on the effectAllowedp798 attribute's value
and the drag-and-drop source, as given by the following table, otherwise (i.e. if e is dragenterp809 or dragoverp809):

effectAllowedp798 dropEffectp798

"nonep798" "nonep798"
"copyp798" "copyp798"
"copyLinkp798" "copyp798", or, if appropriatep803, "linkp798"
"copyMovep798" "copyp798", or, if appropriatep803, "movep798"
"allp798" "copyp798", or, if appropriatep803, either "linkp798" or

"movep798"
"linkp798" "linkp798"
"linkMovep798" "linkp798", or, if appropriatep803, "movep798"
"movep798" "movep798"
"uninitializedp798" when what is being dragged is a selection from a text control "movep798", or, if appropriatep803, either "copyp798" or

"linkp798"
"uninitializedp798" when what is being dragged is a selection "copyp798", or, if appropriatep803, either "linkp798" or

"movep798"
"uninitializedp798" when what is being dragged is an ap238 element with an hrefp284

attribute
"linkp798", or, if appropriatep803, either "copyp798" or
"movep798"

Any other case "copyp798", or, if appropriatep803, either "linkp798" or
"movep798"

Where the table above provides possibly appropriate alternatives, user agents may instead use the listed alternative
values if platform conventions dictate that the user has requested those alternate effects.

8. Let event be the result of creating an event using DragEventp802.

9. Initialize event's type attribute to e, its bubbles attribute to true, its view attribute to window, its relatedTarget attribute
to related target, and its dataTransferp803 attribute to dataTransfer.

10. If e is not dragleavep809 or dragendp809, then initialize event's cancelable attribute to true.

11. Initialize event's mouse and key attributes initialized according to the state of the input devices as they would be for user
interaction events.

If there is no relevant pointing device, then initialize event's screenX, screenY, clientX, clientY, and button attributes to
0.

12. Dispatch event at the specified target element.

For example, Windows platform conventions are such that dragging while holding the "alt" key indicates a preference for
linking the data, rather than moving or copying it. Therefore, on a Windows system, if "linkp798" is an option according to
the table above while the "alt" key is depressed, the user agent could select that instead of "copyp798" or "movep798".

Example

803

https://dom.spec.whatwg.org/#concept-event-create
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#dom-event-bubbles
https://w3c.github.io/uievents/#dom-uievent-view
https://w3c.github.io/uievents/#dom-mouseevent-relatedtarget
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-dispatch

13. Set the drag data store allowed effects statep797 to the current value of dataTransfer's effectAllowedp798 attribute. (It can
only have changed value if e is dragstartp809.)

14. If dataDragStoreWasChanged is true, then set the drag data store modep796 back to the protected modep796.

15. Break the association between dataTransfer and the drag data storep796.

When the user attempts to begin a drag operation, the user agent must run the following steps. User agents must act as if these steps
were run even if the drag actually started in another document or application and the user agent was not aware that the drag was
occurring until it intersected with a document under the user agent's purview.

1. Determine what is being dragged, as follows:

If the drag operation was invoked on a selection, then it is the selection that is being dragged.

Otherwise, if the drag operation was invoked on a Documentp114, it is the first element, going up the ancestor chain, starting
at the node that the user tried to drag, that has the IDL attribute draggablep809 set to true. If there is no such element, then
nothing is being dragged; return, the drag-and-drop operation is never started.

Otherwise, the drag operation was invoked outside the user agent's purview. What is being dragged is defined by the
document or application where the drag was started.

2. Create a drag data storep797. All the DND events fired subsequently by the steps in this section must use this drag data
storep796.

3. Establish which DOM node is the source node, as follows:

If it is a selection that is being dragged, then the source nodep804 is the Text node that the user started the drag on (typically
the Text node that the user originally clicked). If the user did not specify a particular node, for example if the user just told
the user agent to begin a drag of "the selection", then the source nodep804 is the first Text node containing a part of the
selection.

Otherwise, if it is an element that is being dragged, then the source nodep804 is the element that is being dragged.

Otherwise, the source nodep804 is part of another document or application. When this specification requires that an event be
dispatched at the source nodep804 in this case, the user agent must instead follow the platform-specific conventions relevant
to that situation.

4. Determine the list of dragged nodes, as follows:

If it is a selection that is being dragged, then the list of dragged nodesp804 contains, in tree order, every node that is partially
or completely included in the selection (including all their ancestors).

Otherwise, the list of dragged nodesp804 contains only the source nodep804, if any.

5. If it is a selection that is being dragged, then add an item to the drag data store item listp796, with its properties set as
follows:

The drag data item type stringp796

"text/plain"

The drag data item kindp796

Text

The actual data
The text of the selection

imgp320 elements and ap238 elements with an hrefp284 attribute have their draggablep809 attribute set to true by default.
Note

Multiple events are fired on the source nodep804 during the course of the drag-and-drop operation.
Note

6.9.5 Processing model §p80

4

804

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-tree-order
https://tools.ietf.org/html/rfc2046#section-4.1.3

Otherwise, if any files are being dragged, then add one item per file to the drag data store item listp796, with their properties
set as follows:

The drag data item type stringp796

The MIME type of the file, if known, or "application/octet-stream" otherwise.

The drag data item kindp796

File

The actual data
The file's contents and name.

If the drag initiated outside of the application, the user agent must add items to the drag data store item listp796 as
appropriate for the data being dragged, honoring platform conventions where appropriate; however, if the platform
conventions do not use MIME types to label dragged data, the user agent must make a best-effort attempt to map the types
to MIME types, and, in any case, all the drag data item type stringsp796 must be converted to ASCII lowercase.

User agents may also add one or more items representing the selection or dragged element(s) in other forms, e.g. as HTML.

6. If the list of dragged nodesp804 is not empty, then extract the microdata from those nodes into a JSON formp762, and add one
item to the drag data store item listp796, with its properties set as follows:

The drag data item type stringp796

application/microdata+jsonp1255

The drag data item kindp796

Text

The actual data
The resulting JSON string.

7. Run the following substeps:

1. Let urls be an empty list of absolute URLs.

2. For each node in the list of dragged nodesp804:

If the node is an ap238 element with an hrefp284 attribute
Add to urls the result of parsingp89 the element's hrefp284 content attribute relative to the element's node
document.

If the node is an imgp320 element with a srcp321 attribute
Add to urls the result of parsingp89 the element's srcp321 content attribute relative to the element's node
document.

3. If urls is still empty, then return.

4. Let url string be the result of concatenating the strings in urls, in the order they were added, separated by a
U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF).

5. Add one item to the drag data store item listp796, with its properties set as follows:

The drag data item type stringp796

text/uri-listp1284

The drag data item kindp796

Text

The actual data
url string

8. Update the drag data store default feedbackp796 as appropriate for the user agent (if the user is dragging the selection, then
the selection would likely be the basis for this feedback; if the user is dragging an element, then that element's rendering
would be used; if the drag began outside the user agent, then the platform conventions for determining the drag feedback

Dragging files can currently only happen from outside a browsing contextp811, for example from a file system manager
application.

Note

805

https://tools.ietf.org/html/rfc2046#section-4.5.1
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#ascii-lowercase
https://url.spec.whatwg.org/#syntax-url-absolute
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

should be used).

9. Fire a DND eventp803 named dragstartp809 at the source nodep804.

If the event is canceled, then the drag-and-drop operation should not occur; return.

10. Initiate the drag-and-drop operationp806 in a manner consistent with platform conventions, and as described below.

The drag-and-drop feedback must be generated from the first of the following sources that is available:

1. The drag data store bitmapp796, if any. In this case, the drag data store hot spot coordinatep796 should be used as
hints for where to put the cursor relative to the resulting image. The values are expressed as distances in CSS
pixels from the left side and from the top side of the image respectively. [CSS]p1285

2. The drag data store default feedbackp796.

From the moment that the user agent is to initiate the drag-and-drop operation, until the end of the drag-and-drop operation,
device input events (e.g. mouse and keyboard events) must be suppressed.

During the drag operation, the element directly indicated by the user as the drop target is called the immediate user selection.
(Only elements can be selected by the user; other nodes must not be made available as drop targets.) However, the immediate user
selectionp806 is not necessarily the current target element, which is the element currently selected for the drop part of the drag-and-
drop operation.

The immediate user selectionp806 changes as the user selects different elements (either by pointing at them with a pointing device, or
by selecting them in some other way). The current target elementp806 changes when the immediate user selectionp806 changes, based
on the results of event listeners in the document, as described below.

Both the current target elementp806 and the immediate user selectionp806 can be null, which means no target element is selected. They
can also both be elements in other (DOM-based) documents, or other (non-web) programs altogether. (For example, a user could drag
text to a word-processor.) The current target elementp806 is initially null.

In addition, there is also a current drag operation, which can take on the values "none", "copy", "link", and "move". Initially, it has
the value "nonep806". It is updated by the user agent as described in the steps below.

User agents must, as soon as the drag operation is initiatedp806 and every 350ms (±200ms) thereafter for as long as the drag
operation is ongoing, queue a taskp945 to perform the following steps in sequence:

1. If the user agent is still performing the previous iteration of the sequence (if any) when the next iteration becomes due,
return for this iteration (effectively "skipping missed frames" of the drag-and-drop operation).

2. Fire a DND eventp803 named dragp809 at the source nodep804. If this event is canceled, the user agent must set the current
drag operationp806 to "nonep806" (no drag operation).

3. If the dragp809 event was not canceled and the user has not ended the drag-and-drop operation, check the state of the drag-
and-drop operation, as follows:

1. If the user is indicating a different immediate user selectionp806 than during the last iteration (or if this is the first
iteration), and if this immediate user selectionp806 is not the same as the current target elementp806, then update
the current target elementp806 as follows:

↪ If the new immediate user selectionp806 is null
Set the current target elementp806 to null also.

↪ If the new immediate user selectionp806 is in a non-DOM document or application
Set the current target elementp806 to the immediate user selectionp806.

↪ Otherwise
Fire a DND eventp803 named dragenterp809 at the immediate user selectionp806.

If the event is canceled, then set the current target elementp806 to the immediate user selectionp806.

Since events with no event listeners registered are, almost by definition, never canceled, drag-and-drop is always
available to the user if the author does not specifically prevent it.

Note

806

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

Otherwise, run the appropriate step from the following list:

↪ If the immediate user selectionp806 is a text control (e.g., textareap548, or an inputp493 element
whose typep495 attribute is in the Textp499 state) or an editing hostp789 or editable element,
and the drag data store item listp796 has an item with the drag data item type stringp796

"text/plain" and the drag data item kindp796 text
Set the current target elementp806 to the immediate user selectionp806 anyway.

↪ If the immediate user selectionp806 is the body elementp118

Leave the current target elementp806 unchanged.

↪ Otherwise
Fire a DND eventp803 named dragenterp809 at the body elementp118, if there is one, or at the
Documentp114 object, if not. Then, set the current target elementp806 to the body elementp118,
regardless of whether that event was canceled or not.

2. If the previous step caused the current target elementp806 to change, and if the previous target element was not
null or a part of a non-DOM document, then fire a DND eventp803 named dragleavep809 at the previous target
element, with the new current target elementp806 as the specific related target.

3. If the current target elementp806 is a DOM element, then fire a DND eventp803 named dragoverp809 at this current
target elementp806.

If the dragoverp809 event is not canceled, run the appropriate step from the following list:

↪ If the current target elementp806 is a text control (e.g., textareap548, or an inputp493 element whose
typep495 attribute is in the Textp499 state) or an editing hostp789 or editable element, and the drag
data store item listp796 has an item with the drag data item type stringp796 "text/plain" and the
drag data item kindp796 text

Set the current drag operationp806 to either "copyp806" or "movep806", as appropriate given the platform
conventions.

↪ Otherwise
Reset the current drag operationp806 to "nonep806".

Otherwise (if the dragoverp809 event is canceled), set the current drag operationp806 based on the values of the
effectAllowedp798 and dropEffectp798 attributes of the DragEventp802 object's dataTransferp803 object as they
stood after the event dispatch finished, as per the following table:

effectAllowedp798 dropEffectp798 Drag operation

"uninitializedp798", "copyp798", "copyLinkp798", "copyMovep798", or "allp798" "copyp798" "copyp806"
"uninitializedp798", "linkp798", "copyLinkp798", "linkMovep798", or "allp798" "linkp798" "linkp806"
"uninitializedp798", "movep798", "copyMovep798", "linkMovep798", or "allp798" "movep798" "movep806"
Any other case "nonep806"

4. Otherwise, if the current target elementp806 is not a DOM element, use platform-specific mechanisms to determine
what drag operation is being performed (none, copy, link, or move), and set the current drag operationp806

accordingly.

5. Update the drag feedback (e.g. the mouse cursor) to match the current drag operationp806, as follows:

Drag operation Feedback

"copyp806" Data will be copied if dropped here.
"linkp806" Data will be linked if dropped here.
"movep806" Data will be moved if dropped here.
"nonep806" No operation allowed, dropping here will cancel the drag-and-drop operation.

4. Otherwise, if the user ended the drag-and-drop operation (e.g. by releasing the mouse button in a mouse-driven drag-and-
drop interface), or if the dragp809 event was canceled, then this will be the last iteration. Run the following steps, then stop
the drag-and-drop operation:

1. If the current drag operationp806 is "nonep806" (no drag operation), or, if the user ended the drag-and-drop operation
by canceling it (e.g. by hitting the Escape key), or if the current target elementp806 is null, then the drag operation
failed. Run these substeps:

807

https://w3c.github.io/editing/docs/execCommand/#editable
https://tools.ietf.org/html/rfc2046#section-4.1.3
https://w3c.github.io/editing/docs/execCommand/#editable
https://tools.ietf.org/html/rfc2046#section-4.1.3
https://dom.spec.whatwg.org/#concept-event-dispatch

1. Let dropped be false.

2. If the current target elementp806 is a DOM element, fire a DND eventp803 named dragleavep809 at it;
otherwise, if it is not null, use platform-specific conventions for drag cancelation.

3. Set the current drag operationp806 to "nonep806".

Otherwise, the drag operation might be a success; run these substeps:

1. Let dropped be true.

2. If the current target elementp806 is a DOM element, fire a DND eventp803 named dropp809 at it; otherwise,
use platform-specific conventions for indicating a drop.

3. If the event is canceled, set the current drag operationp806 to the value of the dropEffectp798 attribute of
the DragEventp802 object's dataTransferp803 object as it stood after the event dispatch finished.

Otherwise, the event is not canceled; perform the event's default action, which depends on the exact
target as follows:

↪ If the current target elementp806 is a text control (e.g., textareap548, or an inputp493

element whose typep495 attribute is in the Textp499 state) or an editing hostp789 or editable
element, and the drag data store item listp796 has an item with the drag data item type
stringp796 "text/plain" and the drag data item kindp796 text

Insert the actual data of the first item in the drag data store item listp796 to have a drag data item
type stringp796 of "text/plain" and a drag data item kindp796 that is text into the text control or
editing hostp789 or editable element in a manner consistent with platform-specific conventions
(e.g. inserting it at the current mouse cursor position, or inserting it at the end of the field).

↪ Otherwise
Reset the current drag operationp806 to "nonep806".

2. Fire a DND eventp803 named dragendp809 at the source nodep804.

3. Run the appropriate steps from the following list as the default action of the dragendp809 event:

↪ If dropped is true, the current target elementp806 is a text control (see below), the current drag
operationp806 is "movep806", and the source of the drag-and-drop operation is a selection in the DOM
that is entirely contained within an editing hostp789

Delete the selection.

↪ If dropped is true, the current target elementp806 is a text control (see below), the current drag
operationp806 is "movep806", and the source of the drag-and-drop operation is a selection in a text
control

The user agent should delete the dragged selection from the relevant text control.

↪ If dropped is false or if the current drag operationp806 is "nonep806"
The drag was canceled. If the platform conventions dictate that this be represented to the user (e.g. by
animating the dragged selection going back to the source of the drag-and-drop operation), then do so.

↪ Otherwise
The event has no default action.

For the purposes of this step, a text control is a textareap548 element or an inputp493 element whose typep495

attribute is in one of the Textp499, Searchp499, Telp500, URLp501, Emailp502, Passwordp503, or Numberp509 states.

User agents are encouraged to consider how to react to drags near the edge of scrollable regions. For example, if a user drags a
link to the bottom of the viewport on a long page, it might make sense to scroll the page so that the user can drop the link lower
on the page.

Note

This model is independent of which Documentp114 object the nodes involved are from; the events are fired as described above and
the rest of the processing model runs as described above, irrespective of how many documents are involved in the operation.

Note

808

https://dom.spec.whatwg.org/#concept-event-dispatch
https://w3c.github.io/editing/docs/execCommand/#editable
https://tools.ietf.org/html/rfc2046#section-4.1.3
https://tools.ietf.org/html/rfc2046#section-4.1.3
https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#delete-the-selection
https://drafts.csswg.org/css2/#viewport

This section is non-normative.

The following events are involved in the drag-and-drop model.

Event
name

Target Cancelable? Drag data store
modep796

dropEffectp798 Default Action

dragstart Source nodep804 ✓ Cancelable Read/write
modep796

"nonep798" Initiate the drag-and-drop operation

drag Source nodep804 ✓ Cancelable Protected modep796 "nonep798" Continue the drag-and-drop operation
dragenter Immediate user selectionp806 or the

body elementp118
✓ Cancelable Protected modep796 Based on

effectAllowed
valuep803

Reject immediate user selectionp806 as potential
target elementp806

dragleave Previous target elementp806 — Protected modep796 "nonep798" None
dragover Current target elementp806 ✓ Cancelable Protected modep796 Based on

effectAllowed
valuep803

Reset the current drag operationp806 to "none"

drop Current target elementp806 ✓ Cancelable Read-only modep796 Current drag
operationp806

Varies

dragend Source nodep804 — Protected modep796 Current drag
operationp806

Varies

Not shown in the above table: all these events bubble, are composed, and the effectAllowedp798 attribute always has the value it had
after the dragstartp809 event, defaulting to "uninitializedp798" in the dragstartp809 event.

All HTML elementsp44 may have the draggablep809 content attribute set. The draggablep809 attribute is an enumerated attributep68. It
has three states. The first state is true and it has the keyword true. The second state is false and it has the keyword false. The third
state is auto; it has no keywords but it is the missing value defaultp68 and the invalid value defaultp68.

The true state means the element is draggable; the false state means that it is not. The auto state uses the default behavior of the
user agent.

An element with a draggablep809 attribute should also have a titlep139 attribute that names the element for the purpose of non-visual
interactions.

The draggable IDL attribute, whose value depends on the content attribute's in the way described below, controls whether or not the
element is draggable. Generally, only text selections are draggable, but elements whose draggablep809 IDL attribute is true become
draggable as well.

If an element's draggablep809 content attribute has the state true, the draggablep809 IDL attribute must return true.

Otherwise, if the element's draggablep809 content attribute has the state false, the draggablep809 IDL attribute must return false.

Otherwise, the element's draggablep809 content attribute has the state auto. If the element is an imgp320 element, an objectp373

element that representsp123 an image, or an ap238 element with an hrefp284 content attribute, the draggablep809 IDL attribute must
return true; otherwise, the draggablep809 IDL attribute must return false.

If the draggablep809 IDL attribute is set to the value false, the draggablep809 content attribute must be set to the literal value "false".
If the draggablep809 IDL attribute is set to the value true, the draggablep809 content attribute must be set to the literal value "true".

element . draggablep809 [= value]
Returns true if the element is draggable; otherwise, returns false.
Can be set, to override the default and set the draggablep809 content attribute.

For web developers (non-normative)

6.9.6 Events summary §p80

9

6.9.7 The draggable attribute §p80

9

MDN

✔ MDN

809

User agents must not make the data added to the DataTransferp797 object during the dragstartp809 event available to scripts until the
dropp809 event, because otherwise, if a user were to drag sensitive information from one document to a second document, crossing a
hostile third document in the process, the hostile document could intercept the data.

For the same reason, user agents must consider a drop to be successful only if the user specifically ended the drag operation — if any
scripts end the drag operation, it must be considered unsuccessful (canceled) and the dropp809 event must not be fired.

User agents should take care to not start drag-and-drop operations in response to script actions. For example, in a mouse-and-window
environment, if a script moves a window while the user has their mouse button depressed, the UA would not consider that to start a
drag. This is important because otherwise UAs could cause data to be dragged from sensitive sources and dropped into hostile
documents without the user's consent.

User agents should filter potentially active (scripted) content (e.g. HTML) when it is dragged and when it is dropped, using a safelist of
known-safe features. Similarly, relative URLs should be turned into absolute URLs to avoid references changing in unexpected ways.
This specification does not specify how this is performed.

Consider a hostile page providing some content and getting the user to select and drag and drop (or indeed, copy and paste) that
content to a victim page's contenteditablep787 region. If the browser does not ensure that only safe content is dragged,
potentially unsafe content such as scripts and event handlers in the selection, once dropped (or pasted) into the victim site, get
the privileges of the victim site. This would thus enable a cross-site scripting attack.

Example

6.9.8 Security risks in the drag-and-drop model §p81

0

810

https://url.spec.whatwg.org/#syntax-url-relative

This section describes features that apply most directly to web browsers. Having said that, except where specified otherwise, the
requirements defined in this section do apply to all user agents, whether they are web browsers or not.

A browsing context is an environment in which Documentp114 objects are presented to the user.

A browsing contextp811 has a corresponding WindowProxyp834 object.

A browsing contextp811 has an opener browsing context, which is null or a browsing contextp811. It is initially null.

A browsing contextp811 has a disowned boolean. It is initially false.

A browsing contextp811 has an is closing boolean. It is initially false.

A browsing contextp811 has a session historyp849, which lists the Documentp114 objects that the browsing contextp811 has presented, is
presenting, or will present. A Document's browsing context is the browsing contextp811 whose session historyp849 contains the
Documentp114, if any such browsing context exists and has not been discardedp831, and null otherwise.

A browsing contextp811 's active window is its WindowProxyp834 object's [[Window]]p834 internal slot value. A browsing contextp811 's
active document is its active windowp811 's associated Documentp826.

7 Loading web pages §p81

1

7.1 Browsing contexts §p81

1

A tab or window in a web browser typically contains a browsing contextp811, as does an iframep361 or framep1240s in a framesetp1239.
Note

The following example illustrates the various possibilities of a browsing contextp811. It can be disownedp811, is closingp811, neither, or
both.

// Neither disowned nor is closing:
const popup1 = window.open();

// Disowned, but not is closing:
const popup2 = window.open();
popup2.opener = null;

// Not disowned, but is closing:
const popup3 = window.open();
popup3.close();

// Disowned, is closing:
const popup4 = window.open();
popup4.opener = null;
popup4.close();

Example

A Documentp114 does not necessarily have a non-null browsing contextp811. In particular, data mining tools are likely to never
instantiate browsing contexts. A Documentp114 created using an API such as createDocument() never has a non-null browsing
contextp811. And the Documentp114 originally created for an iframep361 element, which has since been removed from the
documentp44, has no associated browsing context, since that browsing context was discardedp831.

Note

811

https://dom.spec.whatwg.org/#dom-domimplementation-createdocument

To set the active document of a browsing contextp811 browsingContext to a Documentp114 object document, run these steps:

1. Let window be document's relevant global objectp924.

Per this standard document can be created before window, which does not make much sense. See issue #2688.

2. Set browsingContext's active windowp811 to window.

3. Set window's associated Documentp826 to document.

4. Set window's relevant settings objectp924 's execution ready flagp917.

A browsing contextp811 has an associated creator origin (null or returns an originp837), creator URL (null or returns a URL), and
creator base URL (null or returns a URL). These are all initially null.

To determine the origin, given browsing contextp811 browsingContext, URL url, sandboxing flag setp842 sandboxFlags, and two
originsp837 invocationOrigin and activeDocumentNavigationOrigin:

1. If sandboxFlags has its sandboxed origin browsing context flagp842 set, then return a new opaque originp837.

2. If url is null, then return a new opaque originp837.

3. If activeDocumentNavigationOrigin is not null, and url's scheme is "javascript", then return
activeDocumentNavigationOrigin.

4. If invocationOrigin is non-null and url is about:blankp51, then return invocationOrigin.

5. If url is about:srcdocp88, then return the originp837 of browsingContext's container documentp814.

6. Return url's origin.

To create a new browsing context, given null or a Documentp114 object creator, null or an element embedder, and a browsing
context groupp818 group, run these steps:

1. Let browsingContext be a new browsing contextp811.

2. If creator is non-null, then set browsingContext's creator originp812 to return creator's originp837, browsingContext's creator
URLp812 to return creator's URL, and browsingContext's creator base URLp812 to return creator's base URLp88.

3. Let sandboxFlags be the result of determining the creation sandboxing flagsp844 given browsingContext and embedder.

4. Let origin be the result of determining the originp812 given browsingContext, about:blankp51, sandboxFlags,
browsingContext's creator originp812, and null.

5. Let permissionsPolicy be the result of creating a permissions policy given browsingContext and origin.
[PERMISSIONSPOLICY]p1289

This needs to use embedder.

6. Let agent be the result of obtaining a similar-origin window agentp914 given origin, group, and false.

In general, there is a 1-to-1 mapping from the Windowp824 object to the Documentp114 object, as long as the Documentp114 object has
a non-null browsing contextp811. There is one exception. A Windowp824 can be reused for the presentation of a second Documentp114

in the same browsing contextp811, such that the mapping is then 1-to-2. This occurs when a browsing contextp811 is navigatedp866

from the initial about:blankp51 Documentp114 to another, with historyHandlingp866 set to "replacep866".

Note

The result here is that two documents end up with the same underlying originp837, meaning that document.domainp840

affects both.

Note

7.1.1 Creating browsing contexts §p81

2

812

https://github.com/whatwg/html/issues/2688
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-origin
https://dom.spec.whatwg.org/#concept-document-url
https://w3c.github.io/webappsec-feature-policy/#create-for-browsingcontext

7. Let realm execution context be the result of creating a new JavaScript realmp918 given agent and the following
customizations:

◦ For the global object, create a new Windowp824 object.

◦ For the global this binding, use browsingContext's WindowProxyp834 object.

8. Let topLevelCreationURL be about:blankp51 if embedder is null; otherwise embedder's relevant settings objectp924 's top-level
creation URLp916.

9. Let topLevelOrigin be origin if embedder is null; otherwise embedder's relevant settings objectp924 's top-level originp916.

10. Let settingsObject be the result of setting up a window environment settings objectp833 with realm execution context, null,
topLevelCreationURL, and topLevelOrigin.

11. Let coop be "unsafe-nonep845".

12. If creator is non-null and creator's originp837 is same originp838 with creator's relevant settings objectp924 's top-level originp916,
then set coop to creator's browsing contextp811 's top-level browsing contextp814 's active documentp811 's cross-origin opener
policyp115.

13. Let document be a new Documentp114, marked as an HTML document in quirks mode, whose content type is "text/html",
originp837 is origin, active sandboxing flag setp844 is sandboxFlags, permissions policyp115 is permissionsPolicy, cross-origin
opener policyp115 is coop, and which is ready for post-load tasksp1165.

14. Ensure that document has a single child htmlp152 node, which itself has two empty child nodes: a headp153 element, and a
bodyp178 element.

15. Set the active documentp812 of browsingContext to document.

16. If browsingContext's creator URLp812 is non-null, then set document's referrerp114 to the serialization of it.

17. If creator is non-null, then set document's referrer policyp115 to creator's referrer policyp115.

18. If creator is non-null, then set document's embedder policyp115 to creator's embedder policyp115.

19. Add document to browsingContext's session historyp849.

20. Completely finish loadingp885 document.

21. Return browsingContext.

To create a new top-level browsing context:

1. Let group be the result of creating a new browsing context groupp818.

2. Return group's browsing context setp818[0].

To create a new auxiliary browsing context, given a browsing contextp811 opener:

1. Let group be opener's top-level browsing contextp814 's groupp814

2. Assert: group is non-null, as navigatingp866 invokes this directly.

3. Let browsingContext be the result of creating a new browsing contextp812 with opener's active documentp811, null, and group.

4. Appendp818 browsingContext to group.

5. Set browsingContext's opener browsing contextp811 to opener.

6. Legacy-clone a browsing session storage shed with opener's browsing sessionp849 and browsingContext's browsing
sessionp849. [STORAGE]p1291

7. Return browsingContext.

This creates a top-level browsing contextp814.
Note

813

https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-document-content-type
https://url.spec.whatwg.org/#concept-url-serializer
https://storage.spec.whatwg.org/#legacy-clone-a-browsing-session-storage-shed

To create a new nested browsing context, given an element element:

1. Let group be element's node document's browsing contextp811 's top-level browsing contextp814 's groupp814.

2. Let browsingContext be the result of creating a new browsing contextp812 with element's node document, element, and
group.

3. Set element's nested browsing contextp814 to browsingContext.

4. If element has a name attribute, then set browsingContext's namep819 to the value of this attribute.

Certain elements (for example, iframep361 elements) can instantiate further browsing contextsp811. These elements are called
browsing context containers.

Each browsing context containerp814 has a nested browsing context, which is either a browsing contextp811 or null. It is initially null.

The container of a browsing contextp811 bc is the browsing context containerp814 whose nested browsing contextp814 is bc, or null if
there is no such element.

Each browsing contextp811 bc has a container document, which is the result of running these steps:

1. If bc's containerp814 is null, then return null.

2. Return bc's containerp814 's node document.

A browsing contextp811 child is said to be a child browsing context of another browsing contextp811 parent, if child's container
documentp814 is non-null and child's container documentp814 's browsing contextp811 is parent.

A browsing contextp811 child is a document-tree child browsing context of parent if child is a child browsing contextp814 and child's
containerp814 is in a document tree.

A browsing contextp811 child may have a parent browsing context. This is the unique browsing contextp811 that has child as a child
browsing contextp814, if any such browsing context exists. Otherwise, the browsing contextp811 has no parent browsing contextp814.

A browsing contextp811 A is said to be an ancestor of a browsing context B if there exists a browsing context A' that is a child browsing
contextp814 of A and that is itself an ancestorp814 of B, or if the browsing context A is the parent browsing contextp814 of B.

A browsing contextp811 that has no parent browsing contextp814 is the top-level browsing context for itself and all of the browsing
contexts for which it is an ancestor browsing contextp814.

A top-level browsing contextp814 has an associated group (null or a browsing context groupp818). It is initially null.

It is possible to create new browsing contexts that are related to a top-level browsing contextp814 while their containerp814 is null. Such
browsing contexts are called auxiliary browsing contexts. Auxiliary browsing contexts are always top-level browsing contextsp814.

The transitive closure of parent browsing contextsp814 for a browsing contextp811 that is a child browsing contextp814 gives the list of
ancestor browsing contextsp814.

The list of the descendant browsing contexts of a Documentp114 d is the (ordered) list returned by the following algorithm:

1. Let list be an empty list.

2. For each browsing context containerp814 container, whose nested browsing contextp814 is non-null and whose shadow-
including root is d, in shadow-including tree order:

This creates a top-level browsing contextp814 that is also an auxiliary browsing contextp814.
Note

This is equal to bc's containerp814 's shadow-including root as bc's containerp814 has to be connected.
Note

7.1.2 Related browsing contexts §p81

4

814

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#in-a-document-tree
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order

1. Let nestedBC be container's nested browsing contextp814.

2. Append nestedBC to list.

3. Extend list with the list of the descendant browsing contextsp814 of nestedBC's active documentp811.

3. Return list.

A Documentp114 d is said to be fully active when d's browsing contextp811 is non-null, d's browsing contextp811 's active documentp811 is
d, and either d's browsing contextp811 is a top-level browsing contextp814, or d's container documentp814 is fully activep815.

Because they are associated with an element, child browsing contextsp814 are always tied to a specific Documentp114 in their parent
browsing contextp814. User agents must not allow the user to interact with child browsing contextsp814 of elements that are in
Documentp114s that are not themselves fully activep815.

A child browsing contextp814 can be put into a delaying load events mode. This is used when it is navigatedp866, to delay the load
eventp1165 of its containerp814 before the new Documentp114 is created.

The document family of a browsing contextp811 consists of the union of all the Documentp114 objects in that browsing contextp811 's
session historyp849 and the document familiesp815 of all those Documentp114 objects. The document familyp815 of a Documentp114 object
consists of the union of all the document familiesp815 of the browsing contextsp811 in the list of the descendant browsing contextsp814 of
the Documentp114 object.

The content document of a browsing context containerp814 container is the result of the following algorithm:

The following example illustrates the differences between activep811 and fully activep815 Documentp114 objects. Here a.html is
loaded into a browser window, b-1.html starts out loaded into an iframep361 as shown, and b-2.html and c.html are omitted
(they can simply be an empty document).

<!-- a.html -->
<!DOCTYPE html>
<html lang="en">
<title>Browsing context A</title>

<iframe src="b-1.html"></iframe>
<button onclick="frames[0].location.href = 'b-2.html'">Click me</button>

<!-- b-1.html -->
<!DOCTYPE html>
<html lang="en">
<title>Browsing context B</title>

<iframe src="c.html"></iframe>

At this point, the documents given by a.html, b-1.html, and c.html are all the active documentsp811 of their respective browsing
contextsp811. They are also all fully activep815.

After clicking on the buttonp535, and thus loading a new Documentp114 from b-2.html into browsing context B, we have the
following results:

• The a.html Documentp114 remains both the active documentp811 of browsing context A, and fully activep815.

• The b-1.html Documentp114 is now not the active documentp811 of browsing context B. As such it is also not fully
activep815.

• The new b-2.html Documentp114 is now the active documentp811 of browsing context B, and is also fully activep815.

• The c.html Documentp114 is still the active documentp811 of browsing context C. However, since C's container
documentp814 is the b-1.html Documentp114, which is itself not fully activep815, this means the c.html Documentp114 is now
not fully activep815 (even though it is activep811).

For more explorations of the complexities involved here, especially as it impacts the session historyp849, see A Model of Navigation
History. [NAVMODEL]p1289

Example

815

https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-extend

1. If container's nested browsing contextp814 is null, then return null.

2. Let context be container's nested browsing contextp814.

3. Let document be context's active documentp811.

4. If document's originp837 and container's node document's originp837 are not same origin-domainp838, then return null.

5. Return document.

The top attribute's getter must run these steps:

1. If this Windowp824 object's browsing contextp826 is null, then return null.

2. Return this Windowp824 object's browsing contextp826 's top-level browsing contextp814 's WindowProxyp834 object.

The opener attribute's getter must run these steps:

1. Let current be this Windowp824 object's browsing contextp826.

2. If current is null, then return null.

3. If current's disownedp811 is true, then return null.

4. If current's opener browsing contextp811 is null, then return null.

5. Return current's opener browsing contextp811 's WindowProxyp834 object.

The openerp816 attribute's setter must run these steps:

1. If the given value is null and this Windowp824 object's browsing contextp826 is non-null, then set this Windowp824 object's
browsing contextp826 's disownedp811 to true.

2. If the given value is non-null, then return ? OrdinaryDefineOwnProperty(this Windowp824 object, "opener", { [[Value]]: the
given value, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }).

7.1.2.1 Navigating related browsing contexts in the DOM §p81

6

window . topp816

Returns the WindowProxyp834 for the top-level browsing contextp814.

window . openerp816 [= value]
Returns the WindowProxyp834 for the opener browsing contextp811.
Returns null if there isn't one or if it has been set to null.
Can be set to null.

window . parentp817

Returns the WindowProxyp834 for the parent browsing contextp814.

window . frameElementp817

Returns the Element for the browsing context containerp814.
Returns null if there isn't one, and in cross-origin situations.

For web developers (non-normative)

If a browsing contextp811 's disownedp811 is true, its window.openerp816 attribute is null. That prevents scripts in the browsing
contextp811 from changing any properties of its opener browsing contextp811 's Windowp824 object (i.e., the Windowp824 object from
which the browsing contextp811 was created).

Otherwise, if a browsing contextp811 's disownedp811 is false, then scripts in that browsing contextp811 can use window.openerp816 to
change properties of its opener browsing contextp811 's Windowp824 object. For example, a script running in the browsing contextp811

can change the value of window.opener.location, causing the opener browsing contextp811 to navigate to a completely different

Note

✔ MDN

816

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#interface-element
https://tc39.es/ecma262/#sec-ordinarydefineownproperty

The parent attribute's getter must run these steps:

1. Let current be this Windowp824 object's browsing contextp826.

2. If current is null, then return null.

3. If current is a child browsing contextp814 of another browsing contextp811 parent, then return parent's WindowProxyp834 object.

4. Assert: current is a top-level browsing contextp814.

5. Return current's WindowProxyp834 object.

The frameElement attribute's getter must run these steps:

1. Let current be this Windowp824 object's browsing contextp826.

2. If current is null, then return null.

3. Let container be current's containerp814.

4. If container is null, then return null.

5. If container's node document's originp837 is not same origin-domainp838 with the current settings objectp924 's originp917, then
return null.

6. Return container.

A browsing contextp811 A is familiar with a second browsing contextp811 B if one of the following conditions is true:

• Either the originp837 of the active documentp811 of A is the samep838 as the originp837 of the active documentp811 of B, or

• The browsing context A is a child browsing contextp814 and its top-level browsing contextp814 is B, or

• The browsing context B is an auxiliary browsing contextp814 and A is familiar withp817 B's opener browsing contextp811, or

• The browsing context B is not a top-level browsing contextp814, but there exists an ancestor browsing contextp814 of B whose
active documentp811 has the samep838 originp837 as the active documentp811 of A (possibly in fact being A itself).

document.

An example of when these IDL attributes can return null is as follows:

<!DOCTYPE html>
<iframe></iframe>

<script>
"use strict";
const element = document.querySelector("iframe");
const iframeWindow = element.contentWindow;
element.remove();

console.assert(iframeWindow.top === null);
console.assert(iframeWindow.parent === null);
console.assert(iframeWindow.frameElement === null);
</script>

Here the browsing contextp811 corresponding to iframeWindow was discardedp831 when element was removed from the document.

Example

7.1.3 Security §p81

7

✔ MDN

✔ MDN

817

https://dom.spec.whatwg.org/#concept-node-document

A browsing contextp811 A is allowed to navigate a second browsing contextp811 B if the following algorithm returns true:

1. If A is not the same browsing contextp811 as B, and A is not one of the ancestor browsing contextsp814 of B, and B is not a top-
level browsing contextp814, and A's active documentp811 's active sandboxing flag setp844 has its sandboxed navigation
browsing context flagp842 set, then return false.

2. Otherwise, if B is a top-level browsing contextp814, and is one of the ancestor browsing contextsp814 of A, then:

1. If A's active windowp811 has transient activationp767 and A's active documentp811 's active sandboxing flag setp844 has
its sandboxed top-level navigation with user activation browsing context flagp842 set, then return false.

2. Otherwise, if A's active windowp811 does not have transient activationp767 and A's active documentp811 's active
sandboxing flag setp844 has its sandboxed top-level navigation without user activation browsing context flagp842 set,
then return false.

3. Otherwise, if B is a top-level browsing contextp814, and is neither A nor one of the ancestor browsing contextsp814 of A, and A's
Documentp114 's active sandboxing flag setp844 has its sandboxed navigation browsing context flagp842 set, and A is not the one
permitted sandboxed navigatorp842 of B, then return false.

4. Return true.

An element has a browsing context scope origin if its Documentp114 's browsing contextp811 is a top-level browsing contextp814 or if all
of its Documentp114 's ancestor browsing contextsp814 all have active documentsp811 whose originp837 are the same originp838 as the
element's node document's originp837. If an element has a browsing context scope originp818, then its value is the originp837 of the
element's node document.

A user agent holds a browsing context group set (a set of browsing context groupsp818).

A browsing context group holds a browsing context set (a set of top-level browsing contextsp814).

A browsing context groupp818 has an associated agent cluster map (a weak map of agent cluster keysp914 to agent clusters). User
agents are responsible for collecting agent clusters when it is deemed that nothing can access them anymore.

A browsing context groupp818 has a cross-origin isolated boolean. It is initially false.

A browsing context groupp818 has an associated historical agent cluster key map, which is a map of originsp837 to agent cluster
keysp914. This map is used to ensure the consistency of the origin isolationp841 feature by recording what agent cluster keys were
previously used for a given origin.

To create a new browsing context group, run these steps:

1. Let group be a new browsing context groupp818.

2. Append group to the user agent's browsing context group setp818.

3. Let browsingContext be the result of creating a new browsing contextp812 with null, null, and group.

4. Appendp818 browsingContext to group.

5. Return group.

To append a top-level browsing contextp814 browsingContext to a browsing context groupp818 group, run these steps:

A top-level browsing contextp814 is added to the groupp818 when the group is createdp818. All subsequent top-level browsing
contextsp814 added to the groupp818 will be auxiliary browsing contextsp814.

Note

The historical agent cluster key mapp818 only ever gains entries over the lifetime of the browsing context group.
Note

7.1.4 Groupings of browsing contexts §p81

8

818

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-agent-clusters
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#set-append

1. Append browsingContext to group's browsing context setp818.

2. Set browsingContext's groupp814 to group.

To remove a top-level browsing contextp814 browsingContext, run these steps:

1. Assert: browsingContext's groupp814 is non-null, because a browsing contextp811 only gets discardedp831 once.

2. Let group be browsingContext's groupp814.

3. Set browsingContext's groupp814 to null.

4. Remove browsingContext from group's browsing context setp818.

5. If group's browsing context setp818 is empty, then remove group from the user agent's browsing context group setp818.

Browsing contexts can have a browsing context name. Unless stated otherwise, it is the empty string.

A valid browsing context name is any string with at least one character that does not start with a U+005F LOW LINE character.
(Names starting with an underscore are reserved for special keywords.)

A valid browsing context name or keyword is any string that is either a valid browsing context namep819 or that is an ASCII case-
insensitive match for one of: _blank, _self, _parent, or _top.

These values have different meanings based on whether the page is sandboxed or not, as summarized in the following (non-normative)
table. In this table, "current" means the browsing contextp811 that the link or script is in, "parent" means the parent browsing
contextp814 of the one the link or script is in, "top" means the top-level browsing contextp814 of the one the link or script is in, "new"
means a new top-level browsing contextp814 or auxiliary browsing contextp814 is to be created, subject to various user preferences and
user agent policies, "none" means that nothing will happen, and "maybe new" means the same as "new" if the "allow-popupsp843"
keyword is also specified on the sandboxp365 attribute (or if the user overrode the sandboxing), and the same as "none" otherwise.

Effect in an iframep361 with...Keyword Ordinary effect
sandbox="" sandbox="allow-top-

navigation"

none specified, for links and form submissions current current current
empty string current current current
_blank new maybe new maybe new
_self current current current
_parent if there isn't a parent current current current
_parent if parent is also top parent/top none parent/top
_parent if there is one and it's not top parent none none
_top if top is current current current current
_top if top is not current top none top
name that doesn't exist new maybe new maybe new
name that exists and is a descendant specified

descendant
specified
descendant

specified descendant

name that exists and is current current current current
name that exists and is an ancestor that is top specified ancestor none specified ancestor/top

Appendp818 and removep819 are primitive operations that help define the lifetime of a browsing context groupp818. They are called
from creating a new browsing context group p818, creating a new auxiliary browsing context p813, and discarding a browsing
contextp831.

Note

The HTML Standard used to define "unit of related browsing contexts" and "unit of related similar-origin browsing contexts". These
have been removed as they were not adequate.

Note

7.1.5 Browsing context names §p81

9

819

https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

Effect in an iframep361 with...Keyword Ordinary effect
sandbox="" sandbox="allow-top-

navigation"

name that exists and is an ancestor that is not top specified ancestor none none
other name that exists with common top specified none none
name that exists with different top, if familiarp817 and one permitted sandboxed
navigatorp842

specified specified specified

name that exists with different top, if familiarp817 but not one permitted sandboxed
navigatorp842

specified none none

name that exists with different top, not familiarp817 new maybe new maybe new

Most of the restrictions on sandboxed browsing contexts are applied by other algorithms, e.g. the navigationp866 algorithm, not the rules for choosing
a browsing contextp820 given below.

The rules for choosing a browsing context, given a browsing context namep819 name, a browsing contextp811 current, and a
boolean noopener are as follows:

1. Let chosen be null.

2. Let windowType be "existing or none".

3. Let sandboxingFlagSet be current's active documentp811 's active sandboxing flag setp844.

4. If name is the empty string or an ASCII case-insensitive match for "_self", then set chosen to current.

5. Otherwise, if name is an ASCII case-insensitive match for "_parent", set chosen to current's parent browsing contextp814, if
any, and current otherwise.

6. Otherwise, if name is an ASCII case-insensitive match for "_top", set chosen to current's top-level browsing contextp814, if
any, and current otherwise.

7. Otherwise, if name is not an ASCII case-insensitive match for "_blank", there exists a browsing context whose namep819 is
the same as name, current is familiar withp817 that browsing context, and the user agent determines that the two browsing
contexts are related enough that it is ok if they reach each other, set chosen to that browsing context. If there are multiple
matching browsing contexts, the user agent should set chosen to one in some arbitrary consistent manner, such as the most
recently opened, most recently focused, or more closely related.

This will be made more precise in issue #313.

8. Otherwise, a new browsing context is being requested, and what happens depends on the user agent's configuration and
abilities — it is determined by the rules given for the first applicable option from the following list:

↪ If current's active windowp811 does not have transient activationp767 and the user agent has been configured
to not show popups (i.e., the user agent has a "popup blocker" enabled)

The user agent may inform the user that a popup has been blocked.

↪ If sandboxingFlagSet has the sandboxed auxiliary navigation browsing context flagp842 set
The user agent may report to a developer console that a popup has been blocked.

↪ If the user agent has been configured such that in this instance it will create a new browsing context

1. Set windowType to "new and unrestricted".

2. If current's top-level browsing contextp814 's active documentp811 's cross-origin opener policyp115 is "same-
originp845" or "same-origin-plus-COEPp845", then:

1. Let currentDocument be current's active documentp811.

2. If currentDocument's originp837 is not same originp838 with currentDocument's relevant settings
objectp924 's top-level originp916, then set noopener to true, name to "_blank", and windowType to
"new with no opener".

In the presence of a cross-origin opener policyp844, nested documents that are cross-origin
Note

820

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://github.com/whatwg/html/issues/313

3. If noopener is true, then set chosen to the result of creating a new top-level browsing contextp813.

4. Otherwise:

1. Set chosen to the result of creating a new auxiliary browsing contextp813 with current.

2. If sandboxingFlagSet's sandboxed navigation browsing context flagp842 is set, then current must
be set as chosen's one permitted sandboxed navigatorp842.

5. If sandboxingFlagSet's sandbox propagates to auxiliary browsing contexts flagp843 is set, then all the flags
that are set in sandboxingFlagSet must be set in chosen's popup sandboxing flag setp844.

6. If name is not an ASCII case-insensitive match for "_blank", then set chosen's namep819 to name.

↪ If the user agent has been configured such that in this instance it will reuse current
Set chosen to current.

↪ If the user agent has been configured such that in this instance it will not find a browsing context
Do nothing.

9. Return chosen and windowType.

Although typically objects cannot be accessed across originsp837, the web platform would not be true to itself if it did not have some
legacy exceptions to that rule that the web depends upon.

When perform a security check is invoked, with a platformObject, identifier, and type, run these steps:

1. If platformObject is not a Windowp824 or Locationp857 object, then return.

2. For each e of ! CrossOriginPropertiesp822(platformObject):

1. If SameValue(e.[[Property]], identifier) is true, then:

1. If type is "method" and e has neither [[NeedsGet]] nor [[NeedsSet]], then return.

2. Otherwise, if type is "getter" and e.[[NeedsGet]] is true, then return.

3. Otherwise, if type is "setter" and e.[[NeedsSet]] is true, then return.

3. If ! IsPlatformObjectSameOriginp822(platformObject) is false, then throw a "SecurityError" DOMException.

Windowp824 and Locationp857 objects both have a [[CrossOriginPropertyDescriptorMap]] internal slot, whose value is initially an

with their top-level browsing context's active document always set noopener to true.

If the newly created browsing contextp811 is immediately navigatedp866, then the navigation will be done with
historyHandlingp866 set to "replacep866".

Note

User agents are encouraged to provide a way for users to configure the user agent to always reuse current.
Note

7.2 Security infrastructure for Windowp824, WindowProxyp834, and Locationp857 objects §p82

1

7.2.1 Integration with IDL §p82

1

7.2.2 Shared internal slot: [[CrossOriginPropertyDescriptorMap]] §p82

1

821

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://heycam.github.io/webidl/#dfn-perform-a-security-check
https://tc39.es/ecma262/#sec-samevalue
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException

empty map.

User agents should allow a value held in the map to be garbage collected along with its corresponding key when nothing holds a
reference to any part of the value. That is, as long as garbage collection is not observable.

User agents may have an optimization whereby they remove key-value pairs from the map when document.domainp840 is set. This is
not observable as document.domainp840 cannot revisit an earlier value.

1. Assert: O is a Locationp857 or Windowp824 object.

2. If O is a Locationp857 object, then return « { [[Property]]: "href", [[NeedsGet]]: false, [[NeedsSet]]: true }, { [[Property]]:
"replace" } ».

3. Return « { [[Property]]: "window", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "self", [[NeedsGet]]: true,
[[NeedsSet]]: false }, { [[Property]]: "location", [[NeedsGet]]: true, [[NeedsSet]]: true }, { [[Property]]: "close" }, {
[[Property]]: "closed", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "focus" }, { [[Property]]: "blur" }, {
[[Property]]: "frames", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "length", [[NeedsGet]]: true, [[NeedsSet]]:
false }, { [[Property]]: "top", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "opener", [[NeedsGet]]: true,
[[NeedsSet]]: false }, { [[Property]]: "parent", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "postMessage" } ».

1. If P is "then", @@toStringTagp54, @@hasInstancep54, or @@isConcatSpreadablep54, then return PropertyDescriptor{ [[Value]]:
undefined, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

2. Throw a "SecurityError" DOMException.

1. Return true if the current settings objectp924 's originp917 is same origin-domainp838 with O's relevant settings objectp924 's
originp917, and false otherwise.

The [[CrossOriginPropertyDescriptorMap]]p821 internal slot contains a map with entries whose keys are (currentGlobal,
objectGlobal, propertyKey)-tuples and values are property descriptors, as a memoization of what is visible to scripts when
currentGlobal inspects a Windowp824 or Locationp857 object from objectGlobal. It is filled lazily by
CrossOriginGetOwnPropertyHelperp823, which consults it on future lookups.

Note

For example, with const href = Object.getOwnPropertyDescriptor(crossOriginLocation, "href").set the value and its
corresponding key in the map cannot be garbage collected as that would be observable.

Example

For example, setting document.domainp840 to "example.com" on www.example.com means user agents can remove all key-value
pairs from the map where part of the key is www.example.com, as that can never be part of the originp837 again and therefore the
corresponding value could never be retrieved from the map.

Example

7.2.3.1 CrossOriginProperties (O) §p82

2

Indexed properties do not need to be safelisted as they are handled directly by the WindowProxyp834 object.
Note

7.2.3.2 CrossOriginPropertyFallback (P) §p82

2

7.2.3.3 IsPlatformObjectSameOrigin (O) §p82

2

7.2.3 Shared abstract operations §p82

2

822

https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException

1. Let crossOriginKey be a tuple consisting of the current settings objectp924, O's relevant settings objectp924, and P.

2. For each e of ! CrossOriginPropertiesp822(O):

1. If SameValue(e.[[Property]], P) is true, then:

1. If the value of the [[CrossOriginPropertyDescriptorMap]]p821 internal slot of O contains an entry whose key
is crossOriginKey, then return that entry's value.

2. Let originalDesc be OrdinaryGetOwnProperty(O, P).

3. Let crossOriginDesc be undefined.

4. If e.[[NeedsGet]] and e.[[NeedsSet]] are absent, then:

1. Let value be originalDesc.[[Value]].

2. If ! IsCallable(value) is true, then set value to an anonymous built-in function, created in the
current Realm Record, that performs the same steps as the IDL operation P on object O.

3. Set crossOriginDesc to PropertyDescriptor{ [[Value]]: value, [[Enumerable]]: false, [[Writable]]:
false, [[Configurable]]: true }.

5. Otherwise:

1. Let crossOriginGet be undefined.

2. If e.[[NeedsGet]] is true, then set crossOriginGet to an anonymous built-in function, created in
the current Realm Record, that performs the same steps as the getter of the IDL attribute P on
object O.

3. Let crossOriginSet be undefined.

4. If e.[[NeedsSet]] is true, then set crossOriginSet to an anonymous built-in function, created in
the current Realm Record, that performs the same steps as the setter of the IDL attribute P on
object O.

5. Set crossOriginDesc to PropertyDescriptor{ [[Get]]: crossOriginGet, [[Set]]: crossOriginSet,
[[Enumerable]]: false, [[Configurable]]: true }.

6. Create an entry in the value of the [[CrossOriginPropertyDescriptorMap]]p821 internal slot of O with key
crossOriginKey and value crossOriginDesc.

7. Return crossOriginDesc.

3. Return undefined.

Here the current settings objectp924 roughly corresponds to the "caller", because this check occurs before the execution context for
the getter/setter/method in question makes its way onto the JavaScript execution context stack. For example, in the code
w.document, this step is invoked before the documentp826 getter is reached as part of the [[Get]]p836 algorithm for the
WindowProxyp834 w.

Note

7.2.3.4 CrossOriginGetOwnPropertyHelper (O, P) §p82

3

If this abstract operation returns undefined and there is no custom behavior, the caller needs to throw a "SecurityError"
DOMException. In practice this is handled by the caller calling CrossOriginPropertyFallbackp822.

Note

The reason that the property descriptors produced here are configurable is to preserve the invariants of the essential internal
methods required by the JavaScript specification. In particular, since the value of the property can change as a consequence of
navigation, it is required that the property be configurable. (However, see tc39/ecma262 issue #672 and references to it elsewhere
in this specification for cases where we are not able to preserve these invariants, for compatibility with existing web content.)

Note

823

https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#execution-context-stack
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-samevalue
https://tc39.es/ecma262/#sec-ordinarygetownproperty
https://tc39.es/ecma262/#sec-iscallable
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://github.com/tc39/ecma262/issues/672

1. Let desc be ? O.[[GetOwnProperty]](P).

2. Assert: desc is not undefined.

3. If ! IsDataDescriptor(desc) is true, then return desc.[[Value]].

4. Assert: IsAccessorDescriptor(desc) is true.

5. Let getter be desc.[[Get]].

6. If getter is undefined, then throw a "SecurityError" DOMException.

7. Return ? Call(getter, Receiver).

1. Let desc be ? O.[[GetOwnProperty]](P).

2. Assert: desc is not undefined.

3. If desc.[[Set]] is present and its value is not undefined, then:

1. Perform ? Call(setter, Receiver, «V»).

2. Return true.

4. Throw a "SecurityError" DOMException.

1. Let keys be a new empty List.

2. For each e of ! CrossOriginPropertiesp822(O), append e.[[Property]] to keys.

3. Return the concatenation of keys and « "then", @@toStringTagp54, @@hasInstancep54, @@isConcatSpreadablep54 ».

[Global=Window,
Exposed=Window,
LegacyUnenumerableNamedProperties]

interface Window : EventTarget {
// the current browsing context
[LegacyUnforgeable] readonly attribute WindowProxy window;
[Replaceable] readonly attribute WindowProxy self;
[LegacyUnforgeable] readonly attribute Document document;

[JAVASCRIPT]p1288

The reason the property descriptors are non-enumerable, despite this mismatching the same-origin behavior, is for compatibility
with existing web content. See issue #3183 for details.

Note

7.2.3.5 CrossOriginGet (O, P, Receiver) §p82

4

7.2.3.6 CrossOriginSet (O, P, V, Receiver) §p82

4

7.2.3.7 CrossOriginOwnPropertyKeys (O) §p82

4

7.3 The Windowp824 object §p82

4

IDL

824

https://github.com/whatwg/html/issues/3183
https://tc39.es/ecma262/#sec-isdatadescriptor
https://tc39.es/ecma262/#sec-isaccessordescriptor
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-call
https://tc39.es/ecma262/#sec-call
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-append
https://dom.spec.whatwg.org/#interface-eventtarget
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable

attribute DOMString name;
[PutForwards=href, LegacyUnforgeable] readonly attribute Location location;
readonly attribute History history;
readonly attribute CustomElementRegistry customElements;
[Replaceable] readonly attribute BarProp locationbar;
[Replaceable] readonly attribute BarProp menubar;
[Replaceable] readonly attribute BarProp personalbar;
[Replaceable] readonly attribute BarProp scrollbars;
[Replaceable] readonly attribute BarProp statusbar;
[Replaceable] readonly attribute BarProp toolbar;
attribute DOMString status;
undefined close();
readonly attribute boolean closed;
undefined stop();
undefined focus();
undefined blur();

// other browsing contexts
[Replaceable] readonly attribute WindowProxy frames;
[Replaceable] readonly attribute unsigned long length;
[LegacyUnforgeable] readonly attribute WindowProxy? top;
attribute any opener;
[Replaceable] readonly attribute WindowProxy? parent;
readonly attribute Element? frameElement;
WindowProxy? open(optional USVString url = "", optional DOMString target = "_blank", optional

[LegacyNullToEmptyString] DOMString features = "");
getter object (DOMString name);
// Since this is the global object, the IDL named getter adds a NamedPropertiesObject exotic
// object on the prototype chain. Indeed, this does not make the global object an exotic object.
// Indexed access is taken care of by the WindowProxy exotic object.

// the user agent
readonly attribute Navigator navigator;
[SecureContext] readonly attribute ApplicationCache applicationCache;
readonly attribute boolean originIsolated;

// user prompts
undefined alert();
undefined alert(DOMString message);
boolean confirm(optional DOMString message = "");
DOMString? prompt(optional DOMString message = "", optional DOMString default = "");
undefined print();

undefined postMessage(any message, USVString targetOrigin, optional sequence<object> transfer = []);
undefined postMessage(any message, optional WindowPostMessageOptions options = {});

// also has obsolete members
};
Window includes GlobalEventHandlers;
Window includes WindowEventHandlers;

dictionary WindowPostMessageOptions : PostMessageOptions {
USVString targetOrigin = "/";

};

window . windowp826

window . framesp826

window . selfp826

These attributes all return window.

For web developers (non-normative)

825

https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://dom.spec.whatwg.org/#interface-element
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#idl-object
https://heycam.github.io/webidl/#idl-object

The Windowp824 object has an associated Document, which is a Documentp114 object. It is set when the Windowp824 object is created, and
only ever changed during navigationp866 from the initial about:blankp51 Documentp114.

The Windowp824 object's browsing context is the Windowp824 object's associated Documentp826 's browsing contextp811. It is either
null or a browsing contextp811.

The window, frames, and self attributes' getters must return this Windowp824 object's relevant Realmp924.[[GlobalEnv]]'s
EnvironmentRecord's [[GlobalThisValue]].

The document IDL attribute, on getting, must return this Windowp824 object's associated Documentp826.

The defaultView attribute's getter, when invoked, must run these steps:

1. If this Documentp114 object's browsing contextp811 is null, then return null.

2. Return this Documentp114 object's browsing contextp811 's WindowProxyp834 object.

For historical reasons, Windowp824 objects must also have a writable, configurable, non-enumerable property named HTMLDocument
whose value is the Documentp114 interface object.

The window open steps, given a string url, a string target, and a string features, are as follows:

1. If the event loopp944 's termination nesting levelp885 is nonzero, return null.

2. Let source browsing context be the entry global objectp921 's browsing contextp826.

window . documentp826

Returns the Documentp114 associated with window.

document . defaultViewp826

Returns the Windowp824 object of the active documentp811.

The Documentp114 object associated with a Windowp824 object can change in exactly one case: when the navigatep866 algorithm
creates a new Document objectp873 for the first page loaded in a browsing contextp811. In that specific case, the Windowp824 object of
the original about:blankp51 page is reused and gets a new Documentp114 object.

Note

window = window . openp827([url [, target [, features]]])
Opens a window to show url (defaults to about:blankp51), and returns it. The target argument gives the name of the new
window. If a window exists with that name already, it is reused. The features argument can be used to influence the rendering of
the new window.

window . namep829 [= value]
Returns the name of the window.
Can be set, to change the name.

window . closep829()
Closes the window.

window . closedp829

Returns true if the window has been closed, false otherwise.

window . stopp829()
Cancels the document load.

For web developers (non-normative)

Note

7.3.1 APIs for creating and navigating browsing contexts by name §p82

6

✔ MDN

✔ MDN

✔ MDN

✔ MDN

826

https://tc39.es/ecma262/#sec-lexical-environments
https://heycam.github.io/webidl/#dfn-interface-object

3. If target is the empty string, then set target to "_blank".

4. Let tokenizedFeatures be the result of tokenizingp828 features.

5. Let noopener and noreferrer be false.

6. If tokenizedFeatures["noopener"] exists, then:

1. Set noopener to the result of parsing tokenizedFeatures["noopener"] as a boolean featurep829.

2. Remove tokenizedFeatures["noopener"].

7. If tokenizedFeatures["noreferrer"] exists, then:

1. Set noreferrer to the result of parsing tokenizedFeatures["noreferrer"] as a boolean featurep829.

2. Remove tokenizedFeatures["noreferrer"].

8. If noreferrer is true, then set noopener to true.

9. Let target browsing context and windowType be the result of applying the rules for choosing a browsing contextp820 given
target, source browsing context, and noopener.

10. Let new be true if windowType is either "new and unrestricted" or "new with no opener", and false otherwise.

11. If target browsing context is null, then return null.

12. If new is true, then set up browsing context features for target browsing context given tokenizedFeatures. [CSSOMVIEW]p1286

13. Let urlRecord be the URL "about:blankp51".

14. If url is not the empty string or new is true, then:

1. If url is not the empty string, then parsep89 url relative to the entry settings objectp921, and set urlRecord to the
resulting URL recordp89, if any. If the parse a URLp89 algorithm failed, then throw a "SyntaxError" DOMException.

2. Let request be a new request whose URL is urlRecord.

3. If noreferrer is true, then set request's referrer to "noreferrer".

4. Let window be target browsing context's active windowp811.

5. If urlRecord is "about:blankp51" and new is true, then queue a global taskp945 on the networking task sourcep952

given window to fire an event named loadp1282 at window, with the legacy target override flag set.

6. Otherwise:

1. Let historyHandling be "replacep866" if new is true; otherwise "defaultp866".

2. Navigatep866 target browsing context to request, with exceptionsEnabledp866 set to true,
historyHandlingp866 set to historyHandling, and the source browsing contextp866 set to source browsing
context.

15. If noopener is true or windowType is "new with no opener", then return null.

16. Otherwise, if new is false, set target browsing context's opener browsing contextp811 to source browsing context.

17. Return target browsing context's WindowProxyp834 object.

The open(url, target, features) method on Windowp824 objects provides a mechanism for navigatingp866 an existing browsing
contextp811 or opening and navigating an auxiliary browsing contextp814.

If there is a user agent that supports control-clicking a link to open it in a new tab, and the user control-clicks on an
element whose onclickp961 handler uses the window.open()p827 API to open a page in an iframep361 element, the user
agent could override the selection of the target browsing context to instead target a new tab.

Example

If new is true this is done as part of creating a new auxiliary browsing context p813.
Note

✔ MDN

827

https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-remove
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-remove
https://drafts.csswg.org/cssom-view/#set-up-browsing-context-features
https://url.spec.whatwg.org/#concept-url
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-referrer
https://dom.spec.whatwg.org/#concept-event-fire

When the method is invoked, the user agent must run the window open stepsp826 with url, target, and features.

To tokenize the features argument:

1. Let tokenizedFeatures be a new ordered map.

2. Let position point at the first code point of features.

3. While position is not past the end of features:

1. Let name be the empty string.

2. Let value be the empty string.

3. Collect a sequence of code points that are feature separatorsp828 from features given position. This skips past
leading separators before the name.

4. Collect a sequence of code points that are not feature separatorsp828 from features given position. Set name to the
collected characters, converted to ASCII lowercase.

5. Set name to the result of normalizing the feature namep828 name.

6. While position is not past the end of features and the code point at position in features is not U+003D (=):

1. If the code point at position in features is U+002C (,), or if it is not a feature separatorp828, then break.

2. Advance position by 1.

7. If the code point at position in features is a feature separatorp828:

1. While position is not past the end of features and the code point at position in features is a feature
separatorp828:

1. If the code point at position in features is U+002C (,), then break.

2. Advance position by 1.

2. Collect a sequence of code points that are not feature separatorsp828 code points from features given
position. Set value to the collected code points, converted to ASCII lowercase.

8. If name is not the empty string, then set tokenizedFeatures[name] to value.

4. Return tokenizedFeatures.

A code point is a feature separator if it is ASCII whitespace, U+003D (=), or U+002C (,).

For legacy reasons, there are some aliases of some feature names. To normalize a feature name name, switch on name:

↪ "screenx"
Return "left".

↪ "screeny"
Return "top".

↪ "innerwidth"
Return "width".

↪ "innerheight"
Return "height".

↪ Anything else
Return name.

This skips to the first U+003D (=) but does not skip past a U+002C (,) or a non-separator.
Note

This skips to the first non-separator but does not skip past a U+002C (,).
Note

828

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#iteration-while
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#iteration-while
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-whitespace

To parse a boolean feature given a string value:

1. If value is the empty string, then return true.

2. If value is "yes", then return true.

3. Let parsed be the result of parsing value as an integerp68.

4. If parsed is an error, then set it to 0.

5. Return false if parsed is 0, and true otherwise.

The name attribute's getter must run these steps:

1. If this Windowp824 object's browsing contextp826 is null, then return the empty string.

2. Return this Windowp824 object's browsing contextp826 's namep819.

The namep829 attribute's setter must run these steps:

1. If this Windowp824 object's browsing contextp826 is null, then return.

2. Set this Windowp824 object's browsing contextp826 's namep819 to the given value.

The close() method must run these steps:

1. Let current be this Windowp824 object's browsing contextp826.

2. If current is null or its is closingp811 is true, then return.

3. If all the following are true

◦ current is script-closablep829

◦ the incumbent global objectp922 's browsing contextp826 is familiar withp817 current
◦ the incumbent global objectp922 's browsing contextp826 is allowed to navigatep818 current

then:

1. Set current's is closingp811 to true.

2. Queue a taskp945 on the DOM manipulation task sourcep952 to closep831 current.

A browsing contextp811 is script-closable if it is an auxiliary browsing contextp814 that was created by a script (as opposed to by an
action of the user), or if it is a top-level browsing contextp814 whose session historyp849 contains only one Documentp114.

The closed attribute's getter must return true if this Windowp824 object's browsing contextp826 is null or its is closingp811 is true, and false
otherwise.

The stop() method must stop document loadingp888 given this Windowp824 object's associated Documentp826.

The name gets resetp882 when the browsing context is navigatedp866 to another originp837.
Note

window . lengthp830

Returns the number of document-tree child browsing contextsp814.

window[index]
Returns the indicated document-tree child browsing contextp814.

For web developers (non-normative)

7.3.2 Accessing other browsing contexts §p82

9

✔ MDN

✔ MDN

✔ MDN

829

https://infra.spec.whatwg.org/#string-is

The number of document-tree child browsing contexts of a Windowp824 object W is the result of running these steps:

1. If W's browsing contextp826 is null, then return 0.

2. Return the number of document-tree child browsing contextsp814 of W's browsing contextp826.

The length IDL attribute's getter must return the number of document-tree child browsing contextsp830 of this Windowp824 object.

The document-tree child browsing context name property set of a Windowp824 object window is the return value of running these
steps:

1. If window's browsing contextp826 is null, then return the empty list.

2. Let childBrowsingContexts be all document-tree child browsing contextsp814 of window's browsing contextp826 whose browsing
context namep819 is not the empty string, in order, and including only the first document-tree child browsing contextp814 with
a given namep819 if multiple document-tree child browsing contextsp814 have the same one.

3. Remove each browsing contextp811 from childBrowsingContexts whose active documentp811 's originp837 is not same originp838

with window's relevant settings objectp924 's originp917 and whose browsing context namep819 does not match the name of its
containerp814 's name content attribute value.

4. Return the browsing context namesp819 of childBrowsingContexts, in the same order.

The Windowp824 object supports named properties. The supported property names of a Windowp824 object window at any moment consist
of the following, in tree order according to the element that contributed them, ignoring later duplicates:

• window's document-tree child browsing context name property setp830;

• the value of the name content attribute for all embedp369, formp486, imgp320, and objectp373 elements that have a non-empty
name content attribute and are in a document tree with window's associated Documentp826 as their root; and

• the value of the idp137 content attribute for all HTML elementsp44 that have a non-empty idp137 content attribute and are in a
document tree with window's associated Documentp826 as their root.

To determine the value of a named property name in a Windowp824 object window, the user agent must return the value obtained using
the following steps:

1. Let objects be the list of named objectsp831 of window with the name name.

Indexed access to document-tree child browsing contextsp814 is defined through the [[GetOwnProperty]]p835 internal method of the
WindowProxyp834 object.

Note

window[name]
Returns the indicated element or collection of elements.
As a general rule, relying on this will lead to brittle code. Which IDs end up mapping to this API can vary over time, as new
features are added to the web platform, for example. Instead of this, use document.getElementById() or
document.querySelector().

For web developers (non-normative)

This means that in the following example, hosted on https://example.org/, assuming https://elsewhere.example/ sets
window.namep829 to "spices", evaluating window.spices after everything has loaded will yield undefined:

<iframe src=https://elsewhere.example.com/></iframe>
<iframe name=spices></iframe>

Example

7.3.3 Named access on the Windowp824 object §p83

0

✔ MDN

830

https://heycam.github.io/webidl/#dfn-support-named-properties
https://heycam.github.io/webidl/#dfn-supported-property-names
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://heycam.github.io/webidl/#dfn-determine-the-value-of-a-named-property

2. If objects contains a browsing contextp811, then return the WindowProxyp834 object of the nested browsing contextp814 of the
first browsing context containerp814 in tree order whose nested browsing contextp814 is in objects.

3. Otherwise, if objects has only one element, return that element.

4. Otherwise return an HTMLCollection rooted at window's associated Documentp826, whose filter matches only named
objectsp831 of window with the name name. (By definition, these will all be elements.)

Named objects of Windowp824 object window with the name name, for the purposes of the above algorithm, consist of the following:

• document-tree child browsing contextsp814 of window's associated Documentp826 whose namep819 is name;

• embedp369, formp486, imgp320, or objectp373 elements that have a name content attribute whose value is name and are in a
document tree with window's associated Documentp826 as their root; and

• HTML elementsp44 that have an idp137 content attribute whose value is name and are in a document tree with window's
associated Documentp826 as their root.

To discard a Documentp114 document:

1. Set document's salvageablep885 state to false.

2. Run any unloading document cleanup stepsp887 for document that are defined by this specification and other applicable
specificationsp65.

3. Abortp887 document.

4. Remove any tasksp944 associated with document in any task sourcep945, without running those tasks.

5. Discardp831 all the child browsing contextsp814 of document.

6. For each session history entryp849 entry with a Documentp114 object equal to document, remove entry's Documentp114 object.

7. Set document's browsing contextp811 to null.

8. Remove document from the owner setp1045 of each WorkerGlobalScopep1044 object whose set contains document.

To discard a browsing contextp811 browsingContext, run these steps:

1. Discardp831 all Documentp114 objects for all the entries in browsingContext's session historyp849.

2. If browsingContext is a top-level browsing contextp814, then removep819 browsingContext.

User agents may discardp831 top-level browsing contextsp814 at any time (typically, in response to user requests, e.g., when a user
force-closes a window containing one or more top-level browsing contextsp814). Other browsing contextsp811 must be discarded once
their WindowProxyp834 object is eligible for garbage collection, in addition to the other places where this specification requires them to
be discarded.

To close a browsing context browsingContext, run these steps:

1. Prompt to unloadp885 browsingContext's active documentp811. If the user refused to allow the document to be unloaded p886,
then return.

2. Unloadp886 browsingContext's active documentp811.

3. Remove browsingContext from the user interface (e.g., close or hide its tab in a tabbed browser).

There will be at least one such object, by definition.
Note

7.3.4 Discarding browsing contexts §p83

1

7.3.5 Closing browsing contexts §p83

1

831

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-contain

4. Discardp831 browsingContext.

User agents should offer users the ability to arbitrarily closep831 any top-level browsing contextp814.

To allow web pages to integrate with web browsers, certain web browser interface elements are exposed in a limited way to scripts in
web pages.

Each interface element is represented by a BarPropp832 object:

[Exposed=Window]
interface BarProp {

readonly attribute boolean visible;
};

The visible attribute's getter must run these steps:

1. If this BarPropp832 object's relevant global objectp924 's browsing contextp826 is null, then return false.

2. If the user agent does not have a user interface element that the object represents, as described below, then return true.

3. Return true or a value determined by the user agent to most accurately represent the visibility state of the user interface
element that the object represents, as described below.

The following BarPropp832 objects must exist for each Windowp824 object:

The location bar BarProp object
Represents the user interface element that contains a control that displays the URL of the active documentp811, or some similar
interface concept.

The menu bar BarProp object
Represents the user interface element that contains a list of commands in menu form, or some similar interface concept.

The personal bar BarProp object
Represents the user interface element that contains links to the user's favorite pages, or some similar interface concept.

The scrollbar BarProp object
Represents the user interface element that contains a scrolling mechanism, or some similar interface concept.

The status bar BarProp object
Represents a user interface element found immediately below or after the document, as appropriate for the user's media, which
typically provides information about ongoing network activity or information about elements that the user's pointing device is
current indicating. If the user agent has no such user interface element, then the object may act as if the corresponding user

window . locationbarp833 . visiblep832

Returns true if the location bar is visible; otherwise, returns false.

window . menubarp833 . visiblep832

Returns true if the menu bar is visible; otherwise, returns false.

window . personalbarp833 . visiblep832

Returns true if the personal bar is visible; otherwise, returns false.

window . scrollbarsp833 . visiblep832

Returns true if the scrollbars are visible; otherwise, returns false.

window . statusbarp833 . visiblep832

Returns true if the status bar is visible; otherwise, returns false.

window . toolbarp833 . visiblep832

Returns true if the toolbar is visible; otherwise, returns false.

For web developers (non-normative)

IDL

7.3.6 Browser interface elements §p83

2

832

https://url.spec.whatwg.org/#concept-url

interface element was absent (i.e. its visiblep832 attribute may return false).

The toolbar BarProp object
Represents the user interface element found immediately above or before the document, as appropriate for the user's media, which
typically provides session historyp849 traversal controls (back and forward buttons, reload buttons, etc). If the user agent has no
such user interface element, then the object may act as if the corresponding user interface element was absent (i.e. its visiblep832

attribute may return false).

The locationbar attribute must return the location bar BarProp objectp832.

The menubar attribute must return the menu bar BarProp objectp832.

The personalbar attribute must return the personal bar BarProp objectp832.

The scrollbars attribute must return the scrollbar BarProp objectp832.

The statusbar attribute must return the status bar BarProp objectp832.

The toolbar attribute must return the toolbar BarProp objectp833.

For historical reasons, the status attribute on the Windowp824 object must, on getting, return the last string it was set to, and on
setting, must set itself to the new value. When the Windowp824 object is created, the attribute must be set to the empty string. It does
not do anything else.

To set up a window environment settings object, given a JavaScript execution context execution context, null or an
environmentp916 reservedEnvironment, a URL topLevelCreationURL, and an originp837 topLevelOrigin, run these steps:

1. Let realm be the value of execution context's Realm component.

2. Let window be realm's global objectp918.

3. Let url be a copy of the URL of window's associated Documentp826.

4. Let settings object be a new environment settings objectp917 whose algorithms are defined as follows:

The realm execution contextp917

Return execution context.

The module mapp917

Return the module mapp115 of window's associated Documentp826.

The responsible documentp917

Return window's associated Documentp826.

The API URL character encodingp917

Return the current character encoding of window's associated Documentp826.

The API base URLp917

Return the current base URLp88 of window's associated Documentp826.

The originp917

Return the originp837 of window's associated Documentp826.

The referrer policyp917

1. Let document be window's associated Documentp826.

2. While document is an iframe srcdoc documentp362 and document's referrer policyp115 is the empty string, set
document to document's browsing contextp811 's container documentp814.

7.3.7 Script settings for Windowp824 objects §p83

3

✔ MDN✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

833

https://tc39.es/ecma262/#sec-execution-contexts
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-encoding

3. Return document's referrer policyp115.

The embedder policyp917

Return window's associated Documentp826 's embedder policyp115.

The cross-origin isolated capabilityp917

Return the logical conjunction of realm's agent cluster's cross-origin isolatedp914 and whether window's associated
Documentp826 is allowed to usep367 the "cross-origin-isolatedp67" feature.

5. If reservedEnvironment is non-null, then:

1. Set settings object's idp916 to reservedEnvironment's idp916, settings object's target browsing contextp917 to
reservedEnvironment's target browsing contextp917, and settings object's active service workerp917 to
reservedEnvironment's active service workerp917.

2. Set reservedEnvironment's idp916 to the empty string.

6. Otherwise, set settings object's idp916 to a new unique opaque string, settings object's target browsing contextp917 to null, and
settings object's active service workerp917 to null.

7. Set settings object's creation URLp916 to url, settings object's top-level creation URLp916 to topLevelCreationURL, and settings
object's top-level originp916 to topLevelOrigin.

8. Set realm's [[HostDefined]] field to settings object.

9. Return settings object.

A WindowProxy is an exotic object that wraps a Windowp824 ordinary object, indirecting most operations through to the wrapped object.
Each browsing contextp811 has an associated WindowProxyp834 object. When the browsing contextp811 is navigatedp866, the Windowp824

object wrapped by the browsing contextp811 's associated WindowProxyp834 object is changed.

The WindowProxyp834 exotic object must use the ordinary internal methods except where it is explicitly specified otherwise below.

There is no WindowProxyp834 interface object.

Every WindowProxyp834 object has a [[Window]] internal slot representing the wrapped Windowp824 object.

1. Let W be the value of the [[Window]]p834 internal slot of this.

2. If ! IsPlatformObjectSameOriginp822(W) is true, then return ! OrdinaryGetPrototypeOf(W).

3. Return null.

The identity of the reserved environment is considered to be fully transferred to the created environment
settings objectp917. The reserved environment is not searchable by the environmentp916’s idp916 from this point
on.

Note

7.4 The WindowProxyp834 exotic object §p83

4

Although WindowProxyp834 is named as a "proxy", it does not do polymorphic dispatch on its target's internal methods as a real
proxy would, due to a desire to reuse machinery between WindowProxyp834 and Locationp857 objects. As long as the Windowp824

object remains an ordinary object this is unobservable and can be implemented either way.

Note

7.4.1 [[GetPrototypeOf]] () §p83

4

834

https://tc39.es/ecma262/#sec-agent-clusters
https://heycam.github.io/webidl/#dfn-interface-object
https://tc39.es/ecma262/#sec-ordinarygetprototypeof

1. Return ! SetImmutablePrototype(this, V).

1. Return true.

1. Return false.

1. Let W be the value of the [[Window]]p834 internal slot of this.

2. If P is an array index property name, then:

1. Let index be ! ToUint32(P).

2. Let maxProperties be the number of document-tree child browsing contextsp830 of W.

3. Let value be undefined.

4. If maxProperties is greater than 0 and index is less than maxProperties, then set value to the WindowProxyp834

object of the indexth document-tree child browsing contextp814 of W's browsing contextp826, sorted in the order that
their browsing context containerp814 elements were most recently inserted into W's associated Documentp826, the
WindowProxyp834 object of the most recently inserted browsing context containerp814 's nested browsing contextp814

being last.

5. If value is undefined, then:

1. If ! IsPlatformObjectSameOriginp822(W) is true, then return undefined.

2. Throw a "SecurityError" DOMException.

6. Return PropertyDescriptor{ [[Value]]: value, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: true }.

3. If ! IsPlatformObjectSameOriginp822(W) is true, then return ! OrdinaryGetOwnProperty(W, P).

4. Let property be ! CrossOriginGetOwnPropertyHelperp823(W, P).

5. If property is not undefined, then return property.

6. If property is undefined and P is in W's document-tree child browsing context name property setp830, then:

1. Let value be the WindowProxyp834 object of the named objectp831 of W with the name P.

2. Return PropertyDescriptor{ [[Value]]: value, [[Enumerable]]: false, [[Writable]]: false, [[Configurable]]: true }.

7. Return ? CrossOriginPropertyFallbackp822(P).

This is a willful violationp27 of the JavaScript specification's invariants of the essential internal methods to maintain
compatibility with existing web content. See tc39/ecma262 issue #672 for more information. [JAVASCRIPT]p1288

Note

The reason the property descriptors are non-enumerable, despite this mismatching the same-origin behavior, is
for compatibility with existing web content. See issue #3183 for details.

Note

7.4.2 [[SetPrototypeOf]] (V) §p83

5

7.4.3 [[IsExtensible]] () §p83

5

7.4.4 [[PreventExtensions]] () §p83

5

7.4.5 [[GetOwnProperty]] (P) §p83

5

835

https://tc39.es/ecma262/#sec-set-immutable-prototype
https://heycam.github.io/webidl/#dfn-array-index-property-name
https://tc39.es/ecma262/#sec-touint32
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#sec-ordinarygetownproperty
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://github.com/tc39/ecma262/issues/672
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://github.com/whatwg/html/issues/3183

1. Let W be the value of the [[Window]]p834 internal slot of this.

2. If ! IsPlatformObjectSameOriginp822(W) is true, then:

1. If P is an array index property name, return false.

2. Return ? OrdinaryDefineOwnProperty(W, P, Desc).

3. Throw a "SecurityError" DOMException.

1. Let W be the value of the [[Window]]p834 internal slot of this.

2. If ! IsPlatformObjectSameOriginp822(W) is true, then return ? OrdinaryGet(this, P, Receiver).

3. Return ? CrossOriginGetp824(this, P, Receiver).

1. Let W be the value of the [[Window]]p834 internal slot of this.

2. If ! IsPlatformObjectSameOriginp822(W) is true, then return ? OrdinarySet(this, P, V, Receiver).

3. Return ? CrossOriginSetp824(this, P, V, Receiver).

1. Let W be the value of the [[Window]]p834 internal slot of this.

2. If ! IsPlatformObjectSameOriginp822(W) is true, then:

1. If P is an array index property name, then:

1. Let desc be ! this.[[GetOwnProperty]](P).

2. If desc is undefined, then return true.

3. Return false.

2. Return ? OrdinaryDelete(W, P).

3. Throw a "SecurityError" DOMException.

This is a willful violationp27 of the JavaScript specification's invariants of the essential internal methods to
maintain compatibility with existing web content. See tc39/ecma262 issue #672 for more information.
[JAVASCRIPT]p1288

Note

this is passed rather than W as OrdinaryGet and CrossOriginGetp824 will invoke the [[GetOwnProperty]]p835 internal method.
Note

this is passed rather than W as OrdinarySet and CrossOriginSetp824 will invoke the [[GetOwnProperty]]p835 internal method.
OrdinarySet will also invoke the [[DefineOwnProperty]]p836 internal method.

Note

7.4.6 [[DefineOwnProperty]] (P, Desc) §p83

6

7.4.7 [[Get]] (P, Receiver) §p83

6

7.4.8 [[Set]] (P, V, Receiver) §p83

6

7.4.9 [[Delete]] (P) §p83

6

836

https://heycam.github.io/webidl/#dfn-array-index-property-name
https://tc39.es/ecma262/#sec-ordinarydefineownproperty
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://github.com/tc39/ecma262/issues/672
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-ordinaryget
https://tc39.es/ecma262/#sec-ordinaryget
https://tc39.es/ecma262/#sec-ordinaryset
https://tc39.es/ecma262/#sec-ordinaryset
https://tc39.es/ecma262/#sec-ordinaryset
https://heycam.github.io/webidl/#dfn-array-index-property-name
https://tc39.es/ecma262/#sec-ordinarydelete
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException

1. Let W be the value of the [[Window]]p834 internal slot of this.

2. Let keys be a new empty List.

3. Let maxProperties be the number of document-tree child browsing contextsp830 of W.

4. Let index be 0.

5. Repeat while index < maxProperties,

1. Add ! ToString(index) as the last element of keys.

2. Increment index by 1.

6. If ! IsPlatformObjectSameOriginp822(W) is true, then return the concatenation of keys and ! OrdinaryOwnPropertyKeys(W).

7. Return the concatenation of keys and ! CrossOriginOwnPropertyKeysp824(W).

Origins are the fundamental currency of the web's security model. Two actors in the web platform that share an origin are assumed to
trust each other and to have the same authority. Actors with differing origins are considered potentially hostile versus each other, and
are isolated from each other to varying degrees.

An origin is one of the following:

An opaque origin
An internal value, with no serialization it can be recreated from (it is serialized as "null" per serialization of an originp838), for which
the only meaningful operation is testing for equality.

A tuple origin
A tuplep837 consists of:

• A scheme (a scheme).
• A host (a host).
• A port (a port).
• A domain (null or a domain). Null unless stated otherwise.

The effective domain of an originp837 origin is computed as follows:

1. If origin is an opaque originp837, then return null.

2. If origin's domainp837 is non-null, then return origin's domainp837.

3. Return origin's hostp837.

Various specification objects are defined to have an originp837. These originsp837 are determined as follows:

For Documentp114 objects
The create a new browsing contextp812 and navigationp866 algorithms assign the originp837 at construction time. Otherwise, the

7.5 Origin §p83

7

For example, if Example Bank's web site, hosted at bank.example.com, tries to examine the DOM of Example Charity's web site,
hosted at charity.example.org, a "SecurityError" DOMException will be raised.

Example

Originsp837 can be shared, e.g., among multiple Documentp114 objects. Furthermore, originsp837 are generally immutable. Only the
domainp837 of a tuple originp837 can be changed, and only through the document.domainp840 API.

Note

7.4.10 [[OwnPropertyKeys]] () §p83

7

837

https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-domain

default default behavior as defined in DOM applies. [DOM]p1287

For images of imgp320 elements
↪ If the image datap336 is CORS-cross-originp90

A unique opaque originp837 assigned when the image is created.

↪ If the image datap336 is CORS-same-originp90

The imgp320 element's node document's originp837.

For audiop384 and videop380 elements
↪ If the media datap389 is CORS-cross-originp90

A unique opaque originp837 assigned when the media datap389 is fetched.

↪ If the media datap389 is CORS-same-originp90

The media elementp387 's node document's originp837.

Other specifications can override the above definitions by themselves specifying the origin of a particular Documentp114 object, image,
or media elementp387.

The serialization of an origin is the string obtained by applying the following algorithm to the given originp837 origin:

1. If origin is an opaque originp837, then return "null".

2. Otherwise, let result be origin's schemep837.

3. Append "://" to result.

4. Append origin's hostp837, serialized, to result.

5. If origin's portp837 is non-null, append a U+003A COLON character (:), and origin's portp837, serialized, to result.

6. Return result.

Two originsp837, A and B, are said to be same origin if the following algorithm returns true:

1. If A and B are the same opaque originp837, then return true.

2. If A and B are both tuple originsp837 and their schemesp837, hostsp837, and portp837 are identical, then return true.

3. Return false.

Two originsp837, A and B, are said to be same origin-domain if the following algorithm returns true:

1. If A and B are the same opaque originp837, then return true.

2. If A and B are both tuple originsp837, run these substeps:

1. If A and B's schemesp837 are identical, and their domainsp837 are identical and non-null, then return true.

2. Otherwise, if A and B are same originp838 and their domainsp837 are identical and null, then return true.

3. Return false.

The serializationp838 of ("https", "xn--maraa-rta.example", null, null) is "https://xn--maraa-rta.example".
Example

There used to also be a Unicode serialization of an origin. However, it was never widely adopted.
Note

A B same originp838 same origin-domainp838

("https", "example.org", null, null) ("https", "example.org", null, null) ✅ ✅

Example

838

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#serialize-an-integer

A scheme-and-registrable-domain is a tuple of a scheme and a domain.

A site is an opaque originp837, a tuple originp837 whose hostp837 's registrable domain is null, or a scheme-and-registrable-domainp839.

To obtain a site, given an origin origin, run these steps:

1. If origin is an opaque originp837, then return origin.

2. If origin's hostp837 's registrable domain is null, then return origin.

3. Return (origin's schemep837, origin's hostp837 's registrable domain).

Two originsp837, A and B, are said to be schemelessly same site if the following algorithm returns true:

1. If A and B are the same opaque originp837, then return true.

2. If A and B are both tuple originsp837, then:

1. Let hostA be A's hostp837, and let hostB be B's hostp837.

2. If hostA equals hostB and hostA's registrable domain is null, then return true.

3. If hostA's registrable domain equals hostB's registrable domain and is non-null, then return true.

3. Return false.

Two originsp837, A and B, are said to be same site if both of the following statements are true:

• A and B are schemelessly same sitep839

• A and B are either both opaque originsp837, or both tuple originsp837 with the same schemep837

("https", "example.org", 314, null) ("https", "example.org", 420, null) ❌ ❌

("https", "example.org", 314, "example.org") ("https", "example.org", 420, "example.org") ❌ ✅

("https", "example.org", null, null) ("https", "example.org", null, "example.org") ✅ ❌

("https", "example.org", null, "example.org") ("http", "example.org", null, "example.org") ❌ ❌

Unlike the same originp838 and same origin-domainp838 concepts, for schemelessly same sitep839 and same sitep839, the portp837 and
domainp837 components are ignored.

Note

For the reasons explained in URL, the same sitep839 and schemelessly same sitep839 concepts should be avoided
when possible, in favor of same originp838 checks.

⚠Warning!

Given that wildlife.museum, museum, and com are public suffixes and that example.com is not:

A B schemelessly same sitep839 same sitep839

("https", "example.com") ("https", "sub.example.com") ✅ ✅

("https", "example.com") ("https", "sub.other.example.com") ✅ ✅

("https", "example.com") ("http", "non-secure.example.com") ✅ ❌

("https", "r.wildlife.museum") ("https", "sub.r.wildlife.museum") ✅ ✅

("https", "r.wildlife.museum") ("https", "sub.other.r.wildlife.museum") ✅ ✅

("https", "r.wildlife.museum") ("https", "other.wildlife.museum") ❌ ❌

("https", "r.wildlife.museum") ("https", "wildlife.museum") ❌ ❌

Example

7.5.1 Sites §p83

9

839

https://infra.spec.whatwg.org/#tuple
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-domain
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#warning-avoid-psl
https://url.spec.whatwg.org/#host-public-suffix

Avoid using the document.domainp840 setter. It undermines the security protections provided by the same-origin policy. This is
especially acute when using shared hosting; for example, if an untrusted third party is able to host an HTTP server at the same IP
address but on a different port, then the same-origin protection that normally protects two different sites on the same host will
fail, as the ports are ignored when comparing origins after the document.domainp840 setter has been used.

Because of these security pitfalls, this feature is in the process of being removed from the web platform. (This is a long process
that takes many years.)

Instead, use postMessage()p1018 or MessageChannelp1021 objects to communicate across origins in a safe manner.

The domain getter steps are:

1. Let effectiveDomain be this's originp837 's effective domainp837.

2. If effectiveDomain is null, then return the empty string.

3. Return effectiveDomain, serialized.

The domainp840 setter steps are:

1. If this's browsing contextp811 is null, then throw a "SecurityError" DOMException.

2. If this's active sandboxing flag setp844 has its sandboxed document.domain browsing context flagp843 set, then throw a
"SecurityError" DOMException.

3. If this is not allowed to usep367 the "document-domainp67" feature, then throw a "SecurityError" DOMException.

4. Let effectiveDomain be this's originp837 's effective domainp837.

5. If effectiveDomain is null, then throw a "SecurityError" DOMException.

6. If the given value is not a registrable domain suffix of and is not equal to p840 effectiveDomain, then throw a "SecurityError"
DOMException.

7. If the surrounding agent's agent cluster's cross-origin isolatedp914 is true, then return.

8. If the surrounding agent's agent cluster's origin-isolatedp914 is true, then return.

9. Set this's originp837 's domainp837 to the result of parsing the given value.

To determine if a string hostSuffixString is a registrable domain suffix of or is equal to a host originalHost, run these steps:

1. If hostSuffixString is the empty string, then return false.

("https", "wildlife.museum") ("https", "wildlife.museum") ✅ ✅

(Here we have omitted the portp837 and domainp837 components since they are not considered.)

document . domainp840 [= domain]
Returns the current domain used for security checks.
Can be set to a value that removes subdomains, to change the originp837 's domainp837 to allow pages on other subdomains of
the same domain (if they do the same thing) to access each other. This enables pages on different hosts of a domain to
synchronously access each other's DOMs.
In sandboxed iframep361s, Documentp114s with opaque originsp837, Documentp114s without a browsing contextp811, and when the
"document-domainp67" feature is disabled, the setter will throw a "SecurityError" exception. In cases where
crossOriginIsolatedp966 or originIsolatedp841 return true, the setter will do nothing.

For web developers (non-normative)

7.5.2 Relaxing the same-origin restriction §p84

0

✔ MDN

840

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#this
https://url.spec.whatwg.org/#concept-host-serializer
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://url.spec.whatwg.org/#concept-host-parser
https://url.spec.whatwg.org/#concept-host

2. Let host be the result of parsing hostSuffixString.

3. If host is failure, then return false.

4. If host does not equal originalHost, then:

1. If host or originalHost is not a domain, then return false.

2. If host, prefixed by a U+002E FULL STOP (.), does not exactly match the end of originalHost, then return false.

3. If host equals host's public suffix, then return false. [URL]p1292

5. Return true.

A Documentp114 delivered over a secure contextp924 can opt in to origin isolation, by using the `Origin-Isolationp1258` HTTP response
header. This header is a structured header whose value must be a boolean. [STRUCTURED-FIELDS]p1291

Per the processing model in the create and initialize a new Document objectp873, values that are not the structured header boolean true
value (i.e., `?1`) will be ignored.

The consequences of using this header are that the resulting Documentp114 's agent cluster keyp914 is its originp837, instead of the
corresponding sitep839. In terms of observable effects, this means that attempting to relax the same-origin restrictionp840 using
document.domainp840 will instead do nothing, and it will not be possible to send WebAssembly.Module objects to cross-origin
Documentp114s (even if they are same sitep839). Behind the scenes, this isolation can allow user agents to allocate implementation-
specific resources corresponding to agent clusters, such as processes or threads, more efficiently.

Note that within a browsing context groupp818, the `Origin-Isolationp1258` header can never cause same-origin Documentp114 objects
to end up in different agent clusters, even if one sends the header and the other doesn't. This is prevented by means of the historical
agent cluster key mapp818.

The originIsolated getter steps are to return the surrounding agent's agent cluster's origin-isolatedp914.

This excludes hosts that are an IPv4 address or an IPv6 address.
Note

window . originIsolatedp841

Returns true if this Windowp824 is origin-isolated in the manner described in this section.

For web developers (non-normative)

This means that the originIsolatedp841 getter can return false, even if the header is set, if the header was omitted on a
previously-loaded same-origin page in the same browsing context groupp818. Similarly, it can return true even when the header is
not set.

Note

Documentp114s for which obtain a sitep839 returns an originp837 can be considered unconditionally origin-isolated; for them the
header has no effect.

Note

Similarly, Documentp114s in a cross-origin isolatedp914 agent cluster are automatically origin-isolated. The `Origin-Isolationp1258`
header might be useful as an additional hint to implementations about resource allocation, since the `Cross-Origin-Opener-
Policyp1257` and `Cross-Origin-Embedder-Policyp1257` headers used to achieve cross-origin isolation are more about ensuring
that everything in the same address space opts in to being there. But adding it would have no additional observable effects on
author code.

Note

7.5.3 Origin isolation §p84

1

841

https://url.spec.whatwg.org/#concept-host-parser
https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#concept-domain
https://url.spec.whatwg.org/#concept-host
https://url.spec.whatwg.org/#concept-ipv4
https://url.spec.whatwg.org/#concept-ipv6
https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#host-public-suffix
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#boolean
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#boolean
https://webassembly.github.io/spec/js-api/#module
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters

A sandboxing flag set is a set of zero or more of the following flags, which are used to restrict the abilities that potentially untrusted
resources have:

The sandboxed navigation browsing context flag
This flag prevents content from navigating browsing contexts other than the sandboxed browsing context itselfp866 (or browsing
contexts further nested inside it), auxiliary browsing contextsp814 (which are protected by the sandboxed auxiliary navigation
browsing context flagp842 defined next), and the top-level browsing contextp814 (which is protected by the sandboxed top-level
navigation without user activation browsing context flagp842 and sandboxed top-level navigation with user activation browsing
context flagp842 defined below).

If the sandboxed auxiliary navigation browsing context flagp842 is not set, then in certain cases the restrictions nonetheless allow
popups (new top-level browsing contextsp814) to be opened. These browsing contextsp811 always have one permitted sandboxed
navigator, set when the browsing context is created, which allows the browsing contextp811 that created them to actually navigate
them. (Otherwise, the sandboxed navigation browsing context flagp842 would prevent them from being navigated even if they were
opened.)

The sandboxed auxiliary navigation browsing context flag
This flag prevents content from creating new auxiliary browsing contextsp820, e.g. using the targetp284 attribute or the
window.open()p827 method.

The sandboxed top-level navigation without user activation browsing context flag
This flag prevents content from navigating their top-level browsing contextp866 and prevents content from closing their top-level
browsing contextp829. It is consulted only when the sandboxed browsing context's active windowp811 does not have transient
activationp767.

When the sandboxed top-level navigation without user activation browsing context flagp842 is not set, content can navigate its top-
level browsing contextp814, but other browsing contextsp811 are still protected by the sandboxed navigation browsing context flagp842

and possibly the sandboxed auxiliary navigation browsing context flagp842.

The sandboxed top-level navigation with user activation browsing context flag
This flag prevents content from navigating their top-level browsing contextp866 and prevents content from closing their top-level
browsing contextp829. It is consulted only when the sandboxed browsing context's active windowp811 has transient activationp767.

As with the sandboxed top-level navigation without user activation browsing context flagp842, this flag only affects the top-level
browsing contextp814; if it is not set, other browsing contextsp811 might still be protected by other flags.

The sandboxed plugins browsing context flag
This flag prevents content from instantiating pluginsp45, whether using the embed elementp372, the object elementp377, or through
navigationp879 of their nested browsing contextp814, unless those pluginsp45 can be securedp45.

The sandboxed origin browsing context flag
This flag forces content into a unique originp812, thus preventing it from accessing other content from the same originp837.

This flag also prevents script from reading from or writing to the document.cookie IDL attributep116, and blocks access to
localStoragep1063.

The sandboxed forms browsing context flag
This flag blocks form submissionp596.

The sandboxed pointer lock browsing context flag
This flag disables the Pointer Lock API. [POINTERLOCK]p1290

The sandboxed scripts browsing context flag
This flag blocks script executionp924.

The sandboxed automatic features browsing context flag
This flag blocks features that trigger automatically, such as automatically playing a videop407 or automatically focusing a form
controlp782.

7.6 Sandboxing §p84

2

842

The sandboxed document.domain browsing context flag
This flag prevents content from using the document.domainp840 setter.

The sandbox propagates to auxiliary browsing contexts flag
This flag prevents content from escaping the sandbox by ensuring that any auxiliary browsing contextp814 it creates inherits the
content's active sandboxing flag setp844.

The sandboxed modals flag
This flag prevents content from using any of the following features to produce modal dialogs:

• window.alert()p977

• window.confirm()p978

• window.print()p978

• window.prompt()p978

• the beforeunloadp1281 event

The sandboxed orientation lock browsing context flag
This flag disables the ability to lock the screen orientation. [SCREENORIENTATION]p1291

The sandboxed presentation browsing context flag
This flag disables the Presentation API. [PRESENTATION]p1290

The sandboxed downloads browsing context flag
This flag prevents content from initiating or instantiating downloads, whether through downloading hyperlinksp291 or through
navigationp871 that gets handled as a downloadp291.

When the user agent is to parse a sandboxing directive, given a string input, a sandboxing flag setp842 output, it must run the
following steps:

1. Split input on ASCII whitespace, to obtain tokens.

2. Let output be empty.

3. Add the following flags to output:

◦ The sandboxed navigation browsing context flagp842.

◦ The sandboxed auxiliary navigation browsing context flagp842, unless tokens contains the allow-popups keyword.

◦ The sandboxed top-level navigation without user activation browsing context flagp842, unless tokens contains the
allow-top-navigation keyword.

◦ The sandboxed top-level navigation with user activation browsing context flagp842, unless tokens contains either
the allow-top-navigation-by-user-activation keyword or the allow-top-navigationp843 keyword.

◦ The sandboxed plugins browsing context flagp842.

◦ The sandboxed origin browsing context flagp842, unless the tokens contains the allow-same-origin keyword.

This means that if the allow-top-navigationp843 is present, the allow-top-navigation-by-user-
activationp843 keyword will have no effect. For this reason, specifying both is a document conformance error.

Note

The allow-same-originp843 keyword is intended for two cases.

First, it can be used to allow content from the same site to be sandboxed to disable scripting, while still
allowing access to the DOM of the sandboxed content.

Second, it can be used to embed content from a third-party site, sandboxed to prevent that site from opening
popups, etc, without preventing the embedded page from communicating back to its originating site, using the
database APIs to store data, etc.

Note

843

https://infra.spec.whatwg.org/#split-on-ascii-whitespace

◦ The sandboxed forms browsing context flagp842, unless tokens contains the allow-forms keyword.

◦ The sandboxed pointer lock browsing context flagp842, unless tokens contains the allow-pointer-lock keyword.

◦ The sandboxed scripts browsing context flagp842, unless tokens contains the allow-scripts keyword.

◦ The sandboxed automatic features browsing context flagp842, unless tokens contains the allow-scriptsp844

keyword (defined above).

◦ The sandboxed document.domain browsing context flagp843.

◦ The sandbox propagates to auxiliary browsing contexts flagp843, unless tokens contains the allow-popups-to-
escape-sandbox keyword.

◦ The sandboxed modals flagp843, unless tokens contains the allow-modals keyword.

◦ The sandboxed orientation lock browsing context flagp843, unless tokens contains the allow-orientation-lock
keyword.

◦ The sandboxed presentation browsing context flagp843, unless tokens contains the allow-presentation keyword.

◦ The sandboxed downloads browsing context flagp843, unless tokens contains the allow-downloads keyword.

Every top-level browsing contextp814 has a popup sandboxing flag set, which is a sandboxing flag setp842. When a browsing
contextp811 is created, its popup sandboxing flag setp844 must be empty. It is populated by the rules for choosing a browsing contextp820

and the obtain a browsing context to use for a navigation responsep846 algorithm.

Every iframep361 element has an iframe sandboxing flag set, which is a sandboxing flag setp842. Which flags in an iframe
sandboxing flag setp844 are set at any particular time is determined by the iframep361 element's sandboxp365 attribute.

Every Documentp114 has an active sandboxing flag set, which is a sandboxing flag setp842. When the Documentp114 is created, its
active sandboxing flag setp844 must be empty. It is populated by the navigation algorithmp866.

Every resource that is obtained by the navigation algorithmp866 has a forced sandboxing flag set, which is a sandboxing flag setp842.
A resource by default has no flags set in its forced sandboxing flag setp844, but other specifications can define that certain flags are set.

To determine the creation sandboxing flags for a browsing contextp811 browsing context, given null or an element embedder,
return the union of the flags that are present in the following sandboxing flag setsp842:

• If embedder is null, then: the flags set on browsing context's popup sandboxing flag setp844.

• If embedder is an element, then: the flags set on embedder's iframe sandboxing flag setp844.

• If embedder is an element, then: the flags set on embedder's node document's active sandboxing flag setp844.

After creation, the sandboxing flags for a browsing contextp811 browsing context are the result of determining the creation
sandboxing flagsp844 given browsing context and browsing context's containerp814.

A cross-origin opener policy allows a document which is navigated to in a top-level browsing contextp814 to force the creation of a
new top-level browsing contextp814, and a corresponding groupp814. It has one of the following values:

This flag is relaxed by the same keyword as scripts, because when scripts are enabled these features are
trivially possible anyway, and it would be unfortunate to force authors to use script to do them when
sandboxed rather than allowing them to use the declarative features.

Note

In particular, the forced sandboxing flag setp844 is used by Content Security Policy. [CSP]p1285

Note

7.7 Cross-origin opener policies §p84

4

844

https://infra.spec.whatwg.org/#set-union
https://dom.spec.whatwg.org/#concept-node-document

"unsafe-none"
This is the (current) default and means that the document will occupy the same top-level browsing contextp814 as its predecessor,
unless that document specified a different cross-origin opener policyp844.

"same-origin-allow-popups"
This forces the creation of a new top-level browsing contextp814 for the document, unless its predecessor specified the same cross-
origin opener policyp844 and they are same originp838.

"same-origin"
This behaves the same as "same-origin-allow-popupsp845", with the addition that any auxiliary browsing contextp814 created
needs to contain same originp838 documents that also have the same cross-origin opener policyp844 or it will appear closed to the
opener.

"same-origin-plus-COEP"
This behaves the same as "same-originp845", with the addition that it sets the (new) top-level browsing contextp814 's groupp814 's
cross-origin isolatedp818 to true.

To match cross-origin opener policies, given a cross-origin opener policyp844 A, an originp837 originA, a cross-origin opener policyp844

B, and an originp837 originB:

1. If A is "unsafe-nonep845" and B is "unsafe-nonep845", then return true.

2. If A is "unsafe-nonep845" or B is "unsafe-nonep845", then return false.

3. If A is B and originA is same originp838 with originB, then return true.

4. Return false.

A Documentp114 's cross-origin opener policyp115 is derived from the `Cross-Origin-Opener-Policyp1257` HTTP response header. This
header is a structured header whose value must be a token. [STRUCTURED-FIELDS]p1291

The valid token values are "unsafe-nonep845", "same-origin-allow-popupsp845", and "same-originp845".

To obtain a cross-origin opener policy given a response response and an environmentp916 reservedEnvironment:

1. If reservedEnvironment is a non-secure contextp925, then return "unsafe-nonep845".

2. Let value be the result of getting a structured field value given `Cross-Origin-Opener-Policyp1257` and "item" from
response's header list.

3. If value is null, then return "unsafe-nonep845".

4. If value[0] is not "same-originp845" or "same-origin-allow-popupsp845", then return "unsafe-nonep845".

5. If value[0] is "same-originp845", then:

1. Let coep be the result of obtaining an embedder policyp847 from response.

2. If coep's valuep847 is "require-corp", then return "same-origin-plus-COEPp845".

"same-origin-plus-COEPp845" cannot be directly set via the `Cross-Origin-Opener-Policyp1257` header, but results from a
combination of setting both `Cross-Origin-Opener-Policyp1257: same-originp845` and `Cross-Origin-Embedder-
Policyp1257: require-corp` together.

Note

Per the processing model described below, user agents will ignore this header if it contains an invalid value. Likewise, user agents
will ignore this header if the value cannot be parsed as a token.

Note

7.7.1 The `Cross-Origin-Opener-Policyp1257` header §p84

5

845

https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#token
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#token
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#token
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list

6. Return value[0].

To check if a response requires a browsing context group switch, given a browsing contextp811 browsingContext, an originp837

responseOrigin and a cross-origin opener policyp844 responseCOOP:

1. Let activeDocumentNavigationOrigin be browsingContext's active documentp811 's originp837.

2. Let activeDocumentCOOP be browsingContext's active documentp811 's cross-origin opener policyp115.

3. Let isInitialAboutBlank be false.

4. If browsingContext's only entry in its session historyp849 is the about:blankp51 Documentp114 that was added when
browsingContext was createdp812, then set isInitialAboutBlank to true.

5. If the result of matchingp845 activeDocumentCOOP, activeDocumentNavigationOrigin, responseCOOP and responseOrigin is
true, then return false.

6. If all of the following are true:

◦ isInitialAboutBlank

◦ activeDocumentCOOP is "same-origin-allow-popupsp845".

◦ responseCOOP is "unsafe-nonep845".

then return false.

7. Return true.

To obtain a browsing context to use for a navigation response, given a browsing contextp811 browsingContext, a sandboxing flag
setp842 sandboxFlags, and a cross-origin opener policyp844 navigationCOOP:

1. Assert: browsingContext is a top-level browsing contextp814.

2. Let newBrowsingContext be the result of creating a new top-level browsing contextp813.

3. If navigationCOOP is "same-origin-plus-COEPp845", then set newBrowsingContext's groupp814 's cross-origin isolatedp818 to
true.

4. If sandboxFlags is not empty, then:

1. Assert: navigationCOOP is "unsafe-nonep845".

2. Assert: newBrowsingContext's popup sandboxing flag setp844 is empty.

3. Set newBrowsingContext's popup sandboxing flag setp844 to a clone of sandboxFlags.

5. Discardp831 browsingContext.

6. Return newBrowsingContext.

The impact of swapping browsing context groups following a navigation is not fully defined. It is currently under discussion in issue
#5350.

This has no effect on browsingContext's groupp814, unless browsingContext was its sole top-level browsing contextp814. In
that case, the user agent might delete the browsing context groupp818 which no longer contains any browsing
contextsp811.

Note

7.7.2 Browsing context group switches due to cross-origin opener policy §p84

6

846

https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-clone
https://github.com/whatwg/html/issues/5350
https://github.com/whatwg/html/issues/5350

An embedder policy value controls the fetching of cross-origin resources without explicit permission from resource owners. There are
two such values:

"unsafe-none"
This is the default value. When this value is used, cross-origin resources can be fetched without giving explicit permission through
the CORS protocol or the `Cross-Origin-Resource-Policy` header.

"require-corp"
When this value is used, fetching cross-origin resources requires the server's explicit permission through the CORS protocol or the
`Cross-Origin-Resource-Policy` header.

An embedder policy consists of:

• A value, which is an embedder policy valuep847, initially "unsafe-nonep847".

• A reporting endpoint string, initially the empty string.

• A report only value, which is an embedder policy valuep847, initially "unsafe-nonep847".

• A report only reporting endpoint string, initially the empty string.

The "coep" report type is a report type whose value is "coep". It is visible to ReportingObservers.

The `Cross-Origin-Embedder-Policyp1257` and `Cross-Origin-Embedder-Policy-Report-Onlyp1257` HTTP response header fields
allow a server to declare an embedder policyp847 for an environment settings objectp917. These headers are structured headers whose
values must be token. [STRUCTURED-FIELDS]p1291

The valid token values are the embedder policy valuesp847. The token may also have attached parameters; of these, the "report-to"
parameter can have a valid URL string identifying an appropriate reporting endpoint. [REPORTING]p1289

To obtain an embedder policy from a response response:

1. Let policy be a new embedder policyp847.

2. Let parsedItem be the result of getting a structured field value with `Cross-Origin-Embedder-Policyp1257` and "item" from
response's header list.

3. If parsedItem is non-null and parsedItem[0] is "require-corp":

1. Set policy's valuep847 to "require-corpp847".

7.8 Cross-origin embedder policies §p84

7

The processing modelp847 fails open (by defaulting to "unsafe-nonep847") in the presence of a header that cannot be parsed as a
token. This includes inadvertent lists created by combining multiple instances of the `Cross-Origin-Embedder-Policyp1257`
header present in a given response:

`Cross-Origin-Embedder-Policyp1257` Final embedder policy valuep847

No header delivered "unsafe-nonep847"

`require-corp` "require-corpp847"

`unknown-value` "unsafe-nonep847"

`require-corp, unknown-value` "unsafe-nonep847"

`unknown-value, unknown-value` "unsafe-nonep847"

`unknown-value, require-corp` "unsafe-nonep847"

`require-corp, require-corp` "unsafe-nonep847"

(The same applies to `Cross-Origin-Embedder-Policy-Report-Onlyp1257`.)

Note

7.8.1 The headers §p84

7

847

https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://w3c.github.io/reporting/#report-type
https://w3c.github.io/reporting/#visible-to-reportingobservers
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#token
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#token
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#param
https://url.spec.whatwg.org/#valid-url-string
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list

2. If parsedItem[1]["report-top847"] exists, then set policy's endpointp847 to parsedItem[1]["report-top847"].

4. Set parsedItem to the result of getting a structured field value with `Cross-Origin-Embedder-Policy-Report-Onlyp1257`
and "item" from response's header list.

5. If parsedItem is non-null and parsedItem[0] is "require-corp":

1. Set policy's report only valuep847 to "require-corpp847".

2. If parsedItem[1]["report-top847"] exists, then set policy's report only reporting endpointp847 to
parsedItem[1]["report-top847"].

6. Return policy.

To check a navigation response's adherence to its embedder policy given a response response and a browsing contextp811

target:

1. If target is not a child browsing contextp814, then return true.

2. Let responsePolicy be the result of obtaining an embedder policyp847 from response.

3. Let parentPolicy be target's container documentp814 's embedder policyp115.

4. If parentPolicy's report only valuep847 is "require-corpp847" and responsePolicy's valuep847 is "unsafe-nonep847", then queue
a cross-origin embedder policy inheritance violation p848 with response, "navigation", parentPolicy's report only reporting
endpointp847, "reporting", and target's container documentp814 's relevant settings objectp924.

5. If parentPolicy's valuep847 is "unsafe-nonep847" or responsePolicy's valuep847 is "require-corpp847", then return true.

6. Queue a cross-origin embedder policy inheritance violation p848 with response, "navigation", parentPolicy's reporting
endpointp847, "enforce", and target's container documentp814 's relevant settings objectp924.

7. Return false.

To check a global object's embedder policy given a WorkerGlobalScopep1044 workerGlobalScope, an environment settings
objectp917 owner, and a response response:

1. If workerGlobalScope is not a DedicatedWorkerGlobalScopep1046 object, then return true.

2. Let policy be workerGlobalScope's embedder policyp1045.

3. Let ownerPolicy be owner's embedder policyp917.

4. If ownerPolicy's report only valuep847 is "require-corpp847" and policy's valuep847 is "unsafe-nonep847", then queue a cross-
origin embedder policy inheritance violation p848 with response, "worker initialization", owner's policy's report only
reporting endpointp847, "reporting", and owner.

5. If ownerPolicy's valuep847 is "unsafe-nonep847" or policy's valuep847 is "require-corpp847", then return true.

6. Queue a cross-origin embedder policy inheritance violation p848 with response, "worker initialization", owner's policy's
reporting endpointp847, "enforce", and owner.

7. Return false.

To queue a cross-origin embedder policy inheritance violation given a response response, a string type, a string endpoint, a
string disposition, and an environment settings objectp917 settings:

1. Let serialized be the result of serializing a response URL for reporting with response.

2. Let body be a new object containing the following properties:

key value

type type

blockedURL serialized

7.8.2 Embedder policy checks §p84

8

848

https://infra.spec.whatwg.org/#map-exists
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#map-exists
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#serialize-a-response-url-for-reporting

key value

disposition disposition

3. Queue body as the "coep" report typep847 for endpoint on settings.

A browsing session is …. See whatwg/html issue #4782 and whatwg/html issue #5350 for defining browsing sessionp849. It is
roughly analogous to a top-level browsing contextp814 except that it cannot be replaced due to a `Cross-Origin-Opener-
Policyp1257` header or navigation.

A top-level browsing contextp814 has an associated browsing session which is a browsing sessionp849.

The browsing session of an environment settings objectp917 environment is the result of running these steps:

1. Assert: environment has a responsible documentp917.

2. Return environment's responsible documentp917 's browsing contextp811 's top-level browsing contextp814 's browsing
sessionp849.

The sequence of Documentp114s in a browsing contextp811 is its session history. Each browsing contextp811, including child browsing
contextsp814, has a distinct session history. A browsing contextp811 's session history consists of a flat list of session history entriesp849.
Each session history entry consists, at a minimum, of a URL, and each entry may in addition have serialized statep849, a title, a
Documentp114 object, form data, a scroll restoration modep850, a scroll position, a browsing context namep819, and other information
associated with it.

URLs without associated serialized statep849 are added to the session history as the user (or script) navigates from page to page.

Each Documentp114 object in a browsing contextp811 's session historyp849 is associated with a unique Historyp851 object which must all
model the same underlying session historyp849.

The history attribute of the Windowp824 interface must return the object implementing the Historyp851 interface for this Windowp824

object's associated Documentp826.

Serialized state is a serialization (via StructuredSerializeForStoragep108) of an object representing a user interface state. We
sometimes informally refer to "state objects", which are the objects representing user interface state supplied by the author, or

7.9 Session history and navigation §p84

9

Each entry, when first created, has a Documentp114. However, when a Documentp114 is not activep815, it's possible for it to be
discardedp831 to free resources. The URL and other data in a session history entryp849 is then used to bring a new Documentp114 into
being to take the place of the original, in case the user agent finds itself having to reactivate that Documentp114.

Note

Titles associated with session history entriesp849 need not have any relation with the current titlep154 of the Documentp114. The title
of a session history entryp849 is intended to explain the state of the document at that point, so that the user can navigate the
document's history.

Note

7.9.1 Browsing sessions §p84

9

7.9.2 The session history of browsing contexts §p84

9

✔ MDN

849

https://w3c.github.io/reporting/#queue-report
https://github.com/whatwg/html/issues/4782
https://github.com/whatwg/html/issues/5350
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

alternately the objects created by deserializing (via StructuredDeserializep108) serialized state.

Pages can addp854 serialized statep849 to the session history. These are then deserializedp108 and returned to the scriptp1282 when the
user (or script) goes back in the history, thus enabling authors to use the "navigation" metaphor even in one-page applications.

At any point, one of the entries in the session history is the current entry. This is the entry representing the active documentp811 of
the browsing contextp811. Which entry is the current entryp850 is changed by the algorithms defined in this specification, e.g. during
session history traversalp881.

An entry with persisted user state is one that also has implementation-defined state. This specification does not specify what kind
of state can be stored.

An entry's scroll restoration mode indicates whether the user agent should restore the persisted scroll position (if any) when
traversing to it. The scroll restoration mode may be one of the following:

"auto"
The user agent is responsible for restoring the scroll position upon navigation.

"manual"
The page is responsible for restoring the scroll position and the user agent does not attempt to do so automatically

If unspecified, the scroll restoration modep850 of a new entry must be set to "autop850".

Entries that contain serialized statep849 share the same Documentp114 as the entry for the page that was active when they were added.

Contiguous entries that differ just by their URLs' fragments also share the same Documentp114.

Each Documentp114 in a browsing contextp811 can also have a latest entry. This is the entry for that Documentp114 to which the browsing
contextp811 's session historyp849 was most recently traversed. When a Documentp114 is created, it initially has no latest entryp850.

User agents may discardp831 the Documentp114 objects of entries other than the current entryp850 that are not referenced from any

Serialized statep849 is intended to be used for two main purposes: first, storing a preparsed description of the state in the URL so
that in the simple case an author doesn't have to do the parsing (though one would still need the parsing for handling URLs passed
around by users, so it's only a minor optimization). Second, so that the author can store state that one wouldn't store in the URL
because it only applies to the current Documentp114 instance and it would have to be reconstructed if a new Documentp114 were
opened.

An example of the latter would be something like keeping track of the precise coordinate from which a popup divp237 was made to
animate, so that if the user goes back, it can be made to animate to the same location. Or alternatively, it could be used to keep a
pointer into a cache of data that would be fetched from the server based on the information in the URL, so that when going back
and forward, the information doesn't have to be fetched again.

Note

The current entryp850 is usually an entry for the URL of the Documentp114. However, it can also be one of the entries for serialized
statep849 added to the history by that document.

Note

For example, some user agents might want to persist the scroll position, or the values of form controls.
Example

User agents that persist the value of form controls are encouraged to also persist their directionality (the value of the element's
dirp142 attribute). This prevents values from being displayed incorrectly after a history traversal when the user had originally
entered the values with an explicit, non-default directionality.

Note

All entries that share the same Documentp114 (and that are therefore merely different states of one particular document) are
contiguous by definition.

Note

✔ MDN

850

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment

script, reloading the pages afresh when the user or script navigates back to such pages. This specification does not specify when user
agents should discard Documentp114 objects and when they should cache them.

Entries that have had their Documentp114 objects discarded must, for the purposes of the algorithms given below, act as if they had not.
When the user or script navigates back or forwards to a page which has no in-memory DOM objects, any other entries that shared the
same Documentp114 object with it must share the new object as well.

enum ScrollRestoration { "auto", "manual" };

[Exposed=Window]
interface History {

readonly attribute unsigned long length;
attribute ScrollRestoration scrollRestoration;
readonly attribute any state;
undefined go(optional long delta = 0);
undefined back();
undefined forward();
undefined pushState(any data, DOMString title, optional USVString? url = null);
undefined replaceState(any data, DOMString title, optional USVString? url = null);

};

The joint session history of a top-level browsing contextp814 is the union of all the session historiesp849 of all browsing contextsp811 of
all the fully activep815 Documentp114 objects that share that top-level browsing contextp814, with all the entries that are current entriesp850

in their respective session historiesp849 removed except for the current entry of the joint session historyp851.

The current entry of the joint session history is the entry that most recently became a current entryp850 in its session historyp849.

window . historyp849 . lengthp852

Returns the number of entries in the joint session historyp851.

window . historyp849 . scrollRestorationp852 [= value]
Returns the scroll restoration modep850 of the current entry in the session historyp849.
Can be set, to change the scroll restoration modep850 of the current entry in the session historyp849.

window . historyp849 . statep852

Returns the current serialized statep849, deserialized into an object.

window . historyp849 . gop852([delta])
Goes back or forward the specified number of steps in the joint session historyp851.
A zero delta will reload the current page.
If the delta is out of range, does nothing.

window . historyp849 . backp852()
Goes back one step in the joint session historyp851.
If there is no previous page, does nothing.

window . historyp849 . forwardp852()
Goes forward one step in the joint session historyp851.
If there is no next page, does nothing.

window . historyp849 . pushStatep854(data, title [, url])
Pushes the given data onto the session history, with the given title, and, if provided and not null, the given URL.

window . historyp849 . replaceStatep854(data, title [, url])
Updates the current entry in the session history to have the given data, title, and, if provided and not null, URL.

For web developers (non-normative)

IDL

7.9.3 The Historyp851 interface §p85

1

✔ MDN

851

Entries in the joint session historyp851 are ordered chronologically by the time they were added to their respective session historiesp849.
Each entry has an index; the earliest entry has index 0, and the subsequent entries are numbered with consecutively increasing
integers (1, 2, 3, etc).

The length attribute of the Historyp851 interface, on getting, must return the number of entries in the top-level browsing contextp814 's
joint session historyp851. If this Historyp851 object is associated with a Documentp114 that is not fully activep815, getting must instead
throw a "SecurityError" DOMException.

The actual entries are not accessible from script.

The scrollRestoration attribute of the History interface, on getting, must return the scroll restoration modep850 of the current entry
in the session historyp849. On setting, the scroll restoration mode p850 of the current entry in the session historyp849 must be set to the
new value. If this Historyp851 object is associated with a Documentp114 that is not fully activep815, both getting and setting must instead
throw a "SecurityError" DOMException.

The state attribute of the Historyp851 interface, on getting, must return the last value it was set to by the user agent. If this
Historyp851 object is associated with a Documentp114 that is not fully activep815, getting must instead throw a "SecurityError"
DOMException. Initially, its value must be null.

When the go(delta) method is invoked:

1. Let document be this Historyp851 object's associated Documentp114.

2. If document is not fully activep815, then throw a "SecurityError" DOMException.

3. If delta is 0, then act as if the location.reload()p863 method was called, and return.

4. Traverse the history by a deltap853 with delta and document's browsing contextp811.

When the back() method is invoked:

1. Let document be this Historyp851 object's associated Documentp114.

2. If document is not fully activep815, then throw a "SecurityError" DOMException.

3. Traverse the history by a deltap853 with −1 and document's browsing contextp811.

When the forward() method is invoked:

1. Let document be this Historyp851 object's associated Documentp114.

2. If document is not fully activep815, then throw a "SecurityError" DOMException.

3. Traverse the history by a deltap853 with +1 and document's browsing contextp811.

Each top-level browsing contextp814 has a session history traversal queue, initially empty, to which tasksp944 can be added.

Each top-level browsing contextp814, when created, must begin running the following algorithm, known as the session history event
loop for that top-level browsing contextp814, in parallelp42:

1. Wait until this top-level browsing contextp814 's session history traversal queuep852 is not empty.

2. Pull the first taskp944 from this top-level browsing contextp814 's session history traversal queuep852, and execute it.

3. Return to the first step of this algorithm.

The session history event loopp852 helps coordinate cross-browsing-context transitions of the joint session historyp851: since each
browsing contextp811 might, at any particular time, have a different event loopp944 (this can happen if the user navigates from
example.com to shop.example), transitions would otherwise have to involve cross-event-loop synchronization.

Since each Documentp114 in a browsing contextp811 might have a different event loopp944, the actual state of the joint session
historyp851 can be somewhat nebulous. For example, two sibling iframep361 elements could both traversep881 from one unique
origin to another at the same time, so their precise order might not be well-defined; similarly, since they might only find out about
each other later, they might disagree about the length of the joint session historyp851.

Note

✔ MDN

✔ MDN

852

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException

To traverse the history by a delta given delta and browsing contextp811 source browsing context, the user agent must append a
taskp944 to this top-level browsing contextp814 's session history traversal queuep852, the taskp944 consisting of running the following
steps:

1. If the index of the current entry of the joint session historyp851 plus delta is less than zero or greater than or equal to the
number of items in the joint session historyp851, then return.

2. Let specified entry be the entry in the joint session historyp851 whose index is the sum of delta and the index of the current
entry of the joint session historyp851.

3. Let specified browsing context be the browsing contextp811 of the specified entry.

4. If source browsing context is not allowed to navigatep818 specified browsing context, then return.

5. If the specified browsing context's active documentp811 's unload a documentp886 algorithm is currently running, return.

6. Queue a global taskp945 on the history traversal task sourcep952 given specified browsing context's active windowp811 to
perform the following steps:

1. If there is an ongoing attempt to navigate specified browsing context that has not yet maturedp876 (i.e. it has not
passed the point of making its Documentp114 the active documentp811), then cancel that attempt to navigate the
browsing contextp811.

2. If the specified browsing context's active documentp811 is not the same Documentp114 as the Documentp114 of the
specified entry, then run these substeps:

1. Prompt to unloadp885 the active documentp811 of the specified browsing context. If the user refused to
allow the document to be unloadedp886, then return.

2. Unloadp886 the active documentp811 of the specified browsing context.

3. Traverse the historyp881 of the specified browsing context to the specified entry with explicitHistoryNavigationp881

set to true.

When the user navigates through a browsing contextp811, e.g. using a browser's back and forward buttons, the user agent must
traverse the history by a deltap853 with a delta equivalent to the action specified by the user and the browsing context being operated
on.

The URL and history update steps, given a Documentp114 object document, a URL newURL, an optional serialized statep849

serializedData, and an optional string title, optionally with a state push flag, are:

1. Let browsingContext be document's browsing contextp811.

2. If the state push flag is set, then:

1. Remove all the entries in browsingContext's session historyp849 after the current entryp850. If the current entryp850 is
the last entry in the session history, then no entries are removed.

2. Remove any tasksp944 queued by the history traversal task sourcep952 that are associated with any Documentp114

objects in the top-level browsing contextp814 's document familyp815.

3. If appropriate, update the current entryp850 to reflect any state that the user agent wishes to persist. The entry is
then said to be an entry with persisted user statep850.

4. Add a session history entryp849 entry to the session history, after the current entryp850, with

▪ newURL as the URL;

▪ the scroll restoration modep850 of the current entry in the session historyp849 as the scroll restoration
mode;

▪ serializedData as the serialized statep849, if it is given;

▪ title as the title, if it is given.

This doesn't necessarily have to affectp856 the user agent's user interface.
Note

853

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

5. Update the current entryp850 to be this newly added entry.

3. Otherwise, update the current entryp850 in browsingContext's session historyp849 so that:

◦ newURL is the entry's new URL;

◦ serializedData is the entry's new serialized statep849, if it is given; otherwise, the current entryp850 's current
serialized statep849 is kept;

◦ title is the entry's new title, if it is given; otherwise, the entry does not have a title;

◦ it represents a GET request, if it currently represents a non-GET request (e.g. it was the result of a POST
submission).

4. Set document's URL to newURL.

The pushState(data, title, url) method adds a state object entry to the history.

The replaceState(data, title, url) method updates the state object, title, and optionally the URL of the current entryp850 in the
history.

When either of these methods is invoked, the user agent must run the following steps:

1. Let document be the unique Documentp114 object this Historyp851 object is associated with.

2. If document is not fully activep815, throw a "SecurityError" DOMException.

3. Optionally, return. (For example, the user agent might disallow calls to these methods that are invoked on a timer, or from
event listeners that are not triggered in response to a clear user action, or that are invoked in rapid succession.)

4. Let targetRealm be this Historyp851 object's relevant Realmp924.

5. Let serializedData be StructuredSerializeForStoragep108(data). Rethrow any exceptions.

6. Let newURL be the URL of the current entryp850 in browsingContext's session historyp849.

7. If url is not null, then:

1. Parsep89 url, relative to the relevant settings objectp924 of this Historyp851 object.

2. If that fails, then throw a "SecurityError" DOMException.

3. Set newURL to the resulting URL recordp89.

4. Compare newURL to document's URL. If any component of these two URL records differ other than the path, query,
and fragment components, then throw a "SecurityError" DOMException.

5. If the origin of newURL is not same originp838 with the originp837 of document, and either the path or query
components of the two URL records compared in the previous step differ, throw a "SecurityError" DOMException.
(This prevents sandboxed content from spoofing other pages on the same origin.)

8. Run the URL and history update stepsp853 given document, newURL, serializedData, and title, with the state push flag set if
the method invoked was the pushState()p854 method.

9. Let state be StructuredDeserializep108(serializedData, targetRealm). If this throws an exception, catch it, ignore the exception,
and set state to null.

10. Set history.statep852 to state.

11. Set the current entryp850 's Documentp114 object's latest entryp850 to the current entryp850.

Since this is neither a navigationp866 of the browsing contextp811 nor a history traversalp881, it does not cause a
hashchangep1281 event to be fired.

Note

The title is purely advisory. User agents might use the title in the user interface.
Note

✔ MDN
✔ MDN

854

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException

User agents may limit the number of state objects added to the session history per page. If a page hits the implementation-defined
limit, user agents must remove the entry immediately after the first entry for that Documentp114 object in the session history after
having added the new entry. (Thus the state history acts as a FIFO buffer for eviction, but as a LIFO buffer for navigation.)

Consider a game where the user can navigate along a line, such that the user is always at some coordinate, and such that the user
can bookmark the page corresponding to a particular coordinate, to return to it later.

A static page implementing the x=5 position in such a game could look like the following:

<!DOCTYPE HTML>
<!-- this is https://example.com/line?x=5 -->
<html lang="en">
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
Advance to 6 or
retreat to 4?

</p>

The problem with such a system is that each time the user clicks, the whole page has to be reloaded. Here instead is another way
of doing it, using script:

<!DOCTYPE HTML>
<!-- this starts off as https://example.com/line?x=5 -->
<html lang="en">
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
Advance to 6 or
retreat to 4?

</p>
<script>
var currentPage = 5; // prefilled by server
function go(d) {

setupPage(currentPage + d);
history.pushState(currentPage, document.title, '?x=' + currentPage);

}
onpopstate = function(event) {

setupPage(event.state);
}
function setupPage(page) {

currentPage = page;
document.title = 'Line Game - ' + currentPage;
document.getElementById('coord').textContent = currentPage;
document.links[0].href = '?x=' + (currentPage+1);
document.links[0].textContent = 'Advance to ' + (currentPage+1);
document.links[1].href = '?x=' + (currentPage-1);
document.links[1].textContent = 'retreat to ' + (currentPage-1);

}
</script>

In systems without script, this still works like the previous example. However, users that do have script support can now navigate
much faster, since there is no network access for the same experience. Furthermore, contrary to the experience the user would
have with just a naïve script-based approach, bookmarking and navigating the session history still work.

In the example above, the data argument to the pushState()p854 method is the same information as would be sent to the server,
but in a more convenient form, so that the script doesn't have to parse the URL each time the user navigates.

Example

Example

855

https://infra.spec.whatwg.org/#implementation-defined

This section is non-normative.

The Historyp851 interface is not meant to place restrictions on how implementations represent the session history to the user.

For example, session history could be implemented in a tree-like manner, with each page having multiple "forward" pages. This
specification doesn't define how the linear list of pages in the historyp849 object are derived from the actual session history as seen
from the user's perspective.

Similarly, a page containing two iframep361s has a historyp849 object distinct from the iframep361s' historyp849 objects, despite the
fact that typical web browsers present the user with just one "Back" button, with a session history that interleaves the navigation of
the two inner frames and the outer page.

Security: It is suggested that to avoid letting a page "hijack" the history navigation facilities of a UA by abusing pushState()p854, the
UA provide the user with a way to jump back to the previous page (rather than just going back to the previous state). For example, the
back button could have a drop down showing just the pages in the session history, and not showing any of the states. Similarly, an
aural browser could have two "back" commands, one that goes back to the previous state, and one that jumps straight back to the
previous page.

For both pushState()p854 and replaceState()p854, user agents are encouraged to prevent abuse of these APIs via too-frequent calls or

Applications might not use the same title for a session history entryp849 as the value of the document's titlep154 element at that
time. For example, here is a simple page that shows a block in the titlep154 element. Clearly, when navigating backwards to a
previous state the user does not go back in time, and therefore it would be inappropriate to put the time in the session history title.

<!DOCTYPE HTML>
<HTML LANG=EN>
<TITLE>Line</TITLE>
<SCRIPT>
setInterval(function () { document.title = 'Line - ' + new Date(); }, 1000);
var i = 1;
function inc() {

set(i+1);
history.pushState(i, 'Line - ' + i);

}
function set(newI) {

i = newI;
document.forms.F.I.value = newI;

}
</SCRIPT>
<BODY ONPOPSTATE="set(event.state)">
<FORM NAME=F>
State: <OUTPUT NAME=I>1</OUTPUT> <INPUT VALUE="Increment" TYPE=BUTTON ONCLICK="inc()">
</FORM>

Most applications want to use the same scroll restoration modep850 value for all of their history entries. To achieve this they can set
the scrollRestorationp852 attribute as soon as possible (e.g., in the first scriptp614 element in the document's headp153 element)
to ensure that any entry added to the history session gets the desired scroll restoration mode.

<head>
<script>

if ('scrollRestoration' in history)
history.scrollRestoration = 'manual';

</script>
</head>

Example

7.9.4 Implementation notes for session history §p85

6

856

over-large state objects. As detailed above, the algorithm explicitly allows user agents to ignore any such calls when appropriate.

Each Windowp824 object is associated with a unique instance of a Locationp857 object, allocated when the Windowp824 object is created.

To create a Locationp857 object, run these steps:

1. Let location be a new Locationp857 platform object.

2. Let valueOf be location's relevant Realmp924.[[Intrinsics]].[[%Object.prototype.valueOf%]].

3. Perform ! location.[[DefineOwnProperty]]("valueOf", { [[Value]]: valueOf, [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }).

4. Perform ! location.[[DefineOwnProperty]](@@toPrimitivep54, { [[Value]]: undefined, [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }).

5. Set the value of the [[DefaultProperties]]p863 internal slot of location to location.[[OwnPropertyKeys]]().

6. Return location.

The Documentp114 object's location attribute's getter must return this Documentp114 object's relevant global objectp924 's Locationp857

object, if this Documentp114 object is fully activep815, and null otherwise.

The Windowp824 object's location attribute's getter must return this Windowp824 object's Locationp857 object.

Locationp857 objects provide a representation of the URL of the active documentp811 of their Documentp114 's browsing contextp811, and
allow the current entryp850 of the browsing contextp811 's session history to be changed, by adding or replacing entries in the historyp849

object.

[Exposed=Window]
interface Location { // but see also additional creation steps and overridden internal methods

[LegacyUnforgeable] stringifier attribute USVString href;
[LegacyUnforgeable] readonly attribute USVString origin;
[LegacyUnforgeable] attribute USVString protocol;
[LegacyUnforgeable] attribute USVString host;
[LegacyUnforgeable] attribute USVString hostname;
[LegacyUnforgeable] attribute USVString port;
[LegacyUnforgeable] attribute USVString pathname;

The Locationp857 exotic object is defined through a mishmash of IDL, invocation of JavaScript internal methods post-
creation, and overridden JavaScript internal methods. Coupled with its scary security policy, please take extra care
while implementing this excrescence.

⚠Warning!

The addition of valueOf and @@toPrimitivep54 own data properties, as well as the fact that all of Locationp857 's IDL attributes are
marked [LegacyUnforgeable], is required by legacy code that consulted the Locationp857 interface, or stringified it, to determine
the document URL, and then used it in a security-sensitive way. In particular, the valueOf, @@toPrimitivep54, and
[LegacyUnforgeable] stringifier mitigations ensure that code such as foo[location] = bar or location + "" cannot be
misdirected.

Note

document . locationp857 [= value]
window . locationp857 [= value]

Returns a Locationp857 object with the current page's location.
Can be set, to navigate to another page.

For web developers (non-normative)

IDL

7.9.5 The Locationp857 interface §p85

7

✔ MDN

857

https://heycam.github.io/webidl/#dfn-platform-object
https://tc39.es/ecma262/#sec-object.prototype.valueof
https://heycam.github.io/webidl/#LegacyUnforgeable
https://dom.spec.whatwg.org/#concept-document-url
https://heycam.github.io/webidl/#LegacyUnforgeable
https://dom.spec.whatwg.org/#concept-document-url
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable

[LegacyUnforgeable] attribute USVString search;
[LegacyUnforgeable] attribute USVString hash;

[LegacyUnforgeable] undefined assign(USVString url);
[LegacyUnforgeable] undefined replace(USVString url);
[LegacyUnforgeable] undefined reload();

[LegacyUnforgeable, SameObject] readonly attribute DOMStringList ancestorOrigins;
};

A Locationp857 object has an associated relevant Document, which is this Locationp857 object's relevant global objectp924 's browsing

location . toString()
location . hrefp859

Returns the Locationp857 object's URL.
Can be set, to navigate to the given URL.

location . originp859

Returns the Locationp857 object's URL's origin.

location . protocolp860

Returns the Locationp857 object's URL's scheme.
Can be set, to navigate to the same URL with a changed scheme.

location . hostp860

Returns the Locationp857 object's URL's host and port (if different from the default port for the scheme).
Can be set, to navigate to the same URL with a changed host and port.

location . hostnamep860

Returns the Locationp857 object's URL's host.
Can be set, to navigate to the same URL with a changed host.

location . portp861

Returns the Locationp857 object's URL's port.
Can be set, to navigate to the same URL with a changed port.

location . pathnamep861

Returns the Locationp857 object's URL's path.
Can be set, to navigate to the same URL with a changed path.

location . searchp862

Returns the Locationp857 object's URL's query (includes leading "?" if non-empty).
Can be set, to navigate to the same URL with a changed query (ignores leading "?").

location . hashp862

Returns the Locationp857 object's URL's fragment (includes leading "#" if non-empty).
Can be set, to navigate to the same URL with a changed fragment (ignores leading "#").

location . assignp862(url)
Navigates to the given URL.

location . replacep863(url)
Removes the current page from the session history and navigates to the given URL.

location . reloadp863()
Reloads the current page.

location . ancestorOriginsp863

Returns a DOMStringListp101 object listing the origins of the ancestor browsing contextsp811, from the parent browsing
contextp814 to the top-level browsing contextp814.

For web developers (non-normative)

858

https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable
https://heycam.github.io/webidl/#LegacyUnforgeable

contextp826 's active documentp811, if this Locationp857 object's relevant global objectp924 's browsing contextp826 is non-null, and null
otherwise.

A Locationp857 object has an associated url, which is this Locationp857 object's relevant Documentp858 's URL, if this Locationp857

object's relevant Documentp858 is non-null, and about:blankp51 otherwise.

A Locationp857 object has an associated ancestor origins list. When a Locationp857 object is created, its ancestor origins listp859 must
be set to a DOMStringListp101 object whose associated list is the list of strings that the following steps would produce:

1. Let output be a new list of strings.

2. Let current be the browsing contextp811 of the Documentp114 with which this Locationp857 object is associated.

3. Loop: If current has no parent browsing contextp814, jump to the step labeled end.

4. Let current be current's parent browsing contextp814.

5. Append the serializationp838 of current's active documentp811 's originp837 to output.

6. Return to the step labeled loop.

7. End: Return output.

A Locationp857 object has an associated Location-object-setter navigate algorithm, which given a url, runs these steps:

1. Let historyHandling be "replacep866".

2. If any of the following conditions are met, then set historyHandling to "defaultp866":

◦ This Locationp857 object's relevant Documentp858 has completely loadedp885, or
◦ In the taskp944 in which the algorithm is running, an activation behavior is currently being processed whose click

event's isTrusted attribute is true, or
◦ In the taskp944 in which the algorithm is running, the event listener for a click event, whose isTrusted attribute is

true, is being handled.

3. Location-object navigatep859, given url and historyHandling.

To Location-object navigate, given a url and historyHandling:

1. Let browsingContext be the current global objectp924 's browsing contextp826.

2. Let sourceBrowsingContext be the incumbent global objectp922 's browsing contextp826.

3. If browsingContext's session historyp849 contains only one Documentp114, and that was the about:blankp51 Documentp114

created when the browsing contextp811 was created, then set historyHandling to "replacep866".

4. Navigatep866 browsingContext to url, with exceptionsEnabledp866 set to true, historyHandlingp866 set to historyHandling, and
the source browsing contextp866 set to sourceBrowsingContext.

The href attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. Return this Locationp857 object's urlp859, serialized.

The hrefp859 attribute's setter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. Parsep89 the given value relative to the entry settings objectp921. If that failed, throw a TypeError exception.

3. Location-object-setter navigatep859 given the resulting URL recordp89.

The origin attribute's getter must run these steps:

The hrefp859 attribute setter intentionally has no security check.
Note

✔ MDN

✔ MDN

859

https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-append
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#dom-event-istrusted
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#dom-event-istrusted
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-serializer
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. Return the serializationp838 of this Locationp857 object's urlp859 's origin.

The protocol attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. Return this Locationp857 object's urlp859 's scheme, followed by ":".

The protocolp860 attribute's setter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this Locationp857 object's urlp859.

4. Let possibleFailure be the result of basic URL parsing the given value, followed by ":", with copyURL as url and scheme start
state as state override.

5. If possibleFailure is failure, then throw a "SyntaxError" DOMException.

6. If copyURL's scheme is not an HTTP(S) scheme, then terminate these steps.

7. Location-object-setter navigatep859 to copyURL.

The host attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. Let url be this Locationp857 object's urlp859.

3. If url's host is null, return the empty string.

4. If url's port is null, return url's host, serialized.

5. Return url's host, serialized, followed by ":" and url's port, serialized.

The hostp860 attribute's setter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this Locationp857 object's urlp859.

4. If copyURL's cannot-be-a-base-URL flag is set, terminate these steps.

5. Basic URL parse the given value, with copyURL as url and host state as state override.

6. Location-object-setter navigatep859 to copyURL.

The hostname attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. If this Locationp857 object's urlp859 's host is null, return the empty string.

Because the URL parser ignores multiple consecutive colons, providing a value of "https:" (or even "https::::") is the
same as providing a value of "https".

Note

✔ MDN

✔ MDN

✔ MDN

860

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-origin
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-scheme
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#scheme-start-state
https://url.spec.whatwg.org/#scheme-start-state
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#host-state
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-host

3. Return this Locationp857 object's urlp859 's host, serialized.

The hostnamep860 attribute's setter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this Locationp857 object's urlp859.

4. If copyURL's cannot-be-a-base-URL flag is set, terminate these steps.

5. Basic URL parse the given value, with copyURL as url and hostname state as state override.

6. Location-object-setter navigatep859 to copyURL.

The port attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. If this Locationp857 object's urlp859 's port is null, return the empty string.

3. Return this Locationp857 object's urlp859 's port, serialized.

The portp861 attribute's setter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this Locationp857 object's urlp859.

4. If copyURL cannot have a username/password/port, then return.

5. If the given value is the empty string, then set copyURL's port to null.

6. Otherwise, basic URL parse the given value, with copyURL as url and port state as state override.

7. Location-object-setter navigatep859 to copyURL.

The pathname attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. Let url be this Locationp857 object's urlp859.

3. If url's cannot-be-a-base-URL flag is set, return the first string in url's path.

4. If url's path is empty, then return the empty string.

5. Return "/", followed by the strings in url's path (including empty strings), separated from each other by "/".

The pathnamep861 attribute's setter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this Locationp857 object's urlp859.

4. If copyURL's cannot-be-a-base-URL flag is set, terminate these steps.

5. Set copyURL's path to the empty list.

6. Basic URL parse the given value, with copyURL as url and path start state as state override.

✔ MDN

✔ MDN

861

https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#hostname-state
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#port-state
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-path
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#path-start-state

7. Location-object-setter navigatep859 to copyURL.

The search attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. If this Locationp857 object's urlp859 's query is either null or the empty string, return the empty string.

3. Return "?", followed by this Locationp857 object's urlp859 's query.

The searchp862 attribute's setter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this Locationp857 object's urlp859.

4. If the given value is the empty string, set copyURL's query to null.

5. Otherwise, run these substeps:

1. Let input be the given value with a single leading "?" removed, if any.

2. Set copyURL's query to the empty string.

3. Basic URL parse input, with copyURL as url and query state as state override, and the relevant Documentp858 's
document's character encoding as encoding override.

6. Location-object-setter navigatep859 to copyURL.

The hash attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is non-null and its originp837 is not same origin-domainp838 with the entry
settings objectp921 's originp917, then throw a "SecurityError" DOMException.

2. If this Locationp857 object's urlp859 's fragment is either null or the empty string, return the empty string.

3. Return "#", followed by this Locationp857 object's urlp859 's fragment.

The hashp862 attribute's setter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this Locationp857 object's urlp859.

4. Let input be the given value with a single leading "#" removed, if any.

5. Set copyURL's fragment to the empty string.

6. Basic URL parse input, with copyURL as url and fragment state as state override.

7. Location-object-setter navigatep859 to copyURL.

When the assign(url) method is invoked, the user agent must run the following steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings

Unlike the equivalent API for the ap238 and areap443 elements, the hashp862 attribute's setter does not special case the empty string
to remain compatible with deployed scripts.

Note

✔ MDN

✔ MDN

✔ MDN

862

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#query-state
https://dom.spec.whatwg.org/#concept-document-encoding
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#fragment-state

objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Parsep89 url relative to the entry settings objectp921. If that failed, throw a "SyntaxError" DOMException.

4. Location-object navigatep859 given the resulting URL recordp89 and "defaultp866".

When the replace(url) method is invoked, the user agent must run the following steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return.

2. Parsep89 url relative to the entry settings objectp921. If that failed, throw a "SyntaxError" DOMException.

3. Location-object navigatep859 given the resulting URL recordp89 and "replacep866".

When the reload() method is invoked, the user agent must run the appropriate steps from the following list:

↪ If this Locationp857 object's relevant Documentp858 is null
Return.

↪ If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917

Throw a "SecurityError" DOMException.

↪ If the currently executing taskp944 is the dispatch of a resize event in response to the user resizing the browsing
contextp811

Repaint the browsing contextp811 and return.

↪ If the browsing contextp811 's active documentp811 is an iframe srcdoc documentp362

Reprocess the iframe attributesp363 of the browsing contextp811 's containerp814.

↪ Otherwise
Navigatep866 the browsing contextp811 to this Locationp857 object's relevant Documentp858 's URL, with exceptionsEnabledp866 set
to true, historyHandlingp866 set to "reloadp866", and the source browsing contextp866 set to the browsing contextp811 being
navigated.

When a user requests that the active documentp811 of a browsing contextp811 be reloaded through a user interface element, the user
agent should navigatep866 the browsing contextp811 to the same resource as that Documentp114, with historyHandlingp866 set to
"reloadp866". In the case of non-idempotent methods (e.g., HTTP POST), the user agent should prompt the user to confirm the
operation first, since otherwise transactions (e.g., purchases or database modifications) could be repeated. User agents may allow the
user to explicitly override any caches when reloading.

The ancestorOrigins attribute's getter must run these steps:

1. If this Locationp857 object's relevant Documentp858 is null, then return an empty list.

2. If this Locationp857 object's relevant Documentp858 's originp837 is not same origin-domainp838 with the entry settings
objectp921 's originp917, then throw a "SecurityError" DOMException.

3. Otherwise, return this Locationp857 object's ancestor origins listp859.

As explained earlier, the Locationp857 exotic object requires additional logic beyond IDL for security purposes. The Locationp857 object
must use the ordinary internal methods except where it is explicitly specified otherwise below.

Also, every Locationp857 object has a [[DefaultProperties]] internal slot representing its own properties at time of its creation.

The replace()p863 method intentionally has no security check.
Note

The details of how the ancestorOriginsp863 attribute works are still controversial and might change. See issue #1918
for more information.

⚠Warning!

✔ MDN

✔ MDN

MDN

863

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/cssom-view/#eventdef-window-resize
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#list
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://github.com/whatwg/html/issues/1918

1. If ! IsPlatformObjectSameOriginp822(this) is true, then return ! OrdinaryGetPrototypeOf(this).

2. Return null.

1. Return ! SetImmutablePrototype(this, V).

1. Return true.

1. Return false.

1. If ! IsPlatformObjectSameOriginp822(this) is true, then:

1. Let desc be ! OrdinaryGetOwnProperty(this, P).

2. If the value of the [[DefaultProperties]]p863 internal slot of this contains P, then set desc.[[Configurable]] to true.

3. Return desc.

2. Let property be ! CrossOriginGetOwnPropertyHelperp823(this, P).

3. If property is not undefined, then return property.

4. Return ? CrossOriginPropertyFallbackp822(P).

1. If ! IsPlatformObjectSameOriginp822(this) is true, then:

1. If the value of the [[DefaultProperties]]p863 internal slot of this contains P, then return false.

2. Return ? OrdinaryDefineOwnProperty(this, P, Desc).

2. Throw a "SecurityError" DOMException.

1. If ! IsPlatformObjectSameOriginp822(this) is true, then return ? OrdinaryGet(this, P, Receiver).

2. Return ? CrossOriginGetp824(this, P, Receiver).

7.9.5.1 [[GetPrototypeOf]] () §p86

4

7.9.5.2 [[SetPrototypeOf]] (V) §p86

4

7.9.5.3 [[IsExtensible]] () §p86

4

7.9.5.4 [[PreventExtensions]] () §p86

4

7.9.5.5 [[GetOwnProperty]] (P) §p86

4

7.9.5.6 [[DefineOwnProperty]] (P, Desc) §p86

4

7.9.5.7 [[Get]] (P, Receiver) §p86

4

864

https://tc39.es/ecma262/#sec-ordinarygetprototypeof
https://tc39.es/ecma262/#sec-set-immutable-prototype
https://tc39.es/ecma262/#sec-ordinarygetownproperty
https://tc39.es/ecma262/#sec-ordinarydefineownproperty
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-ordinaryget

1. If ! IsPlatformObjectSameOriginp822(this) is true, then return ? OrdinarySet(this, P, Receiver).

2. Return ? CrossOriginSetp824(this, P, V, Receiver).

1. If ! IsPlatformObjectSameOriginp822(this) is true, then return ? OrdinaryDelete(this, P).

2. Throw a "SecurityError" DOMException.

1. If ! IsPlatformObjectSameOriginp822(this) is true, then return ! OrdinaryOwnPropertyKeys(this).

2. Return ! CrossOriginOwnPropertyKeysp824(this).

Certain actions cause the browsing contextp811 to navigatep866 to a new resource. A user agent may provide various ways for the user
to explicitly cause a browsing context to navigate, in addition to those defined in this specification.

Much of the navigation process is concerned with determining how to create a new Documentp114, which ultimately happens in the
create and initialize a Document objectp873 algorithm. The parameters to this algorithm are tracked via a navigation params struct,
which has the following items:

request
null or a request that started the navigation

response
a response that ultimately was navigated to (potentially a network error)

origin
an originp837 to use for the new Documentp114

final sandboxing flag set
a sandboxing flag setp842 to impose on the new Documentp114

cross-origin opener policy
a cross-origin opener policyp844 to use for the new Documentp114

reserved environment
null or an environmentp916 reserved for the new Documentp114

7.9.5.8 [[Set]] (P, V, Receiver) §p86

5

7.9.5.9 [[Delete]] (P) §p86

5

7.9.5.10 [[OwnPropertyKeys]] () §p86

5

7.10 Browsing the web §p86

5

For example, following a hyperlinkp290, form submissionp596, and the window.open()p827 and location.assign()p862 methods can
all cause a browsing context to navigate.

Example

A resource has a URL, but that might not be the only information necessary to identify it. For example, a form submission that uses
HTTP POST would also have the HTTP method and payload. Similarly, an iframe srcdoc documentp362 needs to know the data it is
to use.

Note

7.10.1 Navigating across documents §p86

5

865

https://tc39.es/ecma262/#sec-ordinaryset
https://tc39.es/ecma262/#sec-ordinarydelete
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error

browsing context
the browsing contextp811 to be navigated (but see below)

browsing context switch needed
a boolean indicating whether or not the navigation should conclude by discardingp831 the given browsing contextp866 and creating a
new one

history handling
a history handling behaviorp866

After Documentp114 creation, the session historyp849 gets updated. A history handling behavior is used to track the desired type of
session history update throughout the navigation process. It is one of the following:

"default"
A regular navigation which adds a new entry to the session history.

"entry update"
A navigation to an existing session history entryp849 to recreate that entry's Documentp114, which was previously discardedp831.

"reload"
A navigation intended to reload the current page and replace the current session history entryp850.

"replace"
A non-reload navigation that will replace the current session history entryp850.

Navigation always involves source browsing context, which is the browsing context which was responsible for starting the
navigation.

As explained in issue #1130 the use of a browsing context as source might not be the correct architecture.

To navigate a browsing context browsingContext to a resource resource, with an optional boolean exceptionsEnabled (default false)
and an optional history handling behaviorp866 historyHandling (default "defaultp866"):

1. If resource is a URL, then set resource to a new request whose url is resource.

2. If resource is a request and historyHandling is "reloadp866", then set resource's reload-navigation flag.

3. If the source browsing contextp866 is not allowed to navigatep818 browsingContext, then:

1. If exceptionsEnabled is given and is true, then throw a "SecurityError" DOMException.

2. Otherwise, the user agent may instead offer to open resource in a new top-level browsing contextp814 or in the top-
level browsing contextp814 of the source browsing contextp866, at the user's option, in which case the user agent
must navigatep866 that designated top-level browsing contextp814 to resource as if the user had requested it
independently.

4. If there is a preexisting attempt to navigate browsingContext, and the source browsing contextp866 is the same as
browsingContext, and that attempt is currently running the unload a documentp886 algorithm, then return without affecting
the preexisting attempt to navigate browsingContext.

5. If the prompt to unloadp885 algorithm is being run for the active documentp811 of browsingContext, then return without
affecting the prompt to unloadp885 algorithm.

6. If historyHandling is not "reloadp866", resource is a request, resource's url equals browsingContext's active documentp811 's
URL with exclude fragments flag set, and resource's url's fragment is non-null, then:

Once a navigation paramsp865 struct is created, this standard does not mutate any of its items. They are only passed onward to
other algorithms.

Note

Doing so, however, can be dangerous, as it means that the user is overriding the author's explicit request to
sandbox the content.

Note

866

https://infra.spec.whatwg.org/#struct-item
https://github.com/whatwg/html/issues/1130
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-reload-navigation-flag
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://url.spec.whatwg.org/#concept-url-equals
https://dom.spec.whatwg.org/#concept-document-url
https://fetch.spec.whatwg.org/#concept-request-url
https://url.spec.whatwg.org/#concept-url-fragment

1. Navigate to that fragmentp880 given historyHandling.

2. Return.

7. Let activeDocumentNavigationOrigin be the originp837 of the active documentp811 of browsingContext.

8. Let incumbentNavigationOrigin be the originp837 of the incumbent settings objectp921, or if no scriptp614 was involved, the
originp837 of the node document of the element that initiated the navigationp866.

9. Cancel any preexisting but not yet maturep876 attempt to navigate browsingContext, including canceling any instances of the
fetch algorithm started by those attempts. If one of those attempts has already created and initialized a new Document
objectp873, abortp887 that Documentp114 also. (Navigation attempts that have maturedp876 already have session history entries,
and are therefore handled during the update the session history with the new page p875 algorithm, later.)

10. Prompt to unloadp885 the active documentp811 of browsingContext. If the user refused to allow the document to be
unloadedp886, then return.

If this instance of the navigationp866 algorithm gets canceled while this step is running, the prompt to unloadp885 algorithm
must nonetheless be run to completion.

11. Abortp887 the active documentp811 of browsingContext.

12. If browsingContext is a child browsing contextp814, then put it in the delaying load events modep815.

The user agent must take this child browsing contextp814 out of the delaying load events modep815 when this navigationp866

algorithm later maturesp876, or when it terminates (whether due to having run all the steps, or being canceled, or being
aborted), whichever happens first.

13. Let navigationType be "form-submission" if the navigation algorithmp866 was invoked as a result of the form submission
algorithmp596, and "other" otherwise.

14. Let sandboxFlags be the result of determining the creation sandboxing flagsp844 given browsingContext and
browsingContext's containerp814.

15. Return to whatever algorithm invoked the navigation steps and continue running these steps in parallelp42.

16. This is the step that attempts to obtain resource, if necessary. Jump to the first appropriate substep:

If resource is a response

1. Assert: browsingContext is not a top-level browsing contextp814.

2. Let finalSandboxFlags be the union of browsingContext's sandboxing flagsp844 and resource's forced sandboxing
flag setp844.

3. Let responseOrigin be the result of determining the originp812 given browsingContext, resource's url,
finalSandboxFlags, incumbentNavigationOrigin, and activeDocumentNavigationOrigin.

4. Let navigationParams be a new navigation paramsp865 whose requestp865 is null, responsep865 is resource,
originp865 is responseOrigin, final sandboxing flag setp865 is finalSandboxFlags, cross-origin opener policyp865 is
"unsafe-nonep845", reserved environmentp865 is null, browsing contextp866 is browsingContext, browsing context
switch neededp866 is false, and history handlingp866 is historyHandling.

5. Run process a navigate responsep871 with navigationType, the source browsing contextp866, and
navigationParams.

If resource is a request whose url's scheme is "javascriptp872"
Queue a global taskp945 on the DOM manipulation task sourcep952 given browsingContext's active windowp811 to run these
steps:

1. Let response be the result of executing a javascript: URL requestp872 given resource, the source browsing
contextp866, and browsingContext.

2. Let finalSandboxFlags be the union of browsingContext's sandboxing flagsp844 and response's forced sandboxing
flag setp844.

3. Let navigationParams be a new navigation paramsp865 whose requestp865 is resource, responsep865 is response,
originp865 is activeDocumentNavigationOrigin, final sandboxing flag setp865 is finalSandboxFlags, cross-origin
opener policyp865 is browsingContext's active documentp811 's cross-origin opener policyp115, reserved

867

https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#set-union
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://url.spec.whatwg.org/#concept-url-scheme
https://infra.spec.whatwg.org/#set-union

environmentp865 is null, browsing contextp866 is browsingContext, browsing context switch neededp866 is false,
and history handlingp866 is historyHandling.

4. Run process a navigate responsep871 with navigationType, the source browsing contextp866, and
navigationParams.

If resource is to be fetched using `GET`, and there are relevant application cachesp893 that are identified by a
URL with the same originp838 as the URL in question, and that have this URL as one of their entries, excluding
entries marked as foreignp893, and whose modep893 is fastp893, and the user agent is not in a mode where it will
avoid using application cachesp892

Fetch resource from the most appropriate application cachep894 of those that match.

This still needs to be integrated with the Fetch standard. [FETCH]p1287

If resource is a request whose url's scheme is a fetch scheme
Run process a navigate fetchp868 given resource, the source browsing contextp866, browsingContext, navigationType,
sandboxFlags, incumbentNavigationOrigin, activeDocumentNavigationOrigin, and historyHandling.

Otherwise, resource is a request whose url's scheme is neither "javascriptp872" nor a fetch scheme
Run process a navigate URL schemep872 given resource's url and browsingContext.

To process a navigate fetch, given a request request, two browsing contextsp811 sourceBrowsingContext and browsingContext, a
string navigationType, a sandboxing flag setp842 sandboxFlags, two originsp837 incumbentNavigationOrigin and
activeDocumentNavigationOrigin, and a history handling behaviorp866 historyHandling:

1. Let response be null.

2. Set request's client to sourceBrowsingContext's active documentp811 's relevant settings objectp924, destination to "document",
mode to "navigate", credentials mode to "include", use-URL-credentials flag, redirect mode to "manual", and replaces client
id to browsingContext's active documentp811 's relevant settings objectp924 's idp916.

3. If browsingContext's containerp814 is non-null:

1. If the browsingContext's containerp814 has a browsing context scope originp818, then set request's origin to that
browsing context scope originp818.

2. Set request's destination to browsingContext's containerp814 's local name.

4. Let reservedEnvironment be null.

5. Let responseOrigin be null.

6. Let browsingContextSwitchNeeded be false.

7. Let finalSandboxFlags be an empty sandboxing flag setp842.

8. Let responseCOOP be "unsafe-nonep845".

So for example a javascript: URLp872 in an hrefp284 attribute of an ap238 element would only be evaluated when the
link was followedp290, while such a URL in the srcp362 attribute of an iframep361 element would be evaluated in the
context of the iframep361 's nested browsing contextp814 when the iframep361 is being set up. Once evaluated, its return
value (if it was a string) would replace that browsing contextp811 's active documentp811, thus also changing the
corresponding Windowp824 object.

Example

For example, imagine an HTML page with an associated application cache displaying an image and a form, where the
image is also used by several other application caches. If the user right-clicks on the image and chooses "View
Image", then the user agent could decide to show the image from any of those caches, but it is likely that the most
useful cache for the user would be the one that was used for the aforementioned HTML page. On the other hand, if
the user submits the form, and the form does a POST submission, then the user agent will not use an application
cache at all; the submission will be made to the network.

Example

868

https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-request-redirect-mode
https://fetch.spec.whatwg.org/#concept-request-replaces-client-id
https://fetch.spec.whatwg.org/#concept-request-replaces-client-id
https://fetch.spec.whatwg.org/#concept-request-origin
https://fetch.spec.whatwg.org/#concept-request-destination
https://dom.spec.whatwg.org/#concept-element-local-name

9. While true:

1. Let currentURL be response's location URL, if response is not null, and request's current URL otherwise.

2. If reservedEnvironment is not null and currentURL's origin is not the samep838 as reservedEnvironment's creation
URLp916 's origin, then:

1. Run the environment discarding stepsp917 for reservedEnvironment.

2. Set reservedEnvironment to null.

3. If reservedEnvironment is null, then:

1. Let topLevelCreationURL be currentURL.

2. Let topLevelOrigin be null.

3. If browsingContext is not a top-level browsing contextp814, then:

1. Let parentEnvironment be browsingContext's containerp814 's relevant settings objectp924.

2. Set topLevelCreationURL to parentEnvironment's top-level creation URLp916 and topLevelOrigin
to parentEnvironment's top-level originp916.

4. Set reservedEnvironment to a new environmentp916 whose idp916 is a unique opaque string, target
browsing contextp917 is browsingContext, creation URLp916 is currentURL, top-level creation URLp916 is
topLevelCreationURL, and top-level originp916 is topLevelOrigin.

4. Set request's reserved client to reservedEnvironment.

5. If the Should navigation request of type from source in target be blocked by Content Security Policy? algorithm
returns "Blocked" when executed upon request, navigationType, sourceBrowsingContext, and browsingContext,
then set response to a network error and break. [CSP]p1285

6. Otherwise:

1. If response is null, fetch request.

2. Otherwise, perform HTTP-redirect fetch using request and response.

3. Wait for the taskp944 on the networking task sourcep952 to process response and set response to the
result.

4. Set finalSandboxFlags to the union of browsingContext's sandboxing flagsp844 and response's forced
sandboxing flag setp844.

5. Set responseOrigin to the result of determining the originp812 given browsingContext, request's url,
finalSandboxFlags, incumbentNavigationOrigin, and activeDocumentNavigationOrigin.

6. If browsingContext is a top-level browsing contextp814, then:

1. Set responseCOOP to the result of obtaining a cross-origin opener policyp845 given response and
reservedEnvironment.

2. If sandboxFlags is not empty and responseCOOP is not "unsafe-nonep845", then set response to
an appropriate network error and break.

3. Let responseRequiresBrowsingContexGroupSwitch be the result of checking if the response
requires a browsing context group switchp846 given browsingContext, responseOrigin, and
responseCOOP.

The created environment's active service workerp917 is set in the Handle Fetch algorithm during the
fetch if the request URL matches a service worker registration. [SW]p1291

Note

This results in a network error as one cannot simultaneously provide a clean slate to a
response using cross-origin opener policy and sandbox the result of navigating to that
response.

Note

869

https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-request-current-url
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#concept-url-origin
https://w3c.github.io/ServiceWorker/#on-fetch-request-algorithm
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://w3c.github.io/webappsec-csp/#should-block-navigation-request
https://fetch.spec.whatwg.org/#concept-network-error
https://infra.spec.whatwg.org/#iteration-break
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-http-redirect-fetch
https://fetch.spec.whatwg.org/#process-response
https://infra.spec.whatwg.org/#set-union
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-network-error
https://infra.spec.whatwg.org/#iteration-break

4. If responseRequiresBrowsingContextGroupSwitch is true, set browsingContextSwitchNeeded to
true.

7. If response is not a network error, browsingContext is a child browsing contextp814, and the result of
performing a cross-origin resource policy check with browsingContext's container documentp814 's
originp837, browsingContext's container documentp814 's relevant settings objectp924, request's destination,
response, and true is blocked, then set response to a network error and break.

8. If response does not have a location URL or the location URL is not a URL whose scheme is an HTTP(S)
scheme, then break.

10. If response has a location URL that is failure, then set response to a network error.

11. Otherwise, if response has a location URL that is a URL whose scheme is "blob", "file", "filesystem", or "javascript",
then set response to a network error.

12. Otherwise, if response has a location URL that is a URL whose scheme is a fetch scheme, then run process a navigate
fetchp868 with a new request whose url is response's location URL, sourceBrowsingContext, browsingContext, navigationType,
sandboxFlags, incumbentNavigationOrigin, activeDocumentNavigationOrigin, and historyHandling, and return.

13. Otherwise, if response has a location URL that is a URL, run the process a navigate URL schemep872 given response's location
URL and browsingContext, and return.

14. Fallback in prefer-online mode: If response was not fetched from an application cachep892, and was to be fetched using
`GET`, and there are relevant application cachesp893 that are identified by a URL with the same originp838 as the URL in
question, and that have this URL as one of their entries, excluding entries marked as foreignp893, and whose modep893 is
prefer-onlinep893, and the user didn't cancel the navigation attempt during the earlier step, and response is either a network
error or its status is not an ok status, then:

Let candidate be the response identified by the URL in question from the most appropriate application cachep894 of those that
match.

If candidate is not marked as foreignp893, then the user agent must discard the failed load and instead continue along these
steps using candidate as response. The user agent may indicate to the user that the original page load failed, and that the
page used was a previously cached response.

15. Fallback for fallback entries: If response was not fetched from an application cachep892, and was to be fetched using
`GET`, and its URL matches the fallback namespacep894 of one or more relevant application cachesp893, and the most
appropriate application cachep894 of those that match does not have an entry in its online safelistp893 that has the same
originp838 as response's URL and that is a prefix matchp67 for response's URL, and the user didn't cancel the navigation
attempt during the earlier step, and response is either a network error or its status is not an ok status, then:

Let candidate be the fallback responsep893 specified for the fallback namespacep893 in question. If multiple application caches
match, the user agent must use the fallback of the most appropriate application cachep894 of those that match.

If candidate is not marked as foreignp893, then the user agent must discard the failed load and instead continue along these
steps using candidate as response. The document's URL, if appropriate, will still be the originally requested URL, not the
fallback URL, but the user agent may indicate to the user that the original page load failed, that the page used was a fallback
response, and what the URL of the fallback response actually is.

16. Let navigationParams be a new navigation paramsp865 whose requestp865 is request, responsep865 is response, originp865 is
responseOrigin, final sandboxing flag setp865 is finalSandboxFlags, cross-origin opener policyp865 is responseCOOP, reserved
environmentp865 is reservedEnvironment, browsing contextp866 is browsingContext, browsing context switch neededp866 is
browsingContextSwitchNeeded, and history handlingp866 is historyHandling.

17. Run process a navigate responsep871 with navigationType, the source browsing contextp866, and navigationParams.

Here we're running the cross-origin resource policy check against the parent browsing contextp814

rather than sourceBrowsingContext. This is because we care about the same-originness of the
embedded content against the parent context, not the navigation source.

Note

Navigation handles redirects manually as navigation is the only place in the web platform that cares
for redirects to mailto: URLs and such.

Note

870

https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-network-error
https://infra.spec.whatwg.org/#iteration-break
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-response-location-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://infra.spec.whatwg.org/#iteration-break
https://tools.ietf.org/html/rfc6068#section-2
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-response-location-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#concept-response-location-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-response-location-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://dom.spec.whatwg.org/#concept-document-url

To process a navigate response, given a string navigationType, a browsing contextp811 source, and a navigation paramsp865

navigationParams:

1. Let response be navigationParams's responsep865.

2. Let browsingContext be navigationParams's browsing contextp866.

3. Let failure be false.

4. If response is a network error, then set failure to true.

Otherwise, if the result of should navigation response to navigation request of type from source in target be blocked by
Content Security Policy? given navigationParams's requestp865, response, navigationType, source, and browsingContext is
"Blocked", then set failure to true. [CSP]p1285

Otherwise, if the result of checking a navigation response's adherence to its embedder policyp848 given response and
browsingContext is false, then set failure to true.

Otherwise, if the result of checking a navigation response's adherence to `X-Frame-Options`p888 given response,
browsingContext, and navigationParams's originp865 is false, then set failure to true.

5. If failure is true, then:

1. Display the inline content with an appropriate error shown to the userp879 given browsingContext.

2. Run the environment discarding stepsp917 for navigationParams's reserved environmentp865.

3. Return.

6. If response's status is 204 or 205, then return.

7. If response has a `Content-Disposition` header specifying the attachment disposition type, then:

1. If the result of running the allowed to downloadp290 given source and browsingContext is true, then handle
response as a downloadp291.

2. Return.

8. Let type be the computed type of response.

9. If the user agent has been configured to process resources of the given type using some mechanism other than rendering
the content in a browsing contextp811, then skip this step. Otherwise, if the type is one of the following types, jump to the
appropriate entry in the following list, and process response as described there:

↪ an HTML MIME type
Follow the steps given in the HTML documentp876 section providing navigationParams. Once the steps have
completed, return.

↪ an XML MIME type that is not an explicitly supported XML MIME typep872

Follow the steps given in the XML documentp877 section providing navigationParams and type. Once the steps have
completed, return.

↪ a JavaScript MIME type
↪ a JSON MIME type that is not an explicitly supported JSON MIME typep872

↪ "text/cache-manifestp1253"
↪ "text/cssp1283"
↪ "text/plain"
↪ "text/vttp1284"

Follow the steps given in the plain text filep877 section providing navigationParams and type. Once the steps have
completed, return.

↪ "multipart/x-mixed-replacep1251"
Follow the steps given in the multipart/x-mixed-replacep878 section providing navigationParams. Once the steps have

This is where the network errors defined and propagated by Fetch, such as DNS or TLS errors, end up being displayed to
users. [FETCH]p1287

Note

871

https://fetch.spec.whatwg.org/#concept-network-error
https://w3c.github.io/webappsec-csp/#should-block-navigation-response
https://w3c.github.io/webappsec-csp/#should-block-navigation-response
https://fetch.spec.whatwg.org/#concept-response-status
https://tools.ietf.org/html/rfc6266
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://mimesniff.spec.whatwg.org/#html-mime-type
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://mimesniff.spec.whatwg.org/#json-mime-type
https://tools.ietf.org/html/rfc2046#section-4.1.3

completed, return.

↪ A supported image, video, or audio type
Follow the steps given in the mediap878 section providing navigationParams and type. Once the steps have completed,
return.

↪ A type that will use an external application to render the content in browsingContext
Follow the steps given in the pluginp879 section providing navigationParams and type. Once the steps have completed,
return.

An explicitly supported XML MIME type is an XML MIME type for which the user agent is configured to use an external
application to render the content (either a pluginp45 rendering directly in browsingContext, or a separate application), or one
for which the user agent has dedicated processing rules (e.g., a web browser with a built-in Atom feed viewer would be said
to explicitly support the application/atom+xmlp1282 MIME type), or one for which the user agent has a dedicated handler.

An explicitly supported JSON MIME type is a JSON MIME type for which the user agent is configured to use an external
application to render the content (either a pluginp45 rendering directly in browsingContext, or a separate application), or one
for which the user agent has dedicated processing rules, or one for which the user agent has a dedicated handler.

10. Non-document content: If, given type, the new resource is to be handled by displaying some sort of inline content, e.g., a
native rendering of the content or an error message because the specified type is not supported, then display the inline
contentp879 given browsingContext, and then return.

11. Otherwise, the document's type is such that the resource will not affect browsingContext, e.g., because the resource is to be
handed to an external application or because it is an unknown type that will be processed as a downloadp291. Process the
resource appropriatelyp872.

To process a navigate URL scheme, given a URL url and browsing contextp811 browsingContext, run these steps:

1. If url is to be handled using a mechanism that does not affect browsingContext, e.g., because url's scheme is handled
externally, then proceed with that mechanism insteadp872.

2. Otherwise, url is to be handled by displaying some sort of inline content, e.g., an error message because the specified
scheme is not one of the supported protocols, or an inline prompt to allow the user to select a registered handlerp983 for the
given scheme. Display the inline contentp879 given browsingContext.

When a resource is handled by passing its URL or data to an external software package separate from the user agent (e.g.
handing a mailto: URL to a mail client, or a Word document to a word processor), user agents should attempt to mitigate the risk that
this is an attempt to exploit the target software, e.g. by prompting the user to confirm that the source browsing contextp866 's active
documentp811 's originp837 is to be allowed to invoke the specified software. In particular, if the navigatep866 algorithm was invoked when
source browsing contextp866 's active windowp811 does not have transient activationp767, the user agent should not invoke the external
software package without prior user confirmation.

To execute a javascript: URL request, given a request request and two browsing contextsp811 source and browsingContext, run
these steps:

1. Let response be a response whose status is 204.

2. If both of the following are true:

◦ source's active documentp811 's originp837 is same originp838 with browsingContext's active documentp811 's originp837.

As explained in issue #2591 this step does not work and presents a security issue.

◦ The Should navigation request of type from source in target be blocked by Content Security Policy? algorithm
returns "Allowed" when executed upon request, "other", source, and browsingContext. [CSP]p1285

then:

In the case of a registered handler being used, navigatep866 will be invoked with a new URL.
Note

For example, there could be a vulnerability in the target software's URL handler which a hostile page would attempt to exploit by
tricking a user into clicking a link.

Example

872

https://mimesniff.spec.whatwg.org/#xml-mime-type
https://mimesniff.spec.whatwg.org/#json-mime-type
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://tools.ietf.org/html/rfc6068#section-2
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-status
https://github.com/whatwg/html/issues/2591
https://w3c.github.io/webappsec-csp/#should-block-navigation-request

1. Let urlString be the result of running the URL serializer on request's url.

2. Let encodedScriptSource be the result of removing the leading "javascript:" from urlString.

3. Let scriptSource be the UTF-8 decoding of the percent-decoding of encodedScriptSource.

4. Append browsingContext's active documentp811 's URL to request's URL list.

5. Let settings be browsingContext's active documentp811 's relevant settings objectp924.

6. Let baseURL be settings's API base URLp917.

7. Let script be the result of creating a classic scriptp933 given scriptSource, settings, baseURL, and the default classic
script fetch optionsp926.

8. Let evaluationStatus be the result of running the classic scriptp934 script.

9. Let result be undefined if evaluationStatus is an abrupt completion or evaluationStatus.[[Value]] is empty, or
evaluationStatus.[[Value]] otherwise.

10. If Type(result) is String, then set response to a response whose header list consists of `Content-Typep90`/`text/
htmlp1250` and `Referrer-Policy`/settings's referrer policy, and whose body is result.

The exact conversion between the string result and the bytes that comprise a response body is not yet
specified, pending further investigation into user agent behavior. See issue #1129.

3. Return response.

In addition to the specific issues linked above, javascript:p872 URLs have a dedicated label on the issue tracker documenting
various problems with their specification.

Some of the sections below, to which the above algorithm defers in certain cases, use the following steps to create and initialize a
Document object, given a type type, content type contentType, and navigation paramsp865 navigationParams:

1. Let browsingContext be navigationParams's browsing contextp866.

2. If navigationParams's browsing context switch neededp866 is true, then set browsingContext to the result of the obtain a
browsing context to use for a navigation responsep846 algorithm, given browsingContext, navigationParams's final sandboxing
flag setp865, and navigationParams's cross-origin opener policyp865.

3. Let permissionsPolicy be the result of creating a permissions policy from a response given browsingContext,
navigationParams's originp865, and navigationParams's responsep865. [PERMISSIONSPOLICY]p1289

4. Let creationURL be navigationParams's responsep865 's URL.

5. If navigationParams's requestp865 is non-null, then set creationURL to navigationParams's requestp865 's current URL.

6. If browsingContext's only entry in its session historyp849 is the initial about:blankp51 Documentp114 that was added when that
browsing contextp811 was createdp812, and navigationParams's history handlingp866 is "replacep866", and that Documentp114 's
originp837 is same origin-domainp838 with navigationParams's originp865, then do nothing.

7. Otherwise:

1. Let oiHeader be the result of getting a structured field value given `Origin-Isolationp1258` and "item" from
response's header list.

The creating a permissions policy from a response algorithm makes use of the passed originp837. If document.domainp840

has been used for browsingContext's container documentp814, then its originp837 cannot be same origin-domainp838 with
the passed origin, because these steps run before the document is created, so it cannot itself yet have used
document.domainp840. Note that this means that Permissions Policy checks are less permissive compared to doing a
same originp838 check instead.

See below for some examples of this in action.

Note

873

https://url.spec.whatwg.org/#concept-url-serializer
https://fetch.spec.whatwg.org/#concept-request-url
https://encoding.spec.whatwg.org/#utf-8-decode
https://url.spec.whatwg.org/#string-percent-decode
https://infra.spec.whatwg.org/#list-append
https://dom.spec.whatwg.org/#concept-document-url
https://fetch.spec.whatwg.org/#concept-request-url-list
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-ecmascript-data-types-and-values
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-header-list
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-header-dfn
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-response-body
https://github.com/whatwg/html/issues/1129
https://github.com/whatwg/html/labels/topic%3A%20javascript%3A%20URLs
https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-document-content-type
https://w3c.github.io/webappsec-feature-policy/#create-from-response
https://w3c.github.io/webappsec-feature-policy/#create-from-response
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-request-current-url
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list

2. Let requestsOI be true if oiHeader is not null and oiHeader[0] is the boolean true; otherwise false.

3. If reservedEnvironment is a non-secure contextp925, then set requestsOI to false.

4. Let agent be the result of obtaining a similar-origin window agentp914 given navigationParams's originp865,
browsingContext's groupp814, and requestsOI.

5. Let realm execution context be the result of creating a new JavaScript realmp918 given agent and the following
customizations:

▪ For the global object, create a new Windowp824 object.

▪ For the global this binding, use browsingContext's WindowProxyp834 object.

6. Let topLevelCreationURL be creationURL.

7. Let topLevelOrigin be navigationParams's originp865.

8. If browsingContext is not a top-level browsing contextp814, then:

1. Let parentEnvironment be browsingContext's containerp814 's relevant settings objectp924.

2. Set topLevelCreationURL to parentEnvironment's top-level creation URLp916.

3. Set topLevelOrigin to parentEnvironment's top-level originp916.

9. Set up a window environment settings objectp833 with realm execution context, navigationParams's reserved
environmentp865, topLevelCreationURL, and topLevelOrigin.

8. Let document be a new Documentp114, whose type is type, content type is contentType, originp837 is navigationParams's
originp865, permissions policyp115 is permissionsPolicy, active sandboxing flag setp844 is navigationParams's final sandboxing
flag setp865, and cross-origin opener policyp115 is navigationParams's cross-origin opener policyp865.

9. Set document's URL to creationURL.

10. Set document's referrer policyp115 to the result of parsing the `Referrer-Policy` header of navigationParams's responsep865.
[REFERRERPOLICY]p1290

11. Set document's embedder policyp115 to the result of obtaining an embedder policyp847 from navigationParams's responsep865.

12. Initialize a Document's CSP list given document, navigationParams's responsep865, and navigationParams's requestp865.
[CSP]p1285

13. If navigationParams's requestp865 is non-null, then:

1. Set document's referrerp114 to the empty string.

2. Let referrer be navigationParams's requestp865 's referrer.

3. If referrer is a URL record, then set document's referrerp114 to the serialization of referrer.

14. If navigationParams's responsep865 has a `Refreshp1259` header, then:

1. Let value be the isomorphic decoding of the value of the header.

2. Run the shared declarative refresh stepsp171 with document and value.

We do not currently have a spec for how to handle multiple `Refreshp1259` headers. This is tracked as issue #2900.

15. Return document.

Per Fetch, referrer will be either a URL record or "no-referrer" at this point.
Note

In this example, the child document is not allowed to use PaymentRequest, despite being same origin-domainp838 at the time the
child document tries to use it. At the time the child document is initialized, only the parent document has set document.domainp840,

Example

874

https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html#boolean
https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#concept-document-url
https://w3c.github.io/webappsec-referrer-policy/#parse-referrer-policy-from-header
https://w3c.github.io/webappsec-csp/#initialize-document-csp
https://fetch.spec.whatwg.org/#concept-request-referrer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#isomorphic-decode
https://github.com/whatwg/html/issues/2900
https://w3c.github.io/payment-request/#dom-paymentrequest

Some of the sections below, to which the above algorithm defers in certain cases, require the user agent to update the session
history with the new page, given some navigation paramsp865 navigationParams. When a user agent is required to do this, it must
queue a global taskp945 on the networking task sourcep952, given the relevant global objectp924 of the Documentp114 object of the current
entryp850 (not the new one), to run the following steps:

1. Unloadp886 the Documentp114 object of the current entryp850.

If this instance of the navigationp866 algorithm is canceled while this step is running the unload a documentp886 algorithm,
then the unload a documentp886 algorithm must be allowed to run to completion, but this instance of the navigationp866

algorithm must not run beyond this step. (In particular, for instance, the cancelation of this algorithm does not abort any
event dispatch or script execution occurring as part of unloading the document or its descendants.)

2. If navigationParams's history handlingp866 is "reloadp866" or "entry updatep866"

1. Replace the Documentp114 of the entry being updated, and any other entries that referenced the same document
as that entry, with the new Documentp114.

2. Traverse the historyp881 to the new entry.

If the navigation was initiated with a URL that equals the browsing contextp811 's active documentp811 's URL

1. Replace the current entryp850 with a new entry representing the new resource and its Documentp114 object,
related state, and the default scroll restoration modep850 of "autop850".

2. Traverse the historyp881 to the new entry.

and the child document has not.

<!-- https://foo.example.com/a.html -->
<!doctype html>
<script>
document.domain = 'example.com';
</script>
<iframe src=b.html></iframe>

<!-- https://bar.example.com/b.html -->
<!doctype html>
<script>
document.domain = 'example.com'; // This happens after the document is initialized
new PaymentRequest(…); // Not allowed to use
</script>

In this example, the child document is allowed to use PaymentRequest, despite not being same origin-domainp838 at the time the
child document tries to use it. At the time the child document is initialized, none of the documents have set document.domainp840

yet so same origin-domainp838 falls back to a normal same originp838 check.

<!-- https://example.com/a.html -->
<!doctype html>
<iframe src=b.html></iframe>
<!-- The child document is now initialized, before the script below is run. -->
<script>
document.domain = 'example.com';
</script>

<!-- https://example.com/b.html -->
<!doctype html>
<script>
new PaymentRequest(…); // Allowed to use
</script>

Example

875

https://w3c.github.io/payment-request/#dom-paymentrequest
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-equals
https://dom.spec.whatwg.org/#concept-document-url

Otherwise

1. Remove all the entries in the browsing contextp811 's session historyp849 after the current entryp850. If the current
entryp850 is the last entry in the session history, then no entries are removed.

2. Append a new entry at the end of the Historyp851 object representing the new resource and its Documentp114

object, related state, and the default scroll restoration modep850 of "autop850".

3. Traverse the historyp881 to the new entry, with historyHandlingp881 set to navigationParams's history
handlingp866.

3. The navigation algorithmp866 has now matured.

4. Try to scroll to the fragmentp876 for the Documentp114.

To try to scroll to the fragment for a Documentp114 document, perform the following steps in parallelp42:

1. Wait for an implementation-defined amount of time. (This is intended to allow the user agent to optimize the user experience
in the face of performance concerns.)

2. Queue a global taskp945 on the networking task sourcep952 given document's relevant global objectp924 to run these steps:

1. If document has no parser, or its parser has stopped parsingp1165, or the user agent has reason to believe the user
is no longer interested in scrolling to the fragment, then abort these steps.

2. Scroll to the fragmentp880 given in document's URL. If this does not find an indicated part of the documentp880, then
try to scroll to the fragmentp876 for document.

When an HTML document is to be loaded, given navigation paramsp865 navigationParams, the user agent must queue a taskp945 on
the networking task sourcep952 to:

1. Let document be the result of creating and initializing a Document objectp873 given "html", "text/html", and
navigationParams.

2. Create an HTML parserp1079 and associate it with the document. Each taskp944 that the networking task sourcep952 places on
the task queuep944 while fetching runs must then fill the parser's input byte streamp1085 with the fetched bytes and cause the
HTML parserp1079 to perform the appropriate processing of the input stream.

When no more bytes are available, the user agent must queue a global taskp945 on the networking task sourcep952 given the newly-
created Documentp114 's relevant global objectp924 for the parser to process the implied EOF character, which eventually causes a
loadp1282 event to be fired.

After creating the Documentp114 object, but before any script execution, certainly before the parser stopsp1165, the user agent must
update the session history with the new page p875 given navigationParams.

This doesn't necessarily have to affectp856 the user agent's user interface.
Note

The input byte streamp1085 converts bytes into characters for use in the tokenizerp1097. This process relies, in part, on
character encoding information found in the real Content-Type metadatap90 of the resource; the computed type is not
used for this purpose.

Note

Application cache selectionp907 happens in the HTML parserp1134.
Note

7.10.2 Page load processing model for HTML files §p87

6

876

https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-document-url

When faced with displaying an XML file inline, provided navigation paramsp865 navigationParams and a string type, user agents must
follow the requirements defined in XML and Namespaces in XML, XML Media Types, DOM, and other relevant specifications to create
and initialize a Document objectp873 given "xml", type, and navigationParams. They must also create a corresponding XML parserp1188.
[XML]p1293 [XMLNS]p1293 [RFC7303]p1291 [DOM]p1287

The actual HTTP headers and other metadata, not the headers as mutated or implied by the algorithms given in this specification, are
the ones that must be used when determining the character encoding according to the rules given in the above specifications. Once
the character encoding is established, the document's character encoding must be set to that character encoding.

