POC :
https://ghostscript.com/pipermail/gs-commits/
Setep 1 : Download any zip file
Setp 2 : open and you will get exact file path in server

[image:]
image1.emf
2001-February.txt.gz

2001-February.txt.gz
2001-February.txt

Hi,

I have an updated version of the uniprint driver (gdevupd.c) that
contains an additional driver for the epson stylus color 300 from
me and some compilation warning fixes from Gunther Hess, the
original author of uniprint. It has been available to users of
this printer from my web page for about 8 months and seems to be
working OK.

At my suggestion Gunther has agreed that it probably should be
included in the main distribution and that I should do it. Would
someone please let me know how I go about getting it included in
the test release?

I couldn't find many clues about how to submit the code either on
the sourceforge page or on ghostscript.com.

Thanks
g

--
Glenn Ramsey
glennr@es.co.nz

 Apologies for the delay, but I've just had a chance to look over
the various proposals and discussion for dynamically loadable drivers
for Ghostscript. I was pleased to see that the two draft
implementations are not that far apart. I think that by combining the
best of the two, with a few more additions, we can do an excellent
implementation that meets most or all of the original goals. In this
note, I'll try to sketch out what I liked and didn't like from each of
the proposals, as well as some more thoughts.

 The version identification from Iain's code looks pretty good.
However, I am not fond of naming the .so (or .dll) files after the
driver. For one, it seems to restrict drivers to providing a single
device per .so file. What I'd rather do is have each driver return a
list of devices it provides, using a similar calling convention as
gs_lib_device_list in gconf.c.

 It also seems to me that it would be cleanest to have a single
identifier for the "init" call, for all driver .so files, something
like gs_dynamic_driver_init(). As far as I can tell, since the files
will be opened with dlopen(), LoadLibrary(), or the equivalent, the
resulting "collisions" won't cause any problems, even if multiple
drivers are loaded at the same time. In fact, it seems to me quite
consistent with the _init() convention of dlopen() itself. The
implementation of this function should simply be #ifdef'd out in the
case of static compilation.

 Now we get to a tricky issue: avoiding loading lots of .so files
when many are available. This isn't in the original list of
requirements, but I believe it's important. One can easily expect
installations with dozens or even hundreds of drivers. Dynamically
loading all of them on each Ghostscript startup could be quite
painful. At the same time, I am very reluctant to add to the
complexity of the installation process, or to provide fun and
interesting new failure modes when config files get out of sync with
the actual state of the system.

 Thus, I propose that Ghostscript follows the semantics of scanning
all directories in a dynamic driver path (set by environment variable,
and with a sensible default) for the presence of driver .so files.
These directories also contain a "cache" file with enough information
to build the devicedict without actually loading the drivers. Each
entry in the cache should contain a file name, modification time and
file size info from a stat() call, and a list of the driver names
supplied. Ghostscript then scans the directory using the existing file
enumeration mechanism, compares the stat info against what's in the
cache, loads any drivers that do not match, and discards any cache
entries for which the driver file does not exist.

 I envision the primary source of the cache file to be a read-only
file installed at the same time as the drivers themselves. I'm willing
to consider automatically writing updates to user-specific permanent
writable storage (ie, ~/.gs/driver-cache), but am not convinced it's
worth the extra complexity.

 This approach has the following desirable characteristics:

* No needless dlopens in the common case where the cache file is up to
 date.

* A new driver can be installed simply by placing the .so file in any
 directory in the path, without needing to modify any config files.

* If the cache file is deleted, corrupted, or becomes stale, behavior
 is still correct, just slower.

 This proposal is based on the pluginrc mechanism of the Gimp. The
Gimp relies on user-specific storage rather than a read-only file. One
consequence is a noticeably slow startup the first time the user loads
the application, which is avoided by my proposal.

 I'd like to see the scanning and collating of devices done entirely
in C, building a devicedict essentially identical to what's in
Ghostscript now. I'm willing to accept either a stub device that loads
the real device when opened, or alternatively a hook in copydevice
that loads the device in the case that it's dynamic. The latter seems
cleaner and simpler to me, but I'm open to argument.

 A few more details: Sidney's dlopen code covers more targets than
Iain's, which is good. On the other hand, it relies too heavily on
#ifdefs. I'd rather see the code divided into gp_*.c, with #ifdefs for
the various flavors within a file (ie, elf and a.out within
gp_unix.c). I believe the gmodule component of glib will be an
excellent source of information on making dynamic loading work on a
wide variety of target platforms.

