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The transversality condition associated with the unspecified
final time variation 8t is
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Except for the last term, which corresponds to the constraint
Eq. (13), Eq. (27) is a linearization of the transversality
condition
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The first-order necessary condition corresponding to a
switch between thrust levels at time ¢; 1s
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Equation (29) is equivalent to the vanishing of the “‘switching
function” OH/OT. The corresponding necessary condition
for the accessory problem is a linearization of Eq. (29) plus a
‘“gradient term,” corrsponding to the step-size constraint
[Eq. (11) or (12)]:
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In the refinement process described in Ref. 1, terminal con-
ditions for the accessory problem consist of linearized versions
of the terminal conditions [Egs. (19) to (23)] and the linear-
ized version of the transversality condition

()\4y + )\11) — )\521 - kzu)gf =0 (31)

corresponding to freedom of position along the terminal cir-
cular orbit.

At thrust switching times other than rocket staging times,
the state variables are continuous, and considerations arising
in the classical analysis of “‘corners’” apply. These considera-
tions lead to continuity of the multiplier variables. The
total variations of state and adjoint variables on each side of
a switching time ¢; must then be equal:
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These equations imply jump discontinuities in the velocity
and mass variations du, v, dw, and ém at the switching times
and imply a discontinuity in the adjoint-variable variation
O\, determined by these equations.

Analytical Treatment of Coasting Ares

Solutions of the two-body central force problem, the
corresponding adjoint, and the transition matrices for state
and adjoint variations are computed in closed form in Car-
tesian coordinates, in terms of universal variables (i.e., vari-
ables suitable for elliptic, parabolic, and hyperbolic orbits).
The state vector at time ¢t may be expressed in terms of the
state at some epoch time f, by means of the classical f and
g series defined in Eqs. (37-40), and the first and second
partial derivatives of the state with respect to the initial
state components may be found. It is necessary, as a
prehmlnary step, to obtain the generalized eccentric anomaly
B, which is the independent variable of the series expansion.

The universal variables arise from a transformation of
coordinates which removes the second-order singularity that
oceurs in the two-body equations at the center of attraction.
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The generalized eccentric anomaly 8 is defined implicitly by
a/dB = (r/u)(d/di) (34)

where r is the magnitude of the position vector, x is the
gravitational constant, and B is assumed zero at the epoch
time #. In the case of elliptic orbits, 8 is aV*(E — E,), in
which a is the semimajor axis, and E is the eccentric anomaly.
The universal variables are transcendental functions de-
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where «? = 8%/a = —vB% v = —1/a = V¢2/u — 2/r, and
V is the magnitude of the velocity vector. Thus, these G,
are expansions in 4% which must be truncated for computation.

The anomaly B is the solution of the generalized Kepler
equation

M = G5+ roGh + (do/ 1) Go (36)

where M = pV%(t — fo) and dy = RB-V. The algorithm used
computationally for the solution of this equation is Newton-
Raphson iteration.

The f and ¢ representation coefficients are
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The state at time ? is expressed in terms of z;(t), f, g, f,. and ¢
by
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The development used originally* was restricted to elliptic
orbits, but has been superseded by the universal variable
development sketched here and reported in detail in Refs. 2
and 5. Closed-form expressions for the \;, 6x;, and 6\, bridg-
ing the coast, are given in Refs. 2 and 5.

Choice of the Weighting Functions k, and k,

A necessary condition for the existence of a minimum of
the function given by Eq. (8), subject to the constraints
previously discussed, is that the matrix
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be positive semidefinite, which corresponds to the existence
of a minimum of the function 2(6c,68) given by Eq. (18).
Although this is necessary, it is by no means sufficient, since
the existence of a minimum for the quadratic-linear varia-
tional problem only could be guaranteed by the satisfaction
of a strengthened Jacobi-like condition appropriate to a
variational problem including control parameters. In
general, such a condition would require, indirectly, that the
step-size control parameters lke > 0, Like > 0, I; > 0,
I, > 0, and [ > 0 be “sufficiently large.” For very large
values of these quantities, it can be shown that the penalty-
function version of the successive approximation process
becomes a gradient process, and hence that convergence is
assured, in the sense that a direction of decreasing P’ is
found. Strictly speaking, the suitability of choice of the
constraint multipliers at each step of the successive approxi-
mation process could be verified only by performing, compu-