If the document element, as parsed according to XML cited above, is found to be an htmlp152 element with an attribute manifestp152

whose value is not the empty string, then, as soon as the element is inserted into the documentp44, the user agent must parsep89 the
value of that attribute relative to that element's node document, and if that is successful, must apply the URL serializer algorithm to
the resulting URL recordp89 with the exclude fragment flag set to obtain manifest URL, and then run the application cache selection
algorithmp907 with manifest URL as the manifest URL, passing in the newly-created Documentp114. Otherwise, if the attribute is absent,
its value is the empty string, or parsing its value fails, then as soon as the document element is inserted into the documentp44, the user
agent must run the application cache selection algorithm p907 with no manifest, and passing in the Documentp114.

Then, with the newly created Documentp114, the user agent must update the session history with the new page p875 given
navigationParams. User agents may do this before the complete document has been parsed (thus achieving incremental rendering),
and must do this before any scripts are to be executed.

Error messages from the parse process (e.g., XML namespace well-formedness errors) may be reported inline by mutating the
Documentp114.

When a plain text document is to be loaded, provided navigation paramsp865 navigationParams and a string type, the user agent must
queue a taskp945 on the networking task sourcep952 to:

1. Let document be the result of creating and initializing a Document objectp873 given "html", type, and navigationParams.

2. Create an HTML parserp1079 and associate it with the document. Act as if the tokenizer had emitted a start tag token with the
tag name "pre" followed by a single U+000A LINE FEED (LF) character, and switch the HTML parserp1079 's tokenizer to the
PLAINTEXT statep1099. Each taskp944 that the networking task sourcep952 places on the task queuep944 while fetching runs must
then fill the parser's input byte streamp1085 with the fetched bytes and cause the HTML parserp1079 to perform the appropriate
processing of the input stream.

The rules for how to convert the bytes of the plain text document into actual characters, and the rules for actually rendering the text to
the user, are defined by the specifications for the computed MIME type of the resource (i.e., type).

The document's character encoding must be set to the character encoding used to decode the document.

Upon creation of the Documentp114 object, the user agent must run the application cache selection algorithm p907 with no manifest, and
passing in the newly-created Documentp114.

When no more bytes are available, the user agent must queue a global taskp945 on the networking task sourcep952 given the newly-
created Documentp114 's relevant global objectp924 for the parser to process the implied EOF character, which eventually causes a
loadp1282 event to be fired.

After creating the Documentp114 object, but potentially before the page has finished parsing, the user agent must update the session

At the time of writing, the XML specification community had not actually yet specified how XML and the DOM interact.
Note

Because the processing of the manifestp152 attribute happens only once the document element is parsed, any URLs referenced by
processing instructions before the document element (such as <?xml-stylesheet?> PIs) will be fetched from the network and
cannot be cached.

Note

7.10.3 Page load processing model for XML files §p87

7

7.10.4 Page load processing model for text files §p87

7

877

https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-serializer
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://dom.spec.whatwg.org/#concept-document-encoding

history with the new pagep875 given navigationParams.

User agents may add content to the headp153 element of the Documentp114, e.g., linking to a style sheet, providing script, or giving the
document a titlep154.

When a resource with the type multipart/x-mixed-replacep1251 is to be loaded in a browsing contextp811, the user agent must parse
the resource using the rules for multipart types. [RFC2046]p1290

This algorithm is passed navigation paramsp865, but it's unclear how exactly to use them.

For each body part obtained from the resource, the user agent must run process a navigate responsep871 using the new body part and
the same browsing contextp811, with history handlingp866 set to "replacep866" if a previous body part from the same resource resulted in
a creating and initializing a Document objectp873, and otherwise using the same setup as the navigatep866 attempt that caused this
section to be invoked in the first place.

For the purposes of algorithms processing these body parts as if they were complete stand-alone resources, the user agent must act as
if there were no more bytes for those resources whenever the boundary following the body part is reached.

When an image, video, or audio resource is to be loaded, provided navigation paramsp865 navigationParams and a string type, the user
agent should:

1. Let document be the result of creating and initializing a Document objectp873 given "html", type, and navigationParams.

2. Append an htmlp152 element to document.

3. Append a headp153 element to the htmlp152 element.

4. Append a bodyp178 element to the htmlp152 element.

5. Append an element host element for the media, as described below, to the bodyp178 element.

6. Set the appropriate attribute of the element host element, as described below, to the address of the image, video, or audio
resource.

The element host element to create for the media is the element given in the table below in the second cell of the row whose first cell
describes the media. The appropriate attribute to set is the one given by the third cell in that same row.

Type of media Element for the media Appropriate attribute

Image imgp320 srcp321

Video videop380 srcp390

Audio audiop384 srcp390

Then, the user agent must act as if it had stopped parsingp1165.

Upon creation of the Documentp114 object, the user agent must run the application cache selection algorithm p907 with no manifest, and
passing in the newly-created Documentp114.

In particular, if the user agent supports the Format=Flowed feature of RFC 3676 then the user agent would need to apply extra
styling to cause the text to wrap correctly and to handle the quoting feature. This could be performed using, e.g., a CSS extension.

Note

Thus, loadp1282 events (and for that matter unloadp1282 events) do fire for each body part loaded.
Note

7.10.5 Page load processing model for multipart/x-mixed-replace resources §p87

8

7.10.6 Page load processing model for media §p87

8

878

After creating the Documentp114 object, but potentially before the page has finished fully loading, the user agent must update the
session history with the new pagep875 given navigationParams.

User agents may add content to the headp153 element of the Documentp114, or attributes to the element host element, e.g., to link to a
style sheet, to provide a script, to give the document a titlep154, or to make the media autoplayp407.

When a resource that requires an external resource to be rendered is to be loaded, provided navigation paramsp865 navigationParams
and a string type, the user agent should:

1. Let document be the result of creating and initializing a Document objectp873 given "html", type, and navigationParmas.

2. Mark document as being a plugin document

3. Append an htmlp152 element to document.

4. Append a headp153 element to the htmlp152 element.

5. Append a bodyp178 element to the htmlp152 element.

6. Append an embedp369 to the bodyp178 element

7. Set the srcp369 attribute of the embedp369 element to the address of the resource.

Then, the user agent must act as if it had stopped parsingp1165.

Upon creation of the Documentp114 object, the user agent must run the application cache selection algorithm p907 with no manifest, and
passing in the newly-created Documentp114.

After creating the Documentp114 object, but potentially before the page has finished fully loading, the user agent must update the
session history with the new pagep875 given navigationParams.

User agents may add content to the headp153 element of the Documentp114, or attributes to the embedp369 element, e.g. to link to a style
sheet or to give the document a titlep154.

When the user agent is to display a user agent page inline, provided a browsing contextp811 browsingContext, the user agent should:

1. Let navigationParams be a new navigation paramsp865 whose requestp865 is null, responsep865 is null, originp865 is a new
opaque originp837, final sandboxing flag setp865 is an empty set, cross-origin opener policyp865 is "unsafe-nonep845", reserved
environmentp865 is null, browsing contextp866 is browsingContext, and browsing context switch neededp866 is false.

The algorithm called in the next step is not prepared to deal with a null responsep865. Probably we should synthesize one
instead.

2. Let document be the result of creating and initializing a Document objectp873 given "html", "text/html", and
navigationParams.

3. Either associate document with a custom rendering that is not rendered using the normal Documentp114 rendering rules, or

The term plugin documentp879 is used by Content Security Policy as part of the mechanism that ensures iframep361s can't be used
to evade plugin-types directives. [CSP]p1285

Note

If the Documentp114 's active sandboxing flag setp844 has its sandboxed plugins browsing context flag p842 set, the synthesized
embedp369 element will fail to render the contentp372 if the relevant pluginp45 cannot be securedp45.

Note

7.10.7 Page load processing model for content that uses plugins §p87

9

7.10.8 Page load processing model for inline content that doesn't have a DOM §p87

9

879

mutate document until it represents the content the user agent wants to render.

Once the page has been set up, the user agent must act as if it had stopped parsingp1165.

Upon creation of the Documentp114 object, the user agent must run the application cache selection algorithm p907 with no manifest,
passing in the newly-created Documentp114.

After creating the Documentp114 object, but potentially before the page has been completely set up, the user agent must update the
session history with the new pagep875 given navigationParams.

To navigate to a fragment, with a history handling behaviorp866 historyHandling:

1. If historyHandling is not "replacep866", then remove all the entries in the browsing contextp811 's session historyp849 after the
current entryp850. (If the current entryp850 is the last entry in the session history, then no entries are removed.)

2. Remove any tasksp944 queued by the history traversal task sourcep952 that are associated with any Documentp114 objects in the
top-level browsing contextp814 's document familyp815.

3. Append a new entry at the end of the Historyp851 object representing the new resource and its Documentp114 object, related
state, and current entryp850 's scroll restoration modep850. Its URL must be set to the address to which the user agent was
navigatingp866. The title must be left unset.

4. Traverse the historyp881 to the new entry, with historyHandlingp881 set to historyHandling and with nonBlockingEventsp881 set
to true. This will scroll to the fragmentp880 given in what is now the document's URL.

When the user agent is required to scroll to the fragment and the indicated part of the documentp880, if any, is being renderedp1192,
the user agent must either change the scrolling position of the document using the following algorithm, or perform some other action
such that the indicated part of the documentp880 is brought to the user's attention. If there is no indicated part, or if the indicated part
is not being renderedp1192, then the user agent must do nothing. The aforementioned algorithm is as follows:

1. If there is no indicated part of the documentp880, set the Documentp114 's target elementp881 to null.

2. If the indicated part of the documentp880 is the top of the document, then:

1. Set the Documentp114 's target elementp881 to null.

2. Scroll to the beginning of the document for the Documentp114. [CSSOMVIEW]p1286

3. Otherwise:

1. Let target be element that is the indicated part of the documentp880.

2. Set the Documentp114 's target elementp881 to target.

3. Scroll target into view, with behavior set to "auto", block set to "start", and inline set to "nearest".
[CSSOMVIEW]p1286

4. Run the focusing stepsp776 for target, with the Documentp114 's viewport as the fallback target.

5. Move the sequential focus navigation starting point p779 to target.

The indicated part of the document is the one that the fragment, if any, identifies. The semantics of the fragment in terms of
mapping it to a node is defined by the specification that defines the MIME type used by the Documentp114 (for example, the processing

This doesn't necessarily have to affectp856 the user agent's user interface.
Note

If the scrolling fails because the relevant ID has not yet been parsed, then the original navigationp866 algorithm will take care of the
scrolling instead, as the last few steps of its update the session history with the new page p875 algorithm.

Note

7.10.9 Navigating to a fragment §p88

0

880

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-id
https://drafts.csswg.org/cssom-view/#scroll-to-the-beginning-of-the-document
https://drafts.csswg.org/cssom-view/#scroll-an-element-into-view
https://drafts.csswg.org/css2/#viewport
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://mimesniff.spec.whatwg.org/#mime-type

of fragments for XML MIME types is the responsibility of RFC7303). [RFC7303]p1291

There is also a target element for each Documentp114, which is used in defining the :targetp726 pseudo-class and is updated by the
above algorithm. It is initially null.

For HTML documents (and HTML MIME types), the following processing model must be followed to determine what the indicated part of
the documentp880 is.

1. Let fragment be the document's URL's fragment.

2. If fragment is the empty string, then the indicated part of the documentp880 is the top of the document; return.

3. If find a potential indicated elementp881 with fragment returns non-null, then the return value is the indicated part of the
documentp880; return.

4. Let fragmentBytes be the result of percent-decoding fragment.

5. Let decodedFragment be the result of running UTF-8 decode without BOM on fragmentBytes.

6. If find a potential indicated elementp881 with decodedFragment returns non-null, then the return value is the indicated part of
the documentp880; return.

7. If decodedFragment is an ASCII case-insensitive match for the string top, then the indicated part of the documentp880 is the
top of the document; return.

8. There is no indicated part of the documentp880.

To find a potential indicated element given a string fragment, run these steps:

1. If there is an element in the document tree that has an ID equal to fragment, then return the first such element in tree order.

2. If there is an ap238 element in the document tree that has a namep1233 attribute whose value is equal to fragment, then return
the first such element in tree order.

3. Return null.

To traverse the history to a session history entryp849 entry, with an optional history handling behaviorp866 historyHandling (default
"defaultp866"), an optional boolean nonBlockingEvents (default false), and an optional boolean explicitHistoryNavigation (default
false):

1. If entry no longer holds a Documentp114 object, then:

1. Let request be a new request whose url is entry's URL.

2. If explicitHistoryNavigation is true, then set request's history-navigation flag.

3. Assert: historyHandling is not "replacep866".

4. Navigatep866 the browsing contextp811 to request with historyHandlingp866 set to "entry updatep866". The navigation
must be done using the same source browsing contextp866 as was used the first time entry was created.

This algorithm is not just invoked when explicitly going back or forwards in the session history p853 — it is also invoked in other
situations, for example when navigating a browsing contextp866, as part of updating the session history with the new page p875.

Note

The "navigatep866" algorithm reinvokes this "traverse" algorithm to complete the traversal, at which point entry
holds a Documentp114 object.

Note

If the resource was obtained using a non-idempotent action, for example a POST form submission, or if the
Note

7.10.10 History traversal §p88

1

881

https://url.spec.whatwg.org/#concept-url-fragment
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://mimesniff.spec.whatwg.org/#html-mime-type
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#string-percent-decode
https://encoding.spec.whatwg.org/#utf-8-decode-without-bom
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-history-navigation-flag

5. Return.

2. If the current entryp850 's title was not set by the pushState()p854 or replaceState()p854 methods, then set its title to the
value returned by the document.titlep117 IDL attribute.

3. If appropriate, update the current entryp850 in the browsing contextp811 's Documentp114 object's Historyp851 object to reflect
any state that the user agent wishes to persist. The entry is then said to be an entry with persisted user statep850.

4. If entry has a different Documentp114 object than the current entryp850, then run the following substeps:

1. Remove any tasksp944 queued by the history traversal task sourcep952 that are associated with any Documentp114

objects in the top-level browsing contextp814 's document familyp815.

2. If the originp837 of entry's Documentp114 object is not the samep838 as the originp837 of the current entryp850 's
Documentp114 object, then run the following subsubsteps:

1. The current browsing context namep819 must be stored with all the entries in the history that are
associated with Documentp114 objects with the same originp838 as the active documentp811 and that are
contiguous with the current entryp850.

2. If the browsing context is a top-level browsing contextp814, but not an auxiliary browsing contextp814, then
set the browsing context's namep819 to the empty string.

3. Set the active documentp812 of the browsing contextp811 to entry's Documentp114 object.

4. If entry has a browsing context namep819, then run the following subsubsteps:

1. Set the browsing context's browsing context namep819 to entry's browsing context namep819.

2. Clear any browsing context namesp819 of all entries in the history that are associated with Documentp114

objects with the same originp838 as the new active documentp811 and that are contiguous with entry.

5. If entry's Documentp114 object has any form controls whose autofill field namep579 is "offp574", invoke the reset
algorithmp604 of each of those elements.

6. If the current document readinessp117 of entry's Documentp114 object is "complete", then queue a global taskp945 on
the DOM manipulation task sourcep952 given entry's Documentp114 's relevant global objectp924 to run the following
subsubsteps:

1. If the Documentp114 's page showingp885 flag is true, then abort these steps.

2. Set the Documentp114 's page showingp885 flag to true.

3. Run any session history document visibility change steps for Documentp114 that are defined by
other applicable specificationsp65.

4. Fire an event named pageshowp1282 at the Documentp114 object's relevant global objectp924, using
PageTransitionEventp884, with the persistedp885 attribute initialized to true, and legacy target override
flag set.

5. Set the document's URL to entry's URL.

6. If entry has a URL whose fragment is not identical to that of the current entryp850 's, and the two share the same Documentp114

object, then let hash changed be true, and let old URL be the current entryp850 's URL and new URL be entry's URL. Otherwise,
let hash changed be false.

7. If historyHandling is "replacep866", then remove the entry immediately before the specified entry in the session history.

8. If entry is not an entry with persisted user statep850, but its URL's fragment is non-null, then scroll to the fragmentp880.

resource is no longer available, for example because the computer is now offline and the page wasn't cached,
navigating to it again might not be possible. In this case, the navigation will result in a different page than
previously; for example, it might be an error message explaining the problem or offering to resubmit the form.

This is specifically intended for use by Page Visibility. [PAGEVIS]p1289

Note

882

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment
https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment

9. Set the current entryp850 to entry.

10. Let targetRealm be the current Realm Record.

11. If entry has serialized statep849, then let state be StructuredDeserializep108(entry's serialized statep849, targetRealm). If this
throws an exception, catch it, ignore the exception, and let state be null.

12. Otherwise, let state be null.

13. Set history.statep852 to state.

14. Let state changed be true if entry's Documentp114 object has a latest entryp850, and that entry is not entry; otherwise let it be
false.

15. Set entry's Documentp114 object's latest entryp850 to entry.

16. If nonBlockingEvents is false, then run the following substeps immediatelyp42. Otherwise, queue a global taskp945 on the DOM
manipulation task sourcep952 given entry's Documentp114 's relevant global objectp924 to run the following substeps instead.

1. If state changed is true, then fire an event named popstatep1282 at the Documentp114 object's relevant global
objectp924, using PopStateEventp883, with the statep884 attribute initialized to state.

2. If entry is an entry with persisted user statep850, then the user agent may restore persisted user statep883 and
update aspects of the document and its rendering.

3. If hash changed is true, then fire an event named hashchangep1281 at the browsing contextp811 's active windowp811,
using HashChangeEventp884, with the oldURLp884 attribute initialized to old URL and the newURLp884 attribute
initialized to new URL.

When the user agent is to restore persisted user state from a history entry, it must run the following steps immediately:

1. If the entry has a scroll restoration modep850, let scrollRestoration be that. Otherwise let scrollRestoration be "autop850"

2. If scrollRestoration is "manualp850", then the user agent should not restore the scroll position for the Documentp114 or any of its
scrollable regions, with the exception of any child browsing contextsp814 of Documentp114 's browsing contextp811 whose scroll
restoration is controlled by their own history entry's scroll restoration modep850, otherwise, it may do so.

3. Optionally, update other aspects of the document and its rendering, for instance values of form fields, that the user agent
had previously recorded.

[Exposed=Window]
interface PopStateEvent : Event {

constructor(DOMString type, optional PopStateEventInit eventInitDict = {});

readonly attribute any state;
};

7.10.10.1 Persisted user state restoration §p88

3

This can even include updating the dirp142 attribute of textareap548 elements or inputp493 elements whose typep495 attribute is in
either the Textp499 state or the Searchp499 state, if the persisted state includes the directionality of user input in such controls.

Note

Not restoring the scroll position by user agent does not imply that the scroll position will be left at any particular value (e.g., (0,0)).
The actual scroll position depends on the navigation type and the user agent's particular caching strategy. So web applications
cannot assume any particular scroll position but rather are urged to set it to what they want it to be.

Note

7.10.10.2 The PopStateEventp883 interface §p88

3

IDL ✔ MDN

883

https://tc39.es/ecma262/#current-realm
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#interface-event

dictionary PopStateEventInit : EventInit {
any state = null;

};

The state attribute must return the value it was initialized to. It represents the context information for the event, or null, if the state
represented is the initial state of the Documentp114.

[Exposed=Window]
interface HashChangeEvent : Event {

constructor(DOMString type, optional HashChangeEventInit eventInitDict = {});

readonly attribute USVString oldURL;
readonly attribute USVString newURL;

};

dictionary HashChangeEventInit : EventInit {
USVString oldURL = "";
USVString newURL = "";

};

The oldURL attribute must return the value it was initialized to. It represents context information for the event, specifically the URL of
the session history entryp849 that was traversed from.

The newURL attribute must return the value it was initialized to. It represents context information for the event, specifically the URL of
the session history entryp849 that was traversed to.

[Exposed=Window]
interface PageTransitionEvent : Event {

constructor(DOMString type, optional PageTransitionEventInit eventInitDict = {});

readonly attribute boolean persisted;
};

dictionary PageTransitionEventInit : EventInit {
boolean persisted = false;

};

event . statep884

Returns a copy of the information that was provided to pushState()p854 or replaceState()p854.

For web developers (non-normative)

7.10.10.3 The HashChangeEventp884 interface §p88

4

event . oldURLp884

Returns the URL of the session history entryp849 that was previously current.

event . newURLp884

Returns the URL of the session history entryp849 that is now current.

For web developers (non-normative)

7.10.10.4 The PageTransitionEventp884 interface §p88

4

For web developers (non-normative)

IDL

IDL

✔ MDN

✔ MDN✔ MDN

✔ MDN

884

https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit

The persisted attribute must return the value it was initialized to. It represents the context information for the event.

A Documentp114 has a completely loaded time (a time or null), which is initially null.

A Documentp114 is considered completely loaded if its completely loaded timep885 is non-null.

To completely finish loading a Documentp114 document:

1. Assert: document's browsing contextp811 is non-null.

2. Set document's completely loaded timep885 to the current time.

3. Let container be document's browsing contextp811 's containerp814.

4. If container is an iframep361 element, then queue an element taskp946 on the DOM manipulation task sourcep952 given
container to run the iframe load event stepsp364 given container.

5. Otherwise, if container is non-null, then queue an element taskp946 on the DOM manipulation task sourcep952 given container
to fire an event named loadp1282 at container.

A Documentp114 has a salvageable state, which must initially be true, a fired unload flag, which must initially be false, and a page
showing flag, which must initially be false. The page showingp885 flag is used to ensure that scripts receive pageshowp1282 and
pagehidep1282 events in a consistent manner (e.g. that they never receive two pagehidep1282 events in a row without an intervening
pageshowp1282, or vice versa).

Event loopsp944 have a termination nesting level counter, which must initially be 0.

To prompt to unload, given a Documentp114 object document and optionally a recursiveFlag, run these steps:

1. Increase the event loopp944 's termination nesting levelp885 by 1.

2. Increase the document's ignore-opens-during-unload counterp968 by 1.

3. Let event be the result of creating an event using BeforeUnloadEventp887.

4. Initialize event's type attribute to beforeunloadp1281 and its cancelable attribute true.

5. Dispatch: Dispatch event at document's relevant global objectp924.

6. Decrease the event loopp944 's termination nesting levelp885 by 1.

7. If any event listeners were triggered by the earlier dispatch step, then set document's salvageablep885 state to false.

event . persistedp885

For the pageshowp1282 event, returns false if the page is newly being loaded (and the loadp1282 event will fire). Otherwise, returns
true.
For the pagehidep1282 event, returns false if the page is going away for the last time. Otherwise, returns true, meaning that (if
nothing conspires to make the page unsalvageable) the page might be reused if the user navigates back to this page.
Things that can cause the page to be unsalvageable include:

• Listening for beforeunloadp1281 events
• Listening for unloadp1282 events
• Having iframep361s that are not salvageable
• Active WebSocketp1008 objects
• Aborting a Documentp887

7.10.11 Loading documents §p88

5

7.10.12 Unloading documents §p88

5

✔ MDN

885

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-create
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-dispatch

8. If document's active sandboxing flag setp844 does not have its sandboxed modals flagp843 set, and the returnValuep887

attribute of the event object is not the empty string, or if the event was canceled, then the user agent may ask the user to
confirm that they wish to unload the document.

The user agent is encouraged to avoid asking the user for confirmation if it judges that doing so would be annoying,
deceptive, or pointless. A simple heuristic might be that if the user has not interacted with the document, the user agent
would not ask for confirmation before unloading it.

If the user agent asks the user for confirmation, it must pausep951 while waiting for the user's response.

If the user did not confirm the page navigation, then the user agent refused to allow the document to be unloaded.

9. If the recursiveFlag is not set, then:

1. Let descendants be the list of the descendant browsing contextsp814 of document.

2. For each browsingContext in descendants:

1. Prompt to unloadp885 browsingContext's active documentp811 with the recursiveFlag set. If the user
refused to allow the document to be unloaded p886, then the user implicitly also refused to allow document
to be unloadedp886; break.

2. If the salvageablep885 state of browsingContext's active documentp811 is false, then set the
salvageablep885 state of document to false.

10. Decrease the document's ignore-opens-during-unload counterp968 by 1.

To unload a Documentp114 document, optionally given a recursiveFlag:

1. Increase the event loopp944 's termination nesting levelp885 by one.

2. Increase document's ignore-opens-during-unload counterp968 by one.

3. If document's page showingp885 flag is false, then jump to the step labeled unload event below (i.e. skip firing the
pagehidep1282 event and don't rerun the unloading document visibility change steps p886).

4. Set document's page showingp885 flag to false.

5. Fire an event named pagehidep1282 at document's relevant global objectp924, using PageTransitionEventp884, with the
persistedp885 attribute initialized to true if document's salvageablep885 state is true, and false otherwise, and legacy target
override flag set.

6. Run any unloading document visibility change steps for document that are defined by other applicable specificationsp65.

7. Unload event: If document's fired unloadp885 flag is false, then fire an event named unloadp1282 at document's relevant global
objectp924, with legacy target override flag set.

8. Decrease the event loopp944 's termination nesting levelp885 by one.

9. If any event listeners were triggered by the earlier unload event step, then set document's salvageablep885 state to false and
set document's fired unloadp885 flag to true.

10. Run any unloading document cleanup stepsp887 for document that are defined by this specification and other applicable
specificationsp65.

11. If the recursiveFlag is not set, then:

1. Let descendants be the list of the descendant browsing contextsp814 of document.

2. For each browsingContext in descendants:

The message shown to the user is not customizable, but instead determined by the user agent. In particular, the actual
value of the returnValuep887 attribute is ignored.

Note

This is specifically intended for use by Page Visibility. [PAGEVIS]p1289

Note

886

https://infra.spec.whatwg.org/#iteration-break
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

1. Unloadp886 the active documentp811 of browsingContext with the recursiveFlag set.

2. If the salvageablep885 state of the active documentp811 of browsingContext is false, then set the
salvageablep885 state of document to false also.

3. If document's salvageablep885 state is false, then discardp831document.

12. Decrease document's ignore-opens-during-unload counterp968 by one.

This specification defines the following unloading document cleanup steps. Other specifications can define more. Given a
Documentp114 document:

1. Let window be document's relevant global objectp924.

2. For each WebSocketp1008 object webSocket whose relevant global objectp924 is window, make disappearp1015 webSocket.

If this affected any WebSocketp1008 objects, then set document's salvageablep885 state to false.

3. If document's salvageablep885 state is false, then:

1. For each EventSourcep1000 object eventSource whose relevant global objectp924 is equal to window, forcibly
closep1007 eventSource.

2. Empty window's list of active timersp973.

[Exposed=Window]
interface BeforeUnloadEvent : Event {

attribute DOMString returnValue;
};

The BeforeUnloadEventp887 interface is a legacy interface which allows prompting to unloadp885 to be controlled not only by canceling
the event, but by setting the returnValuep887 attribute to a value besides the empty string. Authors should use the preventDefault()
method, or other means of canceling events, instead of using returnValuep887.

The returnValue attribute controls the process of prompting to unloadp885. When the event is created, the attribute must be set to the
empty string. On getting, it must return the last value it was set to. On setting, the attribute must be set to the new value.

To abort a Documentp114 document:

1. Abortp887 the active documentsp811 of every child browsing contextp814. If this results in any of those Documentp114 objects
having their salvageablep885 state set to false, then set document's salvageablep885 state to false also.

2. Cancel any instances of the fetch algorithm in the context of document, discarding any tasksp944 queuedp945 for them, and
discarding any further data received from the network for them. If this resulted in any instances of the fetch algorithm being
canceled or any queuedp945 tasksp944 or any network data getting discarded, then set document's salvageablep885 state to
false.

3. If document has an active parserp117, then:

7.10.12.1 The BeforeUnloadEventp887 interface §p88

7

There are no BeforeUnloadEventp887-specific initialization methods.
Note

This attribute is a DOMString only for historical reasons. Any value besides the empty string will be treated as a request to ask the
user for confirmation.

Note

IDL

7.10.13 Aborting a document load §p88

7

✔ MDN

887

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dom-event-preventdefault
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch

1. Set document's active parser was abortedp968 to true.

2. Abort that parserp1165.

3. Set document's salvageablep885 state to false.

User agents may allow users to explicitly invoke the abort a documentp887 algorithm for a Documentp114. If the user does so, then, if that
Documentp114 is an active documentp811, the user agent should queue a taskp945 to fire an event named abortp1281 at that Documentp114

object's relevant global objectp924 before invoking the abortp887 algorithm.

To stop document loading given a Documentp114 object document, run these steps:

1. If document is not an active documentp811, then return.

2. Let browsingContext be document's browsing contextp811.

3. If there is an existing attempt to navigatep866 browsingContext and that attempt is not currently running the unload a
documentp886 algorithm, then cancel that navigationp866.

4. Abortp887 document.

The `X-Frame-Optionsp1260` HTTP response header is a legacy way of controlling whether and how a Documentp114 may be loaded
inside of a child browsing contextp814. It is obsoleted by the frame-ancestors CSP directive, which provides more granular control over
the same situations. It was originally defined in HTTP Header Field X-Frame-Options, but the definition and processing model here
supersedes that document. [CSP]p1285 [RFC7034]p1291

For web developers and conformance checkers, its value ABNF is:

X-Frame-Options = "DENY" / "SAMEORIGIN"

To check a navigation response's adherence to `X-Frame-Options`, given a response response, a browsing contextp811

browsingContext, and an originp837 destinationOrigin:

1. If browsingContext is not a child browsing contextp814, then return true.

2. For each policy of response's CSP list:

1. If policy's disposition is not "enforce", then continue.

2. If policy's directive set contains a frame-ancestors directive, then return true.

3. Let rawXFrameOptions be the result of getting, decoding, and splitting `X-Frame-Optionsp1260` from response's header list.

4. Let xFrameOptions be a new set.

5. For each value of rawXFrameOptions, append value, converted to ASCII lowercase, to xFrameOptions.

6. If xFrameOptions's size is greater than 1, and xFrameOptions contains any of "deny", "allowall", or "sameorigin", then
return false.

In particular, HTTP Header Field X-Frame-Options specified an `ALLOW-FROM` variant of the header, but that is not to be
implemented.

Note

Per the below processing model, if both a CSP frame-ancestors directive and an `X-Frame-Optionsp1260` header are used in the
same response, then `X-Frame-Optionsp1260` is ignored.

Note

The intention here is to block any attempts at applying `X-Frame-Optionsp1260` which were trying to do something valid,
Note

7.10.14 The `X-Frame-Optionsp1260` header §p88

8

888

https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#abnf
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#list-iterate
https://fetch.spec.whatwg.org/#concept-response-csp-list
https://w3c.github.io/webappsec-csp/#policy-disposition
https://infra.spec.whatwg.org/#iteration-continue
https://w3c.github.io/webappsec-csp/#policy-directive-set
https://infra.spec.whatwg.org/#list-contain
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://fetch.spec.whatwg.org/#concept-header-list-get-decode-split
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-contain

7. If xFrameOptions's size is greater than 1, then return true.

8. If xFrameOptions[0] is "deny", then return false.

9. If xFrameOptions[0] is "sameorigin", then:

1. Let containerDocument be browsingContext's container documentp814.

2. While containerDocument is not null:

1. If containerDocument's originp837 is not same originp838 with destinationOrigin, then return false.

2. Let containerBC be containerDocument's browsing contextp811.

3. Set containerDocument to containerBC's container documentp814, if containerBC is non-null; otherwise,
null.

10. Return true.

but appear confused.

This is the only impact of the legacy `ALLOWALL` value on the processing model.
Note

This means it contains multiple invalid values, which we treat the same way as if the header was omitted entirely.
Note

If we've reached this point then we have a lone invalid value (which could potentially be one the legacy `ALLOWALL` or
`ALLOW-FROM` forms). These are treated as if the header were omitted entirely.

Note

The following table illustrates the processing of various values for the header, including non-conformant ones:

`X-Frame-Optionsp1260` Valid Result

`DENY` ✅ embedding disallowed
`SAMEORIGIN` ✅ same-origin embedding allowed
`INVALID` ❌ embedding allowed
`ALLOWALL` ❌ embedding allowed
`ALLOW-FROM=https://example.com/` ❌ embedding allowed (from anywhere)

Example

The following table illustrates how various non-conformant cases involving multiple values are processed:

`X-Frame-Optionsp1260` Result

`SAMEORIGIN, SAMEORIGIN` same-origin embedding allowed
`SAMEORIGIN, DENY` embedding disallowed
`SAMEORIGIN,` embedding disallowed
`SAMEORIGIN, ALLOWALL` embedding disallowed
`SAMEORIGIN, INVALID` embedding disallowed
`ALLOWALL, INVALID` embedding disallowed
`ALLOWALL,` embedding disallowed
`INVALID, INVALID` embedding allowed

The same results are obtained whether the values are delivered in a single header whose value is comma-delimited, or in multiple
headers.

Example

889

https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#iteration-while

This feature is in the process of being removed from the web platform. (This is a long process that takes many years.) Using any
of the offline web application features at this time is highly discouraged. Use service workers instead. [SW]p1291

This section is non-normative.

In order to enable users to continue interacting with web applications and documents even when their network connection is
unavailable — for instance, because they are traveling outside of their ISP's coverage area — authors can provide a manifest which
lists the files that are needed for the web application to work offline and which causes the user's browser to keep a copy of the files for
use offline.

To illustrate this, consider a simple clock applet consisting of an HTML page "clock1.html", a CSS style sheet "clock.css", and a
JavaScript script "clock.js".

Before adding the manifest, these three files might look like this:

<!-- clock1.html -->
<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Clock</title>
<script src="clock.js"></script>
<link rel="stylesheet" href="clock.css">

</head>
<body>
<p>The time is: <output id="clock"></output></p>

</body>
</html>

/* clock.css */
output { font: 2em sans-serif; }

/* clock.js */
setInterval(function () {

document.getElementById('clock').value = new Date();
}, 1000);

If the user tries to open the "clock1.html" page while offline, though, the user agent (unless it happens to have it still in the local
cache) will fail with an error.

The author can instead provide a manifest of the three files, say "clock.appcache":

CACHE MANIFEST
clock2.html
clock.css
clock.js

With a small change to the HTML file, the manifest (served as text/cache-manifestp1253) is linked to the application:

<!-- clock2.html -->
<!DOCTYPE HTML>
<html lang="en" manifest="clock.appcache">
<head>
<meta charset="utf-8">
<title>Clock</title>

7.11 Offline web applications §p89

0

CSS

7.11.1 Introduction §p89

0

✔ MDN

890

<script src="clock.js"></script>
<link rel="stylesheet" href="clock.css">

</head>
<body>
<p>The time is: <output id="clock"></output></p>

</body>
</html>

Now, if the user goes to the page, the browser will cache the files and make them available even when the user is offline.

View this example online.

This section is non-normative.

The application cache feature works best if the application logic is separate from the application and user data, with the logic (markup,
scripts, style sheets, images, etc) listed in the manifest and stored in the application cache, with a finite number of static HTML pages
for the application, and with the application and user data stored in Web Storage or a client-side Indexed Database, updated
dynamically using Web Sockets, XMLHttpRequest, server-sent events, or some other similar mechanism.

This model results in a fast experience for the user: the application immediately loads, and fresh data is obtained as fast as the
network will allow it (possibly while stale data shows).

Legacy applications, however, tend to be designed so that the user data and the logic are mixed together in the HTML, with each
operation resulting in a new HTML page from the server.

The mixed-content model does not work well with the application cache feature: since the content is cached, it would result in the user
always seeing the stale data from the previous time the cache was updated.

While there is no way to make the legacy model work as fast as the separated model, it can at least be retrofitted for offline use using
the prefer-onlinep893 application cache modep893. To do so, list all the static resources used by the HTML page you want to have work
offline in an application cache manifestp892, use the manifestp152 attribute to select that manifest from the HTML file, and then add the
following line at the bottom of the manifest:

SETTINGS:
prefer-online
NETWORK:
*

This causes the application cachep892 to only be used for primary entriesp892 when the user is offline, and causes the application cache
to be used as an atomic HTTP cache (essentially pinning resources listed in the manifest), while allowing all resources not listed in the

Authors are encouraged to include the main page in the manifest also, but in practice the page that referenced the manifest is
automatically cached even if it isn't explicitly mentioned.

Note

With the exception of "no-store" directive, HTTP cache headers and restrictions on caching pages served over TLS (encrypted,
using https:) are overridden by manifests. Thus, pages will not expire from an application cache before the user agent has
updated it, and even applications served over TLS can be made to work offline.

Note

7.11.1.1 Supporting offline caching for legacy applications §p89

1

For example, consider a news application. The typical architecture of such an application, when not using the application cache
feature, is that the user fetches the main page, and the server returns a dynamically-generated page with the current headlines
and the user interface logic mixed together.

A news application designed for the application cache feature, however, would instead have the main page just consist of the logic,
and would then have the main page fetch the data separately from the server, e.g. using XMLHttpRequest.

Example

891

https://tools.ietf.org/html/rfc7230#section-2.7.2
https://html.spec.whatwg.org/demos/offline/clock/clock2.html
https://xhr.spec.whatwg.org/#xmlhttprequest
https://xhr.spec.whatwg.org/#xmlhttprequest

manifest to be accessed normally when the user is online.

This section is non-normative.

When the user visits a page that declares a manifest, the browser will try to update the cache. It does this by fetching a copy of the
manifest and, if the manifest has changed since the user agent last saw it, redownloading all the resources it mentions and caching
them anew.

As this is going on, a number of events get fired on the ApplicationCachep909 object to keep the script updated as to the state of the
cache update, so that the user can be notified appropriately. The events are as follows:

Event
name

Interface Fired when... Next events

checking Event The user agent is checking for an update, or attempting to download the manifest for the first time.
This is always the first event in the sequence.

noupdatep892,
downloadingp892,
obsoletep892, errorp892

noupdate Event The manifest hadn't changed. Last event in sequence.
downloading Event The user agent has found an update and is fetching it, or is downloading the resources listed by the

manifest for the first time.
progressp892, errorp892,
cachedp892,
updatereadyp892

progress ProgressEvent The user agent is downloading resources listed by the manifest. The event object's total attribute
returns the total number of files to be downloaded. The event object's loaded attribute returns the
number of files processed so far.

progressp892, errorp892,
cachedp892,
updatereadyp892

cached Event The resources listed in the manifest have been downloaded, and the application is now cached. Last event in sequence.
updateready Event The resources listed in the manifest have been newly redownloaded, and the script can use

swapCache()p911 to switch to the new cache.
Last event in sequence.

obsolete Event The manifest was found to have become a 404 or 410 page, so the application cache is being deleted. Last event in sequence.
The manifest was a 404 or 410 page, so the attempt to cache the application has been aborted.
The manifest hadn't changed, but the page referencing the manifest failed to download properly.
A fatal error occurred while fetching the resources listed in the manifest.

Last event in sequence.error Event

The manifest changed while the update was being run. The user agent will try
fetching the files again
momentarily.

These events are cancelable; their default action is for the user agent to show download progress information. If the page shows its
own update UI, canceling the events will prevent the user agent from showing redundant progress information.

An application cache is a set of cached resources consisting of:

• One or more resources (including their out-of-band metadata, such as HTTP headers, if any), identified by URLs, each falling
into one (or more) of the following categories:

Primary entries

The manifest

7.11.1.2 Events summary §p89

2

These are documents that were added to the cache because a browsing contextp811 was navigatedp866 to that
document and the document indicated that this was its cache, using the manifestp152 attribute.

Note

This is the resource corresponding to the URL that was given in a primary entry's htmlp152 element's manifestp152

attribute. The manifest is fetched and processed during the application cache download process p900. All the primary
entriesp892 have the same originp838 as the manifest.

Note

7.11.2 Application caches §p89

2

892

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://xhr.spec.whatwg.org/#interface-progressevent
https://xhr.spec.whatwg.org/#dom-progressevent-total
https://xhr.spec.whatwg.org/#dom-progressevent-loaded
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

Explicit entries

Fallback entries

Explicit entriesp893 and Fallback entriesp893 can be marked as foreign, which means that they have a manifestp152 attribute
but that it doesn't point at this cache's manifestp892.

• Zero or more fallback namespaces, each of which is mapped to a fallback entryp893.

• Zero or more URLs that form the online safelist namespaces.

• An online safelist wildcard flag, which is either open or blocking.

• A cache mode flag, which is either in the fast state or the prefer-online state.

Each application cachep892 has a completeness flag, which is either complete or incomplete.

An application cache group is a group of application cachesp892, identified by the absolute URL of a resource manifestp892 which is
used to populate the caches in the group.

An application cachep892 is newer than another if it was created after the other (in other words, application cachesp892 in an application
cache groupp893 have a chronological order).

Only the newest application cachep892 in an application cache groupp893 can have its completeness flagp893 set to incomplete; the
others are always all complete.

Each application cache groupp893 has an update status, which is one of the following: idle, checking, downloading.

A relevant application cache is an application cachep892 that is the newestp893 in its groupp893 to be complete.

Each application cache groupp893 has a list of pending primary entries. Each entry in this list consists of a resource and a
corresponding Documentp114 object. It is used during the application cache download processp900 to ensure that new primary entries are
cached even if the application cache download processp900 was already running for their application cache groupp893 when they were
loaded.

These are the resources that were listed in the cache's manifestp892 in an explicit sectionp896.
Note

These are the resources that were listed in the cache's manifestp892 in a fallback sectionp896.
Note

A URL in the list can be flagged with multiple different types, and thus an entry can end up being categorized as multiple
entries. For example, an entry can be a manifest entry and an explicit entry at the same time, if the manifest is listed
within the manifest.

Note

These are URLs used as prefix match patternsp894 for resources that are to be fetched from the network if possible, or to
be replaced by the corresponding fallback entryp893 if not. Each namespace URL has the same originp838 as the
manifestp892.

Note

These are used as prefix match patterns, and declare URLs for which the user agent will ignore the application cache,
instead fetching them normally (i.e. from the network or local HTTP cache as appropriate).

Note

The open state indicates that any URL not listed as cached is to be implicitly treated as being in the online safelist
namespacesp893; the blocking state indicates that URLs not listed explicitly in the manifest are to be treated as
unavailable.

Note

893

https://url.spec.whatwg.org/#syntax-url-absolute

An application cache groupp893 can be marked as obsolete, meaning that it must be ignored when looking at what application cache
groupsp893 exist.

A cache host is a Documentp114 object.

Each cache hostp894 has an associated ApplicationCachep909 object.

Each cache hostp894 initially is not associated with an application cachep892, but can become associated with one early during the page
load process, when steps in the parserp1134 and in the navigationp866 sections cause cache selectionp907 to occur.

Multiple application cachesp892 in different application cache groupsp893 can contain the same resource, e.g. if the manifests all
reference that resource. If the user agent is to select an application cache from a list of relevant application cachesp893 that contain
a resource, the user agent must use the application cache that the user most likely wants to see the resource from, taking into account
the following:

• which application cache was most recently updated,

• which application cache was being used to display the resource from which the user decided to look at the new resource, and

• which application cache the user prefers.

A URL matches a fallback namespace if there exists a relevant application cachep893 whose manifestp892 's URL has the same
originp838 as the URL in question, and that has a fallback namespacep893 that is a prefix matchp67 for the URL being examined. If
multiple fallback namespaces match the same URL, the longest one is the one that matches. A URL looking for a fallback namespace
can match more than one application cache at a time, but only matches one namespace in each cache.

This section is non-normative.

If a manifest https://example.com/app1/manifest declares that https://example.com/resources/images is a fallback
namespace, and the user navigates to https://example.com:80/resources/images/cat.png, then the user agent will decide
that the application cache identified by https://example.com/app1/manifest contains a namespace with a match for that URL.

Example

7.11.3.1 Some sample manifests §p89

4

This example manifest requires two images and a style sheet to be cached and safelists a CGI script.

CACHE MANIFEST
the above line is required

this is a comment
there can be as many of these anywhere in the file
they are all ignored

comments can have spaces before them
but must be alone on the line

blank lines are ignored too

these are files that need to be cached they can either be listed
first, or a "CACHE:" header could be put before them, as is done
lower down.
images/sound-icon.png
images/background.png
note that each file has to be put on its own line

Example

7.11.3 The cache manifest syntax §p89

4

894

Manifests must be served using the text/cache-manifestp1253 MIME type. All resources served using the text/cache-manifestp1253

MIME type must follow the syntax of application cache manifests, as described in this section.

An application cache manifest is a text file, whose text is encoded using UTF-8. Data in application cache manifests is line-based.
Newlines must be represented by U+000A LINE FEED (LF) characters, U+000D CARRIAGE RETURN (CR) characters, or U+000D
CARRIAGE RETURN (CR) U+000A LINE FEED (LF) pairs. [ENCODING]p1287

here is a file for the online safelist -- it isn't cached, and
references to this file will bypass the cache, always hitting the
network (or trying to, if the user is offline).
NETWORK:
comm.cgi

here is another set of files to cache, this time just the CSS file.
CACHE:
style/default.css

It could equally well be written as follows:

CACHE MANIFEST
NETWORK:
comm.cgi
CACHE:
style/default.css
images/sound-icon.png
images/background.png

Offline application cache manifests can use absolute paths or even absolute URLs:

CACHE MANIFEST

/main/home
/main/app.js
/settings/home
/settings/app.js
https://img.example.com/logo.png
https://img.example.com/check.png
https://img.example.com/cross.png

Example

The following manifest defines a catch-all error page that is displayed for any page on the site while the user is offline. It also
specifies that the online safelist wildcard flagp893 is open, meaning that accesses to resources on other sites will not be blocked.
(Resources on the same site are already not blocked because of the catch-all fallback namespace.)

So long as all pages on the site reference this manifest, they will get cached locally as they are fetched, so that subsequent hits to
the same page will load the page immediately from the cache. Until the manifest is changed, those pages will not be fetched from
the server again. When the manifest changes, then all the files will be redownloaded.

Subresources, such as style sheets, images, etc, would only be cached using the regular HTTP caching semantics, however.

CACHE MANIFEST
FALLBACK:
/ /offline.html
NETWORK:
*

Example

7.11.3.2 Writing cache manifests §p89

5

895

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type

The first line of an application cache manifest must consist of the string "CACHE", a single U+0020 SPACE character, the string
"MANIFEST", and either a U+0020 SPACE character, a U+0009 CHARACTER TABULATION (tab) character, a U+000A LINE FEED (LF)
character, or a U+000D CARRIAGE RETURN (CR) character. The first line may optionally be preceded by a U+FEFF BYTE ORDER MARK
(BOM) character. If any other text is found on the first line, it is ignored.

Subsequent lines, if any, must all be one of the following:

A blank line
Blank lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters only.

A comment
Comment lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters, followed by a
single U+0023 NUMBER SIGN character (#), followed by zero or more characters other than U+000A LINE FEED (LF) and U+000D
CARRIAGE RETURN (CR) characters.

A section header
Section headers change the current section. There are four possible section headers:

CACHE:
Switches to the explicit section.

FALLBACK:
Switches to the fallback section.

NETWORK:
Switches to the online safelist section.

SETTINGS:
Switches to the settings section.

Section header lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters, followed
by one of the names above (including the U+003A COLON character (:)) followed by zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters.

Ironically, by default, the current section is the explicit sectionp896.

Data for the current section
The format that data lines must take depends on the current section.

When the current section is the explicit sectionp896, data lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER
TABULATION (tab) characters, a valid URL string identifying a resource other than the manifest itself, and then zero or more U+0020
SPACE and U+0009 CHARACTER TABULATION (tab) characters.

When the current section is the fallback sectionp896, data lines must consist of zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters, a valid URL string identifying a resource other than the manifest itself, one or more
U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters, another valid URL string identifying a resource other than
the manifest itself, and then zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters.

When the current section is the online safelist sectionp896, data lines must consist of zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters, either a single U+002A ASTERISK character (*) or a valid URL string identifying a
resource other than the manifest itself, and then zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab)
characters.

When the current section is the settings sectionp896, data lines must consist of zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters, a settingp897, and then zero or more U+0020 SPACE and U+0009 CHARACTER
TABULATION (tab) characters.

This is a willful violationp27 of RFC 2046, which requires all text/* types to only allow CRLF line breaks. This requirement, however,
is outdated; the use of CR, LF, and CRLF line breaks is commonly supported and indeed sometimes CRLF is not supported by text
editors. [RFC2046]p1290

Note

Comments need to be on a line on their own. If they were to be included on a line with a URL, the "#" would be mistaken for
part of a fragment.

Note

896

https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#valid-url-string

Currently only one setting is defined:

The cache mode setting
This consists of the string "prefer-online". It sets the cache modep893 to prefer-onlinep893. (The cache modep893 defaults to
fastp893.)

Within a settings sectionp896, each settingp897 must occur no more than once.

Manifests may contain sections more than once. Sections may be empty.

URLs that are to be fallback pages associated with fallback namespacesp893, and those namespaces themselves, must be given in
fallback sectionsp896, with the namespace being the first URL of the data line, and the corresponding fallback page being the second
URL. All the other pages to be cached must be listed in explicit sectionsp896.

Fallback namespacesp893 and fallback entriesp893 must have the same originp838 as the manifest itself. Fallback namespacesp893 must
also be in the same path as the manifest's URL.

A fallback namespacep893 must not be listed more than once.

Namespaces that the user agent is to put into the online safelistp893 must all be specified in online safelist sectionsp896. (This is needed
for any URL that the page is intending to use to communicate back to the server.) To specify that all URLs are automatically safelisted
in this way, a U+002A ASTERISK character (*) may be specified as one of the URLs.

Authors should not include namespaces in the online safelistp893 for which another namespace in the online safelistp893 is a prefix
matchp67.

Relative URLs must be given relative to the manifest's own URL. All URLs in the manifest must have the same scheme as the manifest
itself (either explicitly or implicitly, through the use of relative URLs). [URL]p1292

URLs in manifests must not have fragments (i.e. the U+0023 NUMBER SIGN character isn't allowed in URLs in manifests).

Fallback namespacesp893 and namespaces in the online safelistp893 are matched by prefix matchp67.

When a user agent is to parse a manifest, it means that the user agent must run the following steps:

1. UTF-8 decode the byte stream corresponding with the manifest to be parsed.

2. Let base URL be the absolute URL representing the manifest.

3. Apply the URL parser to base URL, and let manifest path be the path component thus obtained.

4. Remove all the characters in manifest path after the last U+002F SOLIDUS character (/), if any. (The first character and the
last character in manifest path after this step will both be slashes, the URL path separator character.)

5. Apply the URL parser steps to the base URL, so that the components from its URL record can be used by the subsequent
steps of this algorithm.

6. Let explicit URLs be an initially empty list of absolute URLs for explicit entriesp893.

7. Let fallback URLs be an initially empty mapping of fallback namespacesp893 to absolute URLs for fallback entriesp893.

8. Let online safelist namespaces be an initially empty list of absolute URLs for an online safelistp893.

9. Let online safelist wildcard flag be blocking.

10. Let cache mode flag be fast.

11. Let input be the decoded text of the manifest's byte stream.

12. Let position be a pointer into input, initially pointing at the first character.

7.11.3.3 Parsing cache manifests §p89

7

The UTF-8 decode algorithm strips a leading BOM, if any.
Note

897

https://url.spec.whatwg.org/#syntax-url-relative
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#syntax-url-relative
https://url.spec.whatwg.org/#concept-url-fragment
https://encoding.spec.whatwg.org/#utf-8-decode
https://encoding.spec.whatwg.org/#utf-8-decode
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute

13. If the characters starting from position are "CACHE", followed by a U+0020 SPACE character, followed by "MANIFEST", then
advance position to the next character after those. Otherwise, this isn't a cache manifest; return with a failure while checking
for the magic signature.

14. If the character at position is neither a U+0020 SPACE character, a U+0009 CHARACTER TABULATION (tab) character,
U+000A LINE FEED (LF) character, nor a U+000D CARRIAGE RETURN (CR) character, then this isn't a cache manifest; return
with a failure while checking for the magic signature.

15. This is a cache manifest. The algorithm cannot fail beyond this point (though bogus lines can get ignored).

16. Collect a sequence of code points that are not U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters from
input given position, and ignore those characters. (Extra text on the first line, after the signature, is ignored.)

17. Let mode be "explicit".

18. Start of line: If position is past the end of input, then jump to the last step. Otherwise, collect a sequence of code points that
are U+000A LINE FEED (LF), U+000D CARRIAGE RETURN (CR), U+0020 SPACE, or U+0009 CHARACTER TABULATION (tab)
characters from input given position.

19. Now, collect a sequence of code points that are not U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters
from input given position, and let the result be line.

20. Drop any trailing U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters at the end of line.

21. If line is the empty string, then jump back to the step labeled start of line.

22. If the first character in line is a U+0023 NUMBER SIGN character (#), then jump back to the step labeled start of line.

23. If line equals "CACHE:" (the word "CACHE" followed by a U+003A COLON character (:)), then set mode to "explicit" and jump
back to the step labeled start of line.

24. If line equals "FALLBACK:" (the word "FALLBACK" followed by a U+003A COLON character (:)), then set mode to "fallback" and
jump back to the step labeled start of line.

25. If line equals "NETWORK:" (the word "NETWORK" followed by a U+003A COLON character (:)), then set mode to "online
safelist" and jump back to the step labeled start of line.

26. If line equals "SETTINGS:" (the word "SETTINGS" followed by a U+003A COLON character (:)), then set mode to "settings" and
jump back to the step labeled start of line.

27. If line ends with a U+003A COLON character (:), then set mode to "unknown" and jump back to the step labeled start of line.

28. This is either a data line or it is syntactically incorrect.

29. Let position be a pointer into line, initially pointing at the start of the string.

30. Let tokens be a list of strings, initially empty.

31. While position doesn't point past the end of line:

1. Let current token be an empty string.

2. While position doesn't point past the end of line and the character at position is neither a U+0020 SPACE nor a
U+0009 CHARACTER TABULATION (tab) character, add the character at position to current token and advance
position to the next character in input.

3. Add current token to the tokens list.

4. While position doesn't point past the end of line and the character at position is either a U+0020 SPACE or a
U+0009 CHARACTER TABULATION (tab) character, advance position to the next character in input.

32. Process tokens as follows:

↪ If mode is "explicit"
Let urlRecord be the result of parsing the first item in tokens with base URL; ignore the rest.

If urlRecord is failure, then jump back to the step labeled start of line.

If urlRecord has a different scheme component than base URL (the manifest's URL), then jump back to the step
labeled start of line.

898

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url-scheme

Let new URL be the result of applying the URL serializer algorithm to urlRecord, with the exclude fragment flag set.

Add new URL to the explicit URLs.

↪ If mode is "fallback"
Let part one be the first token in tokens, and let part two be the second token in tokens.

Let urlRecordOne be the result of parsing part one with base URL.

Let urlRecordTwo be the result of parsing part two with base URL.

If either urlRecordOne or urlRecordTwo are failure, then jump back to the step labeled start of line.

If the origin of either urlRecordOne or urlRecordTwo is not same originp838 with the manifest's URL origin, then jump
back to the step labeled start of line.

Let part one path be the path component of urlRecordOne.

If manifest path is not a prefix matchp67 for part one path, then jump back to the step labeled start of line.

Let part one be the result of applying the URL serializer algorithm to urlRecordOne, with the exclude fragment flag
set.

Let part two be the result of applying the URL serializer algorithm to urlRecordTwo, with the exclude fragment flag set.

If part one is already in the fallback URLs mapping as a fallback namespacep893, then jump back to the step labeled
start of line.

Otherwise, add part one to the fallback URLs mapping as a fallback namespacep893, mapped to part two as the
fallback entryp893.

↪ If mode is "online safelist"
If the first item in tokens is a U+002A ASTERISK character (*), then set online safelist wildcard flag to open and jump
back to the step labeled start of line.

Otherwise, let urlRecord be the result of parsing the first item in tokens with base URL.

If urlRecord is failure, then jump back to the step labeled start of line.

If urlRecord has a different scheme component than base URL (the manifest's URL), then jump back to the step
labeled start of line.

Let new URL be the result of applying the URL serializer algorithm to urlRecord, with the exclude fragment flag set.

Add new URL to the online safelist namespaces.

↪ If mode is "settings"
If tokens contains a single token, and that token is "prefer-online", then set cache mode flag to prefer-online and
jump back to the step labeled start of line.

Otherwise, the line is an unsupported setting: do nothing; the line is ignored.

↪ If mode is "unknown"
Do nothing. The line is ignored.

33. Jump back to the step labeled start of line. (That step jumps to the next, and last, step when the end of the file is reached.)

34. Return the explicit URLs list, the fallback URLs mapping, the online safelist namespaces, the online safelist wildcard flag, and
the cache mode flag.

The resource that declares the manifest (with the manifestp152 attribute) will always get taken from the cache, whether it is listed
in the cache or not, even if it is listed in an online safelist namespacep893.

Note

899

https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-serializer
https://infra.spec.whatwg.org/#string-is

When the user agent is required (by other parts of this specification) to start the application cache download process for an
absolute URL purported to identify a manifestp892, or for an application cache groupp893, potentially given a particular cache hostp894,
and potentially given a primaryp892 resource, the user agent must run the steps below. These steps are always run in parallelp42 with
the event loopp944 tasksp944.

Some of these steps have requirements that only apply if the user agent shows caching progress. Support for this is optional.
Caching progress UI could consist of a progress bar or message panel in the user agent's interface, or an overlay, or something else.
Certain events fired during the application cache download processp900 allow the script to override the display of such an interface.
(Such events are delayed until after the loadp1282 event has fired.) The goal of this is to allow web applications to provide more
seamless update mechanisms, hiding from the user the mechanics of the application cache mechanism. User agents may display user
interfaces independent of this, but are encouraged to not show prominent update progress notifications for applications that cancel the
relevant events.

The application cache download processp900 steps are as follows:

1. Optionally, wait until the permission to start the application cache download processp900 has been obtained from the user and
until the user agent is confident that the network is available. This could include doing nothing until the user explicitly opts-in
to caching the site, or could involve prompting the user for permission. The algorithm might never get past this point. (This
step is particularly intended to be used by user agents running on severely space-constrained devices or in highly privacy-
sensitive environments).

2. Atomically, so as to avoid race conditions, perform the following substeps:

1. Pick the appropriate substeps:

↪ If these steps were invoked with an absolute URL purported to identify a manifestp892

Let manifest URL be that absolute URL.

If there is no application cache groupp893 identified by manifest URL, then create a new application cache
groupp893 identified by manifest URL. Initially, it has no application cachesp892. One will be created later in
this algorithm.

↪ If these steps were invoked with an application cache groupp893

Let manifest URL be the absolute URL of the manifestp892 used to identify the application cache groupp893 to
be updated.

If that application cache groupp893 is obsoletep894, then abort this instance of the application cache download
processp900. This can happen if another instance of this algorithm found the manifest to be 404 or 410 while
this algorithm was waiting in the first step above.

2. Let cache group be the application cache groupp893 identified by manifest URL.

3. If these steps were invoked with a primaryp892 resource, then add the resource, along with the resource's
Documentp114, to cache group's list of pending primary entriesp893.

4. If these steps were invoked with a cache hostp894, and the statusp893 of cache group is checking or downloading,
then queue a post-load taskp906 to run these steps:

1. Let showProgress be the result of firing an event named checkingp892 at the ApplicationCachep909

singleton of that cache hostp894, with the cancelable attribute initialized to true.

If a resource is listed in the explicit sectionp896 or as a fallback entryp893 in the fallback sectionp896, the resource will always be
taken from the cache, regardless of any other matching entries in the fallback namespacesp893 or online safelist namespacesp893.

When a fallback namespacep893 and an online safelist namespacep893 overlap, the online safelist namespacep893 has priority.

The online safelist wildcard flagp893 is applied last, only for URLs that match neither the online safelist namespacep893 nor the
fallback namespacep893 and that are not listed in the explicit sectionp896.

7.11.4 Downloading or updating an application cache §p90

0

900

https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that the user agent is checking to see if it can download the application.

5. If these steps were invoked with a cache hostp894, and the statusp893 of cache group is downloading, then also
queue a post-load taskp906 to run these steps:

1. Let showProgress be the result of firing an event named downloadingp892 at the ApplicationCachep909

singleton of that cache hostp894, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user the application is being downloaded.

6. If the statusp893 of the cache group is either checking or downloading, then abort this instance of the application
cache download processp900, as an update is already in progress.

7. Set the statusp893 of cache group to checking.

8. For each cache hostp894 associated with an application cachep892 in cache group, queue a post-load taskp906 run
these steps:

1. Let showProgress be the result of firing an event named checkingp892 at the ApplicationCachep909

singleton of the cache hostp894, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that the user agent is checking for the availability of updates.

If cache group already has an application cachep892 in it, then this is an upgrade attempt. Otherwise, this is a cache
attempt.

3. If this is a cache attemptp901, then this algorithm was invoked with a cache hostp894; queue a post-load taskp906 to run these
steps:

1. Let showProgress be the result of firing an event named checkingp892 at the ApplicationCachep909 singleton of
that cache hostp894, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user interface
indicating to the user that the user agent is checking for the availability of updates.

4. Let request be a new request whose url is manifest URL, client is null, destination is the empty string, referrer is "no-
referrer", synchronous flag is set, credentials mode is "include", and whose use-URL-credentials flag is set.

5. Fetching the manifest: Let manifest be the result of fetching request. HTTP caching semantics should be honored for this
request.

Parse manifest's body according to the rules for parsing manifestsp897, obtaining a list of explicit entriesp893, fallback
entriesp893 and the fallback namespacesp893 that map to them, entries for the online safelistp893, and values for the online
safelist wildcard flagp893 and the cache mode flagp893.

6. If fetching the manifest fails due to a 404 or 410 response status, then run these substeps:

1. Mark cache group as obsoletep894. This cache group no longer exists for any purpose other than the processing of
Documentp114 objects already associated with an application cachep892 in the cache group.

2. Let task list be an empty list of tasksp944.

3. For each cache hostp894 associated with an application cachep892 in cache group, create a taskp944 to run these
steps and append it to task list:

1. Let showProgress be the result of firing an event named obsoletep892 at the ApplicationCachep909

singleton of the cache hostp894, with the cancelable attribute initialized to true.

The remainder of the steps run in parallelp42.
Note

The MIME type of the resource is ignored — it is assumed to be text/cache-manifestp1253. In the future, if new manifest
formats are supported, the different types will probably be distinguished on the basis of the file signatures (for the
current format, that is the "CACHE MANIFEST" string at the top of the file).

Note

901

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-response-body
https://mimesniff.spec.whatwg.org/#mime-type
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that the application is no longer available for offline use.

4. For each entry in cache group's list of pending primary entriesp893, create a taskp944 to run these steps and append
it to task list:

1. Let showProgress be the result of firing an event named errorp892 (not obsoletep892!) at the
ApplicationCachep909 singleton of the Documentp114 for this entry, if there still is one, with the
cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that the user agent failed to save the application for offline use.

5. If cache group has an application cachep892 whose completeness flagp893 is incomplete, then discard that
application cachep892.

6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

7. Let the statusp893 of cache group be idle.

8. For each taskp944 in task list, queue that task as a post-load taskp906.

9. Abort the application cache download processp900.

7. Otherwise, if fetching the manifest fails in some other way (e.g. the server returns another 4xx or 5xx response, or there is a
DNS error, or the connection times out, or the user cancels the download, or the parser for manifests fails when checking the
magic signature), or if the server returned a redirect, then run the cache failure stepsp906. [HTTP]p1288

8. If this is an upgrade attemptp901 and the newly downloaded manifest is byte-for-byte identical to the manifest found in the
newestp893 application cachep892 in cache group, or the response status is 304, then run these substeps:

1. Let cache be the newestp893 application cachep892 in cache group.

2. Let task list be an empty list of tasksp944.

3. For each entry in cache group's list of pending primary entriesp893, wait for the resource for this entry to have either
completely downloaded or failed.

If the download failed (e.g. the server returns a 4xx or 5xx response, or there is a DNS error, the connection times
out, or the user cancels the download), or if the resource is labeled with the "no-store" cache directive, then create
a taskp944 to run these steps and append it to task list:

1. Let showProgress be the result of firing an event named errorp892 at the ApplicationCachep909 singleton
of the Documentp114 for this entry, if there still is one, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that the user agent failed to save the application for offline use.

Otherwise, associate the Documentp114 for this entry with cache; store the resource for this entry in cache, if it isn't
already there, and categorize its entry as a primary entryp892. If applying the URL parser algorithm to the resource's
URL results in a URL record that has a non-null fragment component, the URL used for the entry in cache must
instead be the absolute URL obtained from applying the URL serializer algorithm to the URL record with the exclude
fragment flag set (application caches never include fragments).

4. For each cache hostp894 associated with an application cachep892 in cache group, create a taskp944 to run these
steps and append it to task list:

1. Let showProgress be the result of firing an event named noupdatep892 at the ApplicationCachep909

singleton of the cache hostp894, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that the application is up to date.

5. Empty cache group's list of pending primary entriesp893.

6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

7. Let the statusp893 of cache group be idle.

8. For each taskp944 in task list, queue that task as a post-load taskp906.
902

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

9. Abort the application cache download processp900.

9. Let new cache be a newly created application cachep892 in cache group. Set its completeness flagp893 to incomplete.

10. For each entry in cache group's list of pending primary entriesp893, associate the Documentp114 for this entry with new cache.

11. Set the statusp893 of cache group to downloading.

12. For each cache hostp894 associated with an application cachep892 in cache group, queue a post-load taskp906 to run these
steps:

1. Let showProgress be the result of firing an event named downloadingp892 at the ApplicationCachep909 singleton of
the cache hostp894, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user interface
indicating to the user that a new version is being downloaded.

13. Let file list be an empty list of URLs with flags.

14. Add all the URLs in the list of explicit entriesp893 obtained by parsing manifest to file list, each flagged with "explicit entry".

15. Add all the URLs in the list of fallback entriesp893 obtained by parsing manifest to file list, each flagged with "fallback entry".

16. If this is an upgrade attemptp901, then add all the URLs of primary entriesp892 in the newestp893 application cachep892 in cache
group whose completeness flagp893 is complete to file list, each flagged with "primary entry".

17. If any URL is in file list more than once, then merge the entries into one entry for that URL, that entry having all the flags that
the original entries had.

18. For each URL in file list, run the following steps. These steps may be run in parallel for two or more of the URLs at a time. If,
while running these steps, the ApplicationCachep909 object's abort()p911 method sends a signalp911 to this instance of the
application cache download processp900 algorithm, then run the cache failure stepsp906 instead.

1. If the resource URL being processed was flagged as neither an "explicit entry" nor or a "fallback entry", then the
user agent may skip this URL.

2. For each cache hostp894 associated with an application cachep892 in cache group, queue a progress post-load
taskp906 to run these steps:

1. Let showProgress be the result of firing an event named progressp892 at the ApplicationCachep909

singleton of the cache hostp894, using ProgressEvent, with the cancelable attribute initialized to true,
the lengthComputable attribute initialized to true, the total attribute initialized to the number of files in
file list, and the loaded attribute initialized to the number of files in file list that have been either
downloaded or skipped so far. [XHR]p1292

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that a file is being downloaded in preparation for updating the
application.

3. Let request be a new request whose url is URL, client is null, destination is the empty string, origin is manifest
URL's originp837, referrer is "no-referrer", synchronous flag is set, credentials mode is "include", use-URL-
credentials flag is set, and redirect mode is "manual".

4. Fetch request. If this is an upgrade attemptp901, then use the newestp893 application cachep892 in cache group as an
HTTP cache, and honor HTTP caching semantics (such as expiration, ETags, and so forth) with respect to that
cache. User agents may also have other caches in place that are also honored.

5. If the previous step fails (e.g. the server returns a 4xx or 5xx response, or there is a DNS error, or the connection
times out, or the user cancels the download), or if the server returned a redirect, or if the resource is labeled with
the "no-store" cache directive, then run the first appropriate step from the following list: [HTTP]p1288

↪ If the URL being processed was flagged as an "explicit entry" or a "fallback entry"
If these steps are being run in parallel for any other URLs in file list, then abort this algorithm for those other
URLs. Run the cache failure stepsp906.

This is intended to allow user agents to expire resources not listed in the manifest from the cache. Generally,
implementers are urged to use an approach that expires lesser-used resources first.

Note

903

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://xhr.spec.whatwg.org/#interface-progressevent
https://dom.spec.whatwg.org/#dom-event-cancelable
https://xhr.spec.whatwg.org/#dom-progressevent-lengthcomputable
https://xhr.spec.whatwg.org/#dom-progressevent-total
https://xhr.spec.whatwg.org/#dom-progressevent-loaded
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-origin
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-request-redirect-mode
https://fetch.spec.whatwg.org/#concept-fetch

↪ If the error was a 404 or 410 HTTP response
↪ If the resource was labeled with the "no-store" cache directive

Skip this resource. It is dropped from the cache.

↪ Otherwise
Copy the resource and its metadata from the newestp893 application cachep892 in cache group whose
completeness flagp893 is complete, and act as if that was the fetched resource, ignoring the resource
obtained from the network.

User agents may warn the user of these errors as an aid to development.

6. Otherwise, the fetching succeeded. Store the resource in the new cache.

If the user agent is not able to store the resource (e.g. because of quota restrictions), the user agent may prompt
the user or try to resolve the problem in some other manner (e.g. automatically pruning content in other caches). If
the problem cannot be resolved, the user agent must run the cache failure stepsp906.

7. If the URL being processed was flagged as an "explicit entry" in file list, then categorize the entry as an explicit
entryp893.

8. If the URL being processed was flagged as a "fallback entry" in file list, then categorize the entry as a fallback
entryp893.

9. If the URL being processed was flagged as a "primary entry" in file list, then categorize the entry as a primary
entryp892.

10. As an optimization, if the resource is an HTML or XML file whose document element is an htmlp152 element with a
manifestp152 attribute whose value doesn't match the manifest URL of the application cache being processed, then
the user agent should mark the entry as being foreignp893.

19. For each cache hostp894 associated with an application cachep892 in cache group, queue a progress post-load taskp906 to run
these steps:

1. Let showProgress be the result of firing an event named progressp892 at the ApplicationCachep909 singleton of the
cache hostp894, using ProgressEvent, with the cancelable attribute initialized to true, the lengthComputable
attribute initialized to true, and the total and loaded attributes initialized to the number of files in file list.
[XHR]p1292

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user interface
indicating to the user that all the files have been downloaded.

20. Store the list of fallback namespacesp893, and the URLs of the fallback entriesp893 that they map to, in new cache.

21. Store the URLs that form the new online safelistp893 in new cache.

22. Store the value of the new online safelist wildcard flagp893 in new cache.

23. Store the value of the new cache mode flagp893 in new cache.

24. For each entry in cache group's list of pending primary entriesp893, wait for the resource for this entry to have either

Redirects are fatal because they are either indicative of a network problem (e.g. a captive portal); or
would allow resources to be added to the cache under URLs that differ from any URL that the
networking model will allow access to, leaving orphan entries; or would allow resources to be stored
under URLs different than their true URLs. All of these situations are bad.

Note

These rules make errors for resources listed in the manifest fatal, while making it possible for other resources
to be removed from caches when they are removed from the server, without errors, and making non-manifest
resources survive server-side errors.

Note

Except for the "no-store" directive, HTTP caching rules that would cause a file to be expired or otherwise not
cached are ignored for the purposes of the application cache download process p900.

Note

904

https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-event-fire
https://xhr.spec.whatwg.org/#interface-progressevent
https://dom.spec.whatwg.org/#dom-event-cancelable
https://xhr.spec.whatwg.org/#dom-progressevent-lengthcomputable
https://xhr.spec.whatwg.org/#dom-progressevent-total
https://xhr.spec.whatwg.org/#dom-progressevent-loaded

completely downloaded or failed.

If the download failed (e.g. the server returns a 4xx or 5xx response, or there is a DNS error, the connection times out, or the
user cancels the download), or if the resource is labeled with the "no-store" cache directive, then run these substeps:

1. Unassociate the Documentp114 for this entry from new cache.

2. Queue a post-load taskp906 to run these steps:

1. Let showProgress be the result of firing an event named errorp892 at the ApplicationCachep909 singleton
of the Documentp114 for this entry, if there still is one, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that the user agent failed to save the application for offline use.

3. If this is a cache attemptp901 and this entry is the last entry in cache group's list of pending primary entriesp893,
then run these further substeps:

1. Discard cache group and its only application cachep892, new cache.

2. If appropriate, remove any user interface indicating that an update for this cache is in progress.

3. Abort the application cache download processp900.

4. Otherwise, remove this entry from cache group's list of pending primary entriesp893.

Otherwise, store the resource for this entry in new cache, if it isn't already there, and categorize its entry as a primary
entryp892.

25. Let request be a new request whose url is manifest URL, client is null, destination is the empty string, referrer is "no-
referrer", synchronous flag is set, credentials mode is "include", and whose use-URL-credentials flag is set.

26. Let second manifest be the result of fetching request. HTTP caching semantics should again be honored for this request.

27. If the previous step failed for any reason, or if the fetching attempt involved a redirect, or if second manifest and manifest
are not byte-for-byte identical, then schedule a rerun of the entire algorithm with the same parameters after a short delay,
and run the cache failure stepsp906.

28. Otherwise, store manifest in new cache, if it's not there already, and categorize its entry as the manifestp892.

29. Set the completeness flagp893 of new cache to complete.

30. Let task list be an empty list of tasksp944.

31. If this is a cache attemptp901, then for each cache hostp894 associated with an application cachep892 in cache group, create a
taskp944 to run these steps and append it to task list:

1. Let showProgress be the result of firing an event named cachedp892 at the ApplicationCachep909 singleton of the
cache hostp894, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user interface
indicating to the user that the application has been cached and that they can now use it offline.

Otherwise, it is an upgrade attemptp901. For each cache hostp894 associated with an application cachep892 in cache group,
create a taskp944 to run these steps and append it to task list:

1. Let showProgress be the result of firing an event named updatereadyp892 at the ApplicationCachep909 singleton of
the cache hostp894, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user interface
indicating to the user that a new version is available and that they can activate it by reloading the page.

32. If appropriate, remove any user interface indicating that an update for this cache is in progress.

33. Set the update statusp893 of cache group to idle.

Since caching can be honored, authors are encouraged to avoid setting the cache headers on the manifest in such a way
that the user agent would simply not contact the network for this second request; otherwise, the user agent would not
notice if the cache had changed during the cache update process.

Note

905

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

34. For each taskp944 in task list, queue that task as a post-load taskp906.

The cache failure steps are as follows:

1. Let task list be an empty list of tasksp944.

2. For each entry in cache group's list of pending primary entriesp893, run the following further substeps. These steps may be
run in parallel for two or more entries at a time.

1. Wait for the resource for this entry to have either completely downloaded or failed.

2. Unassociate the Documentp114 for this entry from its application cachep892, if it has one.

3. Create a taskp944 to run these steps and append it to task list:

1. Let showProgress be the result of firing an event named errorp892 at the ApplicationCachep909 singleton
of the Documentp114 for this entry, if there still is one, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user
interface indicating to the user that the user agent failed to save the application for offline use.

3. For each cache hostp894 still associated with an application cachep892 in cache group, create a taskp944 to run these steps and
append it to task list:

1. Let showProgress be the result of firing an event named errorp892 at the ApplicationCachep909 singleton of the
cache hostp894, with the cancelable attribute initialized to true.

2. If showProgress is true and the user agent shows caching progressp900, then display some sort of user interface
indicating to the user that the user agent failed to save the application for offline use.

4. Empty cache group's list of pending primary entriesp893.

5. If cache group has an application cachep892 whose completeness flagp893 is incomplete, then discard that application
cachep892.

6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

7. Let the statusp893 of cache group be idle.

8. If this was a cache attemptp901, discard cache group altogether.

9. For each taskp944 in task list, queue that task as a post-load taskp906.

10. Abort the application cache download processp900.

Attempts to fetch resources as part of the application cache download processp900 may be done with cache-defeating semantics, to
avoid problems with stale or inconsistent intermediary caches.

User agents may invoke the application cache download processp900, in the background, for any application cache groupp893, at any
time (with no cache hostp894). This allows user agents to keep caches primed and to update caches even before the user visits a site.

Each Documentp114 has a list of pending application cache download process tasks that is used to delay events fired by the
algorithm above until the document's loadp1282 event has fired. When the Documentp114 is created, the list must be empty.

When the steps above say to queue a post-load task task, where task is a taskp944 that dispatches an event on a target
ApplicationCachep909 object target, the user agent must run the appropriate steps from the following list:

If target's node document is ready for post-load tasksp1165

Queuep945 the task task.

Otherwise
Add task to target's node document's list of pending application cache download process tasksp906.

When the steps above say to queue a progress post-load task task, where task is a taskp944 that dispatches an event on a target
ApplicationCachep909 object target, the user agent must run the following steps:

906

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

1. If there is a task in target's node document's list of pending application cache download process tasksp906 that is labeled as a
progress task, then remove that task from the list.

2. Label task as a progress task.

3. Queue a post-load taskp906 task.

The task sourcep945 for these tasksp944 is the networking task sourcep952.

When the application cache selection algorithm algorithm is invoked with a Documentp114 document and optionally a manifest URL
manifest URL, the user agent must run the first applicable set of steps from the following list:

↪ If there is a manifest URL, and document was loaded from an application cachep892, and the URL of the manifestp892

of that cache's application cache groupp893 is not the same as manifest URL
Mark the entry for the resource from which document was taken in the application cachep892 from which it was loaded as
foreignp893.

Restart the current navigation from the top of the navigation algorithmp866, undoing any changes that were made as part of the
initial load (changes can be avoided by ensuring that the step to update the session history with the new page p875 is only ever
completed after this application cache selection algorithm p907 is run, though this is not required).

User agents may notify the user of the inconsistency between the cache manifest and the document's own metadata, to aid in
application development.

↪ If document was loaded from an application cachep892, and that application cachep892 still exists (it is not now
obsoletep894)

Associate document with the application cachep892 from which it was loaded. Invoke, in the background, the application cache
download processp900 for that application cachep892 's application cache groupp893, with document as the cache hostp894.

↪ If document was loaded using `GET`, and, there is a manifest URL, and manifest URL has the same originp838 as
document

Invoke, in the background, the application cache download processp900 for manifest URL, with document as the cache hostp894

and with the resource from which document was parsed as the primaryp892 resource.

If there are relevant application cachesp893 that are identified by a URL with the same originp838 as the URL of document, and
that have this URL as one of their entries, excluding entries marked as foreignp893, then the user agent should use the most
appropriate application cachep894 of those that match as an HTTP cache for any subresource loads. User agents may also have
other caches in place that are also honored.

↪ Otherwise
The Documentp114 is not associated with any application cachep892.

If there was a manifest URL, the user agent may report to the user that it was ignored, to aid in application development.

If "AppCache" is not removed as a feature this section needs to be integrated into the Fetch standard.

When a cache hostp894 is associated with an application cachep892 whose completeness flagp893 is complete, any and all loads for
resources related to that cache hostp894 other than those for child browsing contextsp814 must go through the following steps instead of
immediately invoking the mechanisms appropriate to that resource's scheme:

The navigation will not result in the same resource being loaded, because "foreign" entries are never picked during
navigation.

Note

7.11.5 The application cache selection algorithm §p90

7

7.11.6 Changes to the networking model §p90

7

907

https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url

1. If the resource is not to be fetched using the GET method, or if applying the URL parser algorithm to both its URL and the
application cachep892 's manifestp892 's URL results in two URL records with different scheme components, then fetch the
resource normally and return.

2. If the resource's URL is a primary entryp892, the manifestp892, an explicit entryp893, or a fallback entryp893 in the application
cachep892, then get the resource from the cache (instead of fetching it), and return.

3. If there is an entry in the application cachep892 's online safelistp893 that has the same originp838 as the resource's URL and that
is a prefix matchp67 for the resource's URL, then fetch the resource normally and return.

4. If the resource's URL has the same originp838 as the manifest's URL, and there is a fallback namespacep893 f in the application
cachep892 that is a prefix matchp67 for the resource's URL, then:

Fetch the resource normally. If this results in a redirect to a resource with another originp837 (indicative of a captive portal), or
a 4xx or 5xx status code, or if there were network errors (but not if the user canceled the download), then instead get, from
the cache, the resource of the fallback entryp893 corresponding to the fallback namespacep893 f. Return.

5. If the application cachep892 's online safelist wildcard flagp893 is open, then fetch the resource normally and return.

6. Fail the resource load as if there had been a generic network error.

As a general rule, user agents should not expire application caches, except on request from the user, or after having been left unused
for an extended period of time.

Application caches and cookies have similar implications with respect to privacy (e.g. if the site can identify the user when providing
the cache, it can store data in the cache that can be used for cookie resurrection). Implementors are therefore encouraged to expose
application caches in a manner related to HTTP cookies, allowing caches to be expunged together with cookies and other origin-
specific data.

User agents should consider applying constraints on disk usage of application cachesp892, and care should be taken to ensure that the
restrictions cannot be easily worked around using subdomains.

User agents should allow users to see how much space each domain is using, and may offer the user the ability to delete specific
application cachesp892.

For predictability, quotas should be based on the uncompressed size of data stored.

The above algorithm ensures that so long as the online safelist wildcard flagp893 is blocking, resources that are not present in the
manifestp892 will always fail to load (at least, after the application cachep892 has been primed the first time), making the testing of
offline applications simpler.

Note

For example, a user agent could have a "delete site-specific data" feature that clears all cookies, application caches, local storage,
databases, etc, from an origin all at once.

Example

How quotas are presented to the user is not defined by this specification. User agents are encouraged to provide features such as
allowing a user to indicate that certain sites are trusted to use more than the default quota, e.g. by presenting a non-modal user
interface while a cache is being updated, or by having an explicit safelist in the user agent's configuration interface.

Note

7.11.7 Expiring application caches §p90

8

7.11.8 Disk space §p90

8

908

https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme

This section is non-normative.

The main risk introduced by offline application caches is that an injection attack can be elevated into persistent site-wide page
replacement. This attack involves using an injection vulnerability to upload two files to the victim site. The first file is an application
cache manifest consisting of just a fallback entry pointing to the second file, which is an HTML page whose manifest is declared as that
first file. Once the user has been directed to that second file, all subsequent accesses to any file covered by the given fallback
namespace while either the user or the site is offline will instead show that second file. Targeted denial-of-service attacks or cookie
bombing attacks (where the client is made to send so many cookies that the server refuses to process the request) can be used to
ensure that the site appears offline.

To mitigate this, manifests can only specify fallbacks that are in the same path as the manifest itself. This means that a content
injection upload vulnerability in a particular directory on a server can only be escalated to a take-over of that directory and its
subdirectories. If there is no way to inject a file into the root directory, the entire site cannot be taken over.

If a site has been attacked in this way, simply removing the offending manifest might eventually clear the problem, since the next time
the manifest is updated, a 404 error will be seen, and the user agent will clear the cache. "Eventually" is the key word here, however;
while the attack on the user or server is ongoing, such that connections from an affected user to the affected site are blocked, the user
agent will simply assume that the user is offline and will continue to use the hostile manifest. Unfortunately, if a cookie bombing attack
has also been used, merely removing the manifest is insufficient; in addition, the server has to be configured to return a 404 or 410
response instead of the 413 "Request Entity Too Large" response.

TLS does not inherently protect a site from this attack, since the attack relies on content being served from the server itself. Not using
application caches also does not prevent this attack, since the attack relies on an attacker-provided manifest.

[SecureContext,
Exposed=Window]

interface ApplicationCache : EventTarget {

// update status
const unsigned short UNCACHED = 0;
const unsigned short IDLE = 1;
const unsigned short CHECKING = 2;
const unsigned short DOWNLOADING = 3;
const unsigned short UPDATEREADY = 4;
const unsigned short OBSOLETE = 5;
readonly attribute unsigned short status;

// updates
undefined update();
undefined abort();
undefined swapCache();

// events
attribute EventHandler onchecking;
attribute EventHandler onerror;
attribute EventHandler onnoupdate;
attribute EventHandler ondownloading;
attribute EventHandler onprogress;
attribute EventHandler onupdateready;
attribute EventHandler oncached;
attribute EventHandler onobsolete;

};

For web developers (non-normative)

IDL

7.11.9 Security concerns with offline applications caches §p90

9

7.11.10 Application cache API §p90

9

909

https://dom.spec.whatwg.org/#interface-eventtarget

There is a one-to-one mapping from cache hostsp894 to ApplicationCachep909 objects. The applicationCache attribute on Windowp824

objects must return the ApplicationCachep909 object associated with the Windowp824 object's active documentp811.

The status attribute, on getting, must return the current state of the application cachep892 that the ApplicationCachep909 object's
cache hostp894 is associated with, if any. This must be the appropriate value from the following list:

UNCACHED (numeric value 0)
The ApplicationCachep909 object's cache hostp894 is not associated with an application cachep892 at this time.

IDLE (numeric value 1)
The ApplicationCachep909 object's cache hostp894 is associated with an application cachep892 whose application cache groupp893 's
update statusp893 is idle, and that application cachep892 is the newestp893 cache in its application cache groupp893, and the application
cache groupp893 is not marked as obsoletep894.

CHECKING (numeric value 2)
The ApplicationCachep909 object's cache hostp894 is associated with an application cachep892 whose application cache groupp893 's
update statusp893 is checking.

DOWNLOADING (numeric value 3)
The ApplicationCachep909 object's cache hostp894 is associated with an application cachep892 whose application cache groupp893 's
update statusp893 is downloading.

cache = window . applicationCachep910

Returns the ApplicationCachep909 object that applies to the active documentp811 of that Windowp824.

cache . statusp910

Returns the current status of the application cache, as given by the constants defined below.

cache . updatep911()
Invokes the application cache download processp900.
Throws an "InvalidStateError" DOMException if there is no application cache to update.
Calling this method is not usually necessary, as user agents will generally take care of updating application cachesp892

automatically.
The method can be useful in situations such as long-lived applications. For example, a web mail application might stay open in a
browser tab for weeks at a time. Such an application could want to test for updates each day.

cache . abortp911()
Cancels the application cache download processp900.
This method is intended to be used by web application showing their own caching progress UI, in case the user wants to stop
the update (e.g. because bandwidth is limited).

cache . swapCachep911()
Switches to the most recent application cache, if there is a newer one. If there isn't, throws an "InvalidStateError"
DOMException.
This does not cause previously-loaded resources to be reloaded; for example, images do not suddenly get reloaded and style
sheets and scripts do not get reparsed or reevaluated. The only change is that subsequent requests for cached resources will
obtain the newer copies.
The updatereadyp892 event will fire before this method can be called. Once it fires, the web application can, at its leisure, call
this method to switch the underlying cache to the one with the more recent updates. To make proper use of this, applications
have to be able to bring the new features into play; for example, reloading scripts to enable new features.
An easier alternative to swapCache()p911 is just to reload the entire page at a time suitable for the user, using
location.reload()p863.

A Documentp114 has an associated ApplicationCachep909 object even if that cache hostp894 has no actual application cachep892.
Note

910

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

UPDATEREADY (numeric value 4)
The ApplicationCachep909 object's cache hostp894 is associated with an application cachep892 whose application cache groupp893 's
update statusp893 is idle, and whose application cache groupp893 is not marked as obsoletep894, but that application cachep892 is not
the newestp893 cache in its group.

OBSOLETE (numeric value 5)
The ApplicationCachep909 object's cache hostp894 is associated with an application cachep892 whose application cache groupp893 is
marked as obsoletep894.

If the update() method is invoked, the user agent must invoke the application cache download processp900, in the background, for the
application cache groupp893 of the application cachep892 with which the ApplicationCachep909 object's cache hostp894 is associated, but
without giving that cache hostp894 to the algorithm. If there is no such application cachep892, or if its application cache groupp893 is
marked as obsoletep894, then the method must throw an "InvalidStateError" DOMException instead.

If the abort() method is invoked, the user agent must send a signal to the current application cache download processp900 for the
application cache groupp893 of the application cachep892 with which the ApplicationCachep909 object's cache hostp894 is associated, if
any. If there is no such application cachep892, or it does not have a current application cache download processp900, then do nothing.

If the swapCache() method is invoked, the user agent must run the following steps:

1. Check that ApplicationCachep909 object's cache hostp894 is associated with an application cachep892. If it is not, then throw
an "InvalidStateError" DOMException.

2. Let cache be the application cachep892 with which the ApplicationCachep909 object's cache hostp894 is associated. (By
definition, this is the same as the one that was found in the previous step.)

3. If cache's application cache groupp893 is marked as obsoletep894, then unassociate the ApplicationCachep909 object's cache
hostp894 from cache and return. (Resources will now load from the network instead of the cache.)

4. Check that there is an application cache in the same application cache groupp893 as cache whose completeness flagp893 is
complete and that is newerp893 than cache. If there is not, then throw an "InvalidStateError" DOMException exception.

5. Let new cache be the newestp893 application cachep892 in the same application cache groupp893 as cache whose completeness
flagp893 is complete.

6. Unassociate the ApplicationCachep909 object's cache hostp894 from cache and instead associate it with new cache.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the ApplicationCachep909 interface:

Event handlerp954 Event handler event typep957

onchecking checkingp892

onerror errorp892

onnoupdate noupdatep892

ondownloading downloadingp892

onprogress progressp892

onupdateready updatereadyp892

oncached cachedp892

onobsolete obsoletep892

interface mixin NavigatorOnLine {
readonly attribute boolean onLine;

};

For web developers (non-normative)

IDL

7.11.11 Browser state §p91

1

✔ MDN

911

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

The navigator.onLine attribute must return false if the user agent will not contact the network when the user follows links or when a
script requests a remote page (or knows that such an attempt would fail), and must return true otherwise.

When the value that would be returned by the navigator.onLinep912 attribute of a Windowp824 or WorkerGlobalScopep1044 global
changes from true to false, the user agent must queue a global taskp945 on the networking task sourcep952 given global to fire an event
named offlinep1282 at global.

On the other hand, when the value that would be returned by the navigator.onLinep912 attribute of a Windowp824 or
WorkerGlobalScopep1044 global changes from false to true, the user agent must queue a global taskp945 on the networking task
sourcep952 given global to fire an event named onlinep1282 at the Windowp824 or WorkerGlobalScopep1044 object.

self . navigatorp979 . onLinep912

Returns false if the user agent is definitely offline (disconnected from the network). Returns true if the user agent might be
online.
The events onlinep1282 and offlinep1282 are fired when the value of this attribute changes.

This attribute is inherently unreliable. A computer can be connected to a network without having Internet access.
Note

In this example, an indicator is updated as the browser goes online and offline.

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Online status</title>
<script>
function updateIndicator() {

document.getElementById('indicator').textContent = navigator.onLine ? 'online' : 'offline';
}

</script>
</head>
<body onload="updateIndicator()" ononline="updateIndicator()" onoffline="updateIndicator()">
<p>The network is: (state unknown)

</body>
</html>

Example

✔ MDN

912

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

Various mechanisms can cause author-provided executable code to run in the context of a document. These mechanisms include, but
are probably not limited to:

• Processing of scriptp614 elements.

• Navigating to javascript: URLsp872.

• Event handlers, whether registered through the DOM using addEventListener(), by explicit event handler content
attributesp955, by event handler IDL attributesp955, or otherwise.

• Processing of technologies like SVG that have their own scripting features.

JavaScript defines the concept of an agent. This section gives the mapping of that language-level concept on to the web platform.

The following types of agents exist on the web platform:

Similar-origin window agent
Contains various Windowp824 objects which can potentially reach each other, either directly or by using document.domainp840.

If the encompassing agent cluster's cross-origin isolatedp914 is true, then all the Windowp824 objects will be same originp838, can reach
each other directly, and document.domainp840 will no-op.

Dedicated worker agent
Contains a single DedicatedWorkerGlobalScopep1046.

Shared worker agent
Contains a single SharedWorkerGlobalScopep1047.

Service worker agent
Contains a single ServiceWorkerGlobalScope.

Worklet agent
Contains a single WorkletGlobalScope object.

8 Web application APIs §p91

3

8.1 Scripting §p91

3

8.1.2.1 Integration with the JavaScript agent formalism §p91

3

Conceptually, the agent concept is an architecture-independent, idealized "thread" in which JavaScript code runs. Such code can
involve multiple globals/realmsp918 that can synchronously access each other, and thus needs to run in a single execution thread.

Two Windowp824 objects having the same agent does not indicate they can directly access all objects created in each other's realms.
They would have to be same origin-domainp838; see IsPlatformObjectSameOriginp822.

Note

Two Windowp824 objects that are same originp838 can be in different similar-origin window agentsp913, for instance if they are each
in their own browsing context groupp818.

Note

8.1.1 Introduction §p91

3

8.1.2 Agents and agent clusters §p91

3

913

https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agent-clusters
https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope
https://drafts.css-houdini.org/worklets/#workletglobalscope

Only sharedp913 and dedicated worker agentsp913 allow the use of JavaScript Atomics APIs to potentially block.

To create an agent, given a boolean canBlock:

1. Let signifier be a new unique internal value.

2. Let candidateExecution be a new candidate execution.

3. Let agent be a new agent whose [[CanBlock]] is canBlock, [[Signifier]] is signifier, [[CandidateExecution]] is
candidateExecution, and [[IsLockFree1]], [[IsLockFree2]], and [[LittleEndian]] are set at the implementation's discretion.

4. Set agent's event loopp944 to a new event loopp944.

5. Return agent.

The relevant agent for a platform object platformObject is platformObject's relevant Realmp924 's agent. This pointer is not yet
defined in the JavaScript specification; see tc39/ecma262#1357.

JavaScript also defines the concept of an agent cluster, which this standard maps to the web platform by placing agents appropriately
when they are created using the obtain a similar-origin window agentp914 or obtain a worker/worklet agentp915 algorithms.

The agent cluster concept is crucial for defining the JavaScript memory model, and in particular among which agents the backing data
of SharedArrayBuffer objects can be shared.

An agent cluster has an associated cross-origin isolated (a boolean), which is initially false.

An agent cluster has an associated origin-isolated (a boolean), which is initially false.

The following defines the allocation of the agent clusters of similar-origin window agentsp913.

An agent cluster key is a sitep839 or tuple originp837 whose hostp837 's registrable domain is non-null. I.e., an agent cluster keyp914 can
be a scheme-and-registrable-domainp839 or any originp837.

To obtain a similar-origin window agent, given an originp837 origin, a browsing context groupp818 group, and a boolean requestsOI,
run these steps:

1. Let site be the result of obtaining a sitep839 with origin.

2. Let key be site.

3. If group's cross-origin isolatedp818 is true, then set key to origin.

4. Otherwise, if group's historical agent cluster key mapp818[origin] exists, then set key to group's historical agent cluster key
mapp818[origin].

Although a given worklet can have multiple realms, each such realm needs its own agent, as each realm can be executing code
independently and at the same time as the others.

Note

The agent equivalent of the current Realm Record is the surrounding agent.
Note

8.1.2.2 Integration with the JavaScript agent cluster formalism §p91

4

Conceptually, the agent cluster concept is an architecture-independent, idealized "process boundary" that groups together
multiple "threads" (agents). The agent clusters defined by the specification are generally more restrictive than the actual process
boundaries implemented in user agents. By enforcing these idealized divisions at the specification level, we ensure that web
developers see interoperable behavior with regard to shared memory, even in the face of varying and changing user agent process
models.

Note

914

https://tc39.es/ecma262/#sec-atomics-object
https://tc39.es/ecma262/#sec-forward-progress
https://tc39.es/ecma262/#sec-candidate-executions
https://tc39.es/ecma262/#sec-agents
https://heycam.github.io/webidl/#dfn-platform-object
https://tc39.es/ecma262/#sec-agents
https://github.com/tc39/ecma262/issues/1357
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://url.spec.whatwg.org/#host-registrable-domain
https://infra.spec.whatwg.org/#map-exists

5. Otherwise:

1. If requestsOI is true, then set key to origin.

2. Set group's historical agent cluster key mapp818[origin] to key.

6. If group's agent cluster mapp818[key] does not exist, then:

1. Let agentCluster be a new agent cluster.

2. Set agentCluster's cross-origin isolatedp914 to group's cross-origin isolatedp818.

3. Set agentCluster's origin-isolatedp914 to true if key equals origin; otherwise false.

4. Add the result of creating an agentp914, given false, to agentCluster.

5. Set group's agent cluster mapp818[key] to agentCluster.

7. Return the single similar-origin window agentp913 contained in group's agent cluster mapp818[key].

The following defines the allocation of the agent clusters of all other types of agents.

To obtain a worker/worklet agent, given an environment settings objectp917 or null outside settings, a boolean isTopLevel, and a
boolean canBlock, run these steps:

1. Let agentCluster be null.

2. If isTopLevel is true, then:

1. Set agentCluster to a new agent cluster.

2. Set agentCluster's origin-isolatedp914 to true.

3. Otherwise:

1. Assert: outside settings is not null.

2. Let ownerAgent be outside settings's Realmp918 's agent.

3. Set agentCluster to the agent cluster which contains ownerAgent.

4. Let agent be the result of creating an agentp914 given canBlock.

5. Add agent to agentCluster.

6. Return agent.

To obtain a dedicated/shared worker agent, given an environment settings objectp917 outside settings and a boolean isShared,
return the result of obtaining a worker/worklet agentp915 given outside settings, isShared, and true.

To obtain a worklet agent, given an environment settings objectp917 outside settings, return the result of obtaining a worker/worklet
agentp915 given outside settings, false, and false.

To obtain a service worker agent, return the result of obtaining a worker/worklet agentp915 given null, true, and false.

This means that there is only one similar-origin window agentp913 per browsing context agent cluster. (However, dedicated
workerp913 and worklet agentsp913 might be in the same cluster.)

Note

These workers can be considered to be origin-isolated. However, this is not exposed through any APIs (in the
way that originIsolatedp841 exposes the origin-isolation state for windows).

Note

Example

915

https://infra.spec.whatwg.org/#map-exists
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters

The JavaScript specification introduces the realm concept, representing a global environment in which script is run. Each realm comes
with an implementation-defined global objectp918; much of this specification is devoted to defining that global object and its properties.

For web specifications, it is often useful to associate values or algorithms with a realm/global object pair. When the values are specific
to a particular type of realm, they are associated directly with the global object in question, e.g., in the definition of the Windowp824 or
WorkerGlobalScopep1044 interfaces. When the values have utility across multiple realms, we use the environment settings objectp917

concept.

Finally, in some cases it is necessary to track associated values before a realm/global object/environment settings object even comes
into existence (for example, during navigationp866). These values are tracked in the environmentp916 concept.

An environment is an object that identifies the settings of a current or potential execution environment. An environmentp916 has the
following fields:

An id
An opaque string that uniquely identifies this environmentp916.

A creation URL
A URL that represents the location of the resource with which this environmentp916 is associated.

A top-level creation URL
Null or a URL that represents the creation URLp916 of the "top-level" environmentp916. It is null for workers and worklets.

A top-level origin
A for now implementation-defined value, null, or an originp837. For a "top-level" potential execution environment it is null (i.e.,
when there is no response yet); otherwise it is the "top-level" environmentp916 's originp917. For a dedicated worker or worklet it is the
top-level originp916 of its creator. For a shared or service worker it is an implementation-defined value.

The following pairs of global objects are each within the same agent cluster, and thus can use SharedArrayBuffer instances to
share memory with each other:

• A Windowp824 object and a dedicated worker that it created.
• A worker (of any type) and a dedicated worker it created.
• A Windowp824 object A and the Windowp824 object of an iframep361 element that A created that could be same origin-

domainp838 with A.
• A Windowp824 object and a same origin-domainp838 Windowp824 object that opened it.
• A Windowp824 object and a worklet that it created.

The following pairs of global objects are not within the same agent cluster, and thus cannot share memory:

• A Windowp824 object and a shared worker it created.
• A worker (of any type) and a shared worker it created.
• A Windowp824 object and a service worker it created.
• A Windowp824 object and the Windowp824 object of an iframep361 element that A created that cannot be same origin-

domainp838 with A.
• Any two Windowp824 objects whose browsing contextsp811 do not have a non-null openerp811 or ancestorp814 relationship.

This holds even if the two Windowp824 objects are same originp838.

8.1.3.1 Environments §p91

6

In the case of an environment settings objectp917, this URL might be distinct from the environment settings objectp917 's
responsible documentp917 's URL, due to mechanisms such as history.pushState()p854.

Note

This is distinct from the top-level creation URLp916 's origin when sandboxing, workers, and worklets are involved.
Note

8.1.3 Realms and their counterparts §p91

6

916

https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-code-realms
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url-origin

A target browsing context
Null or a target browsing contextp811 for a navigation request.

An active service worker
Null or a service worker that controls the environmentp916.

An execution ready flag
A flag that indicates whether the environment setup is done. It is initially unset.

Specifications may define environment discarding steps for environments. The steps take an environmentp916 as input.

An environment settings object is an environmentp916 that additionally specifies algorithms for:

A realm execution context
A JavaScript execution context shared by all scriptsp614 that use this settings object, i.e. all scripts in a given JavaScript realm. When
we run a classic scriptp934 or run a module scriptp935, this execution context becomes the top of the JavaScript execution context
stack, on top of which another execution context specific to the script in question is pushed. (This setup ensures ParseScript and
Source Text Module Record's Evaluate know which Realm to use.)

A module map
A module mapp941 that is used when importing JavaScript modules.

A responsible document
A Documentp114 that is assigned responsibility for actions taken by the scripts that use this environment settings objectp917.

If the responsible event loopp918 is not a window event loopp944, then the environment settings objectp917 has no responsible
documentp917.

An API URL character encoding
A character encoding used to encode URLs by APIs called by scripts that use this environment settings objectp917.

An API base URL
A URL used by APIs called by scripts that use this environment settings objectp917 to parse URLsp89.

An origin
An originp837 used in security checks.

A referrer policy
The default referrer policy for fetches performed using this environment settings objectp917 as a request client.
[REFERRERPOLICY]p1290

An embedder policy
An embedder policyp847 used by cross-origin resource policy checks for fetches performed using this environment settings objectp917

as a request client.

A cross-origin isolated capability
A boolean representing whether scripts that use this environment settings objectp917 are allowed to use APIs that require cross-
origin isolation.

The environment discarding stepsp917 are run for only a select few environments: the ones that will never become execution ready
because, for example, they failed to load.

Note

8.1.3.2 Environment settings objects §p91

7

For example, the URL of the responsible documentp917 is used to set the URL of the Documentp114 after it has been reset using
document.open()p969.

Example

917

https://fetch.spec.whatwg.org/#navigation-request
https://w3c.github.io/ServiceWorker/#dfn-service-worker
https://w3c.github.io/ServiceWorker/#dfn-control
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-parse-script
https://tc39.es/ecma262/#sec-source-text-module-records
https://tc39.es/ecma262/#sec-moduleevaluation
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-client

An environment settings objectp917 also has an outstanding rejected promises weak set and an about-to-be-notified rejected
promises list, used to track unhandled promise rejectionsp938. The outstanding rejected promises weak setp918 must not create strong
references to any of its members, and implementations are free to limit its size, e.g. by removing old entries from it when new ones are
added.

An environment settings objectp917 's responsible event loop is its global objectp918 's relevant agentp914 's event loopp944.

A global object is a JavaScript object that is the [[GlobalObject]] field of a JavaScript realm.

There is always a 1-to-1-to-1 mapping between JavaScript realms, global objectsp918, and environment settings objectsp917:

• A JavaScript realm has a [[HostDefined]] field, which contains the Realm's settings object.

• A JavaScript realm has a [[GlobalObject]] field, which contains the Realm's global object.

• Each global objectp918 in this specification is created during the creationp918 of a corresponding JavaScript realm, known as
the global object's Realm.

• Each global objectp918 in this specification is created alongside a corresponding environment settings objectp917, known as its
relevant settings objectp924.

• An environment settings objectp917 's realm execution contextp917 's Realm component is the environment settings object's
Realm.

• An environment settings objectp917 's Realmp918 then has a [[GlobalObject]] field, which contains the environment settings
object's global object.

To create a new JavaScript realm in an agent agent, optionally with instructions to create a global object or a global this binding (or
both), the following steps are taken:

1. Perform InitializeHostDefinedRealm() with the provided customizations for creating the global object and the global this
binding.

2. Let realm execution context be the running JavaScript execution context.

3. Remove realm execution context from the JavaScript execution context stack.

4. Let realm be realm execution context's Realm component.

5. Set realm's agent to agent. This pointer is not yet defined in the JavaScript specification; see tc39/ecma262#1357.

6. If agent's agent cluster's cross-origin isolatedp914 is false, then:

1. Let global be realm's global objectp918.

2. Let status be ! global.[[Delete]]("SharedArrayBuffer").

3. Assert: status is true.

7. Return realm execution context.

8.1.3.3 Realms, settings objects, and global objects §p91

8

In this specification, all JavaScript realms are createdp918 with global objectsp918 that are either Windowp824 or
WorkerGlobalScopep1044 objects.

Note

This is the JavaScript execution context created in the previous step.
Note

This is done for compatibility with web content and there is some hope that this can be removed in the future. Web
developers can still get at the constructor through new WebAssembly.Memory({ shared:true, initial:0, maximum:0
}).buffer.constructor.

Note

918

https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-initializehostdefinedrealm
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#execution-context-stack
https://github.com/tc39/ecma262/issues/1357
https://tc39.es/ecma262/#sec-agent-clusters

When defining algorithm steps throughout this specification, it is often important to indicate what JavaScript realm is to be used—or,
equivalently, what global objectp918 or environment settings objectp917 is to be used. In general, there are at least four possibilities:

Entry
This corresponds to the script that initiated the currently running script action: i.e., the function or script that the user agent called
into when it called into author code.

Incumbent
This corresponds to the most-recently-entered author function or script on the stack, or the author function or script that originally
scheduled the currently-running callback.

Current
This corresponds to the currently-running function object, including built-in user-agent functions which might not be implemented as
JavaScript. (It is derived from the current JavaScript realm.)

Relevant
Every platform object has a relevant Realmp924, which is roughly the JavaScript realm in which it was created. When writing
algorithms, the most prominent platform object whose relevant Realmp924 might be important is the this value of the currently-
running function object. In some cases, there can be other important relevant Realmsp924, such as those of any arguments.

Note how the entryp919, incumbentp919, and currentp919 concepts are usable without qualification, whereas the relevantp919 concept
must be applied to a particular platform object.

In general, web platform specifications should use the relevantp919 concept, applied to the object being operated on (usually the this
value of the current method). This mismatches the JavaScript specification, where currentp919 is generally used as the default (e.g. in
determining the JavaScript realm whose Array constructor should be used to construct the result in Array.prototype.map). But this
inconsistency is so embedded in the platform that we have to accept it going forward.

The incumbentp919 and entryp919 concepts should not be used by new specifications, as they are excessively
complicated and unintuitive to work with. We are working to remove almost all existing uses from the platform: see
issue #1430 for incumbentp919, and issue #1431 for entryp919.

⚠Warning!

Consider the following pages, with a.html being loaded in a browser window, b.html being loaded in an iframep361 as shown, and
c.html and d.html omitted (they can simply be empty documents):

<!-- a.html -->
<!DOCTYPE html>
<html lang="en">
<title>Entry page</title>

<iframe src="b.html"></iframe>
<button onclick="frames[0].hello()">Hello</button>

<!--b.html -->
<!DOCTYPE html>
<html lang="en">
<title>Incumbent page</title>

<iframe src="c.html" id="c"></iframe>
<iframe src="d.html" id="d"></iframe>

<script>
const c = document.querySelector("#c").contentWindow;
const d = document.querySelector("#d").contentWindow;

window.hello = () => {
c.print.call(d);

};
</script>

Example

919

https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#current-realm
https://heycam.github.io/webidl/#dfn-platform-object
https://tc39.es/ecma262/#sec-code-realms
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-platform-object
https://github.com/whatwg/html/issues/1430
https://github.com/whatwg/html/issues/1431
https://tc39.es/ecma262/#sec-code-realms

The rest of this section deals with formally defining the entryp919, incumbentp919, currentp919, and relevantp919 concepts.

Each page has its own browsing contextp811, and thus its own JavaScript realm, global objectp918, and environment settings
objectp917.

When the print()p978 method is called in response to pressing the button in a.html, then:

• The entry Realmp921 is that of a.html.

• The incumbent Realmp922 is that of b.html.

• The current Realm is that of c.html (since it is the print()p978 method from c.html whose code is running).

• The relevant Realmp924 of the object on which the print()p978 method is being called is that of d.html.

One reason why the relevantp919 concept is generally a better default choice than the currentp919 concept is that it is more suitable
for creating an object that is to be persisted and returned multiple times. For example, the navigator.getBattery() method
creates promises in the relevant Realmp924 for the Navigatorp979 object on which it is invoked. This has the following impact:
[BATTERY]p1285

<!-- outer.html -->
<!DOCTYPE html>
<html lang="en">
<title>Relevant Realm demo: outer page</title>
<script>

function doTest() {
const promise = navigator.getBattery.call(frames[0].navigator);

console.log(promise instanceof Promise); // logs false
console.log(promise instanceof frames[0].Promise); // logs true

frames[0].hello();
}

</script>
<iframe src="inner.html" onload="doTest()"></iframe>

<!-- inner.html -->
<!DOCTYPE html>
<html lang="en">
<title>Relevant Realm demo: inner page</title>
<script>

function hello() {
const promise = navigator.getBattery();

console.log(promise instanceof Promise); // logs true
console.log(promise instanceof parent.Promise); // logs false

}
</script>

If the algorithm for the getBattery() method had instead used the current Realm, all the results would be reversed. That is, after
the first call to getBattery() in outer.html, the Navigatorp979 object in inner.html would be permanently storing a Promise
object created in outer.html's JavaScript realm, and calls like that inside the hello() function would thus return a promise from
the "wrong" realm. Since this is undesirable, the algorithm instead uses the relevant Realmp924, giving the sensible results
indicated in the comments above.

Example

920

https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#current-realm
https://w3c.github.io/battery/#widl-Navigator-getBattery-Promise-BatteryManager
https://w3c.github.io/battery/#widl-Navigator-getBattery-Promise-BatteryManager
https://tc39.es/ecma262/#current-realm
https://w3c.github.io/battery/#widl-Navigator-getBattery-Promise-BatteryManager
https://tc39.es/ecma262/#sec-code-realms

The process of calling scriptsp934 will push or pop realm execution contextsp917 onto the JavaScript execution context stack,
interspersed with other execution contexts.

With this in hand, we define the entry execution context to be the most recently pushed item in the JavaScript execution context
stack that is a realm execution contextp917. The entry Realm is the entry execution contextp921 's Realm component.

Then, the entry settings object is the environment settings objectp918 of the entry Realmp921.

Similarly, the entry global object is the global objectp918 of the entry Realmp921.

All JavaScript execution contexts must contain, as part of their code evaluation state, a skip-when-determining-incumbent
counter value, which is initially zero. In the process of preparing to run a callbackp921 and cleaning up after running a callbackp921, this
value will be incremented and decremented.

Every event loopp944 has an associated backup incumbent settings object stack, initially empty. Roughly speaking, it is used to
determine the incumbent settings objectp921 when no author code is on the stack, but author code is responsible for the current
algorithm having been run in some way. The process of preparing to run a callbackp921 and cleaning up after running a callbackp921

manipulate this stack. [WEBIDL]p1292

When Web IDL is used to invoke author code, or when HostEnqueuePromiseJobp939 invokes a promise job, they use the following
algorithms to track relevant data for determining the incumbent settings objectp921:

To prepare to run a callback with an environment settings objectp917 settings:

1. Push settings onto the backup incumbent settings object stackp921.

2. Let context be the topmost script-having execution contextp921.

3. If context is not null, increment context's skip-when-determining-incumbent counterp921.

To clean up after running a callback with an environment settings objectp917 settings:

1. Let context be the topmost script-having execution contextp921.

2. If context is not null, decrement context's skip-when-determining-incumbent counterp921.

3. Assert: the topmost entry of the backup incumbent settings object stackp921 is settings.

4. Remove settings from the backup incumbent settings object stackp921.

Here, the topmost script-having execution context is the topmost entry of the JavaScript execution context stack that has a non-
null ScriptOrModule component, or null if there is no such entry in the JavaScript execution context stack.

With all this in place, the incumbent settings object is determined as follows:

1. Let context be the topmost script-having execution contextp921.

2. If context is null, or if context's skip-when-determining-incumbent counterp921 is greater than zero, then:

1. Assert: the backup incumbent settings object stackp921 is not empty.

8.1.3.3.1 Entry §p92

1

8.1.3.3.2 Incumbent §p92

1

This will be the same as the topmost script-having execution context p921 inside the corresponding invocation of prepare
to run a callbackp921.

Note

This assert would fail if you try to obtain the incumbent settings objectp921 from inside an algorithm that was
triggered neither by calling scriptsp934 nor by Web IDL invoking a callback. For example, it would trigger if you
tried to obtain the incumbent settings objectp921 inside an algorithm that ran periodically as part of the event
loopp944, with no involvement of author code. In such cases the incumbentp919 concept cannot be used.

Note

921

https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-execution-contexts
https://heycam.github.io/webidl/#invoke-a-callback-function
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://heycam.github.io/webidl/#invoke-a-callback-function

2. Return the topmost entry of the backup incumbent settings object stackp921.

3. Return context's Realm component's settings objectp918.

Then, the incumbent Realm is the Realmp918 of the incumbent settings objectp921.

Similarly, the incumbent global object is the global objectp918 of the incumbent settings objectp921.

The following series of examples is intended to make it clear how all of the different mechanisms contribute to the definition of the
incumbentp921 concept:

Consider the following starter example:

<!DOCTYPE html>
<iframe></iframe>
<script>

frames[0].postMessage("some data", "*");
</script>

There are two interesting environment settings objectsp917 here: that of window, and that of frames[0]. Our concern is: what is the
incumbent settings objectp921 at the time that the algorithm for postMessage()p1018 executes?

It should be that of window, to capture the intuitive notion that the author script responsible for causing the algorithm to happen is
executing in window, not frames[0]. This makes sense: the window post message stepsp1017 use the incumbent settings objectp921

to determine the sourcep999 property of the resulting MessageEventp998, and in this case window is definitely the source of the
message.

Let us now explain how the steps given above give us our intuitively-desired result of window's relevant settings objectp924.

When the window post message stepsp1017 look up the incumbent settings objectp921, the topmost script-having execution
contextp921 will be that corresponding to the scriptp614 element: it was pushed onto the JavaScript execution context stack as part
of ScriptEvaluation during the run a classic scriptp934 algorithm. Since there are no Web IDL callback invocations involved, the
context's skip-when-determining-incumbent counterp921 is zero, so it is used to determine the incumbent settings objectp921; the
result is the environment settings objectp917 of window.

(Note how the environment settings objectp917 of frames[0] is the relevant settings objectp924 of this at the time the
postMessage()p1018 method is called, and thus is involved in determining the target of the message. Whereas the incumbent is
used to determine the source.)

Example

Consider the following more complicated example:

<!DOCTYPE html>
<iframe></iframe>
<script>

const bound = frames[0].postMessage.bind(frames[0], "some data", "*");
window.setTimeout(bound);

</script>

This example is very similar to the previous one, but with an extra indirection through Function.prototype.bind as well as
setTimeout()p973. But, the answer should be the same: invoking algorithms asynchronously should not change the incumbentp919

concept.

This time, the result involves more complicated mechanisms:

When bound is converted to a Web IDL callback type, the incumbent settings objectp921 is that corresponding to window (in the
same manner as in our starter example above). Web IDL stores this as the resulting callback value's callback context.

When the taskp944 posted by setTimeout()p973 executes, the algorithm for that task uses Web IDL to invoke the stored callback

Example

922

https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#dfn-callback-context
https://heycam.github.io/webidl/#invoke-a-callback-function

value. Web IDL in turn calls the above prepare to run a callbackp921 algorithm. This pushes the stored callback context onto the
backup incumbent settings object stackp921. At this time (inside the timer task) there is no author code on the stack, so the
topmost script-having execution contextp921 is null, and nothing gets its skip-when-determining-incumbent counterp921

incremented.

Invoking the callback then calls bound, which in turn calls the postMessage()p1018 method of frames[0]. When the
postMessage()p1018 algorithm looks up the incumbent settings objectp921, there is still no author code on the stack, since the bound
function just directly calls the built-in method. So the topmost script-having execution contextp921 will be null: the JavaScript
execution context stack only contains an execution context corresponding to postMessage()p1018, with no ScriptEvaluation context
or similar below it.

This is where we fall back to the backup incumbent settings object stackp921. As noted above, it will contain as its topmost entry
the relevant settings objectp924 of window. So that is what is used as the incumbent settings objectp921 while executing the
postMessage()p1018 algorithm.

Consider this final, even more convoluted example:

<!-- a.html -->
<!DOCTYPE html>
<button>click me</button>
<iframe></iframe>
<script>
const bound = frames[0].location.assign.bind(frames[0].location, "https://example.com/");
document.querySelector("button").addEventListener("click", bound);
</script>

<!-- b.html -->
<!DOCTYPE html>
<iframe src="a.html"></iframe>
<script>

const iframe = document.querySelector("iframe");
iframe.onload = function onLoad() {

iframe.contentWindow.document.querySelector("button").click();
};

</script>

Again there are two interesting environment settings objectsp917 in play: that of a.html, and that of b.html. When the
location.assign()p862 method triggers the Location-object navigatep859 algorithm, what will be the incumbent settings
objectp921? As before, it should intuitively be that of a.html: the click listener was originally scheduled by a.html, so even if
something involving b.html causes the listener to fire, the incumbentp919 responsible is that of a.html.

The callback setup is similar to the previous example: when bound is converted to a Web IDL callback type, the incumbent settings
objectp921 is that corresponding to a.html, which is stored as the callback's callback context.

When the click()p769 method is called inside b.html, it dispatches a click event on the button that is inside a.html. This time,
when the prepare to run a callbackp921 algorithm executes as part of event dispatch, there is author code on the stack; the topmost
script-having execution contextp921 is that of the onLoad function, whose skip-when-determining-incumbent counterp921 gets
incremented. Additionally, a.html's environment settings objectp917 (stored as the EventHandlerp958 's callback context) is pushed
onto the backup incumbent settings object stackp921.

Now, when the Location-object navigatep859 algorithm looks up the incumbent settings objectp921, the topmost script-having
execution contextp921 is still that of the onLoad function (due to the fact we are using a bound function as the callback). Its skip-
when-determining-incumbent counterp921 value is one, however, so we fall back to the backup incumbent settings object stackp921.
This gives us the environment settings objectp917 of a.html, as expected.

Note that this means that even though it is the iframep361 inside a.html that navigates, it is a.html itself that is used as the
source browsing contextp866, which determines among other things the request client. This is perhaps the only justifiable use of the
incumbent concept on the web platform; in all other cases the consequences of using it are simply confusing and we hope to one
day switch them to use currentp919 or relevantp919 as appropriate.

Example

923

https://heycam.github.io/webidl/#dfn-callback-context
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://w3c.github.io/uievents/#event-type-click
https://heycam.github.io/webidl/#es-type-mapping
https://heycam.github.io/webidl/#dfn-callback-context
https://dom.spec.whatwg.org/#concept-event-dispatch
https://w3c.github.io/uievents/#event-type-click
https://heycam.github.io/webidl/#dfn-callback-context
https://fetch.spec.whatwg.org/#concept-request-client
https://www.w3.org/Bugs/Public/show_bug.cgi?id=26603#c36
https://www.w3.org/Bugs/Public/show_bug.cgi?id=26603#c36

The JavaScript specification defines the current Realm Record, sometimes abbreviated to the "current Realm". [JAVASCRIPT]p1288

Then, the current settings object is the environment settings objectp918 of the current Realm Record.

Similarly, the current global object is the global objectp918 of the current Realm Record.

The relevant Realm for a platform object is the value of its [[Realm]] field.

Then, the relevant settings object for a platform object o is the environment settings objectp918 of the relevant Realmp924 for o.

Similarly, the relevant global object for a platform object o is the global objectp918 of the relevant Realmp924 for o.

Scripting is enabled for an environment settings objectp917 settings when all of the following conditions are true:

• The user agent supports scripting.

• The user has not disabled scripting for settings at this time. (User agents may provide users with the option to
disable scripting globally, or in a finer-grained manner, e.g., on a per-origin basis, down to the level of individual
environment settings objectsp917.)

• Either settings's global objectp918 is not a Windowp824 object, or settings's global objectp918 's associated Documentp826 's
active sandboxing flag setp844 does not have its sandboxed scripts browsing context flagp842 set.

Scripting is disabled for an environment settings objectp917 when scripting is not enabledp924 for it, i.e., when any of the above
conditions are false.

Scripting is enabled for a node node if node's node document's browsing contextp811 is non-null, and scripting is enabledp924 for
node's relevant settings objectp924.

Scripting is disabled for a node when scripting is not enabledp924, i.e., when its node document's browsing contextp811 is null or when
scripting is disabledp924 for its relevant settings objectp924.

An environmentp916 environment is a secure context if the following algorithm returns true:

1. If environment is an environment settings objectp917, then:

1. Let global be environment's global objectp918.

2. If global is a WorkerGlobalScopep1044, then:

1. If global's owner setp1045[0]'s relevant settings objectp924 is a secure contextp924, then return true.

2. Return false.

3. If global is a WorkletGlobalScope, then:

1. If global's owner document's relevant settings objectp924 is a secure contextp924, then return true.

2. Return false.

8.1.3.3.3 Current §p92

4

8.1.3.3.4 Relevant §p92

4

8.1.3.4 Enabling and disabling scripting §p92

4

8.1.3.5 Secure contexts §p92

4

We only need to check the 0th item since they will necessarily all be consistent.
Note

924

https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#current-realm
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#es-platform-objects
https://heycam.github.io/webidl/#dfn-platform-object
https://heycam.github.io/webidl/#dfn-platform-object
https://infra.spec.whatwg.org/#tracking-vector
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.css-houdini.org/worklets/#workletglobalscope
https://drafts.css-houdini.org/worklets/#workletglobalscope-owner-document

2. If the result of Is url potentially trustworthy? given environment's top-level creation URLp916 is "Potentially Trustworthy",
then return true.

3. Return false.

An environmentp916 is a non-secure context if it is not a secure contextp924.

A script is one of two possible structs. All scripts have:

A settings object
An environment settings objectp917, containing various settings that are shared with other scriptsp925 in the same context.

A record
Either a Script Record, for classic scriptsp925; a Source Text Module Record, for module scriptsp925; or null. In the former two cases, it
represents a parsed script; null represents a failure parsing.

A parse error
A JavaScript value, which has meaning only if the recordp925 is null, indicating that the corresponding script source text could not be
parsed.

An error to rethrow
A JavaScript value representing an error that will prevent evaluation from succeeding. It will be re-thrown by any attempts to runp934

the script.

Fetch options
A script fetch optionsp926, containing various options related to fetching this script or module scriptsp925 that it imports.

A base URL
A base URL used for resolving module specifiersp941. This will either be the URL from which the script was obtained, for external
scripts, or the document base URLp88 of the containing document, for inline scripts.

A classic script is a type of scriptp925 that has the following additional item:

A muted errors boolean
A boolean which, if true, means that error information will not be provided for errors in this script. This is used to mute errors for
cross-origin scripts, since that can leak private information.

A module script is another type of scriptp925. It has no additional items.

The active script is determined by the following algorithm:

1. Let record be GetActiveScriptOrModule().

2. If record is null, return null.

8.1.4.1 Scripts §p92

5

This value is used for internal tracking of immediate parse errors when creating scriptsp933, and is not to be used directly.
Instead, consult the error to rethrowp925 when determining "what went wrong" for this script.

Note

This could be the script's parse errorp925, but in the case of a module scriptp925 it could instead be the parse errorp925 from one of
its dependencies, or an error from resolve a module specifierp941.

Note

Since this exception value is provided by the JavaScript specification, we know that it is never null, so we use null to signal that
no error has occurred.

Note

8.1.4 Script processing model §p92

5

925

https://w3c.github.io/webappsec-secure-contexts/#potentially-trustworthy-url
https://infra.spec.whatwg.org/#struct
https://tc39.es/ecma262/#sec-script-records
https://tc39.es/ecma262/#sec-source-text-module-records
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#struct-item
https://tc39.es/ecma262/#sec-getactivescriptormodule

3. Return record.[[HostDefined]].

This section introduces a number of algorithms for fetching scripts, taking various necessary inputs and resulting in classicp925 or
module scriptsp925.

Script fetch options is a struct with the following items:

cryptographic nonce
The cryptographic nonce metadata used for the initial fetch and for fetching any imported modules

integrity metadata
The integrity metadata used for the initial fetch

parser metadata
The parser metadata used for the initial fetch and for fetching any imported modules

credentials mode
The credentials mode used for the initial fetch (for module scriptsp925) and for fetching any imported modules (for both module
scriptsp925 and classic scriptsp925)

referrer policy
The referrer policy used for the initial fetch and for fetching any imported modules

The default classic script fetch options are a script fetch optionsp926 whose cryptographic noncep926 is the empty string, integrity
metadatap926 is the empty string, parser metadatap926 is "not-parser-inserted", credentials modep926 is "same-origin", and referrer
policyp926 is the empty string.

Given a request request and a script fetch optionsp926 options, we define:

set up the classic script request
Set request's cryptographic nonce metadata to options's cryptographic noncep926, its integrity metadata to options's integrity
metadatap926, its parser metadata to options's parser metadatap926, and its referrer policy to options's referrer policyp926.

set up the module script request
Set request's cryptographic nonce metadata to options's cryptographic noncep926, its integrity metadata to options's integrity
metadatap926, its parser metadata to options's parser metadatap926, its credentials mode to options's credentials modep926, and its
referrer policy to options's referrer policyp926.

For any given script fetch optionsp926 options, the descendant script fetch options are a new script fetch optionsp926 whose items all
have the same values, except for the integrity metadatap926, which is instead the empty string.

The algorithms below can be customized by optionally supplying a custom perform the fetch hook, which takes a request and an is
top-level flag. The algorithm must complete with a response (which may be a network error), either synchronously (when using fetch
a classic worker-imported scriptp928) or asynchronously (otherwise). The is top-levelp926 flag will be set for all classic scriptp925 fetches,
and for the initial fetch when fetching an external module script graphp929, fetching a module worker script graphp930, or fetching an
import() module script graphp929, but not for the fetches resulting from import statements encountered throughout the graph.

The active scriptp925 concept is so far only used by the import() feature, to determine the base URLp925 to use for resolving
relative module specifiers.

Note

8.1.4.2 Fetching scripts §p92

6

Recall that via the import() feature, classic scriptsp925 can import module scriptsp925.
Note

926

https://tc39.es/ecma262/#sec-import-calls
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://tc39.es/ecma262/#sec-import-calls
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://infra.spec.whatwg.org/#struct-item
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error

Now for the algorithms themselves.

To fetch a classic script given a url, a settings object, some options, a CORS setting, and a character encoding, run these steps. The
algorithm will asynchronously complete with either null (on failure) or a new classic scriptp925 (on success).

1. Let request be the result of creating a potential-CORS requestp90 given url, "script", and CORS setting.

2. Set request's client to settings object.

3. Set up the classic script requestp926 given request and options.

4. If the caller specified custom steps to perform the fetchp926, perform them on request, with the is top-levelp926 flag set. Return
from this algorithm, and when the custom perform the fetchp926 steps complete with response response, run the remaining
steps.

Otherwise, fetch request. Return from this algorithm, and run the remaining steps as part of the fetch's process response for
the response response.

5. Set response to response's unsafe responsep90.

6. If response's type is "error", or response's status is not an ok status, then asynchronously complete this algorithm with null,
and return.

7. If response's Content Type metadatap90, if any, specifies a character encoding, and the user agent supports that encoding,
then set character encoding to that encoding (ignoring the passed-in value).

8. Let source text be the result of decoding response's body to Unicode, using character encoding as the fallback encoding.

9. Let muted errors be true if response was CORS-cross-originp90, and false otherwise.

10. Let script be the result of creating a classic scriptp933 given source text, settings object, response's url, options, and muted
errors.

11. Asynchronously complete this algorithm with script.

To fetch a classic worker script given a url, a fetch client settings object, a destination, and a script settings object, run these steps.
The algorithm will asynchronously complete with either null (on failure) or a new classic scriptp925 (on success).

1. Let request be a new request whose url is url, client is fetch client settings object, destination is destination, mode is "same-

By default, not supplying the perform the fetchp926 will cause the below algorithms to simply fetch the given request, with
algorithm-specific customizations to the request and validations of the resulting response.

To layer your own customizations on top of these algorithm-specific ones, supply a perform the fetchp926 hook that modifies the
given request, fetches it, and then performs specific validations of the resulting response (completing with a network error if the
validations fail).

The hook can also be used to perform more subtle customizations, such as keeping a cache of responses and avoiding performing
a fetch at all.

Note

Service Workers is an example of a specification that runs these algorithms with its own options for the hook. [SW]p1291

Note

response can be either CORS-same-originp90 or CORS-cross-originp90. This only affects how error reporting happens.
Note

For historical reasons, this algorithm does not include MIME type checking, unlike the other script-fetching algorithms in
this section.

Note

The decode algorithm overrides character encoding if the file contains a BOM.
Note

927

https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://encoding.spec.whatwg.org/#decode
https://fetch.spec.whatwg.org/#concept-response-body
https://encoding.spec.whatwg.org/#decode
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode

origin", credentials mode is "same-origin", parser metadata is "not parser-inserted", and whose use-URL-credentials
flag is set.

2. If the caller specified custom steps to perform the fetchp926, perform them on request, with the is top-levelp926 flag set. Return
from this algorithm, and when the custom perform the fetchp926 steps complete with response response, run the remaining
steps.

Otherwise, fetch request. Return from this algorithm, and run the remaining steps as part of the fetch's process response for
the response response.

3. Set response to response's unsafe responsep90.

4. If either of the following conditions are met:

◦ response's type is "error"; or

◦ response's status is not an ok status,

then asynchronously complete this algorithm with null, and return.

5. If both of the following conditions are met:

◦ response's url's scheme is an HTTP(S) scheme; and

◦ the result of extracting a MIME type from response's header list is not a JavaScript MIME type,

then asynchronously complete this algorithm with null, and return.

6. Let source text be the result of UTF-8 decoding response's body.

7. Let script be the result of creating a classic scriptp933 using source text, script settings object, response's url, and the default
classic script fetch optionsp926.

8. Asynchronously complete this algorithm with script.

To fetch a classic worker-imported script given a url and a settings object, run these steps. The algorithm will synchronously
complete with a classic scriptp925 on success, or throw an exception on failure.

1. Let request be a new request whose url is url, client is settings object, destination is "script", parser metadata is "not
parser-inserted", synchronous flag is set, and whose use-URL-credentials flag is set.

2. If the caller specified custom steps to perform the fetchp926, perform them on request, with the is top-levelp926 flag set. Let
response be the result.

Otherwise, fetch request, and let response be the result.

3. Set response to response's unsafe responsep90.

4. If any of the following conditions are met:

◦ response's type is "error"; or

◦ response's status is not an ok status; or

◦ the result of extracting a MIME type from response's header list is not a JavaScript MIME type,

then throw a "NetworkError" DOMException.

5. Let source text be the result of UTF-8 decoding response's body.

6. Let muted errors be true if response was CORS-cross-originp90, and false otherwise.

Other fetch schemes are exempted from MIME type checking for historical web-compatibility reasons. We might be able
to tighten this in the future; see issue #3255.

Note

Unlike other algorithms in this section, the fetching process is synchronous here. Thus any perform the fetchp926 steps
will also finish their work synchronously.

Note

928

https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#concept-response-header-list
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://fetch.spec.whatwg.org/#fetch-scheme
https://github.com/whatwg/html/issues/3255
https://encoding.spec.whatwg.org/#utf-8-decode
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#concept-response-header-list
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://heycam.github.io/webidl/#networkerror
https://heycam.github.io/webidl/#dfn-DOMException
https://encoding.spec.whatwg.org/#utf-8-decode
https://fetch.spec.whatwg.org/#concept-response-body

7. Let script be the result of creating a classic scriptp933 given source text, settings object, response's url, the default classic
script fetch optionsp926, and muted errors.

8. Return script.

To fetch an external module script graph given a url, a settings object, and some options, run these steps. The algorithm will
asynchronously complete with either null (on failure) or a module scriptp925 (on success).

1. Fetch a single module scriptp931 given url, settings object, "script", options, settings object, "client", and with the top-level
module fetch flag set. If the caller of this algorithm specified custom perform the fetchp926 steps, pass those along as well.
Wait until the algorithm asynchronously completes with result.

2. If result is null, asynchronously complete this algorithm with null, and return.

3. Let visited set be « url ».

4. Fetch the descendants of and linkp930 result given settings object, destination, and visited set. When this asynchronously
completes with final result, asynchronously complete this algorithm with final result.

To fetch an import() module script graph given a specifier, a base URL, a settings object, and some options, run these steps. The
algorithm will asynchronously complete with either null (on failure) or a module scriptp925 (on success).

1. Let url be the result of resolving a module specifierp941 given base URL and specifier.

2. If url is failure, then asynchronously complete this algorithm with null, and return.

3. Fetch a single module scriptp931 given url, settings object, "script", options, settings object, "client", and with the top-level
module fetch flag set. If the caller of this algorithm specified custom perform the fetchp926 steps, pass those along as well.
Wait until the algorithm asynchronously completes with result.

4. If result is null, asynchronously complete this algorithm with null, and return.

5. Let visited set be « url ».

6. Fetch the descendants of and linkp930 result given settings object, destination, and visited set. When this asynchronously
completes with final result, asynchronously complete this algorithm with final result.

To fetch a modulepreload module script graph given a url, a destination, a settings object, and some options, run these steps. The
algorithm will asynchronously complete with either null (on failure) or a module scriptp925 (on success), although it will perform optional
steps even after completing.

1. Fetch a single module scriptp931 given url, settings object, destination, options, settings object, "client", and with the top-
level module fetch flag set. Wait until algorithm asynchronously completes with result.

2. Asynchronously complete this algorithm with result, but do not return.

3. If result is not null, optionally perform the following steps:

1. Let visited set be « url ».

2. Fetch the descendants of and linkp930 result given settings object, destination, and visited set.

To fetch an inline module script graph given a source text, base URL, settings object, and options, run these steps. The algorithm
will asynchronously complete with either null (on failure) or a module scriptp925 (on success).

1. Let script be the result of creating a module scriptp933 using source text, settings object, base URL, and options.

2. If script is null, asynchronously complete this algorithm with null, and return.

3. Let visited set be an empty set.

4. Fetch the descendants of and linkp930 script, given settings object, the destination "script", and visited set. When this

Generally, performing these steps will be beneficial for performance, as it allows pre-loading the modules that will
invariably be requested later, via algorithms such as fetch an external module script graphp929 that fetch the entire
graph. However, user agents might wish to skip them in bandwidth-constrained situations, or situations where the
relevant fetches are already in flight.

Note

929

https://fetch.spec.whatwg.org/#concept-response-url
https://infra.spec.whatwg.org/#ordered-set

asynchronously completes with final result, asynchronously complete this algorithm with final result.

To fetch a module worker script graph given a url, a fetch client settings object, a destination, a credentials mode, and a module
map settings object, run these steps. The algorithm will asynchronously complete with either null (on failure) or a module scriptp925 (on
success).

1. Let options be a script fetch optionsp926 whose cryptographic noncep926 is the empty string, integrity metadatap926 is the
empty string, parser metadatap926 is "not-parser-inserted", credentials modep926 is credentials mode, and referrer
policyp926 is the empty string.

2. Fetch a single module scriptp931 given url, fetch client settings object, destination, options, module map settings object,
"client", and with the top-level module fetch flag set. If the caller of this algorithm specified custom perform the fetchp926

steps, pass those along as well. Wait until the algorithm asynchronously completes with result.

3. If result is null, asynchronously complete this algorithm with null, and return.

4. Let visited set be « url ».

5. Fetch the descendants of and linkp930 result given fetch client settings object, destination, and visited set. When this
asynchronously completes with final result, asynchronously complete this algorithm with final result.

The following algorithms are meant for internal use by this specification only as part of fetching an external module script graphp929 or
other similar concepts above, and should not be used directly by other specifications.

This diagram illustrates how these algorithms relate to the ones above, as well as to each other:

To fetch the descendants of and link a module script module script, given a fetch client settings object, a destination, and a
visited set, run these steps. The algorithm will asynchronously complete with either null (on failure) or with module script (on success).

1. Fetch the descendants ofp931 module script, given fetch client settings object, destination, and visited set.

2. Return from this algorithm, and run the following steps when fetching the descendants of a module script p931 asynchronously
completes with result.

3. If result is null, then asynchronously complete this algorithm with result.

4. Let parse error be the result of finding the first parse errorp932 given result.

5. If parse error is null, then:

1. Let record be result's recordp925.

2. Perform record.Link().

If this throws an exception, set result's error to rethrowp925 to that exception.

6. Otherwise, set result's error to rethrowp925 to parse error.

7. Asynchronously complete this algorithm with result.

In this case, there was an error fetching one or more of the descendants. We will not attempt to link.
Note

This step will recursively call Link on all of the module's unlinked dependencies.
Note

930

https://tc39.es/ecma262/#sec-moduledeclarationlinking
https://tc39.es/ecma262/#sec-moduledeclarationlinking

To fetch the descendants of a module script module script, given a fetch client settings object, a destination, and a visited set, run
these steps. The algorithm will asynchronously complete with either null (on failure) or with module script (on success).

1. If module script's recordp925 is null, then asynchronously complete this algorithm with module script and return.

2. Let record be module script's recordp925.

3. If record is not a Cyclic Module Record, or if record.[[RequestedModules]] is empty, asynchronously complete this algorithm
with module script.

4. Let urls be a new empty list.

5. For each string requested of record.[[RequestedModules]],

1. Let url be the result of resolving a module specifierp941 given module script's base URLp925 and requested.

2. Assert: url is never failure, because resolving a module specifierp941 must have been previously successfulp934 with
these same two arguments.

3. If visited set does not contain url, then:

1. Append url to urls.

2. Append url to visited set.

6. Let options be the descendant script fetch optionsp926 for module script's fetch optionsp925.

7. Assert: options is not null, as module script is a module scriptp925.

8. For each url in urls, perform the internal module script graph fetching procedurep931 given url, fetch client settings object,
destination, options, module script's settings objectp925, visited set, and module script's base URLp925. If the caller of this
algorithm specified custom perform the fetchp926 steps, pass those along while performing the internal module script graph
fetching procedurep931.

These invocations of the internal module script graph fetching procedurep931 should be performed in parallel to each other.

If any of the invocations of the internal module script graph fetching procedurep931 asynchronously complete with null,
asynchronously complete this algorithm with null, and return.

Otherwise, wait until all of the internal module script graph fetching procedurep931 invocations have asynchronously
completed. Asynchronously complete this algorithm with module script.

To perform the internal module script graph fetching procedure given a url, a fetch client settings object, a destination, some
options, a module map settings object, a visited set, and a referrer, perform these steps. The algorithm will asynchronously complete
with either null (on failure) or a module scriptp925 (on success).

1. Assert: visited set contains url.

2. Fetch a single module scriptp931 given url, fetch client settings object, destination, options, module map settings object,
referrer, and with the top-level module fetch flag unset. If the caller of this algorithm specified custom perform the fetchp926

steps, pass those along while fetching a single module scriptp931.

3. Return from this algorithm, and run the following steps when fetching a single module scriptp931 asynchronously completes
with result:

4. If result is null, asynchronously complete this algorithm with null, and return.

5. Fetch the descendants ofp931 result given fetch client settings object, destination, and visited set.

6. When the appropriate algorithm asynchronously completes with final result, asynchronously complete this algorithm with
final result.

To fetch a single module script, given a url, a fetch client settings object, a destination, some options, a module map settings
object, a referrer, and a top-level module fetch flag, run these steps. The algorithm will asynchronously complete with either null (on
failure) or a module scriptp925 (on success).

1. Let moduleMap be module map settings object's module mapp917.

2. If moduleMap[url] is "fetching", wait in parallelp42 until that entry's value changes, then queue a taskp945 on the networking
task sourcep952 to proceed with running the following steps.

931

https://tc39.es/ecma262/#sec-cyclic-module-records
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-contain

3. If moduleMap[url] exists, asynchronously complete this algorithm with moduleMap[url], and return.

4. Set moduleMap[url] to "fetching".

5. Let request be a new request whose url is url, destination is destination, mode is "cors", referrer is referrer, and client is
fetch client settings object.

6. If destination is "worker" or "sharedworker" and the top-level module fetch flag is set, then set request's mode to "same-
origin".

7. Set up the module script requestp926 given request and options.

8. If the caller specified custom steps to perform the fetchp926, perform them on request, setting the is top-levelp926 flag if the
top-level module fetch flag is set. Return from this algorithm, and when the custom perform the fetchp926 steps complete with
response response, run the remaining steps.

Otherwise, fetch request. Return from this algorithm, and run the remaining steps as part of the fetch's process response for
the response response.

9. If any of the following conditions are met:

◦ response's type is "error"; or

◦ response's status is not an ok status; or

◦ the result of extracting a MIME type from response's header list is not a JavaScript MIME type,

then set moduleMap[url] to null, asynchronously complete this algorithm with null, and return.

10. Let source text be the result of UTF-8 decoding response's body.

11. Let module script be the result of creating a module scriptp933 given source text, module map settings object, response's url,
and options.

12. Set moduleMap[url] to module script, and asynchronously complete this algorithm with module script.

To find the first parse error given a root moduleScript and an optional discoveredSet:

1. Let moduleMap be moduleScript's settings objectp925 's module mapp917.

2. If discoveredSet was not given, let it be an empty set.

3. Append moduleScript to discoveredSet.

4. If moduleScript's recordp925 is null, then return moduleScript's parse errorp925.

5. Let childSpecifiers be the value of moduleScript's recordp925 's [[RequestedModules]] internal slot.

6. Let childURLs be the list obtained by calling resolve a module specifierp941 once for each item of childSpecifiers, given
moduleScript's base URLp925 and that item. (None of these will ever fail, as otherwise moduleScript would have been marked
as itself having a parse error.)

7. Let childModules be the list obtained by getting each value in moduleMap whose key is given by an item of childURLs.

8. For each childModule of childModules:

1. Assert: childModule is a module scriptp925 (i.e., it is not "fetching" or null); by now all module scriptsp925 in the
graph rooted at moduleScript will have successfully been fetched.

2. If discoveredSet already contains childModule, continue.

3. Let childParseError be the result of finding the first parse errorp932 given childModule and discoveredSet.

response is always CORS-same-originp90.
Note

It is intentional that the module mapp941 is keyed by the request URL, whereas the base URLp925 for the module scriptp925

is set to the response URL. The former is used to deduplicate fetches, while the latter is used for URL resolution.

Note

932

https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-set
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#concept-response-header-list
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://infra.spec.whatwg.org/#map-set
https://encoding.spec.whatwg.org/#utf-8-decode
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-response-url
https://infra.spec.whatwg.org/#map-set
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-response-url
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#map-get
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#iteration-continue

4. If childParseError is not null, return childParseError.

9. Return null.

To create a classic script, given a string source, an environment settings objectp917 settings, a URL baseURL, some script fetch
optionsp926 options, and an optional muted errors boolean:

1. If muted errors was not provided, let it be false.

2. If muted errors is true, then set baseURL to about:blankp51.

3. If scripting is disabledp924 for settings, then set source to the empty string.

4. Let script be a new classic scriptp925 that this algorithm will subsequently initialize.

5. Set script's settings objectp925 to settings.

6. Set script's base URLp925 to baseURL.

7. Set script's fetch optionsp925 to options.

8. Set script's muted errorsp925 to muted errors.

9. Set script's parse errorp925 and error to rethrowp925 to null.

10. Let result be ParseScript(source, settings's Realmp918, script).

11. If result is a list of errors, then:

1. Set script's parse errorp925 and its error to rethrowp925 to result[0].

2. Return script.

12. Set script's recordp925 to result.

13. Return script.

To create a module script, given a string source, an environment settings objectp917 settings, a URL baseURL, and some script fetch
optionsp926 options:

1. If scripting is disabledp924 for settings, then set source to the empty string.

2. Let script be a new module scriptp925 that this algorithm will subsequently initialize.

3. Set script's settings objectp925 to settings.

4. Set script's base URLp925 to baseURL.

5. Set script's fetch optionsp925 to options.

6. Set script's parse errorp925 and error to rethrowp925 to null.

7. Let result be ParseModule(source, settings's Realmp918, script).

8. If result is a list of errors, then:

8.1.4.3 Creating scripts §p93

3

When muted errors is true, baseURL is the script's CORS-cross-originp90 response's url, which shouldn't be exposed to
JavaScript. Therefore, baseURL is sanitized here.

Note

Passing script as the last parameter here ensures result.[[HostDefined]] will be script.
Note

Passing script as the last parameter here ensures result.[[HostDefined]] will be script.
Note

933

https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url
https://tc39.es/ecma262/#sec-parse-script
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://tc39.es/ecma262/#sec-parsemodule
https://infra.spec.whatwg.org/#list

1. Set script's parse errorp925 to result[0].

2. Return script.

9. For each string requested of result.[[RequestedModules]]:

1. Let url be the result of resolving a module specifierp941 given script's base URLp925 and requested.

2. If url is failure, then:

1. Let error be a new TypeError exception.

2. Set script's parse errorp925 to error.

3. Return script.

10. Set script's recordp925 to result.

11. Return script.

To run a classic script given a classic scriptp925 script and an optional rethrow errors boolean:

1. If rethrow errors is not given, let it be false.

2. Let settings be the settings objectp925 of script.

3. Check if we can run scriptp935 with settings. If this returns "do not run" then return NormalCompletion(empty).

4. Prepare to run scriptp935 given settings.

5. Let evaluationStatus be null.

6. If script's error to rethrowp925 is not null, then set evaluationStatus to Completion { [[Type]]: throw, [[Value]]: script's error to
rethrowp925, [[Target]]: empty }.

7. Otherwise, set evaluationStatus to ScriptEvaluation(script's recordp925).

If ScriptEvaluation does not complete because the user agent has aborted the running scriptp936, leave evaluationStatus as
null.

8. If evaluationStatus is an abrupt completion, then:

1. If rethrow errors is true and script's muted errorsp925 is false, then:

1. Clean up after running scriptp935 with settings.

2. Rethrow evaluationStatus.[[Value]].

2. If rethrow errors is true and script's muted errorsp925 is true, then:

1. Clean up after running scriptp935 with settings.

2. Throw a "NetworkError" DOMException.

3. Otherwise, rethrow errors is false. Perform the following steps:

1. Report the exceptionp937 given by evaluationStatus.[[Value]] for script.

2. Clean up after running scriptp935 with settings.

3. Return evaluationStatus.

This step is essentially validating all of the requested module specifiers. We treat a module with unresolvable module
specifiers the same as one that cannot be parsed; in both cases, a syntactic issue makes it impossible to ever
contemplate linking the module later.

Note

8.1.4.4 Calling scripts §p93

4

934

https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-normalcompletion
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://heycam.github.io/webidl/#networkerror
https://heycam.github.io/webidl/#dfn-DOMException

9. Clean up after running scriptp935 with settings.

10. If evaluationStatus is a normal completion, then return evaluationStatus.

11. If we've reached this point, evaluationStatus was left as null because the script was aborted prematurelyp936 during
evaluation. Return Completion { [[Type]]: throw, [[Value]]: a new "QuotaExceededError" DOMException, [[Target]]: empty }.

To run a module script given a module scriptp925 script, with an optional rethrow errors boolean:

1. If rethrow errors is not given, let it be false.

2. Let settings be the settings objectp925 of script.

3. Check if we can run scriptp935 with settings. If this returns "do not run" then return NormalCompletion(empty).

4. Prepare to run scriptp935 given settings.

5. Let evaluationStatus be null.

6. If script's error to rethrowp925 is not null, then set evaluationStatus to Completion { [[Type]]: throw, [[Value]]: script's error to
rethrowp925, [[Target]]: empty }.

7. Otherwise:

1. Let record be script's recordp925.

2. Set evaluationStatus to record.Evaluate().

If Evaluate fails to complete as a result of the user agent aborting the running scriptp936, then set evaluationStatus
to Completion { [[Type]]: throw, [[Value]]: a new "QuotaExceededError" DOMException, [[Target]]: empty }.

8. If evaluationStatus is an abrupt completion, then:

1. If rethrow errors is true, rethrow the exception given by evaluationStatus.[[Value]].

2. Otherwise, report the exceptionp937 given by evaluationStatus.[[Value]] for script.

9. Clean up after running scriptp935 with settings.

10. Return evaluationStatus.

The steps to check if we can run script with an environment settings objectp917 settings are as follows. They return either "run" or
"do not run".

1. If the global objectp918 specified by settings is a Windowp824 object whose Documentp114 object is not fully activep815, then
return "do not run".

2. If scripting is disabledp924 for settings, then return "do not run".

3. Return "run".

The steps to prepare to run script with an environment settings objectp917 settings are as follows:

1. Push settings's realm execution contextp917 onto the JavaScript execution context stack; it is now the running JavaScript
execution context.

2. Add settings to the currently running taskp944 's script evaluation environment settings object setp945.

The steps to clean up after running script with an environment settings objectp917 settings are as follows:

1. Assert: settings's realm execution contextp917 is the running JavaScript execution context.

2. Remove settings's realm execution contextp917 from the JavaScript execution context stack.

3. If the JavaScript execution context stack is now empty, perform a microtask checkpointp949. (If this runs scripts, these
algorithms will be invoked reentrantly.)

This step will recursively evaluate all of the module's dependencies.
Note

935

https://heycam.github.io/webidl/#quotaexceedederror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-normalcompletion
https://tc39.es/ecma262/#sec-moduleevaluation
https://tc39.es/ecma262/#sec-moduleevaluation
https://heycam.github.io/webidl/#quotaexceedederror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack

The running script is the scriptp925 in the [[HostDefined]] field in the ScriptOrModule component of the running JavaScript execution
context.

Although the JavaScript specification does not account for this possibility, it's sometimes necessary to abort a running script. This
causes any ScriptEvaluation or Source Text Module Record Evaluate invocations to cease immediately, emptying the JavaScript
execution context stack without triggering any of the normal mechanisms like finally blocks. [JAVASCRIPT]p1288

User agents may impose resource limitations on scripts, for example CPU quotas, memory limits, total execution time limits, or
bandwidth limitations. When a script exceeds a limit, the user agent may either throw a "QuotaExceededError" DOMException, abort
the scriptp936 without an exception, prompt the user, or throttle script execution.

User agents are encouraged to allow users to disable scripting whenever the user is prompted either by a script (e.g. using the
window.alert()p977 API) or because of a script's actions (e.g. because it has exceeded a time limit).

If scripting is disabled while a script is executing, the script should be terminated immediately.

User agents may allow users to specifically disable scripts just for the purposes of closing a browsing contextp811.

When the user agent is required to report an error for a particular scriptp925 script with a particular position line:col, using a particular
target target, it must run these steps, after which the error is either handled or not handled:

1. If target is in error reporting modep936, then return; the error is not handledp936.

2. Let target be in error reporting mode.

3. Let message be an implementation-defined string describing the error in a helpful manner.

4. Let errorValue be the value that represents the error: in the case of an uncaught exception, that would be the value
that was thrown; in the case of a JavaScript error that would be an Error object. If there is no corresponding value,
then the null value must be used instead.

5. Let urlString be the result of applying the URL serializer to the URL record that corresponds to the resource from which script
was obtained.

These algorithms are not invoked by one script directly calling another, but they can be invoked reentrantly in an indirect manner,
e.g. if a script dispatches an event which has event listeners registered.

Note

8.1.4.5 Killing scripts §p93

6

For example, the following script never terminates. A user agent could, after waiting for a few seconds, prompt the user to either
terminate the script or let it continue.

<script>
while (true) { /* loop */ }

</script>

Example

For example, the prompt mentioned in the example above could also offer the user with a mechanism to just close the page
entirely, without running any unloadp1282 event handlers.

Example

8.1.4.6 Runtime script errors §p93

6

The resource containing the script will typically be the file from which the Documentp114 was parsed, e.g. for inline
scriptp614 elements or event handler content attributesp955; or the JavaScript file that the script was in, for external
scripts. Even for dynamically-generated scripts, user agents are strongly encouraged to attempt to keep track of the

Note

936

https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://tc39.es/ecma262/#sec-source-text-module-records
https://tc39.es/ecma262/#sec-moduleevaluation
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://heycam.github.io/webidl/#quotaexceedederror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#implementation-defined
https://heycam.github.io/webidl/#idl-Error
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url

6. If script's muted errorsp925 is true, then set message to "Script error.", urlString to the empty string, line and col to 0, and
errorValue to null.

7. Let notHandled be the result of firing an event named errorp1281 at target, using ErrorEventp937, with the cancelable
attribute initialized to true, the messagep937 attribute initialized to message, the filenamep937 attribute initialized to urlString,
the linenop937 attribute initialized to line, the colnop938 attribute initialized to col, and the errorp938 attribute initialized to
errorValue.

8. Let target no longer be in error reporting modep936.

9. If notHandled is false, then the error is handledp936. Otherwise, the error is not handledp936.

When the user agent is to report an exception E, the user agent must report the errorp936 for the relevant scriptp925, with the
problematic position (line number and column number) in the resource containing the script, using the global objectp918 specified by
the script's settings objectp925 as the target. If the error is still not handledp936 after this, then the error may be reported to a developer
console.

The existence of both report an errorp936 and report an exceptionp937 is confusing, and both algorithms have known problems. You
can track future cleanup in this area in issue #958.

The ErrorEventp937 interface is defined as follows:

[Exposed=(Window,Worker)]
interface ErrorEvent : Event {

constructor(DOMString type, optional ErrorEventInit eventInitDict = {});

readonly attribute DOMString message;
readonly attribute USVString filename;
readonly attribute unsigned long lineno;
readonly attribute unsigned long colno;
readonly attribute any error;

};

dictionary ErrorEventInit : EventInit {
DOMString message = "";
USVString filename = "";
unsigned long lineno = 0;
unsigned long colno = 0;
any error = null;

};

The message attribute must return the value it was initialized to. It represents the error message.

The filename attribute must return the value it was initialized to. It represents the URL of the script in which the error originally
occurred.

The lineno attribute must return the value it was initialized to. It represents the line number where the error occurred in the script.

original source of a script. For example, if an external script uses the document.write()p970 API to insert an inline
scriptp614 element during parsing, the URL of the resource containing the script would ideally be reported as being the
external script, and the line number might ideally be reported as the line with the document.write()p970 call or where
the string passed to that call was first constructed. Naturally, implementing this can be somewhat non-trivial.

User agents are similarly encouraged to keep careful track of the original line numbers, even in the face of
document.write()p970 calls mutating the document as it is parsed, or event handler content attributesp955 spanning
multiple lines.

Note

Returning true in an event handler cancels the event per the event handler processing algorithmp957.
Note

IDL

✔ MDN

937

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://github.com/whatwg/html/issues/958
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor
https://dom.spec.whatwg.org/#dictdef-eventinit
https://url.spec.whatwg.org/#concept-url

The colno attribute must return the value it was initialized to. It represents the column number where the error occurred in the script.

The error attribute must return the value it was initialized to. Where appropriate, it is set to the object representing the error (e.g., the
exception object in the case of an uncaught DOM exception).

In addition to synchronous runtime script errorsp936, scripts may experience asynchronous promise rejections, tracked via the
unhandledrejectionp1282 and rejectionhandledp1282 events. Tracking these rejections is done via the HostPromiseRejectionTrackerp940

abstract operation, but reporting them is defined here.

To notify about rejected promises on a given environment settings objectp917 settings object:

1. Let list be a copy of settings object's about-to-be-notified rejected promises listp918.

2. If list is empty, return.

3. Clear settings object's about-to-be-notified rejected promises listp918.

4. Let global be settings object's global objectp918.

5. Queue a global taskp945 on the DOM manipulation task sourcep952 given global to run the following substep:

1. For each promise p in list:

1. If p's [[PromiseIsHandled]] internal slot is true, continue to the next iteration of the loop.

2. Let notHandled be the result of firing an event named unhandledrejectionp1282 at global , using
PromiseRejectionEventp938, with the cancelable attribute initialized to true, the promisep938 attribute
initialized to p, and the reasonp938 attribute initialized to the value of p's [[PromiseResult]] internal slot.

3. If notHandled is false, then the promise rejection is handledp938. Otherwise, the promise rejection is not
handledp938.

4. If p's [[PromiseIsHandled]] internal slot is false, add p to settings object's outstanding rejected promises
weak setp918.

This algorithm results in promise rejections being marked as handled or not handled. These concepts parallel handledp936 and not
handledp936 script errors. If a rejection is still not handledp938 after this, then the rejection may be reported to a developer console.

The PromiseRejectionEventp938 interface is defined as follows:

[Exposed=(Window,Worker)]
interface PromiseRejectionEvent : Event {

constructor(DOMString type, PromiseRejectionEventInit eventInitDict);

readonly attribute Promise<any> promise;
readonly attribute any reason;

};

dictionary PromiseRejectionEventInit : EventInit {
required Promise<any> promise;
any reason;

};

The promise attribute must return the value it was initialized to. It represents the promise which this notification is about.

The reason attribute must return the value it was initialized to. It represents the rejection reason for the promise.

The JavaScript specification contains a number of implementation-defined abstract operations, that vary depending on the host

8.1.4.7 Unhandled promise rejections §p93

8

IDL

8.1.5 JavaScript specification host hooks §p93

8

✔ MDN

✔ MDN

✔ MDN

✔ MDN
✔ MDN

938

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor
https://dom.spec.whatwg.org/#dictdef-eventinit
https://infra.spec.whatwg.org/#implementation-defined

environment. This section defines them for user agent hosts.

JavaScript contains an implementation-defined HostEnqueuePromiseJob(job, realm) abstract operation to schedule Promise-related
operations. HTML schedules these operations in the microtask queue. User agents must use the following implementation:
[JAVASCRIPT]p1288

1. If realm is not null, then let job settings be the settings objectp918 for realm. Otherwise, let job settings be null.

2. Let incumbent settings be the incumbent settings objectp921.

3. Let active script be the active scriptp925.

4. Let script execution context be null.

5. If active script is not null, set script execution context to a new JavaScript execution context, with its Function field set to null,
its Realm field set to active script's settings objectp925 's Realmp918, and its ScriptOrModule set to active script's recordp925.

6. Queue a microtaskp946 on the surrounding agent's event loopp944 to perform the following steps:

1. If job settings is not null, then check if we can run scriptp935 with job settings. If this returns "do not run" then
return.

8.1.5.1 HostEnqueuePromiseJob(job, realm) §p93

9

If realm is not null, it is the Realm of the author code that will run. When job is returned by NewPromiseReactionJob, it is
the realm of the promise's handler function. When job is returned by NewPromiseResolveThenableJob, it is the realm of
the then function.

If realm is null, either no author code will run or author code is guaranteed to throw. For the former, the author may not
have passed in code to run, such as in promise.then(null, null). For the latter, it is because a revoked Proxy was
passed. In both cases, all the steps below that would otherwise use job settings get skipped.

Note

As seen below, this is used in order to propagate the current active scriptp925 forward to the time when the job is
executed.

Note

A case where active script is non-null, and saving it in this way is useful, is the following:

Promise.resolve('import(`./example.mjs`)').then(eval);

Without this step (and the steps below that use it), there would be no active scriptp925 when the import() expression is
evaluated, since eval() is a built-in function that does not originate from any particular scriptp925.

With this step in place, the active script is propagated from the above code into the job, allowing import() to use the
original script's base URLp925 appropriately.

Example

active script can be null if the user clicks on the following button:

<button onclick="Promise.resolve('import(`./example.mjs`)').then(eval)">Click me</button>

In this case, the JavaScript function for the event handlerp954 will be created by the get the current value of the event
handlerp959 algorithm, which creates a function with null [[ScriptOrModule]] value. Thus, when the promise machinery
calls HostEnqueuePromiseJobp939, there will be no active scriptp925 to pass along.

As a consequence, this means that when the import() expression is evaluated, there will still be no active scriptp925.
Fortunately that is handled by our implementations of HostResolveImportedModulep943 and
HostImportModuleDynamicallyp942, by falling back to using the current settings objectp924 's API base URLp917.

Example

939

https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostenqueuepromisejob
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-newpromisereactionjob
https://tc39.es/ecma262/#sec-newpromiseresolvethenablejob
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-eval-x
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#surrounding-agent

2. If job settings is not null, then prepare to run scriptp935 with job settings.

3. Prepare to run a callbackp921 with incumbent settings.

4. If script execution context is not null, then push script execution context onto the JavaScript execution context
stack.

5. Let result be job().

6. If script execution context is not null, then pop script execution context from the JavaScript execution context
stack.

7. Clean up after running a callbackp921 with incumbent settings.

8. If job settings is not null, then clean up after running scriptp935 with job settings.

9. If result is an abrupt completion, then report the exceptionp937 given by result.[[Value]].

JavaScript contains an implementation-defined HostEnsureCanCompileStrings(callerRealm, calleeRealm) abstract operation. User
agents must use the following implementation: [JAVASCRIPT]p1288

1. Perform ? EnsureCSPDoesNotBlockStringCompilation(callerRealm, calleeRealm). [CSP]p1285

JavaScript contains an implementation-defined HostPromiseRejectionTracker(promise, operation) abstract operation. User agents must
use the following implementation: [JAVASCRIPT]p1288

1. Let script be the running scriptp936.

2. If script's muted errorsp925 is true, terminate these steps.

3. Let settings object be script's settings objectp925.

4. If operation is "reject",

1. Add promise to settings object's about-to-be-notified rejected promises listp918.

5. If operation is "handle",

1. If settings object's about-to-be-notified rejected promises listp918 contains promise, then remove promise from that
list and return.

2. If settings object's outstanding rejected promises weak setp918 does not contain promise, then return.

3. Remove promise from settings object's outstanding rejected promises weak setp918.

4. Let global be settings object's global objectp918.

This affects the entryp919 concept while the job runs.
Note

This affects the incumbentp919 concept while the job runs.
Note

As explained above, this affects the active scriptp925 while the job runs.
Note

job is an abstract closure returned by NewPromiseReactionJob or NewPromiseResolveThenableJob.
Note

8.1.5.2 HostEnsureCanCompileStrings(callerRealm, calleeRealm) §p94

0

8.1.5.3 HostPromiseRejectionTracker(promise, operation) §p94

0

940

https://infra.spec.whatwg.org/#stack-push
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-abstract-closure
https://tc39.es/ecma262/#sec-newpromisereactionjob
https://tc39.es/ecma262/#sec-newpromiseresolvethenablejob
https://infra.spec.whatwg.org/#stack-pop
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostensurecancompilestrings
https://w3c.github.io/webappsec-csp/#can-compile-strings
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-host-promise-rejection-tracker

5. Queue a global taskp945 on the DOM manipulation task sourcep952 given global to fire an event named
rejectionhandledp1282 at global, using PromiseRejectionEventp938, with the promisep938 attribute initialized to
promise, and the reasonp938 attribute initialized to the value of promise's [[PromiseResult]] internal slot.

The JavaScript specification defines a syntax for modules, as well as some host-agnostic parts of their processing model. This
specification defines the rest of their processing model: how the module system is bootstrapped, via the scriptp614 element with
typep615 attribute set to "module", and how modules are fetched, resolved, and executed. [JAVASCRIPT]p1288

A module map is a map of URL records to values that are either a module scriptp925, null (used to represent failed fetches), or a
placeholder value "fetching". Module mapsp941 are used to ensure that imported JavaScript modules are only fetched, parsed, and
evaluated once per Documentp114 or workerp1028.

To resolve a module specifier given a URL base URL and a string specifier, perform the following steps. It will return either a URL
record or failure.

8.1.5.4 Module-related host hooks §p94

1

Although the JavaScript specification speaks in terms of "scripts" versus "modules", in general this specification speaks in terms of
classic scriptsp925 versus module scriptsp925, since both of them use the scriptp614 element.

Note

modulePromise = import(specifier)
Returns a promise for the module namespace object for the module scriptp925 identified by specifier. This allows dynamic
importing of module scripts at runtime, instead of statically using the import statement form. The specifier will be resolvedp941

relative to the active scriptp925 's base URLp925.
The returned promise will be rejected if an invalid specifier is given, or if a failure is encountered while fetchingp929 or
evaluatingp935 the resulting module graph.
This syntax can be used inside both classicp925 and module scriptsp925. It thus provides a bridge into the module-script world,
from the classic-script world.

url = import . meta . url
Returns the active module scriptp925 's base URLp925.
This syntax can only be used inside module scriptsp925.

For web developers (non-normative)

Since module mapsp941 are keyed by URL, the following code will create three separate entries in the module mapp941, since it
results in three different URLs:

import "https://example.com/module.mjs";
import "https://example.com/module.mjs#map-buster";
import "https://example.com/module.mjs?debug=true";

That is, URL queries and fragments can be varied to create distinct entries in the module mapp941; they are not ignored. Thus, three
separate fetches and three separate module evaluations will be performed.

In contrast, the following code would only create a single entry in the module mapp941, since after applying the URL parser to these
inputs, the resulting URL records are equal:

import "https://example.com/module2.mjs";
import "https:example.com/module2.mjs";
import "https://///example.com\\module2.mjs";
import "https://example.com/foo/../module2.mjs";

So in this second example, only one fetch and one module evaluation will occur.

Note that this behavior is the same as how shared workersp1054 are keyed by their parsed constructor urlp1047.

Example

941

https://dom.spec.whatwg.org/#concept-event-fire
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-meta-properties
https://infra.spec.whatwg.org/#ordered-map
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

1. Apply the URL parser to specifier. If the result is not failure, return the result.

2. If specifier does not start with the character U+002F SOLIDUS (/), the two-character sequence U+002E FULL STOP, U+002F
SOLIDUS (./), or the three-character sequence U+002E FULL STOP, U+002E FULL STOP, U+002F SOLIDUS (../), return
failure.

3. Return the result of applying the URL parser to specifier with base URL as the base URL.

JavaScript contains an implementation-defined HostGetImportMetaProperties abstract operation. User agents must use the following
implementation: [JAVASCRIPT]p1288

1. Let module script be moduleRecord.[[HostDefined]].

2. Let urlString be module script's base URLp925, serialized.

3. Return « Record { [[Key]]: "url", [[Value]]: urlString } ».

JavaScript contains an implementation-defined HostImportModuleDynamically abstract operation. User agents must use the following
implementation: [JAVASCRIPT]p1288

1. Let settings object be the current settings objectp924.

2. Let base URL be settings object's API base URLp917.

3. Let fetch options be the default classic script fetch optionsp926.

4. If referencingScriptOrModule is not null, then:

1. Let referencing script be referencingScriptOrModule.[[HostDefined]].

This restriction is in place so that in the future we can allow custom module loaders to give special meaning to "bare"
import specifiers, like import "jquery" or import "web/crypto". For now any such imports will fail, instead of being
treated as relative URLs.

Note

The following are valid module specifiers according to the above algorithm:

• https://example.com/apples.mjs
• http:example.com\pears.js (becomes http://example.com/pears.js as step 1 parses with no base URL)
• //example.com/bananas
• ./strawberries.mjs.cgi
• ../lychees
• /limes.jsx
• data:text/javascript,export default 'grapes';
• blob:https://whatwg.org/d0360e2f-caee-469f-9a2f-87d5b0456f6f

The following are valid module specifiers according to the above algorithm, but will invariably cause failures when they are
fetchedp931:

• javascript:export default 'artichokes';
• data:text/plain,export default 'kale';
• about:legumes
• wss://example.com/celery

The following are not valid module specifiers according to the above algorithm:

• https://eggplant:b/c
• pumpkins.js
• .tomato
• ..zucchini.mjs
• .\yam.es

Example

8.1.5.4.1 HostGetImportMetaProperties(moduleRecord) §p94

2

8.1.5.4.2 HostImportModuleDynamically(referencingScriptOrModule, specifier, promiseCapability) §p94

2

✔ MDN

942

https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url-parser
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostgetimportmetaproperties
https://url.spec.whatwg.org/#concept-url-serializer
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/proposal-dynamic-import/#sec-hostimportmoduledynamically

2. Set settings object to referencing script's settings objectp925.

3. Set base URL to referencing script's base URLp925.

4. Set fetch options to the descendant script fetch optionsp926 for referencing script's fetch optionsp925.

5. Fetch an import() module script graphp929 given specifier, base URL, settings object, and fetch options. Wait until the
algorithm asynchronously completes with result.

6. If result is null, then:

1. Let completion be Completion { [[Type]]: throw, [[Value]]: a new TypeError, [[Target]]: empty }.

2. Perform FinishDynamicImport(referencingScriptOrModule, specifier, promiseCapability, completion).

3. Return.

7. Run the module scriptp935 result, with the rethrow errors boolean set to true.

8. If running the module script throws an exception, then perform FinishDynamicImport(referencingScriptOrModule, specifier,
promiseCapability, the thrown exception completion).

9. Otherwise, perform FinishDynamicImport(referencingScriptOrModule, specifier, promiseCapability,
NormalCompletion(undefined)).

10. Return undefined.

JavaScript contains an implementation-defined HostResolveImportedModule abstract operation. User agents must use the following
implementation: [JAVASCRIPT]p1288

1. Let settings object be the current settings objectp924.

2. Let base URL be settings object's API base URLp917.

3. If referencingScriptOrModule is not null, then:

1. Let referencing script be referencingScriptOrModule.[[HostDefined]].

2. Set settings object to referencing script's settings objectp925.

3. Set base URL to referencing script's base URLp925.

4. Let moduleMap be settings object's module mapp917.

5. Let url be the result of resolving a module specifierp941 given base URL and specifier.

6. Assert: url is never failure, because resolving a module specifierp941 must have been previously successful with these same
two arguments (either while creating the corresponding module scriptp934, or in HostImportModuleDynamicallyp942).

7. Let resolved module script be moduleMap[url]. (This entry must exist for us to have gotten to this point.)

8. Assert: resolved module script is a module scriptp925 (i.e., is not null or "fetching").

As explained above for HostResolveImportedModulep943, in the common case, referencingScriptOrModule is non-null.
Note

8.1.5.4.3 HostResolveImportedModule(referencingScriptOrModule, specifier) §p94

3

referencingScriptOrModule is not usually null, but will be so for event handlers per the get the current value of the event
handlerp959 algorithm. For example, given:

<button onclick="import('./foo.mjs')">Click me</button>

If a click event occurs, then at the time the import() expression runs, GetActiveScriptOrModule will return null, which
will be passed to this abstract operation when HostResolveImportedModule is called by FinishDynamicImport.

Example

943

https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-finishdynamicimport
https://tc39.es/ecma262/#sec-finishdynamicimport
https://tc39.es/ecma262/#sec-finishdynamicimport
https://tc39.es/ecma262/#sec-normalcompletion
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostresolveimportedmodule
https://w3c.github.io/uievents/#event-type-click
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-getactivescriptormodule
https://tc39.es/ecma262/#sec-hostresolveimportedmodule
https://tc39.es/ecma262/#sec-finishdynamicimport
https://infra.spec.whatwg.org/#map-exists

9. Assert: resolved module script's recordp925 is not null.

10. Return resolved module script's recordp925.

To coordinate events, user interaction, scripts, rendering, networking, and so forth, user agents must use event loops as described in
this section. Each agent has an associated event loop, which is unique to that agent.

The event loopp944 of a similar-origin window agentp913 is known as a window event loop. The event loopp944 of a dedicated worker
agentp913, shared worker agentp913, or service worker agentp913 is known as a worker event loop. And the event loopp944 of a worklet
agentp913 is known as a worklet event loop.

An event loopp944 has one or more task queues. A task queuep944 is a set of tasksp944.

Tasks encapsulate algorithms that are responsible for such work as:

Events
Dispatching an Event object at a particular EventTarget object is often done by a dedicated task.

Parsing
The HTML parserp1079 tokenizing one or more bytes, and then processing any resulting tokens, is typically a task.

Callbacks
Calling a callback is often done by a dedicated task.

Using a resource
When an algorithm fetches a resource, if the fetching occurs in a non-blocking fashion then the processing of the resource once
some or all of the resource is available is performed by a task.

Reacting to DOM manipulation
Some elements have tasks that trigger in response to DOM manipulation, e.g. when that element is inserted into the documentp44.

Formally, a task is a struct which has:

Steps
A series of steps specifying the work to be done by the task.

8.1.6.1 Definitions §p94

4

Event loopsp944 do not necessarily correspond to implementation threads. For example, multiple window event loopsp944 could be
cooperatively scheduled in a single thread.

However, for the various worker agents that are allocated with [[CanBlock]] set to true, the JavaScript specification does place
requirements on them regarding forward progress, which effectively amount to requiring dedicated per-agent threads in those
cases.

Note

Task queuesp944 are sets, not queues, because step one of the event loop processing model p946 grabs the first runnablep945 taskp944

from the chosen queue, instead of dequeuing the first task.

Note

The microtask queuep945 is not a task queuep944.
Note

Not all events are dispatched using the task queuep944; many are dispatched during other tasks.
Note

8.1.6 Event loops §p94

4

944

https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-forward-progress
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#queue
https://infra.spec.whatwg.org/#queue-dequeue
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-eventtarget
https://fetch.spec.whatwg.org/#concept-fetch
https://infra.spec.whatwg.org/#struct

A source
One of the task sourcesp945, used to group and serialize related tasks.

A document
A Documentp114 associated with the task, or null for tasks that are not in a window event loopp944.

A script evaluation environment settings object set
A set of environment settings objectsp917 used for tracking script evaluation during the task.

A taskp944 is runnable if its documentp945 is either null or fully activep815.

Per its sourcep945 field, each taskp944 is defined as coming from a specific task source. For each event loopp944, every task sourcep945

must be associated with a specific task queuep944.

Each event loopp944 has a currently running task, which is either a taskp944 or null. Initially, this is null. It is used to handle
reentrancy.

Each event loopp944 has a microtask queue, which is a queue of microtasksp945, initially empty. A microtask is a colloquial way of
referring to a taskp944 that was created via the queue a microtaskp946 algorithm.

Each event loopp944 has a performing a microtask checkpoint boolean, which is initially false. It is used to prevent reentrant
invocation of the perform a microtask checkpointp949 algorithm.

To queue a task on a task sourcep945 source, which performs a series of steps steps, optionally given an event loop event loop and a
document document:

1. If event loop was not given, set event loop to the implied event loopp946.

2. If document was not given, set document to the implied documentp946.

3. Let task be a new taskp944.

4. Set task's stepsp944 to steps.

5. Set task's sourcep945 to source.

6. Set task's documentp945 to the document.

7. Set task's script evaluation environment settings object setp945 to an empty set.

8. Let queue be the task queuep944 to which source is associated on event loop.

9. Append task to queue.

To queue a global task on a task sourcep945 source, with a global objectp918 global and a series of steps steps:

1. Let event loop be global's relevant agentp914 's event loopp944.

2. Let document be global's associated Documentp826, if global is a Windowp824 object; otherwise null.

Essentially, task sourcesp945 are used within standards to separate logically-different types of tasks, which a user agent might wish
to distinguish between. Task queuesp944 are used by user agents to coalesce task sources within a given event loopp944.

Note

For example, a user agent could have one task queuep944 for mouse and key events (to which the user interaction task sourcep952 is
associated), and another to which all other task sourcesp945 are associated. Then, using the freedom granted in the initial step of
the event loop processing modelp946, it could give keyboard and mouse events preference over other tasks three-quarters of the
time, keeping the interface responsive but not starving other task queues. Note that in this setup, the processing model still
enforces that the user agent would never process events from any one task sourcep945 out of order.

Example

8.1.6.2 Queuing tasks §p94

5

945

https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#queue
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-append

3. Queue a taskp945 given source, event loop, document, and steps.

To queue an element task on a task sourcep945 source, with an element element and a series of steps steps:

1. Let global be element's relevant global objectp924.

2. Queue a global taskp945 given source, global, and steps.

To queue a microtask which performs a series of steps steps, optionally given an event loop event loop and a document document:

1. If event loop was not given, set event loop to the implied event loopp946.

2. If document was not given, set document to the implied documentp946.

3. Let microtask be a new taskp944.

4. Set microtask's stepsp944 to steps.

5. Set microtask's sourcep945 to the microtask task source.

6. Set microtask's documentp945 to document.

7. Set task's script evaluation environment settings object setp945 to an empty set.

8. Enqueue task on event loop's microtask queuep945.

The implied event loop when queuing a task is the one that can deduced from the context of the calling algorithm. This is generally
unambiguous, as most specification algorithms only ever involve a single agent (and thus a single event loopp944). The exception is
algorithms involving or specifying cross-agent communication (e.g., between a window and a worker); for those cases, the implied
event loopp946 concept must not be relied upon and specifications must explicitly provide an event loopp944 when queuing a taskp945 or
microtaskp946.

The implied document when queuing a task on an event loopp944 event loop is determined as follows:

1. If event loop is not a window event loopp944, then return null.

2. If the task is being queued in the context of an element, then return the element's node document.

3. If the task is being queued in the context of a browsing contextp811, then return the browsing context's active documentp811.

4. If the task is being queued by or for a scriptp925, then return the script's settings objectp925 's responsible documentp917.

5. Assert: this step is never reached, because one of the previous conditions must be true. Really?

Both implied event loopp946 and implied documentp946 are vaguely-defined and have a lot of action-at-a-distance. Perhaps we can
come up with a more explicit architecture, while still avoiding all callers needing to explicitly specify the event loop and document.

An event loopp944 must continually run through the following steps for as long as it exists:

1. Let taskQueue be one of the event loopp944 's task queuesp944, chosen in an implementation-defined manner, with the
constraint that the chosen task queue must contain at least one runnablep945 taskp944. If there is no such task queue, then
jump to the microtasks step below.

It is possible for a microtaskp945 to be moved to a regular task queuep944, if, during its initial execution, it spins the event loopp949.
This is the only case in which the sourcep945, documentp945, and script evaluation environment settings object set p945 of the
microtask are consulted; they are ignored by the perform a microtask checkpointp949 algorithm.

Note

8.1.6.3 Processing model §p94

6

Remember that the microtask queuep945 is not a task queuep944, so it will not be chosen in this step. However, a task
queuep944 to which the microtask task sourcep946 is associated might be chosen in this step. In that case, the taskp944

Note

946

https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#queue-enqueue
https://tc39.es/ecma262/#sec-agents
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#implementation-defined

2. Let oldestTask be the first runnablep945 taskp944 in taskQueue, and remove it from taskQueue.

3. Set the event loopp944 's currently running taskp945 to oldestTask.

4. Let taskStartTime be the current high resolution time.

5. Perform oldestTask's stepsp944.

6. Set the event loopp944 's currently running taskp945 back to null.

7. Microtasks: Perform a microtask checkpointp949.

8. Let hasARenderingOpportunity be false.

9. Let now be the current high resolution time. [HRT]p1288

10. Report the taskp944 's duration by performing the following steps:

1. Let top-level browsing contexts be an empty set.

2. For each environment settings objectp917 settings of oldestTask's script evaluation environment settings object
setp945, append setting's top-level browsing contextp814 to top-level browsing contexts.

3. Report long tasks, passing in taskStartTime, now (the end time of the task), top-level browsing contexts, and
oldestTask.

11. Update the rendering: if this is a window event loopp944, then:

1. Let docs be all Documentp114 objects whose relevant agentp914 's event loopp944 is this event loop, sorted arbitrarily
except that the following conditions must be met:

▪ Any Documentp114 B whose browsing contextp811 's container documentp814 is A must be listed after A in
the list.

▪ If there are two documents A and B whose browsing contextsp811 are both child browsing contextsp814

whose container documentsp814 are another Documentp114 C, then the order of A and B in the list must
match the shadow-including tree order of their respective browsing context containersp814 in C's node
tree.

In the steps below that iterate over docs, each Documentp114 must be processed in the order it is found in the list.

2. Rendering opportunities: Remove from docs all Documentp114 objects whose browsing contextp811 do not have a
rendering opportunityp947.

A browsing contextp811 has a rendering opportunity if the user agent is currently able to present the contents of
the browsing contextp811 to the user, accounting for hardware refresh rate constraints and user agent throttling for
performance reasons, but considering content presentable even if it's outside the viewport.

Browsing contextp811 rendering opportunitiesp947 are determined based on hardware constraints such as display
refresh rates and other factors such as page performance or whether the page is in the background. Rendering
opportunities typically occur at regular intervals.

3. If docs is not empty, then set hasARenderingOpportunity to true.

4. Unnecessary rendering: Remove from docs all Documentp114 objects which meet both of the following conditions:

▪ The user agent believes that updating the rendering of the Documentp114 's browsing contextp811 would

chosen in the next step was originally a microtaskp945, but it got moved as part of spinning the event loopp949.

This specification does not mandate any particular model for selecting rendering opportunities. But for
example, if the browser is attempting to achieve a 60Hz refresh rate, then rendering opportunities occur at a
maximum of every 60th of a second (about 16.7ms). If the browser finds that a browsing contextp811 is not able
to sustain this rate, it might drop to a more sustainable 30 rendering opportunities per second for that
browsing contextp811, rather than occasionally dropping frames. Similarly, if a browsing contextp811 is not
visible, the user agent might decide to drop that page to a much slower 4 rendering opportunities per second,
or even less.

Note

947

https://infra.spec.whatwg.org/#list-remove
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#set-append
https://w3c.github.io/longtasks/#report-long-tasks
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-node-tree
https://dom.spec.whatwg.org/#concept-node-tree

have no visible effect, and
▪ The Documentp114 's map of animation frame callbacksp996 is empty.

5. Remove from docs all Documentp114 objects for which the user agent believes that it's preferrable to skip updating
the rendering for other reasons.

6. For each fully activep815 Documentp114 in docs, flush autofocus candidatesp782 for that Documentp114 if its browsing
contextp811 is a top-level browsing contextp814.

7. For each fully activep815 Documentp114 in docs, run the resize steps for that Documentp114, passing in now as the
timestamp. [CSSOMVIEW]p1286

8. For each fully activep815 Documentp114 in docs, run the scroll steps for that Documentp114, passing in now as the
timestamp. [CSSOMVIEW]p1286

9. For each fully activep815 Documentp114 in docs, evaluate media queries and report changes for that Documentp114,
passing in now as the timestamp. [CSSOMVIEW]p1286

10. For each fully activep815 Documentp114 in docs, update animations and send events for that Documentp114, passing in
now as the timestamp. [WEBANIMATIONS]p1292

11. For each fully activep815 Documentp114 in docs, run the fullscreen steps for that Documentp114, passing in now as the
timestamp. [FULLSCREEN]p1287

12. For each fully activep815 Documentp114 in docs, run the animation frame callbacksp996 for that Documentp114, passing
in now as the timestamp.

13. For each fully activep815 Documentp114 in docs, run the update intersection observations steps for that Documentp114,
passing in now as the timestamp. [INTERSECTIONOBSERVER]p1288

14. Invoke the mark paint timing algorithm for each Documentp114 object in docs.

15. For each fully activep815 Documentp114 in docs, update the rendering or user interface of that Documentp114 and its
browsing contextp811 to reflect the current state.

12. If all of the following are true

◦ this is a window event loopp944

◦ there is no taskp944 in this event loopp944 's task queuesp944 whose documentp945 is fully activep815

◦ this event loopp944 's microtask queuep945 is empty
◦ hasARenderingOpportunity is false

then for each Windowp824 object whose whose relevant agentp914 's event loopp944 is this event loop, run the start an idle period
algorithm, passing the Windowp824. [REQUESTIDLECALLBACK]p1290

13. If this is a worker event loopp944, then:

1. If this event loopp944 's agent's single realm's global objectp918 is a supportedp996 DedicatedWorkerGlobalScopep1046

and the user agent believes that it would benefit from having its rendering updated at this time, then:

1. Let now be the current high resolution time. [HRT]p1288

2. Run the animation frame callbacksp996 for that DedicatedWorkerGlobalScopep1046, passing in now as the
timestamp.

3. Update the rendering of that dedicated worker to reflect the current state.

The step labeled Rendering opportunities prevents the user agent from updating the rendering when it is
unable to present new content to the user (there's no rendering opportunityp947).

The step labeled Unnecessary rendering prevents the user agent from updating the rendering when there's no
new content to draw.

This step enables the user agent to prevent the steps below from running for other reasons, for example, to
ensure certain tasksp944 are executed immediately after each other, with only microtask checkpointsp949

interleaved (and without, e.g., animation frame callbacksp996 interleaved). Concretely, a user agent might wish
to coalesce timer callbacks together, with no intermediate rendering updates.

Note

948

https://drafts.csswg.org/cssom-view/#run-the-resize-steps
https://drafts.csswg.org/cssom-view/#run-the-scroll-steps
https://drafts.csswg.org/cssom-view/#evaluate-media-queries-and-report-changes
https://drafts.csswg.org/web-animations/#update-animations-and-send-events
https://fullscreen.spec.whatwg.org/#run-the-fullscreen-steps
https://w3c.github.io/IntersectionObserver/#run-the-update-intersection-observations-steps
https://w3c.github.io/paint-timing/#mark-paint-timing
https://infra.spec.whatwg.org/#list-is-empty
https://w3c.github.io/requestidlecallback/#start-an-idle-period-algorithm
https://w3c.github.io/requestidlecallback/#start-an-idle-period-algorithm
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-code-realms
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time

2. If there are no tasksp944 in the event loopp944 's task queuesp944 and the WorkerGlobalScopep1044 object's closingp1047

flag is true, then destroy the event loopp944, aborting these steps, resuming the run a workerp1048 steps described in
the Web workersp1028 section below.

When a user agent is to perform a microtask checkpoint:

1. If the event loopp944 's performing a microtask checkpointp945 is true, then return.

2. Set the event loopp944 's performing a microtask checkpointp945 to true.

3. While the event loopp944 's microtask queuep945 is not empty:

1. Let oldestMicrotask be the result of dequeuing from the event loopp944 's microtask queuep945.

2. Set the event loopp944 's currently running taskp945 to oldestMicrotask.

3. Run oldestMicrotask.

4. Set the event loopp944 's currently running taskp945 back to null.

4. For each environment settings objectp917 whose responsible event loopp918 is this event loopp944, notify about rejected
promisesp938 on that environment settings objectp917.

5. Cleanup Indexed Database transactions.

6. Set the event loopp944 's performing a microtask checkpointp945 to false.

When an algorithm running in parallelp42 is to await a stable state, the user agent must queue a microtaskp946 that runs the following
steps, and must then stop executing (execution of the algorithm resumes when the microtask is run, as described in the following
steps):

1. Run the algorithm's synchronous section.

2. Resumes execution of the algorithm in parallelp42, if appropriate, as described in the algorithm's steps.

Algorithm steps that say to spin the event loop until a condition goal is met are equivalent to substituting in the following algorithm
steps:

1. Let task be the event loopp944 's currently running taskp945.

2. Let task source be task's sourcep945.

3. Let old stack be a copy of the JavaScript execution context stack.

4. Empty the JavaScript execution context stack.

5. Perform a microtask checkpointp949.

Similar to the notes for updating the renderingp947 in a window event loopp944, a user agent can determine the
rate of rendering in the dedicated worker.

Note

This might involve invoking scripted callbacks, which eventually calls the clean up after running scriptp935

steps, which call this perform a microtask checkpointp949 algorithm again, which is why we use the performing
a microtask checkpointp945 flag to avoid reentrancy.