 The formatting and indentation of Sidney's code is not consistent
with Ghostscript standards (nor with itself). Among other things, this
gives a bad impression. To get accepted, a patch will have to have
neat, clean formatting.

 From what I can tell, Ghostscript will need to be linked with
-export-dynamic or its non-Linux (non-ELF, actually, I think)
equivalent. Otherwise, drivers won't be able to call into Ghostscript
as needed. I have no idea whether this option is available on all
interesting target systems.

 Comments and discussion welcome, and working code even more so.

Raph

Raph wrote:

> From what I can tell, Ghostscript will need to be linked with
> -export-dynamic or its non-Linux (non-ELF, actually, I think)
> equivalent. Otherwise, drivers won't be able to call into Ghostscript
> as needed. I have no idea whether this option is available on all
> interesting target systems.

On Windows you would have to build the Ghostscript DLL first, then
each driver would need to link against the .lib file. Any function
you wish to call in Ghostscript would need to be marked as exported,
preferable by using the Microsoft specific __declspec(dllexport).
There appears to be no way (in Visual C++ 5) to specify "export all".

I think we need to make sure that both Ghostscript and the driver are
using the same C run time library. At present Ghostscript is
statically linked with the C run time library. Changing to dymamic
linking will require changes to the install program to make sure the
CRTL DLL is installed.

While these dynamic driver loading is being considered, one change I
would like is to change each driver from writing directly to a file
and instead call a single Ghostscript function for writing printer
output. Within Ghostscript this might write to a file or it might
write directly to the spooler. In Windows and OS/2, there are
specific functions that write to the spooler - it is not a normal
file. At present Ghostscript writes to a temporary file (possibly
huge) which then gets copied to the spooler, which doubles the amount
of disk space required. If we do this, then the issue of the driver
using the same run time library as Ghostscript becomes less important
because the driver would not need to write to a file. This is a major
change because it would affect every driver in Ghostscript.

Russell Lang, Ghostgum Software Pty Ltd
gsview@ghostgum.com.au

Raph wrote :
Subject: Dynamic driver loading

> A few more details: Sidney's dlopen code covers more targets than
> Iain's, which is good. On the other hand, it relies too heavily on
> #ifdefs. I'd rather see the code divided into gp_*.c, with #ifdefs for
> the various flavors within a file (ie, elf and a.out within
> gp_unix.c). I believe the gmodule component of glib will be an
> excellent source of information on making dynamic loading work on a
> wide variety of target platforms.
>
I don't have all the built platforms of Ghostcript ...
I try to put the code in a one file. But we can do differently. Put a code
for a specific platform (gp_*.c) , it will be different, dependent the
facilities of the platform.
We have one point of beginning ... Perhaps it will better to use libtools ?

> The formatting and indentation of Sidney's code is not consistent
> with Ghostscript standards (nor with itself). Among other things, this
> gives a bad impression. To get accepted, a patch will have to have
> neat, clean formatting.
>

This code to be improved, it's an alpha code to show it will be possible to
do it :)
I 'am conscious it is not a perfect code and it have somme lack functions
like versionning,
emumerations of driver. I modify the postscript code and not implement the
install the code to be functionnal ...
(Are you a little maniac or too perfectionist ?)
I a not a real computer scientist, not known about all the rules for
programming, and organising code. There is more big difficulties to resolve
I think.
The best for us is to a precise idea of what we want to do and how to do it.
I don't have enough knowledge of the internal mecanisms of ghostscript and
how to do for the best. I'am convinced we need the best of ian's code and
mine to reach our goals. I don't have THE SOLUTION.

To be continued.

On Thu, 1 Feb 2001, Raph Levien wrote:

 Could it be disclosed whether GNU GS to be released soon will have dynamic
driver loading or it will be present only in GNU GS coming after upcoming GNU
GS?

 Thanks,

> Apologies for the delay, but I've just had a chance to look over
> the various proposals and discussion for dynamically loadable drivers
> for Ghostscript. I was pleased to see that the two draft
> implementations are not that far apart. I think that by combining the
> best of the two, with a few more additions, we can do an excellent
> implementation that meets most or all of the original goals. In this
> note, I'll try to sketch out what I liked and didn't like from each of
> the proposals, as well as some more thoughts.

