
MAY 1969 ROCKET TRAJECTORY OPTIMIZATION 881

The transversality condition associated with the unspecified
final tune variation dt/ is

_7 >\2 T>f c)2P'
fit.

(dxif

(5a, + Sty) + -r/ (50/ +

-y^- &/ + Z/5fy = 0 (27)

Except for the last term, which corresponds to the constraint
Eq. (13), Eq. (27) is a linearization of the transversality
condition

• + Hf = 0 (28)

The first-order necessary condition corresponding to a
switch between thrust levels at time t, is

(H- - #+),- = ]im[H(tj - e) - Hfa + e)] = 0
e^O

; = 1,2 (29)
Equation (29) is equivalent to the vanishing of the "switching
function77 dH/dT. The corresponding necessary condition
for the accessory problem is a linearization of Eq. (29) plus a
"gradient term/7 corrsponding to the step-size constraint
[Eq. (11) or (12)]:

(H- - d(H- - t = 0 (30)

In the refinement process described in Ref. 1, terminal con-
ditions for the accessory problem consist of linearized versions
of the terminal conditions [Eqs. (19) to (23)] and the linear-
ized version of the transversality condition

= 0 (31)
corresponding to freedom of position along the terminal cir-
cular orbit.

At thrust switching times other than rocket staging .times,
the state variables are continuous, and considerations arising
in the classical analysis of "corners" apply. These considera-
tions lead to continuity of the multiplier variables. The
total variations of state and adjoint variables on each side of
a switching time tj must then be equal:

(AXr -

(8xt- +
(5Xr +

j) = 0 (32)

y) = 0 (33)

These equations imply jump discontinuities in the velocity
and mass variations dp, dv, 8w, and dm at the switching times
and imply a discontinuity in the adjoint-variable variation
d\m determined by these equations.

Analytical Treatment of Coasting Arcs

Solutions of the two-body central force problem, the
corresponding adjoint, and the transition matrices for state
and adjoint variations are computed in closed form in Car-
tesian coordinates, in terms of universal variables (i.e., vari-
ables suitable for elliptic, parabolic, and hyperbolic orbits).
The state vector at time t may be expressed in terms of the
state at some epoch time £0 by means of the classical / and
g series defined in Eqs. (37-40), and the first and second
partial derivatives of the state with respect to the initial
state components may be found. It is necessary, as a
preliminary step, to obtain the generalized eccentric anomaly
ft, which is the independent variable of the series expansion.

The universal variables arise from a transformation of
coordinates which removes the second-order singularity that
occurs in the two-body equations at the center of attraction.

The generalized eccentric anomaly ft is defined implicitly by

d/dft = (r//i)(d/ett) (34)
where r is the magnitude of the position vector, ju is the
gravitational constant, and ft is assumed zero at the epoch
time to. In the case of elliptic orbits, ft is al/2(E — E0), in
which a is the semimajor axis, and E is the eccentric anomaly.

The universal variables are transcendental functions de-
fined by the series

(35)(n

where a2 = ft*/a = ~7/32, 7 = -I/a = F0
2/M - 2/r0, and

V is the magnitude of the velocity vector. Thus, these Gn
are expansions in /32 which must be truncated for computation.

The anomaly ft is the solution of the generalized Kepler
equation

M r0(?i (36)

where M = ^I2(t - t0) and do = R-V. The algorithm used
computationally for the solution of this equation is Newton-
Raphson iteration.

The / and g representation coefficients are

/ = 1 - GVr0

= (t - «o) - GV/i1'2 = (M
/ = - M1/2£i/n-0

g = 1 - G,/r

(37)

(38)
(39)

(40)
The state at time t is expressed in terms of Xi(t0), /, g,f, and g
by

The development used originally4 was restricted to elliptic
orbits, but has been superseded by the universal variable
development sketched here and reported in detail in Refs. 2
and 5. Closed-form expressions for the X;, 8xi, and 8\t, bridg-
ing the coast, are given in Refs. 2 and 5.

Choice of the Weighting Functions ka and ke

A necessary condition for the existence of a minimum of
the function given by Eq. (8), subject to the constraints
previously discussed, is that the matrix

da2

oao6 +

(43)

be positive semidefinite, which corresponds to the existence
of a minimum of the function h(8a,dd) given by Eq. (18).
Although this is necessary, it is by no means sufficient, since
the existence of a minimum for the quadratic-linear varia-
tional problem only could be guaranteed by the satisfaction
of a strengthened Jacobi-like condition appropriate to a
variational problem including control parameters. In
general, such a condition would require, indirectly, that the
step-size control parameters laka > 0, leke > 0, li > 0,
Z2 > 0, and I/ > 0 be "sufficiently large." For very large
values of these quantities, it can be shown that the penalty-
function version of the successive approximation process
becomes a gradient process, and hence that convergence is
assured, in the sense that a direction of decreasing Pf is
found. Strictly speaking, the suitability of choice of the
constraint multipliers at each step of the successive approxi-
mation process could be verified only by performing, compu-
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