Note

Steps in synchronous sectionsp949 are marked with ⌛.
Note

task could be a microtaskp945.
Note

949

https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#queue-dequeue
https://w3c.github.io/IndexedDB/#cleanup-indexed-database-transactions
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack

6. In parallelp42:

1. Wait until the condition goal is met.

2. Queue a taskp945 on task source to:

1. Replace the JavaScript execution context stack with old stack.

2. Perform any steps that appear after this spin the event loopp949 instance in the original algorithm.

7. Stop task, allowing whatever algorithm that invoked it to resume.

If task is a microtaskp945 this step will be a no-op due to performing a microtask checkpointp945 being true.
Note

This resumes task.
Note

This causes the event loopp944 's main set of steps or the perform a microtask checkpointp949 algorithm to continue.
Note

Unlike other algorithms in this and other specifications, which behave similar to programming-language function calls, spin the
event loopp949 is more like a macro, which saves typing and indentation at the usage site by expanding into a series of steps and
operations.

Note

An algorithm whose steps are:

1. Do something.

2. Spin the event loopp949 until awesomeness happens.

3. Do something else.

is a shorthand which, after "macro expansion", becomes

1. Do something.

2. Let old stack be a copy of the JavaScript execution context stack.

3. Empty the JavaScript execution context stack.

4. Perform a microtask checkpointp949.

5. In parallelp42:

1. Wait until awesomeness happens.

2. Queue a taskp945 on the task source in which "do something" was done to:

1. Replace the JavaScript execution context stack with old stack.

2. Do something else.

Example

Here is a more full example of the substitution, where the event loop is spun from inside a task that is queued from work in
parallel. The version using spin the event loopp949:

1. In parallelp42:

1. Do parallel thing 1.

2. Queue a taskp945 on the DOM manipulation task sourcep952 to:

Example

950

https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack

Some of the algorithms in this specification, for historical reasons, require the user agent to pause while running a taskp944 until a
condition goal is met. This means running the following steps:

1. If necessary, update the rendering or user interface of any Documentp114 or browsing contextp811 to reflect the current state.

2. Wait until the condition goal is met. While a user agent has a paused taskp944, the corresponding event loopp944 must not run
further tasksp944, and any script in the currently running taskp944 must block. User agents should remain responsive to user
input while paused, however, albeit in a reduced capacity since the event loopp944 will not be doing anything.

The following task sourcesp945 are used by a number of mostly unrelated features in this and other specifications.

1. Do task thing 1.

2. Spin the event loopp949 until awesomeness happens.

3. Do task thing 2.

3. Do parallel thing 2.

The fully expanded version:

1. In parallelp42:

1. Do parallel thing 1.

2. Let old stack be null.

3. Queue a taskp945 on the DOM manipulation task sourcep952 to:

1. Do task thing 1.

2. Set old stack to a copy of the JavaScript execution context stack.

3. Empty the JavaScript execution context stack.

4. Perform a microtask checkpointp949.

4. Wait until awesomeness happens.

5. Queue a taskp945 on the DOM manipulation task sourcep952 to:

1. Replace the JavaScript execution context stack with old stack.

2. Do task thing 2.

6. Do parallel thing 2.

Pausingp951 is highly detrimental to the user experience, especially in scenarios where a single event loopp944 is
shared among multiple documents. User agents are encouraged to experiment with alternatives to pausingp951, such
as spinning the event loopp949 or even simply proceeding without any kind of suspended execution at all, insofar as
it is possible to do so while preserving compatibility with existing content. This specification will happily change if a
less-drastic alternative is discovered to be web-compatible.

In the interim, implementers should be aware that the variety of alternatives that user agents might experiment
with can change subtle aspects of event loopp944 behavior, including taskp944 and microtaskp945 timing.
Implementations should continue experimenting even if doing so causes them to violate the exact semantics
implied by the pausep951 operation.

⚠Warning!

8.1.6.4 Generic task sources §p95

1

951

https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack

The DOM manipulation task source
This task sourcep945 is used for features that react to DOM manipulations, such as things that happen in a non-blocking fashion when
an element is inserted into the documentp44.

The user interaction task source
This task sourcep945 is used for features that react to user interaction, for example keyboard or mouse input.

Events sent in response to user input (e.g. click events) must be fired using tasksp944 queuedp945 with the user interaction task
sourcep952. [UIEVENTS]p1292

The networking task source
This task sourcep945 is used for features that trigger in response to network activity.

The history traversal task source
This task sourcep945 is used to queue calls to history.back()p852 and similar APIs.

Writing specifications that correctly interact with the event loopp944 can be tricky. This is compounded by how this specification uses
concurrency-model-independent terminology, so we say things like "event loopp944" and "in parallelp42" instead of using more familiar
model-specific terms like "main thread" or "on a background thread".

By default, specification text generally runs on the event loopp944. This falls out from the formal event loop processing modelp946, in
that you can eventually trace most algorithms back to a taskp944 queuedp945 there.

From this starting point, the overriding guideline is that any work a specification needs to perform that would otherwise block the event
loopp944 must instead be performed in parallelp42 with it. This includes (but is not limited to):

• performing heavy computation;

• displaying a user-facing prompt;

• performing operations which could require involving outside systems (i.e. "going out of process").

The next complication is that, in algorithm sections that are in parallelp42, you must not create or manipulate objects associated to a
specific JavaScript realm, globalp918, or environment settings objectp917. (Stated in more familiar terms, you must not directly access
main-thread artifacts from a background thread.) Doing so would create data races observable to JavaScript code, since after all, your
algorithm steps are running in parallelp42 to the JavaScript code.

You can, however, manipulate specification-level data structures and values from Infra, as those are realm-agnostic. They are never
directly exposed to JavaScript without a specific conversion taking place (often via Web IDL). [INFRA]p1288 [WEBIDL]p1292

To affect the world of observable JavaScript objects, then, you must queue a taskp945 to perform any such manipulations. This ensures
your steps are properly interleaved with respect to other things happening on the event loopp944. Furthermore, you must choose a task
sourcep945 when queuing a taskp945; this governs the relative order of your steps versus others. If you are unsure which task sourcep945

to use, pick one of the generic task sourcesp951 that sounds most applicable.

Most invocations of queue a taskp945 use the implied event loopp946, i.e., the one that is obvious from context. That is because it is very
rare for algorithms to be invoked in contexts involving multiple event loops. (Unlike contexts involving multiple global objects, which
happen all the time!) So unless you are writing a specification which, e.g., deals with manipulating workersp1028, you can omit this
argument when queuing a taskp945.

Putting this all together, we can provide a template for a typical algorithm that needs to do work asynchronously:

1. Do any synchronous setup work, while still on the event loopp944. This may include converting realm-specific JavaScript
values into realm-agnostic specification-level values.

2. Perform a set of potentially-expensive steps in parallelp42, operating entirely on realm-agnostic values, and producing a

8.1.6.5 Dealing with the event loop from other specifications §p95

2

The algorithm steps for any JavaScript method will be invoked by author code calling that method. And author code can only be
run via queued tasks, usually originating somewhere in the script processing modelp619.

Example

952

https://w3c.github.io/uievents/#event-type-click
https://tc39.es/ecma262/#sec-code-realms
https://heycam.github.io/webidl/#es-type-mapping
https://tc39.es/ecma262/#sec-code-realms

realm-agnostic result.

3. Queue a taskp945, on a specified task sourcep945, to convert the realm-agnostic result back into observable effects on the
observable world of JavaScript objects on the event loopp944.

The following is an algorithm that "encrypts" a passed-in list of scalar value strings input, after parsing them as URLs:

1. Let urls be an empty list.

2. For each string of input:

1. Let parsed be the result of parsingp89 string relative to the current settings objectp924.

2. If parsed is failure, return a promise rejected with a "SyntaxError" DOMException.

3. Let serialized be the result of applying the URL serializer to parsed.

4. Append serialized to urls.

3. Let realm be the current Realm Record.

4. Let p be a new promise.

5. Run the following steps in parallelp42:

1. Let encryptedURLs be an empty list.

2. For each url of urls:

1. Wait 100 milliseconds, so that people think we're doing heavy-duty encryption.

2. Let encrypted be a new string derived from url, whose nth code unit is equal to url's nth code unit
plus 13.

3. Append encrypted to encryptedURLs.

3. Queue a taskp945, on the networking task sourcep952, to perform the following steps:

1. Let array be the result of converting encryptedURLs to a JavaScript array, in realm.

2. Resolve p with array.

6. Return p.

Here are several things to notice about this algorithm:

• It does its URL parsing up front, on the event loopp944, before going to the in parallelp42 steps. This is necessary, since
parsing depends on the current settings objectp924, which would no longer be current after going in parallelp42.

• Alternately, it could have saved a reference to the current settings objectp924 's API base URLp917 and used it during the in
parallelp42 steps; that would have been equivalent. However, we recommend instead doing as much work as possible up
front, as this example does. Attempting to save the correct values can be error prone; for example, if we'd saved just the
current settings objectp924, instead of its API base URLp917, there would have been a potential race.

• It implicitly passes a list of strings from the initial steps to the in parallelp42 steps. This is OK, as both lists and strings are
realm-agnostic.

• It performs "expensive computation" (waiting for 100 milliseconds per input URL) during the in parallelp42 steps, thus not
blocking the main event loopp944.

• Promises, as observable JavaScript objects, are never created and manipulated during the in parallelp42 steps. p is
created before entering those steps, and then is manipulated during a taskp944 that is queuedp945 specifically for that
purpose.

• The creation of a JavaScript array object also happens during the queued task, and is careful to specify which realm it
creates the array in since that is no longer obvious from context.

(On these last two points, see also w3ctag/promises-guide issue #52, heycam/webidl issue #135, and heycam/webidl issue #371,

Example

953

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-serializer
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#current-realm
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#list-append
https://heycam.github.io/webidl/#es-type-mapping
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#string
https://tc39.es/ecma262/#sec-code-realms
https://github.com/w3ctag/promises-guide/issues/52
https://github.com/heycam/webidl/issues/135
https://github.com/heycam/webidl/issues/371

Many objects can have event handlers specified. These act as non-capture event listeners for the object on which they are specified.
[DOM]p1287

An event handlerp954 is a struct with two items:

• a value, which is either null, a callback object, or an internal raw uncompiled handlerp959. The EventHandlerp958 callback
function type describes how this is exposed to scripts. Initially, an event handlerp954 's valuep954 must be set to null.

• a listener, which is either null or an event listener responsible for running the event handler processing algorithmp957.
Initially, an event handlerp954 's listenerp954 must be set to null.

Event handlers are exposed in two ways.

The first way, common to all event handlers, is as an event handler IDL attributep955.

The second way is as an event handler content attributep955. Event handlers on HTML elementsp44 and some of the event handlers on
Windowp824 objects are exposed in this way.

For both of these two ways, the event handlerp954 is exposed through a name, which is a string that always starts with "on" and is
followed by the name of the event for which the handler is intended.

Most of the time, the object that exposes an event handlerp954 is the same as the object on which the corresponding event listener is
added. However, the bodyp178 and framesetp1239 elements expose several event handlersp954 that act upon the element's Windowp824

object, if one exists. In either case, we call the object an event handlerp954 acts upon the target of that event handlerp954.

To determine the target of an event handler, given an EventTarget object eventTarget on which the event handlerp954 is exposed,
and an event handler namep954 name, the following steps are taken:

1. If eventTarget is not a bodyp178 element or a framesetp1239 element, then return eventTarget.

2. If name is not the name of an attribute member of the WindowEventHandlersp964 interface mixin and the Window-reflecting
body element event handler setp962 does not contain name, then return eventTarget.

3. If eventTarget's node document is not an active documentp811, then return null.

4. Return eventTarget's node document's relevant global objectp924.

where we are still mulling over the subtleties of the above promise-resolution pattern.)

Another thing to note is that, in the event this algorithm was called from a Web IDL-specified operation taking a
sequence<USVString>, there was an automatic conversion from realm-specific JavaScript objects provided by the author as input,
into the realm-agnostic sequence<USVString> Web IDL type, which we then treat as a list of scalar value strings. So depending on
how your specification is structured, there may be other implicit steps happening on the main event loopp944 that play a part in this
whole process of getting you ready to go in parallelp42.

8.1.7.1 Event handlers §p95

4

This could happen if this object is a bodyp178 element without a corresponding Windowp824 object, for example.
Note

This check does not necessarily prevent bodyp178 and framesetp1239 elements that are not the body elementp118 of their
node document from reaching the next step. In particular, a bodyp178 element created in an active documentp811 (perhaps
with document.createElement()) but not connected will also have its corresponding Windowp824 object as the targetp954

of several event handlersp954 exposed through it.

Note

8.1.7 Events §p95

4 MDN

954

https://heycam.github.io/webidl/#idl-USVString
https://tc39.es/ecma262/#sec-code-realms
https://heycam.github.io/webidl/#idl-USVString
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#scalar-value-string
https://dom.spec.whatwg.org/#concept-event-listener
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#interface-eventtarget
https://infra.spec.whatwg.org/#list-contain
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-node-document

Each EventTarget object that has one or more event handlersp954 specified has an associated event handler map, which is a map of
strings representing namesp954 of event handlersp954 to event handlersp954.

When an EventTarget object that has one or more event handlersp954 specified is created, its event handler mapp955 must be initialized
such that it contains an entry for each event handlerp954 that has that object as targetp954, with items in those event handlersp954 set to
their initial values.

An event handler IDL attribute is an IDL attribute for a specific event handlerp954. The name of the IDL attribute is the same as the
namep954 of the event handlerp954.

The getter of an event handler IDL attributep955 with name name, when called, must run these steps:

1. Let eventTarget be the result of determining the target of an event handlerp954 given this object and name.

2. If eventTarget is null, then return null.

3. Return the result of getting the current value of the event handlerp959 given eventTarget and name.

The setter of an event handler IDL attributep955 with name name, when called, must run these steps:

1. Let eventTarget be the result of determining the target of an event handlerp954 given this object and name.

2. If eventTarget is null, then return.

3. If the given value is null, then deactivate an event handlerp956 given eventTarget and name.

4. Otherwise:

1. Let handlerMap be eventTarget's event handler mapp955.

2. Let eventHandler be handlerMap[name].

3. Set eventHandler's valuep954 to the given value.

4. Activate an event handlerp956 given eventTarget and name.

An event handler content attribute is a content attribute for a specific event handlerp954. The name of the content attribute is the
same as the namep954 of the event handlerp954.

Event handler content attributesp955, when specified, must contain valid JavaScript code which, when parsed, would match the
FunctionBody production after automatic semicolon insertion.

The following attribute change steps are used to synchronize between event handler content attributesp955 and event handlersp954:
[DOM]p1287

1. If namespace is not null, or localName is not the name of an event handler content attributep955 on element, then return.

2. Let eventTarget be the result of determining the target of an event handlerp954 given element and localName.

3. If eventTarget is null, then return.

The order of the entries of event handler mapp955 could be arbitrary. It is not observable through any algorithms that operate on
the map.

Note

Entries are not created in the event handler mapp955 of an object for event handlersp954 that are merely exposed on that object, but
have some other object as their targetsp954.

Note

Certain event handler IDL attributesp955 have additional requirements, in particular the onmessagep1024 attribute of MessagePortp1022

objects.

Note

955

https://dom.spec.whatwg.org/#interface-eventtarget
https://infra.spec.whatwg.org/#ordered-map
https://dom.spec.whatwg.org/#interface-eventtarget
https://infra.spec.whatwg.org/#map-entry
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#map-entry
https://infra.spec.whatwg.org/#map-entry
https://tc39.es/ecma262/#prod-FunctionBody
https://tc39.es/ecma262/#sec-automatic-semicolon-insertion
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext

4. If value is null, then deactivate an event handlerp956 given eventTarget and localName.

5. Otherwise:

1. If the Should element's inline behavior be blocked by Content Security Policy? algorithm returns "Blocked" when
executed upon element, "script attribute", and value, then return. [CSP]p1285

2. Let handlerMap be eventTarget's event handler mapp955.

3. Let eventHandler be handlerMap[localName].

4. Let location be the script location that triggered the execution of these steps.

5. Set eventHandler's valuep954 to the internal raw uncompiled handlerp959 value/location.

6. Activate an event handlerp956 given eventTarget and localName.

To deactivate an event handler given an EventTarget object eventTarget and a string name that is the namep954 of an event
handlerp954, run these steps:

1. Let handlerMap be eventTarget's event handler mapp955.

2. Let eventHandler be handlerMap[name].

3. Set eventHandler's valuep954 to null.

4. Let listener be eventHandler's listenerp954.

5. If listener is not null, then remove an event listener with eventTarget and listener.

6. Set eventHandler's listenerp954 to null.

To erase all event listeners and handlers given an EventTarget object eventTarget, run these steps:

1. If eventTarget has an associated event handler mapp955, then for each name → eventHandler of eventTarget's associated
event handler mapp955, deactivate an event handlerp956 given eventTarget and name.

2. Remove all event listeners given eventTarget.

To activate an event handler given an EventTarget object eventTarget and a string name that is the namep954 of an event
handlerp954, run these steps:

1. Let handlerMap be eventTarget's event handler mapp955.

2. Let eventHandler be handlerMap[name].

3. If eventHandler's listenerp954 is not null, then return.

4. Let callback be the result of creating a Web IDL EventListener instance representing a reference to a function of one
argument that executes the steps of the event handler processing algorithmp957, given eventTarget, name, and its argument.

The EventListener's callback context can be arbitrary; it does not impact the steps of the event handler processing
algorithmp957. [DOM]p1287

Per the DOM Standard, these steps are run even if oldValue and value are identical (setting an attribute to its current value), but
not if oldValue and value are both null (removing an attribute that doesn't currently exist). [DOM]p1287

Note

This algorithm is used to define document.open()p969.
Note

The callback is emphatically not the event handlerp954 itself. Every event handler ends up registering the same callback,
the algorithm defined below, which takes care of invoking the right code, and processing the code's return value.

Note

956

https://w3c.github.io/webappsec-csp/#should-block-inline
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#remove-an-event-listener
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#remove-all-event-listeners
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#callbackdef-eventlistener
https://dom.spec.whatwg.org/#callbackdef-eventlistener
https://heycam.github.io/webidl/#dfn-callback-context

5. Let listener be a new event listener whose type is the event handler event type corresponding to eventHandler and
callback is callback.

6. Add an event listener with eventTarget and listener.

7. Set eventHandler's listenerp954 to listener.

The event handler processing algorithm for an EventTarget object eventTarget, a string name representing the namep954 of an
event handlerp954, and an Event object event is as follows:

To be clear, an event listener is different from an EventListener.
Note

The event listener registration happens only if the event handlerp954 's valuep954 is being set to non-null, and the event handlerp954 is
not already activated. Since listeners are called in the order they were registered, assuming no deactivationp956 occurred, the order
of event listeners for a particular event type will always be:

1. the event listeners registered with addEventListener() before the first time the event handlerp954 's valuep954 was set to
non-null

2. then the callback to which it is currently set, if any

3. and finally the event listeners registered with addEventListener() after the first time the event handlerp954 's valuep954

was set to non-null.

Note

This example demonstrates the order in which event listeners are invoked. If the button in this example is clicked by the user, the
page will show four alerts, with the text "ONE", "TWO", "THREE", and "FOUR" respectively.

<button id="test">Start Demo</button>
<script>
var button = document.getElementById('test');
button.addEventListener('click', function () { alert('ONE') }, false);
button.setAttribute('onclick', "alert('NOT CALLED')"); // event handler listener is registered

here
button.addEventListener('click', function () { alert('THREE') }, false);
button.onclick = function () { alert('TWO'); };
button.addEventListener('click', function () { alert('FOUR') }, false);

</script>

However, in the following example, the event handler is deactivatedp956 after its initial activation (and its event listener is
removed), before being reactivated at a later time. The page will show five alerts with "ONE", "TWO", "THREE", "FOUR", and "FIVE"
respectively, in order.

<button id="test">Start Demo</button>
<script>
var button = document.getElementById('test');
button.addEventListener('click', function () { alert('ONE') }, false);
button.setAttribute('onclick', "alert('NOT CALLED')"); // event handler is activated here
button.addEventListener('click', function () { alert('TWO') }, false);
button.onclick = null; // but deactivated here
button.addEventListener('click', function () { alert('THREE') }, false);
button.onclick = function () { alert('FOUR'); }; // and re-activated here
button.addEventListener('click', function () { alert('FIVE') }, false);

</script>

Example

The interfaces implemented by the event object do not influence whether an event handlerp954 is triggered or not.
Note

957

https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#event-listener-type
https://dom.spec.whatwg.org/#event-listener-callback
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#callbackdef-eventlistener
https://dom.spec.whatwg.org/#add-an-event-listener
https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#interface-event

1. Let callback be the result of getting the current value of the event handlerp959 given eventTarget and name.

2. If callback is null, then return.

3. Let special error event handling be true if event is an ErrorEventp937 object, event's type is errorp1281, and event's
currentTarget implements the WindowOrWorkerGlobalScopep965 mixin. Otherwise, let special error event handling be false.

4. Process the Event object event as follows:

↪ If special error event handling is true
Invoke callback with five arguments, the first one having the value of event's messagep937 attribute, the second having
the value of event's filenamep937 attribute, the third having the value of event's linenop937 attribute, the fourth
having the value of event's colnop938 attribute, the fifth having the value of event's errorp938 attribute, and with the
callback this value set to event's currentTarget. Let return value be the callback's return value. [WEBIDL]p1292

↪ Otherwise
Invoke callback with one argument, the value of which is the Event object event, with the callback this value set to
event's currentTarget. Let return value be the callback's return value. [WEBIDL]p1292

If an exception gets thrown by the callback, end these steps and allow the exception to propagate. (It will propagate to the
DOM event dispatch logic, which will then report the exceptionp937.)

5. Process return value as follows:

↪ If event is a BeforeUnloadEventp887 object and event's type is beforeunloadp1281

If return value is not null, then:

1. Set event's canceled flag.

2. If event's returnValuep887 attribute's value is the empty string, then set event's returnValuep887 attribute's
value to return value.

↪ If special error event handling is true
If return value is true, then set event's canceled flag.

↪ Otherwise
If return value is false, then set event's canceled flag.

The EventHandlerp958 callback function type represents a callback used for event handlers. It is represented in Web IDL as follows:

[LegacyTreatNonObjectAsNull]
callback EventHandlerNonNull = any (Event event);
typedef EventHandlerNonNull? EventHandler;

In this case, the event handler IDL attributep955 's type will be OnBeforeUnloadEventHandlerp959, so return value
will have been coerced into either null or a DOMString.

Note

If we've gotten to this "Otherwise" clause because event's type is beforeunloadp1281 but event is not a
BeforeUnloadEventp887 object, then return value will never be false, since in such cases return value will have
been coerced into either null or a DOMString.

Note

In JavaScript, any Function object implements this interface.
Note

For example, the following document fragment:
Example

IDL

958

https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#dom-event-currenttarget
https://dom.spec.whatwg.org/#interface-event
https://heycam.github.io/webidl/#invoke-a-callback-function
https://heycam.github.io/webidl/#dfn-callback-this-value
https://dom.spec.whatwg.org/#dom-event-currenttarget
https://heycam.github.io/webidl/#invoke-a-callback-function
https://dom.spec.whatwg.org/#interface-event
https://heycam.github.io/webidl/#dfn-callback-this-value
https://dom.spec.whatwg.org/#dom-event-currenttarget
https://dom.spec.whatwg.org/#concept-event-dispatch
https://dom.spec.whatwg.org/#dom-event-type
https://heycam.github.io/webidl/#idl-DOMString
https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#dom-event-type
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#LegacyTreatNonObjectAsNull
https://dom.spec.whatwg.org/#interface-event
https://heycam.github.io/webidl/#common-Function

For historical reasons, the onerrorp962 handler has different arguments:

[LegacyTreatNonObjectAsNull]
callback OnErrorEventHandlerNonNull = any ((Event or DOMString) event, optional DOMString source,
optional unsigned long lineno, optional unsigned long colno, optional any error);
typedef OnErrorEventHandlerNonNull? OnErrorEventHandler;

Similarly, the onbeforeunloadp963 handler has a different return value:

[LegacyTreatNonObjectAsNull]
callback OnBeforeUnloadEventHandlerNonNull = DOMString? (Event event);
typedef OnBeforeUnloadEventHandlerNonNull? OnBeforeUnloadEventHandler;

An internal raw uncompiled handler is a tuple with the following information:

• An uncompiled script body
• A location where the script body originated, in case an error needs to be reported

When the user agent is to get the current value of the event handler given an EventTarget object eventTarget and a string name
that is the namep954 of an event handlerp954, it must run these steps:

1. Let handlerMap be eventTarget's event handler mapp955.

2. Let eventHandler be handlerMap[name].

3. If eventHandler's valuep954 is an internal raw uncompiled handlerp959, then:

1. If eventTarget is an element, then let element be eventTarget, and document be element's node document.
Otherwise, eventTarget is a Windowp824 object, let element be null, and document be eventTarget's associated
Documentp826.

2. If scripting is disabledp924 for document, then return null.

3. Let body be the uncompiled script body in eventHandler's valuep954.

4. Let location be the location where the script body originated, as given by eventHandler's valuep954.

5. If element is not null and element has a form ownerp566, let form owner be that form ownerp566. Otherwise, let form
owner be null.

6. Let settings object be the relevant settings objectp924 of document.

<body onload="alert(this)" onclick="alert(this)">

...leads to an alert saying "[object Window]" when the document is loaded, and an alert saying "[object HTMLBodyElement]"
whenever the user clicks something in the page.

The return value of the function affects whether the event is canceled or not: as described above, if the return value is false, the
event is canceled.

There are two exceptions in the platform, for historical reasons:

• The onerrorp962 handlers on global objects, where returning true cancels the event

• The onbeforeunloadp963 handler, where returning any non-null and non-undefined value will cancel the event.

Note

window.onerror = (message, source, lineno, colno, error) => { … };

Example

IDL

IDL

959

https://heycam.github.io/webidl/#LegacyTreatNonObjectAsNull
https://dom.spec.whatwg.org/#interface-event
https://heycam.github.io/webidl/#LegacyTreatNonObjectAsNull
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#concept-node-document

7. If body is not parsable as FunctionBody or if parsing detects an early error, then follow these substeps:

1. Set eventHandler's valuep954 to null.

2. Report the errorp936 for the appropriate scriptp925 and with the appropriate position (line number and
column number) given by location, using settings object's global objectp918. If the error is still not
handledp936 after this, then the error may be reported to a developer console.

3. Return null.

8. Push settings object's realm execution contextp917 onto the JavaScript execution context stack; it is now the running
JavaScript execution context.

9. Let function be the result of calling OrdinaryFunctionCreate, with arguments:

functionPrototype
%Function.prototype%

sourceText
↪ If name is onerrorp962 and eventTarget is a Windowp824 object

The string formed by concatenating "function ", name, "(event, source, lineno, colno, error)
{", U+000A LF, body, U+000A LF, and "}".

↪ Otherwise
The string formed by concatenating "function ", name, "(event) {", U+000A LF, body, U+000A LF,
and "}".

ParameterList
↪ If name is onerrorp962 and eventTarget is a Windowp824 object

Let the function have five arguments, named event, source, lineno, colno, and error.
↪ Otherwise

Let the function have a single argument called event.

Body
The result of parsing body above.

thisMode
non-lexical-this

Scope

1. Let realm be settings object's Realmp918.

2. Let scope be realm.[[GlobalEnv]].

3. If eventHandler is an element's event handlerp954, then set scope to
NewObjectEnvironment(document, scope).

(Otherwise, eventHandler is a Windowp824 object's event handlerp954.)

4. If form owner is not null, then set scope to NewObjectEnvironment(form owner, scope).

5. If element is not null, then set scope to NewObjectEnvironment(element, scope).

6. Return scope.

10. Remove settings object's realm execution contextp917 from the JavaScript execution context stack.

11. Set function.[[ScriptOrModule]] to null.

This does not deactivatep956 the event handler, which additionally removes the event handler's
listenerp954 (if present).

Note

This is necessary so the subsequent invocation of OrdinaryFunctionCreate takes place in the correct JavaScript
Realm.

Note

960

https://tc39.es/ecma262/#prod-FunctionBody
https://tc39.es/ecma262/#early-error-rule
https://dom.spec.whatwg.org/#remove-an-event-listener
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
https://tc39.es/ecma262/#sec-properties-of-the-function-prototype-object
https://tc39.es/ecma262/#sec-newobjectenvironment
https://tc39.es/ecma262/#sec-newobjectenvironment
https://tc39.es/ecma262/#sec-newobjectenvironment
https://tc39.es/ecma262/#execution-context-stack

12. Set eventHandler's valuep954 to the result of creating a Web IDL EventHandlerp958 callback function object whose
object reference is function and whose callback context is settings object.

4. Return eventHandler's valuep954.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported by all HTML
elementsp44, as both event handler content attributesp955 and event handler IDL attributesp955; and that must be supported by all
Documentp114 and Windowp824 objects, as event handler IDL attributesp955:

Event handlerp954 Event handler event typep957

onabort abortp1281

onauxclick auxclick

oncancel cancelp1281

oncanplay canplayp439

oncanplaythrough canplaythroughp439

onchange changep1281

onclick click

onclose closep1281

oncontextmenu contextmenup1281

oncuechange cuechangep440

ondblclick dblclick

ondrag dragp809

ondragend dragendp809

ondragenter dragenterp809

ondragleave dragleavep809

ondragover dragoverp809

ondragstart dragstartp809

ondrop dropp809

ondurationchange durationchangep440

onemptied emptiedp439

onended endedp440

onformdata formdatap1281

oninput inputp1281

oninvalid invalidp1281

onkeydown keydown

onkeypress keypress

onkeyup keyup

onloadeddata loadeddatap439

onloadedmetadata loadedmetadatap439

onloadstart loadstartp439

onmousedown mousedown

This is done because the default behavior, of associating the created function with the nearest scriptp925 on the
stack, can lead to path-dependent results. For example, an event handler which is first invoked by user
interaction would end up with null [[ScriptOrModule]] (since then this algorithm would be first invoked when
the active scriptp925 is null), whereas one that is first invoked by dispatching an event from script would have
its [[ScriptOrModule]] set to that script.

Instead, we just always set [[ScriptOrModule]] to null. This is more intuitive anyway; the idea that the first
script which dispatches an event is somehow responsible for the event handler code is dubious.

In practice, this only affects the resolution of relative URLs via import(), which consult the base URLp925 of the
associated script. Nulling out [[ScriptOrModule]] means that HostResolveImportedModulep943 and
HostImportModuleDynamicallyp942 will fall back to the current settings objectp924 's API base URLp917.

Note

8.1.7.2 Event handlers on elements, Documentp114 objects, and Windowp824 objects §p96

1

⚠ MDN

⚠ MDN

MDN

MDN

✔ MDN

✔ MDN

MDN

MDN

MDN

MDN

MDN

MDN

MDN

MDN

MDN

MDN

MDN

MDN

MDN

MDN

✔ MDN

✔ MDN

961

https://tc39.es/ecma262/#sec-import-calls
https://heycam.github.io/webidl/#dfn-callback-context
https://w3c.github.io/uievents/#event-type-auxclick
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-dblclick
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keypress
https://w3c.github.io/uievents/#event-type-keyup
https://w3c.github.io/uievents/#event-type-mousedown

Event handlerp954 Event handler event typep957

onmouseenter mouseenter

onmouseleave mouseleave

onmousemove mousemove

onmouseout mouseout

onmouseover mouseover

onmouseup mouseup

onpause pausep440

onplay playp440

onplaying playingp440

onprogress progressp439

onratechange ratechangep440

onreset resetp1282

onsecuritypolicyviolation securitypolicyviolationp1282

onseeked seekedp440

onseeking seekingp440

onselect selectp1282

onslotchange slotchangep1282

onstalled stalledp439

onsubmit submitp1282

onsuspend suspendp439

ontimeupdate timeupdatep440

ontoggle togglep1282

onvolumechange volumechangep440

onwaiting waitingp440

onwebkitanimationend webkitAnimationEnd

onwebkitanimationiteration webkitAnimationIteration

onwebkitanimationstart webkitAnimationStart

onwebkittransitionend webkitTransitionEnd

onwheel wheel

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported by all HTML
elementsp44 other than bodyp178 and framesetp1239 elements, as both event handler content attributesp955 and event handler IDL
attributesp955; that must be supported by all Documentp114 objects, as event handler IDL attributesp955; and that must be supported by
all Windowp824 objects, as event handler IDL attributesp955 on the Windowp824 objects themselves, and with corresponding event handler
content attributesp955 and event handler IDL attributesp955 exposed on all bodyp178 and framesetp1239 elements that are owned by that
Windowp824 object's associated Documentp826:

Event handlerp954 Event handler event typep957

onblur blurp1281

onerror errorp1281

onfocus focusp1281

onload loadp1282

onresize resize

onscroll scroll

We call the set of the namesp954 of the event handlersp954 listed in the first column of this table the Window-reflecting body element
event handler set.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported by Windowp824

objects, as event handler IDL attributesp955 on the Windowp824 objects themselves, and with corresponding event handler content
attributesp955 and event handler IDL attributesp955 exposed on all bodyp178 and framesetp1239 elements that are owned by that
Windowp824 object's associated Documentp826:

Event handlerp954 Event handler event typep957

onafterprint afterprintp1281

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

MDN

MDN

✔ MDN

MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

MDN

✔ MDN

962

https://w3c.github.io/uievents/#event-type-mouseenter
https://w3c.github.io/uievents/#event-type-mouseleave
https://w3c.github.io/uievents/#event-type-mousemove
https://w3c.github.io/uievents/#event-type-mouseout
https://w3c.github.io/uievents/#event-type-mouseover
https://w3c.github.io/uievents/#event-type-mouseup
https://w3c.github.io/uievents/#event-type-wheel
https://drafts.csswg.org/cssom-view/#eventdef-window-resize
https://drafts.csswg.org/cssom-view/#eventdef-document-scroll
https://infra.spec.whatwg.org/#ordered-set

Event handlerp954 Event handler event typep957

onbeforeprint beforeprintp1281

onbeforeunload beforeunloadp1281

onhashchange hashchangep1281

onlanguagechange languagechangep1281

onmessage messagep1282

onmessageerror messageerrorp1282

onoffline offlinep1282

ononline onlinep1282

onpagehide pagehidep1282

onpageshow pageshowp1282

onpopstate popstatep1282

onrejectionhandled rejectionhandledp1282

onstorage storagep1282

onunhandledrejection unhandledrejectionp1282

onunload unloadp1282

This list of event handlersp954 is reified as event handler IDL attributesp955 through the WindowEventHandlersp964 interface mixin.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported by all HTML
elementsp44, as both event handler content attributesp955 and event handler IDL attributesp955; and that must be supported by all
Documentp114 objects, as event handler IDL attributesp955:

Event handlerp954 Event handler event typep957

oncut cutp1281

oncopy copyp1281

onpaste pastep1282

This list of event handlersp954 is reified as event handler IDL attributesp955 through the DocumentAndElementEventHandlersp965

interface mixin.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported on
Documentp114 objects as event handler IDL attributesp955:

Event handlerp954 Event handler event typep957

onreadystatechange readystatechangep1282

interface mixin GlobalEventHandlers {
attribute EventHandler onabort;
attribute EventHandler onauxclick;
attribute EventHandler onblur;
attribute EventHandler oncancel;
attribute EventHandler oncanplay;
attribute EventHandler oncanplaythrough;
attribute EventHandler onchange;
attribute EventHandler onclick;
attribute EventHandler onclose;
attribute EventHandler oncontextmenu;
attribute EventHandler oncuechange;
attribute EventHandler ondblclick;
attribute EventHandler ondrag;
attribute EventHandler ondragend;
attribute EventHandler ondragenter;

8.1.7.2.1 IDL definitions §p96

3

IDL

✔ MDN

✔ MDN

✔ MDN

MDN

⚠ MDN

MDN

✔ MDN

✔ MDN

MDN

✔ MDN

✔ MDN

✔ MDN

963

attribute EventHandler ondragleave;
attribute EventHandler ondragover;
attribute EventHandler ondragstart;
attribute EventHandler ondrop;
attribute EventHandler ondurationchange;
attribute EventHandler onemptied;
attribute EventHandler onended;
attribute OnErrorEventHandler onerror;
attribute EventHandler onfocus;
attribute EventHandler onformdata;
attribute EventHandler oninput;
attribute EventHandler oninvalid;
attribute EventHandler onkeydown;
attribute EventHandler onkeypress;
attribute EventHandler onkeyup;
attribute EventHandler onload;
attribute EventHandler onloadeddata;
attribute EventHandler onloadedmetadata;
attribute EventHandler onloadstart;
attribute EventHandler onmousedown;
[LegacyLenientThis] attribute EventHandler onmouseenter;
[LegacyLenientThis] attribute EventHandler onmouseleave;
attribute EventHandler onmousemove;
attribute EventHandler onmouseout;
attribute EventHandler onmouseover;
attribute EventHandler onmouseup;
attribute EventHandler onpause;
attribute EventHandler onplay;
attribute EventHandler onplaying;
attribute EventHandler onprogress;
attribute EventHandler onratechange;
attribute EventHandler onreset;
attribute EventHandler onresize;
attribute EventHandler onscroll;
attribute EventHandler onsecuritypolicyviolation;
attribute EventHandler onseeked;
attribute EventHandler onseeking;
attribute EventHandler onselect;
attribute EventHandler onslotchange;
attribute EventHandler onstalled;
attribute EventHandler onsubmit;
attribute EventHandler onsuspend;
attribute EventHandler ontimeupdate;
attribute EventHandler ontoggle;
attribute EventHandler onvolumechange;
attribute EventHandler onwaiting;
attribute EventHandler onwebkitanimationend;
attribute EventHandler onwebkitanimationiteration;
attribute EventHandler onwebkitanimationstart;
attribute EventHandler onwebkittransitionend;
attribute EventHandler onwheel;

};

interface mixin WindowEventHandlers {
attribute EventHandler onafterprint;
attribute EventHandler onbeforeprint;
attribute OnBeforeUnloadEventHandler onbeforeunload;
attribute EventHandler onhashchange;
attribute EventHandler onlanguagechange;
attribute EventHandler onmessage;
attribute EventHandler onmessageerror;

964

https://heycam.github.io/webidl/#LegacyLenientThis
https://heycam.github.io/webidl/#LegacyLenientThis

attribute EventHandler onoffline;
attribute EventHandler ononline;
attribute EventHandler onpagehide;
attribute EventHandler onpageshow;
attribute EventHandler onpopstate;
attribute EventHandler onrejectionhandled;
attribute EventHandler onstorage;
attribute EventHandler onunhandledrejection;
attribute EventHandler onunload;

};

interface mixin DocumentAndElementEventHandlers {
attribute EventHandler oncopy;
attribute EventHandler oncut;
attribute EventHandler onpaste;

};

Certain operations and methods are defined as firing events on elements. For example, the click()p769 method on the
HTMLElementp124 interface is defined as firing a click event on the element. [UIEVENTS]p1292

Firing a synthetic mouse event named e at target, with an optional not trusted flag, means running these steps:

1. Let event be the result of creating an event using MouseEvent.

2. Initialize event's type attribute to e.

3. Initialize event's bubbles and cancelable attributes to true.

4. Set event's composed flag.

5. If the not trusted flag is set, initialize event's isTrusted attribute to false.

6. Initialize event's ctrlKey, shiftKey, altKey, and metaKey attributes according to the current state of the key input device, if
any (false for any keys that are not available).

7. Initialize event's view attribute to target's node document's Windowp824 object, if any, and null otherwise.

8. event's getModifierState() method is to return values appropriately describing the current state of the key input device.

9. Return the result of dispatching event at target.

Firing a click event at target means firing a synthetic mouse event named clickp965 at target.

The WindowOrWorkerGlobalScopep965 mixin is for use of APIs that are to be exposed on Windowp824 and WorkerGlobalScopep1044

objects.

typedef (DOMString or Function) TimerHandler;

interface mixin WindowOrWorkerGlobalScope {
[Replaceable] readonly attribute USVString origin;

8.1.7.3 Event firing §p96

5

8.2 The WindowOrWorkerGlobalScopep965 mixin §p96

5

Other standards are encouraged to further extend it using partial interface mixin WindowOrWorkerGlobalScopep965 { … };
along with an appropriate reference.

Note

IDL

✔ MDN

965

https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#concept-event-create
https://w3c.github.io/uievents/#mouseevent
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#composed-flag
https://dom.spec.whatwg.org/#dom-event-istrusted
https://w3c.github.io/uievents/#dom-uievent-view
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-dispatch
https://heycam.github.io/webidl/#common-Function

readonly attribute boolean isSecureContext;
readonly attribute boolean crossOriginIsolated;

// base64 utility methods
DOMString btoa(DOMString data);
ByteString atob(DOMString data);

// timers
long setTimeout(TimerHandler handler, optional long timeout = 0, any... arguments);
undefined clearTimeout(optional long handle = 0);
long setInterval(TimerHandler handler, optional long timeout = 0, any... arguments);
undefined clearInterval(optional long handle = 0);

// microtask queuing
undefined queueMicrotask(VoidFunction callback);

// ImageBitmap
Promise<ImageBitmap> createImageBitmap(ImageBitmapSource image, optional ImageBitmapOptions options =

{});
Promise<ImageBitmap> createImageBitmap(ImageBitmapSource image, long sx, long sy, long sw, long sh,

optional ImageBitmapOptions options = {});
};
Window includes WindowOrWorkerGlobalScope;
WorkerGlobalScope includes WindowOrWorkerGlobalScope;

The isSecureContext getter steps are to return true if this's relevant settings objectp924 is a secure contextp924, or false otherwise.

The origin getter steps are to return this's relevant settings objectp924 's originp917, serializedp838.

The crossOriginIsolated getter steps are to return this's relevant settings objectp924 's cross-origin isolated capabilityp917.

self . isSecureContextp966

Returns whether or not this global object represents a secure contextp924. [SECURE-CONTEXTS]p1291

self . originp966

Returns the global object's originp837, serialized as string.

self . crossOriginIsolatedp966

Returns whether scripts running in this global are allowed to use APIs that require cross-origin isolation. This depends on the
`Cross-Origin-Opener-Policy` and `Cross-Origin-Embedder-Policy` HTTP response headers and the "cross-origin-
isolatedp67" feature.

For web developers (non-normative)

Developers are strongly encouraged to use self.origin over location.origin. The former returns the originp837 of the
environment, the latter of the URL of the environment. Imagine the following script executing in a document on
https://stargate.example/:

var frame = document.createElement("iframe")
frame.onload = function() {

var frameWin = frame.contentWindow
console.log(frameWin.location.origin) // "null"
console.log(frameWin.origin) // "https://stargate.example"

}
document.body.appendChild(frame)

self.origin is a more reliable security indicator.

Example

MDN

⚠ MDN

966

https://heycam.github.io/webidl/#VoidFunction
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this

The atob()p967 and btoa()p967 methods allow developers to transform content to and from the base64 encoding.

The btoa(data) method must throw an "InvalidCharacterError" DOMException if data contains any character whose code point is
greater than U+00FF. Otherwise, the user agent must convert data to a byte sequence whose nth byte is the eight-bit representation
of the nth code point of data, and then must apply forgiving-base64 encode to that byte sequence and return the result.

The atob(data) method, when invoked, must run the following steps:

1. Let decodedData be the result of running forgiving-base64 decode on data.

2. If decodedData is failure, then throw an "InvalidCharacterError" DOMException.

3. Return decodedData.

Documentp114 objects have a throw-on-dynamic-markup-insertion counter, which is used in conjunction with the create an element
for the tokenp1127 algorithm to prevent custom element constructorsp703 from being able to use document.open()p969,
document.close()p969, and document.write()p970 when they are invoked by the parser. Initially, the counter must be set to zero.

8.3 Base64 utility methods §p96

7

In these APIs, for mnemonic purposes, the "b" can be considered to stand for "binary", and the "a" for "ASCII". In practice, though,
for primarily historical reasons, both the input and output of these functions are Unicode strings.

Note

result = self . btoap967(data)
Takes the input data, in the form of a Unicode string containing only characters in the range U+0000 to U+00FF, each
representing a binary byte with values 0x00 to 0xFF respectively, and converts it to its base64 representation, which it returns.
Throws an "InvalidCharacterError" DOMException exception if the input string contains any out-of-range characters.

result = self . atobp967(data)
Takes the input data, in the form of a Unicode string containing base64-encoded binary data, decodes it, and returns a string
consisting of characters in the range U+0000 to U+00FF, each representing a binary byte with values 0x00 to 0xFF
respectively, corresponding to that binary data.
Throws an "InvalidCharacterError" DOMException if the input string is not valid base64 data.

For web developers (non-normative)

8.4 Dynamic markup insertion §p96

7

APIs for dynamically inserting markup into the document interact with the parser, and thus their behavior varies depending on
whether they are used with HTML documents (and the HTML parserp1079) or XML documents (and the XML parserp1188).

Note

document = document . openp969()
Causes the Documentp114 to be replaced in-place, as if it was a new Documentp114 object, but reusing the previous object, which is
then returned.
The resulting Documentp114 has an HTML parser associated with it, which can be given data to parse using
document.write()p970.
The method has no effect if the Documentp114 is still being parsed.
Throws an "InvalidStateError" DOMException if the Documentp114 is an XML document.
Throws an "InvalidStateError" DOMException if the parser is currently executing a custom element constructorp703.

For web developers (non-normative)

8.4.1 Opening the input stream §p96

7

✔ MDN

✔ MDN
✔ MDN

967

https://heycam.github.io/webidl/#invalidcharactererror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidcharactererror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidcharactererror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#forgiving-base64-encode
https://infra.spec.whatwg.org/#forgiving-base64-decode
https://heycam.github.io/webidl/#invalidcharactererror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#xml-document
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

Documentp114 objects have an ignore-opens-during-unload counter, which is used to prevent scripts from invoking the
document.open()p969 method (directly or indirectly) while the document is being unloadedp886. Initially, the counter must be set to
zero.

Documentp114 objects have an active parser was aborted boolean, which is used to prevent scripts from invoking the
document.open()p969 and document.write()p970 methods (directly or indirectly) after the document's active parserp117 has been
aborted. It is initially false.

The document open steps, given a document, are as follows:

1. If document is an XML document, then throw an "InvalidStateError" DOMException exception.

2. If document's throw-on-dynamic-markup-insertion counterp967 is greater than 0, then throw an "InvalidStateError"
DOMException.

3. Let entryDocument be the entry global objectp921 's associated Documentp826.

4. If document's originp837 is not same originp838 to entryDocument's originp837, then throw a "SecurityError" DOMException.

5. If document has an active parserp117 whose script nesting levelp1081 is greater than 0, then return document.

6. Similarly, if document's ignore-opens-during-unload counterp968 is greater than 0, then return document.

7. If document's active parser was abortedp968 is true, then return document.

8. If document's browsing contextp811 is non-null and there is an existing attempt to navigatep866 document's browsing
contextp811, then stop document loadingp888 given document.

Issue #3447 looks into the distinction between an ongoing instance of the navigatep866 algorithm versus tasks to
navigatep866 that are still queued. For the purpose of implementing this step, both an ongoing instance of the
navigatep866 algorithm and tasks queued to navigatep866 should be counted towards "an existing attempt to
navigatep866," at least until that issue is resolved.

9. For each shadow-including inclusive descendant node of document, erase all event listeners and handlers p956 given node.

10. If document is the associated Documentp826 of document's relevant global objectp924, then erase all event listeners and
handlersp956 given document's relevant global objectp924.

11. Replace all with null within document, without firing any mutation events.

12. If document is fully activep815, then:

1. Let newURL be a copy of entryDocument's URL.

2. If entryDocument is not document, then set newURL's fragment to null.

3. Run the URL and history update stepsp853 with document and newURL.

window = document . openp969(url, name, features)
Works like the window.open()p827 method.

This basically causes document.open()p969 to be ignored when it's called in an inline script found during parsing, while
still letting it have an effect when called from a non-parser task such as a timer callback or event handler.

Note

This basically causes document.open()p969 to be ignored when it's called from a beforeunloadp1281, pagehidep1282, or
unloadp1282 event handler while the Documentp114 is being unloaded.

Note

This notably causes document.open()p969 to be ignored if it is called after a navigationp866 has started, but only during
the initial parse. See issue #4723 for more background.

Note

968

https://dom.spec.whatwg.org/#xml-document
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://github.com/whatwg/html/issues/4723
https://github.com/whatwg/html/issues/3447
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-node-replace-all
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment

13. If document's iframe load in progressp364 flag is set, then set document's mute iframe loadp364 flag.

14. Set document to no-quirks mode.

15. Create a new HTML parserp1079 and associate it with document. This is a script-created parser (meaning that it can be
closed by the document.open()p969 and document.close()p969 methods, and that the tokenizer will wait for an explicit call to
document.close()p969 before emitting an end-of-file token). The encoding confidencep1086 is irrelevant.

16. Set the current document readinessp117 of document to "loading".

17. Finally, set the insertion pointp1092 to point at just before the end of the input streamp1091 (which at this point will be empty).

18. Return document.

The open(unused1, unused2) method must return the result of running the document open stepsp968 with this Documentp114 object.

The open(url, name, features) method must run these steps:

1. If this Documentp114 object is not an active documentp811, then throw an "InvalidAccessError" DOMException exception.

2. Return the result of running the window open stepsp826 with url, name, and features.

The close() method must run the following steps:

1. If the Documentp114 object is an XML document, then throw an "InvalidStateError" DOMException.

2. If the Documentp114 object's throw-on-dynamic-markup-insertion counterp967 is greater than zero, then throw an
"InvalidStateError" DOMException.

3. If there is no script-created parserp969 associated with the document, then return.

4. Insert an explicit "EOF" characterp1092 at the end of the parser's input streamp1091.

5. If there is a pending parsing-blocking scriptp623, then return.

6. Run the tokenizer, processing resulting tokens as they are emitted, and stopping when the tokenizer reaches the explicit
"EOF" characterp1092 or spins the event loopp949.

The document open stepsp968 do not affect whether a Documentp114 is ready for post-load tasksp1165 or completely loadedp885.
Note

The unused1 and unused2 arguments are ignored, but kept in the IDL to allow code that calls the function with one or two
arguments to continue working. They are necessary due to Web IDL overload resolution algorithm rules, which would throw a
TypeError exception for such calls had the arguments not been there. heycam/webidl issue #581 investigates changing the
algorithm to allow for their removal. [WEBIDL]p1292

Note

document . closep969()
Closes the input stream that was opened by the document.open()p969 method.
Throws an "InvalidStateError" DOMException if the Documentp114 is an XML document.
Throws an "InvalidStateError" DOMException if the parser is currently executing a custom element constructorp703.

For web developers (non-normative)

8.4.2 Closing the input stream §p96

9

✔ MDN

✔ MDN

969

https://dom.spec.whatwg.org/#concept-document-no-quirks
https://heycam.github.io/webidl/#dfn-overload-resolution-algorithm
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://github.com/heycam/webidl/issues/581
https://heycam.github.io/webidl/#invalidaccesserror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

Documentp114 objects have an ignore-destructive-writes counter, which is used in conjunction with the processing of scriptp614

elements to prevent external scripts from being able to use document.write()p970 to blow away the document by implicitly calling
document.open()p969. Initially, the counter must be set to zero.

The document write steps, given a Documentp114 object document and a string input, are as follows:

1. If document is an XML document, then throw an "InvalidStateError" DOMException.

2. If document's throw-on-dynamic-markup-insertion counterp967 is greater than 0, then throw an "InvalidStateError"
DOMException.

3. If document's active parser was abortedp968 is true, then return.

4. If the insertion pointp1092 is undefined, then:

1. If document's ignore-opens-during-unload counterp968 is greater than 0 or document's ignore-destructive-writes
counterp970 is greater than 0, then return.

2. Run the document open stepsp968 with document.

5. Insert input into the input streamp1091 just before the insertion pointp1092.

6. If there is no pending parsing-blocking scriptp623, have the HTML parserp1079 process input, one code point at a time,
processing resulting tokens as they are emitted, and stopping when the tokenizer reaches the insertion point or when the
processing of the tokenizer is aborted by the tree construction stage (this can happen if a scriptp614 end tag token is emitted
by the tokenizer).

The document.write(...) method, when invoked, must run the document write stepsp970 with this Documentp114 object and a string
that is the concatanation of all arguments passed.

document . writep970(text...)
In general, adds the given string(s) to the Documentp114 's input stream.

Throws an "InvalidStateError" DOMException when invoked on XML documents.
Throws an "InvalidStateError" DOMException if the parser is currently executing a custom element constructorp703.

This method has very idiosyncratic behavior. In some cases, this method can affect the state of the HTML
parserp1079 while the parser is running, resulting in a DOM that does not correspond to the source of the
document (e.g. if the string written is the string "<plaintext>" or "<!--"). In other cases, the call can clear the
current page first, as if document.open()p969 had been called. In yet more cases, the method is simply ignored,
or throws an exception. Users agents are explicitly allowed to avoid executing script elements inserted via
this methodp1136. And to make matters even worse, the exact behavior of this method can in some cases be
dependent on network latency, which can lead to failures that are very hard to debug. For all these reasons,
use of this method is strongly discouraged.

⚠Warning!

For web developers (non-normative)

If the document.write()p970 method was called from script executing inline (i.e. executing because the parser parsed a
set of scriptp614 tags), then this is a reentrant invocation of the parserp1080. If the parser pause flagp1081 is set, the
tokenizer will abort immediately and no HTML will be parsed, per the tokenizer's parser pause flag checkp1097.

Note

document . writelnp971(text...)
Adds the given string(s) to the Documentp114 's input stream, followed by a newline character. If necessary, calls the open()p969

method implicitly first.

For web developers (non-normative)

8.4.3 document.write()p970 §p97

0

8.4.4 document.writeln()p971 §p97

0

✔ MDN

970

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

The document.writeln(...) method, when invoked, must run the document write stepsp970 with this Documentp114 object and a string
that is the concatanation of all arguments passed and U+000A LINE FEED.

The DOMParserp971 interface allows authors to create new Documentp114 objects by parsing strings, as either HTML or XML.

[Exposed=Window]
interface DOMParser {

constructor();

[NewObject] Document parseFromString(DOMString string, DOMParserSupportedType type);
};

enum DOMParserSupportedType {
"text/html",
"text/xml",
"application/xml",
"application/xhtml+xml",
"image/svg+xml"

};

The new DOMParser() constructor steps are to do nothing.

The parseFromString(string, type) method steps are:

1. Let document be a new Documentp114, whose content type is type and url is this's relevant global objectp924 's associated
Documentp826 's URL.

2. Switch on type:

Throws an "InvalidStateError" DOMException when invoked on XML documents.
Throws an "InvalidStateError" DOMException if the parser is currently executing a custom element constructorp703.

8.5 DOM parsing §p97

1

parser = new DOMParserp971()
Constructs a new DOMParserp971 object.

document = parser . parseFromStringp971(string, type)
Parses string using either the HTML or XML parser, according to type, and returns the resulting Documentp114. type can be "text/
htmlp1250" (which will invoke the HTML parser), or any of "text/xmlp1284", "application/xmlp1283", "application/
xhtml+xmlp1252", or "image/svg+xmlp1283" (which will invoke the XML parser).
For the XML parser, if string cannot be parsed, then the returned Documentp114 will contain elements describing the resulting
error.
Note that scriptp614 elements are not evaluated during parsing, and the resulting document's encoding will always be UTF-8.
Values other than the above for type will cause a TypeError exception to be thrown.

For web developers (non-normative)

The design of DOMParserp971, as a class that needs to be constructed and then have its parseFromString()p971 method called, is
an unfortunate historical artifact. If we were designing this functionality today it would be a standalone function.

Note

The document's encoding will be left as its default, of UTF-8. In particular, any XML declarations or metap164 elements
found while parsing string will have no effect.

Note

IDL

✔ MDN

✔ MDN

971

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8

↪ "text/html"

1. Set document's type to "html".

2. Create an HTML parserp1079 parser, associated with document.

3. Place string into the input streamp1091 for parser. The encoding confidencep1086 is irrelevant.

4. Start parser and let it run until it has consumed all the characters just inserted into the input stream.

↪ Otherwise

1. Create an XML parserp1188 parse, associated with document, and with XML scripting support disabledp1189.

2. Parse string using parser.

3. If the previous step resulted in an XML well-formedness or XML namespace well-formedness error, then:

1. Assert: document has no child nodes.

2. Let root be the result of creating an element given document, "parsererror", and
"http://www.mozilla.org/newlayout/xml/parsererror.xml".

3. Optionally, add attributes or children to root to describe the nature of the parsing error.

4. Append root to document.

3. Return document.

The setTimeout()p973 and setInterval()p973 methods allow authors to schedule timer-based callbacks.

This might mutate the document's mode.
Note

Since document does not have a browsing contextp811, scripting is disabledp924.
Note

8.6 Timers §p97

2

handle = self . setTimeoutp973(handler [, timeout [, arguments...]])
Schedules a timeout to run handler after timeout milliseconds. Any arguments are passed straight through to the handler.

handle = self . setTimeoutp973(code [, timeout])
Schedules a timeout to compile and run code after timeout milliseconds.

self . clearTimeoutp973(handle)
Cancels the timeout set with setTimeout()p973 or setInterval()p973 identified by handle.

handle = self . setIntervalp973(handler [, timeout [, arguments...]])
Schedules a timeout to run handler every timeout milliseconds. Any arguments are passed straight through to the handler.

handle = self . setIntervalp973(code [, timeout])
Schedules a timeout to compile and run code every timeout milliseconds.

self . clearIntervalp973(handle)
Cancels the timeout set with setInterval()p973 or setTimeout()p973 identified by handle.

For web developers (non-normative)

Timers can be nested; after five such nested timers, however, the interval is forced to be at least four milliseconds.
Note

972

https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-document-mode
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-node-append

Objects that implement the WindowOrWorkerGlobalScopep965 mixin have a list of active timers. Each entry in this lists is identified
by a number, which must be unique within the list for the lifetime of the object that implements the WindowOrWorkerGlobalScopep965

mixin.

The setTimeout() method must return the value returned by the timer initialization stepsp973, passing them the method's arguments,
the object on which the method for which the algorithm is running is implemented (a Windowp824 or WorkerGlobalScopep1044 object) as
the method context, and the repeat flag set to false.

The setInterval() method must return the value returned by the timer initialization stepsp973, passing them the method's arguments,
the object on which the method for which the algorithm is running is implemented (a Windowp824 or WorkerGlobalScopep1044 object) as
the method context, and the repeat flag set to true.

The clearTimeout() and clearInterval() methods must clear the entry identified as handle from the list of active timersp973 of the
WindowOrWorkerGlobalScopep965 object on which the method was invoked, if any, where handle is the argument passed to the
method. (If handle does not identify an entry in the list of active timersp973 of the WindowOrWorkerGlobalScopep965 object on which the
method was invoked, the method does nothing.)

The timer initialization steps, which are invoked with some method arguments, a method context, a repeat flag which can be true
or false, and optionally (and only if the repeat flag is true) a previous handle, are as follows:

1. Let method context proxy be method context if that is a WorkerGlobalScopep1044 object, or else the WindowProxyp834 that
corresponds to method context.

2. If previous handle was provided, let handle be previous handle; otherwise, let handle be an implementation-defined integer
that is greater than zero that will identify the timeout to be set by this call in the list of active timersp973.

3. If previous handle was not provided, add an entry to the list of active timersp973 for handle.

4. Let callerRealm be the current Realm Record, and calleeRealm be method context's JavaScript realm.

5. Let initiating script be the active scriptp925.

6. Assert: initiating script is not null, since this algorithm is always called from some script.

7. Let task be a taskp944 that runs the following substeps:

1. If the entry for handle in the list of active timersp973 has been cleared, then abort these steps.

2. Run the appropriate set of steps from the following list:

↪ If the first method argument is a Function
Invoke the Function. Use the third and subsequent method arguments (if any) as the arguments for
invoking the Function. Use method context proxy as the callback this value.

↪ Otherwise

1. Perform HostEnsureCanCompileStringsp940(callerRealm, calleeRealm). If this throws an exception,
catch it, report the exceptionp937, and abort these steps.

2. Let script source be the first method argument.

3. Let settings object be method context's environment settings objectp917.

4. Let base URL be initiating script's base URLp925.

5. Let fetch options be a script fetch optionsp926 whose cryptographic noncep926 is initiating script's
fetch optionsp925 's cryptographic noncep926, integrity metadatap926 is the empty string, parser

This API does not guarantee that timers will run exactly on schedule. Delays due to CPU load, other tasks, etc, are to be expected.
Note

Because clearTimeout()p973 and clearInterval()p973 clear entries from the same list, either method can be used to clear timers
created by setTimeout()p973 or setInterval()p973.

Note

✔ MDN
✔ MDN

✔ MDN

973

https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#sec-code-realms
https://heycam.github.io/webidl/#common-Function
https://heycam.github.io/webidl/#invoke-a-callback-function
https://heycam.github.io/webidl/#common-Function
https://heycam.github.io/webidl/#common-Function
https://heycam.github.io/webidl/#dfn-callback-this-value

metadatap926 is "not-parser-inserted", credentials modep926 is initiating script's fetch
optionsp925 's credentials modep926, and referrer policyp926 is initiating script's fetch optionsp925 's
referrer policyp926.

6. Let script be the result of creating a classic scriptp933 given script source, settings object, base
URL, and fetch options.

7. Run the classic scriptp934 script.

3. If the repeat flag is true, then call timer initialization stepsp973 again, passing them the same method arguments,
the same method context, with the repeat flag still set to true, and with the previous handle set to handler.

8. Let timeout be the second method argument.

9. If the currently running taskp944 is a task that was created by this algorithm, then let nesting level be the taskp944 's timer
nesting levelp974. Otherwise, let nesting level be zero.

10. If timeout is less than 0, then set timeout to 0.

11. If nesting level is greater than 5, and timeout is less than 4, then set timeout to 4.

12. Increment nesting level by one.

13. Let task's timer nesting level be nesting level.

14. Return handle, and then continue running this algorithm in parallelp42.

15. If method context is a Windowp824 object, wait until the Documentp114 associated with method context has been fully activep815

for a further timeout milliseconds (not necessarily consecutively).

Otherwise, method context is a WorkerGlobalScopep1044 object; wait until timeout milliseconds have passed with the worker
not suspended (not necessarily consecutively).

16. Wait until any invocations of this algorithm that had the same method context, that started before this one, and whose
timeout is equal to or less than this one's, have completed.

17. Optionally, wait a further implementation-defined length of time.

The effect of these options ensures that the string compilation done by setTimeout()p973 and
setInterval()p973 behaves equivalently to that done by eval(). That is, module scriptp925

fetches via import() will behave the same in both contexts.

Note

The task's timer nesting levelp974 is used both for nested calls to setTimeout()p973, and for the repeating timers created
by setInterval()p973. (Or, indeed, for any combination of the two.) In other words, it represents nested invocations of
this algorithm, not of a particular method.

Note

Argument conversion as defined by Web IDL (for example, invoking toString() methods on objects passed as the first
argument) happens in the algorithms defined in Web IDL, before this algorithm is invoked.

Note

So for example, the following rather silly code will result in the log containing "ONE TWO ":

var log = '';
function logger(s) { log += s + ' '; }

setTimeout({ toString: function () {
setTimeout("logger('ONE')", 100);
return "logger('TWO')";

} }, 100);

Example

974

https://tc39.es/ecma262/#sec-eval-x
https://tc39.es/ecma262/#sec-import-calls
https://infra.spec.whatwg.org/#implementation-defined

18. Queue a global taskp945 on the timer task source given method context to run task.

The queueMicrotask(callback) method must queue a microtaskp946 to invoke callback, and if callback throws an exception, report
the exceptionp937.

The queueMicrotask()p975 method allows authors to schedule a callback on the microtask queuep945. This allows their code to run after
the currently-executing taskp944 has run to completion and the JavaScript execution context stack is empty, but without yielding control
back to the event loopp944, as would be the case when using, for example, setTimeout(f, 0)p973.

Authors ought to be aware that scheduling a lot of microtasks has the same performance downsides as running a lot of synchronous
code. Both will prevent the browser from doing its own work, such as rendering or scrolling. In many cases,
requestAnimationFrame()p996 or requestIdleCallback() is a better choice. In particular, if the goal is to run code before the next
rendering cycle, that is the purpose of requestAnimationFrame()p996.

This is intended to allow user agents to pad timeouts as needed to optimize the power usage of the device. For example,
some processors have a low-power mode where the granularity of timers is reduced; on such platforms, user agents can
slow timers down to fit this schedule instead of requiring the processor to use the more accurate mode with its
associated higher power usage.

Note

Once the task has been processed, if the repeat flag is false, it is safe to remove the entry for handle from the list of
active timersp973 (there is no way for the entry's existence to be detected past this point, so it does not technically
matter one way or the other).

Note

To run tasks of several milliseconds back to back without any delay, while still yielding back to the browser to avoid starving the
user interface (and to avoid the browser killing the script for hogging the CPU), simply queue the next timer before performing
work:

function doExpensiveWork() {
var done = false;
// ...
// this part of the function takes up to five milliseconds
// set done to true if we're done
// ...
return done;

}

function rescheduleWork() {
var handle = setTimeout(rescheduleWork, 0); // preschedule next iteration
if (doExpensiveWork())

clearTimeout(handle); // clear the timeout if we don't need it
}

function scheduleWork() {
setTimeout(rescheduleWork, 0);

}

scheduleWork(); // queues a task to do lots of work

Example

8.7 Microtask queuing §p97

5

self . queueMicrotaskp975(callback)
Queuesp946 a microtaskp945 to run the given callback.

For web developers (non-normative)

✔ MDN

975

https://heycam.github.io/webidl/#invoke-a-callback-function
https://tc39.es/ecma262/#execution-context-stack
https://w3c.github.io/requestidlecallback/#the-requestidlecallback-method

As can be seen from the following examples, the best way of thinking about queueMicrotask()p975 is as a mechanism for rearranging
synchronous code, effectively placing the queued code immediately after the current task's worth of non-queued JavaScript.

The most common reason for using queueMicrotask()p975 is to create consistent ordering, even in the cases where information is
available synchronously, without introducing undue delay.

For example, consider a custom element firing a load event, that also maintains an internal cache of previously-loaded data. A
naïve implementation might look like:

MyElement.prototype.loadData = function (url) {
if (this._cache[url]) {

this._setData(this._cache[url]);
this.dispatchEvent(new Event("load"));

} else {
fetch(url).then(res => res.arrayBuffer()).then(data => {

this._cache[url] = data;
this._setData(data);
this.dispatchEvent(new Event("load"));

});
}

};

This naïve implementation is problematic, however, in that it causes its users to experience inconsistent behavior. For example,
code such as

element.addEventListener("load", () => console.log("loaded"));
console.log("1");
element.loadData();
console.log("2");

will sometimes log "1, 2, loaded" (if the data needs to be fetched), and sometimes log "1, loaded, 2" (if the data is already cached).
Similarly, after the call to loadData(), it will be inconsistent whether or not the data is set on the element.

To get a consistent ordering, queueMicrotask()p975 can be used:

MyElement.prototype.loadData = function (url) {
if (this._cache[url]) {

queueMicrotask(() => {
this._setData(this._cache[url]);
this.dispatchEvent(new Event("load"));

});
} else {

fetch(url).then(res => res.arrayBuffer()).then(data => {
this._cache[url] = data;
this._setData(data);
this.dispatchEvent(new Event("load"));

});
}

};

By essentially rearranging the queued code to be after the currently-executing task, this ensures a consistent ordering and update
of the element's state.

Example

Another interesting use of queueMicrotask()p975 is to allow uncoordinated "batching" of work by multiple callers. For example,
consider a library function that wants to send data somewhere as soon as possible, but doesn't want to make multiple network
requests if doing so is easily avoidable. One way to balance this would be like so:

Example

976

To optionally truncate a simple dialog string s, return either s itself or some string derived from s that is shorter. User agents
should not provide UI for displaying the elided portion of s, as this makes it too easy for abusers to create dialogs of the form
"Important security alert! Click 'Show More' for full details!".

The alert(message) method, when invoked, must run the following steps:

1. If the event loopp944 's termination nesting levelp885 is nonzero, optionally return.

2. If the active sandboxing flag setp844 of this Windowp824 object's associated Documentp826 has the sandboxed modals flagp843

set, then return.

3. Optionally, return. (For example, the user agent might give the user the option to ignore all alerts, and would thus abort at

const queuedToSend = [];

function sendData(data) {
queuedToSend.push(data);

if (queuedToSend.length === 1) {
queueMicrotask(() => {

const stringToSend = JSON.stringify(queuedToSend);
queuedToSend.length = 0;

fetch("/endpoint", stringToSend);
});

}
}

With this architecture, multiple subsequent calls to sendData() within the same turn of the event loop will be batched together
into one fetch() call, but with no intervening event loop tasks preempting the fetch (as would have happened with similar code
that instead used setTimeout()p973).

8.8 User prompts §p97

7

window . alertp977(message)
Displays a modal alert with the given message, and waits for the user to dismiss it.

result = window . confirmp978(message)
Displays a modal OK/Cancel prompt with the given message, waits for the user to dismiss it, and returns true if the user clicks
OK and false if the user clicks Cancel.

result = window . promptp978(message [, default])
Displays a modal text control prompt with the given message, waits for the user to dismiss it, and returns the value that the
user entered. If the user cancels the prompt, then returns null instead. If the second argument is present, then the given value
is used as a default.

For web developers (non-normative)

Logic that depends on tasksp944 or microtasksp945, such as media elementsp387 loading their media datap389, are stalled when these
methods are invoked.

Note

For example, a user agent might want to only display the first 100 characters of a message. Or, a user agent might replace the
middle of the string with "…". These types of modifications can be useful in limiting the abuse potential of unnaturally large,
trustworthy-looking system dialogs.

Note

8.8.1 Simple dialogs §p97

7

✔ MDN

977

https://fetch.spec.whatwg.org/#dom-global-fetch

this step whenever the method was invoked.)

4. If the method was invoked with no arguments, then let message be the empty string; otherwise, let message be the
method's first argument.

5. Set message to the result of normalizing newlines given message.

6. Set message to the result of optionally truncatingp977 message.

7. Show message to the user, treating U+000A LF as a line break.

8. Optionally, pausep951 while waiting for the user to acknowledge the message.

The confirm(message) method, when invoked, must run the following steps:

1. If the event loopp944 's termination nesting levelp885 is nonzero, optionally return false.

2. If the active sandboxing flag setp844 of this Windowp824 object's associated Documentp826 has the sandboxed modals flagp843

set, then return.

3. Optionally, return false. (For example, the user agent might give the user the option to ignore all prompts, and would thus
abort at this step whenever the method was invoked.)

4. Set message to the result of normalizing newlines given message.

5. Set message to the result of optionally truncatingp977 message.

6. Show message to the user, treating U+000A LF as a line break, and ask the user to respond with a positive or negative
response.

7. Pausep951 until the user responds either positively or negatively.

8. If the user responded positively, return true; otherwise, the user responded negatively: return false.

The prompt(message, default) method, when invoked, must run the following steps:

1. If the event loopp944 's termination nesting levelp885 is nonzero, optionally return null.

2. If the active sandboxing flag setp844 of this Windowp824 object's associated Documentp826 has the sandboxed modals flagp843

set, then return.

3. Optionally, return null. (For example, the user agent might give the user the option to ignore all prompts, and would thus
abort at this step whenever the method was invoked.)

4. Set message to the result of optionally truncatingp977 message.

5. Set message to the result of normalizing newlines given message.

6. Set default to the result of optionally truncatingp977 default.

7. Show message to the user, treating U+000A LF as a line break, and ask the user to either respond with a string value or
abort. The response must be defaulted to the value given by default.

8. Pausep951 while waiting for the user's response.

9. If the user aborts, then return null; otherwise, return the string that the user responded with.

When the print() method is invoked, if the Documentp114 is ready for post-load tasksp1165, then the user agent must run the printing
stepsp979. Otherwise, the user agent must only set the print when loaded flag on the Documentp114.

window . printp978()
Prompts the user to print the page.

For web developers (non-normative)

8.8.2 Printing §p97

8

✔ MDN

✔ MDN

✔ MDN

978

https://infra.spec.whatwg.org/#normalize-newlines
https://infra.spec.whatwg.org/#normalize-newlines
https://infra.spec.whatwg.org/#normalize-newlines

User agents should also run the printing stepsp979 whenever the user asks for the opportunity to obtain a physical formp1229 (e.g.
printed copy), or the representation of a physical form (e.g. PDF copy), of a document.

The printing steps are as follows:

1. The user agent may display a message to the user or return (or both).

2. If the active sandboxing flag setp844 of this Windowp824 object's associated Documentp826 has the sandboxed modals flagp843

set, then return.

3. The user agent must fire an event named beforeprintp1281 at the relevant global objectp924 of the Documentp114 that is being
printed, as well as any child browsing contextsp814 in it.

4. The user agent should offer the user the opportunity to obtain a physical formp1229 (or the representation of a physical form)
of the document. The user agent may wait for the user to either accept or decline before returning; if so, the user agent must
pausep951 while the method is waiting. Even if the user agent doesn't wait at this point, the user agent must use the state of
the relevant documents as they are at this point in the algorithm if and when it eventually creates the alternate form.

5. The user agent must fire an event named afterprintp1281 at the relevant global objectp924 of the Documentp114 that is being
printed, as well as any child browsing contextsp814 in it.

The navigator attribute of the Windowp824 interface must return an instance of the Navigatorp979 interface, which represents the
identity and state of the user agent (the client), and allows web pages to register themselves as potential protocol handlers:

[Exposed=Window]
interface Navigator {

// objects implementing this interface also implement the interfaces given below
};
Navigator includes NavigatorID;
Navigator includes NavigatorLanguage;
Navigator includes NavigatorOnLine;
Navigator includes NavigatorContentUtils;
Navigator includes NavigatorCookies;
Navigator includes NavigatorPlugins;
Navigator includes NavigatorConcurrentHardware;

For instance, a kiosk browser could silently ignore any invocations of the print()p978 method.
Example

For instance, a browser on a mobile device could detect that there are no printers in the vicinity and display a message
saying so before continuing to offer a "save to PDF" option.

Example

If the printing dialog is blocked by a Documentp114 's sandbox, then neither the beforeprintp1281 nor afterprintp1281

events will be fired.

Note

The beforeprintp1281 event can be used to annotate the printed copy, for instance adding the time at which the
document was printed.

Example

The afterprintp1281 event can be used to revert annotations added in the earlier event, as well as showing post-printing
UI. For instance, if a page is walking the user through the steps of applying for a home loan, the script could
automatically advance to the next step after having printed a form or other.

Example

8.9 System state and capabilities §p97

9

IDL

8.9.1 The Navigatorp979 object §p97

9

✔ MDN

✔ MDN

979

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

These interface mixins are defined separately so that WorkerNavigatorp1057 can re-use parts of the Navigatorp979 interface.

interface mixin NavigatorID {
readonly attribute DOMString appCodeName; // constant "Mozilla"
readonly attribute DOMString appName; // constant "Netscape"
readonly attribute DOMString appVersion;
readonly attribute DOMString platform;
readonly attribute DOMString product; // constant "Gecko"
[Exposed=Window] readonly attribute DOMString productSub;
readonly attribute DOMString userAgent;
[Exposed=Window] readonly attribute DOMString vendor;
[Exposed=Window] readonly attribute DOMString vendorSub; // constant ""

};

In certain cases, despite the best efforts of the entire industry, web browsers have bugs and limitations that web authors are forced to
work around.

This section defines a collection of attributes that can be used to determine, from script, the kind of user agent in use, in order to work
around these issues.

The user agent has a navigator compatibility mode, which is either Chrome, Gecko, or WebKit.

Client detection should always be limited to detecting known current versions; future versions and unknown versions should always be
assumed to be fully compliant.

appCodeName
Must return the string "Mozilla".

8.9.1.1 Client identification §p98

0

The navigator compatibility modep980 constrains the NavigatorIDp980 interface to the combinations of attribute values and presence
of taintEnabled()p981 and oscpup981 that are known to be compatible with existing web content.

Note

self . navigatorp979 . appCodeNamep980

Returns the string "Mozilla".

self . navigatorp979 . appNamep981

Returns the string "Netscape".

self . navigatorp979 . appVersionp981

Returns the version of the browser.

self . navigatorp979 . platformp981

Returns the name of the platform.

self . navigatorp979 . productp981

Returns the string "Gecko".

window . navigatorp979 . productSubp981

Returns either the string "20030107", or the string "20100101".

self . navigatorp979 . userAgentp981

Returns the complete `User-Agent` header.

window . navigatorp979 . vendorp981

Returns either the empty string, the string "Apple Computer, Inc.", or the string "Google Inc.".

window . navigatorp979 . vendorSubp981

Returns the empty string.

For web developers (non-normative)

IDL ✔ MDN

✔ MDN

980

appName
Must return the string "Netscape".

appVersion
Must return either the string "4.0" or a string representing the version of the browser in detail, e.g. "1.0 (VMS; en-US)
Mellblomenator/9000".

platform
Must return either the empty string or a string representing the platform on which the browser is executing, e.g. "MacIntel",
"Win32", "FreeBSD i386", "WebTV OS".

product
Must return the string "Gecko".

productSub
Must return the appropriate string from the following list:

↪ If the navigator compatibility modep980 is Chrome or WebKit
The string "20030107".

↪ If the navigator compatibility modep980 is Gecko
The string "20100101".

userAgent
Must return the default `User-Agent` value.

vendor
Must return the appropriate string from the following list:

↪ If the navigator compatibility modep980 is Chrome
The string "Google Inc.".

↪ If the navigator compatibility modep980 is Gecko
The empty string.

↪ If the navigator compatibility modep980 is WebKit
The string "Apple Computer, Inc.".

vendorSub
Must return the empty string.

If the navigator compatibility modep980 is Gecko, then the user agent must also support the following partial interface:

partial interface mixin NavigatorID {
[Exposed=Window] boolean taintEnabled(); // constant false
[Exposed=Window] readonly attribute DOMString oscpu;

};

The taintEnabled() method must return false.

The oscpu attribute's getter must return either the empty string or a string representing the platform on which the browser is
executing, e.g. "Windows NT 10.0; Win64; x64", "Linux x86_64".

Any information in this API that varies from user to user can be used to profile the user. In fact, if enough
such information is available, a user can actually be uniquely identified. For this reason, user agent
implementers are strongly urged to include as little information in this API as possible.

⚠Warning!

IDL

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

981

https://fetch.spec.whatwg.org/#default-user-agent-value
https://infra.spec.whatwg.org/#tracking-vector

interface mixin NavigatorLanguage {
readonly attribute DOMString language;
readonly attribute FrozenArray<DOMString> languages;

};

language
Must return a valid BCP 47 language tag representing either a plausible languagep982 or the user's most preferred language.
[BCP47]p1285

languages
Must return a frozen array of valid BCP 47 language tags representing either one or more plausible languagesp982, or the user's
preferred languages, ordered by preference with the most preferred language first. The same object must be returned until the user
agent needs to return different values, or values in a different order. [BCP47]p1285

Whenever the user agent needs to make the navigator.languagesp982 attribute of a Windowp824 or WorkerGlobalScopep1044 object
global return a new set of language tags, the user agent must queue a global taskp945 on the DOM manipulation task sourcep952

given global to fire an event named languagechangep1281 at global, and wait until that task begins to be executed before actually
returning a new value.

To determine a plausible language, the user agent should bear in mind the following:

• Any information in this API that varies from user to user can be used to profile or identify the user.

• If the user is not using a service that obfuscates the user's point of origin (e.g. the Tor anonymity network), then the
value that is least likely to distinguish the user from other users with similar origins (e.g. from the same IP address
block) is the language used by the majority of such users. [TOR]p1291

• If the user is using an anonymizing service, then the value "en-US" is suggested; if all users of the service use that same
value, that reduces the possibility of distinguishing the users from each other.

To avoid introducing any more fingerprinting vectors, user agents should use the same list for the APIs defined in this function
as for the HTTP `Accept-Language` header.

interface mixin NavigatorContentUtils {
[SecureContext] undefined registerProtocolHandler(DOMString scheme, USVString url);
[SecureContext] undefined unregisterProtocolHandler(DOMString scheme, USVString url);

};

8.9.1.2 Language preferences §p98

2

self . navigatorp979 . languagep982

Returns a language tag representing the user's preferred language.

self . navigatorp979 . languagesp982

Returns an array of language tags representing the user's preferred languages, with the most preferred language first.
The most preferred language is the one returned by navigator.languagep982.

For web developers (non-normative)

A languagechangep1281 event is fired at the Windowp824 or WorkerGlobalScopep1044 object when the user agent's understanding of
what the user's preferred languages are changes.

Note

8.9.1.3 Custom scheme handlers: the registerProtocolHandler()p983 method §p98

2

window . navigatorp979 . registerProtocolHandlerp983(scheme, url)
Registers a handler for scheme at url. For example, an online telephone messaging service could register itself as a handler of
the sms: scheme, so that if the user clicks on such a link, they are given the opportunity to use that web site. [SMS]p1291

For web developers (non-normative)

IDL

IDL

✔ MDN

✔ MDN

✔ MDN

MDN

982

https://heycam.github.io/webidl/#dfn-frozen-array-type
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#tracking-vector
https://tools.ietf.org/html/rfc7231#section-5.3.5
https://tools.ietf.org/html/rfc5724#section-2

The registerProtocolHandler(scheme, url) method steps are:

1. Let (normalizedScheme, normalizedURLString) be the result of running normalize protocol handler parametersp984 with
scheme, url, and this's relevant settings objectp924.

2. In parallelp42: register a handler for normalizedScheme and normalizedURLString. User agents may, within the constraints
described, do whatever they like. A user agent could, for instance, prompt the user and offer the user the opportunity to add
the site to a shortlist of handlers, or make the handlers their default, or cancel the request. User agents could also silently
collect the information, providing it only when relevant to the user.

User agents should keep track of which sites have registered handlers (even if the user has declined such registrations) so
that the user is not repeatedly prompted with the same request.

When the user agent uses this handler for a URL inputURL:

1. Assert: inputURL's scheme is normalizedScheme.

2. Let inputURLString be the serialization of inputURL.

3. Let encodedURL be the result of running UTF-8 percent-encode on inputURLString using the component percent-
encode set.

4. Let handlerURLString be normalizedURLString.

5. Replace the first instance of "%s" in handlerURLString with encodedURL.

6. Let resultURL be the result of parsing handlerURLString.

7. Navigatep866 an appropriate browsing contextp811 to resultURL.

This does not define when the handler is used. To some extent, the processing model for navigating across documentsp866

defines some cases where it is relevant, but in general user agents may use this information wherever they would otherwise
consider handing schemes to native plugins or helper applications.

The unregisterProtocolHandler(scheme, url) method steps are:

1. Let (normalizedScheme, normalizedURLString) be the result of running normalize protocol handler parametersp984 with

The string "%s" in url is used as a placeholder for where to put the URL of the content to be handled.
Throws a "SecurityError" DOMException if the user agent blocks the registration (this might happen if trying to register as a
handler for "http", for instance).
Throws a "SyntaxError" DOMException if the "%s" string is missing in url.

window . navigatorp979 . unregisterProtocolHandlerp983(scheme, url)
Unregisters the handler given by the arguments.
Throws a "SecurityError" DOMException if the user agent blocks the deregistration (this might happen if with invalid schemes,
for instance).
Throws a "SyntaxError" DOMException if the "%s" string is missing in url.

If the user had visited a site at https://example.com/ that made the following call:

navigator.registerProtocolHandler('web+soup', 'soup?url=%s', 'SoupWeb™')

...and then, much later, while visiting https://www.example.net/, clicked on a link such as:

Download our Chicken Kïwi soup!

...then the UA might navigate to the following URL:

https://example.com/soup?url=web+soup:chicken-k%C3%AFwi

This site could then do whatever it is that it does with soup (synthesize it and ship it to the user, or whatever).

Example

983

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#this
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#string-utf-8-percent-encode
https://url.spec.whatwg.org/#component-percent-encode-set
https://url.spec.whatwg.org/#component-percent-encode-set
https://url.spec.whatwg.org/#concept-url-parser

scheme, url, and this's relevant settings objectp924.

2. In parallelp42: unregister the handler described by normalizedScheme and normalizedURLString.

To normalize protocol handler parameters, given a string scheme, a string url, and an environment settings objectp917

environment, run these steps:

1. Set scheme to scheme, converted to ASCII lowercase.

2. If scheme is neither a safelisted schemep984 nor a string starting with "web+" followed by one or more ASCII lower alphas,
then throw a "SecurityError" DOMException.

The following schemes are the safelisted schemes:

◦ bitcoin
◦ geo
◦ im
◦ irc
◦ ircs
◦ magnet
◦ mailto
◦ mms
◦ news
◦ nntp
◦ openpgp4fpr
◦ sip
◦ sms
◦ smsto
◦ ssh
◦ tel
◦ urn
◦ webcal
◦ wtai
◦ xmpp

3. If url does not contain "%s", then throw a "SyntaxError" DOMException.

4. Parsep89 url relative to environment.

5. If that fails, then throw a "SyntaxError" DOMException.

6. If the resulting URL recordp89 's scheme is not "https" or the resulting URL recordp89 's origin is not same originp838 with
environment's originp917, then throw a "SecurityError" DOMException.

7. Return (scheme, resulting URL stringp89).

Custom scheme handlers can introduce a number of concerns, in particular privacy concerns.

Hijacking all web usage. User agents should not allow schemes that are key to its normal operation, such as an HTTP(S) scheme, to
be rerouted through third-party sites. This would allow a user's activities to be trivially tracked, and would allow user information, even
in secure connections, to be collected.

This means that including a colon in scheme (as in "mailto:") will throw.
Note

This list can be changed. If there are schemes that ought to be added, please send feedback.
Note

This is forcibly the case if the %s placeholder is in the host or port of the URL.
Note

The resulting URL stringp89 will by definition not be a valid URL string as it includes the string "%s" which is not a valid
component in a URL.

Note

8.9.1.3.1 Security and privacy §p98

4

984

https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-origin
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#valid-url-string
https://fetch.spec.whatwg.org/#http-scheme

Hijacking defaults. User agents are strongly urged to not automatically change any defaults, as this could lead the user to send data
to remote hosts that the user is not expecting. New handlers registering themselves should never automatically cause those sites to be
used.

Registration spamming. User agents should consider the possibility that a site will attempt to register a large number of handlers,
possibly from multiple domains (e.g., by redirecting through a series of pages each on a different domain, and each registering a
handler for web+spam: — analogous practices abusing other web browser features have been used by pornography web sites for many
years). User agents should gracefully handle such hostile attempts, protecting the user.

Hostile handler metadata. User agents should protect against typical attacks against strings embedded in their interface, for
example ensuring that markup or escape characters in such strings are not executed, that null bytes are properly handled, that over-
long strings do not cause crashes or buffer overruns, and so forth.

Leaking private data. Web page authors may reference a custom scheme handler using URL data considered private. They might do
so with the expectation that the user's choice of handler points to a page inside the organization, ensuring that sensitive data will not
be exposed to third parties. However, a user may have registered a handler pointing to an external site, resulting in a data leak to that
third party. Implementors might wish to consider allowing administrators to disable custom handlers on certain subdomains, content
types, or schemes.

Leaking credentials. User agents must never send username or password information in the URLs that are escaped and included
sent to the handler sites. User agents may even avoid attempting to pass to web-based handlers the URLs of resources that are known
to require authentication to access, as such sites would be unable to access the resources in question without prompting the user for
credentials themselves (a practice that would require the user to know whether to trust the third-party handler, a decision many users
are unable to make or even understand).

Interface interference. User agents should be prepared to handle intentionally long arguments to the methods. For example, if the
user interface exposed consists of an "accept" button and a "deny" button, with the "accept" binding containing the name of the
handler, it's important that a long name not cause the "deny" button to be pushed off the screen.

interface mixin NavigatorCookies {
readonly attribute boolean cookieEnabled;

};

The cookieEnabled attribute must return true if the user agent attempts to handle cookies according to HTTP State Management
Mechanism, and false if it ignores cookie change requests. [COOKIES]p1285

interface mixin NavigatorPlugins {
[SameObject] readonly attribute PluginArray plugins;
[SameObject] readonly attribute MimeTypeArray mimeTypes;
boolean javaEnabled();

};

[Exposed=Window,
LegacyUnenumerableNamedProperties]

interface PluginArray {
undefined refresh(optional boolean reload = false);
readonly attribute unsigned long length;
getter Plugin? item(unsigned long index);
getter Plugin? namedItem(DOMString name);

};

8.9.1.4 Cookies §p98

5

window . navigatorp979 . cookieEnabledp985

Returns false if setting a cookie will be ignored, and true otherwise.

For web developers (non-normative)

8.9.1.5 Plugins §p98

5

IDL

IDL

✔ MDN

✔ MDN

985

[Exposed=Window,
LegacyUnenumerableNamedProperties]

interface MimeTypeArray {
readonly attribute unsigned long length;
getter MimeType? item(unsigned long index);
getter MimeType? namedItem(DOMString name);

};

[Exposed=Window,
LegacyUnenumerableNamedProperties]

interface Plugin {
readonly attribute DOMString name;
readonly attribute DOMString description;
readonly attribute DOMString filename;
readonly attribute unsigned long length;
getter MimeType? item(unsigned long index);
getter MimeType? namedItem(DOMString name);

};

[Exposed=Window]
interface MimeType {

readonly attribute DOMString type;
readonly attribute DOMString description;
readonly attribute DOMString suffixes; // comma-separated
readonly attribute Plugin enabledPlugin;

};

window . navigatorp979 . pluginsp987 . refreshp988([refresh])
Updates the lists of supported plugins and MIME types for this page, and reloads the page if the lists have changed.

window . navigatorp979 . pluginsp987 . lengthp988

Returns the number of plugins, represented by Pluginp986 objects, that the user agent reports.

plugin = window . navigatorp979 . pluginsp987 . itemp988(index)
window . navigatorp979 . pluginsp987[index]

Returns the specified Pluginp986 object.

plugin = window . navigatorp979 . pluginsp987 . itemp988(name)
window . navigatorp979 . pluginsp987[name]

Returns the Pluginp986 object for the plugin with the given name.

window . navigatorp979 . mimeTypesp987 . lengthp988

Returns the number of MIME types, represented by MimeTypep986 objects, supported by the plugins that the user agent reports.

mimeType = window . navigatorp979 . mimeTypesp987 . itemp988(index)
window . navigatorp979 . mimeTypesp987[index]

Returns the specified MimeTypep986 object.

mimeType = window . navigatorp979 . mimeTypesp987 . itemp988(name)
window . navigatorp979 . mimeTypesp987[name]

Returns the MimeTypep986 object for the given MIME type.

plugin . namep989

Returns the plugin's name.

plugin . descriptionp989

Returns the plugin's description.

plugin . filenamep989

Returns the plugin library's filename, if applicable on the current platform.

For web developers (non-normative)

986

The navigator.plugins attribute must return a PluginArrayp985 object.

The navigator.mimeTypes attribute must return a MimeTypeArrayp986 object.

A PluginArrayp985 object represents none, some, or all of the pluginsp45 supported by the user agent, each of which is represented by
a Pluginp986 object. Each of these Pluginp986 objects may be hidden plugins. A hidden pluginp987 can't be enumerated, but can still
be inspected by using its name.

The PluginArrayp985 objects created by a user agent must not be livep45. The set of plugins represented by the objects must not
change once an object is created, except when it is updated by the refresh()p988 method.

Each pluginp45 represented by a PluginArrayp985 can support a number of MIME types. For each such pluginp45, the user agent must
pick one or more of these MIME types to be those that are explicitly supported.

The supported property indices of a PluginArrayp985 object are the numbers from zero to the number of non-hiddenp987

pluginsp45 represented by the object, if any.

plugin . lengthp989

Returns the number of MIME types, represented by MimeTypep986 objects, supported by the plugin.

mimeType = plugin . itemp989(index)
plugin[index]

Returns the specified MimeTypep986 object.

mimeType = plugin . itemp989(name)
plugin[name]

Returns the MimeTypep986 object for the given MIME type.

mimeType . typep989

Returns the MIME type.

mimeType . descriptionp989

Returns the MIME type's description.

mimeType . suffixesp989

Returns the MIME type's typical file extensions, in a comma-separated list.

mimeType . enabledPluginp990

Returns the Pluginp986 object that implements this MIME type.

window . navigatorp979 . javaEnabled()p990

Returns true if there's a plugin that supports the MIME type "application/x-java-vm".

The fewer pluginsp45 are represented by the PluginArrayp985 object, and of those, the more that are hiddenp987, the more the
user's privacy will be protected. Each exposed plugin increases the number of bits that can be derived for fingerprinting. Hiding a
plugin helps, but unless it is an extremely rare plugin, it is likely that a site attempting to derive the list of plugins can still
determine whether the plugin is supported or not by probing for it by name (the names of popular plugins are widely known).
Therefore not exposing a plugin at all is preferred. Unfortunately, many legacy sites use this feature to determine, for example,
which plugin to use to play video. Not exposing any plugins at all might therefore not be entirely plausible.

Note

The explicitly supportedp987 MIME types of a pluginp45 are those that are exposed through the Pluginp986 and MimeTypeArrayp986

interfaces. As with pluginsp45 themselves, any variation between users regarding what is exposed allows sites to fingerprint users.
User agents are therefore encouraged to expose the same MIME types for all users of a pluginp45, regardless of the actual types
supported... at least, within the constraints imposed by compatibility with legacy content.

Note

⚠ MDN
⚠ MDN

987

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#dfn-supported-property-indices

The length attribute must return the number of non-hiddenp987 pluginsp45 represented by the object.

The item() method of a PluginArrayp985 object must return null if the argument is not one of the object's supported property
indices, and otherwise must return the result of running the following steps, using the method's argument as index:

1. Let list be the Pluginp986 objects representing the non-hiddenp987 pluginsp45 represented by the PluginArrayp985 object.

2. Sort list alphabetically by the namep989 of each Pluginp986.

3. Return the indexth entry in list.

The supported property names of a PluginArrayp985 object are the values of the namep989 attributes of all the Pluginp986

objects represented by the PluginArrayp985 object.

The namedItem() method of a PluginArrayp985 object must return null if the argument is not one of the object's supported
property names, and otherwise must return the Pluginp986 object, of those represented by the PluginArrayp985 object, that
has a namep989 equal to the method's argument.

The refresh() method of the PluginArrayp985 object of a Navigatorp979 object, when invoked, must check to see if any pluginsp45

have been installed or reconfigured since the user agent created the PluginArrayp985 object. If so, and the method's argument is true,
then the user agent must act as if the location.reload()p863 method was called instead. Otherwise, the user agent must update the
PluginArrayp985 object and MimeTypeArrayp986 object created for attributes of that Navigatorp979 object, and the Pluginp986 and
MimeTypep986 objects created for those PluginArrayp985 and MimeTypeArrayp986 objects, using the same Pluginp986 objects for cases
where the namep989 is the same, and the same MimeTypep986 objects for cases where the typep989 is the same, and creating new objects
for cases where there were no matching objects immediately prior to the refresh()p988 call. Old Pluginp986 and MimeTypep986 objects
must continue to return the same values that they had prior to the update, though naturally now the data is stale and may appear
inconsistent (for example, an old MimeTypep986 entry might list as its enabledPluginp990 a Pluginp986 object that no longer lists that
MimeTypep986 as a supported MimeTypep986).

A MimeTypeArrayp986 object represents the MIME types explicitly supportedp987 by pluginsp45 supported by the user agent, each of
which is represented by a MimeTypep986 object.

The MimeTypeArrayp986 objects created by a user agent must not be livep45. The set of MIME types represented by the objects must not
change once an object is created, except when it is updated by the PluginArrayp985 object's refresh()p988 method.

The supported property indices of a MimeTypeArrayp986 object are the numbers from zero to the number of MIME types
explicitly supportedp987 by non-hiddenp987 pluginsp45 represented by the corresponding PluginArrayp985 object, if any.

The length attribute must return the number of MIME types explicitly supportedp987 by non-hiddenp987 pluginsp45

represented by the corresponding PluginArrayp985 object, if any.

The item() method of a MimeTypeArrayp986 object must return null if the argument is not one of the object's
supported property indices, and otherwise must return the result of running the following steps, using the method's
argument as index:

1. Let list be the MimeTypep986 objects representing the MIME types explicitly supportedp987 by non-hiddenp987 pluginsp45

represented by the corresponding PluginArrayp985 object, if any.

2. Sort list alphabetically by the typep989 of each MimeTypep986.

3. Return the indexth entry in list.

It is important for privacy that the order of plugins not leak additional information, e.g., the order in which plugins were installed.
Note

It is important for privacy that the order of MIME types not leak additional information, e.g., the order in which plugins were
installed.

Note

988

https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#dfn-supported-property-names
https://heycam.github.io/webidl/#dfn-supported-property-names
https://heycam.github.io/webidl/#dfn-supported-property-names
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#tracking-vector
https://mimesniff.spec.whatwg.org/#mime-type
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#tracking-vector

The supported property names of a MimeTypeArrayp986 object are the values of the typep989 attributes of all the MimeTypep986

objects represented by the MimeTypeArrayp986 object.

The namedItem() method of a MimeTypeArrayp986 object must return null if the argument is not one of the object's supported
property names, and otherwise must return the MimeTypep986 object that has a typep989 equal to the method's argument.

A Pluginp986 object represents a pluginp45. It has several attributes to provide details about the plugin, and can be enumerated to
obtain the list of MIME types that it explicitly supportsp987.

The Pluginp986 objects created by a user agent must not be livep45. The set of MIME types represented by the objects, and the values
of the objects' attributes, must not change once an object is created, except when updated by the PluginArrayp985 object's
refresh()p988 method.

The reported MIME types for a Pluginp986 object are the MIME types explicitly supportedp987 by the corresponding pluginp45 when
this object was last created or updated by refresh()p988, whichever happened most recently.

The supported property indices of a Pluginp986 object are the numbers from zero to the number of reported MIME typesp989.

The length attribute must return the number of reported MIME typesp989.

The item() method of a Pluginp986 object must return null if the argument is not one of the object's supported
property indices, and otherwise must return the result of running the following steps, using the method's argument as
index:

1. Let list be the MimeTypep986 objects representing the reported MIME typesp989.

2. Sort list alphabetically by the typep989 of each MimeTypep986.

3. Return the indexth entry in list.

The supported property names of a Pluginp986 object are the values of the typep989 attributes of the MimeTypep986 objects
representing the reported MIME typesp989.

The namedItem() method of a Pluginp986 object must return null if the argument is not one of the object's supported property
names, and otherwise must return the MimeTypep986 object that has a typep989 equal to the method's argument.

The name attribute must return the pluginp45 's name.

The description and filename attributes must return implementation-defined (in all likelihood, pluginp45-defined) strings. In each
case, the same string must be returned each time, except that the strings returned may change when the refresh()p988 method
updates the object.

A MimeTypep986 object represents a MIME type that is, or was, explicitly supportedp987 by a pluginp45.

The MimeTypep986 objects created by a user agent must not be livep45. The values of the objects' attributes must not change once an
object is created, except when updated by the PluginArrayp985 object's refresh()p988 method.

The type attribute must return the valid MIME type string with no parameters describing the MIME type.

The description and suffixes attributes must return implementation-defined (in all likelihood, pluginp45-defined) strings. In each

It is important for privacy that the order of MIME types not leak additional information, e.g., the order in which plugins were
installed.

Note

If the values returned by the descriptionp989 or filenamep989 attributes vary between versions of a pluginp45,
they can be used both as a fingerprinting vector and, even more importantly, as a trivial way to determine
what security vulnerabilities a pluginp45 (and thus a browser) may have. It is thus highly recommended that
the descriptionp989 attribute just return the same value as the namep989 attribute, and that the filenamep989

attribute return the empty string.

⚠Warning!

989

https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#dfn-supported-property-names
https://heycam.github.io/webidl/#dfn-supported-property-names
https://heycam.github.io/webidl/#dfn-supported-property-names
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://heycam.github.io/webidl/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#dfn-supported-property-names
https://heycam.github.io/webidl/#dfn-supported-property-names
https://heycam.github.io/webidl/#dfn-supported-property-names
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#tracking-vector
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#implementation-defined

case, the same string must be returned each time, except that the strings returned may change when the refresh()p988 method
updates the object.

The enabledPlugin attribute must return the Pluginp986 object that represents the pluginp45 that explicitly supportedp987 the MIME
type that this MimeTypep986 object represents when this object was last created or updated by refresh()p988, whichever happened
most recently.

The navigator.javaEnabled() method must return true if the user agent supports a pluginp45 that supports the MIME type
"application/x-java-vm"; otherwise it must return false.

[Exposed=(Window,Worker), Serializable, Transferable]
interface ImageBitmap {

readonly attribute unsigned long width;
readonly attribute unsigned long height;
undefined close();

};

typedef (CanvasImageSource or
Blob or
ImageData) ImageBitmapSource;

enum ImageOrientation { "none", "flipY" };
enum PremultiplyAlpha { "none", "premultiply", "default" };
enum ColorSpaceConversion { "none", "default" };
enum ResizeQuality { "pixelated", "low", "medium", "high" };

dictionary ImageBitmapOptions {
ImageOrientation imageOrientation = "none";
PremultiplyAlpha premultiplyAlpha = "default";
ColorSpaceConversion colorSpaceConversion = "default";
[EnforceRange] unsigned long resizeWidth;
[EnforceRange] unsigned long resizeHeight;
ResizeQuality resizeQuality = "low";

};

An ImageBitmapp990 object represents a bitmap image that can be painted to a canvas without undue latency.

If the values returned by the descriptionp989 or suffixesp989 attributes vary between versions of a pluginp45,
they can be used both as a fingerprinting vector and, even more importantly, as a trivial way to determine
what security vulnerabilities a pluginp45 (and thus a browser) may have. It is thus highly recommended that
the descriptionp989 attribute just return the same value as the typep989 attribute, and that the suffixesp989

attribute return the empty string.

⚠Warning!

Commas in the suffixesp989 attribute are interpreted as separating subsequent filename extensions, as in "htm,html".
Note

8.10 Images §p99

0

The exact judgement of what is undue latency of this is left up to the implementer, but in general if making use of the bitmap
requires network I/O, or even local disk I/O, then the latency is probably undue; whereas if it only requires a blocking read from a
GPU or system RAM, the latency is probably acceptable.

Note

For web developers (non-normative)

IDL

⚠ MDN

MDN

990

https://infra.spec.whatwg.org/#tracking-vector
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#tracking-vector
https://mimesniff.spec.whatwg.org/#mime-type
https://w3c.github.io/FileAPI/#dfn-Blob

An ImageBitmapp990 object whose [[Detached]]p104 internal slot value is false always has associated bitmap data, with a width and a
height. However, it is possible for this data to be corrupted. If an ImageBitmapp990 object's media data can be decoded without errors, it
is said to be fully decodable.

An ImageBitmapp990 object's bitmap has an origin-cleanp635 flag, which indicates whether the bitmap is tainted by content from a
different originp837. The flag is initially set to true and may be changed to false by the steps of createImageBitmap()p992.

ImageBitmapp990 objects are serializable objectsp102 and transferable objectsp103.

Their serialization stepsp102, given value and serialized, are:

1. If value's origin-cleanp635 flag is not set, then throw a "DataCloneError" DOMException.

2. Set serialized.[[BitmapData]] to a copy of value's bitmap datap991.

Their deserialization stepsp103, given serialized and value, are:

1. Set value's bitmap datap991 to serialized.[[BitmapData]].

Their transfer stepsp104, given value and dataHolder, are:

1. If value's origin-cleanp635 flag is not set, then throw a "DataCloneError" DOMException.

2. Set dataHolder.[[BitmapData]] to value's bitmap datap991.

3. Unset value's bitmap datap991.

Their transfer-receiving stepsp104, given dataHolder and value, are:

1. Set value's bitmap datap991 to dataHolder.[[BitmapData]].

promise = self . createImageBitmapp992(image [, options])
promise = self . createImageBitmapp992(image, sx, sy, sw, sh [, options])

Takes image, which can be an imgp320 element, an SVG image element, a videop380 element, a canvasp634 element, a Blob
object, an ImageDatap642 object, or another ImageBitmapp990 object, and returns a promise that is resolved when a new
ImageBitmapp990 is created.
If no ImageBitmapp990 object can be constructed, for example because the provided image data is not actually an image, then
the promise is rejected instead.
If sx, sy, sw, and sh arguments are provided, the source image is cropped to the given pixels, with any pixels missing in the
original replaced by transparent black. These coordinates are in the source image's pixel coordinate space, not in CSS pixels.
If options is provided, the ImageBitmapp990 object's bitmap data is modified according to options. For example, if the
premultiplyAlphap994 option is set to "premultiplyp994", the bitmap datap991 's color channels are premultiplied by its alpha
channel.
Rejects the promise with an "InvalidStateError" DOMException if the source image is not in a valid state (e.g., an imgp320

element that hasn't loaded successfully, an ImageBitmapp990 object whose [[Detached]]p104 internal slot value is true, an
ImageDatap642 object whose datap676 attribute value's [[ViewedArrayBuffer]] internal slot is detached, or a Blob whose data
cannot be interpreted as a bitmap image).
Rejects the promise with a "SecurityError" DOMException if the script is not allowed to access the image data of the source
image (e.g. a videop380 that is CORS-cross-originp90, or a canvasp634 being drawn on by a script in a worker from another
originp837).

imageBitmap . closep994()
Releases imageBitmap's underlying bitmap datap991.

imageBitmap . widthp994

Returns the intrinsic width of the image, in CSS pixels.

imageBitmap . heightp994

Returns the intrinsic height of the image, in CSS pixels.

MDN991

https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://w3c.github.io/FileAPI/#dfn-Blob
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-values/#px
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-images/#intrinsic-width
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-values/#px
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException

The createImageBitmap(image, options) and createImageBitmap(image sx, sy, sw, sh, options) methods, when invoked,
must run these steps:

1. Let p be a new promise.

2. If either sw or sh is given and is 0, then return p rejected with a RangeError.

3. If either options's resizeWidth or options's resizeHeight is present and is 0, then return p rejected with an
"InvalidStateError" DOMException.

4. Check the usability of the image argumentp662. If this throws an exception or returns bad, then return p rejected with an
"InvalidStateError" DOMException.

5. Let imageBitmap be a new ImageBitmapp990 object.

6. Switch on image:

↪ imgp320

↪ SVG image

1. If image's media data has no intrinsic dimensions (e.g., it's a vector graphic with no specified content size)
and either options's resizeWidthp992 or options's resizeHeightp992 is not present, then return p rejected
with an "InvalidStateError" DOMException.

2. If image's media data has no intrinsic dimensions (e.g., it's a vector graphics with no specified content size),
it should be rendered to a bitmap of the size specified by the resizeWidthp992 and the resizeHeightp992

options.

3. Set imageBitmap's bitmap datap991 to a copy of image's media data, cropped to the source rectangle with
formattingp993. If this is an animated image, imageBitmap's bitmap datap991 must only be taken from the
default image of the animation (the one that the format defines is to be used when animation is not
supported or is disabled), or, if there is no such image, the first frame of the animation.

4. If the originp837 of image's image is not same originp838 with entry settings objectp921 's originp917, then set the
origin-cleanp635 flag of imageBitmap's bitmap to false.

5. Run this step in parallelp42:

1. Resolve p with imageBitmap.

↪ videop380

1. If image's networkStatep392 attribute is NETWORK_EMPTYp392, then return p rejected with an
"InvalidStateError" DOMException.

2. Set imageBitmap's bitmap datap991 to a copy of the frame at the current playback positionp404, at the media
resourcep389 's intrinsic widthp382 and intrinsic heightp382 (i.e., after any aspect-ratio correction has been
applied), cropped to the source rectangle with formattingp993.

3. If the originp837 of image's video is not same originp838 with entry settings objectp921 's originp917, then set the
origin-cleanp635 flag of imageBitmap's bitmap to false.

4. Run this step in parallelp42:

1. Resolve p with imageBitmap.

↪ canvasp634

1. Set imageBitmap's bitmap datap991 to a copy of image's bitmap datap991, cropped to the source rectangle
with formattingp993.

2. Set the origin-cleanp635 flag of the imageBitmap's bitmap to the same value as the origin-cleanp635 flag of
image's bitmap.

3. Run this step in parallelp42:

1. Resolve p with imageBitmap.

↪ Blob
Run these step in parallelp42:

992

https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob

1. Let imageData be the result of reading image's data. If an error occurs during reading of the objectp57, then
reject p with an "InvalidStateError" DOMException and abort these steps.

2. Apply the image sniffing rules to determine the file format of imageData, with MIME type of image (as given
by image's type attribute) giving the official type.

3. If imageData is not in a supported image file format (e.g., it's not an image at all), or if imageData is
corrupted in some fatal way such that the image dimensions cannot be obtained (e.g., a vector graphic with
no intrinsic size), then reject p with an "InvalidStateError" DOMException and abort these steps.

4. Set imageBitmap's bitmap datap991 to imageData, cropped to the source rectangle with formattingp993. If this
is an animated image, imageBitmap's bitmap datap991 must only be taken from the default image of the
animation (the one that the format defines is to be used when animation is not supported or is disabled), or,
if there is no such image, the first frame of the animation.

5. Resolve p with imageBitmap.

↪ ImageDatap642

1. Let buffer be image's datap676 attribute value's [[ViewedArrayBuffer]] internal slot.

2. If IsDetachedBuffer(buffer) is true, then return p rejected with an "InvalidStateError" DOMException.

3. Set imageBitmap's bitmap datap991 to image's image data, cropped to the source rectangle with
formattingp993.

4. Run this step in parallelp42:

1. Resolve p with imageBitmap.

↪ ImageBitmapp990

1. Set imageBitmap's bitmap datap991 to a copy of image's bitmap datap991, cropped to the source rectangle
with formattingp993.

2. Set the origin-cleanp635 flag of imageBitmap's bitmap to the same value as the origin-cleanp635 flag of
image's bitmap.

3. Run this step in parallelp42:

1. Resolve p with imageBitmap.

7. Return p.

When the steps above require that the user agent crop bitmap data to the source rectangle with formatting, the user agent
must run the following steps:

1. Let input be the bitmap datap991 being transformed.

2. If sx, sy, sw and sh are specified, let sourceRectangle be a rectangle whose corners are the four points (sx, sy), (sx+sw,
sy),(sx+sw, sy+sh), (sx,sy+sh). Otherwise let sourceRectangle be a rectangle whose corners are the four points (0,0), (width
of input, 0), (width of input, height of input), (0, height of input).

3. Clip sourceRectangle to the dimensions of input.

4. Let outputWidth be determined as follows:

↪ If the resizeWidthp992 member of options is specified
the value of the resizeWidthp992 member of options

↪ If the resizeWidthp992 member of options is not specified, but the resizeHeightp992 member is specified
the width of sourceRectangle, times the value of the resizeHeightp992 member of options, divided by the height of
sourceRectangle, rounded up to the nearest integer

↪ If neither resizeWidthp992 nor resizeHeightp992 are specified
the width of sourceRectangle

If either sw or sh are negative, then the top-left corner of this rectangle will be to the left or above the (sx, sy) point.
Note

993

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://w3c.github.io/FileAPI/#dfn-type
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException

5. Let outputHeight be determined as follows:

↪ If the resizeHeightp992 member of options is specified
the value of the resizeHeightp992 member of options

↪ If the resizeHeightp992 member of options is not specified, but the resizeWidthp992 member is specified
the height of sourceRectangle, times the value of the resizeWidthp992 member of options, divided by the width of
sourceRectangle, rounded up to the nearest integer

↪ If neither resizeWidthp992 nor resizeHeightp992 are specified
the height of sourceRectangle

6. Place input on an infinite transparent black grid plane, positioned so that its top left corner is at the origin of the plane, with
the x-coordinate increasing to the right, and the y-coordinate increasing down, and with each pixel in the input image data
occupying a cell on the plane's grid.

7. Let output be the rectangle on the plane denoted by sourceRectangle.

8. Scale output to the size specified by outputWidth and outputHeight. The user agent should use the value of the
resizeQuality option to guide the choice of scaling algorithm.

9. If the value of the imageOrientation member of options is "flipY", output must be flipped vertically, disregarding any
image orientation metadata of the source (such as EXIF metadata), if any. [EXIF]p1287

10. If image is an imgp320 element or a Blob object, let val be the value of the colorSpaceConversion member of options, and
then run these substeps:

1. If val is "default", the color space conversion behavior is implementation-specific, and should be chosen according
to the color space that the implementation uses for drawing images onto the canvas.

2. If val is "none", output must be decoded without performing any color space conversions. This means that the
image decoding algorithm must ignore color profile metadata embedded in the source data as well as the display
device color profile.

11. Let val be the value of premultiplyAlpha member of options, and then run these substeps:

1. If val is "default", the alpha premultiplication behavior is implementation-specific, and should be chosen
according to implementation deems optimal for drawing images onto the canvas.

2. If val is "premultiply", the output that is not premultiplied by alpha must have its color components multiplied by
alpha and that is premultiplied by alpha must be left untouched.

3. If val is "none", the output that is not premultiplied by alpha must be left untouched and that is premultiplied by
alpha must have its color components divided by alpha.

12. Return output.

When the close() method is called, the user agent must run these steps:

1. Set this ImageBitmapp990 object's [[Detached]]p104 internal slot value to true.

2. Unset this ImageBitmapp990 object's bitmap datap991.

The width attribute's getter must run these steps:

1. If this ImageBitmapp990 object's [[Detached]]p104 internal slot's value is true, then return 0.

2. Return this ImageBitmapp990 object's width, in CSS pixels.

The height attribute's getter must run these steps:

1. If this ImageBitmapp990 object's [[Detached]]p104 internal slot's value is true, then return 0.

If the value is "none", no extra step is required.
Note

The native color space of canvas is currently unspecified, but this is expected to change in the future.
Note

MDN

MDN

MDN

994

https://drafts.csswg.org/css-color/#transparent-black
https://w3c.github.io/FileAPI/#dfn-Blob
https://drafts.csswg.org/css-values/#px

2. Return this ImageBitmapp990 object's height, in CSS pixels.

The ResizeQualityp990 enumeration is used to express a preference for the interpolation quality to use when scaling images.

The "pixelated" value indicates a preference to scale the image that maximizes the appearance. Scaling algorithms that "smooth"
colors are acceptable, such as bilinear interpolation.

The "low" value indicates a preference for a low level of image interpolation quality. Low-quality image interpolation may be more
computationally efficient than higher settings.

The "medium" value indicates a preference for a medium level of image interpolation quality.

The "high" value indicates a preference for a high level of image interpolation quality. High-quality image interpolation may be more
computationally expensive than lower settings.

Some objects include the AnimationFrameProviderp995 interface mixin.

callback FrameRequestCallback = undefined (DOMHighResTimeStamp time);

interface mixin AnimationFrameProvider {

Bilinear scaling is an example of a relatively fast, lower-quality image-smoothing algorithm. Bicubic or Lanczos scaling are
examples of image-scaling algorithms that produce higher-quality output. This specification does not mandate that specific
interpolation algorithms be used unless the value is "pixelatedp995".

Note

Using this API, a sprite sheet can be precut and prepared:

var sprites = {};
function loadMySprites() {

var image = new Image();
image.src = 'mysprites.png';
var resolver;
var promise = new Promise(function (arg) { resolver = arg });
image.onload = function () {

resolver(Promise.all([
createImageBitmap(image, 0, 0, 40, 40).then(function (image) { sprites.person = image }),
createImageBitmap(image, 40, 0, 40, 40).then(function (image) { sprites.grass = image }),
createImageBitmap(image, 80, 0, 40, 40).then(function (image) { sprites.tree = image }),
createImageBitmap(image, 0, 40, 40, 40).then(function (image) { sprites.hut = image }),
createImageBitmap(image, 40, 40, 40, 40).then(function (image) { sprites.apple = image }),
createImageBitmap(image, 80, 40, 40, 40).then(function (image) { sprites.snake = image })

]));
};
return promise;

}

function runDemo() {
var canvas = document.querySelector('canvas#demo');
var context = canvas.getContext('2d');
context.drawImage(sprites.tree, 30, 10);
context.drawImage(sprites.snake, 70, 10);

}

loadMySprites().then(runDemo);

Example

8.11 Animation frames §p99

5

IDL

✔ MDN

995

https://drafts.csswg.org/css-values/#px
https://w3c.github.io/hr-time/#dom-domhighrestimestamp

unsigned long requestAnimationFrame(FrameRequestCallback callback);
undefined cancelAnimationFrame(unsigned long handle);

};
Window includes AnimationFrameProvider;
DedicatedWorkerGlobalScope includes AnimationFrameProvider;

Each AnimationFrameProviderp995 object also has a target object that stores the provider's internal state. It is defined as follows:

If the AnimationFrameProviderp995 is a Windowp824

The Windowp824 's associated Documentp826

If the AnimationFrameProviderp995 is a DedicatedWorkerGlobalScopep1046

The DedicatedWorkerGlobalScopep1046

Each target objectp996 has a map of animation frame callbacks, which is an ordered map that must be initially empty, and an
animation frame callback identifier, which is a number that must initially be zero.

An AnimationFrameProviderp995 provider is considered supported if any of the following hold:

• provider is a Windowp824.
• provider's owner setp1045 contains a Documentp114 object.
• Any of the DedicatedWorkerGlobalScopep1046 objects in provider's owner setp1045 are supportedp996.

The requestAnimationFrame(callback) method must run the following steps:

1. If this AnimationFrameProviderp995 is not supportedp996, then throw a "NotSupportedError" DOMException.

2. Let target be this AnimationFrameProviderp995 's target objectp996.

3. Increment target's animation frame callback identifierp996 by one, and let handle be the result.

4. Let callbacks be target's map of animation frame callbacksp996.

5. Set callbacks[handle] to callback.

6. Return handle.

The cancelAnimationFrame(handle) method must run the following steps:

1. If this AnimationFrameProviderp995 is not supportedp996, then throw a "NotSupportedError" DOMException.

2. Let callbacks be this AnimationFrameProviderp995 's target objectp996 's map of animation frame callbacksp996.

3. Remove callbacks[handle].

To run the animation frame callbacks for a target objectp996 target with a timestamp now:

1. Let callbacks be target's map of animation frame callbacksp996.

2. Let callbackHandles be the result of getting the keys of callbacks.

3. For each handle in callbackHandles, if handle exists in callbacks:

1. Let callback be callbacks[handle].

2. Remove callbacks[handle].

3. Invoke callback, passing now as the only argument, and if an exception is thrown, report the exceptionp937.

Inside workers, requestAnimationFrame()p996 can be used together with an OffscreenCanvasp689 transferred from a canvasp634

element. First, in the document, transfer control to the worker:

const offscreenCanvas = document.getElementById("c").transferControlToOffscreen();
worker.postMessage(offscreenCanvas, [offscreenCanvas]);

Example

✔ MDN

996

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#list-contain
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://heycam.github.io/webidl/#notsupportederror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#map-remove
https://infra.spec.whatwg.org/#map-getting-the-keys
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-remove
https://heycam.github.io/webidl/#invoke-a-callback-function

Then, in the worker, the following code will draw a rectangle moving from left to right:

let ctx, pos = 0;
function draw(dt) {

ctx.clearRect(0, 0, 100, 100);
ctx.fillRect(pos, 0, 10, 10);
pos += 10 * dt;
requestAnimationFrame(draw);

}

self.onmessage = function(ev) {
const transferredCanvas = ev.data;
ctx = transferredCanvas.getContext("2d");
draw();

};

997

Messages in server-sent eventsp999, web socketsp1008, cross-document messagingp1016, channel messagingp1018, and broadcast
channelsp1025 use the MessageEventp998 interface for their messagep1282 events:

[Exposed=(Window,Worker,AudioWorklet)]
interface MessageEvent : Event {

constructor(DOMString type, optional MessageEventInit eventInitDict = {});

readonly attribute any data;
readonly attribute USVString origin;
readonly attribute DOMString lastEventId;
readonly attribute MessageEventSource? source;
readonly attribute FrozenArray<MessagePort> ports;

undefined initMessageEvent(DOMString type, optional boolean bubbles = false, optional boolean
cancelable = false, optional any data = null, optional USVString origin = "", optional DOMString
lastEventId = "", optional MessageEventSource? source = null, optional sequence<MessagePort> ports =
[]);
};

dictionary MessageEventInit : EventInit {
any data = null;
USVString origin = "";
DOMString lastEventId = "";
MessageEventSource? source = null;
sequence<MessagePort> ports = [];

};

typedef (WindowProxy or MessagePort or ServiceWorker) MessageEventSource;

The data attribute must return the value it was initialized to. It represents the message being sent.

The origin attribute must return the value it was initialized to. It represents, in server-sent eventsp999 and cross-document
messagingp1016, the originp837 of the document that sent the message (typically the scheme, hostname, and port of the document, but
not its path or fragment).

The lastEventId attribute must return the value it was initialized to. It represents, in server-sent eventsp999, the last event ID
stringp1000 of the event source.

9 Communication §p99

8

9.1 The MessageEventp998 interface §p99

8

event . datap998

Returns the data of the message.

event . originp998

Returns the origin of the message, for server-sent eventsp999 and cross-document messagingp1016.

event . lastEventIdp998

Returns the last event ID stringp1000, for server-sent eventsp999.

event . sourcep999

Returns the WindowProxyp834 of the source window, for cross-document messagingp1016, and the MessagePortp1022 being
attached, in the connectp1281 event fired at SharedWorkerGlobalScopep1047 objects.

event . portsp999

Returns the MessagePortp1022 array sent with the message, for cross-document messagingp1016 and channel messagingp1018.

For web developers (non-normative)

IDL

✔ MDN

✔ MDN
✔ MDN

✔ MDN

✔ MDN

998

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor
https://dom.spec.whatwg.org/#dictdef-eventinit
https://w3c.github.io/ServiceWorker/#serviceworker
https://url.spec.whatwg.org/#concept-url-fragment

The source attribute must return the value it was initialized to. It represents, in cross-document messagingp1016, the WindowProxyp834 of
the browsing contextp811 of the Windowp824 object from which the message came; and in the connectp1281 events used by shared
workersp1047, the newly connecting MessagePortp1022.

The ports attribute must return the value it was initialized to. It represents, in cross-document messagingp1016 and channel
messagingp1018, the MessagePortp1022 array being sent.

The initMessageEvent() method must initialize the event in a manner analogous to the similarly-named initEvent() method.
[DOM]p1287

This section is non-normative.

To enable servers to push data to web pages over HTTP or using dedicated server-push protocols, this specification introduces the
EventSourcep1000 interface.

Using this API consists of creating an EventSourcep1000 object and registering an event listener.

var source = new EventSource('updates.cgi');
source.onmessage = function (event) {

alert(event.data);
};

On the server-side, the script ("updates.cgi" in this case) sends messages in the following form, with the text/event-streamp1256

MIME type:

data: This is the first message.

data: This is the second message, it
data: has two lines.

data: This is the third message.

Authors can separate events by using different event types. Here is a stream that has two event types, "add" and "remove":

event: add
data: 73857293

event: remove
data: 2153

event: add
data: 113411

The script to handle such a stream would look like this (where addHandler and removeHandler are functions that take one argument,
the event):

var source = new EventSource('updates.cgi');
source.addEventListener('add', addHandler, false);

Various APIs (e.g., WebSocketp1008, EventSourcep1000) use the MessageEventp998 interface for their messagep1282 event without using
the MessagePortp1022 API.

Note

9.2 Server-sent events §p99

9

9.2.1 Introduction §p99

9

✔ MDN

✔ MDN

999

https://dom.spec.whatwg.org/#dom-event-initevent

source.addEventListener('remove', removeHandler, false);

The default event type is "message".

Event streams are always decoded as UTF-8. There is no way to specify another character encoding.

Event stream requests can be redirected using HTTP 301 and 307 redirects as with normal HTTP requests. Clients will reconnect if the
connection is closed; a client can be told to stop reconnecting using the HTTP 204 No Content response code.

Using this API rather than emulating it using XMLHttpRequest or an iframep361 allows the user agent to make better use of network
resources in cases where the user agent implementer and the network operator are able to coordinate in advance. Amongst other
benefits, this can result in significant savings in battery life on portable devices. This is discussed further in the section below on
connectionless pushp1006.

[Exposed=(Window,Worker)]
interface EventSource : EventTarget {

constructor(USVString url, optional EventSourceInit eventSourceInitDict = {});

readonly attribute USVString url;
readonly attribute boolean withCredentials;

// ready state
const unsigned short CONNECTING = 0;
const unsigned short OPEN = 1;
const unsigned short CLOSED = 2;
readonly attribute unsigned short readyState;

// networking
attribute EventHandler onopen;
attribute EventHandler onmessage;
attribute EventHandler onerror;
undefined close();

};

dictionary EventSourceInit {
boolean withCredentials = false;

};

Each EventSourcep1000 object has the following associated with it:

• A url (a URL record). Set during construction.

• A request. This must initially be null.

• A reconnection time, in milliseconds. This must initially be an implementation-defined value, probably in the region of a
few seconds.

• A last event ID string. This must initially be the empty string.

Apart from urlp1000 these are not currently exposed on the EventSourcep1000 object.

source = new EventSourcep1001(url [, { withCredentialsp1000: true }])
Creates a new EventSourcep1000 object.
url is a string giving the URL that will provide the event stream.
Setting withCredentialsp1000 to true will set the credentials mode for connection requests to url to "include".

For web developers (non-normative)

IDL

9.2.2 The EventSourcep1000 interface §p10

00

✔ MDN

1000

https://xhr.spec.whatwg.org/#xmlhttprequest
https://dom.spec.whatwg.org/#interface-eventtarget
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-credentials-mode

The EventSource(url, eventSourceInitDict) constructor, when invoked, must run these steps:

1. Let ev be a new EventSourcep1000 object.

2. Let settings be ev's relevant settings objectp924.

3. Let urlRecord be the result of parsing url with settings's API base URLp917 and settings's API URL character encodingp917.

4. If urlRecord is failure, then throw a "SyntaxError" DOMException.

5. Set ev's urlp1000 to urlRecord.

6. Let corsAttributeState be Anonymousp91.

7. If the value of eventSourceInitDict's withCredentialsp1000 member is true, then set corsAttributeState to Use Credentialsp91

and set ev's withCredentialsp1001 attribute to true.

8. Let request be the result of creating a potential-CORS requestp90 given urlRecord, the empty string, and corsAttributeState.

9. Set request's client to settings.

10. User agents may set `Accept`/`text/event-streamp1256` in request's header list.

11. Set request's cache mode to "no-store".

12. Set ev's requestp1000 to request.

13. Run this step in parallelp42:

1. Fetch request.

14. Return ev.

The url attribute's getter must return the serialization of this EventSourcep1000 object's urlp1000.

The withCredentials attribute must return the value to which it was last initialized. When the object is created, it must be initialized
to false.

The readyState attribute represents the state of the connection. It can have the following values:

CONNECTING (numeric value 0)
The connection has not yet been established, or it was closed and the user agent is reconnecting.

OPEN (numeric value 1)
The user agent has an open connection and is dispatching events as it receives them.

CLOSED (numeric value 2)
The connection is not open, and the user agent is not trying to reconnect. Either there was a fatal error or the close()p1002 method
was invoked.

When the object is created its readyStatep1001 must be set to CONNECTINGp1001 (0). The rules given below for handling the connection
define when the value changes.

source . closep1002()
Aborts any instances of the fetch algorithm started for this EventSourcep1000 object, and sets the readyStatep1001 attribute to
CLOSEDp1001.

source . urlp1001

Returns the URL providing the event streamp1000.

source . withCredentialsp1001

Returns true if the credentials mode for connection requests to the URL providing the event streamp1000 is set to "include", and
false otherwise.

source . readyStatep1001

Returns the state of this EventSourcep1000 object's connection. It can have the values described below.

✔ MDN

✔ MDN
✔ MDN

✔ MDN

✔ MDN

1001

https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://url.spec.whatwg.org/#concept-url-parser
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-header-list-set
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-request-cache-mode
https://fetch.spec.whatwg.org/#concept-fetch
https://url.spec.whatwg.org/#concept-url-serializer

The close() method must abort any instances of the fetch algorithm started for this EventSourcep1000 object, and must set the
readyStatep1001 attribute to CLOSEDp1001.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the EventSourcep1000 interface:

Event handlerp954 Event handler event typep957

onopen openp1282

onmessage messagep1282

onerror errorp1281

The resource indicated in the argument to the EventSourcep1001 constructor is fetched when the constructor is run.

As data is received, the tasksp944 queued by the networking task sourcep952 to handle the data must act as follows.

HTTP 200 OK responses with a `Content-Typep90` header specifying the type `text/event-streamp1256`, ignoring any MIME type
parameters, must be processed line by line as described belowp1003.

When a successful response with a supported MIME type is received, such that the user agent begins parsing the contents of the
stream, the user agent must announce the connectionp1002.

The taskp944 that the networking task sourcep952 places on the task queuep944 once fetching for such a resource (with the correct MIME
type) has completed must cause the user agent to reestablish the connectionp1002 in parallelp42. This applies whether the connection is
closed gracefully or unexpectedly (but does not apply when fetching is canceled by the user agent, e.g., in response to
window.stop()p829, since in those cases the final taskp944 is actually discarded). It doesn't apply for the error conditions listed below
except where explicitly specified.

HTTP 200 OK responses that have a Content-Typep90 specifying an unsupported type, or that have no Content-Typep90 at all, must
cause the user agent to fail the connectionp1003.

Network errors that prevents the connection from being established in the first place (e.g. DNS errors), should cause the user agent to
reestablish the connectionp1002 in parallelp42, unless the user agent knows that to be futile, in which case the user agent may fail the
connectionp1003.

Any other HTTP response code not listed here, as well as the cancelation of the fetch algorithm by the user agent (e.g. in response to
window.stop()p829 or the user canceling the network connection manually) must cause the user agent to fail the connectionp1003.

When a user agent is to announce the connection, the user agent must queue a taskp945 which, if the readyStatep1001 attribute is
set to a value other than CLOSEDp1001, sets the readyStatep1001 attribute to OPENp1001 and fires an event named openp1282 at the
EventSourcep1000 object.

When a user agent is to reestablish the connection, the user agent must run the following steps. These steps are run in parallelp42,
not as part of a taskp944. (The tasks that it queues, of course, are run like normal tasks and not themselves in parallelp42.)

1. Queue a taskp945 to run the following steps:

1. If the readyStatep1001 attribute is set to CLOSEDp1001, abort the task.

2. Set the readyStatep1001 attribute to CONNECTINGp1001.

3. Fire an event named errorp1281 at the EventSourcep1000 object.

2. Wait a delay equal to the reconnection time of the event source.

3. Optionally, wait some more. In particular, if the previous attempt failed, then user agents might introduce an exponential
backoff delay to avoid overloading a potentially already overloaded server. Alternatively, if the operating system has
reported that there is no network connectivity, user agents might wait for the operating system to announce that the
network connection has returned before retrying.

4. Wait until the aforementioned task has run, if it has not yet run.

9.2.3 Processing model §p10

02

✔ MDN

✔ MDN

✔ MDN

1002

https://fetch.spec.whatwg.org/#concept-fetch
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

5. Queue a taskp945 to run the following steps:

1. If the EventSourcep1000 object's readyStatep1001 attribute is not set to CONNECTINGp1001, return.

2. Let request be the EventSourcep1000 object's requestp1000.

3. If the EventSourcep1000 object's last event ID stringp1000 is not the empty string, set `Last-Event-IDp1259`/last event
ID stringp1000, encoded as UTF-8, in request's header list.

4. Fetch request and process the response obtained in this fashion, if any, as described earlier in this section.

When a user agent is to fail the connection, the user agent must queue a taskp945 which, if the readyStatep1001 attribute is set to a
value other than CLOSEDp1001, sets the readyStatep1001 attribute to CLOSEDp1001 and fires an event named errorp1281 at the
EventSourcep1000 object. Once the user agent has failed the connectionp1003, it does not attempt to reconnect!

The task sourcep945 for any tasksp944 that are queuedp945 by EventSourcep1000 objects is the remote event task source.

This event stream format's MIME type is text/event-streamp1256.

The event stream format is as described by the stream production of the following ABNF, the character set for which is Unicode.
[ABNF]p1285

stream = [bom] *event
event = *(comment / field) end-of-line
comment = colon *any-char end-of-line
field = 1*name-char [colon [space] *any-char] end-of-line
end-of-line = (cr lf / cr / lf)

; characters
lf = %x000A ; U+000A LINE FEED (LF)
cr = %x000D ; U+000D CARRIAGE RETURN (CR)
space = %x0020 ; U+0020 SPACE
colon = %x003A ; U+003A COLON (:)
bom = %xFEFF ; U+FEFF BYTE ORDER MARK
name-char = %x0000-0009 / %x000B-000C / %x000E-0039 / %x003B-10FFFF

; a scalar value other than U+000A LINE FEED (LF), U+000D CARRIAGE RETURN (CR), or
U+003A COLON (:)
any-char = %x0000-0009 / %x000B-000C / %x000E-10FFFF

; a scalar value other than U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)

Event streams in this format must always be encoded as UTF-8. [ENCODING]p1287

Lines must be separated by either a U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF) character pair, a single U+000A LINE FEED
(LF) character, or a single U+000D CARRIAGE RETURN (CR) character.

Since connections established to remote servers for such resources are expected to be long-lived, UAs should ensure that appropriate
buffering is used. In particular, while line buffering with lines are defined to end with a single U+000A LINE FEED (LF) character is safe,
block buffering or line buffering with different expected line endings can cause delays in event dispatch.

Streams must be decoded using the UTF-8 decode algorithm.

The UTF-8 decode algorithm strips one leading UTF-8 Byte Order Mark (BOM), if any.
Note

9.2.4 Parsing an event stream §p10

03

9.2.5 Interpreting an event stream §p10

03

1003

https://fetch.spec.whatwg.org/#concept-header-list-set
https://encoding.spec.whatwg.org/#utf-8-encode
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-event-fire
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#scalar-value
https://encoding.spec.whatwg.org/#utf-8-decode
https://encoding.spec.whatwg.org/#utf-8-decode

The stream must then be parsed by reading everything line by line, with a U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF)
character pair, a single U+000A LINE FEED (LF) character not preceded by a U+000D CARRIAGE RETURN (CR) character, and a single
U+000D CARRIAGE RETURN (CR) character not followed by a U+000A LINE FEED (LF) character being the ways in which a line can end.

When a stream is parsed, a data buffer, an event type buffer, and a last event ID buffer must be associated with it. They must be
initialized to the empty string

Lines must be processed, in the order they are received, as follows:

↪ If the line is empty (a blank line)
Dispatch the eventp1004, as defined below.

↪ If the line starts with a U+003A COLON character (:)
Ignore the line.

↪ If the line contains a U+003A COLON character (:)
Collect the characters on the line before the first U+003A COLON character (:), and let field be that string.

Collect the characters on the line after the first U+003A COLON character (:), and let value be that string. If value starts with a
U+0020 SPACE character, remove it from value.

Process the fieldp1004 using the steps described below, using field as the field name and value as the field value.

↪ Otherwise, the string is not empty but does not contain a U+003A COLON character (:)
Process the fieldp1004 using the steps described below, using the whole line as the field name, and the empty string as the field
value.

Once the end of the file is reached, any pending data must be discarded. (If the file ends in the middle of an event, before the final
empty line, the incomplete event is not dispatched.)

The steps to process the field given a field name and a field value depend on the field name, as given in the following list. Field
names must be compared literally, with no case folding performed.

↪ If the field name is "event"
Set the event type buffer to field value.

↪ If the field name is "data"
Append the field value to the data buffer, then append a single U+000A LINE FEED (LF) character to the data buffer.

↪ If the field name is "id"
If the field value does not contain U+0000 NULL, then set the last event ID buffer to the field value. Otherwise, ignore the field.

↪ If the field name is "retry"
If the field value consists of only ASCII digits, then interpret the field value as an integer in base ten, and set the event stream's
reconnection timep1000 to that integer. Otherwise, ignore the field.

↪ Otherwise
The field is ignored.

When the user agent is required to dispatch the event, the user agent must process the data buffer, the event type buffer, and the
last event ID buffer using steps appropriate for the user agent.

For web browsers, the appropriate steps to dispatch the eventp1004 are as follows:

1. Set the last event ID stringp1000 of the event source to the value of the last event ID buffer. The buffer does not get reset, so
the last event ID stringp1000 of the event source remains set to this value until the next time it is set by the server.

2. If the data buffer is an empty string, set the data buffer and the event type buffer to the empty string and return.

3. If the data buffer's last character is a U+000A LINE FEED (LF) character, then remove the last character from the data buffer.

4. Let event be the result of creating an event using MessageEventp998, in the relevant Realmp924 of the EventSourcep1000 object.

5. Initialize event's type attribute to messagep1282, its datap998 attribute to data, its originp998 attribute to the serializationp838 of
1004

https://infra.spec.whatwg.org/#ascii-digit
https://dom.spec.whatwg.org/#concept-event-create
https://dom.spec.whatwg.org/#dom-event-type

the origin of the event stream's final URL (i.e., the URL after redirects), and its lastEventIdp998 attribute to the last event ID
stringp1000 of the event source.

6. If the event type buffer has a value other than the empty string, change the type of the newly created event to equal the
value of the event type buffer.

7. Set the data buffer and the event type buffer to the empty string.

8. Queue a taskp945 which, if the readyStatep1001 attribute is set to a value other than CLOSEDp1001, dispatches the newly created
event at the EventSourcep1000 object.

For other user agents, the appropriate steps to dispatch the eventp1004 are implementation dependent, but at a minimum they must set
the data and event type buffers to the empty string before returning.

If an event doesn't have an "id" field, but an earlier event did set the event source's last event ID stringp1000, then the event's
lastEventIdp998 field will be set to the value of whatever the last seen "id" field was.

Note

The following event stream, once followed by a blank line:

data: YHOO
data: +2
data: 10

...would cause an event messagep1282 with the interface MessageEventp998 to be dispatched on the EventSourcep1000 object. The
event's datap998 attribute would contain the string "YHOO\n+2\n10" (where "\n" represents a newline).

This could be used as follows:

var stocks = new EventSource("https://stocks.example.com/ticker.php");
stocks.onmessage = function (event) {

var data = event.data.split('\n');
updateStocks(data[0], data[1], data[2]);

};

...where updateStocks() is a function defined as:

function updateStocks(symbol, delta, value) { ... }

...or some such.

Example

The following stream contains four blocks. The first block has just a comment, and will fire nothing. The second block has two fields
with names "data" and "id" respectively; an event will be fired for this block, with the data "first event", and will then set the last
event ID to "1" so that if the connection died between this block and the next, the server would be sent a `Last-Event-IDp1259`
header with the value "1". The third block fires an event with data "second event", and also has an "id" field, this time with no
value, which resets the last event ID to the empty string (meaning no `Last-Event-IDp1259` header will now be sent in the event of
a reconnection being attempted). Finally, the last block just fires an event with the data " third event" (with a single leading space
character). Note that the last still has to end with a blank line, the end of the stream is not enough to trigger the dispatch of the
last event.

: test stream

data: first event
id: 1

data:second event
id

data: third event

Example

1005

https://url.spec.whatwg.org/#concept-url-origin
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#concept-event-dispatch

Legacy proxy servers are known to, in certain cases, drop HTTP connections after a short timeout. To protect against such proxy
servers, authors can include a comment line (one starting with a ':' character) every 15 seconds or so.

Authors wishing to relate event source connections to each other or to specific documents previously served might find that relying on
IP addresses doesn't work, as individual clients can have multiple IP addresses (due to having multiple proxy servers) and individual IP
addresses can have multiple clients (due to sharing a proxy server). It is better to include a unique identifier in the document when it is
served and then pass that identifier as part of the URL when the connection is established.

Authors are also cautioned that HTTP chunking can have unexpected negative effects on the reliability of this protocol, in particular if
the chunking is done by a different layer unaware of the timing requirements. If this is a problem, chunking can be disabled for serving
event streams.

Clients that support HTTP's per-server connection limitation might run into trouble when opening multiple pages from a site if each
page has an EventSourcep1000 to the same domain. Authors can avoid this using the relatively complex mechanism of using unique
domain names per connection, or by allowing the user to enable or disable the EventSourcep1000 functionality on a per-page basis, or
by sharing a single EventSourcep1000 object using a shared workerp1047.

User agents running in controlled environments, e.g. browsers on mobile handsets tied to specific carriers, may offload the
management of the connection to a proxy on the network. In such a situation, the user agent for the purposes of conformance is
considered to include both the handset software and the network proxy.

The following stream fires two events:

data

data
data

data:

The first block fires events with the data set to the empty string, as would the last block if it was followed by a blank line. The
middle block fires an event with the data set to a single newline character. The last block is discarded because it is not followed by
a blank line.

Example

The following stream fires two identical events:

data:test

data: test

This is because the space after the colon is ignored if present.

Example

For example, a browser on a mobile device, after having established a connection, might detect that it is on a supporting network
and request that a proxy server on the network take over the management of the connection. The timeline for such a situation
might be as follows:

1. Browser connects to a remote HTTP server and requests the resource specified by the author in the EventSourcep1001

constructor.

2. The server sends occasional messages.

Example

9.2.6 Authoring notes §p10

06

9.2.7 Connectionless push and other features §p10

06

1006

This can reduce the total data usage, and can therefore result in considerable power savings.

As well as implementing the existing API and text/event-streamp1256 wire format as defined by this specification and in more
distributed ways as described above, formats of event framing defined by other applicable specificationsp65 may be supported. This
specification does not define how they are to be parsed or processed.

While an EventSourcep1000 object's readyStatep1001 is CONNECTINGp1001, and the object has one or more event listeners registered for
openp1282, messagep1282 or errorp1281 events, there must be a strong reference from the Windowp824 or WorkerGlobalScopep1044 object
that the EventSourcep1000 object's constructor was invoked from to the EventSourcep1000 object itself.

While an EventSourcep1000 object's readyStatep1001 is OPENp1001, and the object has one or more event listeners registered for
messagep1282 or errorp1281 events, there must be a strong reference from the Windowp824 or WorkerGlobalScopep1044 object that the
EventSourcep1000 object's constructor was invoked from to the EventSourcep1000 object itself.

While there is a task queued by an EventSourcep1000 object on the remote event task sourcep1003, there must be a strong reference
from the Windowp824 or WorkerGlobalScopep1044 object that the EventSourcep1000 object's constructor was invoked from to that
EventSourcep1000 object.

If a user agent is to forcibly close an EventSourcep1000 object (this happens when a Documentp114 object goes away permanently), the
user agent must abort any instances of the fetch algorithm started for this EventSourcep1000 object, and must set the readyStatep1001

attribute to CLOSEDp1001.

If an EventSourcep1000 object is garbage collected while its connection is still open, the user agent must abort any instance of the fetch
algorithm opened by this EventSourcep1000.

This section is non-normative.

User agents are strongly urged to provide detailed diagnostic information about EventSourcep1000 objects and their related network
connections in their development consoles, to aid authors in debugging code using this API.

For example, a user agent could have a panel displaying all the EventSourcep1000 objects a page has created, each listing the
constructor's arguments, whether there was a network error, what the CORS status of the connection is and what headers were sent by
the client and received from the server to lead to that status, the messages that were received and how they were parsed, and so
forth.

Implementations are especially encouraged to report detailed information to their development consoles whenever an errorp1281 event

3. In between two messages, the browser detects that it is idle except for the network activity involved in keeping the TCP
connection alive, and decides to switch to sleep mode to save power.

4. The browser disconnects from the server.

5. The browser contacts a service on the network, and requests that the service, a "push proxy", maintain the connection
instead.

6. The "push proxy" service contacts the remote HTTP server and requests the resource specified by the author in the
EventSourcep1001 constructor (possibly including a `Last-Event-IDp1259` HTTP header, etc).

7. The browser allows the mobile device to go to sleep.

8. The server sends another message.

9. The "push proxy" service uses a technology such as OMA push to convey the event to the mobile device, which wakes
only enough to process the event and then returns to sleep.

9.2.8 Garbage collection §p10

07

9.2.9 Implementation advice §p10

07

1007

https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch

is fired, since little to no information can be made available in the events themselves.

This section is non-normative.

To enable web applications to maintain bidirectional communications with server-side processes, this specification introduces the
WebSocketp1008 interface.

enum BinaryType { "blob", "arraybuffer" };
[Exposed=(Window,Worker)]
interface WebSocket : EventTarget {

constructor(USVString url, optional (DOMString or sequence<DOMString>) protocols = []);

readonly attribute USVString url;

// ready state
const unsigned short CONNECTING = 0;
const unsigned short OPEN = 1;
const unsigned short CLOSING = 2;
const unsigned short CLOSED = 3;
readonly attribute unsigned short readyState;
readonly attribute unsigned long long bufferedAmount;

// networking
attribute EventHandler onopen;
attribute EventHandler onerror;
attribute EventHandler onclose;
readonly attribute DOMString extensions;
readonly attribute DOMString protocol;
undefined close(optional [Clamp] unsigned short code, optional USVString reason);

// messaging
attribute EventHandler onmessage;
attribute BinaryType binaryType;
undefined send(USVString data);
undefined send(Blob data);
undefined send(ArrayBuffer data);
undefined send(ArrayBufferView data);

};

Each WebSocketp1008 object has an associated url (a URL record).

9.3 Web sockets §p10

08

This interface does not allow for raw access to the underlying network. For example, this interface could not be used to implement
an IRC client without proxying messages through a custom server.

Note

For web developers (non-normative)

IDL

9.3.1 Introduction §p10

08

9.3.2 The WebSocketp1008 interface §p10

08

✔ MDN

1008

https://dom.spec.whatwg.org/#interface-eventtarget
https://heycam.github.io/webidl/#idl-USVString
https://heycam.github.io/webidl/#idl-USVString
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#common-ArrayBufferView
https://url.spec.whatwg.org/#concept-url

The WebSocket(url, protocols) constructor, when invoked, must run these steps:

1. Let urlRecord be the result of applying the URL parser to url.

2. If urlRecord is failure, then throw a "SyntaxError" DOMException.

3. If urlRecord's scheme is not "ws" or "wss", then throw a "SyntaxError" DOMException.

4. If urlRecord's fragment is non-null, then throw a "SyntaxError" DOMException.

5. If protocols is a string, set protocols to a sequence consisting of just that string.

6. If any of the values in protocols occur more than once or otherwise fail to match the requirements for elements that
comprise the value of Sec-WebSocket-Protocolp63 fields as defined by The WebSocket protocol, then throw a
"SyntaxError" DOMException. [WSP]p1292

7. Run this step in parallelp42:

1. Establish a WebSocket connection given urlRecord, protocols, and the entry settings objectp921. [FETCH]p1287

socket = new WebSocketp1009(url [, protocols])
Creates a new WebSocketp1008 object, immediately establishing the associated WebSocket connection.
url is a string giving the URL over which the connection is established. Only "ws" or "wss" schemes are allowed; others will cause
a "SyntaxError" DOMException. URLs with fragments will also cause such an exception.
protocols is either a string or an array of strings. If it is a string, it is equivalent to an array consisting of just that string; if it is
omitted, it is equivalent to the empty array. Each string in the array is a subprotocol name. The connection will only be
established if the server reports that it has selected one of these subprotocols. The subprotocol names have to match the
requirements for elements that comprise the value of Sec-WebSocket-Protocolp63 fields as defined by The WebSocket protocol.
[WSP]p1292

socket . sendp1012(data)
Transmits data using the WebSocket connection. data can be a string, a Blob, an ArrayBuffer, or an ArrayBufferView.

socket . closep1010([code] [, reason])
Closes the WebSocket connection, optionally using code as the the WebSocket connection close codep63 and reason as the the
WebSocket connection close reasonp63.

socket . urlp1010

Returns the URL that was usedp1008 to establish the WebSocket connection.

socket . readyStatep1010

Returns the state of the WebSocketp1008 object's connection. It can have the values described below.

socket . bufferedAmountp1011

Returns the number of bytes of application data (UTF-8 text and binary data) that have been queued using send()p1012 but not
yet been transmitted to the network.
If the WebSocket connection is closed, this attribute's value will only increase with each call to the send()p1012 method. (The
number does not reset to zero once the connection closes.)

socket . extensionsp1010

Returns the extensions selected by the server, if any.

socket . protocolp1010

Returns the subprotocol selected by the server, if any. It can be used in conjunction with the array form of the constructor's
second argument to perform subprotocol negotiation.

socket . binaryTypep1011 [= value]
Returns a string that indicates how binary data from the WebSocketp1008 object is exposed to scripts:
"blobp1013"

Binary data is returned in Blob form.
"arraybufferp1013"

Binary data is returned in ArrayBuffer form.
Can be set, to change how binary data is returned. The default is "blobp1013".

MDN

1009

https://url.spec.whatwg.org/#concept-url
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-fragment
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#common-ArrayBufferView
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://url.spec.whatwg.org/#concept-url-parser
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-scheme
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-fragment
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://fetch.spec.whatwg.org/#concept-websocket-establish

8. Return a new WebSocketp1008 object whose urlp1008 is urlRecord.

The url attribute's getter must return this WebSocketp1008 object's urlp1008, serialized.

The readyState attribute represents the state of the connection. It can have the following values:

CONNECTING (numeric value 0)
The connection has not yet been established.

OPEN (numeric value 1)
The WebSocket connection is established p62 and communication is possible.

CLOSING (numeric value 2)
The connection is going through the closing handshake, or the close()p1010 method has been invoked.

CLOSED (numeric value 3)
The connection has been closed or could not be opened.

When the object is created its readyStatep1010 must be set to CONNECTINGp1010 (0).

The extensions attribute must initially return the empty string. After the WebSocket connection is established p62, its value might
change, as defined below.

The protocol attribute must initially return the empty string. After the WebSocket connection is established p62, its value might
change, as defined below.

The close(code, reason) method, when invoked, must run these steps:

1. If code is present, but is neither an integer equal to 1000 nor an integer in the range 3000 to 4999, inclusive, throw an
"InvalidAccessError" DOMException.

2. If reason is present, then run these substeps:

1. Let reasonBytes be the result of encoding reason.

2. If reasonBytes is longer than 123 bytes, then throw a "SyntaxError" DOMException.

3. Run the first matching steps from the following list:

↪ If the readyStatep1010 attribute is in the CLOSINGp1010 (2) or CLOSEDp1010 (3) state
Do nothing.

↪ If the WebSocket connection is not yet establishedp62 [WSP]p1292

Fail the WebSocket connectionp62 and set the readyStatep1010 attribute's value to CLOSINGp1010 (2). [WSP]p1292

↪ If the WebSocket closing handshake has not yet been startedp63 [WSP]p1292

Start the WebSocket closing handshakep63 and set the readyStatep1010 attribute's value to CLOSINGp1010 (2). [WSP]p1292

If neither code nor reason is present, the WebSocket Close message must not have a body.

If the establish a WebSocket connection algorithm fails, it triggers the fail the WebSocket connectionp62

algorithm, which then invokes the close the WebSocket connectionp62 algorithm, which then establishes that
the WebSocket connection is closedp63, which fires the closep1281 event as described belowp1013.

Note

The connection is already closing or is already closed. If it has not already, a closep1281 event will eventually fire
as described belowp1013.

Note

The fail the WebSocket connectionp62 algorithm invokes the close the WebSocket connectionp62 algorithm, which
then establishes that the WebSocket connection is closedp63, which fires the closep1281 event as described
belowp1013.

Note

✔ MDN
✔ MDN

✔ MDN

✔ MDN

✔ MDN

1010

https://fetch.spec.whatwg.org/#concept-websocket-establish
https://url.spec.whatwg.org/#concept-url-serializer
https://heycam.github.io/webidl/#invalidaccesserror
https://heycam.github.io/webidl/#dfn-DOMException
https://encoding.spec.whatwg.org/#utf-8-encode
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException

If code is present, then the status code to use in the WebSocket Close message must be the integer given by close.
[WSP]p1292

If reason is also present, then reasonBytes must be provided in the Close message after the status code. [WSP]p1292

↪ Otherwise
Set the readyStatep1010 attribute's value to CLOSINGp1010 (2).

The bufferedAmount attribute must return the number of bytes of application data (UTF-8 text and binary data) that have been
queued using send()p1012 but that, as of the last time the event loopp944 reached step 1p946, had not yet been transmitted to the
network. (This thus includes any text sent during the execution of the current task, regardless of whether the user agent is able to
transmit text in the background in parallelp42 with script execution.) This does not include framing overhead incurred by the protocol,
or buffering done by the operating system or network hardware.

When a WebSocketp1008 object is created, its binaryType IDL attribute must be set to the string "blobp1013". On getting, it must return
the last value it was set to. On setting, the user agent must set the IDL attribute to the new value.

WebSocket Protocol erroneously states that the status code is required for the start the WebSocket closing
handshakep63 algorithm.

Note

The start the WebSocket closing handshakep63 algorithm eventually invokes the close the WebSocket
connectionp62 algorithm, which then establishes that the WebSocket connection is closedp63, which fires the
closep1281 event as described belowp1013.

Note

The WebSocket closing handshake is startedp63, and will eventually invoke the close the WebSocket connectionp62

algorithm, which will establish that the WebSocket connection is closedp63, and thus the closep1281 event will fire,
as described belowp1013.

Note

The close()p1010 method does not discard previously sent messages before starting the WebSocket closing handshake — even if,
in practice, the user agent is still busy sending those messages, the handshake will only start after the messages are sent.

Note

In this simple example, the bufferedAmountp1011 attribute is used to ensure that updates are sent either at the rate of one update
every 50ms, if the network can handle that rate, or at whatever rate the network can handle, if that is too fast.

var socket = new WebSocket('ws://game.example.com:12010/updates');
socket.onopen = function () {

setInterval(function() {
if (socket.bufferedAmount == 0)

socket.send(getUpdateData());
}, 50);

};

The bufferedAmountp1011 attribute can also be used to saturate the network without sending the data at a higher rate than the
network can handle, though this requires more careful monitoring of the value of the attribute over time.

Example

User agents can use the binaryTypep1011 attribute as a hint for how to handle incoming binary data: if the attribute is set to
"blobp1013", it is safe to spool it to disk, and if it is set to "arraybufferp1013", it is likely more efficient to keep the data in memory.
Naturally, user agents are encouraged to use more subtle heuristics to decide whether to keep incoming data in memory or not,
e.g. based on how big the data is or how common it is for a script to change the attribute at the last minute. This latter aspect is
important in particular because it is quite possible for the attribute to be changed after the user agent has received the data but

Note

✔ MDN

✔ MDN

1011

The send(data) method transmits data using the connection. If the readyStatep1010 attribute is CONNECTINGp1010, it must throw an
"InvalidStateError" DOMException. Otherwise, the user agent must run the appropriate set of steps from the following list:

If the argument is a string
If the WebSocket connection is established p62 and the WebSocket closing handshake has not yet started p63, then the user agent
must send a WebSocket Messagep62 comprised of the data argument using a text frame opcode; if the data cannot be sent, e.g.
because it would need to be buffered but the buffer is full, the user agent must flag the WebSocket as fullp1013 and then close the
WebSocket connectionp62. Any invocation of this method with a string argument that does not throw an exception must increase the
bufferedAmountp1011 attribute by the number of bytes needed to express the argument as UTF-8. [UNICODE]p1292 [ENCODING]p1287

[WSP]p1292

If the argument is a Blob object
If the WebSocket connection is established p62, and the WebSocket closing handshake has not yet started p63, then the user agent
must send a WebSocket Messagep62 comprised of data using a binary frame opcode; if the data cannot be sent, e.g. because it
would need to be buffered but the buffer is full, the user agent must flag the WebSocket as fullp1013 and then close the WebSocket
connectionp62. The data to be sent is the raw data represented by the Blob object. Any invocation of this method with a Blob
argument that does not throw an exception must increase the bufferedAmountp1011 attribute by the size of the Blob object's raw
data, in bytes. [WSP]p1292 [FILEAPI]p1287

If the argument is an ArrayBuffer object
If the WebSocket connection is established p62, and the WebSocket closing handshake has not yet started p63, then the user agent
must send a WebSocket Messagep62 comprised of data using a binary frame opcode; if the data cannot be sent, e.g. because it
would need to be buffered but the buffer is full, the user agent must flag the WebSocket as fullp1013 and then close the WebSocket
connectionp62. The data to be sent is the data stored in the buffer described by the ArrayBuffer object. Any invocation of this
method with an ArrayBuffer argument that does not throw an exception must increase the bufferedAmountp1011 attribute by the
length of the ArrayBuffer in bytes. [WSP]p1292

If the argument is an object that matches the ArrayBufferView type definition
If the WebSocket connection is established p62, and the WebSocket closing handshake has not yet started p63, then the user agent
must send a WebSocket Messagep62 comprised of data using a binary frame opcode; if the data cannot be sent, e.g. because it
would need to be buffered but the buffer is full, the user agent must flag the WebSocket as fullp1013 and then close the WebSocket
connectionp62. The data to be sent is the data stored in the section of the buffer described by the ArrayBuffer object that data
references. Any invocation of this method with this kind of argument that does not throw an exception must increase the
bufferedAmountp1011 attribute by the length of data's buffer in bytes. [WSP]p1292

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the WebSocketp1008 interface:

Event handlerp954 Event handler event typep957

onopen openp1282

onmessage messagep1282

onerror errorp1281

onclose closep1281

When the WebSocket connection is established p62, the user agent must queue a taskp945 to run these steps:

1. Change the readyStatep1010 attribute's value to OPENp1010 (1).

2. Change the extensionsp1010 attribute's value to the extensions in usep62, if it is not the null value. [WSP]p1292

3. Change the protocolp1010 attribute's value to the subprotocol in usep62, if it is not the null value. [WSP]p1292

4. Fire an event named openp1282 at the WebSocketp1008 object.

before the user agent has fired the event for it.

9.3.3 Feedback from the protocol §p10

12

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

1012

https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#common-ArrayBufferView
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://dom.spec.whatwg.org/#concept-event-fire

When a WebSocket message has been receivedp62 with type type and data data, the user agent must queue a taskp945 to follow these
steps: [WSP]p1292

1. If the readyStatep1010 attribute's value is not OPENp1010 (1), then return.

2. Let dataForEvent be determined by switching on type and binaryTypep1011:

↪ type indicates that the data is Text
a new DOMString containing data

↪ type indicates that the data is Binary and binaryTypep1011 is "blob"
a new Blob object, created in the relevant Realmp924 of the WebSocketp1008 object, that represents data as its raw data
[FILEAPI]p1287

↪ type indicates that the data is Binary and binaryTypep1011 is "arraybuffer"
a new ArrayBuffer object, created in the relevant Realmp924 of the WebSocketp1008 object, whose contents are data

3. Fire an event named messagep1282 at the WebSocketp1008 object, using MessageEventp998, with the originp998 attribute
initialized to the serializationp838 of the WebSocketp1008 object's urlp1008 's origin, and the datap998 attribute initialized to
dataForEvent.

When the WebSocket closing handshake is started p63, the user agent must queue a taskp945 to change the readyStatep1010 attribute's
value to CLOSINGp1010 (2). (If the close()p1010 method was called, the readyStatep1010 attribute's value will already be set to
CLOSINGp1010 (2) when this task runs.) [WSP]p1292

When the WebSocket connection is closedp63, possibly cleanly, the user agent must queue a taskp945 to run the following substeps:

1. Change the readyStatep1010 attribute's value to CLOSEDp1010 (3).

2. If the user agent was required to fail the WebSocket connectionp62, or if the the WebSocket connection was closedp63 after
being flagged as full, fire an event named error at the WebSocketp1008 object. [WSP]p1292

3. Fire an event named closep1281 at the WebSocketp1008 object, using CloseEventp1014, with the wasCleanp1015 attribute
initialized to true if the connection closed cleanly and false otherwise, the codep1015 attribute initialized to the WebSocket
connection close codep63, and the reasonp1015 attribute initialized to the result of applying UTF-8 decode without BOM to the

Since the algorithm above is queued as a taskp945, there is no race condition between the WebSocket connection being
establishedp62 and the script setting up an event listener for the openp1282 event.

Note

User agents are encouraged to check if they can perform the above steps efficiently before they run the task, picking tasks from
other task queuesp944 while they prepare the buffers if not. For example, if the binaryTypep1011 attribute was set to "blobp1013"
when the data arrived, and the user agent spooled all the data to disk, but just before running the above taskp944 for this particular
message the script switched binaryTypep1011 to "arraybufferp1013", the user agent would want to page the data back to RAM
before running this taskp944 so as to avoid stalling the main thread while it created the ArrayBuffer object.

Note

Here is an example of how to define a handler for the messagep1282 event in the case of text frames:

mysocket.onmessage = function (event) {
if (event.data == 'on') {

turnLampOn();
} else if (event.data == 'off') {

turnLampOff();
}

};

The protocol here is a trivial one, with the server just sending "on" or "off" messages.

Example

1013

https://heycam.github.io/webidl/#idl-DOMString
https://w3c.github.io/FileAPI/#dfn-Blob
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://dom.spec.whatwg.org/#concept-event-fire
https://url.spec.whatwg.org/#concept-url-origin
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://encoding.spec.whatwg.org/#utf-8-decode-without-bom

WebSocket connection close reasonp63. [WSP]p1292

The task sourcep945 for all tasksp944 queuedp945 in this section is the WebSocket task source.

The WebSocket protocol defines Ping and Pong frames that can be used for keep-alive, heart-beats, network status probing, latency
instrumentation, and so forth. These are not currently exposed in the API.

User agents may send ping and unsolicited pong frames as desired, for example in an attempt to maintain local network NAT
mappings, to detect failed connections, or to display latency metrics to the user. User agents must not use pings or unsolicited pongs
to aid the server; it is assumed that servers will solicit pongs whenever appropriate for the server's needs.

WebSocketp1008 objects use the CloseEventp1014 interface for their closep1281 events:

[Exposed=(Window,Worker)]
interface CloseEvent : Event {

constructor(DOMString type, optional CloseEventInit eventInitDict = {});

readonly attribute boolean wasClean;
readonly attribute unsigned short code;
readonly attribute USVString reason;

};

dictionary CloseEventInit : EventInit {

User agents must not convey any failure information to scripts in a way that would allow a script to distinguish the
following situations:

• A server whose host name could not be resolved.

• A server to which packets could not successfully be routed.

• A server that refused the connection on the specified port.

• A server that failed to correctly perform a TLS handshake (e.g., the server certificate can't be verified).

• A server that did not complete the opening handshake (e.g. because it was not a WebSocket server).

• A WebSocket server that sent a correct opening handshake, but that specified options that caused the
client to drop the connection (e.g. the server specified a subprotocol that the client did not offer).

• A WebSocket server that abruptly closed the connection after successfully completing the opening
handshake.

In all of these cases, the the WebSocket connection close codep63 would be 1006, as required by WebSocket
Protocol. [WSP]p1292

Allowing a script to distinguish these cases would allow a script to probe the user's local network in preparation for
an attack.

In particular, this means the code 1015 is not used by the user agent (unless the server erroneously uses it in its
close frame, of course).

Note

⚠Warning!

IDL

9.3.4 Ping and Pong frames §p10

14

9.3.5 The CloseEventp1014 interface §p10

14

✔ MDN

⚠ MDN

1014

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor
https://dom.spec.whatwg.org/#dictdef-eventinit

boolean wasClean = false;
unsigned short code = 0;
USVString reason = "";

};

The wasClean attribute must return the value it was initialized to. It represents whether the connection closed cleanly or not.

The code attribute must return the value it was initialized to. It represents the WebSocket connection close code provided by the
server.

The reason attribute must return the value it was initialized to. It represents the WebSocket connection close reason provided by the
server.

A WebSocketp1008 object whose readyStatep1010 attribute's value was set to CONNECTINGp1010 (0) as of the last time the event loopp944

reached step 1p946 must not be garbage collected if there are any event listeners registered for openp1282 events, messagep1282 events,
errorp1281 events, or closep1281 events.

A WebSocketp1008 object whose readyStatep1010 attribute's value was set to OPENp1010 (1) as of the last time the event loopp944 reached
step 1p946 must not be garbage collected if there are any event listeners registered for messagep1282 events, errorp1281, or closep1281

events.

A WebSocketp1008 object whose readyStatep1010 attribute's value was set to CLOSINGp1010 (2) as of the last time the event loopp944

reached step 1p946 must not be garbage collected if there are any event listeners registered for errorp1281 or closep1281 events.

A WebSocketp1008 object with an established connectionp62 that has data queued to be transmitted to the network must not be garbage
collected. [WSP]p1292

If a WebSocketp1008 object is garbage collected while its connection is still open, the user agent must start the WebSocket closing
handshakep63, with no status code for the Close message. [WSP]p1292

If a user agent is to make disappear a WebSocketp1008 object (this happens when a Documentp114 object goes away), the user agent
must follow the first appropriate set of steps from the following list:

↪ If the WebSocket connection is not yet establishedp62 [WSP]p1292

Fail the WebSocket connectionp62. [WSP]p1292

↪ If the WebSocket closing handshake has not yet been startedp63 [WSP]p1292

Start the WebSocket closing handshakep63, with the status code to use in the WebSocket Close message being 1001. [WSP]p1292

↪ Otherwise
Do nothing.

event . wasCleanp1015

Returns true if the connection closed cleanly; false otherwise.

event . codep1015

Returns the WebSocket connection close code provided by the server.

event . reasonp1015

Returns the WebSocket connection close reason provided by the server.

For web developers (non-normative)

9.3.6 Garbage collection §p10

15

1015

Web browsers, for security and privacy reasons, prevent documents in different domains from affecting each other; that is, cross-site
scripting is disallowed.

While this is an important security feature, it prevents pages from different domains from communicating even when those pages are
not hostile. This section introduces a messaging system that allows documents to communicate with each other regardless of their
source domain, in a way designed to not enable cross-site scripting attacks.

This section is non-normative.

Authors should check the originp998 attribute to ensure that messages are only accepted from domains that they expect to receive
messages from. Otherwise, bugs in the author's message handling code could be exploited by hostile sites.

Furthermore, even after checking the originp998 attribute, authors should also check that the data in question is of the expected
format. Otherwise, if the source of the event has been attacked using a cross-site scripting flaw, further unchecked processing of
information sent using the postMessage()p1018 method could result in the attack being propagated into the receiver.

Authors should not use the wildcard keyword (*) in the targetOrigin argument in messages that contain any confidential information, as

9.4 Cross-document messaging §p10

16

The postMessage()p1018 API can be used as a tracking vector.
Note

For example, if document A contains an iframep361 element that contains document B, and script in document A calls
postMessage()p1018 on the Windowp824 object of document B, then a message event will be fired on that object, marked as
originating from the Windowp824 of document A. The script in document A might look like:

var o = document.getElementsByTagName('iframe')[0];
o.contentWindow.postMessage('Hello world', 'https://b.example.org/');

To register an event handler for incoming events, the script would use addEventListener() (or similar mechanisms). For example,
the script in document B might look like:

window.addEventListener('message', receiver, false);
function receiver(e) {

if (e.origin == 'https://example.com') {
if (e.data == 'Hello world') {

e.source.postMessage('Hello', e.origin);
} else {

alert(e.data);
}

}
}

This script first checks the domain is the expected domain, and then looks at the message, which it either displays to the user, or
responds to by sending a message back to the document which sent the message in the first place.

Example

9.4.2.1 Authors §p10

16

Use of this API requires extra care to protect users from hostile entities abusing a site for their own purposes.
⚠Warning!

9.4.1 Introduction §p10

16

9.4.2 Security §p10

16

✔ MDN

1016

https://infra.spec.whatwg.org/#tracking-vector

otherwise there is no way to guarantee that the message is only delivered to the recipient to which it was intended.

Authors who accept messages from any origin are encouraged to consider the risks of a denial-of-service attack. An attacker could
send a high volume of messages; if the receiving page performs expensive computation or causes network traffic to be sent for each
such message, the attacker's message could be multiplied into a denial-of-service attack. Authors are encouraged to employ rate
limiting (only accepting a certain number of messages per minute) to make such attacks impractical.

The integrity of this API is based on the inability for scripts of one originp837 to post arbitrary events (using dispatchEvent() or
otherwise) to objects in other origins (those that are not the samep838).

User agents are also encouraged to consider rate-limiting message traffic between different originsp837, to protect naïve sites from
denial-of-service attacks.

The window post message steps, given a targetWindow, message, and options, are as follows:

1. Let targetRealm be targetWindow's Realmp918.

2. Let incumbentSettings be the incumbent settings objectp921.

9.4.2.2 User agents §p10

17

Implementors are urged to take extra care in the implementation of this feature. It allows authors to transmit information from one
domain to another domain, which is normally disallowed for security reasons. It also requires that UAs be careful to allow access to
certain properties but not others.

Note

window . postMessagep1018(message [, options])
Posts a message to the given window. Messages can be structured objects, e.g. nested objects and arrays, can contain
JavaScript values (strings, numbers, Date objects, etc), and can contain certain data objects such as File Blob, FileList, and
ArrayBuffer objects.
Objects listed in the transferp1022 member of options are transferred, not just cloned, meaning that they are no longer usable
on the sending side.
A target origin can be specified using the targetOriginp825 member of options. If not provided, it defaults to "/". This default
restricts the message to same-origin targets only.
If the origin of the target window doesn't match the given target origin, the message is discarded, to avoid information leakage.
To send the message to the target regardless of origin, set the target origin to "*".
Throws a "DataCloneError" DOMException if transfer array contains duplicate objects or if message could not be cloned.

window . postMessagep1018(message, targetOrigin [, transfer])
This is an alternate version of postMessage()p1018 where the target origin is specified as a parameter. Calling
window.postMessage(message, target, transfer) is equivalent to window.postMessage(message, {targetOrigin,
transfer}).

For web developers (non-normative)

When posting a message to a Windowp824 of a browsing contextp811 that has just been navigated to a new Documentp114 is likely to
result in the message not receiving its intended recipient: the scripts in the target browsing contextp811 have to have had time to
set up listeners for the messages. Thus, for instance, in situations where a message is to be sent to the Windowp824 of newly
created child iframep361, authors are advised to have the child Documentp114 post a message to their parent announcing their
readiness to receive messages, and for the parent to wait for this message before beginning posting messages.

Note

9.4.3 Posting messages §p10

17

1017

https://tc39.es/ecma262/#sec-date-objects
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#filelist-section
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException

3. Let targetOrigin be options["targetOriginp825"].

4. If targetOrigin is a single U+002F SOLIDUS character (/), then set targetOrigin to incumbentSettings's originp917.

5. Otherwise, if targetOrigin is not a single U+002A ASTERISK character (*), then:

1. Let parsedURL be the result of running the URL parser on targetOrigin.

2. If parsedURL is failure, then throw a "SyntaxError" DOMException.

3. Set targetOrigin to parsedURL's origin.

6. Let transfer be options["transferp1022"].

7. Let serializeWithTransferResult be StructuredSerializeWithTransferp111(message, transfer). Rethrow any exceptions.

8. Queue a global taskp945 on the posted message task source given targetWindow to run the following steps:

1. If the targetOrigin argument is not a single literal U+002A ASTERISK character (*) and targetWindow's associated
Documentp826 's originp837 is not same originp838 with targetOrigin, then return.

2. Let origin be the serializationp838 of incumbentSettings's originp917.

3. Let source be the WindowProxyp834 object corresponding to incumbentSettings's global objectp918 (a Windowp824

object).

4. Let deserializeRecord be StructuredDeserializeWithTransferp112(serializeWithTransferResult, targetRealm).

If this throws an exception, catch it, fire an event named messageerrorp1282 at targetWindow, using
MessageEventp998, with the originp998 attribute initialized to origin and the sourcep999 attribute initialized to
source, and then return.

5. Let messageClone be deserializeRecord.[[Deserialized]].

6. Let newPorts be a new frozen array consisting of all MessagePortp1022 objects in
deserializeRecord.[[TransferredValues]], if any, maintaining their relative order.

7. Fire an event named messagep1282 at targetWindow, using MessageEventp998, with the originp998 attribute initialized
to origin, the sourcep999 attribute initialized to source, the datap998 attribute initialized to messageClone, and the
portsp999 attribute initialized to newPorts.

The postMessage(message, options) method, when invoked on a Windowp824 object, must run the following steps:

1. Let targetWindow be this Windowp824 object.

2. Run the window post message stepsp1017 providing targetWindow, message, and options.

The postMessage(message, targetOrigin, transfer) method, when invoked on a Windowp824 object, must run the following steps:

1. Let targetWindow be this Windowp824 object.

2. Let options be «["targetOriginp825" → targetOrigin, "transferp1022" → transfer]».

3. Run the window post message stepsp1017 providing targetWindow, message, and options.

This section is non-normative.

To enable independent pieces of code (e.g. running in different browsing contextsp811) to communicate directly, authors can use
channel messagingp1018.

9.5 Channel messaging §p10

18

9.5.1 Introduction §p10

18

✔ MDN

✔ MDN

1018

https://url.spec.whatwg.org/#concept-url-parser
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-origin
https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#dfn-frozen-array-type
https://dom.spec.whatwg.org/#concept-event-fire

Communication channels in this mechanism are implemented as two-ways pipes, with a port at each end. Messages sent in one port
are delivered at the other port, and vice-versa. Messages are delivered as DOM events, without interrupting or blocking running
tasksp944.

To create a connection (two "entangled" ports), the MessageChannel() constructor is called:

var channel = new MessageChannel();

One of the ports is kept as the local port, and the other port is sent to the remote code, e.g. using postMessage()p1018:

otherWindow.postMessage('hello', 'https://example.com', [channel.port2]);

To send messages, the postMessage()p1024 method on the port is used:

channel.port1.postMessage('hello');

To receive messages, one listens to messagep1282 events:

channel.port1.onmessage = handleMessage;
function handleMessage(event) {

// message is in event.data
// ...

}

Data sent on a port can be structured data; for example here an array of strings is passed on a MessagePortp1022:

port1.postMessage(['hello', 'world']);

This section is non-normative.

9.5.1.1 Examples §p10

19

In this example, two JavaScript libraries are connected to each other using MessagePortp1022s. This allows the libraries to later be
hosted in different frames, or in Workerp1053 objects, without any change to the APIs.

<script src="contacts.js"></script> <!-- exposes a contacts object -->
<script src="compose-mail.js"></script> <!-- exposes a composer object -->
<script>
var channel = new MessageChannel();
composer.addContactsProvider(channel.port1);
contacts.registerConsumer(channel.port2);

</script>

Here's what the "addContactsProvider()" function's implementation could look like:

function addContactsProvider(port) {
port.onmessage = function (event) {

switch (event.data.messageType) {
'search-result': handleSearchResult(event.data.results); break;
'search-done': handleSearchDone(); break;
'search-error': handleSearchError(event.data.message); break;
// ...

}
};

};

Example

1019

This section is non-normative.

Ports can be viewed as a way to expose limited capabilities (in the object-capability model sense) to other actors in the system. This
can either be a weak capability system, where the ports are merely used as a convenient model within a particular origin, or as a
strong capability model, where they are provided by one origin provider as the only mechanism by which another origin consumer can
effect change in or obtain information from provider.

For example, consider a situation in which a social web site embeds in one iframep361 the user's email contacts provider (an address
book site, from a second origin), and in a second iframep361 a game (from a third origin). The outer social site and the game in the
second iframep361 cannot access anything inside the first iframep361; together they can only:

• Navigatep866 the iframep361 to a new URL, such as the same URL but with a different fragment, causing the Windowp824 in the
iframep361 to receive a hashchangep1281 event.

• Resize the iframep361, causing the Windowp824 in the iframep361 to receive a resize event.
• Send a messagep1282 event to the Windowp824 in the iframep361 using the window.postMessage()p1018 API.

The contacts provider can use these methods, most particularly the third one, to provide an API that can be accessed by other origins
to manipulate the user's address book. For example, it could respond to a message "add-contact Guillaume Tell
<tell@pomme.example.net>" by adding the given person and email address to the user's address book.

To avoid any site on the web being able to manipulate the user's contacts, the contacts provider might only allow certain trusted sites,
such as the social site, to do this.

Now suppose the game wanted to add a contact to the user's address book, and that the social site was willing to allow it to do so on
its behalf, essentially "sharing" the trust that the contacts provider had with the social site. There are several ways it could do this;
most simply, it could just proxy messages between the game site and the contacts site. However, this solution has a number of
difficulties: it requires the social site to either completely trust the game site not to abuse the privilege, or it requires that the social
site verify each request to make sure it's not a request that it doesn't want to allow (such as adding multiple contacts, reading the
contacts, or deleting them); it also requires some additional complexity if there's ever the possibility of multiple games simultaneously
trying to interact with the contacts provider.

Using message channels and MessagePortp1022 objects, however, all of these problems can go away. When the game tells the social

Alternatively, it could be implemented as follows:

function addContactsProvider(port) {
port.addEventListener('message', function (event) {

if (event.data.messageType == 'search-result')
handleSearchResult(event.data.results);

});
port.addEventListener('message', function (event) {

if (event.data.messageType == 'search-done')
handleSearchDone();

});
port.addEventListener('message', function (event) {

if (event.data.messageType == 'search-error')
handleSearchError(event.data.message);

});
// ...
port.start();

};

The key difference is that when using addEventListener(), the start()p1024 method must also be invoked. When using
onmessagep1024, the call to start()p1024 is implied.

The start()p1024 method, whether called explicitly or implicitly (by setting onmessagep1024), starts the flow of messages: messages
posted on message ports are initially paused, so that they don't get dropped on the floor before the script has had a chance to set
up its handlers.

9.5.1.2 Ports as the basis of an object-capability model on the web §p10

20

1020

https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment
https://drafts.csswg.org/cssom-view/#eventdef-window-resize

site that it wants to add a contact, the social site can ask the contacts provider not for it to add a contact, but for the capability to add
a single contact. The contacts provider then creates a pair of MessagePortp1022 objects, and sends one of them back to the social site,
who forwards it on to the game. The game and the contacts provider then have a direct connection, and the contacts provider knows
to only honor a single "add contact" request, nothing else. In other words, the game has been granted the capability to add a single
contact.

This section is non-normative.

Continuing the example from the previous section, consider the contacts provider in particular. While an initial implementation might
have simply used XMLHttpRequest objects in the service's iframep361, an evolution of the service might instead want to use a shared
workerp1054 with a single WebSocketp1008 connection.

If the initial design used MessagePortp1022 objects to grant capabilities, or even just to allow multiple simultaneous independent
sessions, the service implementation can switch from the XMLHttpRequests-in-each-iframep361 model to the shared-WebSocketp1008

model without changing the API at all: the ports on the service provider side can all be forwarded to the shared worker without it
affecting the users of the API in the slightest.

[Exposed=(Window,Worker)]
interface MessageChannel {

constructor();

readonly attribute MessagePort port1;
readonly attribute MessagePort port2;

};

A MessageChannelp1021 object has an associated port 1 and an associated port 2, both MessagePortp1022 objects.

The new MessageChannel() constructor steps are:

1. Set this's port 1p1021 to a new MessagePortp1022 in this's relevant Realmp924.

2. Set this's port 2p1021 to a new MessagePortp1022 in this's relevant Realmp924.

3. Entanglep1022 this's port 1p1021 and this's port 2p1021.

The port1 getter steps are to return this's port 1p1021.

The port2 getter steps are to return this's port 2p1021.

Each channel has two message ports. Data sent through one port is received by the other port, and vice versa.

9.5.1.3 Ports as the basis of abstracting out service implementations §p10

21

channel = new MessageChannelp1021()
Returns a new MessageChannelp1021 object with two new MessagePortp1022 objects.

channel . port1p1021

Returns the first MessagePortp1022 object.

channel . port2p1021

Returns the second MessagePortp1022 object.

For web developers (non-normative)

IDL

9.5.2 Message channels §p10

21

9.5.3 Message ports §p10

21

✔ MDN

✔ MDN

✔ MDN
✔ MDN

✔ MDN

1021

https://xhr.spec.whatwg.org/#xmlhttprequest
https://xhr.spec.whatwg.org/#xmlhttprequest
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#new
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#new
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this

[Exposed=(Window,Worker,AudioWorklet), Transferable]
interface MessagePort : EventTarget {

undefined postMessage(any message, sequence<object> transfer);
undefined postMessage(any message, optional PostMessageOptions options = {});
undefined start();
undefined close();

// event handlers
attribute EventHandler onmessage;
attribute EventHandler onmessageerror;

};

dictionary PostMessageOptions {
sequence<object> transfer = [];

};

Each MessagePortp1022 object can be entangled with another (a symmetric relationship). Each MessagePortp1022 object also has a task
sourcep945 called the port message queue, initially empty. A port message queuep1022 can be enabled or disabled, and is initially
disabled. Once enabled, a port can never be disabled again (though messages in the queue can get moved to another queue or
removed altogether, which has much the same effect). A MessagePortp1022 also has a has been shipped flag, which must initially be
false.

When a port's port message queuep1022 is enabled, the event loopp944 must use it as one of its task sourcesp945. When a port's relevant
global objectp924 is a Windowp824, all tasksp944 queuedp945 on its port message queuep1022 must be associated with the port's relevant
global objectp924 's associated Documentp826.

Each event loopp944 has a task sourcep945 called the unshipped port message queue. This is a virtual task sourcep945: it must act as
if it contained the tasksp944 of each port message queuep1022 of each MessagePortp1022 whose has been shippedp1022 flag is false, whose
port message queuep1022 is enabled, and whose relevant agentp914 's event loopp944 is that event loopp944, in the order in which they
were added to their respective task sourcep945. When a taskp944 would be removed from the unshipped port message queuep1022, it
must instead be removed from its port message queuep1022.

When a MessagePortp1022 's has been shippedp1022 flag is false, its port message queuep1022 must be ignored for the purposes of the
event loopp944. (The unshipped port message queuep1022 is used instead.)

When the user agent is to entangle two MessagePortp1022 objects, it must run the following steps:

port . postMessagep1024(message [, transfer])
port . postMessagep1024(message [, { transfer }])

Posts a message through the channel. Objects listed in transfer are transferred, not just cloned, meaning that they are no longer
usable on the sending side.
Throws a "DataCloneError" DOMException if transfer contains duplicate objects or port, or if message could not be cloned.

port . startp1024()
Begins dispatching messages received on the port.

port . closep1024()
Disconnects the port, so that it is no longer active.

For web developers (non-normative)

If the document is fully activep815, but the event listeners all have scripts whose settings objectsp925 specify responsible
documentsp917 that are not fully activep815, then the messages will not be recieved unless and until the documents become fully
activep815 again.

Note

The has been shippedp1022 flag is set to true when a port, its twin, or the object it was cloned from, is or has been transferred.
When a MessagePortp1022 's has been shippedp1022 flag is true, its port message queuep1022 acts as a first-class task sourcep945,
unaffected to any unshipped port message queuep1022.

Note

IDL

1022

https://dom.spec.whatwg.org/#interface-eventtarget
https://heycam.github.io/webidl/#idl-object
https://heycam.github.io/webidl/#idl-object
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException

1. If one of the ports is already entangled, then disentangle it and the port that it was entangled with.

2. Associate the two ports to be entangled, so that they form the two parts of a new channel. (There is no MessageChannelp1021

object that represents this channel.)

Two ports A and B that have gone through this step are now said to be entangled; one is entangled to the other, and vice
versa.

MessagePortp1022 objects are transferable objectsp103. Their transfer stepsp104, given value and dataHolder, are:

1. Set value's has been shippedp1022 flag to true.

2. Set dataHolder.[[PortMessageQueue]] to value's port message queuep1022.

3. If value is entangled with another port remotePort, then:

1. Set remotePort's has been shippedp1022 flag to true.

2. Set dataHolder.[[RemotePort]] to remotePort.

4. Otherwise, set dataHolder.[[RemotePort]] to null.

Their transfer-receiving stepsp104, given dataHolder and value, are:

1. Set value's has been shippedp1022 flag to true.

2. Move all the tasksp944 that are to fire messagep1282 events in dataHolder.[[PortMessageQueue]] to the port message
queuep1022 of value, if any, leaving value's port message queuep1022 in its initial disabled state, and, if value's relevant global
objectp924 is a Windowp824, associating the moved tasksp944 with value's relevant global objectp924 's associated Documentp826.

3. If dataHolder.[[RemotePort]] is not null, then entanglep1022 dataHolder.[[RemotePort]] and value. (This will disentangle
dataHolder.[[RemotePort]] from the original port that was transferred.)

The message port post message steps, given a targetPort, message and options are as follows:

1. Let transfer be options["transferp1022"].

2. If transfer contains this MessagePortp1022, then throw a "DataCloneError" DOMException.

3. Let doomed be false.

4. If targetPort is not null and transfer contains targetPort, then set doomed to true and optionally report to a developer console
that the target port was posted to itself, causing the communication channel to be lost.

5. Let serializeWithTransferResult be StructuredSerializeWithTransferp111(message, transfer). Rethrow any exceptions.

6. If targetPort is null, or if doomed is true, then return.

7. Add a taskp944 that runs the following steps to the port message queuep1022 of targetPort:

1. Let finalTargetPort be the MessagePortp1022 in whose port message queuep1022 the task now finds itself.

If those two previously entangled ports were the two ports of a MessageChannelp1021 object, then that
MessageChannelp1021 object no longer represents an actual channel: the two ports in that object are no longer entangled.

Note

While this specification describes this process as instantaneous, implementations are more likely to implement it via
message passing. As with all algorithms, the key is "merely" that the end result be indistinguishable, in a black-box
sense, from the specification.

Note

This can be different from targetPort, if targetPort itself was transferred and thus all its tasks moved along with
it.

Note

1023

https://infra.spec.whatwg.org/#list-contain
https://heycam.github.io/webidl/#datacloneerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#list-contain

2. Let targetRealm be finalTargetPort's relevant Realmp924.

3. Let deserializeRecord be StructuredDeserializeWithTransferp112(serializeWithTransferResult, targetRealm).

If this throws an exception, catch it, fire an event named messageerrorp1282 at finalTargetPort, using
MessageEventp998, and then return.

4. Let messageClone be deserializeRecord.[[Deserialized]].

5. Let newPorts be a new frozen array consisting of all MessagePortp1022 objects in
deserializeRecord.[[TransferredValues]], if any, maintaining their relative order.

6. Fire an event named messagep1282 at finalTargetPort, using MessageEventp998, with the datap998 attribute initialized
to messageClone and the portsp999 attribute initialized to newPorts.

The postMessage(message, options) method, when invoked on a MessagePortp1022 object must run the following steps:

1. Let targetPort be the port with which this MessagePortp1022 is entangled, if any; otherwise let it be null.

2. Run the message port post message stepsp1023 providing targetPort, message and options.

The postMessage(message, transfer) method, when invoked on a MessagePortp1022 object must run the following steps:

1. Let targetPort be the port with which this MessagePortp1022 is entangled, if any; otherwise let it be null.

2. Let options be «["transferp1022" → transfer]».

3. Run the message port post message stepsp1023 providing targetPort, message and options.

The start() method, when invoked, must enable this MessagePortp1022 object's port message queuep1022, if it is not already enabled.

The close() method, when invoked, must run these steps:

1. Set this MessagePortp1022 object's [[Detached]]p104 internal slot value to true.

2. If this MessagePortp1022 object is entangled, disentangle it.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the MessagePortp1022 interface:

Event handlerp954 Event handler event typep957

onmessage messagep1282

onmessageerror messageerrorp1282

The first time a MessagePortp1022 object's onmessagep1024 IDL attribute is set, the port's port message queuep1022 must be enabled, as if
the start()p1024 method had been called.