 Best regards,
 -Vlad

On Thu, Feb 01, 2001 at 01:22:21PM +0100, LOUIS-SIDNEY Rodolphe wrote:
> I don't have all the built platforms of Ghostcript ...
> I try to put the code in a one file. But we can do differently. Put a code
> for a specific platform (gp_*.c) , it will be different, dependent the
> facilities of the platform.
> We have one point of beginning ... Perhaps it will better to use libtools ?

I don't think so. Libtool is complex and messy, and generally only supports
Unix systems. So we certainly won't be relying on it.

It's _possible_ we'll be using autoconf as an optional, parallel build
system for Unix. This will be useful for checking the existence of
dlopen() and related calls, as is currently done in glib, a good
reference for a dynamic module loading facility.

> > The formatting and indentation of Sidney's code is not consistent
> > with Ghostscript standards (nor with itself). Among other things, this
> > gives a bad impression. To get accepted, a patch will have to have
> > neat, clean formatting.
> >
>
> This code to be improved, it's an alpha code to show it will be possible to
> do it :)
> I 'am conscious it is not a perfect code and it have somme lack functions
> like versionning,
> emumerations of driver. I modify the postscript code and not implement the
> install the code to be functionnal ...
> (Are you a little maniac or too perfectionist ?)

Yes, I am afraid that I am a bit of a perfectionist when it comes to
fundamental changes in the Ghostscript core code. There is a lot that
can go wrong here, and I don't want to make any more users unhappy than
absolutely necessary.

Peter has also been quite a perfectionist in terms of accepting patches
into Ghostscript, but in somewhat different ways than myself.

> I a not a real computer scientist, not known about all the rules for
> programming, and organising code. There is more big difficulties to resolve
> I think.
> The best for us is to a precise idea of what we want to do and how to do it.
> I don't have enough knowledge of the internal mecanisms of ghostscript and
> how to do for the best. I'am convinced we need the best of ian's code and
> mine to reach our goals. I don't have THE SOLUTION.

Sure, that's why we're discussing it now. Thanks very much for your
original code and all the followup discussion - it's been very helpful
in moving this project along. I think the best thing is for the discussion
here to result in constructive criticism, and refine the design and
implementation until we're all happy with it.

Take care,

Raph

On Thu, Feb 01, 2001 at 05:42:18PM +0400, Vlad Harchev wrote:
> On Thu, 1 Feb 2001, Raph Levien wrote:
>
> Could it be disclosed whether GNU GS to be released soon will have dynamic
> driver loading or it will be present only in GNU GS coming after upcoming GNU
> GS?

Our current plans are to develop the dynamic loading only in the 7.0
release, which will be released (hopefully in April) under the AFPL
license, then under a GPL license about a year later.

I'm certainly not planning to do the work to retrofit the 6.5x series
to support dynamic loading, but if somebody else wants to, that will
be fine. The latest 6.5x release will be re-released under GPL at
the same time that 7.0 ships.

Hope this answers your questions,

Raph

On Thu, Feb 01, 2001 at 05:56:54PM +1300, Glenn Ramsey wrote:
> Hi,
>
> I have an updated version of the uniprint driver (gdevupd.c) that
> contains an additional driver for the epson stylus color 300 from
> me and some compilation warning fixes from Gunther Hess, the
> original author of uniprint. It has been available to users of
> this printer from my web page for about 8 months and seems to be
> working OK.
>
> At my suggestion Gunther has agreed that it probably should be
> included in the main distribution and that I should do it. Would
> someone please let me know how I go about getting it included in
> the test release?
>
> I couldn't find many clues about how to submit the code either on
> the sourceforge page or on ghostscript.com.

Hi Glenn,

 Sorry for not responding earlier - I'm trying to work through my
backlog after a couple of consecutive trips.

 I'm very pleased that you are taking the initiative to maintain
the Uniprint driver. I'll look at the code you posted to gs-code-
review (which is, by the way, the Right Way to submit new code to
Ghostscript) and then commit it. If you'd like, I can also add you to
the CVS commit list on SourceForge so you can keep the code up to
date without having to wait for someone to do the commit.

Thanks again,

Raph

On Thu, 1 Feb 2001, Raph Levien wrote:

> On Thu, Feb 01, 2001 at 05:42:18PM +0400, Vlad Harchev wrote:
> > On Thu, 1 Feb 2001, Raph Levien wrote:
> >
> > Could it be disclosed whether GNU GS to be released soon will have dynamic
> > driver loading or it will be present only in GNU GS coming after upcoming GNU
> > GS?
>
> Our current plans are to develop the dynamic loading only in the 7.0
> release, which will be released (hopefully in April) under the AFPL
> license, then under a GPL license about a year later.
>
> I'm certainly not planning to do the work to retrofit the 6.5x series
> to support dynamic loading, but if somebody else wants to, that will
> be fine. The latest 6.5x release will be re-released under GPL at
> the same time that 7.0 ships.