This section is non-normative.

Broadcasting to many ports is in principle relatively simple: keep an array of MessagePortp1022 objects to send messages to, and iterate
through the array to send a message. However, this has one rather unfortunate effect: it prevents the ports from being garbage
collected, even if the other side has gone away. To avoid this problem, implement a simple protocol whereby the other side
acknowledges it still exists. If it doesn't do so after a certain amount of time, assume it's gone, close the MessagePortp1022 object, and
let it be garbage collected.

9.5.4 Broadcasting to many ports §p10

24

✔ MDN

✔ MDN

✔ MDN

✔ MDN

MDN

1024

https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#dfn-frozen-array-type
https://dom.spec.whatwg.org/#concept-event-fire

When a MessagePortp1022 object o is entangled, user agents must either act as if o's entangled MessagePortp1022 object has a strong
reference to o, or as if o's relevant global objectp924 has a strong reference to o.

Furthermore, a MessagePortp1022 object must not be garbage collected while there exists an event referenced by a taskp944 in a task
queuep944 that is to be dispatched on that MessagePortp1022 object, or while the MessagePortp1022 object's port message queuep1022 is
enabled and not empty.

Pages on a single originp837 opened by the same user in the same user agent but in different unrelated browsing contextsp811

sometimes need to send notifications to each other, for example "hey, the user logged in over here, check your credentials again".

For elaborate cases, e.g. to manage locking of shared state, to manage synchronization of resources between a server and multiple
local clients, to share a WebSocketp1008 connection with a remote host, and so forth, shared workersp1054 are the most appropriate
solution.

For simple cases, though, where a shared worker would be an unreasonable overhead, authors can use the simple channel-based
broadcast mechanism described in this section.

[Exposed=(Window,Worker)]
interface BroadcastChannel : EventTarget {

constructor(DOMString name);

readonly attribute DOMString name;
undefined postMessage(any message);
undefined close();
attribute EventHandler onmessage;
attribute EventHandler onmessageerror;

};

Thus, a message port can be received, given an event listener, and then forgotten, and so long as that event listener could receive
a message, the channel will be maintained.

Of course, if this was to occur on both sides of the channel, then both ports could be garbage collected, since they would not be
reachable from live code, despite having a strong reference to each other.

Note

Authors are strongly encouraged to explicitly close MessagePortp1022 objects to disentangle them, so that their resources can be
recollected. Creating many MessagePortp1022 objects and discarding them without closing them can lead to high transient memory
usage since garbage collection is not necessarily performed promptly, especially for MessagePortp1022s where garbage collection
can involve cross-process coordination.

Note

9.6 Broadcasting to other browsing contexts §p10

25

broadcastChannel = new BroadcastChannelp1026(name)
Returns a new BroadcastChannelp1025 object via which messages for the given channel name can be sent and received.

broadcastChannel . namep1026

Returns the channel name (as passed to the constructor).

broadcastChannel . postMessagep1026(message)
Sends the given message to other BroadcastChannelp1025 objects set up for this channel. Messages can be structured objects,
e.g. nested objects and arrays.

broadcastChannel . closep1026()
Closes the BroadcastChannelp1025 object, opening it up to garbage collection.

For web developers (non-normative)

IDL

9.5.5 Ports and garbage collection §p10

25

MDN

MDN

1025

https://dom.spec.whatwg.org/#interface-eventtarget

A BroadcastChannelp1025 object has a channel name and a closed flag.

The new BroadcastChannel(name) constructor steps are:

1. Set this's channel namep1026 to name.

2. Set this's closed flagp1026 to false.

The name getter steps are to return this's channel namep1026.

The postMessage(message) method steps are:

1. If this's closed flagp1026 is true, then throw an "InvalidStateError" DOMException.

2. Let serialized be StructuredSerializep108(message). Rethrow any exceptions.

3. Let sourceOrigin be this's relevant settings objectp924 's originp917.

4. Let destinations be a list of BroadcastChannelp1025 objects that match the following criteria:

◦ Their relevant global objectp924 is either:

▪ a Windowp824 object whose associated Documentp826 is fully activep815, or

▪ a WorkerGlobalScopep1044 object whose closingp1047 flag is false and whose workerp1053 is not a
suspendable workerp1048.

◦ Their relevant settings objectp924 's originp917 is same originp838 with sourceOrigin.

◦ Their channel namep1026 is this's channel namep1026.

5. Remove source from destinations.

6. Sort destinations such that all BroadcastChannelp1025 objects whose relevant agentsp914 are the same are sorted in creation
order, oldest first. (This does not define a complete ordering. Within this constraint, user agents may sort the list in any
implementation-defined manner.)

7. For each destination in destinations, queue a global taskp945 on the DOM manipulation task sourcep952 given destination's
relevant global objectp924 to perform the following steps:

1. If destination's closed flagp1026 is true, then abort these steps.

2. Let targetRealm be destination's relevant Realmp924.

3. Let data be StructuredDeserializep108(serialized, targetRealm).

If this throws an exception, catch it, fire an event named messageerrorp1282 at destination, using MessageEventp998,
with the originp998 attribute initialized to the serializationp838 of sourceOrigin, and then abort these steps.

4. Fire an event named messagep1282 at destination, using MessageEventp998, with the datap998 attribute initialized to
data and the originp998 attribute initialized to the serializationp838 of sourceOrigin.

While a BroadcastChannelp1025 object whose closed flagp1026 is false has an event listener registered for messagep1282 or
messageerrorp1282 events, there must be a strong reference from the BroadcastChannelp1025 object's relevant global objectp924 to the
BroadcastChannelp1025 object itself.

The close() method steps are to set this's closed flagp1026 to true.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by all objects implementing the BroadcastChannelp1025 interface:

Authors are strongly encouraged to explicitly close BroadcastChannelp1025 objects when they are no longer needed, so that they
can be garbage collected. Creating many BroadcastChannelp1025 objects and discarding them while leaving them with an event
listener and without closing them can lead to an apparent memory leak, since the objects will continue to live for as long as they
have an event listener (or until their page or worker is closed).

Note

MDN

MDN
MDN

MDN

1026

https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#string-is
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#this

Event handlerp954 Event handler event typep957

onmessage messagep1282

onmessageerror messageerrorp1282

Suppose a page wants to know when the user logs out, even when the user does so from another tab at the same site:

var authChannel = new BroadcastChannel('auth');
authChannel.onmessage = function (event) {

if (event.data == 'logout')
showLogout();

}

function logoutRequested() {
// called when the user asks us to log them out
doLogout();
showLogout();
authChannel.postMessage('logout');

}

function doLogout() {
// actually log the user out (e.g. clearing cookies)
// ...

}

function showLogout() {
// update the UI to indicate we're logged out
// ...

}

Example

MDN

MDN

1027

This section is non-normative.

This specification defines an API for running scripts in the background independently of any user interface scripts.

This allows for long-running scripts that are not interrupted by scripts that respond to clicks or other user interactions, and allows long
tasks to be executed without yielding to keep the page responsive.

Workers (as these background scripts are called herein) are relatively heavy-weight, and are not intended to be used in large numbers.
For example, it would be inappropriate to launch one worker for each pixel of a four megapixel image. The examples below show some
appropriate uses of workers.

Generally, workers are expected to be long-lived, have a high start-up performance cost, and a high per-instance memory cost.

This section is non-normative.

There are a variety of uses that workers can be put to. The following subsections show various examples of this use.

This section is non-normative.

The simplest use of workers is for performing a computationally expensive task without interrupting the user interface.

In this example, the main document spawns a worker to (naïvely) compute prime numbers, and progressively displays the most
recently found prime number.

The main page is as follows:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Worker example: One-core computation</title>

</head>
<body>
<p>The highest prime number discovered so far is: <output id="result"></output></p>
<script>
var worker = new Worker('worker.js');
worker.onmessage = function (event) {

document.getElementById('result').textContent = event.data;
};

</script>
</body>

</html>

The Worker()p1054 constructor call creates a worker and returns a Workerp1053 object representing that worker, which is used to

10 Web workers §p10

28

10.1 Introduction §p10

28

10.1.2.1 A background number-crunching worker §p10

28

10.1.1 Scope §p10

28

10.1.2 Examples §p10

28

✔ MDN

1028

communicate with the worker. That object's onmessagep1054 event handler allows the code to receive messages from the worker.

The worker itself is as follows:

var n = 1;
search: while (true) {

n += 1;
for (var i = 2; i <= Math.sqrt(n); i += 1)

if (n % i == 0)
continue search;

// found a prime!
postMessage(n);

}

The bulk of this code is simply an unoptimized search for a prime number. The postMessage()p1046 method is used to send a message
back to the page when a prime is found.

View this example online.

This section is non-normative.

All of our examples so far show workers that run classic scriptsp925. Workers can instead be instantiated using module scriptsp925, which
have the usual benefits: the ability to use the JavaScript import statement to import other modules; strict mode by default; and top-
level declarations not polluting the worker's global scope.

As the import statement is available, the importScripts()p1056 method will automatically fail inside module workers.

In this example, the main document uses a worker to do off-main-thread image manipulation. It imports the filters used from another
module.

The main page is as follows:

<!DOCTYPE html>
<html lang="en">
<meta charset="utf-8">
<title>Worker example: image decoding</title>

<p>
<label>

Type an image URL to decode
<input type="url" id="image-url" list="image-list">
<datalist id="image-list">

<option value="https://html.spec.whatwg.org/images/drawImage.png">
<option value="https://html.spec.whatwg.org/images/robots.jpeg">
<option value="https://html.spec.whatwg.org/images/arcTo2.png">

</datalist>
</label>

</p>

<p>
<label>

Choose a filter to apply
<select id="filter">

<option value="none">none</option>
<option value="grayscale">grayscale</option>
<option value="brighten">brighten by 20%</option>

</select>
</label>

</p>

10.1.2.2 Using a JavaScript module as a worker §p10

29

1029

https://html.spec.whatwg.org/demos/workers/primes/page.html

<canvas id="output"></canvas>

<script type="module">
const worker = new Worker("worker.js", { type: "module" });
worker.onmessage = receiveFromWorker;

const url = document.querySelector("#image-url");
const filter = document.querySelector("#filter");
const output = document.querySelector("#output");

url.oninput = updateImage;
filter.oninput = sendToWorker;

let imageData, context;

function updateImage() {
const img = new Image();
img.src = url.value;

img.onload = () => {
output.innerHTML = "";

const canvas = document.createElement("canvas");
canvas.width = img.width;
canvas.height = img.height;

context = canvas.getContext("2d");
context.drawImage(img, 0, 0);
imageData = context.getImageData(0, 0, canvas.width, canvas.height);

sendToWorker();
output.appendChild(canvas);

};
}

function sendToWorker() {
worker.postMessage({ imageData, filter: filter.value });

}

function receiveFromWorker(e) {
context.putImageData(e.data, 0, 0);

}
</script>

The worker file is then:

import * as filters from "./filters.js";

self.onmessage = e => {
const { imageData, filter } = e.data;
filters[filter](imageData);
self.postMessage(imageData, [imageData.data.buffer]);

};

Which imports the file filters.js:

export function none() {}

export function grayscale({ data: d }) {
for (let i = 0; i < d.length; i += 4) {

1030

const [r, g, b] = [d[i], d[i + 1], d[i + 2]];

// CIE luminance for the RGB
// The human eye is bad at seeing red and blue, so we de-emphasize them.
d[i] = d[i + 1] = d[i + 2] = 0.2126 * r + 0.7152 * g + 0.0722 * b;

}
};

export function brighten({ data: d }) {
for (let i = 0; i < d.length; ++i) {

d[i] *= 1.2;
}

};

View this example online.

This section is non-normative.

This section introduces shared workers using a Hello World example. Shared workers use slightly different APIs, since each worker can
have multiple connections.

This first example shows how you connect to a worker and how a worker can send a message back to the page when it connects to it.
Received messages are displayed in a log.

Here is the HTML page:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Shared workers: demo 1</title>
<pre id="log">Log:</pre>
<script>

var worker = new SharedWorker('test.js');
var log = document.getElementById('log');
worker.port.onmessage = function(e) { // note: not worker.onmessage!

log.textContent += '\n' + e.data;
}

</script>

Here is the JavaScript worker:

onconnect = function(e) {
var port = e.ports[0];
port.postMessage('Hello World!');

}

View this example online.

This second example extends the first one by changing two things: first, messages are received using addEventListener() instead of
an event handler IDL attributep955, and second, a message is sent to the worker, causing the worker to send another message in return.
Received messages are again displayed in a log.

Here is the HTML page:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">

10.1.2.3 Shared workers introduction §p10

31

MDN

1031

https://html.spec.whatwg.org/demos/workers/modules/page.html
https://html.spec.whatwg.org/demos/workers/shared/001/test.html

<title>Shared workers: demo 2</title>
<pre id="log">Log:</pre>
<script>

var worker = new SharedWorker('test.js');
var log = document.getElementById('log');
worker.port.addEventListener('message', function(e) {

log.textContent += '\n' + e.data;
}, false);
worker.port.start(); // note: need this when using addEventListener
worker.port.postMessage('ping');

</script>

Here is the JavaScript worker:

onconnect = function(e) {
var port = e.ports[0];
port.postMessage('Hello World!');
port.onmessage = function(e) {

port.postMessage('pong'); // not e.ports[0].postMessage!
// e.target.postMessage('pong'); would work also

}
}

View this example online.

Finally, the example is extended to show how two pages can connect to the same worker; in this case, the second page is merely in an
iframep361 on the first page, but the same principle would apply to an entirely separate page in a separate top-level browsing
contextp814.

Here is the outer HTML page:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Shared workers: demo 3</title>
<pre id="log">Log:</pre>
<script>

var worker = new SharedWorker('test.js');
var log = document.getElementById('log');
worker.port.addEventListener('message', function(e) {

log.textContent += '\n' + e.data;
}, false);
worker.port.start();
worker.port.postMessage('ping');

</script>
<iframe src="inner.html"></iframe>

Here is the inner HTML page:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Shared workers: demo 3 inner frame</title>
<pre id=log>Inner log:</pre>
<script>

var worker = new SharedWorker('test.js');
var log = document.getElementById('log');
worker.port.onmessage = function(e) {
log.textContent += '\n' + e.data;

}

1032

https://html.spec.whatwg.org/demos/workers/shared/002/test.html

</script>

Here is the JavaScript worker:

var count = 0;
onconnect = function(e) {

count += 1;
var port = e.ports[0];
port.postMessage('Hello World! You are connection #' + count);
port.onmessage = function(e) {

port.postMessage('pong');
}

}

View this example online.

This section is non-normative.

In this example, multiple windows (viewers) can be opened that are all viewing the same map. All the windows share the same map
information, with a single worker coordinating all the viewers. Each viewer can move around independently, but if they set any data on
the map, all the viewers are updated.

The main page isn't interesting, it merely provides a way to open the viewers:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Workers example: Multiviewer</title>
<script>
function openViewer() {

window.open('viewer.html');
}

</script>
</head>
<body>
<p><button type=button onclick="openViewer()">Open a new
viewer</button></p>
<p>Each viewer opens in a new window. You can have as many viewers
as you like, they all view the same data.</p>

</body>
</html>

The viewer is more involved:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Workers example: Multiviewer viewer</title>
<script>
var worker = new SharedWorker('worker.js', 'core');

// CONFIGURATION
function configure(event) {

if (event.data.substr(0, 4) != 'cfg ') return;
var name = event.data.substr(4).split(' ', 1)[0];

10.1.2.4 Shared state using a shared worker §p10

33

1033

https://html.spec.whatwg.org/demos/workers/shared/003/test.html

// update display to mention our name is name
document.getElementsByTagName('h1')[0].textContent += ' ' + name;
// no longer need this listener
worker.port.removeEventListener('message', configure, false);

}
worker.port.addEventListener('message', configure, false);

// MAP
function paintMap(event) {

if (event.data.substr(0, 4) != 'map ') return;
var data = event.data.substr(4).split(',');
// display tiles data[0] .. data[8]
var canvas = document.getElementById('map');
var context = canvas.getContext('2d');
for (var y = 0; y < 3; y += 1) {

for (var x = 0; x < 3; x += 1) {
var tile = data[y * 3 + x];
if (tile == '0')

context.fillStyle = 'green';
else

context.fillStyle = 'maroon';
context.fillRect(x * 50, y * 50, 50, 50);

}
}

}
worker.port.addEventListener('message', paintMap, false);

// PUBLIC CHAT
function updatePublicChat(event) {

if (event.data.substr(0, 4) != 'txt ') return;
var name = event.data.substr(4).split(' ', 1)[0];
var message = event.data.substr(4 + name.length + 1);
// display "<name> message" in public chat
var public = document.getElementById('public');
var p = document.createElement('p');
var n = document.createElement('button');
n.textContent = '<' + name + '> ';
n.onclick = function () { worker.port.postMessage('msg ' + name); };
p.appendChild(n);
var m = document.createElement('span');
m.textContent = message;
p.appendChild(m);
public.appendChild(p);

}
worker.port.addEventListener('message', updatePublicChat, false);

// PRIVATE CHAT
function startPrivateChat(event) {

if (event.data.substr(0, 4) != 'msg ') return;
var name = event.data.substr(4).split(' ', 1)[0];
var port = event.ports[0];
// display a private chat UI
var ul = document.getElementById('private');
var li = document.createElement('li');
var h3 = document.createElement('h3');
h3.textContent = 'Private chat with ' + name;
li.appendChild(h3);
var div = document.createElement('div');
var addMessage = function(name, message) {

var p = document.createElement('p');
var n = document.createElement('strong');
n.textContent = '<' + name + '> ';

1034

p.appendChild(n);
var t = document.createElement('span');
t.textContent = message;
p.appendChild(t);
div.appendChild(p);

};
port.onmessage = function (event) {

addMessage(name, event.data);
};
li.appendChild(div);
var form = document.createElement('form');
var p = document.createElement('p');
var input = document.createElement('input');
input.size = 50;
p.appendChild(input);
p.appendChild(document.createTextNode(' '));
var button = document.createElement('button');
button.textContent = 'Post';
p.appendChild(button);
form.onsubmit = function () {

port.postMessage(input.value);
addMessage('me', input.value);
input.value = '';
return false;

};
form.appendChild(p);
li.appendChild(form);
ul.appendChild(li);

}
worker.port.addEventListener('message', startPrivateChat, false);

worker.port.start();
</script>

</head>
<body>
<h1>Viewer</h1>
<h2>Map</h2>
<p><canvas id="map" height=150 width=150></canvas></p>
<p>
<button type=button onclick="worker.port.postMessage('mov left')">Left</button>
<button type=button onclick="worker.port.postMessage('mov up')">Up</button>
<button type=button onclick="worker.port.postMessage('mov down')">Down</button>
<button type=button onclick="worker.port.postMessage('mov right')">Right</button>
<button type=button onclick="worker.port.postMessage('set 0')">Set 0</button>
<button type=button onclick="worker.port.postMessage('set 1')">Set 1</button>

</p>
<h2>Public Chat</h2>
<div id="public"></div>
<form onsubmit="worker.port.postMessage('txt ' + message.value); message.value = ''; return false;">
<p>
<input type="text" name="message" size="50">
<button>Post</button>

</p>
</form>
<h2>Private Chat</h2>
<ul id="private">

</body>
</html>

There are several key things worth noting about the way the viewer is written.

Multiple listeners. Instead of a single message processing function, the code here attaches multiple event listeners, each one

1035

performing a quick check to see if it is relevant for the message. In this example it doesn't make much difference, but if multiple
authors wanted to collaborate using a single port to communicate with a worker, it would allow for independent code instead of
changes having to all be made to a single event handling function.

Registering event listeners in this way also allows you to unregister specific listeners when you are done with them, as is done with the
configure() method in this example.

Finally, the worker:

var nextName = 0;
function getNextName() {

// this could use more friendly names
// but for now just return a number
return nextName++;

}

var map = [
[0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 0, 1, 1],
[0, 1, 0, 1, 0, 0, 0],
[0, 1, 0, 1, 0, 1, 1],
[0, 0, 0, 1, 0, 0, 0],
[1, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 0, 1],

];

function wrapX(x) {
if (x < 0) return wrapX(x + map[0].length);
if (x >= map[0].length) return wrapX(x - map[0].length);
return x;

}

function wrapY(y) {
if (y < 0) return wrapY(y + map.length);
if (y >= map[0].length) return wrapY(y - map.length);
return y;

}

function wrap(val, min, max) {
if (val < min)

return val + (max-min)+1;
if (val > max)

return val - (max-min)-1;
return val;

}

function sendMapData(viewer) {
var data = '';
for (var y = viewer.y-1; y <= viewer.y+1; y += 1) {

for (var x = viewer.x-1; x <= viewer.x+1; x += 1) {
if (data != '')

data += ',';
data += map[wrap(y, 0, map[0].length-1)][wrap(x, 0, map.length-1)];

}
}
viewer.port.postMessage('map ' + data);

}

var viewers = {};
onconnect = function (event) {

var name = getNextName();
event.ports[0]._data = { port: event.ports[0], name: name, x: 0, y: 0, };
viewers[name] = event.ports[0]._data;

1036

event.ports[0].postMessage('cfg ' + name);
event.ports[0].onmessage = getMessage;
sendMapData(event.ports[0]._data);

};

function getMessage(event) {
switch (event.data.substr(0, 4)) {

case 'mov ':
var direction = event.data.substr(4);
var dx = 0;
var dy = 0;
switch (direction) {

case 'up': dy = -1; break;
case 'down': dy = 1; break;
case 'left': dx = -1; break;
case 'right': dx = 1; break;

}
event.target._data.x = wrapX(event.target._data.x + dx);
event.target._data.y = wrapY(event.target._data.y + dy);
sendMapData(event.target._data);
break;

case 'set ':
var value = event.data.substr(4);
map[event.target._data.y][event.target._data.x] = value;
for (var viewer in viewers)

sendMapData(viewers[viewer]);
break;

case 'txt ':
var name = event.target._data.name;
var message = event.data.substr(4);
for (var viewer in viewers)

viewers[viewer].port.postMessage('txt ' + name + ' ' + message);
break;

case 'msg ':
var party1 = event.target._data;
var party2 = viewers[event.data.substr(4).split(' ', 1)[0]];
if (party2) {

var channel = new MessageChannel();
party1.port.postMessage('msg ' + party2.name, [channel.port1]);
party2.port.postMessage('msg ' + party1.name, [channel.port2]);

}
break;

}
}

Connecting to multiple pages. The script uses the onconnectp1047 event listener to listen for multiple connections.

Direct channels. When the worker receives a "msg" message from one viewer naming another viewer, it sets up a direct connection
between the two, so that the two viewers can communicate directly without the worker having to proxy all the messages.

View this example online.

This section is non-normative.

With multicore CPUs becoming prevalent, one way to obtain better performance is to split computationally expensive tasks amongst
multiple workers. In this example, a computationally expensive task that is to be performed for every number from 1 to 10,000,000 is
farmed out to ten subworkers.

The main page is as follows, it just reports the result:

10.1.2.5 Delegation §p10

37

1037

https://html.spec.whatwg.org/demos/workers/multiviewer/page.html

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Worker example: Multicore computation</title>

</head>
<body>
<p>Result: <output id="result"></output></p>
<script>
var worker = new Worker('worker.js');
worker.onmessage = function (event) {

document.getElementById('result').textContent = event.data;
};

</script>
</body>

</html>

The worker itself is as follows:

// settings
var num_workers = 10;
var items_per_worker = 1000000;

// start the workers
var result = 0;
var pending_workers = num_workers;
for (var i = 0; i < num_workers; i += 1) {

var worker = new Worker('core.js');
worker.postMessage(i * items_per_worker);
worker.postMessage((i+1) * items_per_worker);
worker.onmessage = storeResult;

}

// handle the results
function storeResult(event) {

result += 1*event.data;
pending_workers -= 1;
if (pending_workers <= 0)

postMessage(result); // finished!
}

It consists of a loop to start the subworkers, and then a handler that waits for all the subworkers to respond.

The subworkers are implemented as follows:

var start;
onmessage = getStart;
function getStart(event) {

start = 1*event.data;
onmessage = getEnd;

}

var end;
function getEnd(event) {

end = 1*event.data;
onmessage = null;
work();

}

function work() {
var result = 0;
for (var i = start; i < end; i += 1) {

1038

// perform some complex calculation here
result += 1;

}
postMessage(result);
close();

}

They receive two numbers in two events, perform the computation for the range of numbers thus specified, and then report the result
back to the parent.

View this example online.

This section is non-normative.

Suppose that a cryptography library is made available that provides three tasks:

Generate a public/private key pair
Takes a port, on which it will send two messages, first the public key and then the private key.

Given a plaintext and a public key, return the corresponding ciphertext
Takes a port, to which any number of messages can be sent, the first giving the public key, and the remainder giving the plaintext,
each of which is encrypted and then sent on that same channel as the ciphertext. The user can close the port when it is done
encrypting content.

Given a ciphertext and a private key, return the corresponding plaintext
Takes a port, to which any number of messages can be sent, the first giving the private key, and the remainder giving the
ciphertext, each of which is decrypted and then sent on that same channel as the plaintext. The user can close the port when it is
done decrypting content.

The library itself is as follows:

function handleMessage(e) {
if (e.data == "genkeys")

genkeys(e.ports[0]);
else if (e.data == "encrypt")

encrypt(e.ports[0]);
else if (e.data == "decrypt")

decrypt(e.ports[0]);
}

function genkeys(p) {
var keys = _generateKeyPair();
p.postMessage(keys[0]);
p.postMessage(keys[1]);

}

function encrypt(p) {
var key, state = 0;
p.onmessage = function (e) {

if (state == 0) {
key = e.data;
state = 1;

} else {
p.postMessage(_encrypt(key, e.data));

}
};

}

function decrypt(p) {

10.1.2.6 Providing libraries §p10

39

1039

https://html.spec.whatwg.org/demos/workers/multicore/page.html

var key, state = 0;
p.onmessage = function (e) {

if (state == 0) {
key = e.data;
state = 1;

} else {
p.postMessage(_decrypt(key, e.data));

}
};

}

// support being used as a shared worker as well as a dedicated worker
if ('onmessage' in this) // dedicated worker

onmessage = handleMessage;
else // shared worker

onconnect = function (e) { e.port.onmessage = handleMessage; }

// the "crypto" functions:

function _generateKeyPair() {
return [Math.random(), Math.random()];

}

function _encrypt(k, s) {
return 'encrypted-' + k + ' ' + s;

}

function _decrypt(k, s) {
return s.substr(s.indexOf(' ')+1);

}

Note that the crypto functions here are just stubs and don't do real cryptography.

This library could be used as follows:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Worker example: Crypto library</title>
<script>
const cryptoLib = new Worker('libcrypto-v1.js'); // or could use 'libcrypto-v2.js'
function startConversation(source, message) {

const messageChannel = new MessageChannel();
source.postMessage(message, [messageChannel.port2]);
return messageChannel.port1;

}
function getKeys() {

let state = 0;
startConversation(cryptoLib, "genkeys").onmessage = function (e) {

if (state === 0)
document.getElementById('public').value = e.data;

else if (state === 1)
document.getElementById('private').value = e.data;

state += 1;
};

}
function enc() {

const port = startConversation(cryptoLib, "encrypt");
port.postMessage(document.getElementById('public').value);
port.postMessage(document.getElementById('input').value);

1040

port.onmessage = function (e) {
document.getElementById('input').value = e.data;
port.close();

};
}
function dec() {

const port = startConversation(cryptoLib, "decrypt");
port.postMessage(document.getElementById('private').value);
port.postMessage(document.getElementById('input').value);
port.onmessage = function (e) {

document.getElementById('input').value = e.data;
port.close();

};
}

</script>
<style>
textarea { display: block; }

</style>
</head>
<body onload="getKeys()">
<fieldset>
<legend>Keys</legend>
<p><label>Public Key: <textarea id="public"></textarea></label></p>
<p><label>Private Key: <textarea id="private"></textarea></label></p>

</fieldset>
<p><label>Input: <textarea id="input"></textarea></label></p>
<p><button onclick="enc()">Encrypt</button> <button onclick="dec()">Decrypt</button></p>

</body>
</html>

A later version of the API, though, might want to offload all the crypto work onto subworkers. This could be done as follows:

function handleMessage(e) {
if (e.data == "genkeys")

genkeys(e.ports[0]);
else if (e.data == "encrypt")

encrypt(e.ports[0]);
else if (e.data == "decrypt")

decrypt(e.ports[0]);
}

function genkeys(p) {
var generator = new Worker('libcrypto-v2-generator.js');
generator.postMessage('', [p]);

}

function encrypt(p) {
p.onmessage = function (e) {

var key = e.data;
var encryptor = new Worker('libcrypto-v2-encryptor.js');
encryptor.postMessage(key, [p]);

};
}

function encrypt(p) {
p.onmessage = function (e) {

var key = e.data;
var decryptor = new Worker('libcrypto-v2-decryptor.js');
decryptor.postMessage(key, [p]);

};
}

1041

// support being used as a shared worker as well as a dedicated worker
if ('onmessage' in this) // dedicated worker

onmessage = handleMessage;
else // shared worker

onconnect = function (e) { e.ports[0].onmessage = handleMessage };

The little subworkers would then be as follows.

For generating key pairs:

onmessage = function (e) {
var k = _generateKeyPair();
e.ports[0].postMessage(k[0]);
e.ports[0].postMessage(k[1]);
close();

}

function _generateKeyPair() {
return [Math.random(), Math.random()];

}

For encrypting:

onmessage = function (e) {
var key = e.data;
e.ports[0].onmessage = function (e) {

var s = e.data;
postMessage(_encrypt(key, s));

}
}

function _encrypt(k, s) {
return 'encrypted-' + k + ' ' + s;

}

For decrypting:

onmessage = function (e) {
var key = e.data;
e.ports[0].onmessage = function (e) {

var s = e.data;
postMessage(_decrypt(key, s));

}
}

function _decrypt(k, s) {
return s.substr(s.indexOf(' ')+1);

}

Notice how the users of the API don't have to even know that this is happening — the API hasn't changed; the library can delegate to
subworkers without changing its API, even though it is accepting data using message channels.

View this example online.

This section is non-normative.

10.1.3.1 Creating a dedicated worker §p10

42

10.1.3 Tutorials §p10

42

1042

https://html.spec.whatwg.org/demos/workers/crypto/page.html

Creating a worker requires a URL to a JavaScript file. The Worker()p1054 constructor is invoked with the URL to that file as its only
argument; a worker is then created and returned:

var worker = new Worker('helper.js');

If you want your worker script to be interpreted as a module scriptp925 instead of the default classic scriptp925, you need to use a slightly
different signature:

var worker = new Worker('helper.mjs', { type: "module" });

This section is non-normative.

Dedicated workers use MessagePortp1022 objects behind the scenes, and thus support all the same features, such as sending structured
data, transferring binary data, and transferring other ports.

To receive messages from a dedicated worker, use the onmessagep1054 event handler IDL attributep955 on the Workerp1053 object:

worker.onmessage = function (event) { ... };

You can also use the addEventListener() method.

To send data to a worker, use the postMessage()p1053 method. Structured data can be sent over this communication channel. To send
ArrayBuffer objects efficiently (by transferring them rather than cloning them), list them in an array in the second argument.

worker.postMessage({
operation: 'find-edges',
input: buffer, // an ArrayBuffer object
threshold: 0.6,

}, [buffer]);

To receive a message inside the worker, the onmessagep1047 event handler IDL attributep955 is used.

onmessage = function (event) { ... };

You can again also use the addEventListener() method.

In either case, the data is provided in the event object's datap998 attribute.

To send messages back, you again use postMessage()p1046. It supports the structured data in the same manner.

postMessage(event.data.input, [event.data.input]); // transfer the buffer back

This section is non-normative.

Shared workers are identified by the URL of the script used to create it, optionally with an explicit name. The name allows multiple
instances of a particular shared worker to be started.

Shared workers are scoped by originp837. Two different sites using the same names will not collide. However, if a page tries to use the

10.1.3.2 Communicating with a dedicated worker §p10

43

The implicit MessagePortp1022 used by dedicated workers has its port message queuep1022 implicitly enabled when it is created, so
there is no equivalent to the MessagePortp1022 interface's start()p1024 method on the Workerp1053 interface.

Note

10.1.3.3 Shared workers §p10

43

MDN

1043

https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener

same shared worker name as another page on the same site, but with a different script URL, it will fail.

Creating shared workers is done using the SharedWorker()p1055 constructor. This constructor takes the URL to the script to use for its
first argument, and the name of the worker, if any, as the second argument.

var worker = new SharedWorker('service.js');

Communicating with shared workers is done with explicit MessagePortp1022 objects. The object returned by the SharedWorker()p1055

constructor holds a reference to the port on its portp1055 attribute.

worker.port.onmessage = function (event) { ... };
worker.port.postMessage('some message');
worker.port.postMessage({ foo: 'structured', bar: ['data', 'also', 'possible']});

Inside the shared worker, new clients of the worker are announced using the connectp1281 event. The port for the new client is given by
the event object's sourcep999 attribute.

onconnect = function (event) {
var newPort = event.source;
// set up a listener
newPort.onmessage = function (event) { ... };
// send a message back to the port
newPort.postMessage('ready!'); // can also send structured data, of course

};

This standard defines two kinds of workers: dedicated workers, and shared workers. Dedicated workers, once created, are linked to
their creator, but message ports can be used to communicate from a dedicated worker to multiple other browsing contexts or workers.
Shared workers, on the other hand, are named, and once created any script running in the same originp837 can obtain a reference to
that worker and communicate with it. Service Workers defines a third kind. [SW]p1291

The global scope is the "inside" of a worker.

[Exposed=Worker]
interface WorkerGlobalScope : EventTarget {

readonly attribute WorkerGlobalScope self;
readonly attribute WorkerLocation location;
readonly attribute WorkerNavigator navigator;
undefined importScripts(USVString... urls);

attribute OnErrorEventHandler onerror;
attribute EventHandler onlanguagechange;
attribute EventHandler onoffline;
attribute EventHandler ononline;
attribute EventHandler onrejectionhandled;
attribute EventHandler onunhandledrejection;

};

WorkerGlobalScopep1044 serves as the base class for specific types of worker global scope objects, including

10.2 Infrastructure §p10

44

10.2.1.1 The WorkerGlobalScopep1044 common interface §p10

44

IDL

10.2.1 The global scope §p10

44

✔ MDN

1044

https://dom.spec.whatwg.org/#interface-eventtarget

DedicatedWorkerGlobalScopep1046, SharedWorkerGlobalScopep1047, and ServiceWorkerGlobalScope.

A WorkerGlobalScopep1044 object has an associated owner set (a set of Documentp114 and WorkerGlobalScopep1044 objects). It is
initially empty and populated when the worker is created or obtained.

A WorkerGlobalScopep1044 object has an associated worker set (a set of WorkerGlobalScopep1044 objects). It is initially empty and
populated when the worker creates or obtains further workers.

A WorkerGlobalScopep1044 object has an associated type ("classic" or "module"). It is set during creation.

A WorkerGlobalScopep1044 object has an associated url (null or a URL). It is initially null.

A WorkerGlobalScopep1044 object has an associated name (a string). It is set during creation.

A WorkerGlobalScopep1044 object has an associated referrer policy (a referrer policy). It is initially the empty string.

A WorkerGlobalScopep1044 object has an associated embedder policy (an embedder policyp847).

A WorkerGlobalScopep1044 object has an associated CSP list, which is a CSP list containing all of the Content Security Policy objects
active for the worker. It is initially an empty list.

A WorkerGlobalScopep1044 object has an associated module map. It is a module mapp941, initially empty.

A WorkerGlobalScopep1044 object has an associated cross-origin isolated capability boolean. It is initially false.

The self attribute must return the WorkerGlobalScopep1044 object itself.

The location attribute must return the WorkerLocationp1057 object whose associated WorkerGlobalScope objectp1057 is the
WorkerGlobalScopep1044 object.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by objects implementing the WorkerGlobalScopep1044 interface:

It is a set, instead of a single owner, to accomodate SharedWorkerGlobalScopep1047 objects.
Note

The namep1045 can have different semantics for each subclass of WorkerGlobalScopep1044. For DedicatedWorkerGlobalScopep1046

instances, it is simply a developer-supplied name, useful mostly for debugging purposes. For SharedWorkerGlobalScopep1047

instances, it allows obtaining a reference to a common shared worker via the SharedWorker()p1055 constructor. For
ServiceWorkerGlobalScope objects, it doesn't make sense (and as such isn't exposed through the JavaScript API at all).

Note

workerGlobal . selfp1045

Returns workerGlobal.

workerGlobal . locationp1045

Returns workerGlobal's WorkerLocationp1057 object.

workerGlobal . navigatorp1057

Returns workerGlobal's WorkerNavigatorp1057 object.

workerGlobal . importScriptsp1056(urls...)
Fetches each URL in urls, executes them one-by-one in the order they are passed, and then returns (or throws if something went
amiss).

For web developers (non-normative)

While the WorkerLocationp1057 object is created after the WorkerGlobalScopep1044 object, this is not problematic as it cannot be
observed from script.

Note

✔ MDN
✔ MDN

1045

https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-set
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-csp/#csp-list
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://url.spec.whatwg.org/#concept-url

Event handlerp954 Event handler event typep957

onerror errorp1281

onlanguagechange languagechangep1281

onoffline offlinep1282

ononline onlinep1282

onrejectionhandled rejectionhandledp1282

onunhandledrejection unhandledrejectionp1282

[Global=(Worker,DedicatedWorker),Exposed=DedicatedWorker]
interface DedicatedWorkerGlobalScope : WorkerGlobalScope {

[Replaceable] readonly attribute DOMString name;

undefined postMessage(any message, sequence<object> transfer);
undefined postMessage(any message, optional PostMessageOptions options = {});

undefined close();

attribute EventHandler onmessage;
attribute EventHandler onmessageerror;

};

DedicatedWorkerGlobalScopep1046 objects act as if they had an implicit MessagePortp1022 associated with them. This port is part of a
channel that is set up when the worker is created, but it is not exposed. This object must never be garbage collected before the
DedicatedWorkerGlobalScopep1046 object.

All messages received by that port must immediately be retargeted at the DedicatedWorkerGlobalScopep1046 object.

The name attribute must return the DedicatedWorkerGlobalScopep1046 object's namep1045. Its value represents the name given to the
worker using the Workerp1053 constructor, used primarily for debugging purposes.

The postMessage(message, transfer) and postMessage(message, options) methods on DedicatedWorkerGlobalScopep1046

objects act as if, when invoked, it immediately invoked the respective postMessage(message, transfer)p1024 and
postMessage(message, options)p1024 on the port, with the same arguments, and returned the same return value.

To close a worker, given a workerGlobal, run these steps:

1. Discard any tasksp944 that have been added to workerGlobal's relevant agentp914 's event loopp944 's task queuesp944.

2. Set workerGlobal's closingp1047 flag to true. (This prevents any further tasks from being queued.)

The close() method, when invoked, must close a workerp1046 with this DedicatedWorkerGlobalScopep1046 object.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by objects implementing the DedicatedWorkerGlobalScopep1046 interface:

10.2.1.2 Dedicated workers and the DedicatedWorkerGlobalScopep1046 interface §p10

46

dedicatedWorkerGlobal . namep1046

Returns dedicatedWorkerGlobal's namep1045, i.e. the value given to the Workerp1053 constructor. Primarily useful for debugging.

dedicatedWorkerGlobal . postMessagep1046(message [, transfer])
dedicatedWorkerGlobal . postMessagep1046(message [, { transferp1022 }])

Clones message and transmits it to the Workerp1053 object associated with dedicatedWorkerGlobal. transfer can be passed as a
list of objects that are to be transferred rather than cloned.

dedicatedWorkerGlobal . closep1046()
Aborts dedicatedWorkerGlobal.

For web developers (non-normative)

IDL

✔ MDN

✔ MDN

MDN

MDN

✔ MDN

MDN✔ MDN

MDN

1046

https://heycam.github.io/webidl/#idl-object

Event handlerp954 Event handler event typep957

onmessage messagep1282

onmessageerror messageerrorp1282

For the purposes of the application cachep892 networking model, a dedicated worker is an extension of the cache hostp894 from which it
was created.

[Global=(Worker,SharedWorker),Exposed=SharedWorker]
interface SharedWorkerGlobalScope : WorkerGlobalScope {

[Replaceable] readonly attribute DOMString name;

undefined close();

attribute EventHandler onconnect;
};

A SharedWorkerGlobalScopep1047 object has an associated constructor origin, constructor url, and credentials. They are
initialized when the SharedWorkerGlobalScopep1047 object is created, in the run a workerp1048 algorithm.

Shared workers receive message ports through connectp1281 events on their SharedWorkerGlobalScopep1047 object for each
connection.

The name attribute must return the SharedWorkerGlobalScopep1047 object's namep1045. Its value represents the name that can be used
to obtain a reference to the worker using the SharedWorkerp1054 constructor.

The close() method, when invoked, must close a workerp1046 with this SharedWorkerGlobalScopep1047 object.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by objects implementing the SharedWorkerGlobalScopep1047 interface:

Event handlerp954 Event handler event typep957

onconnect connectp1281

A worker event loopp944 's task queuesp944 only have events, callbacks, and networking activity as tasksp944. These worker event
loopsp944 are created by the run a workerp1048 algorithm.

Each WorkerGlobalScopep1044 object has a closing flag, which must be initially false, but which can get set to true by the algorithms in
the processing model section below.

Once the WorkerGlobalScopep1044 's closingp1047 flag is set to true, the event loopp944 's task queuesp944 must discard any further
tasksp944 that would be added to them (tasks already on the queue are unaffected except where otherwise specified). Effectively, once
the closingp1047 flag is true, timers stop firing, notifications for all pending background operations are dropped, etc.

10.2.1.3 Shared workers and the SharedWorkerGlobalScopep1047 interface §p10

47

sharedWorkerGlobal . namep1047

Returns sharedWorkerGlobal's namep1045, i.e. the value given to the SharedWorkerp1054 constructor. Multiple SharedWorkerp1054

objects can correspond to the same shared worker (and SharedWorkerGlobalScopep1047), by reusing the same name.

sharedWorkerGlobal . closep1047()
Aborts sharedWorkerGlobal.

For web developers (non-normative)

IDL

10.2.2 The event loop §p10

47

✔ MDN

MDN

✔ MDN

MDN⚠ MDN

MDN

1047

Workers communicate with other workers and with browsing contextsp811 through message channelsp1018 and their MessagePortp1022

objects.

Each WorkerGlobalScopep1044 object worker global scope has a list of the worker's ports, which consists of all the MessagePortp1022

objects that are entangled with another port and that have one (but only one) port owned by worker global scope. This list includes the
implicit MessagePortp1022 in the case of dedicated workersp1046.

Given an environment settings objectp917 o when creating or obtaining a worker, the relevant owner to add depends on the type of
global objectp918 specified by o. If o specifies a global objectp918 that is a WorkerGlobalScopep1044 object (i.e., if we are creating a
nested dedicated worker), then the relevant owner is that global object. Otherwise, o specifies a global objectp918 that is a Windowp824

object, and the relevant owner is the responsible documentp917 specified by o.

A worker is said to be a permissible worker if its WorkerGlobalScopep1044 's owner setp1045 is not empty or:

• its owner setp1045 has been empty for no more than a short implementation-defined timeout value,
• its WorkerGlobalScopep1044 object is a SharedWorkerGlobalScopep1047 object (i.e., the worker is a shared worker), and
• the user agent has a browsing contextp811 whose Documentp114 object is not completely loadedp885.

A worker is said to be an active needed worker if any its ownersp1045 are either Documentp114 objects that are fully activep815 or active
needed workersp1048.

A worker is said to be a protected worker if it is an active needed workerp1048 and either it has outstanding timers, database
transactions, or network connections, or its list of the worker's portsp1048 is not empty, or its WorkerGlobalScopep1044 is actually a
SharedWorkerGlobalScopep1047 object (i.e., the worker is a shared worker).

A worker is said to be a suspendable worker if it is not an active needed workerp1048 but it is a permissible workerp1048.

When a user agent is to run a worker for a script with Workerp1053 or SharedWorkerp1054 object worker, URL url, environment settings
objectp917 outside settings, MessagePortp1022 outside port, and a WorkerOptionsp1053 dictionary options, it must run the following steps.

1. Let is shared be true if worker is a SharedWorkerp1054 object, and false otherwise.

2. Let owner be the relevant owner to addp1048 given outside settings.

3. Let parent worker global scope be null.

4. If owner is a WorkerGlobalScopep1044 object (i.e., we are creating a nested dedicated worker), then set parent worker global
scope to owner.

5. Let agent be the result of obtaining a dedicated/shared worker agentp915 given outside settings and is shared. Run the rest of
these steps in that agent.

For the purposes of timing APIs, this is the official moment of creation of the worker.

6. Let realm execution context be the result of creating a new JavaScript realmp918 given agent and the following
customizations:

◦ For the global object, if is shared is true, create a new SharedWorkerGlobalScopep1047 object. Otherwise, create a
new DedicatedWorkerGlobalScopep1046 object.

7. Let worker global scope be the global objectp918 of realm execution context's Realm component.

The second part of this definition allows a shared worker to survive for a short time while a page is loading, in case that page is
going to contact the shared worker again. This can be used by user agents as a way to avoid the cost of restarting a shared worker
used by a site when the user is navigating from page to page within that site.

Note

10.2.3 The worker's lifetime §p10

48

10.2.4 Processing model §p10

48

1048

https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url

8. Set up a worker environment settings objectp1052 with realm execution context and outside settings, and let inside settings be
the result.

9. Set worker global scope's namep1045 to the value of options's name member.

10. Append owner to worker global scope's owner setp1045.

11. If parent worker global scope is not null, then append worker global scope to parent worker global scope's worker setp1045.

12. If is shared is true, then:

1. Set worker global scope's constructor originp1047 to outside settings's originp917.

2. Set worker global scope's constructor urlp1047 to url.

3. Set worker global scope's typep1045 to the value of options's type member.

4. Set worker global scope's credentialsp1047 to the value of options's credentials member.

13. Let destination be "sharedworker" if is shared is true, and "worker" otherwise.

14. Obtain script by switching on the value of options's type member:

↪ "classic"
Fetch a classic worker scriptp927 given url, outside settings, destination, and inside settings.

↪ "module"
Fetch a module worker script graphp930 given url, outside settings, destination, the value of the credentials member
of options, and inside settings.

In both cases, to perform the fetchp926 given request, perform the following steps if the is top-levelp926 flag is set:

1. Set request's reserved client to inside settings.

2. Fetch request, and asynchronously wait to run the remaining steps as part of fetch's process response for the
response response.

3. Set worker global scope's urlp1045 to response's url.

4. Set worker global scope's referrer policyp1045 to the result of parsing the `Referrer-Policy` header of response.

5. If response's url's scheme is a local scheme, then set worker global scope's embedder policyp1045 to owner's
embedder policyp917.

6. Otherwise, set worker global scope's embedder policyp1045 to the result of obtaining an embedder policyp847 from
response.

7. If worker global scope's embedder policyp1045 is "require-corpp847" and is shared is true, then set agent's agent
cluster's cross-origin isolatedp914 to true.

This really ought to be set when the agent cluster is created, which requires a redesign of this section.

8. If the result of checking a global object's embedder policy p848 with worker global scope, owner, and response is
false, then set response to a network error.

9. Set worker global scope's cross-origin isolated capabilityp1045 to agent's agent cluster's cross-origin isolatedp914.

10. If is shared is false and owner's cross-origin isolated capabilityp917 is false, then set worker global scope's cross-
origin isolated capabilityp1045 to false.

11. If is shared is false and response's url's scheme is "data", then set worker global scope's cross-origin isolated
capabilityp1045 to false.

This is the DedicatedWorkerGlobalScopep1046 or SharedWorkerGlobalScopep1047 object created in the previous step.
Note

This is a conservative default for now, while we figure out how workers in general, and data: URL workers in
Note

1049

https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#set-append
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url
https://w3c.github.io/webappsec-referrer-policy/#parse-referrer-policy-from-header
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#local-scheme
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://fetch.spec.whatwg.org/#concept-network-error
https://tc39.es/ecma262/#sec-agent-clusters
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-scheme
https://tools.ietf.org/html/rfc2397#section-2

12. Execute the Initialize a global object's CSP list algorithm on worker global scope and response. [CSP]p1285

13. Asynchronously complete the perform the fetchp926 steps with response.

If the algorithm asynchronously completes with null or with a script whose error to rethrowp925 is non-null, then:

1. Queue a global taskp945 on the DOM manipulation task sourcep952 given worker's relevant global objectp924 to fire an
event named errorp1281 at worker.

2. Run the environment discarding stepsp917 for inside settings.

3. Return.

Otherwise, continue the rest of these steps after the algorithm's asynchronous completion, with script being the
asynchronous completion value.

15. Associate worker with worker global scope.

16. Let inside port be a new MessagePortp1022 object in inside settings's Realmp918.

17. Associate inside port with worker global scope.

18. Entanglep1022 outside port and inside port.

19. Create a new WorkerLocationp1057 object and associate it with worker global scope.

20. Closing orphan workers: Start monitoring the worker such that no sooner than it stops being a protected workerp1048, and
no later than it stops being a permissible workerp1048, worker global scope's closingp1047 flag is set to true.

21. Suspending workers: Start monitoring the worker, such that whenever worker global scope's closingp1047 flag is false and
the worker is a suspendable workerp1048, the user agent suspends execution of script in that worker until such time as either
the closingp1047 flag switches to true or the worker stops being a suspendable workerp1048.

22. Set inside settings's execution ready flagp917.

23. If script is a classic scriptp925, then run the classic scriptp934 script. Otherwise, it is a module scriptp925; run the module
scriptp935 script.

24. Enable outside port's port message queuep1022.

25. If is shared is false, enable the port message queuep1022 of the worker's implicit port.

26. If is shared is true, then queue a global taskp945 on DOM manipulation task sourcep952 given worker global scope to fire an
event named connectp1281 at worker global scope, using MessageEventp998, with the datap998 attribute initialized to the empty
string, the portsp999 attribute initialized to a new frozen array containing inside port, and the sourcep999 attribute initialized
to inside port.

27. Enable the client message queue of the ServiceWorkerContainer object whose associated service worker client is worker
global scope's relevant settings objectp924.

28. Event loop: Run the responsible event loopp918 specified by inside settings until it is destroyed.

particular (which are cross-origin from their owner), will be treated in the context of permissions policies. See
w3c/webappsec-permissions-policy issue #207 for more details.

In addition to the usual possibilities of returning a value or failing due to an exception, this could be prematurely
abortedp936 by the terminate a workerp1051 algorithm defined below.

Note

The handling of events or the execution of callbacks by tasksp944 run by the event loopp944 might get prematurely
abortedp936 by the terminate a workerp1051 algorithm defined below.

Note

The worker processing model remains on this step until the event loop is destroyed, which happens after the closingp1047

flag is set to true, as described in the event loopp944 processing model.

Note

1050

https://github.com/w3c/webappsec-permissions-policy/issues/207
https://w3c.github.io/webappsec-csp/#initialize-global-object-csp
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#new
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#dfn-frozen-array-type
https://w3c.github.io/ServiceWorker/#dfn-client-message-queue
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client

29. Empty the worker global scope's list of active timersp973.

30. Disentangle all the ports in the list of the worker's portsp1048.

31. Empty worker global scope's owner setp1045.

When a user agent is to terminate a worker it must run the following steps in parallelp42 with the worker's main loop (the "run a
workerp1048" processing model defined above):

1. Set the worker's WorkerGlobalScopep1044 object's closingp1047 flag to true.

2. If there are any tasksp944 queued in the WorkerGlobalScopep1044 object's relevant agentp914 's event loopp944 's task queuesp944,
discard them without processing them.

3. Abort the scriptp936 currently running in the worker.

4. If the worker's WorkerGlobalScopep1044 object is actually a DedicatedWorkerGlobalScopep1046 object (i.e. the worker is a
dedicated worker), then empty the port message queuep1022 of the port that the worker's implicit port is entangled with.

User agents may invoke the terminate a workerp1051 algorithm when a worker stops being an active needed workerp1048 and the worker
continues executing even after its closingp1047 flag was set to true.

Whenever an uncaught runtime script error occurs in one of the worker's scripts, if the error did not occur while handling a previous
script error, the user agent must report the errorp936 for that scriptp925, with the position (line number and column number) where the
error occurred, using the WorkerGlobalScopep1044 object as the target.

For shared workers, if the error is still not handledp936 afterwards, the error may be reported to a developer console.

For dedicated workers, if the error is still not handledp936 afterwards, the user agent must queue a taskp945 to run these steps:

1. Let notHandled be the result of firing an event named errorp1281 at the Workerp1053 object associated with the worker, using
ErrorEventp937, with the cancelable attribute initialized to true, the messagep937, filenamep937, linenop937, and colnop938

attributes initialized appropriately, and the errorp938 attribute initialized to null.

2. If notHandled is true, then the user agent must act as if the uncaught runtime script error had occurred in the global scope
that the Workerp1053 object is in, thus repeating the entire runtime script error reporting process one level up.

If the implicit port connecting the worker to its Workerp1053 object has been disentangled (i.e. if the parent worker has been
terminated), then the user agent must act as if the Workerp1053 object had no errorp1281 event handler and as if that worker's
onerrorp1046 attribute was null, but must otherwise act as described above.

The task sourcep945 for the task mentioned above is the DOM manipulation task sourcep952.

interface mixin AbstractWorker {
attribute EventHandler onerror;

};

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by objects implementing the AbstractWorkerp1051 interface:

Thus, error reports propagate up to the chain of dedicated workers up to the original Documentp114, even if some of the workers
along this chain have been terminated and garbage collected.

Note

10.2.6.1 The AbstractWorkerp1051 mixin §p10

51

IDL

10.2.5 Runtime script errors §p10

51

10.2.6 Creating workers §p10

51

✔ MDN

1051

https://infra.spec.whatwg.org/#list-empty
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

Event handlerp954 Event handler event typep957

onerror errorp1281

When the user agent is required to set up a worker environment settings object, given a JavaScript execution context execution
context and environment settings objectp917 outside settings, it must run the following steps:

1. Let inherited origin be outside settings's originp917.

2. Let realm be the value of execution context's Realm component.

3. Let worker global scope be realm's global objectp918.

4. Let settings object be a new environment settings objectp917 whose algorithms are defined as follows:

The realm execution contextp917

Return execution context.

The module mapp917

Return worker global scope's module mapp1045.

The responsible documentp917

Not applicable (the responsible event loopp918 is not a window event loopp944).

The API URL character encodingp917

Return UTF-8.

The API base URLp917

Return worker global scope's urlp1045.

The originp917

Return a unique opaque originp837 if worker global scope's urlp1045 's scheme is "data", and inherited origin otherwise.

The referrer policyp917

Return worker global scope's referrer policyp1045.

The embedder policyp917

Return worker global scope's embedder policyp1045.

The cross-origin isolated capabilityp917

Return worker global scope's cross-origin isolated capabilityp1045.

5. Set settings object's idp916 to a new unique opaque string, settings object's creation URLp916 to worker global scope's url,
settings object's top-level creation URLp916 to null, settings object's target browsing contextp917 to null, and settings object's
active service workerp917 to null.

6. If worker global scope is a DedicatedWorkerGlobalScopep1046 object, then set settings object's top-level originp916 to outside
settings's top-level originp916.

7. Otherwise, set settings object's top-level originp916 to an implementation-defined value.

See Client-Side Storage Partitioning for the latest on properly defining this.

8. Set realm's [[HostDefined]] field to settings object.

9. Return settings object.

10.2.6.2 Script settings for workers §p10

52

✔ MDN

1052

https://tc39.es/ecma262/#sec-execution-contexts
https://encoding.spec.whatwg.org/#utf-8
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#implementation-defined
https://privacycg.github.io/storage-partitioning/

[Exposed=(Window,DedicatedWorker,SharedWorker)]
interface Worker : EventTarget {

constructor(USVString scriptURL, optional WorkerOptions options = {});

undefined terminate();

undefined postMessage(any message, sequence<object> transfer);
undefined postMessage(any message, optional PostMessageOptions options = {});
attribute EventHandler onmessage;
attribute EventHandler onmessageerror;

};

dictionary WorkerOptions {
WorkerType type = "classic";
RequestCredentials credentials = "same-origin"; // credentials is only used if type is "module"
DOMString name = "";

};

enum WorkerType { "classic", "module" };

Worker includes AbstractWorker;

The terminate() method, when invoked, must cause the terminate a workerp1051 algorithm to be run on the worker with which the
object is associated.

Workerp1053 objects act as if they had an implicit MessagePortp1022 associated with them. This port is part of a channel that is set up
when the worker is created, but it is not exposed. This object must never be garbage collected before the Workerp1053 object.

All messages received by that port must immediately be retargeted at the Workerp1053 object.

The postMessage(message, transfer) and postMessage(message, options) methods on Workerp1053 objects act as if, when
invoked, they immediately invoked the respective postMessage(message, transfer)p1024 and postMessage(message, options)p1024

on the port, with the same arguments, and returned the same return value.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler IDL attributesp955, by objects implementing the Workerp1053 interface:

10.2.6.3 Dedicated workers and the Workerp1053 interface §p10

53

worker = new Workerp1054(scriptURL [, options])
Returns a new Workerp1053 object. scriptURL will be fetched and executed in the background, creating a new global environment
for which worker represents the communication channel. options can be used to define the namep1045 of that global
environment via the name option, primarily for debugging purposes. It can also ensure this new global environment supports
JavaScript modules (specify type: "module"), and if that is specified, can also be used to specify how scriptURL is fetched
through the credentials option.

worker . terminatep1053()
Aborts worker's associated global environment.

worker . postMessagep1053(message [, transfer])
worker . postMessagep1053(message [, { transferp1022 }])

Clones message and transmits it to worker's global environment. transfer can be passed as a list of objects that are to be
transferred rather than cloned.

For web developers (non-normative)

The postMessage()p1053 method's first argument can be structured data:

worker.postMessage({opcode: 'activate', device: 1938, parameters: [23, 102]});

Example

IDL ✔ MDN

✔ MDN

✔ MDN

1053

https://dom.spec.whatwg.org/#interface-eventtarget
https://heycam.github.io/webidl/#idl-object
https://fetch.spec.whatwg.org/#requestcredentials

Event handlerp954 Event handler event typep957

onmessage messagep1282

onmessageerror messageerrorp1282

When the Worker(scriptURL, options) constructor is invoked, the user agent must run the following steps:

1. The user agent may throw a "SecurityError" DOMException if the request violates a policy decision (e.g. if the user agent is
configured to not allow the page to start dedicated workers).

2. Let outside settings be the current settings objectp924.

3. Parsep89 the scriptURL argument relative to outside settings.

4. If this fails, throw a "SyntaxError" DOMException.

5. Let worker URL be the resulting URL recordp89.

6. Let worker be a new Workerp1053 object.

7. Let outside port be a new MessagePortp1022 in outside settings's Realmp918.

8. Associate the outside port with worker.

9. Run this step in parallelp42:

1. Run a workerp1048 given worker, worker URL, outside settings, outside port, and options.

10. Return worker.

[Exposed=Window]
interface SharedWorker : EventTarget {

constructor(USVString scriptURL, optional (DOMString or WorkerOptions) options = {});

readonly attribute MessagePort port;
};
SharedWorker includes AbstractWorker;

Any same-originp838 URL (including blob: URLs) can be used. data: URLs can also be used, but they create a worker with
an opaque originp837.

Note

10.2.6.4 Shared workers and the SharedWorkerp1054 interface §p10

54

sharedWorker = new SharedWorkerp1055(scriptURL [, name])
Returns a new SharedWorkerp1054 object. scriptURL will be fetched and executed in the background, creating a new global
environment for which sharedWorker represents the communication channel. name can be used to define the namep1045 of that
global environment.

sharedWorker = new SharedWorkerp1055(scriptURL [, options])
Returns a new SharedWorkerp1054 object. scriptURL will be fetched and executed in the background, creating a new global
environment for which sharedWorker represents the communication channel. options can be used to define the namep1045 of
that global environment via the name option. It can also ensure this new global environment supports JavaScript modules
(specify type: "module"), and if that is specified, can also be used to specify how scriptURL is fetched through the
credentials option. Note that attempting to construct a shared worker with options whose type or credentials values
mismatch an existing shared worker will cause the returned sharedWorker to fire an error event and not connect to the existing
shared worker.

sharedWorker . portp1055

Returns sharedWorker's MessagePortp1022 object which can be used to communicate with the global environment.

For web developers (non-normative)

IDL

✔ MDN

MDN

✔ MDN

MDN

MDN1054

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#DefinitionOfScheme
https://tools.ietf.org/html/rfc2397#section-2
https://heycam.github.io/webidl/#new
https://dom.spec.whatwg.org/#interface-eventtarget

The port attribute must return the value it was assigned by the object's constructor. It represents the MessagePortp1022 for
communicating with the shared worker.

A user agent has an associated shared worker manager which is the result of starting a new parallel queuep42.

When the SharedWorker(scriptURL, options) constructor is invoked:

1. Optionally, throw a "SecurityError" DOMException if the request violates a policy decision (e.g. if the user agent is
configured to not allow the page to start shared workers).

2. If options is a DOMString, set options to a new WorkerOptionsp1053 dictionary whose name member is set to the value of
options and whose other members are set to their default values.

3. Let outside settings be the current settings objectp924.

4. Parsep89 scriptURL relative to outside settings.

5. If this fails, throw a "SyntaxError" DOMException.

6. Otherwise, let urlRecord be the resulting URL recordp89.

7. Let worker be a new SharedWorkerp1054 object.

8. Let outside port be a new MessagePortp1022 in outside settings's Realmp918.

9. Assign outside port to the portp1055 attribute of worker.

10. Let callerIsSecureContext be true if outside settings is a secure contextp924; otherwise, false.

11. Enqueue the following stepsp42 to the shared worker managerp1055:

1. Let worker global scope be null.

2. If there exists a SharedWorkerGlobalScopep1047 object whose closingp1047 flag is false, constructor originp1047 is
same originp838 with outside settings's originp917, constructor urlp1047 equals urlRecord, and namep1045 equals the
value of options's name member, then set worker global scope to that SharedWorkerGlobalScopep1047 object.

3. If worker global scope is not null, but the user agent has been configured to disallow communication between the
worker represented by the worker global scope and the scriptsp925 whose settings objectp925 is outside settings,
then set worker global scope to null.

4. If worker global scope is not null, then check if worker global scope's typep1045 and credentialsp1047 match the
options values. If not, queue a taskp945 to fire an event named errorp1281 and abort these steps.

5. If worker global scope is not null, then run these subsubsteps:

1. Let settings object be the relevant settings objectp924 for worker global scope.

Each user agent has a single shared worker managerp1055 for simplicity. Implementations could use one per originp837; that would
not be observably different and enables more concurrency.

Note

Any same-originp838 URL (including blob: URLs) can be used. data: URLs can also be used, but they create a worker with
an opaque originp837.

Note

data: URLs create a worker with an opaque originp837. Both the constructor originp1047 and constructor urlp1047

are compared so the same data: URL can be used within an originp837 to get to the same
SharedWorkerGlobalScopep1047 object, but cannot be used to bypass the same originp838 restriction.

Note

For example, a user agent could have a development mode that isolates a particular top-level browsing
contextp814 from all other pages, and scripts in that development mode could be blocked from connecting to
shared workers running in the normal browser mode.

Note

MDN

1055

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://w3c.github.io/FileAPI/#DefinitionOfScheme
https://tools.ietf.org/html/rfc2397#section-2
https://heycam.github.io/webidl/#new
https://url.spec.whatwg.org/#concept-url-equals
https://tools.ietf.org/html/rfc2397#section-2
https://tools.ietf.org/html/rfc2397#section-2
https://dom.spec.whatwg.org/#concept-event-fire

2. Let workerIsSecureContext be true if settings object is a secure contextp924; otherwise, false.

3. If workerIsSecureContext is not callerIsSecureContext, then queue a taskp945 to fire an event named
errorp1281 at worker and abort these steps. [SECURE-CONTEXTS]p1291

4. Associate worker with worker global scope.

5. Let inside port be a new MessagePortp1022 in settings object's Realmp918.

6. Entanglep1022 outside port and inside port.

7. Queue a taskp945, using the DOM manipulation task sourcep952, to fire an event named connectp1281 at
worker global scope, using MessageEventp998, with the datap998 attribute initialized to the empty string,
the portsp999 attribute initialized to a new frozen array containing only inside port, and the sourcep999

attribute initialized to inside port.

8. Append the relevant owner to addp1048 given outside settings to worker global scope's owner setp1045.

6. Otherwise, in parallelp42, run a workerp1048 given worker, urlRecord, outside settings, outside port, and options.

12. Return worker.

interface mixin NavigatorConcurrentHardware {
readonly attribute unsigned long long hardwareConcurrency;

};

The navigator.hardwareConcurrency attribute's getter must return a number between 1 and the number of logical
processors potentially available to the user agent. If this cannot be determined, the getter must return 1.

User agents should err toward exposing the number of logical processors available, using lower values only in cases where
there are user-agent specific limits in place (such as a limitation on the number of workersp1053 that can be created) or when
the user agent desires to limit fingerprinting possibilities.

When a script invokes the importScripts(urls) method on a WorkerGlobalScopep1044 object, the user agent must import scripts into
worker global scopep1056 given this WorkerGlobalScopep1044 object and urls.

To import scripts into worker global scope, given a WorkerGlobalScopep1044 object worker global scope and a
sequence<DOMString> urls, run these steps. The algorithm may optionally be customized by supplying custom perform the fetchp926

hooks, which if provided will be used when invoking fetch a classic worker-imported scriptp928.

1. If worker global scope's typep1045 is "module", throw a TypeError exception.

2. Let settings object be the current settings objectp924.

3. If urls is empty, return.

4. Parsep89 each value in urls relative to settings object. If any fail, throw a "SyntaxError" DOMException.

5. For each url in the resulting URL recordsp89, run these substeps:

self . navigatorp979 . hardwareConcurrencyp1056

Returns the number of logical processors potentially available to the user agent.

For web developers (non-normative)

10.3 APIs available to workers §p10

56

IDL

10.2.7 Concurrent hardware capabilities §p10

56

10.3.1 Importing scripts and libraries §p10

56

MDN

MDN

✔ MDN

1056

https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#new
https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#dfn-frozen-array-type
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#tracking-vector
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException

1. Fetch a classic worker-imported scriptp928 given url and settings object, passing along any custom perform the
fetchp926 steps provided. If this succeeds, let script be the result. Otherwise, rethrow the exception.

2. Run the classic scriptp934 script, with the rethrow errors argument set to true.

If an exception was thrown or if the script was prematurely abortedp936, then abort all these steps, letting the
exception or aborting continue to be processed by the calling scriptp925.

The navigator attribute of the WorkerGlobalScopep1044 interface must return an instance of the WorkerNavigatorp1057 interface, which
represents the identity and state of the user agent (the client):

[Exposed=Worker]
interface WorkerNavigator {};
WorkerNavigator includes NavigatorID;
WorkerNavigator includes NavigatorLanguage;
WorkerNavigator includes NavigatorOnLine;
WorkerNavigator includes NavigatorConcurrentHardware;

[Exposed=Worker]
interface WorkerLocation {

stringifier readonly attribute USVString href;
readonly attribute USVString origin;
readonly attribute USVString protocol;
readonly attribute USVString host;
readonly attribute USVString hostname;
readonly attribute USVString port;
readonly attribute USVString pathname;
readonly attribute USVString search;
readonly attribute USVString hash;

};

A WorkerLocationp1057 object has an associated WorkerGlobalScope object (a WorkerGlobalScopep1044 object).

The href attribute's getter must return the associated WorkerGlobalScope objectp1057 's urlp1045, serialized.

The origin attribute's getter must return the serializationp838 of the associated WorkerGlobalScope objectp1057 's urlp1045 's origin.

The protocol attribute's getter must return the associated WorkerGlobalScope objectp1057 's urlp1045 's scheme, followed by ":".

The host attribute's getter must run these steps:

1. Let url be the associated WorkerGlobalScope objectp1057 's urlp1045.

2. If url's host is null, return the empty string.

script will run until it either returns, fails to parse, fails to catch an exception, or gets prematurely abortedp936

by the terminate a workerp1051 algorithm defined above.

Note

Service Workers is an example of a specification that runs this algorithm with its own options for the perform the fetchp926 hook.
[SW]p1291

Note

IDL

IDL

10.3.2 The WorkerNavigatorp1057 interface §p10

57

10.3.3 The WorkerLocationp1057 interface §p10

57

✔ MDNMDN

MDN

1057

https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-host

3. If url's port is null, return url's host, serialized.

4. Return url's host, serialized, followed by ":" and url's port, serialized.

The hostname attribute's getter must run these steps:

1. Let host be the associated WorkerGlobalScope objectp1057 's urlp1045 's host.

2. If host is null, return the empty string.

3. Return host, serialized.

The port attribute's getter must run these steps:

1. Let port be the associated WorkerGlobalScope objectp1057 's urlp1045 's port.

2. If port is null, return the empty string.

3. Return port, serialized.

The pathname attribute's getter must run these steps:

1. Let url be the associated WorkerGlobalScope objectp1057 's urlp1045.

2. If url's cannot-be-a-base-URL flag is set, return the first string in url's path.

3. Return "/", followed by the strings in url's path (including empty strings), separated from each other by "/".

The search attribute's getter must run these steps:

1. Let query be the associated WorkerGlobalScope objectp1057 's urlp1045 's query.

2. If query is either null or the empty string, return the empty string.

3. Return "?", followed by query.

The hash attribute's getter must run these steps:

1. Let fragment be the associated WorkerGlobalScope objectp1057 's urlp1045 's fragment.

2. If fragment is either null or the empty string, return the empty string.

3. Return "#", followed by fragment.

1058

https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://url.spec.whatwg.org/#url-cannot-be-a-base-url-flag
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment

This section is non-normative.

This specification introduces two related mechanisms, similar to HTTP session cookies, for storing name-value pairs on the client side.
[COOKIES]p1285

The first is designed for scenarios where the user is carrying out a single transaction, but could be carrying out multiple transactions in
different windows at the same time.

Cookies don't really handle this case well. For example, a user could be buying plane tickets in two different windows, using the same
site. If the site used cookies to keep track of which ticket the user was buying, then as the user clicked from page to page in both
windows, the ticket currently being purchased would "leak" from one window to the other, potentially causing the user to buy two
tickets for the same flight without really noticing.

To address this, this specification introduces the sessionStoragep1062 getter. Sites can add data to the session storage, and it will be
accessible to any page from the same site opened in that window.

The second storage mechanism is designed for storage that spans multiple windows, and lasts beyond the current session. In
particular, web applications might wish to store megabytes of user data, such as entire user-authored documents or a user's mailbox,
on the client side for performance reasons.

Again, cookies do not handle this case well, because they are transmitted with every request.

The localStoragep1063 getter is used to access a page's local storage area.

11 Web storage §p10

59

11.1 Introduction §p10

59

For example, a page could have a checkbox that the user ticks to indicate that they want insurance:

<label>
<input type="checkbox" onchange="sessionStorage.insurance = checked ? 'true' : ''">
I want insurance on this trip.

</label>

A later page could then check, from script, whether the user had checked the checkbox or not:

if (sessionStorage.insurance) { ... }

If the user had multiple windows opened on the site, each one would have its own individual copy of the session storage object.

Example

The site at example.com can display a count of how many times the user has loaded its page by putting the following at the
bottom of its page:

<p>
You have viewed this page
an untold number of
time(s).

</p>
<script>

if (!localStorage.pageLoadCount)
localStorage.pageLoadCount = 0;

Example

✔ MDN

1059

Each site has its own separate storage area.

[Exposed=Window]
interface Storage {

readonly attribute unsigned long length;
DOMString? key(unsigned long index);
getter DOMString? getItem(DOMString key);
setter undefined setItem(DOMString key, DOMString value);
deleter undefined removeItem(DOMString key);
undefined clear();

};

localStorage.pageLoadCount = parseInt(localStorage.pageLoadCount) + 1;
document.getElementById('count').textContent = localStorage.pageLoadCount;

</script>

The localStoragep1063 getter provides access to shared state. This specification does not define the interaction with
other browsing contexts in a multiprocess user agent, and authors are encouraged to assume that there is no
locking mechanism. A site could, for instance, try to read the value of a key, increment its value, then write it back
out, using the new value as a unique identifier for the session; if the site does this twice in two different browser
windows at the same time, it might end up using the same "unique" identifier for both sessions, with potentially
disastrous effects.

⚠Warning!

11.2 The API §p10

60

storage . lengthp1061

Returns the number of key/value pairs.

storage . keyp1061 (n)
Returns the name of the nth key, or null if n is greater than or equal to the number of key/value pairs.

value = storage . getItemp1061 (key)
value = storage[key]

Returns the current value associated with the given key, or null if the given key does not exist.

storage . setItemp1061 (key, value)
storage[key] = value

Sets the value of the pair identified by key to value, creating a new key/value pair if none existed for key previously.
Throws a "QuotaExceededError" DOMException exception if the new value couldn't be set. (Setting could fail if, e.g., the user
has disabled storage for the site, or if the quota has been exceeded.)
Dispatches a storagep1282 event on Windowp824 objects holding an equivalent Storagep1060 object.

storage . removeItemp1062 (key)
delete storage[key]

Removes the key/value pair with the given key, if a key/value pair with the given key exists.
Dispatches a storagep1282 event on Windowp824 objects holding an equivalent Storagep1060 object.

For web developers (non-normative)

IDL

11.2.1 The Storagep1060 interface §p10

60

✔ MDN

1060

https://heycam.github.io/webidl/#quotaexceedederror
https://heycam.github.io/webidl/#dfn-DOMException
https://tc39.es/ecma262/#sec-delete-operator

A Storagep1060 object has an associated:

map
A storage proxy map.

type
"local" or "session".

To reorder a Storagep1060 object storage, reorder storage's mapp1061 's entries in an implementation-defined manner.

To broadcast a Storagep1060 object storage, given a key, oldValue, and newValue, run these steps:

1. Let url be storage's relevant global objectp924 's associated Documentp826 's URL.

2. Let remoteStorages be all Storagep1060 objects excluding storage whose:

◦ typep1061 is storage's typep1061

◦ relevant settings objectp924 's originp837 is same originp838 with storage's relevant settings objectp924 's originp837.

and, if typep1061 is "session", whose relevant settings objectp924 's browsing sessionp849 is storage's relevant settings
objectp924 's browsing sessionp849.

3. For each remoteStorage of remoteStorages: queue a global taskp945 on the DOM manipulation task sourcep952 given
remoteStorage's relevant global objectp924 to fire an event named storagep1282 at remoteStorage's relevant global objectp924,
using StorageEventp1063, with keyp1064 initialized to key, oldValuep1064 initialized to oldValue, newValuep1064 initialized to
newValue, urlp1064 initialized to url, and storageAreap1064 initialized to remoteStorage.

The length getter steps are to return this's mapp1061 's size.

The key(n) method steps are:

1. If n is greather than or equal to this's mapp1061 's size, then return null.

2. Let keys be the result of running get the keys on this's mapp1061.

3. Return keys[n].

The supported property names on a Storagep1060 object storage are the result of running get the keys on storage's mapp1061.

The getItem(key) method steps are:

1. If this's mapp1061[key] does not exist, then return null.

2. Return this's mapp1061[key].

The setItem(key, value) method are:

1. Let oldValue be null.

2. Let reorder be true.

storage . clearp1062()
Removes all key/value pairs, if there are any.
Dispatches a storagep1282 event on Windowp824 objects holding an equivalent Storagep1060 object.

Unfortunate as it is, iteration order is not defined and can change upon most mutations.
Note

The Documentp114 object associated with the resulting taskp944 is not necessarily fully activep815, but events fired on such
objects are ignored by the event loopp944 until the Documentp114 becomes fully activep815 again.

Note

✔ MDN
✔ MDN

✔ MDN

✔ MDN

1061

https://storage.spec.whatwg.org/#storage-proxy-map
https://infra.spec.whatwg.org/#map-entry
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-event-fire
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#map-size
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#map-size
https://infra.spec.whatwg.org/#map-getting-the-keys
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#dfn-supported-property-names
https://infra.spec.whatwg.org/#map-getting-the-keys
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#map-exists
https://heycam.github.io/webidl/#this

3. If this's mapp1061[key] exists:

1. Set oldValue to this's mapp1061[key].

2. If oldValue is value, then return.

3. Set reorder to false.

4. If value cannot be stored, then throw a "QuotaExceededError" DOMException exception.

5. Set this's mapp1061[key] to value.

6. If reorder is true, then reorderp1061 this.

7. Broadcastp1061 this with key, oldValue, and value.

The removeItem(key) method steps are:

1. If this's mapp1061[key] does not exist, then return null.

2. Set oldValue to this's mapp1061[key].

3. Remove this's mapp1061[key].

4. Reorderp1061 this.

5. Broadcastp1061 this with key, oldValue, and null.

The clear() method steps are:

1. Clear this's mapp1061.

2. Broadcastp1061 this with null, null, and null.

interface mixin WindowSessionStorage {
readonly attribute Storage sessionStorage;

};
Window includes WindowSessionStorage;

A Documentp114 object has an associated session storage holder, which is null or a Storagep1060 object. It is initially null.

The sessionStorage getter steps are:

1. If this's associated Documentp826 's session storage holderp1062 is non-null, then return this's associated Documentp826 's
session storage holderp1062.

2. Let map be the result of running obtain a session storage bottle map with this's relevant settings objectp924 and
"sessionStorage".

3. If map is failure, then throw a "SecurityError" DOMException.

4. Let storage be a new Storagep1060 object whose mapp1061 is map.

5. Set this's associated Documentp826 's session storage holderp1062 to storage.

6. Return storage.

window . sessionStoragep1062

Returns the Storagep1060 object associated with that window's origin's session storage area.
Throws a "SecurityError" DOMException if the Documentp114 's originp837 is an opaque originp837 or if the request violates a
policy decision (e.g., if the user agent is configured to not allow the page to persist data).

For web developers (non-normative)

IDL

11.2.2 The sessionStoragep1062 getter §p10

62

✔ MDN

✔ MDN

✔ MDN

1062

https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#map-exists
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#string-is
https://heycam.github.io/webidl/#quotaexceedederror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#map-exists
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#map-remove
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://infra.spec.whatwg.org/#map-clear
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://storage.spec.whatwg.org/#obtain-a-session-storage-bottle-map
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#this

interface mixin WindowLocalStorage {
readonly attribute Storage localStorage;

};
Window includes WindowLocalStorage;

A Documentp114 object has an associated local storage holder, which is null or a Storagep1060 object. It is initially null.

The localStorage getter steps are:

1. If this's associated Documentp826 's local storage holderp1063 is non-null, then return this's associated Documentp826 's
local storage holderp1063.

2. Let map be the result of running obtain a local storage bottle map with this's relevant settings objectp924 and
"localStorage".

3. If map is failure, then throw a "SecurityError" DOMException.

4. Let storage be a new Storagep1060 object whose mapp1061 is map.

5. Set this's associated Documentp826 's local storage holderp1063 to storage.

6. Return storage.

[Exposed=Window]
interface StorageEvent : Event {

constructor(DOMString type, optional StorageEventInit eventInitDict = {});

readonly attribute DOMString? key;
readonly attribute DOMString? oldValue;
readonly attribute DOMString? newValue;
readonly attribute USVString url;
readonly attribute Storage? storageArea;

undefined initStorageEvent(DOMString type, optional boolean bubbles = false, optional boolean
cancelable = false, optional DOMString? key = null, optional DOMString? oldValue = null, optional
DOMString? newValue = null, optional USVString url = "", optional Storage? storageArea = null);
};

dictionary StorageEventInit : EventInit {
DOMString? key = null;
DOMString? oldValue = null;
DOMString? newValue = null;
USVString url = "";
Storage? storageArea = null;

While creating a new auxiliary browsing context p813, the session storage is copiedp813 over.
Note

window . localStoragep1063

Returns the Storagep1060 object associated with window's origin's local storage area.
Throws a "SecurityError" DOMException if the Documentp114 's originp837 is an opaque originp837 or if the request violates a
policy decision (e.g., if the user agent is configured to not allow the page to persist data).

For web developers (non-normative)

IDL

IDL

11.2.3 The localStoragep1063 getter §p10

63

11.2.4 The StorageEventp1063 interface §p10

63

✔ MDN

✔ MDN

1063

https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://infra.spec.whatwg.org/#tracking-vector
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#this
https://storage.spec.whatwg.org/#obtain-a-local-storage-bottle-map
https://heycam.github.io/webidl/#this
https://heycam.github.io/webidl/#securityerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#this
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit

};

The key, oldValue, newValue, url, and storageArea attributes must return the values they were initialized to.

The initStorageEvent() method must initialize the event in a manner analogous to the similarly-named initEvent() method.
[DOM]p1287

A third-party advertiser (or any entity capable of getting content distributed to multiple sites) could use a unique identifier stored in its
local storage area to track a user across multiple sessions, building a profile of the user's interests to allow for highly targeted
advertising. In conjunction with a site that is aware of the user's real identity (for example an e-commerce site that requires
authenticated credentials), this could allow oppressive groups to target individuals with greater accuracy than in a world with purely
anonymous web usage.

There are a number of techniques that can be used to mitigate the risk of user tracking:

Blocking third-party storage
User agents may restrict access to the localStoragep1063 objects to scripts originating at the domain of the active documentp811 of
the top-level browsing contextp814, for instance denying access to the API for pages from other domains running in iframep361s.

Expiring stored data
User agents may, possibly in a manner configured by the user, automatically delete stored data after a period of time.

For example, a user agent could be configured to treat third-party local storage areas as session-only storage, deleting the data
once the user had closed all the browsing contextsp811 that could access it.

This can restrict the ability of a site to track a user, as the site would then only be able to track the user across multiple sessions
when they authenticate with the site itself (e.g. by making a purchase or logging in to a service).

However, this also reduces the usefulness of the API as a long-term storage mechanism. It can also put the user's data at risk, if the
user does not fully understand the implications of data expiration.

Treating persistent storage as cookies
If users attempt to protect their privacy by clearing cookies without also clearing data stored in the local storage area, sites can
defeat those attempts by using the two features as redundant backup for each other. User agents should present the interfaces for
clearing these in a way that helps users to understand this possibility and enables them to delete data in all persistent storage
features simultaneously. [COOKIES]p1285

Site-specific safelisting of access to local storage areas
User agents may allow sites to access session storage areas in an unrestricted manner, but require the user to authorize access to
local storage areas.

event . keyp1064

Returns the key of the storage item being changed.

event . oldValuep1064

Returns the old value of the key of the storage item whose value is being changed.

event . newValuep1064

Returns the new value of the key of the storage item whose value is being changed.

event . urlp1064

Returns the URL of the document whose storage item changed.

event . storageAreap1064

Returns the Storagep1060 object that was affected.

For web developers (non-normative)

11.3 Privacy §p10

64

11.3.1 User tracking §p10

64

1064

https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#dom-event-initevent

Origin-tracking of stored data
User agents may record the originsp837 of sites that contained content from third-party origins that caused data to be stored.

If this information is then used to present the view of data currently in persistent storage, it would allow the user to make informed
decisions about which parts of the persistent storage to prune. Combined with a blocklist ("delete this data and prevent this domain
from ever storing data again"), the user can restrict the use of persistent storage to sites that they trust.

Shared blocklists
User agents may allow users to share their persistent storage domain blocklists.

This would allow communities to act together to protect their privacy.

While these suggestions prevent trivial use of this API for user tracking, they do not block it altogether. Within a single domain, a site
can continue to track the user during a session, and can then pass all this information to the third party along with any identifying
information (names, credit card numbers, addresses) obtained by the site. If a third party cooperates with multiple sites to obtain such
information, a profile can still be created.

However, user tracking is to some extent possible even with no cooperation from the user agent whatsoever, for instance by using
session identifiers in URLs, a technique already commonly used for innocuous purposes but easily repurposed for user tracking (even
retroactively). This information can then be shared with other sites, using visitors' IP addresses and other user-specific data (e.g. user-
agent headers and configuration settings) to combine separate sessions into coherent user profiles.

User agents should treat persistently stored data as potentially sensitive; it's quite possible for emails, calendar appointments, health
records, or other confidential documents to be stored in this mechanism.

To this end, user agents should ensure that when deleting data, it is promptly deleted from the underlying storage.

Because of the potential for DNS spoofing attacks, one cannot guarantee that a host claiming to be in a certain domain really is from
that domain. To mitigate this, pages can use TLS. Pages using TLS can be sure that only the user, software working on behalf of the
user, and other pages using TLS that have certificates identifying them as being from the same domain, can access their storage
areas.

Different authors sharing one host name, for example users hosting content on the now defunct geocities.com, all share one local
storage object. There is no feature to restrict the access by pathname. Authors on shared hosts are therefore urged to avoid using
these features, as it would be trivial for other authors to read the data and overwrite it.

The two primary risks when implementing these persistent storage features are letting hostile sites read information from other
domains, and letting hostile sites write information that is then read from other domains.

Letting third-party sites read data that is not supposed to be read from their domain causes information leakage, For example, a user's

11.4 Security §p10

65

Even if a path-restriction feature was made available, the usual DOM scripting security model would make it trivial to bypass this
protection and access the data from any path.

Note

11.3.2 Sensitivity of data §p10

65

11.4.1 DNS spoofing attacks §p10

65

11.4.2 Cross-directory attacks §p10

65

11.4.3 Implementation risks §p10

65

1065

shopping wishlist on one domain could be used by another domain for targeted advertising; or a user's work-in-progress confidential
documents stored by a word-processing site could be examined by the site of a competing company.

Letting third-party sites write data to the persistent storage of other domains can result in information spoofing, which is equally
dangerous. For example, a hostile site could add items to a user's wishlist; or a hostile site could set a user's session identifier to a
known ID that the hostile site can then use to track the user's actions on the victim site.

Thus, strictly following the originp837 model described in this specification is important for user security.

1066

This section only applies to documents, authoring tools, and markup generators. In particular, it does not apply to conformance
checkers; conformance checkers must use the requirements given in the next section ("parsing HTML documents").

Documents must consist of the following parts, in the given order:

1. Optionally, a single U+FEFF BYTE ORDER MARK (BOM) character.

2. Any number of commentsp1078 and ASCII whitespace.

3. A DOCTYPEp1067.

4. Any number of commentsp1078 and ASCII whitespace.

5. The document element, in the form of an htmlp152 elementp1068.

6. Any number of commentsp1078 and ASCII whitespace.

The various types of content mentioned above are described in the next few sections.

In addition, there are some restrictions on how character encoding declarationsp173 are to be serialized, as discussed in the section on
that topic.

Many strings in the HTML syntax (e.g. the names of elements and their attributes) are case-insensitive, but only for ASCII upper alphas
and ASCII lower alphas. For convenience, in this section this is just referred to as "case-insensitive".

A DOCTYPE is a required preamble.

A DOCTYPE must consist of the following components, in this order:

1. A string that is an ASCII case-insensitive match for the string "<!DOCTYPE".
2. One or more ASCII whitespace.

12 The HTML syntax §p10

67

This section only describes the rules for resources labeled with an HTML MIME type. Rules for XML resources are discussed in the
section below entitled "The XML syntaxp1188".

Note

12.1 Writing HTML documents §p10

67

ASCII whitespace before the htmlp152 element, at the start of the htmlp152 element and before the headp153 element, will be dropped
when the document is parsed; ASCII whitespace after the htmlp152 element will be parsed as if it were at the end of the bodyp178

element. Thus, ASCII whitespace around the document element does not round-trip.

It is suggested that newlines be inserted after the DOCTYPE, after any comments that are before the document element, after the
htmlp152 element's start tag (if it is not omittedp1071), and after any comments that are inside the htmlp152 element but before the
headp153 element.

Note

DOCTYPEs are required for legacy reasons. When omitted, browsers tend to use a different rendering mode that is incompatible
with some specifications. Including the DOCTYPE in a document ensures that the browser makes a best-effort attempt at following
the relevant specifications.

Note

12.1.1 The DOCTYPE §p10

67

1067

https://mimesniff.spec.whatwg.org/#html-mime-type
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace

3. A string that is an ASCII case-insensitive match for the string "html".
4. Optionally, a DOCTYPE legacy stringp1068.
5. Zero or more ASCII whitespace.
6. A U+003E GREATER-THAN SIGN character (>).

For the purposes of HTML generators that cannot output HTML markup with the short DOCTYPE "<!DOCTYPE html>", a DOCTYPE
legacy string may be inserted into the DOCTYPE (in the position defined above). This string must consist of:

1. One or more ASCII whitespace.
2. A string that is an ASCII case-insensitive match for the string "SYSTEM".
3. One or more ASCII whitespace.
4. A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the quote mark).
5. The literal string "about:legacy-compatp88".
6. A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the earlier step

labeled quote mark).

The DOCTYPE legacy stringp1068 should not be used unless the document is generated from a system that cannot output the shorter
string.

There are six different kinds of elements: void elementsp1068, the template elementp1068, raw text elementsp1068, escapable raw text
elementsp1068, foreign elementsp1068, and normal elementsp1068.

Void elements
areap443, basep155, brp280, colp460, embedp369, hrp214, imgp320, inputp493, linkp157, metap164, paramp378, sourcep317, trackp385, wbrp281

The template element
templatep629

Raw text elements
scriptp614, stylep174

Escapable raw text elements
textareap548, titlep154

Foreign elements
Elements from the MathML namespace and the SVG namespace.

Normal elements
All other allowed HTML elementsp44 are normal elements.

Tags are used to delimit the start and end of elements in the markup. Raw textp1068, escapable raw textp1068, and normalp1068 elements
have a start tagp1069 to indicate where they begin, and an end tagp1070 to indicate where they end. The start and end tags of certain
normal elementsp1068 can be omittedp1071, as described below in the section on optional tagsp1071. Those that cannot be omitted must
not be omitted. Void elementsp1068 only have a start tag; end tags must not be specified for void elementsp1068. Foreign elementsp1068

must either have a start tag and an end tag, or a start tag that is marked as self-closing, in which case they must not have an end tag.

The contentsp129 of the element must be placed between just after the start tag (which might be implied, in certain casesp1071) and just
before the end tag (which again, might be implied in certain casesp1071). The exact allowed contents of each individual element depend
on the content modelp129 of that element, as described earlier in this specification. Elements must not contain content that their
content model disallows. In addition to the restrictions placed on the contents by those content models, however, the five types of
elements have additional syntactic requirements.

Void elementsp1068 can't have any contents (since there's no end tag, no content can be put between the start tag and the end tag).

In other words, <!DOCTYPE html>, case-insensitively.
Note

In other words, <!DOCTYPE html SYSTEM "about:legacy-compat"> or <!DOCTYPE html SYSTEM 'about:legacy-compat'>, case-
insensitively except for the part in single or double quotes.

Note

12.1.2 Elements §p10

68

1068

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace

The template elementp1068 can have template contentsp631, but such template contentsp631 are not children of the templatep629

element itself. Instead, they are stored in a DocumentFragment associated with a different Documentp114 — without a browsing
contextp811 — so as to avoid the templatep629 contents interfering with the main Documentp114. The markup for the template
contentsp631 of a templatep629 element is placed just after the templatep629 element's start tag and just before templatep629 element's
end tag (as with other elements), and may consist of any textp1077, character referencesp1077, elementsp1068, and commentsp1078, but the
text must not contain the character U+003C LESS-THAN SIGN (<) or an ambiguous ampersandp1078.

Raw text elementsp1068 can have textp1077, though it has restrictionsp1077 described below.

Escapable raw text elementsp1068 can have textp1077 and character referencesp1077, but the text must not contain an ambiguous
ampersandp1078. There are also further restrictionsp1077 described below.

Foreign elementsp1068 whose start tag is marked as self-closing can't have any contents (since, again, as there's no end tag, no content
can be put between the start tag and the end tag). Foreign elementsp1068 whose start tag is not marked as self-closing can have
textp1077, character referencesp1077, CDATA sectionsp1078, other elementsp1068, and commentsp1078, but the text must not contain the
character U+003C LESS-THAN SIGN (<) or an ambiguous ampersandp1078.

Normal elementsp1068 can have textp1077, character referencesp1077, other elementsp1068, and commentsp1078, but the text must not
contain the character U+003C LESS-THAN SIGN (<) or an ambiguous ampersandp1078. Some normal elementsp1068 also have yet more
restrictionsp1077 on what content they are allowed to hold, beyond the restrictions imposed by the content model and those described
in this paragraph. Those restrictions are described below.

Tags contain a tag name, giving the element's name. HTML elements all have names that only use ASCII alphanumerics. In the HTML
syntax, tag names, even those for foreign elementsp1068, may be written with any mix of lower- and uppercase letters that, when
converted to all-lowercase, matches the element's tag name; tag names are case-insensitive.

Start tags must have the following format:

1. The first character of a start tag must be a U+003C LESS-THAN SIGN character (<).

2. The next few characters of a start tag must be the element's tag namep1069.

3. If there are to be any attributes in the next step, there must first be one or more ASCII whitespace.

4. Then, the start tag may have a number of attributes, the syntax for whichp1070 is described below. Attributes must be
separated from each other by one or more ASCII whitespace.

5. After the attributes, or after the tag namep1069 if there are no attributes, there may be one or more ASCII whitespace. (Some
attributes are required to be followed by a space. See the attributes sectionp1070 below.)

6. Then, if the element is one of the void elementsp1068, or if the element is a foreign elementp1068, then there may be a single
U+002F SOLIDUS character (/). This character has no effect on void elementsp1068, but on foreign elementsp1068 it marks the

The HTML syntax does not support namespace declarations, even in foreign elementsp1068.

For instance, consider the following HTML fragment:

<p>
<svg>
<metadata>
<!-- this is invalid -->
<cdr:license xmlns:cdr="https://www.example.com/cdr/metadata" name="MIT"/>

</metadata>
</svg>

</p>

The innermost element, cdr:license, is actually in the SVG namespace, as the "xmlns:cdr" attribute has no effect (unlike in
XML). In fact, as the comment in the fragment above says, the fragment is actually non-conforming. This is because SVG 2 does
not define any elements called "cdr:license" in the SVG namespace.

Note

12.1.2.1 Start tags §p10

69

1069

https://dom.spec.whatwg.org/#interface-documentfragment
https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

start tag as self-closing.

7. Finally, start tags must be closed by a U+003E GREATER-THAN SIGN character (>).

End tags must have the following format:

1. The first character of an end tag must be a U+003C LESS-THAN SIGN character (<).

2. The second character of an end tag must be a U+002F SOLIDUS character (/).

3. The next few characters of an end tag must be the element's tag namep1069.

4. After the tag name, there may be one or more ASCII whitespace.

5. Finally, end tags must be closed by a U+003E GREATER-THAN SIGN character (>).

Attributes for an element are expressed inside the element's start tag.

Attributes have a name and a value. Attribute names must consist of one or more characters other than controls, U+0020 SPACE,
U+0022 ("), U+0027 ('), U+003E (>), U+002F (/), U+003D (=), and noncharacters. In the HTML syntax, attribute names, even those
for foreign elementsp1068, may be written with any mix of ASCII lower and ASCII upper alphas.

Attribute values are a mixture of textp1077 and character referencesp1077, except with the additional restriction that the text cannot
contain an ambiguous ampersandp1078.

Attributes can be specified in four different ways:

Empty attribute syntax
Just the attribute namep1070. The value is implicitly the empty string.

If an attribute using the empty attribute syntax is to be followed by another attribute, then there must be ASCII whitespace
separating the two.

Unquoted attribute value syntax
The attribute namep1070, followed by zero or more ASCII whitespace, followed by a single U+003D EQUALS SIGN character, followed
by zero or more ASCII whitespace, followed by the attribute valuep1070, which, in addition to the requirements given above for
attribute values, must not contain any literal ASCII whitespace, any U+0022 QUOTATION MARK characters ("), U+0027
APOSTROPHE characters ('), U+003D EQUALS SIGN characters (=), U+003C LESS-THAN SIGN characters (<), U+003E GREATER-
THAN SIGN characters (>), or U+0060 GRAVE ACCENT characters (`), and must not be the empty string.

If an attribute using the unquoted attribute syntax is to be followed by another attribute or by the optional U+002F SOLIDUS
character (/) allowed in step 6 of the start tagp1069 syntax above, then there must be ASCII whitespace separating the two.

12.1.2.2 End tags §p10

70

12.1.2.3 Attributes §p10

70

In the following example, the disabledp570 attribute is given with the empty attribute syntax:

<input disabled>

Example

In the following example, the valuep497 attribute is given with the unquoted attribute value syntax:

<input value=yes>

Example

1070

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

Single-quoted attribute value syntax
The attribute namep1070, followed by zero or more ASCII whitespace, followed by a single U+003D EQUALS SIGN character, followed
by zero or more ASCII whitespace, followed by a single U+0027 APOSTROPHE character ('), followed by the attribute valuep1070,
which, in addition to the requirements given above for attribute values, must not contain any literal U+0027 APOSTROPHE
characters ('), and finally followed by a second single U+0027 APOSTROPHE character (').

If an attribute using the single-quoted attribute syntax is to be followed by another attribute, then there must be ASCII whitespace
separating the two.

Double-quoted attribute value syntax
The attribute namep1070, followed by zero or more ASCII whitespace, followed by a single U+003D EQUALS SIGN character, followed
by zero or more ASCII whitespace, followed by a single U+0022 QUOTATION MARK character ("), followed by the attribute valuep1070,
which, in addition to the requirements given above for attribute values, must not contain any literal U+0022 QUOTATION MARK
characters ("), and finally followed by a second single U+0022 QUOTATION MARK character (").

If an attribute using the double-quoted attribute syntax is to be followed by another attribute, then there must be ASCII whitespace
separating the two.

There must never be two or more attributes on the same start tag whose names are an ASCII case-insensitive match for each other.

When a foreign elementp1068 has one of the namespaced attributes given by the local name and namespace of the first and second
cells of a row from the following table, it must be written using the name given by the third cell from the same row.

Local name Namespace Attribute name

actuate XLink namespace xlink:actuate

arcrole XLink namespace xlink:arcrole

href XLink namespace xlink:href

role XLink namespace xlink:role

show XLink namespace xlink:show

title XLink namespace xlink:title

type XLink namespace xlink:type

lang XML namespace xml:lang

space XML namespace xml:space

xmlns XMLNS namespace xmlns

xlink XMLNS namespace xmlns:xlink

No other namespaced attribute can be expressed in the HTML syntaxp1067.

Certain tags can be omitted.

In the following example, the typep495 attribute is given with the single-quoted attribute value syntax:

<input type='checkbox'>

Example

In the following example, the namep568 attribute is given with the double-quoted attribute value syntax:

<input name="be evil">

Example

Whether the attributes in the table above are conforming or not is defined by other specifications (e.g. SVG 2 and MathML); this
section only describes the syntax rules if the attributes are serialized using the HTML syntax.

Note

12.1.2.4 Optional tags §p10

71

1071

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xmlns-namespace

An htmlp152 element's start tagp1069 may be omitted if the first thing inside the htmlp152 element is not a commentp1078.

Omitting an element's start tagp1069 in the situations described below does not mean the element is not present; it is implied, but it
is still there. For example, an HTML document always has a root htmlp152 element, even if the string <html> doesn't appear
anywhere in the markup.

Note

For example, in the following case it's ok to remove the "<html>" tag:

<!DOCTYPE HTML>
<html>

<head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

Doing so would make the document look like this:

<!DOCTYPE HTML>

<head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

This has the exact same DOM. In particular, note that whitespace around the document element is ignored by the parser. The
following example would also have the exact same DOM:

<!DOCTYPE HTML><head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

However, in the following example, removing the start tag moves the comment to before the htmlp152 element:

<!DOCTYPE HTML>
<html>

<!-- where is this comment in the DOM? -->
<head>

<title>Hello</title>
</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

With the tag removed, the document actually turns into the same as this:

<!DOCTYPE HTML>

Example

1072

https://dom.spec.whatwg.org/#document-element

An htmlp152 element's end tagp1070 may be omitted if the htmlp152 element is not immediately followed by a commentp1078.

A headp153 element's start tagp1069 may be omitted if the element is empty, or if the first thing inside the headp153 element is an
element.

A headp153 element's end tagp1070 may be omitted if the headp153 element is not immediately followed by ASCII whitespace or a
commentp1078.

A bodyp178 element's start tagp1069 may be omitted if the element is empty, or if the first thing inside the bodyp178 element is not ASCII
whitespace or a commentp1078, except if the first thing inside the bodyp178 element is a metap164, linkp157, scriptp614, stylep174, or
templatep629 element.

A bodyp178 element's end tagp1070 may be omitted if the bodyp178 element is not immediately followed by a commentp1078.

<!-- where is this comment in the DOM? -->
<html>

<head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

This is why the tag can only be removed if it is not followed by a comment: removing the tag when there is a comment there
changes the document's resulting parse tree. Of course, if the position of the comment does not matter, then the tag can be
omitted, as if the comment had been moved to before the start tag in the first place.

Note that in the example above, the headp153 element start and end tags, and the bodyp178 element start tag, can't be omitted,
because they are surrounded by whitespace:

<!DOCTYPE HTML>
<html>

<head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

(The bodyp178 and htmlp152 element end tags could be omitted without trouble; any spaces after those get parsed into the bodyp178

element anyway.)

Usually, however, whitespace isn't an issue. If we first remove the whitespace we don't care about:

<!DOCTYPE HTML><html><head><title>Hello</title></head><body><p>Welcome to this
example.</p></body></html>

Then we can omit a number of tags without affecting the DOM:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.</p>

At that point, we can also add some whitespace back:

<!DOCTYPE HTML>
<title>Hello</title>

Example

1073

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

An lip224 element's end tagp1070 may be omitted if the lip224 element is immediately followed by another lip224 element or if there is
no more content in the parent element.

A dtp230 element's end tagp1070 may be omitted if the dtp230 element is immediately followed by another dtp230 element or a ddp231

element.

A ddp231 element's end tagp1070 may be omitted if the ddp231 element is immediately followed by another ddp231 element or a dtp230

element, or if there is no more content in the parent element.

A pp211 element's end tagp1070 may be omitted if the pp211 element is immediately followed by an addressp197, articlep180, asidep187,
blockquotep217, detailsp604, divp237, dlp226, fieldsetp562, figcaptionp235, figurep232, footerp195, formp486, h1p190, h2p190, h3p190, h4p190,
h5p190, h6p190, headerp194, hgroupp191, hrp214, mainp235, menup223, navp184, olp220, pp211, prep216, sectionp182, tablep450, or ulp222 element, or
if there is no more content in the parent element and the parent element is an HTML elementp44 that is not an ap238, audiop384, delp312,
insp311, mapp442, noscriptp627, or videop380 element, or an autonomous custom elementp703.

An rtp258 element's end tagp1070 may be omitted if the rtp258 element is immediately followed by an rtp258 or rpp258 element, or if there
is no more content in the parent element.

An rpp258 element's end tagp1070 may be omitted if the rpp258 element is immediately followed by an rtp258 or rpp258 element, or if there
is no more content in the parent element.

An optgroupp544 element's end tagp1070 may be omitted if the optgroupp544 element is immediately followed by another optgroupp544

element, or if there is no more content in the parent element.

An optionp545 element's end tagp1070 may be omitted if the optionp545 element is immediately followed by another optionp545 element,
or if it is immediately followed by an optgroupp544 element, or if there is no more content in the parent element.

A colgroupp459 element's start tagp1069 may be omitted if the first thing inside the colgroupp459 element is a colp460 element, and if the
element is not immediately preceded by another colgroupp459 element whose end tagp1070 has been omitted. (It can't be omitted if the
element is empty.)

A colgroupp459 element's end tagp1070 may be omitted if the colgroupp459 element is not immediately followed by ASCII whitespace or
a commentp1078.

A captionp458 element's end tagp1070 may be omitted if the captionp458 element is not immediately followed by ASCII whitespace or a
commentp1078.

A theadp462 element's end tagp1070 may be omitted if the theadp462 element is immediately followed by a tbodyp461 or tfootp463

element.

A tbodyp461 element's start tagp1069 may be omitted if the first thing inside the tbodyp461 element is a trp464 element, and if the element
is not immediately preceded by a tbodyp461, theadp462, or tfootp463 element whose end tagp1070 has been omitted. (It can't be omitted
if the element is empty.)

A tbodyp461 element's end tagp1070 may be omitted if the tbodyp461 element is immediately followed by a tbodyp461 or tfootp463

element, or if there is no more content in the parent element.

<p>Welcome to this example.</p>

This would be equivalent to this document, with the omitted tags shown in their parser-implied positions; the only whitespace text
node that results from this is the newline at the end of the headp153 element:

<!DOCTYPE HTML>
<html><head><title>Hello</title>
</head><body><p>Welcome to this example.</p></body></html>

We can thus simplify the earlier example further:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.

Example

1074

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

A tfootp463 element's end tagp1070 may be omitted if there is no more content in the parent element.

A trp464 element's end tagp1070 may be omitted if the trp464 element is immediately followed by another trp464 element, or if there is no
more content in the parent element.

A tdp465 element's end tagp1070 may be omitted if the tdp465 element is immediately followed by a tdp465 or thp467 element, or if there is
no more content in the parent element.

A thp467 element's end tagp1070 may be omitted if the thp467 element is immediately followed by a tdp465 or thp467 element, or if there is
no more content in the parent element.

The ability to omit all these table-related tags makes table markup much terser.

Take this example:

<table>
<caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)</caption>
<colgroup><col><col><col></colgroup>
<thead>
<tr>
<th>Function</th>
<th>Control Unit</th>
<th>Central Station</th>

</tr>
</thead>
<tbody>
<tr>
<td>Headlights</td>
<td>✔</td>
<td>✔</td>

</tr>
<tr>
<td>Interior Lights</td>
<td>✔</td>
<td>✔</td>

</tr>
<tr>
<td>Electric locomotive operating sounds</td>
<td>✔</td>
<td>✔</td>

</tr>
<tr>
<td>Engineer's cab lighting</td>
<td></td>
<td>✔</td>

</tr>
<tr>
<td>Station Announcements - Swiss</td>
<td></td>
<td>✔</td>

</tr>
</tbody>

</table>

The exact same table, modulo some whitespace differences, could be marked up as follows:

<table>
<caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)
<colgroup><col><col><col>
<thead>

Example

1075

However, a start tagp1069 must never be omitted if it has any attributes.

<tr>
<th>Function
<th>Control Unit
<th>Central Station

<tbody>
<tr>
<td>Headlights
<td>✔
<td>✔

<tr>
<td>Interior Lights
<td>✔
<td>✔

<tr>
<td>Electric locomotive operating sounds
<td>✔
<td>✔

<tr>
<td>Engineer's cab lighting
<td>
<td>✔

<tr>
<td>Station Announcements - Swiss
<td>
<td>✔

</table>

Since the cells take up much less room this way, this can be made even terser by having each row on one line:

<table>
<caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)
<colgroup><col><col><col>
<thead>
<tr> <th>Function <th>Control Unit <th>Central Station

<tbody>
<tr> <td>Headlights <td>✔ <td>✔
<tr> <td>Interior Lights <td>✔ <td>✔
<tr> <td>Electric locomotive operating sounds <td>✔ <td>✔
<tr> <td>Engineer's cab lighting <td> <td>✔
<tr> <td>Station Announcements - Swiss <td> <td>✔

</table>

The only differences between these tables, at the DOM level, is with the precise position of the (in any case semantically-neutral)
whitespace.

Returning to the earlier example with all the whitespace removed and then all the optional tags removed:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.

If the bodyp178 element in this example had to have a classp137 attribute and the htmlp152 element had to have a langp140 attribute,
the markup would have to become:

<!DOCTYPE HTML><html lang="en"><title>Hello</title><body class="demo"><p>Welcome to this example.

Example

1076

For historical reasons, certain elements have extra restrictions beyond even the restrictions given by their content model.

A tablep450 element must not contain trp464 elements, even though these elements are technically allowed inside tablep450 elements
according to the content models described in this specification. (If a trp464 element is put inside a tablep450 in the markup, it will in fact
imply a tbodyp461 start tag before it.)

A single newlinep1077 may be placed immediately after the start tagp1069 of prep216 and textareap548 elements. This does not affect the
processing of the element. The otherwise optional newlinep1077 must be included if the element's contents themselves start with a
newlinep1077 (because otherwise the leading newline in the contents would be treated like the optional newline, and ignored).

The text in raw textp1068 and escapable raw text elementsp1068 must not contain any occurrences of the string "</" (U+003C LESS-THAN
SIGN, U+002F SOLIDUS) followed by characters that case-insensitively match the tag name of the element followed by one of U+0009
CHARACTER TABULATION (tab), U+000A LINE FEED (LF), U+000C FORM FEED (FF), U+000D CARRIAGE RETURN (CR), U+0020 SPACE,
U+003E GREATER-THAN SIGN (>), or U+002F SOLIDUS (/).

Text is allowed inside elements, attribute values, and comments. Extra constraints are placed on what is and what is not allowed in
text based on where the text is to be put, as described in the other sections.

Newlines in HTML may be represented either as U+000D CARRIAGE RETURN (CR) characters, U+000A LINE FEED (LF) characters, or
pairs of U+000D CARRIAGE RETURN (CR), U+000A LINE FEED (LF) characters in that order.

Where character referencesp1077 are allowed, a character reference of a U+000A LINE FEED (LF) character (but not a U+000D
CARRIAGE RETURN (CR) character) also represents a newlinep1077.

In certain cases described in other sections, textp1077 may be mixed with character references. These can be used to escape
characters that couldn't otherwise legally be included in textp1077.

Character references must start with a U+0026 AMPERSAND character (&). Following this, there are three possible kinds of character
references:

This section assumes that the document is conforming, in particular, that there are no content modelp129 violations. Omitting tags
in the fashion described in this section in a document that does not conform to the content modelsp129 described in this
specification is likely to result in unexpected DOM differences (this is, in part, what the content models are designed to avoid).

Note

12.1.2.5 Restrictions on content models §p10

77

The following two prep216 blocks are equivalent:

<pre>Hello</pre>

<pre>
Hello</pre>

Example

12.1.2.6 Restrictions on the contents of raw text and escapable raw text elements §p10

77

12.1.3.1 Newlines §p10

77

12.1.3 Text §p10

77

12.1.4 Character references §p10

77

1077

Named character references
The ampersand must be followed by one of the names given in the named character referencesp1178 section, using the same case.
The name must be one that is terminated by a U+003B SEMICOLON character (;).

Decimal numeric character reference
The ampersand must be followed by a U+0023 NUMBER SIGN character (#), followed by one or more ASCII digits, representing a
base-ten integer that corresponds to a code point that is allowed according to the definition below. The digits must then be followed
by a U+003B SEMICOLON character (;).

Hexadecimal numeric character reference
The ampersand must be followed by a U+0023 NUMBER SIGN character (#), which must be followed by either a U+0078 LATIN
SMALL LETTER X character (x) or a U+0058 LATIN CAPITAL LETTER X character (X), which must then be followed by one or more
ASCII hex digits, representing a hexadecimal integer that corresponds to a code point that is allowed according to the definition
below. The digits must then be followed by a U+003B SEMICOLON character (;).

The numeric character reference forms described above are allowed to reference any code point excluding U+000D CR, noncharacters,
and controls other than ASCII whitespace.

An ambiguous ampersand is a U+0026 AMPERSAND character (&) that is followed by one or more ASCII alphanumerics, followed by
a U+003B SEMICOLON character (;), where these characters do not match any of the names given in the named character
referencesp1178 section.

CDATA sections must consist of the following components, in this order:

1. The string "<![CDATA[".

2. Optionally, textp1077, with the additional restriction that the text must not contain the string "]]>".

3. The string "]]>".

Comments must have the following format:

1. The string "<!--".

2. Optionally, textp1077, with the additional restriction that the text must not start with the string ">", nor start with the string
"->", nor contain the strings "<!--", "-->", or "--!>", nor end with the string "<!-".

3. The string "-->".

CDATA sections can only be used in foreign content (MathML or SVG). In this example, a CDATA section is used to escape the
contents of a MathML ms element:

<p>You can add a string to a number, but this stringifies the number:</p>
<math>
<ms><![CDATA[x<y]]></ms>
<mo>+</mo>
<mn>3</mn>
<mo>=</mo>
<ms><![CDATA[x<y3]]></ms>

</math>

Example

The textp1077 is allowed to end with the string "<!", as in <!--My favorite operators are > and <!-->.
Note

12.1.5 CDATA sections §p10

78

12.1.6 Comments §p10

78

1078

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-alphanumeric
https://www.w3.org/Math/draft-spec/chapter3.html#presm.ms

This section only applies to user agents, data mining tools, and conformance checkers.

User agents must use the parsing rules described in this section to generate the DOM trees from text/htmlp1250 resources. Together,
these rules define what is referred to as the HTML parser.

For the purposes of conformance checkers, if a resource is determined to be in the HTML syntaxp1067, then it is an HTML document.

12.2 Parsing HTML documents §p10

79

The rules for parsing XML documents into DOM trees are covered by the next section, entitled "The XML syntaxp1188".
Note

While the HTML syntax described in this specification bears a close resemblance to SGML and XML, it is a separate language with
its own parsing rules.

Some earlier versions of HTML (in particular from HTML2 to HTML4) were based on SGML and used SGML parsing rules. However,
few (if any) web browsers ever implemented true SGML parsing for HTML documents; the only user agents to strictly handle HTML
as an SGML application have historically been validators. The resulting confusion — with validators claiming documents to have
one representation while widely deployed web browsers interoperably implemented a different representation — has wasted
decades of productivity. This version of HTML thus returns to a non-SGML basis.

Authors interested in using SGML tools in their authoring pipeline are encouraged to use XML tools and the XML serialization of
HTML.

Note

As stated in the terminology sectionp44, references to element typesp44 that do not explicitly specify a namespace always refer to
elements in the HTML namespace. For example, if the spec talks about "a menup223 element", then that is an element with the local
name "menu", the namespace "http://www.w3.org/1999/xhtml", and the interface HTMLMenuElementp223. Where possible,
references to such elements are hyperlinked to their definition.

Note

1079

https://dom.spec.whatwg.org/#html-document
https://infra.spec.whatwg.org/#html-namespace

The input to the HTML parsing process consists of a stream of code points, which is passed through a tokenizationp1097 stage followed
by a tree constructionp1125 stage. The output is a Documentp114 object.

In the common case, the data handled by the tokenization stage comes from the network, but it can also come from scriptp967 running
in the user agent, e.g. using the document.write()p970 API.

There is only one set of states for the tokenizer stage and the tree construction stage, but the tree construction stage is reentrant,
meaning that while the tree construction stage is handling one token, the tokenizer might be resumed, causing further tokens to be
emitted and processed before the first token's processing is complete.

Implementations that do not support scriptingp47 do not have to actually create a DOM Documentp114 object, but the DOM tree in
such cases is still used as the model for the rest of the specification.

Note

In the following example, the tree construction stage will be called upon to handle a "p" start tag token while handling the "script"
end tag token:

...
<script>
document.write('<p>');

</script>
...

Example

Network

Byte Stream
Decoder

Input Stream
Preprocessor

Tokenizer

Tree
Construction

DOM

Script
Execution

document.write()

12.2.1 Overview of the parsing model §p10

80

1080

https://infra.spec.whatwg.org/#code-point

To handle these cases, parsers have a script nesting level, which must be initially set to zero, and a parser pause flag, which must
be initially set to false.

This specification defines the parsing rules for HTML documents, whether they are syntactically correct or not. Certain points in the
parsing algorithm are said to be parse errorsp1081. The error handling for parse errors is well-defined (that's the processing rules
described throughout this specification), but user agents, while parsing an HTML document, may abort the parserp1165 at the first parse
errorp1081 that they encounter for which they do not wish to apply the rules described in this specification.

Conformance checkers must report at least one parse error condition to the user if one or more parse error conditions exist in the
document and must not report parse error conditions if none exist in the document. Conformance checkers may report more than one
parse error condition if more than one parse error condition exists in the document.

Some parse errors have dedicated codes outlined in the table below that should be used by conformance checkers in reports.

Error descriptions in the table below are non-normative.

Code Description

abrupt-closing-of-
empty-comment

This error occurs if the parser encounters an empty commentp1078 that is abruptly closed by a U+003E (>) code point (i.e., <!--> or <!---
>). The parser behaves as if the comment is closed correctly.

abrupt-doctype-
public-identifier

This error occurs if the parser encounters a U+003E (>) code point in the DOCTYPEp1067 public identifier (e.g., <!DOCTYPE html PUBLIC
"foo>). In such a case, if the DOCTYPE is correctly placed as a document preamble, the parser sets the Documentp114 to quirks mode.

abrupt-doctype-
system-identifier

This error occurs if the parser encounters a U+003E (>) code point in the DOCTYPEp1067 system identifier (e.g., <!DOCTYPE html PUBLIC
"-//W3C//DTD HTML 4.01//EN" "foo>). In such a case, if the DOCTYPE is correctly placed as a document preamble, the parser sets the
Documentp114 to quirks mode.

absence-of-digits-
in-numeric-
character-
reference

This error occurs if the parser encounters a numeric character referencep1077 that doesn't contain any digits (e.g., &#qux;). In this case the
parser doesn't resolve the character reference.

cdata-in-html-
content

This error occurs if the parser encounters a CDATA sectionp1078 outside of foreign content (SVG or MathML). The parser treats such CDATA
sections (including leading "[CDATA[" and trailing "]]" strings) as comments.

character-
reference-
outside-unicode-
range

This error occurs if the parser encounters a numeric character referencep1077 that references a code point that is greater than the valid
Unicode range. The parser resolves such a character reference to a U+FFFD REPLACEMENT CHARACTER.

control-character-
in-input-stream

This error occurs if the input streamp1091 contains a control code point that is not ASCII whitespace or U+0000 NULL. Such code points are
parsed as-is and usually, where parsing rules don't apply any additional restrictions, make their way into the DOM.

control-character-
reference

This error occurs if the parser encounters a numeric character referencep1077 that references a control code point that is not ASCII
whitespace or is a U+000D CARRIAGE RETURN. The parser resolves such character references as-is except C1 control references that are
replaced according to the numeric character reference end statep1124.

end-tag-with-
attributes

This error occurs if the parser encounters an end tagp1070 with attributesp1070. Attributes in end tags are completely ignored and do not
make their way into the DOM.

duplicate-
attribute

This error occurs if the parser encounters an attributep1070 in a tag that already has an attribute with the same name. The parser ignores all
such duplicate occurrences of the attribute.

end-tag-with-
trailing-solidus

This error occurs if the parser encounters an end tagp1070 that has a U+002F (/) code point right before the closing U+003E (>) code point
(e.g., </div/>). Such a tag is treated as a regular end tag.

eof-before-tag-
name

This error occurs if the parser encounters the end of the input streamp1091 where a tag name is expected. In this case the parser treats the
beginning of a start tagp1069 (i.e., <) or an end tagp1070 (i.e., </) as text content.

Parse errors are only errors with the syntax of HTML. In addition to checking for parse errors, conformance checkers will also verify
that the document obeys all the other conformance requirements described in this specification.

Note

12.2.2 Parse errors §p10

81

1081

https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#code-point

Code Description

eof-in-cdata This error occurs if the parser encounters the end of the input streamp1091 in a CDATA sectionp1078. The parser treats such CDATA sections as
if they are closed immediately before the end of the input stream.

eof-in-comment This error occurs if the parser encounters the end of the input streamp1091 in a commentp1078. The parser treats such comments as if they
are closed immediately before the end of the input stream.

eof-in-doctype This error occurs if the parser encounters the end of the input stream in a DOCTYPEp1067. In such a case, if the DOCTYPE is correctly placed
as a document preamble, the parser sets the Documentp114 to quirks mode.

eof-in-script-html-
comment-like-text

This error occurs if the parser encounters the end of the input streamp1091 in text that resembles an HTML commentp1078 inside scriptp614

element content (e.g., <script><!-- foo).

eof-in-tag This error occurs if the parser encounters the end of the input streamp1091 in a start tagp1069 or an end tagp1070 (e.g., <div id=). Such a tag
is completely ignored.

incorrectly-
closed-comment

This error occurs if the parser encounters a commentp1078 that is closed by the "--!>" code point sequence. The parser treats such
comments as if they are correctly closed by the "-->" code point sequence.

incorrectly-
opened-comment

This error occurs if the parser encounters the "<!" code point sequence that is not immidiately followed by two U+002D (-) code points and
that is not the start of a DOCTYPEp1067 or a CDATA sectionp1078. All content that follows the "<!" code point sequence up to a U+003E (>)
code point (if present) or to the end of the input streamp1091 is treated as a comment.

invalid-character-
sequence-after-
doctype-name

This error occurs if the parser encounters any code point sequence other than "PUBLIC" and "SYSTEM" keywords after a DOCTYPEp1067 name.
In such a case, the parser ignores any following public or system identifiers, and if the DOCTYPE is correctly placed as a document
preamble, sets the Documentp114 to quirks mode.

invalid-first-
character-of-tag-
name

This error occurs if the parser encounters a code point that is not an ASCII alpha where first code point of a start tagp1069 name or an end
tagp1070 name is expected. If a start tag was expected such code point and a preceding U+003C (<) is treated as text content, and all
content that follows is treated as markup. Whereas, if an end tag was expected, such code point and all content that follows up to a
U+003E (>) code point (if present) or to the end of the input streamp1091 is treated as a comment.

missing-attribute-
value

This error occurs if the parser encounters a U+003E (>) code point where an attributep1070 value is expected (e.g., <div id=>). The parser
treats the attribute as having an empty value.

missing-doctype-
name

This error occurs if the parser encounters a DOCTYPEp1067 that is missing a name (e.g., <!DOCTYPE>). In such a case, if the DOCTYPE is
correctly placed as a document preamble, the parser sets the Documentp114 to quirks mode.

missing-doctype-
public-identifier

This error occurs if the parser encounters a U+003E (>) code point where start of the DOCTYPEp1067 public identifier is expected (e.g.,
<!DOCTYPE html PUBLIC >). In such a case, if the DOCTYPE is correctly placed as a document preamble, the parser sets the Documentp114

to quirks mode.

Syntactic structures that resemble HTML comments in scriptp614 elements are parsed as text content. They can be a part of a scripting
language-specific syntactic structure or be treated as an HTML-like comment, if the scripting language supports them (e.g., parsing
rules for HTML-like comments can be found in Annex B of the JavaScript specification). The common reason for this error is a violation
of the restrictions for contents of script elementsp624. [JAVASCRIPT]p1288

Note

One possible cause of this error is using an XML markup declaration (e.g., <!ELEMENT br EMPTY>) in HTML.
Note

For example, consider the following markup:

<42></42>

This will be parsed into:

htmlp152

headp153

bodyp178

#text: <42>
#comment: 42

Example

While the first code point of a tag name is limited to an ASCII alpha, a wide range of code points (including ASCII digits) is allowed in
subsequent positions.

Note

1082

https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-alpha
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://infra.spec.whatwg.org/#ascii-alpha
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks

Code Description

missing-doctype-
system-identifier

This error occurs if the parser encounters a U+003E (>) code point where start of the DOCTYPEp1067 system identifier is expected (e.g.,
<!DOCTYPE html SYSTEM >). In such a case, if the DOCTYPE is correctly placed as a document preamble, the parser sets the Documentp114

to quirks mode.

missing-end-tag-
name

This error occurs if the parser encounters a U+003E (>) code point where an end tagp1070 name is expected, i.e., </>. The parser
completely ignores whole "</>" code point sequence.

missing-quote-
before-doctype-
public-identifier

This error occurs if the parser encounters the DOCTYPEp1067 public identifier that is not preceded by a quote (e.g., <!DOCTYPE html PUBLIC
-//W3C//DTD HTML 4.01//EN">). In such a case, the parser ignores the public identifier, and if the DOCTYPE is correctly placed as a
document preamble, sets the Documentp114 to quirks mode.

missing-quote-
before-doctype-
system-identifier

This error occurs if the parser encounters the DOCTYPEp1067 system identifier that is not preceded by a quote (e.g., <!DOCTYPE html
SYSTEM http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">). In such a case, the parser ignores the system identifier, and
if the DOCTYPE is correctly placed as a document preamble, sets the Documentp114 to quirks mode.

missing-
semicolon-after-
character-
reference

This error occurs if the parser encounters a character referencep1077 that is not terminated by a U+003B (;) code point. Usually the parser
behaves as if character reference is terminated by the U+003B (;) code point; however, there are some ambiguous cases in which the
parser includes subsequent code points in the character reference.

missing-
whitespace-after-
doctype-public-
keyword

This error occurs if the parser encounters a DOCTYPEp1067 whose "PUBLIC" keyword and public identifier are not separated by ASCII
whitespace. In this case the parser behaves as if ASCII whitespace is present.

missing-
whitespace-after-
doctype-system-
keyword

This error occurs if the parser encounters a DOCTYPEp1067 whose "SYSTEM" keyword and system identifier are not separated by ASCII
whitespace. In this case the parser behaves as if ASCII whitespace is present.

missing-
whitespace-
before-doctype-
name

This error occurs if the parser encounters a DOCTYPEp1067 whose "DOCTYPE" keyword and name are not separated by ASCII whitespace. In
this case the parser behaves as if ASCII whitespace is present.

missing-
whitespace-
between-
attributes

This error occurs if the parser encounters attributesp1070 that are not separated by ASCII whitespace (e.g., <div id="foo"class="bar">). In
this case the parser behaves as if ASCII whitespace is present.

missing-
whitespace-
between-doctype-
public-and-
system-identifiers

This error occurs if the parser encounters a DOCTYPEp1067 whose public and system identifiers are not separated by ASCII whitespace. In
this case the parser behaves as if ASCII whitespace is present.

nested-comment This error occurs if the parser encounters a nested commentp1078 (e.g., <!-- <!-- nested --> -->). Such a comment will be closed by the
first occuring "-->" code point sequence and everything that follows will be treated as markup.

noncharacter-
character-
reference

This error occurs if the parser encounters a numeric character referencep1077 that references a noncharacter. The parser resolves such
character references as-is.

noncharacter-in-
input-stream

This error occurs if the input streamp1091 contains a noncharacter. Such code points are parsed as-is and usually, where parsing rules don't
apply any additional restrictions, make their way into the DOM.

non-void-html-
element-start-
tag-with-trailing-
solidus

This error occurs if the parser encounters a start tagp1069 for an element that is not in the list of void elementsp1068 or is not a part of foreign
content (i.e., not an SVG or MathML element) that has a U+002F (/) code point right before the closing U+003E (>) code point. The parser
behaves as if the U+002F (/) is not present.

For example, ¬in will be parsed as "¬in" whereas ¬in will be parsed as "∉".
Example

For example, consider the following markup:

<div/>

This will be parsed into:

htmlp152

headp153

bodyp178

divp237

Example

1083

https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point

Code Description

null-character-
reference

This error occurs if the parser encounters a numeric character referencep1077 that references a U+0000 NULL code point. The parser
resolves such character references to a U+FFFD REPLACEMENT CHARACTER.

surrogate-
character-
reference

This error occurs if the parser encounters a numeric character referencep1077 that references a surrogate. The parser resolves such
character references to a U+FFFD REPLACEMENT CHARACTER.

surrogate-in-
input-stream

This error occurs if the input streamp1091 contains a surrogate. Such code points are parsed as-is and usually, where parsing rules don't
apply any additional restrictions, make their way into the DOM.

unexpected-
character-after-
doctype-system-
identifier

This error occurs if the parser encounters any code points other than ASCII whitespace or closing U+003E (>) after the DOCTYPEp1067

system identifier. The parser ignores these code points.

unexpected-
character-in-
attribute-name

This error occurs if the parser encounters a U+0022 ("), U+0027 ('), or U+003C (<) code point in an attribute namep1070. The parser
includes such code points in the attribute name.

unexpected-
character-in-
unquoted-
attribute-value

This error occurs if the parser encounters a U+0022 ("), U+0027 ('), U+003C (<), U+003D (=), or U+0060 (`) code point in an unquoted
attribute valuep1070. The parser includes such code points in the attribute value.

spanp279

spanp279

The trailing U+002F (/) in a start tag name can be used only in foreign content to specify self-closing tags. (Self-closing tags don't exist
in HTML.) It is also allowed for void elements, but doesn't have any effect in this case.

Note

Surrogates can only find their way into the input stream via script APIs such as document.write()p970.
Note

Code points that trigger this error are usually a part of another syntactic construct and can be a sign of a typo around the attribute
name.

Note

For example, consider the following markup:

<div foo<div>

Due to a forgotten U+003E (>) code point after foo the parser treats this markup as a single divp237 element with a "foo<div"
attribute.

As another example of this error, consider the following markup:

<div id'bar'>

Due to a forgotten U+003D (=) code point between an attribute name and value the parser treats this markup as a divp237 element
with the attribute "id'bar'" that has an empty value.

Example

Code points that trigger this error are usually a part of another syntactic construct and can be a sign of a typo around the attribute
value.

Note

U+0060 (`) is in the list of code points that trigger this error because certain legacy user agents treat it as a quote.
Note

For example, consider the following markup:

<div foo=b'ar'>

Due to a misplaced U+0027 (') code point the parser sets the value of the "foo" attribute to "b'ar'".

Example

1084

https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point

Code Description

unexpected-
equals-sign-
before-attribute-
name

This error occurs if the parser encounters a U+003D (=) code point before an attribute name. In this case the parser treats U+003D (=) as
the first code point of the attribute name.

unexpected-null-
character

This error occurs if the parser encounters a U+0000 NULL code point in the input streamp1091 in certain positions. In general, such code
points are either completely ignored or, for security reasons, replaced with a U+FFFD REPLACEMENT CHARACTER.

unexpected-
question-mark-
instead-of-tag-
name

This error occurs if the parser encounters a U+003F (?) code point where first code point of a start tagp1069 name is expected. The U+003F
(?) and all content that follows up to a U+003E (>) code point (if present) or to the end of the input streamp1091 is treated as a comment.

unexpected-
solidus-in-tag

This error occurs if the parser encounters a U+002F (/) code point that is not a part of a quoted attributep1070 value and not immediately
followed by a U+003E (>) code point in a tag (e.g., <div / id="foo">). In this case the parser behaves as if it encountered ASCII
whitespace.

unknown-named-
character-
reference

This error occurs if the parser encounters an ambiguous ampersandp1078. In this case the parser doesn't resolve the character
referencep1077.

The stream of code points that comprises the input to the tokenization stage will be initially seen by the user agent as a stream of
bytes (typically coming over the network or from the local file system). The bytes encode the actual characters according to a
particular character encoding, which the user agent uses to decode the bytes into characters.

Usually, the encoding sniffing algorithmp1086 defined below is used to determine the character encoding.

Given a character encoding, the bytes in the input byte streamp1085 must be converted to characters for the tokenizer's input
streamp1091, by passing the input byte streamp1085 and character encoding to decode.

The common reason for this error is a forgotten attribute name.
Note

For example, consider the following markup:

<div foo="bar" ="baz">

Due to a forgotten attribute name the parser treats this markup as a divp237 element with two attributes: a "foo" attribute with a "bar"
value and a "="baz"" attribute with an empty value.

Example

For example, consider the following markup:

<?xml-stylesheet type="text/css" href="style.css"?>

This will be parsed into:

#comment: ?xml-stylesheet type="text/css" href="style.css"?
htmlp152

headp153

bodyp178

Example

The common reason for this error is an XML processing instruction (e.g., <?xml-stylesheet type="text/css" href="style.css"?>)
or an XML declaration (e.g., <?xml version="1.0" encoding="UTF-8"?>) being used in HTML.

Note

For XML documents, the algorithm user agents are required to use to determine the character encoding is given by XML. This
section does not apply to XML documents. [XML]p1293

Note

A leading Byte Order Mark (BOM) causes the character encoding argument to be ignored and will itself be skipped.
Note

12.2.3 The input byte stream §p10

85

1085

https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#interface-comment
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://encoding.spec.whatwg.org/#decode

When the HTML parser is decoding an input byte stream, it uses a character encoding and a confidence. The confidence is either
tentative, certain, or irrelevant. The encoding used, and whether the confidence in that encoding is tentative or certain, is used during
the parsingp1135 to determine whether to change the encodingp1091. If no encoding is necessary, e.g. because the parser is operating on
a Unicode stream and doesn't have to use a character encoding at all, then the confidencep1086 is irrelevant.

When the HTML parser is to operate on an input byte stream that has a known definite encoding, then the character encoding is
that encoding and the confidencep1086 is certain.

In some cases, it might be impractical to unambiguously determine the encoding before parsing the document. Because of this, this
specification provides for a two-pass mechanism with an optional pre-scan. Implementations are allowed, as described below, to apply
a simplified parsing algorithm to whatever bytes they have available before beginning to parse the document. Then, the real parser is
started, using a tentative encoding derived from this pre-parse and other out-of-band metadata. If, while the document is being loaded,
the user agent discovers a character encoding declaration that conflicts with this information, then the parser can get reinvoked to
perform a parse of the document with the real encoding.

User agents must use the following algorithm, called the encoding sniffing algorithm, to determine the character encoding to use
when decoding a document in the first pass. This algorithm takes as input any out-of-band metadata available to the user agent (e.g.
the Content-Type metadatap90 of the document) and all the bytes available so far, and returns a character encoding and a
confidencep1086 that is either tentative or certain.

1. If the result of BOM sniffing is an encoding, return that encoding with confidencep1086 certain.

2. If the user has explicitly instructed the user agent to override the document's character encoding with a specific encoding,
optionally return that encoding with the confidencep1086 certain.

3. The user agent may wait for more bytes of the resource to be available, either in this step or at any later step in this
algorithm. For instance, a user agent might wait 500ms or 1024 bytes, whichever came first. In general preparsing the
source to find the encoding improves performance, as it reduces the need to throw away the data structures used when
parsing upon finding the encoding information. However, if the user agent delays too long to obtain data to determine the
encoding, then the cost of the delay could outweigh any performance improvements from the preparse.

Bytes or sequences of bytes in the original byte stream that did not conform to the Encoding standard (e.g. invalid UTF-8 byte
sequences in a UTF-8 input byte stream) are errors that conformance checkers are expected to report. [ENCODING]p1287

Note

The decoder algorithms describe how to handle invalid input; for security reasons, it is imperative that those rules
be followed precisely. Differences in how invalid byte sequences are handled can result in, amongst other problems,
script injection vulnerabilities ("XSS").

⚠Warning!

Some algorithms feed the parser by directly adding characters to the input streamp1091 rather than adding bytes to the input byte
streamp1085.

Note

12.2.3.1 Parsing with a known character encoding §p10

86

12.2.3.2 Determining the character encoding §p10

86

Although the decode algorithm will itself change the encoding to use based on the presence of a byte order mark, this
algorithm sniffs the BOM as well in order to set the correct document's character encoding and confidencep1086.

Note

Typically, user agents remember such user requests across sessions, and in some cases apply them to documents in
iframep361s as well.

Note

1086

https://encoding.spec.whatwg.org/#bom-sniff
https://encoding.spec.whatwg.org/#decode
https://dom.spec.whatwg.org/#concept-document-encoding

4. If the transport layer specifies a character encoding, and it is supported, return that encoding with the confidencep1086

certain.

5. Optionally prescan the byte stream to determine its encodingp1088. The end condition is that the user agent decides that
scanning further bytes would not be efficient. User agents are encouraged to only prescan the first 1024 bytes. User agents
may decide that scanning any bytes is not efficient, in which case these substeps are entirely skipped.

The aforementioned algorithm either aborts unsuccessfully or returns a character encoding. If it returns a character
encoding, then return the same encoding, with confidencep1086 tentative.

6. If the HTML parserp1079 for which this algorithm is being run is associated with a Documentp114 d whose browsing contextp811 is
non-null and a child browsing contextp814, then:

1. Let parentDocument be d's browsing contextp811 's container documentp814.

2. If parentDocument's originp837 is same originp838 with d's originp837 and parentDocument's character encoding is an
ASCII-compatible encodingp46, then return parentDocument's character encoding, with the confidencep1086

tentative.

7. Otherwise, if the user agent has information on the likely encoding for this page, e.g. based on the encoding of the page
when it was last visited, then return that encoding, with the confidencep1086 tentative.

8. The user agent may attempt to autodetect the character encoding from applying frequency analysis or other algorithms to
the data stream. Such algorithms may use information about the resource other than the resource's contents, including the
address of the resource. If autodetection succeeds in determining a character encoding, and that encoding is a supported
encoding, then return that encoding, with the confidencep1086 tentative. [UNIVCHARDET]p1292

9. Otherwise, return an implementation-defined or user-specified default character encoding, with the confidencep1086 tentative.

In controlled environments or in environments where the encoding of documents can be prescribed (for example, for user
agents intended for dedicated use in new networks), the comprehensive UTF-8 encoding is suggested.

In other environments, the default encoding is typically dependent on the user's locale (an approximation of the languages,
and thus often encodings, of the pages that the user is likely to frequent). The following table gives suggested defaults based
on the user's locale, for compatibility with legacy content. Locales are identified by BCP 47 language tags. [BCP47]p1285

[ENCODING]p1287

Locale language Suggested default encoding

ar Arabic windows-1256
ba Bashkir windows-1251
be Belarusian windows-1251
bg Bulgarian windows-1251
cs Czech windows-1250
el Greek ISO-8859-7
et Estonian windows-1257
fa Persian windows-1256
he Hebrew windows-1255

The authoring conformance requirements for character encoding declarations limit them to only appearing in the first
1024 bytesp174. User agents are therefore encouraged to use the prescan algorithm below (as invoked by these steps) on
the first 1024 bytes, but not to stall beyond that.

Note

User agents are generally discouraged from attempting to autodetect encodings for resources obtained over the
network, since doing so involves inherently non-interoperable heuristics. Attempting to detect encodings based on an
HTML document's preamble is especially tricky since HTML markup typically uses only ASCII characters, and HTML
documents tend to begin with a lot of markup rather than with text content.

Note

The UTF-8 encoding has a highly detectable bit pattern. Files from the local file system that contain bytes with values
greater than 0x7F which match the UTF-8 pattern are very likely to be UTF-8, while documents with byte sequences that
do not match it are very likely not. When a user agent can examine the whole file, rather than just the preamble,
detecting for UTF-8 specifically can be especially effective. [PPUTF8]p1290 [UTF8DET]p1292

Note

1087

https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-document-encoding
https://infra.spec.whatwg.org/#implementation-defined
https://encoding.spec.whatwg.org/#windows-1256
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1250
https://encoding.spec.whatwg.org/#iso-8859-7
https://encoding.spec.whatwg.org/#windows-1257
https://encoding.spec.whatwg.org/#windows-1256
https://encoding.spec.whatwg.org/#windows-1255

Locale language Suggested default encoding

hr Croatian windows-1250
hu Hungarian ISO-8859-2
ja Japanese Shift_JIS
kk Kazakh windows-1251
ko Korean EUC-KR
ku Kurdish windows-1254
ky Kyrgyz windows-1251
lt Lithuanian windows-1257
lv Latvian windows-1257
mk Macedonian windows-1251
pl Polish ISO-8859-2
ru Russian windows-1251
sah Yakut windows-1251
sk Slovak windows-1250
sl Slovenian ISO-8859-2
sr Serbian windows-1251
tg Tajik windows-1251
th Thai windows-874
tr Turkish windows-1254
tt Tatar windows-1251
uk Ukrainian windows-1251
vi Vietnamese windows-1258
zh-CN Chinese (People's Republic of China) gb18030
zh-TW Chinese (Taiwan) Big5
All other locales windows-1252

The contents of this table are derived from the intersection of Windows, Chrome, and Firefox defaults.

The document's character encoding must immediately be set to the value returned from this algorithm, at the same time as the user
agent uses the returned value to select the decoder to use for the input byte stream.

When an algorithm requires a user agent to prescan a byte stream to determine its encoding, given some defined end condition,
then it must run the following steps. These steps either abort unsuccessfully or return a character encoding. If at any point during
these steps (including during instances of the get an attributep1089 algorithm invoked by this one) the user agent either runs out of
bytes (meaning the position pointer created in the first step below goes beyond the end of the byte stream obtained so far) or reaches
its end condition, then abort the prescan a byte stream to determine its encodingp1088 algorithm unsuccessfully.

1. Let position be a pointer to a byte in the input byte stream, initially pointing at the first byte.

2. Loop: If position points to:

↪ A sequence of bytes starting with: 0x3C 0x21 0x2D 0x2D (`<!--`)
Advance the position pointer so that it points at the first 0x3E byte which is preceded by two 0x2D bytes (i.e. at the
end of an ASCII '-->' sequence) and comes after the 0x3C byte that was found. (The two 0x2D bytes can be the same
as those in the '<!--' sequence.)

↪ A sequence of bytes starting with: 0x3C, 0x4D or 0x6D, 0x45 or 0x65, 0x54 or 0x74, 0x41 or 0x61, and one
of 0x09, 0x0A, 0x0C, 0x0D, 0x20, 0x2F (case-insensitive ASCII '<meta' followed by a space or slash)

1. Advance the position pointer so that it points at the next 0x09, 0x0A, 0x0C, 0x0D, 0x20, or 0x2F byte (the
one in sequence of characters matched above).

2. Let attribute list be an empty list of strings.

3. Let got pragma be false.

4. Let need pragma be null.

5. Let charset be the null value (which, for the purposes of this algorithm, is distinct from an unrecognized
encoding or the empty string).

1088

https://encoding.spec.whatwg.org/#windows-1250
https://encoding.spec.whatwg.org/#iso-8859-2
https://encoding.spec.whatwg.org/#shift_jis
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#euc-kr
https://encoding.spec.whatwg.org/#windows-1254
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1257
https://encoding.spec.whatwg.org/#windows-1257
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#iso-8859-2
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1250
https://encoding.spec.whatwg.org/#iso-8859-2
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-874
https://encoding.spec.whatwg.org/#windows-1254
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1258
https://encoding.spec.whatwg.org/#gb18030
https://encoding.spec.whatwg.org/#big5
https://encoding.spec.whatwg.org/#windows-1252
https://dom.spec.whatwg.org/#concept-document-encoding

6. Attributes: Get an attributep1089 and its value. If no attribute was sniffed, then jump to the processing step
below.

7. If the attribute's name is already in attribute list, then return to the step labeled attributes.

8. Add the attribute's name to attribute list.

9. Run the appropriate step from the following list, if one applies:

↪ If the attribute's name is "http-equiv"
If the attribute's value is "content-type", then set got pragma to true.

↪ If the attribute's name is "content"
Apply the algorithm for extracting a character encoding from a meta elementp90, giving the
attribute's value as the string to parse. If a character encoding is returned, and if charset is still set to
null, let charset be the encoding returned, and set need pragma to true.

↪ If the attribute's name is "charset"
Let charset be the result of getting an encoding from the attribute's value, and set need pragma to
false.

10. Return to the step labeled attributes.

11. Processing: If need pragma is null, then jump to the step below labeled next byte.

12. If need pragma is true but got pragma is false, then jump to the step below labeled next byte.

13. If charset is failure, then jump to the step below labeled next byte.

14. If charset is a UTF-16 encodingp46, then set charset to UTF-8.

15. If charset is x-user-defined, then set charset to windows-1252.

16. Abort the prescan a byte stream to determine its encodingp1088 algorithm, returning the encoding given by
charset.

↪ A sequence of bytes starting with a 0x3C byte (<), optionally a 0x2F byte (/), and finally a byte in the range
0x41-0x5A or 0x61-0x7A (A-Z or a-z)

1. Advance the position pointer so that it points at the next 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), 0x20
(SP), or 0x3E (>) byte.

2. Repeatedly get an attributep1089 until no further attributes can be found, then jump to the step below labeled
next byte.

↪ A sequence of bytes starting with: 0x3C 0x21 (`<!`)
↪ A sequence of bytes starting with: 0x3C 0x2F (`</`)
↪ A sequence of bytes starting with: 0x3C 0x3F (`<?`)

Advance the position pointer so that it points at the first 0x3E byte (>) that comes after the 0x3C byte that was found.

↪ Any other byte
Do nothing with that byte.

3. Next byte: Move position so it points at the next byte in the input byte stream, and return to the step above labeled loop.

When the prescan a byte stream to determine its encodingp1088 algorithm says to get an attribute, it means doing this:

1. If the byte at position is one of 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), 0x20 (SP), or 0x2F (/) then advance position to
the next byte and redo this step.

2. If the byte at position is 0x3E (>), then abort the get an attributep1089 algorithm. There isn't one.

3. Otherwise, the byte at position is the start of the attribute name. Let attribute name and attribute value be the empty string.

4. Process the byte at position as follows:

↪ If it is 0x3D (=), and the attribute name is longer than the empty string
Advance position to the next byte and jump to the step below labeled value.

1089

https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#x-user-defined
https://encoding.spec.whatwg.org/#windows-1252

↪ If it is 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), or 0x20 (SP)
Jump to the step below labeled spaces.

↪ If it is 0x2F (/) or 0x3E (>)
Abort the get an attributep1089 algorithm. The attribute's name is the value of attribute name, its value is the empty
string.

↪ If it is in the range 0x41 (A) to 0x5A (Z)
Append the code point b+0x20 to attribute name (where b is the value of the byte at position). (This converts the
input to lowercase.)

↪ Anything else
Append the code point with the same value as the byte at position to attribute name. (It doesn't actually matter how
bytes outside the ASCII range are handled here, since only ASCII bytes can contribute to the detection of a character
encoding.)

5. Advance position to the next byte and return to the previous step.

6. Spaces: If the byte at position is one of 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), or 0x20 (SP) then advance position to the
next byte, then, repeat this step.

7. If the byte at position is not 0x3D (=), abort the get an attributep1089 algorithm. The attribute's name is the value of attribute
name, its value is the empty string.

8. Advance position past the 0x3D (=) byte.

9. Value: If the byte at position is one of 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), or 0x20 (SP) then advance position to the
next byte, then, repeat this step.

10. Process the byte at position as follows:

↪ If it is 0x22 (") or 0x27 (')

1. Let b be the value of the byte at position.

2. Quote loop: Advance position to the next byte.

3. If the value of the byte at position is the value of b, then advance position to the next byte and abort the
"get an attribute" algorithm. The attribute's name is the value of attribute name, and its value is the value
of attribute value.

4. Otherwise, if the value of the byte at position is in the range 0x41 (A) to 0x5A (Z), then append a code point
to attribute value whose value is 0x20 more than the value of the byte at position.

5. Otherwise, append a code point to attribute value whose value is the same as the value of the byte at
position.

6. Return to the step above labeled quote loop.

↪ If it is 0x3E (>)
Abort the get an attributep1089 algorithm. The attribute's name is the value of attribute name, its value is the empty
string.

↪ If it is in the range 0x41 (A) to 0x5A (Z)
Append a code point b+0x20 to attribute value (where b is the value of the byte at position). Advance position to the
next byte.

↪ Anything else
Append a code point with the same value as the byte at position to attribute value. Advance position to the next byte.

11. Process the byte at position as follows:

↪ If it is 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), 0x20 (SP), or 0x3E (>)
Abort the get an attributep1089 algorithm. The attribute's name is the value of attribute name and its value is the value
of attribute value.

↪ If it is in the range 0x41 (A) to 0x5A (Z)
Append a code point b+0x20 to attribute value (where b is the value of the byte at position).

1090

↪ Anything else
Append a code point with the same value as the byte at position to attribute value.

12. Advance position to the next byte and return to the previous step.

For the sake of interoperability, user agents should not use a pre-scan algorithm that returns different results than the one described
above. (But, if you do, please at least let us know, so that we can improve this algorithm and benefit everyone...)

User agents must support the encodings defined in Encoding, including, but not limited to, UTF-8, ISO-8859-2, ISO-8859-7,
ISO-8859-8, windows-874, windows-1250, windows-1251, windows-1252, windows-1254, windows-1255, windows-1256,
windows-1257, windows-1258, gb18030, Big5, ISO-2022-JP, Shift_JIS, EUC-KR, UTF-16BE, UTF-16LE, and x-user-defined.
User agents must not support other encodings.

When the parser requires the user agent to change the encoding, it must run the following steps. This might happen if the encoding
sniffing algorithmp1086 described above failed to find a character encoding, or if it found a character encoding that was not the actual
encoding of the file.

1. If the encoding that is already being used to interpret the input stream is a UTF-16 encodingp46, then set the confidencep1086

to certain and return. The new encoding is ignored; if it was anything but the same encoding, then it would be clearly
incorrect.

2. If the new encoding is a UTF-16 encodingp46, then change it to UTF-8.

3. If the new encoding is x-user-defined, then change it to windows-1252.

4. If the new encoding is identical or equivalent to the encoding that is already being used to interpret the input stream, then
set the confidencep1086 to certain and return. This happens when the encoding information found in the file matches what the
encoding sniffing algorithmp1086 determined to be the encoding, and in the second pass through the parser if the first pass
found that the encoding sniffing algorithm described in the earlier section failed to find the right encoding.

5. If all the bytes up to the last byte converted by the current decoder have the same Unicode interpretations in both the
current encoding and the new encoding, and if the user agent supports changing the converter on the fly, then the user
agent may change to the new converter for the encoding on the fly. Set the document's character encoding and the encoding
used to convert the input stream to the new encoding, set the confidencep1086 to certain, and return.

6. Otherwise, navigatep866 to the document again, with historyHandlingp866 set to "replacep866", and using the same source
browsing contextp866, but this time skip the encoding sniffing algorithmp1086 and instead just set the encoding to the new
encoding and the confidencep1086 to certain. Whenever possible, this should be done without actually contacting the network
layer (the bytes should be re-parsed from memory), even if, e.g., the document is marked as not being cacheable. If this is
not possible and contacting the network layer would involve repeating a request that uses a method other than `GET`, then
instead set the confidencep1086 to certain and ignore the new encoding. The resource will be misinterpreted. User agents may
notify the user of the situation, to aid in application development.

The input stream consists of the characters pushed into it as the input byte streamp1085 is decoded or from the various APIs that

12.2.3.3 Character encodings §p10

91

The above prohibits supporting, for example, CESU-8, UTF-7, BOCU-1, SCSU, EBCDIC, and UTF-32. This specification does not make
any attempt to support prohibited encodings in its algorithms; support and use of prohibited encodings would thus lead to
unexpected behavior. [CESU8]p1285 [UTF7]p1292 [BOCU1]p1285 [SCSU]p1291

Note

12.2.3.4 Changing the encoding while parsing §p10

91

This algorithm is only invoked when a new encoding is found declared on a metap164 element.
Note

12.2.3.5 Preprocessing the input stream §p10

91

1091

https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#iso-8859-2
https://encoding.spec.whatwg.org/#iso-8859-7
https://encoding.spec.whatwg.org/#iso-8859-8
https://encoding.spec.whatwg.org/#windows-874
https://encoding.spec.whatwg.org/#windows-1250
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1252
https://encoding.spec.whatwg.org/#windows-1254
https://encoding.spec.whatwg.org/#windows-1255
https://encoding.spec.whatwg.org/#windows-1256
https://encoding.spec.whatwg.org/#windows-1257
https://encoding.spec.whatwg.org/#windows-1258
https://encoding.spec.whatwg.org/#gb18030
https://encoding.spec.whatwg.org/#big5
https://encoding.spec.whatwg.org/#iso-2022-jp
https://encoding.spec.whatwg.org/#shift_jis
https://encoding.spec.whatwg.org/#euc-kr
https://encoding.spec.whatwg.org/#utf-16be
https://encoding.spec.whatwg.org/#utf-16le
https://encoding.spec.whatwg.org/#x-user-defined
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#x-user-defined
https://encoding.spec.whatwg.org/#windows-1252
https://dom.spec.whatwg.org/#concept-document-encoding

directly manipulate the input stream.

Any occurrences of surrogates are surrogate-in-input-streamp1084 parse errorsp1081. Any occurrences of noncharacters are noncharacter-
in-input-streamp1083 parse errorsp1081 and any occurrences of controls other than ASCII whitespace and U+0000 NULL characters are
control-character-in-input-streamp1081 parse errorsp1081.

Before the tokenizationp1097 stage, the input stream must be preprocessed by normalizing newlines. Thus, newlines in HTML DOMs are
represented by U+000A LF characters, and there are never any U+000D CR characters in the input to the tokenizationp1097 stage.

The next input character is the first character in the input streamp1091 that has not yet been consumed or explicitly ignored by the
requirements in this section. Initially, the next input characterp1092 is the first character in the input. The current input character is
the last character to have been consumed.

The insertion point is the position (just before a character or just before the end of the input stream) where content inserted using
document.write()p970 is actually inserted. The insertion point is relative to the position of the character immediately after it, it is not
an absolute offset into the input stream. Initially, the insertion point is undefined.

The "EOF" character in the tables below is a conceptual character representing the end of the input streamp1091. If the parser is a
script-created parserp969, then the end of the input streamp1091 is reached when an explicit "EOF" character (inserted by the
document.close()p969 method) is consumed. Otherwise, the "EOF" character is not a real character in the stream, but rather the lack
of any further characters.

The insertion mode is a state variable that controls the primary operation of the tree construction stage.

Initially, the insertion modep1092 is "initialp1132". It can change to "before htmlp1133", "before headp1134", "in headp1135", "in head
noscriptp1137", "after headp1137", "in bodyp1138", "textp1148", "in tablep1150", "in table textp1152", "in captionp1152", "in column groupp1153", "in
table bodyp1154", "in rowp1155", "in cellp1156", "in selectp1156", "in select in tablep1158", "in templatep1158", "after bodyp1160", "in
framesetp1160", "after framesetp1161", "after after bodyp1161", and "after after framesetp1162" during the course of the parsing, as
described in the tree constructionp1125 stage. The insertion mode affects how tokens are processed and whether CDATA sections are
supported.

Several of these modes, namely "in headp1135", "in bodyp1138", "in tablep1150", and "in selectp1156", are special, in that the other modes
defer to them at various times. When the algorithm below says that the user agent is to do something "using the rules for the m
insertion mode", where m is one of these modes, the user agent must use the rules described under the m insertion modep1092 's
section, but must leave the insertion modep1092 unchanged unless the rules in m themselves switch the insertion modep1092 to a new
value.

When the insertion mode is switched to "textp1148" or "in table textp1152", the original insertion mode is also set. This is the insertion
mode to which the tree construction stage will return.

Similarly, to parse nested templatep629 elements, a stack of template insertion modes is used. It is initially empty. The current
template insertion mode is the insertion mode that was most recently added to the stack of template insertion modesp1092. The
algorithms in the sections below will push insertion modes onto this stack, meaning that the specified insertion mode is to be added to
the stack, and pop insertion modes from the stack, which means that the most recently added insertion mode must be removed from
the stack.

When the steps below require the UA to reset the insertion mode appropriately, it means the UA must follow these steps:

1. Let last be false.

2. Let node be the last node in the stack of open elementsp1093.

The handling of U+0000 NULL characters varies based on where the characters are found and happens at the later stages of the
parsing. They are either ignored or, for security reasons, replaced with a U+FFFD REPLACEMENT CHARACTER. This handling is, by
necessity, spread across both the tokenization stage and the tree construction stage.

Note

12.2.4.1 The insertion mode §p10

92

12.2.4 Parse state §p10

92

1092

https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#normalize-newlines

3. Loop: If node is the first node in the stack of open elements, then set last to true, and, if the parser was created as part of
the HTML fragment parsing algorithmp1177 (fragment casep1177), set node to the contextp1177 element passed to that
algorithm.

4. If node is a selectp537 element, run these substeps:

1. If last is true, jump to the step below labeled done.

2. Let ancestor be node.

3. Loop: If ancestor is the first node in the stack of open elementsp1093, jump to the step below labeled done.

4. Let ancestor be the node before ancestor in the stack of open elementsp1093.

5. If ancestor is a templatep629 node, jump to the step below labeled done.

6. If ancestor is a tablep450 node, switch the insertion modep1092 to "in select in tablep1158" and return.

7. Jump back to the step labeled loop.

8. Done: Switch the insertion modep1092 to "in selectp1156" and return.

5. If node is a tdp465 or thp467 element and last is false, then switch the insertion modep1092 to "in cellp1156" and return.

6. If node is a trp464 element, then switch the insertion modep1092 to "in rowp1155" and return.

7. If node is a tbodyp461, theadp462, or tfootp463 element, then switch the insertion modep1092 to "in table bodyp1154" and return.

8. If node is a captionp458 element, then switch the insertion modep1092 to "in captionp1152" and return.

9. If node is a colgroupp459 element, then switch the insertion modep1092 to "in column groupp1153" and return.

10. If node is a tablep450 element, then switch the insertion modep1092 to "in tablep1150" and return.

11. If node is a templatep629 element, then switch the insertion modep1092 to the current template insertion modep1092 and return.

12. If node is a headp153 element and last is false, then switch the insertion modep1092 to "in headp1135" and return.

13. If node is a bodyp178 element, then switch the insertion modep1092 to "in bodyp1138" and return.

14. If node is a framesetp1239 element, then switch the insertion modep1092 to "in framesetp1160" and return. (fragment casep1177)

15. If node is an htmlp152 element, run these substeps:

1. If the head element pointerp1096 is null, switch the insertion modep1092 to "before headp1134" and return. (fragment
casep1177)

2. Otherwise, the head element pointerp1096 is not null, switch the insertion modep1092 to "after headp1137" and return.

16. If last is true, then switch the insertion modep1092 to "in bodyp1138" and return. (fragment casep1177)

17. Let node now be the node before node in the stack of open elementsp1093.

18. Return to the step labeled loop.

Initially, the stack of open elements is empty. The stack grows downwards; the topmost node on the stack is the first one added to
the stack, and the bottommost node of the stack is the most recently added node in the stack (notwithstanding when the stack is
manipulated in a random access fashion as part of the handling for misnested tagsp1147).

12.2.4.2 The stack of open elements §p10

93

The "before htmlp1133" insertion modep1092 creates the htmlp152 document element, which is then added to the stack.
Note

In the fragment casep1177, the stack of open elementsp1093 is initialized to contain an htmlp152 element that is created as part of that
algorithmp1177. (The fragment casep1177 skips the "before htmlp1133" insertion modep1092.)

Note

1093

https://dom.spec.whatwg.org/#document-element

The htmlp152 node, however it is created, is the topmost node of the stack. It only gets popped off the stack when the parser
finishesp1165.

The current node is the bottommost node in this stack of open elementsp1093.

The adjusted current node is the contextp1177 element if the parser was created as part of the HTML fragment parsing algorithmp1177

and the stack of open elementsp1093 has only one element in it (fragment casep1177); otherwise, the adjusted current nodep1094 is the
current nodep1094.

Elements in the stack of open elementsp1093 fall into the following categories:

Special
The following elements have varying levels of special parsing rules: HTML's addressp197, appletp1232, areap443, articlep180,
asidep187, basep155, basefontp1233, bgsoundp1232, blockquotep217, bodyp178, brp280, buttonp535, captionp458, centerp1233, colp460,
colgroupp459, ddp231, detailsp604, dirp1232, divp237, dlp226, dtp230, embedp369, fieldsetp562, figcaptionp235, figurep232, footerp195,
formp486, framep1240, framesetp1239, h1p190, h2p190, h3p190, h4p190, h5p190, h6p190, headp153, headerp194, hgroupp191, hrp214, htmlp152,
iframep361, imgp320, inputp493, keygenp1232, lip224, linkp157, listingp1232, mainp235, marqueep1237, menup223, metap164, navp184,
noembedp1232, noframesp1232, noscriptp627, objectp373, olp220, pp211, paramp378, plaintextp1232, prep216, scriptp614, sectionp182,
selectp537, sourcep317, stylep174, summaryp607, tablep450, tbodyp461, tdp465, templatep629, textareap548, tfootp463, thp467, theadp462,
titlep154, trp464, trackp385, ulp222, wbrp281, xmpp1233; MathML mi, MathML mo, MathML mn, MathML ms, MathML mtext, and MathML
annotation-xml; and SVG foreignObject, SVG desc, and SVG title.

Formatting
The following HTML elements are those that end up in the list of active formatting elementsp1095: ap238, bp273, bigp1233, codep267,
emp241, fontp1233, ip272, nobrp1233, sp245, smallp244, strikep1233, strongp242, ttp1233, and up275.

Ordinary
All other elements found while parsing an HTML document.

The stack of open elementsp1093 is said to have an element target node in a specific scope consisting of a list of element types list
when the following algorithm terminates in a match state:

1. Initialize node to be the current nodep1094 (the bottommost node of the stack).

2. If node is the target node, terminate in a match state.

3. Otherwise, if node is one of the element types in list, terminate in a failure state.

4. Otherwise, set node to the previous entry in the stack of open elementsp1093 and return to step 2. (This will never fail, since
the loop will always terminate in the previous step if the top of the stack — an htmlp152 element — is reached.)

The stack of open elementsp1093 is said to have a particular element in scope when it has that element in the specific scopep1094

consisting of the following element types:

• appletp1232

• captionp458

• htmlp152

• tablep450

• tdp465

• thp467

• marqueep1237

• objectp373

• templatep629

An image start tag token is handled by the tree builder, but it is not in this list because it is not an element; it gets turned into
an imgp320 element.

Note

Typically, the specialp1094 elements have the start and end tag tokens handled specifically, while ordinaryp1094 elements' tokens fall
into "any other start tag" and "any other end tag" clauses, and some parts of the tree builder check if a particular element in the
stack of open elementsp1093 is in the specialp1094 category. However, some elements (e.g., the optionp545 element) have their start
or end tag tokens handled specifically, but are still not in the specialp1094 category, so that they get the ordinaryp1094 handling
elsewhere.

Note

1094

https://www.w3.org/Math/draft-spec/chapter3.html#presm.mi
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mo
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mn
https://www.w3.org/Math/draft-spec/chapter3.html#presm.ms
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mtext
https://www.w3.org/Math/draft-spec/chapter5.html#mixing.elements.annotation.xml
https://www.w3.org/Math/draft-spec/chapter5.html#mixing.elements.annotation.xml
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://svgwg.org/svg2-draft/struct.html#DescElement
https://svgwg.org/svg2-draft/struct.html#TitleElement

• MathML mi
• MathML mo
• MathML mn
• MathML ms
• MathML mtext
• MathML annotation-xml
• SVG foreignObject
• SVG desc
• SVG title

The stack of open elementsp1093 is said to have a particular element in list item scope when it has that element in the specific
scopep1094 consisting of the following element types:

• All the element types listed above for the has an element in scopep1094 algorithm.
• olp220 in the HTML namespace
• ulp222 in the HTML namespace

The stack of open elementsp1093 is said to have a particular element in button scope when it has that element in the specific
scopep1094 consisting of the following element types:

• All the element types listed above for the has an element in scopep1094 algorithm.
• buttonp535 in the HTML namespace

The stack of open elementsp1093 is said to have a particular element in table scope when it has that element in the specific
scopep1094 consisting of the following element types:

• htmlp152 in the HTML namespace
• tablep450 in the HTML namespace
• templatep629 in the HTML namespace

The stack of open elementsp1093 is said to have a particular element in select scope when it has that element in the specific
scopep1094 consisting of all element types except the following:

• optgroupp544 in the HTML namespace
• optionp545 in the HTML namespace

Nothing happens if at any time any of the elements in the stack of open elementsp1093 are moved to a new location in, or removed
from, the Documentp114 tree. In particular, the stack is not changed in this situation. This can cause, amongst other strange effects,
content to be appended to nodes that are no longer in the DOM.

Initially, the list of active formatting elements is empty. It is used to handle mis-nested formatting element tagsp1094.

The list contains elements in the formattingp1094 category, and markersp1095. The markers are inserted when entering appletp1232,
objectp373, marqueep1237, templatep629, tdp465, thp467, and captionp458 elements, and are used to prevent formatting from "leaking" into
appletp1232, objectp373, marqueep1237, templatep629, tdp465, thp467, and captionp458 elements.

In addition, each element in the list of active formatting elementsp1095 is associated with the token for which it was created, so that
further elements can be created for that token if necessary.

When the steps below require the UA to push onto the list of active formatting elements an element element, the UA must
perform the following steps:

1. If there are already three elements in the list of active formatting elementsp1095 after the last markerp1095, if any, or anywhere
in the list if there are no markersp1095, that have the same tag name, namespace, and attributes as element, then remove the
earliest such element from the list of active formatting elementsp1095. For these purposes, the attributes must be compared
as they were when the elements were created by the parser; two elements have the same attributes if all their parsed
attributes can be paired such that the two attributes in each pair have identical names, namespaces, and values (the order
of the attributes does not matter).

In some cases (namely, when closing misnested formatting elementsp1147), the stack is manipulated in a random-access fashion.
Note

12.2.4.3 The list of active formatting elements §p10

95

1095

https://www.w3.org/Math/draft-spec/chapter3.html#presm.mi
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mo
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mn
https://www.w3.org/Math/draft-spec/chapter3.html#presm.ms
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mtext
https://www.w3.org/Math/draft-spec/chapter5.html#mixing.elements.annotation.xml
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://svgwg.org/svg2-draft/struct.html#DescElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace

2. Add element to the list of active formatting elementsp1095.

When the steps below require the UA to reconstruct the active formatting elements, the UA must perform the following steps:

1. If there are no entries in the list of active formatting elementsp1095, then there is nothing to reconstruct; stop this algorithm.

2. If the last (most recently added) entry in the list of active formatting elementsp1095 is a markerp1095, or if it is an element that
is in the stack of open elementsp1093, then there is nothing to reconstruct; stop this algorithm.

3. Let entry be the last (most recently added) element in the list of active formatting elementsp1095.

4. Rewind: If there are no entries before entry in the list of active formatting elementsp1095, then jump to the step labeled
create.

5. Let entry be the entry one earlier than entry in the list of active formatting elementsp1095.

6. If entry is neither a markerp1095 nor an element that is also in the stack of open elementsp1093, go to the step labeled rewind.

7. Advance: Let entry be the element one later than entry in the list of active formatting elementsp1095.

8. Create: Insert an HTML elementp1129 for the token for which the element entry was created, to obtain new element.

9. Replace the entry for entry in the list with an entry for new element.

10. If the entry for new element in the list of active formatting elementsp1095 is not the last entry in the list, return to the step
labeled advance.

This has the effect of reopening all the formatting elements that were opened in the current body, cell, or caption (whichever is
youngest) that haven't been explicitly closed.

When the steps below require the UA to clear the list of active formatting elements up to the last marker, the UA must perform
the following steps:

1. Let entry be the last (most recently added) entry in the list of active formatting elementsp1095.

2. Remove entry from the list of active formatting elementsp1095.

3. If entry was a markerp1095, then stop the algorithm at this point. The list has been cleared up to the last markerp1095.

4. Go to step 1.

Initially, the head element pointer and the form element pointer are both null.

Once a headp153 element has been parsed (whether implicitly or explicitly) the head element pointerp1096 gets set to point to this node.

The form element pointerp1096 points to the last formp486 element that was opened and whose end tag has not yet been seen. It is used
to make form controls associate with forms in the face of dramatically bad markup, for historical reasons. It is ignored inside
templatep629 elements.

The scripting flag is set to "enabled" if scripting was enabledp924 for the Documentp114 with which the parser is associated when the
parser was created, and "disabled" otherwise.

This is the Noah's Ark clause. But with three per family instead of two.
Note

The way this specification is written, the list of active formatting elementsp1095 always consists of elements in chronological order
with the least recently added element first and the most recently added element last (except for while steps 7 to 10 of the above
algorithm are being executed, of course).

Note

12.2.4.4 The element pointers §p10

96

12.2.4.5 Other parsing state flags §p10

96

1096

The frameset-ok flag is set to "ok" when the parser is created. It is set to "not ok" after certain tokens are seen.

Implementations must act as if they used the following state machine to tokenize HTML. The state machine must start in the data
statep1098. Most states consume a single character, which may have various side-effects, and either switches the state machine to a
new state to reconsumep1097 the current input characterp1092, or switches it to a new state to consume the next characterp1092, or stays
in the same state to consume the next character. Some states have more complicated behavior and can consume several characters
before switching to another state. In some cases, the tokenizer state is also changed by the tree construction stage.

When a state says to reconsume a matched character in a specified state, that means to switch to that state, but when it attempts to
consume the next input characterp1092, provide it with the current input characterp1092 instead.

The exact behavior of certain states depends on the insertion modep1092 and the stack of open elementsp1093. Certain states also use a
temporary buffer to track progress, and the character reference statep1122 uses a return state to return to the state it was invoked
from.

The output of the tokenization step is a series of zero or more of the following tokens: DOCTYPE, start tag, end tag, comment,
character, end-of-file. DOCTYPE tokens have a name, a public identifier, a system identifier, and a force-quirks flag. When a
DOCTYPE token is created, its name, public identifier, and system identifier must be marked as missing (which is a distinct state from
the empty string), and the force-quirks flagp1097 must be set to off (its other state is on). Start and end tag tokens have a tag name, a
self-closing flag, and a list of attributes, each of which has a name and a value. When a start or end tag token is created, its self-
closing flagp1097 must be unset (its other state is that it be set), and its attributes list must be empty. Comment and character tokens
have data.

When a token is emitted, it must immediately be handled by the tree constructionp1125 stage. The tree construction stage can affect the
state of the tokenization stage, and can insert additional characters into the stream. (For example, the scriptp614 element can result in
scripts executing and using the dynamic markup insertionp967 APIs to insert characters into the stream being tokenized.)

When a start tag token is emitted with its self-closing flagp1097 set, if the flag is not acknowledged when it is processed by the tree
construction stage, that is a non-void-html-element-start-tag-with-trailing-solidus p1083 parse errorp1081.

When an end tag token is emitted with attributes, that is an end-tag-with-attributesp1081 parse errorp1081.

When an end tag token is emitted with its self-closing flagp1097 set, that is an end-tag-with-trailing-solidusp1081 parse errorp1081.

An appropriate end tag token is an end tag token whose tag name matches the tag name of the last start tag to have been emitted
from this tokenizer, if any. If no start tag has been emitted from this tokenizer, then no end tag token is appropriate.

A character referencep1077 is said to be consumed as part of an attribute if the return statep1097 is either attribute value (double-
quoted) statep1109, attribute value (single-quoted) statep1110 or attribute value (unquoted) statep1110.

When a state says to flush code points consumed as a character reference, it means that for each code point in the temporary
bufferp1097 (in the order they were added to the buffer) user agent must append the code point from the buffer to the current
attribute's value if the character reference was consumed as part of an attributep1097, or emit the code point as a character token
otherwise.

Before each step of the tokenizer, the user agent must first check the parser pause flagp1081. If it is true, then the tokenizer must abort
the processing of any nested invocations of the tokenizer, yielding control back to the caller.

The tokenizer state machine consists of the states defined in the following subsections.

The scripting flagp1096 can be enabled even when the parser was created as part of the HTML fragment parsing algorithmp1177, even
though scriptp614 elements don't execute in that case.

Note

Creating a token and emitting it are distinct actions. It is possible for a token to be created but implicitly abandoned (never
emitted), e.g. if the file ends unexpectedly while processing the characters that are being parsed into a start tag token.

Note

12.2.5 Tokenization §p10

97

1097

https://infra.spec.whatwg.org/#code-point

Consume the next input characterp1092:

↪ U+0026 AMPERSAND (&)
Set the return statep1097 to the data statep1098. Switch to the character reference statep1122.

↪ U+003C LESS-THAN SIGN (<)
Switch to the tag open statep1099.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Emit the current input characterp1092 as a character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+0026 AMPERSAND (&)
Set the return statep1097 to the RCDATA statep1098. Switch to the character reference statep1122.

↪ U+003C LESS-THAN SIGN (<)
Switch to the RCDATA less-than sign statep1100.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+003C LESS-THAN SIGN (<)
Switch to the RAWTEXT less-than sign statep1101.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data less-than sign statep1102.

12.2.5.1 Data state §p10

98

12.2.5.2 RCDATA state §p10

98

12.2.5.3 RAWTEXT state §p10

98

12.2.5.4 Script data state §p10

98

1098

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+0021 EXCLAMATION MARK (!)
Switch to the markup declaration open statep1112.

↪ U+002F SOLIDUS (/)
Switch to the end tag open statep1099.

↪ ASCII alpha
Create a new start tag token, set its tag name to the empty string. Reconsumep1097 in the tag name statep1100.

↪ U+003F QUESTION MARK (?)
This is an unexpected-question-mark-instead-of-tag-namep1085 parse errorp1081. Create a comment token whose data is the
empty string. Reconsumep1097 in the bogus comment statep1111.

↪ EOF
This is an eof-before-tag-namep1081 parse errorp1081. Emit a U+003C LESS-THAN SIGN character token and an end-of-file token.

↪ Anything else
This is an invalid-first-character-of-tag-namep1082 parse errorp1081. Emit a U+003C LESS-THAN SIGN character token.
Reconsumep1097 in the data statep1098.

Consume the next input characterp1092:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1097 in the tag name statep1100.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-end-tag-namep1083 parse errorp1081. Switch to the data statep1098.

↪ EOF
This is an eof-before-tag-namep1081 parse errorp1081. Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS
character token and an end-of-file token.

12.2.5.5 PLAINTEXT state §p10

99

12.2.5.6 Tag open state §p10

99

12.2.5.7 End tag open state §p10

99

1099

https://infra.spec.whatwg.org/#ascii-alpha
https://infra.spec.whatwg.org/#ascii-alpha

↪ Anything else
This is an invalid-first-character-of-tag-namep1082 parse errorp1081. Create a comment token whose data is the empty string.
Reconsumep1097 in the bogus comment statep1111.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep1108.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep1111.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current tag token.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the current tag
token's tag name.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
tag token's tag name.

↪ EOF
This is an eof-in-tagp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the current tag token's tag name.

Consume the next input characterp1092:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1097 to the empty string. Switch to the RCDATA end tag open statep1100.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token. Reconsumep1097 in the RCDATA statep1098.

Consume the next input characterp1092:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1097 in the RCDATA end tag name statep1101.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsumep1097 in the RCDATA
statep1098.

12.2.5.8 Tag name state §p11

00

12.2.5.9 RCDATA less-than sign state §p11

00

12.2.5.10 RCDATA end tag open state §p11

00

1100

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-alpha

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp1097, then switch to the before attribute name statep1108. Otherwise,
treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp1097, then switch to the self-closing start tag statep1111. Otherwise,
treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp1097, then switch to the data statep1098 and emit the current tag
token. Otherwise, treat it as per the "anything else" entry below.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the current tag
token's tag name. Append the current input characterp1092 to the temporary bufferp1097.

↪ ASCII lower alpha
Append the current input characterp1092 to the current tag token's tag name. Append the current input characterp1092 to the
temporary bufferp1097.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the
characters in the temporary bufferp1097 (in the order they were added to the buffer). Reconsumep1097 in the RCDATA statep1098.

Consume the next input characterp1092:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1097 to the empty string. Switch to the RAWTEXT end tag open statep1101.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token. Reconsumep1097 in the RAWTEXT statep1098.

Consume the next input characterp1092:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1097 in the RAWTEXT end tag name statep1101.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsumep1097 in the RAWTEXT
statep1098.

Consume the next input characterp1092:

12.2.5.11 RCDATA end tag name state §p11

01

12.2.5.12 RAWTEXT less-than sign state §p11

01

12.2.5.13 RAWTEXT end tag open state §p11

01

12.2.5.14 RAWTEXT end tag name state §p11

01

1101

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-alpha

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp1097, then switch to the before attribute name statep1108. Otherwise,
treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp1097, then switch to the self-closing start tag statep1111. Otherwise,
treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp1097, then switch to the data statep1098 and emit the current tag
token. Otherwise, treat it as per the "anything else" entry below.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the current tag
token's tag name. Append the current input characterp1092 to the temporary bufferp1097.

↪ ASCII lower alpha
Append the current input characterp1092 to the current tag token's tag name. Append the current input characterp1092 to the
temporary bufferp1097.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the
characters in the temporary bufferp1097 (in the order they were added to the buffer). Reconsumep1097 in the RAWTEXT statep1098.

Consume the next input characterp1092:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1097 to the empty string. Switch to the script data end tag open statep1102.

↪ U+0021 EXCLAMATION MARK (!)
Switch to the script data escape start statep1103. Emit a U+003C LESS-THAN SIGN character token and a U+0021 EXCLAMATION
MARK character token.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token. Reconsumep1097 in the script data statep1098.

Consume the next input characterp1092:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1097 in the script data end tag name statep1102.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsumep1097 in the script data
statep1098.

Consume the next input characterp1092:

12.2.5.15 Script data less-than sign state §p11

02

12.2.5.16 Script data end tag open state §p11

02

12.2.5.17 Script data end tag name state §p11

02

1102

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-alpha

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp1097, then switch to the before attribute name statep1108. Otherwise,
treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp1097, then switch to the self-closing start tag statep1111. Otherwise,
treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp1097, then switch to the data statep1098 and emit the current tag
token. Otherwise, treat it as per the "anything else" entry below.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the current tag
token's tag name. Append the current input characterp1092 to the temporary bufferp1097.

↪ ASCII lower alpha
Append the current input characterp1092 to the current tag token's tag name. Append the current input characterp1092 to the
temporary bufferp1097.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the
characters in the temporary bufferp1097 (in the order they were added to the buffer). Reconsumep1097 in the script data statep1098.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data escape start dash statep1103. Emit a U+002D HYPHEN-MINUS character token.

↪ Anything else
Reconsumep1097 in the script data statep1098.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data escaped dash dash statep1104. Emit a U+002D HYPHEN-MINUS character token.

↪ Anything else
Reconsumep1097 in the script data statep1098.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data escaped dash statep1104. Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign state p1104.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Emit a U+FFFD REPLACEMENT CHARACTER character token.

12.2.5.18 Script data escape start state §p11

03

12.2.5.19 Script data escape start dash state §p11

03

12.2.5.20 Script data escaped state §p11

03

1103

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha

↪ EOF
This is an eof-in-script-html-comment-like-textp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data escaped dash dash statep1104. Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign state p1104.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Switch to the script data escaped statep1103. Emit a U+FFFD
REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Switch to the script data escaped statep1103. Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign state p1104.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the script data statep1098. Emit a U+003E GREATER-THAN SIGN character token.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Switch to the script data escaped statep1103. Emit a U+FFFD
REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Switch to the script data escaped statep1103. Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1097 to the empty string. Switch to the script data escaped end tag open state p1105.

↪ ASCII alpha
Set the temporary bufferp1097 to the empty string. Emit a U+003C LESS-THAN SIGN character token. Reconsumep1097 in the
script data double escape start statep1105.

12.2.5.21 Script data escaped dash state §p11

04

12.2.5.22 Script data escaped dash dash state §p11

04

12.2.5.23 Script data escaped less-than sign state §p11

04

1104

https://infra.spec.whatwg.org/#ascii-alpha

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token. Reconsumep1097 in the script data escaped statep1103.

Consume the next input characterp1092:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1097 in the script data escaped end tag name
statep1105.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsumep1097 in the script data
escaped statep1103.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp1097, then switch to the before attribute name statep1108. Otherwise,
treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp1097, then switch to the self-closing start tag statep1111. Otherwise,
treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp1097, then switch to the data statep1098 and emit the current tag
token. Otherwise, treat it as per the "anything else" entry below.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the current tag
token's tag name. Append the current input characterp1092 to the temporary bufferp1097.

↪ ASCII lower alpha
Append the current input characterp1092 to the current tag token's tag name. Append the current input characterp1092 to the
temporary bufferp1097.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the
characters in the temporary buffer p1097 (in the order they were added to the buffer). Reconsumep1097 in the script data escaped
statep1103.

Consume the next input characterp1092:

12.2.5.24 Script data escaped end tag open state §p11

05

12.2.5.25 Script data escaped end tag name state §p11

05

12.2.5.26 Script data double escape start state §p11

05

1105

https://infra.spec.whatwg.org/#ascii-alpha
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)

If the temporary bufferp1097 is the string "script", then switch to the script data double escaped statep1106. Otherwise, switch to
the script data escaped statep1103. Emit the current input characterp1092 as a character token.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the temporary
bufferp1097. Emit the current input characterp1092 as a character token.

↪ ASCII lower alpha
Append the current input characterp1092 to the temporary bufferp1097. Emit the current input characterp1092 as a character token.

↪ Anything else
Reconsumep1097 in the script data escaped statep1103.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data double escaped dash state p1106. Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data double escaped less-than sign state p1107. Emit a U+003C LESS-THAN SIGN character token.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data double escaped dash dash state p1107. Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data double escaped less-than sign state p1107. Emit a U+003C LESS-THAN SIGN character token.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Switch to the script data double escaped statep1106. Emit a U+FFFD
REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Switch to the script data double escaped statep1106. Emit the current input characterp1092 as a character token.

12.2.5.27 Script data double escaped state §p11

06

12.2.5.28 Script data double escaped dash state §p11

06

1106

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data double escaped less-than sign state p1107. Emit a U+003C LESS-THAN SIGN character token.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the script data statep1098. Emit a U+003E GREATER-THAN SIGN character token.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Switch to the script data double escaped statep1106. Emit a U+FFFD
REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Switch to the script data double escaped statep1106. Emit the current input characterp1092 as a character token.

Consume the next input characterp1092:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1097 to the empty string. Switch to the script data double escape end statep1107. Emit a U+002F
SOLIDUS character token.

↪ Anything else
Reconsumep1097 in the script data double escaped statep1106.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)

If the temporary bufferp1097 is the string "script", then switch to the script data escaped statep1103. Otherwise, switch to the
script data double escaped statep1106. Emit the current input characterp1092 as a character token.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the temporary
bufferp1097. Emit the current input characterp1092 as a character token.

↪ ASCII lower alpha
Append the current input characterp1092 to the temporary bufferp1097. Emit the current input characterp1092 as a character token.

↪ Anything else
Reconsumep1097 in the script data double escaped statep1106.

12.2.5.29 Script data double escaped dash dash state §p11

07

12.2.5.30 Script data double escaped less-than sign state §p11

07

12.2.5.31 Script data double escape end state §p11

07

1107

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)
↪ EOF

Reconsumep1097 in the after attribute name statep1109.

↪ U+003D EQUALS SIGN (=)
This is an unexpected-equals-sign-before-attribute-namep1085 parse errorp1081. Start a new attribute in the current tag token. Set
that attribute's name to the current input characterp1092, and its value to the empty string. Switch to the attribute name
statep1108.

↪ Anything else
Start a new attribute in the current tag token. Set that attribute name and value to the empty string. Reconsumep1097 in the
attribute name statep1108.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)
↪ EOF

Reconsumep1097 in the after attribute name statep1109.

↪ U+003D EQUALS SIGN (=)
Switch to the before attribute value statep1109.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the current
attribute's name.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
attribute's name.

↪ U+0022 QUOTATION MARK (")
↪ U+0027 APOSTROPHE (')
↪ U+003C LESS-THAN SIGN (<)

This is an unexpected-character-in-attribute-namep1084 parse errorp1081. Treat it as per the "anything else" entry below.

↪ Anything else
Append the current input characterp1092 to the current attribute's name.

When the user agent leaves the attribute name state (and before emitting the tag token, if appropriate), the complete attribute's name
must be compared to the other attributes on the same token; if there is already an attribute on the token with the exact same name,
then this is a duplicate-attributep1081 parse errorp1081 and the new attribute must be removed from the token.

12.2.5.32 Before attribute name state §p11

08

12.2.5.33 Attribute name state §p11

08

1108

https://infra.spec.whatwg.org/#ascii-upper-alpha

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep1111.

↪ U+003D EQUALS SIGN (=)
Switch to the before attribute value statep1109.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current tag token.

↪ EOF
This is an eof-in-tagp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Start a new attribute in the current tag token. Set that attribute name and value to the empty string. Reconsumep1097 in the
attribute name statep1108.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+0022 QUOTATION MARK (")
Switch to the attribute value (double-quoted) statep1109.

↪ U+0027 APOSTROPHE (')
Switch to the attribute value (single-quoted) statep1110.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-attribute-valuep1082 parse errorp1081. Switch to the data statep1098. Emit the current tag token.

↪ Anything else
Reconsumep1097 in the attribute value (unquoted) statep1110.

Consume the next input characterp1092:

If an attribute is so removed from a token, it, and the value that gets associated with it, if any, are never subsequently used by the
parser, and are therefore effectively discarded. Removing the attribute in this way does not change its status as the "current
attribute" for the purposes of the tokenizer, however.

Note

12.2.5.34 After attribute name state §p11

09

12.2.5.35 Before attribute value state §p11

09

12.2.5.36 Attribute value (double-quoted) state §p11

09

1109

↪ U+0022 QUOTATION MARK (")
Switch to the after attribute value (quoted) statep1111.

↪ U+0026 AMPERSAND (&)
Set the return statep1097 to the attribute value (double-quoted) statep1109. Switch to the character reference statep1122.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
attribute's value.

↪ EOF
This is an eof-in-tagp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the current attribute's value.

Consume the next input characterp1092:

↪ U+0027 APOSTROPHE (')
Switch to the after attribute value (quoted) statep1111.

↪ U+0026 AMPERSAND (&)
Set the return statep1097 to the attribute value (single-quoted) statep1110. Switch to the character reference statep1122.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
attribute's value.

↪ EOF
This is an eof-in-tagp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the current attribute's value.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep1108.

↪ U+0026 AMPERSAND (&)
Set the return statep1097 to the attribute value (unquoted) statep1110. Switch to the character reference statep1122.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current tag token.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
attribute's value.

12.2.5.37 Attribute value (single-quoted) state §p11

10

12.2.5.38 Attribute value (unquoted) state §p11

10

1110

↪ U+0022 QUOTATION MARK (")
↪ U+0027 APOSTROPHE (')
↪ U+003C LESS-THAN SIGN (<)
↪ U+003D EQUALS SIGN (=)
↪ U+0060 GRAVE ACCENT (`)

This is an unexpected-character-in-unquoted-attribute-valuep1084 parse errorp1081. Treat it as per the "anything else" entry below.

↪ EOF
This is an eof-in-tagp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the current attribute's value.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep1108.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep1111.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current tag token.

↪ EOF
This is an eof-in-tagp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
This is a missing-whitespace-between-attributesp1083 parse errorp1081. Reconsumep1097 in the before attribute name statep1108.

Consume the next input characterp1092:

↪ U+003E GREATER-THAN SIGN (>)
Set the self-closing flagp1097 of the current tag token. Switch to the data statep1098. Emit the current tag token.

↪ EOF
This is an eof-in-tagp1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
This is an unexpected-solidus-in-tagp1085 parse errorp1081. Reconsumep1097 in the before attribute name statep1108.

Consume the next input characterp1092:

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the comment token.

↪ EOF
Emit the comment. Emit an end-of-file token.

12.2.5.39 After attribute value (quoted) state §p11

11

12.2.5.40 Self-closing start tag state §p11

11

12.2.5.41 Bogus comment state §p11

11

1111

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the
comment token's data.

↪ Anything else
Append the current input characterp1092 to the comment token's data.

If the next few characters are:

↪ Two U+002D HYPHEN-MINUS characters (-)
Consume those two characters, create a comment token whose data is the empty string, and switch to the comment start
statep1112.

↪ ASCII case-insensitive match for the word "DOCTYPE"
Consume those characters and switch to the DOCTYPE statep1115.

↪ The string "[CDATA[" (the five uppercase letters "CDATA" with a U+005B LEFT SQUARE BRACKET character before
and after)

Consume those characters. If there is an adjusted current nodep1094 and it is not an element in the HTML namespace, then
switch to the CDATA section statep1121. Otherwise, this is a cdata-in-html-contentp1081 parse errorp1081. Create a comment token
whose data is the "[CDATA[" string. Switch to the bogus comment statep1111.

↪ Anything else
This is an incorrectly-opened-commentp1082 parse errorp1081. Create a comment token whose data is the empty string. Switch to
the bogus comment statep1111 (don't consume anything in the current state).

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment start dash statep1112.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-closing-of-empty-commentp1081 parse errorp1081. Switch to the data statep1098. Emit the comment token.

↪ Anything else
Reconsumep1097 in the comment statep1113.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end statep1114

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-closing-of-empty-commentp1081 parse errorp1081. Switch to the data statep1098. Emit the comment token.

↪ EOF
This is an eof-in-commentp1082 parse errorp1081. Emit the comment token. Emit an end-of-file token.

↪ Anything else
Append a U+002D HYPHEN-MINUS character (-) to the comment token's data. Reconsumep1097 in the comment statep1113.

12.2.5.42 Markup declaration open state §p11

12

12.2.5.43 Comment start state §p11

12

12.2.5.44 Comment start dash state §p11

12

1112

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#html-namespace

Consume the next input characterp1092:

↪ U+003C LESS-THAN SIGN (<)
Append the current input characterp1092 to the comment token's data. Switch to the comment less-than sign statep1113.

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end dash statep1114.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the
comment token's data.

↪ EOF
This is an eof-in-commentp1082 parse errorp1081. Emit the comment token. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the comment token's data.

Consume the next input characterp1092:

↪ U+0021 EXCLAMATION MARK (!)
Append the current input characterp1092 to the comment token's data. Switch to the comment less-than sign bang statep1113.

↪ U+003C LESS-THAN SIGN (<)
Append the current input characterp1092 to the comment token's data.

↪ Anything else
Reconsumep1097 in the comment statep1113.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment less-than sign bang dash state p1113.

↪ Anything else
Reconsumep1097 in the comment statep1113.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment less-than sign bang dash dash state p1113.

↪ Anything else
Reconsumep1097 in the comment end dash statep1114.

Consume the next input characterp1092:

12.2.5.45 Comment state §p11

13

12.2.5.46 Comment less-than sign state §p11

13

12.2.5.47 Comment less-than sign bang state §p11

13

12.2.5.48 Comment less-than sign bang dash state §p11

13

12.2.5.49 Comment less-than sign bang dash dash state §p11

13

1113

↪ U+003E GREATER-THAN SIGN (>)
↪ EOF

Reconsumep1097 in the comment end statep1114.

↪ Anything else
This is a nested-commentp1083 parse errorp1081. Reconsumep1097 in the comment end statep1114.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end statep1114

↪ EOF
This is an eof-in-commentp1082 parse errorp1081. Emit the comment token. Emit an end-of-file token.

↪ Anything else
Append a U+002D HYPHEN-MINUS character (-) to the comment token's data. Reconsumep1097 in the comment statep1113.

Consume the next input characterp1092:

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the comment token.

↪ U+0021 EXCLAMATION MARK (!)
Switch to the comment end bang statep1114.

↪ U+002D HYPHEN-MINUS (-)
Append a U+002D HYPHEN-MINUS character (-) to the comment token's data.

↪ EOF
This is an eof-in-commentp1082 parse errorp1081. Emit the comment token. Emit an end-of-file token.

↪ Anything else
Append two U+002D HYPHEN-MINUS characters (-) to the comment token's data. Reconsumep1097 in the comment statep1113.

Consume the next input characterp1092:

↪ U+002D HYPHEN-MINUS (-)
Append two U+002D HYPHEN-MINUS characters (-) and a U+0021 EXCLAMATION MARK character (!) to the comment token's
data. Switch to the comment end dash statep1114.

↪ U+003E GREATER-THAN SIGN (>)
This is an incorrectly-closed-commentp1082 parse errorp1081. Switch to the data statep1098. Emit the comment token.

↪ EOF
This is an eof-in-commentp1082 parse errorp1081. Emit the comment token. Emit an end-of-file token.

↪ Anything else
Append two U+002D HYPHEN-MINUS characters (-) and a U+0021 EXCLAMATION MARK character (!) to the comment token's
data. Reconsumep1097 in the comment statep1113.

12.2.5.50 Comment end dash state §p11

14

12.2.5.51 Comment end state §p11

14

12.2.5.52 Comment end bang state §p11

14

1114

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE name statep1115.

↪ U+003E GREATER-THAN SIGN (>)
Reconsumep1097 in the before DOCTYPE name statep1115.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Create a new DOCTYPE token. Set its force-quirks flagp1097 to on. Emit the token.
Emit an end-of-file token.

↪ Anything else
This is a missing-whitespace-before-doctype-namep1083 parse errorp1081. Reconsumep1097 in the before DOCTYPE name statep1115.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ ASCII upper alpha
Create a new DOCTYPE token. Set the token's name to the lowercase version of the current input characterp1092 (add 0x0020 to
the character's code point). Switch to the DOCTYPE name statep1115.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Create a new DOCTYPE token. Set the token's name to a U+FFFD
REPLACEMENT CHARACTER character. Switch to the DOCTYPE name statep1115.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-namep1082 parse errorp1081. Create a new DOCTYPE token. Set its force-quirks flagp1097 to on. Switch to
the data statep1098. Emit the token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Create a new DOCTYPE token. Set its force-quirks flagp1097 to on. Emit the token.
Emit an end-of-file token.

↪ Anything else
Create a new DOCTYPE token. Set the token's name to the current input characterp1092. Switch to the DOCTYPE name statep1115.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the after DOCTYPE name statep1116.

12.2.5.53 DOCTYPE state §p11

15

12.2.5.54 Before DOCTYPE name state §p11

15

12.2.5.55 DOCTYPE name state §p11

15

1115

https://infra.spec.whatwg.org/#ascii-upper-alpha

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current DOCTYPE token.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1092 (add 0x0020 to the character's code point) to the current
DOCTYPE token's name.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's name.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the current DOCTYPE token's name.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
If the six characters starting from the current input characterp1092 are an ASCII case-insensitive match for the word "PUBLIC",
then consume those characters and switch to the after DOCTYPE public keyword statep1116.

Otherwise, if the six characters starting from the current input characterp1092 are an ASCII case-insensitive match for the word
"SYSTEM", then consume those characters and switch to the after DOCTYPE system keyword statep1119.

Otherwise, this is an invalid-character-sequence-after-doctype-namep1082 parse errorp1081. Set the DOCTYPE token's force-quirks
flagp1097 to on. Reconsumep1097 in the bogus DOCTYPE statep1121.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE public identifier statep1117.

↪ U+0022 QUOTATION MARK (")
This is a missing-whitespace-after-doctype-public-keywordp1083 parse errorp1081. Set the DOCTYPE token's public identifier to the
empty string (not missing), then switch to the DOCTYPE public identifier (double-quoted) state p1117.

↪ U+0027 APOSTROPHE (')
This is a missing-whitespace-after-doctype-public-keywordp1083 parse errorp1081. Set the DOCTYPE token's public identifier to the

12.2.5.56 After DOCTYPE name state §p11

16

12.2.5.57 After DOCTYPE public keyword state §p11

16

1116

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

empty string (not missing), then switch to the DOCTYPE public identifier (single-quoted) state p1118.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-public-identifierp1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Switch to
the data statep1098. Emit that DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-public-identifierp1083 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to
on. Reconsumep1097 in the bogus DOCTYPE statep1121.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE public identifier
(double-quoted) statep1117.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE public identifier (single-
quoted) statep1118.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-public-identifierp1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Switch to
the data statep1098. Emit that DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-public-identifierp1083 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to
on. Reconsumep1097 in the bogus DOCTYPE statep1121.

Consume the next input characterp1092:

↪ U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE public identifier statep1118.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's public identifier.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-doctype-public-identifierp1081 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Switch to
the data statep1098. Emit that DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

12.2.5.58 Before DOCTYPE public identifier state §p11

17

12.2.5.59 DOCTYPE public identifier (double-quoted) state §p11

17

1117

↪ Anything else
Append the current input characterp1092 to the current DOCTYPE token's public identifier.

Consume the next input characterp1092:

↪ U+0027 APOSTROPHE (')
Switch to the after DOCTYPE public identifier statep1118.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's public identifier.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-doctype-public-identifierp1081 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Switch to
the data statep1098. Emit that DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the current DOCTYPE token's public identifier.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the between DOCTYPE public and system identifiers state p1118.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current DOCTYPE token.

↪ U+0022 QUOTATION MARK (")
This is a missing-whitespace-between-doctype-public-and-system-identifiers p1083 parse errorp1081. Set the DOCTYPE token's
system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (double-quoted) state p1120.

↪ U+0027 APOSTROPHE (')
This is a missing-whitespace-between-doctype-public-and-system-identifiers p1083 parse errorp1081. Set the DOCTYPE token's
system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (single-quoted) state p1120.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-system-identifierp1083 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to
on. Reconsumep1097 in the bogus DOCTYPE statep1121.

Consume the next input characterp1092:

12.2.5.60 DOCTYPE public identifier (single-quoted) state §p11

18

12.2.5.61 After DOCTYPE public identifier state §p11

18

12.2.5.62 Between DOCTYPE public and system identifiers state §p11

18

1118

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current DOCTYPE token.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier
(double-quoted) statep1120.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier
(single-quoted) statep1120.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-system-identifierp1083 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to
on. Reconsumep1097 in the bogus DOCTYPE statep1121.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE system identifier statep1119.

↪ U+0022 QUOTATION MARK (")
This is a missing-whitespace-after-doctype-system-keywordp1083 parse errorp1081. Set the DOCTYPE token's system identifier to
the empty string (not missing), then switch to the DOCTYPE system identifier (double-quoted) state p1120.

↪ U+0027 APOSTROPHE (')
This is a missing-whitespace-after-doctype-system-keywordp1083 parse errorp1081. Set the DOCTYPE token's system identifier to
the empty string (not missing), then switch to the DOCTYPE system identifier (single-quoted) state p1120.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-system-identifierp1083 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Switch to
the data statep1098. Emit that DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-system-identifierp1083 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to
on. Reconsumep1097 in the bogus DOCTYPE statep1121.

Consume the next input characterp1092:

12.2.5.63 After DOCTYPE system keyword state §p11

19

12.2.5.64 Before DOCTYPE system identifier state §p11

19

1119

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier
(double-quoted) statep1120.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier
(single-quoted) statep1120.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-system-identifierp1083 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Switch to
the data statep1098. Emit that DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-system-identifierp1083 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to
on. Reconsumep1097 in the bogus DOCTYPE statep1121.

Consume the next input characterp1092:

↪ U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE system identifier statep1121.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's system identifier.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-doctype-system-identifierp1081 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Switch to
the data statep1098. Emit that DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the current DOCTYPE token's system identifier.

Consume the next input characterp1092:

↪ U+0027 APOSTROPHE (')
Switch to the after DOCTYPE system identifier statep1121.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's system identifier.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-doctype-system-identifierp1081 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Switch to

12.2.5.65 DOCTYPE system identifier (double-quoted) state §p11

20

12.2.5.66 DOCTYPE system identifier (single-quoted) state §p11

20

1120

the data statep1098. Emit that DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
Append the current input characterp1092 to the current DOCTYPE token's system identifier.

Consume the next input characterp1092:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1082 parse errorp1081. Set the DOCTYPE token's force-quirks flagp1097 to on. Emit that DOCTYPE token.
Emit an end-of-file token.

↪ Anything else
This is an unexpected-character-after-doctype-system-identifierp1084 parse errorp1081. Reconsumep1097 in the bogus DOCTYPE
statep1121. (This does not set the DOCTYPE token's force-quirks flagp1097 to on.)

Consume the next input characterp1092:

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1098. Emit the DOCTYPE token.

↪ U+0000 NULL
This is an unexpected-null-characterp1085 parse errorp1081. Ignore the character.

↪ EOF
Emit the DOCTYPE token. Emit an end-of-file token.

↪ Anything else
Ignore the character.

Consume the next input characterp1092:

↪ U+005D RIGHT SQUARE BRACKET (])
Switch to the CDATA section bracket statep1122.

↪ EOF
This is an eof-in-cdatap1082 parse errorp1081. Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1092 as a character token.

12.2.5.67 After DOCTYPE system identifier state §p11

21

12.2.5.68 Bogus DOCTYPE state §p11

21

12.2.5.69 CDATA section state §p11

21

1121

Consume the next input characterp1092:

↪ U+005D RIGHT SQUARE BRACKET (])
Switch to the CDATA section end statep1122.

↪ Anything else
Emit a U+005D RIGHT SQUARE BRACKET character token. Reconsumep1097 in the CDATA section statep1121.

Consume the next input characterp1092:

↪ U+005D RIGHT SQUARE BRACKET (])
Emit a U+005D RIGHT SQUARE BRACKET character token.

↪ U+003E GREATER-THAN SIGN character
Switch to the data statep1098.

↪ Anything else
Emit two U+005D RIGHT SQUARE BRACKET character tokens. Reconsumep1097 in the CDATA section statep1121.

Set the temporary bufferp1097 to the empty string. Append a U+0026 AMPERSAND (&) character to the temporary bufferp1097. Consume
the next input characterp1092:

↪ ASCII alphanumeric
Reconsumep1097 in the named character reference statep1122.

↪ U+0023 NUMBER SIGN (#)
Append the current input characterp1092 to the temporary bufferp1097. Switch to the numeric character reference statep1123.

↪ Anything else
Flush code points consumed as a character referencep1097. Reconsumep1097 in the return statep1097.

Consume the maximum number of characters possible, where the consumed characters are identical to one of the identifiers in the
first column of the named character referencesp1178 table. Append each character to the temporary bufferp1097 when it's consumed.

↪ If there is a match
If the character reference was consumed as part of an attributep1097, and the last character matched is not a U+003B
SEMICOLON character (;), and the next input characterp1092 is either a U+003D EQUALS SIGN character (=) or an ASCII
alphanumeric, then, for historical reasons, flush code points consumed as a character referencep1097 and switch to the return
statep1097.

Otherwise:

1. If the last character matched is not a U+003B SEMICOLON character (;), then this is a missing-semicolon-after-
character-referencep1083 parse errorp1081.

U+0000 NULL characters are handled in the tree construction stage, as part of the in foreign contentp1162 insertion mode, which is
the only place where CDATA sections can appear.

Note

12.2.5.70 CDATA section bracket state §p11

22

12.2.5.71 CDATA section end state §p11

22

12.2.5.72 Character reference state §p11

22

12.2.5.73 Named character reference state §p11

22

1122

https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-alphanumeric

2. Set the temporary bufferp1097 to the empty string. Append one or two characters corresponding to the character
reference name (as given by the second column of the named character referencesp1178 table) to the temporary
bufferp1097.

3. Flush code points consumed as a character referencep1097. Switch to the return statep1097.

↪ Otherwise
Flush code points consumed as a character referencep1097. Switch to the ambiguous ampersand statep1123.

Consume the next input characterp1092:

↪ ASCII alphanumeric
If the character reference was consumed as part of an attributep1097, then append the current input characterp1092 to the current
attribute's value. Otherwise, emit the current input characterp1092 as a character token.

↪ U+003B SEMICOLON (;)
This is an unknown-named-character-referencep1085 parse errorp1081. Reconsumep1097 in the return statep1097.

↪ Anything else
Reconsumep1097 in the return statep1097.

Set the character reference code to zero (0).

Consume the next input characterp1092:

↪ U+0078 LATIN SMALL LETTER X
↪ U+0058 LATIN CAPITAL LETTER X

Append the current input characterp1092 to the temporary bufferp1097. Switch to the hexadecimal character reference start
statep1123.

↪ Anything else
Reconsumep1097 in the decimal character reference start statep1124.

Consume the next input characterp1092:

↪ ASCII hex digit
Reconsumep1097 in the hexadecimal character reference statep1124.

↪ Anything else
This is an absence-of-digits-in-numeric-character-referencep1081 parse errorp1081. Flush code points consumed as a character
referencep1097. Reconsumep1097 in the return statep1097.

If the markup contains (not in an attribute) the string I'm ¬it; I tell you, the character reference is parsed as "not", as in,
I'm ¬it; I tell you (and this is a parse error). But if the markup was I'm ∉ I tell you, the character reference would
be parsed as "notin;", resulting in I'm ∉ I tell you (and no parse error).

However, if the markup contains the string I'm ¬it; I tell you in an attribute, no character reference is parsed and string
remains intact (and there is no parse error).

Example

12.2.5.74 Ambiguous ampersand state §p11

23

12.2.5.75 Numeric character reference state §p11

23

12.2.5.76 Hexadecimal character reference start state §p11

23

1123

https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-hex-digit

Consume the next input characterp1092:

↪ ASCII digit
Reconsumep1097 in the decimal character reference statep1124.

↪ Anything else
This is an absence-of-digits-in-numeric-character-referencep1081 parse errorp1081. Flush code points consumed as a character
referencep1097. Reconsumep1097 in the return statep1097.

Consume the next input characterp1092:

↪ ASCII digit
Multiply the character reference codep1123 by 16. Add a numeric version of the current input characterp1092 (subtract 0x0030
from the character's code point) to the character reference codep1123.

↪ ASCII upper hex digit
Multiply the character reference codep1123 by 16. Add a numeric version of the current input characterp1092 as a hexadecimal
digit (subtract 0x0037 from the character's code point) to the character reference codep1123.

↪ ASCII lower hex digit
Multiply the character reference codep1123 by 16. Add a numeric version of the current input characterp1092 as a hexadecimal
digit (subtract 0x0057 from the character's code point) to the character reference codep1123.

↪ U+003B SEMICOLON
Switch to the numeric character reference end statep1124.

↪ Anything else
This is a missing-semicolon-after-character-referencep1083 parse errorp1081. Reconsumep1097 in the numeric character reference
end statep1124.

Consume the next input characterp1092:

↪ ASCII digit
Multiply the character reference codep1123 by 10. Add a numeric version of the current input characterp1092 (subtract 0x0030
from the character's code point) to the character reference codep1123.

↪ U+003B SEMICOLON
Switch to the numeric character reference end statep1124.

↪ Anything else
This is a missing-semicolon-after-character-referencep1083 parse errorp1081. Reconsumep1097 in the numeric character reference
end statep1124.

Check the character reference codep1123:

• If the number is 0x00, then this is a null-character-referencep1084 parse errorp1081. Set the character reference codep1123 to
0xFFFD.

• If the number is greater than 0x10FFFF, then this is a character-reference-outside-unicode-rangep1081 parse errorp1081. Set the
character reference codep1123 to 0xFFFD.

• If the number is a surrogate, then this is a surrogate-character-referencep1084 parse errorp1081. Set the character reference

12.2.5.77 Decimal character reference start state §p11

24

12.2.5.78 Hexadecimal character reference state §p11

24

12.2.5.79 Decimal character reference state §p11

24

12.2.5.80 Numeric character reference end state §p11

24

1124

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-upper-hex-digit
https://infra.spec.whatwg.org/#ascii-lower-hex-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#surrogate

codep1123 to 0xFFFD.

• If the number is a noncharacter, then this is a noncharacter-character-referencep1083 parse errorp1081.

• If the number is 0x0D, or a control that's not ASCII whitespace, then this is a control-character-referencep1081 parse errorp1081.
If the number is one of the numbers in the first column of the following table, then find the row with that number in the first
column, and set the character reference codep1123 to the number in the second column of that row.

Number Code point

0x80 0x20AC EURO SIGN (€)
0x82 0x201A SINGLE LOW-9 QUOTATION MARK (‚)
0x83 0x0192 LATIN SMALL LETTER F WITH HOOK (ƒ)
0x84 0x201E DOUBLE LOW-9 QUOTATION MARK („)
0x85 0x2026 HORIZONTAL ELLIPSIS (…)
0x86 0x2020 DAGGER (†)
0x87 0x2021 DOUBLE DAGGER (‡)
0x88 0x02C6 MODIFIER LETTER CIRCUMFLEX ACCENT (ˆ)
0x89 0x2030 PER MILLE SIGN (‰)
0x8A 0x0160 LATIN CAPITAL LETTER S WITH CARON (Š)
0x8B 0x2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK (‹)
0x8C 0x0152 LATIN CAPITAL LIGATURE OE (Œ)
0x8E 0x017D LATIN CAPITAL LETTER Z WITH CARON (Ž)
0x91 0x2018 LEFT SINGLE QUOTATION MARK (‘)
0x92 0x2019 RIGHT SINGLE QUOTATION MARK (’)
0x93 0x201C LEFT DOUBLE QUOTATION MARK (“)
0x94 0x201D RIGHT DOUBLE QUOTATION MARK (”)
0x95 0x2022 BULLET (•)
0x96 0x2013 EN DASH (–)
0x97 0x2014 EM DASH (—)
0x98 0x02DC SMALL TILDE (˜)
0x99 0x2122 TRADE MARK SIGN (™)
0x9A 0x0161 LATIN SMALL LETTER S WITH CARON (š)
0x9B 0x203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK (›)
0x9C 0x0153 LATIN SMALL LIGATURE OE (œ)
0x9E 0x017E LATIN SMALL LETTER Z WITH CARON (ž)
0x9F 0x0178 LATIN CAPITAL LETTER Y WITH DIAERESIS (Ÿ)

Set the temporary bufferp1097 to the empty string. Append a code point equal to the character reference codep1123 to the temporary
bufferp1097. Flush code points consumed as a character referencep1097. Switch to the return statep1097.

The input to the tree construction stage is a sequence of tokens from the tokenizationp1097 stage. The tree construction stage is
associated with a DOM Documentp114 object when a parser is created. The "output" of this stage consists of dynamically modifying or
extending that document's DOM tree.

This specification does not define when an interactive user agent has to render the Documentp114 so that it is available to the user, or
when it has to begin accepting user input.

As each token is emitted from the tokenizer, the user agent must follow the appropriate steps from the following list, known as the
tree construction dispatcher:

12.2.6 Tree construction §p11

25

1125

https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-whitespace

↪ If the stack of open elementsp1093 is empty
↪ If the adjusted current nodep1094 is an element in the HTML namespace
↪ If the adjusted current nodep1094 is a MathML text integration pointp1126 and the token is a start tag whose tag name

is neither "mglyph" nor "malignmark"
↪ If the adjusted current nodep1094 is a MathML text integration pointp1126 and the token is a character token
↪ If the adjusted current nodep1094 is a MathML annotation-xml element and the token is a start tag whose tag name is

"svg"
↪ If the adjusted current nodep1094 is an HTML integration pointp1126 and the token is a start tag
↪ If the adjusted current nodep1094 is an HTML integration pointp1126 and the token is a character token
↪ If the token is an end-of-file token

Process the token according to the rules given in the section corresponding to the current insertion modep1092 in HTML content.

↪ Otherwise
Process the token according to the rules given in the section for parsing tokens in foreign contentp1162.

The next token is the token that is about to be processed by the tree construction dispatcherp1125 (even if the token is subsequently
just ignored).

A node is a MathML text integration point if it is one of the following elements:

• A MathML mi element
• A MathML mo element
• A MathML mn element
• A MathML ms element
• A MathML mtext element

A node is an HTML integration point if it is one of the following elements:

• A MathML annotation-xml element whose start tag token had an attribute with the name "encoding" whose value was an
ASCII case-insensitive match for the string "text/html"

• A MathML annotation-xml element whose start tag token had an attribute with the name "encoding" whose value was an
ASCII case-insensitive match for the string "application/xhtml+xml"

• An SVG foreignObject element
• An SVG desc element
• An SVG title element

While the parser is processing a token, it can enable or disable foster parenting. This affects the following algorithm.

The appropriate place for inserting a node, optionally using a particular override target, is the position in an element returned by
running the following steps:

1. If there was an override target specified, then let target be the override target.

Otherwise, let target be the current nodep1094.

2. Determine the adjusted insertion location using the first matching steps from the following list:

If the node in question is the contextp1177 element passed to the HTML fragment parsing algorithmp1177, then the start tag token for
that element is the "fake" token created during by that HTML fragment parsing algorithmp1177.

Note

Not all of the tag names mentioned below are conformant tag names in this specification; many are included to handle legacy
content. They still form part of the algorithm that implementations are required to implement to claim conformance.

Note

The algorithm described below places no limit on the depth of the DOM tree generated, or on the length of tag names, attribute
names, attribute values, Text nodes, etc. While implementers are encouraged to avoid arbitrary limits, it is recognized that
practical concernsp48 will likely force user agents to impose nesting depth constraints.

Note

12.2.6.1 Creating and inserting nodes §p11

26

1126

https://infra.spec.whatwg.org/#html-namespace
https://www.w3.org/Math/draft-spec/chapter5.html#mixing.elements.annotation.xml
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mi
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mo
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mn
https://www.w3.org/Math/draft-spec/chapter3.html#presm.ms
https://www.w3.org/Math/draft-spec/chapter3.html#presm.mtext
https://www.w3.org/Math/draft-spec/chapter5.html#mixing.elements.annotation.xml
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://www.w3.org/Math/draft-spec/chapter5.html#mixing.elements.annotation.xml
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://svgwg.org/svg2-draft/struct.html#DescElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#interface-text

↪ If foster parentingp1126 is enabled and target is a tablep450, tbodyp461, tfootp463, theadp462, or trp464 element

Run these substeps:

1. Let last template be the last templatep629 element in the stack of open elementsp1093, if any.

2. Let last table be the last tablep450 element in the stack of open elementsp1093, if any.

3. If there is a last template and either there is no last table, or there is one, but last template is lower (more
recently added) than last table in the stack of open elementsp1093, then: let adjusted insertion location be
inside last template's template contentsp631, after its last child (if any), and abort these steps.

4. If there is no last table, then let adjusted insertion location be inside the first element in the stack of open
elementsp1093 (the htmlp152 element), after its last child (if any), and abort these steps. (fragment casep1177)

5. If last table has a parent node, then let adjusted insertion location be inside last table's parent node,
immediately before last table, and abort these steps.

6. Let previous element be the element immediately above last table in the stack of open elementsp1093.

7. Let adjusted insertion location be inside previous element, after its last child (if any).

↪ Otherwise
Let adjusted insertion location be inside target, after its last child (if any).

3. If the adjusted insertion location is inside a templatep629 element, let it instead be inside the templatep629 element's
template contentsp631, after its last child (if any).

4. Return the adjusted insertion location.

When the steps below require the UA to create an element for a token in a particular given namespace and with a particular
intended parent, the UA must run the following steps:

1. Let document be intended parent's node document.

2. Let local name be the tag name of the token.

3. Let is be the value of the "isp703" attribute in the given token, if such an attribute exists, or null otherwise.

4. Let definition be the result of looking up a custom element definitionp705 given document, given namespace, local name, and
is.

5. If definition is non-null and the parser was not created as part of the HTML fragment parsing algorithmp1177, then let will
execute script be true. Otherwise, let it be false.

6. If will execute script is true, then:

1. Increment document's throw-on-dynamic-markup-insertion counterp967.

2. If the JavaScript execution context stack is empty, then perform a microtask checkpointp949.

3. Push a new element queuep712 onto document's relevant agentp914 's custom element reactions stackp712.

7. Let element be the result of creating an element given document, localName, given namespace, null, and is. If will execute
script is true, set the synchronous custom elements flag; otherwise, leave it unset.

Foster parenting happens when content is misnested in tables.
Note

These steps are involved in part because it's possible for elements, the tablep450 element in this case in
particular, to have been moved by a script around in the DOM, or indeed removed from the DOM entirely, after the
element was inserted by the parser.

Note

1127

https://dom.spec.whatwg.org/#concept-node-document
https://tc39.es/ecma262/#execution-context-stack
https://dom.spec.whatwg.org/#concept-create-element

8. Append each attribute in the given token to element.

9. If will execute script is true, then:

1. Let queue be the result of popping from document's relevant agentp914 's custom element reactions stackp712. (This
will be the same element queuep712 as was pushed above.)

2. Invoke custom element reactionsp713 in queue.

3. Decrement document's throw-on-dynamic-markup-insertion counterp967.

10. If element has an xmlns attribute in the XMLNS namespace whose value is not exactly the same as the element's
namespace, that is a parse errorp1081. Similarly, if element has an xmlns:xlink attribute in the XMLNS namespace whose
value is not the XLink Namespace, that is a parse errorp1081.

11. If element is a resettable elementp486, invoke its reset algorithmp604. (This initializes the element's valuep566 and
checkednessp566 based on the element's attributes.)

12. If element is a form-associated elementp486 and not a form-associated custom elementp704, the form element pointerp1096 is
not null, there is no templatep629 element on the stack of open elementsp1093, element is either not listedp486 or doesn't have
a formp566 attribute, and the intended parent is in the same tree as the element pointed to by the form element pointerp1096,
then associatep567 element with the formp486 element pointed to by the form element pointerp1096 and set element's parser
inserted flagp566.

13. Return element.

When the steps below require the user agent to insert a foreign element for a token in a given namespace, the user agent must run
these steps:

1. Let the adjusted insertion location be the appropriate place for inserting a nodep1126.

2. Let element be the result of creating an element for the tokenp1127 in the given namespace, with the intended parent being
the element in which the adjusted insertion location finds itself.

3. If it is possible to insert element at the adjusted insertion location, then:

1. If the parser was not created as part of the HTML fragment parsing algorithmp1177, then push a new element
queuep712 onto element's relevant agentp914 's custom element reactions stackp712.

2. Insert element at the adjusted insertion location.

3. If the parser was not created as part of the HTML fragment parsing algorithmp1177, then pop the element queuep712

from element's relevant agentp914 's custom element reactions stackp712, and invoke custom element reactionsp713

in that queue.

4. Push element onto the stack of open elementsp1093 so that it is the new current nodep1094.

5. Return element.

This will cause custom element constructorsp703 to run, if will execute script is true. However, since we incremented the
throw-on-dynamic-markup-insertion counter p967, this cannot cause new characters to be inserted into the tokenizer p970,
or the document to be blown awayp969.

Note

This can enqueue a custom element callback reaction p713 for the attributeChangedCallback, which might run
immediately (in the next step).

Note

Even though the isp703 attribute governs the creation of a customized built-in elementp703, it is not present during the
execution of the relevant custom element constructorp703; it is appended in this step, along with all other attributes.

Note

If the adjusted insertion location cannot accept more elements, e.g. because it's a Documentp114 that already has an
element child, then element is dropped on the floor.

Note

1128

https://dom.spec.whatwg.org/#concept-element-attributes-append
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://dom.spec.whatwg.org/#concept-tree

When the steps below require the user agent to insert an HTML element for a token, the user agent must insert a foreign
elementp1128 for the token, in the HTML namespace.

When the steps below require the user agent to adjust MathML attributes for a token, then, if the token has an attribute named
definitionurl, change its name to definitionURL (note the case difference).

When the steps below require the user agent to adjust SVG attributes for a token, then, for each attribute on the token whose
attribute name is one of the ones in the first column of the following table, change the attribute's name to the name given in the
corresponding cell in the second column. (This fixes the case of SVG attributes that are not all lowercase.)

Attribute name on token Attribute name on element

attributename attributeName

attributetype attributeType

basefrequency baseFrequency

baseprofile baseProfile

calcmode calcMode

clippathunits clipPathUnits

diffuseconstant diffuseConstant

edgemode edgeMode

filterunits filterUnits

glyphref glyphRef

gradienttransform gradientTransform

gradientunits gradientUnits

kernelmatrix kernelMatrix

kernelunitlength kernelUnitLength

keypoints keyPoints

keysplines keySplines

keytimes keyTimes

lengthadjust lengthAdjust

limitingconeangle limitingConeAngle

markerheight markerHeight

markerunits markerUnits

markerwidth markerWidth

maskcontentunits maskContentUnits

maskunits maskUnits

numoctaves numOctaves

pathlength pathLength

patterncontentunits patternContentUnits

patterntransform patternTransform

patternunits patternUnits

pointsatx pointsAtX

pointsaty pointsAtY

pointsatz pointsAtZ

preservealpha preserveAlpha

preserveaspectratio preserveAspectRatio

primitiveunits primitiveUnits

refx refX

refy refY

repeatcount repeatCount

repeatdur repeatDur

requiredextensions requiredExtensions

requiredfeatures requiredFeatures

specularconstant specularConstant

specularexponent specularExponent

spreadmethod spreadMethod

startoffset startOffset

stddeviation stdDeviation

1129

https://infra.spec.whatwg.org/#html-namespace

Attribute name on token Attribute name on element

stitchtiles stitchTiles

surfacescale surfaceScale

systemlanguage systemLanguage

tablevalues tableValues

targetx targetX

targety targetY

textlength textLength

viewbox viewBox

viewtarget viewTarget

xchannelselector xChannelSelector

ychannelselector yChannelSelector

zoomandpan zoomAndPan

When the steps below require the user agent to adjust foreign attributes for a token, then, if any of the attributes on the token
match the strings given in the first column of the following table, let the attribute be a namespaced attribute, with the prefix being the
string given in the corresponding cell in the second column, the local name being the string given in the corresponding cell in the third
column, and the namespace being the namespace given in the corresponding cell in the fourth column. (This fixes the use of
namespaced attributes, in particular lang attributes in the XML namespacep140.)

Attribute name Prefix Local name Namespace

xlink:actuate xlink actuate XLink namespace
xlink:arcrole xlink arcrole XLink namespace
xlink:href xlink href XLink namespace
xlink:role xlink role XLink namespace
xlink:show xlink show XLink namespace
xlink:title xlink title XLink namespace
xlink:type xlink type XLink namespace
xml:lang xml lang XML namespace
xml:space xml space XML namespace
xmlns (none) xmlns XMLNS namespace
xmlns:xlink xmlns xlink XMLNS namespace

When the steps below require the user agent to insert a character while processing a token, the user agent must run the following
steps:

1. Let data be the characters passed to the algorithm, or, if no characters were explicitly specified, the character of the
character token being processed.

2. Let the adjusted insertion location be the appropriate place for inserting a nodep1126.

3. If the adjusted insertion location is in a Documentp114 node, then return.

4. If there is a Text node immediately before the adjusted insertion location, then append data to that Text node's data.

Otherwise, create a new Text node whose data is data and whose node document is the same as that of the element in
which the adjusted insertion location finds itself, and insert the newly created node at the adjusted insertion location.

The DOM will not let Documentp114 nodes have Text node children, so they are dropped on the floor.
Note

Here are some sample inputs to the parser and the corresponding number of Text nodes that they result in, assuming a user agent
that executes scripts.

Input Number of Text nodes

A<script>
var script = document.getElementsByTagName('script')[0];

One Text node in the document, containing "AB".

Example

1130

https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

When the steps below require the user agent to insert a comment while processing a comment token, optionally with an explicitly
insertion position position, the user agent must run the following steps:

1. Let data be the data given in the comment token being processed.

2. If position was specified, then let the adjusted insertion location be position. Otherwise, let adjusted insertion location be the
appropriate place for inserting a nodep1126.

3. Create a Comment node whose data attribute is set to data and whose node document is the same as that of the node in
which the adjusted insertion location finds itself.

4. Insert the newly created node at the adjusted insertion location.

DOM mutation events must not fire for changes caused by the UA parsing the document. This includes the parsing of any content
inserted using document.write()p970 and document.writeln()p971 calls. [UIEVENTS]p1292

However, mutation observers do fire, as required by DOM .

The generic raw text element parsing algorithm and the generic RCDATA element parsing algorithm consist of the following
steps. These algorithms are always invoked in response to a start tag token.

1. Insert an HTML elementp1129 for the token.

2. If the algorithm that was invoked is the generic raw text element parsing algorithmp1131, switch the tokenizer to the RAWTEXT
statep1098; otherwise the algorithm invoked was the generic RCDATA element parsing algorithmp1131, switch the tokenizer to
the RCDATA statep1098.

3. Let the original insertion modep1092 be the current insertion modep1092.

4. Then, switch the insertion modep1092 to "textp1148".

Input Number of Text nodes

document.body.removeChild(script);
</script>B

A<script>
var text = document.createTextNode('B');
document.body.appendChild(text);
</script>C

Three Text nodes; "A" before the script, the script's contents, and
"BC" after the script (the parser appends to the Text node
created by the script).

A<script>
var text = document.getElementsByTagName('script')[0].firstChild;
text.data = 'B';
document.body.appendChild(text);
</script>C

Two adjacent Text nodes in the document, containing "A" and
"BC".

A<table>B<tr>C</tr>D</table>
One Text node before the table, containing "ABCD". (This is
caused by foster parentingp1126.)

A<table><tr> B</tr> C</table>
One Text node before the table, containing "A B C" (A-space-B-
space-C). (This is caused by foster parentingp1126.)

A<table><tr> B</tr> C</table>
One Text node before the table, containing "A BC" (A-space-B-C),
and one Text node inside the table (as a child of a tbodyp461) with
a single space character. (Space characters separated from non-
space characters by non-character tokens are not affected by
foster parentingp1126, even if those other tokens then get
ignored.)

12.2.6.2 Parsing elements that contain only text §p11

31

1131

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#mutation-observers

When the steps below require the UA to generate implied end tags, then, while the current nodep1094 is a ddp231 element, a dtp230

element, an lip224 element, an optgroupp544 element, an optionp545 element, a pp211 element, an rbp1232 element, an rpp258 element, an
rtp258 element, or an rtcp1232 element, the UA must pop the current nodep1094 off the stack of open elementsp1093.

If a step requires the UA to generate implied end tags but lists an element to exclude from the process, then the UA must perform the
above steps as if that element was not in the above list.

When the steps below require the UA to generate all implied end tags thoroughly, then, while the current nodep1094 is a
captionp458 element, a colgroupp459 element, a ddp231 element, a dtp230 element, an lip224 element, an optgroupp544 element, an
optionp545 element, a pp211 element, an rbp1232 element, an rpp258 element, an rtp258 element, an rtcp1232 element, a tbodyp461 element,
a tdp465 element, a tfootp463 element, a thp467 element, a theadp462 element, or a trp464 element, the UA must pop the current
nodep1094 off the stack of open elementsp1093.

When the user agent is to apply the rules for the "initialp1132" insertion modep1092, the user agent must handle the token as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

↪ A comment token
Insert a commentp1131 as the last child of the Documentp114 object.

↪ A DOCTYPE token
If the DOCTYPE token's name is not identical to "html", or the token's public identifier is not missing, or the token's system
identifier is neither missing nor identical to "about:legacy-compatp88", then there is a parse errorp1081.

Append a DocumentType node to the Documentp114 node, with the name attribute set to the name given in the DOCTYPE token, or
the empty string if the name was missing; the publicId attribute set to the public identifier given in the DOCTYPE token, or the
empty string if the public identifier was missing; the systemId attribute set to the system identifier given in the DOCTYPE token,
or the empty string if the system identifier was missing; and the other attributes specific to DocumentType objects set to null
and empty lists as appropriate. Associate the DocumentType node with the Documentp114 object so that it is returned as the value
of the doctype attribute of the Documentp114 object.

Then, if the document is not an iframe srcdoc documentp362, and the DOCTYPE token matches one of the conditions in the
following list, then set the Documentp114 to quirks mode:

• The force-quirks flagp1097 is set to on.
• The name is set to anything other than "html" (compared identically).
• The public identifier is set to: "-//W3O//DTD W3 HTML Strict 3.0//EN//"
• The public identifier is set to: "-/W3C/DTD HTML 4.0 Transitional/EN"
• The public identifier is set to: "HTML"
• The system identifier is set to: "http://www.ibm.com/data/dtd/v11/ibmxhtml1-transitional.dtd"
• The public identifier starts with: "+//Silmaril//dtd html Pro v0r11 19970101//"
• The public identifier starts with: "-//AS//DTD HTML 3.0 asWedit + extensions//"
• The public identifier starts with: "-//AdvaSoft Ltd//DTD HTML 3.0 asWedit + extensions//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0//"
• The public identifier starts with: "-//IETF//DTD HTML 2.1E//"
• The public identifier starts with: "-//IETF//DTD HTML 3.0//"
• The public identifier starts with: "-//IETF//DTD HTML 3.2 Final//"
• The public identifier starts with: "-//IETF//DTD HTML 3.2//"
• The public identifier starts with: "-//IETF//DTD HTML 3//"
• The public identifier starts with: "-//IETF//DTD HTML Level 0//"
• The public identifier starts with: "-//IETF//DTD HTML Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML Level 3//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 0//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 2//"

12.2.6.3 Closing elements that have implied end tags §p11

32

12.2.6.4 The rules for parsing tokens in HTML content §p11

32

12.2.6.4.1 The "initial" insertion mode §p11

32

1132

https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#string-is

• The public identifier starts with: "-//IETF//DTD HTML Strict Level 3//"
• The public identifier starts with: "-//IETF//DTD HTML Strict//"
• The public identifier starts with: "-//IETF//DTD HTML//"
• The public identifier starts with: "-//Metrius//DTD Metrius Presentational//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML Strict//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 Tables//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML Strict//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 Tables//"
• The public identifier starts with: "-//Netscape Comm. Corp.//DTD HTML//"
• The public identifier starts with: "-//Netscape Comm. Corp.//DTD Strict HTML//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML 2.0//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended 1.0//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended Relaxed 1.0//"
• The public identifier starts with: "-//SQ//DTD HTML 2.0 HoTMetaL + extensions//"
• The public identifier starts with: "-//SoftQuad Software//DTD HoTMetaL PRO 6.0::19990601::extensions to

HTML 4.0//"
• The public identifier starts with: "-//SoftQuad//DTD HoTMetaL PRO 4.0::19971010::extensions to HTML 4.0//"
• The public identifier starts with: "-//Spyglass//DTD HTML 2.0 Extended//"
• The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava HTML//"
• The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava Strict HTML//"
• The public identifier starts with: "-//W3C//DTD HTML 3 1995-03-24//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2 Draft//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2 Final//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2S Draft//"
• The public identifier starts with: "-//W3C//DTD HTML 4.0 Frameset//"
• The public identifier starts with: "-//W3C//DTD HTML 4.0 Transitional//"
• The public identifier starts with: "-//W3C//DTD HTML Experimental 19960712//"
• The public identifier starts with: "-//W3C//DTD HTML Experimental 970421//"
• The public identifier starts with: "-//W3C//DTD W3 HTML//"
• The public identifier starts with: "-//W3O//DTD W3 HTML 3.0//"
• The public identifier starts with: "-//WebTechs//DTD Mozilla HTML 2.0//"
• The public identifier starts with: "-//WebTechs//DTD Mozilla HTML//"
• The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Frameset//"
• The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Transitional//"

Otherwise, if the document is not an iframe srcdoc documentp362, and the DOCTYPE token matches one of the conditions in the
following list, then set the Documentp114 to limited-quirks mode:

• The public identifier starts with: "-//W3C//DTD XHTML 1.0 Frameset//"
• The public identifier starts with: "-//W3C//DTD XHTML 1.0 Transitional//"
• The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Frameset//"
• The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Transitional//"

The system identifier and public identifier strings must be compared to the values given in the lists above in an ASCII case-
insensitive manner. A system identifier whose value is the empty string is not considered missing for the purposes of the
conditions above.

Then, switch the insertion modep1092 to "before htmlp1133".

↪ Anything else
If the document is not an iframe srcdoc documentp362, then this is a parse errorp1081; set the Documentp114 to quirks mode.

In any case, switch the insertion modep1092 to "before htmlp1133", then reprocess the token.

When the user agent is to apply the rules for the "before htmlp1133" insertion modep1092, the user agent must handle the token as
follows:

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A comment token
Insert a commentp1131 as the last child of the Documentp114 object.

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

12.2.6.4.2 The "before html" insertion mode §p11

33

1133

https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-document-quirks

↪ A start tag whose tag name is "html"
Create an element for the tokenp1127 in the HTML namespace, with the Documentp114 as the intended parent. Append it to the
Documentp114 object. Put this element in the stack of open elementsp1093.

If the Documentp114 is being loaded as part of navigationp866 of a browsing contextp811 and Documentp114 's relevant settings
objectp924 is a secure contextp924, then:

1. If the result of running match service worker registration for the document's URL is non-null, run the application cache
selection algorithmp907 passing the Documentp114 object with no manifest.

2. Otherwise, run these substeps:

1. If the newly created element has a manifestp152 attribute whose value is not the empty string, then parsep89

the value of that attribute, relative to the newly created element's node document, and if that is successful,
run the application cache selection algorithm p907 passing the Documentp114 object with the result of applying
the URL serializer algorithm to the resulting URL recordp89 with the exclude fragment flag set.

2. Otherwise, run the application cache selection algorithm p907 passing the Documentp114 object with no
manifest.

Switch the insertion modep1092 to "before headp1134".

↪ An end tag whose tag name is one of: "head", "body", "html", "br"
Act as described in the "anything else" entry below.

↪ Any other end tag
Parse errorp1081. Ignore the token.

↪ Anything else
Create an htmlp152 element whose node document is the Documentp114 object. Append it to the Documentp114 object. Put this
element in the stack of open elementsp1093.

If the Documentp114 is being loaded as part of navigationp866 of a browsing contextp811, then: run the application cache selection
algorithmp907 with no manifest, passing it the Documentp114 object.

Switch the insertion modep1092 to "before headp1134", then reprocess the token.

The document element can end up being removed from the Documentp114 object, e.g. by scripts; nothing in particular happens in such
cases, content continues being appended to the nodes as described in the next section.

When the user agent is to apply the rules for the "before headp1134" insertion modep1092, the user agent must handle the token as
follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ A start tag whose tag name is "head"
Insert an HTML elementp1129 for the token.

Set the head element pointerp1096 to the newly created headp153 element.

12.2.6.4.3 The "before head" insertion mode §p11

34

1134

https://infra.spec.whatwg.org/#html-namespace
https://w3c.github.io/ServiceWorker/#scope-match-algorithm
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-serializer
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#document-element

Switch the insertion modep1092 to "in headp1135".

↪ An end tag whose tag name is one of: "head", "body", "html", "br"
Act as described in the "anything else" entry below.

↪ Any other end tag
Parse errorp1081. Ignore the token.

↪ Anything else
Insert an HTML elementp1129 for a "head" start tag token with no attributes.

Set the head element pointerp1096 to the newly created headp153 element.

Switch the insertion modep1092 to "in headp1135".

Reprocess the current token.

When the user agent is to apply the rules for the "in headp1135" insertion modep1092, the user agent must handle the token as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1130.

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ A start tag whose tag name is one of: "base", "basefont", "bgsound", "link"
Insert an HTML elementp1129 for the token. Immediately pop the current nodep1094 off the stack of open elementsp1093.

Acknowledge the token's self-closing flagp1097, if it is set.

↪ A start tag whose tag name is "meta"
Insert an HTML elementp1129 for the token. Immediately pop the current nodep1094 off the stack of open elementsp1093.

Acknowledge the token's self-closing flagp1097, if it is set.

If the element has a charsetp165 attribute, and getting an encoding from its value results in an encoding, and the
confidencep1086 is currently tentative, then change the encodingp1091 to the resulting encoding.

Otherwise, if the element has an http-equivp169 attribute whose value is an ASCII case-insensitive match for the string
"Content-Type", and the element has a contentp165 attribute, and applying the algorithm for extracting a character encoding
from a meta elementp90 to that attribute's value returns an encoding, and the confidencep1086 is currently tentative, then change
the encodingp1091 to the extracted encoding.

↪ A start tag whose tag name is "title"
Follow the generic RCDATA element parsing algorithmp1131.

↪ A start tag whose tag name is "noscript", if the scripting flagp1096 is enabled
↪ A start tag whose tag name is one of: "noframes", "style"

Follow the generic raw text element parsing algorithmp1131.

↪ A start tag whose tag name is "noscript", if the scripting flagp1096 is disabled
Insert an HTML elementp1129 for the token.

12.2.6.4.4 The "in head" insertion mode §p11

35

1135

https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#encoding
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://encoding.spec.whatwg.org/#encoding

Switch the insertion modep1092 to "in head noscriptp1137".

↪ A start tag whose tag name is "script"
Run these steps:

1. Let the adjusted insertion location be the appropriate place for inserting a nodep1126.

2. Create an element for the tokenp1127 in the HTML namespace, with the intended parent being the element in which the
adjusted insertion location finds itself.

3. Set the element's parser documentp619 to the Documentp114, and unset the element's "non-blocking"p619 flag.

4. If the parser was created as part of the HTML fragment parsing algorithmp1177, then mark the scriptp614 element as
"already started"p619. (fragment casep1177)

5. If the parser was invoked via the document.write()p970 or document.writeln()p971 methods, then optionally mark
the scriptp614 element as "already started"p619. (For example, the user agent might use this clause to prevent
execution of cross-originp837 scripts inserted via document.write()p970 under slow network conditions, or when the
page has already taken a long time to load.)

6. Insert the newly created element at the adjusted insertion location.

7. Push the element onto the stack of open elementsp1093 so that it is the new current nodep1094.

8. Switch the tokenizer to the script data statep1098.

9. Let the original insertion modep1092 be the current insertion modep1092.

10. Switch the insertion modep1092 to "textp1148".

↪ An end tag whose tag name is "head"
Pop the current nodep1094 (which will be the headp153 element) off the stack of open elementsp1093.

Switch the insertion modep1092 to "after headp1137".

↪ An end tag whose tag name is one of: "body", "html", "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is "template"
Insert an HTML elementp1129 for the token.

Insert a markerp1095 at the end of the list of active formatting elementsp1095.

Set the frameset-ok flagp1097 to "not ok".

Switch the insertion modep1092 to "in templatep1158".

Push "in templatep1158" onto the stack of template insertion modesp1092 so that it is the new current template insertion
modep1092.

↪ An end tag whose tag name is "template"
If there is no templatep629 element on the stack of open elementsp1093, then this is a parse errorp1081; ignore the token.

Otherwise, run these steps:

1. Generate all implied end tags thoroughlyp1132.

2. If the current nodep1094 is not a templatep629 element, then this is a parse errorp1081.

3. Pop elements from the stack of open elementsp1093 until a templatep629 element has been popped from the stack.

4. Clear the list of active formatting elements up to the last markerp1096.

This ensures that, if the script is external, any document.write()p970 calls in the script will execute in-line, instead
of blowing the document away, as would happen in most other cases. It also prevents the script from executing
until the end tag is seen.

Note

1136

https://infra.spec.whatwg.org/#html-namespace

5. Pop the current template insertion modep1092 off the stack of template insertion modesp1092.

6. Reset the insertion mode appropriatelyp1092.

↪ A start tag whose tag name is "head"
↪ Any other end tag

Parse errorp1081. Ignore the token.

↪ Anything else
Pop the current nodep1094 (which will be the headp153 element) off the stack of open elementsp1093.

Switch the insertion modep1092 to "after headp1137".

Reprocess the token.

When the user agent is to apply the rules for the "in head noscriptp1137" insertion modep1092, the user agent must handle the token as
follows:

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ An end tag whose tag name is "noscript"
Pop the current nodep1094 (which will be a noscriptp627 element) from the stack of open elementsp1093; the new current nodep1094

will be a headp153 element.

Switch the insertion modep1092 to "in headp1135".

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

↪ A comment token
↪ A start tag whose tag name is one of: "basefont", "bgsound", "link", "meta", "noframes", "style"

Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ An end tag whose tag name is "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is one of: "head", "noscript"
↪ Any other end tag

Parse errorp1081. Ignore the token.

↪ Anything else
Parse errorp1081.

Pop the current nodep1094 (which will be a noscriptp627 element) from the stack of open elementsp1093; the new current nodep1094

will be a headp153 element.

Switch the insertion modep1092 to "in headp1135".

Reprocess the token.

When the user agent is to apply the rules for the "after headp1137" insertion modep1092, the user agent must handle the token as follows:

12.2.6.4.5 The "in head noscript" insertion mode §p11

37

12.2.6.4.6 The "after head" insertion mode §p11

37

1137

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1130.

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ A start tag whose tag name is "body"
Insert an HTML elementp1129 for the token.

Set the frameset-ok flagp1097 to "not ok".

Switch the insertion modep1092 to "in bodyp1138".

↪ A start tag whose tag name is "frameset"
Insert an HTML elementp1129 for the token.

Switch the insertion modep1092 to "in framesetp1160".

↪ A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style",
"template", "title"

Parse errorp1081.

Push the node pointed to by the head element pointerp1096 onto the stack of open elementsp1093.

Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

Remove the node pointed to by the head element pointerp1096 from the stack of open elementsp1093. (It might not be the current
nodep1094 at this point.)

↪ An end tag whose tag name is "template"
Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ An end tag whose tag name is one of: "body", "html", "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is "head"
↪ Any other end tag

Parse errorp1081. Ignore the token.

↪ Anything else
Insert an HTML elementp1129 for a "body" start tag token with no attributes.

Switch the insertion modep1092 to "in bodyp1138".

Reprocess the current token.

When the user agent is to apply the rules for the "in bodyp1138" insertion modep1092, the user agent must handle the token as follows:

The head element pointerp1096 cannot be null at this point.
Note

12.2.6.4.7 The "in body" insertion mode §p11

38

1138

↪ A character token that is U+0000 NULL
Parse errorp1081. Ignore the token.

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Reconstruct the active formatting elementsp1096, if any.

Insert the token's characterp1130.

↪ Any other character token
Reconstruct the active formatting elementsp1096, if any.

Insert the token's characterp1130.

Set the frameset-ok flagp1097 to "not ok".

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Parse errorp1081.

If there is a templatep629 element on the stack of open elementsp1093, then ignore the token.

Otherwise, for each attribute on the token, check to see if the attribute is already present on the top element of the stack of
open elementsp1093. If it is not, add the attribute and its corresponding value to that element.

↪ A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style",
"template", "title"

↪ An end tag whose tag name is "template"
Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ A start tag whose tag name is "body"
Parse errorp1081.

If the second element on the stack of open elementsp1093 is not a bodyp178 element, if the stack of open elementsp1093 has only
one node on it, or if there is a templatep629 element on the stack of open elementsp1093, then ignore the token. (fragment
casep1177)

Otherwise, set the frameset-ok flagp1097 to "not ok"; then, for each attribute on the token, check to see if the attribute is already
present on the bodyp178 element (the second element) on the stack of open elementsp1093, and if it is not, add the attribute and
its corresponding value to that element.

↪ A start tag whose tag name is "frameset"
Parse errorp1081.

If the stack of open elementsp1093 has only one node on it, or if the second element on the stack of open elementsp1093 is not a
bodyp178 element, then ignore the token. (fragment casep1177)

If the frameset-ok flagp1097 is set to "not ok", ignore the token.

Otherwise, run the following steps:

1. Remove the second element on the stack of open elementsp1093 from its parent node, if it has one.

2. Pop all the nodes from the bottom of the stack of open elementsp1093, from the current nodep1094 up to, but not
including, the root htmlp152 element.

3. Insert an HTML elementp1129 for the token.

4. Switch the insertion modep1092 to "in framesetp1160".
1139

↪ An end-of-file token
If the stack of template insertion modesp1092 is not empty, then process the token using the rules forp1092 the "in templatep1158"
insertion modep1092.

Otherwise, follow these steps:

1. If there is a node in the stack of open elementsp1093 that is not either a ddp231 element, a dtp230 element, an lip224

element, an optgroupp544 element, an optionp545 element, a pp211 element, an rbp1232 element, an rpp258 element, an
rtp258 element, an rtcp1232 element, a tbodyp461 element, a tdp465 element, a tfootp463 element, a thp467 element, a
theadp462 element, a trp464 element, the bodyp178 element, or the htmlp152 element, then this is a parse errorp1081.

2. Stop parsingp1165.

↪ An end tag whose tag name is "body"
If the stack of open elementsp1093 does not have a body element in scopep1094, this is a parse errorp1081; ignore the token.

Otherwise, if there is a node in the stack of open elementsp1093 that is not either a ddp231 element, a dtp230 element, an lip224

element, an optgroupp544 element, an optionp545 element, a pp211 element, an rbp1232 element, an rpp258 element, an rtp258

element, an rtcp1232 element, a tbodyp461 element, a tdp465 element, a tfootp463 element, a thp467 element, a theadp462 element,
a trp464 element, the bodyp178 element, or the htmlp152 element, then this is a parse errorp1081.

Switch the insertion modep1092 to "after bodyp1160".

↪ An end tag whose tag name is "html"
If the stack of open elementsp1093 does not have a body element in scopep1094, this is a parse errorp1081; ignore the token.

Otherwise, if there is a node in the stack of open elementsp1093 that is not either a ddp231 element, a dtp230 element, an lip224

element, an optgroupp544 element, an optionp545 element, a pp211 element, an rbp1232 element, an rpp258 element, an rtp258

element, an rtcp1232 element, a tbodyp461 element, a tdp465 element, a tfootp463 element, a thp467 element, a theadp462 element,
a trp464 element, the bodyp178 element, or the htmlp152 element, then this is a parse errorp1081.

Switch the insertion modep1092 to "after bodyp1160".

Reprocess the token.

↪ A start tag whose tag name is one of: "address", "article", "aside", "blockquote", "center", "details", "dialog", "dir",
"div", "dl", "fieldset", "figcaption", "figure", "footer", "header", "hgroup", "main", "menu", "nav", "ol", "p", "section",
"summary", "ul"

If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

Insert an HTML elementp1129 for the token.

↪ A start tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"
If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

If the current nodep1094 is an HTML elementp44 whose tag name is one of "h1", "h2", "h3", "h4", "h5", or "h6", then this is a parse
errorp1081; pop the current nodep1094 off the stack of open elementsp1093.

Insert an HTML elementp1129 for the token.

↪ A start tag whose tag name is one of: "pre", "listing"
If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

Insert an HTML elementp1129 for the token.

If the next tokenp1126 is a U+000A LINE FEED (LF) character token, then ignore that token and move on to the next one.
(Newlines at the start of prep216 blocks are ignored as an authoring convenience.)

Set the frameset-ok flagp1097 to "not ok".

↪ A start tag whose tag name is "form"
If the form element pointerp1096 is not null, and there is no templatep629 element on the stack of open elementsp1093, then this is
a parse errorp1081; ignore the token.

1140

Otherwise:

If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

Insert an HTML elementp1129 for the token, and, if there is no templatep629 element on the stack of open elementsp1093, set the
form element pointerp1096 to point to the element created.

↪ A start tag whose tag name is "li"
Run these steps:

1. Set the frameset-ok flagp1097 to "not ok".

2. Initialize node to be the current nodep1094 (the bottommost node of the stack).

3. Loop: If node is an lip224 element, then run these substeps:

1. Generate implied end tagsp1132, except for lip224 elements.

2. If the current nodep1094 is not an lip224 element, then this is a parse errorp1081.

3. Pop elements from the stack of open elementsp1093 until an lip224 element has been popped from the stack.

4. Jump to the step labeled done below.

4. If node is in the specialp1094 category, but is not an addressp197, divp237, or pp211 element, then jump to the step
labeled done below.

5. Otherwise, set node to the previous entry in the stack of open elementsp1093 and return to the step labeled loop.

6. Done: If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

7. Finally, insert an HTML elementp1129 for the token.

↪ A start tag whose tag name is one of: "dd", "dt"
Run these steps:

1. Set the frameset-ok flagp1097 to "not ok".

2. Initialize node to be the current nodep1094 (the bottommost node of the stack).

3. Loop: If node is a ddp231 element, then run these substeps:

1. Generate implied end tagsp1132, except for ddp231 elements.

2. If the current nodep1094 is not a ddp231 element, then this is a parse errorp1081.

3. Pop elements from the stack of open elementsp1093 until a ddp231 element has been popped from the stack.

4. Jump to the step labeled done below.

4. If node is a dtp230 element, then run these substeps:

1. Generate implied end tagsp1132, except for dtp230 elements.

2. If the current nodep1094 is not a dtp230 element, then this is a parse errorp1081.

3. Pop elements from the stack of open elementsp1093 until a dtp230 element has been popped from the stack.

4. Jump to the step labeled done below.

5. If node is in the specialp1094 category, but is not an addressp197, divp237, or pp211 element, then jump to the step
labeled done below.

6. Otherwise, set node to the previous entry in the stack of open elementsp1093 and return to the step labeled loop.

7. Done: If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

8. Finally, insert an HTML elementp1129 for the token.

↪ A start tag whose tag name is "plaintext"
If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

1141

Insert an HTML elementp1129 for the token.

Switch the tokenizer to the PLAINTEXT statep1099.

↪ A start tag whose tag name is "button"

1. If the stack of open elementsp1093 has a button element in scopep1094, then run these substeps:

1. Parse errorp1081.

2. Generate implied end tagsp1132.

3. Pop elements from the stack of open elementsp1093 until a buttonp535 element has been popped from the
stack.

2. Reconstruct the active formatting elementsp1096, if any.

3. Insert an HTML elementp1129 for the token.

4. Set the frameset-ok flagp1097 to "not ok".

↪ An end tag whose tag name is one of: "address", "article", "aside", "blockquote", "button", "center", "details",
"dialog", "dir", "div", "dl", "fieldset", "figcaption", "figure", "footer", "header", "hgroup", "listing", "main", "menu",
"nav", "ol", "pre", "section", "summary", "ul"

If the stack of open elementsp1093 does not have an element in scopep1094 that is an HTML elementp44 with the same tag name as
that of the token, then this is a parse errorp1081; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp1132.

2. If the current nodep1094 is not an HTML elementp44 with the same tag name as that of the token, then this is a parse
errorp1081.

3. Pop elements from the stack of open elementsp1093 until an HTML elementp44 with the same tag name as the token has
been popped from the stack.

↪ An end tag whose tag name is "form"
If there is no templatep629 element on the stack of open elementsp1093, then run these substeps:

1. Let node be the element that the form element pointerp1096 is set to, or null if it is not set to an element.

2. Set the form element pointerp1096 to null.

3. If node is null or if the stack of open elementsp1093 does not have node in scopep1094, then this is a parse errorp1081;
return and ignore the token.

4. Generate implied end tagsp1132.

5. If the current nodep1094 is not node, then this is a parse errorp1081.

6. Remove node from the stack of open elementsp1093.

If there is a templatep629 element on the stack of open elementsp1093, then run these substeps instead:

1. If the stack of open elementsp1093 does not have a form element in scopep1094, then this is a parse errorp1081; return
and ignore the token.

2. Generate implied end tagsp1132.

3. If the current nodep1094 is not a formp486 element, then this is a parse errorp1081.

4. Pop elements from the stack of open elementsp1093 until a formp486 element has been popped from the stack.

Once a start tag with the tag name "plaintext" has been seen, that will be the last token ever seen other than character
tokens (and the end-of-file token), because there is no way to switch out of the PLAINTEXT statep1099.

Note

1142

↪ An end tag whose tag name is "p"
If the stack of open elementsp1093 does not have a p element in button scopep1095, then this is a parse errorp1081; insert an HTML
elementp1129 for a "p" start tag token with no attributes.

Close a p elementp1147.

↪ An end tag whose tag name is "li"
If the stack of open elementsp1093 does not have an li element in list item scopep1095, then this is a parse errorp1081; ignore the
token.

Otherwise, run these steps:

1. Generate implied end tagsp1132, except for lip224 elements.

2. If the current nodep1094 is not an lip224 element, then this is a parse errorp1081.

3. Pop elements from the stack of open elementsp1093 until an lip224 element has been popped from the stack.

↪ An end tag whose tag name is one of: "dd", "dt"
If the stack of open elementsp1093 does not have an element in scopep1094 that is an HTML elementp44 with the same tag name as
that of the token, then this is a parse errorp1081; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp1132, except for HTML elementsp44 with the same tag name as the token.

2. If the current nodep1094 is not an HTML elementp44 with the same tag name as that of the token, then this is a parse
errorp1081.

3. Pop elements from the stack of open elementsp1093 until an HTML elementp44 with the same tag name as the token has
been popped from the stack.

↪ An end tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"
If the stack of open elementsp1093 does not have an element in scopep1094 that is an HTML elementp44 and whose tag name is
one of "h1", "h2", "h3", "h4", "h5", or "h6", then this is a parse errorp1081; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp1132.

2. If the current nodep1094 is not an HTML elementp44 with the same tag name as that of the token, then this is a parse
errorp1081.

3. Pop elements from the stack of open elementsp1093 until an HTML elementp44 whose tag name is one of "h1", "h2",
"h3", "h4", "h5", or "h6" has been popped from the stack.

↪ An end tag whose tag name is "sarcasm"
Take a deep breath, then act as described in the "any other end tag" entry below.

↪ A start tag whose tag name is "a"
If the list of active formatting elementsp1095 contains an ap238 element between the end of the list and the last markerp1095 on the
list (or the start of the list if there is no markerp1095 on the list), then this is a parse errorp1081; run the adoption agency
algorithmp1147 for the token, then remove that element from the list of active formatting elementsp1095 and the stack of open
elementsp1093 if the adoption agency algorithmp1147 didn't already remove it (it might not have if the element is not in table
scopep1095).

Reconstruct the active formatting elementsp1096, if any.

In the non-conforming stream a<table>b</table>x, the first ap238 element would be closed
upon seeing the second one, and the "x" character would be inside a link to "b", not to "a". This is despite the fact that the
outer ap238 element is not in table scope (meaning that a regular end tag at the start of the table wouldn't close the
outer ap238 element). The result is that the two ap238 elements are indirectly nested inside each other — non-conforming
markup will often result in non-conforming DOMs when parsed.

Example

1143

Insert an HTML elementp1129 for the token. Push onto the list of active formatting elementsp1095 that element.

↪ A start tag whose tag name is one of: "b", "big", "code", "em", "font", "i", "s", "small", "strike", "strong", "tt", "u"
Reconstruct the active formatting elementsp1096, if any.

Insert an HTML elementp1129 for the token. Push onto the list of active formatting elementsp1095 that element.

↪ A start tag whose tag name is "nobr"
Reconstruct the active formatting elementsp1096, if any.

If the stack of open elementsp1093 has a nobr element in scopep1094, then this is a parse errorp1081; run the adoption agency
algorithmp1147 for the token, then once again reconstruct the active formatting elementsp1096, if any.

Insert an HTML elementp1129 for the token. Push onto the list of active formatting elementsp1095 that element.

↪ An end tag whose tag name is one of: "a", "b", "big", "code", "em", "font", "i", "nobr", "s", "small", "strike", "strong",
"tt", "u"

Run the adoption agency algorithmp1147 for the token.

↪ A start tag whose tag name is one of: "applet", "marquee", "object"
Reconstruct the active formatting elementsp1096, if any.

Insert an HTML elementp1129 for the token.

Insert a markerp1095 at the end of the list of active formatting elementsp1095.

Set the frameset-ok flagp1097 to "not ok".

↪ An end tag token whose tag name is one of: "applet", "marquee", "object"
If the stack of open elementsp1093 does not have an element in scopep1094 that is an HTML elementp44 with the same tag name as
that of the token, then this is a parse errorp1081; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp1132.

2. If the current nodep1094 is not an HTML elementp44 with the same tag name as that of the token, then this is a parse
errorp1081.

3. Pop elements from the stack of open elementsp1093 until an HTML elementp44 with the same tag name as the token has
been popped from the stack.

4. Clear the list of active formatting elements up to the last markerp1096.

↪ A start tag whose tag name is "table"
If the Documentp114 is not set to quirks mode, and the stack of open elementsp1093 has a p element in button scopep1095, then
close a p elementp1147.

Insert an HTML elementp1129 for the token.

Set the frameset-ok flagp1097 to "not ok".

Switch the insertion modep1092 to "in tablep1150".

↪ An end tag whose tag name is "br"
Parse errorp1081. Drop the attributes from the token, and act as described in the next entry; i.e. act as if this was a "br" start tag
token with no attributes, rather than the end tag token that it actually is.

↪ A start tag whose tag name is one of: "area", "br", "embed", "img", "keygen", "wbr"
Reconstruct the active formatting elementsp1096, if any.

Insert an HTML elementp1129 for the token. Immediately pop the current nodep1094 off the stack of open elementsp1093.

Acknowledge the token's self-closing flagp1097, if it is set.

1144

https://dom.spec.whatwg.org/#concept-document-quirks

Set the frameset-ok flagp1097 to "not ok".

↪ A start tag whose tag name is "input"
Reconstruct the active formatting elementsp1096, if any.

Insert an HTML elementp1129 for the token. Immediately pop the current nodep1094 off the stack of open elementsp1093.

Acknowledge the token's self-closing flagp1097, if it is set.

If the token does not have an attribute with the name "type", or if it does, but that attribute's value is not an ASCII case-
insensitive match for the string "hidden", then: set the frameset-ok flagp1097 to "not ok".

↪ A start tag whose tag name is one of: "param", "source", "track"
Insert an HTML elementp1129 for the token. Immediately pop the current nodep1094 off the stack of open elementsp1093.

Acknowledge the token's self-closing flagp1097, if it is set.

↪ A start tag whose tag name is "hr"
If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

Insert an HTML elementp1129 for the token. Immediately pop the current nodep1094 off the stack of open elementsp1093.

Acknowledge the token's self-closing flagp1097, if it is set.

Set the frameset-ok flagp1097 to "not ok".

↪ A start tag whose tag name is "image"
Parse errorp1081. Change the token's tag name to "img" and reprocess it. (Don't ask.)

↪ A start tag whose tag name is "textarea"
Run these steps:

1. Insert an HTML elementp1129 for the token.

2. If the next tokenp1126 is a U+000A LINE FEED (LF) character token, then ignore that token and move on to the next
one. (Newlines at the start of textareap548 elements are ignored as an authoring convenience.)

3. Switch the tokenizer to the RCDATA statep1098.

4. Let the original insertion modep1092 be the current insertion modep1092.

5. Set the frameset-ok flagp1097 to "not ok".

6. Switch the insertion modep1092 to "textp1148".

↪ A start tag whose tag name is "xmp"
If the stack of open elementsp1093 has a p element in button scopep1095, then close a p elementp1147.

Reconstruct the active formatting elementsp1096, if any.

Set the frameset-ok flagp1097 to "not ok".

Follow the generic raw text element parsing algorithmp1131.

↪ A start tag whose tag name is "iframe"
Set the frameset-ok flagp1097 to "not ok".

Follow the generic raw text element parsing algorithmp1131.

↪ A start tag whose tag name is "noembed"
↪ A start tag whose tag name is "noscript", if the scripting flagp1096 is enabled

Follow the generic raw text element parsing algorithmp1131.

↪ A start tag whose tag name is "select"
Reconstruct the active formatting elementsp1096, if any.

1145

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

Insert an HTML elementp1129 for the token.

Set the frameset-ok flagp1097 to "not ok".

If the insertion modep1092 is one of "in tablep1150", "in captionp1152", "in table bodyp1154", "in rowp1155", or "in cellp1156", then switch
the insertion modep1092 to "in select in tablep1158". Otherwise, switch the insertion modep1092 to "in selectp1156".

↪ A start tag whose tag name is one of: "optgroup", "option"
If the current nodep1094 is an optionp545 element, then pop the current nodep1094 off the stack of open elementsp1093.

Reconstruct the active formatting elementsp1096, if any.

Insert an HTML elementp1129 for the token.

↪ A start tag whose tag name is one of: "rb", "rtc"
If the stack of open elementsp1093 has a ruby element in scopep1094, then generate implied end tagsp1132. If the current nodep1094

is not now a rubyp252 element, this is a parse errorp1081.

Insert an HTML elementp1129 for the token.

↪ A start tag whose tag name is one of: "rp", "rt"
If the stack of open elementsp1093 has a ruby element in scopep1094, then generate implied end tagsp1132, except for rtcp1232

elements. If the current nodep1094 is not now a rtcp1232 element or a rubyp252 element, this is a parse errorp1081.

Insert an HTML elementp1129 for the token.

↪ A start tag whose tag name is "math"
Reconstruct the active formatting elementsp1096, if any.

Adjust MathML attributesp1129 for the token. (This fixes the case of MathML attributes that are not all lowercase.)

Adjust foreign attributesp1130 for the token. (This fixes the use of namespaced attributes, in particular XLink.)

Insert a foreign elementp1128 for the token, in the MathML namespace.

If the token has its self-closing flagp1097 set, pop the current nodep1094 off the stack of open elementsp1093 and acknowledge the
token's self-closing flagp1097.

↪ A start tag whose tag name is "svg"
Reconstruct the active formatting elementsp1096, if any.

Adjust SVG attributesp1129 for the token. (This fixes the case of SVG attributes that are not all lowercase.)

Adjust foreign attributesp1130 for the token. (This fixes the use of namespaced attributes, in particular XLink in SVG.)

Insert a foreign elementp1128 for the token, in the SVG namespace.

If the token has its self-closing flagp1097 set, pop the current nodep1094 off the stack of open elementsp1093 and acknowledge the
token's self-closing flagp1097.

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "frame", "head", "tbody", "td", "tfoot", "th",
"thead", "tr"

Parse errorp1081. Ignore the token.

↪ Any other start tag
Reconstruct the active formatting elementsp1096, if any.

Insert an HTML elementp1129 for the token.

This element will be an ordinaryp1094 element.
Note

1146

https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace

↪ Any other end tag
Run these steps:

1. Initialize node to be the current nodep1094 (the bottommost node of the stack).

2. Loop: If node is an HTML elementp44 with the same tag name as the token, then:

1. Generate implied end tagsp1132, except for HTML elementsp44 with the same tag name as the token.

2. If node is not the current nodep1094, then this is a parse errorp1081.

3. Pop all the nodes from the current nodep1094 up to node, including node, then stop these steps.

3. Otherwise, if node is in the specialp1094 category, then this is a parse errorp1081; ignore the token, and return.

4. Set node to the previous entry in the stack of open elementsp1093.

5. Return to the step labeled loop.

When the steps above say the user agent is to close a p element, it means that the user agent must run the following steps:

1. Generate implied end tagsp1132, except for pp211 elements.

2. If the current nodep1094 is not a pp211 element, then this is a parse errorp1081.

3. Pop elements from the stack of open elementsp1093 until a pp211 element has been popped from the stack.

The adoption agency algorithm, which takes as its only argument a token token for which the algorithm is being run, consists of the
following steps:

1. Let subject be token's tag name.

2. If the current nodep1094 is an HTML elementp44 whose tag name is subject, and the current nodep1094 is not in the list of active
formatting elementsp1095, then pop the current nodep1094 off the stack of open elementsp1093, and return.

3. Let outer loop counter be zero.

4. Outer loop: If outer loop counter is greater than or equal to eight, then return.

5. Increment outer loop counter by one.

6. Let formatting element be the last element in the list of active formatting elementsp1095 that:

◦ is between the end of the list and the last markerp1095 in the list, if any, or the start of the list otherwise, and

◦ has the tag name subject.

If there is no such element, then return and instead act as described in the "any other end tag" entry above.

7. If formatting element is not in the stack of open elementsp1093, then this is a parse errorp1081; remove the element from the
list, and return.

8. If formatting element is in the stack of open elementsp1093, but the element is not in scopep1094, then this is a parse errorp1081;
return.

9. If formatting element is not the current nodep1094, this is a parse errorp1081. (But do not return.)

10. Let furthest block be the topmost node in the stack of open elementsp1093 that is lower in the stack than formatting element,
and is an element in the specialp1094 category. There might not be one.

11. If there is no furthest block, then the UA must first pop all the nodes from the bottom of the stack of open elementsp1093, from
the current nodep1094 up to and including formatting element, then remove formatting element from the list of active
formatting elementsp1095, and finally return.

12. Let common ancestor be the element immediately above formatting element in the stack of open elementsp1093.

13. Let a bookmark note the position of formatting element in the list of active formatting elementsp1095 relative to the elements
on either side of it in the list.

14. Let node and last node be furthest block. Follow these steps:

1147

1. Let inner loop counter be zero.

2. Inner loop: Increment inner loop counter by one.

3. Let node be the element immediately above node in the stack of open elementsp1093, or if node is no longer in the
stack of open elementsp1093 (e.g. because it got removed by this algorithm), the element that was immediately
above node in the stack of open elementsp1093 before node was removed.

4. If node is formatting element, then go to the next step in the overall algorithm.

5. If inner loop counter is greater than three and node is in the list of active formatting elementsp1095, then remove
node from the list of active formatting elementsp1095.

6. If node is not in the list of active formatting elementsp1095, then remove node from the stack of open elementsp1093

and then go back to the step labeled inner loop.

7. Create an element for the tokenp1127 for which the element node was created, in the HTML namespace, with
common ancestor as the intended parent; replace the entry for node in the list of active formatting elementsp1095

with an entry for the new element, replace the entry for node in the stack of open elementsp1093 with an entry for
the new element, and let node be the new element.

8. If last node is furthest block, then move the aforementioned bookmark to be immediately after the new node in the
list of active formatting elementsp1095.

9. Insert last node into node, first removing it from its previous parent node if any.

10. Let last node be node.

11. Return to the step labeled inner loop.

15. Insert whatever last node ended up being in the previous step at the appropriate place for inserting a nodep1126, but using
common ancestor as the override target.

16. Create an element for the tokenp1127 for which formatting element was created, in the HTML namespace, with furthest block
as the intended parent.

17. Take all of the child nodes of furthest block and append them to the element created in the last step.

18. Append that new element to furthest block.

19. Remove formatting element from the list of active formatting elementsp1095, and insert the new element into the list of active
formatting elementsp1095 at the position of the aforementioned bookmark.

20. Remove formatting element from the stack of open elementsp1093, and insert the new element into the stack of open
elementsp1093 immediately below the position of furthest block in that stack.

21. Jump back to the step labeled outer loop.

When the user agent is to apply the rules for the "textp1148" insertion modep1092, the user agent must handle the token as follows:

↪ A character token
Insert the token's characterp1130.

This algorithm's name, the "adoption agency algorithm", comes from the way it causes elements to change parents, and is in
contrast with other possible algorithms for dealing with misnested content.

Note

12.2.6.4.8 The "text" insertion mode §p11

48

This can never be a U+0000 NULL character; the tokenizer converts those to U+FFFD REPLACEMENT CHARACTER
characters.

Note

1148

https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://ln.hixie.ch/?start=1037910467&count=1

↪ An end-of-file token
Parse errorp1081.

If the current nodep1094 is a scriptp614 element, mark the scriptp614 element as "already started"p619.

Pop the current nodep1094 off the stack of open elementsp1093.

Switch the insertion modep1092 to the original insertion modep1092 and reprocess the token.

↪ An end tag whose tag name is "script"
If the JavaScript execution context stack is empty, perform a microtask checkpointp949.

Let script be the current nodep1094 (which will be a scriptp614 element).

Pop the current nodep1094 off the stack of open elementsp1093.

Switch the insertion modep1092 to the original insertion modep1092.

Let the old insertion point have the same value as the current insertion pointp1092. Let the insertion pointp1092 be just before the
next input characterp1092.

Increment the parser's script nesting levelp1081 by one.

Preparep620 the script. This might cause some script to execute, which might cause new characters to be inserted into the
tokenizerp970, and might cause the tokenizer to output more tokens, resulting in a reentrant invocation of the parserp1080.

Decrement the parser's script nesting levelp1081 by one. If the parser's script nesting levelp1081 is zero, then set the parser pause
flagp1081 to false.

Let the insertion pointp1092 have the value of the old insertion point. (In other words, restore the insertion pointp1092 to its
previous value. This value might be the "undefined" value.)

At this stage, if there is a pending parsing-blocking scriptp623, then:

↪ If the script nesting levelp1081 is not zero:
Set the parser pause flagp1081 to true, and abort the processing of any nested invocations of the tokenizer, yielding
control back to the caller. (Tokenization will resume when the caller returns to the "outer" tree construction stage.)

↪ Otherwise:
Run these steps:

1. Let the script be the pending parsing-blocking scriptp623. There is no longer a pending parsing-blocking
scriptp623.

2. Block the tokenizerp1097 for this instance of the HTML parserp1079, such that the event loopp944 will not run
tasksp944 that invoke the tokenizerp1097.

3. If the parser's Documentp114 has a style sheet that is blocking scripts p178 or the script's "ready to be parser-
executed"p619 flag is not set: spin the event loopp949 until the parser's Documentp114 has no style sheet that is
blocking scriptsp178 and the script's "ready to be parser-executed"p619 flag is set.

4. If this parser has been abortedp1165 in the meantime, return.

5. Unblock the tokenizerp1097 for this instance of the HTML parserp1079, such that tasksp944 that invoke the
tokenizerp1097 can again be run.

The tree construction stage of this particular parser is being called reentrantlyp1080, say from a call to
document.write()p970.

Note

This could happen if, e.g., while the spin the event loopp949 algorithm is running, the browsing contextp811

gets closed, or the document.open()p969 method gets invoked on the Documentp114.

Note

1149

https://tc39.es/ecma262/#execution-context-stack

6. Let the insertion pointp1092 be just before the next input characterp1092.

7. Increment the parser's script nesting levelp1081 by one (it should be zero before this step, so this sets it to one).

8. Executep623 the script.

9. Decrement the parser's script nesting levelp1081 by one. If the parser's script nesting levelp1081 is zero (which it
always should be at this point), then set the parser pause flagp1081 to false.

10. Let the insertion pointp1092 be undefined again.

11. If there is once again a pending parsing-blocking scriptp623, then repeat these steps from step 1.

↪ Any other end tag
Pop the current nodep1094 off the stack of open elementsp1093.

Switch the insertion modep1092 to the original insertion modep1092.

When the user agent is to apply the rules for the "in tablep1150" insertion modep1092, the user agent must handle the token as follows:

↪ A character token, if the current nodep1094 is tablep450, tbodyp461, tfootp463, theadp462, or trp464 element
Let the pending table character tokens be an empty list of tokens.

Let the original insertion modep1092 be the current insertion modep1092.

Switch the insertion modep1092 to "in table textp1152" and reprocess the token.

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "caption"
Clear the stack back to a table contextp1152. (See below.)

Insert a markerp1095 at the end of the list of active formatting elementsp1095.

Insert an HTML elementp1129 for the token, then switch the insertion modep1092 to "in captionp1152".

↪ A start tag whose tag name is "colgroup"
Clear the stack back to a table contextp1152. (See below.)

Insert an HTML elementp1129 for the token, then switch the insertion modep1092 to "in column groupp1153".

↪ A start tag whose tag name is "col"
Clear the stack back to a table contextp1152. (See below.)

Insert an HTML elementp1129 for a "colgroup" start tag token with no attributes, then switch the insertion modep1092 to "in column
groupp1153".

Reprocess the current token.

↪ A start tag whose tag name is one of: "tbody", "tfoot", "thead"
Clear the stack back to a table contextp1152. (See below.)

Insert an HTML elementp1129 for the token, then switch the insertion modep1092 to "in table bodyp1154".

↪ A start tag whose tag name is one of: "td", "th", "tr"
Clear the stack back to a table contextp1152. (See below.)

12.2.6.4.9 The "in table" insertion mode §p11

50

1150

Insert an HTML elementp1129 for a "tbody" start tag token with no attributes, then switch the insertion modep1092 to "in table
bodyp1154".

Reprocess the current token.

↪ A start tag whose tag name is "table"
Parse errorp1081.

If the stack of open elementsp1093 does not have a table element in table scopep1095, ignore the token.

Otherwise:

Pop elements from this stack until a tablep450 element has been popped from the stack.

Reset the insertion mode appropriatelyp1092.

Reprocess the token.

↪ An end tag whose tag name is "table"
If the stack of open elementsp1093 does not have a table element in table scopep1095, this is a parse errorp1081; ignore the token.

Otherwise:

Pop elements from this stack until a tablep450 element has been popped from the stack.

Reset the insertion mode appropriatelyp1092.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "tbody", "td", "tfoot", "th",
"thead", "tr"

Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is one of: "style", "script", "template"
↪ An end tag whose tag name is "template"

Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ A start tag whose tag name is "input"
If the token does not have an attribute with the name "type", or if it does, but that attribute's value is not an ASCII case-
insensitive match for the string "hidden", then: act as described in the "anything else" entry below.

Otherwise:

Parse errorp1081.

Insert an HTML elementp1129 for the token.

Pop that inputp493 element off the stack of open elementsp1093.

Acknowledge the token's self-closing flagp1097, if it is set.

↪ A start tag whose tag name is "form"
Parse errorp1081.

If there is a templatep629 element on the stack of open elementsp1093, or if the form element pointerp1096 is not null, ignore the
token.

Otherwise:

Insert an HTML elementp1129 for the token, and set the form element pointerp1096 to point to the element created.

Pop that formp486 element off the stack of open elementsp1093.

↪ An end-of-file token
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

1151

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

↪ Anything else
Parse errorp1081. Enable foster parentingp1126, process the token using the rules forp1092 the "in bodyp1138" insertion modep1092, and
then disable foster parentingp1126.

When the steps above require the UA to clear the stack back to a table context, it means that the UA must, while the current
nodep1094 is not a tablep450, templatep629, or htmlp152 element, pop elements from the stack of open elementsp1093.

When the user agent is to apply the rules for the "in table textp1152" insertion modep1092, the user agent must handle the token as
follows:

↪ A character token that is U+0000 NULL
Parse errorp1081. Ignore the token.

↪ Any other character token
Append the character token to the pending table character tokensp1150 list.

↪ Anything else
If any of the tokens in the pending table character tokensp1150 list are character tokens that are not ASCII whitespace, then this
is a parse errorp1081: reprocess the character tokens in the pending table character tokensp1150 list using the rules given in the
"anything else" entry in the "in tablep1150" insertion mode.

Otherwise, insert the charactersp1130 given by the pending table character tokensp1150 list.

Switch the insertion modep1092 to the original insertion modep1092 and reprocess the token.

When the user agent is to apply the rules for the "in captionp1152" insertion modep1092, the user agent must handle the token as follows:

↪ An end tag whose tag name is "caption"
If the stack of open elementsp1093 does not have a caption element in table scopep1095, this is a parse errorp1081; ignore the
token. (fragment casep1177)

Otherwise:

Generate implied end tagsp1132.

Now, if the current nodep1094 is not a captionp458 element, then this is a parse errorp1081.

Pop elements from this stack until a captionp458 element has been popped from the stack.

Clear the list of active formatting elements up to the last markerp1096.

Switch the insertion modep1092 to "in tablep1150".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"
↪ An end tag whose tag name is "table"

If the stack of open elementsp1093 does not have a caption element in table scopep1095, this is a parse errorp1081; ignore the
token. (fragment casep1177)

This is the same list of elements as used in the has an element in table scopep1095 steps.
Note

The current nodep1094 being an htmlp152 element after this process is a fragment casep1177.
Note

12.2.6.4.10 The "in table text" insertion mode §p11

52

12.2.6.4.11 The "in caption" insertion mode §p11

52

1152

https://infra.spec.whatwg.org/#ascii-whitespace

Otherwise:

Generate implied end tagsp1132.

Now, if the current nodep1094 is not a captionp458 element, then this is a parse errorp1081.

Pop elements from this stack until a captionp458 element has been popped from the stack.

Clear the list of active formatting elements up to the last markerp1096.

Switch the insertion modep1092 to "in tablep1150".

Reprocess the token.

↪ An end tag whose tag name is one of: "body", "col", "colgroup", "html", "tbody", "td", "tfoot", "th", "thead", "tr"
Parse errorp1081. Ignore the token.

↪ Anything else
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

When the user agent is to apply the rules for the "in column groupp1153" insertion modep1092, the user agent must handle the token as
follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1130.

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ A start tag whose tag name is "col"
Insert an HTML elementp1129 for the token. Immediately pop the current nodep1094 off the stack of open elementsp1093.

Acknowledge the token's self-closing flagp1097, if it is set.

↪ An end tag whose tag name is "colgroup"
If the current nodep1094 is not a colgroupp459 element, then this is a parse errorp1081; ignore the token.

Otherwise, pop the current nodep1094 from the stack of open elementsp1093. Switch the insertion modep1092 to "in tablep1150".

↪ An end tag whose tag name is "col"
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "template"
↪ An end tag whose tag name is "template"

Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ An end-of-file token
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ Anything else
If the current nodep1094 is not a colgroupp459 element, then this is a parse errorp1081; ignore the token.

12.2.6.4.12 The "in column group" insertion mode §p11

53

1153

Otherwise, pop the current nodep1094 from the stack of open elementsp1093.

Switch the insertion modep1092 to "in tablep1150".

Reprocess the token.

When the user agent is to apply the rules for the "in table bodyp1154" insertion modep1092, the user agent must handle the token as
follows:

↪ A start tag whose tag name is "tr"
Clear the stack back to a table body contextp1154. (See below.)

Insert an HTML elementp1129 for the token, then switch the insertion modep1092 to "in rowp1155".

↪ A start tag whose tag name is one of: "th", "td"
Parse errorp1081.

Clear the stack back to a table body contextp1154. (See below.)

Insert an HTML elementp1129 for a "tr" start tag token with no attributes, then switch the insertion modep1092 to "in rowp1155".

Reprocess the current token.

↪ An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elementsp1093 does not have an element in table scopep1095 that is an HTML elementp44 with the same tag
name as the token, this is a parse errorp1081; ignore the token.

Otherwise:

Clear the stack back to a table body contextp1154. (See below.)

Pop the current nodep1094 from the stack of open elementsp1093. Switch the insertion modep1092 to "in tablep1150".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot", "thead"
↪ An end tag whose tag name is "table"

If the stack of open elementsp1093 does not have a tbody, thead, or tfoot element in table scopep1095, this is a parse errorp1081;
ignore the token.

Otherwise:

Clear the stack back to a table body contextp1154. (See below.)

Pop the current nodep1094 from the stack of open elementsp1093. Switch the insertion modep1092 to "in tablep1150".

Reprocess the token.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "td", "th", "tr"
Parse errorp1081. Ignore the token.

↪ Anything else
Process the token using the rules forp1092 the "in tablep1150" insertion modep1092.

When the steps above require the UA to clear the stack back to a table body context, it means that the UA must, while the
current nodep1094 is not a tbodyp461, tfootp463, theadp462, templatep629, or htmlp152 element, pop elements from the stack of open
elementsp1093.

12.2.6.4.13 The "in table body" insertion mode §p11

54

The current nodep1094 being an htmlp152 element after this process is a fragment casep1177.
Note

1154

When the user agent is to apply the rules for the "in rowp1155" insertion modep1092, the user agent must handle the token as follows:

↪ A start tag whose tag name is one of: "th", "td"
Clear the stack back to a table row contextp1155. (See below.)

Insert an HTML elementp1129 for the token, then switch the insertion modep1092 to "in cellp1156".

Insert a markerp1095 at the end of the list of active formatting elementsp1095.

↪ An end tag whose tag name is "tr"
If the stack of open elementsp1093 does not have a tr element in table scopep1095, this is a parse errorp1081; ignore the token.

Otherwise:

Clear the stack back to a table row contextp1155. (See below.)

Pop the current nodep1094 (which will be a trp464 element) from the stack of open elementsp1093. Switch the insertion modep1092 to
"in table bodyp1154".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot", "thead", "tr"
↪ An end tag whose tag name is "table"

If the stack of open elementsp1093 does not have a tr element in table scopep1095, this is a parse errorp1081; ignore the token.

Otherwise:

Clear the stack back to a table row contextp1155. (See below.)

Pop the current nodep1094 (which will be a trp464 element) from the stack of open elementsp1093. Switch the insertion modep1092 to
"in table bodyp1154".

Reprocess the token.

↪ An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elementsp1093 does not have an element in table scopep1095 that is an HTML elementp44 with the same tag
name as the token, this is a parse errorp1081; ignore the token.

If the stack of open elementsp1093 does not have a tr element in table scopep1095, ignore the token.

Otherwise:

Clear the stack back to a table row contextp1155. (See below.)

Pop the current nodep1094 (which will be a trp464 element) from the stack of open elementsp1093. Switch the insertion modep1092 to
"in table bodyp1154".

Reprocess the token.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "td", "th"
Parse errorp1081. Ignore the token.

↪ Anything else
Process the token using the rules forp1092 the "in tablep1150" insertion modep1092.

When the steps above require the UA to clear the stack back to a table row context, it means that the UA must, while the current
nodep1094 is not a trp464, templatep629, or htmlp152 element, pop elements from the stack of open elementsp1093.

12.2.6.4.14 The "in row" insertion mode §p11

55

The current nodep1094 being an htmlp152 element after this process is a fragment casep1177.
Note

1155

When the user agent is to apply the rules for the "in cellp1156" insertion modep1092, the user agent must handle the token as follows:

↪ An end tag whose tag name is one of: "td", "th"
If the stack of open elementsp1093 does not have an element in table scopep1095 that is an HTML elementp44 with the same tag
name as that of the token, then this is a parse errorp1081; ignore the token.

Otherwise:

Generate implied end tagsp1132.

Now, if the current nodep1094 is not an HTML elementp44 with the same tag name as the token, then this is a parse errorp1081.

Pop elements from the stack of open elementsp1093 stack until an HTML elementp44 with the same tag name as the token has
been popped from the stack.

Clear the list of active formatting elements up to the last markerp1096.

Switch the insertion modep1092 to "in rowp1155".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"
If the stack of open elementsp1093 does not have a td or th element in table scopep1095, then this is a parse errorp1081; ignore the
token. (fragment casep1177)

Otherwise, close the cellp1156 (see below) and reprocess the token.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html"
Parse errorp1081. Ignore the token.

↪ An end tag whose tag name is one of: "table", "tbody", "tfoot", "thead", "tr"
If the stack of open elementsp1093 does not have an element in table scopep1095 that is an HTML elementp44 with the same tag
name as that of the token, then this is a parse errorp1081; ignore the token.

Otherwise, close the cellp1156 (see below) and reprocess the token.

↪ Anything else
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

Where the steps above say to close the cell, they mean to run the following algorithm:

1. Generate implied end tagsp1132.

2. If the current nodep1094 is not now a tdp465 element or a thp467 element, then this is a parse errorp1081.

3. Pop elements from the stack of open elementsp1093 stack until a tdp465 element or a thp467 element has been popped from the
stack.

4. Clear the list of active formatting elements up to the last markerp1096.

5. Switch the insertion modep1092 to "in rowp1155".

When the user agent is to apply the rules for the "in selectp1156" insertion modep1092, the user agent must handle the token as follows:

↪ A character token that is U+0000 NULL
Parse errorp1081. Ignore the token.

12.2.6.4.15 The "in cell" insertion mode §p11

56

The stack of open elementsp1093 cannot have both a tdp465 and a thp467 element in table scopep1095 at the same time, nor can it
have neither when the close the cellp1156 algorithm is invoked.

Note

12.2.6.4.16 The "in select" insertion mode §p11

56

1156

↪ Any other character token
Insert the token's characterp1130.

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ A start tag whose tag name is "option"
If the current nodep1094 is an optionp545 element, pop that node from the stack of open elementsp1093.

Insert an HTML elementp1129 for the token.

↪ A start tag whose tag name is "optgroup"
If the current nodep1094 is an optionp545 element, pop that node from the stack of open elementsp1093.

If the current nodep1094 is an optgroupp544 element, pop that node from the stack of open elementsp1093.

Insert an HTML elementp1129 for the token.

↪ An end tag whose tag name is "optgroup"
First, if the current nodep1094 is an optionp545 element, and the node immediately before it in the stack of open elementsp1093 is
an optgroupp544 element, then pop the current nodep1094 from the stack of open elementsp1093.

If the current nodep1094 is an optgroupp544 element, then pop that node from the stack of open elementsp1093. Otherwise, this is a
parse errorp1081; ignore the token.

↪ An end tag whose tag name is "option"
If the current nodep1094 is an optionp545 element, then pop that node from the stack of open elementsp1093. Otherwise, this is a
parse errorp1081; ignore the token.

↪ An end tag whose tag name is "select"
If the stack of open elementsp1093 does not have a select element in select scopep1095, this is a parse errorp1081; ignore the
token. (fragment casep1177)

Otherwise:

Pop elements from the stack of open elementsp1093 until a selectp537 element has been popped from the stack.

Reset the insertion mode appropriatelyp1092.

↪ A start tag whose tag name is "select"
Parse errorp1081.

If the stack of open elementsp1093 does not have a select element in select scopep1095, ignore the token. (fragment casep1177)

Otherwise:

Pop elements from the stack of open elementsp1093 until a selectp537 element has been popped from the stack.

Reset the insertion mode appropriatelyp1092.

↪ A start tag whose tag name is one of: "input", "keygen", "textarea"
Parse errorp1081.

It just gets treated like an end tag.
Note

1157

If the stack of open elementsp1093 does not have a select element in select scopep1095, ignore the token. (fragment casep1177)

Otherwise:

Pop elements from the stack of open elementsp1093 until a selectp537 element has been popped from the stack.

Reset the insertion mode appropriatelyp1092.

Reprocess the token.

↪ A start tag whose tag name is one of: "script", "template"
↪ An end tag whose tag name is "template"

Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ An end-of-file token
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ Anything else
Parse errorp1081. Ignore the token.

When the user agent is to apply the rules for the "in select in tablep1158" insertion modep1092, the user agent must handle the token as
follows:

↪ A start tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead", "tr", "td", "th"
Parse errorp1081.

Pop elements from the stack of open elementsp1093 until a selectp537 element has been popped from the stack.

Reset the insertion mode appropriatelyp1092.

Reprocess the token.

↪ An end tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead", "tr", "td", "th"
Parse errorp1081.

If the stack of open elementsp1093 does not have an element in table scopep1095 that is an HTML elementp44 with the same tag
name as that of the token, then ignore the token.

Otherwise:

Pop elements from the stack of open elementsp1093 until a selectp537 element has been popped from the stack.

Reset the insertion mode appropriatelyp1092.

Reprocess the token.

↪ Anything else
Process the token using the rules forp1092 the "in selectp1156" insertion modep1092.

When the user agent is to apply the rules for the "in templatep1158" insertion modep1092, the user agent must handle the token as
follows:

↪ A character token
↪ A comment token
↪ A DOCTYPE token

Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

12.2.6.4.17 The "in select in table" insertion mode §p11

58

12.2.6.4.18 The "in template" insertion mode §p11

58

1158

↪ A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style",
"template", "title"

↪ An end tag whose tag name is "template"
Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ A start tag whose tag name is one of: "caption", "colgroup", "tbody", "tfoot", "thead"
Pop the current template insertion modep1092 off the stack of template insertion modesp1092.

Push "in tablep1150" onto the stack of template insertion modesp1092 so that it is the new current template insertion modep1092.

Switch the insertion modep1092 to "in tablep1150", and reprocess the token.

↪ A start tag whose tag name is "col"
Pop the current template insertion modep1092 off the stack of template insertion modesp1092.

Push "in column groupp1153" onto the stack of template insertion modesp1092 so that it is the new current template insertion
modep1092.

Switch the insertion modep1092 to "in column groupp1153", and reprocess the token.

↪ A start tag whose tag name is "tr"
Pop the current template insertion modep1092 off the stack of template insertion modesp1092.

Push "in table bodyp1154" onto the stack of template insertion modesp1092 so that it is the new current template insertion
modep1092.

Switch the insertion modep1092 to "in table bodyp1154", and reprocess the token.

↪ A start tag whose tag name is one of: "td", "th"
Pop the current template insertion modep1092 off the stack of template insertion modesp1092.

Push "in rowp1155" onto the stack of template insertion modesp1092 so that it is the new current template insertion modep1092.

Switch the insertion modep1092 to "in rowp1155", and reprocess the token.

↪ Any other start tag
Pop the current template insertion modep1092 off the stack of template insertion modesp1092.

Push "in bodyp1138" onto the stack of template insertion modesp1092 so that it is the new current template insertion modep1092.

Switch the insertion modep1092 to "in bodyp1138", and reprocess the token.

↪ Any other end tag
Parse errorp1081. Ignore the token.

↪ An end-of-file token
If there is no templatep629 element on the stack of open elementsp1093, then stop parsingp1165. (fragment casep1177)

Otherwise, this is a parse errorp1081.

Pop elements from the stack of open elementsp1093 until a templatep629 element has been popped from the stack.

Clear the list of active formatting elements up to the last markerp1096.

Pop the current template insertion modep1092 off the stack of template insertion modesp1092.

Reset the insertion mode appropriatelyp1092.

Reprocess the token.

1159

When the user agent is to apply the rules for the "after bodyp1160" insertion modep1092, the user agent must handle the token as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ A comment token
Insert a commentp1131 as the last child of the first element in the stack of open elementsp1093 (the htmlp152 element).

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ An end tag whose tag name is "html"
If the parser was created as part of the HTML fragment parsing algorithmp1177, this is a parse errorp1081; ignore the token.
(fragment casep1177)

Otherwise, switch the insertion modep1092 to "after after bodyp1161".

↪ An end-of-file token
Stop parsingp1165.

↪ Anything else
Parse errorp1081. Switch the insertion modep1092 to "in bodyp1138" and reprocess the token.

When the user agent is to apply the rules for the "in framesetp1160" insertion modep1092, the user agent must handle the token as
follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1130.

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ A start tag whose tag name is "frameset"
Insert an HTML elementp1129 for the token.

↪ An end tag whose tag name is "frameset"
If the current nodep1094 is the root htmlp152 element, then this is a parse errorp1081; ignore the token. (fragment casep1177)

Otherwise, pop the current nodep1094 from the stack of open elementsp1093.

If the parser was not created as part of the HTML fragment parsing algorithmp1177 (fragment casep1177), and the current nodep1094

is no longer a framesetp1239 element, then switch the insertion modep1092 to "after framesetp1161".

↪ A start tag whose tag name is "frame"
Insert an HTML elementp1129 for the token. Immediately pop the current nodep1094 off the stack of open elementsp1093.

12.2.6.4.19 The "after body" insertion mode §p11

60

12.2.6.4.20 The "in frameset" insertion mode §p11

60

1160

Acknowledge the token's self-closing flagp1097, if it is set.

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ An end-of-file token
If the current nodep1094 is not the root htmlp152 element, then this is a parse errorp1081.

Stop parsingp1165.

↪ Anything else
Parse errorp1081. Ignore the token.

When the user agent is to apply the rules for the "after framesetp1161" insertion modep1092, the user agent must handle the token as
follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1130.

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ An end tag whose tag name is "html"
Switch the insertion modep1092 to "after after framesetp1162".

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ An end-of-file token
Stop parsingp1165.

↪ Anything else
Parse errorp1081. Ignore the token.

When the user agent is to apply the rules for the "after after bodyp1161" insertion modep1092, the user agent must handle the token as
follows:

↪ A comment token
Insert a commentp1131 as the last child of the Documentp114 object.

The current nodep1094 can only be the root htmlp152 element in the fragment casep1177.
Note

12.2.6.4.21 The "after frameset" insertion mode §p11

61

12.2.6.4.22 The "after after body" insertion mode §p11

61

1161

↪ A DOCTYPE token
↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED

(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE
↪ A start tag whose tag name is "html"

Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ An end-of-file token
Stop parsingp1165.

↪ Anything else
Parse errorp1081. Switch the insertion modep1092 to "in bodyp1138" and reprocess the token.

When the user agent is to apply the rules for the "after after framesetp1162" insertion modep1092, the user agent must handle the token
as follows:

↪ A comment token
Insert a commentp1131 as the last child of the Documentp114 object.

↪ A DOCTYPE token
↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED

(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE
↪ A start tag whose tag name is "html"

Process the token using the rules forp1092 the "in bodyp1138" insertion modep1092.

↪ An end-of-file token
Stop parsingp1165.

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp1092 the "in headp1135" insertion modep1092.

↪ Anything else
Parse errorp1081. Ignore the token.

When the user agent is to apply the rules for parsing tokens in foreign content, the user agent must handle the token as follows:

↪ A character token that is U+0000 NULL
Parse errorp1081. Insert a U+FFFD REPLACEMENT CHARACTER characterp1130.

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the token's characterp1130.

↪ Any other character token
Insert the token's characterp1130.

Set the frameset-ok flagp1097 to "not ok".

↪ A comment token
Insert a commentp1131.

↪ A DOCTYPE token
Parse errorp1081. Ignore the token.

↪ A start tag whose tag name is one of: "b", "big", "blockquote", "body", "br", "center", "code", "dd", "div", "dl", "dt",

12.2.6.4.23 The "after after frameset" insertion mode §p11

62

12.2.6.5 The rules for parsing tokens in foreign content §p11

62

1162

"em", "embed", "h1", "h2", "h3", "h4", "h5", "h6", "head", "hr", "i", "img", "li", "listing", "menu", "meta", "nobr", "ol",
"p", "pre", "ruby", "s", "small", "span", "strong", "strike", "sub", "sup", "table", "tt", "u", "ul", "var"

↪ A start tag whose tag name is "font", if the token has any attributes named "color", "face", or "size"
Parse errorp1081.

If the parser was created as part of the HTML fragment parsing algorithmp1177, then act as described in the "any other start tag"
entry below. (fragment casep1177)

Otherwise:

Pop an element from the stack of open elementsp1093, and then keep popping more elements from the stack of open
elementsp1093 until the current nodep1094 is a MathML text integration pointp1126, an HTML integration pointp1126, or an element in
the HTML namespace.

Then, reprocess the token.

↪ Any other start tag
If the adjusted current nodep1094 is an element in the MathML namespace, adjust MathML attributesp1129 for the token. (This fixes
the case of MathML attributes that are not all lowercase.)

If the adjusted current nodep1094 is an element in the SVG namespace, and the token's tag name is one of the ones in the first
column of the following table, change the tag name to the name given in the corresponding cell in the second column. (This
fixes the case of SVG elements that are not all lowercase.)

Tag name Element name

altglyph altGlyph

altglyphdef altGlyphDef

altglyphitem altGlyphItem

animatecolor animateColor

animatemotion animateMotion

animatetransform animateTransform

clippath clipPath

feblend feBlend

fecolormatrix feColorMatrix

fecomponenttransfer feComponentTransfer

fecomposite feComposite

feconvolvematrix feConvolveMatrix

fediffuselighting feDiffuseLighting

fedisplacementmap feDisplacementMap

fedistantlight feDistantLight

fedropshadow feDropShadow

feflood feFlood

fefunca feFuncA

fefuncb feFuncB

fefuncg feFuncG

fefuncr feFuncR

fegaussianblur feGaussianBlur

feimage feImage

femerge feMerge

femergenode feMergeNode

femorphology feMorphology

feoffset feOffset

fepointlight fePointLight

fespecularlighting feSpecularLighting

fespotlight feSpotLight

fetile feTile

feturbulence feTurbulence

foreignobject foreignObject

glyphref glyphRef

1163

https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace

Tag name Element name

lineargradient linearGradient

radialgradient radialGradient

textpath textPath

If the adjusted current nodep1094 is an element in the SVG namespace, adjust SVG attributesp1129 for the token. (This fixes the
case of SVG attributes that are not all lowercase.)

Adjust foreign attributesp1130 for the token. (This fixes the use of namespaced attributes, in particular XLink in SVG.)

Insert a foreign elementp1128 for the token, in the same namespace as the adjusted current nodep1094.

If the token has its self-closing flagp1097 set, then run the appropriate steps from the following list:

↪ If the token's tag name is "script", and the new current nodep1094 is in the SVG namespace
Acknowledge the token's self-closing flagp1097, and then act as described in the steps for a "script" end tag below.

↪ Otherwise
Pop the current nodep1094 off the stack of open elementsp1093 and acknowledge the token's self-closing flagp1097.

↪ An end tag whose tag name is "script", if the current nodep1094 is an SVG script element
Pop the current nodep1094 off the stack of open elementsp1093.

Let the old insertion point have the same value as the current insertion pointp1092. Let the insertion pointp1092 be just before the
next input characterp1092.

Increment the parser's script nesting levelp1081 by one. Set the parser pause flagp1081 to true.

Process the SVG script element according to the SVG rules, if the user agent supports SVG. [SVG]p1291

Decrement the parser's script nesting levelp1081 by one. If the parser's script nesting levelp1081 is zero, then set the parser pause
flagp1081 to false.

Let the insertion pointp1092 have the value of the old insertion point. (In other words, restore the insertion pointp1092 to its
previous value. This value might be the "undefined" value.)

↪ Any other end tag
Run these steps:

1. Initialize node to be the current nodep1094 (the bottommost node of the stack).

2. If node's tag name, converted to ASCII lowercase, is not the same as the tag name of the token, then this is a parse
errorp1081.

3. Loop: If node is the topmost element in the stack of open elementsp1093, then return. (fragment casep1177)

4. If node's tag name, converted to ASCII lowercase, is the same as the tag name of the token, pop elements from the
stack of open elementsp1093 until node has been popped from the stack, and then return.

5. Set node to the previous entry in the stack of open elementsp1093.

6. If node is not an element in the HTML namespace, return to the step labeled loop.

7. Otherwise, process the token according to the rules given in the section corresponding to the current insertion
modep1092 in HTML content.

Even if this causes new characters to be inserted into the tokenizer p970, the parser will not be executed reentrantly, since
the parser pause flagp1081 is true.

Note

1164

https://infra.spec.whatwg.org/#svg-namespace
https://infra.spec.whatwg.org/#svg-namespace
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://www.w3.org/TR/SVGMobile12/script.html#ScriptContentProcessing
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#html-namespace

Once the user agent stops parsing the document, the user agent must run the following steps:

1. Set the current document readinessp117 to "interactive" and the insertion pointp1092 to undefined.

2. Pop all the nodes off the stack of open elementsp1093.

3. If the list of scripts that will execute when the document has finished parsing p622 is not empty, run these substeps:

1. Spin the event loopp949 until the first scriptp614 in the list of scripts that will execute when the document has
finished parsingp622 has its "ready to be parser-executed"p619 flag set and the parser's Documentp114 has no style
sheet that is blocking scriptsp178.

2. Executep623 the first scriptp614 in the list of scripts that will execute when the document has finished parsing p622.

3. Remove the first scriptp614 element from the list of scripts that will execute when the document has finished
parsingp622 (i.e. shift out the first entry in the list).

4. If the list of scripts that will execute when the document has finished parsing p622 is still not empty, repeat these
substeps again from substep 1.

4. Queue a global taskp945 on the DOM manipulation task sourcep952 given the Documentp114 's relevant global objectp924 to run
the following substeps:

1. Fire an event named DOMContentLoadedp1281 at the Documentp114 object, with its bubbles attribute initialized to
true.

2. Enable the client message queue of the ServiceWorkerContainer object whose associated service worker client is
the Documentp114 object's relevant settings objectp924.

5. Spin the event loopp949 until the set of scripts that will execute as soon as possiblep623 and the list of scripts that will execute
in order as soon as possiblep623 are empty.

6. Spin the event loopp949 until there is nothing that delays the load event in the Documentp114.

7. Queue a global taskp945 on the DOM manipulation task sourcep952 given the Documentp114 's relevant global objectp924 to run
the following substeps:

1. Set the current document readinessp117 to "complete".

2. Load event: If the Documentp114 object's browsing contextp811 is non-null, then fire an event named loadp1282 at the
Documentp114 object's relevant global objectp924, with legacy target override flag set.

8. If the Documentp114 object's browsing contextp811 is non-null, then queue a global taskp945 on the DOM manipulation task
sourcep952 given the Documentp114 's relevant global objectp924 to run these steps:

1. If the Documentp114 's page showingp885 flag is true, then return (i.e. don't fire the event below).

2. Set the Documentp114 's page showingp885 flag to true.

3. Fire an event named pageshowp1282 at the Documentp114 object's relevant global objectp924, using
PageTransitionEventp884, with the persistedp885 attribute initialized to false, and legacy target override flag set.

9. If the Documentp114 has any pending application cache download process tasksp906, then queuep945 each such taskp944 in the
order they were added to the list of pending application cache download process tasksp906, and then empty the list of
pending application cache download process tasksp906. The task sourcep945 for these tasksp944 is the networking task
sourcep952.

10. If the Documentp114 's print when loadedp978 flag is set, then run the printing stepsp979.

11. The Documentp114 is now ready for post-load tasks.

12. Completely finish loadingp885 the Documentp114.

When the user agent is to abort a parser, it must run the following steps:

12.2.7 The end §p11

65

✔ MDN
✔ MDN

1165

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://w3c.github.io/ServiceWorker/#dfn-client-message-queue
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

1. Throw away any pending content in the input streamp1091, and discard any future content that would have been added to it.

2. Set the current document readinessp117 to "interactive".

3. Pop all the nodes off the stack of open elementsp1093.

4. Set the current document readinessp117 to "complete".

When an application uses an HTML parserp1079 in conjunction with an XML pipeline, it is possible that the constructed DOM is not
compatible with the XML tool chain in certain subtle ways. For example, an XML toolchain might not be able to represent attributes
with the name xmlns, since they conflict with the Namespaces in XML syntax. There is also some data that the HTML parserp1079

generates that isn't included in the DOM itself. This section specifies some rules for handling these issues.

If the XML API being used doesn't support DOCTYPEs, the tool may drop DOCTYPEs altogether.

If the XML API doesn't support attributes in no namespace that are named "xmlns", attributes whose names start with "xmlns:", or
attributes in the XMLNS namespace, then the tool may drop such attributes.

The tool may annotate the output with any namespace declarations required for proper operation.

If the XML API being used restricts the allowable characters in the local names of elements and attributes, then the tool may map all
element and attribute local names that the API wouldn't support to a set of names that are allowed, by replacing any character that
isn't supported with the uppercase letter U and the six digits of the character's code point when expressed in hexadecimal, using digits
0-9 and capital letters A-F as the symbols, in increasing numeric order.

If the XML API restricts comments from having two consecutive U+002D HYPHEN-MINUS characters (--), the tool may insert a single
U+0020 SPACE character between any such offending characters.

If the XML API restricts comments from ending in a U+002D HYPHEN-MINUS character (-), the tool may insert a single U+0020 SPACE
character at the end of such comments.

If the XML API restricts allowed characters in character data, attribute values, or comments, the tool may replace any U+000C FORM
FEED (FF) character with a U+0020 SPACE character, and any other literal non-XML character with a U+FFFD REPLACEMENT
CHARACTER.

If the tool has no way to convey out-of-band information, then the tool may drop the following information:

• Whether the document is set to no-quirks mode, limited-quirks mode, or quirks mode

• The association between form controls and forms that aren't their nearest formp486 element ancestor (use of the form
element pointerp1096 in the parser)

• The template contentsp631 of any templatep629 elements.

For example, the element name foo<bar, which can be output by the HTML parserp1079, though it is neither a legal HTML element
name nor a well-formed XML element name, would be converted into fooU00003Cbar, which is a well-formed XML element name
(though it's still not legal in HTML by any means).

Example

As another example, consider the attribute xlink:href. Used on a MathML element, it becomes, after being adjustedp1130, an
attribute with a prefix "xlink" and a local name "href". However, used on an HTML element, it becomes an attribute with no prefix
and the local name "xlink:href", which is not a valid NCName, and thus might not be accepted by an XML API. It could thus get
converted, becoming "xlinkU00003Ahref".

Example

The resulting names from this conversion conveniently can't clash with any attribute generated by the HTML parserp1079, since
those are all either lowercase or those listed in the adjust foreign attributesp1130 algorithm's table.

Note

12.2.8 Coercing an HTML DOM into an infoset §p11

66

1166

https://infra.spec.whatwg.org/#xmlns-namespace
https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://dom.spec.whatwg.org/#concept-document-quirks

This section is non-normative.

This section examines some erroneous markup and discusses how the HTML parserp1079 handles these cases.

This section is non-normative.

The most-often discussed example of erroneous markup is as follows:

<p>12<i>34</i>5</p>

The parsing of this markup is straightforward up to the "3". At this point, the DOM looks like this:

Here, the stack of open elementsp1093 has five elements on it: htmlp152, bodyp178, pp211, bp273, and ip272. The list of active formatting
elementsp1095 just has two: bp273 and ip272. The insertion modep1092 is "in bodyp1138".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithmp1147" is invoked. This is a simple case, in that
the formatting element is the bp273 element, and there is no furthest block. Thus, the stack of open elementsp1093 ends up with just
three elements: htmlp152, bodyp178, and pp211, while the list of active formatting elementsp1095 has just one: ip272. The DOM tree is
unmodified at this point.

The next token is a character ("4"), triggers the reconstruction of the active formatting elementsp1096, in this case just the ip272

element. A new ip272 element is thus created for the "4" Text node. After the end tag token for the "i" is also received, and the "5"
Text node is inserted, the DOM looks as follows:

The mutations allowed by this section apply after the HTML parserp1079 's rules have been applied. For example, a <a::> start tag
will be closed by a </a::> end tag, and never by a </aU00003AU00003A> end tag, even if the user agent is using the rules above to
then generate an actual element in the DOM with the name aU00003AU00003A for that start tag.

Note

12.2.9.1 Misnested tags: <i></i> §p11

67

htmlp152

headp153

bodyp178

pp211

#text: 1
bp273

#text: 2
ip272

#text: 3

htmlp152

headp153

bodyp178

pp211

#text: 1
bp273

#text: 2
ip272

#text: 3
ip272

#text: 4
#text: 5

12.2.9 An introduction to error handling and strange cases in the parser §p11

67

1167

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

This section is non-normative.

A case similar to the previous one is the following:

1<p>23</p>

Up to the "2" the parsing here is straightforward:

The interesting part is when the end tag token with the tag name "b" is parsed.

Before that token is seen, the stack of open elementsp1093 has four elements on it: htmlp152, bodyp178, bp273, and pp211. The list of active
formatting elementsp1095 just has the one: bp273. The insertion modep1092 is "in bodyp1138".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithmp1147" is invoked, as in the previous example.
However, in this case, there is a furthest block, namely the pp211 element. Thus, this time the adoption agency algorithm isn't skipped
over.

The common ancestor is the bodyp178 element. A conceptual "bookmark" marks the position of the bp273 in the list of active formatting
elementsp1095, but since that list has only one element in it, the bookmark won't have much effect.

As the algorithm progresses, node ends up set to the formatting element (bp273), and last node ends up set to the furthest block (pp211).

The last node gets appended (moved) to the common ancestor, so that the DOM looks like:

A new bp273 element is created, and the children of the pp211 element are moved to it:

Finally, the new bp273 element is appended to the pp211 element, so that the DOM looks like:

12.2.9.2 Misnested tags: <p></p> §p11

68

htmlp152

headp153

bodyp178

bp273

#text: 1
pp211

#text: 2

htmlp152

headp153

bodyp178

bp273

#text: 1
pp211

#text: 2

htmlp152

headp153

bodyp178

bp273

#text: 1
pp211

bp273

#text: 2

htmlp152

headp153

bodyp178

bp273

#text: 1
pp211

bp273

#text: 2

1168

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

The bp273 element is removed from the list of active formatting elementsp1095 and the stack of open elementsp1093, so that when the "3"
is parsed, it is appended to the pp211 element:

This section is non-normative.

Error handling in tables is, for historical reasons, especially strange. For example, consider the following markup:

<table><tr><td>aaa</td></tr>bbb</table>ccc

The highlighted bp273 element start tag is not allowed directly inside a table like that, and the parser handles this case by placing the
element before the table. (This is called foster parentingp1126.) This can be seen by examining the DOM tree as it stands just after the
tablep450 element's start tag has been seen:

...and then immediately after the bp273 element start tag has been seen:

At this point, the stack of open elementsp1093 has on it the elements htmlp152, bodyp178, tablep450, and bp273 (in that order, despite the
resulting DOM tree); the list of active formatting elementsp1095 just has the bp273 element in it; and the insertion modep1092 is "in
tablep1150".

The trp464 start tag causes the bp273 element to be popped off the stack and a tbodyp461 start tag to be implied; the tbodyp461 and trp464

elements are then handled in a rather straight-forward manner, taking the parser through the "in table bodyp1154" and "in rowp1155"
insertion modes, after which the DOM looks as follows:

Here, the stack of open elementsp1093 has on it the elements htmlp152, bodyp178, tablep450, tbodyp461, and trp464; the list of active
formatting elementsp1095 still has the bp273 element in it; and the insertion modep1092 is "in rowp1155".

The tdp465 element start tag token, after putting a tdp465 element on the tree, puts a markerp1095 on the list of active formatting
elementsp1095 (it also switches to the "in cellp1156" insertion modep1092).

htmlp152

headp153

bodyp178

bp273

#text: 1
pp211

bp273

#text: 2
#text: 3

12.2.9.3 Unexpected markup in tables §p11

69

htmlp152

headp153

bodyp178

tablep450

htmlp152

headp153

bodyp178

bp273

tablep450

htmlp152

headp153

bodyp178

bp273

tablep450

tbodyp461

trp464

htmlp152

1169

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

The markerp1095 means that when the "aaa" character tokens are seen, no bp273 element is created to hold the resulting Text node:

The end tags are handled in a straight-forward manner; after handling them, the stack of open elementsp1093 has on it the elements
htmlp152, bodyp178, tablep450, and tbodyp461; the list of active formatting elementsp1095 still has the bp273 element in it (the markerp1095

having been removed by the "td" end tag token); and the insertion modep1092 is "in table bodyp1154".

Thus it is that the "bbb" character tokens are found. These trigger the "in table textp1152" insertion mode to be used (with the original
insertion modep1092 set to "in table bodyp1154"). The character tokens are collected, and when the next token (the tablep450 element end
tag) is seen, they are processed as a group. Since they are not all spaces, they are handled as per the "anything else" rules in the "in
tablep1150" insertion mode, which defer to the "in bodyp1138" insertion mode but with foster parentingp1126.

When the active formatting elements are reconstructedp1096, a bp273 element is created and foster parentedp1126, and then the "bbb"
Text node is appended to it:

The stack of open elementsp1093 has on it the elements htmlp152, bodyp178, tablep450, tbodyp461, and the new bp273 (again, note that this
doesn't match the resulting tree!); the list of active formatting elementsp1095 has the new bp273 element in it; and the insertion
modep1092 is still "in table bodyp1154".

Had the character tokens been only ASCII whitespace instead of "bbb", then that ASCII whitespace would just be appended to the
tbodyp461 element.

Finally, the tablep450 is closed by a "table" end tag. This pops all the nodes from the stack of open elementsp1093 up to and including
the tablep450 element, but it doesn't affect the list of active formatting elementsp1095, so the "ccc" character tokens after the table
result in yet another bp273 element being created, this time after the table:

headp153

bodyp178

bp273

tablep450

tbodyp461

trp464

tdp465

htmlp152

headp153

bodyp178

bp273

tablep450

tbodyp461

trp464

tdp465

#text: aaa

htmlp152

headp153

bodyp178

bp273

bp273

#text: bbb
tablep450

tbodyp461

trp464

tdp465

#text: aaa

htmlp152

headp153

bodyp178

bp273

bp273

#text: bbb
tablep450

tbodyp461

1170

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-text

This section is non-normative.

Consider the following markup, which for this example we will assume is the document with URL https://example.com/inner, being
rendered as the content of an iframep361 in another document with the URL https://example.com/outer:

<div id=a>
<script>
var div = document.getElementById('a');
parent.document.body.appendChild(div);

</script>
<script>
alert(document.URL);

</script>
</div>
<script>
alert(document.URL);

</script>

Up to the first "script" end tag, before the script is parsed, the result is relatively straightforward:

After the script is parsed, though, the divp237 element and its child scriptp614 element are gone:

They are, at this point, in the Documentp114 of the aforementioned outer browsing contextp811. However, the stack of open elementsp1093

still contains the divp237 element.

Thus, when the second scriptp614 element is parsed, it is inserted into the outer Documentp114 object.

Those parsed into different Documentp114s than the one the parser was created for do not execute, so the first alert does not show.

Once the divp237 element's end tag is parsed, the divp237 element is popped off the stack, and so the next scriptp614 element is in the
inner Documentp114:

This script does execute, resulting in an alert that says "https://example.com/inner".

trp464

tdp465

#text: aaa
bp273

#text: ccc

12.2.9.4 Scripts that modify the page as it is being parsed §p11

71

htmlp152

headp153

bodyp178

divp237 idp137="a"
#text:
scriptp614

#text: var div = document.getElementById('a'); ⏎ parent.document.body.appendChild(div);

htmlp152

headp153

bodyp178

htmlp152

headp153

bodyp178

scriptp614

#text: alert(document.URL);

1171

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

This section is non-normative.

Elaborating on the example in the previous section, consider the case where the second scriptp614 element is an external script (i.e.
one with a srcp615 attribute). Since the element was not in the parser's Documentp114 when it was created, that external script is not
even downloaded.

In a case where a scriptp614 element with a srcp615 attribute is parsed normally into its parser's Documentp114, but while the external
script is being downloaded, the element is moved to another document, the script continues to download, but does not execute.

This section is non-normative.

The following markup shows how nested formatting elements (such as bp273) get collected and continue to be applied even as the
elements they are contained in are closed, but that excessive duplicates are thrown away.

<!DOCTYPE html>
<p><b class=x><b class=x><b class=x><b class=x>X
<p>X
<p><b class=x>X
<p>X

The resulting DOM tree is as follows:

12.2.9.5 The execution of scripts that are moving across multiple documents §p11

72

In general, moving scriptp614 elements between Documentp114s is considered a bad practice.
Note

12.2.9.6 Unclosed formatting elements §p11

72

DOCTYPE: html
htmlp152

headp153

bodyp178

pp211

bp273 classp137="x"
bp273 classp137="x"
bp273

bp273 classp137="x"
bp273 classp137="x"
bp273

#text: X⏎
pp211

bp273 classp137="x"
bp273

bp273 classp137="x"
bp273 classp137="x"
bp273

#text: X⏎
pp211

bp273 classp137="x"
bp273

bp273 classp137="x"
bp273 classp137="x"
bp273

bp273

bp273 classp137="x"
bp273

#text: X⏎
pp211

#text: X⏎

1172

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

Note how the second pp211 element in the markup has no explicit bp273 elements, but in the resulting DOM, up to three of each kind of
formatting element (in this case three bp273 elements with the class attribute, and two unadorned bp273 elements) get reconstructed
before the element's "X".

Also note how this means that in the final paragraph only six bp273 end tags are needed to completely clear the list of active formatting
elementsp1095, even though nine bp273 start tags have been seen up to this point.

For the purposes of the following algorithm, an element serializes as void if its element type is one of the void elementsp1068, or is
basefontp1233, bgsoundp1232, framep1240, or keygenp1232.

The following steps form the HTML fragment serialization algorithm. The algorithm takes as input a DOM Element, Documentp114,
or DocumentFragment referred to as the node, and returns a string.

1. If the node serializes as voidp1173, then return the empty string.

2. Let s be a string, and initialize it to the empty string.

3. If the node is a templatep629 element, then let the node instead be the templatep629 element's template contentsp631 (a
DocumentFragment node).

4. For each child node of the node, in tree order, run the following steps:

1. Let current node be the child node being processed.

2. Append the appropriate string from the following list to s:

↪ If current node is an Element
If current node is an element in the HTML namespace, the MathML namespace, or the SVG namespace, then
let tagname be current node's local name. Otherwise, let tagname be current node's qualified name.

Append a U+003C LESS-THAN SIGN character (<), followed by tagname.

If current node's is value is not null, and the element does not have an isp703 attribute in its attribute list,
then append the string " is="", followed by current node's is value escaped as described belowp1177 in
attribute mode, followed by a U+0022 QUOTATION MARK character (").

For each attribute that the element has, append a U+0020 SPACE character, the attribute's serialized name
as described belowp1173, a U+003D EQUALS SIGN character (=), a U+0022 QUOTATION MARK character ("),
the attribute's value, escaped as described belowp1177 in attribute mode, and a second U+0022 QUOTATION
MARK character (").

An attribute's serialized name for the purposes of the previous paragraph must be determined as
follows:

↪ If the attribute has no namespace
The attribute's serialized name is the attribute's local name.

12.3 Serializing HTML fragments §p11

73

This algorithm serializes the children of the node being serialized, not the node itself.
Note

For HTML elementsp44 created by the HTML parserp1079 or createElement(), tagname will be lowercase.
Note

For attributes on HTML elementsp44 set by the HTML parserp1079 or by setAttribute(), the local
name will be lowercase.

Note

1173

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#dom-element-setAttribute

↪ If the attribute is in the XML namespace
The attribute's serialized name is the string "xml:" followed by the attribute's local name.

↪ If the attribute is in the XMLNS namespace and the attribute's local name is xmlns
The attribute's serialized name is the string "xmlns".

↪ If the attribute is in the XMLNS namespace and the attribute's local name is not xmlns
The attribute's serialized name is the string "xmlns:" followed by the attribute's local name.

↪ If the attribute is in the XLink namespace
The attribute's serialized name is the string "xlink:" followed by the attribute's local name.

↪ If the attribute is in some other namespace
The attribute's serialized name is the attribute's qualified name.

While the exact order of attributes is implementation-defined, and may depend on factors such as the order
that the attributes were given in the original markup, the sort order must be stable, such that consecutive
invocations of this algorithm serialize an element's attributes in the same order.

Append a U+003E GREATER-THAN SIGN character (>).

If current node serializes as voidp1173, then continue on to the next child node at this point.

Append the value of running the HTML fragment serialization algorithmp1173 on the current node element
(thus recursing into this algorithm for that element), followed by a U+003C LESS-THAN SIGN character (<),
a U+002F SOLIDUS character (/), tagname again, and finally a U+003E GREATER-THAN SIGN character (>).

↪ If current node is a Text node
If the parent of current node is a stylep174, scriptp614, xmpp1233, iframep361, noembedp1232, noframesp1232, or
plaintextp1232 element, or if the parent of current node is a noscriptp627 element and scripting is
enabledp924 for the node, then append the value of current node's data IDL attribute literally.

Otherwise, append the value of current node's data IDL attribute, escaped as described belowp1177.

↪ If current node is a Comment
Append the literal string "<!--" (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D HYPHEN-
MINUS, U+002D HYPHEN-MINUS), followed by the value of current node's data IDL attribute, followed by the
literal string "-->" (U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN).

↪ If current node is a ProcessingInstruction
Append the literal string "<?" (U+003C LESS-THAN SIGN, U+003F QUESTION MARK), followed by the value
of current node's target IDL attribute, followed by a single U+0020 SPACE character, followed by the value
of current node's data IDL attribute, followed by a single U+003E GREATER-THAN SIGN character (>).

↪ If current node is a DocumentType
Append the literal string "<!DOCTYPE" (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+0044
LATIN CAPITAL LETTER D, U+004F LATIN CAPITAL LETTER O, U+0043 LATIN CAPITAL LETTER C, U+0054
LATIN CAPITAL LETTER T, U+0059 LATIN CAPITAL LETTER Y, U+0050 LATIN CAPITAL LETTER P, U+0045 LATIN
CAPITAL LETTER E), followed by a space (U+0020 SPACE), followed by the value of current node's name IDL
attribute, followed by the literal string ">" (U+003E GREATER-THAN SIGN).

5. Return s.

It is possible that the output of this algorithm, if parsed with an HTML parserp1079, will not return the original tree
structure. Tree structures that do not roundtrip a serialize and reparse step can also be produced by the HTML
parserp1079 itself, although such cases are typically non-conforming.

⚠Warning!

For instance, if a textareap548 element to which a Comment node has been appended is serialized and the output is then reparsed,
the comment will end up being displayed in the text control. Similarly, if, as a result of DOM manipulation, an element contains a
comment that contains the literal string "-->", then when the result of serializing the element is parsed, the comment will be

Example

1174

https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#implementation-defined

truncated at that point and the rest of the comment will be interpreted as markup. More examples would be making a scriptp614

element contain a Text node with the text string "</script>", or having a pp211 element that contains a ulp222 element (as the
ulp222 element's start tagp1069 would imply the end tag for the pp211).

This can enable cross-site scripting attacks. An example of this would be a page that lets the user enter some font family names
that are then inserted into a CSS stylep174 block via the DOM and which then uses the innerHTML IDL attribute to get the HTML
serialization of that stylep174 element: if the user enters "</style><script>attack</script>" as a font family name, innerHTML
will return markup that, if parsed in a different context, would contain a scriptp614 node, even though no scriptp614 node existed
in the original DOM.

For example, consider the following markup:

<form id="outer"><div></form><form id="inner"><input>

This will be parsed into:

The inputp493 element will be associated with the inner formp486 element. Now, if this tree structure is serialized and reparsed, the
<form id="inner"> start tag will be ignored, and so the inputp493 element will be associated with the outer formp486 element
instead.

<html><head></head><body><form id="outer"><div><form
id="inner"><input></form></div></form></body></html>

htmlp152

headp153

bodyp178

formp486 idp137="outer"
divp237

formp486 idp137="inner"
inputp493

htmlp152

headp153

bodyp178

formp486 idp137="outer"
divp237

inputp493

Example

As another example, consider the following markup:

<a><table><a>

This will be parsed into:

That is, the ap238 elements are nested, because the second ap238 element is foster parentedp1126. After a serialize-reparse roundtrip,
the ap238 elements and the tablep450 element would all be siblings, because the second <a> start tag implicitly closes the first ap238

element.

<html><head></head><body><a><a><table></table></body></html>

htmlp152

headp153

bodyp178

ap238

ap238

tablep450

Example

1175

https://dom.spec.whatwg.org/#interface-text
https://w3c.github.io/DOM-Parsing/#dom-element-innerhtml
https://w3c.github.io/DOM-Parsing/#dom-element-innerhtml

For historical reasons, this algorithm does not round-trip an initial U+000A LINE FEED (LF) character in prep216, textareap548, or
listingp1232 elements, even though (in the first two cases) the markup being round-tripped can be conforming. The HTML parserp1079

will drop such a character during parsing, but this algorithm does not serialize an extra U+000A LINE FEED (LF) character.

Because of the special role of the isp703 attribute in signaling the creation of customized built-in elementsp703, in that it provides a
mechanism for parsed HTML to set the element's is value, we special-case its handling during serialization.This ensures that an
element's is value is preserved through serialize-parse roundtrips.

htmlp152

headp153

bodyp178

ap238

ap238

tablep450

For example, consider the following markup:

<pre>

Hello.</pre>

When this document is first parsed, the prep216 element's child text content starts with a single newline character. After a serialize-
reparse roundtrip, the prep216 element's child text content is simply "Hello.".

Example

When creating a customized built-in elementp703 via the parser, a developer uses the isp703 attribute directly; in such cases
serialize-parse roundtrips work fine.

<script>
window.SuperP = class extends HTMLParagraphElement {};
customElements.define("super-p", SuperP, { extends: "p" });
</script>

<div id="container"><p is="super-p">Superb!</p></div>

<script>
console.log(container.innerHTML); // <p is="super-p">
container.innerHTML = container.innerHTML;
console.log(container.innerHTML); // <p is="super-p">
console.assert(container.firstChild instanceof SuperP);
</script>

But when creating a customized built-in element via its constructorp703 or via createElement(), the isp703 attribute is not added.
Instead, the is value (which is what the custom elements machinery uses) is set without intermediating through an attribute.

<script>
container.innerHTML = "";
const p = document.createElement("p", { is: "super-p" });
container.appendChild(p);

// The is attribute is not present in the DOM:
console.assert(!p.hasAttribute("is"));

// But the element is still a super-p:
console.assert(p instanceof SuperP);
</script>

Example

1176

https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-element-is-value

Escaping a string (for the purposes of the algorithm above) consists of running the following steps:

1. Replace any occurrence of the "&" character by the string "&".

2. Replace any occurrences of the U+00A0 NO-BREAK SPACE character by the string " ".

3. If the algorithm was invoked in the attribute mode, replace any occurrences of the """ character by the string """.

4. If the algorithm was not invoked in the attribute mode, replace any occurrences of the "<" character by the string "<", and
any occurrences of the ">" character by the string ">".

The following steps form the HTML fragment parsing algorithm. The algorithm takes as input an Element node, referred to as the
context element, which gives the context for the parser, as well as input, a string to parse, and returns a list of zero or more nodes.

1. Create a new Documentp114 node, and mark it as being an HTML document.

2. If the node document of the contextp1177 element is in quirks mode, then let the Documentp114 be in quirks mode. Otherwise,
the node document of the contextp1177 element is in limited-quirks mode, then let the Documentp114 be in limited-quirks mode.
Otherwise, leave the Documentp114 in no-quirks mode.

3. Create a new HTML parserp1079, and associate it with the just created Documentp114 node.

4. Set the state of the HTML parserp1079 's tokenizationp1097 stage as follows, switching on the contextp1177 element:

↪ titlep154

↪ textareap548

Switch the tokenizer to the RCDATA statep1098.

↪ stylep174

↪ xmpp1233

↪ iframep361

↪ noembedp1232

↪ noframesp1232

Switch the tokenizer to the RAWTEXT statep1098.

↪ scriptp614

Switch the tokenizer to the script data statep1098.

↪ noscriptp627

If the scripting flagp1096 is enabled, switch the tokenizer to the RAWTEXT statep1098. Otherwise, leave the tokenizer in

To ensure that serialize-parse roundtrips still work, the serialization process explicitly writes out the element's is value as an isp703

attribute:

<script>
console.log(container.innerHTML); // <p is="super-p">
container.innerHTML = container.innerHTML;
console.log(container.innerHTML); // <p is="super-p">
console.assert(container.firstChild instanceof SuperP);
</script>

12.4 Parsing HTML fragments §p11

77

Parts marked fragment case in algorithms in the parser section are parts that only occur if the parser was created for the
purposes of this algorithm. The algorithms have been annotated with such markings for informational purposes only; such
markings have no normative weight. If it is possible for a condition described as a fragment casep1177 to occur even when the
parser wasn't created for the purposes of handling this algorithm, then that is an error in the specification.

Note

1177

https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://dom.spec.whatwg.org/#concept-document-no-quirks

the data statep1098.

↪ plaintextp1232

Switch the tokenizer to the PLAINTEXT statep1099.

↪ Any other element
Leave the tokenizer in the data statep1098.

5. Let root be a new htmlp152 element with no attributes.

6. Append the element root to the Documentp114 node created above.

7. Set up the parser's stack of open elementsp1093 so that it contains just the single element root.

8. If the contextp1177 element is a templatep629 element, push "in templatep1158" onto the stack of template insertion modesp1092

so that it is the new current template insertion modep1092.

9. Create a start tag token whose name is the local name of contextp1177 and whose attributes are the attributes of contextp1177.

Let this start tag token be the start tag token of the contextp1177 node, e.g. for the purposes of determining if it is an HTML
integration pointp1126.

10. Reset the parser's insertion mode appropriatelyp1092.

11. Set the parser's form element pointerp1096 to the nearest node to the contextp1177 element that is a formp486 element (going
straight up the ancestor chain, and including the element itself, if it is a formp486 element), if any. (If there is no such formp486

element, the form element pointerp1096 keeps its initial value, null.)

12. Place the input into the input streamp1091 for the HTML parserp1079 just created. The encoding confidencep1086 is irrelevant.

13. Start the parser and let it run until it has consumed all the characters just inserted into the input stream.

14. Return the child nodes of root, in tree order.

This table lists the character reference names that are supported by HTML, and the code points to which they refer. It is referenced by
the previous sections.

Name Character(s) Glyph

Aacute; U+000C1 Á
Aacute U+000C1 Á
aacute; U+000E1 á
aacute U+000E1 á
Abreve; U+00102 Ă
abreve; U+00103 ă
ac; U+0223E ∾
acd; U+0223F ∿
acE; U+0223E U+00333 ∾̳
Acirc; U+000C2 Â
Acirc U+000C2 Â
acirc; U+000E2 â
acirc U+000E2 â
acute; U+000B4 ´

Name Character(s) Glyph

acute U+000B4 ´
Acy; U+00410 А
acy; U+00430 а
AElig; U+000C6 Æ
AElig U+000C6 Æ
aelig; U+000E6 æ
aelig U+000E6 æ
af; U+02061
Afr; U+1D504 𝔄

afr; U+1D51E 𝔞

Agrave; U+000C0 À
Agrave U+000C0 À
agrave; U+000E0 à
agrave U+000E0 à

Name Character(s) Glyph

alefsym; U+02135 ℵ
aleph; U+02135 ℵ
Alpha; U+00391 Α
alpha; U+003B1 α
Amacr; U+00100 Ā
amacr; U+00101 ā
amalg; U+02A3F ⨿

AMP; U+00026 &
AMP U+00026 &
amp; U+00026 &
amp U+00026 &
And; U+02A53 ⩓

and; U+02227 ∧
andand; U+02A55 ⩕

For performance reasons, an implementation that does not report errors and that uses the actual state machine
described in this specification directly could use the PLAINTEXT state instead of the RAWTEXT and script data states
where those are mentioned in the list above. Except for rules regarding parse errors, they are equivalent, since there is
no appropriate end tag tokenp1097 in the fragment case, yet they involve far fewer state transitions.

Note

The parser will reference the contextp1177 element as part of that algorithm.
Note

12.5 Named character references §p11

78

It is intentional, for legacy compatibility, that many code points have multiple character reference names. For example, some
appear both with and without the trailing semicolon, or with different capitalizations.

Note

1178

https://dom.spec.whatwg.org/#concept-tree-order

Name Character(s) Glyph

andd; U+02A5C ⩜

andslope; U+02A58 ⩘

andv; U+02A5A ⩚

ang; U+02220 ∠
ange; U+029A4 ⦤

angle; U+02220 ∠
angmsd; U+02221 ∡
angmsdaa; U+029A8 ⦨

angmsdab; U+029A9 ⦩

angmsdac; U+029AA ⦪

angmsdad; U+029AB ⦫

angmsdae; U+029AC ⦬

angmsdaf; U+029AD ⦭

angmsdag; U+029AE ⦮

angmsdah; U+029AF ⦯

angrt; U+0221F ∟
angrtvb; U+022BE ⊾
angrtvbd; U+0299D ⦝

angsph; U+02222 ∢
angst; U+000C5 Å
angzarr; U+0237C ⍼

Aogon; U+00104 Ą
aogon; U+00105 ą
Aopf; U+1D538 𝔸
aopf; U+1D552 𝕒
ap; U+02248 ≈
apacir; U+02A6F ⩯

apE; U+02A70 ⩰

ape; U+0224A ≊
apid; U+0224B ≋
apos; U+00027 '
ApplyFunction; U+02061
approx; U+02248 ≈
approxeq; U+0224A ≊
Aring; U+000C5 Å
Aring U+000C5 Å
aring; U+000E5 å
aring U+000E5 å
Ascr; U+1D49C 𝒜

ascr; U+1D4B6 𝒶

Assign; U+02254 ≔
ast; U+0002A *
asymp; U+02248 ≈
asympeq; U+0224D ≍
Atilde; U+000C3 Ã
Atilde U+000C3 Ã
atilde; U+000E3 ã
atilde U+000E3 ã
Auml; U+000C4 Ä
Auml U+000C4 Ä
auml; U+000E4 ä
auml U+000E4 ä
awconint; U+02233 ∳
awint; U+02A11 ⨑
backcong; U+0224C ≌
backepsilon; U+003F6 ϶
backprime; U+02035 ‵
backsim; U+0223D ∽
backsimeq; U+022CD ⋍
Backslash; U+02216 ∖
Barv; U+02AE7 ⫧

barvee; U+022BD ⊽
Barwed; U+02306 ⌆
barwed; U+02305 ⌅
barwedge; U+02305 ⌅
bbrk; U+023B5 ⎵

bbrktbrk; U+023B6 ⎶

bcong; U+0224C ≌
Bcy; U+00411 Б
bcy; U+00431 б
bdquo; U+0201E „
becaus; U+02235 ∵
Because; U+02235 ∵
because; U+02235 ∵
bemptyv; U+029B0 ⦰

bepsi; U+003F6 ϶
bernou; U+0212C ℬ
Bernoullis; U+0212C ℬ
Beta; U+00392 Β
beta; U+003B2 β
beth; U+02136 ℶ
between; U+0226C ≬
Bfr; U+1D505 𝔅

bfr; U+1D51F 𝔟

bigcap; U+022C2 ⋂
bigcirc; U+025EF ◯
bigcup; U+022C3 ⋃
bigodot; U+02A00 ⨀
bigoplus; U+02A01 ⨁
bigotimes; U+02A02 ⨂

Name Character(s) Glyph

bigsqcup; U+02A06 ⨆

bigstar; U+02605 ★
bigtriangledown; U+025BD ▽
bigtriangleup; U+025B3 △
biguplus; U+02A04 ⨄

bigvee; U+022C1 ⋁
bigwedge; U+022C0 ⋀
bkarow; U+0290D ⤍

blacklozenge; U+029EB ⧫
blacksquare; U+025AA ▪
blacktriangle; U+025B4 ▴
blacktriangledown; U+025BE ▾
blacktriangleleft; U+025C2 ◂
blacktriangleright; U+025B8 ▸
blank; U+02423 ␣
blk12; U+02592 ▒
blk14; U+02591 ░
blk34; U+02593 ▓
block; U+02588 █
bne; U+0003D U+020E5 =⃥

bnequiv; U+02261 U+020E5 ≡⃥

bNot; U+02AED ⫭

bnot; U+02310 ⌐
Bopf; U+1D539 𝔹
bopf; U+1D553 𝕓
bot; U+022A5 ⊥
bottom; U+022A5 ⊥
bowtie; U+022C8 ⋈
boxbox; U+029C9 ⧉

boxDL; U+02557 ╗
boxDl; U+02556 ╖
boxdL; U+02555 ╕
boxdl; U+02510 ┐
boxDR; U+02554 ╔
boxDr; U+02553 ╓
boxdR; U+02552 ╒
boxdr; U+0250C ┌
boxH; U+02550 ═
boxh; U+02500 ─
boxHD; U+02566 ╦
boxHd; U+02564 ╤
boxhD; U+02565 ╥
boxhd; U+0252C ┬
boxHU; U+02569 ╩
boxHu; U+02567 ╧
boxhU; U+02568 ╨
boxhu; U+02534 ┴
boxminus; U+0229F ⊟
boxplus; U+0229E ⊞
boxtimes; U+022A0 ⊠
boxUL; U+0255D ╝
boxUl; U+0255C ╜
boxuL; U+0255B ╛
boxul; U+02518 ┘
boxUR; U+0255A ╚
boxUr; U+02559 ╙
boxuR; U+02558 ╘
boxur; U+02514 └
boxV; U+02551 ║
boxv; U+02502 │
boxVH; U+0256C ╬
boxVh; U+0256B ╫
boxvH; U+0256A ╪
boxvh; U+0253C ┼
boxVL; U+02563 ╣
boxVl; U+02562 ╢
boxvL; U+02561 ╡
boxvl; U+02524 ┤
boxVR; U+02560 ╠
boxVr; U+0255F ╟
boxvR; U+0255E ╞
boxvr; U+0251C ├
bprime; U+02035 ‵
Breve; U+002D8 ˘
breve; U+002D8 ˘
brvbar; U+000A6 ¦
brvbar U+000A6 ¦
Bscr; U+0212C ℬ
bscr; U+1D4B7 𝒷

bsemi; U+0204F ⁏
bsim; U+0223D ∽
bsime; U+022CD ⋍
bsol; U+0005C \
bsolb; U+029C5 ⧅

bsolhsub; U+027C8 ⟈

bull; U+02022 •
bullet; U+02022 •
bump; U+0224E ≎
bumpE; U+02AAE ⪮
bumpe; U+0224F ≏

Name Character(s) Glyph

Bumpeq; U+0224E ≎
bumpeq; U+0224F ≏
Cacute; U+00106 Ć
cacute; U+00107 ć
Cap; U+022D2 ⋒
cap; U+02229 ∩
capand; U+02A44 ⩄

capbrcup; U+02A49 ⩉

capcap; U+02A4B ⩋

capcup; U+02A47 ⩇

capdot; U+02A40 ⩀

CapitalDifferentialD; U+02145 ⅅ
caps; U+02229 U+0FE00 ∩︀
caret; U+02041 ⁁
caron; U+002C7 ˇ
Cayleys; U+0212D ℭ
ccaps; U+02A4D ⩍

Ccaron; U+0010C Č
ccaron; U+0010D č
Ccedil; U+000C7 Ç
Ccedil U+000C7 Ç
ccedil; U+000E7 ç
ccedil U+000E7 ç
Ccirc; U+00108 Ĉ
ccirc; U+00109 ĉ
Cconint; U+02230 ∰
ccups; U+02A4C ⩌

ccupssm; U+02A50 ⩐

Cdot; U+0010A Ċ
cdot; U+0010B ċ
cedil; U+000B8 ¸
cedil U+000B8 ¸
Cedilla; U+000B8 ¸
cemptyv; U+029B2 ⦲

cent; U+000A2 ¢
cent U+000A2 ¢
CenterDot; U+000B7 ·
centerdot; U+000B7 ·
Cfr; U+0212D ℭ
cfr; U+1D520 𝔠

CHcy; U+00427 Ч
chcy; U+00447 ч
check; U+02713 ✓
checkmark; U+02713 ✓
Chi; U+003A7 Χ
chi; U+003C7 χ
cir; U+025CB ○
circ; U+002C6 ˆ
circeq; U+02257 ≗
circlearrowleft; U+021BA ↺
circlearrowright; U+021BB ↻
circledast; U+0229B ⊛
circledcirc; U+0229A ⊚
circleddash; U+0229D ⊝
CircleDot; U+02299 ⊙
circledR; U+000AE ®
circledS; U+024C8 Ⓢ

CircleMinus; U+02296 ⊖
CirclePlus; U+02295 ⊕
CircleTimes; U+02297 ⊗
cirE; U+029C3 ⧃

cire; U+02257 ≗
cirfnint; U+02A10 ⨐
cirmid; U+02AEF ⫯

cirscir; U+029C2 ⧂

ClockwiseContourIntegral; U+02232 ∲
CloseCurlyDoubleQuote; U+0201D ”
CloseCurlyQuote; U+02019 ’
clubs; U+02663 ♣
clubsuit; U+02663 ♣
Colon; U+02237 ∷
colon; U+0003A :
Colone; U+02A74 ⩴

colone; U+02254 ≔
coloneq; U+02254 ≔
comma; U+0002C ,
commat; U+00040 @
comp; U+02201 ∁
compfn; U+02218 ∘
complement; U+02201 ∁
complexes; U+02102 ℂ
cong; U+02245 ≅
congdot; U+02A6D ⩭

Congruent; U+02261 ≡
Conint; U+0222F ∯
conint; U+0222E ∮
ContourIntegral; U+0222E ∮
Copf; U+02102 ℂ
copf; U+1D554 𝕔
coprod; U+02210 ∐

1179

Name Character(s) Glyph

Coproduct; U+02210 ∐
COPY; U+000A9 ©
COPY U+000A9 ©
copy; U+000A9 ©
copy U+000A9 ©
copysr; U+02117 ℗
CounterClockwiseContourIntegral; U+02233 ∳
crarr; U+021B5 ↵
Cross; U+02A2F ⨯
cross; U+02717 ✗
Cscr; U+1D49E 𝒞

cscr; U+1D4B8 𝒸

csub; U+02ACF ⫏

csube; U+02AD1 ⫑

csup; U+02AD0 ⫐

csupe; U+02AD2 ⫒

ctdot; U+022EF ⋯
cudarrl; U+02938 ⤸

cudarrr; U+02935 ⤵

cuepr; U+022DE ⋞
cuesc; U+022DF ⋟
cularr; U+021B6 ↶
cularrp; U+0293D ⤽

Cup; U+022D3 ⋓
cup; U+0222A ∪
cupbrcap; U+02A48 ⩈

CupCap; U+0224D ≍
cupcap; U+02A46 ⩆

cupcup; U+02A4A ⩊

cupdot; U+0228D ⊍
cupor; U+02A45 ⩅

cups; U+0222A U+0FE00 ∪︀
curarr; U+021B7 ↷
curarrm; U+0293C ⤼

curlyeqprec; U+022DE ⋞
curlyeqsucc; U+022DF ⋟
curlyvee; U+022CE ⋎
curlywedge; U+022CF ⋏
curren; U+000A4 ¤
curren U+000A4 ¤
curvearrowleft; U+021B6 ↶
curvearrowright; U+021B7 ↷
cuvee; U+022CE ⋎
cuwed; U+022CF ⋏
cwconint; U+02232 ∲
cwint; U+02231 ∱
cylcty; U+0232D ⌭

Dagger; U+02021 ‡
dagger; U+02020 †
daleth; U+02138 ℸ
Darr; U+021A1 ↡
dArr; U+021D3 ⇓
darr; U+02193 ↓
dash; U+02010 ‐
Dashv; U+02AE4 ⫤

dashv; U+022A3 ⊣
dbkarow; U+0290F ⤏

dblac; U+002DD ˝
Dcaron; U+0010E Ď
dcaron; U+0010F ď
Dcy; U+00414 Д
dcy; U+00434 д
DD; U+02145 ⅅ
dd; U+02146 ⅆ
ddagger; U+02021 ‡
ddarr; U+021CA ⇊
DDotrahd; U+02911 ⤑

ddotseq; U+02A77 ⩷

deg; U+000B0 °
deg U+000B0 °
Del; U+02207 ∇
Delta; U+00394 Δ
delta; U+003B4 δ
demptyv; U+029B1 ⦱

dfisht; U+0297F ⥿

Dfr; U+1D507 𝔇

dfr; U+1D521 𝔡

dHar; U+02965 ⥥

dharl; U+021C3 ⇃
dharr; U+021C2 ⇂
DiacriticalAcute; U+000B4 ´
DiacriticalDot; U+002D9 ˙
DiacriticalDoubleAcute; U+002DD ˝
DiacriticalGrave; U+00060 `
DiacriticalTilde; U+002DC ˜
diam; U+022C4 ⋄
Diamond; U+022C4 ⋄
diamond; U+022C4 ⋄
diamondsuit; U+02666 ♦
diams; U+02666 ♦

Name Character(s) Glyph

die; U+000A8 ¨
DifferentialD; U+02146 ⅆ
digamma; U+003DD ϝ
disin; U+022F2 ⋲
div; U+000F7 ÷
divide; U+000F7 ÷
divide U+000F7 ÷
divideontimes; U+022C7 ⋇
divonx; U+022C7 ⋇
DJcy; U+00402 Ђ
djcy; U+00452 ђ
dlcorn; U+0231E ⌞
dlcrop; U+0230D ⌍
dollar; U+00024 $
Dopf; U+1D53B 𝔻
dopf; U+1D555 𝕕
Dot; U+000A8 ¨
dot; U+002D9 ˙
DotDot; U+020DC ◌⃜
doteq; U+02250 ≐
doteqdot; U+02251 ≑
DotEqual; U+02250 ≐
dotminus; U+02238 ∸
dotplus; U+02214 ∔
dotsquare; U+022A1 ⊡
doublebarwedge; U+02306 ⌆
DoubleContourIntegral; U+0222F ∯
DoubleDot; U+000A8 ¨
DoubleDownArrow; U+021D3 ⇓
DoubleLeftArrow; U+021D0 ⇐
DoubleLeftRightArrow; U+021D4 ⇔
DoubleLeftTee; U+02AE4 ⫤

DoubleLongLeftArrow; U+027F8 ⟸
DoubleLongLeftRightArrow; U+027FA ⟺
DoubleLongRightArrow; U+027F9 ⟹
DoubleRightArrow; U+021D2 ⇒
DoubleRightTee; U+022A8 ⊨
DoubleUpArrow; U+021D1 ⇑
DoubleUpDownArrow; U+021D5 ⇕
DoubleVerticalBar; U+02225 ∥
DownArrow; U+02193 ↓
Downarrow; U+021D3 ⇓
downarrow; U+02193 ↓
DownArrowBar; U+02913 ⤓

DownArrowUpArrow; U+021F5 ⇵
DownBreve; U+00311 ◌̑
downdownarrows; U+021CA ⇊
downharpoonleft; U+021C3 ⇃
downharpoonright; U+021C2 ⇂
DownLeftRightVector; U+02950 ⥐

DownLeftTeeVector; U+0295E ⥞

DownLeftVector; U+021BD ↽
DownLeftVectorBar; U+02956 ⥖

DownRightTeeVector; U+0295F ⥟

DownRightVector; U+021C1 ⇁
DownRightVectorBar; U+02957 ⥗

DownTee; U+022A4 ⊤
DownTeeArrow; U+021A7 ↧
drbkarow; U+02910 ⤐

drcorn; U+0231F ⌟
drcrop; U+0230C ⌌
Dscr; U+1D49F 𝒟

dscr; U+1D4B9 𝒹

DScy; U+00405 Ѕ
dscy; U+00455 ѕ
dsol; U+029F6 ⧶

Dstrok; U+00110 Đ
dstrok; U+00111 đ
dtdot; U+022F1 ⋱
dtri; U+025BF ▿
dtrif; U+025BE ▾
duarr; U+021F5 ⇵
duhar; U+0296F ⥯

dwangle; U+029A6 ⦦

DZcy; U+0040F Џ
dzcy; U+0045F џ
dzigrarr; U+027FF ⟿
Eacute; U+000C9 É
Eacute U+000C9 É
eacute; U+000E9 é
eacute U+000E9 é
easter; U+02A6E ⩮

Ecaron; U+0011A Ě
ecaron; U+0011B ě
ecir; U+02256 ≖
Ecirc; U+000CA Ê
Ecirc U+000CA Ê
ecirc; U+000EA ê
ecirc U+000EA ê
ecolon; U+02255 ≕

Name Character(s) Glyph

Ecy; U+0042D Э
ecy; U+0044D э
eDDot; U+02A77 ⩷

Edot; U+00116 Ė
eDot; U+02251 ≑
edot; U+00117 ė
ee; U+02147 ⅇ
efDot; U+02252 ≒
Efr; U+1D508 𝔈

efr; U+1D522 𝔢

eg; U+02A9A ⪚
Egrave; U+000C8 È
Egrave U+000C8 È
egrave; U+000E8 è
egrave U+000E8 è
egs; U+02A96 ⪖
egsdot; U+02A98 ⪘
el; U+02A99 ⪙
Element; U+02208 ∈
elinters; U+023E7 ⏧

ell; U+02113 ℓ
els; U+02A95 ⪕
elsdot; U+02A97 ⪗
Emacr; U+00112 Ē
emacr; U+00113 ē
empty; U+02205 ∅
emptyset; U+02205 ∅
EmptySmallSquare; U+025FB ◻
emptyv; U+02205 ∅
EmptyVerySmallSquare; U+025AB ▫
emsp; U+02003
emsp13; U+02004
emsp14; U+02005
ENG; U+0014A Ŋ
eng; U+0014B ŋ
ensp; U+02002
Eogon; U+00118 Ę
eogon; U+00119 ę
Eopf; U+1D53C 𝔼
eopf; U+1D556 𝕖
epar; U+022D5 ⋕
eparsl; U+029E3 ⧣

eplus; U+02A71 ⩱

epsi; U+003B5 ε
Epsilon; U+00395 Ε
epsilon; U+003B5 ε
epsiv; U+003F5 ϵ
eqcirc; U+02256 ≖
eqcolon; U+02255 ≕
eqsim; U+02242 ≂
eqslantgtr; U+02A96 ⪖
eqslantless; U+02A95 ⪕
Equal; U+02A75 ⩵

equals; U+0003D =
EqualTilde; U+02242 ≂
equest; U+0225F ≟
Equilibrium; U+021CC ⇌
equiv; U+02261 ≡
equivDD; U+02A78 ⩸

eqvparsl; U+029E5 ⧥

erarr; U+02971 ⥱

erDot; U+02253 ≓
Escr; U+02130 ℰ
escr; U+0212F ℯ
esdot; U+02250 ≐
Esim; U+02A73 ⩳

esim; U+02242 ≂
Eta; U+00397 Η
eta; U+003B7 η
ETH; U+000D0 Ð
ETH U+000D0 Ð
eth; U+000F0 ð
eth U+000F0 ð
Euml; U+000CB Ë
Euml U+000CB Ë
euml; U+000EB ë
euml U+000EB ë
euro; U+020AC €
excl; U+00021 !
exist; U+02203 ∃
Exists; U+02203 ∃
expectation; U+02130 ℰ
ExponentialE; U+02147 ⅇ
exponentiale; U+02147 ⅇ
fallingdotseq; U+02252 ≒
Fcy; U+00424 Ф
fcy; U+00444 ф
female; U+02640 ♀
ffilig; U+0FB03 ffi
fflig; U+0FB00 ff

1180

Name Character(s) Glyph

ffllig; U+0FB04 ffl
Ffr; U+1D509 𝔉

ffr; U+1D523 𝔣

filig; U+0FB01 fi
FilledSmallSquare; U+025FC ◼
FilledVerySmallSquare; U+025AA ▪
fjlig; U+00066 U+0006A fj
flat; U+0266D ♭
fllig; U+0FB02 fl
fltns; U+025B1 ▱
fnof; U+00192 ƒ
Fopf; U+1D53D 𝔽
fopf; U+1D557 𝕗
ForAll; U+02200 ∀
forall; U+02200 ∀
fork; U+022D4 ⋔
forkv; U+02AD9 ⫙

Fouriertrf; U+02131 ℱ
fpartint; U+02A0D ⨍
frac12; U+000BD ½
frac12 U+000BD ½
frac13; U+02153 ⅓
frac14; U+000BC ¼
frac14 U+000BC ¼
frac15; U+02155 ⅕
frac16; U+02159 ⅙
frac18; U+0215B ⅛
frac23; U+02154 ⅔
frac25; U+02156 ⅖
frac34; U+000BE ¾
frac34 U+000BE ¾
frac35; U+02157 ⅗
frac38; U+0215C ⅜
frac45; U+02158 ⅘
frac56; U+0215A ⅚
frac58; U+0215D ⅝
frac78; U+0215E ⅞
frasl; U+02044 ⁄
frown; U+02322 ⌢

Fscr; U+02131 ℱ
fscr; U+1D4BB 𝒻

gacute; U+001F5 ǵ
Gamma; U+00393 Γ
gamma; U+003B3 γ
Gammad; U+003DC Ϝ
gammad; U+003DD ϝ
gap; U+02A86 ⪆
Gbreve; U+0011E Ğ
gbreve; U+0011F ğ
Gcedil; U+00122 Ģ
Gcirc; U+0011C Ĝ
gcirc; U+0011D ĝ
Gcy; U+00413 Г
gcy; U+00433 г
Gdot; U+00120 Ġ
gdot; U+00121 ġ
gE; U+02267 ≧
ge; U+02265 ≥
gEl; U+02A8C ⪌
gel; U+022DB ⋛
geq; U+02265 ≥
geqq; U+02267 ≧
geqslant; U+02A7E ⩾
ges; U+02A7E ⩾
gescc; U+02AA9 ⪩

gesdot; U+02A80 ⪀
gesdoto; U+02A82 ⪂
gesdotol; U+02A84 ⪄
gesl; U+022DB U+0FE00 ⋛︀
gesles; U+02A94 ⪔
Gfr; U+1D50A 𝔊

gfr; U+1D524 𝔤

Gg; U+022D9 ⋙
gg; U+0226B ≫
ggg; U+022D9 ⋙
gimel; U+02137 ℷ
GJcy; U+00403 Ѓ
gjcy; U+00453 ѓ
gl; U+02277 ≷
gla; U+02AA5 ⪥

glE; U+02A92 ⪒
glj; U+02AA4 ⪤

gnap; U+02A8A ⪊
gnapprox; U+02A8A ⪊
gnE; U+02269 ≩
gne; U+02A88 ⪈
gneq; U+02A88 ⪈
gneqq; U+02269 ≩
gnsim; U+022E7 ⋧
Gopf; U+1D53E 𝔾

Name Character(s) Glyph

gopf; U+1D558 𝕘
grave; U+00060 `
GreaterEqual; U+02265 ≥
GreaterEqualLess; U+022DB ⋛
GreaterFullEqual; U+02267 ≧
GreaterGreater; U+02AA2 ⪢

GreaterLess; U+02277 ≷
GreaterSlantEqual; U+02A7E ⩾
GreaterTilde; U+02273 ≳
Gscr; U+1D4A2 𝒢

gscr; U+0210A ℊ

gsim; U+02273 ≳
gsime; U+02A8E ⪎
gsiml; U+02A90 ⪐
GT; U+0003E >
GT U+0003E >
Gt; U+0226B ≫
gt; U+0003E >
gt U+0003E >
gtcc; U+02AA7 ⪧

gtcir; U+02A7A ⩺

gtdot; U+022D7 ⋗
gtlPar; U+02995 ⦕

gtquest; U+02A7C ⩼

gtrapprox; U+02A86 ⪆
gtrarr; U+02978 ⥸

gtrdot; U+022D7 ⋗
gtreqless; U+022DB ⋛
gtreqqless; U+02A8C ⪌
gtrless; U+02277 ≷
gtrsim; U+02273 ≳
gvertneqq; U+02269 U+0FE00 ≩︀
gvnE; U+02269 U+0FE00 ≩︀
Hacek; U+002C7 ˇ
hairsp; U+0200A
half; U+000BD ½
hamilt; U+0210B ℋ
HARDcy; U+0042A Ъ
hardcy; U+0044A ъ
hArr; U+021D4 ⇔
harr; U+02194 ↔
harrcir; U+02948 ⥈

harrw; U+021AD ↭
Hat; U+0005E ^
hbar; U+0210F ℏ
Hcirc; U+00124 Ĥ
hcirc; U+00125 ĥ
hearts; U+02665 ♥
heartsuit; U+02665 ♥
hellip; U+02026 …
hercon; U+022B9 ⊹
Hfr; U+0210C ℌ
hfr; U+1D525 𝔥

HilbertSpace; U+0210B ℋ
hksearow; U+02925 ⤥

hkswarow; U+02926 ⤦

hoarr; U+021FF ⇿
homtht; U+0223B ∻
hookleftarrow; U+021A9 ↩
hookrightarrow; U+021AA ↪
Hopf; U+0210D ℍ
hopf; U+1D559 𝕙
horbar; U+02015 ―
HorizontalLine; U+02500 ─
Hscr; U+0210B ℋ
hscr; U+1D4BD 𝒽

hslash; U+0210F ℏ
Hstrok; U+00126 Ħ
hstrok; U+00127 ħ
HumpDownHump; U+0224E ≎
HumpEqual; U+0224F ≏
hybull; U+02043 ⁃
hyphen; U+02010 ‐
Iacute; U+000CD Í
Iacute U+000CD Í
iacute; U+000ED í
iacute U+000ED í
ic; U+02063
Icirc; U+000CE Î
Icirc U+000CE Î
icirc; U+000EE î
icirc U+000EE î
Icy; U+00418 И
icy; U+00438 и
Idot; U+00130 İ
IEcy; U+00415 Е
iecy; U+00435 е
iexcl; U+000A1 ¡
iexcl U+000A1 ¡
iff; U+021D4 ⇔

Name Character(s) Glyph

Ifr; U+02111 ℑ
ifr; U+1D526 𝔦

Igrave; U+000CC Ì
Igrave U+000CC Ì
igrave; U+000EC ì
igrave U+000EC ì
ii; U+02148 ⅈ
iiiint; U+02A0C ⨌
iiint; U+0222D ∭
iinfin; U+029DC ⧜

iiota; U+02129 ℩
IJlig; U+00132 Ĳ
ijlig; U+00133 ĳ
Im; U+02111 ℑ
Imacr; U+0012A Ī
imacr; U+0012B ī
image; U+02111 ℑ
ImaginaryI; U+02148 ⅈ
imagline; U+02110 ℐ
imagpart; U+02111 ℑ
imath; U+00131 ı
imof; U+022B7 ⊷
imped; U+001B5 Ƶ
Implies; U+021D2 ⇒
in; U+02208 ∈
incare; U+02105 ℅
infin; U+0221E ∞
infintie; U+029DD ⧝

inodot; U+00131 ı
Int; U+0222C ∬
int; U+0222B ∫
intcal; U+022BA ⊺
integers; U+02124 ℤ
Integral; U+0222B ∫
intercal; U+022BA ⊺
Intersection; U+022C2 ⋂
intlarhk; U+02A17 ⨗
intprod; U+02A3C ⨼

InvisibleComma; U+02063
InvisibleTimes; U+02062
IOcy; U+00401 Ё
iocy; U+00451 ё
Iogon; U+0012E Į
iogon; U+0012F į
Iopf; U+1D540 𝕀
iopf; U+1D55A 𝕚
Iota; U+00399 Ι
iota; U+003B9 ι
iprod; U+02A3C ⨼

iquest; U+000BF ¿
iquest U+000BF ¿
Iscr; U+02110 ℐ
iscr; U+1D4BE 𝒾

isin; U+02208 ∈
isindot; U+022F5 ⋵
isinE; U+022F9 ⋹
isins; U+022F4 ⋴
isinsv; U+022F3 ⋳
isinv; U+02208 ∈
it; U+02062
Itilde; U+00128 Ĩ
itilde; U+00129 ĩ
Iukcy; U+00406 І
iukcy; U+00456 і
Iuml; U+000CF Ï
Iuml U+000CF Ï
iuml; U+000EF ï
iuml U+000EF ï
Jcirc; U+00134 Ĵ
jcirc; U+00135 ĵ
Jcy; U+00419 Й
jcy; U+00439 й
Jfr; U+1D50D 𝔍

jfr; U+1D527 𝔧

jmath; U+00237 ȷ
Jopf; U+1D541 𝕁
jopf; U+1D55B 𝕛
Jscr; U+1D4A5 𝒥

jscr; U+1D4BF 𝒿

Jsercy; U+00408 Ј
jsercy; U+00458 ј
Jukcy; U+00404 Є
jukcy; U+00454 є
Kappa; U+0039A Κ
kappa; U+003BA κ
kappav; U+003F0 ϰ
Kcedil; U+00136 Ķ
kcedil; U+00137 ķ
Kcy; U+0041A К
kcy; U+0043A к

1181

Name Character(s) Glyph

Kfr; U+1D50E 𝔎

kfr; U+1D528 𝔨

kgreen; U+00138 ĸ
KHcy; U+00425 Х
khcy; U+00445 х
KJcy; U+0040C Ќ
kjcy; U+0045C ќ
Kopf; U+1D542 𝕂
kopf; U+1D55C 𝕜
Kscr; U+1D4A6 𝒦

kscr; U+1D4C0 𝓀

lAarr; U+021DA ⇚
Lacute; U+00139 Ĺ
lacute; U+0013A ĺ
laemptyv; U+029B4 ⦴

lagran; U+02112 ℒ
Lambda; U+0039B Λ
lambda; U+003BB λ
Lang; U+027EA ⟪
lang; U+027E8 ⟨
langd; U+02991 ⦑

langle; U+027E8 ⟨
lap; U+02A85 ⪅
Laplacetrf; U+02112 ℒ
laquo; U+000AB «
laquo U+000AB «
Larr; U+0219E ↞
lArr; U+021D0 ⇐
larr; U+02190 ←
larrb; U+021E4 ⇤
larrbfs; U+0291F ⤟

larrfs; U+0291D ⤝

larrhk; U+021A9 ↩
larrlp; U+021AB ↫
larrpl; U+02939 ⤹

larrsim; U+02973 ⥳

larrtl; U+021A2 ↢
lat; U+02AAB ⪫

lAtail; U+0291B ⤛

latail; U+02919 ⤙

late; U+02AAD ⪭

lates; U+02AAD U+0FE00 ⪭︀
lBarr; U+0290E ⤎

lbarr; U+0290C ⤌

lbbrk; U+02772 ❲
lbrace; U+0007B {
lbrack; U+0005B [
lbrke; U+0298B ⦋

lbrksld; U+0298F ⦏

lbrkslu; U+0298D ⦍

Lcaron; U+0013D Ľ
lcaron; U+0013E ľ
Lcedil; U+0013B Ļ
lcedil; U+0013C ļ
lceil; U+02308 ⌈
lcub; U+0007B {
Lcy; U+0041B Л
lcy; U+0043B л
ldca; U+02936 ⤶

ldquo; U+0201C “
ldquor; U+0201E „
ldrdhar; U+02967 ⥧

ldrushar; U+0294B ⥋

ldsh; U+021B2 ↲
lE; U+02266 ≦
le; U+02264 ≤
LeftAngleBracket; U+027E8 ⟨
LeftArrow; U+02190 ←
Leftarrow; U+021D0 ⇐
leftarrow; U+02190 ←
LeftArrowBar; U+021E4 ⇤
LeftArrowRightArrow; U+021C6 ⇆
leftarrowtail; U+021A2 ↢
LeftCeiling; U+02308 ⌈
LeftDoubleBracket; U+027E6 ⟦
LeftDownTeeVector; U+02961 ⥡

LeftDownVector; U+021C3 ⇃
LeftDownVectorBar; U+02959 ⥙

LeftFloor; U+0230A ⌊
leftharpoondown; U+021BD ↽
leftharpoonup; U+021BC ↼
leftleftarrows; U+021C7 ⇇
LeftRightArrow; U+02194 ↔
Leftrightarrow; U+021D4 ⇔
leftrightarrow; U+02194 ↔
leftrightarrows; U+021C6 ⇆
leftrightharpoons; U+021CB ⇋
leftrightsquigarrow; U+021AD ↭
LeftRightVector; U+0294E ⥎

LeftTee; U+022A3 ⊣

Name Character(s) Glyph

LeftTeeArrow; U+021A4 ↤
LeftTeeVector; U+0295A ⥚

leftthreetimes; U+022CB ⋋
LeftTriangle; U+022B2 ⊲
LeftTriangleBar; U+029CF ⧏
LeftTriangleEqual; U+022B4 ⊴
LeftUpDownVector; U+02951 ⥑

LeftUpTeeVector; U+02960 ⥠

LeftUpVector; U+021BF ↿
LeftUpVectorBar; U+02958 ⥘

LeftVector; U+021BC ↼
LeftVectorBar; U+02952 ⥒

lEg; U+02A8B ⪋
leg; U+022DA ⋚
leq; U+02264 ≤
leqq; U+02266 ≦
leqslant; U+02A7D ⩽
les; U+02A7D ⩽
lescc; U+02AA8 ⪨

lesdot; U+02A7F ⩿
lesdoto; U+02A81 ⪁
lesdotor; U+02A83 ⪃
lesg; U+022DA U+0FE00 ⋚︀
lesges; U+02A93 ⪓
lessapprox; U+02A85 ⪅
lessdot; U+022D6 ⋖
lesseqgtr; U+022DA ⋚
lesseqqgtr; U+02A8B ⪋
LessEqualGreater; U+022DA ⋚
LessFullEqual; U+02266 ≦
LessGreater; U+02276 ≶
lessgtr; U+02276 ≶
LessLess; U+02AA1 ⪡

lesssim; U+02272 ≲
LessSlantEqual; U+02A7D ⩽
LessTilde; U+02272 ≲
lfisht; U+0297C ⥼

lfloor; U+0230A ⌊
Lfr; U+1D50F 𝔏

lfr; U+1D529 𝔩

lg; U+02276 ≶
lgE; U+02A91 ⪑
lHar; U+02962 ⥢

lhard; U+021BD ↽
lharu; U+021BC ↼
lharul; U+0296A ⥪

lhblk; U+02584 ▄
LJcy; U+00409 Љ
ljcy; U+00459 љ
Ll; U+022D8 ⋘
ll; U+0226A ≪
llarr; U+021C7 ⇇
llcorner; U+0231E ⌞
Lleftarrow; U+021DA ⇚
llhard; U+0296B ⥫

lltri; U+025FA ◺
Lmidot; U+0013F Ŀ
lmidot; U+00140 ŀ
lmoust; U+023B0 ⎰

lmoustache; U+023B0 ⎰

lnap; U+02A89 ⪉
lnapprox; U+02A89 ⪉
lnE; U+02268 ≨
lne; U+02A87 ⪇
lneq; U+02A87 ⪇
lneqq; U+02268 ≨
lnsim; U+022E6 ⋦
loang; U+027EC ⟬

loarr; U+021FD ⇽
lobrk; U+027E6 ⟦
LongLeftArrow; U+027F5 ⟵
Longleftarrow; U+027F8 ⟸
longleftarrow; U+027F5 ⟵
LongLeftRightArrow; U+027F7 ⟷
Longleftrightarrow; U+027FA ⟺
longleftrightarrow; U+027F7 ⟷
longmapsto; U+027FC ⟼
LongRightArrow; U+027F6 ⟶
Longrightarrow; U+027F9 ⟹
longrightarrow; U+027F6 ⟶
looparrowleft; U+021AB ↫
looparrowright; U+021AC ↬
lopar; U+02985 ⦅

Lopf; U+1D543 𝕃
lopf; U+1D55D 𝕝
loplus; U+02A2D ⨭

lotimes; U+02A34 ⨴

lowast; U+02217 ∗
lowbar; U+0005F _
LowerLeftArrow; U+02199 ↙

Name Character(s) Glyph

LowerRightArrow; U+02198 ↘
loz; U+025CA ◊
lozenge; U+025CA ◊
lozf; U+029EB ⧫
lpar; U+00028 (
lparlt; U+02993 ⦓

lrarr; U+021C6 ⇆
lrcorner; U+0231F ⌟
lrhar; U+021CB ⇋
lrhard; U+0296D ⥭

lrm; U+0200E
lrtri; U+022BF ⊿
lsaquo; U+02039 ‹
Lscr; U+02112 ℒ
lscr; U+1D4C1 𝓁

Lsh; U+021B0 ↰
lsh; U+021B0 ↰
lsim; U+02272 ≲
lsime; U+02A8D ⪍
lsimg; U+02A8F ⪏
lsqb; U+0005B [
lsquo; U+02018 ‘
lsquor; U+0201A ‚
Lstrok; U+00141 Ł
lstrok; U+00142 ł
LT; U+0003C <
LT U+0003C <
Lt; U+0226A ≪
lt; U+0003C <
lt U+0003C <
ltcc; U+02AA6 ⪦

ltcir; U+02A79 ⩹

ltdot; U+022D6 ⋖
lthree; U+022CB ⋋
ltimes; U+022C9 ⋉
ltlarr; U+02976 ⥶

ltquest; U+02A7B ⩻

ltri; U+025C3 ◃
ltrie; U+022B4 ⊴
ltrif; U+025C2 ◂
ltrPar; U+02996 ⦖

lurdshar; U+0294A ⥊

luruhar; U+02966 ⥦

lvertneqq; U+02268 U+0FE00 ≨︀
lvnE; U+02268 U+0FE00 ≨︀
macr; U+000AF ¯
macr U+000AF ¯
male; U+02642 ♂
malt; U+02720 ✠
maltese; U+02720 ✠
Map; U+02905 ⤅

map; U+021A6 ↦
mapsto; U+021A6 ↦
mapstodown; U+021A7 ↧
mapstoleft; U+021A4 ↤
mapstoup; U+021A5 ↥
marker; U+025AE ▮
mcomma; U+02A29 ⨩

Mcy; U+0041C М
mcy; U+0043C м
mdash; U+02014 —
mDDot; U+0223A ∺
measuredangle; U+02221 ∡
MediumSpace; U+0205F
Mellintrf; U+02133 ℳ
Mfr; U+1D510 𝔐

mfr; U+1D52A 𝔪

mho; U+02127 ℧
micro; U+000B5 µ
micro U+000B5 µ
mid; U+02223 ∣
midast; U+0002A *
midcir; U+02AF0 ⫰

middot; U+000B7 ·
middot U+000B7 ·
minus; U+02212 −
minusb; U+0229F ⊟
minusd; U+02238 ∸
minusdu; U+02A2A ⨪

MinusPlus; U+02213 ∓
mlcp; U+02ADB ⫛

mldr; U+02026 …
mnplus; U+02213 ∓
models; U+022A7 ⊧
Mopf; U+1D544 𝕄
mopf; U+1D55E 𝕞
mp; U+02213 ∓
Mscr; U+02133 ℳ
mscr; U+1D4C2 𝓂

mstpos; U+0223E ∾

1182

Name Character(s) Glyph

Mu; U+0039C Μ
mu; U+003BC μ
multimap; U+022B8 ⊸
mumap; U+022B8 ⊸
nabla; U+02207 ∇
Nacute; U+00143 Ń
nacute; U+00144 ń
nang; U+02220 U+020D2 ∠⃒

nap; U+02249 ≉
napE; U+02A70 U+00338 ⩰̸
napid; U+0224B U+00338 ≋̸
napos; U+00149 ŉ
napprox; U+02249 ≉
natur; U+0266E ♮
natural; U+0266E ♮
naturals; U+02115 ℕ
nbsp; U+000A0
nbsp U+000A0
nbump; U+0224E U+00338 ≎̸
nbumpe; U+0224F U+00338 ≏̸
ncap; U+02A43 ⩃

Ncaron; U+00147 Ň
ncaron; U+00148 ň
Ncedil; U+00145 Ņ
ncedil; U+00146 ņ
ncong; U+02247 ≇
ncongdot; U+02A6D U+00338 ⩭̸
ncup; U+02A42 ⩂

Ncy; U+0041D Н
ncy; U+0043D н
ndash; U+02013 –
ne; U+02260 ≠
nearhk; U+02924 ⤤

neArr; U+021D7 ⇗
nearr; U+02197 ↗
nearrow; U+02197 ↗
nedot; U+02250 U+00338 ≐̸
NegativeMediumSpace; U+0200B
NegativeThickSpace; U+0200B
NegativeThinSpace; U+0200B
NegativeVeryThinSpace; U+0200B
nequiv; U+02262 ≢
nesear; U+02928 ⤨

nesim; U+02242 U+00338 ≂̸
NestedGreaterGreater; U+0226B ≫
NestedLessLess; U+0226A ≪
NewLine; U+0000A ␊

nexist; U+02204 ∄
nexists; U+02204 ∄
Nfr; U+1D511 𝔑

nfr; U+1D52B 𝔫

ngE; U+02267 U+00338 ≧̸
nge; U+02271 ≱
ngeq; U+02271 ≱
ngeqq; U+02267 U+00338 ≧̸
ngeqslant; U+02A7E U+00338 ⩾̸
nges; U+02A7E U+00338 ⩾̸
nGg; U+022D9 U+00338 ⋙̸
ngsim; U+02275 ≵
nGt; U+0226B U+020D2 ≫⃒

ngt; U+0226F ≯
ngtr; U+0226F ≯
nGtv; U+0226B U+00338 ≫̸
nhArr; U+021CE ⇎
nharr; U+021AE ↮
nhpar; U+02AF2 ⫲

ni; U+0220B ∋
nis; U+022FC ⋼
nisd; U+022FA ⋺
niv; U+0220B ∋
NJcy; U+0040A Њ
njcy; U+0045A њ
nlArr; U+021CD ⇍
nlarr; U+0219A ↚
nldr; U+02025 ‥
nlE; U+02266 U+00338 ≦̸
nle; U+02270 ≰
nLeftarrow; U+021CD ⇍
nleftarrow; U+0219A ↚
nLeftrightarrow; U+021CE ⇎
nleftrightarrow; U+021AE ↮
nleq; U+02270 ≰
nleqq; U+02266 U+00338 ≦̸
nleqslant; U+02A7D U+00338 ⩽̸
nles; U+02A7D U+00338 ⩽̸
nless; U+0226E ≮
nLl; U+022D8 U+00338 ⋘̸
nlsim; U+02274 ≴
nLt; U+0226A U+020D2 ≪⃒

nlt; U+0226E ≮

Name Character(s) Glyph

nltri; U+022EA ⋪
nltrie; U+022EC ⋬
nLtv; U+0226A U+00338 ≪̸
nmid; U+02224 ∤
NoBreak; U+02060
NonBreakingSpace; U+000A0
Nopf; U+02115 ℕ
nopf; U+1D55F 𝕟
Not; U+02AEC ⫬

not; U+000AC ¬
not U+000AC ¬
NotCongruent; U+02262 ≢
NotCupCap; U+0226D ≭
NotDoubleVerticalBar; U+02226 ∦
NotElement; U+02209 ∉
NotEqual; U+02260 ≠
NotEqualTilde; U+02242 U+00338 ≂̸
NotExists; U+02204 ∄
NotGreater; U+0226F ≯
NotGreaterEqual; U+02271 ≱
NotGreaterFullEqual; U+02267 U+00338 ≧̸
NotGreaterGreater; U+0226B U+00338 ≫̸
NotGreaterLess; U+02279 ≹
NotGreaterSlantEqual; U+02A7E U+00338 ⩾̸
NotGreaterTilde; U+02275 ≵
NotHumpDownHump; U+0224E U+00338 ≎̸
NotHumpEqual; U+0224F U+00338 ≏̸
notin; U+02209 ∉
notindot; U+022F5 U+00338 ⋵̸
notinE; U+022F9 U+00338 ⋹̸
notinva; U+02209 ∉
notinvb; U+022F7 ⋷
notinvc; U+022F6 ⋶
NotLeftTriangle; U+022EA ⋪
NotLeftTriangleBar; U+029CF U+00338 ⧏̸
NotLeftTriangleEqual; U+022EC ⋬
NotLess; U+0226E ≮
NotLessEqual; U+02270 ≰
NotLessGreater; U+02278 ≸
NotLessLess; U+0226A U+00338 ≪̸
NotLessSlantEqual; U+02A7D U+00338 ⩽̸
NotLessTilde; U+02274 ≴
NotNestedGreaterGreater; U+02AA2 U+00338 ⪢̸
NotNestedLessLess; U+02AA1 U+00338 ⪡̸
notni; U+0220C ∌
notniva; U+0220C ∌
notnivb; U+022FE ⋾
notnivc; U+022FD ⋽
NotPrecedes; U+02280 ⊀
NotPrecedesEqual; U+02AAF U+00338 ⪯̸
NotPrecedesSlantEqual; U+022E0 ⋠
NotReverseElement; U+0220C ∌
NotRightTriangle; U+022EB ⋫
NotRightTriangleBar; U+029D0 U+00338 ⧐̸
NotRightTriangleEqual; U+022ED ⋭
NotSquareSubset; U+0228F U+00338 ⊏̸
NotSquareSubsetEqual; U+022E2 ⋢
NotSquareSuperset; U+02290 U+00338 ⊐̸
NotSquareSupersetEqual; U+022E3 ⋣
NotSubset; U+02282 U+020D2 ⊂⃒

NotSubsetEqual; U+02288 ⊈
NotSucceeds; U+02281 ⊁
NotSucceedsEqual; U+02AB0 U+00338 ⪰̸
NotSucceedsSlantEqual; U+022E1 ⋡
NotSucceedsTilde; U+0227F U+00338 ≿̸
NotSuperset; U+02283 U+020D2 ⊃⃒

NotSupersetEqual; U+02289 ⊉
NotTilde; U+02241 ≁
NotTildeEqual; U+02244 ≄
NotTildeFullEqual; U+02247 ≇
NotTildeTilde; U+02249 ≉
NotVerticalBar; U+02224 ∤
npar; U+02226 ∦
nparallel; U+02226 ∦
nparsl; U+02AFD U+020E5 ⫽⃥

npart; U+02202 U+00338 ∂̸
npolint; U+02A14 ⨔
npr; U+02280 ⊀
nprcue; U+022E0 ⋠
npre; U+02AAF U+00338 ⪯̸
nprec; U+02280 ⊀
npreceq; U+02AAF U+00338 ⪯̸
nrArr; U+021CF ⇏
nrarr; U+0219B ↛
nrarrc; U+02933 U+00338 ⤳̸
nrarrw; U+0219D U+00338 ↝̸
nRightarrow; U+021CF ⇏
nrightarrow; U+0219B ↛
nrtri; U+022EB ⋫
nrtrie; U+022ED ⋭
nsc; U+02281 ⊁