 Thank you for the precise answer again.
 Just curious: how difficult it would be to backport dynamic driver loading
from GS 7.x to 6.5x? Are there any serious architectural differencies between
these branches that make backporting very difficult? Would it be allowed to
stick a GPL on the GNU GS 6.5x with dynamic driver loading backported?

 Thanks,

 Best regards,
 -Vlad

> Hope this answers your questions,
>
> Raph
>

Raph mentioned recently that he'd come around somewhat on the issue of
maintaining parallel build systems. We already more-or-less do this for
MacOS, and I'd like to get those files into mainline cvs. And as I've
said before, I think an autoconf build will help us a great deal with the
open source community. I imagine some of our users might appreciate MSVC
project files as well.

My question is where do we want to put all of this. I'd suggest a couple
of alternatives:

We could have platform-specific directories at the toplevel. 'macos/',
'autotools/', 'make/', 'win32/'. To me this makes more sense if there are
few platforms (not us!) and/or a number of platform-specific source files
you don't want clutting 'src/'.

Alternatively we could hide it all in a 'build/' directory, with or
without arch subdirs within it.

Thoughts? Feelings? Alternate suggestions?

 -ralph

Dear All,

I am writing a VB5 program to batch convert PS files to TIFF images for
faxing.

I have two problems (that I know of):

1 For a limited application such as this, what should be in the
CallBack function? At the moment it is a stub that does nothing at all.

2 The executable grows by 30->70k each time a PS file is converted, am
I calling the gsdll_* functions correctly? I have read the DLL
documentation supplied with GS and *think* I am.... The code that calls
the dll functions is below. I would appreciate comments or suggestions
from anyone, particularly anyone who has used gsdll_* from VB. As far
as I can tell the leak occurs when I convert the PS file (code below)
but I am not convinced as yet.

My environment is:

NT4 SP5
VB5 SP3
GS6.5

Regards

Mike

Mike Lacey
Open Systems, Witham St Hughs.
+44 (0)7785 327 710 (mobile)
+44 (0)1522 556 243 (direct line)
+44 (0)1522 556 100 (switchboard)
www.tek-tips.com - Support for I.T. Professionals

' GhostScript function declarations
Private Declare Function gsdll_revision Lib "gsdll32.dll" (_
 lpString As String, _
 lpString As String, _
 gsrev As Long, _
 gsdate As Long _
) As Integer

Private Declare Function gsdll_init Lib "gsdll32.dll" (_
 ByVal lpGsBack As Any, _
 ByVal hwnd As Long, _
 ByVal argc As Long, _
 argv As Long _
) As Integer

Private Declare Function gsdll_execute_begin Lib "gsdll32.dll" () As
Integer

Private Declare Function gsdll_execute_cont Lib "gsdll32.dll" (_
 ByVal pscommand As String, _
 ByVal commlen As Long _
) As Integer

Private Declare Function gsdll_execute_end Lib "gsdll32.dll" () As
Integer

Private Declare Function gsdll_exit Lib "gsdll32.dll" () As Integer

this code is called for each PS file converted.

 llaArgV(0) = agGetAddressForObject&(Argv0(0))
 llaArgV(1) = agGetAddressForObject&(Argv1(0))
 llaArgV(2) = agGetAddressForObject&(Argv2(0))
 llaArgV(3) = agGetAddressForObject&(Argv3(0))
 llaArgV(4) = agGetAddressForObject&(Argv4(0))
 llaArgV(5) = agGetAddressForObject&(Argv5(0))
 llaArgV(6) = agGetAddressForObject&(Argv6(0))
 llaArgV(7) = agGetAddressForObject&(Argv7(0))
 llaArgV(8) = agGetAddressForObject&(Argv8(0))

 ' rcode = gsdll_revision(vbNullString, vbNullString, 0, 0)
 rcode = gsdll_init(AddressOf Callback, frmAutoFax.hwnd, 8,
llaArgV(0))
 initret = rcode
 rcode = gsdll_execute_begin()
 rcode = gsdll_execute_end()
 rcode = gsdll_exit()

> I am writing a VB5 program to batch convert PS files to TIFF images for
> faxing.
>
> I have two problems (that I know of):
>
> 1 For a limited application such as this, what should be in the
> CallBack function? At the moment it is a stub that does nothing at all.