Name Character(s) Glyph

nsccue; U+022E1 ⋡
nsce; U+02AB0 U+00338 ⪰̸
Nscr; U+1D4A9 𝒩

nscr; U+1D4C3 𝓃

nshortmid; U+02224 ∤
nshortparallel; U+02226 ∦
nsim; U+02241 ≁
nsime; U+02244 ≄
nsimeq; U+02244 ≄
nsmid; U+02224 ∤
nspar; U+02226 ∦
nsqsube; U+022E2 ⋢
nsqsupe; U+022E3 ⋣
nsub; U+02284 ⊄
nsubE; U+02AC5 U+00338 ⫅̸
nsube; U+02288 ⊈
nsubset; U+02282 U+020D2 ⊂⃒

nsubseteq; U+02288 ⊈
nsubseteqq; U+02AC5 U+00338 ⫅̸
nsucc; U+02281 ⊁
nsucceq; U+02AB0 U+00338 ⪰̸
nsup; U+02285 ⊅
nsupE; U+02AC6 U+00338 ⫆̸
nsupe; U+02289 ⊉
nsupset; U+02283 U+020D2 ⊃⃒

nsupseteq; U+02289 ⊉
nsupseteqq; U+02AC6 U+00338 ⫆̸
ntgl; U+02279 ≹
Ntilde; U+000D1 Ñ
Ntilde U+000D1 Ñ
ntilde; U+000F1 ñ
ntilde U+000F1 ñ
ntlg; U+02278 ≸
ntriangleleft; U+022EA ⋪
ntrianglelefteq; U+022EC ⋬
ntriangleright; U+022EB ⋫
ntrianglerighteq; U+022ED ⋭
Nu; U+0039D Ν
nu; U+003BD ν
num; U+00023 #
numero; U+02116 №
numsp; U+02007  
nvap; U+0224D U+020D2 ≍⃒

nVDash; U+022AF ⊯
nVdash; U+022AE ⊮
nvDash; U+022AD ⊭
nvdash; U+022AC ⊬
nvge; U+02265 U+020D2 ≥⃒

nvgt; U+0003E U+020D2 >⃒

nvHarr; U+02904 ⤄

nvinfin; U+029DE ⧞

nvlArr; U+02902 ⤂

nvle; U+02264 U+020D2 ≤⃒

nvlt; U+0003C U+020D2 <⃒

nvltrie; U+022B4 U+020D2 ⊴⃒

nvrArr; U+02903 ⤃

nvrtrie; U+022B5 U+020D2 ⊵⃒

nvsim; U+0223C U+020D2 ∼⃒

nwarhk; U+02923 ⤣

nwArr; U+021D6 ⇖
nwarr; U+02196 ↖
nwarrow; U+02196 ↖
nwnear; U+02927 ⤧

Oacute; U+000D3 Ó
Oacute U+000D3 Ó
oacute; U+000F3 ó
oacute U+000F3 ó
oast; U+0229B ⊛
ocir; U+0229A ⊚
Ocirc; U+000D4 Ô
Ocirc U+000D4 Ô
ocirc; U+000F4 ô
ocirc U+000F4 ô
Ocy; U+0041E О
ocy; U+0043E о
odash; U+0229D ⊝
Odblac; U+00150 Ő
odblac; U+00151 ő
odiv; U+02A38 ⨸

odot; U+02299 ⊙
odsold; U+029BC ⦼

OElig; U+00152 Œ
oelig; U+00153 œ
ofcir; U+029BF ⦿

Ofr; U+1D512 𝔒

ofr; U+1D52C 𝔬

ogon; U+002DB ˛
Ograve; U+000D2 Ò
Ograve U+000D2 Ò
ograve; U+000F2 ò

1183

Name Character(s) Glyph

ograve U+000F2 ò
ogt; U+029C1 ⧁

ohbar; U+029B5 ⦵

ohm; U+003A9 Ω
oint; U+0222E ∮
olarr; U+021BA ↺
olcir; U+029BE ⦾

olcross; U+029BB ⦻

oline; U+0203E ‾
olt; U+029C0 ⧀

Omacr; U+0014C Ō
omacr; U+0014D ō
Omega; U+003A9 Ω
omega; U+003C9 ω
Omicron; U+0039F Ο
omicron; U+003BF ο
omid; U+029B6 ⦶

ominus; U+02296 ⊖
Oopf; U+1D546 𝕆
oopf; U+1D560 𝕠
opar; U+029B7 ⦷

OpenCurlyDoubleQuote; U+0201C “
OpenCurlyQuote; U+02018 ‘
operp; U+029B9 ⦹

oplus; U+02295 ⊕
Or; U+02A54 ⩔

or; U+02228 ∨
orarr; U+021BB ↻
ord; U+02A5D ⩝

order; U+02134 ℴ
orderof; U+02134 ℴ
ordf; U+000AA ª
ordf U+000AA ª
ordm; U+000BA º
ordm U+000BA º
origof; U+022B6 ⊶
oror; U+02A56 ⩖

orslope; U+02A57 ⩗

orv; U+02A5B ⩛

oS; U+024C8 Ⓢ

Oscr; U+1D4AA 𝒪

oscr; U+02134 ℴ
Oslash; U+000D8 Ø
Oslash U+000D8 Ø
oslash; U+000F8 ø
oslash U+000F8 ø
osol; U+02298 ⊘
Otilde; U+000D5 Õ
Otilde U+000D5 Õ
otilde; U+000F5 õ
otilde U+000F5 õ
Otimes; U+02A37 ⨷

otimes; U+02297 ⊗
otimesas; U+02A36 ⨶

Ouml; U+000D6 Ö
Ouml U+000D6 Ö
ouml; U+000F6 ö
ouml U+000F6 ö
ovbar; U+0233D ⌽

OverBar; U+0203E ‾
OverBrace; U+023DE ⏞

OverBracket; U+023B4 ⎴

OverParenthesis; U+023DC ⏜

par; U+02225 ∥
para; U+000B6 ¶
para U+000B6 ¶
parallel; U+02225 ∥
parsim; U+02AF3 ⫳

parsl; U+02AFD ⫽

part; U+02202 ∂
PartialD; U+02202 ∂
Pcy; U+0041F П
pcy; U+0043F п
percnt; U+00025 %
period; U+0002E .
permil; U+02030 ‰
perp; U+022A5 ⊥
pertenk; U+02031 ‱
Pfr; U+1D513 𝔓

pfr; U+1D52D 𝔭

Phi; U+003A6 Φ
phi; U+003C6 φ
phiv; U+003D5 ϕ
phmmat; U+02133 ℳ
phone; U+0260E ☎
Pi; U+003A0 Π
pi; U+003C0 π
pitchfork; U+022D4 ⋔
piv; U+003D6 ϖ
planck; U+0210F ℏ

Name Character(s) Glyph

planckh; U+0210E ℎ
plankv; U+0210F ℏ
plus; U+0002B +
plusacir; U+02A23 ⨣

plusb; U+0229E ⊞
pluscir; U+02A22 ⨢

plusdo; U+02214 ∔
plusdu; U+02A25 ⨥

pluse; U+02A72 ⩲

PlusMinus; U+000B1 ±
plusmn; U+000B1 ±
plusmn U+000B1 ±
plussim; U+02A26 ⨦

plustwo; U+02A27 ⨧

pm; U+000B1 ±
Poincareplane; U+0210C ℌ
pointint; U+02A15 ⨕
Popf; U+02119 ℙ
popf; U+1D561 𝕡
pound; U+000A3 £
pound U+000A3 £
Pr; U+02ABB ⪻

pr; U+0227A ≺
prap; U+02AB7 ⪷
prcue; U+0227C ≼
prE; U+02AB3 ⪳
pre; U+02AAF ⪯
prec; U+0227A ≺
precapprox; U+02AB7 ⪷
preccurlyeq; U+0227C ≼
Precedes; U+0227A ≺
PrecedesEqual; U+02AAF ⪯
PrecedesSlantEqual; U+0227C ≼
PrecedesTilde; U+0227E ≾
preceq; U+02AAF ⪯
precnapprox; U+02AB9 ⪹
precneqq; U+02AB5 ⪵
precnsim; U+022E8 ⋨
precsim; U+0227E ≾
Prime; U+02033 ″
prime; U+02032 ′
primes; U+02119 ℙ
prnap; U+02AB9 ⪹
prnE; U+02AB5 ⪵
prnsim; U+022E8 ⋨
prod; U+0220F ∏
Product; U+0220F ∏
profalar; U+0232E ⌮

profline; U+02312 ⌒

profsurf; U+02313 ⌓

prop; U+0221D ∝
Proportion; U+02237 ∷
Proportional; U+0221D ∝
propto; U+0221D ∝
prsim; U+0227E ≾
prurel; U+022B0 ⊰
Pscr; U+1D4AB 𝒫

pscr; U+1D4C5 𝓅

Psi; U+003A8 Ψ
psi; U+003C8 ψ
puncsp; U+02008
Qfr; U+1D514 𝔔

qfr; U+1D52E 𝔮

qint; U+02A0C ⨌
Qopf; U+0211A ℚ
qopf; U+1D562 𝕢
qprime; U+02057 ⁗
Qscr; U+1D4AC 𝒬

qscr; U+1D4C6 𝓆

quaternions; U+0210D ℍ
quatint; U+02A16 ⨖
quest; U+0003F ?
questeq; U+0225F ≟
QUOT; U+00022 "
QUOT U+00022 "
quot; U+00022 "
quot U+00022 "
rAarr; U+021DB ⇛
race; U+0223D U+00331 ∽̱
Racute; U+00154 Ŕ
racute; U+00155 ŕ
radic; U+0221A √
raemptyv; U+029B3 ⦳

Rang; U+027EB ⟫
rang; U+027E9 ⟩
rangd; U+02992 ⦒

range; U+029A5 ⦥

rangle; U+027E9 ⟩
raquo; U+000BB »
raquo U+000BB »

Name Character(s) Glyph

Rarr; U+021A0 ↠
rArr; U+021D2 ⇒
rarr; U+02192 →
rarrap; U+02975 ⥵

rarrb; U+021E5 ⇥
rarrbfs; U+02920 ⤠

rarrc; U+02933 ⤳

rarrfs; U+0291E ⤞

rarrhk; U+021AA ↪
rarrlp; U+021AC ↬
rarrpl; U+02945 ⥅

rarrsim; U+02974 ⥴

Rarrtl; U+02916 ⤖

rarrtl; U+021A3 ↣
rarrw; U+0219D ↝
rAtail; U+0291C ⤜

ratail; U+0291A ⤚

ratio; U+02236 ∶
rationals; U+0211A ℚ
RBarr; U+02910 ⤐

rBarr; U+0290F ⤏

rbarr; U+0290D ⤍

rbbrk; U+02773 ❳
rbrace; U+0007D }
rbrack; U+0005D]
rbrke; U+0298C ⦌

rbrksld; U+0298E ⦎

rbrkslu; U+02990 ⦐

Rcaron; U+00158 Ř
rcaron; U+00159 ř
Rcedil; U+00156 Ŗ
rcedil; U+00157 ŗ
rceil; U+02309 ⌉
rcub; U+0007D }
Rcy; U+00420 Р
rcy; U+00440 р
rdca; U+02937 ⤷

rdldhar; U+02969 ⥩

rdquo; U+0201D ”
rdquor; U+0201D ”
rdsh; U+021B3 ↳
Re; U+0211C ℜ
real; U+0211C ℜ
realine; U+0211B ℛ
realpart; U+0211C ℜ
reals; U+0211D ℝ
rect; U+025AD ▭
REG; U+000AE ®
REG U+000AE ®
reg; U+000AE ®
reg U+000AE ®
ReverseElement; U+0220B ∋
ReverseEquilibrium; U+021CB ⇋
ReverseUpEquilibrium; U+0296F ⥯

rfisht; U+0297D ⥽

rfloor; U+0230B ⌋
Rfr; U+0211C ℜ
rfr; U+1D52F 𝔯

rHar; U+02964 ⥤

rhard; U+021C1 ⇁
rharu; U+021C0 ⇀
rharul; U+0296C ⥬

Rho; U+003A1 Ρ
rho; U+003C1 ρ
rhov; U+003F1 ϱ
RightAngleBracket; U+027E9 ⟩
RightArrow; U+02192 →
Rightarrow; U+021D2 ⇒
rightarrow; U+02192 →
RightArrowBar; U+021E5 ⇥
RightArrowLeftArrow; U+021C4 ⇄
rightarrowtail; U+021A3 ↣
RightCeiling; U+02309 ⌉
RightDoubleBracket; U+027E7 ⟧
RightDownTeeVector; U+0295D ⥝

RightDownVector; U+021C2 ⇂
RightDownVectorBar; U+02955 ⥕

RightFloor; U+0230B ⌋
rightharpoondown; U+021C1 ⇁
rightharpoonup; U+021C0 ⇀
rightleftarrows; U+021C4 ⇄
rightleftharpoons; U+021CC ⇌
rightrightarrows; U+021C9 ⇉
rightsquigarrow; U+0219D ↝
RightTee; U+022A2 ⊢
RightTeeArrow; U+021A6 ↦
RightTeeVector; U+0295B ⥛

rightthreetimes; U+022CC ⋌
RightTriangle; U+022B3 ⊳
RightTriangleBar; U+029D0 ⧐

1184

Name Character(s) Glyph

RightTriangleEqual; U+022B5 ⊵
RightUpDownVector; U+0294F ⥏

RightUpTeeVector; U+0295C ⥜

RightUpVector; U+021BE ↾
RightUpVectorBar; U+02954 ⥔

RightVector; U+021C0 ⇀
RightVectorBar; U+02953 ⥓

ring; U+002DA ˚
risingdotseq; U+02253 ≓
rlarr; U+021C4 ⇄
rlhar; U+021CC ⇌
rlm; U+0200F
rmoust; U+023B1 ⎱

rmoustache; U+023B1 ⎱

rnmid; U+02AEE ⫮

roang; U+027ED ⟭

roarr; U+021FE ⇾
robrk; U+027E7 ⟧
ropar; U+02986 ⦆

Ropf; U+0211D ℝ
ropf; U+1D563 𝕣
roplus; U+02A2E ⨮

rotimes; U+02A35 ⨵

RoundImplies; U+02970 ⥰

rpar; U+00029)
rpargt; U+02994 ⦔

rppolint; U+02A12 ⨒
rrarr; U+021C9 ⇉
Rrightarrow; U+021DB ⇛
rsaquo; U+0203A ›
Rscr; U+0211B ℛ
rscr; U+1D4C7 𝓇

Rsh; U+021B1 ↱
rsh; U+021B1 ↱
rsqb; U+0005D]
rsquo; U+02019 ’
rsquor; U+02019 ’
rthree; U+022CC ⋌
rtimes; U+022CA ⋊
rtri; U+025B9 ▹
rtrie; U+022B5 ⊵
rtrif; U+025B8 ▸
rtriltri; U+029CE ⧎
RuleDelayed; U+029F4 ⧴

ruluhar; U+02968 ⥨

rx; U+0211E ℞
Sacute; U+0015A Ś
sacute; U+0015B ś
sbquo; U+0201A ‚
Sc; U+02ABC ⪼

sc; U+0227B ≻
scap; U+02AB8 ⪸
Scaron; U+00160 Š
scaron; U+00161 š
sccue; U+0227D ≽
scE; U+02AB4 ⪴
sce; U+02AB0 ⪰
Scedil; U+0015E Ş
scedil; U+0015F ş
Scirc; U+0015C Ŝ
scirc; U+0015D ŝ
scnap; U+02ABA ⪺
scnE; U+02AB6 ⪶
scnsim; U+022E9 ⋩
scpolint; U+02A13 ⨓
scsim; U+0227F ≿
Scy; U+00421 С
scy; U+00441 с
sdot; U+022C5 ⋅
sdotb; U+022A1 ⊡
sdote; U+02A66 ⩦

searhk; U+02925 ⤥

seArr; U+021D8 ⇘
searr; U+02198 ↘
searrow; U+02198 ↘
sect; U+000A7 §
sect U+000A7 §
semi; U+0003B ;
seswar; U+02929 ⤩

setminus; U+02216 ∖
setmn; U+02216 ∖
sext; U+02736 ✶
Sfr; U+1D516 𝔖

sfr; U+1D530 𝔰

sfrown; U+02322 ⌢

sharp; U+0266F ♯
SHCHcy; U+00429 Щ
shchcy; U+00449 щ
SHcy; U+00428 Ш
shcy; U+00448 ш

Name Character(s) Glyph

ShortDownArrow; U+02193 ↓
ShortLeftArrow; U+02190 ←
shortmid; U+02223 ∣
shortparallel; U+02225 ∥
ShortRightArrow; U+02192 →
ShortUpArrow; U+02191 ↑
shy; U+000AD
shy U+000AD
Sigma; U+003A3 Σ
sigma; U+003C3 σ
sigmaf; U+003C2 ς
sigmav; U+003C2 ς
sim; U+0223C ∼
simdot; U+02A6A ⩪
sime; U+02243 ≃
simeq; U+02243 ≃
simg; U+02A9E ⪞
simgE; U+02AA0 ⪠
siml; U+02A9D ⪝
simlE; U+02A9F ⪟
simne; U+02246 ≆
simplus; U+02A24 ⨤

simrarr; U+02972 ⥲

slarr; U+02190 ←
SmallCircle; U+02218 ∘
smallsetminus; U+02216 ∖
smashp; U+02A33 ⨳

smeparsl; U+029E4 ⧤

smid; U+02223 ∣
smile; U+02323 ⌣

smt; U+02AAA ⪪

smte; U+02AAC ⪬

smtes; U+02AAC U+0FE00 ⪬︀
SOFTcy; U+0042C Ь
softcy; U+0044C ь
sol; U+0002F /
solb; U+029C4 ⧄

solbar; U+0233F ⌿

Sopf; U+1D54A 𝕊
sopf; U+1D564 𝕤
spades; U+02660 ♠
spadesuit; U+02660 ♠
spar; U+02225 ∥
sqcap; U+02293 ⊓
sqcaps; U+02293 U+0FE00 ⊓︀
sqcup; U+02294 ⊔
sqcups; U+02294 U+0FE00 ⊔︀
Sqrt; U+0221A √
sqsub; U+0228F ⊏
sqsube; U+02291 ⊑
sqsubset; U+0228F ⊏
sqsubseteq; U+02291 ⊑
sqsup; U+02290 ⊐
sqsupe; U+02292 ⊒
sqsupset; U+02290 ⊐
sqsupseteq; U+02292 ⊒
squ; U+025A1 □
Square; U+025A1 □
square; U+025A1 □
SquareIntersection; U+02293 ⊓
SquareSubset; U+0228F ⊏
SquareSubsetEqual; U+02291 ⊑
SquareSuperset; U+02290 ⊐
SquareSupersetEqual; U+02292 ⊒
SquareUnion; U+02294 ⊔
squarf; U+025AA ▪
squf; U+025AA ▪
srarr; U+02192 →
Sscr; U+1D4AE 𝒮

sscr; U+1D4C8 𝓈

ssetmn; U+02216 ∖
ssmile; U+02323 ⌣

sstarf; U+022C6 ⋆
Star; U+022C6 ⋆
star; U+02606 ☆
starf; U+02605 ★
straightepsilon; U+003F5 ϵ
straightphi; U+003D5 ϕ
strns; U+000AF ¯
Sub; U+022D0 ⋐
sub; U+02282 ⊂
subdot; U+02ABD ⪽

subE; U+02AC5 ⫅

sube; U+02286 ⊆
subedot; U+02AC3 ⫃

submult; U+02AC1 ⫁

subnE; U+02ACB ⫋

subne; U+0228A ⊊
subplus; U+02ABF ⪿

subrarr; U+02979 ⥹

Name Character(s) Glyph

Subset; U+022D0 ⋐
subset; U+02282 ⊂
subseteq; U+02286 ⊆
subseteqq; U+02AC5 ⫅

SubsetEqual; U+02286 ⊆
subsetneq; U+0228A ⊊
subsetneqq; U+02ACB ⫋

subsim; U+02AC7 ⫇

subsub; U+02AD5 ⫕

subsup; U+02AD3 ⫓

succ; U+0227B ≻
succapprox; U+02AB8 ⪸
succcurlyeq; U+0227D ≽
Succeeds; U+0227B ≻
SucceedsEqual; U+02AB0 ⪰
SucceedsSlantEqual; U+0227D ≽
SucceedsTilde; U+0227F ≿
succeq; U+02AB0 ⪰
succnapprox; U+02ABA ⪺
succneqq; U+02AB6 ⪶
succnsim; U+022E9 ⋩
succsim; U+0227F ≿
SuchThat; U+0220B ∋
Sum; U+02211 ∑
sum; U+02211 ∑
sung; U+0266A ♪
Sup; U+022D1 ⋑
sup; U+02283 ⊃
sup1; U+000B9 ¹
sup1 U+000B9 ¹
sup2; U+000B2 ²
sup2 U+000B2 ²
sup3; U+000B3 ³
sup3 U+000B3 ³
supdot; U+02ABE ⪾

supdsub; U+02AD8 ⫘

supE; U+02AC6 ⫆

supe; U+02287 ⊇
supedot; U+02AC4 ⫄

Superset; U+02283 ⊃
SupersetEqual; U+02287 ⊇
suphsol; U+027C9 ⟉

suphsub; U+02AD7 ⫗

suplarr; U+0297B ⥻

supmult; U+02AC2 ⫂

supnE; U+02ACC ⫌

supne; U+0228B ⊋
supplus; U+02AC0 ⫀

Supset; U+022D1 ⋑
supset; U+02283 ⊃
supseteq; U+02287 ⊇
supseteqq; U+02AC6 ⫆

supsetneq; U+0228B ⊋
supsetneqq; U+02ACC ⫌

supsim; U+02AC8 ⫈

supsub; U+02AD4 ⫔

supsup; U+02AD6 ⫖

swarhk; U+02926 ⤦

swArr; U+021D9 ⇙
swarr; U+02199 ↙
swarrow; U+02199 ↙
swnwar; U+0292A ⤪

szlig; U+000DF ß
szlig U+000DF ß
Tab; U+00009 ␉

target; U+02316 ⌖

Tau; U+003A4 Τ
tau; U+003C4 τ
tbrk; U+023B4 ⎴

Tcaron; U+00164 Ť
tcaron; U+00165 ť
Tcedil; U+00162 Ţ
tcedil; U+00163 ţ
Tcy; U+00422 Т
tcy; U+00442 т
tdot; U+020DB ◌⃛
telrec; U+02315 ⌕

Tfr; U+1D517 𝔗

tfr; U+1D531 𝔱

there4; U+02234 ∴
Therefore; U+02234 ∴
therefore; U+02234 ∴
Theta; U+00398 Θ
theta; U+003B8 θ
thetasym; U+003D1 ϑ
thetav; U+003D1 ϑ
thickapprox; U+02248 ≈
thicksim; U+0223C ∼
ThickSpace; U+0205F U+0200A
thinsp; U+02009

1185

Name Character(s) Glyph

ThinSpace; U+02009
thkap; U+02248 ≈
thksim; U+0223C ∼
THORN; U+000DE Þ
THORN U+000DE Þ
thorn; U+000FE þ
thorn U+000FE þ
Tilde; U+0223C ∼
tilde; U+002DC ˜
TildeEqual; U+02243 ≃
TildeFullEqual; U+02245 ≅
TildeTilde; U+02248 ≈
times; U+000D7 ×
times U+000D7 ×
timesb; U+022A0 ⊠
timesbar; U+02A31 ⨱

timesd; U+02A30 ⨰

tint; U+0222D ∭
toea; U+02928 ⤨

top; U+022A4 ⊤
topbot; U+02336 ⌶

topcir; U+02AF1 ⫱

Topf; U+1D54B 𝕋
topf; U+1D565 𝕥
topfork; U+02ADA ⫚

tosa; U+02929 ⤩

tprime; U+02034 ‴
TRADE; U+02122 ™
trade; U+02122 ™
triangle; U+025B5 ▵
triangledown; U+025BF ▿
triangleleft; U+025C3 ◃
trianglelefteq; U+022B4 ⊴
triangleq; U+0225C ≜
triangleright; U+025B9 ▹
trianglerighteq; U+022B5 ⊵
tridot; U+025EC ◬
trie; U+0225C ≜
triminus; U+02A3A ⨺

TripleDot; U+020DB ◌⃛
triplus; U+02A39 ⨹

trisb; U+029CD ⧍

tritime; U+02A3B ⨻

trpezium; U+023E2 ⏢

Tscr; U+1D4AF 𝒯

tscr; U+1D4C9 𝓉

TScy; U+00426 Ц
tscy; U+00446 ц
TSHcy; U+0040B Ћ
tshcy; U+0045B ћ
Tstrok; U+00166 Ŧ
tstrok; U+00167 ŧ
twixt; U+0226C ≬
twoheadleftarrow; U+0219E ↞
twoheadrightarrow; U+021A0 ↠
Uacute; U+000DA Ú
Uacute U+000DA Ú
uacute; U+000FA ú
uacute U+000FA ú
Uarr; U+0219F ↟
uArr; U+021D1 ⇑
uarr; U+02191 ↑
Uarrocir; U+02949 ⥉

Ubrcy; U+0040E Ў
ubrcy; U+0045E ў
Ubreve; U+0016C Ŭ
ubreve; U+0016D ŭ
Ucirc; U+000DB Û
Ucirc U+000DB Û
ucirc; U+000FB û
ucirc U+000FB û
Ucy; U+00423 У
ucy; U+00443 у
udarr; U+021C5 ⇅
Udblac; U+00170 Ű
udblac; U+00171 ű
udhar; U+0296E ⥮

ufisht; U+0297E ⥾

Ufr; U+1D518 𝔘

ufr; U+1D532 𝔲

Ugrave; U+000D9 Ù
Ugrave U+000D9 Ù
ugrave; U+000F9 ù
ugrave U+000F9 ù
uHar; U+02963 ⥣

uharl; U+021BF ↿
uharr; U+021BE ↾
uhblk; U+02580 ▀
ulcorn; U+0231C ⌜
ulcorner; U+0231C ⌜

Name Character(s) Glyph

ulcrop; U+0230F ⌏
ultri; U+025F8 ◸
Umacr; U+0016A Ū
umacr; U+0016B ū
uml; U+000A8 ¨
uml U+000A8 ¨
UnderBar; U+0005F _
UnderBrace; U+023DF ⏟

UnderBracket; U+023B5 ⎵

UnderParenthesis; U+023DD ⏝

Union; U+022C3 ⋃
UnionPlus; U+0228E ⊎
Uogon; U+00172 Ų
uogon; U+00173 ų
Uopf; U+1D54C 𝕌
uopf; U+1D566 𝕦
UpArrow; U+02191 ↑
Uparrow; U+021D1 ⇑
uparrow; U+02191 ↑
UpArrowBar; U+02912 ⤒

UpArrowDownArrow; U+021C5 ⇅
UpDownArrow; U+02195 ↕
Updownarrow; U+021D5 ⇕
updownarrow; U+02195 ↕
UpEquilibrium; U+0296E ⥮

upharpoonleft; U+021BF ↿
upharpoonright; U+021BE ↾
uplus; U+0228E ⊎
UpperLeftArrow; U+02196 ↖
UpperRightArrow; U+02197 ↗
Upsi; U+003D2 ϒ
upsi; U+003C5 υ
upsih; U+003D2 ϒ
Upsilon; U+003A5 Υ
upsilon; U+003C5 υ
UpTee; U+022A5 ⊥
UpTeeArrow; U+021A5 ↥
upuparrows; U+021C8 ⇈
urcorn; U+0231D ⌝
urcorner; U+0231D ⌝
urcrop; U+0230E ⌎
Uring; U+0016E Ů
uring; U+0016F ů
urtri; U+025F9 ◹
Uscr; U+1D4B0 𝒰

uscr; U+1D4CA 𝓊

utdot; U+022F0 ⋰
Utilde; U+00168 Ũ
utilde; U+00169 ũ
utri; U+025B5 ▵
utrif; U+025B4 ▴
uuarr; U+021C8 ⇈
Uuml; U+000DC Ü
Uuml U+000DC Ü
uuml; U+000FC ü
uuml U+000FC ü
uwangle; U+029A7 ⦧

vangrt; U+0299C ⦜

varepsilon; U+003F5 ϵ
varkappa; U+003F0 ϰ
varnothing; U+02205 ∅
varphi; U+003D5 ϕ
varpi; U+003D6 ϖ
varpropto; U+0221D ∝
vArr; U+021D5 ⇕
varr; U+02195 ↕
varrho; U+003F1 ϱ
varsigma; U+003C2 ς
varsubsetneq; U+0228A U+0FE00 ⊊︀
varsubsetneqq; U+02ACB U+0FE00 ⫋︀
varsupsetneq; U+0228B U+0FE00 ⊋︀
varsupsetneqq; U+02ACC U+0FE00 ⫌︀
vartheta; U+003D1 ϑ
vartriangleleft; U+022B2 ⊲
vartriangleright; U+022B3 ⊳
Vbar; U+02AEB ⫫

vBar; U+02AE8 ⫨

vBarv; U+02AE9 ⫩

Vcy; U+00412 В
vcy; U+00432 в
VDash; U+022AB ⊫
Vdash; U+022A9 ⊩
vDash; U+022A8 ⊨
vdash; U+022A2 ⊢
Vdashl; U+02AE6 ⫦

Vee; U+022C1 ⋁
vee; U+02228 ∨
veebar; U+022BB ⊻
veeeq; U+0225A ≚
vellip; U+022EE ⋮

Name Character(s) Glyph

Verbar; U+02016 ‖
verbar; U+0007C |
Vert; U+02016 ‖
vert; U+0007C |
VerticalBar; U+02223 ∣
VerticalLine; U+0007C |
VerticalSeparator; U+02758 ❘
VerticalTilde; U+02240 ≀
VeryThinSpace; U+0200A
Vfr; U+1D519 𝔙

vfr; U+1D533 𝔳

vltri; U+022B2 ⊲
vnsub; U+02282 U+020D2 ⊂⃒

vnsup; U+02283 U+020D2 ⊃⃒

Vopf; U+1D54D 𝕍
vopf; U+1D567 𝕧
vprop; U+0221D ∝
vrtri; U+022B3 ⊳
Vscr; U+1D4B1 𝒱

vscr; U+1D4CB 𝓋

vsubnE; U+02ACB U+0FE00 ⫋︀
vsubne; U+0228A U+0FE00 ⊊︀
vsupnE; U+02ACC U+0FE00 ⫌︀
vsupne; U+0228B U+0FE00 ⊋︀
Vvdash; U+022AA ⊪
vzigzag; U+0299A ⦚

Wcirc; U+00174 Ŵ
wcirc; U+00175 ŵ
wedbar; U+02A5F ⩟

Wedge; U+022C0 ⋀
wedge; U+02227 ∧
wedgeq; U+02259 ≙
weierp; U+02118 ℘
Wfr; U+1D51A 𝔚

wfr; U+1D534 𝔴

Wopf; U+1D54E 𝕎
wopf; U+1D568 𝕨
wp; U+02118 ℘
wr; U+02240 ≀
wreath; U+02240 ≀
Wscr; U+1D4B2 𝒲

wscr; U+1D4CC 𝓌

xcap; U+022C2 ⋂
xcirc; U+025EF ◯
xcup; U+022C3 ⋃
xdtri; U+025BD ▽
Xfr; U+1D51B 𝔛

xfr; U+1D535 𝔵

xhArr; U+027FA ⟺
xharr; U+027F7 ⟷
Xi; U+0039E Ξ
xi; U+003BE ξ
xlArr; U+027F8 ⟸
xlarr; U+027F5 ⟵
xmap; U+027FC ⟼
xnis; U+022FB ⋻
xodot; U+02A00 ⨀
Xopf; U+1D54F 𝕏
xopf; U+1D569 𝕩
xoplus; U+02A01 ⨁
xotime; U+02A02 ⨂
xrArr; U+027F9 ⟹
xrarr; U+027F6 ⟶
Xscr; U+1D4B3 𝒳

xscr; U+1D4CD 𝓍

xsqcup; U+02A06 ⨆

xuplus; U+02A04 ⨄

xutri; U+025B3 △
xvee; U+022C1 ⋁
xwedge; U+022C0 ⋀
Yacute; U+000DD Ý
Yacute U+000DD Ý
yacute; U+000FD ý
yacute U+000FD ý
YAcy; U+0042F Я
yacy; U+0044F я
Ycirc; U+00176 Ŷ
ycirc; U+00177 ŷ
Ycy; U+0042B Ы
ycy; U+0044B ы
yen; U+000A5 ¥
yen U+000A5 ¥
Yfr; U+1D51C 𝔜

yfr; U+1D536 𝔶

YIcy; U+00407 Ї
yicy; U+00457 ї
Yopf; U+1D550 𝕐
yopf; U+1D56A 𝕪
Yscr; U+1D4B4 𝒴

yscr; U+1D4CE 𝓎

1186

Name Character(s) Glyph

YUcy; U+0042E Ю
yucy; U+0044E ю
Yuml; U+00178 Ÿ
yuml; U+000FF ÿ
yuml U+000FF ÿ
Zacute; U+00179 Ź
zacute; U+0017A ź
Zcaron; U+0017D Ž
zcaron; U+0017E ž
Zcy; U+00417 З

Name Character(s) Glyph

zcy; U+00437 з
Zdot; U+0017B Ż
zdot; U+0017C ż
zeetrf; U+02128 ℨ
ZeroWidthSpace; U+0200B
Zeta; U+00396 Ζ
zeta; U+003B6 ζ
Zfr; U+02128 ℨ
zfr; U+1D537 𝔷

ZHcy; U+00416 Ж

Name Character(s) Glyph

zhcy; U+00436 ж
zigrarr; U+021DD ⇝
Zopf; U+02124 ℤ
zopf; U+1D56B 𝕫
Zscr; U+1D4B5 𝒵

zscr; U+1D4CF 𝓏

zwj; U+0200D
zwnj; U+0200C

This data is also available as a JSON file.

The glyphs displayed above are non-normative. Refer to Unicode for formal definitions of the characters listed above.

The character reference names originate from XML Entity Definitions for Characters, though only the above is considered
normative. [XMLENTITY]p1293

Note

1187

https://html.spec.whatwg.org/entities.json

The syntax for XML is defined in XML and Namespaces in XML. [XML]p1293 [XMLNS]p1293

This specification does not define any syntax-level requirements beyond those defined for XML proper.

XML documents may contain a DOCTYPE if desired, but this is not required to conform to this specification. This specification does not
define a public or system identifier, nor provide a formal DTD.

This section describes the relationship between XML and the DOM, with a particular emphasis on how this interacts with HTML.

An XML parser, for the purposes of this specification, is a construct that follows the rules given in XML to map a string of bytes or
characters into a Documentp114 object.

An XML parserp1188 is either associated with a Documentp114 object when it is created, or creates one implicitly.

This Documentp114 must then be populated with DOM nodes that represent the tree structure of the input passed to the parser, as
defined by XML, Namespaces in XML, and DOM. When creating DOM nodes representing elements, the create an element for a
tokenp1127 algorithm or some equivalent that operates on appropriate XML datastructures must be used, to ensure the proper element
interfaces are created and that custom elementsp703 are set up correctly.

DOM mutation events must not fire for the operations that the XML parserp1188 performs on the Documentp114 's tree, but the user agent
must act as if elements and attributes were individually appended and set respectively so as to trigger rules in this specification
regarding what happens when an element is inserted into a document or has its attributes set, and DOM's requirements regarding
mutation observers mean that mutation observers are fired (unlike mutation events). [XML]p1293 [XMLNS]p1293 [DOM]p1287

[UIEVENTS]p1292

Between the time an element's start tag is parsed and the time either the element's end tag is parsed or the parser detects a well-
formedness error, the user agent must act as if the element was in a stack of open elementsp1093.

13 The XML syntax §p11

88

This section only describes the rules for XML resources. Rules for text/htmlp1250 resources are discussed in the section above
entitled "The HTML syntaxp1067".

Note

13.1 Writing documents in the XML syntax §p11

88

The XML syntax for HTML was formerly referred to as "XHTML", but this specification does not use that term (among other reasons,
because no such term is used for the HTML syntaxes of MathML and SVG).

Note

According to XML, XML processors are not guaranteed to process the external DTD subset referenced in the DOCTYPE. This means,
for example, that using entity references for characters in XML documents is unsafe if they are defined in an external file (except
for <, >, &, " and ').

Note

13.2 Parsing XML documents §p11

88

At the time of writing, no such rules actually exist.
Note

✔ MDN

1188

https://www.w3.org/TR/xml/#dt-entref
https://dom.spec.whatwg.org/#concept-element-interface
https://dom.spec.whatwg.org/#concept-element-interface
https://dom.spec.whatwg.org/#mutation-observers

This specification provides the following additional information that user agents should use when retrieving an external entity: the
public identifiers given in the following list all correspond to the URL given by this link. (This URL is a DTD containing the entity
declarations for the names listed in the named character referencesp1178 section.) [XML]p1293

• -//W3C//DTD XHTML 1.0 Transitional//EN
• -//W3C//DTD XHTML 1.1//EN
• -//W3C//DTD XHTML 1.0 Strict//EN
• -//W3C//DTD XHTML 1.0 Frameset//EN
• -//W3C//DTD XHTML Basic 1.0//EN
• -//W3C//DTD XHTML 1.1 plus MathML 2.0//EN
• -//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN
• -//W3C//DTD MathML 2.0//EN
• -//WAPFORUM//DTD XHTML Mobile 1.0//EN

Furthermore, user agents should attempt to retrieve the above external entity's content when one of the above public identifiers is
used, and should not attempt to retrieve any other external entity's content.

XML parsers can be invoked with XML scripting support enabled or XML scripting support disabled. Except where otherwise
specified, XML parsers are invoked with XML scripting support enabledp1189.

When an XML parserp1188 with XML scripting support enabledp1189 creates a scriptp614 element, it must have its parser documentp619

set and its "non-blocking"p619 flag must be unset. If the parser was created as part of the XML fragment parsing algorithmp1191, then the
element must be marked as "already started"p619 also. When the element's end tag is subsequently parsed, the user agent must
perform a microtask checkpointp949, and then preparep620 the scriptp614 element. If this causes there to be a pending parsing-blocking
scriptp623, then the user agent must run the following steps:

1. Block this instance of the XML parserp1188, such that the event loopp944 will not run tasksp944 that invoke it.

2. Spin the event loopp949 until the parser's Documentp114 has no style sheet that is blocking scripts p178 and the pending parsing-
blocking scriptp623 's "ready to be parser-executed"p619 flag is set.

3. Unblock this instance of the XML parserp1188, such that tasksp944 that invoke it can again be run.

4. Executep623 the pending parsing-blocking scriptp623.

5. There is no longer a pending parsing-blocking scriptp623.

When an XML parserp1188 would append a node to a templatep629 element, it must instead append it to the templatep629 element's
template contentsp631 (a DocumentFragment node).

When an XML parserp1188 creates a Node object, its node document must be set to the node document of the node into which the newly
created node is to be inserted.

Certain algorithms in this specification spoon-feed the parser characters one string at a time. In such cases, the XML parserp1188

This is used, e.g. by the objectp373 element to avoid instantiating plugins before the paramp378 element children have been parsed.
Note

This is not strictly a violationp27 of XML, but it does contradict the spirit of XML's requirements. This is motivated by a desire for
user agents to all handle entities in an interoperable fashion without requiring any network access for handling external subsets.
[XML]p1293

Note

Since the document.write()p970 API is not available for XML documents, much of the complexity in the HTML parserp1079 is not
needed in the XML parserp1188.

Note

When the XML parserp1188 has XML scripting support disabledp1189, none of this happens.
Note

This is a willful violationp27 of XML; unfortunately, XML is not formally extensible in the manner that is needed for templatep629

processing. [XML]p1293

Note

1189

data:application/xml-dtd;base64,PCFFTlRJVFkgVGFiICImI3g5OyI%2BPCFFTlRJVFkgTmV3TGluZSAiJiN4QTsiPjwhRU5USVRZIGV4Y2wgIiYjeDIxOyI%2BPCFFTlRJVFkgcXVvdCAiJiN4MjI7Ij48IUVOVElUWSBRVU9UICImI3gyMjsiPjwhRU5USVRZIG51bSAiJiN4MjM7Ij48IUVOVElUWSBkb2xsYXIgIiYjeDI0OyI%2BPCFFTlRJVFkgcGVyY250ICImI3gyNTsiPjwhRU5USVRZIGFtcCAiJiN4MjY7I3gyNjsiPjwhRU5USVRZIEFNUCAiJiN4MjY7I3gyNjsiPjwhRU5USVRZIGFwb3MgIiYjeDI3OyI%2BPCFFTlRJVFkgbHBhciAiJiN4Mjg7Ij48IUVOVElUWSBycGFyICImI3gyOTsiPjwhRU5USVRZIGFzdCAiJiN4MkE7Ij48IUVOVElUWSBtaWRhc3QgIiYjeDJBOyI%2BPCFFTlRJVFkgcGx1cyAiJiN4MkI7Ij48IUVOVElUWSBjb21tYSAiJiN4MkM7Ij48IUVOVElUWSBwZXJpb2QgIiYjeDJFOyI%2BPCFFTlRJVFkgc29sICImI3gyRjsiPjwhRU5USVRZIGNvbG9uICImI3gzQTsiPjwhRU5USVRZIHNlbWkgIiYjeDNCOyI%2BPCFFTlRJVFkgbHQgIiYjeDI2OyN4M0M7Ij48IUVOVElUWSBMVCAiJiN4MjY7I3gzQzsiPjwhRU5USVRZIG52bHQgIiYjeDI2OyN4M0M7JiN4MjBEMjsiPjwhRU5USVRZIGVxdWFscyAiJiN4M0Q7Ij48IUVOVElUWSBibmUgIiYjeDNEOyYjeDIwRTU7Ij48IUVOVElUWSBndCAiJiN4M0U7Ij48IUVOVElUWSBHVCAiJiN4M0U7Ij48IUVOVElUWSBudmd0ICImI3gzRTsmI3gyMEQyOyI%2BPCFFTlRJVFkgcXVlc3QgIiYjeDNGOyI%2BPCFFTlRJVFkgY29tbWF0ICImI3g0MDsiPjwhRU5USVRZIGxzcWIgIiYjeDVCOyI%2BPCFFTlRJVFkgbGJyYWNrICImI3g1QjsiPjwhRU5USVRZIGJzb2wgIiYjeDVDOyI%2BPCFFTlRJVFkgcnNxYiAiJiN4NUQ7Ij48IUVOVElUWSByYnJhY2sgIiYjeDVEOyI%2BPCFFTlRJVFkgSGF0ICImI3g1RTsiPjwhRU5USVRZIGxvd2JhciAiJiN4NUY7Ij48IUVOVElUWSBVbmRlckJhciAiJiN4NUY7Ij48IUVOVElUWSBncmF2ZSAiJiN4NjA7Ij48IUVOVElUWSBEaWFjcml0aWNhbEdyYXZlICImI3g2MDsiPjwhRU5USVRZIGZqbGlnICImI3g2NjsmI3g2QTsiPjwhRU5USVRZIGxjdWIgIiYjeDdCOyI%2BPCFFTlRJVFkgbGJyYWNlICImI3g3QjsiPjwhRU5USVRZIHZlcmJhciAiJiN4N0M7Ij48IUVOVElUWSB2ZXJ0ICImI3g3QzsiPjwhRU5USVRZIFZlcnRpY2FsTGluZSAiJiN4N0M7Ij48IUVOVElUWSByY3ViICImI3g3RDsiPjwhRU5USVRZIHJicmFjZSAiJiN4N0Q7Ij48IUVOVElUWSBuYnNwICImI3hBMDsiPjwhRU5USVRZIE5vbkJyZWFraW5nU3BhY2UgIiYjeEEwOyI%2BPCFFTlRJVFkgaWV4Y2wgIiYjeEExOyI%2BPCFFTlRJVFkgY2VudCAiJiN4QTI7Ij48IUVOVElUWSBwb3VuZCAiJiN4QTM7Ij48IUVOVElUWSBjdXJyZW4gIiYjeEE0OyI%2BPCFFTlRJVFkgeWVuICImI3hBNTsiPjwhRU5USVRZIGJydmJhciAiJiN4QTY7Ij48IUVOVElUWSBzZWN0ICImI3hBNzsiPjwhRU5USVRZIERvdCAiJiN4QTg7Ij48IUVOVElUWSBkaWUgIiYjeEE4OyI%2BPCFFTlRJVFkgRG91YmxlRG90ICImI3hBODsiPjwhRU5USVRZIHVtbCAiJiN4QTg7Ij48IUVOVElUWSBjb3B5ICImI3hBOTsiPjwhRU5USVRZIENPUFkgIiYjeEE5OyI%2BPCFFTlRJVFkgb3JkZiAiJiN4QUE7Ij48IUVOVElUWSBsYXF1byAiJiN4QUI7Ij48IUVOVElUWSBub3QgIiYjeEFDOyI%2BPCFFTlRJVFkgc2h5ICImI3hBRDsiPjwhRU5USVRZIHJlZyAiJiN4QUU7Ij48IUVOVElUWSBjaXJjbGVkUiAiJiN4QUU7Ij48IUVOVElUWSBSRUcgIiYjeEFFOyI%2BPCFFTlRJVFkgbWFjciAiJiN4QUY7Ij48IUVOVElUWSBzdHJucyAiJiN4QUY7Ij48IUVOVElUWSBkZWcgIiYjeEIwOyI%2BPCFFTlRJVFkgcGx1c21uICImI3hCMTsiPjwhRU5USVRZIHBtICImI3hCMTsiPjwhRU5USVRZIFBsdXNNaW51cyAiJiN4QjE7Ij48IUVOVElUWSBzdXAyICImI3hCMjsiPjwhRU5USVRZIHN1cDMgIiYjeEIzOyI%2BPCFFTlRJVFkgYWN1dGUgIiYjeEI0OyI%2BPCFFTlRJVFkgRGlhY3JpdGljYWxBY3V0ZSAiJiN4QjQ7Ij48IUVOVElUWSBtaWNybyAiJiN4QjU7Ij48IUVOVElUWSBwYXJhICImI3hCNjsiPjwhRU5USVRZIG1pZGRvdCAiJiN4Qjc7Ij48IUVOVElUWSBjZW50ZXJkb3QgIiYjeEI3OyI%2BPCFFTlRJVFkgQ2VudGVyRG90ICImI3hCNzsiPjwhRU5USVRZIGNlZGlsICImI3hCODsiPjwhRU5USVRZIENlZGlsbGEgIiYjeEI4OyI%2BPCFFTlRJVFkgc3VwMSAiJiN4Qjk7Ij48IUVOVElUWSBvcmRtICImI3hCQTsiPjwhRU5USVRZIHJhcXVvICImI3hCQjsiPjwhRU5USVRZIGZyYWMxNCAiJiN4QkM7Ij48IUVOVElUWSBmcmFjMTIgIiYjeEJEOyI%2BPCFFTlRJVFkgaGFsZiAiJiN4QkQ7Ij48IUVOVElUWSBmcmFjMzQgIiYjeEJFOyI%2BPCFFTlRJVFkgaXF1ZXN0ICImI3hCRjsiPjwhRU5USVRZIEFncmF2ZSAiJiN4QzA7Ij48IUVOVElUWSBBYWN1dGUgIiYjeEMxOyI%2BPCFFTlRJVFkgQWNpcmMgIiYjeEMyOyI%2BPCFFTlRJVFkgQXRpbGRlICImI3hDMzsiPjwhRU5USVRZIEF1bWwgIiYjeEM0OyI%2BPCFFTlRJVFkgQXJpbmcgIiYjeEM1OyI%2BPCFFTlRJVFkgYW5nc3QgIiYjeEM1OyI%2BPCFFTlRJVFkgQUVsaWcgIiYjeEM2OyI%2BPCFFTlRJVFkgQ2NlZGlsICImI3hDNzsiPjwhRU5USVRZIEVncmF2ZSAiJiN4Qzg7Ij48IUVOVElUWSBFYWN1dGUgIiYjeEM5OyI%2BPCFFTlRJVFkgRWNpcmMgIiYjeENBOyI%2BPCFFTlRJVFkgRXVtbCAiJiN4Q0I7Ij48IUVOVElUWSBJZ3JhdmUgIiYjeENDOyI%2BPCFFTlRJVFkgSWFjdXRlICImI3hDRDsiPjwhRU5USVRZIEljaXJjICImI3hDRTsiPjwhRU5USVRZIEl1bWwgIiYjeENGOyI%2BPCFFTlRJVFkgRVRIICImI3hEMDsiPjwhRU5USVRZIE50aWxkZSAiJiN4RDE7Ij48IUVOVElUWSBPZ3JhdmUgIiYjeEQyOyI%2BPCFFTlRJVFkgT2FjdXRlICImI3hEMzsiPjwhRU5USVRZIE9jaXJjICImI3hENDsiPjwhRU5USVRZIE90aWxkZSAiJiN4RDU7Ij48IUVOVElUWSBPdW1sICImI3hENjsiPjwhRU5USVRZIHRpbWVzICImI3hENzsiPjwhRU5USVRZIE9zbGFzaCAiJiN4RDg7Ij48IUVOVElUWSBVZ3JhdmUgIiYjeEQ5OyI%2BPCFFTlRJVFkgVWFjdXRlICImI3hEQTsiPjwhRU5USVRZIFVjaXJjICImI3hEQjsiPjwhRU5USVRZIFV1bWwgIiYjeERDOyI%2BPCFFTlRJVFkgWWFjdXRlICImI3hERDsiPjwhRU5USVRZIFRIT1JOICImI3hERTsiPjwhRU5USVRZIHN6bGlnICImI3hERjsiPjwhRU5USVRZIGFncmF2ZSAiJiN4RTA7Ij48IUVOVElUWSBhYWN1dGUgIiYjeEUxOyI%2BPCFFTlRJVFkgYWNpcmMgIiYjeEUyOyI%2BPCFFTlRJVFkgYXRpbGRlICImI3hFMzsiPjwhRU5USVRZIGF1bWwgIiYjeEU0OyI%2BPCFFTlRJVFkgYXJpbmcgIiYjeEU1OyI%2BPCFFTlRJVFkgYWVsaWcgIiYjeEU2OyI%2BPCFFTlRJVFkgY2NlZGlsICImI3hFNzsiPjwhRU5USVRZIGVncmF2ZSAiJiN4RTg7Ij48IUVOVElUWSBlYWN1dGUgIiYjeEU5OyI%2BPCFFTlRJVFkgZWNpcmMgIiYjeEVBOyI%2BPCFFTlRJVFkgZXVtbCAiJiN4RUI7Ij48IUVOVElUWSBpZ3JhdmUgIiYjeEVDOyI%2BPCFFTlRJVFkgaWFjdXRlICImI3hFRDsiPjwhRU5USVRZIGljaXJjICImI3hFRTsiPjwhRU5USVRZIGl1bWwgIiYjeEVGOyI%2BPCFFTlRJVFkgZXRoICImI3hGMDsiPjwhRU5USVRZIG50aWxkZSAiJiN4RjE7Ij48IUVOVElUWSBvZ3JhdmUgIiYjeEYyOyI%2BPCFFTlRJVFkgb2FjdXRlICImI3hGMzsiPjwhRU5USVRZIG9jaXJjICImI3hGNDsiPjwhRU5USVRZIG90aWxkZSAiJiN4RjU7Ij48IUVOVElUWSBvdW1sICImI3hGNjsiPjwhRU5USVRZIGRpdmlkZSAiJiN4Rjc7Ij48IUVOVElUWSBkaXYgIiYjeEY3OyI%2BPCFFTlRJVFkgb3NsYXNoICImI3hGODsiPjwhRU5USVRZIHVncmF2ZSAiJiN4Rjk7Ij48IUVOVElUWSB1YWN1dGUgIiYjeEZBOyI%2BPCFFTlRJVFkgdWNpcmMgIiYjeEZCOyI%2BPCFFTlRJVFkgdXVtbCAiJiN4RkM7Ij48IUVOVElUWSB5YWN1dGUgIiYjeEZEOyI%2BPCFFTlRJVFkgdGhvcm4gIiYjeEZFOyI%2BPCFFTlRJVFkgeXVtbCAiJiN4RkY7Ij48IUVOVElUWSBBbWFjciAiJiN4MTAwOyI%2BPCFFTlRJVFkgYW1hY3IgIiYjeDEwMTsiPjwhRU5USVRZIEFicmV2ZSAiJiN4MTAyOyI%2BPCFFTlRJVFkgYWJyZXZlICImI3gxMDM7Ij48IUVOVElUWSBBb2dvbiAiJiN4MTA0OyI%2BPCFFTlRJVFkgYW9nb24gIiYjeDEwNTsiPjwhRU5USVRZIENhY3V0ZSAiJiN4MTA2OyI%2BPCFFTlRJVFkgY2FjdXRlICImI3gxMDc7Ij48IUVOVElUWSBDY2lyYyAiJiN4MTA4OyI%2BPCFFTlRJVFkgY2NpcmMgIiYjeDEwOTsiPjwhRU5USVRZIENkb3QgIiYjeDEwQTsiPjwhRU5USVRZIGNkb3QgIiYjeDEwQjsiPjwhRU5USVRZIENjYXJvbiAiJiN4MTBDOyI%2BPCFFTlRJVFkgY2Nhcm9uICImI3gxMEQ7Ij48IUVOVElUWSBEY2Fyb24gIiYjeDEwRTsiPjwhRU5USVRZIGRjYXJvbiAiJiN4MTBGOyI%2BPCFFTlRJVFkgRHN0cm9rICImI3gxMTA7Ij48IUVOVElUWSBkc3Ryb2sgIiYjeDExMTsiPjwhRU5USVRZIEVtYWNyICImI3gxMTI7Ij48IUVOVElUWSBlbWFjciAiJiN4MTEzOyI%2BPCFFTlRJVFkgRWRvdCAiJiN4MTE2OyI%2BPCFFTlRJVFkgZWRvdCAiJiN4MTE3OyI%2BPCFFTlRJVFkgRW9nb24gIiYjeDExODsiPjwhRU5USVRZIGVvZ29uICImI3gxMTk7Ij48IUVOVElUWSBFY2Fyb24gIiYjeDExQTsiPjwhRU5USVRZIGVjYXJvbiAiJiN4MTFCOyI%2BPCFFTlRJVFkgR2NpcmMgIiYjeDExQzsiPjwhRU5USVRZIGdjaXJjICImI3gxMUQ7Ij48IUVOVElUWSBHYnJldmUgIiYjeDExRTsiPjwhRU5USVRZIGdicmV2ZSAiJiN4MTFGOyI%2BPCFFTlRJVFkgR2RvdCAiJiN4MTIwOyI%2BPCFFTlRJVFkgZ2RvdCAiJiN4MTIxOyI%2BPCFFTlRJVFkgR2NlZGlsICImI3gxMjI7Ij48IUVOVElUWSBIY2lyYyAiJiN4MTI0OyI%2BPCFFTlRJVFkgaGNpcmMgIiYjeDEyNTsiPjwhRU5USVRZIEhzdHJvayAiJiN4MTI2OyI%2BPCFFTlRJVFkgaHN0cm9rICImI3gxMjc7Ij48IUVOVElUWSBJdGlsZGUgIiYjeDEyODsiPjwhRU5USVRZIGl0aWxkZSAiJiN4MTI5OyI%2BPCFFTlRJVFkgSW1hY3IgIiYjeDEyQTsiPjwhRU5USVRZIGltYWNyICImI3gxMkI7Ij48IUVOVElUWSBJb2dvbiAiJiN4MTJFOyI%2BPCFFTlRJVFkgaW9nb24gIiYjeDEyRjsiPjwhRU5USVRZIElkb3QgIiYjeDEzMDsiPjwhRU5USVRZIGltYXRoICImI3gxMzE7Ij48IUVOVElUWSBpbm9kb3QgIiYjeDEzMTsiPjwhRU5USVRZIElKbGlnICImI3gxMzI7Ij48IUVOVElUWSBpamxpZyAiJiN4MTMzOyI%2BPCFFTlRJVFkgSmNpcmMgIiYjeDEzNDsiPjwhRU5USVRZIGpjaXJjICImI3gxMzU7Ij48IUVOVElUWSBLY2VkaWwgIiYjeDEzNjsiPjwhRU5USVRZIGtjZWRpbCAiJiN4MTM3OyI%2BPCFFTlRJVFkga2dyZWVuICImI3gxMzg7Ij48IUVOVElUWSBMYWN1dGUgIiYjeDEzOTsiPjwhRU5USVRZIGxhY3V0ZSAiJiN4MTNBOyI%2BPCFFTlRJVFkgTGNlZGlsICImI3gxM0I7Ij48IUVOVElUWSBsY2VkaWwgIiYjeDEzQzsiPjwhRU5USVRZIExjYXJvbiAiJiN4MTNEOyI%2BPCFFTlRJVFkgbGNhcm9uICImI3gxM0U7Ij48IUVOVElUWSBMbWlkb3QgIiYjeDEzRjsiPjwhRU5USVRZIGxtaWRvdCAiJiN4MTQwOyI%2BPCFFTlRJVFkgTHN0cm9rICImI3gxNDE7Ij48IUVOVElUWSBsc3Ryb2sgIiYjeDE0MjsiPjwhRU5USVRZIE5hY3V0ZSAiJiN4MTQzOyI%2BPCFFTlRJVFkgbmFjdXRlICImI3gxNDQ7Ij48IUVOVElUWSBOY2VkaWwgIiYjeDE0NTsiPjwhRU5USVRZIG5jZWRpbCAiJiN4MTQ2OyI%2BPCFFTlRJVFkgTmNhcm9uICImI3gxNDc7Ij48IUVOVElUWSBuY2Fyb24gIiYjeDE0ODsiPjwhRU5USVRZIG5hcG9zICImI3gxNDk7Ij48IUVOVElUWSBFTkcgIiYjeDE0QTsiPjwhRU5USVRZIGVuZyAiJiN4MTRCOyI%2BPCFFTlRJVFkgT21hY3IgIiYjeDE0QzsiPjwhRU5USVRZIG9tYWNyICImI3gxNEQ7Ij48IUVOVElUWSBPZGJsYWMgIiYjeDE1MDsiPjwhRU5USVRZIG9kYmxhYyAiJiN4MTUxOyI%2BPCFFTlRJVFkgT0VsaWcgIiYjeDE1MjsiPjwhRU5USVRZIG9lbGlnICImI3gxNTM7Ij48IUVOVElUWSBSYWN1dGUgIiYjeDE1NDsiPjwhRU5USVRZIHJhY3V0ZSAiJiN4MTU1OyI%2BPCFFTlRJVFkgUmNlZGlsICImI3gxNTY7Ij48IUVOVElUWSByY2VkaWwgIiYjeDE1NzsiPjwhRU5USVRZIFJjYXJvbiAiJiN4MTU4OyI%2BPCFFTlRJVFkgcmNhcm9uICImI3gxNTk7Ij48IUVOVElUWSBTYWN1dGUgIiYjeDE1QTsiPjwhRU5USVRZIHNhY3V0ZSAiJiN4MTVCOyI%2BPCFFTlRJVFkgU2NpcmMgIiYjeDE1QzsiPjwhRU5USVRZIHNjaXJjICImI3gxNUQ7Ij48IUVOVElUWSBTY2VkaWwgIiYjeDE1RTsiPjwhRU5USVRZIHNjZWRpbCAiJiN4MTVGOyI%2BPCFFTlRJVFkgU2Nhcm9uICImI3gxNjA7Ij48IUVOVElUWSBzY2Fyb24gIiYjeDE2MTsiPjwhRU5USVRZIFRjZWRpbCAiJiN4MTYyOyI%2BPCFFTlRJVFkgdGNlZGlsICImI3gxNjM7Ij48IUVOVElUWSBUY2Fyb24gIiYjeDE2NDsiPjwhRU5USVRZIHRjYXJvbiAiJiN4MTY1OyI%2BPCFFTlRJVFkgVHN0cm9rICImI3gxNjY7Ij48IUVOVElUWSB0c3Ryb2sgIiYjeDE2NzsiPjwhRU5USVRZIFV0aWxkZSAiJiN4MTY4OyI%2BPCFFTlRJVFkgdXRpbGRlICImI3gxNjk7Ij48IUVOVElUWSBVbWFjciAiJiN4MTZBOyI%2BPCFFTlRJVFkgdW1hY3IgIiYjeDE2QjsiPjwhRU5USVRZIFVicmV2ZSAiJiN4MTZDOyI%2BPCFFTlRJVFkgdWJyZXZlICImI3gxNkQ7Ij48IUVOVElUWSBVcmluZyAiJiN4MTZFOyI%2BPCFFTlRJVFkgdXJpbmcgIiYjeDE2RjsiPjwhRU5USVRZIFVkYmxhYyAiJiN4MTcwOyI%2BPCFFTlRJVFkgdWRibGFjICImI3gxNzE7Ij48IUVOVElUWSBVb2dvbiAiJiN4MTcyOyI%2BPCFFTlRJVFkgdW9nb24gIiYjeDE3MzsiPjwhRU5USVRZIFdjaXJjICImI3gxNzQ7Ij48IUVOVElUWSB3Y2lyYyAiJiN4MTc1OyI%2BPCFFTlRJVFkgWWNpcmMgIiYjeDE3NjsiPjwhRU5USVRZIHljaXJjICImI3gxNzc7Ij48IUVOVElUWSBZdW1sICImI3gxNzg7Ij48IUVOVElUWSBaYWN1dGUgIiYjeDE3OTsiPjwhRU5USVRZIHphY3V0ZSAiJiN4MTdBOyI%2BPCFFTlRJVFkgWmRvdCAiJiN4MTdCOyI%2BPCFFTlRJVFkgemRvdCAiJiN4MTdDOyI%2BPCFFTlRJVFkgWmNhcm9uICImI3gxN0Q7Ij48IUVOVElUWSB6Y2Fyb24gIiYjeDE3RTsiPjwhRU5USVRZIGZub2YgIiYjeDE5MjsiPjwhRU5USVRZIGltcGVkICImI3gxQjU7Ij48IUVOVElUWSBnYWN1dGUgIiYjeDFGNTsiPjwhRU5USVRZIGptYXRoICImI3gyMzc7Ij48IUVOVElUWSBjaXJjICImI3gyQzY7Ij48IUVOVElUWSBjYXJvbiAiJiN4MkM3OyI%2BPCFFTlRJVFkgSGFjZWsgIiYjeDJDNzsiPjwhRU5USVRZIGJyZXZlICImI3gyRDg7Ij48IUVOVElUWSBCcmV2ZSAiJiN4MkQ4OyI%2BPCFFTlRJVFkgZG90ICImI3gyRDk7Ij48IUVOVElUWSBEaWFjcml0aWNhbERvdCAiJiN4MkQ5OyI%
2BPCFFTlRJVFkgcmluZyAiJiN4MkRBOyI%2BPCFFTlRJVFkgb2dvbiAiJiN4MkRCOyI%2BPCFFTlRJVFkgdGlsZGUgIiYjeDJEQzsiPjwhRU5USVRZIERpYWNyaXRpY2FsVGlsZGUgIiYjeDJEQzsiPjwhRU5USVRZIGRibGFjICImI3gyREQ7Ij48IUVOVElUWSBEaWFjcml0aWNhbERvdWJsZUFjdXRlICImI3gyREQ7Ij48IUVOVElUWSBEb3duQnJldmUgIiYjeDMxMTsiPjwhRU5USVRZIEFscGhhICImI3gzOTE7Ij48IUVOVElUWSBCZXRhICImI3gzOTI7Ij48IUVOVElUWSBHYW1tYSAiJiN4MzkzOyI%2BPCFFTlRJVFkgRGVsdGEgIiYjeDM5NDsiPjwhRU5USVRZIEVwc2lsb24gIiYjeDM5NTsiPjwhRU5USVRZIFpldGEgIiYjeDM5NjsiPjwhRU5USVRZIEV0YSAiJiN4Mzk3OyI%2BPCFFTlRJVFkgVGhldGEgIiYjeDM5ODsiPjwhRU5USVRZIElvdGEgIiYjeDM5OTsiPjwhRU5USVRZIEthcHBhICImI3gzOUE7Ij48IUVOVElUWSBMYW1iZGEgIiYjeDM5QjsiPjwhRU5USVRZIE11ICImI3gzOUM7Ij48IUVOVElUWSBOdSAiJiN4MzlEOyI%2BPCFFTlRJVFkgWGkgIiYjeDM5RTsiPjwhRU5USVRZIE9taWNyb24gIiYjeDM5RjsiPjwhRU5USVRZIFBpICImI3gzQTA7Ij48IUVOVElUWSBSaG8gIiYjeDNBMTsiPjwhRU5USVRZIFNpZ21hICImI3gzQTM7Ij48IUVOVElUWSBUYXUgIiYjeDNBNDsiPjwhRU5USVRZIFVwc2lsb24gIiYjeDNBNTsiPjwhRU5USVRZIFBoaSAiJiN4M0E2OyI%2BPCFFTlRJVFkgQ2hpICImI3gzQTc7Ij48IUVOVElUWSBQc2kgIiYjeDNBODsiPjwhRU5USVRZIE9tZWdhICImI3gzQTk7Ij48IUVOVElUWSBvaG0gIiYjeDNBOTsiPjwhRU5USVRZIGFscGhhICImI3gzQjE7Ij48IUVOVElUWSBiZXRhICImI3gzQjI7Ij48IUVOVElUWSBnYW1tYSAiJiN4M0IzOyI%2BPCFFTlRJVFkgZGVsdGEgIiYjeDNCNDsiPjwhRU5USVRZIGVwc2kgIiYjeDNCNTsiPjwhRU5USVRZIGVwc2lsb24gIiYjeDNCNTsiPjwhRU5USVRZIHpldGEgIiYjeDNCNjsiPjwhRU5USVRZIGV0YSAiJiN4M0I3OyI%2BPCFFTlRJVFkgdGhldGEgIiYjeDNCODsiPjwhRU5USVRZIGlvdGEgIiYjeDNCOTsiPjwhRU5USVRZIGthcHBhICImI3gzQkE7Ij48IUVOVElUWSBsYW1iZGEgIiYjeDNCQjsiPjwhRU5USVRZIG11ICImI3gzQkM7Ij48IUVOVElUWSBudSAiJiN4M0JEOyI%2BPCFFTlRJVFkgeGkgIiYjeDNCRTsiPjwhRU5USVRZIG9taWNyb24gIiYjeDNCRjsiPjwhRU5USVRZIHBpICImI3gzQzA7Ij48IUVOVElUWSByaG8gIiYjeDNDMTsiPjwhRU5USVRZIHNpZ21hdiAiJiN4M0MyOyI%2BPCFFTlRJVFkgdmFyc2lnbWEgIiYjeDNDMjsiPjwhRU5USVRZIHNpZ21hZiAiJiN4M0MyOyI%2BPCFFTlRJVFkgc2lnbWEgIiYjeDNDMzsiPjwhRU5USVRZIHRhdSAiJiN4M0M0OyI%2BPCFFTlRJVFkgdXBzaSAiJiN4M0M1OyI%2BPCFFTlRJVFkgdXBzaWxvbiAiJiN4M0M1OyI%2BPCFFTlRJVFkgcGhpICImI3gzQzY7Ij48IUVOVElUWSBjaGkgIiYjeDNDNzsiPjwhRU5USVRZIHBzaSAiJiN4M0M4OyI%2BPCFFTlRJVFkgb21lZ2EgIiYjeDNDOTsiPjwhRU5USVRZIHRoZXRhdiAiJiN4M0QxOyI%2BPCFFTlRJVFkgdmFydGhldGEgIiYjeDNEMTsiPjwhRU5USVRZIHRoZXRhc3ltICImI3gzRDE7Ij48IUVOVElUWSBVcHNpICImI3gzRDI7Ij48IUVOVElUWSB1cHNpaCAiJiN4M0QyOyI%2BPCFFTlRJVFkgc3RyYWlnaHRwaGkgIiYjeDNENTsiPjwhRU5USVRZIHBoaXYgIiYjeDNENTsiPjwhRU5USVRZIHZhcnBoaSAiJiN4M0Q1OyI%2BPCFFTlRJVFkgcGl2ICImI3gzRDY7Ij48IUVOVElUWSB2YXJwaSAiJiN4M0Q2OyI%2BPCFFTlRJVFkgR2FtbWFkICImI3gzREM7Ij48IUVOVElUWSBnYW1tYWQgIiYjeDNERDsiPjwhRU5USVRZIGRpZ2FtbWEgIiYjeDNERDsiPjwhRU5USVRZIGthcHBhdiAiJiN4M0YwOyI%2BPCFFTlRJVFkgdmFya2FwcGEgIiYjeDNGMDsiPjwhRU5USVRZIHJob3YgIiYjeDNGMTsiPjwhRU5USVRZIHZhcnJobyAiJiN4M0YxOyI%2BPCFFTlRJVFkgZXBzaXYgIiYjeDNGNTsiPjwhRU5USVRZIHN0cmFpZ2h0ZXBzaWxvbiAiJiN4M0Y1OyI%2BPCFFTlRJVFkgdmFyZXBzaWxvbiAiJiN4M0Y1OyI%2BPCFFTlRJVFkgYmVwc2kgIiYjeDNGNjsiPjwhRU5USVRZIGJhY2tlcHNpbG9uICImI3gzRjY7Ij48IUVOVElUWSBJT2N5ICImI3g0MDE7Ij48IUVOVElUWSBESmN5ICImI3g0MDI7Ij48IUVOVElUWSBHSmN5ICImI3g0MDM7Ij48IUVOVElUWSBKdWtjeSAiJiN4NDA0OyI%2BPCFFTlRJVFkgRFNjeSAiJiN4NDA1OyI%2BPCFFTlRJVFkgSXVrY3kgIiYjeDQwNjsiPjwhRU5USVRZIFlJY3kgIiYjeDQwNzsiPjwhRU5USVRZIEpzZXJjeSAiJiN4NDA4OyI%2BPCFFTlRJVFkgTEpjeSAiJiN4NDA5OyI%2BPCFFTlRJVFkgTkpjeSAiJiN4NDBBOyI%2BPCFFTlRJVFkgVFNIY3kgIiYjeDQwQjsiPjwhRU5USVRZIEtKY3kgIiYjeDQwQzsiPjwhRU5USVRZIFVicmN5ICImI3g0MEU7Ij48IUVOVElUWSBEWmN5ICImI3g0MEY7Ij48IUVOVElUWSBBY3kgIiYjeDQxMDsiPjwhRU5USVRZIEJjeSAiJiN4NDExOyI%2BPCFFTlRJVFkgVmN5ICImI3g0MTI7Ij48IUVOVElUWSBHY3kgIiYjeDQxMzsiPjwhRU5USVRZIERjeSAiJiN4NDE0OyI%2BPCFFTlRJVFkgSUVjeSAiJiN4NDE1OyI%2BPCFFTlRJVFkgWkhjeSAiJiN4NDE2OyI%2BPCFFTlRJVFkgWmN5ICImI3g0MTc7Ij48IUVOVElUWSBJY3kgIiYjeDQxODsiPjwhRU5USVRZIEpjeSAiJiN4NDE5OyI%2BPCFFTlRJVFkgS2N5ICImI3g0MUE7Ij48IUVOVElUWSBMY3kgIiYjeDQxQjsiPjwhRU5USVRZIE1jeSAiJiN4NDFDOyI%2BPCFFTlRJVFkgTmN5ICImI3g0MUQ7Ij48IUVOVElUWSBPY3kgIiYjeDQxRTsiPjwhRU5USVRZIFBjeSAiJiN4NDFGOyI%2BPCFFTlRJVFkgUmN5ICImI3g0MjA7Ij48IUVOVElUWSBTY3kgIiYjeDQyMTsiPjwhRU5USVRZIFRjeSAiJiN4NDIyOyI%2BPCFFTlRJVFkgVWN5ICImI3g0MjM7Ij48IUVOVElUWSBGY3kgIiYjeDQyNDsiPjwhRU5USVRZIEtIY3kgIiYjeDQyNTsiPjwhRU5USVRZIFRTY3kgIiYjeDQyNjsiPjwhRU5USVRZIENIY3kgIiYjeDQyNzsiPjwhRU5USVRZIFNIY3kgIiYjeDQyODsiPjwhRU5USVRZIFNIQ0hjeSAiJiN4NDI5OyI%2BPCFFTlRJVFkgSEFSRGN5ICImI3g0MkE7Ij48IUVOVElUWSBZY3kgIiYjeDQyQjsiPjwhRU5USVRZIFNPRlRjeSAiJiN4NDJDOyI%2BPCFFTlRJVFkgRWN5ICImI3g0MkQ7Ij48IUVOVElUWSBZVWN5ICImI3g0MkU7Ij48IUVOVElUWSBZQWN5ICImI3g0MkY7Ij48IUVOVElUWSBhY3kgIiYjeDQzMDsiPjwhRU5USVRZIGJjeSAiJiN4NDMxOyI%2BPCFFTlRJVFkgdmN5ICImI3g0MzI7Ij48IUVOVElUWSBnY3kgIiYjeDQzMzsiPjwhRU5USVRZIGRjeSAiJiN4NDM0OyI%2BPCFFTlRJVFkgaWVjeSAiJiN4NDM1OyI%2BPCFFTlRJVFkgemhjeSAiJiN4NDM2OyI%2BPCFFTlRJVFkgemN5ICImI3g0Mzc7Ij48IUVOVElUWSBpY3kgIiYjeDQzODsiPjwhRU5USVRZIGpjeSAiJiN4NDM5OyI%2BPCFFTlRJVFkga2N5ICImI3g0M0E7Ij48IUVOVElUWSBsY3kgIiYjeDQzQjsiPjwhRU5USVRZIG1jeSAiJiN4NDNDOyI%2BPCFFTlRJVFkgbmN5ICImI3g0M0Q7Ij48IUVOVElUWSBvY3kgIiYjeDQzRTsiPjwhRU5USVRZIHBjeSAiJiN4NDNGOyI%2BPCFFTlRJVFkgcmN5ICImI3g0NDA7Ij48IUVOVElUWSBzY3kgIiYjeDQ0MTsiPjwhRU5USVRZIHRjeSAiJiN4NDQyOyI%2BPCFFTlRJVFkgdWN5ICImI3g0NDM7Ij48IUVOVElUWSBmY3kgIiYjeDQ0NDsiPjwhRU5USVRZIGtoY3kgIiYjeDQ0NTsiPjwhRU5USVRZIHRzY3kgIiYjeDQ0NjsiPjwhRU5USVRZIGNoY3kgIiYjeDQ0NzsiPjwhRU5USVRZIHNoY3kgIiYjeDQ0ODsiPjwhRU5USVRZIHNoY2hjeSAiJiN4NDQ5OyI%2BPCFFTlRJVFkgaGFyZGN5ICImI3g0NEE7Ij48IUVOVElUWSB5Y3kgIiYjeDQ0QjsiPjwhRU5USVRZIHNvZnRjeSAiJiN4NDRDOyI%2BPCFFTlRJVFkgZWN5ICImI3g0NEQ7Ij48IUVOVElUWSB5dWN5ICImI3g0NEU7Ij48IUVOVElUWSB5YWN5ICImI3g0NEY7Ij48IUVOVElUWSBpb2N5ICImI3g0NTE7Ij48IUVOVElUWSBkamN5ICImI3g0NTI7Ij48IUVOVElUWSBnamN5ICImI3g0NTM7Ij48IUVOVElUWSBqdWtjeSAiJiN4NDU0OyI%2BPCFFTlRJVFkgZHNjeSAiJiN4NDU1OyI%2BPCFFTlRJVFkgaXVrY3kgIiYjeDQ1NjsiPjwhRU5USVRZIHlpY3kgIiYjeDQ1NzsiPjwhRU5USVRZIGpzZXJjeSAiJiN4NDU4OyI%2BPCFFTlRJVFkgbGpjeSAiJiN4NDU5OyI%2BPCFFTlRJVFkgbmpjeSAiJiN4NDVBOyI%2BPCFFTlRJVFkgdHNoY3kgIiYjeDQ1QjsiPjwhRU5USVRZIGtqY3kgIiYjeDQ1QzsiPjwhRU5USVRZIHVicmN5ICImI3g0NUU7Ij48IUVOVElUWSBkemN5ICImI3g0NUY7Ij48IUVOVElUWSBlbnNwICImI3gyMDAyOyI%2BPCFFTlRJVFkgZW1zcCAiJiN4MjAwMzsiPjwhRU5USVRZIGVtc3AxMyAiJiN4MjAwNDsiPjwhRU5USVRZIGVtc3AxNCAiJiN4MjAwNTsiPjwhRU5USVRZIG51bXNwICImI3gyMDA3OyI%2BPCFFTlRJVFkgcHVuY3NwICImI3gyMDA4OyI%2BPCFFTlRJVFkgdGhpbnNwICImI3gyMDA5OyI%2BPCFFTlRJVFkgVGhpblNwYWNlICImI3gyMDA5OyI%2BPCFFTlRJVFkgaGFpcnNwICImI3gyMDBBOyI%2BPCFFTlRJVFkgVmVyeVRoaW5TcGFjZSAiJiN4MjAwQTsiPjwhRU5USVRZIFplcm9XaWR0aFNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVWZXJ5VGhpblNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVUaGluU3BhY2UgIiYjeDIwMEI7Ij48IUVOVElUWSBOZWdhdGl2ZU1lZGl1bVNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVUaGlja1NwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgenduaiAiJiN4MjAwQzsiPjwhRU5USVRZIHp3aiAiJiN4MjAwRDsiPjwhRU5USVRZIGxybSAiJiN4MjAwRTsiPjwhRU5USVRZIHJsbSAiJiN4MjAwRjsiPjwhRU5USVRZIGh5cGhlbiAiJiN4MjAxMDsiPjwhRU5USVRZIGRhc2ggIiYjeDIwMTA7Ij48IUVOVElUWSBuZGFzaCAiJiN4MjAxMzsiPjwhRU5USVRZIG1kYXNoICImI3gyMDE0OyI%2BPCFFTlRJVFkgaG9yYmFyICImI3gyMDE1OyI%2BPCFFTlRJVFkgVmVyYmFyICImI3gyMDE2OyI%2BPCFFTlRJVFkgVmVydCAiJiN4MjAxNjsiPjwhRU5USVRZIGxzcXVvICImI3gyMDE4OyI%2BPCFFTlRJVFkgT3BlbkN1cmx5UXVvdGUgIiYjeDIwMTg7Ij48IUVOVElUWSByc3F1byAiJiN4MjAxOTsiPjwhRU5USVRZIHJzcXVvciAiJiN4MjAxOTsiPjwhRU5USVRZIENsb3NlQ3VybHlRdW90ZSAiJiN4MjAxOTsiPjwhRU5USVRZIGxzcXVvciAiJiN4MjAxQTsiPjwhRU5USVRZIHNicXVvICImI3gyMDFBOyI%2BPCFFTlRJVFkgbGRxdW8gIiYjeDIwMUM7Ij48IUVOVElUWSBPcGVuQ3VybHlEb3VibGVRdW90ZSAiJiN4MjAxQzsiPjwhRU5USVRZIHJkcXVvICImI3gyMDFEOyI%2BPCFFTlRJVFkgcmRxdW9yICImI3gyMDFEOyI%2BPCFFTlRJVFkgQ2xvc2VDdXJseURvdWJsZVF1b3RlICImI3gyMDFEOyI%2BPCFFTlRJVFkgbGRxdW9yICImI3gyMDFFOyI%2BPCFFTlRJVFkgYmRxdW8gIiYjeDIwMUU7Ij48IUVOVElUWSBkYWdnZXIgIiYjeDIwMjA7Ij48IUVOVElUWSBEYWdnZXIgIiYjeDIwMjE7Ij48IUVOVElUWSBkZGFnZ2VyICImI3gyMDIxOyI%2BPCFFTlRJVFkgYnVsbCAiJiN4MjAyMjsiPjwhRU5USVRZIGJ1bGxldCAiJiN4MjAyMjsiPjwhRU5USVRZIG5sZHIgIiYjeDIwMjU7Ij48IUVOVElUWSBoZWxsaXAgIiYjeDIwMjY7Ij48IUVOVElUWSBtbGRyICImI3gyMDI2OyI%2BPCFFTlRJVFkgcGVybWlsICImI3gyMDMwOyI%2BPCFFTlRJVFkgcGVydGVuayAiJiN4MjAzMTsiPjwhRU5USVRZIHByaW1lICImI3gyMDMyOyI%2BPCFFTlRJVFkgUHJpbWUgIiYjeDIwMzM7Ij48IUVOVElUWSB0cHJpbWUgIiYjeDIwMzQ7Ij48IUVOVElUWSBicHJpbWUgIiYjeDIwMzU7Ij48IUVOVElUWSBiYWNrcHJpbWUgIiYjeDIwMzU7Ij48IUVOVElUWSBsc2FxdW8gIiYjeDIwMzk7Ij48IUVOVElUWSByc2FxdW8gIiYjeDIwM0E7Ij48IUVOVElUWSBvbGluZSAiJiN4MjAzRTsiPjwhRU5USVRZIE92ZXJCYXIgIiYjeDIwM0U7Ij48IUVOVElUWSBjYXJldCAiJiN4MjA0MTsiPjwhRU5USVRZIGh5YnVsbCAiJiN4MjA0MzsiPjwhRU5USVRZIGZyYXNsICImI3gyMDQ0OyI%2BPCFFTlRJVFkgYnNlbWkgIiYjeDIwNEY7Ij48IUVOVElUWSBxcHJpbWUgIiYjeDIwNTc7Ij48IUVOVElUWSBNZWRpdW1TcGFjZSAiJiN4MjA1RjsiPjwhRU5USVRZIFRoaWNrU3BhY2UgIiYjeDIwNUY7JiN4MjAwQTsiPjwhRU5USVRZIE5vQnJlYWsgIiYjeDIwNjA7Ij48IUVOVElUWSBBcHBseUZ1bmN0aW9uICImI3gyMDYxOyI%2BPCFFTlRJVFkgYWYgIiYjeDIwNjE7Ij48IUVOVElUWSBJbnZpc2libGVUaW1lcyAiJiN4MjA2MjsiPjwhRU5USVRZIGl0ICImI3gyMDYyOyI%2BPCFFTlRJVFkgSW52aXNpYmxlQ29tbWEgIiYjeDIwNjM7Ij48IUVOVElUWSBpYyAiJiN4MjA2MzsiPjwhRU5USVRZIGV1cm8gIiYjeDIwQUM7Ij48IUVOVElUWSB0ZG90ICImI3gyMERCOyI%2BPCFFTlRJVFkgVHJpcGxlRG90ICImI3gyMERCOyI%2BPCFFTlRJVFkgRG90RG90ICImI3gyMERDOyI%2BPCFFTlRJVFkgQ29wZiAiJiN4MjEwMjsiPjwhRU5USVRZIGNvbXBsZXhlcyAiJiN4MjEwMjsiPjwhRU5USVRZIGluY2FyZSAiJiN4MjEwNTsiPjwhRU5USVRZIGdzY3IgIiYjeDIxMEE7Ij48IUVOVElUWSBoYW1pbHQgIiYjeDIxMEI7Ij48IUVOVElUWSBIaWxiZXJ0U3BhY2UgIiYjeDIxMEI7Ij48IUVOVElUWSBIc2NyICImI3gyMTBCOyI%2BPCFFTlRJVFkgSGZyICImI3gyMTBDOyI%2BPCFFTlRJVFkgUG9pbmNhcmVwbGFuZSAiJiN4MjEwQzsiPjwhRU5USVRZIHF1YXRlcm5pb25zICImI3gyMTBEOyI%2BPCFFTlRJVFkgSG9wZiAiJiN4MjEwRDsiPjwhRU5USVRZIHBsYW5ja2ggIiYjeDIxMEU7Ij48IUVOVElUWSBwbGFuY2sgIiYjeDIxMEY7Ij48IUVOVElUWSBoYmFyICImI3gyMTBGOyI%2BPCFFTlRJVFkgcGxhbmt2ICImI3gyMTBGOyI%2BPCFFTlRJVFkgaHNsYXNoICImI3gyMTBGOyI%2BPCFFTlRJVFkgSXNjciAiJiN4MjExMDsiPjwhRU5USVRZIGltYWdsaW5lICImI3gyMTEwOyI%2BPCFFTlRJVFkgaW1hZ2UgIiYjeDIxMTE7Ij48IUVOVElUWSBJbSAiJiN4MjExMTsiPjwhRU5USVRZIGltYWdwYXJ0ICImI3gyMTExOyI%2BPCFFTlRJVFkgSWZyICImI3gyMTExOyI%2BPCFFTlRJVFkgTHNjciAiJiN4MjExMjsiPjwhRU5USVRZIGxhZ3JhbiAiJiN4MjExMjsiPjwhRU5USVRZIExhcGxhY2V0cmYgIiYjeDIxMTI7Ij48IUVOVElUWSBlbGwgIiYjeDIxMTM7Ij48IUVOVElUWSBOb3BmICImI3gyMTE1OyI%2BPCFFTlRJVFkgbmF0dXJhbHMgIiYjeDIxMTU7Ij48IUVOVElUWSBudW1lcm8gIiYjeDIxMTY7Ij48IUVOVElUWSBjb3B5c3IgIiYjeDIxMTc7Ij48IUVOVElUWSB3ZWllcnAgIiYjeDIxMTg7Ij48IUVOVElUWSB3cCAiJiN4MjExODsiPjwhRU5USVRZIFBvcGYgIi
YjeDIxMTk7Ij48IUVOVElUWSBwcmltZXMgIiYjeDIxMTk7Ij48IUVOVElUWSByYXRpb25hbHMgIiYjeDIxMUE7Ij48IUVOVElUWSBRb3BmICImI3gyMTFBOyI%2BPCFFTlRJVFkgUnNjciAiJiN4MjExQjsiPjwhRU5USVRZIHJlYWxpbmUgIiYjeDIxMUI7Ij48IUVOVElUWSByZWFsICImI3gyMTFDOyI%2BPCFFTlRJVFkgUmUgIiYjeDIxMUM7Ij48IUVOVElUWSByZWFscGFydCAiJiN4MjExQzsiPjwhRU5USVRZIFJmciAiJiN4MjExQzsiPjwhRU5USVRZIHJlYWxzICImI3gyMTFEOyI%2BPCFFTlRJVFkgUm9wZiAiJiN4MjExRDsiPjwhRU5USVRZIHJ4ICImI3gyMTFFOyI%2BPCFFTlRJVFkgdHJhZGUgIiYjeDIxMjI7Ij48IUVOVElUWSBUUkFERSAiJiN4MjEyMjsiPjwhRU5USVRZIGludGVnZXJzICImI3gyMTI0OyI%2BPCFFTlRJVFkgWm9wZiAiJiN4MjEyNDsiPjwhRU5USVRZIG1obyAiJiN4MjEyNzsiPjwhRU5USVRZIFpmciAiJiN4MjEyODsiPjwhRU5USVRZIHplZXRyZiAiJiN4MjEyODsiPjwhRU5USVRZIGlpb3RhICImI3gyMTI5OyI%2BPCFFTlRJVFkgYmVybm91ICImI3gyMTJDOyI%2BPCFFTlRJVFkgQmVybm91bGxpcyAiJiN4MjEyQzsiPjwhRU5USVRZIEJzY3IgIiYjeDIxMkM7Ij48IUVOVElUWSBDZnIgIiYjeDIxMkQ7Ij48IUVOVElUWSBDYXlsZXlzICImI3gyMTJEOyI%2BPCFFTlRJVFkgZXNjciAiJiN4MjEyRjsiPjwhRU5USVRZIEVzY3IgIiYjeDIxMzA7Ij48IUVOVElUWSBleHBlY3RhdGlvbiAiJiN4MjEzMDsiPjwhRU5USVRZIEZzY3IgIiYjeDIxMzE7Ij48IUVOVElUWSBGb3VyaWVydHJmICImI3gyMTMxOyI%2BPCFFTlRJVFkgcGhtbWF0ICImI3gyMTMzOyI%2BPCFFTlRJVFkgTWVsbGludHJmICImI3gyMTMzOyI%2BPCFFTlRJVFkgTXNjciAiJiN4MjEzMzsiPjwhRU5USVRZIG9yZGVyICImI3gyMTM0OyI%2BPCFFTlRJVFkgb3JkZXJvZiAiJiN4MjEzNDsiPjwhRU5USVRZIG9zY3IgIiYjeDIxMzQ7Ij48IUVOVElUWSBhbGVmc3ltICImI3gyMTM1OyI%2BPCFFTlRJVFkgYWxlcGggIiYjeDIxMzU7Ij48IUVOVElUWSBiZXRoICImI3gyMTM2OyI%2BPCFFTlRJVFkgZ2ltZWwgIiYjeDIxMzc7Ij48IUVOVElUWSBkYWxldGggIiYjeDIxMzg7Ij48IUVOVElUWSBDYXBpdGFsRGlmZmVyZW50aWFsRCAiJiN4MjE0NTsiPjwhRU5USVRZIEREICImI3gyMTQ1OyI%2BPCFFTlRJVFkgRGlmZmVyZW50aWFsRCAiJiN4MjE0NjsiPjwhRU5USVRZIGRkICImI3gyMTQ2OyI%2BPCFFTlRJVFkgRXhwb25lbnRpYWxFICImI3gyMTQ3OyI%2BPCFFTlRJVFkgZXhwb25lbnRpYWxlICImI3gyMTQ3OyI%2BPCFFTlRJVFkgZWUgIiYjeDIxNDc7Ij48IUVOVElUWSBJbWFnaW5hcnlJICImI3gyMTQ4OyI%2BPCFFTlRJVFkgaWkgIiYjeDIxNDg7Ij48IUVOVElUWSBmcmFjMTMgIiYjeDIxNTM7Ij48IUVOVElUWSBmcmFjMjMgIiYjeDIxNTQ7Ij48IUVOVElUWSBmcmFjMTUgIiYjeDIxNTU7Ij48IUVOVElUWSBmcmFjMjUgIiYjeDIxNTY7Ij48IUVOVElUWSBmcmFjMzUgIiYjeDIxNTc7Ij48IUVOVElUWSBmcmFjNDUgIiYjeDIxNTg7Ij48IUVOVElUWSBmcmFjMTYgIiYjeDIxNTk7Ij48IUVOVElUWSBmcmFjNTYgIiYjeDIxNUE7Ij48IUVOVElUWSBmcmFjMTggIiYjeDIxNUI7Ij48IUVOVElUWSBmcmFjMzggIiYjeDIxNUM7Ij48IUVOVElUWSBmcmFjNTggIiYjeDIxNUQ7Ij48IUVOVElUWSBmcmFjNzggIiYjeDIxNUU7Ij48IUVOVElUWSBsYXJyICImI3gyMTkwOyI%2BPCFFTlRJVFkgbGVmdGFycm93ICImI3gyMTkwOyI%2BPCFFTlRJVFkgTGVmdEFycm93ICImI3gyMTkwOyI%2BPCFFTlRJVFkgc2xhcnIgIiYjeDIxOTA7Ij48IUVOVElUWSBTaG9ydExlZnRBcnJvdyAiJiN4MjE5MDsiPjwhRU5USVRZIHVhcnIgIiYjeDIxOTE7Ij48IUVOVElUWSB1cGFycm93ICImI3gyMTkxOyI%2BPCFFTlRJVFkgVXBBcnJvdyAiJiN4MjE5MTsiPjwhRU5USVRZIFNob3J0VXBBcnJvdyAiJiN4MjE5MTsiPjwhRU5USVRZIHJhcnIgIiYjeDIxOTI7Ij48IUVOVElUWSByaWdodGFycm93ICImI3gyMTkyOyI%2BPCFFTlRJVFkgUmlnaHRBcnJvdyAiJiN4MjE5MjsiPjwhRU5USVRZIHNyYXJyICImI3gyMTkyOyI%2BPCFFTlRJVFkgU2hvcnRSaWdodEFycm93ICImI3gyMTkyOyI%2BPCFFTlRJVFkgZGFyciAiJiN4MjE5MzsiPjwhRU5USVRZIGRvd25hcnJvdyAiJiN4MjE5MzsiPjwhRU5USVRZIERvd25BcnJvdyAiJiN4MjE5MzsiPjwhRU5USVRZIFNob3J0RG93bkFycm93ICImI3gyMTkzOyI%2BPCFFTlRJVFkgaGFyciAiJiN4MjE5NDsiPjwhRU5USVRZIGxlZnRyaWdodGFycm93ICImI3gyMTk0OyI%2BPCFFTlRJVFkgTGVmdFJpZ2h0QXJyb3cgIiYjeDIxOTQ7Ij48IUVOVElUWSB2YXJyICImI3gyMTk1OyI%2BPCFFTlRJVFkgdXBkb3duYXJyb3cgIiYjeDIxOTU7Ij48IUVOVElUWSBVcERvd25BcnJvdyAiJiN4MjE5NTsiPjwhRU5USVRZIG53YXJyICImI3gyMTk2OyI%2BPCFFTlRJVFkgVXBwZXJMZWZ0QXJyb3cgIiYjeDIxOTY7Ij48IUVOVElUWSBud2Fycm93ICImI3gyMTk2OyI%2BPCFFTlRJVFkgbmVhcnIgIiYjeDIxOTc7Ij48IUVOVElUWSBVcHBlclJpZ2h0QXJyb3cgIiYjeDIxOTc7Ij48IUVOVElUWSBuZWFycm93ICImI3gyMTk3OyI%2BPCFFTlRJVFkgc2VhcnIgIiYjeDIxOTg7Ij48IUVOVElUWSBzZWFycm93ICImI3gyMTk4OyI%2BPCFFTlRJVFkgTG93ZXJSaWdodEFycm93ICImI3gyMTk4OyI%2BPCFFTlRJVFkgc3dhcnIgIiYjeDIxOTk7Ij48IUVOVElUWSBzd2Fycm93ICImI3gyMTk5OyI%2BPCFFTlRJVFkgTG93ZXJMZWZ0QXJyb3cgIiYjeDIxOTk7Ij48IUVOVElUWSBubGFyciAiJiN4MjE5QTsiPjwhRU5USVRZIG5sZWZ0YXJyb3cgIiYjeDIxOUE7Ij48IUVOVElUWSBucmFyciAiJiN4MjE5QjsiPjwhRU5USVRZIG5yaWdodGFycm93ICImI3gyMTlCOyI%2BPCFFTlRJVFkgcmFycncgIiYjeDIxOUQ7Ij48IUVOVElUWSByaWdodHNxdWlnYXJyb3cgIiYjeDIxOUQ7Ij48IUVOVElUWSBucmFycncgIiYjeDIxOUQ7JiN4MzM4OyI%2BPCFFTlRJVFkgTGFyciAiJiN4MjE5RTsiPjwhRU5USVRZIHR3b2hlYWRsZWZ0YXJyb3cgIiYjeDIxOUU7Ij48IUVOVElUWSBVYXJyICImI3gyMTlGOyI%2BPCFFTlRJVFkgUmFyciAiJiN4MjFBMDsiPjwhRU5USVRZIHR3b2hlYWRyaWdodGFycm93ICImI3gyMUEwOyI%2BPCFFTlRJVFkgRGFyciAiJiN4MjFBMTsiPjwhRU5USVRZIGxhcnJ0bCAiJiN4MjFBMjsiPjwhRU5USVRZIGxlZnRhcnJvd3RhaWwgIiYjeDIxQTI7Ij48IUVOVElUWSByYXJydGwgIiYjeDIxQTM7Ij48IUVOVElUWSByaWdodGFycm93dGFpbCAiJiN4MjFBMzsiPjwhRU5USVRZIExlZnRUZWVBcnJvdyAiJiN4MjFBNDsiPjwhRU5USVRZIG1hcHN0b2xlZnQgIiYjeDIxQTQ7Ij48IUVOVElUWSBVcFRlZUFycm93ICImI3gyMUE1OyI%2BPCFFTlRJVFkgbWFwc3RvdXAgIiYjeDIxQTU7Ij48IUVOVElUWSBtYXAgIiYjeDIxQTY7Ij48IUVOVElUWSBSaWdodFRlZUFycm93ICImI3gyMUE2OyI%2BPCFFTlRJVFkgbWFwc3RvICImI3gyMUE2OyI%2BPCFFTlRJVFkgRG93blRlZUFycm93ICImI3gyMUE3OyI%2BPCFFTlRJVFkgbWFwc3RvZG93biAiJiN4MjFBNzsiPjwhRU5USVRZIGxhcnJoayAiJiN4MjFBOTsiPjwhRU5USVRZIGhvb2tsZWZ0YXJyb3cgIiYjeDIxQTk7Ij48IUVOVElUWSByYXJyaGsgIiYjeDIxQUE7Ij48IUVOVElUWSBob29rcmlnaHRhcnJvdyAiJiN4MjFBQTsiPjwhRU5USVRZIGxhcnJscCAiJiN4MjFBQjsiPjwhRU5USVRZIGxvb3BhcnJvd2xlZnQgIiYjeDIxQUI7Ij48IUVOVElUWSByYXJybHAgIiYjeDIxQUM7Ij48IUVOVElUWSBsb29wYXJyb3dyaWdodCAiJiN4MjFBQzsiPjwhRU5USVRZIGhhcnJ3ICImI3gyMUFEOyI%2BPCFFTlRJVFkgbGVmdHJpZ2h0c3F1aWdhcnJvdyAiJiN4MjFBRDsiPjwhRU5USVRZIG5oYXJyICImI3gyMUFFOyI%2BPCFFTlRJVFkgbmxlZnRyaWdodGFycm93ICImI3gyMUFFOyI%2BPCFFTlRJVFkgbHNoICImI3gyMUIwOyI%2BPCFFTlRJVFkgTHNoICImI3gyMUIwOyI%2BPCFFTlRJVFkgcnNoICImI3gyMUIxOyI%2BPCFFTlRJVFkgUnNoICImI3gyMUIxOyI%2BPCFFTlRJVFkgbGRzaCAiJiN4MjFCMjsiPjwhRU5USVRZIHJkc2ggIiYjeDIxQjM7Ij48IUVOVElUWSBjcmFyciAiJiN4MjFCNTsiPjwhRU5USVRZIGN1bGFyciAiJiN4MjFCNjsiPjwhRU5USVRZIGN1cnZlYXJyb3dsZWZ0ICImI3gyMUI2OyI%2BPCFFTlRJVFkgY3VyYXJyICImI3gyMUI3OyI%2BPCFFTlRJVFkgY3VydmVhcnJvd3JpZ2h0ICImI3gyMUI3OyI%2BPCFFTlRJVFkgb2xhcnIgIiYjeDIxQkE7Ij48IUVOVElUWSBjaXJjbGVhcnJvd2xlZnQgIiYjeDIxQkE7Ij48IUVOVElUWSBvcmFyciAiJiN4MjFCQjsiPjwhRU5USVRZIGNpcmNsZWFycm93cmlnaHQgIiYjeDIxQkI7Ij48IUVOVElUWSBsaGFydSAiJiN4MjFCQzsiPjwhRU5USVRZIExlZnRWZWN0b3IgIiYjeDIxQkM7Ij48IUVOVElUWSBsZWZ0aGFycG9vbnVwICImI3gyMUJDOyI%2BPCFFTlRJVFkgbGhhcmQgIiYjeDIxQkQ7Ij48IUVOVElUWSBsZWZ0aGFycG9vbmRvd24gIiYjeDIxQkQ7Ij48IUVOVElUWSBEb3duTGVmdFZlY3RvciAiJiN4MjFCRDsiPjwhRU5USVRZIHVoYXJyICImI3gyMUJFOyI%2BPCFFTlRJVFkgdXBoYXJwb29ucmlnaHQgIiYjeDIxQkU7Ij48IUVOVElUWSBSaWdodFVwVmVjdG9yICImI3gyMUJFOyI%2BPCFFTlRJVFkgdWhhcmwgIiYjeDIxQkY7Ij48IUVOVElUWSB1cGhhcnBvb25sZWZ0ICImI3gyMUJGOyI%2BPCFFTlRJVFkgTGVmdFVwVmVjdG9yICImI3gyMUJGOyI%2BPCFFTlRJVFkgcmhhcnUgIiYjeDIxQzA7Ij48IUVOVElUWSBSaWdodFZlY3RvciAiJiN4MjFDMDsiPjwhRU5USVRZIHJpZ2h0aGFycG9vbnVwICImI3gyMUMwOyI%2BPCFFTlRJVFkgcmhhcmQgIiYjeDIxQzE7Ij48IUVOVElUWSByaWdodGhhcnBvb25kb3duICImI3gyMUMxOyI%2BPCFFTlRJVFkgRG93blJpZ2h0VmVjdG9yICImI3gyMUMxOyI%2BPCFFTlRJVFkgZGhhcnIgIiYjeDIxQzI7Ij48IUVOVElUWSBSaWdodERvd25WZWN0b3IgIiYjeDIxQzI7Ij48IUVOVElUWSBkb3duaGFycG9vbnJpZ2h0ICImI3gyMUMyOyI%2BPCFFTlRJVFkgZGhhcmwgIiYjeDIxQzM7Ij48IUVOVElUWSBMZWZ0RG93blZlY3RvciAiJiN4MjFDMzsiPjwhRU5USVRZIGRvd25oYXJwb29ubGVmdCAiJiN4MjFDMzsiPjwhRU5USVRZIHJsYXJyICImI3gyMUM0OyI%2BPCFFTlRJVFkgcmlnaHRsZWZ0YXJyb3dzICImI3gyMUM0OyI%2BPCFFTlRJVFkgUmlnaHRBcnJvd0xlZnRBcnJvdyAiJiN4MjFDNDsiPjwhRU5USVRZIHVkYXJyICImI3gyMUM1OyI%2BPCFFTlRJVFkgVXBBcnJvd0Rvd25BcnJvdyAiJiN4MjFDNTsiPjwhRU5USVRZIGxyYXJyICImI3gyMUM2OyI%2BPCFFTlRJVFkgbGVmdHJpZ2h0YXJyb3dzICImI3gyMUM2OyI%2BPCFFTlRJVFkgTGVmdEFycm93UmlnaHRBcnJvdyAiJiN4MjFDNjsiPjwhRU5USVRZIGxsYXJyICImI3gyMUM3OyI%2BPCFFTlRJVFkgbGVmdGxlZnRhcnJvd3MgIiYjeDIxQzc7Ij48IUVOVElUWSB1dWFyciAiJiN4MjFDODsiPjwhRU5USVRZIHVwdXBhcnJvd3MgIiYjeDIxQzg7Ij48IUVOVElUWSBycmFyciAiJiN4MjFDOTsiPjwhRU5USVRZIHJpZ2h0cmlnaHRhcnJvd3MgIiYjeDIxQzk7Ij48IUVOVElUWSBkZGFyciAiJiN4MjFDQTsiPjwhRU5USVRZIGRvd25kb3duYXJyb3dzICImI3gyMUNBOyI%2BPCFFTlRJVFkgbHJoYXIgIiYjeDIxQ0I7Ij48IUVOVElUWSBSZXZlcnNlRXF1aWxpYnJpdW0gIiYjeDIxQ0I7Ij48IUVOVElUWSBsZWZ0cmlnaHRoYXJwb29ucyAiJiN4MjFDQjsiPjwhRU5USVRZIHJsaGFyICImI3gyMUNDOyI%2BPCFFTlRJVFkgcmlnaHRsZWZ0aGFycG9vbnMgIiYjeDIxQ0M7Ij48IUVOVElUWSBFcXVpbGlicml1bSAiJiN4MjFDQzsiPjwhRU5USVRZIG5sQXJyICImI3gyMUNEOyI%2BPCFFTlRJVFkgbkxlZnRhcnJvdyAiJiN4MjFDRDsiPjwhRU5USVRZIG5oQXJyICImI3gyMUNFOyI%2BPCFFTlRJVFkgbkxlZnRyaWdodGFycm93ICImI3gyMUNFOyI%2BPCFFTlRJVFkgbnJBcnIgIiYjeDIxQ0Y7Ij48IUVOVElUWSBuUmlnaHRhcnJvdyAiJiN4MjFDRjsiPjwhRU5USVRZIGxBcnIgIiYjeDIxRDA7Ij48IUVOVElUWSBMZWZ0YXJyb3cgIiYjeDIxRDA7Ij48IUVOVElUWSBEb3VibGVMZWZ0QXJyb3cgIiYjeDIxRDA7Ij48IUVOVElUWSB1QXJyICImI3gyMUQxOyI%2BPCFFTlRJVFkgVXBhcnJvdyAiJiN4MjFEMTsiPjwhRU5USVRZIERvdWJsZVVwQXJyb3cgIiYjeDIxRDE7Ij48IUVOVElUWSByQXJyICImI3gyMUQyOyI%2BPCFFTlRJVFkgUmlnaHRhcnJvdyAiJiN4MjFEMjsiPjwhRU5USVRZIEltcGxpZXMgIiYjeDIxRDI7Ij48IUVOVElUWSBEb3VibGVSaWdodEFycm93ICImI3gyMUQyOyI%2BPCFFTlRJVFkgZEFyciAiJiN4MjFEMzsiPjwhRU5USVRZIERvd25hcnJvdyAiJiN4MjFEMzsiPjwhRU5USVRZIERvdWJsZURvd25BcnJvdyAiJiN4MjFEMzsiPjwhRU5USVRZIGhBcnIgIiYjeDIxRDQ7Ij48IUVOVElUWSBMZWZ0cmlnaHRhcnJvdyAiJiN4MjFENDsiPjwhRU5USVRZIERvdWJsZUxlZnRSaWdodEFycm93ICImI3gyMUQ0OyI%2BPCFFTlRJVFkgaWZmICImI3gyMUQ0OyI%2BPCFFTlRJVFkgdkFyciAiJiN4MjFENTsiPjwhRU5USVRZIFVwZG93bmFycm93ICImI3gyMUQ1OyI%2BPCFFTlRJVFkgRG91YmxlVXBEb3duQXJyb3cgIiYjeDIxRDU7Ij48IUVOVElUWSBud0FyciAiJiN4MjFENjsiPjwhRU5USVRZIG5lQXJyICImI3gyMUQ3OyI%2BPCFFTlRJVFkgc2VBcnIgIiYjeDIxRDg7Ij48IUVOVElUWSBzd0FyciAiJiN4MjFEOTsiPjwhRU5USVRZIGxBYXJyICImI3gyMURBOyI%2BPCFFTlRJVFkgTGxlZnRhcnJvdyAiJiN4MjFEQTsiPjwhRU5USVRZIHJBYXJyICImI3gyMURCOyI%2BPCFFTlRJVFkgUnJpZ2h0YXJyb3cgIiYjeDIxREI7Ij48IUVOVElUWSB6aWdyYXJyICImI3gyMUREOyI%2BPCFFTlRJVFkgbGFycmIgIiYjeDIxRTQ7Ij48IUVOVElUWSBMZWZ0QXJyb3dCYXIgIiYjeDIxRTQ7Ij48IUVOVElUWSByYXJyYiAiJiN4MjFFNTsiPjwhRU5USVRZIFJpZ2h0QXJyb3dCYXIgIiYjeDIxRTU7Ij48IUVOVElUWSBkdWFyciAiJiN4MjFGNTsiPjwhRU5USVRZIERvd25BcnJvd1VwQXJyb3cgIiYjeDIxRjU7Ij48IUVOVElUWSBsb2FyciAiJiN4MjFGRDsiPjwhRU5USVRZIHJvYXJyICImI3gyMUZFOyI%2BPCFFTlRJVFkgaG9hcnIgIiYjeDIxRkY7Ij48IUVOVElUWSBmb3JhbGwgIiYjeDIyMDA7Ij48IUVOVElUWSBGb3JBbGwgIiYjeDIyMDA7Ij48IUVOVElUWSBjb21wICImI3gyMjAxOyI%2BPCFFTlRJVFkgY29tcGxlbWVudCAiJiN4MjIwMTsiPjwhRU5USVRZIHBhcnQgIiYjeDIyMDI7Ij48IUVOVElUWSBQYXJ0aWFsRCAiJiN4MjIwMjsiPjwhRU5USVRZIG5wYXJ0ICImI3gyMjAyOyYjeDMzODsiPjwhRU5USVRZIGV4aXN0ICImI3gyMjAzOyI%2BPCFFTlRJVFkgRXhpc3RzICImI3gyMjAzOyI%2BPCFFTlRJVFkgbmV4aXN0ICImI3gyMjA0
OyI%2BPCFFTlRJVFkgTm90RXhpc3RzICImI3gyMjA0OyI%2BPCFFTlRJVFkgbmV4aXN0cyAiJiN4MjIwNDsiPjwhRU5USVRZIGVtcHR5ICImI3gyMjA1OyI%2BPCFFTlRJVFkgZW1wdHlzZXQgIiYjeDIyMDU7Ij48IUVOVElUWSBlbXB0eXYgIiYjeDIyMDU7Ij48IUVOVElUWSB2YXJub3RoaW5nICImI3gyMjA1OyI%2BPCFFTlRJVFkgbmFibGEgIiYjeDIyMDc7Ij48IUVOVElUWSBEZWwgIiYjeDIyMDc7Ij48IUVOVElUWSBpc2luICImI3gyMjA4OyI%2BPCFFTlRJVFkgaXNpbnYgIiYjeDIyMDg7Ij48IUVOVElUWSBFbGVtZW50ICImI3gyMjA4OyI%2BPCFFTlRJVFkgaW4gIiYjeDIyMDg7Ij48IUVOVElUWSBub3RpbiAiJiN4MjIwOTsiPjwhRU5USVRZIE5vdEVsZW1lbnQgIiYjeDIyMDk7Ij48IUVOVElUWSBub3RpbnZhICImI3gyMjA5OyI%2BPCFFTlRJVFkgbml2ICImI3gyMjBCOyI%2BPCFFTlRJVFkgUmV2ZXJzZUVsZW1lbnQgIiYjeDIyMEI7Ij48IUVOVElUWSBuaSAiJiN4MjIwQjsiPjwhRU5USVRZIFN1Y2hUaGF0ICImI3gyMjBCOyI%2BPCFFTlRJVFkgbm90bmkgIiYjeDIyMEM7Ij48IUVOVElUWSBub3RuaXZhICImI3gyMjBDOyI%2BPCFFTlRJVFkgTm90UmV2ZXJzZUVsZW1lbnQgIiYjeDIyMEM7Ij48IUVOVElUWSBwcm9kICImI3gyMjBGOyI%2BPCFFTlRJVFkgUHJvZHVjdCAiJiN4MjIwRjsiPjwhRU5USVRZIGNvcHJvZCAiJiN4MjIxMDsiPjwhRU5USVRZIENvcHJvZHVjdCAiJiN4MjIxMDsiPjwhRU5USVRZIHN1bSAiJiN4MjIxMTsiPjwhRU5USVRZIFN1bSAiJiN4MjIxMTsiPjwhRU5USVRZIG1pbnVzICImI3gyMjEyOyI%2BPCFFTlRJVFkgbW5wbHVzICImI3gyMjEzOyI%2BPCFFTlRJVFkgbXAgIiYjeDIyMTM7Ij48IUVOVElUWSBNaW51c1BsdXMgIiYjeDIyMTM7Ij48IUVOVElUWSBwbHVzZG8gIiYjeDIyMTQ7Ij48IUVOVElUWSBkb3RwbHVzICImI3gyMjE0OyI%2BPCFFTlRJVFkgc2V0bW4gIiYjeDIyMTY7Ij48IUVOVElUWSBzZXRtaW51cyAiJiN4MjIxNjsiPjwhRU5USVRZIEJhY2tzbGFzaCAiJiN4MjIxNjsiPjwhRU5USVRZIHNzZXRtbiAiJiN4MjIxNjsiPjwhRU5USVRZIHNtYWxsc2V0bWludXMgIiYjeDIyMTY7Ij48IUVOVElUWSBsb3dhc3QgIiYjeDIyMTc7Ij48IUVOVElUWSBjb21wZm4gIiYjeDIyMTg7Ij48IUVOVElUWSBTbWFsbENpcmNsZSAiJiN4MjIxODsiPjwhRU5USVRZIHJhZGljICImI3gyMjFBOyI%2BPCFFTlRJVFkgU3FydCAiJiN4MjIxQTsiPjwhRU5USVRZIHByb3AgIiYjeDIyMUQ7Ij48IUVOVElUWSBwcm9wdG8gIiYjeDIyMUQ7Ij48IUVOVElUWSBQcm9wb3J0aW9uYWwgIiYjeDIyMUQ7Ij48IUVOVElUWSB2cHJvcCAiJiN4MjIxRDsiPjwhRU5USVRZIHZhcnByb3B0byAiJiN4MjIxRDsiPjwhRU5USVRZIGluZmluICImI3gyMjFFOyI%2BPCFFTlRJVFkgYW5ncnQgIiYjeDIyMUY7Ij48IUVOVElUWSBhbmcgIiYjeDIyMjA7Ij48IUVOVElUWSBhbmdsZSAiJiN4MjIyMDsiPjwhRU5USVRZIG5hbmcgIiYjeDIyMjA7JiN4MjBEMjsiPjwhRU5USVRZIGFuZ21zZCAiJiN4MjIyMTsiPjwhRU5USVRZIG1lYXN1cmVkYW5nbGUgIiYjeDIyMjE7Ij48IUVOVElUWSBhbmdzcGggIiYjeDIyMjI7Ij48IUVOVElUWSBtaWQgIiYjeDIyMjM7Ij48IUVOVElUWSBWZXJ0aWNhbEJhciAiJiN4MjIyMzsiPjwhRU5USVRZIHNtaWQgIiYjeDIyMjM7Ij48IUVOVElUWSBzaG9ydG1pZCAiJiN4MjIyMzsiPjwhRU5USVRZIG5taWQgIiYjeDIyMjQ7Ij48IUVOVElUWSBOb3RWZXJ0aWNhbEJhciAiJiN4MjIyNDsiPjwhRU5USVRZIG5zbWlkICImI3gyMjI0OyI%2BPCFFTlRJVFkgbnNob3J0bWlkICImI3gyMjI0OyI%2BPCFFTlRJVFkgcGFyICImI3gyMjI1OyI%2BPCFFTlRJVFkgcGFyYWxsZWwgIiYjeDIyMjU7Ij48IUVOVElUWSBEb3VibGVWZXJ0aWNhbEJhciAiJiN4MjIyNTsiPjwhRU5USVRZIHNwYXIgIiYjeDIyMjU7Ij48IUVOVElUWSBzaG9ydHBhcmFsbGVsICImI3gyMjI1OyI%2BPCFFTlRJVFkgbnBhciAiJiN4MjIyNjsiPjwhRU5USVRZIG5wYXJhbGxlbCAiJiN4MjIyNjsiPjwhRU5USVRZIE5vdERvdWJsZVZlcnRpY2FsQmFyICImI3gyMjI2OyI%2BPCFFTlRJVFkgbnNwYXIgIiYjeDIyMjY7Ij48IUVOVElUWSBuc2hvcnRwYXJhbGxlbCAiJiN4MjIyNjsiPjwhRU5USVRZIGFuZCAiJiN4MjIyNzsiPjwhRU5USVRZIHdlZGdlICImI3gyMjI3OyI%2BPCFFTlRJVFkgb3IgIiYjeDIyMjg7Ij48IUVOVElUWSB2ZWUgIiYjeDIyMjg7Ij48IUVOVElUWSBjYXAgIiYjeDIyMjk7Ij48IUVOVElUWSBjYXBzICImI3gyMjI5OyYjeEZFMDA7Ij48IUVOVElUWSBjdXAgIiYjeDIyMkE7Ij48IUVOVElUWSBjdXBzICImI3gyMjJBOyYjeEZFMDA7Ij48IUVOVElUWSBpbnQgIiYjeDIyMkI7Ij48IUVOVElUWSBJbnRlZ3JhbCAiJiN4MjIyQjsiPjwhRU5USVRZIEludCAiJiN4MjIyQzsiPjwhRU5USVRZIHRpbnQgIiYjeDIyMkQ7Ij48IUVOVElUWSBpaWludCAiJiN4MjIyRDsiPjwhRU5USVRZIGNvbmludCAiJiN4MjIyRTsiPjwhRU5USVRZIG9pbnQgIiYjeDIyMkU7Ij48IUVOVElUWSBDb250b3VySW50ZWdyYWwgIiYjeDIyMkU7Ij48IUVOVElUWSBDb25pbnQgIiYjeDIyMkY7Ij48IUVOVElUWSBEb3VibGVDb250b3VySW50ZWdyYWwgIiYjeDIyMkY7Ij48IUVOVElUWSBDY29uaW50ICImI3gyMjMwOyI%2BPCFFTlRJVFkgY3dpbnQgIiYjeDIyMzE7Ij48IUVOVElUWSBjd2NvbmludCAiJiN4MjIzMjsiPjwhRU5USVRZIENsb2Nrd2lzZUNvbnRvdXJJbnRlZ3JhbCAiJiN4MjIzMjsiPjwhRU5USVRZIGF3Y29uaW50ICImI3gyMjMzOyI%2BPCFFTlRJVFkgQ291bnRlckNsb2Nrd2lzZUNvbnRvdXJJbnRlZ3JhbCAiJiN4MjIzMzsiPjwhRU5USVRZIHRoZXJlNCAiJiN4MjIzNDsiPjwhRU5USVRZIHRoZXJlZm9yZSAiJiN4MjIzNDsiPjwhRU5USVRZIFRoZXJlZm9yZSAiJiN4MjIzNDsiPjwhRU5USVRZIGJlY2F1cyAiJiN4MjIzNTsiPjwhRU5USVRZIGJlY2F1c2UgIiYjeDIyMzU7Ij48IUVOVElUWSBCZWNhdXNlICImI3gyMjM1OyI%2BPCFFTlRJVFkgcmF0aW8gIiYjeDIyMzY7Ij48IUVOVElUWSBDb2xvbiAiJiN4MjIzNzsiPjwhRU5USVRZIFByb3BvcnRpb24gIiYjeDIyMzc7Ij48IUVOVElUWSBtaW51c2QgIiYjeDIyMzg7Ij48IUVOVElUWSBkb3RtaW51cyAiJiN4MjIzODsiPjwhRU5USVRZIG1ERG90ICImI3gyMjNBOyI%2BPCFFTlRJVFkgaG9tdGh0ICImI3gyMjNCOyI%2BPCFFTlRJVFkgc2ltICImI3gyMjNDOyI%2BPCFFTlRJVFkgVGlsZGUgIiYjeDIyM0M7Ij48IUVOVElUWSB0aGtzaW0gIiYjeDIyM0M7Ij48IUVOVElUWSB0aGlja3NpbSAiJiN4MjIzQzsiPjwhRU5USVRZIG52c2ltICImI3gyMjNDOyYjeDIwRDI7Ij48IUVOVElUWSBic2ltICImI3gyMjNEOyI%2BPCFFTlRJVFkgYmFja3NpbSAiJiN4MjIzRDsiPjwhRU5USVRZIHJhY2UgIiYjeDIyM0Q7JiN4MzMxOyI%2BPCFFTlRJVFkgYWMgIiYjeDIyM0U7Ij48IUVOVElUWSBtc3Rwb3MgIiYjeDIyM0U7Ij48IUVOVElUWSBhY0UgIiYjeDIyM0U7JiN4MzMzOyI%2BPCFFTlRJVFkgYWNkICImI3gyMjNGOyI%2BPCFFTlRJVFkgd3JlYXRoICImI3gyMjQwOyI%2BPCFFTlRJVFkgVmVydGljYWxUaWxkZSAiJiN4MjI0MDsiPjwhRU5USVRZIHdyICImI3gyMjQwOyI%2BPCFFTlRJVFkgbnNpbSAiJiN4MjI0MTsiPjwhRU5USVRZIE5vdFRpbGRlICImI3gyMjQxOyI%2BPCFFTlRJVFkgZXNpbSAiJiN4MjI0MjsiPjwhRU5USVRZIEVxdWFsVGlsZGUgIiYjeDIyNDI7Ij48IUVOVElUWSBlcXNpbSAiJiN4MjI0MjsiPjwhRU5USVRZIE5vdEVxdWFsVGlsZGUgIiYjeDIyNDI7JiN4MzM4OyI%2BPCFFTlRJVFkgbmVzaW0gIiYjeDIyNDI7JiN4MzM4OyI%2BPCFFTlRJVFkgc2ltZSAiJiN4MjI0MzsiPjwhRU5USVRZIFRpbGRlRXF1YWwgIiYjeDIyNDM7Ij48IUVOVElUWSBzaW1lcSAiJiN4MjI0MzsiPjwhRU5USVRZIG5zaW1lICImI3gyMjQ0OyI%2BPCFFTlRJVFkgbnNpbWVxICImI3gyMjQ0OyI%2BPCFFTlRJVFkgTm90VGlsZGVFcXVhbCAiJiN4MjI0NDsiPjwhRU5USVRZIGNvbmcgIiYjeDIyNDU7Ij48IUVOVElUWSBUaWxkZUZ1bGxFcXVhbCAiJiN4MjI0NTsiPjwhRU5USVRZIHNpbW5lICImI3gyMjQ2OyI%2BPCFFTlRJVFkgbmNvbmcgIiYjeDIyNDc7Ij48IUVOVElUWSBOb3RUaWxkZUZ1bGxFcXVhbCAiJiN4MjI0NzsiPjwhRU5USVRZIGFzeW1wICImI3gyMjQ4OyI%2BPCFFTlRJVFkgYXAgIiYjeDIyNDg7Ij48IUVOVElUWSBUaWxkZVRpbGRlICImI3gyMjQ4OyI%2BPCFFTlRJVFkgYXBwcm94ICImI3gyMjQ4OyI%2BPCFFTlRJVFkgdGhrYXAgIiYjeDIyNDg7Ij48IUVOVElUWSB0aGlja2FwcHJveCAiJiN4MjI0ODsiPjwhRU5USVRZIG5hcCAiJiN4MjI0OTsiPjwhRU5USVRZIE5vdFRpbGRlVGlsZGUgIiYjeDIyNDk7Ij48IUVOVElUWSBuYXBwcm94ICImI3gyMjQ5OyI%2BPCFFTlRJVFkgYXBlICImI3gyMjRBOyI%2BPCFFTlRJVFkgYXBwcm94ZXEgIiYjeDIyNEE7Ij48IUVOVElUWSBhcGlkICImI3gyMjRCOyI%2BPCFFTlRJVFkgbmFwaWQgIiYjeDIyNEI7JiN4MzM4OyI%2BPCFFTlRJVFkgYmNvbmcgIiYjeDIyNEM7Ij48IUVOVElUWSBiYWNrY29uZyAiJiN4MjI0QzsiPjwhRU5USVRZIGFzeW1wZXEgIiYjeDIyNEQ7Ij48IUVOVElUWSBDdXBDYXAgIiYjeDIyNEQ7Ij48IUVOVElUWSBudmFwICImI3gyMjREOyYjeDIwRDI7Ij48IUVOVElUWSBidW1wICImI3gyMjRFOyI%2BPCFFTlRJVFkgSHVtcERvd25IdW1wICImI3gyMjRFOyI%2BPCFFTlRJVFkgQnVtcGVxICImI3gyMjRFOyI%2BPCFFTlRJVFkgTm90SHVtcERvd25IdW1wICImI3gyMjRFOyYjeDMzODsiPjwhRU5USVRZIG5idW1wICImI3gyMjRFOyYjeDMzODsiPjwhRU5USVRZIGJ1bXBlICImI3gyMjRGOyI%2BPCFFTlRJVFkgSHVtcEVxdWFsICImI3gyMjRGOyI%2BPCFFTlRJVFkgYnVtcGVxICImI3gyMjRGOyI%2BPCFFTlRJVFkgbmJ1bXBlICImI3gyMjRGOyYjeDMzODsiPjwhRU5USVRZIE5vdEh1bXBFcXVhbCAiJiN4MjI0RjsmI3gzMzg7Ij48IUVOVElUWSBlc2RvdCAiJiN4MjI1MDsiPjwhRU5USVRZIERvdEVxdWFsICImI3gyMjUwOyI%2BPCFFTlRJVFkgZG90ZXEgIiYjeDIyNTA7Ij48IUVOVElUWSBuZWRvdCAiJiN4MjI1MDsmI3gzMzg7Ij48IUVOVElUWSBlRG90ICImI3gyMjUxOyI%2BPCFFTlRJVFkgZG90ZXFkb3QgIiYjeDIyNTE7Ij48IUVOVElUWSBlZkRvdCAiJiN4MjI1MjsiPjwhRU5USVRZIGZhbGxpbmdkb3RzZXEgIiYjeDIyNTI7Ij48IUVOVElUWSBlckRvdCAiJiN4MjI1MzsiPjwhRU5USVRZIHJpc2luZ2RvdHNlcSAiJiN4MjI1MzsiPjwhRU5USVRZIGNvbG9uZSAiJiN4MjI1NDsiPjwhRU5USVRZIGNvbG9uZXEgIiYjeDIyNTQ7Ij48IUVOVElUWSBBc3NpZ24gIiYjeDIyNTQ7Ij48IUVOVElUWSBlY29sb24gIiYjeDIyNTU7Ij48IUVOVElUWSBlcWNvbG9uICImI3gyMjU1OyI%2BPCFFTlRJVFkgZWNpciAiJiN4MjI1NjsiPjwhRU5USVRZIGVxY2lyYyAiJiN4MjI1NjsiPjwhRU5USVRZIGNpcmUgIiYjeDIyNTc7Ij48IUVOVElUWSBjaXJjZXEgIiYjeDIyNTc7Ij48IUVOVElUWSB3ZWRnZXEgIiYjeDIyNTk7Ij48IUVOVElUWSB2ZWVlcSAiJiN4MjI1QTsiPjwhRU5USVRZIHRyaWUgIiYjeDIyNUM7Ij48IUVOVElUWSB0cmlhbmdsZXEgIiYjeDIyNUM7Ij48IUVOVElUWSBlcXVlc3QgIiYjeDIyNUY7Ij48IUVOVElUWSBxdWVzdGVxICImI3gyMjVGOyI%2BPCFFTlRJVFkgbmUgIiYjeDIyNjA7Ij48IUVOVElUWSBOb3RFcXVhbCAiJiN4MjI2MDsiPjwhRU5USVRZIGVxdWl2ICImI3gyMjYxOyI%2BPCFFTlRJVFkgQ29uZ3J1ZW50ICImI3gyMjYxOyI%2BPCFFTlRJVFkgYm5lcXVpdiAiJiN4MjI2MTsmI3gyMEU1OyI%2BPCFFTlRJVFkgbmVxdWl2ICImI3gyMjYyOyI%2BPCFFTlRJVFkgTm90Q29uZ3J1ZW50ICImI3gyMjYyOyI%2BPCFFTlRJVFkgbGUgIiYjeDIyNjQ7Ij48IUVOVElUWSBsZXEgIiYjeDIyNjQ7Ij48IUVOVElUWSBudmxlICImI3gyMjY0OyYjeDIwRDI7Ij48IUVOVElUWSBnZSAiJiN4MjI2NTsiPjwhRU5USVRZIEdyZWF0ZXJFcXVhbCAiJiN4MjI2NTsiPjwhRU5USVRZIGdlcSAiJiN4MjI2NTsiPjwhRU5USVRZIG52Z2UgIiYjeDIyNjU7JiN4MjBEMjsiPjwhRU5USVRZIGxFICImI3gyMjY2OyI%2BPCFFTlRJVFkgTGVzc0Z1bGxFcXVhbCAiJiN4MjI2NjsiPjwhRU5USVRZIGxlcXEgIiYjeDIyNjY7Ij48IUVOVElUWSBubEUgIiYjeDIyNjY7JiN4MzM4OyI%2BPCFFTlRJVFkgbmxlcXEgIiYjeDIyNjY7JiN4MzM4OyI%2BPCFFTlRJVFkgZ0UgIiYjeDIyNjc7Ij48IUVOVElUWSBHcmVhdGVyRnVsbEVxdWFsICImI3gyMjY3OyI%2BPCFFTlRJVFkgZ2VxcSAiJiN4MjI2NzsiPjwhRU5USVRZIG5nRSAiJiN4MjI2NzsmI3gzMzg7Ij48IUVOVElUWSBuZ2VxcSAiJiN4MjI2NzsmI3gzMzg7Ij48IUVOVElUWSBOb3RHcmVhdGVyRnVsbEVxdWFsICImI3gyMjY3OyYjeDMzODsiPjwhRU5USVRZIGxuRSAiJiN4MjI2ODsiPjwhRU5USVRZIGxuZXFxICImI3gyMjY4OyI%2BPCFFTlRJVFkgbHZuRSAiJiN4MjI2ODsmI3hGRTAwOyI%2BPCFFTlRJVFkgbHZlcnRuZXFxICImI3gyMjY4OyYjeEZFMDA7Ij48IUVOVElUWSBnbkUgIiYjeDIyNjk7Ij48IUVOVElUWSBnbmVxcSAiJiN4MjI2OTsiPjwhRU5USVRZIGd2bkUgIiYjeDIyNjk7JiN4RkUwMDsiPjwhRU5USVRZIGd2ZXJ0bmVxcSAiJiN4MjI2OTsmI3hGRTAwOyI%2BPCFFTlRJVFkgTHQgIiYjeDIyNkE7Ij48IUVOVElUWSBOZXN0ZWRMZXNzTGVzcyAiJiN4MjI2QTsiPjwhRU5USVRZIGxsICImI3gyMjZBOyI%2BPCFFTlRJVFkgbkx0diAiJiN4MjI2QTsmI3gzMzg7Ij48IUVOVElUWSBOb3RMZXNzTGVzcyAiJiN4MjI2QTsmI3gzMzg7Ij48IUVOVElUWSBuTHQgIiYjeDIyNkE7JiN4MjBEMjsiPjwhRU5USVRZIEd0ICImI3gyMjZCOyI%2BPCFFTlRJVFkgTmVzdGVkR3JlYXRlckdyZWF0ZXIgIiYjeDIyNkI7Ij48IUVOVElUWSBnZyAiJiN4MjI2QjsiPjwhRU5USVRZIG5HdHYgIiYjeDIyNkI7JiN4MzM4OyI%2BPCFFTlRJVFkgTm90R3JlYXRlckdyZWF0ZXIgIiYjeDIyNkI7JiN4MzM4OyI%2BPCFFTlRJVFkgbkd0ICImI3gyMjZCOyYjeDIwRDI7Ij48IUVOVElUWSB0d2l4dCAiJiN4MjI2QzsiPjwhRU5USVRZIGJldHdlZW4gIiYjeDIyNkM7Ij48IUVOVElUWSBOb3RDdXBDYXAgIiYjeDIyNkQ7Ij48IUVOVElUWSBubHQgIiYjeDIyNkU7Ij48IUVOVElUWSBOb3RMZXNzICImI3gyMjZFOyI%2BPCFFTlRJVFkgbmxlc3MgIiYjeDIyNkU7Ij48IUVOVElUWSBuZ3QgIiYjeDIyNkY7Ij48IUVOVElUWSBOb3RHcmVhdGVyICImI3gyMjZGOyI%2BPCFFTlRJVFkgbmd0ciAiJiN4MjI2RjsiPjwhRU5USVRZIG5sZSAiJiN4MjI3MDsiPjwhRU5USVRZIE5vdExlc3NFcXVhbCAiJiN4MjI3MDsiPjwhRU5USVRZIG5sZXEgIiYjeDIyNzA7Ij48IUVOVElUWSBuZ2UgIiYjeDIyNzE7Ij48IUVOVElUWSBOb3RHcmVhdGVyRXF1YWwgIiYjeDIyNzE7Ij48IUVOVE
lUWSBuZ2VxICImI3gyMjcxOyI%2BPCFFTlRJVFkgbHNpbSAiJiN4MjI3MjsiPjwhRU5USVRZIExlc3NUaWxkZSAiJiN4MjI3MjsiPjwhRU5USVRZIGxlc3NzaW0gIiYjeDIyNzI7Ij48IUVOVElUWSBnc2ltICImI3gyMjczOyI%2BPCFFTlRJVFkgZ3Ryc2ltICImI3gyMjczOyI%2BPCFFTlRJVFkgR3JlYXRlclRpbGRlICImI3gyMjczOyI%2BPCFFTlRJVFkgbmxzaW0gIiYjeDIyNzQ7Ij48IUVOVElUWSBOb3RMZXNzVGlsZGUgIiYjeDIyNzQ7Ij48IUVOVElUWSBuZ3NpbSAiJiN4MjI3NTsiPjwhRU5USVRZIE5vdEdyZWF0ZXJUaWxkZSAiJiN4MjI3NTsiPjwhRU5USVRZIGxnICImI3gyMjc2OyI%2BPCFFTlRJVFkgbGVzc2d0ciAiJiN4MjI3NjsiPjwhRU5USVRZIExlc3NHcmVhdGVyICImI3gyMjc2OyI%2BPCFFTlRJVFkgZ2wgIiYjeDIyNzc7Ij48IUVOVElUWSBndHJsZXNzICImI3gyMjc3OyI%2BPCFFTlRJVFkgR3JlYXRlckxlc3MgIiYjeDIyNzc7Ij48IUVOVElUWSBudGxnICImI3gyMjc4OyI%2BPCFFTlRJVFkgTm90TGVzc0dyZWF0ZXIgIiYjeDIyNzg7Ij48IUVOVElUWSBudGdsICImI3gyMjc5OyI%2BPCFFTlRJVFkgTm90R3JlYXRlckxlc3MgIiYjeDIyNzk7Ij48IUVOVElUWSBwciAiJiN4MjI3QTsiPjwhRU5USVRZIFByZWNlZGVzICImI3gyMjdBOyI%2BPCFFTlRJVFkgcHJlYyAiJiN4MjI3QTsiPjwhRU5USVRZIHNjICImI3gyMjdCOyI%2BPCFFTlRJVFkgU3VjY2VlZHMgIiYjeDIyN0I7Ij48IUVOVElUWSBzdWNjICImI3gyMjdCOyI%2BPCFFTlRJVFkgcHJjdWUgIiYjeDIyN0M7Ij48IUVOVElUWSBQcmVjZWRlc1NsYW50RXF1YWwgIiYjeDIyN0M7Ij48IUVOVElUWSBwcmVjY3VybHllcSAiJiN4MjI3QzsiPjwhRU5USVRZIHNjY3VlICImI3gyMjdEOyI%2BPCFFTlRJVFkgU3VjY2VlZHNTbGFudEVxdWFsICImI3gyMjdEOyI%2BPCFFTlRJVFkgc3VjY2N1cmx5ZXEgIiYjeDIyN0Q7Ij48IUVOVElUWSBwcnNpbSAiJiN4MjI3RTsiPjwhRU5USVRZIHByZWNzaW0gIiYjeDIyN0U7Ij48IUVOVElUWSBQcmVjZWRlc1RpbGRlICImI3gyMjdFOyI%2BPCFFTlRJVFkgc2NzaW0gIiYjeDIyN0Y7Ij48IUVOVElUWSBzdWNjc2ltICImI3gyMjdGOyI%2BPCFFTlRJVFkgU3VjY2VlZHNUaWxkZSAiJiN4MjI3RjsiPjwhRU5USVRZIE5vdFN1Y2NlZWRzVGlsZGUgIiYjeDIyN0Y7JiN4MzM4OyI%2BPCFFTlRJVFkgbnByICImI3gyMjgwOyI%2BPCFFTlRJVFkgbnByZWMgIiYjeDIyODA7Ij48IUVOVElUWSBOb3RQcmVjZWRlcyAiJiN4MjI4MDsiPjwhRU5USVRZIG5zYyAiJiN4MjI4MTsiPjwhRU5USVRZIG5zdWNjICImI3gyMjgxOyI%2BPCFFTlRJVFkgTm90U3VjY2VlZHMgIiYjeDIyODE7Ij48IUVOVElUWSBzdWIgIiYjeDIyODI7Ij48IUVOVElUWSBzdWJzZXQgIiYjeDIyODI7Ij48IUVOVElUWSB2bnN1YiAiJiN4MjI4MjsmI3gyMEQyOyI%2BPCFFTlRJVFkgbnN1YnNldCAiJiN4MjI4MjsmI3gyMEQyOyI%2BPCFFTlRJVFkgTm90U3Vic2V0ICImI3gyMjgyOyYjeDIwRDI7Ij48IUVOVElUWSBzdXAgIiYjeDIyODM7Ij48IUVOVElUWSBzdXBzZXQgIiYjeDIyODM7Ij48IUVOVElUWSBTdXBlcnNldCAiJiN4MjI4MzsiPjwhRU5USVRZIHZuc3VwICImI3gyMjgzOyYjeDIwRDI7Ij48IUVOVElUWSBuc3Vwc2V0ICImI3gyMjgzOyYjeDIwRDI7Ij48IUVOVElUWSBOb3RTdXBlcnNldCAiJiN4MjI4MzsmI3gyMEQyOyI%2BPCFFTlRJVFkgbnN1YiAiJiN4MjI4NDsiPjwhRU5USVRZIG5zdXAgIiYjeDIyODU7Ij48IUVOVElUWSBzdWJlICImI3gyMjg2OyI%2BPCFFTlRJVFkgU3Vic2V0RXF1YWwgIiYjeDIyODY7Ij48IUVOVElUWSBzdWJzZXRlcSAiJiN4MjI4NjsiPjwhRU5USVRZIHN1cGUgIiYjeDIyODc7Ij48IUVOVElUWSBzdXBzZXRlcSAiJiN4MjI4NzsiPjwhRU5USVRZIFN1cGVyc2V0RXF1YWwgIiYjeDIyODc7Ij48IUVOVElUWSBuc3ViZSAiJiN4MjI4ODsiPjwhRU5USVRZIG5zdWJzZXRlcSAiJiN4MjI4ODsiPjwhRU5USVRZIE5vdFN1YnNldEVxdWFsICImI3gyMjg4OyI%2BPCFFTlRJVFkgbnN1cGUgIiYjeDIyODk7Ij48IUVOVElUWSBuc3Vwc2V0ZXEgIiYjeDIyODk7Ij48IUVOVElUWSBOb3RTdXBlcnNldEVxdWFsICImI3gyMjg5OyI%2BPCFFTlRJVFkgc3VibmUgIiYjeDIyOEE7Ij48IUVOVElUWSBzdWJzZXRuZXEgIiYjeDIyOEE7Ij48IUVOVElUWSB2c3VibmUgIiYjeDIyOEE7JiN4RkUwMDsiPjwhRU5USVRZIHZhcnN1YnNldG5lcSAiJiN4MjI4QTsmI3hGRTAwOyI%2BPCFFTlRJVFkgc3VwbmUgIiYjeDIyOEI7Ij48IUVOVElUWSBzdXBzZXRuZXEgIiYjeDIyOEI7Ij48IUVOVElUWSB2c3VwbmUgIiYjeDIyOEI7JiN4RkUwMDsiPjwhRU5USVRZIHZhcnN1cHNldG5lcSAiJiN4MjI4QjsmI3hGRTAwOyI%2BPCFFTlRJVFkgY3VwZG90ICImI3gyMjhEOyI%2BPCFFTlRJVFkgdXBsdXMgIiYjeDIyOEU7Ij48IUVOVElUWSBVbmlvblBsdXMgIiYjeDIyOEU7Ij48IUVOVElUWSBzcXN1YiAiJiN4MjI4RjsiPjwhRU5USVRZIFNxdWFyZVN1YnNldCAiJiN4MjI4RjsiPjwhRU5USVRZIHNxc3Vic2V0ICImI3gyMjhGOyI%2BPCFFTlRJVFkgTm90U3F1YXJlU3Vic2V0ICImI3gyMjhGOyYjeDMzODsiPjwhRU5USVRZIHNxc3VwICImI3gyMjkwOyI%2BPCFFTlRJVFkgU3F1YXJlU3VwZXJzZXQgIiYjeDIyOTA7Ij48IUVOVElUWSBzcXN1cHNldCAiJiN4MjI5MDsiPjwhRU5USVRZIE5vdFNxdWFyZVN1cGVyc2V0ICImI3gyMjkwOyYjeDMzODsiPjwhRU5USVRZIHNxc3ViZSAiJiN4MjI5MTsiPjwhRU5USVRZIFNxdWFyZVN1YnNldEVxdWFsICImI3gyMjkxOyI%2BPCFFTlRJVFkgc3FzdWJzZXRlcSAiJiN4MjI5MTsiPjwhRU5USVRZIHNxc3VwZSAiJiN4MjI5MjsiPjwhRU5USVRZIFNxdWFyZVN1cGVyc2V0RXF1YWwgIiYjeDIyOTI7Ij48IUVOVElUWSBzcXN1cHNldGVxICImI3gyMjkyOyI%2BPCFFTlRJVFkgc3FjYXAgIiYjeDIyOTM7Ij48IUVOVElUWSBTcXVhcmVJbnRlcnNlY3Rpb24gIiYjeDIyOTM7Ij48IUVOVElUWSBzcWNhcHMgIiYjeDIyOTM7JiN4RkUwMDsiPjwhRU5USVRZIHNxY3VwICImI3gyMjk0OyI%2BPCFFTlRJVFkgU3F1YXJlVW5pb24gIiYjeDIyOTQ7Ij48IUVOVElUWSBzcWN1cHMgIiYjeDIyOTQ7JiN4RkUwMDsiPjwhRU5USVRZIG9wbHVzICImI3gyMjk1OyI%2BPCFFTlRJVFkgQ2lyY2xlUGx1cyAiJiN4MjI5NTsiPjwhRU5USVRZIG9taW51cyAiJiN4MjI5NjsiPjwhRU5USVRZIENpcmNsZU1pbnVzICImI3gyMjk2OyI%2BPCFFTlRJVFkgb3RpbWVzICImI3gyMjk3OyI%2BPCFFTlRJVFkgQ2lyY2xlVGltZXMgIiYjeDIyOTc7Ij48IUVOVElUWSBvc29sICImI3gyMjk4OyI%2BPCFFTlRJVFkgb2RvdCAiJiN4MjI5OTsiPjwhRU5USVRZIENpcmNsZURvdCAiJiN4MjI5OTsiPjwhRU5USVRZIG9jaXIgIiYjeDIyOUE7Ij48IUVOVElUWSBjaXJjbGVkY2lyYyAiJiN4MjI5QTsiPjwhRU5USVRZIG9hc3QgIiYjeDIyOUI7Ij48IUVOVElUWSBjaXJjbGVkYXN0ICImI3gyMjlCOyI%2BPCFFTlRJVFkgb2Rhc2ggIiYjeDIyOUQ7Ij48IUVOVElUWSBjaXJjbGVkZGFzaCAiJiN4MjI5RDsiPjwhRU5USVRZIHBsdXNiICImI3gyMjlFOyI%2BPCFFTlRJVFkgYm94cGx1cyAiJiN4MjI5RTsiPjwhRU5USVRZIG1pbnVzYiAiJiN4MjI5RjsiPjwhRU5USVRZIGJveG1pbnVzICImI3gyMjlGOyI%2BPCFFTlRJVFkgdGltZXNiICImI3gyMkEwOyI%2BPCFFTlRJVFkgYm94dGltZXMgIiYjeDIyQTA7Ij48IUVOVElUWSBzZG90YiAiJiN4MjJBMTsiPjwhRU5USVRZIGRvdHNxdWFyZSAiJiN4MjJBMTsiPjwhRU5USVRZIHZkYXNoICImI3gyMkEyOyI%2BPCFFTlRJVFkgUmlnaHRUZWUgIiYjeDIyQTI7Ij48IUVOVElUWSBkYXNodiAiJiN4MjJBMzsiPjwhRU5USVRZIExlZnRUZWUgIiYjeDIyQTM7Ij48IUVOVElUWSB0b3AgIiYjeDIyQTQ7Ij48IUVOVElUWSBEb3duVGVlICImI3gyMkE0OyI%2BPCFFTlRJVFkgYm90dG9tICImI3gyMkE1OyI%2BPCFFTlRJVFkgYm90ICImI3gyMkE1OyI%2BPCFFTlRJVFkgcGVycCAiJiN4MjJBNTsiPjwhRU5USVRZIFVwVGVlICImI3gyMkE1OyI%2BPCFFTlRJVFkgbW9kZWxzICImI3gyMkE3OyI%2BPCFFTlRJVFkgdkRhc2ggIiYjeDIyQTg7Ij48IUVOVElUWSBEb3VibGVSaWdodFRlZSAiJiN4MjJBODsiPjwhRU5USVRZIFZkYXNoICImI3gyMkE5OyI%2BPCFFTlRJVFkgVnZkYXNoICImI3gyMkFBOyI%2BPCFFTlRJVFkgVkRhc2ggIiYjeDIyQUI7Ij48IUVOVElUWSBudmRhc2ggIiYjeDIyQUM7Ij48IUVOVElUWSBudkRhc2ggIiYjeDIyQUQ7Ij48IUVOVElUWSBuVmRhc2ggIiYjeDIyQUU7Ij48IUVOVElUWSBuVkRhc2ggIiYjeDIyQUY7Ij48IUVOVElUWSBwcnVyZWwgIiYjeDIyQjA7Ij48IUVOVElUWSB2bHRyaSAiJiN4MjJCMjsiPjwhRU5USVRZIHZhcnRyaWFuZ2xlbGVmdCAiJiN4MjJCMjsiPjwhRU5USVRZIExlZnRUcmlhbmdsZSAiJiN4MjJCMjsiPjwhRU5USVRZIHZydHJpICImI3gyMkIzOyI%2BPCFFTlRJVFkgdmFydHJpYW5nbGVyaWdodCAiJiN4MjJCMzsiPjwhRU5USVRZIFJpZ2h0VHJpYW5nbGUgIiYjeDIyQjM7Ij48IUVOVElUWSBsdHJpZSAiJiN4MjJCNDsiPjwhRU5USVRZIHRyaWFuZ2xlbGVmdGVxICImI3gyMkI0OyI%2BPCFFTlRJVFkgTGVmdFRyaWFuZ2xlRXF1YWwgIiYjeDIyQjQ7Ij48IUVOVElUWSBudmx0cmllICImI3gyMkI0OyYjeDIwRDI7Ij48IUVOVElUWSBydHJpZSAiJiN4MjJCNTsiPjwhRU5USVRZIHRyaWFuZ2xlcmlnaHRlcSAiJiN4MjJCNTsiPjwhRU5USVRZIFJpZ2h0VHJpYW5nbGVFcXVhbCAiJiN4MjJCNTsiPjwhRU5USVRZIG52cnRyaWUgIiYjeDIyQjU7JiN4MjBEMjsiPjwhRU5USVRZIG9yaWdvZiAiJiN4MjJCNjsiPjwhRU5USVRZIGltb2YgIiYjeDIyQjc7Ij48IUVOVElUWSBtdW1hcCAiJiN4MjJCODsiPjwhRU5USVRZIG11bHRpbWFwICImI3gyMkI4OyI%2BPCFFTlRJVFkgaGVyY29uICImI3gyMkI5OyI%2BPCFFTlRJVFkgaW50Y2FsICImI3gyMkJBOyI%2BPCFFTlRJVFkgaW50ZXJjYWwgIiYjeDIyQkE7Ij48IUVOVElUWSB2ZWViYXIgIiYjeDIyQkI7Ij48IUVOVElUWSBiYXJ2ZWUgIiYjeDIyQkQ7Ij48IUVOVElUWSBhbmdydHZiICImI3gyMkJFOyI%2BPCFFTlRJVFkgbHJ0cmkgIiYjeDIyQkY7Ij48IUVOVElUWSB4d2VkZ2UgIiYjeDIyQzA7Ij48IUVOVElUWSBXZWRnZSAiJiN4MjJDMDsiPjwhRU5USVRZIGJpZ3dlZGdlICImI3gyMkMwOyI%2BPCFFTlRJVFkgeHZlZSAiJiN4MjJDMTsiPjwhRU5USVRZIFZlZSAiJiN4MjJDMTsiPjwhRU5USVRZIGJpZ3ZlZSAiJiN4MjJDMTsiPjwhRU5USVRZIHhjYXAgIiYjeDIyQzI7Ij48IUVOVElUWSBJbnRlcnNlY3Rpb24gIiYjeDIyQzI7Ij48IUVOVElUWSBiaWdjYXAgIiYjeDIyQzI7Ij48IUVOVElUWSB4Y3VwICImI3gyMkMzOyI%2BPCFFTlRJVFkgVW5pb24gIiYjeDIyQzM7Ij48IUVOVElUWSBiaWdjdXAgIiYjeDIyQzM7Ij48IUVOVElUWSBkaWFtICImI3gyMkM0OyI%2BPCFFTlRJVFkgZGlhbW9uZCAiJiN4MjJDNDsiPjwhRU5USVRZIERpYW1vbmQgIiYjeDIyQzQ7Ij48IUVOVElUWSBzZG90ICImI3gyMkM1OyI%2BPCFFTlRJVFkgc3N0YXJmICImI3gyMkM2OyI%2BPCFFTlRJVFkgU3RhciAiJiN4MjJDNjsiPjwhRU5USVRZIGRpdm9ueCAiJiN4MjJDNzsiPjwhRU5USVRZIGRpdmlkZW9udGltZXMgIiYjeDIyQzc7Ij48IUVOVElUWSBib3d0aWUgIiYjeDIyQzg7Ij48IUVOVElUWSBsdGltZXMgIiYjeDIyQzk7Ij48IUVOVElUWSBydGltZXMgIiYjeDIyQ0E7Ij48IUVOVElUWSBsdGhyZWUgIiYjeDIyQ0I7Ij48IUVOVElUWSBsZWZ0dGhyZWV0aW1lcyAiJiN4MjJDQjsiPjwhRU5USVRZIHJ0aHJlZSAiJiN4MjJDQzsiPjwhRU5USVRZIHJpZ2h0dGhyZWV0aW1lcyAiJiN4MjJDQzsiPjwhRU5USVRZIGJzaW1lICImI3gyMkNEOyI%2BPCFFTlRJVFkgYmFja3NpbWVxICImI3gyMkNEOyI%2BPCFFTlRJVFkgY3V2ZWUgIiYjeDIyQ0U7Ij48IUVOVElUWSBjdXJseXZlZSAiJiN4MjJDRTsiPjwhRU5USVRZIGN1d2VkICImI3gyMkNGOyI%2BPCFFTlRJVFkgY3VybHl3ZWRnZSAiJiN4MjJDRjsiPjwhRU5USVRZIFN1YiAiJiN4MjJEMDsiPjwhRU5USVRZIFN1YnNldCAiJiN4MjJEMDsiPjwhRU5USVRZIFN1cCAiJiN4MjJEMTsiPjwhRU5USVRZIFN1cHNldCAiJiN4MjJEMTsiPjwhRU5USVRZIENhcCAiJiN4MjJEMjsiPjwhRU5USVRZIEN1cCAiJiN4MjJEMzsiPjwhRU5USVRZIGZvcmsgIiYjeDIyRDQ7Ij48IUVOVElUWSBwaXRjaGZvcmsgIiYjeDIyRDQ7Ij48IUVOVElUWSBlcGFyICImI3gyMkQ1OyI%2BPCFFTlRJVFkgbHRkb3QgIiYjeDIyRDY7Ij48IUVOVElUWSBsZXNzZG90ICImI3gyMkQ2OyI%2BPCFFTlRJVFkgZ3Rkb3QgIiYjeDIyRDc7Ij48IUVOVElUWSBndHJkb3QgIiYjeDIyRDc7Ij48IUVOVElUWSBMbCAiJiN4MjJEODsiPjwhRU5USVRZIG5MbCAiJiN4MjJEODsmI3gzMzg7Ij48IUVOVElUWSBHZyAiJiN4MjJEOTsiPjwhRU5USVRZIGdnZyAiJiN4MjJEOTsiPjwhRU5USVRZIG5HZyAiJiN4MjJEOTsmI3gzMzg7Ij48IUVOVElUWSBsZWcgIiYjeDIyREE7Ij48IUVOVElUWSBMZXNzRXF1YWxHcmVhdGVyICImI3gyMkRBOyI%2BPCFFTlRJVFkgbGVzc2VxZ3RyICImI3gyMkRBOyI%2BPCFFTlRJVFkgbGVzZyAiJiN4MjJEQTsmI3hGRTAwOyI%2BPCFFTlRJVFkgZ2VsICImI3gyMkRCOyI%2BPCFFTlRJVFkgZ3RyZXFsZXNzICImI3gyMkRCOyI%2BPCFFTlRJVFkgR3JlYXRlckVxdWFsTGVzcyAiJiN4MjJEQjsiPjwhRU5USVRZIGdlc2wgIiYjeDIyREI7JiN4RkUwMDsiPjwhRU5USVRZIGN1ZXByICImI3gyMkRFOyI%2BPCFFTlRJVFkgY3VybHllcXByZWMgIiYjeDIyREU7Ij48IUVOVElUWSBjdWVzYyAiJiN4MjJERjsiPjwhRU5USVRZIGN1cmx5ZXFzdWNjICImI3gyMkRGOyI%2BPCFFTlRJVFkgbnByY3VlICImI3gyMkUwOyI%2BPCFFTlRJVFkgTm90UHJlY2VkZXNTbGFudEVxdWFsICImI3gyMkUwOyI%2BPCFFTlRJVFkgbnNjY3VlICImI3gyMkUxOyI%2BPCFFTlRJVFkgTm90U3VjY2VlZHNTbGFudEVxdWFsICImI3gyMkUxOyI%2BPCFFTlRJVFkgbnNxc3ViZSAiJiN4MjJFMjsiPjwhRU5USVRZIE5vdFNxdWFyZVN1YnNldEVxdWFsICImI3gyMkUyOyI%2BPCFFTlRJVFkgbnNxc3VwZSAiJiN4MjJFMzsiPjwhRU5USVRZIE5vdFNxdWFyZVN1cGVyc2V0RXF1YWwgIiYjeDIyRTM7Ij48IUVOVElUWSBsbnNpbSAiJiN4MjJFNjsiPjwhRU5USVRZIGduc2ltICImI3gyMkU3OyI%2BPCFFTlRJVFkgcHJuc2ltICImI3gyMkU4OyI%2BPCFFTlRJVFkgcHJlY25zaW0gIiYjeDIyRTg7Ij48IUVOVElUWSBzY25zaW0gIiYjeDIyRTk7Ij48IUVOVElUWSBzdWNjbnNpbSAiJiN4MjJFOTsiPjwhRU5USVRZIG5sdHJpICImI3gyMkVBOyI%2BPCFFTlRJVFkgbnRyaWFuZ2xlbGVmdCAiJiN4MjJFQTsiPjwhRU5USVRZIE5vdExlZnRUcmlhbmdsZSAiJiN4MjJFQTsiPjwhRU5USVRZIG5ydHJpICImI3gyMkVCOyI%2BPCFFTlRJVFkg
bnRyaWFuZ2xlcmlnaHQgIiYjeDIyRUI7Ij48IUVOVElUWSBOb3RSaWdodFRyaWFuZ2xlICImI3gyMkVCOyI%2BPCFFTlRJVFkgbmx0cmllICImI3gyMkVDOyI%2BPCFFTlRJVFkgbnRyaWFuZ2xlbGVmdGVxICImI3gyMkVDOyI%2BPCFFTlRJVFkgTm90TGVmdFRyaWFuZ2xlRXF1YWwgIiYjeDIyRUM7Ij48IUVOVElUWSBucnRyaWUgIiYjeDIyRUQ7Ij48IUVOVElUWSBudHJpYW5nbGVyaWdodGVxICImI3gyMkVEOyI%2BPCFFTlRJVFkgTm90UmlnaHRUcmlhbmdsZUVxdWFsICImI3gyMkVEOyI%2BPCFFTlRJVFkgdmVsbGlwICImI3gyMkVFOyI%2BPCFFTlRJVFkgY3Rkb3QgIiYjeDIyRUY7Ij48IUVOVElUWSB1dGRvdCAiJiN4MjJGMDsiPjwhRU5USVRZIGR0ZG90ICImI3gyMkYxOyI%2BPCFFTlRJVFkgZGlzaW4gIiYjeDIyRjI7Ij48IUVOVElUWSBpc2luc3YgIiYjeDIyRjM7Ij48IUVOVElUWSBpc2lucyAiJiN4MjJGNDsiPjwhRU5USVRZIGlzaW5kb3QgIiYjeDIyRjU7Ij48IUVOVElUWSBub3RpbmRvdCAiJiN4MjJGNTsmI3gzMzg7Ij48IUVOVElUWSBub3RpbnZjICImI3gyMkY2OyI%2BPCFFTlRJVFkgbm90aW52YiAiJiN4MjJGNzsiPjwhRU5USVRZIGlzaW5FICImI3gyMkY5OyI%2BPCFFTlRJVFkgbm90aW5FICImI3gyMkY5OyYjeDMzODsiPjwhRU5USVRZIG5pc2QgIiYjeDIyRkE7Ij48IUVOVElUWSB4bmlzICImI3gyMkZCOyI%2BPCFFTlRJVFkgbmlzICImI3gyMkZDOyI%2BPCFFTlRJVFkgbm90bml2YyAiJiN4MjJGRDsiPjwhRU5USVRZIG5vdG5pdmIgIiYjeDIyRkU7Ij48IUVOVElUWSBiYXJ3ZWQgIiYjeDIzMDU7Ij48IUVOVElUWSBiYXJ3ZWRnZSAiJiN4MjMwNTsiPjwhRU5USVRZIEJhcndlZCAiJiN4MjMwNjsiPjwhRU5USVRZIGRvdWJsZWJhcndlZGdlICImI3gyMzA2OyI%2BPCFFTlRJVFkgbGNlaWwgIiYjeDIzMDg7Ij48IUVOVElUWSBMZWZ0Q2VpbGluZyAiJiN4MjMwODsiPjwhRU5USVRZIHJjZWlsICImI3gyMzA5OyI%2BPCFFTlRJVFkgUmlnaHRDZWlsaW5nICImI3gyMzA5OyI%2BPCFFTlRJVFkgbGZsb29yICImI3gyMzBBOyI%2BPCFFTlRJVFkgTGVmdEZsb29yICImI3gyMzBBOyI%2BPCFFTlRJVFkgcmZsb29yICImI3gyMzBCOyI%2BPCFFTlRJVFkgUmlnaHRGbG9vciAiJiN4MjMwQjsiPjwhRU5USVRZIGRyY3JvcCAiJiN4MjMwQzsiPjwhRU5USVRZIGRsY3JvcCAiJiN4MjMwRDsiPjwhRU5USVRZIHVyY3JvcCAiJiN4MjMwRTsiPjwhRU5USVRZIHVsY3JvcCAiJiN4MjMwRjsiPjwhRU5USVRZIGJub3QgIiYjeDIzMTA7Ij48IUVOVElUWSBwcm9mbGluZSAiJiN4MjMxMjsiPjwhRU5USVRZIHByb2ZzdXJmICImI3gyMzEzOyI%2BPCFFTlRJVFkgdGVscmVjICImI3gyMzE1OyI%2BPCFFTlRJVFkgdGFyZ2V0ICImI3gyMzE2OyI%2BPCFFTlRJVFkgdWxjb3JuICImI3gyMzFDOyI%2BPCFFTlRJVFkgdWxjb3JuZXIgIiYjeDIzMUM7Ij48IUVOVElUWSB1cmNvcm4gIiYjeDIzMUQ7Ij48IUVOVElUWSB1cmNvcm5lciAiJiN4MjMxRDsiPjwhRU5USVRZIGRsY29ybiAiJiN4MjMxRTsiPjwhRU5USVRZIGxsY29ybmVyICImI3gyMzFFOyI%2BPCFFTlRJVFkgZHJjb3JuICImI3gyMzFGOyI%2BPCFFTlRJVFkgbHJjb3JuZXIgIiYjeDIzMUY7Ij48IUVOVElUWSBmcm93biAiJiN4MjMyMjsiPjwhRU5USVRZIHNmcm93biAiJiN4MjMyMjsiPjwhRU5USVRZIHNtaWxlICImI3gyMzIzOyI%2BPCFFTlRJVFkgc3NtaWxlICImI3gyMzIzOyI%2BPCFFTlRJVFkgY3lsY3R5ICImI3gyMzJEOyI%2BPCFFTlRJVFkgcHJvZmFsYXIgIiYjeDIzMkU7Ij48IUVOVElUWSB0b3Bib3QgIiYjeDIzMzY7Ij48IUVOVElUWSBvdmJhciAiJiN4MjMzRDsiPjwhRU5USVRZIHNvbGJhciAiJiN4MjMzRjsiPjwhRU5USVRZIGFuZ3phcnIgIiYjeDIzN0M7Ij48IUVOVElUWSBsbW91c3QgIiYjeDIzQjA7Ij48IUVOVElUWSBsbW91c3RhY2hlICImI3gyM0IwOyI%2BPCFFTlRJVFkgcm1vdXN0ICImI3gyM0IxOyI%2BPCFFTlRJVFkgcm1vdXN0YWNoZSAiJiN4MjNCMTsiPjwhRU5USVRZIHRicmsgIiYjeDIzQjQ7Ij48IUVOVElUWSBPdmVyQnJhY2tldCAiJiN4MjNCNDsiPjwhRU5USVRZIGJicmsgIiYjeDIzQjU7Ij48IUVOVElUWSBVbmRlckJyYWNrZXQgIiYjeDIzQjU7Ij48IUVOVElUWSBiYnJrdGJyayAiJiN4MjNCNjsiPjwhRU5USVRZIE92ZXJQYXJlbnRoZXNpcyAiJiN4MjNEQzsiPjwhRU5USVRZIFVuZGVyUGFyZW50aGVzaXMgIiYjeDIzREQ7Ij48IUVOVElUWSBPdmVyQnJhY2UgIiYjeDIzREU7Ij48IUVOVElUWSBVbmRlckJyYWNlICImI3gyM0RGOyI%2BPCFFTlRJVFkgdHJwZXppdW0gIiYjeDIzRTI7Ij48IUVOVElUWSBlbGludGVycyAiJiN4MjNFNzsiPjwhRU5USVRZIGJsYW5rICImI3gyNDIzOyI%2BPCFFTlRJVFkgb1MgIiYjeDI0Qzg7Ij48IUVOVElUWSBjaXJjbGVkUyAiJiN4MjRDODsiPjwhRU5USVRZIGJveGggIiYjeDI1MDA7Ij48IUVOVElUWSBIb3Jpem9udGFsTGluZSAiJiN4MjUwMDsiPjwhRU5USVRZIGJveHYgIiYjeDI1MDI7Ij48IUVOVElUWSBib3hkciAiJiN4MjUwQzsiPjwhRU5USVRZIGJveGRsICImI3gyNTEwOyI%2BPCFFTlRJVFkgYm94dXIgIiYjeDI1MTQ7Ij48IUVOVElUWSBib3h1bCAiJiN4MjUxODsiPjwhRU5USVRZIGJveHZyICImI3gyNTFDOyI%2BPCFFTlRJVFkgYm94dmwgIiYjeDI1MjQ7Ij48IUVOVElUWSBib3hoZCAiJiN4MjUyQzsiPjwhRU5USVRZIGJveGh1ICImI3gyNTM0OyI%2BPCFFTlRJVFkgYm94dmggIiYjeDI1M0M7Ij48IUVOVElUWSBib3hIICImI3gyNTUwOyI%2BPCFFTlRJVFkgYm94ViAiJiN4MjU1MTsiPjwhRU5USVRZIGJveGRSICImI3gyNTUyOyI%2BPCFFTlRJVFkgYm94RHIgIiYjeDI1NTM7Ij48IUVOVElUWSBib3hEUiAiJiN4MjU1NDsiPjwhRU5USVRZIGJveGRMICImI3gyNTU1OyI%2BPCFFTlRJVFkgYm94RGwgIiYjeDI1NTY7Ij48IUVOVElUWSBib3hETCAiJiN4MjU1NzsiPjwhRU5USVRZIGJveHVSICImI3gyNTU4OyI%2BPCFFTlRJVFkgYm94VXIgIiYjeDI1NTk7Ij48IUVOVElUWSBib3hVUiAiJiN4MjU1QTsiPjwhRU5USVRZIGJveHVMICImI3gyNTVCOyI%2BPCFFTlRJVFkgYm94VWwgIiYjeDI1NUM7Ij48IUVOVElUWSBib3hVTCAiJiN4MjU1RDsiPjwhRU5USVRZIGJveHZSICImI3gyNTVFOyI%2BPCFFTlRJVFkgYm94VnIgIiYjeDI1NUY7Ij48IUVOVElUWSBib3hWUiAiJiN4MjU2MDsiPjwhRU5USVRZIGJveHZMICImI3gyNTYxOyI%2BPCFFTlRJVFkgYm94VmwgIiYjeDI1NjI7Ij48IUVOVElUWSBib3hWTCAiJiN4MjU2MzsiPjwhRU5USVRZIGJveEhkICImI3gyNTY0OyI%2BPCFFTlRJVFkgYm94aEQgIiYjeDI1NjU7Ij48IUVOVElUWSBib3hIRCAiJiN4MjU2NjsiPjwhRU5USVRZIGJveEh1ICImI3gyNTY3OyI%2BPCFFTlRJVFkgYm94aFUgIiYjeDI1Njg7Ij48IUVOVElUWSBib3hIVSAiJiN4MjU2OTsiPjwhRU5USVRZIGJveHZIICImI3gyNTZBOyI%2BPCFFTlRJVFkgYm94VmggIiYjeDI1NkI7Ij48IUVOVElUWSBib3hWSCAiJiN4MjU2QzsiPjwhRU5USVRZIHVoYmxrICImI3gyNTgwOyI%2BPCFFTlRJVFkgbGhibGsgIiYjeDI1ODQ7Ij48IUVOVElUWSBibG9jayAiJiN4MjU4ODsiPjwhRU5USVRZIGJsazE0ICImI3gyNTkxOyI%2BPCFFTlRJVFkgYmxrMTIgIiYjeDI1OTI7Ij48IUVOVElUWSBibGszNCAiJiN4MjU5MzsiPjwhRU5USVRZIHNxdSAiJiN4MjVBMTsiPjwhRU5USVRZIHNxdWFyZSAiJiN4MjVBMTsiPjwhRU5USVRZIFNxdWFyZSAiJiN4MjVBMTsiPjwhRU5USVRZIHNxdWYgIiYjeDI1QUE7Ij48IUVOVElUWSBzcXVhcmYgIiYjeDI1QUE7Ij48IUVOVElUWSBibGFja3NxdWFyZSAiJiN4MjVBQTsiPjwhRU5USVRZIEZpbGxlZFZlcnlTbWFsbFNxdWFyZSAiJiN4MjVBQTsiPjwhRU5USVRZIEVtcHR5VmVyeVNtYWxsU3F1YXJlICImI3gyNUFCOyI%2BPCFFTlRJVFkgcmVjdCAiJiN4MjVBRDsiPjwhRU5USVRZIG1hcmtlciAiJiN4MjVBRTsiPjwhRU5USVRZIGZsdG5zICImI3gyNUIxOyI%2BPCFFTlRJVFkgeHV0cmkgIiYjeDI1QjM7Ij48IUVOVElUWSBiaWd0cmlhbmdsZXVwICImI3gyNUIzOyI%2BPCFFTlRJVFkgdXRyaWYgIiYjeDI1QjQ7Ij48IUVOVElUWSBibGFja3RyaWFuZ2xlICImI3gyNUI0OyI%2BPCFFTlRJVFkgdXRyaSAiJiN4MjVCNTsiPjwhRU5USVRZIHRyaWFuZ2xlICImI3gyNUI1OyI%2BPCFFTlRJVFkgcnRyaWYgIiYjeDI1Qjg7Ij48IUVOVElUWSBibGFja3RyaWFuZ2xlcmlnaHQgIiYjeDI1Qjg7Ij48IUVOVElUWSBydHJpICImI3gyNUI5OyI%2BPCFFTlRJVFkgdHJpYW5nbGVyaWdodCAiJiN4MjVCOTsiPjwhRU5USVRZIHhkdHJpICImI3gyNUJEOyI%2BPCFFTlRJVFkgYmlndHJpYW5nbGVkb3duICImI3gyNUJEOyI%2BPCFFTlRJVFkgZHRyaWYgIiYjeDI1QkU7Ij48IUVOVElUWSBibGFja3RyaWFuZ2xlZG93biAiJiN4MjVCRTsiPjwhRU5USVRZIGR0cmkgIiYjeDI1QkY7Ij48IUVOVElUWSB0cmlhbmdsZWRvd24gIiYjeDI1QkY7Ij48IUVOVElUWSBsdHJpZiAiJiN4MjVDMjsiPjwhRU5USVRZIGJsYWNrdHJpYW5nbGVsZWZ0ICImI3gyNUMyOyI%2BPCFFTlRJVFkgbHRyaSAiJiN4MjVDMzsiPjwhRU5USVRZIHRyaWFuZ2xlbGVmdCAiJiN4MjVDMzsiPjwhRU5USVRZIGxveiAiJiN4MjVDQTsiPjwhRU5USVRZIGxvemVuZ2UgIiYjeDI1Q0E7Ij48IUVOVElUWSBjaXIgIiYjeDI1Q0I7Ij48IUVOVElUWSB0cmlkb3QgIiYjeDI1RUM7Ij48IUVOVElUWSB4Y2lyYyAiJiN4MjVFRjsiPjwhRU5USVRZIGJpZ2NpcmMgIiYjeDI1RUY7Ij48IUVOVElUWSB1bHRyaSAiJiN4MjVGODsiPjwhRU5USVRZIHVydHJpICImI3gyNUY5OyI%2BPCFFTlRJVFkgbGx0cmkgIiYjeDI1RkE7Ij48IUVOVElUWSBFbXB0eVNtYWxsU3F1YXJlICImI3gyNUZCOyI%2BPCFFTlRJVFkgRmlsbGVkU21hbGxTcXVhcmUgIiYjeDI1RkM7Ij48IUVOVElUWSBzdGFyZiAiJiN4MjYwNTsiPjwhRU5USVRZIGJpZ3N0YXIgIiYjeDI2MDU7Ij48IUVOVElUWSBzdGFyICImI3gyNjA2OyI%2BPCFFTlRJVFkgcGhvbmUgIiYjeDI2MEU7Ij48IUVOVElUWSBmZW1hbGUgIiYjeDI2NDA7Ij48IUVOVElUWSBtYWxlICImI3gyNjQyOyI%2BPCFFTlRJVFkgc3BhZGVzICImI3gyNjYwOyI%2BPCFFTlRJVFkgc3BhZGVzdWl0ICImI3gyNjYwOyI%2BPCFFTlRJVFkgY2x1YnMgIiYjeDI2NjM7Ij48IUVOVElUWSBjbHVic3VpdCAiJiN4MjY2MzsiPjwhRU5USVRZIGhlYXJ0cyAiJiN4MjY2NTsiPjwhRU5USVRZIGhlYXJ0c3VpdCAiJiN4MjY2NTsiPjwhRU5USVRZIGRpYW1zICImI3gyNjY2OyI%2BPCFFTlRJVFkgZGlhbW9uZHN1aXQgIiYjeDI2NjY7Ij48IUVOVElUWSBzdW5nICImI3gyNjZBOyI%2BPCFFTlRJVFkgZmxhdCAiJiN4MjY2RDsiPjwhRU5USVRZIG5hdHVyICImI3gyNjZFOyI%2BPCFFTlRJVFkgbmF0dXJhbCAiJiN4MjY2RTsiPjwhRU5USVRZIHNoYXJwICImI3gyNjZGOyI%2BPCFFTlRJVFkgY2hlY2sgIiYjeDI3MTM7Ij48IUVOVElUWSBjaGVja21hcmsgIiYjeDI3MTM7Ij48IUVOVElUWSBjcm9zcyAiJiN4MjcxNzsiPjwhRU5USVRZIG1hbHQgIiYjeDI3MjA7Ij48IUVOVElUWSBtYWx0ZXNlICImI3gyNzIwOyI%2BPCFFTlRJVFkgc2V4dCAiJiN4MjczNjsiPjwhRU5USVRZIFZlcnRpY2FsU2VwYXJhdG9yICImI3gyNzU4OyI%2BPCFFTlRJVFkgbGJicmsgIiYjeDI3NzI7Ij48IUVOVElUWSByYmJyayAiJiN4Mjc3MzsiPjwhRU5USVRZIGJzb2xoc3ViICImI3gyN0M4OyI%2BPCFFTlRJVFkgc3VwaHNvbCAiJiN4MjdDOTsiPjwhRU5USVRZIGxvYnJrICImI3gyN0U2OyI%2BPCFFTlRJVFkgTGVmdERvdWJsZUJyYWNrZXQgIiYjeDI3RTY7Ij48IUVOVElUWSByb2JyayAiJiN4MjdFNzsiPjwhRU5USVRZIFJpZ2h0RG91YmxlQnJhY2tldCAiJiN4MjdFNzsiPjwhRU5USVRZIGxhbmcgIiYjeDI3RTg7Ij48IUVOVElUWSBMZWZ0QW5nbGVCcmFja2V0ICImI3gyN0U4OyI%2BPCFFTlRJVFkgbGFuZ2xlICImI3gyN0U4OyI%2BPCFFTlRJVFkgcmFuZyAiJiN4MjdFOTsiPjwhRU5USVRZIFJpZ2h0QW5nbGVCcmFja2V0ICImI3gyN0U5OyI%2BPCFFTlRJVFkgcmFuZ2xlICImI3gyN0U5OyI%2BPCFFTlRJVFkgTGFuZyAiJiN4MjdFQTsiPjwhRU5USVRZIFJhbmcgIiYjeDI3RUI7Ij48IUVOVElUWSBsb2FuZyAiJiN4MjdFQzsiPjwhRU5USVRZIHJvYW5nICImI3gyN0VEOyI%2BPCFFTlRJVFkgeGxhcnIgIiYjeDI3RjU7Ij48IUVOVElUWSBsb25nbGVmdGFycm93ICImI3gyN0Y1OyI%2BPCFFTlRJVFkgTG9uZ0xlZnRBcnJvdyAiJiN4MjdGNTsiPjwhRU5USVRZIHhyYXJyICImI3gyN0Y2OyI%2BPCFFTlRJVFkgbG9uZ3JpZ2h0YXJyb3cgIiYjeDI3RjY7Ij48IUVOVElUWSBMb25nUmlnaHRBcnJvdyAiJiN4MjdGNjsiPjwhRU5USVRZIHhoYXJyICImI3gyN0Y3OyI%2BPCFFTlRJVFkgbG9uZ2xlZnRyaWdodGFycm93ICImI3gyN0Y3OyI%2BPCFFTlRJVFkgTG9uZ0xlZnRSaWdodEFycm93ICImI3gyN0Y3OyI%2BPCFFTlRJVFkgeGxBcnIgIiYjeDI3Rjg7Ij48IUVOVElUWSBMb25nbGVmdGFycm93ICImI3gyN0Y4OyI%2BPCFFTlRJVFkgRG91YmxlTG9uZ0xlZnRBcnJvdyAiJiN4MjdGODsiPjwhRU5USVRZIHhyQXJyICImI3gyN0Y5OyI%2BPCFFTlRJVFkgTG9uZ3JpZ2h0YXJyb3cgIiYjeDI3Rjk7Ij48IUVOVElUWSBEb3VibGVMb25nUmlnaHRBcnJvdyAiJiN4MjdGOTsiPjwhRU5USVRZIHhoQXJyICImI3gyN0ZBOyI%2BPCFFTlRJVFkgTG9uZ2xlZnRyaWdodGFycm93ICImI3gyN0ZBOyI%2BPCFFTlRJVFkgRG91YmxlTG9uZ0xlZnRSaWdodEFycm93ICImI3gyN0ZBOyI%2BPCFFTlRJVFkgeG1hcCAiJiN4MjdGQzsiPjwhRU5USVRZIGxvbmdtYXBzdG8gIiYjeDI3RkM7Ij48IUVOVElUWSBkemlncmFyciAiJiN4MjdGRjsiPjwhRU5USVRZIG52bEFyciAiJiN4MjkwMjsiPjwhRU5USVRZIG52ckFyciAiJiN4MjkwMzsiPjwhRU5USVRZIG52SGFyciAiJiN4MjkwNDsiPjwhRU5USVRZIE1hcCAiJiN4MjkwNTsiPjwhRU5USVRZIGxiYXJyICImI3gyOTBDOyI%2BPCFFTlRJVFkgcmJhcnIgIiYjeDI5MEQ7Ij48IUVOVElUWSBia2Fyb3cgIiYjeDI5MEQ7Ij48IUVOVElUWSBsQmFyciAiJiN4MjkwRTsiPjwhRU5USVRZIHJCYXJyICImI3gyOTBGOyI%2BPCFFTlRJVFkgZGJrYXJvdyAiJiN4MjkwRjsiPjwhRU5USVRZIFJCYXJyICImI3gyOTEwOyI%2BPCFFTlRJVFkgZHJia2Fyb3cgIiYjeDI5MTA7Ij48IUVOVElUWSBERG90cmFoZCAiJiN4MjkxMTsiPjwhRU5USVRZIFVwQXJyb3dCYXIgIiYjeDI5MTI7Ij48IUVOVElUWSBEb3duQXJyb3dCYXIgIiYjeDI5MTM7Ij48IUVOVElUWSBSYXJydGwgIiYjeDI5MTY7Ij48IUVOVElUWSBsYXRhaWwgIiYjeDI5MTk7Ij48IUVOVElUWSByYXRhaWwgIiYjeDI5MUE7Ij48IUVOVElUWSBsQXRhaWwgIiYjeDI5MUI7Ij48IUVOVElUWSByQXRhaWwgIiYjeDI5MUM7Ij48IUVOVElUWSBsYXJyZnMgIiYjeDI5MUQ7Ij48IUVOVElUWSByYXJyZnMgIiYjeDI5MUU7
Ij48IUVOVElUWSBsYXJyYmZzICImI3gyOTFGOyI%2BPCFFTlRJVFkgcmFycmJmcyAiJiN4MjkyMDsiPjwhRU5USVRZIG53YXJoayAiJiN4MjkyMzsiPjwhRU5USVRZIG5lYXJoayAiJiN4MjkyNDsiPjwhRU5USVRZIHNlYXJoayAiJiN4MjkyNTsiPjwhRU5USVRZIGhrc2Vhcm93ICImI3gyOTI1OyI%2BPCFFTlRJVFkgc3dhcmhrICImI3gyOTI2OyI%2BPCFFTlRJVFkgaGtzd2Fyb3cgIiYjeDI5MjY7Ij48IUVOVElUWSBud25lYXIgIiYjeDI5Mjc7Ij48IUVOVElUWSBuZXNlYXIgIiYjeDI5Mjg7Ij48IUVOVElUWSB0b2VhICImI3gyOTI4OyI%2BPCFFTlRJVFkgc2Vzd2FyICImI3gyOTI5OyI%2BPCFFTlRJVFkgdG9zYSAiJiN4MjkyOTsiPjwhRU5USVRZIHN3bndhciAiJiN4MjkyQTsiPjwhRU5USVRZIHJhcnJjICImI3gyOTMzOyI%2BPCFFTlRJVFkgbnJhcnJjICImI3gyOTMzOyYjeDMzODsiPjwhRU5USVRZIGN1ZGFycnIgIiYjeDI5MzU7Ij48IUVOVElUWSBsZGNhICImI3gyOTM2OyI%2BPCFFTlRJVFkgcmRjYSAiJiN4MjkzNzsiPjwhRU5USVRZIGN1ZGFycmwgIiYjeDI5Mzg7Ij48IUVOVElUWSBsYXJycGwgIiYjeDI5Mzk7Ij48IUVOVElUWSBjdXJhcnJtICImI3gyOTNDOyI%2BPCFFTlRJVFkgY3VsYXJycCAiJiN4MjkzRDsiPjwhRU5USVRZIHJhcnJwbCAiJiN4Mjk0NTsiPjwhRU5USVRZIGhhcnJjaXIgIiYjeDI5NDg7Ij48IUVOVElUWSBVYXJyb2NpciAiJiN4Mjk0OTsiPjwhRU5USVRZIGx1cmRzaGFyICImI3gyOTRBOyI%2BPCFFTlRJVFkgbGRydXNoYXIgIiYjeDI5NEI7Ij48IUVOVElUWSBMZWZ0UmlnaHRWZWN0b3IgIiYjeDI5NEU7Ij48IUVOVElUWSBSaWdodFVwRG93blZlY3RvciAiJiN4Mjk0RjsiPjwhRU5USVRZIERvd25MZWZ0UmlnaHRWZWN0b3IgIiYjeDI5NTA7Ij48IUVOVElUWSBMZWZ0VXBEb3duVmVjdG9yICImI3gyOTUxOyI%2BPCFFTlRJVFkgTGVmdFZlY3RvckJhciAiJiN4Mjk1MjsiPjwhRU5USVRZIFJpZ2h0VmVjdG9yQmFyICImI3gyOTUzOyI%2BPCFFTlRJVFkgUmlnaHRVcFZlY3RvckJhciAiJiN4Mjk1NDsiPjwhRU5USVRZIFJpZ2h0RG93blZlY3RvckJhciAiJiN4Mjk1NTsiPjwhRU5USVRZIERvd25MZWZ0VmVjdG9yQmFyICImI3gyOTU2OyI%2BPCFFTlRJVFkgRG93blJpZ2h0VmVjdG9yQmFyICImI3gyOTU3OyI%2BPCFFTlRJVFkgTGVmdFVwVmVjdG9yQmFyICImI3gyOTU4OyI%2BPCFFTlRJVFkgTGVmdERvd25WZWN0b3JCYXIgIiYjeDI5NTk7Ij48IUVOVElUWSBMZWZ0VGVlVmVjdG9yICImI3gyOTVBOyI%2BPCFFTlRJVFkgUmlnaHRUZWVWZWN0b3IgIiYjeDI5NUI7Ij48IUVOVElUWSBSaWdodFVwVGVlVmVjdG9yICImI3gyOTVDOyI%2BPCFFTlRJVFkgUmlnaHREb3duVGVlVmVjdG9yICImI3gyOTVEOyI%2BPCFFTlRJVFkgRG93bkxlZnRUZWVWZWN0b3IgIiYjeDI5NUU7Ij48IUVOVElUWSBEb3duUmlnaHRUZWVWZWN0b3IgIiYjeDI5NUY7Ij48IUVOVElUWSBMZWZ0VXBUZWVWZWN0b3IgIiYjeDI5NjA7Ij48IUVOVElUWSBMZWZ0RG93blRlZVZlY3RvciAiJiN4Mjk2MTsiPjwhRU5USVRZIGxIYXIgIiYjeDI5NjI7Ij48IUVOVElUWSB1SGFyICImI3gyOTYzOyI%2BPCFFTlRJVFkgckhhciAiJiN4Mjk2NDsiPjwhRU5USVRZIGRIYXIgIiYjeDI5NjU7Ij48IUVOVElUWSBsdXJ1aGFyICImI3gyOTY2OyI%2BPCFFTlRJVFkgbGRyZGhhciAiJiN4Mjk2NzsiPjwhRU5USVRZIHJ1bHVoYXIgIiYjeDI5Njg7Ij48IUVOVElUWSByZGxkaGFyICImI3gyOTY5OyI%2BPCFFTlRJVFkgbGhhcnVsICImI3gyOTZBOyI%2BPCFFTlRJVFkgbGxoYXJkICImI3gyOTZCOyI%2BPCFFTlRJVFkgcmhhcnVsICImI3gyOTZDOyI%2BPCFFTlRJVFkgbHJoYXJkICImI3gyOTZEOyI%2BPCFFTlRJVFkgdWRoYXIgIiYjeDI5NkU7Ij48IUVOVElUWSBVcEVxdWlsaWJyaXVtICImI3gyOTZFOyI%2BPCFFTlRJVFkgZHVoYXIgIiYjeDI5NkY7Ij48IUVOVElUWSBSZXZlcnNlVXBFcXVpbGlicml1bSAiJiN4Mjk2RjsiPjwhRU5USVRZIFJvdW5kSW1wbGllcyAiJiN4Mjk3MDsiPjwhRU5USVRZIGVyYXJyICImI3gyOTcxOyI%2BPCFFTlRJVFkgc2ltcmFyciAiJiN4Mjk3MjsiPjwhRU5USVRZIGxhcnJzaW0gIiYjeDI5NzM7Ij48IUVOVElUWSByYXJyc2ltICImI3gyOTc0OyI%2BPCFFTlRJVFkgcmFycmFwICImI3gyOTc1OyI%2BPCFFTlRJVFkgbHRsYXJyICImI3gyOTc2OyI%2BPCFFTlRJVFkgZ3RyYXJyICImI3gyOTc4OyI%2BPCFFTlRJVFkgc3VicmFyciAiJiN4Mjk3OTsiPjwhRU5USVRZIHN1cGxhcnIgIiYjeDI5N0I7Ij48IUVOVElUWSBsZmlzaHQgIiYjeDI5N0M7Ij48IUVOVElUWSByZmlzaHQgIiYjeDI5N0Q7Ij48IUVOVElUWSB1ZmlzaHQgIiYjeDI5N0U7Ij48IUVOVElUWSBkZmlzaHQgIiYjeDI5N0Y7Ij48IUVOVElUWSBsb3BhciAiJiN4Mjk4NTsiPjwhRU5USVRZIHJvcGFyICImI3gyOTg2OyI%2BPCFFTlRJVFkgbGJya2UgIiYjeDI5OEI7Ij48IUVOVElUWSByYnJrZSAiJiN4Mjk4QzsiPjwhRU5USVRZIGxicmtzbHUgIiYjeDI5OEQ7Ij48IUVOVElUWSByYnJrc2xkICImI3gyOThFOyI%2BPCFFTlRJVFkgbGJya3NsZCAiJiN4Mjk4RjsiPjwhRU5USVRZIHJicmtzbHUgIiYjeDI5OTA7Ij48IUVOVElUWSBsYW5nZCAiJiN4Mjk5MTsiPjwhRU5USVRZIHJhbmdkICImI3gyOTkyOyI%2BPCFFTlRJVFkgbHBhcmx0ICImI3gyOTkzOyI%2BPCFFTlRJVFkgcnBhcmd0ICImI3gyOTk0OyI%2BPCFFTlRJVFkgZ3RsUGFyICImI3gyOTk1OyI%2BPCFFTlRJVFkgbHRyUGFyICImI3gyOTk2OyI%2BPCFFTlRJVFkgdnppZ3phZyAiJiN4Mjk5QTsiPjwhRU5USVRZIHZhbmdydCAiJiN4Mjk5QzsiPjwhRU5USVRZIGFuZ3J0dmJkICImI3gyOTlEOyI%2BPCFFTlRJVFkgYW5nZSAiJiN4MjlBNDsiPjwhRU5USVRZIHJhbmdlICImI3gyOUE1OyI%2BPCFFTlRJVFkgZHdhbmdsZSAiJiN4MjlBNjsiPjwhRU5USVRZIHV3YW5nbGUgIiYjeDI5QTc7Ij48IUVOVElUWSBhbmdtc2RhYSAiJiN4MjlBODsiPjwhRU5USVRZIGFuZ21zZGFiICImI3gyOUE5OyI%2BPCFFTlRJVFkgYW5nbXNkYWMgIiYjeDI5QUE7Ij48IUVOVElUWSBhbmdtc2RhZCAiJiN4MjlBQjsiPjwhRU5USVRZIGFuZ21zZGFlICImI3gyOUFDOyI%2BPCFFTlRJVFkgYW5nbXNkYWYgIiYjeDI5QUQ7Ij48IUVOVElUWSBhbmdtc2RhZyAiJiN4MjlBRTsiPjwhRU5USVRZIGFuZ21zZGFoICImI3gyOUFGOyI%2BPCFFTlRJVFkgYmVtcHR5diAiJiN4MjlCMDsiPjwhRU5USVRZIGRlbXB0eXYgIiYjeDI5QjE7Ij48IUVOVElUWSBjZW1wdHl2ICImI3gyOUIyOyI%2BPCFFTlRJVFkgcmFlbXB0eXYgIiYjeDI5QjM7Ij48IUVOVElUWSBsYWVtcHR5diAiJiN4MjlCNDsiPjwhRU5USVRZIG9oYmFyICImI3gyOUI1OyI%2BPCFFTlRJVFkgb21pZCAiJiN4MjlCNjsiPjwhRU5USVRZIG9wYXIgIiYjeDI5Qjc7Ij48IUVOVElUWSBvcGVycCAiJiN4MjlCOTsiPjwhRU5USVRZIG9sY3Jvc3MgIiYjeDI5QkI7Ij48IUVOVElUWSBvZHNvbGQgIiYjeDI5QkM7Ij48IUVOVElUWSBvbGNpciAiJiN4MjlCRTsiPjwhRU5USVRZIG9mY2lyICImI3gyOUJGOyI%2BPCFFTlRJVFkgb2x0ICImI3gyOUMwOyI%2BPCFFTlRJVFkgb2d0ICImI3gyOUMxOyI%2BPCFFTlRJVFkgY2lyc2NpciAiJiN4MjlDMjsiPjwhRU5USVRZIGNpckUgIiYjeDI5QzM7Ij48IUVOVElUWSBzb2xiICImI3gyOUM0OyI%2BPCFFTlRJVFkgYnNvbGIgIiYjeDI5QzU7Ij48IUVOVElUWSBib3hib3ggIiYjeDI5Qzk7Ij48IUVOVElUWSB0cmlzYiAiJiN4MjlDRDsiPjwhRU5USVRZIHJ0cmlsdHJpICImI3gyOUNFOyI%2BPCFFTlRJVFkgTGVmdFRyaWFuZ2xlQmFyICImI3gyOUNGOyI%2BPCFFTlRJVFkgTm90TGVmdFRyaWFuZ2xlQmFyICImI3gyOUNGOyYjeDMzODsiPjwhRU5USVRZIFJpZ2h0VHJpYW5nbGVCYXIgIiYjeDI5RDA7Ij48IUVOVElUWSBOb3RSaWdodFRyaWFuZ2xlQmFyICImI3gyOUQwOyYjeDMzODsiPjwhRU5USVRZIGlpbmZpbiAiJiN4MjlEQzsiPjwhRU5USVRZIGluZmludGllICImI3gyOUREOyI%2BPCFFTlRJVFkgbnZpbmZpbiAiJiN4MjlERTsiPjwhRU5USVRZIGVwYXJzbCAiJiN4MjlFMzsiPjwhRU5USVRZIHNtZXBhcnNsICImI3gyOUU0OyI%2BPCFFTlRJVFkgZXF2cGFyc2wgIiYjeDI5RTU7Ij48IUVOVElUWSBsb3pmICImI3gyOUVCOyI%2BPCFFTlRJVFkgYmxhY2tsb3plbmdlICImI3gyOUVCOyI%2BPCFFTlRJVFkgUnVsZURlbGF5ZWQgIiYjeDI5RjQ7Ij48IUVOVElUWSBkc29sICImI3gyOUY2OyI%2BPCFFTlRJVFkgeG9kb3QgIiYjeDJBMDA7Ij48IUVOVElUWSBiaWdvZG90ICImI3gyQTAwOyI%2BPCFFTlRJVFkgeG9wbHVzICImI3gyQTAxOyI%2BPCFFTlRJVFkgYmlnb3BsdXMgIiYjeDJBMDE7Ij48IUVOVElUWSB4b3RpbWUgIiYjeDJBMDI7Ij48IUVOVElUWSBiaWdvdGltZXMgIiYjeDJBMDI7Ij48IUVOVElUWSB4dXBsdXMgIiYjeDJBMDQ7Ij48IUVOVElUWSBiaWd1cGx1cyAiJiN4MkEwNDsiPjwhRU5USVRZIHhzcWN1cCAiJiN4MkEwNjsiPjwhRU5USVRZIGJpZ3NxY3VwICImI3gyQTA2OyI%2BPCFFTlRJVFkgcWludCAiJiN4MkEwQzsiPjwhRU5USVRZIGlpaWludCAiJiN4MkEwQzsiPjwhRU5USVRZIGZwYXJ0aW50ICImI3gyQTBEOyI%2BPCFFTlRJVFkgY2lyZm5pbnQgIiYjeDJBMTA7Ij48IUVOVElUWSBhd2ludCAiJiN4MkExMTsiPjwhRU5USVRZIHJwcG9saW50ICImI3gyQTEyOyI%2BPCFFTlRJVFkgc2Nwb2xpbnQgIiYjeDJBMTM7Ij48IUVOVElUWSBucG9saW50ICImI3gyQTE0OyI%2BPCFFTlRJVFkgcG9pbnRpbnQgIiYjeDJBMTU7Ij48IUVOVElUWSBxdWF0aW50ICImI3gyQTE2OyI%2BPCFFTlRJVFkgaW50bGFyaGsgIiYjeDJBMTc7Ij48IUVOVElUWSBwbHVzY2lyICImI3gyQTIyOyI%2BPCFFTlRJVFkgcGx1c2FjaXIgIiYjeDJBMjM7Ij48IUVOVElUWSBzaW1wbHVzICImI3gyQTI0OyI%2BPCFFTlRJVFkgcGx1c2R1ICImI3gyQTI1OyI%2BPCFFTlRJVFkgcGx1c3NpbSAiJiN4MkEyNjsiPjwhRU5USVRZIHBsdXN0d28gIiYjeDJBMjc7Ij48IUVOVElUWSBtY29tbWEgIiYjeDJBMjk7Ij48IUVOVElUWSBtaW51c2R1ICImI3gyQTJBOyI%2BPCFFTlRJVFkgbG9wbHVzICImI3gyQTJEOyI%2BPCFFTlRJVFkgcm9wbHVzICImI3gyQTJFOyI%2BPCFFTlRJVFkgQ3Jvc3MgIiYjeDJBMkY7Ij48IUVOVElUWSB0aW1lc2QgIiYjeDJBMzA7Ij48IUVOVElUWSB0aW1lc2JhciAiJiN4MkEzMTsiPjwhRU5USVRZIHNtYXNocCAiJiN4MkEzMzsiPjwhRU5USVRZIGxvdGltZXMgIiYjeDJBMzQ7Ij48IUVOVElUWSByb3RpbWVzICImI3gyQTM1OyI%2BPCFFTlRJVFkgb3RpbWVzYXMgIiYjeDJBMzY7Ij48IUVOVElUWSBPdGltZXMgIiYjeDJBMzc7Ij48IUVOVElUWSBvZGl2ICImI3gyQTM4OyI%2BPCFFTlRJVFkgdHJpcGx1cyAiJiN4MkEzOTsiPjwhRU5USVRZIHRyaW1pbnVzICImI3gyQTNBOyI%2BPCFFTlRJVFkgdHJpdGltZSAiJiN4MkEzQjsiPjwhRU5USVRZIGlwcm9kICImI3gyQTNDOyI%2BPCFFTlRJVFkgaW50cHJvZCAiJiN4MkEzQzsiPjwhRU5USVRZIGFtYWxnICImI3gyQTNGOyI%2BPCFFTlRJVFkgY2FwZG90ICImI3gyQTQwOyI%2BPCFFTlRJVFkgbmN1cCAiJiN4MkE0MjsiPjwhRU5USVRZIG5jYXAgIiYjeDJBNDM7Ij48IUVOVElUWSBjYXBhbmQgIiYjeDJBNDQ7Ij48IUVOVElUWSBjdXBvciAiJiN4MkE0NTsiPjwhRU5USVRZIGN1cGNhcCAiJiN4MkE0NjsiPjwhRU5USVRZIGNhcGN1cCAiJiN4MkE0NzsiPjwhRU5USVRZIGN1cGJyY2FwICImI3gyQTQ4OyI%2BPCFFTlRJVFkgY2FwYnJjdXAgIiYjeDJBNDk7Ij48IUVOVElUWSBjdXBjdXAgIiYjeDJBNEE7Ij48IUVOVElUWSBjYXBjYXAgIiYjeDJBNEI7Ij48IUVOVElUWSBjY3VwcyAiJiN4MkE0QzsiPjwhRU5USVRZIGNjYXBzICImI3gyQTREOyI%2BPCFFTlRJVFkgY2N1cHNzbSAiJiN4MkE1MDsiPjwhRU5USVRZIEFuZCAiJiN4MkE1MzsiPjwhRU5USVRZIE9yICImI3gyQTU0OyI%2BPCFFTlRJVFkgYW5kYW5kICImI3gyQTU1OyI%2BPCFFTlRJVFkgb3JvciAiJiN4MkE1NjsiPjwhRU5USVRZIG9yc2xvcGUgIiYjeDJBNTc7Ij48IUVOVElUWSBhbmRzbG9wZSAiJiN4MkE1ODsiPjwhRU5USVRZIGFuZHYgIiYjeDJBNUE7Ij48IUVOVElUWSBvcnYgIiYjeDJBNUI7Ij48IUVOVElUWSBhbmRkICImI3gyQTVDOyI%2BPCFFTlRJVFkgb3JkICImI3gyQTVEOyI%2BPCFFTlRJVFkgd2VkYmFyICImI3gyQTVGOyI%2BPCFFTlRJVFkgc2RvdGUgIiYjeDJBNjY7Ij48IUVOVElUWSBzaW1kb3QgIiYjeDJBNkE7Ij48IUVOVElUWSBjb25nZG90ICImI3gyQTZEOyI%2BPCFFTlRJVFkgbmNvbmdkb3QgIiYjeDJBNkQ7JiN4MzM4OyI%2BPCFFTlRJVFkgZWFzdGVyICImI3gyQTZFOyI%2BPCFFTlRJVFkgYXBhY2lyICImI3gyQTZGOyI%2BPCFFTlRJVFkgYXBFICImI3gyQTcwOyI%2BPCFFTlRJVFkgbmFwRSAiJiN4MkE3MDsmI3gzMzg7Ij48IUVOVElUWSBlcGx1cyAiJiN4MkE3MTsiPjwhRU5USVRZIHBsdXNlICImI3gyQTcyOyI%2BPCFFTlRJVFkgRXNpbSAiJiN4MkE3MzsiPjwhRU5USVRZIENvbG9uZSAiJiN4MkE3NDsiPjwhRU5USVRZIEVxdWFsICImI3gyQTc1OyI%2BPCFFTlRJVFkgZUREb3QgIiYjeDJBNzc7Ij48IUVOVElUWSBkZG90c2VxICImI3gyQTc3OyI%2BPCFFTlRJVFkgZXF1aXZERCAiJiN4MkE3ODsiPjwhRU5USVRZIGx0Y2lyICImI3gyQTc5OyI%2BPCFFTlRJVFkgZ3RjaXIgIiYjeDJBN0E7Ij48IUVOVElUWSBsdHF1ZXN0ICImI3gyQTdCOyI%2BPCFFTlRJVFkgZ3RxdWVzdCAiJiN4MkE3QzsiPjwhRU5USVRZIGxlcyAiJiN4MkE3RDsiPjwhRU5USVRZIExlc3NTbGFudEVxdWFsICImI3gyQTdEOyI%2BPCFFTlRJVFkgbGVxc2xhbnQgIiYjeDJBN0Q7Ij48IUVOVElUWSBubGVzICImI3gyQTdEOyYjeDMzODsiPjwhRU5USVRZIE5vdExlc3NTbGFudEVxdWFsICImI3gyQTdEOyYjeDMzODsiPjwhRU5USVRZIG5sZXFzbGFudCAiJiN4MkE3RDsmI3gzMzg7Ij48IUVOVElUWSBnZXMgIiYjeDJBN0U7Ij48IUVOVElUWSBHcmVhdGVyU2xhbnRFcXVhbCAiJiN4MkE3RTsiPjwhRU5USVRZIGdlcXNsYW50ICImI3gyQTdFOyI%2BPCFFTlRJVFkgbmdlcyAiJiN4MkE3RTsmI3gzMzg7Ij48IUVOVElUWSBOb3RHcmVhdGVyU2xhbnRFcXVhbCAiJiN4MkE3RTsmI3gzMzg7Ij48IUVOVElUWSBuZ2Vxc2xhbnQgIiYjeDJBN0U7JiN4MzM4OyI%2BPCFFTlRJVFkgbGVzZG90ICImI3gyQTdGOyI%2BPCFFTlRJVFkgZ2VzZG90ICImI3gyQTgwOyI%2BPCFFTlRJVFkgbGVzZG90byAiJiN4MkE4MTsiPjwhRU5USVRZIGdlc2RvdG8gIiYjeDJBODI7Ij48IUVOVElUWSBsZXNkb3RvciAiJiN4MkE4MzsiPjwhRU5USVRZIGdlc2RvdG9sICImI3gyQTg0OyI%2BPCFFTlRJVFkgbGFwICImI3gyQTg1OyI%2BPCFFTlRJVFkgbGVzc2FwcHJveCAiJiN4MkE4NTsiPjwhRU5USVRZIGdhcCAiJiN4MkE4NjsiPjwhRU5USVRZIGd0cmFwcHJveCAiJiN4MkE4NjsiPjwh
RU5USVRZIGxuZSAiJiN4MkE4NzsiPjwhRU5USVRZIGxuZXEgIiYjeDJBODc7Ij48IUVOVElUWSBnbmUgIiYjeDJBODg7Ij48IUVOVElUWSBnbmVxICImI3gyQTg4OyI%2BPCFFTlRJVFkgbG5hcCAiJiN4MkE4OTsiPjwhRU5USVRZIGxuYXBwcm94ICImI3gyQTg5OyI%2BPCFFTlRJVFkgZ25hcCAiJiN4MkE4QTsiPjwhRU5USVRZIGduYXBwcm94ICImI3gyQThBOyI%2BPCFFTlRJVFkgbEVnICImI3gyQThCOyI%2BPCFFTlRJVFkgbGVzc2VxcWd0ciAiJiN4MkE4QjsiPjwhRU5USVRZIGdFbCAiJiN4MkE4QzsiPjwhRU5USVRZIGd0cmVxcWxlc3MgIiYjeDJBOEM7Ij48IUVOVElUWSBsc2ltZSAiJiN4MkE4RDsiPjwhRU5USVRZIGdzaW1lICImI3gyQThFOyI%2BPCFFTlRJVFkgbHNpbWcgIiYjeDJBOEY7Ij48IUVOVElUWSBnc2ltbCAiJiN4MkE5MDsiPjwhRU5USVRZIGxnRSAiJiN4MkE5MTsiPjwhRU5USVRZIGdsRSAiJiN4MkE5MjsiPjwhRU5USVRZIGxlc2dlcyAiJiN4MkE5MzsiPjwhRU5USVRZIGdlc2xlcyAiJiN4MkE5NDsiPjwhRU5USVRZIGVscyAiJiN4MkE5NTsiPjwhRU5USVRZIGVxc2xhbnRsZXNzICImI3gyQTk1OyI%2BPCFFTlRJVFkgZWdzICImI3gyQTk2OyI%2BPCFFTlRJVFkgZXFzbGFudGd0ciAiJiN4MkE5NjsiPjwhRU5USVRZIGVsc2RvdCAiJiN4MkE5NzsiPjwhRU5USVRZIGVnc2RvdCAiJiN4MkE5ODsiPjwhRU5USVRZIGVsICImI3gyQTk5OyI%2BPCFFTlRJVFkgZWcgIiYjeDJBOUE7Ij48IUVOVElUWSBzaW1sICImI3gyQTlEOyI%2BPCFFTlRJVFkgc2ltZyAiJiN4MkE5RTsiPjwhRU5USVRZIHNpbWxFICImI3gyQTlGOyI%2BPCFFTlRJVFkgc2ltZ0UgIiYjeDJBQTA7Ij48IUVOVElUWSBMZXNzTGVzcyAiJiN4MkFBMTsiPjwhRU5USVRZIE5vdE5lc3RlZExlc3NMZXNzICImI3gyQUExOyYjeDMzODsiPjwhRU5USVRZIEdyZWF0ZXJHcmVhdGVyICImI3gyQUEyOyI%2BPCFFTlRJVFkgTm90TmVzdGVkR3JlYXRlckdyZWF0ZXIgIiYjeDJBQTI7JiN4MzM4OyI%2BPCFFTlRJVFkgZ2xqICImI3gyQUE0OyI%2BPCFFTlRJVFkgZ2xhICImI3gyQUE1OyI%2BPCFFTlRJVFkgbHRjYyAiJiN4MkFBNjsiPjwhRU5USVRZIGd0Y2MgIiYjeDJBQTc7Ij48IUVOVElUWSBsZXNjYyAiJiN4MkFBODsiPjwhRU5USVRZIGdlc2NjICImI3gyQUE5OyI%2BPCFFTlRJVFkgc210ICImI3gyQUFBOyI%2BPCFFTlRJVFkgbGF0ICImI3gyQUFCOyI%2BPCFFTlRJVFkgc210ZSAiJiN4MkFBQzsiPjwhRU5USVRZIHNtdGVzICImI3gyQUFDOyYjeEZFMDA7Ij48IUVOVElUWSBsYXRlICImI3gyQUFEOyI%2BPCFFTlRJVFkgbGF0ZXMgIiYjeDJBQUQ7JiN4RkUwMDsiPjwhRU5USVRZIGJ1bXBFICImI3gyQUFFOyI%2BPCFFTlRJVFkgcHJlICImI3gyQUFGOyI%2BPCFFTlRJVFkgcHJlY2VxICImI3gyQUFGOyI%2BPCFFTlRJVFkgUHJlY2VkZXNFcXVhbCAiJiN4MkFBRjsiPjwhRU5USVRZIG5wcmUgIiYjeDJBQUY7JiN4MzM4OyI%2BPCFFTlRJVFkgbnByZWNlcSAiJiN4MkFBRjsmI3gzMzg7Ij48IUVOVElUWSBOb3RQcmVjZWRlc0VxdWFsICImI3gyQUFGOyYjeDMzODsiPjwhRU5USVRZIHNjZSAiJiN4MkFCMDsiPjwhRU5USVRZIHN1Y2NlcSAiJiN4MkFCMDsiPjwhRU5USVRZIFN1Y2NlZWRzRXF1YWwgIiYjeDJBQjA7Ij48IUVOVElUWSBuc2NlICImI3gyQUIwOyYjeDMzODsiPjwhRU5USVRZIG5zdWNjZXEgIiYjeDJBQjA7JiN4MzM4OyI%2BPCFFTlRJVFkgTm90U3VjY2VlZHNFcXVhbCAiJiN4MkFCMDsmI3gzMzg7Ij48IUVOVElUWSBwckUgIiYjeDJBQjM7Ij48IUVOVElUWSBzY0UgIiYjeDJBQjQ7Ij48IUVOVElUWSBwcm5FICImI3gyQUI1OyI%2BPCFFTlRJVFkgcHJlY25lcXEgIiYjeDJBQjU7Ij48IUVOVElUWSBzY25FICImI3gyQUI2OyI%2BPCFFTlRJVFkgc3VjY25lcXEgIiYjeDJBQjY7Ij48IUVOVElUWSBwcmFwICImI3gyQUI3OyI%2BPCFFTlRJVFkgcHJlY2FwcHJveCAiJiN4MkFCNzsiPjwhRU5USVRZIHNjYXAgIiYjeDJBQjg7Ij48IUVOVElUWSBzdWNjYXBwcm94ICImI3gyQUI4OyI%2BPCFFTlRJVFkgcHJuYXAgIiYjeDJBQjk7Ij48IUVOVElUWSBwcmVjbmFwcHJveCAiJiN4MkFCOTsiPjwhRU5USVRZIHNjbmFwICImI3gyQUJBOyI%2BPCFFTlRJVFkgc3VjY25hcHByb3ggIiYjeDJBQkE7Ij48IUVOVElUWSBQciAiJiN4MkFCQjsiPjwhRU5USVRZIFNjICImI3gyQUJDOyI%2BPCFFTlRJVFkgc3ViZG90ICImI3gyQUJEOyI%2BPCFFTlRJVFkgc3VwZG90ICImI3gyQUJFOyI%2BPCFFTlRJVFkgc3VicGx1cyAiJiN4MkFCRjsiPjwhRU5USVRZIHN1cHBsdXMgIiYjeDJBQzA7Ij48IUVOVElUWSBzdWJtdWx0ICImI3gyQUMxOyI%2BPCFFTlRJVFkgc3VwbXVsdCAiJiN4MkFDMjsiPjwhRU5USVRZIHN1YmVkb3QgIiYjeDJBQzM7Ij48IUVOVElUWSBzdXBlZG90ICImI3gyQUM0OyI%2BPCFFTlRJVFkgc3ViRSAiJiN4MkFDNTsiPjwhRU5USVRZIHN1YnNldGVxcSAiJiN4MkFDNTsiPjwhRU5USVRZIG5zdWJFICImI3gyQUM1OyYjeDMzODsiPjwhRU5USVRZIG5zdWJzZXRlcXEgIiYjeDJBQzU7JiN4MzM4OyI%2BPCFFTlRJVFkgc3VwRSAiJiN4MkFDNjsiPjwhRU5USVRZIHN1cHNldGVxcSAiJiN4MkFDNjsiPjwhRU5USVRZIG5zdXBFICImI3gyQUM2OyYjeDMzODsiPjwhRU5USVRZIG5zdXBzZXRlcXEgIiYjeDJBQzY7JiN4MzM4OyI%2BPCFFTlRJVFkgc3Vic2ltICImI3gyQUM3OyI%2BPCFFTlRJVFkgc3Vwc2ltICImI3gyQUM4OyI%2BPCFFTlRJVFkgc3VibkUgIiYjeDJBQ0I7Ij48IUVOVElUWSBzdWJzZXRuZXFxICImI3gyQUNCOyI%2BPCFFTlRJVFkgdnN1Ym5FICImI3gyQUNCOyYjeEZFMDA7Ij48IUVOVElUWSB2YXJzdWJzZXRuZXFxICImI3gyQUNCOyYjeEZFMDA7Ij48IUVOVElUWSBzdXBuRSAiJiN4MkFDQzsiPjwhRU5USVRZIHN1cHNldG5lcXEgIiYjeDJBQ0M7Ij48IUVOVElUWSB2c3VwbkUgIiYjeDJBQ0M7JiN4RkUwMDsiPjwhRU5USVRZIHZhcnN1cHNldG5lcXEgIiYjeDJBQ0M7JiN4RkUwMDsiPjwhRU5USVRZIGNzdWIgIiYjeDJBQ0Y7Ij48IUVOVElUWSBjc3VwICImI3gyQUQwOyI%2BPCFFTlRJVFkgY3N1YmUgIiYjeDJBRDE7Ij48IUVOVElUWSBjc3VwZSAiJiN4MkFEMjsiPjwhRU5USVRZIHN1YnN1cCAiJiN4MkFEMzsiPjwhRU5USVRZIHN1cHN1YiAiJiN4MkFENDsiPjwhRU5USVRZIHN1YnN1YiAiJiN4MkFENTsiPjwhRU5USVRZIHN1cHN1cCAiJiN4MkFENjsiPjwhRU5USVRZIHN1cGhzdWIgIiYjeDJBRDc7Ij48IUVOVElUWSBzdXBkc3ViICImI3gyQUQ4OyI%2BPCFFTlRJVFkgZm9ya3YgIiYjeDJBRDk7Ij48IUVOVElUWSB0b3Bmb3JrICImI3gyQURBOyI%2BPCFFTlRJVFkgbWxjcCAiJiN4MkFEQjsiPjwhRU5USVRZIERhc2h2ICImI3gyQUU0OyI%2BPCFFTlRJVFkgRG91YmxlTGVmdFRlZSAiJiN4MkFFNDsiPjwhRU5USVRZIFZkYXNobCAiJiN4MkFFNjsiPjwhRU5USVRZIEJhcnYgIiYjeDJBRTc7Ij48IUVOVElUWSB2QmFyICImI3gyQUU4OyI%2BPCFFTlRJVFkgdkJhcnYgIiYjeDJBRTk7Ij48IUVOVElUWSBWYmFyICImI3gyQUVCOyI%2BPCFFTlRJVFkgTm90ICImI3gyQUVDOyI%2BPCFFTlRJVFkgYk5vdCAiJiN4MkFFRDsiPjwhRU5USVRZIHJubWlkICImI3gyQUVFOyI%2BPCFFTlRJVFkgY2lybWlkICImI3gyQUVGOyI%2BPCFFTlRJVFkgbWlkY2lyICImI3gyQUYwOyI%2BPCFFTlRJVFkgdG9wY2lyICImI3gyQUYxOyI%2BPCFFTlRJVFkgbmhwYXIgIiYjeDJBRjI7Ij48IUVOVElUWSBwYXJzaW0gIiYjeDJBRjM7Ij48IUVOVElUWSBwYXJzbCAiJiN4MkFGRDsiPjwhRU5USVRZIG5wYXJzbCAiJiN4MkFGRDsmI3gyMEU1OyI%2BPCFFTlRJVFkgZmZsaWcgIiYjeEZCMDA7Ij48IUVOVElUWSBmaWxpZyAiJiN4RkIwMTsiPjwhRU5USVRZIGZsbGlnICImI3hGQjAyOyI%2BPCFFTlRJVFkgZmZpbGlnICImI3hGQjAzOyI%2BPCFFTlRJVFkgZmZsbGlnICImI3hGQjA0OyI%2BPCFFTlRJVFkgQXNjciAiJiN4MUQ0OUM7Ij48IUVOVElUWSBDc2NyICImI3gxRDQ5RTsiPjwhRU5USVRZIERzY3IgIiYjeDFENDlGOyI%2BPCFFTlRJVFkgR3NjciAiJiN4MUQ0QTI7Ij48IUVOVElUWSBKc2NyICImI3gxRDRBNTsiPjwhRU5USVRZIEtzY3IgIiYjeDFENEE2OyI%2BPCFFTlRJVFkgTnNjciAiJiN4MUQ0QTk7Ij48IUVOVElUWSBPc2NyICImI3gxRDRBQTsiPjwhRU5USVRZIFBzY3IgIiYjeDFENEFCOyI%2BPCFFTlRJVFkgUXNjciAiJiN4MUQ0QUM7Ij48IUVOVElUWSBTc2NyICImI3gxRDRBRTsiPjwhRU5USVRZIFRzY3IgIiYjeDFENEFGOyI%2BPCFFTlRJVFkgVXNjciAiJiN4MUQ0QjA7Ij48IUVOVElUWSBWc2NyICImI3gxRDRCMTsiPjwhRU5USVRZIFdzY3IgIiYjeDFENEIyOyI%2BPCFFTlRJVFkgWHNjciAiJiN4MUQ0QjM7Ij48IUVOVElUWSBZc2NyICImI3gxRDRCNDsiPjwhRU5USVRZIFpzY3IgIiYjeDFENEI1OyI%2BPCFFTlRJVFkgYXNjciAiJiN4MUQ0QjY7Ij48IUVOVElUWSBic2NyICImI3gxRDRCNzsiPjwhRU5USVRZIGNzY3IgIiYjeDFENEI4OyI%2BPCFFTlRJVFkgZHNjciAiJiN4MUQ0Qjk7Ij48IUVOVElUWSBmc2NyICImI3gxRDRCQjsiPjwhRU5USVRZIGhzY3IgIiYjeDFENEJEOyI%2BPCFFTlRJVFkgaXNjciAiJiN4MUQ0QkU7Ij48IUVOVElUWSBqc2NyICImI3gxRDRCRjsiPjwhRU5USVRZIGtzY3IgIiYjeDFENEMwOyI%2BPCFFTlRJVFkgbHNjciAiJiN4MUQ0QzE7Ij48IUVOVElUWSBtc2NyICImI3gxRDRDMjsiPjwhRU5USVRZIG5zY3IgIiYjeDFENEMzOyI%2BPCFFTlRJVFkgcHNjciAiJiN4MUQ0QzU7Ij48IUVOVElUWSBxc2NyICImI3gxRDRDNjsiPjwhRU5USVRZIHJzY3IgIiYjeDFENEM3OyI%2BPCFFTlRJVFkgc3NjciAiJiN4MUQ0Qzg7Ij48IUVOVElUWSB0c2NyICImI3gxRDRDOTsiPjwhRU5USVRZIHVzY3IgIiYjeDFENENBOyI%2BPCFFTlRJVFkgdnNjciAiJiN4MUQ0Q0I7Ij48IUVOVElUWSB3c2NyICImI3gxRDRDQzsiPjwhRU5USVRZIHhzY3IgIiYjeDFENENEOyI%2BPCFFTlRJVFkgeXNjciAiJiN4MUQ0Q0U7Ij48IUVOVElUWSB6c2NyICImI3gxRDRDRjsiPjwhRU5USVRZIEFmciAiJiN4MUQ1MDQ7Ij48IUVOVElUWSBCZnIgIiYjeDFENTA1OyI%2BPCFFTlRJVFkgRGZyICImI3gxRDUwNzsiPjwhRU5USVRZIEVmciAiJiN4MUQ1MDg7Ij48IUVOVElUWSBGZnIgIiYjeDFENTA5OyI%2BPCFFTlRJVFkgR2ZyICImI3gxRDUwQTsiPjwhRU5USVRZIEpmciAiJiN4MUQ1MEQ7Ij48IUVOVElUWSBLZnIgIiYjeDFENTBFOyI%2BPCFFTlRJVFkgTGZyICImI3gxRDUwRjsiPjwhRU5USVRZIE1mciAiJiN4MUQ1MTA7Ij48IUVOVElUWSBOZnIgIiYjeDFENTExOyI%2BPCFFTlRJVFkgT2ZyICImI3gxRDUxMjsiPjwhRU5USVRZIFBmciAiJiN4MUQ1MTM7Ij48IUVOVElUWSBRZnIgIiYjeDFENTE0OyI%2BPCFFTlRJVFkgU2ZyICImI3gxRDUxNjsiPjwhRU5USVRZIFRmciAiJiN4MUQ1MTc7Ij48IUVOVElUWSBVZnIgIiYjeDFENTE4OyI%2BPCFFTlRJVFkgVmZyICImI3gxRDUxOTsiPjwhRU5USVRZIFdmciAiJiN4MUQ1MUE7Ij48IUVOVElUWSBYZnIgIiYjeDFENTFCOyI%2BPCFFTlRJVFkgWWZyICImI3gxRDUxQzsiPjwhRU5USVRZIGFmciAiJiN4MUQ1MUU7Ij48IUVOVElUWSBiZnIgIiYjeDFENTFGOyI%2BPCFFTlRJVFkgY2ZyICImI3gxRDUyMDsiPjwhRU5USVRZIGRmciAiJiN4MUQ1MjE7Ij48IUVOVElUWSBlZnIgIiYjeDFENTIyOyI%2BPCFFTlRJVFkgZmZyICImI3gxRDUyMzsiPjwhRU5USVRZIGdmciAiJiN4MUQ1MjQ7Ij48IUVOVElUWSBoZnIgIiYjeDFENTI1OyI%2BPCFFTlRJVFkgaWZyICImI3gxRDUyNjsiPjwhRU5USVRZIGpmciAiJiN4MUQ1Mjc7Ij48IUVOVElUWSBrZnIgIiYjeDFENTI4OyI%2BPCFFTlRJVFkgbGZyICImI3gxRDUyOTsiPjwhRU5USVRZIG1mciAiJiN4MUQ1MkE7Ij48IUVOVElUWSBuZnIgIiYjeDFENTJCOyI%2BPCFFTlRJVFkgb2ZyICImI3gxRDUyQzsiPjwhRU5USVRZIHBmciAiJiN4MUQ1MkQ7Ij48IUVOVElUWSBxZnIgIiYjeDFENTJFOyI%2BPCFFTlRJVFkgcmZyICImI3gxRDUyRjsiPjwhRU5USVRZIHNmciAiJiN4MUQ1MzA7Ij48IUVOVElUWSB0ZnIgIiYjeDFENTMxOyI%2BPCFFTlRJVFkgdWZyICImI3gxRDUzMjsiPjwhRU5USVRZIHZmciAiJiN4MUQ1MzM7Ij48IUVOVElUWSB3ZnIgIiYjeDFENTM0OyI%2BPCFFTlRJVFkgeGZyICImI3gxRDUzNTsiPjwhRU5USVRZIHlmciAiJiN4MUQ1MzY7Ij48IUVOVElUWSB6ZnIgIiYjeDFENTM3OyI%2BPCFFTlRJVFkgQW9wZiAiJiN4MUQ1Mzg7Ij48IUVOVElUWSBCb3BmICImI3gxRDUzOTsiPjwhRU5USVRZIERvcGYgIiYjeDFENTNCOyI%2BPCFFTlRJVFkgRW9wZiAiJiN4MUQ1M0M7Ij48IUVOVElUWSBGb3BmICImI3gxRDUzRDsiPjwhRU5USVRZIEdvcGYgIiYjeDFENTNFOyI%2BPCFFTlRJVFkgSW9wZiAiJiN4MUQ1NDA7Ij48IUVOVElUWSBKb3BmICImI3gxRDU0MTsiPjwhRU5USVRZIEtvcGYgIiYjeDFENTQyOyI%2BPCFFTlRJVFkgTG9wZiAiJiN4MUQ1NDM7Ij48IUVOVElUWSBNb3BmICImI3gxRDU0NDsiPjwhRU5USVRZIE9vcGYgIiYjeDFENTQ2OyI%2BPCFFTlRJVFkgU29wZiAiJiN4MUQ1NEE7Ij48IUVOVElUWSBUb3BmICImI3gxRDU0QjsiPjwhRU5USVRZIFVvcGYgIiYjeDFENTRDOyI%2BPCFFTlRJVFkgVm9wZiAiJiN4MUQ1NEQ7Ij48IUVOVElUWSBXb3BmICImI3gxRDU0RTsiPjwhRU5USVRZIFhvcGYgIiYjeDFENTRGOyI%2BPCFFTlRJVFkgWW9wZiAiJiN4MUQ1NTA7Ij48IUVOVElUWSBhb3BmICImI3gxRDU1MjsiPjwhRU5USVRZIGJvcGYgIiYjeDFENTUzOyI%2BPCFFTlRJVFkgY29wZiAiJiN4MUQ1NTQ7Ij48IUVOVElUWSBkb3BmICImI3gxRDU1NTsiPjwhRU5USVRZIGVvcGYgIiYjeDFENTU2OyI%2BPCFFTlRJVFkgZm9wZiAiJiN4MUQ1NTc7Ij48IUVOVElUWSBnb3BmICImI3gxRDU1ODsiPjwhRU5USVRZIGhvcGYgIiYjeDFENTU5OyI%2BPCFFTlRJVFkgaW9wZiAiJiN4MUQ1NUE7Ij48IUVOVElUWSBqb3BmICImI3gxRDU1QjsiPjwhRU5USVRZIGtvcGYgIiYjeDFENTVDOyI%2BPCFFTlRJVFkgbG9wZiAiJiN4MUQ1NUQ7Ij48IUVOVElUWSBtb3BmICImI3gxRDU1RTsiPjwhRU5USVRZIG5vcGYgIiYjeDFENTVGOyI%2BPCFFTlRJVFkgb29wZiAiJiN4MUQ1NjA7Ij48IUVOVElUWSBwb3BmICImI3gxRDU2MTsiPjwhRU5USVRZIHFvcGYgIiYjeDFENTYyOyI%2BPCFFTlRJVFkgcm9wZiAiJiN4MUQ1NjM7Ij48IUVOVElUWSBzb3BmICImI3gxRDU2NDsiPjwhRU5USVRZIHRvcGYgIiYjeDFENTY1OyI%2BPCFFTlRJVFkgdW9wZiAiJiN4MUQ1NjY7Ij48IUVOVElUWSB2b3BmICImI3gxRDU2NzsiPjwhRU5USVRZIHdvcGYgIiYjeDFENTY4OyI%2BPCFFTlRJVFkgeG9wZiAiJiN4MUQ1Njk7Ij48IUVOVElUWSB5b3BmICImI3gxRDU2QTsiPjwhRU5USVRZIHpvcGYgIiYjeDFENTZCOyI%2B
https://www.w3.org/TR/xml/#sec-entity-decl
https://www.w3.org/TR/xml/#sec-entity-decl
https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