Nothing is OK, provided that you have set the calling convention
correctly and return 0. The callback function uses the C calling
convention, not WINAPI/__stdcall. If you get this wrong, you will
get stack overflow or corruption.

I recommend handling stdout in the callback function, so you can see
Ghostscript error messages.

> 2 The executable grows by 30->70k each time a PS file is converted, am
> I calling the gsdll_* functions correctly?

It looks correct, but I have never programmed VB.
When you call gsdll_exit(), Ghostscript should release all memory it
allocated. If it doesn't, this is a bug.

> The code that calls
> the dll functions is below. I would appreciate comments or suggestions
> from anyone, particularly anyone who has used gsdll_* from VB. As far
> as I can tell the leak occurs when I convert the PS file (code below)
> but I am not convinced as yet.

Please let me know when you have more information about the memory
leak problem. When you have got it working, I would appreciate being
able to redistribute some example code showing how to call the DLL.

Note that the DLL interface is likely to changed within the next
month. The old one will still be present for a while, but don't
expect it to still be there in 2 years.

Russell Lang gsview@ghostgum.com.au
Ghostgum Software Pty Ltd http://www.ghostgum.com.au/

On Wed, Feb 21, 2001 at 11:39:14PM -0800, ghostscript cvs wrote:

> Updates Changes.htm and History6.htm files in preparation for 6.61 release.

Any further thoughts on how we should handle the changelogs? I never
felt the issues around my suggested patch to cvs2hist were resolved.

Hope you're not doing it by hand still!

 -r

On Wed, Feb 21, 2001 at 11:57:32PM -0800, Ralph Giles wrote:
> On Wed, Feb 21, 2001 at 11:39:14PM -0800, ghostscript cvs wrote:
>
> > Updates Changes.htm and History6.htm files in preparation for 6.61 release.
>
> Any further thoughts on how we should handle the changelogs? I never
> felt the issues around my suggested patch to cvs2hist were resolved.
>
> Hope you're not doing it by hand still!

Actually, I just ran the current cvs2hist.py, and, based on a scan of
the resulting Changes.htm file, it seemed to work fine. I may have
overlooked something, in which case I'm sure I'll hear about it soon :).

In any case, I've put up a candidate 6.61 source release at:
ftp://ftp.cs.wisc.edu:/pub/ghost/aladdin/test/

I'm going to sleep now, and will announce it tomorrow morning (assuming
it doesn't catch fire overnight).

Raph

Hi...

Not sure where to post this but would like instructions on
how to get the special character bullet � to display.

Thanks!

Dear Mr. Jankowski,

This mailing list is to discuss advanced problems in AFPL
Ghostscript development. General questions about PostScript
programming should be posted to comp.lang.postscript

The following program shows the bullet character using
2 common methods. See PostScript Language Reference Manual
for details. See also PDF spec for the glyph table of
ZapfDingbats.

Basically, you need to load the right font and select the right
glyph. "show" uses the encoding vector. "glyphshow" uses the
glyph name.

Regards,
Alex Cherepanov

%!
/ZapfDingbats findfont 30 scalefont setfont
100 400 moveto (\154) show
100 200 moveto /a71 glyphshow
showpage

----- Original Message -----
From: Richard C. Jankowski <aspen@bigplanet.com>
To: <gs-devel@ghostscript.com>
Sent: Thursday, 22 February, 2001 13:48
Subject: [Gs-devel] Special Character... Bullet

> Not sure where to post this but would like instructions on
> how to get the special character bullet � to display.

Hi Ghostscript developers,

 The 7.0 release is currently scheduled for April 8, 2001, so that we
have it ready for Seybold Boston. In order to allow sufficient time for
testing and bug fixing in the beta period, we're going to have a freeze
on March 1. Any new feature for which there is not working code will
not make it into the 7.0 release.

 I realize this is pretty short notice. For the case of dynamically
loadable drivers, I consider the proposals by Graham and Rodolphe to
be _almost_ working code for the purposes of the freeze. If either
party (or anyone else) started moving forward now to incorporate the
latest round of comments into the code, and was also willing to commit
to having it done by the April release date, I'd let it in under the
freeze.

 Other than that, I'm not aware of any projects from the community
that are directly impacted by this freeze. The Epson driver updates I
got from Glenn Ramsey and Gunther Hess will certainly make it. By all
means, let me know if you have further driver updates that you'd like
to see in 7.0.