must act as it would have if faced with a single string consisting of the concatenation of all those characters.

When an XML parserp1188 reaches the end of its input, it must stop parsingp1165, following the same rules as the HTML parserp1079. An
XML parserp1188 can also be abortedp1165, which must again be done in the same way as for an HTML parserp1079.

For the purposes of conformance checkers, if a resource is determined to be in the XML syntaxp1188, then it is an XML document.

The XML fragment serialization algorithm for a Documentp114 or Element node either returns a fragment of XML that represents
that node or throws an exception.

For Documentp114s, the algorithm must return a string in the form of a document entity, if none of the error cases below apply.

For Elements, the algorithm must return a string in the form of an internal general parsed entity, if none of the error cases below apply.

In both cases, the string returned must be XML namespace-well-formed and must be an isomorphic serialization of all of that node's
relevant child nodesp1190, in tree order. User agents may adjust prefixes and namespace declarations in the serialization (and indeed
might be forced to do so in some cases to obtain namespace-well-formed XML). User agents may use a combination of regular text and
character references to represent Text nodes in the DOM.

A node's relevant child nodes are those that apply given the following rules:

For templatep629 elements
The relevant child nodesp1190 are the child nodes of the templatep629 element's template contentsp631, if any.

For all other nodes
The relevant child nodesp1190 are the child nodes of node itself, if any.

For Elements, if any of the elements in the serialization are in no namespace, the default namespace in scope for those elements must
be explicitly declared as the empty string. (This doesn't apply in the Documentp114 case.) [XML]p1293 [XMLNS]p1293

For the purposes of this section, an internal general parsed entity is considered XML namespace-well-formed if a document consisting
of an element with no namespace declarations whose contents are the internal general parsed entity would itself be XML namespace-
well-formed.

If any of the following error cases are found in the DOM subtree being serialized, then the algorithm must throw an
"InvalidStateError" DOMException instead of returning a string:

• A Documentp114 node with no child element nodes.

• A DocumentType node that has an external subset public identifier that contains characters that are not matched by the XML
PubidChar production. [XML]p1293

• A DocumentType node that has an external subset system identifier that contains both a U+0022 QUOTATION MARK (") and a
U+0027 APOSTROPHE (') or that contains characters that are not matched by the XML Char production. [XML]p1293

• A node with a local name containing a U+003A COLON (:).

• A node with a local name that does not match the XML Name production. [XML]p1293

• An Attr node with no namespace whose local name is the lowercase string "xmlns". [XMLNS]p1293

• An Element node with two or more attributes with the same local name and namespace.

• An Attr node, Text node, Comment node, or ProcessingInstruction node whose data contains characters that are not
matched by the XML Char production. [XML]p1293

• A Comment node whose data contains two adjacent U+002D HYPHEN-MINUS characters (-) or ends with such a character.

• A ProcessingInstruction node whose target name is an ASCII case-insensitive match for the string "xml".

• A ProcessingInstruction node whose target name contains a U+003A COLON (:).

• A ProcessingInstruction node whose data contains the string "?>".

13.3 Serializing XML fragments §p11

90

1190

https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#interface-element
https://www.w3.org/TR/xml/#sec-well-formed
https://dom.spec.whatwg.org/#interface-element
https://www.w3.org/TR/xml/#wf-entities
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-element
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#interface-documenttype
https://www.w3.org/TR/xml/#NT-Name
https://dom.spec.whatwg.org/#interface-attr
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-attr
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-processinginstruction
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#interface-processinginstruction

The XML fragment parsing algorithm either returns a Documentp114 or throws a "SyntaxError" DOMException. Given a string input
and a context element contextp1177, the algorithm is as follows:

1. Create a new XML parserp1188.

2. Feed the parserp1189 just created the string corresponding to the start tag of the contextp1177 element, declaring all the
namespace prefixes that are in scope on that element in the DOM, as well as declaring the default namespace (if any) that is
in scope on that element in the DOM.

A namespace prefix is in scope if the DOM lookupNamespaceURI() method on the element would return a non-null value for
that prefix.

The default namespace is the namespace for which the DOM isDefaultNamespace() method on the element would return
true.

3. Feed the parserp1189 just created the string input.

4. Feed the parserp1189 just created the string corresponding to the end tag of the contextp1177 element.

5. If there is an XML well-formedness or XML namespace well-formedness error, then throw a "SyntaxError" DOMException.

6. If the document element of the resulting Documentp114 has any sibling nodes, then throw a "SyntaxError" DOMException.

7. Return the child nodes of the document element of the resulting Documentp114, in tree order.

These are the only ways to make a DOM unserialisable. The DOM enforces all the other XML constraints; for example, trying to
append two elements to a Documentp114 node will throw a "HierarchyRequestError" DOMException.

Note

13.4 Parsing XML fragments §p11

91

No DOCTYPE is passed to the parser, and therefore no external subset is referenced, and therefore no entities will be
recognized.

Note

1191

https://heycam.github.io/webidl/#hierarchyrequesterror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#document-element
https://heycam.github.io/webidl/#syntaxerror
https://heycam.github.io/webidl/#dfn-DOMException
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-tree-order

User agents are not required to present HTML documents in any particular way. However, this section provides a set of suggestions for
rendering HTML documents that, if followed, are likely to lead to a user experience that closely resembles the experience intended by
the documents' authors. So as to avoid confusion regarding the normativity of this section, "must" has not been used. Instead, the
term "expected" is used to indicate behavior that will lead to this experience. For the purposes of conformance for user agents
designated as supporting the suggested default rendering p47, the term "expected" in this section has the same conformance
implications as "must".

In general, user agents are expected to support CSS, and many of the suggestions in this section are expressed in CSS terms. User
agents that use other presentation mechanisms can derive their expected behavior by translating from the CSS rules given in this
section.

In the absence of style-layer rules to the contrary (e.g. author style sheets), user agents are expected to render an element so that it
conveys to the user the meaning that the element representsp123, as described by this specification.

The suggestions in this section generally assume a visual output medium with a resolution of 96dpi or greater, but HTML is intended to
apply to multiple media (it is a media-independent language). User agent implementers are encouraged to adapt the suggestions in
this section to their target media.

An element is being rendered if it has any associated CSS layout boxes, SVG layout boxes, or some equivalent in other styling
languages.

An element is said to intersect the viewport when it is being renderedp1192 and its associated CSS layout box intersects the viewport.

User agents that do not honor author-level CSS style sheets are nonetheless expected to act as if they applied the CSS rules given in
these sections in a manner consistent with this specification and the relevant CSS and Unicode specifications. [CSS]p1285

[UNICODE]p1292 [BIDI]p1285

The CSS rules given in these subsections are, except where otherwise specified, expected to be used as part of the user-agent level
style sheet defaults for all documents that contain HTML elementsp44.

Some rules are intended for the author-level zero-specificity presentational hints part of the CSS cascade; these are explicitly called out
as presentational hints.

14 Rendering §p11

92

14.1 Introduction §p11

92

Just being off-screen does not mean the element is not being renderedp1192. The presence of the hiddenp765 attribute normally
means the element is not being renderedp1192, though this might be overridden by the style sheets.

Note

This specification does not define the precise timing for when the intersection is tested, but it is suggested that the timing match
that of the Intersection Observer API. [INTERSECTIONOBSERVER]p1288

Note

This is especially important for issues relating to the 'display', 'unicode-bidi', and 'direction' properties.
Note

14.2 The CSS user agent style sheet and presentational hints §p11

92

1192

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-writing-modes/#direction

When the text below says that an attribute attribute on an element element maps to the pixel length property (or properties)
properties, it means that if element has an attribute attribute set, and parsing that attribute's value using the rules for parsing non-
negative integersp69 doesn't generate an error, then the user agent is expected to use the parsed value as a pixel length for a
presentational hintp1192 for properties.

When the text below says that an attribute attribute on an element element maps to the dimension property (or properties)
properties, it means that if element has an attribute attribute set, and parsing that attribute's value using the rules for parsing
dimension valuesp71 doesn't generate an error, then the user agent is expected to use the parsed dimension as the value for a
presentational hintp1192 for properties, with the value given as a pixel length if the dimension was a length, and with the value given as
a percentage if the dimension was a percentage.

When the text below says that an attribute attribute on an element element maps to the dimension property (ignoring zero) (or
properties) properties, it means that if element has an attribute attribute set, and parsing that attribute's value using the rules for
parsing nonzero dimension valuesp72 doesn't generate an error, then the user agent is expected to use the parsed dimension as the
value for a presentational hintp1192 for properties, with the value given as a pixel length if the dimension was a length, and with the
value given as a percentage if the dimension was a percentage.

When a user agent is to align descendants of a node, the user agent is expected to align only those descendants that have both
their 'margin-inline-start' and 'margin-inline-end' properties computing to a value other than 'auto', that are over-constrained and that
have one of those two margins with a used value forced to a greater value, and that do not themselves have an applicable align
attribute. When multiple elements are to alignp1193 a particular descendant, the most deeply nested such element is expected to
override the others. Aligned elements are expected to be aligned by having the used values of their margins on the line-left and line-
right sides be set accordingly. [CSSLOGICAL]p1286 [CSSWM]p1287

@namespace url(http://www.w3.org/1999/xhtml);

[hidden], area, base, basefont, datalist, head, link, meta, noembed,
noframes, param, rp, script, source, style, template, track, title {

display: none;
}

embed[hidden] { display: inline; height: 0; width: 0; }

input[type=hidden i] { display: none !important; }

@media (scripting) {
noscript { display: none !important; }

}

@namespace url(http://www.w3.org/1999/xhtml);

html, body { display: block; }

For each property in the table below, given a bodyp178 element, the first attribute that exists maps to the pixel length propertyp1193 on
the bodyp178 element. If none of the attributes for a property are found, or if the value of the attribute that was found cannot be parsed
successfully, then a default value of 8px is expected to be used for that property instead.

Property Source

The bodyp178 element's marginheightp1236 attribute
The bodyp178 element's topmarginp1236 attribute

'margin-top'

The bodyp178 element's container frame elementp1194 's marginheightp1236 attribute

14.3 Non-replaced elements §p11

93

CSS

CSS

14.3.1 Hidden elements §p11

93

14.3.2 The page §p11

93

✔ MDN

1193

https://drafts.csswg.org/css-logical/#propdef-margin-inline-start
https://drafts.csswg.org/css-logical/#propdef-margin-inline-end
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-writing-modes/#line-left
https://drafts.csswg.org/css-writing-modes/#line-right
https://drafts.csswg.org/css-writing-modes/#line-right
https://drafts.csswg.org/css2/#propdef-margin-top

Property Source

The bodyp178 element's marginwidthp1236 attribute
The bodyp178 element's rightmarginp1236 attribute

'margin-right'

The bodyp178 element's container frame elementp1194 's marginwidthp1236 attribute

The bodyp178 element's marginheightp1236 attribute
The bodyp178 element's bottommarginp1236 attribute

'margin-bottom'

The bodyp178 element's container frame elementp1194 's marginheightp1236 attribute

The bodyp178 element's marginwidthp1236 attribute
The bodyp178 element's leftmarginp1236 attribute

'margin-left'

The bodyp178 element's container frame elementp1194 's marginwidthp1236 attribute

If the bodyp178 element's node document's browsing contextp811 is a child browsing contextp814, and the containerp814 of that browsing
contextp811 is a framep1240 or iframep361 element, then the container frame element of the bodyp178 element is that framep1240 or
iframep361 element. Otherwise, there is no container frame elementp1194.

If a Documentp114 's browsing contextp811 is a child browsing contextp814, then it is expected to be positioned and sized to fit inside the
content box of the containerp814 of that browsing contextp811. If the containerp814 is not being renderedp1192, the browsing contextp811 is
expected to have a viewport with zero width and zero height.

If a Documentp114 's browsing contextp811 is a child browsing contextp814, the containerp814 of that browsing contextp811 is a framep1240 or
iframep361 element, that element has a scrolling attribute, and that attribute's value is an ASCII case-insensitive match for the string
"off", "noscroll", or "no", then the user agent is expected to prevent any scrollbars from being shown for the viewport of the
Documentp114 's browsing contextp811, regardless of the 'overflow' property that applies to that viewport.

When a bodyp178 element has a backgroundp1237 attribute set to a non-empty value, the new value is expected to be parsedp89 relative
to the element's node document, and if this is successful, the user agent is expected to treat the attribute as a presentational hintp1192

setting the element's 'background-image' property to the resulting URL stringp89.

When a bodyp178 element has a bgcolorp1236 attribute set, the new value is expected to be parsed using the rules for parsing a legacy
color valuep86, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting
the element's 'background-color' property to the resulting color.

When a bodyp178 element has a textp1236 attribute, its value is expected to be parsed using the rules for parsing a legacy color value p86,
and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting the element's
'color' property to the resulting color.

When a bodyp178 element has a linkp1236 attribute, its value is expected to be parsed using the rules for parsing a legacy color value p86,
and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting the 'color'
property of any element in the Documentp114 matching the :linkp725 pseudo-class to the resulting color.

When a bodyp178 element has a vlinkp1236 attribute, its value is expected to be parsed using the rules for parsing a legacy color
valuep86, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting the
'color' property of any element in the Documentp114 matching the :visitedp725 pseudo-class to the resulting color.

When a bodyp178 element has an alinkp1236 attribute, its value is expected to be parsed using the rules for parsing a legacy color
valuep86, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting the
'color' property of any element in the Documentp114 matching the :activep725 pseudo-class and either the :linkp725 pseudo-class or the
:visitedp725 pseudo-class to the resulting color.

The above requirements imply that a page can change the margins of another page (including one from another
originp837) using, for example, an iframep361. This is potentially a security risk, as it might in some cases allow an
attack to contrive a situation in which a page is rendered not as the author intended, possibly for the purposes of
phishing or otherwise misleading the user.

⚠Warning!

1194

https://drafts.csswg.org/css2/#propdef-margin-right
https://drafts.csswg.org/css2/#propdef-margin-bottom
https://drafts.csswg.org/css2/#propdef-margin-left
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css2/#content-box
https://drafts.csswg.org/css2/#viewport
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-backgrounds/#the-background-image
https://drafts.csswg.org/css-backgrounds/#the-background-color
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

@namespace url(http://www.w3.org/1999/xhtml);

address, blockquote, center, dialog, div, figure, figcaption, footer, form,
header, hr, legend, listing, main, p, plaintext, pre, xmp {

display: block;
}

blockquote, figure, listing, p, plaintext, pre, xmp {
margin-block-start: 1em; margin-block-end: 1em;

}

blockquote, figure { margin-inline-start: 40px; margin-inline-end: 40px; }

address { font-style: italic; }
listing, plaintext, pre, xmp {

font-family: monospace; white-space: pre;
}

dialog:not([open]) { display: none; }
dialog {

position: absolute;
inset-inline-start: 0; inset-inline-end: 0;
width: fit-content;
height: fit-content;
margin: auto;
border: solid;
padding: 1em;
background: white;
color: black;

}
dialog::backdrop {

background: rgba(0,0,0,0.1);
}

slot {
display: contents;

}

The following rules are also expected to apply, as presentational hintsp1192:

@namespace url(http://www.w3.org/1999/xhtml);

pre[wrap] { white-space: pre-wrap; }

In quirks mode, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

form { margin-block-end: 1em; }

The centerp1233 element, and the divp237 element when it has an alignp1236 attribute whose value is an ASCII case-insensitive match
for either the string "center" or the string "middle", are expected to center text within themselves, as if they had their 'text-align'
property set to 'center' in a presentational hintp1192, and to align descendantsp1193 to the center.

The divp237 element, when it has an alignp1236 attribute whose value is an ASCII case-insensitive match for the string "left", is
expected to left-align text within itself, as if it had its 'text-align' property set to 'left' in a presentational hintp1192, and to align
descendantsp1193 to the left.

CSS

CSS

CSS

14.3.3 Flow content §p11

95

1195

https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property

The divp237 element, when it has an alignp1236 attribute whose value is an ASCII case-insensitive match for the string "right", is
expected to right-align text within itself, as if it had its 'text-align' property set to 'right' in a presentational hintp1192, and to align
descendantsp1193 to the right.

The divp237 element, when it has an alignp1236 attribute whose value is an ASCII case-insensitive match for the string "justify", is
expected to full-justify text within itself, as if it had its 'text-align' property set to 'justify' in a presentational hintp1192, and to align
descendantsp1193 to the left.

@namespace url(http://www.w3.org/1999/xhtml);

cite, dfn, em, i, var { font-style: italic; }
b, strong { font-weight: bolder; }
code, kbd, samp, tt { font-family: monospace; }
big { font-size: larger; }
small { font-size: smaller; }

sub { vertical-align: sub; }
sup { vertical-align: super; }
sub, sup { line-height: normal; font-size: smaller; }

ruby { display: ruby; }
rt { display: ruby-text; }

:link { color: #0000EE; }
:visited { color: #551A8B; }
:link:active, :visited:active { color: #FF0000; }
:link, :visited { text-decoration: underline; cursor: pointer; }

:focus { outline: auto; }

mark { background: yellow; color: black; } /* this color is just a suggestion and can be changed based
on implementation feedback */

abbr[title], acronym[title] { text-decoration: dotted underline; }
ins, u { text-decoration: underline; }
del, s, strike { text-decoration: line-through; }

q::before { content: open-quote; }
q::after { content: close-quote; }

br { display-outside: newline; } /* this also has bidi implications */
nobr { white-space: nowrap; }
wbr { display-outside: break-opportunity; } /* this also has bidi implications */
nobr wbr { white-space: normal; }

The following rules are also expected to apply, as presentational hintsp1192:

@namespace url(http://www.w3.org/1999/xhtml);

br[clear=left i] { clear: left; }
br[clear=right i] { clear: right; }
br[clear=all i], br[clear=both i] { clear: both; }

For the purposes of the CSS ruby model, runs of children of rubyp252 elements that are not rtp258 or rpp258 elements are expected to be
wrapped in anonymous boxes whose 'display' property has the value 'ruby-base'. [CSSRUBY]p1286

When a particular part of a ruby has more than one annotation, the annotations should be distributed on both sides of the base text so
as to minimize the stacking of ruby annotations on one side.

CSS

CSS

14.3.4 Phrasing content §p11

96

1196

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-ruby/#valdef-display-ruby-base

User agents that do not support correct ruby rendering are expected to render parentheses around the text of rtp258 elements in the
absence of rpp258 elements.

User agents are expected to support the 'clear' property on inline elements (in order to render brp280 elements with clearp1236

attributes) in the manner described in the non-normative note to this effect in CSS.

The initial value for the 'color' property is expected to be black. The initial value for the 'background-color' property is expected to be
'transparent'. The canvas's background is expected to be white.

When a fontp1233 element has a color attribute, its value is expected to be parsed using the rules for parsing a legacy color value p86,
and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting the element's
'color' property to the resulting color.

The fontp1233 element is expected to override the color of any text decoration that spans the text of the element to the used value of
the element's 'color' property.

When a fontp1233 element has a face attribute, the user agent is expected to treat the attribute as a presentational hintp1192 setting the
element's 'font-family' property to the attribute's value.

When a fontp1233 element has a size attribute, the user agent is expected to use the following steps, known as the rules for parsing
a legacy font size, to treat the attribute as a presentational hintp1192 setting the element's 'font-size' property:

1. Let input be the attribute's value.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Skip ASCII whitespace within input given position.

4. If position is past the end of input, there is no presentational hintp1192. Return.

5. If the character at position is a U+002B PLUS SIGN character (+), then let mode be relative-plus, and advance position to the
next character. Otherwise, if the character at position is a U+002D HYPHEN-MINUS character (-), then let mode be relative-
minus, and advance position to the next character. Otherwise, let mode be absolute.

6. Collect a sequence of code points that are ASCII digits from input given position, and let the resulting sequence be digits.

7. If digits is the empty string, there is no presentational hintp1192. Return.

8. Interpret digits as a base-ten integer. Let value be the resulting number.

9. If mode is relative-plus, then increment value by 3. If mode is relative-minus, then let value be the result of subtracting value
from 3.

10. If value is greater than 7, let it be 7.

11. If value is less than 1, let it be 1.

12. Set 'font-size' to the keyword corresponding to the value of value according to the following table:

value 'font-size' keyword

1 'x-small'
2 'small'
3 'medium'
4 'large'
5 'x-large'
6 'xx-large'
7 'xxx-large'

When it becomes possible to do so, the preceding requirement will be updated to be expressed in terms of CSS ruby. (Currently,
CSS ruby does not handle nested rubyp252 elements or multiple sequential rtp258 elements, which is how this semantic is
expressed.)

Note

1197

https://drafts.csswg.org/css2/#flow-control
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-backgrounds/#the-background-color
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-fonts/#font-family-prop
https://drafts.csswg.org/css-fonts/#font-size-prop
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-fonts/#font-size-prop

@namespace url(http://www.w3.org/1999/xhtml);

[dir]:dir(ltr), bdi:dir(ltr), input[type=tel i]:dir(ltr) { direction: ltr; }
[dir]:dir(rtl), bdi:dir(rtl) { direction: rtl; }

address, blockquote, center, div, figure, figcaption, footer, form, header, hr,
legend, listing, main, p, plaintext, pre, summary, xmp, article, aside, h1, h2,
h3, h4, h5, h6, hgroup, nav, section, table, caption, colgroup, col, thead,
tbody, tfoot, tr, td, th, dir, dd, dl, dt, menu, ol, ul, li, bdi, output,
[dir=ltr i], [dir=rtl i], [dir=auto i] {

unicode-bidi: isolate;
}

bdo, bdo[dir] { unicode-bidi: isolate-override; }

input[dir=auto i]:is([type=search i], [type=tel i], [type=url i],
[type=email i]), textarea[dir=auto i], pre[dir=auto i] {

unicode-bidi: plaintext;
}
/* see prose for input elements whose type attribute is in the Text state */

/* the rules setting the 'content' property on br and wbr elements also has bidi implications */

When an inputp493 element's dirp142 attribute is in the autop142 state and its typep495 attribute is in the Textp499 state, then the user
agent is expected to act as if it had a user-agent-level style sheet rule setting the 'unicode-bidi' property to 'plaintext'.

Input fields (i.e. textareap548 elements, and inputp493 elements when their typep495 attribute is in the Textp499, Searchp499,
Telephonep500, URLp501, or Emailp502 state) are expected to present an editing user interface with a directionality that matches the
element's 'direction' property.

When the document's character encoding is ISO-8859-8, the following rules are additionally expected to apply, following those above:
[ENCODING]p1287

@namespace url(http://www.w3.org/1999/xhtml);

address, blockquote, center, div, figure, figcaption, footer, form, header, hr,
legend, listing, main, p, plaintext, pre, summary, xmp, article, aside, h1, h2,
h3, h4, h5, h6, hgroup, nav, section, table, caption, colgroup, col, thead,
tbody, tfoot, tr, td, th, dir, dd, dl, dt, menu, ol, ul, li, [dir=ltr i],
[dir=rtl i], [dir=auto i], *|* {

unicode-bidi: bidi-override;
}
input:not([type=submit i]):not([type=reset i]):not([type=button i]),
textarea {

unicode-bidi: normal;
}

This block is automatically generated from the Unicode Common Locale Data Repository. [CLDR]p1285

User agents are expected to use either the block below (which will be regularly updated) or to automatically generate their own copy
directly from the source material. The language codes are derived from the CLDR file names. The quotes are derived from the
delimiter blocks, with fallback handled as specified in the CLDR documentation.

@namespace url(http://www.w3.org/1999/xhtml);

CSS

CSS

CSS

14.3.5 Bidirectional text §p11

98

14.3.6 Quotes §p11

98

1198

https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-writing-modes/#direction
https://encoding.spec.whatwg.org/#iso-8859-8

:root { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(af), :not(:lang(af)) > :lang(af) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(agq), :not(:lang(agq)) > :lang(agq) { quotes: '\201e' '\201d' '\201a' '\2019'
} /* „ ” ‚ ’ */
:root:lang(ak), :not(:lang(ak)) > :lang(ak) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(am), :not(:lang(am)) > :lang(am) { quotes: '\00ab' '\00bb' '\2039' '\203a'
} /* « » ‹ › */
:root:lang(ar), :not(:lang(ar)) > :lang(ar) { quotes: '\201d' '\201c' '\2019' '\2018'
} /* ” “ ’ ‘ */
:root:lang(asa), :not(:lang(asa)) > :lang(asa) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ast), :not(:lang(ast)) > :lang(ast) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(az), :not(:lang(az)) > :lang(az) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(az-Cyrl), :not(:lang(az-Cyrl)) > :lang(az-Cyrl) { quotes: '\00ab' '\00bb' '\2039' '\203a'
} /* « » ‹ › */
:root:lang(bas), :not(:lang(bas)) > :lang(bas) { quotes: '\00ab' '\00bb' '\201e' '\201c'
} /* « » „ “ */
:root:lang(be), :not(:lang(be)) > :lang(be) { quotes: '\00ab' '\00bb' '\201e' '\201c'
} /* « » „ “ */
:root:lang(bem), :not(:lang(bem)) > :lang(bem) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(bez), :not(:lang(bez)) > :lang(bez) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(bg), :not(:lang(bg)) > :lang(bg) { quotes: '\201e' '\201c' '\201e' '\201c'
} /* „ “ „ “ */
:root:lang(bm), :not(:lang(bm)) > :lang(bm) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(bn), :not(:lang(bn)) > :lang(bn) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(br), :not(:lang(br)) > :lang(br) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(brx), :not(:lang(brx)) > :lang(brx) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(bs), :not(:lang(bs)) > :lang(bs) { quotes: '\201e' '\201d' '\2018' '\2019'
} /* „ ” ‘ ’ */
:root:lang(bs-Cyrl), :not(:lang(bs-Cyrl)) > :lang(bs-Cyrl) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(ca), :not(:lang(ca)) > :lang(ca) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(cgg), :not(:lang(cgg)) > :lang(cgg) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(chr), :not(:lang(chr)) > :lang(chr) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(cs), :not(:lang(cs)) > :lang(cs) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(cy), :not(:lang(cy)) > :lang(cy) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(da), :not(:lang(da)) > :lang(da) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(dav), :not(:lang(dav)) > :lang(dav) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(de), :not(:lang(de)) > :lang(de) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(dje), :not(:lang(dje)) > :lang(dje) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(dsb), :not(:lang(dsb)) > :lang(dsb) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */

1199

:root:lang(dua), :not(:lang(dua)) > :lang(dua) { quotes: '\00ab' '\00bb' '\2018' '\2019'
} /* « » ‘ ’ */
:root:lang(dyo), :not(:lang(dyo)) > :lang(dyo) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(dz), :not(:lang(dz)) > :lang(dz) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ebu), :not(:lang(ebu)) > :lang(ebu) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ee), :not(:lang(ee)) > :lang(ee) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(el), :not(:lang(el)) > :lang(el) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(en), :not(:lang(en)) > :lang(en) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(es), :not(:lang(es)) > :lang(es) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(et), :not(:lang(et)) > :lang(et) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(eu), :not(:lang(eu)) > :lang(eu) { quotes: '\201c' '\201d' '\201c' '\201d'
} /* “ ” “ ” */
:root:lang(ewo), :not(:lang(ewo)) > :lang(ewo) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(fa), :not(:lang(fa)) > :lang(fa) { quotes: '\00ab' '\00bb' '\2039' '\203a'
} /* « » ‹ › */
:root:lang(ff), :not(:lang(ff)) > :lang(ff) { quotes: '\201e' '\201d' '\201a' '\2019'
} /* „ ” ‚ ’ */
:root:lang(fi), :not(:lang(fi)) > :lang(fi) { quotes: '\201d' '\201d' '\2019' '\2019'
} /* ” ” ’ ’ */
:root:lang(fil), :not(:lang(fil)) > :lang(fil) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(fo), :not(:lang(fo)) > :lang(fo) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(fr), :not(:lang(fr)) > :lang(fr) { quotes: '\00ab' '\00bb' '\00ab' '\00bb'
} /* « » « » */
:root:lang(fr-CH), :not(:lang(fr-CH)) > :lang(fr-CH) { quotes: '\00ab' '\00bb' '\2039' '\203a'
} /* « » ‹ › */
:root:lang(ga), :not(:lang(ga)) > :lang(ga) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(gd), :not(:lang(gd)) > :lang(gd) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(gl), :not(:lang(gl)) > :lang(gl) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(gsw), :not(:lang(gsw)) > :lang(gsw) { quotes: '\00ab' '\00bb' '\2039' '\203a'
} /* « » ‹ › */
:root:lang(gu), :not(:lang(gu)) > :lang(gu) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(guz), :not(:lang(guz)) > :lang(guz) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ha), :not(:lang(ha)) > :lang(ha) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(he), :not(:lang(he)) > :lang(he) { quotes: '\201d' '\201d' '\2019' '\2019'
} /* ” ” ’ ’ */
:root:lang(hi), :not(:lang(hi)) > :lang(hi) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(hr), :not(:lang(hr)) > :lang(hr) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(hsb), :not(:lang(hsb)) > :lang(hsb) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(hu), :not(:lang(hu)) > :lang(hu) { quotes: '\201e' '\201d' '\00bb' '\00ab'
} /* „ ” » « */
:root:lang(hy), :not(:lang(hy)) > :lang(hy) { quotes: '\00ab' '\00bb' '\00ab' '\00bb'
} /* « » « » */

1200

:root:lang(id), :not(:lang(id)) > :lang(id) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ig), :not(:lang(ig)) > :lang(ig) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(is), :not(:lang(is)) > :lang(is) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(it), :not(:lang(it)) > :lang(it) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(ja), :not(:lang(ja)) > :lang(ja) { quotes: '\300c' '\300d' '\300e' '\300f'
} /* 「 」 『 』 */
:root:lang(jgo), :not(:lang(jgo)) > :lang(jgo) { quotes: '\00ab' '\00bb' '\2039' '\203a'
} /* « » ‹ › */
:root:lang(jmc), :not(:lang(jmc)) > :lang(jmc) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ka), :not(:lang(ka)) > :lang(ka) { quotes: '\201e' '\201c' '\00ab' '\00bb'
} /* „ “ « » */
:root:lang(kab), :not(:lang(kab)) > :lang(kab) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(kam), :not(:lang(kam)) > :lang(kam) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(kde), :not(:lang(kde)) > :lang(kde) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(kea), :not(:lang(kea)) > :lang(kea) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(khq), :not(:lang(khq)) > :lang(khq) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ki), :not(:lang(ki)) > :lang(ki) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(kk), :not(:lang(kk)) > :lang(kk) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(kkj), :not(:lang(kkj)) > :lang(kkj) { quotes: '\00ab' '\00bb' '\2039' '\203a'
} /* « » ‹ › */
:root:lang(kln), :not(:lang(kln)) > :lang(kln) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(km), :not(:lang(km)) > :lang(km) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(kn), :not(:lang(kn)) > :lang(kn) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ko), :not(:lang(ko)) > :lang(ko) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ksb), :not(:lang(ksb)) > :lang(ksb) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ksf), :not(:lang(ksf)) > :lang(ksf) { quotes: '\00ab' '\00bb' '\2018' '\2019'
} /* « » ‘ ’ */
:root:lang(ky), :not(:lang(ky)) > :lang(ky) { quotes: '\00ab' '\00bb' '\201e' '\201c'
} /* « » „ “ */
:root:lang(lag), :not(:lang(lag)) > :lang(lag) { quotes: '\201d' '\201d' '\2019' '\2019'
} /* ” ” ’ ’ */
:root:lang(lb), :not(:lang(lb)) > :lang(lb) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(lg), :not(:lang(lg)) > :lang(lg) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ln), :not(:lang(ln)) > :lang(ln) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(lo), :not(:lang(lo)) > :lang(lo) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(lrc), :not(:lang(lrc)) > :lang(lrc) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(lt), :not(:lang(lt)) > :lang(lt) { quotes: '\201e' '\201c' '\201e' '\201c'
} /* „ “ „ “ */
:root:lang(lu), :not(:lang(lu)) > :lang(lu) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */

1201

:root:lang(luo), :not(:lang(luo)) > :lang(luo) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(luy), :not(:lang(luy)) > :lang(luy) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(lv), :not(:lang(lv)) > :lang(lv) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mas), :not(:lang(mas)) > :lang(mas) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mer), :not(:lang(mer)) > :lang(mer) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mfe), :not(:lang(mfe)) > :lang(mfe) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mg), :not(:lang(mg)) > :lang(mg) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(mgo), :not(:lang(mgo)) > :lang(mgo) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mk), :not(:lang(mk)) > :lang(mk) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(ml), :not(:lang(ml)) > :lang(ml) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mn), :not(:lang(mn)) > :lang(mn) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mr), :not(:lang(mr)) > :lang(mr) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ms), :not(:lang(ms)) > :lang(ms) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mt), :not(:lang(mt)) > :lang(mt) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mua), :not(:lang(mua)) > :lang(mua) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(my), :not(:lang(my)) > :lang(my) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(mzn), :not(:lang(mzn)) > :lang(mzn) { quotes: '\00ab' '\00bb' '\2039' '\203a'
} /* « » ‹ › */
:root:lang(naq), :not(:lang(naq)) > :lang(naq) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(nb), :not(:lang(nb)) > :lang(nb) { quotes: '\00ab' '\00bb' '\2018' '\2019'
} /* « » ‘ ’ */
:root:lang(nd), :not(:lang(nd)) > :lang(nd) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ne), :not(:lang(ne)) > :lang(ne) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(nl), :not(:lang(nl)) > :lang(nl) { quotes: '\2018' '\2019' '\201c' '\201d'
} /* ‘ ’ “ ” */
:root:lang(nmg), :not(:lang(nmg)) > :lang(nmg) { quotes: '\201e' '\201d' '\00ab' '\00bb'
} /* „ ” « » */
:root:lang(nn), :not(:lang(nn)) > :lang(nn) { quotes: '\00ab' '\00bb' '\2018' '\2019'
} /* « » ‘ ’ */
:root:lang(nnh), :not(:lang(nnh)) > :lang(nnh) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(nus), :not(:lang(nus)) > :lang(nus) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(nyn), :not(:lang(nyn)) > :lang(nyn) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(pa), :not(:lang(pa)) > :lang(pa) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(pl), :not(:lang(pl)) > :lang(pl) { quotes: '\201e' '\201d' '\00ab' '\00bb'
} /* „ ” « » */
:root:lang(pt), :not(:lang(pt)) > :lang(pt) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(pt-PT), :not(:lang(pt-PT)) > :lang(pt-PT) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */

1202

:root:lang(rn), :not(:lang(rn)) > :lang(rn) { quotes: '\201d' '\201d' '\2019' '\2019'
} /* ” ” ’ ’ */
:root:lang(ro), :not(:lang(ro)) > :lang(ro) { quotes: '\201e' '\201d' '\00ab' '\00bb'
} /* „ ” « » */
:root:lang(rof), :not(:lang(rof)) > :lang(rof) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ru), :not(:lang(ru)) > :lang(ru) { quotes: '\00ab' '\00bb' '\201e' '\201c'
} /* « » „ “ */
:root:lang(rw), :not(:lang(rw)) > :lang(rw) { quotes: '\00ab' '\00bb' '\2018' '\2019'
} /* « » ‘ ’ */
:root:lang(rwk), :not(:lang(rwk)) > :lang(rwk) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(sah), :not(:lang(sah)) > :lang(sah) { quotes: '\00ab' '\00bb' '\201e' '\201c'
} /* « » „ “ */
:root:lang(saq), :not(:lang(saq)) > :lang(saq) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(sbp), :not(:lang(sbp)) > :lang(sbp) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(seh), :not(:lang(seh)) > :lang(seh) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ses), :not(:lang(ses)) > :lang(ses) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(sg), :not(:lang(sg)) > :lang(sg) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(shi), :not(:lang(shi)) > :lang(shi) { quotes: '\00ab' '\00bb' '\201e' '\201d'
} /* « » „ ” */
:root:lang(shi-Latn), :not(:lang(shi-Latn)) > :lang(shi-Latn) { quotes: '\00ab' '\00bb' '\201e' '\201d'
} /* « » „ ” */
:root:lang(si), :not(:lang(si)) > :lang(si) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(sk), :not(:lang(sk)) > :lang(sk) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(sl), :not(:lang(sl)) > :lang(sl) { quotes: '\201e' '\201c' '\201a' '\2018'
} /* „ “ ‚ ‘ */
:root:lang(sn), :not(:lang(sn)) > :lang(sn) { quotes: '\201d' '\201d' '\2019' '\2019'
} /* ” ” ’ ’ */
:root:lang(so), :not(:lang(so)) > :lang(so) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(sq), :not(:lang(sq)) > :lang(sq) { quotes: '\00ab' '\00bb' '\201c' '\201d'
} /* « » “ ” */
:root:lang(sr), :not(:lang(sr)) > :lang(sr) { quotes: '\201e' '\201c' '\2018' '\2018'
} /* „ “ ‘ ‘ */
:root:lang(sr-Latn), :not(:lang(sr-Latn)) > :lang(sr-Latn) { quotes: '\201e' '\201c' '\2018' '\2018'
} /* „ “ ‘ ‘ */
:root:lang(sv), :not(:lang(sv)) > :lang(sv) { quotes: '\201d' '\201d' '\2019' '\2019'
} /* ” ” ’ ’ */
:root:lang(sw), :not(:lang(sw)) > :lang(sw) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ta), :not(:lang(ta)) > :lang(ta) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(te), :not(:lang(te)) > :lang(te) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(teo), :not(:lang(teo)) > :lang(teo) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(th), :not(:lang(th)) > :lang(th) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(ti-ER), :not(:lang(ti-ER)) > :lang(ti-ER) { quotes: '\2018' '\2019' '\201c' '\201d'
} /* ‘ ’ “ ” */
:root:lang(tk), :not(:lang(tk)) > :lang(tk) { quotes: '\201c' '\201d' '\201c' '\201d'
} /* “ ” “ ” */
:root:lang(to), :not(:lang(to)) > :lang(to) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */

1203

:root:lang(tr), :not(:lang(tr)) > :lang(tr) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(twq), :not(:lang(twq)) > :lang(twq) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(tzm), :not(:lang(tzm)) > :lang(tzm) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(uk), :not(:lang(uk)) > :lang(uk) { quotes: '\00ab' '\00bb' '\201e' '\201c'
} /* « » „ “ */
:root:lang(ur), :not(:lang(ur)) > :lang(ur) { quotes: '\201d' '\201c' '\2019' '\2018'
} /* ” “ ’ ‘ */
:root:lang(uz), :not(:lang(uz)) > :lang(uz) { quotes: '\201c' '\201d' '\2019' '\2018'
} /* “ ” ’ ‘ */
:root:lang(uz-Cyrl), :not(:lang(uz-Cyrl)) > :lang(uz-Cyrl) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(vai), :not(:lang(vai)) > :lang(vai) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(vai-Latn), :not(:lang(vai-Latn)) > :lang(vai-Latn) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(vi), :not(:lang(vi)) > :lang(vi) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(vun), :not(:lang(vun)) > :lang(vun) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(xog), :not(:lang(xog)) > :lang(xog) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(yav), :not(:lang(yav)) > :lang(yav) { quotes: '\00ab' '\00bb' '\00ab' '\00bb'
} /* « » « » */
:root:lang(yo), :not(:lang(yo)) > :lang(yo) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(yue), :not(:lang(yue)) > :lang(yue) { quotes: '\300c' '\300d' '\300e' '\300f'
} /* 「 」 『 』 */
:root:lang(yue-Hans), :not(:lang(yue-Hans)) > :lang(yue-Hans) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(zgh), :not(:lang(zgh)) > :lang(zgh) { quotes: '\00ab' '\00bb' '\201e' '\201d'
} /* « » „ ” */
:root:lang(zh), :not(:lang(zh)) > :lang(zh) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */
:root:lang(zh-Hant), :not(:lang(zh-Hant)) > :lang(zh-Hant) { quotes: '\300c' '\300d' '\300e' '\300f'
} /* 「 」 『 』 */
:root:lang(zu), :not(:lang(zu)) > :lang(zu) { quotes: '\201c' '\201d' '\2018' '\2019'
} /* “ ” ‘ ’ */

@namespace url(http://www.w3.org/1999/xhtml);

article, aside, h1, h2, h3, h4, h5, h6, hgroup, nav, section {
display: block;

}

h1 { margin-block-start: 0.67em; margin-block-end: 0.67em; font-size: 2.00em; font-weight: bold; }
h2 { margin-block-start: 0.83em; margin-block-end: 0.83em; font-size: 1.50em; font-weight: bold; }
h3 { margin-block-start: 1.00em; margin-block-end: 1.00em; font-size: 1.17em; font-weight: bold; }
h4 { margin-block-start: 1.33em; margin-block-end: 1.33em; font-size: 1.00em; font-weight: bold; }
h5 { margin-block-start: 1.67em; margin-block-end: 1.67em; font-size: 0.83em; font-weight: bold; }
h6 { margin-block-start: 2.33em; margin-block-end: 2.33em; font-size: 0.67em; font-weight: bold; }

In the following CSS block, x is shorthand for the following selector: :is(article, aside, nav, section)

@namespace url(http://www.w3.org/1999/xhtml);

CSS

CSS

14.3.7 Sections and headings §p12

04

1204

x h1 { margin-block-start: 0.83em; margin-block-end: 0.83em; font-size: 1.50em; }
x x h1 { margin-block-start: 1.00em; margin-block-end: 1.00em; font-size: 1.17em; }
x x x h1 { margin-block-start: 1.33em; margin-block-end: 1.33em; font-size: 1.00em; }
x x x x h1 { margin-block-start: 1.67em; margin-block-end: 1.67em; font-size: 0.83em; }
x x x x x h1 { margin-block-start: 2.33em; margin-block-end: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h2 { margin-block-start: 1.00em; margin-block-end: 1.00em; font-size: 1.17em; }
x x hgroup > h1 ~ h2 { margin-block-start: 1.33em; margin-block-end: 1.33em; font-size: 1.00em; }
x x x hgroup > h1 ~ h2 { margin-block-start: 1.67em; margin-block-end: 1.67em; font-size: 0.83em; }
x x x x hgroup > h1 ~ h2 { margin-block-start: 2.33em; margin-block-end: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h3 { margin-block-start: 1.33em; margin-block-end: 1.33em; font-size: 1.00em; }
x x hgroup > h1 ~ h3 { margin-block-start: 1.67em; margin-block-end: 1.67em; font-size: 0.83em; }
x x x hgroup > h1 ~ h3 { margin-block-start: 2.33em; margin-block-end: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h4 { margin-block-start: 1.67em; margin-block-end: 1.67em; font-size: 0.83em; }
x x hgroup > h1 ~ h4 { margin-block-start: 2.33em; margin-block-end: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h5 { margin-block-start: 2.33em; margin-block-end: 2.33em; font-size: 0.67em; }

@namespace url(http://www.w3.org/1999/xhtml);

dir, dd, dl, dt, menu, ol, ul { display: block; }
li { display: list-item; }

dir, dl, menu, ol, ul { margin-block-start: 1em; margin-block-end: 1em; }

:is(dir, dl, menu, ol, ul) :is(dir, dl, menu, ol, ul) {
margin-block-start: 0; margin-block-end: 0;

}

dd { margin-inline-start: 40px; }
dir, menu, ol, ul { padding-inline-start: 40px; }

ol { list-style-type: decimal; }

dir, menu, ul {
list-style-type: disc;

}
:is(dir, menu, ol, ul) :is(dir, menu, ul) {

list-style-type: circle;
}
:is(dir, menu, ol, ul) :is(dir, menu, ol, ul) :is(dir, menu, ul) {

list-style-type: square;
}

The following rules are also expected to apply, as presentational hintsp1192:

@namespace url(http://www.w3.org/1999/xhtml);

ol[type="1"], li[type="1"] { list-style-type: decimal; }
ol[type=a s], li[type=a s] { list-style-type: lower-alpha; }

The shorthand is used to keep this block at least mildly readable.
Note

CSS

CSS

14.3.8 Lists §p12

05

1205

ol[type=A s], li[type=A s] { list-style-type: upper-alpha; }
ol[type=i s], li[type=i s] { list-style-type: lower-roman; }
ol[type=I s], li[type=I s] { list-style-type: upper-roman; }
ul[type=none i], li[type=none i] { list-style-type: none; }
ul[type=disc i], li[type=disc i] { list-style-type: disc; }
ul[type=circle i], li[type=circle i] { list-style-type: circle; }
ul[type=square i], li[type=square i] { list-style-type: square; }

When rendering lip224 elements, non-CSS user agents are expected to use the ordinal valuep225 of the lip224 element to render the
counter in the list item marker.

This specification does not yet define the CSS-specific rules for rendering lip224 elements, because CSS doesn't yet provide
sufficient hooks for this purpose.

@namespace url(http://www.w3.org/1999/xhtml);

table { display: table; }
caption { display: table-caption; }
colgroup, colgroup[hidden] { display: table-column-group; }
col, col[hidden] { display: table-column; }
thead, thead[hidden] { display: table-header-group; }
tbody, tbody[hidden] { display: table-row-group; }
tfoot, tfoot[hidden] { display: table-footer-group; }
tr, tr[hidden] { display: table-row; }
td, th { display: table-cell; }

colgroup[hidden], col[hidden], thead[hidden], tbody[hidden],
tfoot[hidden], tr[hidden] {

visibility: collapse;
}

table {
box-sizing: border-box;
border-spacing: 2px;
border-collapse: separate;
text-indent: initial;

}
td, th { padding: 1px; }
th { font-weight: bold; }

caption { text-align: center; }
thead, tbody, tfoot, table > tr { vertical-align: middle; }
tr, td, th { vertical-align: inherit; }

thead, tbody, tfoot, tr { border-color: inherit; }
table[rules=none i], table[rules=groups i], table[rules=rows i],
table[rules=cols i], table[rules=all i], table[frame=void i],
table[frame=above i], table[frame=below i], table[frame=hsides i],
table[frame=lhs i], table[frame=rhs i], table[frame=vsides i],
table[frame=box i], table[frame=border i],
table[rules=none i] > tr > td, table[rules=none i] > tr > th,
table[rules=groups i] > tr > td, table[rules=groups i] > tr > th,
table[rules=rows i] > tr > td, table[rules=rows i] > tr > th,
table[rules=cols i] > tr > td, table[rules=cols i] > tr > th,
table[rules=all i] > tr > td, table[rules=all i] > tr > th,
table[rules=none i] > thead > tr > td, table[rules=none i] > thead > tr > th,

CSS

14.3.9 Tables §p12

06

1206

table[rules=groups i] > thead > tr > td, table[rules=groups i] > thead > tr > th,
table[rules=rows i] > thead > tr > td, table[rules=rows i] > thead > tr > th,
table[rules=cols i] > thead > tr > td, table[rules=cols i] > thead > tr > th,
table[rules=all i] > thead > tr > td, table[rules=all i] > thead > tr > th,
table[rules=none i] > tbody > tr > td, table[rules=none i] > tbody > tr > th,
table[rules=groups i] > tbody > tr > td, table[rules=groups i] > tbody > tr > th,
table[rules=rows i] > tbody > tr > td, table[rules=rows i] > tbody > tr > th,
table[rules=cols i] > tbody > tr > td, table[rules=cols i] > tbody > tr > th,
table[rules=all i] > tbody > tr > td, table[rules=all i] > tbody > tr > th,
table[rules=none i] > tfoot > tr > td, table[rules=none i] > tfoot > tr > th,
table[rules=groups i] > tfoot > tr > td, table[rules=groups i] > tfoot > tr > th,
table[rules=rows i] > tfoot > tr > td, table[rules=rows i] > tfoot > tr > th,
table[rules=cols i] > tfoot > tr > td, table[rules=cols i] > tfoot > tr > th,
table[rules=all i] > tfoot > tr > td, table[rules=all i] > tfoot > tr > th {

border-color: black;
}

The following rules are also expected to apply, as presentational hintsp1192:

@namespace url(http://www.w3.org/1999/xhtml);

table[align=left i] { float: left; }
table[align=right i] { float: right; }
table[align=center i] { margin-inline-start: auto; margin-inline-end: auto; }
thead[align=absmiddle i], tbody[align=absmiddle i], tfoot[align=absmiddle i],
tr[align=absmiddle i], td[align=absmiddle i], th[align=absmiddle i] {

text-align: center;
}

caption[align=bottom i] { caption-side: bottom; }
p[align=left i], h1[align=left i], h2[align=left i], h3[align=left i],
h4[align=left i], h5[align=left i], h6[align=left i] {

text-align: left;
}
p[align=right i], h1[align=right i], h2[align=right i], h3[align=right i],
h4[align=right i], h5[align=right i], h6[align=right i] {

text-align: right;
}
p[align=center i], h1[align=center i], h2[align=center i], h3[align=center i],
h4[align=center i], h5[align=center i], h6[align=center i] {

text-align: center;
}
p[align=justify i], h1[align=justify i], h2[align=justify i], h3[align=justify i],
h4[align=justify i], h5[align=justify i], h6[align=justify i] {

text-align: justify;
}
thead[valign=top i], tbody[valign=top i], tfoot[valign=top i],
tr[valign=top i], td[valign=top i], th[valign=top i] {

vertical-align: top;
}
thead[valign=middle i], tbody[valign=middle i], tfoot[valign=middle i],
tr[valign=middle i], td[valign=middle i], th[valign=middle i] {

vertical-align: middle;
}
thead[valign=bottom i], tbody[valign=bottom i], tfoot[valign=bottom i],
tr[valign=bottom i], td[valign=bottom i], th[valign=bottom i] {

vertical-align: bottom;
}
thead[valign=baseline i], tbody[valign=baseline i], tfoot[valign=baseline i],
tr[valign=baseline i], td[valign=baseline i], th[valign=baseline i] {

vertical-align: baseline;
}

CSS

1207

td[nowrap], th[nowrap] { white-space: nowrap; }

table[rules=none i], table[rules=groups i], table[rules=rows i],
table[rules=cols i], table[rules=all i] {

border-style: hidden;
border-collapse: collapse;

}
table[border] { border-style: outset; } /* only if border is not equivalent to zero */
table[frame=void i] { border-style: hidden; }
table[frame=above i] { border-style: outset hidden hidden hidden; }
table[frame=below i] { border-style: hidden hidden outset hidden; }
table[frame=hsides i] { border-style: outset hidden outset hidden; }
table[frame=lhs i] { border-style: hidden hidden hidden outset; }
table[frame=rhs i] { border-style: hidden outset hidden hidden; }
table[frame=vsides i] { border-style: hidden outset; }
table[frame=box i], table[frame=border i] { border-style: outset; }

table[border] > tr > td, table[border] > tr > th,
table[border] > thead > tr > td, table[border] > thead > tr > th,
table[border] > tbody > tr > td, table[border] > tbody > tr > th,
table[border] > tfoot > tr > td, table[border] > tfoot > tr > th {

/* only if border is not equivalent to zero */
border-width: 1px;
border-style: inset;

}
table[rules=none i] > tr > td, table[rules=none i] > tr > th,
table[rules=none i] > thead > tr > td, table[rules=none i] > thead > tr > th,
table[rules=none i] > tbody > tr > td, table[rules=none i] > tbody > tr > th,
table[rules=none i] > tfoot > tr > td, table[rules=none i] > tfoot > tr > th,
table[rules=groups i] > tr > td, table[rules=groups i] > tr > th,
table[rules=groups i] > thead > tr > td, table[rules=groups i] > thead > tr > th,
table[rules=groups i] > tbody > tr > td, table[rules=groups i] > tbody > tr > th,
table[rules=groups i] > tfoot > tr > td, table[rules=groups i] > tfoot > tr > th,
table[rules=rows i] > tr > td, table[rules=rows i] > tr > th,
table[rules=rows i] > thead > tr > td, table[rules=rows i] > thead > tr > th,
table[rules=rows i] > tbody > tr > td, table[rules=rows i] > tbody > tr > th,
table[rules=rows i] > tfoot > tr > td, table[rules=rows i] > tfoot > tr > th {

border-width: 1px;
border-style: none;

}
table[rules=cols i] > tr > td, table[rules=cols i] > tr > th,
table[rules=cols i] > thead > tr > td, table[rules=cols i] > thead > tr > th,
table[rules=cols i] > tbody > tr > td, table[rules=cols i] > tbody > tr > th,
table[rules=cols i] > tfoot > tr > td, table[rules=cols i] > tfoot > tr > th {

border-width: 1px;
border-block-start-style: none;
border-inline-end-style: solid;
border-block-end-style: none;
border-inline-start-style: solid;

}
table[rules=all i] > tr > td, table[rules=all i] > tr > th,
table[rules=all i] > thead > tr > td, table[rules=all i] > thead > tr > th,
table[rules=all i] > tbody > tr > td, table[rules=all i] > tbody > tr > th,
table[rules=all i] > tfoot > tr > td, table[rules=all i] > tfoot > tr > th {

border-width: 1px;
border-style: solid;

}

table[rules=groups i] > colgroup {
border-inline-start-width: 1px;
border-inline-start-style: solid;

1208

border-inline-end-width: 1px;
border-inline-end-style: solid;

}
table[rules=groups i] > thead,
table[rules=groups i] > tbody,
table[rules=groups i] > tfoot {

border-block-start-width: 1px;
border-block-start-style: solid;
border-block-end-width: 1px;
border-block-end-style: solid;

}

table[rules=rows i] > tr, table[rules=rows i] > thead > tr,
table[rules=rows i] > tbody > tr, table[rules=rows i] > tfoot > tr {

border-block-start-width: 1px;
border-block-start-style: solid;
border-block-end-width: 1px;
border-block-end-style: solid;

}

In quirks mode, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

table {
font-weight: initial;
font-style: initial;
font-variant: initial;
font-size: initial;
line-height: initial;
white-space: initial;
text-align: initial;

}

For the purposes of the CSS table model, the colp460 element is expected to be treated as if it was present as many times as its
spanp460 attribute specifiesp69.

For the purposes of the CSS table model, the colgroupp459 element, if it contains no colp460 element, is expected to be treated as if it
had as many such children as its spanp460 attribute specifiesp69.

For the purposes of the CSS table model, the colspanp469 and rowspanp469 attributes on tdp465 and thp467 elements are expected to
providep69 the special knowledge regarding cells spanning rows and columns.

In HTML documents, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

:is(table, thead, tbody, tfoot, tr) > form { display: none !important; }

The tablep450 element's cellspacingp1237 attribute maps to the pixel length propertyp1193 'border-spacing' on the element.

The tablep450 element's cellpaddingp1237 attribute maps to the pixel length propertiesp1193 'padding-top', 'padding-right', 'padding-
bottom', and 'padding-left' of any tdp465 and thp467 elements that have corresponding cellsp470 in the tablep470 corresponding to the
tablep450 element.

The tablep450 element's heightp1237 attribute maps to the dimension property (ignoring zero)p1193 'height' on the tablep450 element.

The tablep450 element's widthp1237 attribute maps to the dimension property (ignoring zero)p1193 'width' on the tablep450 element.

CSS

CSS

1209

https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#html-document
https://drafts.csswg.org/css-tables/#propdef-border-spacing
https://drafts.csswg.org/css2/#propdef-padding-top
https://drafts.csswg.org/css2/#propdef-padding-right
https://drafts.csswg.org/css2/#propdef-padding-bottom
https://drafts.csswg.org/css2/#propdef-padding-bottom
https://drafts.csswg.org/css2/#propdef-padding-left
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property

The colp460 element's widthp1236 attribute maps to the dimension propertyp1193 'width' on the colp460 element.

The theadp462, tbodyp461, and tfootp463 elements' heightp1237 attribute maps to the dimension propertyp1193 'height' on the element.

The trp464 element's heightp1237 attribute maps to the dimension property (ignoring zero)p1193 'height' on the trp464 element.

The tdp465 and thp467 elements' heightp1237 attributes map to the dimension property (ignoring zero)p1193 'height' on the element.

The tdp465 and thp467 elements' widthp1237 attributes map to the dimension property (ignoring zero)p1193 'width' on the element.

The theadp462, tbodyp461, tfootp463, trp464, tdp465, and thp467 elements, when they have an align attribute whose value is an ASCII
case-insensitive match for either the string "center" or the string "middle", are expected to center text within themselves, as if they
had their 'text-align' property set to 'center' in a presentational hintp1192, and to align descendantsp1193 to the center.

The theadp462, tbodyp461, tfootp463, trp464, tdp465, and thp467 elements, when they have an align attribute whose value is an ASCII
case-insensitive match for the string "left", are expected to left-align text within themselves, as if they had their 'text-align' property
set to 'left' in a presentational hintp1192, and to align descendantsp1193 to the left.

The theadp462, tbodyp461, tfootp463, trp464, tdp465, and thp467 elements, when they have an align attribute whose value is an ASCII
case-insensitive match for the string "right", are expected to right-align text within themselves, as if they had their 'text-align'
property set to 'right' in a presentational hintp1192, and to align descendantsp1193 to the right.

The theadp462, tbodyp461, tfootp463, trp464, tdp465, and thp467 elements, when they have an align attribute whose value is an ASCII
case-insensitive match for the string "justify", are expected to full-justify text within themselves, as if they had their 'text-align'
property set to 'justify' in a presentational hintp1192, and to align descendantsp1193 to the left.

User agents are expected to have a rule in their user agent style sheet that matches thp467 elements that have a parent node whose
computed value for the 'text-align' property is its initial value, whose declaration block consists of just a single declaration that sets the
'text-align' property to the value 'center'.

When a tablep450, theadp462, tbodyp461, tfootp463, trp464, tdp465, or thp467 element has a backgroundp1237 attribute set to a non-empty
value, the new value is expected to be parsedp89 relative to the element's node document, and if this is successful, the user agent is
expected to treat the attribute as a presentational hintp1192 setting the element's 'background-image' property to the resulting URL
stringp89.

When a tablep450, theadp462, tbodyp461, tfootp463, trp464, tdp465, or thp467 element has a bgcolor attribute set, the new value is
expected to be parsed using the rules for parsing a legacy color value p86, and if that does not return an error, the user agent is
expected to treat the attribute as a presentational hintp1192 setting the element's 'background-color' property to the resulting color.

When a tablep450 element has a bordercolorp1237 attribute, its value is expected to be parsed using the rules for parsing a legacy
color valuep86, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting
the element's 'border-top-color', 'border-right-color', 'border-bottom-color', and 'border-left-color' properties to the resulting color.

The tablep450 element's borderp1237 attribute maps to the pixel length propertiesp1193 'border-top-width', 'border-right-width', 'border-
bottom-width', 'border-left-width' on the element. If the attribute is present but parsing the attribute's value using the rules for parsing
non-negative integersp69 generates an error, a default value of 1px is expected to be used for that property instead.

Rules marked "only if border is not equivalent to zero" in the CSS block above is expected to only be applied if the borderp1237

attribute mentioned in the selectors for the rule is not only present but, when parsed using the rules for parsing non-negative
integersp69, is also found to have a value other than zero or to generate an error.

In quirks mode, a tdp465 element or a thp467 element that has a nowrapp1237 attribute but also has a widthp1237 attribute whose value,
when parsed using the rules for parsing nonzero dimension valuesp72, is found to be a length (not an error or a number classified as a
percentage), is expected to have a presentational hintp1192 setting the element's 'white-space' property to 'normal', overriding the rule
in the CSS block above that sets it to 'nowrap'.

1210

https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-text/#text-align-property
https://drafts.csswg.org/css-text/#text-align-property
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-backgrounds/#the-background-image
https://drafts.csswg.org/css-backgrounds/#the-background-color
https://drafts.csswg.org/css2/#propdef-border-top-color
https://drafts.csswg.org/css2/#propdef-border-right-color
https://drafts.csswg.org/css2/#propdef-border-bottom-color
https://drafts.csswg.org/css2/#propdef-border-left-color
https://drafts.csswg.org/css2/#propdef-border-top-width
https://drafts.csswg.org/css2/#propdef-border-right-width
https://drafts.csswg.org/css2/#propdef-border-bottom-width
https://drafts.csswg.org/css2/#propdef-border-bottom-width
https://drafts.csswg.org/css2/#propdef-border-left-width
https://dom.spec.whatwg.org/#concept-document-quirks
https://drafts.csswg.org/css-text/#white-space-property

A node is substantial if it is a text node that is not inter-element whitespacep129, or if it is an element node.

A node is blank if it is an element that contains no substantialp1211 nodes.

The elements with default margins are the following elements: blockquotep217, dirp1232, dlp226, h1p190, h2p190, h3p190, h4p190, h5p190,
h6p190, listingp1232, menup223, olp220, pp211, plaintextp1232, prep216, ulp222, xmpp1233

In quirks mode, any element with default marginsp1211 that is the child of a bodyp178, tdp465, or thp467 element and has no
substantialp1211 previous siblings is expected to have a user-agent level style sheet rule that sets its 'margin-block-start' property to
zero.

In quirks mode, any element with default marginsp1211 that is the child of a bodyp178, tdp465, or thp467 element, has no substantialp1211

previous siblings, and is blankp1211, is expected to have a user-agent level style sheet rule that sets its 'margin-block-end' property to
zero also.

In quirks mode, any element with default marginsp1211 that is the child of a tdp465 or thp467 element, has no substantialp1211 following
siblings, and is blankp1211, is expected to have a user-agent level style sheet rule that sets its 'margin-block-start' property to zero.

In quirks mode, any pp211 element that is the child of a tdp465 or thp467 element and has no substantialp1211 following siblings, is
expected to have a user-agent level style sheet rule that sets its 'margin-block-end' property to zero.

@namespace url(http://www.w3.org/1999/xhtml);

input, select, button, textarea {
letter-spacing: initial;
word-spacing: initial;
line-height: initial;
text-transform: initial;
text-indent: initial;
text-shadow: initial;

}

input, select, textarea {
text-align: initial;

}

input:is([type=reset i], [type=button i], [type=submit i]), button {
text-align: center;

}

input:is([type=reset i], [type=button i], [type=submit i], [type=color i]), button {
display: inline-block;

}

input:is([type=radio i], [type=checkbox i], [type=reset i], [type=button i],
[type=submit i], [type=color i], [type=search i]), select, button {

box-sizing: border-box;
}

textarea { white-space: pre-wrap; }

In quirks mode, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

input:not([type=image i]), textarea { box-sizing: border-box; }

CSS

CSS

14.3.10 Margin collapsing quirks §p12

11

14.3.11 Form controls §p12

11

1211

https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css-logical/#propdef-margin-block-start
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css-logical/#propdef-margin-block-end
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css-logical/#propdef-margin-block-start
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css-logical/#propdef-margin-block-end
https://dom.spec.whatwg.org/#concept-document-quirks

Each kind of form control is also described in the Widgetsp1219 section, which describes the look and feel of the control.

@namespace url(http://www.w3.org/1999/xhtml);

hr {
color: gray;
border-style: inset;
border-width: 1px;
margin-block-start: 0.5em;
margin-inline-end: auto;
margin-block-end: 0.5em;
margin-inline-start: auto;
overflow: hidden;

}

The following rules are also expected to apply, as presentational hintsp1192:

@namespace url(http://www.w3.org/1999/xhtml);

hr[align=left i] { margin-left: 0; margin-right: auto; }
hr[align=right i] { margin-left: auto; margin-right: 0; }
hr[align=center i] { margin-left: auto; margin-right: auto; }
hr[color], hr[noshade] { border-style: solid; }

If an hrp214 element has either a colorp1236 attribute or a noshadep1236 attribute, and furthermore also has a sizep1236 attribute, and
parsing that attribute's value using the rules for parsing non-negative integers p69 doesn't generate an error, then the user agent is
expected to use the parsed value divided by two as a pixel length for presentational hintsp1192 for the properties 'border-top-width',
'border-right-width', 'border-bottom-width', and 'border-left-width' on the element.

Otherwise, if an hrp214 element has neither a colorp1236 attribute nor a noshadep1236 attribute, but does have a sizep1236 attribute, and
parsing that attribute's value using the rules for parsing non-negative integers p69 doesn't generate an error, then: if the parsed value is
one, then the user agent is expected to use the attribute as a presentational hintp1192 setting the element's 'border-bottom-width' to 0;
otherwise, if the parsed value is greater than one, then the user agent is expected to use the parsed value minus two as a pixel length
for presentational hintsp1192 for the 'height' property on the element.

The widthp1236 attribute on an hrp214 element maps to the dimension propertyp1193 'width' on the element.

When an hrp214 element has a colorp1236 attribute, its value is expected to be parsed using the rules for parsing a legacy color value p86,
and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting the element's
'color' property to the resulting color.

@namespace url(http://www.w3.org/1999/xhtml);

fieldset {
display: block;
margin-inline-start: 2px;
margin-inline-end: 2px;
border: groove 2px ThreeDFace;
padding-block-start: 0.35em;
padding-inline-end: 0.75em;
padding-block-end: 0.625em;
padding-inline-start: 0.75em;
min-inline-size: min-content;

CSS

CSS

CSS

14.3.12 The hrp214 element §p12

12

14.3.13 The fieldsetp562 and legendp565 elements §p12

12

1212

https://drafts.csswg.org/css2/#propdef-border-top-width
https://drafts.csswg.org/css2/#propdef-border-right-width
https://drafts.csswg.org/css2/#propdef-border-bottom-width
https://drafts.csswg.org/css2/#propdef-border-left-width
https://drafts.csswg.org/css2/#propdef-border-bottom-width
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css-color/#the-color-property

}

legend {
padding-inline-start: 2px; padding-inline-end: 2px;

}

legend[align=left i] {
justify-self: left;

}

legend[align=center i] {
justify-self: center;

}

legend[align=right i] {
justify-self: right;

}

The fieldsetp562 element, when it generates a CSS box, is expected to act as follows:

• The element is expected to establish a new block formatting context.

• The 'display' property is expected to act as follows:

◦ If the computed value of 'display' is a value such that the outer display type is 'inline', then behave as 'inline-
block'.

◦ Otherwise, behave as 'flow-root'.

• If the element's box has a child box that matches the conditions in the list below, then the first such child box is the 'fieldset'
element's rendered legend:

◦ The child is a legendp565 element.
◦ The child's used value of 'float' is 'none'.
◦ The child's used value of 'position' is not 'absolute' or 'fixed'.

• If the element has a rendered legendp1213, then the border is expected to not be painted behind the rectangle defined as
follows, using the writing mode of the fieldset:

1. The block-start edge of the rectangle is the smaller of the block-start edge of the rendered legendp1213 's margin
rectangle at its static position (ignoring transforms), and the block-start outer edge of the fieldsetp562 's border.

2. The block-end edge of the rectangle is the larger of the block-end edge of the rendered legendp1213 's margin
rectangle at its static position (ignoring transforms), and the block-end outer edge of the fieldsetp562 's border.

3. The inline-start edge of the rectangle is the smaller of the inline-start edge of the rendered legendp1213 's border
rectangle at its static position (ignoring transforms), and the inline-start outer edge of the fieldsetp562 's border.

4. The inline-end edge of the rectangle is the larger of the inline-end edge of the rendered legendp1213 's border
rectangle at its static position (ignoring transforms), and the inline-end outer edge of the fieldsetp562 's border.

• The space allocated for the element's border on the block-start side is expected to be the element's 'border-block-start-width'
or the rendered legendp1213 's margin box size in the fieldsetp562 's block-flow direction, whichever is greater.

• For the purpose of calculating the used 'block-size', if the computed 'block-size' is not 'auto', the space allocated for the
rendered legendp1213 's margin box that spills out past the border, if any, is expected to be substracted from the 'block-size'. If
the content box's block-size would be negative, then let the content box's block-size be zero instead.

• If the element has a rendered legendp1213, then that element is expected to be the first child box.

• The anonymous fieldset content boxp1214 is expected to appear after the rendered legendp1213 and is expected to contain the
content (including the '::before' and '::after' pseudo-elements) of the fieldsetp562 element except for the rendered
legendp1213, if there is one.

This does not change the computed value.
Note

1213

https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-display/#block-formatting-context
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#outer-display-type
https://drafts.csswg.org/css2/#float-position
https://drafts.csswg.org/css-position/#position-property
https://drafts.csswg.org/css-logical/#propdef-border-block-start-width
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-logical/#propdef-block-size

• The used value of the 'padding-top', 'padding-right', 'padding-bottom', and 'padding-left' properties are expected to be zero.

• For the purpose of calculating the min-content inline size, use the greater of the min-content inline size of the rendered
legendp1213 and the min-content inline size of the anonymous fieldset content boxp1214.

• For the purpose of calculating the max-content inline size, use the greater of the max-content inline size of the rendered
legendp1213 and the max-content inline size of the anonymous fieldset content boxp1214.

A fieldsetp562 element's rendered legendp1213, if any, is expected to act as follows:

• The element is expected to establish a new formatting context for its contents. The type of this formatting context is
determined by its 'display' value, as usual.

• The 'display' property is expected to behave as if its computed value was blockified.

• If the computed value of 'inline-size' is 'auto', then the used value is the fit-content inline size.

• The element is expected to be positioned in the inline direction as is normal for blocks (e.g., taking into account margins and
the 'justify-self' property).

• The element's box is expected to be constrained in the inline direction by the inline content size of the fieldsetp562 as if it
had used its computed inline padding.

• The element is expected to be positioned in the block-flow direction such that its border box is centered over the border on
the block-start side of the fieldsetp562 element.

A fieldsetp562 element's anonymous fieldset content box is expected to act as follows:

• The 'display' property is expected to act as follows:

◦ If the computed value of 'display' on the fieldsetp562 element is 'grid' or 'inline-grid', then set the used value to
'grid'.

◦ If the computed value of 'display' on the fieldsetp562 element is 'flex' or 'inline-flex', then set the used value to
'flex'.

◦ Otherwise, set the used value to 'flow-root'.

• The following properties are expected to inherit from the fieldsetp562 element:

◦ 'align-content'
◦ 'align-items'
◦ 'border-radius'
◦ 'column-count'
◦ 'column-fill'
◦ 'column-gap'
◦ 'column-rule'
◦ 'column-width'
◦ 'flex-direction'
◦ 'flex-wrap'
◦ 'grid-auto-columns'
◦ 'grid-auto-flow'
◦ 'grid-auto-rows'
◦ 'grid-column-gap'
◦ 'grid-row-gap'
◦ 'grid-template-areas'
◦ 'grid-template-columns'
◦ 'grid-template-rows'
◦ 'justify-content'
◦ 'justify-items'
◦ 'overflow'
◦ 'padding-bottom'
◦ 'padding-left'
◦ 'padding-right'

This does not change the computed value.
Note

For example, if the fieldsetp562 has a specified padding of 50px, then the rendered legendp1213 will be positioned 50px in
from the fieldsetp562 's border. The padding will further apply to the anonymous fieldset content boxp1214 instead of the
fieldsetp562 element itself.

Example

1214

https://drafts.csswg.org/css2/#propdef-padding-top
https://drafts.csswg.org/css2/#propdef-padding-right
https://drafts.csswg.org/css2/#propdef-padding-bottom
https://drafts.csswg.org/css2/#propdef-padding-left
https://drafts.csswg.org/css-display/#formatting-context
https://drafts.csswg.org/css-display/#formatting-context
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-logical/#propdef-inline-size
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-sizing/#fit-content-inline-size
https://drafts.csswg.org/css-align/#propdef-justify-self
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-align/#propdef-align-content
https://drafts.csswg.org/css-align/#propdef-align-items
https://drafts.csswg.org/css-backgrounds/#propdef-border-radius
https://drafts.csswg.org/css-multicol/#propdef-column-count
https://drafts.csswg.org/css-multicol/#propdef-column-fill
https://drafts.csswg.org/css-multicol/#propdef-column-gap
https://drafts.csswg.org/css-multicol/#propdef-column-rule
https://drafts.csswg.org/css-multicol/#propdef-column-width
https://drafts.csswg.org/css-flexbox/#propdef-flex-direction
https://drafts.csswg.org/css-flexbox/#propdef-flex-wrap
https://drafts.csswg.org/css-grid/#propdef-grid-auto-columns
https://drafts.csswg.org/css-grid/#propdef-grid-auto-flow
https://drafts.csswg.org/css-grid/#propdef-grid-auto-rows
https://drafts.csswg.org/css-grid/#propdef-grid-column-gap
https://drafts.csswg.org/css-grid/#propdef-grid-row-gap
https://drafts.csswg.org/css-grid/#propdef-grid-template-areas
https://drafts.csswg.org/css-grid/#propdef-grid-template-columns
https://drafts.csswg.org/css-grid/#propdef-grid-template-rows
https://drafts.csswg.org/css-align/#propdef-propdef-justify-content
https://drafts.csswg.org/css-align/#propdef-propdef-justify-items
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css2/#propdef-padding-bottom
https://drafts.csswg.org/css2/#propdef-padding-left
https://drafts.csswg.org/css2/#propdef-padding-right

◦ 'padding-top'
◦ 'text-overflow'
◦ 'unicode-bidi'

• The 'block-size' property is expected to be set to '100%'.

• For the purpose of calculating percentage padding, act as if the padding was calculated for the fieldsetp562 element.

The embedp369, iframep361, and videop380 elements are expected to be treated as replaced elements.

A canvasp634 element that representsp123 embedded contentp132 is expected to be treated as a replaced element; the contents of such
elements are the element's bitmap, if any, or else a transparent black bitmap with the same intrinsic dimensions as the element. Other
canvasp634 elements are expected to be treated as ordinary elements in the rendering model.

An objectp373 element that representsp123 an image, plugin, or its nested browsing contextp814 is expected to be treated as a replaced
element. Other objectp373 elements are expected to be treated as ordinary elements in the rendering model.

The audiop384 element, when it is exposing a user interfacep436, is expected to be treated as a replaced element about one line high, as
wide as is necessary to expose the user agent's user interface features. When an audiop384 element is not exposing a user
interfacep436, the user agent is expected to force its 'display' property to compute to 'none', irrespective of CSS rules.

Whether a videop380 element is exposing a user interfacep436 is not expected to affect the size of the rendering; controls are expected
to be overlaid above the page content without causing any layout changes, and are expected to disappear when the user does not
need them.

fieldset's margin

legend

padding legend's margin

padding
anonymous fieldset content box

content

The legend is rendered over the top border, and the top border area reserves vertical space for the legend. The fieldset's top
margin starts at the top margin edge of the legend. The legend's horizontal margins, or the 'justify-self' property, gives its
horizontal position. The anonymous fieldset content boxp1214 appears below the legend.

Note

14.4 Replaced elements §p12

15

The following elements can be replaced elements: audiop384, canvasp634, embedp369, iframep361, imgp320, inputp493, objectp373, and
videop380.

Note

14.4.1 Embedded content §p12

15

1215

https://drafts.csswg.org/css2/#propdef-padding-top
https://drafts.csswg.org/css-overflow/#propdef-text-overflow
https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-align/#propdef-justify-self
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css2/#display-prop

When a videop380 element represents a poster frame or frame of video, the poster frame or frame of video is expected to be rendered
at the largest size that maintains the aspect ratio of that poster frame or frame of video without being taller or wider than the
videop380 element itself, and is expected to be centered in the videop380 element.

Any subtitles or captions are expected to be overlayed directly on top of their videop380 element, as defined by the relevant rendering
rules; for WebVTT, those are the rules for updating the display of WebVTT text tracks. [WEBVTT]p1292

When the user agent starts exposing a user interfacep436 for a videop380 element, the user agent should run the rules for updating the
text track renderingp423 of each of the text tracksp421 in the videop380 element's list of text tracksp421 that are showingp423 and whose
text track kindp421 is one of subtitlesp422 or captionsp422 (e.g., for text tracksp421 based on WebVTT, the rules for updating the display
of WebVTT text tracks). [WEBVTT]p1292

The following CSS rules are expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

iframe { border: 2px inset; }
video { object-fit: contain; }

User agents are expected to render imgp320 elements and inputp493 elements whose typep495 attributes are in the Image Buttonp518

state, according to the first applicable rules from the following list:

↪ If the element representsp123 an image
The user agent is expected to treat the element as a replaced element and render the image according to the rules for doing so
defined in CSS.

↪ If the element does not representp123 an image and either:
• the user agent has reason to believe that the image will become availablep336 and be rendered in due course, or
• the element has no alt attribute, or
• the Documentp114 is in quirks mode, and the element already has intrinsic dimensions (e.g., from the dimension

attributesp449 or CSS rules)
The user agent is expected to treat the element as a replaced element whose content is the text that the element represents, if
any, optionally alongside an icon indicating that the image is being obtained (if applicable). For inputp493 elements, the element
is expected to appear button-like to indicate that the element is a buttonp486.

↪ If the element is an imgp320 element that representsp123 some text and the user agent does not expect this to change
The user agent is expected to treat the element as a non-replaced phrasing element whose content is the text, optionally with
an icon indicating that an image is missing, so that the user can request the image be displayed or investigate why it is not
rendering. In non-graphical contexts, such an icon should be omitted.

↪ If the element is an imgp320 element that representsp123 nothing and the user agent does not expect this to change
The user agent is expected to treat the element as a replaced element whose intrinsic dimensions are 0. (In the absence of
further styles, this will cause the element to essentially not be rendered.)

↪ If the element is an inputp493 element that does not representp123 an image and the user agent does not expect this
to change

The user agent is expected to treat the element as a replaced element consisting of a button whose content is the element's
alternative text. The intrinsic dimensions of the button are expected to be about one line in height and whatever width is
necessary to render the text on one line.

The icons mentioned above are expected to be relatively small so as not to disrupt most text but be easily clickable. In a visual
environment, for instance, icons could be 16 pixels by 16 pixels square, or 1em by 1em if the images are scalable. In an audio
environment, the icon could be a short bleep. The icons are intended to indicate to the user that they can be used to get to whatever
options the UA provides for images, and, where appropriate, are expected to provide access to the context menu that would have

Resizing videop380 and canvasp634 elements does not interrupt video playback or clear the canvas.
Note

CSS

14.4.2 Images §p12

16

1216

https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://drafts.csswg.org/css-display/#replaced-element
https://dom.spec.whatwg.org/#concept-document-quirks
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-images/#intrinsic-dimensions
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-images/#intrinsic-dimensions

come up if the user interacted with the actual image.

All animated images with the same absolute URL and the same image data are expected to be rendered synchronized to the same
timeline as a group, with the timeline starting at the time of the least recent addition to the group.

When a user agent is to restart the animation for an imgp320 element showing an animated image, all animated images with the
same absolute URL and the same image data in that imgp320 element's node document are expected to restart their animation from the
beginning.

The following CSS rules are expected to apply when the Documentp114 is in quirks mode:

@namespace url(http://www.w3.org/1999/xhtml);

img[align=left i] { margin-right: 3px; }
img[align=right i] { margin-left: 3px; }

The following CSS rules are expected to apply as presentational hintsp1192:

@namespace url(http://www.w3.org/1999/xhtml);

iframe[frameborder='0'], iframe[frameborder=no i] { border: none; }

embed[align=left i], iframe[align=left i], img[align=left i],
input[type=image i][align=left i], object[align=left i] {

float: left;
}

embed[align=right i], iframe[align=right i], img[align=right i],
input[type=image i][align=right i], object[align=right i] {

float: right;
}

embed[align=top i], iframe[align=top i], img[align=top i],
input[type=image i][align=top i], object[align=top i] {

vertical-align: top;
}

embed[align=baseline i], iframe[align=baseline i], img[align=baseline i],
input[type=image i][align=baseline i], object[align=baseline i] {

vertical-align: baseline;
}

embed[align=texttop i], iframe[align=texttop i], img[align=texttop i],
input[type=image i][align=texttop i], object[align=texttop i] {

vertical-align: text-top;
}

embed[align=absmiddle i], iframe[align=absmiddle i], img[align=absmiddle i],
input[type=image i][align=absmiddle i], object[align=absmiddle i],
embed[align=abscenter i], iframe[align=abscenter i], img[align=abscenter i],

In other words, when a second image with the same absolute URL and animated image data is inserted into a document, it jumps
to the point in the animation cycle that is currently being displayed by the first image.

Note

CSS

CSS

14.4.3 Attributes for embedded content and images §p12

17

1217

https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-quirks

input[type=image i][align=abscenter i], object[align=abscenter i] {
vertical-align: middle;

}

embed[align=bottom i], iframe[align=bottom i], img[align=bottom i],
input[type=image i][align=bottom i], object[align=bottom i] {

vertical-align: bottom;
}

When an embedp369, iframep361, imgp320, or objectp373 element, or an inputp493 element whose typep495 attribute is in the Image
Buttonp518 state, has an align attribute whose value is an ASCII case-insensitive match for the string "center" or the string "middle",
the user agent is expected to act as if the element's 'vertical-align' property was set to a value that aligns the vertical middle of the
element with the parent element's baseline.

The hspace attribute of embedp369, imgp320, or objectp373 elements, and inputp493 elements with a typep495 attribute in the Image
Buttonp518 state, maps to the dimension propertiesp1193 'margin-left' and 'margin-right' on the element.

The vspace attribute of embedp369, imgp320, or objectp373 elements, and inputp493 elements with a typep495 attribute in the Image
Buttonp518 state, maps to the dimension propertiesp1193 'margin-top' and 'margin-bottom' on the element.

When an imgp320 element, objectp373 element, or inputp493 element with a typep495 attribute in the Image Buttonp518 state has a
border attribute whose value, when parsed using the rules for parsing non-negative integers p69, is found to be a number greater than
zero, the user agent is expected to use the parsed value for eight presentational hintsp1192: four setting the parsed value as a pixel
length for the element's 'border-top-width', 'border-right-width', 'border-bottom-width', and 'border-left-width' properties, and four
setting the element's 'border-top-style', 'border-right-style', 'border-bottom-style', and 'border-left-style' properties to the value 'solid'.

The widthp449 and heightp449 attributes on embedp369, iframep361, imgp320, objectp373 or videop380 elements, and inputp493 elements
with a typep495 attribute in the Image Buttonp518 state and that either represents an image or that the user expects will eventually
represent an image, map to the dimension propertiesp1193 'width' and 'height' on the element respectively.

The intrinsic aspect ratio for an imgp320 element img is computed as follows:

1. If img's current requestp336 is availablep336 and has an intrinsic aspect ratio, then use that intrinsic aspect ratio.

2. If img's widthp449 and heightp449 attribute values, when parsed using the rules for parsing dimension valuesp71, are both not
an error, not a percentage, and non-zero, then use the ratio resulting from dividing the widthp449 attribute value by the
heightp449 attribute value.

3. Otherwise, img has no intrinsic aspect ratio.

Shapes on an image mapp445 are expected to act, for the purpose of the CSS cascade, as elements independent of the original areap443

element that happen to match the same style rules but inherit from the imgp320 or objectp373 element.

For the purposes of the rendering, only the 'cursor' property is expected to have any effect on the shape.

Thus, for example, if an areap443 element has a stylep144 attribute that sets the 'cursor' property to 'help', then when the user
designates that shape, the cursor would change to a Help cursor.

Example

Similarly, if an areap443 element had a CSS rule that set its 'cursor' property to 'inherit' (or if no rule setting the 'cursor' property
matched the element at all), the shape's cursor would be inherited from the imgp320 or objectp373 element of the image mapp445,
not from the parent of the areap443 element.

Example

14.4.4 Image maps §p12

18

1218

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css2/#propdef-vertical-align
https://drafts.csswg.org/css2/#propdef-margin-left
https://drafts.csswg.org/css2/#propdef-margin-right
https://drafts.csswg.org/css2/#propdef-margin-top
https://drafts.csswg.org/css2/#propdef-margin-bottom
https://drafts.csswg.org/css2/#propdef-border-top-width
https://drafts.csswg.org/css2/#propdef-border-right-width
https://drafts.csswg.org/css2/#propdef-border-bottom-width
https://drafts.csswg.org/css2/#propdef-border-left-width
https://drafts.csswg.org/css2/#propdef-border-top-style
https://drafts.csswg.org/css2/#propdef-border-right-style
https://drafts.csswg.org/css2/#propdef-border-bottom-style
https://drafts.csswg.org/css2/#propdef-border-left-style
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css-images/#intrinsic-aspect-ratio
https://drafts.csswg.org/css-images/#intrinsic-aspect-ratio
https://drafts.csswg.org/css-images/#intrinsic-aspect-ratio
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui/#cursor

The elements defined in this section can be rendered in a variety of manners, within the guidelines provided below. User agents are
encouraged to set the 'appearance' CSS property appropriately to achieve platform-native appearances for widgets, and are expected
to implement any relevant animations, etc, that are appropriate for the platform.

Button layout is as follows:

• The 'display' property is expected to act as follows:

◦ If the computed value of 'display' is 'inline-grid', 'grid', 'inline-flex', or 'flex', then behave as the computed value.

◦ Otherwise, if the computed value of 'display' is a value such that the outer display type is 'inline', then behave as
'inline-block'.

◦ Otherwise, behave as 'flow-root'.

• The element is expected to establish a new formatting context for its contents. The type of this formatting context is
determined by its 'display' value, as usual.

• If the element is absolutely positioned, then for the purpose of the CSS visual formatting model, act as if the element is a
replaced element. [CSS]p1285

• If the computed value of 'inline-size' is 'auto', then the used value is the fit-content inline size.

• For the purpose of the 'normal' keyword of the 'align-self' property, act as if the element is a replaced element.

• If the element is an inputp493 element, or if it is a buttonp535 element and its computed value for 'display' is not 'inline-grid',
'grid', 'inline-flex', or 'flex', then the element's box has a child anonymous button content box with the following
behaviors:

◦ The box is a block-level block container that establishes a new block formatting context (i.e., 'display' is 'flow-root').

◦ If the box does not overflow in the horizontal axis, then it is centered horizontally.

◦ If the box does not overflow in the vertical axis, then it is centered vertically.

Otherwise, there is no anonymous button content boxp1219.

The buttonp535 element, when it generates a CSS box, is expected to depict a button and to use button layoutp1219 whose anonymous
button content boxp1219 's contents (if there is an anonymous button content boxp1219) are the child boxes the element's box would
otherwise have.

@namespace url(http://www.w3.org/1999/xhtml);

summary {
display: list-item;
counter-increment: list-item 0;
list-style: disclosure-closed inside;

}
details[open] > summary {

list-style-type: disclosure-open;

14.5 Widgets §p12

19

CSS

14.5.1 Introduction §p12

19

14.5.2 Button layout §p12

19

14.5.3 The buttonp535 element §p12

19

14.5.4 The detailsp604 and summaryp607 elements §p12

19

1219

https://drafts.csswg.org/css-ui-4/#appearance-switching
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#outer-display-type
https://drafts.csswg.org/css-display/#formatting-context
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#absolutely-positioned
https://drafts.csswg.org/css2/#visuren
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-logical/#propdef-inline-size
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-sizing/#fit-content-inline-size
https://drafts.csswg.org/css-align/#propdef-align-self
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#block-level
https://drafts.csswg.org/css-display/#block-container
https://drafts.csswg.org/css-display/#block-formatting-context
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#css-box

}

The detailsp604 element is expected to render as a block box. The element is also expected to have an internal shadow tree with two
slots, both rendered as a block box. The first slot is expected to take the detailsp604 element's first summaryp607 element child, if any.
The second slot is expected to take the detailsp604 element's remaining descendants, if any.

The first slot is expected to allow the user to request the details be shown or hidden.

The second slot is expected to be removed from the rendering when the detailsp604 element does not have an openp604 attribute.

An inputp493 element whose typep495 attribute is in the Textp499, Searchp499, Telephonep500, URLp501, or Emailp502 state, is expected to
render as an 'inline-block' box depicting a text control. Additionally, the 'line-height' property, if it has a computed value equivalent to
a value that is less than 1.0, must have a used value of 1.0.

An inputp493 element whose typep495 attribute is in the Passwordp503 state is expected to render as an 'inline-block' box depicting a text
control that obscures data entry.

If these text controls provide a text selection, then, when the user changes the current selection, the user agent is expected to queue
an element taskp946 on the user interaction task sourcep952 given the inputp493 element to fire an event named selectp1282 at the
element, with the bubbles attribute initialized to true.

If an inputp493 element whose typep495 attribute is in one of the above states has a sizep522 attribute, and parsing that attribute's value
using the rules for parsing non-negative integers p69 doesn't generate an error, then the user agent is expected to use the attribute as a
presentational hintp1192 for the 'width' property on the element, with the value obtained from applying the converting a character width
to pixelsp1220 algorithm to the value of the attribute.

If an inputp493 element whose typep495 attribute is in one of the above states does not have a sizep522 attribute, then the user agent is
expected to act as if it had a user-agent-level style sheet rule setting the 'width' property on the element to the value obtained from
applying the converting a character width to pixelsp1220 algorithm to the number 20.

The converting a character width to pixels algorithm returns (size-1)×avg + max, where size is the character width to convert,
avg is the average character width of the primary font for the element for which the algorithm is being run, in pixels, and max is the
maximum character width of that same font, also in pixels. (The element's 'letter-spacing' property does not affect the result.)

An inputp493 element whose typep495 attribute is in the Datep504 state is expected to render as an 'inline-block' box depicting a date
control.

An inputp493 element whose typep495 attribute is in the Monthp505 state is expected to render as an 'inline-block' box depicting a month
control.

An inputp493 element whose typep495 attribute is in the Weekp506 state is expected to render as an 'inline-block' box depicting a week
control.

An inputp493 element whose typep495 attribute is in the Timep507 state is expected to render as an 'inline-block' box depicting a time
control.

An inputp493 element whose typep495 attribute is in the Local Date and Timep508 state is expected to render as an 'inline-block' box
depicting a local date and time control.

An inputp493 element whose typep495 attribute is in the Numberp509 state is expected to render as an 'inline-block' box depicting a
number control.

These controls are all expected to be about one line high, and about as wide as necessary to show the widest possible value.

14.5.5 The inputp493 element as a text entry widget §p12

20

14.5.6 The inputp493 element as domain-specific widgets §p12

20

1220

https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#concept-slot
https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#concept-slot
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#propdef-line-height
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css2/#value-def-inline-block
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css-text/#letter-spacing-property
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#value-def-inline-block

An inputp493 element whose typep495 attribute is in the Rangep510 state is expected to render as an 'inline-block' box depicting a slider
control.

When the control is wider than it is tall (or square), the control is expected to be a horizontal slider, with the lowest value on the right if
the 'direction' property on this element has a computed value of 'rtl', and on the left otherwise. When the control is taller than it is
wide, it is expected to be a vertical slider, with the lowest value on the bottom.

Predefined suggested values (provided by the listp528 attribute) are expected to be shown as tick marks on the slider, which the slider
can snap to.

User agents are expected to use the used value of the 'direction' property on the element to determine the direction in which the slider
operates. Typically, a left-to-right ('ltr') horizontal control would have the lowest value on the left and the highest value on the right,
and vice versa.

An inputp493 element whose typep495 attribute is in the Colorp513 state is expected to depict a color well, which, when activated,
provides the user with a color picker (e.g. a color wheel or color palette) from which the color can be changed. The element, when it
generates a CSS box, is expected to use button layoutp1219, that has no child boxes of the anonymous button content boxp1219. The
anonymous button content boxp1219 is expected to have a presentational hintp1192 setting the 'background-color' property to the
element's valuep566.

Predefined suggested values (provided by the listp528 attribute) are expected to be shown in the color picker interface, not on the
color well itself.

An inputp493 element whose typep495 attribute is in the Checkboxp513 state is expected to render as an 'inline-block' box containing a
single checkbox control, with no label.

An inputp493 element whose typep495 attribute is in the Radio Buttonp514 state is expected to render as an 'inline-block' box containing
a single radio button control, with no label.

An inputp493 element whose typep495 attribute is in the File Uploadp515 state, when it generates a CSS box, is expected to render as an
'inline-block' box containing a span of text giving the file name(s) of the selected filesp515, if any, followed by a button that, when
activated, provides the user with a file picker from which the selection can be changed. The button is expected to use button
layoutp1219 and the contents of the anonymous button content boxp1219 are expected to be implementation-defined (and possibly locale-
specific) text, for example "Choose file".

An inputp493 element whose typep495 attribute is in the Submit Buttonp518, Reset Buttonp520, or Buttonp521 state, when it generates a
CSS box, is expected to depict a button and use button layoutp1219 and the contents of the anonymous button content boxp1219 are
expected to be the text of the element's valuep497 attribute, if any, or text derived from the element's typep495 attribute in an
implementation-defined (and probably locale-specific) fashion, if not.

14.5.7 The inputp493 element as a range control §p12

21

14.5.8 The inputp493 element as a color well §p12

21

14.5.9 The inputp493 element as a checkbox and radio button widgets §p12

21

14.5.10 The inputp493 element as a file upload control §p12

21

14.5.11 The inputp493 element as a button §p12

21

1221

https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-backgrounds/#the-background-color
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css2/#value-def-inline-block
https://infra.spec.whatwg.org/#implementation-defined
https://drafts.csswg.org/css-display/#css-box
https://infra.spec.whatwg.org/#implementation-defined

@namespace url(http://www.w3.org/1999/xhtml);

marquee {
display: inline-block;
text-align: initial;

}

The marqueep1237 element, while turned onp1238, is expected to render in an animated fashion according to its attributes as follows:

If the element's behaviorp1238 attribute is in the scrollp1238 state
Slide the contents of the element in the direction described by the directionp1238 attribute as defined below, such that it begins off
the start side of the marqueep1237, and ends flush with the inner end side.

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp1239. If the element is still
turned onp1238 after this, then the user agent is expected to restart the animation.

If the element's behaviorp1238 attribute is in the slidep1238 state
Slide the contents of the element in the direction described by the directionp1238 attribute as defined below, such that it begins off
the start side of the marqueep1237, and ends off the end side of the marqueep1237.

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp1239. If the element is still
turned onp1238 after this, then the user agent is expected to restart the animation.

If the element's behaviorp1238 attribute is in the alternatep1238 state
When the marquee current loop indexp1239 is even (or zero), slide the contents of the element in the direction described by the
directionp1238 attribute as defined below, such that it begins flush with the start side of the marqueep1237, and ends flush with the
end side of the marqueep1237.

When the marquee current loop indexp1239 is odd, slide the contents of the element in the opposite direction than that described by
the directionp1238 attribute as defined below, such that it begins flush with the end side of the marqueep1237, and ends flush with the
start side of the marqueep1237.

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp1239. If the element is still
turned onp1238 after this, then the user agent is expected to continue the animation.

The directionp1238 attribute has the meanings described in the following table:

directionp1238 attribute state Direction of animation Start edge End edge Opposite direction

leftp1238 ← Right to left Right Left → Left to Right
rightp1238 → Left to Right Left Right ← Right to left
upp1238 ↑ Up (Bottom to Top) Bottom Top ↓ Down (Top to Bottom)
downp1238 ↓ Down (Top to Bottom) Top Bottom ↑ Up (Bottom to Top)

For example, if the directionp1238 attribute is leftp1238 (the default), then the contents would start such that their left edge are
off the side of the right edge of the marqueep1237 's content area, and the contents would then slide up to the point where the left
edge of the contents are flush with the left inner edge of the marqueep1237 's content area.

Example

For example, if the directionp1238 attribute is leftp1238 (the default), then the contents would start such that their left edge are
off the side of the right edge of the marqueep1237 's content area, and the contents would then slide up to the point where the
right edge of the contents are flush with the left inner edge of the marqueep1237 's content area.

Example

For example, if the directionp1238 attribute is leftp1238 (the default), then the contents would with their right edge flush with the
right inner edge of the marqueep1237 's content area, and the contents would then slide up to the point where the left edge of the
contents are flush with the left inner edge of the marqueep1237 's content area.

Example

CSS

14.5.12 The marqueep1237 element §p12

22

1222

https://drafts.csswg.org/css2/#box-content-area
https://drafts.csswg.org/css2/#box-content-area
https://drafts.csswg.org/css2/#box-content-area
https://drafts.csswg.org/css2/#box-content-area
https://drafts.csswg.org/css2/#box-content-area
https://drafts.csswg.org/css2/#box-content-area

In any case, the animation should proceed such that there is a delay given by the marquee scroll intervalp1238 between each frame, and
such that the content moves at most the distance given by the marquee scroll distancep1239 with each frame.

When a marqueep1237 element has a bgcolor attribute set, the value is expected to be parsed using the rules for parsing a legacy color
valuep86, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hintp1192 setting the
element's 'background-color' property to the resulting color.

The width and height attributes on a marqueep1237 element map to the dimension propertiesp1193 'width' and 'height' on the element
respectively.

The intrinsic height of a marqueep1237 element with its directionp1238 attribute in the upp1238 or downp1238 states is 200 CSS pixels.

The vspace attribute of a marqueep1237 element maps to the dimension propertiesp1193 'margin-top' and 'margin-bottom' on the
element. The hspace attribute of a marqueep1237 element maps to the dimension propertiesp1193 'margin-left' and 'margin-right' on the
element.

The 'overflow' property on the marqueep1237 element is expected to be ignored; overflow is expected to always be hidden.

The meterp557 element is expected to render as an 'inline-block' box with a 'height' of '1em' and a 'width' of '5em', a 'vertical-align' of
'-0.2em', and with its contents depicting a gauge.

When the element is wider than it is tall (or square), the depiction is expected to be of a horizontal gauge, with the minimum value on
the right if the 'direction' property on this element has a computed value of 'rtl', and on the left otherwise. When the element is taller
than it is wide, it is expected to depict a vertical gauge, with the minimum value on the bottom.

User agents are expected to use a presentation consistent with platform conventions for gauges, if any.

The progressp555 element is expected to render as an 'inline-block' box with a 'height' of '1em' and a 'width' of '10em', and a 'vertical-
align' of '-0.2em'.

When the element is wider than it is tall, the element is expected to be depicted as a horizontal progress
bar, with the start on the right and the end on the left if the 'direction' property on this element has a computed value of 'rtl', and with
the start on the left and the end on the right otherwise. When the element is taller than it is wide, it is expected to be depicted as a
vertical progress bar, with the lowest value on the bottom. When the element is square, it is expected to be depicted as a direction-
independent progress widget (e.g. a circular progress ring).

User agents are expected to use a presentation consistent with platform conventions for progress bars. In particular, user agents are
expected to use different presentations for determinate and indeterminate progress bars. User agents are also expected to vary the
presentation based on the dimensions of the element.

Requirements for what must be depicted in the gauge are included in the definition of the meterp557 element.
Note

For example, on some platforms for showing indeterminate progress there is a "spinner" progress indicator with square
dimensions, which could be used when the element is square, and an indeterminate progress bar, which could be used when the
element is wide.

Example

14.5.13 The meterp557 element §p12

23

14.5.14 The progressp555 element §p12

23

1223

https://drafts.csswg.org/css-backgrounds/#the-background-color
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css-images/#intrinsic-height
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#propdef-margin-top
https://drafts.csswg.org/css2/#propdef-margin-bottom
https://drafts.csswg.org/css2/#propdef-margin-left
https://drafts.csswg.org/css2/#propdef-margin-right
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#propdef-vertical-align
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#propdef-vertical-align
https://drafts.csswg.org/css2/#propdef-vertical-align
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value

A selectp537 element is either a list box or a drop-down box, depending on its attributes.

A selectp537 element whose multiplep539 attribute is present is expected to render as a multi-select list boxp1224.

A selectp537 element whose multiplep539 attribute is absent, and whose display sizep539 is greater than 1, is expected to render as a
single-select list boxp1224.

When the element renders as a list boxp1224, it is expected to render as an 'inline-block' box whose 'height' is the height necessary to
contain as many rows for items as given by the element's display sizep539, or four rows if the attribute is absent, and whose 'width' is
the width of the select's labelsp1224 plus the width of a scrollbar.

A selectp537 element whose multiplep539 attribute is absent, and whose display sizep539 is 1, is expected to render as a one-line drop-
down boxp1224 whose width is the width of the select's labelsp1224.

In either case (list boxp1224 or drop-down boxp1224), the element's items are expected to be the element's list of optionsp539, with the
element's optgroupp544 element children providing headers for groups of options where applicable.

An optgroupp544 element is expected to be rendered by displaying the element's labelp545 attribute.

An optionp545 element is expected to be rendered by displaying the element's labelp546, indented under its optgroupp544 element if it
has one.

The width of the select's labels is the wider of the width necessary to render the widest optgroupp544, and the width necessary to
render the widest optionp545 element in the element's list of optionsp539 (including its indent, if any).

If a selectp537 element contains a placeholder label optionp539, the user agent is expected to render that optionp545 in a manner that
conveys that it is a label, rather than a valid option of the control. This can include preventing the placeholder label optionp539 from
being explicitly selected by the user. When the placeholder label optionp539 's selectednessp547 is true, the control is expected to be
displayed in a fashion that indicates that no valid option is currently selected.

User agents are expected to render the labels in a selectp537 in such a manner that any alignment remains consistent whether the
label is being displayed as part of the page or in a menu control.

The textareap548 element is expected to render as an 'inline-block' box depicting a multiline text control. If this multiline text control
provides a selection, then, when the user changes the current selection, the user agent is expected to queue an element taskp946 on
the user interaction task sourcep952 given the textareap548 element to fire an event named selectp1282 at the element, with the
bubbles attribute initialized to true.

If the element has a colsp550 attribute, and parsing that attribute's value using the rules for parsing non-negative integers p69 doesn't
generate an error, then the user agent is expected to use the attribute as a presentational hintp1192 for the 'width' property on the
element, with the value being the textarea effective widthp1224 (as defined below). Otherwise, the user agent is expected to act as if it
had a user-agent-level style sheet rule setting the 'width' property on the element to the textarea effective widthp1224.

The textarea effective width of a textareap548 element is size×avg + sbw, where size is the element's character widthp550, avg is
the average character width of the primary font of the element, in CSS pixels, and sbw is the width of a scrollbar, in CSS pixels. (The
element's 'letter-spacing' property does not affect the result.)

If the element has a rowsp550 attribute, and parsing that attribute's value using the rules for parsing non-negative integers p69 doesn't
generate an error, then the user agent is expected to use the attribute as a presentational hintp1192 for the 'height' property on the
element, with the value being the textarea effective heightp1225 (as defined below). Otherwise, the user agent is expected to act as if it
had a user-agent-level style sheet rule setting the 'height' property on the element to the textarea effective heightp1225.

Requirements for how to determine if the progress bar is determinate or indeterminate, and what progress a determinate progress
bar is to show, are included in the definition of the progressp555 element.

Note

14.5.15 The selectp537 element §p12

24

14.5.16 The textareap548 element §p12

24

1224

https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css2/#value-def-inline-block
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-text/#letter-spacing-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-height-property

The textarea effective height of a textareap548 element is the height in CSS pixels of the number of lines specified the element's
character heightp550, plus the height of a scrollbar in CSS pixels.

User agents are expected to apply the 'white-space' CSS property to textareap548 elements. For historical reasons, if the element has a
wrapp551 attribute whose value is an ASCII case-insensitive match for the string "off", then the user agent is expected to treat the
attribute as a presentational hintp1192 setting the element's 'white-space' property to 'pre'.

User agent are expected to render framesetp1239 elements as a box with the height and width of the viewport, with a surface rendered
according to the following layout algorithm:

1. The cols and rows variables are lists of zero or more pairs consisting of a number and a unit, the unit being one of
percentage, relative, and absolute.

Use the rules for parsing a list of dimensions p73 to parse the value of the element's cols attribute, if there is one. Let cols be
the result, or an empty list if there is no such attribute.

Use the rules for parsing a list of dimensions p73 to parse the value of the element's rows attribute, if there is one. Let rows be
the result, or an empty list if there is no such attribute.

2. For any of the entries in cols or rows that have the number zero and the unit relative, change the entry's number to one.

3. If cols has no entries, then add a single entry consisting of the value 1 and the unit relative to cols.

If rows has no entries, then add a single entry consisting of the value 1 and the unit relative to rows.

4. Invoke the algorithm defined below to convert a list of dimensions to a list of pixel valuesp1226 using cols as the input list, and
the width of the surface that the framesetp1239 is being rendered into, in CSS pixels, as the input dimension. Let sized cols be
the resulting list.

Invoke the algorithm defined below to convert a list of dimensions to a list of pixel valuesp1226 using rows as the input list,
and the height of the surface that the framesetp1239 is being rendered into, in CSS pixels, as the input dimension. Let sized
rows be the resulting list.

5. Split the surface into a grid of w×h rectangles, where w is the number of entries in sized cols and h is the number of entries
in sized rows.

Size the columns so that each column in the grid is as many CSS pixels wide as the corresponding entry in the sized cols list.

Size the rows so that each row in the grid is as many CSS pixels high as the corresponding entry in the sized rows list.

6. Let children be the list of framep1240 and framesetp1239 elements that are children of the framesetp1239 element for which the
algorithm was invoked.

7. For each row of the grid of rectangles created in the previous step, from top to bottom, run these substeps:

1. For each rectangle in the row, from left to right, run these substeps:

1. If there are any elements left in children, take the first element in the list, and assign it to the rectangle.

If this is a framesetp1239 element, then recurse the entire framesetp1239 layout algorithm for that
framesetp1239 element, with the rectangle as the surface.

Otherwise, it is a framep1240 element; render its nested browsing contextp814, positioned and sized to fit
the rectangle.

2. If there are any elements left in children, remove the first element from children.

8. If the framesetp1239 element has a borderp1226, draw an outer set of borders around the rectangles, using the element's frame
border colorp1226.

For each rectangle, if there is an element assigned to that rectangle, and that element has a borderp1226, draw an inner set of
borders around that rectangle, using the element's frame border colorp1226.

For each (visible) border that does not abut a rectangle that is assigned a framep1240 element with a noresize attribute

14.6 Frames and framesets §p12

25

1225

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-text/#white-space-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://dom.spec.whatwg.org/#concept-tree-child

(including rectangles in further nested framesetp1239 elements), the user agent is expected to allow the user to move the
border, resizing the rectangles within, keeping the proportions of any nested framesetp1239 grids.

A framesetp1239 or framep1240 element has a border if the following algorithm returns true:

1. If the element has a frameborder attribute whose value is not the empty string and whose first character is either
a U+0031 DIGIT ONE (1) character, a U+0079 LATIN SMALL LETTER Y character (y), or a U+0059 LATIN CAPITAL
LETTER Y character (Y), then return true.

2. Otherwise, if the element has a frameborder attribute, return false.

3. Otherwise, if the element has a parent element that is a framesetp1239 element, then return true if that element
has a borderp1226, and false if it does not.

4. Otherwise, return true.

The frame border color of a framesetp1239 or framep1240 element is the color obtained from the following algorithm:

1. If the element has a bordercolor attribute, and applying the rules for parsing a legacy color value p86 to that
attribute's value does not result in an error, then return the color so obtained.

2. Otherwise, if the element has a parent element that is a framesetp1239 element, then return the frame border
colorp1226 of that element.

3. Otherwise, return gray.

The algorithm to convert a list of dimensions to a list of pixel values consists of the following steps:

1. Let input list be the list of numbers and units passed to the algorithm.

Let output list be a list of numbers the same length as input list, all zero.

Entries in output list correspond to the entries in input list that have the same position.

2. Let input dimension be the size passed to the algorithm.

3. Let count percentage be the number of entries in input list whose unit is percentage.

Let total percentage be the sum of all the numbers in input list whose unit is percentage.

Let count relative be the number of entries in input list whose unit is relative.

Let total relative be the sum of all the numbers in input list whose unit is relative.

Let count absolute be the number of entries in input list whose unit is absolute.

Let total absolute be the sum of all the numbers in input list whose unit is absolute.

Let remaining space be the value of input dimension.

4. If total absolute is greater than remaining space, then for each entry in input list whose unit is absolute, set the
corresponding value in output list to the number of the entry in input list multiplied by remaining space and divided by total
absolute. Then, set remaining space to zero.

Otherwise, for each entry in input list whose unit is absolute, set the corresponding value in output list to the number of the
entry in input list. Then, decrement remaining space by total absolute.

5. If total percentage multiplied by the input dimension and divided by 100 is greater than remaining space, then for each entry
in input list whose unit is percentage, set the corresponding value in output list to the number of the entry in input list
multiplied by remaining space and divided by total percentage. Then, set remaining space to zero.

Otherwise, for each entry in input list whose unit is percentage, set the corresponding value in output list to the number of
the entry in input list multiplied by the input dimension and divided by 100. Then, decrement remaining space by total
percentage multiplied by the input dimension and divided by 100.

6. For each entry in input list whose unit is relative, set the corresponding value in output list to the number of the entry in
input list multiplied by remaining space and divided by total relative.

7. Return output list.

User agents working with integer values for frame widths (as opposed to user agents that can lay frames out with subpixel accuracy)
1226

are expected to distribute the remainder first to the last entry whose unit is relative, then equally (not proportionally) to each entry
whose unit is percentage, then equally (not proportionally) to each entry whose unit is absolute, and finally, failing all else, to the last
entry.

The contents of a framep1240 element that does not have a framesetp1239 parent are expected to be rendered as transparent black; the
user agent is expected to not render its nested browsing contextp814 in this case, and its nested browsing contextp814 is expected to
have a viewport with zero width and zero height.

User agents are expected to allow the user to control aspects of hyperlinkp283 activation and form submissionp595, such as which
browsing contextp811 is to be used for the subsequent navigationp866.

User agents are expected to allow users to discover the destination of hyperlinksp283 and of formsp486 before triggering their
navigationp866.

User agents are expected to inform the user of whether a hyperlinkp283 includes hyperlink auditingp293, and to let them know at a
minimum which domains will be contacted as part of such auditing.

User agents may allow users to navigatep866 browsing contextsp811 to the URLs indicatedp89 by the cite attributes on qp247,
blockquotep217, insp311, and delp312 elements.

User agents may surface hyperlinksp283 created by linkp157 elements in their user interface.

User agents are expected to expose the advisory informationp139 of elements upon user request, and to make the user aware of the
presence of such information.

On interactive graphical systems where the user can use a pointing device, this could take the form of a tooltip. When the user is
unable to use a pointing device, then the user agent is expected to make the content available in some other fashion, e.g. by making
the element a focusable areap770 and always displaying the advisory informationp139 of the currently focusedp771 element, or by showing
the advisory informationp139 of the elements under the user's finger on a touch device as the user pans around the screen.

U+000A LINE FEED (LF) characters are expected to cause line breaks in the tooltip; U+0009 CHARACTER TABULATION (tab) characters
are expected to render as a nonzero horizontal shift that lines up the next glyph with the next tab stop, with tab stops occurring at
points that are multiples of 8 times the width of a U+0020 SPACE character.

14.7 Interactive media §p12

27

While linkp157 elements that create hyperlinksp283 will match the :linkp725 or :visitedp725 pseudo-classes, will react to clicks if
visible, and so forth, this does not extend to any browser interface constructs that expose those same links. Activating a link
through the browser's interface, rather than in the page itself, does not trigger click events and the like.

Note

For example, a visual user agent could make elements with a titlep139 attribute focusablep772, and could make any focusedp771

element with a titlep139 attribute show its tooltip under the element while the element has focus. This would allow a user to tab
around the document to find all the advisory text.

Example

As another example, a screen reader could provide an audio cue when reading an element with a tooltip, with an associated key to
read the last tooltip for which a cue was played.

Example

14.7.1 Links, forms, and navigation §p12

27

14.7.2 The titlep139 attribute §p12

27

1227

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/selectors/#pseudo-class
https://w3c.github.io/uievents/#event-type-click

The current text editing caret (i.e. the active range, if it is empty and in an editing hostp789), if any, is expected to act like an inline
replaced element with the vertical dimensions of the caret and with zero width for the purposes of the CSS rendering model.

User agents are expected to honor the Unicode semantics of text that is exposed in user interfaces, for example supporting the
bidirectional algorithm in text shown in dialogs, title bars, popup menus, and tooltips. Text from the contents of elements is expected
to be rendered in a manner that honors the directionalityp142 of the element from which the text was obtained. Text from attributes is
expected to be rendered in a manner that honours the directionality of the attributep143.

This means that even an empty block can have the caret inside it, and that when the caret is in such an element, it prevents
margins from collapsing through the element.

Note

Consider the following markup, which has Hebrew text asking for a programming language, the languages being text for which a
left-to-right direction is important given the punctuation in some of their names:

<p dir="rtl" lang="he">
<label>
בחר שפת תכנות:

> select>
<option dir="ltr">C++</option>
<option dir="ltr">C#</option>
<option dir="ltr">FreePascal</option>
<option dir="ltr">F#</option>

</select>
</label>

</p>

If the selectp537 element was rendered as a drop down box, a correct rendering would ensure that the punctuation was the same
both in the drop down, and in the box showing the current selection.

Example

The directionality of attributes depends on the attribute and on the element's dirp142 attribute, as the following example
demonstrates. Consider this markup:

<table>
<tr>
<th abbr="(א" dir=ltr>A
<th abbr="(א" dir=rtl>A
<th abbr="(א" dir=auto>A

</table>

If the abbrp468 attributes are rendered, e.g. in a tooltip or other user interface, the first will have a left parenthesis (because the
direction is 'ltr'), the second will have a right parenthesis (because the direction is 'rtl'), and the third will have a right parenthesis
(because the direction is determined from the attribute value to be 'rtl').

Example

14.7.3 Editing hosts §p12

28

14.7.4 Text rendered in native user interfaces §p12

28

1228

https://w3c.github.io/editing/docs/execCommand/#active-range
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css2/#collapsing-margins

A string provided by a script (e.g. the argument to window.alert()p977) is expected to be treated as an independent set of one or more
bidirectional algorithm paragraphs when displayed, as defined by the bidirectional algorithm, including, for instance, supporting the
paragraph-breaking behavior of U+000A LINE FEED (LF) characters. For the purposes of determining the paragraph level of such text in
the bidirectional algorithm, this specification does not provide a higher-level override of rules P2 and P3. [BIDI]p1285

When necessary, authors can enforce a particular direction for a given paragraph by starting it with the Unicode U+200E LEFT-TO-
RIGHT MARK or U+200F RIGHT-TO-LEFT MARK characters.

User agents are expected to allow the user to request the opportunity to obtain a physical form (or a representation of a physical
form) of a Documentp114. For example, selecting the option to print a page or convert it to PDF format. [PDF]p1289

When the user actually obtains a physical formp1229 (or a representation of a physical form) of a Documentp114, the user agent is

However, if instead the attribute was not a directionality-capable attributep143, the results would be different:

<table>
<tr>
<th data-abbr="(א" dir=ltr>A
<th data-abbr="(א" dir=rtl>A
<th data-abbr="(א" dir=auto>A

</table>

In this case, if the user agent were to expose the data-abbr attribute in the user interface (e.g. in a debugging environment), the
last case would be rendered with a left parenthesis, because the direction would be determined from the element's contents.

Thus, the following script:

alert('\u05DC\u05DE\u05D3 HTML \u05D4\u05D9\u05D5\u05DD!')

...would always result in a message reading "!היום HTML למד" not) "למד HTML regardless of the language of the user agent ,("!היום
interface or the direction of the page or any of its elements.

Example

For a more complex example, consider the following script:

/* Warning: this script does not handle right-to-left scripts correctly */
var s;
if (s = prompt('What is your name?')) {

alert(s + '! Ok, Fred, ' + s + ', and Wilma will get the car.');
}

When the user enters "Kitty", the user agent would alert "Kitty! Ok, Fred, Kitty, and Wilma will get the car.".
However, if the user enters "أفهم -then the bidirectional algorithm will determine that the direction of the paragraph is right-to ,"لا
left, and so the output will be the following unintended mess: ".and Wilma will get the car أفهم, لا ,Ok, Fred أفهم! "لا

To force an alert that starts with user-provided text (or other text of unknown directionality) to render left-to-right, the string can be
prefixed with a U+200E LEFT-TO-RIGHT MARK character:

var s;
if (s = prompt('What is your name?')) {

alert('\u200E' + s + '! Ok, Fred, ' + s + ', and Wilma will get the car.');
}

Example

14.8 Print media §p12

29

1229

expected to create a new rendering of the Documentp114 for the print media.

HTML user agents may, in certain circumstances, find themselves rendering non-HTML documents that use vocabularies for which they
lack any built-in knowledge. This section provides for a way for user agents to handle such documents in a somewhat useful manner.

While a Documentp114 is an unstyled documentp1230, the user agent is expected to render an unstyled document viewp1230.

A Documentp114 is an unstyled document while it matches the following conditions:

• The Documentp114 has no author style sheets (whether referenced by HTTP headers, processing instructions, elements like
linkp157, inline elements like stylep174, or any other mechanism).

• None of the elements in the Documentp114 have any presentational hintsp1192.

• None of the elements in the Documentp114 have any style attributes.

• None of the elements in the Documentp114 are in any of the following namespaces: HTML namespace, SVG namespace,
MathML namespace

• The Documentp114 has no focusable areap770 (e.g. from XLink) other than the viewport.

• The Documentp114 has no hyperlinksp283 (e.g. from XLink).

• There exists no scriptp925 whose settings objectp925 specifies this Documentp114 as the responsible documentp917.

• None of the elements in the Documentp114 have any registered event listeners.

An unstyled document view is one where the DOM is not rendered according to CSS (which would, since there are no applicable
styles in this context, just result in a wall of text), but is instead rendered in a manner that is useful for a developer. This could consist
of just showing the Documentp114 object's source, maybe with syntax highlighting, or it could consist of displaying just the DOM tree, or
simply a message saying that the page is not a styled document.

14.9 Unstyled XML documents §p12

30

If a Documentp114 stops being an unstyled documentp1230, then the conditions above stop applying, and thus a user agent following
these requirements will switch to using the regular CSS rendering.

Note

1230

https://drafts.csswg.org/css-style-attr/#style-attribute
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#svg-namespace
https://infra.spec.whatwg.org/#mathml-namespace
https://drafts.csswg.org/css2/#viewport

Features listed in this section will trigger warnings in conformance checkers.

Authors should not specify a borderp1236 attribute on an imgp320 element. If the attribute is present, its value must be the string "0".
CSS should be used instead.

Authors should not specify a charsetp1233 attribute on a scriptp614 element. If the attribute is present, its value must be an ASCII case-
insensitive match for "utf-8". (This has no effect in a document that conforms to the requirements elsewhere in this standard of being
encoded as UTF-8.)

Authors should not specify a languagep1235 attribute on a scriptp614 element. If the attribute is present, its value must be an ASCII
case-insensitive match for the string "JavaScript" and either the typep615 attribute must be omitted or its value must be an ASCII
case-insensitive match for the string "text/javascript". The attribute should be entirely omitted instead (with the value
"JavaScript", it has no effect), or replaced with use of the typep615 attribute.

Authors should not specify a value for the typep615 attribute on scriptp614 elements that is the empty string or a JavaScript MIME type
essence match. Instead, they should omit the attribute, which has the same effect.

Authors should not specify a typep1235 attribute on a stylep174 element. If the attribute is present, its value must be an ASCII case-
insensitive match for "text/cssp1283".

Authors should not specify the namep1233 attribute on ap238 elements. If the attribute is present, its value must not be the empty string
and must neither be equal to the value of any of the IDs in the element's tree other than the element's own ID, if any, nor be equal to
the value of any of the other namep1233 attributes on ap238 elements in the element's tree. If this attribute is present and the element has
an ID, then the attribute's value must be equal to the element's ID. In earlier versions of the language, this attribute was intended as a
way to specify possible targets for fragments in URLs. The idp137 attribute should be used instead.

Authors should not, but may despite requirements to the contrary elsewhere in this specification, specify the maxlengthp522 and
sizep522 attributes on inputp493 elements whose typep495 attributes are in the Numberp509 state. One valid reason for using these
attributes regardless is to help legacy user agents that do not support inputp493 elements with type="number" to still render the text
control with a useful width.

To ease the transition from HTML4 Transitional documents to the language defined in this specification, and to discourage certain
features that are only allowed in very few circumstances, conformance checkers must warn the user when the following features are
used in a document. These are generally old obsolete features that have no effect, and are allowed only to distinguish between likely
mistakes (regular conformance errors) and mere vestigial markup or unusual and discouraged practices (these warnings).

The following features must be categorized as described above:

• The presence of a borderp1236 attribute on an imgp320 element if its value is the string "0".

• The presence of a charsetp1233 attribute on a scriptp614 element if its value is an ASCII case-insensitive match for "utf-8".

• The presence of a languagep1235 attribute on a scriptp614 element if its value is an ASCII case-insensitive match for the string
"JavaScript" and if there is no typep615 attribute or there is and its value is an ASCII case-insensitive match for the string
"text/javascript".

• The presence of a typep1235 attribute on a scriptp614 element if its value is a JavaScript MIME type essence match.

• The presence of a typep1235 attribute on a stylep174 element if its value is an ASCII case-insensitive match for "text/
cssp1283".

• The presence of a namep1233 attribute on an ap238 element, if its value is not the empty string.

• The presence of a maxlengthp522 attribute on an inputp493 element whose typep495 attribute is in the Numberp509 state.

15 Obsolete features §p12

31

15.1 Obsolete but conforming features §p12

31

15.1.1 Warnings for obsolete but conforming features §p12

31

1231

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://encoding.spec.whatwg.org/#utf-8
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://infra.spec.whatwg.org/#ascii-case-insensitive

• The presence of a sizep522 attribute on an inputp493 element whose typep495 attribute is in the Numberp509 state.

Conformance checkers must distinguish between pages that have no conformance errors and have none of these obsolete features,
and pages that have no conformance errors but do have some of these obsolete features.

Elements in the following list are entirely obsolete, and must not be used by authors:

applet
Use embedp369 or objectp373 instead.

acronym
Use abbrp250 instead.

bgsound
Use audiop384 instead.

dir
Use ulp222 instead.

framep1240

framesetp1239

noframes
Either use iframep361 and CSS instead, or use server-side includes to generate complete pages with the various invariant parts
merged in.

isindex
Use an explicit formp486 and text controlp499 combination instead.

keygen
For enterprise device management use cases, use native on-device management capabilities.

For certificate enrollment use cases, use the Web Cryptography API to generate a keypair for the certificate, and then export the
certificate and key to allow the user to install them manually. [WEBCRYPTO]p1292

listing
Use prep216 and codep267 instead.

menuitem
To implement a custom context menu, use script to handle the contextmenup1281 event.

nextid
Use GUIDs instead.

noembed
Use objectp373 instead of embedp369 when fallback is necessary.

plaintext
Use the "text/plain" MIME type instead.

rb
rtc

Providing the ruby base directly inside the rubyp252 element or using nested rubyp252 elements is sufficient.

For example, a validator could report some pages as "Valid HTML" and others as "Valid HTML with warnings".
Example

15.2 Non-conforming features §p12

32

1232

https://tools.ietf.org/html/rfc2046#section-4.1.3
https://mimesniff.spec.whatwg.org/#mime-type

strike
Use delp312 instead if the element is marking an edit, otherwise use sp245 instead.

xmp
Use prep216 and codep267 instead, and escape "<" and "&" characters as "<" and "&" respectively.

basefont
big
blink
center
font
marqueep1237

multicol
nobr
spacer
tt

Use appropriate elements or CSS instead.

Where the ttp1233 element would have been used for marking up keyboard input, consider the kbdp270 element; for variables,
consider the varp268 element; for computer code, consider the codep267 element; and for computer output, consider the sampp269

element.

Similarly, if the bigp1233 element is being used to denote a heading, consider using the h1p190 element; if it is being used for marking
up important passages, consider the strongp242 element; and if it is being used for highlighting text for reference purposes, consider
the markp275 element.

See also the text-level semantics usage summaryp282 for more suggestions with examples.

The following attributes are obsolete (though the elements are still part of the language), and must not be used by authors:

charset on ap238 elements
charset on linkp157 elements

Use an HTTP `Content-Typep90` header on the linked resource instead.

charset on scriptp614 elements (except as noted in the previous section)
Omit the attribute. Both documents and scripts are required to use UTF-8, so it is redundant to specify it on the scriptp614 element
since it inherits from the document.

coords on ap238 elements
shape on ap238 elements

Use areap443 instead of ap238 for image maps.

methods on ap238 elements
methods on linkp157 elements

Use the HTTP OPTIONS feature instead.

name on ap238 elements (except as noted in the previous section)
name on embedp369 elements
name on imgp320 elements
name on optionp545 elements

Use the idp137 attribute instead.

rev on ap238 elements
rev on linkp157 elements

Use the relp284 attribute instead, with an opposite term. (For example, instead of rev="made", use rel="author".)

✔ MDN

1233

https://encoding.spec.whatwg.org/#utf-8

urn on ap238 elements
urn on linkp157 elements

Specify the preferred persistent identifier using the hrefp284 attribute instead.

accept on formp486 elements
Use the acceptp516 attribute directly on the inputp493 elements instead.

hreflang on areap443 elements
type on areap443 elements

These attributes do not do anything useful, and for historical reasons there are no corresponding IDL attributes on areap443

elements. Omit them altogether.

nohref on areap443 elements
Omitting the hrefp284 attribute is sufficient; the nohrefp1234 attribute is unnecessary. Omit it altogether.

profile on headp153 elements
Unnecessary. Omit it altogether.

version on htmlp152 elements
Unnecessary. Omit it altogether.

ismap on inputp493 elements
Unnecessary. Omit it altogether. All inputp493 elements with a typep495 attribute in the Image Buttonp518 state are processed as
server-side image maps.

usemap on inputp493 elements
Use imgp320 instead of inputp493 for image maps.

longdesc on iframep361 elements
longdesc on imgp320 elements

Use a regular ap238 element to link to the description, or (in the case of images) use an image mapp445 to provide a link from the
image to the image's description.

lowsrc on imgp320 elements
Use a progressive JPEG image (given in the srcp321 attribute), instead of using two separate images.

target on linkp157 elements
Unnecessary. Omit it altogether.

type on menup223 elements
To implement a custom context menu, use script to handle the contextmenup1281 event. For toolbar menus, omit the attribute.

label on menup223 elements
contextmenu on all elements
onshow on all elements

To implement a custom context menu, use script to handle the contextmenup1281 event.

scheme on metap164 elements
Use only one scheme per field, or make the scheme declaration part of the value.

archive on objectp373 elements
classid on objectp373 elements
code on objectp373 elements
codebase on objectp373 elements
codetype on objectp373 elements

Use the datap374 and typep374 attributes to invoke pluginsp45. To set parameters with these names in particular, the paramp378

element can be used.

declare on objectp373 elements
Repeat the objectp373 element completely each time the resource is to be reused.

1234

standby on objectp373 elements
Optimize the linked resource so that it loads quickly or, at least, incrementally.

typemustmatch on objectp373 elements
Avoid using objectp373 elements with untrusted resources.

type on paramp378 elements
valuetype on paramp378 elements

Use the namep379 and valuep379 attributes without declaring value types.

language on scriptp614 elements (except as noted in the previous section)
Omit the attribute for JavaScript; for data blocksp615, use the typep615 attribute instead.

event on scriptp614 elements
for on scriptp614 elements

Use DOM events mechanisms to register event listeners. [DOM]p1287

type on stylep174 elements (except as noted in the previous section)
Omit the attribute for CSS; for data blocksp615, use scriptp614 as the container instead of stylep174.

datapagesize on tablep450 elements
Unnecessary. Omit it altogether.

summary on tablep450 elements
Use one of the techniques for describing tablesp455 given in the tablep450 section instead.

abbr on tdp465 elements
Use text that begins in an unambiguous and terse manner, and include any more elaborate text after that. The titlep139 attribute
can also be useful in including more detailed text, so that the cell's contents can be made terse. If it's a heading, use thp467 (which
has an abbrp468 attribute).

axis on tdp465 and thp467 elements
Use the scopep467 attribute on the relevant thp467.

scope on tdp465 elements
Use thp467 elements for heading cells.

datasrc on ap238, buttonp535, divp237, framep1240, iframep361, imgp320, inputp493, labelp490, legendp565, marqueep1237, objectp373,
optionp545, selectp537, spanp279, tablep450, and textareap548 elements
datafld on ap238, buttonp535, divp237, fieldsetp562, framep1240, iframep361, imgp320, inputp493, labelp490, legendp565, marqueep1237,
objectp373, paramp378, selectp537, spanp279, and textareap548 elements
dataformatas on buttonp535, divp237, inputp493, labelp490, legendp565, marqueep1237, objectp373, optionp545, selectp537, spanp279, and
tablep450 elements

Use script and a mechanism such as XMLHttpRequest to populate the page dynamically. [XHR]p1292

dropzone on all elements
Use script to handle the dragenterp809 and dragoverp809 events instead.

1235

https://xhr.spec.whatwg.org/#xmlhttprequest

alink on bodyp178 elements
bgcolor on bodyp178 elements
bottommargin on bodyp178 elements
leftmargin on bodyp178 elements
link on bodyp178 elements
marginheight on bodyp178 elements
marginwidth on bodyp178 elements
rightmargin on bodyp178 elements
text on bodyp178 elements
topmargin on bodyp178 elements
vlink on bodyp178 elements
clear on brp280 elements
align on captionp458 elements
align on colp460 elements
char on colp460 elements
charoff on colp460 elements
valign on colp460 elements
width on colp460 elements
align on divp237 elements
compact on dlp226 elements
align on embedp369 elements
hspace on embedp369 elements
vspace on embedp369 elements
align on hrp214 elements
color on hrp214 elements
noshade on hrp214 elements
size on hrp214 elements
width on hrp214 elements
align on h1p190—h6p190 elements
align on iframep361 elements
allowtransparency on iframep361 elements
frameborder on iframep361 elements
framespacing on iframep361 elements
hspace on iframep361 elements
marginheight on iframep361 elements
marginwidth on iframep361 elements
scrolling on iframep361 elements
vspace on iframep361 elements
align on inputp493 elements
border on inputp493 elements
hspace on inputp493 elements
vspace on inputp493 elements
align on imgp320 elements
border on imgp320 elements (except as noted in the previous section)
hspace on imgp320 elements
vspace on imgp320 elements
align on legendp565 elements
type on lip224 elements
compact on menup223 elements
align on objectp373 elements
border on objectp373 elements
hspace on objectp373 elements
vspace on objectp373 elements

✔ MDN

✔ MDN

1236

compact on olp220 elements
align on pp211 elements
width on prep216 elements
align on tablep450 elements
bgcolor on tablep450 elements
border on tablep450 elements
bordercolor on tablep450 elements
cellpadding on tablep450 elements
cellspacing on tablep450 elements
frame on tablep450 elements
height on tablep450 elements
rules on tablep450 elements
width on tablep450 elements
align on tbodyp461, theadp462, and tfootp463 elements
char on tbodyp461, theadp462, and tfootp463 elements
charoff on tbodyp461, theadp462, and tfootp463 elements
height on theadp462, tbodyp461, and tfootp463 elements
valign on tbodyp461, theadp462, and tfootp463 elements
align on tdp465 and thp467 elements
bgcolor on tdp465 and thp467 elements
char on tdp465 and thp467 elements
charoff on tdp465 and thp467 elements
height on tdp465 and thp467 elements
nowrap on tdp465 and thp467 elements
valign on tdp465 and thp467 elements
width on tdp465 and thp467 elements
align on trp464 elements
bgcolor on trp464 elements
char on trp464 elements
charoff on trp464 elements
height on trp464 elements
valign on trp464 elements
compact on ulp222 elements
type on ulp222 elements
background on bodyp178, tablep450, theadp462, tbodyp461, tfootp463, trp464, tdp465, and thp467 elements

Use CSS instead.

The marqueep1237 element is a presentational element that animates content. CSS transitions and animations are a more appropriate
mechanism. [CSSANIMATIONS]p1286 [CSSTRANSITIONS]p1287

The marqueep1237 element must implement the HTMLMarqueeElementp1237 interface.

[Exposed=Window]
interface HTMLMarqueeElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString behavior;
[CEReactions] attribute DOMString bgColor;
[CEReactions] attribute DOMString direction;

15.3 Requirements for implementations §p12

37

IDL

15.3.1 The marquee element §p12

37

1237

[CEReactions] attribute DOMString height;
[CEReactions] attribute unsigned long hspace;
[CEReactions] attribute long loop;
[CEReactions] attribute unsigned long scrollAmount;
[CEReactions] attribute unsigned long scrollDelay;
[CEReactions] attribute boolean trueSpeed;
[CEReactions] attribute unsigned long vspace;
[CEReactions] attribute DOMString width;

attribute EventHandler onbounce;
attribute EventHandler onfinish;
attribute EventHandler onstart;

undefined start();
undefined stop();

};

A marqueep1237 element can be turned on or turned off. When it is created, it is turned onp1238.

When the start() method is called, the marqueep1237 element must be turned onp1238.

When the stop() method is called, the marqueep1237 element must be turned offp1238.

When a marqueep1237 element is created, the user agent must queue an element taskp946 on the DOM manipulation task sourcep952

given the marqueep1237 element to fire an event named start at the element.

The behavior content attribute on marqueep1237 elements is an enumerated attributep68 with the following keywords (all non-
conforming):

Keyword State

scroll scroll
slide slide
alternate alternate

The missing value defaultp68 and invalid value defaultp68 are the scrollp1238 state.

The direction content attribute on marqueep1237 elements is an enumerated attributep68 with the following keywords (all non-
conforming):

Keyword State

left left
right right
up up
down down

The missing value defaultp68 and invalid value defaultp68 are the leftp1238 state.

The truespeed content attribute on marqueep1237 elements is a boolean attributep67.

A marqueep1237 element has a marquee scroll interval, which is obtained as follows:

1. If the element has a scrolldelay attribute, and parsing its value using the rules for parsing non-negative integers p69 does
not return an error, then let delay be the parsed value. Otherwise, let delay be 85.

2. If the element does not have a truespeedp1238 attribute, and the delay value is less than 60, then let delay be 60 instead.

3. The marquee scroll intervalp1238 is delay, interpreted in milliseconds.

1238

https://dom.spec.whatwg.org/#concept-event-fire

A marqueep1237 element has a marquee scroll distance, which, if the element has a scrollamount attribute, and parsing its value
using the rules for parsing non-negative integers p69 does not return an error, is the parsed value interpreted in CSS pixels, and
otherwise is 6 CSS pixels.

A marqueep1237 element has a marquee loop count, which, if the element has a loop attribute, and parsing its value using the rules
for parsing integersp68 does not return an error or a number less than 1, is the parsed value, and otherwise is −1.

The loop IDL attribute, on getting, must return the element's marquee loop countp1239; and on setting, if the new value is different than
the element's marquee loop countp1239 and either greater than zero or equal to −1, must set the element's loopp1239 content attribute
(adding it if necessary) to the valid integerp68 that represents the new value. (Other values are ignored.)

A marqueep1237 element also has a marquee current loop index, which is zero when the element is created.

The rendering layer will occasionally increment the marquee current loop index, which must cause the following steps to be run:

1. If the marquee loop countp1239 is −1, then return.

2. Increment the marquee current loop indexp1239 by one.

3. If the marquee current loop indexp1239 is now equal to or greater than the element's marquee loop countp1239, turn offp1238 the
marqueep1237 element and queue an element taskp946 on the DOM manipulation task sourcep952 given the marqueep1237

element to fire an event named finish at the marqueep1237 element.

Otherwise, if the behaviorp1238 attribute is in the alternatep1238 state, then queue an element taskp946 on the DOM
manipulation task sourcep952 given the marqueep1237 element to fire an event named bounce at the marqueep1237 element.

Otherwise, queue an element taskp946 on the DOM manipulation task sourcep952 given the marqueep1237 element to fire an
event named start at the marqueep1237 element.

The following are the event handlersp954 (and their corresponding event handler event typesp957) that must be supported, as event
handler content attributesp955 and event handler IDL attributesp955, by marqueep1237 elements:

Event handlerp954 Event handler event typep957

onbounce bounce

onfinish finish

onstart start

The behavior, direction, height, hspace, vspace, and width IDL attributes must reflectp94 the respective content attributes of the
same name.

The bgColor IDL attribute must reflectp94 the bgcolor content attribute.

The scrollAmount IDL attribute must reflectp94 the scrollamount content attribute. The default value is 6.

The scrollDelay IDL attribute must reflectp94 the scrolldelay content attribute. The default value is 85.

The trueSpeed IDL attribute must reflectp94 the truespeedp1238 content attribute.

The frameset element acts as the body elementp118 in documents that use frames.

The framesetp1239 element must implement the HTMLFrameSetElementp1239 interface.

[Exposed=Window]
interface HTMLFrameSetElement : HTMLElement {

[HTMLConstructor] constructor();

IDL

15.3.2 Frames §p12

39

✔ MDN

1239

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

[CEReactions] attribute DOMString cols;
[CEReactions] attribute DOMString rows;

};
HTMLFrameSetElement includes WindowEventHandlers;

The cols and rows IDL attributes of the framesetp1239 element must reflectp94 the respective content attributes of the same name.

The framesetp1239 element exposes as event handler content attributesp955 a number of the event handlersp954 of the Windowp824 object.
It also mirrors their event handler IDL attributesp955.

The event handlersp954 of the Windowp824 object named by the Window-reflecting body element event handler setp962, exposed on the
framesetp1239 element, replace the generic event handlersp954 with the same names normally supported by HTML elementsp44.

The frame element has a nested browsing contextp814 similar to the iframep361 element, but rendered within a framesetp1239 element.

A framep1240 element is said to be an active frame element when it is in a document.

When a framep1240 element element is created as an active frame elementp1240, or becomes an active frame elementp1240 after not
having been one, the user agent must run these steps:

1. Create a new nested browsing contextp814 for element.

2. Process the frame attributesp1240 for element, with initialInsertionp1240 set to true.

When a framep1240 element stops being an active frame elementp1240, the user agent must discardp831 the element's nested browsing
contextp814, and then set the element's nested browsing contextp814 to null.

Whenever a framep1240 element with a non-null nested browsing contextp814 has its src attribute set, changed, or removed, the user
agent must process the frame attributesp1240.

To process the frame attributes for an element element, with an optional boolean initialInsertion:

1. If initialInsertion is true, then do nothing.

2. Otherwise, run the otherwise steps for iframe or frame elementsp364 given element.

The framep1240 element potentially delays the load eventp365.

The framep1240 element must implement the HTMLFrameElementp1240 interface.

[Exposed=Window]
interface HTMLFrameElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString scrolling;
[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString frameBorder;
[CEReactions] attribute USVString longDesc;
[CEReactions] attribute boolean noResize;
readonly attribute Document? contentDocument;
readonly attribute WindowProxy? contentWindow;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString marginHeight;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString marginWidth;

};

The name, scrolling, and src IDL attributes of the framep1240 element must reflectp94 the respective content attributes of the same
name. For the purposes of reflection, the framep1240 element's src content attribute is defined as containing a URL.

The frameBorder IDL attribute of the framep1240 element must reflectp94 the element's frameborder content attribute.

IDL

1240

https://dom.spec.whatwg.org/#in-a-document
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://url.spec.whatwg.org/#concept-url

The longDesc IDL attribute of the framep1240 element must reflectp94 the element's longdesc content attribute, which for the purposes
of reflection is defined as containing a URL.

The noResize IDL attribute of the framep1240 element must reflectp94 the element's noresize content attribute.

The contentDocument IDL attribute, on getting, must return the framep1240 element's content documentp815.

The contentWindow IDL attribute must return the WindowProxyp834 object of the framep1240 element's nested browsing contextp814, if the
element's nested browsing contextp814 is non-null, or return null otherwise.

The marginHeight IDL attribute of the framep1240 element must reflectp94 the element's marginheight content attribute.

The marginWidth IDL attribute of the framep1240 element must reflectp94 the element's marginwidth content attribute.

User agents must treat acronymp1232 elements in a manner equivalent to abbrp250 elements in terms of semantics and for purposes of
rendering.

partial interface HTMLAnchorElement {
[CEReactions] attribute DOMString coords;
[CEReactions] attribute DOMString charset;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString rev;
[CEReactions] attribute DOMString shape;

};

The coords, charset, name, rev, and shape IDL attributes of the ap238 element must reflectp94 the respective content attributes of the
same name.

partial interface HTMLAreaElement {
[CEReactions] attribute boolean noHref;

};

The noHref IDL attribute of the areap443 element must reflectp94 the element's nohrefp1234 content attribute.

partial interface HTMLBodyElement {
[CEReactions] attribute [LegacyNullToEmptyString] DOMString text;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString link;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString vLink;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString aLink;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;
[CEReactions] attribute DOMString background;

};

The text IDL attribute of the bodyp178 element must reflectp94 the element's textp1236 content attribute.

The link IDL attribute of the bodyp178 element must reflectp94 the element's linkp1236 content attribute.

The aLink IDL attribute of the bodyp178 element must reflectp94 the element's alinkp1236 content attribute.

The vLink IDL attribute of the bodyp178 element must reflectp94 the element's vlinkp1236 content attribute.

The bgColor IDL attribute of the bodyp178 element must reflectp94 the element's bgcolorp1236 content attribute.

The background IDL attribute of the bodyp178 element must reflectp94 the element's backgroundp1237 content attribute. (The

IDL

IDL

IDL

15.3.3 Other elements, attributes and APIs §p12

41

1241

https://url.spec.whatwg.org/#concept-url
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString

backgroundp1237 content is not defined to contain a URL, despite rules regarding its handling in the rendering section above.)

partial interface HTMLBRElement {
[CEReactions] attribute DOMString clear;

};

The clear IDL attribute of the brp280 element must reflectp94 the content attribute of the same name.

partial interface HTMLTableCaptionElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the captionp458 element must reflectp94 the content attribute of the same name.

partial interface HTMLTableColElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString ch;
[CEReactions] attribute DOMString chOff;
[CEReactions] attribute DOMString vAlign;
[CEReactions] attribute DOMString width;

};

The align and width IDL attributes of the colp460 element must reflectp94 the respective content attributes of the same name.

The ch IDL attribute of the colp460 element must reflectp94 the element's charp1236 content attribute.

The chOff IDL attribute of the colp460 element must reflectp94 the element's charoffp1236 content attribute.

The vAlign IDL attribute of the colp460 element must reflectp94 the element's valignp1236 content attribute.

User agents must treat dirp1232 elements in a manner equivalent to ulp222 elements in terms of semantics and for purposes of
rendering.

The dirp1232 element must implement the HTMLDirectoryElementp1242 interface.

[Exposed=Window]
interface HTMLDirectoryElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean compact;
};

The compact IDL attribute of the dirp1232 element must reflectp94 the content attribute of the same name.

partial interface HTMLDivElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the divp237 element must reflectp94 the content attribute of the same name.

partial interface HTMLDListElement {
[CEReactions] attribute boolean compact;

};

IDL

IDL

IDL

IDL

IDL

IDL

1242

https://url.spec.whatwg.org/#concept-url

The compact IDL attribute of the dlp226 element must reflectp94 the content attribute of the same name.

partial interface HTMLEmbedElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString name;

};

The name and align IDL attributes of the embedp369 element must reflectp94 the respective content attributes of the same name.

The fontp1233 element must implement the HTMLFontElementp1243 interface.

[Exposed=Window]
interface HTMLFontElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute [LegacyNullToEmptyString] DOMString color;
[CEReactions] attribute DOMString face;
[CEReactions] attribute DOMString size;

};

The color, face, and size IDL attributes of the fontp1233 element must reflectp94 the respective content attributes of the same name.

partial interface HTMLHeadingElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the h1p190–h6p190 elements must reflectp94 the content attribute of the same name.

partial interface HTMLHRElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString color;
[CEReactions] attribute boolean noShade;
[CEReactions] attribute DOMString size;
[CEReactions] attribute DOMString width;

};

The align, color, size, and width IDL attributes of the hrp214 element must reflectp94 the respective content attributes of the same
name.

The noShade IDL attribute of the hrp214 element must reflectp94 the element's noshadep1236 content attribute.

partial interface HTMLHtmlElement {
[CEReactions] attribute DOMString version;

};

The version IDL attribute of the htmlp152 element must reflectp94 the content attribute of the same name.

The profile IDL attribute on headp153 elements (with the HTMLHeadElementp153 interface) is intentionally omitted. Unless so
required by another applicable specificationp65, implementations would therefore not support this attribute. (It is mentioned here
as it was defined in a previous version of DOM.)

Note

IDL

IDL

IDL

IDL

IDL

1243

https://heycam.github.io/webidl/#LegacyNullToEmptyString

partial interface HTMLIFrameElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString scrolling;
[CEReactions] attribute DOMString frameBorder;
[CEReactions] attribute USVString longDesc;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString marginHeight;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString marginWidth;

};

The align and scrolling IDL attributes of the iframep361 element must reflectp94 the respective content attributes of the same name.

The frameBorder IDL attribute of the iframep361 element must reflectp94 the element's frameborderp1236 content attribute.

The longDesc IDL attribute of the iframep361 element must reflectp94 the element's longdescp1234 content attribute, which for the
purposes of reflection is defined as containing a URL.

The marginHeight IDL attribute of the iframep361 element must reflectp94 the element's marginheightp1236 content attribute.

The marginWidth IDL attribute of the iframep361 element must reflectp94 the element's marginwidthp1236 content attribute.

partial interface HTMLImageElement {
[CEReactions] attribute DOMString name;
[CEReactions] attribute USVString lowsrc;
[CEReactions] attribute DOMString align;
[CEReactions] attribute unsigned long hspace;
[CEReactions] attribute unsigned long vspace;
[CEReactions] attribute USVString longDesc;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString border;
};

The name, align, border, hspace, and vspace IDL attributes of the imgp320 element must reflectp94 the respective content attributes of
the same name.

The longDesc IDL attribute of the imgp320 element must reflectp94 the element's longdescp1234 content attribute, which for the purposes
of reflection is defined as containing a URL.

The lowsrc IDL attribute of the imgp320 element must reflectp94 the element's lowsrcp1234 content attribute, which for the purposes of
reflection is defined as containing a URL.

partial interface HTMLInputElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString useMap;

};

The align IDL attribute of the inputp493 element must reflectp94 the content attribute of the same name.

The useMap IDL attribute of the inputp493 element must reflectp94 the element's usemapp1234 content attribute.

partial interface HTMLLegendElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the legendp565 element must reflectp94 the content attribute of the same name.

IDL

IDL

IDL

IDL

✔ MDN

1244

https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://url.spec.whatwg.org/#concept-url
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

partial interface HTMLLIElement {
[CEReactions] attribute DOMString type;

};

The type IDL attribute of the lip224 element must reflectp94 the content attribute of the same name.

partial interface HTMLLinkElement {
[CEReactions] attribute DOMString charset;
[CEReactions] attribute DOMString rev;
[CEReactions] attribute DOMString target;

};

The charset, rev, and target IDL attributes of the linkp157 element must reflectp94 the respective content attributes of the same
name.

User agents must treat listingp1232 elements in a manner equivalent to prep216 elements in terms of semantics and for purposes of
rendering.

partial interface HTMLMenuElement {
[CEReactions] attribute boolean compact;

};

The compact IDL attribute of the menup223 element must reflectp94 the content attribute of the same name.

partial interface HTMLMetaElement {
[CEReactions] attribute DOMString scheme;

};

User agents may treat the schemep1234 content attribute on the metap164 element as an extension of the element's namep166 content
attribute when processing a metap164 element with a namep166 attribute whose value is one that the user agent recognizes as supporting
the schemep1234 attribute.

User agents are encouraged to ignore the schemep1234 attribute and instead process the value given to the metadata name as if it had
been specified for each expected value of the schemep1234 attribute.

The scheme IDL attribute of the metap164 element must reflectp94 the content attribute of the same name.

For example, if the user agent acts on metap164 elements with namep166 attributes having the value "eGMS.subject.keyword", and
knows that the schemep1234 attribute is used with this metadata name, then it could take the schemep1234 attribute into account,
acting as if it was an extension of the namep166 attribute. Thus the following two metap164 elements could be treated as two
elements giving values for two different metadata names, one consisting of a combination of "eGMS.subject.keyword" and "LGCL",
and the other consisting of a combination of "eGMS.subject.keyword" and "ORLY":

<!-- this markup is invalid -->
<meta name="eGMS.subject.keyword" scheme="LGCL" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" scheme="ORLY" content="Mah car: kthxbye">

The suggested processing of this markup, however, would be equivalent to the following:

<meta name="eGMS.subject.keyword" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" content="Mah car: kthxbye">

Example

IDL

IDL

IDL

IDL

1245

partial interface HTMLObjectElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString archive;
[CEReactions] attribute DOMString code;
[CEReactions] attribute boolean declare;
[CEReactions] attribute unsigned long hspace;
[CEReactions] attribute DOMString standby;
[CEReactions] attribute unsigned long vspace;
[CEReactions] attribute DOMString codeBase;
[CEReactions] attribute DOMString codeType;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString border;
};

The align, archive, border, code, declare, hspace, standby, and vspace IDL attributes of the objectp373 element must reflectp94 the
respective content attributes of the same name.

The codeBase IDL attribute of the objectp373 element must reflectp94 the element's codebasep1234 content attribute, which for the
purposes of reflection is defined as containing a URL.

The codeType IDL attribute of the objectp373 element must reflectp94 the element's codetypep1234 content attribute.

partial interface HTMLOListElement {
[CEReactions] attribute boolean compact;

};

The compact IDL attribute of the olp220 element must reflectp94 the content attribute of the same name.

partial interface HTMLParagraphElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the pp211 element must reflectp94 the content attribute of the same name.

partial interface HTMLParamElement {
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString valueType;

};

The type IDL attribute of the paramp378 element must reflectp94 the content attribute of the same name.

The valueType IDL attribute of the paramp378 element must reflectp94 the element's valuetypep1235 content attribute.

User agents must treat plaintextp1232 elements in a manner equivalent to prep216 elements in terms of semantics and for purposes of
rendering. (The parser has special behavior for this element, though.)

partial interface HTMLPreElement {
[CEReactions] attribute long width;

};

The width IDL attribute of the prep216 element must reflectp94 the content attribute of the same name.

IDL

IDL

IDL

IDL

IDL

1246

https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://url.spec.whatwg.org/#concept-url

partial interface HTMLStyleElement {
[CEReactions] attribute DOMString type;

};

The type IDL attribute of the stylep174 element must reflectp94 the element's typep1235 content attribute.

partial interface HTMLScriptElement {
[CEReactions] attribute DOMString charset;
[CEReactions] attribute DOMString event;
[CEReactions] attribute DOMString htmlFor;

};

The charset and event IDL attributes of the scriptp614 element must reflectp94 the respective content attributes of the same name.

The htmlFor IDL attribute of the scriptp614 element must reflectp94 the element's forp1235 content attribute.

partial interface HTMLTableElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString border;
[CEReactions] attribute DOMString frame;
[CEReactions] attribute DOMString rules;
[CEReactions] attribute DOMString summary;
[CEReactions] attribute DOMString width;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString cellPadding;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString cellSpacing;

};

The align, border, frame, summary, rules, and width, IDL attributes of the tablep450 element must reflectp94 the respective content
attributes of the same name.

The bgColor IDL attribute of the tablep450 element must reflectp94 the element's bgcolorp1237 content attribute.

The cellPadding IDL attribute of the tablep450 element must reflectp94 the element's cellpaddingp1237 content attribute.

The cellSpacing IDL attribute of the tablep450 element must reflectp94 the element's cellspacingp1237 content attribute.

partial interface HTMLTableSectionElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString ch;
[CEReactions] attribute DOMString chOff;
[CEReactions] attribute DOMString vAlign;

};

The align IDL attribute of the tbodyp461, theadp462, and tfootp463 elements must reflectp94 the content attribute of the same name.

The ch IDL attribute of the tbodyp461, theadp462, and tfootp463 elements must reflectp94 the elements' charp1237 content attributes.

The chOff IDL attribute of the tbodyp461, theadp462, and tfootp463 elements must reflectp94 the elements' charoffp1237 content
attributes.

The vAlign IDL attribute of the tbodyp461, theadp462, and tfootp463 element must reflectp94 the elements' valignp1237 content
attributes.

IDL

IDL

IDL

IDL

1247

https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString

partial interface HTMLTableCellElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString axis;
[CEReactions] attribute DOMString height;
[CEReactions] attribute DOMString width;

[CEReactions] attribute DOMString ch;
[CEReactions] attribute DOMString chOff;
[CEReactions] attribute boolean noWrap;
[CEReactions] attribute DOMString vAlign;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;
};

The align, axis, height, and width IDL attributes of the tdp465 and thp467 elements must reflectp94 the respective content attributes of
the same name.

The ch IDL attribute of the tdp465 and thp467 elements must reflectp94 the elements' charp1237 content attributes.

The chOff IDL attribute of the tdp465 and thp467 elements must reflectp94 the elements' charoffp1237 content attributes.

The noWrap IDL attribute of the tdp465 and thp467 elements must reflectp94 the elements' nowrapp1237 content attributes.

The vAlign IDL attribute of the tdp465 and thp467 elements must reflectp94 the elements' valignp1237 content attributes.

The bgColor IDL attribute of the tdp465 and thp467 elements must reflectp94 the elements' bgcolorp1237 content attributes.

partial interface HTMLTableRowElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString ch;
[CEReactions] attribute DOMString chOff;
[CEReactions] attribute DOMString vAlign;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;
};

The align IDL attribute of the trp464 element must reflectp94 the content attribute of the same name.

The ch IDL attribute of the trp464 element must reflectp94 the element's charp1237 content attribute.

The chOff IDL attribute of the trp464 element must reflectp94 the element's charoffp1237 content attribute.

The vAlign IDL attribute of the trp464 element must reflectp94 the element's valignp1237 content attribute.

The bgColor IDL attribute of the trp464 element must reflectp94 the element's bgcolorp1237 content attribute.

partial interface HTMLUListElement {
[CEReactions] attribute boolean compact;
[CEReactions] attribute DOMString type;

};

The compact and type IDL attributes of the ulp222 element must reflectp94 the respective content attributes of the same name.

User agents must treat xmpp1233 elements in a manner equivalent to prep216 elements in terms of semantics and for purposes of
rendering. (The parser has special behavior for this element though.)

IDL

IDL

IDL

1248

https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString

partial interface Document {
[CEReactions] attribute [LegacyNullToEmptyString] DOMString fgColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString linkColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString vlinkColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString alinkColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;

[SameObject] readonly attribute HTMLCollection anchors;
[SameObject] readonly attribute HTMLCollection applets;

undefined clear();
undefined captureEvents();
undefined releaseEvents();

[SameObject] readonly attribute HTMLAllCollection all;
};

The attributes of the Documentp114 object listed in the first column of the following table must reflectp94 the content attribute on the
body elementp118 with the name given in the corresponding cell in the second column on the same row, if the body elementp118 is a
bodyp178 element (as opposed to a framesetp1239 element). When there is no body elementp118 or if it is a framesetp1239 element, the
attributes must instead return the empty string on getting and do nothing on setting.

IDL attribute Content attribute

fgColor textp1236

linkColor linkp1236

vlinkColor vlinkp1236

alinkColor alinkp1236

bgColor bgcolorp1236

The anchors attribute must return an HTMLCollection rooted at the Documentp114 node, whose filter matches only ap238 elements with
namep1233 attributes.

The applets attribute must return an HTMLCollection rooted at the Documentp114 node, whose filter matches nothing. (It exists for
historical reasons.)

The clear(), captureEvents(), and releaseEvents() methods must do nothing.

The all attribute must return an HTMLAllCollectionp97 rooted at the Documentp114 node, whose filter matches all elements.

partial interface Window {
undefined captureEvents();
undefined releaseEvents();

[Replaceable, SameObject] readonly attribute External external;
};

The captureEvents() and releaseEvents() methods must do nothing.

The external attribute of the Windowp824 interface must return an instance of the Externalp1249 interface:

[Exposed=Window]
interface External {

undefined AddSearchProvider();
undefined IsSearchProviderInstalled();

};

The AddSearchProvider() and IsSearchProviderInstalled() methods must do nothing.

IDL

IDL

IDL

1249

https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://heycam.github.io/webidl/#LegacyNullToEmptyString
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text

Subtype name:
html

Required parameters:
No required parameters

Optional parameters:
charset

The charset parameter may be provided to specify the document's character encoding, overriding any character encoding
declarationsp173 in the document other than a Byte Order Mark (BOM). The parameter's value must be an ASCII case-insensitive
match for the string "utf-8". [ENCODING]p1287

Encoding considerations:
8bit (see the section on character encoding declarationsp173)

Security considerations:
Entire novels have been written about the security considerations that apply to HTML documents. Many are listed in this document,
to which the reader is referred for more details. Some general concerns bear mentioning here, however:

HTML is scripted language, and has a large number of APIs (some of which are described in this document). Script can expose the
user to potential risks of information leakage, credential leakage, cross-site scripting attacks, cross-site request forgeries, and a host
of other problems. While the designs in this specification are intended to be safe if implemented correctly, a full implementation is a
massive undertaking and, as with any software, user agents are likely to have security bugs.

Even without scripting, there are specific features in HTML which, for historical reasons, are required for broad compatibility with
legacy content but that expose the user to unfortunate security problems. In particular, the imgp320 element can be used in
conjunction with some other features as a way to effect a port scan from the user's location on the Internet. This can expose local
network topologies that the attacker would otherwise not be able to determine.

HTML relies on a compartmentalization scheme sometimes known as the same-origin policy. An originp837 in most cases consists of
all the pages served from the same host, on the same port, using the same protocol.

It is critical, therefore, to ensure that any untrusted content that forms part of a site be hosted on a different originp837 than any
sensitive content on that site. Untrusted content can easily spoof any other page on the same origin, read data from that origin,
cause scripts in that origin to execute, submit forms to and from that origin even if they are protected from cross-site request
forgery attacks by unique tokens, and make use of any third-party resources exposed to or rights granted to that origin.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.

Published specification:
This document is the relevant specification. Labeling a resource with the text/htmlp1250 type asserts that the resource is an HTML
document using the HTML syntaxp1067.

Applications that use this media type:
Web browsers, tools for processing web content, HTML authoring tools, search engines, validators.

Additional information:
Magic number(s):

No sequence of bytes can uniquely identify an HTML document. More information on detecting HTML documents is available in
MIME Sniffing. [MIMESNIFF]p1289

File extension(s):
"html" and "htm" are commonly, but certainly not exclusively, used as the extension for HTML documents.

16 IANA considerations §p12

50

16.1 text/html §p12

50

1250

https://dom.spec.whatwg.org/#concept-document-encoding
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#html-document

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

Fragments used with text/htmlp1250 resources either refer to the indicated part of the documentp880 or provide state information for in-
page scripts.

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
multipart

Subtype name:
x-mixed-replace

Required parameters:

• boundary (defined in RFC2046) [RFC2046]p1290

Optional parameters:
No optional parameters.

Encoding considerations:
binary

Security considerations:
Subresources of a multipart/x-mixed-replacep1251 resource can be of any type, including types with non-trivial security
implications such as text/htmlp1250.

Interoperability considerations:
None.

Published specification:
This specification describes processing rules for web browsers. Conformance requirements for generating resources with this type
are the same as for multipart/mixedp1283. [RFC2046]p1290

Applications that use this media type:
This type is intended to be used in resources generated by web servers, for consumption by web browsers.

Additional information:
Magic number(s):

No sequence of bytes can uniquely identify a multipart/x-mixed-replacep1251 resource.
File extension(s):

No specific file extensions are recommended for this type.
Macintosh file type code(s):

No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

16.2 multipart/x-mixed-replace §p12

51

1251

https://url.spec.whatwg.org/#concept-url-fragment

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

Fragments used with multipart/x-mixed-replacep1251 resources apply to each body part as defined by the type used by that body
part.

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
application

Subtype name:
xhtml+xml

Required parameters:
Same as for application/xmlp1283 [RFC7303]p1291

Optional parameters:
Same as for application/xmlp1283 [RFC7303]p1291

Encoding considerations:
Same as for application/xmlp1283 [RFC7303]p1291

Security considerations:
Same as for application/xmlp1283 [RFC7303]p1291

Interoperability considerations:
Same as for application/xmlp1283 [RFC7303]p1291

Published specification:
Labeling a resource with the application/xhtml+xmlp1252 type asserts that the resource is an XML document that likely has a
document element from the HTML namespace. Thus, the relevant specifications are XML, Namespaces in XML, and this
specification. [XML]p1293 [XMLNS]p1293

Applications that use this media type:
Same as for application/xmlp1283 [RFC7303]p1291

Additional information:
Magic number(s):

Same as for application/xmlp1283 [RFC7303]p1291

File extension(s):
"xhtml" and "xht" are sometimes used as extensions for XML resources that have a document element from the HTML
namespace.

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

16.3 application/xhtml+xml §p12

52

1252

https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

Fragments used with application/xhtml+xmlp1252 resources have the same semantics as with any XML MIME type. [RFC7303]p1291

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text

Subtype name:
cache-manifest

Required parameters:
No parameters

Optional parameters:
charset

The charset parameter may be provided. The parameter's value must be "utf-8". This parameter serves no purpose; it is only
allowed for compatibility with legacy servers.

Encoding considerations:
8bit (always UTF-8)

Security considerations:
Cache manifests themselves pose no immediate risk unless sensitive information is included within the manifest. Implementations,
however, are required to follow specific rules when populating a cache based on a cache manifest, to ensure that certain origin-
based restrictions are honored. Failure to correctly implement these rules can result in information leakage, cross-site scripting
attacks, and the like.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers.

Additional information:
Magic number(s):

Cache manifests begin with the string "CACHE MANIFEST", followed by either a U+0020 SPACE character, a U+0009 CHARACTER
TABULATION (tab) character, a U+000A LINE FEED (LF) character, or a U+000D CARRIAGE RETURN (CR) character.

File extension(s):
"appcache"

Macintosh file type code(s):
No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

16.4 text/cache-manifest §p12

53

1253

https://url.spec.whatwg.org/#concept-url-fragment
https://mimesniff.spec.whatwg.org/#xml-mime-type

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

Fragments have no meaning with text/cache-manifestp1253 resources.

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text

Subtype name:
ping

Required parameters:
No parameters

Optional parameters:
charset

The charset parameter may be provided. The parameter's value must be "utf-8". This parameter serves no purpose; it is only
allowed for compatibility with legacy servers.

Encoding considerations:
Not applicable.

Security considerations:
If used exclusively in the fashion described in the context of hyperlink auditingp293, this type introduces no new security concerns.

Interoperability considerations:
Rules applicable to this type are defined in this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers.

Additional information:
Magic number(s):

text/pingp1254 resources always consist of the four bytes 0x50 0x49 0x4E 0x47 (`PING`).
File extension(s):

No specific file extension is recommended for this type.
Macintosh file type code(s):

No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
Only intended for use with HTTP POST requests generated as part of a web browser's processing of the pingp284 attribute.

Author:
Ian Hickson <ian@hixie.ch>

16.5 text/ping §p12

54

1254

https://url.spec.whatwg.org/#concept-url-fragment

Change controller:
W3C

Fragments have no meaning with text/pingp1254 resources.

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
application

Subtype name:
microdata+json

Required parameters:
Same as for application/jsonp1283 [JSON]p1288

Optional parameters:
Same as for application/jsonp1283 [JSON]p1288

Encoding considerations:
8bit (always UTF-8)

Security considerations:
Same as for application/jsonp1283 [JSON]p1288

Interoperability considerations:
Same as for application/jsonp1283 [JSON]p1288

Published specification:
Labeling a resource with the application/microdata+jsonp1255 type asserts that the resource is a JSON text that consists of an
object with a single entry called "items" consisting of an array of entries, each of which consists of an object with an entry called
"id" whose value is a string, an entry called "type" whose value is another string, and an entry called "properties" whose value is
an object whose entries each have a value consisting of an array of either objects or strings, the objects being of the same form as
the objects in the aforementioned "items" entry. Thus, the relevant specifications are JSON and this specification. [JSON]p1288

Applications that use this media type:
Applications that transfer data intended for use with HTML's microdata feature, especially in the context of drag-and-drop, are the
primary application class for this type.

Additional information:
Magic number(s):

Same as for application/jsonp1283 [JSON]p1288

File extension(s):
Same as for application/jsonp1283 [JSON]p1288

Macintosh file type code(s):
Same as for application/jsonp1283 [JSON]p1288

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

16.6 application/microdata+json §p12

55

1255

https://url.spec.whatwg.org/#concept-url-fragment

Fragments used with application/microdata+jsonp1255 resources have the same semantics as when used with application/
jsonp1283 (namely, at the time of writing, no semantics at all). [JSON]p1288

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text

Subtype name:
event-stream

Required parameters:
No parameters

Optional parameters:
charset

The charset parameter may be provided. The parameter's value must be "utf-8". This parameter serves no purpose; it is only
allowed for compatibility with legacy servers.

Encoding considerations:
8bit (always UTF-8)

Security considerations:
An event stream from an origin distinct from the origin of the content consuming the event stream can result in information
leakage. To avoid this, user agents are required to apply CORS semantics. [FETCH]p1287

Event streams can overwhelm a user agent; a user agent is expected to apply suitable restrictions to avoid depleting local
resources because of an overabundance of information from an event stream.

Servers can be overwhelmed if a situation develops in which the server is causing clients to reconnect rapidly. Servers should use a
5xx status code to indicate capacity problems, as this will prevent conforming clients from reconnecting automatically.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers and tools using web services.

Additional information:
Magic number(s):

No sequence of bytes can uniquely identify an event stream.
File extension(s):

No specific file extensions are recommended for this type.
Macintosh file type code(s):

No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
This format is only expected to be used by dynamic open-ended streams served using HTTP or a similar protocol. Finite resources
are not expected to be labeled with this type.

Author:
Ian Hickson <ian@hixie.ch>

16.7 text/event-stream §p12

56

1256

https://url.spec.whatwg.org/#concept-url-fragment

Change controller:
W3C

Fragments have no meaning with text/event-streamp1256 resources.

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
Cross-Origin-Embedder-Policy

Applicable protocol:
http

Status:
standard

Author/Change controller:
WHATWG

Specification document(s):
This document is the relevant specification.

Related information:
None.

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
Cross-Origin-Embedder-Policy-Report-Only

Applicable protocol:
http

Status:
standard

Author/Change controller:
WHATWG

Specification document(s):
This document is the relevant specification.

Related information:
None.

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
Cross-Origin-Opener-Policy

Applicable protocol:
http

16.8 `Cross-Origin-Embedder-Policy` §p12

57

16.9 `Cross-Origin-Embedder-Policy-Report-Only` §p12

57

16.10 `Cross-Origin-Opener-Policy` §p12

57

1257

https://url.spec.whatwg.org/#concept-url-fragment

Status:
standard

Author/Change controller:
WHATWG

Specification document(s):
This document is the relevant specification.

Related information:
None.

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
Origin-Isolation

Applicable protocol:
http

Status:
standard

Author/Change controller:
WHATWG

Specification document(s):
This document is the relevant specification.

Related information:
None.

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
Ping-From

Applicable protocol:
http

Status:
standard

Author/Change controller:
W3C

Specification document(s):
This document is the relevant specification.

Related information:
None.

16.11 `Origin-Isolation` §p12

58

16.12 `Ping-From` §p12

58

1258

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
Ping-To

Applicable protocol:
http

Status:
standard

Author/Change controller:
W3C

Specification document(s):
This document is the relevant specification.

Related information:
None.

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
Refresh

Applicable protocol:
http

Status:
standard

Author/Change controller:
WHATWG

Specification document(s):
This document is the relevant specification.

Related information:
None.

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
Last-Event-ID

Applicable protocol:
http

Status:
standard

Author/Change controller:
W3C

Specification document(s):
This document is the relevant specification.

16.13 `Ping-To` §p12

59

16.14 `Refresh` §p12

59

16.15 `Last-Event-ID` §p12

59

1259

Related information:
None.

This section describes a header for registration in the Permanent Message Header Field Registry. [RFC3864]p1290

Header field name:
X-Frame-Options

Applicable protocol:
http

Status:
standard

Author/Change controller:
WHATWG

Specification document(s):
This document is the relevant specification.

Related information:
None.

This section describes a convention for use with the IANA URI scheme registry. It does not itself register a specific scheme.
[RFC7595]p1290

Scheme name:
Schemes starting with the four characters "web+" followed by one or more letters in the range a-z.

Status:
Permanent

Scheme syntax:
Scheme-specific.

Scheme semantics:
Scheme-specific.

Encoding considerations:
All "web+" schemes should use UTF-8 encodings where relevant.

Applications/protocols that use this scheme name:
Scheme-specific.

Interoperability considerations:
The scheme is expected to be used in the context of web applications.

Security considerations:
Any web page is able to register a handler for all "web+" schemes. As such, these schemes must not be used for features intended
to be core platform features (e.g. network transfer protocols like HTTP or FTP). Similarly, such schemes must not store confidential
information in their URLs, such as usernames, passwords, personal information, or confidential project names.

Contact:
Ian Hickson <ian@hixie.ch>

Change controller:
Ian Hickson <ian@hixie.ch>

16.16 `X-Frame-Options` §p12

60

16.17 web+ scheme prefix §p12

60

1260

References:
Custom scheme handlers, HTML Living Standard: https://html.spec.whatwg.org/#custom-handlersp982

1261

The following sections only cover conforming elements and features.

This section is non-normative.

List of elements
Element Description Categories Parents† Children Attributes Interface

ap238 Hyperlink flowp131;
phrasingp132*;
interactivep132;
palpablep133

phrasingp132 transparentp133* globalsp136; hrefp284; targetp284; downloadp284;
pingp284; relp284; hreflangp284; typep284;
referrerpolicyp284

HTMLAnchorElementp239

abbrp250 Abbreviation flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

addressp197 Contact
information
for a page or
articlep180

element

flowp131;
palpablep133

flowp131 flowp131* globalsp136 HTMLElementp124

areap443 Hyperlink or
dead area on
an image
map

flowp131;
phrasingp132

phrasingp132* empty globalsp136; altp444; coordsp445; shapep444;
hrefp284; targetp284; downloadp284; pingp284;
relp284; referrerpolicyp284

HTMLAreaElementp444

articlep180 Self-
contained
syndicatable
or reusable
composition

flowp131;
sectioningp131;
palpablep133

flowp131 flowp131 globalsp136 HTMLElementp124

asidep187 Sidebar for
tangentially
related
content

flowp131;
sectioningp131;
palpablep133

flowp131 flowp131 globalsp136 HTMLElementp124

audiop384 Audio player flowp131;
phrasingp132;
embeddedp132;
interactivep132;
palpablep133*

phrasingp132 sourcep317*;
trackp385*;
transparentp133*

globalsp136; srcp390; crossoriginp390;
preloadp401; autoplayp407; loopp405; mutedp437;
controlsp436

HTMLAudioElementp384

bp273 Keywords flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

basep155 Base URL and
default target
browsing
contextp811

for
hyperlinksp284

and formsp572

metadatap131 headp153 empty globalsp136; hrefp156; targetp156 HTMLBaseElementp156

bdip278 Text
directionality
isolation

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

bdop279 Text
directionality
formatting

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

blockquotep217 A section
quoted from
another
source

flowp131;
sectioning
rootp199;
palpablep133

flowp131 flowp131 globalsp136; citep218 HTMLQuoteElementp218

bodyp178 Document sectioning htmlp152 flowp131 globalsp136; onafterprintp962; HTMLBodyElementp179

Index §p12

62

Elements §p12

62

1262

Element Description Categories Parents† Children Attributes Interface

body rootp199 onbeforeprintp963; onbeforeunloadp963;
onhashchangep963; onlanguagechangep963;
onmessagep963; onmessageerrorp963;
onofflinep963; ononlinep963; onpagehidep963;
onpageshowp963; onpopstatep963;
onrejectionhandledp963; onstoragep963;
onunhandledrejectionp963; onunloadp963

brp280 Line break,
e.g. in poem
or postal
address

flowp131;
phrasingp132

phrasingp132 empty globalsp136 HTMLBRElementp280

buttonp535 Button control flowp131;
phrasingp132;
interactivep132;
listedp486;
labelablep486;
submittablep486;
form-
associatedp486;
palpablep133

phrasingp132 phrasingp132* globalsp136; disabledp570; formp566;
formactionp571; formenctypep572;
formmethodp571; formnovalidatep572;
formtargetp572; namep568; typep536; valuep537

HTMLButtonElementp536

canvasp634 Scriptable
bitmap
canvas

flowp131;
phrasingp132;
embeddedp132;
palpablep133

phrasingp132 transparentp133 globalsp136; widthp635; heightp635 HTMLCanvasElementp634

captionp458 Table caption none tablep450 flowp131* globalsp136 HTMLTableCaptionElementp458

citep246 Title of a work flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

codep267 Computer
code

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

colp460 Table column none colgroupp459 empty globalsp136; spanp460 HTMLTableColElementp460

colgroupp459 Group of
columns in a
table

none tablep450 colp460*;
templatep629*

globalsp136; spanp460 HTMLTableColElementp460

datap259 Machine-
readable
equivalent

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136; valuep260 HTMLDataElementp259

datalistp543 Container for
options for
combo box
controlp528

flowp131;
phrasingp132

phrasingp132 phrasingp132*;
optionp545*;
script-
supporting
elementsp133*

globalsp136 HTMLDataListElementp543

ddp231 Content for
corresponding
dtp230

element(s)

none dlp226; divp237* flowp131 globalsp136 HTMLElementp124

delp312 A removal
from the
document

flowp131;
phrasingp132*

phrasingp132 transparentp133 globalsp136; citep313; datetimep313 HTMLModElementp313

detailsp604 Disclosure
control for
hiding details

flowp131;
sectioning
rootp199;
interactivep132;
palpablep133

flowp131 summaryp607*;
flowp131

globalsp136; openp604 HTMLDetailsElementp604

dfnp249 Defining
instance

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132* globalsp136 HTMLElementp124

dialogp610 Dialog box or
window

flowp131;
sectioning
rootp199

flowp131 flowp131 globalsp136; openp611 HTMLDialogElementp611

divp237 Generic flow
container, or
container for
name-value
groups in
dlp226

flowp131;
palpablep133

flowp131; dlp226 flowp131 globalsp136 HTMLDivElementp237

1263

Element Description Categories Parents† Children Attributes Interface

elements
dlp226 Association

list consisting
of zero or
more name-
value groups

flowp131;
palpablep133

flowp131 dtp230*; ddp231*;
divp237*; script-
supporting
elementsp133

globalsp136 HTMLDListElementp227

dtp230 Legend for
corresponding
ddp231

element(s)

none dlp226; divp237* flowp131* globalsp136 HTMLElementp124

emp241 Stress
emphasis

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

embedp369 Pluginp45 flowp131;
phrasingp132;
embeddedp132;
interactivep132;
palpablep133

phrasingp132 empty globalsp136; srcp369; typep370; widthp449;
heightp449; any*

HTMLEmbedElementp369

fieldsetp562 Group of form
controls

flowp131;
sectioning
rootp199;
listedp486; form-
associatedp486;
palpablep133

flowp131 legendp565*;
flowp131

globalsp136; disabledp563; formp566; namep568 HTMLFieldSetElementp562

figcaptionp235 Caption for
figurep232

none figurep232 flowp131 globalsp136 HTMLElementp124

figurep232 Figure with
optional
caption

flowp131;
sectioning
rootp199;
palpablep133

flowp131 figcaptionp235*;
flowp131

globalsp136 HTMLElementp124

footerp195 Footer for a
page or
section

flowp131;
palpablep133

flowp131 flowp131* globalsp136 HTMLElementp124

formp486 User-
submittable
form

flowp131;
palpablep133

flowp131 flowp131* globalsp136; accept-charsetp487; actionp571;
autocompletep488; enctypep572; methodp571;
namep487; novalidatep572; targetp572

HTMLFormElementp487

h1p190, h2p190,
h3p190, h4p190,
h5p190, h6p190

Section
heading

flowp131;
headingp132;
palpablep133

legendp565;
summaryp607;
flowp131

phrasingp132 globalsp136 HTMLHeadingElementp190

headp153 Container for
document
metadata

none htmlp152 metadata
contentp131*

globalsp136 HTMLHeadElementp153

headerp194 Introductory
or
navigational
aids for a
page or
section

flowp131;
palpablep133

flowp131 flowp131* globalsp136 HTMLElementp124

hgroupp191 heading
group

flowp131;
headingp132;
palpablep133

legendp565;
summaryp607;
flowp131

h1p190; h2p190;
h3p190; h4p190;
h5p190; h6p190;
script-
supporting
elementsp133

globalsp136 HTMLElementp124

hrp214 Thematic
break

flowp131 flowp131 empty globalsp136 HTMLHRElementp214

htmlp152 Root element none none* headp153*;
bodyp178*

globalsp136; manifestp152 HTMLHtmlElementp152

ip272 Alternate
voice

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

iframep361 Nested
browsing
contextp814

flowp131;
phrasingp132;
embeddedp132;
interactivep132;
palpablep133

phrasingp132 empty globalsp136; srcp362; srcdocp362; namep365;
sandboxp365; allowp367; allowfullscreenp367;
allowpaymentrequestp367; widthp449;
heightp449; referrerpolicyp368; loadingp368

HTMLIFrameElementp361

imgp320 Image flowp131; phrasingp132; empty globalsp136; altp321; srcp321; srcsetp321; HTMLImageElementp320

1264

Element Description Categories Parents† Children Attributes Interface

phrasingp132;
embeddedp132;
interactivep132*;
form-
associatedp486;
palpablep133

picturep316 sizesp321; crossoriginp321; usemapp445;
ismapp323; widthp449; heightp449;
referrerpolicyp321; decodingp321;
loadingp321

inputp493 Form control flowp131;
phrasingp132;
interactivep132*;
listedp486;
labelablep486;
submittablep486;
resettablep486;
form-
associatedp486;
palpablep133*

phrasingp132 empty globalsp136; acceptp516; altp519;
autocompletep573; checkedp497; dirnamep568;
disabledp570; formp566; formactionp571;
formenctypep572; formmethodp571;
formnovalidatep572; formtargetp572;
heightp449; listp528; maxp526; maxlengthp522;
minp526; minlengthp522; multiplep524; namep568;
patternp525; placeholderp530; readonlyp522;
requiredp523; sizep522; srcp518; stepp527;
typep495; valuep497; widthp449

HTMLInputElementp494

insp311 An addition to
the document

flowp131;
phrasingp132*;
palpablep133

phrasingp132 transparentp133 globalsp136; citep313; datetimep313 HTMLModElementp313

kbdp270 User input flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

labelp490 Caption for a
form control

flowp131;
phrasingp132;
interactivep132;
palpablep133

phrasingp132 phrasingp132* globalsp136; forp491 HTMLLabelElementp491

legendp565 Caption for
fieldsetp562

none fieldsetp562 phrasingp132;
heading
contentp132

globalsp136 HTMLLegendElementp565

lip224 List item none olp220; ulp222;
menup223*

flowp131 globalsp136; valuep224* HTMLLIElementp224

linkp157 Link
metadata

metadatap131;
flowp131*;
phrasingp132*

headp153;
noscriptp627*;
phrasingp132*

empty globalsp136; hrefp158; crossoriginp158; relp158;
asp161; mediap159; hreflangp159; typep159;
sizesp160; imagesrcsetp160; imagesizesp160;
referrerpolicyp159; integrityp159;
colorp161; disabledp161

HTMLLinkElementp158

mainp235 Container for
the dominant
contents of
the document

flowp131;
palpablep133

flowp131* flowp131 globalsp136 HTMLElementp124

mapp442 Image
mapp445

flowp131;
phrasingp132*;
palpablep133

phrasingp132 transparentp133;
areap443*

globalsp136; namep443 HTMLMapElementp442

markp275 Highlight flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

MathML math MathML root flowp131;
phrasingp132;
embeddedp132;
palpablep133

phrasingp132 per
[MATHML]p1289

per [MATHML]p1289 Element

menup223 Menu of
commands

flowp131;
palpablep133*

flowp131 lip224; script-
supporting
elementsp133

globalsp136 HTMLMenuElementp223

metap164 Text
metadata

metadatap131;
flowp131*;
phrasingp132*

headp153;
noscriptp627*;
phrasingp132*

empty globalsp136; namep166; http-equivp169;
contentp165; charsetp165

HTMLMetaElementp165

meterp557 Gauge flowp131;
phrasingp132;
labelablep486;
palpablep133

phrasingp132 phrasingp132* globalsp136; valuep558; minp558; maxp558; lowp558;
highp558; optimump558

HTMLMeterElementp558

navp184 Section with
navigational
links

flowp131;
sectioningp131;
palpablep133

flowp131 flowp131 globalsp136 HTMLElementp124

noscriptp627 Fallback
content for
script

metadatap131;
flowp131;
phrasingp132

headp153*;
phrasingp132*

varies* globalsp136 HTMLElementp124

objectp373 Image, flowp131; phrasingp132 paramp378*; globalsp136; datap374; typep374; namep374; HTMLObjectElementp373

1265

https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://dom.spec.whatwg.org/#interface-element

Element Description Categories Parents† Children Attributes Interface

nested
browsing
contextp814, or
pluginp45

phrasingp132;
embeddedp132;
interactivep132*;
listedp486;
submittablep486;
form-
associatedp486;
palpablep133

transparentp133 usemapp445; formp566; widthp449; heightp449

olp220 Ordered list flowp131;
palpablep133*

flowp131 lip224; script-
supporting
elementsp133

globalsp136; reversedp221; startp221; typep221 HTMLOListElementp221

optgroupp544 Group of
options in a
list box

none selectp537 optionp545;
script-
supporting
elementsp133

globalsp136; disabledp545; labelp545 HTMLOptGroupElementp545

optionp545 Option in a
list box or
combo box
control

none selectp537;
datalistp543;
optgroupp544

textp132* globalsp136; disabledp546; labelp546;
selectedp547; valuep546

HTMLOptionElementp546

outputp553 Calculated
output value

flowp131;
phrasingp132;
listedp486;
labelablep486;
resettablep486;
form-
associatedp486;
palpablep133

phrasingp132 phrasingp132 globalsp136; forp554; formp566; namep568 HTMLOutputElementp554

pp211 Paragraph flowp131;
palpablep133

flowp131 phrasingp132 globalsp136 HTMLParagraphElementp212

paramp378 Parameter for
objectp373

none objectp373 empty globalsp136; namep379; valuep379 HTMLParamElementp379

picturep316 Image flowp131;
phrasingp132;
embeddedp132

phrasingp132 sourcep317*; one
imgp320; script-
supporting
elementsp133

globalsp136 HTMLPictureElementp316

prep216 Block of
preformatted
text

flowp131;
palpablep133

flowp131 phrasingp132 globalsp136 HTMLPreElementp216

progressp555 Progress bar flowp131;
phrasingp132;
labelablep486;
palpablep133

phrasingp132 phrasingp132* globalsp136; valuep556; maxp556 HTMLProgressElementp556

qp247 Quotation flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136; citep248 HTMLQuoteElementp218

rpp258 Parenthesis
for ruby
annotation
text

none rubyp252 textp132 globalsp136 HTMLElementp124

rtp258 Ruby
annotation
text

none rubyp252 phrasingp132 globalsp136 HTMLElementp124

rubyp252 Ruby
annotation(s)

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132;
rtp258; rpp258*

globalsp136 HTMLElementp124

sp245 Inaccurate
text

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

sampp269 Computer
output

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

scriptp614 Embedded
script

metadatap131;
flowp131;
phrasingp132;
script-
supportingp133

headp153;
phrasingp132;
script-
supportingp133

script, data, or
script
documentation*

globalsp136; srcp615; typep615; asyncp615;
deferp615; crossoriginp616; integrityp616;
referrerpolicyp616

HTMLScriptElementp614

sectionp182 Generic flowp131; flowp131 flowp131 globalsp136 HTMLElementp124

1266

Element Description Categories Parents† Children Attributes Interface

document or
application
section

sectioningp131;
palpablep133

selectp537 List box
control

flowp131;
phrasingp132;
interactivep132;
listedp486;
labelablep486;
submittablep486;
resettablep486;
form-
associatedp486;
palpablep133

phrasingp132 optionp545;
optgroupp544;
script-
supporting
elementsp133

globalsp136; autocompletep573; disabledp570;
formp566; multiplep539; namep568; requiredp539;
sizep539

HTMLSelectElementp538

slotp633 Shadow tree
slot

flowp131;
phrasingp132

phrasingp132 transparentp133 globalsp136; namep633 HTMLSlotElementp633

smallp244 Side
comment

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

sourcep317 Image source
for imgp320 or
media source
for videop380

or audiop384

none picturep316;
videop380;
audiop384

empty globalsp136; srcp318; typep317; srcsetp317;
sizesp318; mediap318

HTMLSourceElementp317

spanp279 Generic
phrasing
container

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLSpanElementp280

strongp242 Importance flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

stylep174 Embedded
styling
information

metadatap131 headp153;
noscriptp627*

text* globalsp136; mediap175 HTMLStyleElementp175

subp271 Subscript flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

summaryp607 Caption for
detailsp604

none detailsp604 phrasingp132;
heading
contentp132

globalsp136 HTMLElementp124

supp271 Superscript flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

SVG svg SVG root flowp131;
phrasingp132;
embeddedp132;
palpablep133

phrasingp132 per [SVG]p1291 per [SVG]p1291 SVGSVGElement

tablep450 Table flowp131;
palpablep133

flowp131 captionp458*;
colgroupp459*;
theadp462*;
tbodyp461*;
tfootp463*;
trp464*; script-
supporting
elementsp133

globalsp136 HTMLTableElementp451

tbodyp461 Group of rows
in a table

none tablep450 trp464; script-
supporting
elementsp133

globalsp136 HTMLTableSectionElementp461

tdp465 Table cell sectioning
rootp199

trp464 flowp131 globalsp136; colspanp469; rowspanp469;
headersp469

HTMLTableCellElementp466

templatep629 Template metadatap131;
flowp131;
phrasingp132;
script-
supportingp133

metadatap131;
phrasingp132;
script-
supportingp133;
colgroupp459*

empty globalsp136 HTMLTemplateElementp630

textareap548 Multiline text
controls

flowp131;
phrasingp132;
interactivep132;
listedp486;

phrasingp132 textp132 globalsp136; colsp550; dirnamep568;
disabledp570; formp566; maxlengthp551;
minlengthp551; namep568; placeholderp551;
readonlyp549; requiredp551; rowsp550; wrapp551

HTMLTextAreaElementp549

1267

https://svgwg.org/svg2-draft/struct.html#SVGElement
https://svgwg.org/svg2-draft/struct.html#InterfaceSVGSVGElement

Element Description Categories Parents† Children Attributes Interface

labelablep486;
submittablep486;
resettablep486;
form-
associatedp486;
palpablep133

tfootp463 Group of
footer rows in
a table

none tablep450 trp464; script-
supporting
elementsp133

globalsp136 HTMLTableSectionElementp461

thp467 Table header
cell

interactivep132* trp464 flowp131* globalsp136; colspanp469; rowspanp469;
headersp469; scopep467; abbrp468

HTMLTableCellElementp466

theadp462 Group of
heading rows
in a table

none tablep450 trp464; script-
supporting
elementsp133

globalsp136 HTMLTableSectionElementp461

timep260 Machine-
readable
equivalent of
date- or time-
related data

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136; datetimep261 HTMLTimeElementp261

titlep154 Document
title

metadatap131 headp153 textp132* globalsp136 HTMLTitleElementp154

trp464 Table row none tablep450;
theadp462;
tbodyp461;
tfootp463

thp467*; tdp465;
script-
supporting
elementsp133

globalsp136 HTMLTableRowElementp464

trackp385 Timed text
track

none audiop384;
videop380

empty globalsp136; defaultp386; kindp386; labelp386;
srcp386; srclangp386

HTMLTrackElementp385

up275 Unarticulated
annotation

flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

ulp222 List flowp131;
palpablep133*

flowp131 lip224; script-
supporting
elementsp133

globalsp136 HTMLUListElementp222

varp268 Variable flowp131;
phrasingp132;
palpablep133

phrasingp132 phrasingp132 globalsp136 HTMLElementp124

videop380 Video player flowp131;
phrasingp132;
embeddedp132;
interactivep132;
palpablep133

phrasingp132 sourcep317*;
trackp385*;
transparentp133*

globalsp136; srcp390; crossoriginp390;
posterp381; preloadp401; autoplayp407;
playsinlinep381; loopp405; mutedp437;
controlsp436; widthp449; heightp449

HTMLVideoElementp380

wbrp281 Line breaking
opportunity

flowp131;
phrasingp132

phrasingp132 empty globalsp136 HTMLElementp124

autonomous
custom
elementsp703

Author-
defined
elements

flowp131;
phrasingp132;
palpablep133

flowp131;
phrasingp132

transparentp133 globalsp136; any, as decided by the element's
author

Supplied by the element's
author (inherits from
HTMLElementp124)

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above.
† Categories in the "Parents" column refer to parents that list the given categories in their content model, not to elements that themselves are in
those categories. For example, the ap238 element's "Parents" column says "phrasing", so any element whose content model contains the "phrasing"
category could be a parent of an ap238 element. Since the "flow" category includes all the "phrasing" elements, that means the thp467 element could be
a parent to an ap238 element.

This section is non-normative.

List of element content categories
Category Elements Elements with exceptions

Metadata
contentp131

basep155; linkp157; metap164; noscriptp627; scriptp614; stylep174; templatep629; titlep154 —

Flow
contentp131

ap238; abbrp250; addressp197; articlep180; asidep187; audiop384; bp273; bdip278; bdop279;
blockquotep217; brp280; buttonp535; canvasp634; citep246; codep267; datap259; datalistp543;

areap443 (if it is a descendant of a mapp442

element); linkp157 (if it is allowed in the

Element content categories §p12

68

1268

Category Elements Elements with exceptions

delp312; detailsp604; dfnp249; dialogp610; divp237; dlp226; emp241; embedp369; fieldsetp562;
figurep232; footerp195; formp486; h1p190; h2p190; h3p190; h4p190; h5p190; h6p190; headerp194;
hgroupp191; hrp214; ip272; iframep361; imgp320; inputp493; insp311; kbdp270; labelp490; mapp442;
markp275; MathML math; menup223; meterp557; navp184; noscriptp627; objectp373; olp220;
outputp553; pp211; picturep316; prep216; progressp555; qp247; rubyp252; sp245; sampp269; scriptp614;
sectionp182; selectp537; slotp633; smallp244; spanp279; strongp242; subp271; supp271; SVG svg;
tablep450; templatep629; textareap548; timep260; up275; ulp222; varp268; videop380; wbrp281;
autonomous custom elementsp703; Textp132

bodyp159); mainp235 (if it is a hierarchically correct
main elementp236); metap164 (if the itempropp736

attribute is present)

Sectioning
contentp131

articlep180; asidep187; navp184; sectionp182 —

Heading
contentp132

h1p190; h2p190; h3p190; h4p190; h5p190; h6p190; hgroupp191 —

Phrasing
contentp132

ap238; abbrp250; audiop384; bp273; bdip278; bdop279; brp280; buttonp535; canvasp634; citep246;
codep267; datap259; datalistp543; delp312; dfnp249; emp241; embedp369; ip272; iframep361; imgp320;
inputp493; insp311; kbdp270; labelp490; mapp442; markp275; MathML math; meterp557; noscriptp627;
objectp373; outputp553; picturep316; progressp555; qp247; rubyp252; sp245; sampp269; scriptp614;
selectp537; slotp633; smallp244; spanp279; strongp242; subp271; supp271; SVG svg; templatep629;
textareap548; timep260; up275; varp268; videop380; wbrp281; autonomous custom elementsp703;
Textp132

areap443 (if it is a descendant of a mapp442

element); linkp157 (if it is allowed in the
bodyp159); metap164 (if the itempropp736 attribute
is present)

Embedded
contentp132

audiop384; canvasp634; embedp369; iframep361; imgp320; MathML math; objectp373; picturep316;
SVG svg; videop380

—

Interactive
contentp132

buttonp535; detailsp604; embedp369; iframep361; labelp490; selectp537; textareap548 ap238 (if the hrefp284 attribute is present);
audiop384 (if the controlsp436 attribute is
present); imgp320 (if the usemapp445 attribute is
present); inputp493 (if the typep495 attribute is not
in the Hiddenp499 state); objectp373 (if the
usemapp445 attribute is present); videop380 (if the
controlsp436 attribute is present)

Sectioning
rootsp199

blockquotep217; bodyp178; detailsp604; dialogp610; fieldsetp562; figurep232; tdp465 —

Form-
associated
elementsp486

buttonp535; fieldsetp562; inputp493; labelp490; objectp373; outputp553; selectp537;
textareap548; imgp320; form-associated custom elementsp704

—

Listed
elementsp486

buttonp535; fieldsetp562; inputp493; objectp373; outputp553; selectp537; textareap548; form-
associated custom elementsp704

—

Submittable
elementsp486

buttonp535; inputp493; objectp373; selectp537; textareap548; form-associated custom
elementsp704

—

Resettable
elementsp486

inputp493; outputp553; selectp537; textareap548; form-associated custom elementsp704 —

Autocapitalize-
inheriting
elementsp486

buttonp535; fieldsetp562; inputp493; outputp553; selectp537; textareap548 —

Labelable
elementsp486

buttonp535; inputp493; meterp557; outputp553; progressp555; selectp537; textareap548; form-
associated custom elementsp704

—

Palpable
contentp133

ap238; abbrp250; addressp197; articlep180; asidep187; bp273; bdip278; bdop279; blockquotep217;
buttonp535; canvasp634; citep246; codep267; datap259; detailsp604; dfnp249; divp237; emp241;
embedp369; fieldsetp562; figurep232; footerp195; formp486; h1p190; h2p190; h3p190; h4p190; h5p190;
h6p190; headerp194; hgroupp191; ip272; iframep361; imgp320; insp311; kbdp270; labelp490; mainp235;
mapp442; markp275; MathML math; meterp557; navp184; objectp373; outputp553; pp211; prep216;
progressp555; qp247; rubyp252; sp245; sampp269; sectionp182; selectp537; smallp244; spanp279;
strongp242; subp271; supp271; SVG svg; tablep450; textareap548; timep260; up275; varp268;
videop380; autonomous custom elementsp703

audiop384 (if the controlsp436 attribute is
present); dlp226 (if the element's children include
at least one name-value group); inputp493 (if the
typep495 attribute is not in the Hiddenp499 state);
menup223 (if the element's children include at least
one lip224 element); olp220 (if the element's
children include at least one lip224 element);
ulp222 (if the element's children include at least
one lip224 element); Textp132 that is not inter-
element whitespacep129

Script-
supporting
elementsp133

scriptp614; templatep629 —

This section is non-normative.

Attributes §p12

69

1269

https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://www.w3.org/Math/draft-spec/chapter2.html#interf.toplevel
https://svgwg.org/svg2-draft/struct.html#SVGElement

List of attributes (excluding event handler content attributes)
Attribute Element(s) Description Value

abbr thp468 Alternative label to use for the
header cell when referencing
the cell in other contexts

Textp129*

accept inputp516 Hint for expected file type in file
upload controlsp515

Set of comma-separated tokensp87* consisting of valid MIME type strings
with no parameters or audio/*, video/*, or image/*

accept-charset formp487 Character encodings to use for
form submissionp595

ASCII case-insensitive match for "UTF-8"

accesskey HTML elementsp785 Keyboard shortcut to activate or
focus element

Ordered set of unique space-separated tokensp87, none of which are
identical to another, each consisting of one code point in length

action formp571 URL to use for form
submissionp595

Valid non-empty URL potentially surrounded by spacesp88

allow iframep367 Permissions policy to be applied
to the iframep361 's contents

Serialized permissions policy

allowfullscreen iframep367 Whether to allow the
iframep361 's contents to use
requestFullscreen()

Boolean attributep67

allowpaymentrequest iframep367 Whether the iframep361 's
contents are allowed to use the
PaymentRequest interface to
make payment requests

Boolean attributep67

alt areap444; imgp321;
inputp519

Replacement text for use when
images are not available

Textp129*

as linkp161 Potential destination for a
preload request (for
relp158="preloadp305" and
relp158="modulepreloadp301")

Potential destination, for relp158="preloadp305"; script-like destination, for
relp158="modulepreloadp301"

async scriptp615 Execute script when available,
without blocking while fetching

Boolean attributep67

autocapitalize HTML elementsp791 Recommended
autocapitalization behavior (for
supported input methods)

"onp791"; "offp791"; "nonep791"; "sentencesp792"; "wordsp792"; "charactersp792"

autocomplete formp488 Default setting for autofill
feature for controls in the form

"on"; "off"

autocomplete inputp573; selectp573;
textareap573

Hint for form autofill feature Autofill fieldp575 name and related tokens*

autofocus HTML elementsp782 Automatically focus the element
when the page is loaded

Boolean attributep67

autoplay audiop407; videop407 Hint that the media resourcep389

can be started automatically
when the page is loaded

Boolean attributep67

charset metap165 Character encoding
declarationp173

"utf-8"

checked inputp497 Whether the control is checked Boolean attributep67

cite blockquotep218; delp313;
insp313; qp248

Link to the source of the
quotation or more information
about the edit

Valid URL potentially surrounded by spacesp88

class HTML elementsp137 Classes to which the element
belongs

Set of space-separated tokensp87

color linkp161 Color to use when customizing a
site's icon (for relp158="mask-
icon")

CSS <color>

cols textareap550 Maximum number of characters
per line

Valid non-negative integerp69 greater than zero

colspan tdp469; thp469 Number of columns that the cell
is to span

Valid non-negative integerp69 greater than zero

content metap165 Value of the element Textp129*
contenteditable HTML elementsp787 Whether the element is editable "true"; "false"
controls audiop436; videop436 Show user agent controls Boolean attributep67

coords areap445 Coordinates for the shape to be
created in an image mapp445

Valid list of floating-point numbersp72*

crossorigin audiop390; imgp321;
linkp158; scriptp616;
videop390

How the element handles
crossorigin requests

"anonymousp91"; "use-credentialsp91"

1270

https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-feature-policy/#permissions-policy
https://w3c.github.io/webappsec-feature-policy/#serialized-permissions-policy
https://fullscreen.spec.whatwg.org/#dom-element-requestfullscreen
https://w3c.github.io/payment-request/#dom-paymentrequest
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#request-destination-script-like
https://drafts.csswg.org/css-color/#typedef-color

Attribute Element(s) Description Value

data objectp374 Address of the resource Valid non-empty URL potentially surrounded by spacesp88

datetime delp313; insp313 Date and (optionally) time of the
change

Valid date string with optional timep85

datetime timep261 Machine-readable value Valid month stringp74, valid date stringp74, valid yearless date stringp75, valid
time stringp76, valid local date and time stringp77, valid time-zone offset
stringp78, valid global date and time stringp79, valid week stringp81, valid non-
negative integerp69, or valid duration stringp82

decoding imgp321 Decoding hint to use when
processing this image for
presentation

"syncp338"; "asyncp338"; "autop338"

loading imgp321; iframep368 Used when determining loading
deferral

"lazyp93"; "eagerp93"

default trackp386 Enable the track if no other text
trackp421 is more suitable

Boolean attributep67

defer scriptp615 Defer script execution Boolean attributep67

dir HTML elementsp142 The text directionalityp142 of the
element

"ltrp142"; "rtlp142"; "autop142"

dir bdop279 The text directionalityp142 of the
element

"ltrp142"; "rtlp142"

dirname inputp568; textareap568 Name of form control to use for
sending the element's
directionalityp142 in form
submissionp595

Textp129*

disabled buttonp570; inputp570;
optgroupp545; optionp546;
selectp570; textareap570;
form-associated custom
elementsp570

Whether the form control is
disabled

Boolean attributep67

disabled fieldsetp563 Whether the descendant form
controls, except any inside
legendp565, are disabled

Boolean attributep67

disabled linkp161 Whether the link is disabled Boolean attributep67

download ap284; areap284 Whether to download the
resource instead of navigating
to it, and its file name if so

Text

draggable HTML elementsp809 Whether the element is
draggable

"true"; "false"

enctype formp572 Entry list encoding type to use
for form submissionp595

"application/x-www-form-urlencodedp572"; "multipart/form-datap572";
"text/plainp572"

enterkeyhint HTML elementsp793 Hint for selecting an enter key
action

"enterp793"; "donep793"; "gop793"; "nextp793"; "previousp793"; "searchp793";
"sendp793"

for labelp491 Associate the label with form
control

ID*

for outputp554 Specifies controls from which
the output was calculated

Unordered set of unique space-separated tokensp87 consisting of IDs*

form buttonp566; fieldsetp566;
inputp566; objectp566;
outputp566; selectp566;
textareap566; form-
associated custom
elementsp566

Associates the element with a
formp486 element

ID*

formaction buttonp571; inputp571 URL to use for form
submissionp595

Valid non-empty URL potentially surrounded by spacesp88

formenctype buttonp572; inputp572 Entry list encoding type to use
for form submissionp595

"application/x-www-form-urlencodedp572"; "multipart/form-datap572";
"text/plainp572"

formmethod buttonp571; inputp571 Variant to use for form
submissionp595

"GET"; "POST"; "dialog"

formnovalidate buttonp572; inputp572 Bypass form control validation
for form submissionp595

Boolean attributep67

formtarget buttonp572; inputp572 Browsing contextp811 for form
submissionp595

Valid browsing context name or keywordp819

headers tdp469; thp469 The header cells for this cell Unordered set of unique space-separated tokensp87 consisting of IDs*
height canvasp635; embedp449;

iframep449; imgp449;
Vertical dimension Valid non-negative integerp69

1271

https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://url.spec.whatwg.org/#concept-url

Attribute Element(s) Description Value

inputp449; objectp449;
videop449

hidden HTML elementsp765 Whether the element is relevant Boolean attributep67

high meterp558 Low limit of high range Valid floating-point numberp69*
href ap284; areap284 Address of the hyperlinkp283 Valid URL potentially surrounded by spacesp88

href linkp158 Address of the hyperlinkp283 Valid non-empty URL potentially surrounded by spacesp88

href basep156 Document base URLp88 Valid URL potentially surrounded by spacesp88

hreflang ap284; linkp159 Language of the linked resource Valid BCP 47 language tag
http-equiv metap169 Pragma directive "content-typep170"; "default-stylep170"; "refreshp170"; "x-ua-

compatiblep170"; "content-security-policyp170"
id HTML elementsp137 The element's ID Textp129*
imagesizes linkp160 Image sizes for different page

layouts (for
relp158="preloadp305")

Valid source size listp335

imagesrcset linkp160 Images to use in different
situations, e.g., high-resolution
displays, small monitors, etc.
(for relp158="preloadp305")

Comma-separated list of image candidate stringsp335

inputmode HTML elementsp792 Hint for selecting an input
modality

"nonep792"; "textp792"; "telp793"; "emailp793"; "urlp793"; "numericp793";
"decimalp793"; "searchp793"

integrity linkp159; scriptp616 Integrity metadata used in
Subresource Integrity checks
[SRI]p1291

Textp129

is HTML elementsp703 Creates a customized built-in
elementp703

Valid custom element namep704 of a defined customized built-in elementp703

ismap imgp323 Whether the image is a server-
side image map

Boolean attributep67

itemid HTML elementsp735 Global identifierp735 for a
microdata item

Valid URL potentially surrounded by spacesp88

itemprop HTML elementsp736 Property namesp737 of a
microdata item

Unordered set of unique space-separated tokensp87 consisting of valid
absolute URLs, defined property namesp737, or text*

itemref HTML elementsp735 Referencedp123 elements Unordered set of unique space-separated tokensp87 consisting of IDs*
itemscope HTML elementsp734 Introduces a microdata item Boolean attributep67

itemtype HTML elementsp734 Item typesp734 of a microdata
item

Unordered set of unique space-separated tokensp87 consisting of valid
absolute URLs*

kind trackp386 The type of text track "subtitlesp386"; "captionsp386"; "descriptionsp386"; "chaptersp386";
"metadatap386"

label optgroupp545; optionp546;
trackp386

User-visible label Textp129

lang HTML elementsp140 Languagep140 of the element Valid BCP 47 language tag or the empty string
list inputp528 List of autocomplete options ID*
loop audiop405; videop405 Whether to loop the media

resourcep389
Boolean attributep67

low meterp558 High limit of low range Valid floating-point numberp69*
manifest htmlp152 Application cache manifestp892 Valid non-empty URL potentially surrounded by spacesp88

max inputp526 Maximum value Varies*
max meterp558; progressp556 Upper bound of range Valid floating-point numberp69*
maxlength inputp522; textareap551 Maximum length of value Valid non-negative integerp69

media linkp159; sourcep318;
stylep175

Applicable media Valid media query listp88

method formp571 Variant to use for form
submissionp595

"GETp571"; "POSTp571"; "dialogp571"

min inputp526 Minimum value Varies*
min meterp558 Lower bound of range Valid floating-point numberp69*
minlength inputp522; textareap551 Minimum length of value Valid non-negative integerp69

multiple inputp524; selectp539 Whether to allow multiple
values

Boolean attributep67

muted audiop437; videop437 Whether to mute the media
resourcep389 by default

Boolean attributep67

name buttonp568; fieldsetp568; Name of the element to use for Textp129*

1272

https://dom.spec.whatwg.org/#concept-id
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://dom.spec.whatwg.org/#concept-id
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length

Attribute Element(s) Description Value

inputp568; outputp568;
selectp568; textareap568;
form-associated custom
elementsp568

form submissionp595 and in the
form.elementsp488 API

name formp487 Name of form to use in the
document.formsp119 API

Textp129*

name iframep365; objectp374 Name of nested browsing
contextp814

Valid browsing context name or keywordp819

name mapp443 Name of image mapp445 to
referencep123 from the
usemapp445 attribute

Textp129*

name metap166 Metadata name Textp129*
name paramp379 Name of parameter Textp129

name slotp633 Name of shadow tree slot Textp129

nomodule scriptp615 Prevents execution in user
agents that support module
scriptsp925

Boolean attributep67

nonce HTML elementsp92 Cryptographic nonce used in
Content Security Policy checks
[CSP]p1285

Textp129

novalidate formp572 Bypass form control validation
for form submissionp595

Boolean attributep67

open detailsp604 Whether the details are visible Boolean attributep67

open dialogp611 Whether the dialog box is
showing

Boolean attributep67

optimum meterp558 Optimum value in gauge Valid floating-point numberp69*
pattern inputp525 Pattern to be matched by the

form control's value
Regular expression matching the JavaScript Pattern production

ping ap284; areap284 URLs to ping Set of space-separated tokensp87 consisting of valid non-empty URLsp88

placeholder inputp530; textareap551 User-visible label to be placed
within the form control

Textp129*

playsinline videop381 Encourage the user agent to
display video content within the
element's playback area

Boolean attributep67

poster videop381 Poster frame to show prior to
video playback

Valid non-empty URL potentially surrounded by spacesp88

preload audiop401; videop401 Hints how much buffering the
media resourcep389 will likely
need

"nonep402"; "metadatap402"; "autop402"

readonly inputp522; textareap549 Whether to allow the value to be
edited by the user

Boolean attributep67

readonly form-associated custom
elementsp704

Affects willValidatep593, plus
any behavior added by the
custom element author

Boolean attributep67

referrerpolicy ap284; areap284;
iframep368; imgp321;
linkp159; scriptp616

Referrer policy for fetches
initiated by the element

Referrer policy

rel ap284; areap284 Relationship between the
location in the document
containing the hyperlinkp283 and
the destination resource

Unordered set of unique space-separated tokensp87*

rel linkp158 Relationship between the
document containing the
hyperlinkp283 and the destination
resource

Unordered set of unique space-separated tokensp87*

required inputp523; selectp539;
textareap551

Whether the control is required
for form submissionp595

Boolean attributep67

reversed olp221 Number the list backwards Boolean attributep67

rows textareap550 Number of lines to show Valid non-negative integerp69 greater than zero
rowspan tdp469; thp469 Number of rows that the cell is

to span
Valid non-negative integerp69

sandbox iframep365 Security rules for nested content Unordered set of unique space-separated tokensp87, ASCII case-insensitive,
consisting of "allow-formsp844", "allow-modalsp844", "allow-orientation-
lockp844", "allow-pointer-lockp844", "allow-popupsp843", "allow-popups-

1273

https://tc39.es/ecma262/#prod-Pattern
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://infra.spec.whatwg.org/#ascii-case-insensitive

Attribute Element(s) Description Value

to-escape-sandboxp844", "allow-presentationp844", "allow-same-
originp843", "allow-scriptsp844" and "allow-top-navigationp843"

scope thp467 Specifies which cells the header
cell applies to

"rowp467"; "colp467"; "rowgroupp467"; "colgroupp468"

selected optionp547 Whether the option is selected
by default

Boolean attributep67

shape areap444 The kind of shape to be created
in an image mapp445

"circlep445"; "defaultp445"; "polyp445"; "rectp445"

size inputp522; selectp539 Size of the control Valid non-negative integerp69 greater than zero
sizes linkp160 Sizes of the icons (for

relp158="iconp298")
Unordered set of unique space-separated tokensp87, ASCII case-insensitive,
consisting of sizes*

sizes imgp321; sourcep318 Image sizes for different page
layouts

Valid source size listp335

slot HTML elementsp137 The element's desired slot Textp129

span colp460; colgroupp460 Number of columns spanned by
the element

Valid non-negative integerp69 greater than zero

spellcheck HTML elementsp789 Whether the element is to have
its spelling and grammar
checked

"true"; "false"

src audiop390; embedp369;
iframep362; imgp321;
inputp518; scriptp615;
sourcep318; trackp386;
videop390

Address of the resource Valid non-empty URL potentially surrounded by spacesp88

srcdoc iframep362 A document to render in the
iframep361

The source of an iframe srcdoc documentp362*

srclang trackp386 Language of the text track Valid BCP 47 language tag
srcset imgp321; sourcep317 Images to use in different

situations, e.g., high-resolution
displays, small monitors, etc.

Comma-separated list of image candidate stringsp335

start olp221 Starting valuep221 of the list Valid integerp68

step inputp527 Granularity to be matched by
the form control's value

Valid floating-point numberp69 greater than zero, or "any"

style HTML elementsp144 Presentational and formatting
instructions

CSS declarations*

tabindex HTML elementsp773 Whether the element is
focusablep772 and sequentially
focusablep772, and the relative
order of the element for the
purposes of sequential focus
navigationp779

Valid integerp68

target ap284; areap284 Browsing contextp811 for
hyperlinkp283 navigationp866

Valid browsing context name or keywordp819

target basep156 Default browsing contextp811 for
hyperlinkp283 navigationp866 and
form submissionp595

Valid browsing context name or keywordp819

target formp572 Browsing contextp811 for form
submissionp595

Valid browsing context name or keywordp819

title HTML elementsp139 Advisory information for the
element

Textp129

title abbrp250; dfnp249 Full term or expansion of
abbreviation

Textp129

title inputp526 Description of pattern (when
used with patternp525 attribute)

Textp129

title linkp159 Title of the link Textp129

title linkp159; stylep175 CSS style sheet set name Textp129

translate HTML elementsp141 Whether the element is to be
translated when the page is
localized

"yes"; "no"

type ap284; linkp159 Hint for the type of the
referenced resource

Valid MIME type string

type buttonp536 Type of button "submitp536"; "resetp536"; "buttonp536"
type embedp370; objectp374; Type of embedded resource Valid MIME type string

1274

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type

Attribute Element(s) Description Value

sourcep317

type inputp495 Type of form control input type keywordp495

type olp221 Kind of list marker "1p221"; "ap221"; "Ap221"; "ip221"; "Ip221"
type scriptp615 Type of script "module"; a valid MIME type string that is not a JavaScript MIME type

essence match
usemap imgp445; objectp445 Name of image mapp445 to use Valid hash-name referencep88*
value buttonp537; optionp546 Value to be used for form

submissionp595
Textp129

value datap260 Machine-readable value Textp129*
value inputp497 Value of the form control Varies*
value lip224 Ordinal valuep225 of the list item Valid integerp68

value meterp558; progressp556 Current value of the element Valid floating-point numberp69

value paramp379 Value of parameter Textp129

width canvasp635; embedp449;
iframep449; imgp449;
inputp449; objectp449;
videop449

Horizontal dimension Valid non-negative integerp69

wrap textareap551 How the value of the form
control is to be wrapped for
form submissionp595

"softp551"; "hardp551"

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above.

List of event handler content attributes
Attribute Element(s) Description Value

onabort HTML elementsp961 abortp1281 event handler Event handler content attributep955

onauxclick HTML elementsp961 auxclick event handler Event handler content attributep955

onafterprint bodyp962 afterprintp1281 event handler for Windowp824 object Event handler content attributep955

onbeforeprint bodyp963 beforeprintp1281 event handler for Windowp824 object Event handler content attributep955

onbeforeunload bodyp963 beforeunloadp1281 event handler for Windowp824 object Event handler content attributep955

onblur HTML elementsp962 blurp1281 event handler Event handler content attributep955

oncancel HTML elementsp961 cancelp1281 event handler Event handler content attributep955

oncanplay HTML elementsp961 canplayp439 event handler Event handler content attributep955

oncanplaythrough HTML elementsp961 canplaythroughp439 event handler Event handler content attributep955

onchange HTML elementsp961 changep1281 event handler Event handler content attributep955

onclick HTML elementsp961 click event handler Event handler content attributep955

onclose HTML elementsp961 closep1281 event handler Event handler content attributep955

oncontextmenu HTML elementsp961 contextmenup1281 event handler Event handler content attributep955

oncopy HTML elementsp963 copyp1281 event handler Event handler content attributep955

oncuechange HTML elementsp961 cuechangep440 event handler Event handler content attributep955

oncut HTML elementsp963 cutp1281 event handler Event handler content attributep955

ondblclick HTML elementsp961 dblclick event handler Event handler content attributep955

ondrag HTML elementsp961 dragp809 event handler Event handler content attributep955

ondragend HTML elementsp961 dragendp809 event handler Event handler content attributep955

ondragenter HTML elementsp961 dragenterp809 event handler Event handler content attributep955

ondragleave HTML elementsp961 dragleavep809 event handler Event handler content attributep955

ondragover HTML elementsp961 dragoverp809 event handler Event handler content attributep955

ondragstart HTML elementsp961 dragstartp809 event handler Event handler content attributep955

ondrop HTML elementsp961 dropp809 event handler Event handler content attributep955

ondurationchange HTML elementsp961 durationchangep440 event handler Event handler content attributep955

onemptied HTML elementsp961 emptiedp439 event handler Event handler content attributep955

onended HTML elementsp961 endedp440 event handler Event handler content attributep955

onerror HTML elementsp962 errorp1281 event handler Event handler content attributep955

onfocus HTML elementsp962 focusp1281 event handler Event handler content attributep955

onformdata HTML elementsp961 formdatap1281 event handler Event handler content attributep955

onhashchange bodyp963 hashchangep1281 event handler for Windowp824 object Event handler content attributep955

✔ MDN

1275

https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://w3c.github.io/uievents/#event-type-auxclick
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-dblclick

Attribute Element(s) Description Value

oninput HTML elementsp961 inputp1281 event handler Event handler content attributep955

oninvalid HTML elementsp961 invalidp1281 event handler Event handler content attributep955

onkeydown HTML elementsp961 keydown event handler Event handler content attributep955

onkeypress HTML elementsp961 keypress event handler Event handler content attributep955

onkeyup HTML elementsp961 keyup event handler Event handler content attributep955

onlanguagechange bodyp963 languagechangep1281 event handler for Windowp824 object Event handler content attributep955

onload HTML elementsp962 loadp1282 event handler Event handler content attributep955

onloadeddata HTML elementsp961 loadeddatap439 event handler Event handler content attributep955

onloadedmetadata HTML elementsp961 loadedmetadatap439 event handler Event handler content attributep955

onloadstart HTML elementsp961 loadstartp439 event handler Event handler content attributep955

onmessage bodyp963 messagep1282 event handler for Windowp824 object Event handler content attributep955

onmessageerror bodyp963 messageerrorp1282 event handler for Windowp824 object Event handler content attributep955

onmousedown HTML elementsp961 mousedown event handler Event handler content attributep955

onmouseenter HTML elementsp962 mouseenter event handler Event handler content attributep955

onmouseleave HTML elementsp962 mouseleave event handler Event handler content attributep955

onmousemove HTML elementsp962 mousemove event handler Event handler content attributep955

onmouseout HTML elementsp962 mouseout event handler Event handler content attributep955

onmouseover HTML elementsp962 mouseover event handler Event handler content attributep955

onmouseup HTML elementsp962 mouseup event handler Event handler content attributep955

onoffline bodyp963 offlinep1282 event handler for Windowp824 object Event handler content attributep955

ononline bodyp963 onlinep1282 event handler for Windowp824 object Event handler content attributep955

onpagehide bodyp963 pagehidep1282 event handler for Windowp824 object Event handler content attributep955

onpageshow bodyp963 pageshowp1282 event handler for Windowp824 object Event handler content attributep955

onpaste HTML elementsp963 pastep1282 event handler Event handler content attributep955

onpause HTML elementsp962 pausep440 event handler Event handler content attributep955

onplay HTML elementsp962 playp440 event handler Event handler content attributep955

onplaying HTML elementsp962 playingp440 event handler Event handler content attributep955

onpopstate bodyp963 popstatep1282 event handler for Windowp824 object Event handler content attributep955

onprogress HTML elementsp962 progressp439 event handler Event handler content attributep955

onratechange HTML elementsp962 ratechangep440 event handler Event handler content attributep955

onreset HTML elementsp962 resetp1282 event handler Event handler content attributep955

onresize HTML elementsp962 resize event handler Event handler content attributep955

onrejectionhandled bodyp963 rejectionhandledp1282 event handler for Windowp824 object Event handler content attributep955

onscroll HTML elementsp962 scroll event handler Event handler content attributep955

onsecuritypolicyviolation HTML elementsp962 securitypolicyviolationp1282 event handler Event handler content attributep955

onseeked HTML elementsp962 seekedp440 event handler Event handler content attributep955

onseeking HTML elementsp962 seekingp440 event handler Event handler content attributep955

onselect HTML elementsp962 selectp1282 event handler Event handler content attributep955

onslotchange HTML elementsp962 slotchangep1282 event handler Event handler content attributep955

onstalled HTML elementsp962 stalledp439 event handler Event handler content attributep955

onstorage bodyp963 storagep1282 event handler for Windowp824 object Event handler content attributep955

onsubmit HTML elementsp962 submitp1282 event handler Event handler content attributep955

onsuspend HTML elementsp962 suspendp439 event handler Event handler content attributep955

ontimeupdate HTML elementsp962 timeupdatep440 event handler Event handler content attributep955

ontoggle HTML elementsp962 togglep1282 event handler Event handler content attributep955

onunhandledrejection bodyp963 unhandledrejectionp1282 event handler for Windowp824 object Event handler content attributep955

onunload bodyp963 unloadp1282 event handler for Windowp824 object Event handler content attributep955

onvolumechange HTML elementsp962 volumechangep440 event handler Event handler content attributep955

onwaiting HTML elementsp962 waitingp440 event handler Event handler content attributep955

onwheel HTML elementsp962 wheel event handler Event handler content attributep955

1276

https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keypress
https://w3c.github.io/uievents/#event-type-keyup
https://w3c.github.io/uievents/#event-type-mousedown
https://w3c.github.io/uievents/#event-type-mouseenter
https://w3c.github.io/uievents/#event-type-mouseleave
https://w3c.github.io/uievents/#event-type-mousemove
https://w3c.github.io/uievents/#event-type-mouseout
https://w3c.github.io/uievents/#event-type-mouseover
https://w3c.github.io/uievents/#event-type-mouseup
https://drafts.csswg.org/cssom-view/#eventdef-window-resize
https://drafts.csswg.org/cssom-view/#eventdef-document-scroll
https://w3c.github.io/uievents/#event-type-wheel

This section is non-normative.

List of interfaces for elements
Element(s) Interface(s)

ap238 HTMLAnchorElementp239 : HTMLElementp124

abbrp250 HTMLElementp124

addressp197 HTMLElementp124

areap443 HTMLAreaElementp444 : HTMLElementp124

articlep180 HTMLElementp124

asidep187 HTMLElementp124

audiop384 HTMLAudioElementp384 : HTMLMediaElementp388 : HTMLElementp124

bp273 HTMLElementp124

basep155 HTMLBaseElementp156 : HTMLElementp124

bdip278 HTMLElementp124

bdop279 HTMLElementp124

blockquotep217 HTMLQuoteElementp218 : HTMLElementp124

bodyp178 HTMLBodyElementp179 : HTMLElementp124

brp280 HTMLBRElementp280 : HTMLElementp124

buttonp535 HTMLButtonElementp536 : HTMLElementp124

canvasp634 HTMLCanvasElementp634 : HTMLElementp124

captionp458 HTMLTableCaptionElementp458 : HTMLElementp124

citep246 HTMLElementp124

codep267 HTMLElementp124

colp460 HTMLTableColElementp460 : HTMLElementp124

colgroupp459 HTMLTableColElementp460 : HTMLElementp124

datap259 HTMLDataElementp259 : HTMLElementp124

datalistp543 HTMLDataListElementp543 : HTMLElementp124

ddp231 HTMLElementp124

delp312 HTMLModElementp313 : HTMLElementp124

detailsp604 HTMLDetailsElementp604 : HTMLElementp124

dfnp249 HTMLElementp124

dialogp610 HTMLDialogElementp611 : HTMLElementp124

divp237 HTMLDivElementp237 : HTMLElementp124

dlp226 HTMLDListElementp227 : HTMLElementp124

dtp230 HTMLElementp124

emp241 HTMLElementp124

embedp369 HTMLEmbedElementp369 : HTMLElementp124

fieldsetp562 HTMLFieldSetElementp562 : HTMLElementp124

figcaptionp235 HTMLElementp124

figurep232 HTMLElementp124

footerp195 HTMLElementp124

formp486 HTMLFormElementp487 : HTMLElementp124

h1p190 HTMLHeadingElementp190 : HTMLElementp124

h2p190 HTMLHeadingElementp190 : HTMLElementp124

h3p190 HTMLHeadingElementp190 : HTMLElementp124

h4p190 HTMLHeadingElementp190 : HTMLElementp124

h5p190 HTMLHeadingElementp190 : HTMLElementp124

h6p190 HTMLHeadingElementp190 : HTMLElementp124

headp153 HTMLHeadElementp153 : HTMLElementp124

headerp194 HTMLElementp124

hgroupp191 HTMLElementp124

hrp214 HTMLHRElementp214 : HTMLElementp124

htmlp152 HTMLHtmlElementp152 : HTMLElementp124

ip272 HTMLElementp124

Element Interfaces §p12

77

1277

Element(s) Interface(s)

iframep361 HTMLIFrameElementp361 : HTMLElementp124

imgp320 HTMLImageElementp320 : HTMLElementp124

inputp493 HTMLInputElementp494 : HTMLElementp124

insp311 HTMLModElementp313 : HTMLElementp124

kbdp270 HTMLElementp124

labelp490 HTMLLabelElementp491 : HTMLElementp124

legendp565 HTMLLegendElementp565 : HTMLElementp124

lip224 HTMLLIElementp224 : HTMLElementp124

linkp157 HTMLLinkElementp158 : HTMLElementp124

mainp235 HTMLElementp124

mapp442 HTMLMapElementp442 : HTMLElementp124

markp275 HTMLElementp124

menup223 HTMLMenuElementp223 : HTMLElementp124

metap164 HTMLMetaElementp165 : HTMLElementp124

meterp557 HTMLMeterElementp558 : HTMLElementp124

navp184 HTMLElementp124

noscriptp627 HTMLElementp124

objectp373 HTMLObjectElementp373 : HTMLElementp124

olp220 HTMLOListElementp221 : HTMLElementp124

optgroupp544 HTMLOptGroupElementp545 : HTMLElementp124

optionp545 HTMLOptionElementp546 : HTMLElementp124

outputp553 HTMLOutputElementp554 : HTMLElementp124

pp211 HTMLParagraphElementp212 : HTMLElementp124

paramp378 HTMLParamElementp379 : HTMLElementp124

picturep316 HTMLPictureElementp316 : HTMLElementp124

prep216 HTMLPreElementp216 : HTMLElementp124

progressp555 HTMLProgressElementp556 : HTMLElementp124

qp247 HTMLQuoteElementp218 : HTMLElementp124

rpp258 HTMLElementp124

rtp258 HTMLElementp124

rubyp252 HTMLElementp124

sp245 HTMLElementp124

sampp269 HTMLElementp124

scriptp614 HTMLScriptElementp614 : HTMLElementp124

sectionp182 HTMLElementp124

selectp537 HTMLSelectElementp538 : HTMLElementp124

slotp633 HTMLSlotElementp633 : HTMLElementp124

smallp244 HTMLElementp124

sourcep317 HTMLSourceElementp317 : HTMLElementp124

spanp279 HTMLSpanElementp280 : HTMLElementp124

strongp242 HTMLElementp124

stylep174 HTMLStyleElementp175 : HTMLElementp124

subp271 HTMLElementp124

summaryp607 HTMLElementp124

supp271 HTMLElementp124

tablep450 HTMLTableElementp451 : HTMLElementp124

tbodyp461 HTMLTableSectionElementp461 : HTMLElementp124

tdp465 HTMLTableCellElementp466 : HTMLElementp124

templatep629 HTMLTemplateElementp630 : HTMLElementp124

textareap548 HTMLTextAreaElementp549 : HTMLElementp124

tfootp463 HTMLTableSectionElementp461 : HTMLElementp124

thp467 HTMLTableCellElementp466 : HTMLElementp124

theadp462 HTMLTableSectionElementp461 : HTMLElementp124

timep260 HTMLTimeElementp261 : HTMLElementp124

1278

Element(s) Interface(s)

titlep154 HTMLTitleElementp154 : HTMLElementp124

trp464 HTMLTableRowElementp464 : HTMLElementp124

trackp385 HTMLTrackElementp385 : HTMLElementp124

up275 HTMLElementp124

ulp222 HTMLUListElementp222 : HTMLElementp124

varp268 HTMLElementp124

videop380 HTMLVideoElementp380 : HTMLMediaElementp388 : HTMLElementp124

wbrp281 HTMLElementp124

custom elementsp703 supplied by the element's author (inherits from HTMLElementp124)

This section is non-normative.

• ApplicationCachep909

• AudioTrackp418

• AudioTrackListp417

• BarPropp832

• BeforeUnloadEventp887

• BroadcastChannelp1025

• CanvasGradientp642

• CanvasPatternp642

• CanvasRenderingContext2Dp638

• CloseEventp1014

• CustomElementRegistryp706

• DOMParserp971

• DOMStringListp101

• DOMStringMapp146

• DataTransferp797

• DataTransferItemp801

• DataTransferItemListp800

• DedicatedWorkerGlobalScopep1046

• Documentp114, partial 1p114 1p1249

• DragEventp802

• ElementInternalsp714

• ErrorEventp937

• EventSourcep1000

• Externalp1249

• FormDataEventp603

• HTMLAllCollectionp97

• HTMLAnchorElementp239, partialp1241

• HTMLAreaElementp444, partialp1241

• HTMLAudioElementp384

• HTMLBRElementp280, partialp1242

• HTMLBaseElementp156

• HTMLBodyElementp179, partialp1241

• HTMLButtonElementp536

• HTMLCanvasElementp634

• HTMLDListElementp227, partialp1242

• HTMLDataElementp259

• HTMLDataListElementp543

• HTMLDetailsElementp604

• HTMLDialogElementp611

• HTMLDirectoryElementp1242

• HTMLDivElementp237, partialp1242

• HTMLElementp124

• HTMLEmbedElementp369, partialp1243

• HTMLFieldSetElementp562

• HTMLFontElementp1243

• HTMLFormControlsCollectionp98

• HTMLFormElementp487

• HTMLFrameElementp1240

• HTMLFrameSetElementp1239

• HTMLHRElementp214, partialp1243

• HTMLHeadElementp153

• HTMLHeadingElementp190, partialp1243

• HTMLHtmlElementp152, partialp1243

All Interfaces §p12

79

1279

• HTMLIFrameElementp361, partialp1244

• HTMLImageElementp320, partialp1244

• HTMLInputElementp494, partialp1244

• HTMLLIElementp224, partialp1245

• HTMLLabelElementp491

• HTMLLegendElementp565, partialp1244

• HTMLLinkElementp158, partialp1245

• HTMLMapElementp442

• HTMLMarqueeElementp1237

• HTMLMediaElementp388

• HTMLMenuElementp223, partialp1245

• HTMLMetaElementp165, partialp1245

• HTMLMeterElementp558

• HTMLModElementp313

• HTMLOListElementp221, partialp1246

• HTMLObjectElementp373, partialp1246

• HTMLOptGroupElementp545

• HTMLOptionElementp546

• HTMLOptionsCollectionp100

• HTMLOutputElementp554

• HTMLParagraphElementp212, partialp1246

• HTMLParamElementp379, partialp1246

• HTMLPictureElementp316

• HTMLPreElementp216, partialp1246

• HTMLProgressElementp556

• HTMLQuoteElementp218

• HTMLScriptElementp614, partialp1247

• HTMLSelectElementp538

• HTMLSlotElementp633

• HTMLSourceElementp317

• HTMLSpanElementp280

• HTMLStyleElementp175, partialp1247

• HTMLTableCaptionElementp458, partialp1242

• HTMLTableCellElementp466, partialp1248

• HTMLTableColElementp460, partialp1242

• HTMLTableElementp451, partialp1247

• HTMLTableRowElementp464, partialp1248

• HTMLTableSectionElementp461, partialp1247

• HTMLTemplateElementp630

• HTMLTextAreaElementp549

• HTMLTimeElementp261

• HTMLTitleElementp154

• HTMLTrackElementp385

• HTMLUListElementp222, partialp1248

• HTMLUnknownElementp124

• HTMLVideoElementp380

• HashChangeEventp884

• Historyp851

• ImageBitmapp990

• ImageBitmapRenderingContextp687

• ImageDatap642

• Locationp857

• MediaErrorp389

• MessageChannelp1021

• MessageEventp998

• MessagePortp1022

• MimeTypep986

• MimeTypeArrayp986

• Navigatorp979

• OffscreenCanvasp689

• OffscreenCanvasRenderingContext2Dp693

• PageTransitionEventp884

• Path2Dp642

• Pluginp45

• PluginArrayp985

• PopStateEventp883

• PromiseRejectionEventp938

• RadioNodeListp98

• SharedWorkerp1054

• SharedWorkerGlobalScopep1047

• Storagep1060

• StorageEventp1063

• SubmitEventp603

• TextMetricsp642

• TextTrackp429

• TextTrackCuep433

1280

• TextTrackCueListp433

• TextTrackListp429

• TimeRangesp438

• TrackEventp439

• ValidityStatep593

• VideoTrackp418

• VideoTrackListp418

• WebSocketp1008

• Windowp824, partialp1249

• Workerp1053

• WorkerGlobalScopep1044

• WorkerLocationp1057

• WorkerNavigatorp1057

This section is non-normative.

List of events
Event Interface Interesting targets Description

abort Event Windowp824 Fired at the Windowp824 when the download was
aborted by the user

DOMContentLoaded Event Documentp114 Fired at the Documentp114 once the parser has
finished

afterprint Event Windowp824 Fired at the Windowp824 after printing
beforeprint Event Windowp824 Fired at the Windowp824 before printing
beforeunload BeforeUnloadEventp887 Windowp824 Fired at the Windowp824 when the page is about to be

unloaded, in case the page would like to show a
warning prompt

blur Event Windowp824, elements Fired at nodes when they stop being focusedp771

cancel Event dialogp610 elements Fired at dialogp610 elements when they are canceled
by the user (e.g. by pressing the Escape key)

change Event Form controls Fired at controls when the user commits a value
change (see also the inputp1281 event)

click MouseEvent Elements Normally a mouse event; also synthetically fired at
an element before its activation behavior is run,
when an element is activated from a non-pointer
input device (e.g. a keyboard)

close Event or CloseEventp1014 dialogp610 elements, WebSocketp1008 Fired at dialogp610 elements when they are closed,
and at WebSocketp1008 elements when the connection
is terminated

connect MessageEventp998 SharedWorkerGlobalScopep1047 Fired at a shared worker's global scope when a new
client connects

contextmenu MouseEvent Elements Fired at elements when the user requests their
context menu

copy Event Elements Fired at elements when the user copies data to the
clipboard

cut Event Elements Fired at elements when the user copies the selected
data on the clipboard and removes the selection
from the document

error Event or ErrorEventp937 Global scope objects, Workerp1053 objects,
elements, networking-related objects

Fired when unexpected errors occur (e.g. networking
errors, script errors, decoding errors)

focus Event Windowp824, elements Fired at nodes gaining focusp771

formdata FormDataEventp603 formp486 elements Fired at a formp486 element when it is constructing
the entry listp599

hashchange HashChangeEventp884 Windowp824 Fired at the Windowp824 when the fragment part of the
document's URL changes

input Event Form controls Fired at controls when the user changes the value
(see also the changep1281 event)

invalid Event Form controls Fired at controls during form validation if they do not
satisfy their constraints

languagechange Event Global scope objects Fired at the global scope object when the user's
preferred languages change

Events §p12

81

✔ MDN

✔ MDN

✔ MDN

✔ MDN

MDN

⚠ MDN

MDN

✔ MDN

✔ MDN

MDN

✔ MDN

✔ MDN

MDN

1281

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#mouseevent
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#interface-event
https://w3c.github.io/uievents/#mouseevent
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

Event Interface Interesting targets Description

load Event Windowp824, elements Fired at the Windowp824 when the document has
finished loading; fired at an element containing a
resource (e.g. imgp320, embedp369) when its resource
has finished loading

message MessageEventp998 Windowp824, EventSourcep1000, WebSocketp1008,
MessagePortp1022, BroadcastChannelp1025,
DedicatedWorkerGlobalScopep1046, Workerp1053,
ServiceWorkerContainer

Fired at an object when it receives a message

messageerror MessageEventp998 Windowp824, MessagePortp1022,
BroadcastChannelp1025,
DedicatedWorkerGlobalScopep1046, Workerp1053,
ServiceWorkerContainer

Fired at an object when it receives a message that
cannot be deserialized

offline Event Global scope objects Fired at the global scope object when the network
connections fails

online Event Global scope objects Fired at the global scope object when the network
connections returns

open Event EventSourcep1000, WebSocketp1008 Fired at networking-related objects when a
connection is established

pagehide PageTransitionEventp884 Windowp824 Fired at the Windowp824 when the page's entry in the
session historyp849 stops being the current entryp850

pageshow PageTransitionEventp884 Windowp824 Fired at the Windowp824 when the page's entry in the
session historyp849 becomes the current entryp850

paste Event Elements Fired at elements when the user will insert the
clipboard data in the most suitable format (if any)
supported for the given context

popstate PopStateEventp883 Windowp824 Fired at the Windowp824 when the user navigates the
session historyp849

readystatechange Event Documentp114 Fired at the Documentp114 when it finishes parsing and
again when all its subresources have finished loading

rejectionhandled PromiseRejectionEventp938 Global scope objects Fired at global scope objects when a previously-
unhandled promise rejection becomes handled

reset Event formp486 elements Fired at a formp486 element when it is resetp603

securitypolicyviolation Event Elements Fired at elements when a Content Security Policy
violation is generated [CSP]p1285

select Event Form controls Fired at form controls when their text selection is
adjusted (whether by an API or by the user)

slotchange Event slotp633 elements Fired at slotp633 elements when their assigned nodes
change

storage StorageEventp1063 Windowp824 Fired at Windowp824 event when the corresponding
localStoragep1063 or sessionStoragep1062 storage
areas change

submit Event formp486 elements Fired at a formp486 element when it is submittedp596

toggle Event detailsp604 element Fired at detailsp604 elements when they open or
close

unhandledrejection PromiseRejectionEventp938 Global scope objects Fired at global scope objects when a promise
rejection goes unhandled

unload Event Windowp824 Fired at the Windowp824 object when the page is going
away

This section is non-normative.

The following MIME types are mentioned in this specification:

application/atom+xml
Atom [ATOM]p1285

See also media element eventsp439, application cache eventsp892, and drag-and-drop eventsp809.
Note

MIME Types §p12

82

MDN

MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

MDN

✔ MDN

✔ MDN

1282

https://dom.spec.whatwg.org/#interface-event
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

application/ecmascript
JavaScript (legacy type) [JAVASCRIPT]p1288

application/javascript
JavaScript (legacy type) [JAVASCRIPT]p1288

application/json
JSON [JSON]p1288

application/x-ecmascript
JavaScript (legacy type) [JAVASCRIPT]p1288

application/x-javascript
JavaScript (legacy type) [JAVASCRIPT]p1288

application/octet-stream
Generic binary data [RFC2046]p1290

application/microdata+jsonp1255

Microdata as JSON

application/rss+xml
RSS

application/x-www-form-urlencoded
Form submission

application/xhtml+xmlp1252

HTML

application/xml
XML [XML]p1293 [RFC7303]p1291

image/gif
GIF images [GIF]p1287

image/jpeg
JPEG images [JPEG]p1288

image/png
PNG images [PNG]p1290

image/svg+xml
SVG images [SVG]p1291

multipart/form-data
Form submission [RFC7578]p1291

multipart/mixed
Generic mixed content [RFC2046]p1290

multipart/x-mixed-replacep1251

Streaming server push

text/cache-manifestp1253

Offline application cache manifests

text/css
CSS [CSS]p1285

text/ecmascript
JavaScript (legacy type) [JAVASCRIPT]p1288

text/event-streamp1256

Server-sent event streams

text/javascript
JavaScript [JAVASCRIPT]p1288

1283

https://tools.ietf.org/html/rfc2046#section-4.5.1
https://url.spec.whatwg.org/#concept-urlencoded

text/javascript1.0
JavaScript (legacy type) [JAVASCRIPT]p1288

text/javascript1.1
JavaScript (legacy type) [JAVASCRIPT]p1288

text/javascript1.2
JavaScript (legacy type) [JAVASCRIPT]p1288

text/javascript1.3
JavaScript (legacy type) [JAVASCRIPT]p1288

text/javascript1.4
JavaScript (legacy type) [JAVASCRIPT]p1288

text/javascript1.5
JavaScript (legacy type) [JAVASCRIPT]p1288

text/jscript
JavaScript (legacy type) [JAVASCRIPT]p1288

text/json
JSON (legacy type)

text/livescript
JavaScript (legacy type) [JAVASCRIPT]p1288

text/plain
Generic plain text [RFC2046]p1290 [RFC3676]p1290

text/htmlp1250

HTML

text/pingp1254

Hyperlink auditing

text/uri-list
List of URLs [RFC2483]p1290

text/vcard
vCard [RFC6350]p1291

text/vtt
WebVTT [WEBVTT]p1292

text/x-ecmascript
JavaScript (legacy type) [JAVASCRIPT]p1288

text/x-javascript
JavaScript (legacy type) [JAVASCRIPT]p1288

text/xml
XML [XML]p1293 [RFC7303]p1291

video/mp4
MPEG-4 video [RFC4337]p1290

video/mpeg
MPEG video [RFC2046]p1290

1284

https://tools.ietf.org/html/rfc2046#section-4.1.3
https://tools.ietf.org/html/rfc4337#section-3

All references are normative unless marked "Non-normative".

[ABNF]
Augmented BNF for Syntax Specifications: ABNF, D. Crocker, P. Overell. IETF.

[ABOUT]
The 'about' URI scheme, S. Moonesamy. IETF.

[APNG]
(Non-normative) APNG Specification. S. Parmenter, V. Vukicevic, A. Smith. Mozilla.

[ARIA]
Accessible Rich Internet Applications (WAI-ARIA), J. Diggs, J. Nurthen, M. Cooper. W3C.

[ARIAHTML]
ARIA in HTML, S. Faulkner, S. O'Hara. W3C.

[ATAG]
(Non-normative) Authoring Tool Accessibility Guidelines (ATAG) 2.0, J. Richards, J. Spellman, J. Treviranus. W3C.

[ATOM]
(Non-normative) The Atom Syndication Format, M. Nottingham, R. Sayre. IETF.

[BATTERY]
(Non-normative) Battery Status API, A. Kostiainen, M. Lamouri. W3C.

[BCP47]
Tags for Identifying Languages; Matching of Language Tags, A. Phillips, M. Davis. IETF.

[BEZIER]
Courbes à poles, P. de Casteljau. INPI, 1959.

[BIDI]
UAX #9: Unicode Bidirectional Algorithm, M. Davis. Unicode Consortium.

[BOCU1]
(Non-normative) UTN #6: BOCU-1: MIME-Compatible Unicode Compression, M. Scherer, M. Davis. Unicode Consortium.

[CESU8]
(Non-normative) UTR #26: Compatibility Encoding Scheme For UTF-16: 8-BIT (CESU-8), T. Phipps. Unicode Consortium.

[CHARMOD]
(Non-normative) Character Model for the World Wide Web 1.0: Fundamentals, M. Dürst, F. Yergeau, R. Ishida, M. Wolf, T. Texin. W3C.

[CLDR]
Unicode Common Locale Data Repository. Unicode.

[COMPOSITE]
Compositing and Blending, R. Cabanier, N. Andronikos. W3C.

[COMPUTABLE]
(Non-normative) On computable numbers, with an application to the Entscheidungsproblem, A. Turing. In Proceedings of the London
Mathematical Society, series 2, volume 42, pages 230-265. London Mathematical Society, 1937.

[COOKIES]
HTTP State Management Mechanism, A. Barth. IETF.

[CSP]
Content Security Policy, M. West, D. Veditz. W3C.

[CSS]
Cascading Style Sheets Level 2 Revision 2, B. Bos, T. Çelik, I. Hickson, H. Lie. W3C.

References §p12

85

1285

https://tools.ietf.org/html/std68
https://tools.ietf.org/html/rfc6694
https://wiki.mozilla.org/APNG_Specification
https://w3c.github.io/aria/
https://w3c.github.io/html-aria/
https://www.w3.org/TR/ATAG20/
https://tools.ietf.org/html/rfc4287
https://w3c.github.io/battery/
https://tools.ietf.org/html/bcp47
https://www.unicode.org/reports/tr9/
https://www.unicode.org/notes/tn6/
https://www.unicode.org/reports/tr26/
https://www.w3.org/TR/charmod/
http://cldr.unicode.org/
https://drafts.fxtf.org/compositing/
http://www.turingarchive.org/browse.php/B/12
https://tools.ietf.org/html/rfc6265
https://w3c.github.io/webappsec-csp/
https://drafts.csswg.org/css2/

[CSSALIGN]
CSS Box Alignment, E. Etemad, T. Atkins. W3C.

[CSSANIMATIONS]
CSS Animations, D. Jackson, D. Hyatt, C. Marrin, S. Galineau, L. Baron. W3C.

[CSSATTR]
CSS Style Attributes, T. Çelik, E. Etemad. W3C.

[CSSBG]
CSS Backgrounds and Borders, B. Bos, E. Etemad, B. Kemper. W3C.

[CSSCASCADE]
CSS Cascading and Inheritance, E. Etemad, T. Atkins. W3C.

[CSSCOLOR]
CSS Color Module, T. Çelik, C. Lilley, L. Baron. W3C.

[CSSDISPLAY]
CSS Display, T. Atkins, E. Etemad. W3C.

[CSSFONTLOAD]
CSS Font Loading, T. Atkins, J. Daggett. W3C.

[CSSFONTS]
CSS Fonts, J. Daggett. W3C.

[CSSFLEXBOX]
CSS Flexible Box Layout, T. Atkins, E. Etemad, R. Atanassov. W3C.

[CSSGC]
CSS Generated Content, H. Lie, E. Etemad, I. Hickson. W3C.

[CSSGRID]
CSS Grid Layout, T. Atkins, E. Etemad, R. Atanassov. W3C.

[CSSIMAGES]
CSS Images Module, E. Etemad, T. Atkins, L. Verou. W3C.

[CSSIMAGES4]
CSS Images Module Level 4, E. Etemad, T. Atkins, L. Verou. W3C.

[CSSINLINE]
CSS Inline Layout, D. Cramer, E. Etemad. W3C.

[CSSLISTS]
CSS Lists and Counters, T. Atkins. W3C.

[CSSLOGICAL]
CSS Logical Properties, R. Atanassov, E. Etemad. W3C.

[CSSMULTICOL]
CSS Multi-column Layout, H. Lie, F. Rivoal, R. Andrew. W3C.

[CSSOM]
Cascading Style Sheets Object Model (CSSOM), S. Pieters, G. Adams. W3C.

[CSSOMVIEW]
CSSOM View Module, S. Pieters, G. Adams. W3C.

[CSSOVERFLOW]
CSS Overflow Module, L. Baron, F. Rivoal. W3C.

[CSSPOSITION]
CSS Positioned Layout, R. Atanassov, A. Eicholz. W3C.

[CSSRUBY]
CSS3 Ruby Module, R. Ishida. W3C.

1286

https://drafts.csswg.org/css-align/
https://drafts.csswg.org/css-animations/
https://drafts.csswg.org/css-style-attr/
https://drafts.csswg.org/css-backgrounds/
https://drafts.csswg.org/css-cascade/
https://drafts.csswg.org/css-color/
https://drafts.csswg.org/css-display/
https://drafts.csswg.org/css-font-loading/
https://drafts.csswg.org/css-fonts/
https://drafts.csswg.org/css-flexbox/
https://drafts.csswg.org/css-content/
https://drafts.csswg.org/css-grid/
https://drafts.csswg.org/css-images/
https://drafts.csswg.org/css-images-4/
https://drafts.csswg.org/css-inline/
https://drafts.csswg.org/css-lists/
https://drafts.csswg.org/css-logical/
https://drafts.csswg.org/css-multicol/
https://drafts.csswg.org/cssom/
https://drafts.csswg.org/cssom-view/
https://drafts.csswg.org/css-overflow-3/
https://drafts.csswg.org/css-position/
https://drafts.csswg.org/css-ruby/

[CSSSCOPING]
CSS Scoping Module, T. Atkins. W3C.

[CSSSIZING]
CSS Intrinsic & Extrinsic Sizing Module, T. Atkins, E. Etemad. W3C.

[CSSTRANSITIONS]
(Non-normative) CSS Transitions, D. Jackson, D. Hyatt, C. Marrin, L. Baron. W3C.

[CSSUI]
CSS3 Basic User Interface Module, T. Çelik. W3C.

[CSSSYNTAX]
CSS Syntax, T. Atkins, S. Sapin. W3C.

[CSSTABLE]
CSS Table, F. Remy, G. Whitworth. W3C.

[CSSTEXT]
CSS Text, E. Etemad, K. Ishii. W3C.

[CSSVALUES]
CSS3 Values and Units, H. Lie, T. Atkins, E. Etemad. W3C.

[CSSWM]
CSS Writing Modes, E. Etemad, K. Ishii. W3C.

[DASH]
Dynamic adaptive streaming over HTTP (DASH). ISO.

[DOM]
DOM, A. van Kesteren, A. Gregor, Ms2ger. WHATWG.

[DOMPARSING]
DOM Parsing and Serialization, T. Leithead. W3C.

[DOT]
(Non-normative) The DOT Language. Graphviz.

[E163]
Recommendation E.163 — Numbering Plan for The International Telephone Service, CCITT Blue Book, Fascicle II.2, pp. 128-134,
November 1988.

[ENCODING]
Encoding, A. van Kesteren, J. Bell. WHATWG.

[EXECCOMMAND]
execCommand, J. Wilm, A. Gregor. W3C Editing APIs CG.

[EXIF]
(Non-normative) Exchangeable image file format. JEITA.

[FETCH]
Fetch, A. van Kesteren. WHATWG.

[FILEAPI]
File API, A. Ranganathan. W3C.

[FILTERS]
Filter Effects, D. Jackson, E. Dahlström, D. Schulze. W3C.

[FULLSCREEN]
Fullscreen, A. van Kesteren, T. Çelik. WHATWG.

[GEOMETRY]
Geometry Interfaces. S. Pieters, D. Schulze, R. Cabanier. W3C.

[GIF]
(Non-normative) Graphics Interchange Format. CompuServe.

1287

https://drafts.csswg.org/css-scoping/
https://drafts.csswg.org/css-sizing/
https://drafts.csswg.org/css-transitions/
https://drafts.csswg.org/css-ui/
https://drafts.csswg.org/css-syntax/
https://drafts.csswg.org/css-tables/
https://drafts.csswg.org/css-text/
https://drafts.csswg.org/css-values/
https://drafts.csswg.org/css-writing-modes/
https://www.iso.org/standard/65274.html
https://dom.spec.whatwg.org/
https://w3c.github.io/DOM-Parsing/
http://www.graphviz.org/content/dot-language
https://encoding.spec.whatwg.org/
https://w3c.github.io/editing/docs/execCommand/
https://www.jeita.or.jp/cgi-bin/standard_e/list.cgi?cateid=1&subcateid=4
https://fetch.spec.whatwg.org/
https://w3c.github.io/FileAPI/
https://drafts.fxtf.org/filter-effects/
https://fullscreen.spec.whatwg.org/
https://drafts.fxtf.org/geometry/
https://www.w3.org/Graphics/GIF/spec-gif89a.txt

[GRAPHICS]
(Non-normative) Computer Graphics: Principles and Practice in C, Second Edition, J. Foley, A. van Dam, S. Feiner, J. Hughes. Addison-
Wesley. ISBN 0-201-84840-6.

[GREGORIAN]
(Non-normative) Inter Gravissimas, A. Lilius, C. Clavius. Gregory XIII Papal Bull, February 1582.

[HRT]
High Resolution Time, I. Grigorik, J. Simonsen, J. Mann. W3C.

[HTMLAAM]
HTML Accessibility API Mappings 1.0, S. Faulkner, A. Surkov, S. O'Hara. W3C.

[HTTP]
Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing, R. Fielding, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, R. Fielding, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests, R. Fielding, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Range Requests, R. Fielding, Y. Lafon, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Caching, R. Fielding, M. Nottingham, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Authentication, R. Fielding, J. Reschke. IETF.

[INDEXEDDB]
Indexed Database API, A. Alabbas, J. Bell. W3C.

[INBAND]
Sourcing In-band Media Resource Tracks from Media Containers into HTML, S. Pfeiffer, B. Lund. W3C.

[INFRA]
Infra, A. van Kesteren, D. Denicola. WHATWG.

[INTERSECTIONOBSERVER]
Intersection Observer, S. Zager. W3C.

[ISO3166]
ISO 3166: Codes for the representation of names of countries and their subdivisions. ISO.

[ISO4217]
ISO 4217: Codes for the representation of currencies and funds. ISO.

[ISO8601]
(Non-normative) ISO8601: Data elements and interchange formats — Information interchange — Representation of dates and times.
ISO.

[JAVASCRIPT]
ECMAScript Language Specification. Ecma International.

[JLREQ]
Requirements for Japanese Text Layout. W3C.

[JPEG]
JPEG File Interchange Format, E. Hamilton.

[JSERRORSTACKS]
(Non-normative) Error Stacks. Ecma International.

[JSINTL]
ECMAScript Internationalization API Specification. Ecma International.

[JSON]
The JavaScript Object Notation (JSON) Data Interchange Format, T. Bray. IETF.

[LONGTASKS]
Long Tasks, D. Denicola, I. Grigorik, S. Panicker. W3C.

[MAILTO]
(Non-normative) The 'mailto' URI scheme, M. Duerst, L. Masinter, J. Zawinski. IETF.

[MANIFEST]
Web App Manifest, M. Caceres, K. Rohde Christiansen, M. Lamouri, A. Kostiainen, M. Giuca, A. Gustafson. W3C.

1288

https://w3c.github.io/hr-time/
https://w3c.github.io/html-aam/
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://w3c.github.io/IndexedDB/
https://dev.w3.org/html5/html-sourcing-inband-tracks/
https://infra.spec.whatwg.org/
https://w3c.github.io/IntersectionObserver/
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-4217-currency-codes.html
http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199
https://tc39.es/ecma262/
https://www.w3.org/TR/jlreq/
https://www.w3.org/Graphics/JPEG/jfif3.pdf
https://tc39.es/proposal-error-stacks/
https://tc39.es/ecma402/
https://tools.ietf.org/html/rfc7159
https://w3c.github.io/longtasks/
https://tools.ietf.org/html/rfc6068
https://www.w3.org/TR/appmanifest/

[MATHML]
Mathematical Markup Language (MathML), D. Carlisle, P. Ion, R. Miner. W3C.

[MEDIAFRAG]
Media Fragments URI, R. Troncy, E. Mannens, S. Pfeiffer, D. Van Deursen. W3C.

[MEDIASOURCE]
Media Source Extensions, A. Colwell, A. Bateman, M. Watson. W3C.

[MEDIASTREAM]
Media Capture and Streams, D. Burnett, A. Bergkvist, C. Jennings, A. Narayanan. W3C.

[REPORTING]
Reporting, D. Creager, I. Clelland, M. West. W3C.

[MFREL]
Microformats Wiki: existing rel values. Microformats.

[MIMESNIFF]
MIME Sniffing, G. Hemsley. WHATWG.

[MIX]
Mixed Content, M. West. W3C.

[MNG]
MNG (Multiple-image Network Graphics) Format. G. Randers-Pehrson.

[MPEG2]
ISO/IEC 13818-1: Information technology — Generic coding of moving pictures and associated audio information: Systems. ISO/IEC.

[MPEG4]
ISO/IEC 14496-12: ISO base media file format. ISO/IEC.

[MQ]
Media Queries, H. Lie, T. Çelik, D. Glazman, A. van Kesteren. W3C.

[MULTIPLEBUFFERING]
(Non-normative) Multiple buffering. Wikipedia.

[NAVMODEL]
A Model of Navigation History. C. Brewster, A. Jeffrey.

[NPAPI]
(Non-normative) Gecko Plugin API Reference. Mozilla.

[OGGSKELETONHEADERS]
SkeletonHeaders. Xiph.Org.

[OPENSEARCH]
Autodiscovery in HTML/XHTML. In OpenSearch 1.1 Draft 4, Section 4.6.2. OpenSearch.org.

[ORIGIN]
(Non-normative) The Web Origin Concept, A. Barth. IETF.

[PAINTTIMING]
Paint Timing, S. Panicker. W3C.

[PAGEVIS]
(Non-normative) Page Visibility Level 2, I. Grigorik, A. Jain, J. Mann. W3C.

[PAYMENTREQUEST]
Payment Request API, A. Bateman, Z. Koch, R. McElmurry. W3C.

[PDF]
(Non-normative) Document management — Portable document format — Part 1: PDF. ISO.

[PERMISSIONSPOLICY]
Permissions Policy, I. Clelland, W3C.

1289

https://www.w3.org/Math/draft-spec/
https://www.w3.org/TR/media-frags/
https://w3c.github.io/media-source/
https://w3c.github.io/mediacapture-main/getusermedia.html
https://w3c.github.io/reporting/
http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
https://mimesniff.spec.whatwg.org/
https://w3c.github.io/webappsec-mixed-content/
http://www.libpng.org/pub/mng/spec/
https://drafts.csswg.org/mediaqueries/
https://en.wikipedia.org/wiki/Multiple_buffering
https://arxiv.org/abs/1608.05444
https://developer.mozilla.org/en-US/docs/Plugins/Guide
https://wiki.xiph.org/SkeletonHeaders
http://www.opensearch.org/Specifications/OpenSearch/1.1#Autodiscovery_in_HTML.2FXHTML
https://tools.ietf.org/html/rfc6454
https://w3c.github.io/paint-timing/
https://w3c.github.io/page-visibility/
https://w3c.github.io/browser-payment-api/
https://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
https://w3c.github.io/webappsec-feature-policy/

[PINGBACK]
Pingback 1.0, S. Langridge, I. Hickson.

[PNG]
Portable Network Graphics (PNG) Specification, D. Duce. W3C.

[POINTEREVENTS]
Pointer Events, J. Rossi, M. Brubeck, R. Byers, P. H. Lauke. W3C.

[POINTERLOCK]
Pointer Lock, V. Scheib. W3C.

[PPUTF8]
(Non-normative) The Properties and Promises of UTF-8, M. Dürst. University of Zürich. In Proceedings of the 11th International
Unicode Conference.

[PRELOAD]
Preload, I. Grigorik. W3C.

[PRESENTATION]
Presentation API, M. Foltz, D. Röttsches. W3C.

[REFERRERPOLICY]
Referrer Policy, J. Eisinger, E. Stark. W3C.

[REQUESTIDLECALLBACK]
Cooperative Scheduling of Background Tasks, R. McIlroy, I. Grigorik. W3C.

[RESOURCEHINTS]
Resource Hints, I. Grigorik. W3C.

[RFC1034]
Domain Names - Concepts and Facilities, P. Mockapetris. IETF, November 1987.

[RFC1123]
Requirements for Internet Hosts -- Application and Support, R. Braden. IETF, October 1989.

[RFC2046]
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, N. Freed, N. Borenstein. IETF.

[RFC2397]
The "data" URL scheme, L. Masinter. IETF.

[RFC5545]
Internet Calendaring and Scheduling Core Object Specification (iCalendar), B. Desruisseaux. IETF.

[RFC2483]
URI Resolution Services Necessary for URN Resolution, M. Mealling, R. Daniel. IETF.

[RFC3676]
The Text/Plain Format and DelSp Parameters, R. Gellens. IETF.

[RFC3864]
Registration Procedures for Message Header Fields, G. Klyne, M. Nottingham, J. Mogul. IETF.

[RFC4329]
(Non-normative) Scripting Media Types, B. Höhrmann. IETF.

[RFC4337]
(Non-normative) MIME Type Registration for MPEG-4, Y. Lim, D. Singer. IETF.

[RFC7595]
Guidelines and Registration Procedures for URI Schemes, D. Thaler, T. Hansen, T. Hardie. IETF.

[RFC5322]
Internet Message Format, P. Resnick. IETF.

[RFC6381]
The 'Codecs' and 'Profiles' Parameters for "Bucket" Media Types, R. Gellens, D. Singer, P. Frojdh. IETF.

1290

https://www.hixie.ch/specs/pingback/pingback
https://www.w3.org/TR/PNG/
https://w3c.github.io/pointerevents/
https://w3c.github.io/pointerlock/
https://www.sw.it.aoyama.ac.jp/2012/pub/IUC11-UTF-8.pdf
https://w3c.github.io/preload/
https://w3c.github.io/presentation-api/
https://w3c.github.io/webappsec-referrer-policy/
https://w3c.github.io/requestidlecallback/
https://w3c.github.io/resource-hints/
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc2046
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc5545
https://tools.ietf.org/html/rfc2483
https://tools.ietf.org/html/rfc3676
https://tools.ietf.org/html/rfc3864
https://tools.ietf.org/html/rfc4329
https://tools.ietf.org/html/rfc4337
https://tools.ietf.org/html/rfc7595
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc6381

[RFC6266]
Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP), J. Reschke. IETF.

[RFC6350]
vCard Format Specification, S. Perreault. IETF.

[RFC6596]
The Canonical Link Relation, M. Ohye, J. Kupke. IETF.

[RFC7034]
(Non-normative) HTTP Header Field X-Frame-Options, D. Ross, T. Gondrom. IETF.

[RFC7303]
XML Media Types, H. Thompson, C. Lilley. IETF.

[RFC7578]
Returning Values from Forms: multipart/form-data, L. Masinter. IETF.

[SCREENORIENTATION]
Screen Orientation API, M. Lamouri, M. Cáceres. W3C.

[SCSU]
(Non-normative) UTR #6: A Standard Compression Scheme For Unicode, M. Wolf, K. Whistler, C. Wicksteed, M. Davis, A. Freytag, M.
Scherer. Unicode Consortium.

[SECURE-CONTEXTS]
Secure Contexts, M. West. W3C.

[SELECTION]
Selection API, R. Niwa. W3C.

[SELECTORS]
Selectors, E. Etemad, T. Çelik, D. Glazman, I. Hickson, P. Linss, J. Williams. W3C.

[SMS]
(Non-normative) URI Scheme for Global System for Mobile Communications (GSM) Short Message Service (SMS), E. Wilde, A. Vaha-
Sipila. IETF.

[STRUCTURED-FIELDS]
Structured Field Values for HTTP, M. Nottingham, P-H. Kamp. IETF.

[SRGB]
IEC 61966-2-1: Multimedia systems and equipment — Colour measurement and management — Part 2-1: Colour management —
Default RGB colour space — sRGB. IEC.

[SRI]
Subresource Integrity, D. Akhawe, F. Braun, F. Marier, J. Weinberger. W3C.

[STORAGE]
Storage, A. van Kesteren. WHATWG.

[SVG]
Scalable Vector Graphics (SVG) 2, N Andronikos, R. Atanassov, T. Bah, B. Birtles, B. Brinza, C. Concolato, E. Dahlström, C. Lilley, C.
McCormack, D. Schepers, R. Schwerdtfeger, D. Storey, S. Takagi, J. Watt. W3C.

[SW]
Service Workers, A. Russell, J. Song, J. Archibald. W3C.

[TOR]
(Non-normative) Tor.

[TOUCH]
Touch Events, D. Schepers, S. Moon, M. Brubeck, A. Barstow, R. Byers. W3C.

[TZDATABASE]
(Non-normative) Time Zone Database. IANA.

[UAAG]
(Non-normative) User Agent Accessibility Guidelines (UAAG) 2.0, J. Allan, K. Ford, J. Richards, J. Spellman. W3C.

1291

https://tools.ietf.org/html/rfc6266
https://tools.ietf.org/html/rfc6350
https://tools.ietf.org/html/rfc6596
https://tools.ietf.org/html/rfc7034
https://tools.ietf.org/html/rfc7303
https://tools.ietf.org/html/rfc7578
https://w3c.github.io/screen-orientation/
https://www.unicode.org/reports/tr6/
https://w3c.github.io/webappsec-secure-contexts/
https://w3c.github.io/selection-api/
https://drafts.csswg.org/selectors/
https://tools.ietf.org/html/rfc5724
https://httpwg.org/http-extensions/draft-ietf-httpbis-header-structure.html
https://webstore.iec.ch/publication/6169
https://webstore.iec.ch/publication/6169
https://w3c.github.io/webappsec-subresource-integrity/
https://storage.spec.whatwg.org/
https://svgwg.org/svg2-draft/
https://w3c.github.io/ServiceWorker/
https://www.torproject.org/
https://w3c.github.io/touch-events/
https://www.iana.org/time-zones
https://www.w3.org/TR/UAAG20/

[UIEVENTS]
UI Events Specification, G. Kacmarcik, T. Leithead. W3C.

[UNICODE]
The Unicode Standard. Unicode Consortium.

[UNIVCHARDET]
(Non-normative) A composite approach to language/encoding detection, S. Li, K. Momoi. Netscape. In Proceedings of the 19th
International Unicode Conference.

[URL]
URL, A. van Kesteren. WHATWG.

[URN]
URN Syntax, R. Moats. IETF.

[UTF7]
(Non-normative) UTF-7: A Mail-Safe Transformation Format of Unicode, D. Goldsmith, M. Davis. IETF.

[UTF8DET]
(Non-normative) Multilingual form encoding, M. Dürst. W3C.

[UTR36]
(Non-normative) UTR #36: Unicode Security Considerations, M. Davis, M. Suignard. Unicode Consortium.

[WASMJS]
(Non-normative) WebAssembly JavaScript Interface, D. Ehrenberg. W3C.

[WCAG]
(Non-normative) Web Content Accessibility Guidelines (WCAG) 2.0, B. Caldwell, M. Cooper, L. Reid, G. Vanderheiden. W3C.

[WEBANIMATIONS]
Web Animations, B. Birtles, S. Stephens, D. Stockwell. W3C.

[WEBCRYPTO]
(Non-normative) Web Cryptography API, M. Watson. W3C.

[WEBGL]
WebGL Specifications, D. Jackson, J. Gilbert. Khronos Group.

[WEBIDL]
Web IDL, C. McCormack. W3C.

[WEBLINK]
Web Linking, M. Nottingham. IETF.

[WEBMCG]
WebM Container Guidelines. The WebM Project.

[WEBVTT]
WebVTT, S. Pieters. W3C.

[WHATWGWIKI]
The WHATWG Wiki. WHATWG.

[WORKLETS]
Worklets. I. Kilpatrick. W3C.

[WSP]
The WebSocket protocol, I. Fette, A. Melnikov. IETF.

[X121]
Recommendation X.121 — International Numbering Plan for Public Data Networks, CCITT Blue Book, Fascicle VIII.3, pp. 317-332.

[XFN]
XFN 1.1 profile, T. Çelik, M. Mullenweg, E. Meyer. GMPG.

[XHR]
XMLHttpRequest, A. van Kesteren. WHATWG.

1292

https://w3c.github.io/uievents/
https://www.unicode.org/versions/
https://www-archive.mozilla.org/projects/intl/UniversalCharsetDetection.html
https://url.spec.whatwg.org/
https://tools.ietf.org/html/rfc2141
https://tools.ietf.org/html/rfc2152
https://www.w3.org/International/questions/qa-forms-utf-8
https://www.unicode.org/reports/tr36/
https://webassembly.github.io/spec/js-api/
https://www.w3.org/TR/WCAG20/
https://drafts.csswg.org/web-animations/
https://w3c.github.io/webcrypto/Overview.html
https://www.khronos.org/registry/webgl/specs/latest/
https://heycam.github.io/webidl/
https://tools.ietf.org/html/rfc8288
https://www.webmproject.org/docs/container/
https://w3c.github.io/webvtt/
https://wiki.whatwg.org/
https://drafts.css-houdini.org/worklets/
https://tools.ietf.org/html/rfc6455
https://gmpg.org/xfn/11
https://xhr.spec.whatwg.org/

[XKCD1288]
(Non-normative) Substitutions, Randall Munroe. xkcd.

[XML]
Extensible Markup Language, T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau. W3C.

[XMLENTITY]
(Non-normative) XML Entity Definitions for Characters, D. Carlisle, P. Ion. W3C.

[XMLNS]
Namespaces in XML, T. Bray, D. Hollander, A. Layman, R. Tobin. W3C.

[XMLSSPI]
Associating Style Sheets with XML documents, J. Clark, S. Pieters, H. Thompson. W3C.

[XPATH10]
XML Path Language (XPath) Version 1.0, J. Clark, S. DeRose. W3C.

[XSLT10]
(Non-normative) XSL Transformations (XSLT) Version 1.0, J. Clark. W3C.

[XSLTP]
(Non-normative) DOM XSLTProcessor, WHATWG Wiki. WHATWG.

1293

https://xkcd.com/1288/
https://www.w3.org/TR/xml/
https://www.w3.org/2003/entities/2007doc/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-stylesheet/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/1999/REC-xslt-19991116
https://wiki.whatwg.org/wiki/DOM_XSLTProcessor

Thanks to Tim Berners-Lee for inventing HTML, without which none of this would exist.

Thanks to Aankhen, Aaqa Ishtyaq, Aaron Boodman, Aaron Leventhal, Abhishek Gupta, Adam Barth, Adam de Boor, Adam Hepton, Adam
Klein, Adam Roben, Addison Phillips, Adele Peterson, Adrian Bateman, Adrian Roselli, Adrian Sutton, Agustín Fernández, Aharon
(Vladimir) Lanin, Ajai Tirumali, Ajay Poshak, Akatsuki Kitamura, Alan Plum, Alastair Campbell, Alejandro G. Castro, Alex Bishop, Alex
Nicolaou, Alex Nozdriukhin, Alex Rousskov, Alexander Farkas, Alexander J. Vincent, Alexandre Dieulot, Alexandre Morgaut, Alexey
Feldgendler, Алексей Проскуряков (Alexey Proskuryakov), Alexey Shvayka, Alexis Deveria, Alfred Agrell, Ali Juma, Alice Boxhall, Alice
Wonder, Allan Clements, Allen Wirfs-Brock, Alex Komoroske, Alex Russell, Alphan Chen, Ami Fischman, Amos Jeffries, Amos Lim, Anders
Carlsson, André Bargull, André E. Veltstra, Andrea Rendine, Andreas, Andreas Deuschlinger, Andreas Kling, Andrei Popescu, Andres
Gomez, Andres Rios, Andreu Botella, Andrew Barfield, Andrew Clover, Andrew Gove, Andrew Grieve, Andrew Oakley, Andrew Sidwell,
Andrew Simons, Andrew Smith, Andrew W. Hagen, Andrey V. Lukyanov, Andry Rendy, Andy Davies, Andy Earnshaw, Andy Heydon, Andy
Paicu, Andy Palay, Anjana Vakil, Ankur Kaushal, Anna Belle Leiserson, Anthony Boyd, Anthony Bryan, Anthony Hickson, Anthony
Ramine, Anthony Ricaud, Anton Vayvod, Antti Koivisto, Arfat Salman, Arkadiusz Michalski, Arne Thomassen, Aron Spohr, Arphen Lin,
Arthur Stolyar, Arun Patole, Aryeh Gregor, Asbjørn Ulsberg, Ashley Gullen, Ashley Sheridan, Atsushi Takayama, Attila Haraszti, Aurelien
Levy, Ave Wrigley, Avi Drissman, Axel Dahmen, Ben Boyle, Ben Godfrey, Ben Golightly, Ben Kelly, Ben Lerner, Ben Leslie, Ben
Meadowcroft, Ben Millard, Benjamin Carl Wiley Sittler, Benjamin Hawkes-Lewis, Benji Bilheimer, Benoit Ren, Bert Bos, Bijan Parsia, Bil
Corry, Bill Mason, Bill McCoy, Billy Wong, Billy Woods, Bjartur Thorlacius, Björn Höhrmann, Blake Frantz, Bob Lund, Bob Owen, Bobby
Holley, Boris Zbarsky, Brad Fults, Brad Neuberg, Brad Spencer, Bradley Meck, Brady Eidson, Brandon Jones, Brendan Eich, Brenton
Simpson, Brett Wilson, Brett Zamir, Brian Birtles, Brian Blakely, Brian Campbell, Brian Korver, Brian Kuhn, Brian M. Dube, Brian Ryner,
Brian Smith, Brian Wilson, Bryan Sullivan, Bruce Bailey, Bruce D'Arcus, Bruce Lawson, Bruce Miller, Bugs Nash, C. Scott Ananian, C.
Williams, Cameron McCormack, Cameron Zemek, Cao Yipeng, Carlos Amengual, Carlos Gabriel Cardona, Carlos Perelló Marín, Carolyn
MacLeod, Casey Leask, Cătălin Badea, Cătălin Mariș, ceving, Chao Cai, 윤석찬 (Channy Yun), Charl van Niekerk, Charlene Wright,
Charles Iliya Krempeaux, Charles McCathie Nevile, Charlie Reis, 白丞祐 (Cheng-You Bai), Chris Apers, Chris Cressman, Chris Dumez,
Chris Evans, Chris Harrelson, Chris Markiewicz, Chris Morris, Chris Nardi, Chris Needham, Chris Pearce, Chris Peterson, Chris Rebert,
Chris Weber, Chris Wilson, Christian Biesinger, Christian Johansen, Christian Schmidt, Christoph Päper, Christophe Dumez, Christopher
Aillon, Christopher Ferris, Chriswa, Clark Buehler, Cole Robison, Colin Fine, Collin Jackson, Corey Farwell, Corprew Reed, Craig Cockburn,
Csaba Gabor, Csaba Marton, Cynthia Shelly, Cyrille Tuzi, Daksh Shah, Dan Callahan, Dan Yoder, Dane Foster, Daniel Barclay, Daniel
Bratell, Daniel Brooks, Daniel Brumbaugh Keeney, Daniel Buchner, Daniel Cheng, Daniel Clark, Daniel Davis, Daniel Ehrenberg, Daniel
Glazman, Daniel Holbert, Daniel Peng, Daniel Schattenkirchner, Daniel Spång, Daniel Steinberg, Daniel Tan, Daniel Trebbien, Danny
Sullivan, Darin Adler, Darin Fisher, Darxus, Dave Camp, Dave Cramer, Dave Hodder, Dave Lampton, Dave Singer, Dave Tapuska, Dave
Townsend, David Baron, David Bloom, David Bruant, David Carlisle, David E. Cleary, David Egan Evans, David Fink, David Flanagan,
David Gerard, David Grogan, David Håsäther, David Hyatt, David I. Lehn, David John Burrowes, David Kendal, David Matja, David
Remahl, David Resseguie, David Smith, David Storey, David Vest, David Woolley, David Zbarsky, Dave Methvin, DeWitt Clinton, Dean
Edridge, Dean Edwards, Dean Jackson, Debi Orton, Delan Azabani, Derek Featherstone, Derek Guenther, Devarshi Pant, Devdatta,
Diego Ferreiro Val, Diego Ponce de León, Dimitri Glazkov, Dimitry Golubovsky, Dirk Pranke, Dirk Schulze, Dirkjan Ochtman, Divya
Manian, Dmitry Lazutkin, Dmitry Titov, dolphinling, Dominic Cooney, Dominic Farolino, Dominique Hazaël-Massieux, Don Brutzman,
Donovan Glover, Doron Rosenberg, Doug Kramer, Doug Simpkinson, Drew Wilson, Edgar Chen, Edmund Lai, Eduard Pascual, Eduardo
Vela, Edward Welbourne, Edward Z. Yang, Ehsan Akhgari, Eira Monstad, Eitan Adler, Eli Friedman, Eli Grey, Eliot Graff, Elisabeth Robson,
Elizabeth Castro, Elliott Sprehn, Elliotte Harold, Emilio Cobos Álvarez, Emily Stark, Eric Carlson, Eric Casler, Eric Lawrence, Eric Portis,
Eric Rescorla, Eric Semling, Eric Willigers, Erik Arvidsson, Erik Charlebois, Erik Rose, 栗本 英理子 (Eriko Kurimoto), espretto, Evan Jacobs,
Evan Martin, Evan Prodromou, Evan Stade, Evert, Evgeny Kapun, ExE-Boss, Ezequiel Garzón, fantasai, Félix Sanz, Felix Sasaki,
Fernando Altomare Serboncini, Forbes Lindesay, Francesco Schwarz, Francis Brosnan Blazquez, Franck 'Shift' Quélain, François Marier,
Frank Barchard, Frank Liberato, Fredrik Söderquist, 鵜飼文敏 (Fumitoshi Ukai), Futomi Hatano, Gavin Carothers, Gavin Kistner, Gareth
Rees, Garrett Smith, Gary Blackwood, Gary Kacmarcik, Gary Katsevman, Geoff Richards, Geoffrey Garen, Georg Neis, George Lund,
Gianmarco Armellin, Giovanni Campagna, Giuseppe Pascale, Glenn Adams, Glenn Maynard, Graham Klyne, Greg Botten, Greg Houston,
Greg Wilkins, Gregg Tavares, Gregory J. Rosmaita, Gregory Terzian, Grey, Guilherme Johansson Tramontina, guest271314, Gytis
Jakutonis, Håkon Wium Lie, Habib Virji, Hajime Morrita, Hallvord Reiar Michaelsen Steen, Hanna Laakso, Hans S. Tømmerhalt, Hans
Stimer, Harald Alvestrand, Hayato Ito, 何志翔 (HE Zhixiang), Henri Sivonen, Henrik Lied, Henry Lewis, Henry Mason, Henry Story,
Hermann Donfack Zeufack, 中川博貴 (Hiroki Nakagawa), Hiroshige Hayashizaki, Hitoshi Yoshida, Hongchan Choi, Hugh Bellamy, Hugh
Guiney, Hugh Winkler, Ian Bicking, Ian Clelland, Ian Davis, Ian Fette, Ian Henderson, Ian Kilpatrick, Ibrahim Ahmed, Ido Green, Ignacio
Javier, Igor Oliveira, Ingvar Stepanyan, isonmad, Iurii Kucherov, Ivan Enderlin, Ivan Nikulin, Ivo Emanuel Gonçalves, J. King, J.C. Jones,
Jackson Ray Hamilton, Jacob Davies, Jacques Distler, Jake Archibald, Jake Verbaten, Jakub Vrána, Jakub Łopuszański, Jakub Wilk, James
Craig, James Graham, James Greene, James Justin Harrell, James Kozianski, James M Snell, James Perrett, James Robinson, Jamie Liu,
Jamie Lokier, Jan Kühle, Jan Miksovsky, Janice Shiu, Janusz Majnert, Jan-Ivar Bruaroey, Jan-Klaas Kollhof, Jared Jacobs, Jason Duell, Jason
Kersey, Jason Lustig, Jason Orendorff, Jason White, Jasper Bryant-Greene, Jasper St. Pierre, Jatinder Mann, Jean-Yves Avenard, Jed
Hartman, Jeff Balogh, Jeff Cutsinger, Jeff "=JeffH" Hodges, Jeff Schiller, Jeff Walden, Jeffrey Yasskin, Jeffrey Zeldman, 胡慧鋒 (Jennifer
Braithwaite), Jellybean Stonerfish, Jennifer Apacible, Jens Bannmann, Jens Fendler, Jens Oliver Meiert, Jens Widell, Jer Noble, Jeremey

Acknowledgments §p12

94

1294

Hustman, Jeremy Keith, Jeremy Orlow, Jeremy Roman, Jeroen van der Meer, Jerry Smith, Jesse Renée Beach, Jessica Jong, jfkthame, Jian
Li, Jihye Hong, Jim Jewett, Jim Ley, Jim Meehan, Jim Michaels, Jinho Bang, Jinjiang (勾三股四), Jirka Kosek, Jjgod Jiang, Joaquim Medeiros,
João Eiras, Jochen Eisinger, Joe Clark, Joe Gregorio, Joel Spolsky, Joel Verhagen, Joey Arhar, Johan Herland, Johanna Herman, John Boyer,
John Bussjaeger, John Carpenter, John Daggett, John Fallows, John Foliot, John Harding, John Keiser, John Law, John Musgrave, John
Snyders, John Stockton, John-Mark Bell, Johnny Stenback, Jon Coppeard, Jon Ferraiolo, Jon Gibbins, Jon Perlow, Jonas Sicking, Jonathan
Cook, Jonathan Neal, Jonathan Oddy, Jonathan Rees, Jonathan Watt, Jonathan Worent, Jonny Axelsson, Joram Schrijver, Jordan Tucker,
Jorgen Horstink, Joris van der Wel, Jorunn Danielsen Newth, Joseph Kesselman, Joseph Mansfield, Joseph Pecoraro, Josh Aas, Josh Hart,
Josh Juran, Josh Levenberg, Josh Matthews, Joshua Bell, Joshua Randall, Juan Olvera, Juanmi Huertas, Jukka K. Korpela, Jules Clément-
Ripoche, Julian Reschke, Julio Lopez, 小勝　純 (Jun Kokatsu), Jun Yang (harttle), Jungkee Song, Jürgen Jeka, Justin Lebar, Justin Novosad,
Justin Rogers, Justin Schuh, Justin Sinclair, Juuso Lapinlampi, Ka-Sing Chou, Kagami Sascha Rosylight, Kai Hendry, Kamishetty Sreeja, 呂
康豪 (KangHao Lu), Karl Dubost, Karl Tomlinson, Kartik Arora, Kartikaya Gupta, 葛依寧 (Kat Hackett), Kathy Walton, Keith Rollin, Keith
Yeung, Kelly Ford, Kelly Norton, Ken Russell, Kenji Baheux, Kevin Benson, Kevin Cole, Kevin Gadd, Kevin Venkiteswaran, Kinuko Yasuda,
Koji Ishii, Kornél Pál, Kornel Lesinski, 上野 康平 (UENO, Kouhei), Kris Northfield, Kristof Zelechovski, Krzysztof Maczyński, 黒澤剛志
(Kurosawa Takeshi), Kyle Barnhart, Kyle Hofmann, Kyle Huey, Léonard Bouchet, Léonie Watson, Lachlan Hunt, Larry Masinter, Larry
Page, Lars Gunther, Lars Solberg, Laura Carlson, Laura Granka, Laura L. Carlson, Laura Wisewell, Laurens Holst, Lawrence Forooghian,
Lee Kowalkowski, Leif Halvard Silli, Leif Kornstaedt, Lenny Domnitser, Leonard Rosenthol, Leons Petrazickis, Lobotom Dysmon, Logan,
Loune, Lucas Gadani, Łukasz Pilorz, Luke Kenneth Casson Leighton, Maciej Stachowiak, Magne Andersson, Magnus Kristiansen, Maik
Merten, Majid Valipour, Malcolm Rowe, Manish Goregaokar, Manish Tripathi, Manuel Martinez-Almeida, Marc Hoyois, Marc-André
Choquette, Marc-André Lafortune, Marco Zehe, Marcus Bointon, Marijn Kruisselbrink, Mark Amery, Mark Birbeck, Mark Davis, Mark
Green, Mark Miller, Mark Nottingham, Mark Pilgrim, Mark Rogers, Mark Rowe, Mark Schenk, Mark Vickers, Mark Wilton-Jones, Markus
Stange, Martijn van der Ven, Martijn Wargers, Martin Atkins, Martin Chaov, Martin Dürst, Martin Honnen, Martin Janecke, Martin
Kutschker, Martin Nilsson, Martin Thomson, Masataka Yakura, Masatoshi Kimura, Mason Freed, Mason Mize, Mathias Bynens, Mathieu
Henri, Matias Larsson, Matt Brubeck, Matt Di Pasquale, Matt Falkenhagen, Matt Schmidt, Matt Wright, Matthew Gregan, Matthew
Mastracci, Matthew Noorenberghe, Matthew Raymond, Matthew Thomas, Matthew Tylee Atkinson, Mattias Waldau, Max Romantschuk,
Maxim Tsoy, Menachem Salomon, Menno van Slooten, Micah Dubinko, Michael 'Ratt' Iannarelli, Michael A. Nachbaur, Michael A. Puls II,
Michael Carter, Michael Daskalov, Michael Day, Michael Dyck, Michael Enright, Michael Gratton, Michael Kohler, Michael McKelvey,
Michael Nordman, Michael Powers, Michael Rakowski, Michael(tm) Smith, Michael Walmsley, Michal Zalewski, Michel Buffa, Michel
Fortin, Michelangelo De Simone, Michiel van der Blonk, Miguel Casas-Sanchez, Mihai Şucan, Mihai Parparita, Mike Brown, Mike Dierken,
Mike Dixon, Mike Hearn, Mike Pennisi, Mike Schinkel, Mike Shaver, Mikko Rantalainen, Mingye Wang, Mohamed Zergaoui, Mohammad Al
Houssami, Mohammad Reza Zakerinasab, Momdo Nakamura, Morten Stenshorne, Mounir Lamouri, Ms2ger, mtrootyy, 邱慕安 (Mu-An
Chiou), Mukilan Thiyagarajan, Mustaq Ahmed, Myles Borins, Nadia Heninger, NARUSE Yui, Navid Zolghadr, Neil Deakin, Neil Rashbrook,
Neil Soiffer, Nicholas Shanks, Nicholas Stimpson, Nicholas Zakas, Nickolay Ponomarev, Nicolas Gallagher, Nicolas Pena Moreno, Nikki
Bee, Noah Mendelsohn, Noah Slater, Noel Gordon, Nolan Waite, NoozNooz42, Norbert Lindenberg, Ojan Vafai, Olaf Hoffmann, Olav
Junker Kjær, Oldřich Vetešník, Oli Studholme, Oliver Hunt, Oliver Rigby, Olivia (Xiaoni) Lai, Olivier Gendrin, Olli Pettay, Ondřej Žára, Ori
Avtalion, oSand, Pablo Flouret, Patrick Dark, Patrick Garies, Patrick H. Lauke, Patrik Persson, Paul Adenot, Paul Lewis, Paul Norman, Per-
Erik Brodin, 一丝 (percyley), Perry Smith, Peter Beverloo, Peter Karlsson, Peter Kasting, Peter Moulder, Peter Occil, Peter Stark, Peter Van
der Beken, Peter van der Zee, Peter-Paul Koch, Phil Pickering, Philip Ahlberg, Philip Taylor, Philip TAYLOR, Philippe De Ryck, Pierre-
Arnaud Allumé, Pierre-Marie Dartus, Pooja Sanklecha, Prashant Hiremath, Prashanth Chandra, Prateek Rungta, Pravir Gupta, Prayag
Verma, 李普君 (Pujun Li), Rachid Finge, Rafael Weinstein, Rafał Miłecki, Rahul Purohit, Raj Doshi, Rajas Moonka, Rakina Zata Amni, Ralf
Stoltze, Ralph Giles, Raphael Champeimont, Rebecca Star, Remci Mizkur, Remco, Remy Sharp, Rene Saarsoo, Rene Stach, Ric Hardacre,
Rich Clark, Rich Doughty, Richa Rupela, Richard Gibson, Richard Ishida, Ricky Mondello, Rigo Wenning, Rikkert Koppes, Rimantas
Liubertas, Riona Macnamara, Rob Buis, Rob Ennals, Rob Jellinghaus, Rob S, Robert Blaut, Robert Collins, Robert Hogan, Robert Kieffer,
Robert Linder, Robert Millan, Robert O'Callahan, Robert Sayre, Robin Berjon, Robin Schaufler, Rodger Combs, Roland Steiner, Roma
Matusevich, Roman Ivanov, Roy Fielding, Rune Lillesveen, Russell Bicknell, Ruud Steltenpool, Ryan King, Ryan Landay, Ryan Sleevi, Ryo
Kato, Ryosuke Niwa, S. Mike Dierken, Salvatore Loreto, Sam Dutton, Sam Kuper, Sam Ruby, Sam Sneddon, Sam Weinig, Samikshya
Chand, Samuel Bronson, Samy Kamkar, Sander van Lambalgen, Sanjoy Pal, Sarah Gebauer, Sarven Capadisli, Schalk Neethling, Scott
Beardsley, Scott González, Scott Hess, Scott Miles, Scott O'Hara, Sean B. Palmer, Sean Feng, Sean Fraser, Sean Hayes, Sean Hogan,
Sean Knapp, Sebastian Markbåge, Sebastian Schnitzenbaumer, Sendil Kumar N, Seth Call, Seth Dillingham, Shannon Moeller, Shanti
Rao, Shaun Inman, Shiino Yuki, 贺师俊 (HE Shi-Jun), Shiki Okasaka, Shivani Sharma, shreyateeza, Shubheksha Jalan, Sidak Singh Aulakh,
Sierk Bornemann, Sigbjørn Finne, Sigbjørn Vik, Silver Ghost, Silvia Pfeiffer, Šime Vidas, Simon Fraser, Simon Montagu, Simon Sapin,
Simon Spiegel, skeww, Smylers, Srirama Chandra Sekhar Mogali, Stanton McCandlish, stasoid, Stefan Håkansson, Stefan Haustein,
Stefan Santesson, Stefan Schumacher, Ştefan Vargyas, Stefan Weiss, Steffen Meschkat, Stephen Ma, Stephen Stewart, Stephen White,
Steve Comstock, Steve Faulkner, Steve Orvell, Steve Runyon, Steven Bennett, Steven Bingler, Steven Garrity, Steven Tate, Stewart
Brodie, Stuart Ballard, Stuart Langridge, Stuart Parmenter, Subramanian Peruvemba, Sudhanshu Jaiswal, sudokus999, Sunava Dutta,
Surma, Susan Borgrink, Susan Lesch, Sylvain Pasche, T. J. Crowder, Tab Atkins-Bittner, Taiju Tsuiki, Takashi Toyoshima, Takayoshi Kochi,
Takeshi Yoshino, Tantek Çelik, 田村健人 (Kent TAMURA), Taylor Hunt, Ted Mielczarek, Terrence Wood, Tetsuharu OHZEKI, Theresa
O'Connor, Thijs van der Vossen, Thomas Broyer, Thomas Koetter, Thomas O'Connor, Tim Altman, Tim Dresser, Tim Johansson, Tim
Perry, Tim van der Lippe, TJ VanToll, Tobias Schneider, Tobie Langel, Toby Inkster, Todd Moody, Tom Baker, Tom Pike, Tom Schuster, Tom
ten Thij, Tomasz Jakut, Tomek Wytrębowicz, Tommy Thorsen, Tony Ross, Tooru Fujisawa, Toru Kobayashi, Travis Leithead, Trevor
Rowbotham, Trevor Saunders, Trey Eckels, triple-underscore, Tyler Close, Valentin Gosu, Vardhan Gupta, Veli Şenol, Victor Carbune,
Victor Costan, Vipul Snehadeep Chawathe, Vitya Muhachev, Vlad Levin, Vladimir Katardjiev, Vladimir Vukićević, Vyacheslav Aristov,
voracity, Walter Steiner, Wakaba, Wayne Carr, Wayne Pollock, Wellington Fernando de Macedo, Weston Ruter, Wilhelm Joys Andersen,
Will Levine, Will Ray, William Chen, William Swanson, Willy Martin Aguirre Rodriguez, Wladimir Palant, Wojciech Mach, Wolfram Kriesing,

1295

Xan Gregg, xenotheme, XhmikosR, Xida Chen, Xidorn Quan, Xue Fuqiao, Yang Chen, Yao Xiao, Yash Handa, Yay295, Ye-Kui Wang,
Yehuda Katz, Yi Xu, Yi-An Huang, Yngve Nysaeter Pettersen, Yoav Weiss, Yonathan Randolph, Yury Delendik, 平野裕 (Yutaka Hirano), Yuzo
Fujishima, Zhenbin Xu, 张智强 (Zhiqiang Zhang), Zoltan Herczeg, and Øistein E. Andersen, for their useful comments, both large and
small, that have led to changes to this specification over the years.

Thanks also to everyone who has ever posted about HTML to their blogs, public mailing lists, or forums, including all the contributors to
the various W3C HTML WG lists and the various WHATWG lists.

Special thanks to Richard Williamson for creating the first implementation of canvasp634 in Safari, from which the canvas feature was
designed.

Special thanks also to the Microsoft employees who first implemented the event-based drag-and-drop mechanism,
contenteditablep787, and other features first widely deployed by the Windows Internet Explorer browser.

Special thanks and $10,000 to David Hyatt who came up with a broken implementation of the adoption agency algorithmp1147 that the
editor had to reverse engineer and fix before using it in the parsing section.

Thanks to the participants of the microdata usability study for allowing us to use their mistakes as a guide for designing the microdata
feature.

Thanks to the many sources that provided inspiration for the examples used in the specification.

Thanks also to the Microsoft blogging community for some ideas, to the attendees of the W3C Workshop on Web Applications and
Compound Documents for inspiration, to the #mrt crew, the #mrt.no crew, and the #whatwg crew, and to Pillar and Hedral for their
ideas and support.

Thanks to Igor Zhbanov for generating PDF versions of the specification.

Special thanks to the RICG for developing the picturep316 element and related features; in particular thanks to Adrian Bateman, Bruce
Lawson, David Newton, Ilya Grigorik, John Schoenick, Leon de Rijke, Mat Marquis, Marcos Cáceres, Tab Atkins, Theresa O'Connor, and
Yoav Weiss for their contributions.

Special thanks to the WPWG for incubating the custom elementsp696 feature. In particular, thanks to David Hyatt and Ian Hickson for
their influence through the XBL specifications, Dimitri Glazkov for the first draft of the custom elements specification, and to Alex
Komoroske, Alex Russell, Andres Rios, Boris Zbarsky, Brian Kardell, Daniel Buchner, Dominic Cooney, Erik Arvidsson, Elliott Sprehn,
Hajime Morrita, Hayato Ito, Jan Miksovsky, Jonas Sicking, Olli Pettay, Rafael Weinstein, Roland Steiner, Ryosuke Niwa, Scott Miles, Steve
Faulkner, Steve Orvell, Tab Atkins, Theresa O'Connor, Tim Perry, and William Chen for their contributions.

Part of the revision history of the picturep316 element and related features can be found in the ResponsiveImagesCG/picture-
element repository.

Part of the revision history of the theme-colorp168 metadata name can be found in the whatwg/meta-theme-color repository.

Part of the revision history of the custom elementsp696 feature can be found in the w3c/webcomponents repository, which is available
under the W3C Permissive Document License.

Part of the revision history of the innerTextp148 getter and setter can be found in the rocallahan/innerText-spec repository.

For about ten years starting in 2003, this standard was almost entirely written by Ian Hickson (Google, ian@hixie.ch). More recently,
Simon Pieters (Bocoup, zcorpan@gmail.com), Anne van Kesteren (Mozilla, annevk@annevk.nl), Philip Jägenstedt (Google,
philip@foolip.org), and Domenic Denicola (Google, d@domenic.me), all previously long-time contributors, have joined Ian in editing the
text directly.

1296

https://www.w3.org/html/wg/lists/
https://whatwg.org/mailing-list
https://www.w3.org/community/respimg/
https://www.w3.org/WebPlatform/WG/
https://github.com/ResponsiveImagesCG/picture-element
https://github.com/ResponsiveImagesCG/picture-element
https://github.com/whatwg/meta-theme-color
https://github.com/w3c/webcomponents
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
https://github.com/rocallahan/innerText-spec
https://www.google.com/
mailto:ian@hixie.ch
https://bocoup.com/
mailto:zcorpan@gmail.com
https://annevankesteren.nl/
https://www.mozilla.org/
mailto:annevk@annevk.nl
https://foolip.org/
https://www.google.com/
mailto:philip@foolip.org
https://domenic.me/
https://www.google.com/
mailto:d@domenic.me

The image in the introduction is based on a photo by Wonderlane. (CC BY 2.0)

The image of the wolf in the embedded content introduction is based on a photo by Barry O'Neill. (Public domain)

The image of the kettlebell swing in the embedded content introduction is based on a photo by kokkarina. (CC0 1.0)

The Blue Robot Player sprite used in the canvas demo is based on a work by JohnColburn. (CC BY-SA 3.0)

The photograph of robot 148 climbing the tower at the FIRST Robotics Competition 2013 Silicon Valley Regional is based on a work by
Lenore Edman. (CC BY 2.0)

The diagram showing how asyncp615 and deferp615 impact scriptp614 loading is based on a similar diagram from a blog post by Peter
Beverloo. (CC0 1.0)

The image decoding demo used to demonstrate module-based workers draws on some example code from a tutorial by Ilmari
Heikkinen. (CC BY 3.0)

The <flag-icon> example was inspired by a custom element by Steven Skelton. (MIT)

Copyright © WHATWG (Apple, Google, Mozilla, Microsoft). This work is licensed under a Creative Commons Attribution 4.0 International
License.

This is the Living Standard. Those interested in the patent-review version should view the Living Standard Review Draft.

Intellectual property rights §p12

97

1297

https://www.flickr.com/photos/wonderlane/2986252088/
https://www.flickr.com/photos/wonderlane/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:WolfRunningInSnow.jpg
https://commons.wikimedia.org/wiki/File:WolfRunningInSnow.jpg
https://en.wikipedia.org/wiki/Public_domain
https://pixabay.com/en/functional-mobility-articular-606568/
https://pixabay.com/en/users/506563-506563/
https://creativecommons.org/publicdomain/zero/1.0/
https://johncolburn.deviantart.com/art/Blue-Robot-Player-Sprite-323813997
https://johncolburn.deviantart.com/
https://creativecommons.org/licenses/by-sa/3.0/
https://www.flickr.com/photos/lenore-m/8631391979/
https://www.flickr.com/photos/lenore-m/
https://creativecommons.org/licenses/by/2.0/
https://peter.sh/experiments/asynchronous-and-deferred-javascript-execution-explained/
https://peter.sh/about/
https://peter.sh/about/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.html5rocks.com/en/tutorials/canvas/imagefilters/
https://www.fhtr.net/
https://www.fhtr.net/
https://creativecommons.org/licenses/by/3.0/
https://github.com/stevenrskelton/flag-icon
http://stevenskelton.ca/
https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://html.spec.whatwg.org/review-drafts/2020-07/

	HTML
	Living Standard — Last Updated 2 September 2020
	Table of contents
	Full table of contents
	1 Introduction
	1.1 Where does this specification fit?
	1.2 Is this HTML5?
	1.3 Background
	1.4 Audience
	1.5 Scope
	1.6 History
	1.7 Design notes
	1.7.1 Serializability of script execution
	1.7.2 Compliance with other specifications
	1.7.3 Extensibility

	1.8 HTML vs XML syntax
	1.9 Structure of this specification
	1.9.1 How to read this specification
	1.9.2 Typographic conventions

	1.10 A quick introduction to HTML
	1.10.1 Writing secure applications with HTML
	1.10.2 Common pitfalls to avoid when using the scripting APIs
	1.10.3 How to catch mistakes when writing HTML: validators and conformance checkers

	1.11 Conformance requirements for authors
	1.11.1 Presentational markup
	1.11.2 Syntax errors
	1.11.3 Restrictions on content models and on attribute values

	1.12 Suggested reading

	2 Common infrastructure
	2.1 Terminology
	2.1.1 Parallelism
	2.1.2 Resources
	2.1.3 XML compatibility
	2.1.4 DOM trees
	2.1.5 Scripting
	2.1.6 Plugins
	2.1.7 Character encodings
	2.1.8 Conformance classes
	2.1.9 Dependencies
	2.1.10 Extensibility
	2.1.11 Interactions with XPath and XSLT

	2.2 String comparison
	2.3 Policy-controlled features
	2.4 Common microsyntaxes
	2.4.1 Common parser idioms
	2.4.2 Boolean attributes
	2.4.3 Keywords and enumerated attributes
	2.4.4 Numbers
	2.4.4.1 Signed integers
	2.4.4.2 Non-negative integers
	2.4.4.3 Floating-point numbers
	2.4.4.4 Percentages and lengths
	2.4.4.5 Non-zero percentages and lengths
	2.4.4.6 Lists of floating-point numbers
	2.4.4.7 Lists of dimensions

	2.4.5 Dates and times
	2.4.5.1 Months
	2.4.5.2 Dates
	2.4.5.3 Yearless dates
	2.4.5.4 Times
	2.4.5.5 Local dates and times
	2.4.5.6 Time zones
	2.4.5.7 Global dates and times
	2.4.5.8 Weeks
	2.4.5.9 Durations
	2.4.5.10 Vaguer moments in time

	2.4.6 Colors
	2.4.7 Space-separated tokens
	2.4.8 Comma-separated tokens
	2.4.9 References
	2.4.10 Media queries

	2.5 URLs
	2.5.1 Terminology
	2.5.2 Parsing URLs
	2.5.3 Dynamic changes to base URLs

	2.6 Fetching resources
	2.6.1 Terminology
	2.6.2 Determining the type of a resource
	2.6.3 Extracting character encodings from meta elements
	2.6.4 CORS settings attributes
	2.6.5 Referrer policy attributes
	2.6.6 Nonce attributes
	2.6.7 Lazy loading attributes

	2.7 Common DOM interfaces
	2.7.1 Reflecting content attributes in IDL attributes
	2.7.2 Collections
	2.7.2.1 The HTMLAllCollection interface
	2.7.2.1.1 [[Call]] (thisArgument, argumentsList)

	2.7.2.2 The HTMLFormControlsCollection interface
	2.7.2.3 The HTMLOptionsCollection interface

	2.7.3 The DOMStringList interface

	2.8 Safe passing of structured data
	2.8.1 Serializable objects
	2.8.2 Transferable objects
	2.8.3 StructuredSerializeInternal (value, forStorage [, memory])
	2.8.4 StructuredSerialize (value)
	2.8.5 StructuredSerializeForStorage (value)
	2.8.6 StructuredDeserialize (serialized, targetRealm [, memory])
	2.8.7 StructuredSerializeWithTransfer (value, transferList)
	2.8.8 StructuredDeserializeWithTransfer (serializeWithTransferResult, targetRealm)
	2.8.9 Performing serialization and transferring from other specifications

	3 Semantics, structure, and APIs of HTML documents
	3.1 Documents
	3.1.1 The Document object
	3.1.2 The DocumentOrShadowRoot interface
	3.1.3 Resource metadata management
	3.1.4 DOM tree accessors

	3.2 Elements
	3.2.1 Semantics
	3.2.2 Elements in the DOM
	3.2.3 HTML element constructors
	3.2.4 Element definitions
	3.2.4.1 Attributes

	3.2.5 Content models
	3.2.5.1 The "nothing" content model
	3.2.5.2 Kinds of content
	3.2.5.2.1 Metadata content
	3.2.5.2.2 Flow content
	3.2.5.2.3 Sectioning content
	3.2.5.2.4 Heading content
	3.2.5.2.5 Phrasing content
	3.2.5.2.6 Embedded content
	3.2.5.2.7 Interactive content
	3.2.5.2.8 Palpable content
	3.2.5.2.9 Script-supporting elements

	3.2.5.3 Transparent content models
	3.2.5.4 Paragraphs

	3.2.6 Global attributes
	3.2.6.1 The title attribute
	3.2.6.2 The lang and xml:lang attributes
	3.2.6.3 The translate attribute
	3.2.6.4 The dir attribute
	3.2.6.5 The style attribute
	3.2.6.6 Embedding custom non-visible data with the data-* attributes

	3.2.7 The innerText getter and setter
	3.2.8 Requirements relating to the bidirectional algorithm
	3.2.8.1 Authoring conformance criteria for bidirectional-algorithm formatting characters
	3.2.8.2 User agent conformance criteria

	3.2.9 Requirements related to ARIA and to platform accessibility APIs

	4 The elements of HTML
	4.1 The document element
	4.1.1 The html element

	4.2 Document metadata
	4.2.1 The head element
	4.2.2 The title element
	4.2.3 The base element
	4.2.4 The link element
	4.2.4.1 Processing the media attribute
	4.2.4.2 Processing the type attribute
	4.2.4.3 Fetching and processing a resource from a link element
	4.2.4.4 Processing `Link` headers
	4.2.4.5 Providing users with a means to follow hyperlinks created using the link element

	4.2.5 The meta element
	4.2.5.1 Standard metadata names
	4.2.5.2 Other metadata names
	4.2.5.3 Pragma directives
	4.2.5.4 Specifying the document's character encoding

	4.2.6 The style element
	4.2.7 Interactions of styling and scripting

	4.3 Sections
	4.3.1 The body element
	4.3.2 The article element
	4.3.3 The section element
	4.3.4 The nav element
	4.3.5 The aside element
	4.3.6 The h1, h2, h3, h4, h5, and h6 elements
	4.3.7 The hgroup element
	4.3.8 The header element
	4.3.9 The footer element
	4.3.10 The address element
	4.3.11 Headings and sections
	4.3.11.1 Creating an outline
	4.3.11.2 Sample outlines
	4.3.11.3 Exposing outlines to users

	4.3.12 Usage summary
	4.3.12.1 Article or section?

	4.4 Grouping content
	4.4.1 The p element
	4.4.2 The hr element
	4.4.3 The pre element
	4.4.4 The blockquote element
	4.4.5 The ol element
	4.4.6 The ul element
	4.4.7 The menu element
	4.4.8 The li element
	4.4.9 The dl element
	4.4.10 The dt element
	4.4.11 The dd element
	4.4.12 The figure element
	4.4.13 The figcaption element
	4.4.14 The main element
	4.4.15 The div element

	4.5 Text-level semantics
	4.5.1 The a element
	4.5.2 The em element
	4.5.3 The strong element
	4.5.4 The small element
	4.5.5 The s element
	4.5.6 The cite element
	4.5.7 The q element
	4.5.8 The dfn element
	4.5.9 The abbr element
	4.5.10 The ruby element
	4.5.11 The rt element
	4.5.12 The rp element
	4.5.13 The data element
	4.5.14 The time element
	4.5.15 The code element
	4.5.16 The var element
	4.5.17 The samp element
	4.5.18 The kbd element
	4.5.19 The sub and sup elements
	4.5.20 The i element
	4.5.21 The b element
	4.5.22 The u element
	4.5.23 The mark element
	4.5.24 The bdi element
	4.5.25 The bdo element
	4.5.26 The span element
	4.5.27 The br element
	4.5.28 The wbr element
	4.5.29 Usage summary

	4.6 Links
	4.6.1 Introduction
	4.6.2 Links created by a and area elements
	4.6.3 API for a and area elements
	4.6.4 Following hyperlinks
	4.6.5 Downloading resources
	4.6.5.1 Hyperlink auditing

	4.6.6 Link types
	4.6.6.1 Link type "alternate"
	4.6.6.2 Link type "author"
	4.6.6.3 Link type "bookmark"
	4.6.6.4 Link type "canonical"
	4.6.6.5 Link type "dns-prefetch"
	4.6.6.6 Link type "external"
	4.6.6.7 Link type "help"
	4.6.6.8 Link type "icon"
	4.6.6.9 Link type "license"
	4.6.6.10 Link type "manifest"
	4.6.6.11 Link type "modulepreload"
	4.6.6.12 Link type "nofollow"
	4.6.6.13 Link type "noopener"
	4.6.6.14 Link type "noreferrer"
	4.6.6.15 Link type "opener"
	4.6.6.16 Link type "pingback"
	4.6.6.17 Link type "preconnect"
	4.6.6.18 Link type "prefetch"
	4.6.6.19 Link type "preload"
	4.6.6.20 Link type "prerender"
	4.6.6.21 Link type "search"
	4.6.6.22 Link type "stylesheet"
	4.6.6.23 Link type "tag"
	4.6.6.24 Sequential link types
	4.6.6.24.1 Link type "next"
	4.6.6.24.2 Link type "prev"

	4.6.6.25 Other link types

	4.7 Edits
	4.7.1 The ins element
	4.7.2 The del element
	4.7.3 Attributes common to ins and del elements
	4.7.4 Edits and paragraphs
	4.7.5 Edits and lists
	4.7.6 Edits and tables

	4.8 Embedded content
	4.8.1 The picture element
	4.8.2 The source element
	4.8.3 The img element
	4.8.4 Images
	4.8.4.1 Introduction
	4.8.4.1.1 Adaptive images

	4.8.4.2 Attributes common to source, img, and link elements
	4.8.4.2.1 Srcset attributes
	4.8.4.2.2 Sizes attributes

	4.8.4.3 Processing model
	4.8.4.3.1 When to obtain images
	4.8.4.3.2 Reacting to DOM mutations
	4.8.4.3.3 The list of available images
	4.8.4.3.4 Decoding images
	4.8.4.3.5 Updating the image data
	4.8.4.3.6 Selecting an image source
	4.8.4.3.7 Updating the source set
	4.8.4.3.8 Parsing a srcset attribute
	4.8.4.3.9 Parsing a sizes attribute
	4.8.4.3.10 Normalizing the source densities
	4.8.4.3.11 Reacting to environment changes

	4.8.4.4 Requirements for providing text to act as an alternative for images
	4.8.4.4.1 General guidelines
	4.8.4.4.2 A link or button containing nothing but the image
	4.8.4.4.3 A phrase or paragraph with an alternative graphical representation: charts, diagrams, graphs, maps, illustrations
	4.8.4.4.4 A short phrase or label with an alternative graphical representation: icons, logos
	4.8.4.4.5 Text that has been rendered to a graphic for typographical effect
	4.8.4.4.6 A graphical representation of some of the surrounding text
	4.8.4.4.7 Ancillary images
	4.8.4.4.8 A purely decorative image that doesn't add any information
	4.8.4.4.9 A group of images that form a single larger picture with no links
	4.8.4.4.10 A group of images that form a single larger picture with links
	4.8.4.4.11 A key part of the content
	4.8.4.4.12 An image not intended for the user
	4.8.4.4.13 An image in an email or private document intended for a specific person who is known to be able to view images
	4.8.4.4.14 Guidance for markup generators
	4.8.4.4.15 Guidance for conformance checkers

	4.8.5 The iframe element
	4.8.6 The embed element
	4.8.7 The object element
	4.8.8 The param element
	4.8.9 The video element
	4.8.10 The audio element
	4.8.11 The track element
	4.8.12 Media elements
	4.8.12.1 Error codes
	4.8.12.2 Location of the media resource
	4.8.12.3 MIME types
	4.8.12.4 Network states
	4.8.12.5 Loading the media resource
	4.8.12.6 Offsets into the media resource
	4.8.12.7 Ready states
	4.8.12.8 Playing the media resource
	4.8.12.9 Seeking
	4.8.12.10 Media resources with multiple media tracks
	4.8.12.10.1 AudioTrackList and VideoTrackList objects
	4.8.12.10.2 Selecting specific audio and video tracks declaratively

	4.8.12.11 Timed text tracks
	4.8.12.11.1 Text track model
	4.8.12.11.2 Sourcing in-band text tracks
	4.8.12.11.3 Sourcing out-of-band text tracks
	4.8.12.11.4 Guidelines for exposing cues in various formats as text track cues
	4.8.12.11.5 Text track API
	4.8.12.11.6 Event handlers for objects of the text track APIs
	4.8.12.11.7 Best practices for metadata text tracks

	4.8.12.12 Identifying a track kind through a URL
	4.8.12.13 User interface
	4.8.12.14 Time ranges
	4.8.12.15 The TrackEvent interface
	4.8.12.16 Events summary
	4.8.12.17 Security and privacy considerations
	4.8.12.18 Best practices for authors using media elements
	4.8.12.19 Best practices for implementers of media elements

	4.8.13 The map element
	4.8.14 The area element
	4.8.15 Image maps
	4.8.15.1 Authoring
	4.8.15.2 Processing model

	4.8.16 MathML
	4.8.17 SVG
	4.8.18 Dimension attributes

	4.9 Tabular data
	4.9.1 The table element
	4.9.1.1 Techniques for describing tables
	4.9.1.2 Techniques for table design

	4.9.2 The caption element
	4.9.3 The colgroup element
	4.9.4 The col element
	4.9.5 The tbody element
	4.9.6 The thead element
	4.9.7 The tfoot element
	4.9.8 The tr element
	4.9.9 The td element
	4.9.10 The th element
	4.9.11 Attributes common to td and th elements
	4.9.12 Processing model
	4.9.12.1 Forming a table
	4.9.12.2 Forming relationships between data cells and header cells

	4.9.13 Examples

	4.10 Forms
	4.10.1 Introduction
	4.10.1.1 Writing a form's user interface
	4.10.1.2 Implementing the server-side processing for a form
	4.10.1.3 Configuring a form to communicate with a server
	4.10.1.4 Client-side form validation
	4.10.1.5 Enabling client-side automatic filling of form controls
	4.10.1.6 Improving the user experience on mobile devices
	4.10.1.7 The difference between the field type, the autofill field name, and the input modality
	4.10.1.8 Date, time, and number formats

	4.10.2 Categories
	4.10.3 The form element
	4.10.4 The label element
	4.10.5 The input element
	4.10.5.1 States of the type attribute
	4.10.5.1.1 Hidden state (type=hidden)
	4.10.5.1.2 Text (type=text) state and Search state (type=search)
	4.10.5.1.3 Telephone state (type=tel)
	4.10.5.1.4 URL state (type=url)
	4.10.5.1.5 Email state (type=email)
	4.10.5.1.6 Password state (type=password)
	4.10.5.1.7 Date state (type=date)
	4.10.5.1.8 Month state (type=month)
	4.10.5.1.9 Week state (type=week)
	4.10.5.1.10 Time state (type=time)
	4.10.5.1.11 Local Date and Time state (type=datetime-local)
	4.10.5.1.12 Number state (type=number)
	4.10.5.1.13 Range state (type=range)
	4.10.5.1.14 Color state (type=color)
	4.10.5.1.15 Checkbox state (type=checkbox)
	4.10.5.1.16 Radio Button state (type=radio)
	4.10.5.1.17 File Upload state (type=file)
	4.10.5.1.18 Submit Button state (type=submit)
	4.10.5.1.19 Image Button state (type=image)
	4.10.5.1.20 Reset Button state (type=reset)
	4.10.5.1.21 Button state (type=button)

	4.10.5.2 Implementation notes regarding localization of form controls
	4.10.5.3 Common input element attributes
	4.10.5.3.1 The maxlength and minlength attributes
	4.10.5.3.2 The size attribute
	4.10.5.3.3 The readonly attribute
	4.10.5.3.4 The required attribute
	4.10.5.3.5 The multiple attribute
	4.10.5.3.6 The pattern attribute
	4.10.5.3.7 The min and max attributes
	4.10.5.3.8 The step attribute
	4.10.5.3.9 The list attribute
	4.10.5.3.10 The placeholder attribute

	4.10.5.4 Common input element APIs
	4.10.5.5 Common event behaviors

	4.10.6 The button element
	4.10.7 The select element
	4.10.8 The datalist element
	4.10.9 The optgroup element
	4.10.10 The option element
	4.10.11 The textarea element
	4.10.12 The output element
	4.10.13 The progress element
	4.10.14 The meter element
	4.10.15 The fieldset element
	4.10.16 The legend element
	4.10.17 Form control infrastructure
	4.10.17.1 A form control's value
	4.10.17.2 Mutability
	4.10.17.3 Association of controls and forms

	4.10.18 Attributes common to form controls
	4.10.18.1 Naming form controls: the name attribute
	4.10.18.2 Submitting element directionality: the dirname attribute
	4.10.18.3 Limiting user input length: the maxlength attribute
	4.10.18.4 Setting minimum input length requirements: the minlength attribute
	4.10.18.5 Enabling and disabling form controls: the disabled attribute
	4.10.18.6 Form submission attributes
	4.10.18.7 Autofill
	4.10.18.7.1 Autofilling form controls: the autocomplete attribute
	4.10.18.7.2 Processing model

	4.10.19 APIs for the text control selections
	4.10.20 Constraints
	4.10.20.1 Definitions
	4.10.20.2 Constraint validation
	4.10.20.3 The constraint validation API
	4.10.20.4 Security

	4.10.21 Form submission
	4.10.21.1 Introduction
	4.10.21.2 Implicit submission
	4.10.21.3 Form submission algorithm
	4.10.21.4 Constructing the entry list
	4.10.21.5 Selecting a form submission encoding
	4.10.21.6 URL-encoded form data
	4.10.21.7 Multipart form data
	4.10.21.8 Plain text form data
	4.10.21.9 The SubmitEvent interface
	4.10.21.10 The FormDataEvent interface

	4.10.22 Resetting a form

	4.11 Interactive elements
	4.11.1 The details element
	4.11.2 The summary element
	4.11.3 Commands
	4.11.3.1 Facets
	4.11.3.2 Using the a element to define a command
	4.11.3.3 Using the button element to define a command
	4.11.3.4 Using the input element to define a command
	4.11.3.5 Using the option element to define a command
	4.11.3.6 Using the accesskey attribute on a legend element to define a command
	4.11.3.7 Using the accesskey attribute to define a command on other elements

	4.11.4 The dialog element

	4.12 Scripting
	4.12.1 The script element
	4.12.1.1 Processing model
	4.12.1.2 Scripting languages
	4.12.1.3 Restrictions for contents of script elements
	4.12.1.4 Inline documentation for external scripts
	4.12.1.5 Interaction of script elements and XSLT

	4.12.2 The noscript element
	4.12.3 The template element
	4.12.3.1 Interaction of template elements with XSLT and XPath

	4.12.4 The slot element
	4.12.5 The canvas element
	4.12.5.1 The 2D rendering context
	4.12.5.1.1 Implementation notes
	4.12.5.1.2 The canvas state
	4.12.5.1.3 Line styles
	4.12.5.1.4 Text styles
	4.12.5.1.5 Building paths
	4.12.5.1.6 Path2D objects
	4.12.5.1.7 Transformations
	4.12.5.1.8 Image sources for 2D rendering contexts
	4.12.5.1.9 Fill and stroke styles
	4.12.5.1.10 Drawing rectangles to the bitmap
	4.12.5.1.11 Drawing text to the bitmap
	4.12.5.1.12 Drawing paths to the canvas
	4.12.5.1.13 Drawing focus rings and scrolling paths into view
	4.12.5.1.14 Drawing images
	4.12.5.1.15 Pixel manipulation
	4.12.5.1.16 Compositing
	4.12.5.1.17 Image smoothing
	4.12.5.1.18 Shadows
	4.12.5.1.19 Filters
	4.12.5.1.20 Working with externally-defined SVG filters
	4.12.5.1.21 Drawing model
	4.12.5.1.22 Best practices
	4.12.5.1.23 Examples

	4.12.5.2 The ImageBitmap rendering context
	4.12.5.2.1 Introduction
	4.12.5.2.2 The ImageBitmapRenderingContext interface

	4.12.5.3 The OffscreenCanvas interface
	4.12.5.3.1 The offscreen 2D rendering context

	4.12.5.4 Color spaces and color correction
	4.12.5.5 Serializing bitmaps to a file
	4.12.5.6 Security with canvas elements

	4.13 Custom elements
	4.13.1 Introduction
	4.13.1.1 Creating an autonomous custom element
	4.13.1.2 Creating a form-associated custom element
	4.13.1.3 Creating a customized built-in element
	4.13.1.4 Drawbacks of autonomous custom elements
	4.13.1.5 Upgrading elements after their creation

	4.13.2 Requirements for custom element constructors and reactions
	4.13.3 Core concepts
	4.13.4 The CustomElementRegistry interface
	4.13.5 Upgrades
	4.13.6 Custom element reactions
	4.13.7 The ElementInternals interface

	4.14 Common idioms without dedicated elements
	4.14.1 Bread crumb navigation
	4.14.2 Tag clouds
	4.14.3 Conversations
	4.14.4 Footnotes

	4.15 Disabled elements
	4.16 Matching HTML elements using selectors and CSS
	4.16.1 Case-sensitivity of the CSS 'attr()' function
	4.16.2 Case-sensitivity of selectors
	4.16.3 Pseudo-classes

	5 Microdata
	5.1 Introduction
	5.1.1 Overview
	5.1.2 The basic syntax
	5.1.3 Typed items
	5.1.4 Global identifiers for items
	5.1.5 Selecting names when defining vocabularies

	5.2 Encoding microdata
	5.2.1 The microdata model
	5.2.2 Items
	5.2.3 Names: the itemprop attribute
	5.2.4 Values
	5.2.5 Associating names with items
	5.2.6 Microdata and other namespaces

	5.3 Sample microdata vocabularies
	5.3.1 vCard
	5.3.1.1 Conversion to vCard
	5.3.1.2 Examples

	5.3.2 vEvent
	5.3.2.1 Conversion to iCalendar
	5.3.2.2 Examples

	5.3.3 Licensing works
	5.3.3.1 Examples

	5.4 Converting HTML to other formats
	5.4.1 JSON

	6 User interaction
	6.1 The hidden attribute
	6.2 Inert subtrees
	6.3 Tracking user activation
	6.3.1 Data model
	6.3.2 Processing model
	6.3.3 APIs gated by user activation

	6.4 Activation behavior of elements
	6.5 Focus
	6.5.1 Introduction
	6.5.2 Data model
	6.5.3 The tabindex attribute
	6.5.4 Processing model
	6.5.5 Sequential focus navigation
	6.5.6 Focus management APIs
	6.5.7 The autofocus attribute

	6.6 Assigning keyboard shortcuts
	6.6.1 Introduction
	6.6.2 The accesskey attribute
	6.6.3 Processing model

	6.7 Editing
	6.7.1 Making document regions editable: The contenteditable content attribute
	6.7.2 Making entire documents editable: the designMode getter and setter
	6.7.3 Best practices for in-page editors
	6.7.4 Editing APIs
	6.7.5 Spelling and grammar checking
	6.7.6 Autocapitalization
	6.7.7 Input modalities: the inputmode attribute
	6.7.8 Input modalities: the enterkeyhint attribute

	6.8 Find-in-page
	6.8.1 Introduction
	6.8.2 Interaction with selection

	6.9 Drag and drop
	6.9.1 Introduction
	6.9.2 The drag data store
	6.9.3 The DataTransfer interface
	6.9.3.1 The DataTransferItemList interface
	6.9.3.2 The DataTransferItem interface

	6.9.4 The DragEvent interface
	6.9.5 Processing model
	6.9.6 Events summary
	6.9.7 The draggable attribute
	6.9.8 Security risks in the drag-and-drop model

	7 Loading web pages
	7.1 Browsing contexts
	7.1.1 Creating browsing contexts
	7.1.2 Related browsing contexts
	7.1.2.1 Navigating related browsing contexts in the DOM

	7.1.3 Security
	7.1.4 Groupings of browsing contexts
	7.1.5 Browsing context names

	7.2 Security infrastructure for Window, WindowProxy, and Location objects
	7.2.1 Integration with IDL
	7.2.2 Shared internal slot: [[CrossOriginPropertyDescriptorMap]]
	7.2.3 Shared abstract operations
	7.2.3.1 CrossOriginProperties (O)
	7.2.3.2 CrossOriginPropertyFallback (P)
	7.2.3.3 IsPlatformObjectSameOrigin (O)
	7.2.3.4 CrossOriginGetOwnPropertyHelper (O, P)
	7.2.3.5 CrossOriginGet (O, P, Receiver)
	7.2.3.6 CrossOriginSet (O, P, V, Receiver)
	7.2.3.7 CrossOriginOwnPropertyKeys (O)

	7.3 The Window object
	7.3.1 APIs for creating and navigating browsing contexts by name
	7.3.2 Accessing other browsing contexts
	7.3.3 Named access on the Window object
	7.3.4 Discarding browsing contexts
	7.3.5 Closing browsing contexts
	7.3.6 Browser interface elements
	7.3.7 Script settings for Window objects

	7.4 The WindowProxy exotic object
	7.4.1 [[GetPrototypeOf]] ()
	7.4.2 [[SetPrototypeOf]] (V)
	7.4.3 [[IsExtensible]] ()
	7.4.4 [[PreventExtensions]] ()
	7.4.5 [[GetOwnProperty]] (P)
	7.4.6 [[DefineOwnProperty]] (P, Desc)
	7.4.7 [[Get]] (P, Receiver)
	7.4.8 [[Set]] (P, V, Receiver)
	7.4.9 [[Delete]] (P)
	7.4.10 [[OwnPropertyKeys]] ()

	7.5 Origin
	7.5.1 Sites
	7.5.2 Relaxing the same-origin restriction
	7.5.3 Origin isolation

	7.6 Sandboxing
	7.7 Cross-origin opener policies
	7.7.1 The `Cross-Origin-Opener-Policy` header
	7.7.2 Browsing context group switches due to cross-origin opener policy

	7.8 Cross-origin embedder policies
	7.8.1 The headers
	7.8.2 Embedder policy checks

	7.9 Session history and navigation
	7.9.1 Browsing sessions
	7.9.2 The session history of browsing contexts
	7.9.3 The History interface
	7.9.4 Implementation notes for session history
	7.9.5 The Location interface
	7.9.5.1 [[GetPrototypeOf]] ()
	7.9.5.2 [[SetPrototypeOf]] (V)
	7.9.5.3 [[IsExtensible]] ()
	7.9.5.4 [[PreventExtensions]] ()
	7.9.5.5 [[GetOwnProperty]] (P)
	7.9.5.6 [[DefineOwnProperty]] (P, Desc)
	7.9.5.7 [[Get]] (P, Receiver)
	7.9.5.8 [[Set]] (P, V, Receiver)
	7.9.5.9 [[Delete]] (P)
	7.9.5.10 [[OwnPropertyKeys]] ()

	7.10 Browsing the web
	7.10.1 Navigating across documents
	7.10.2 Page load processing model for HTML files
	7.10.3 Page load processing model for XML files
	7.10.4 Page load processing model for text files
	7.10.5 Page load processing model for multipart/x-mixed-replace resources
	7.10.6 Page load processing model for media
	7.10.7 Page load processing model for content that uses plugins
	7.10.8 Page load processing model for inline content that doesn't have a DOM
	7.10.9 Navigating to a fragment
	7.10.10 History traversal
	7.10.10.1 Persisted user state restoration
	7.10.10.2 The PopStateEvent interface
	7.10.10.3 The HashChangeEvent interface
	7.10.10.4 The PageTransitionEvent interface

	7.10.11 Loading documents
	7.10.12 Unloading documents
	7.10.12.1 The BeforeUnloadEvent interface

	7.10.13 Aborting a document load
	7.10.14 The `X-Frame-Options` header

	7.11 Offline web applications
	7.11.1 Introduction
	7.11.1.1 Supporting offline caching for legacy applications
	7.11.1.2 Events summary

	7.11.2 Application caches
	7.11.3 The cache manifest syntax
	7.11.3.1 Some sample manifests
	7.11.3.2 Writing cache manifests
	7.11.3.3 Parsing cache manifests

	7.11.4 Downloading or updating an application cache
	7.11.5 The application cache selection algorithm
	7.11.6 Changes to the networking model
	7.11.7 Expiring application caches
	7.11.8 Disk space
	7.11.9 Security concerns with offline applications caches
	7.11.10 Application cache API
	7.11.11 Browser state

	8 Web application APIs
	8.1 Scripting
	8.1.1 Introduction
	8.1.2 Agents and agent clusters
	8.1.2.1 Integration with the JavaScript agent formalism
	8.1.2.2 Integration with the JavaScript agent cluster formalism

	8.1.3 Realms and their counterparts
	8.1.3.1 Environments
	8.1.3.2 Environment settings objects
	8.1.3.3 Realms, settings objects, and global objects
	8.1.3.3.1 Entry
	8.1.3.3.2 Incumbent
	8.1.3.3.3 Current
	8.1.3.3.4 Relevant

	8.1.3.4 Enabling and disabling scripting
	8.1.3.5 Secure contexts

	8.1.4 Script processing model
	8.1.4.1 Scripts
	8.1.4.2 Fetching scripts
	8.1.4.3 Creating scripts
	8.1.4.4 Calling scripts
	8.1.4.5 Killing scripts
	8.1.4.6 Runtime script errors
	8.1.4.7 Unhandled promise rejections

	8.1.5 JavaScript specification host hooks
	8.1.5.1 HostEnqueuePromiseJob(job, realm)
	8.1.5.2 HostEnsureCanCompileStrings(callerRealm, calleeRealm)
	8.1.5.3 HostPromiseRejectionTracker(promise, operation)
	8.1.5.4 Module-related host hooks
	8.1.5.4.1 HostGetImportMetaProperties(moduleRecord)
	8.1.5.4.2 HostImportModuleDynamically(referencingScriptOrModule, specifier, promiseCapability)
	8.1.5.4.3 HostResolveImportedModule(referencingScriptOrModule, specifier)

	8.1.6 Event loops
	8.1.6.1 Definitions
	8.1.6.2 Queuing tasks
	8.1.6.3 Processing model
	8.1.6.4 Generic task sources
	8.1.6.5 Dealing with the event loop from other specifications

	8.1.7 Events
	8.1.7.1 Event handlers
	8.1.7.2 Event handlers on elements, Document objects, and Window objects
	8.1.7.2.1 IDL definitions

	8.1.7.3 Event firing

	8.2 The WindowOrWorkerGlobalScope mixin
	8.3 Base64 utility methods
	8.4 Dynamic markup insertion
	8.4.1 Opening the input stream
	8.4.2 Closing the input stream
	8.4.3 document.write()
	8.4.4 document.writeln()

	8.5 DOM parsing
	8.6 Timers
	8.7 Microtask queuing
	8.8 User prompts
	8.8.1 Simple dialogs
	8.8.2 Printing

	8.9 System state and capabilities
	8.9.1 The Navigator object
	8.9.1.1 Client identification
	8.9.1.2 Language preferences
	8.9.1.3 Custom scheme handlers: the registerProtocolHandler() method
	8.9.1.3.1 Security and privacy

	8.9.1.4 Cookies
	8.9.1.5 Plugins

	8.10 Images
	8.11 Animation frames

	9 Communication
	9.1 The MessageEvent interface
	9.2 Server-sent events
	9.2.1 Introduction
	9.2.2 The EventSource interface
	9.2.3 Processing model
	9.2.4 Parsing an event stream
	9.2.5 Interpreting an event stream
	9.2.6 Authoring notes
	9.2.7 Connectionless push and other features
	9.2.8 Garbage collection
	9.2.9 Implementation advice

	9.3 Web sockets
	9.3.1 Introduction
	9.3.2 The WebSocket interface
	9.3.3 Feedback from the protocol
	9.3.4 Ping and Pong frames
	9.3.5 The CloseEvent interface
	9.3.6 Garbage collection

	9.4 Cross-document messaging
	9.4.1 Introduction
	9.4.2 Security
	9.4.2.1 Authors
	9.4.2.2 User agents

	9.4.3 Posting messages

	9.5 Channel messaging
	9.5.1 Introduction
	9.5.1.1 Examples
	9.5.1.2 Ports as the basis of an object-capability model on the web
	9.5.1.3 Ports as the basis of abstracting out service implementations

	9.5.2 Message channels
	9.5.3 Message ports
	9.5.4 Broadcasting to many ports
	9.5.5 Ports and garbage collection

	9.6 Broadcasting to other browsing contexts

	10 Web workers
	10.1 Introduction
	10.1.1 Scope
	10.1.2 Examples
	10.1.2.1 A background number-crunching worker
	10.1.2.2 Using a JavaScript module as a worker
	10.1.2.3 Shared workers introduction
	10.1.2.4 Shared state using a shared worker
	10.1.2.5 Delegation
	10.1.2.6 Providing libraries

	10.1.3 Tutorials
	10.1.3.1 Creating a dedicated worker
	10.1.3.2 Communicating with a dedicated worker
	10.1.3.3 Shared workers

	10.2 Infrastructure
	10.2.1 The global scope
	10.2.1.1 The WorkerGlobalScope common interface
	10.2.1.2 Dedicated workers and the DedicatedWorkerGlobalScope interface
	10.2.1.3 Shared workers and the SharedWorkerGlobalScope interface

	10.2.2 The event loop
	10.2.3 The worker's lifetime
	10.2.4 Processing model
	10.2.5 Runtime script errors
	10.2.6 Creating workers
	10.2.6.1 The AbstractWorker mixin
	10.2.6.2 Script settings for workers
	10.2.6.3 Dedicated workers and the Worker interface
	10.2.6.4 Shared workers and the SharedWorker interface

	10.2.7 Concurrent hardware capabilities

	10.3 APIs available to workers
	10.3.1 Importing scripts and libraries
	10.3.2 The WorkerNavigator interface
	10.3.3 The WorkerLocation interface

	11 Web storage
	11.1 Introduction
	11.2 The API
	11.2.1 The Storage interface
	11.2.2 The sessionStorage getter
	11.2.3 The localStorage getter
	11.2.4 The StorageEvent interface

	11.3 Privacy
	11.3.1 User tracking
	11.3.2 Sensitivity of data

	11.4 Security
	11.4.1 DNS spoofing attacks
	11.4.2 Cross-directory attacks
	11.4.3 Implementation risks

	12 The HTML syntax
	12.1 Writing HTML documents
	12.1.1 The DOCTYPE
	12.1.2 Elements
	12.1.2.1 Start tags
	12.1.2.2 End tags
	12.1.2.3 Attributes
	12.1.2.4 Optional tags
	12.1.2.5 Restrictions on content models
	12.1.2.6 Restrictions on the contents of raw text and escapable raw text elements

	12.1.3 Text
	12.1.3.1 Newlines

	12.1.4 Character references
	12.1.5 CDATA sections
	12.1.6 Comments

	12.2 Parsing HTML documents
	12.2.1 Overview of the parsing model
	12.2.2 Parse errors
	12.2.3 The input byte stream
	12.2.3.1 Parsing with a known character encoding
	12.2.3.2 Determining the character encoding
	12.2.3.3 Character encodings
	12.2.3.4 Changing the encoding while parsing
	12.2.3.5 Preprocessing the input stream

	12.2.4 Parse state
	12.2.4.1 The insertion mode
	12.2.4.2 The stack of open elements
	12.2.4.3 The list of active formatting elements
	12.2.4.4 The element pointers
	12.2.4.5 Other parsing state flags

	12.2.5 Tokenization
	12.2.5.1 Data state
	12.2.5.2 RCDATA state
	12.2.5.3 RAWTEXT state
	12.2.5.4 Script data state
	12.2.5.5 PLAINTEXT state
	12.2.5.6 Tag open state
	12.2.5.7 End tag open state
	12.2.5.8 Tag name state
	12.2.5.9 RCDATA less-than sign state
	12.2.5.10 RCDATA end tag open state
	12.2.5.11 RCDATA end tag name state
	12.2.5.12 RAWTEXT less-than sign state
	12.2.5.13 RAWTEXT end tag open state
	12.2.5.14 RAWTEXT end tag name state
	12.2.5.15 Script data less-than sign state
	12.2.5.16 Script data end tag open state
	12.2.5.17 Script data end tag name state
	12.2.5.18 Script data escape start state
	12.2.5.19 Script data escape start dash state
	12.2.5.20 Script data escaped state
	12.2.5.21 Script data escaped dash state
	12.2.5.22 Script data escaped dash dash state
	12.2.5.23 Script data escaped less-than sign state
	12.2.5.24 Script data escaped end tag open state
	12.2.5.25 Script data escaped end tag name state
	12.2.5.26 Script data double escape start state
	12.2.5.27 Script data double escaped state
	12.2.5.28 Script data double escaped dash state
	12.2.5.29 Script data double escaped dash dash state
	12.2.5.30 Script data double escaped less-than sign state
	12.2.5.31 Script data double escape end state
	12.2.5.32 Before attribute name state
	12.2.5.33 Attribute name state
	12.2.5.34 After attribute name state
	12.2.5.35 Before attribute value state
	12.2.5.36 Attribute value (double-quoted) state
	12.2.5.37 Attribute value (single-quoted) state
	12.2.5.38 Attribute value (unquoted) state
	12.2.5.39 After attribute value (quoted) state
	12.2.5.40 Self-closing start tag state
	12.2.5.41 Bogus comment state
	12.2.5.42 Markup declaration open state
	12.2.5.43 Comment start state
	12.2.5.44 Comment start dash state
	12.2.5.45 Comment state
	12.2.5.46 Comment less-than sign state
	12.2.5.47 Comment less-than sign bang state
	12.2.5.48 Comment less-than sign bang dash state
	12.2.5.49 Comment less-than sign bang dash dash state
	12.2.5.50 Comment end dash state
	12.2.5.51 Comment end state
	12.2.5.52 Comment end bang state
	12.2.5.53 DOCTYPE state
	12.2.5.54 Before DOCTYPE name state
	12.2.5.55 DOCTYPE name state
	12.2.5.56 After DOCTYPE name state
	12.2.5.57 After DOCTYPE public keyword state
	12.2.5.58 Before DOCTYPE public identifier state
	12.2.5.59 DOCTYPE public identifier (double-quoted) state
	12.2.5.60 DOCTYPE public identifier (single-quoted) state
	12.2.5.61 After DOCTYPE public identifier state
	12.2.5.62 Between DOCTYPE public and system identifiers state
	12.2.5.63 After DOCTYPE system keyword state
	12.2.5.64 Before DOCTYPE system identifier state
	12.2.5.65 DOCTYPE system identifier (double-quoted) state
	12.2.5.66 DOCTYPE system identifier (single-quoted) state
	12.2.5.67 After DOCTYPE system identifier state
	12.2.5.68 Bogus DOCTYPE state
	12.2.5.69 CDATA section state
	12.2.5.70 CDATA section bracket state
	12.2.5.71 CDATA section end state
	12.2.5.72 Character reference state
	12.2.5.73 Named character reference state
	12.2.5.74 Ambiguous ampersand state
	12.2.5.75 Numeric character reference state
	12.2.5.76 Hexadecimal character reference start state
	12.2.5.77 Decimal character reference start state
	12.2.5.78 Hexadecimal character reference state
	12.2.5.79 Decimal character reference state
	12.2.5.80 Numeric character reference end state

	12.2.6 Tree construction
	12.2.6.1 Creating and inserting nodes
	12.2.6.2 Parsing elements that contain only text
	12.2.6.3 Closing elements that have implied end tags
	12.2.6.4 The rules for parsing tokens in HTML content
	12.2.6.4.1 The "initial" insertion mode
	12.2.6.4.2 The "before html" insertion mode
	12.2.6.4.3 The "before head" insertion mode
	12.2.6.4.4 The "in head" insertion mode
	12.2.6.4.5 The "in head noscript" insertion mode
	12.2.6.4.6 The "after head" insertion mode
	12.2.6.4.7 The "in body" insertion mode
	12.2.6.4.8 The "text" insertion mode
	12.2.6.4.9 The "in table" insertion mode
	12.2.6.4.10 The "in table text" insertion mode
	12.2.6.4.11 The "in caption" insertion mode
	12.2.6.4.12 The "in column group" insertion mode
	12.2.6.4.13 The "in table body" insertion mode
	12.2.6.4.14 The "in row" insertion mode
	12.2.6.4.15 The "in cell" insertion mode
	12.2.6.4.16 The "in select" insertion mode
	12.2.6.4.17 The "in select in table" insertion mode
	12.2.6.4.18 The "in template" insertion mode
	12.2.6.4.19 The "after body" insertion mode
	12.2.6.4.20 The "in frameset" insertion mode
	12.2.6.4.21 The "after frameset" insertion mode
	12.2.6.4.22 The "after after body" insertion mode
	12.2.6.4.23 The "after after frameset" insertion mode

	12.2.6.5 The rules for parsing tokens in foreign content

	12.2.7 The end
	12.2.8 Coercing an HTML DOM into an infoset
	12.2.9 An introduction to error handling and strange cases in the parser
	12.2.9.1 Misnested tags: <i></i>
	12.2.9.2 Misnested tags: <p></p>
	12.2.9.3 Unexpected markup in tables
	12.2.9.4 Scripts that modify the page as it is being parsed
	12.2.9.5 The execution of scripts that are moving across multiple documents
	12.2.9.6 Unclosed formatting elements

	12.3 Serializing HTML fragments
	12.4 Parsing HTML fragments
	12.5 Named character references

	13 The XML syntax
	13.1 Writing documents in the XML syntax
	13.2 Parsing XML documents
	13.3 Serializing XML fragments
	13.4 Parsing XML fragments

	14 Rendering
	14.1 Introduction
	14.2 The CSS user agent style sheet and presentational hints
	14.3 Non-replaced elements
	14.3.1 Hidden elements
	14.3.2 The page
	14.3.3 Flow content
	14.3.4 Phrasing content
	14.3.5 Bidirectional text
	14.3.6 Quotes
	14.3.7 Sections and headings
	14.3.8 Lists
	14.3.9 Tables
	14.3.10 Margin collapsing quirks
	14.3.11 Form controls
	14.3.12 The hr element
	14.3.13 The fieldset and legend elements

	14.4 Replaced elements
	14.4.1 Embedded content
	14.4.2 Images
	14.4.3 Attributes for embedded content and images
	14.4.4 Image maps

	14.5 Widgets
	14.5.1 Introduction
	14.5.2 Button layout
	14.5.3 The button element
	14.5.4 The details and summary elements
	14.5.5 The input element as a text entry widget
	14.5.6 The input element as domain-specific widgets
	14.5.7 The input element as a range control
	14.5.8 The input element as a color well
	14.5.9 The input element as a checkbox and radio button widgets
	14.5.10 The input element as a file upload control
	14.5.11 The input element as a button
	14.5.12 The marquee element
	14.5.13 The meter element
	14.5.14 The progress element
	14.5.15 The select element
	14.5.16 The textarea element

	14.6 Frames and framesets
	14.7 Interactive media
	14.7.1 Links, forms, and navigation
	14.7.2 The title attribute
	14.7.3 Editing hosts
	14.7.4 Text rendered in native user interfaces

	14.8 Print media
	14.9 Unstyled XML documents

	15 Obsolete features
	15.1 Obsolete but conforming features
	15.1.1 Warnings for obsolete but conforming features

	15.2 Non-conforming features
	15.3 Requirements for implementations
	15.3.1 The marquee element
	15.3.2 Frames
	15.3.3 Other elements, attributes and APIs

	16 IANA considerations
	16.1 text/html
	16.2 multipart/x-mixed-replace
	16.3 application/xhtml+xml
	16.4 text/cache-manifest
	16.5 text/ping
	16.6 application/microdata+json
	16.7 text/event-stream
	16.8 `Cross-Origin-Embedder-Policy`
	16.9 `Cross-Origin-Embedder-Policy-Report-Only`
	16.10 `Cross-Origin-Opener-Policy`
	16.11 `Origin-Isolation`
	16.12 `Ping-From`
	16.13 `Ping-To`
	16.14 `Refresh`
	16.15 `Last-Event-ID`
	16.16 `X-Frame-Options`
	16.17 web+ scheme prefix

	Index
	Elements
	Element content categories
	Attributes
	Element Interfaces
	All Interfaces
	Events
	MIME Types

	References
	Acknowledgments
	Intellectual property rights