 Incidentally, one of the improvements that we're very likely to see
in 7.0 is enhancements to the X drivers, work done so far by Ray
Johnston. The main thing is avoiding image put operations for the
initial clearing of the page. The goal is for untouched white areas to
not be drawn at all.

 The current heuristic for determining which areas of the screen to
update has a number of performance problems, sensitive to the tunable
parameters MaxBufferedCount, MaxBufferedArea, and MaxBufferedTotal.
It's designed to show incremental updates on the screen, but can
easily get "stuck" in a mode where it's accumulating the updates and
not displaying them. Even so, for many images it can draw the same
screen area over and over again. I have some ideas on how to improve
this heuristic, but probably don't have time to implement them myself.
Any volunteers?

 Lastly, on the X front, I plan to eliminate the broken x11alph
driver altogether, in favor of using the x11 driver and enabling text
and graphics antialiasing. I'll retain the -sDEVICE=x11alph command
line invocation as an alias for "-sDEVICE=x11 -DTextAlphaBits=4
-dGraphicsAlphaBits=4" for compatibility with existing applications
such as gv, but it will be deprecated.

 Again, apologies for the short notice on the freeze. Let me know if
you have any questions.

Raph

Dear Mr. Raph & official Ghostscript maintainers,

>In order to allow sufficient time for testing and bug fixing
>in the beta period, we're going to have a freeze on March 1.
>Any new feature for which there is not working code will not
>make it into the 7.0 release.

Oops, there's left an open bug - as far as I know.
A possible SEGV (due to wrong GC usage) in CIDFontType 0 handler
is reported by me,

http://www.ghostscript.com/pipermail/bug-gs-beta/2001-February/000029.html
and

Mr. Yamato Masatake in gs-code-review,
http://www.ghostscript.com/pipermail/gs-code-review/2001-January/000183.html

The patch by Yamato fixes the bug. His patch does not introduce
any incompatible features (rather, original implementation is
incompatible with the documents in gsgc.h), I think the patch by
Yamato should be applied into next GS release.
Why his patch is still ignored?

Best Wishes,

mpsuzuki

Raph,

> The 7.0 release is currently scheduled for April 8, 2001, so that we
> have it ready for Seybold Boston. In order to allow sufficient time for
> testing and bug fixing in the beta period, we're going to have a freeze
> on March 1. Any new feature for which there is not working code will
> not make it into the 7.0 release.

I have currently submitted to gs-code-review patches for
 Windows & OS/2 code cleanup
 replace exit() with return.
 stdio using callouts
I am awaiting responses to these.

I have two more changes to send.
 Put all stdout/stderr access through a single function
 to allow redirection.
 New API (DLL/shared object) interface.
The latter is ready, but depends on the former.
I need to write the stdout/stderr code, but it is straightforward.
Essentially it removes nearly all references to stdout or stderr and
puts all output through functions outprintf() or errprintf().

I will endeavour to get these to you within the next week.

I really do want these changes to be part of the 7.0 release.
It will improve the Ghostscript interface on a number of platforms,
particularly Windows, Linux and Mac.

Russell Lang gsview@ghostgum.com.au
Ghostgum Software Pty Ltd http://www.ghostgum.com.au/

On Sat, Feb 24, 2001 at 05:01:00PM +1000, Russell Lang wrote:
> Raph,
> I have currently submitted to gs-code-review patches for
> Windows & OS/2 code cleanup
> replace exit() with return.
> stdio using callouts
> I am awaiting responses to these.

Yes. I'm working on my code-review backlog now, and will get to these
soon. Sorry for the delay.

>
> I have two more changes to send.
> Put all stdout/stderr access through a single function
> to allow redirection.
> New API (DLL/shared object) interface.
> The latter is ready, but depends on the former.
> I need to write the stdout/stderr code, but it is straightforward.
> Essentially it removes nearly all references to stdout or stderr and
> puts all output through functions outprintf() or errprintf().
>
> I will endeavour to get these to you within the next week.
>
> I really do want these changes to be part of the 7.0 release.
> It will improve the Ghostscript interface on a number of platforms,
> particularly Windows, Linux and Mac.

Definitely. I've always considered the DLL updates part of the 7.0
release. I should have mentioned the DLL project in my announcement.

Raph

Hi Ghostscript developers,

 Some of you have no doubt checked out the PDF 1.4 support under
development in Ghostscript. At the moment, PDF 1.4 rendering happens
only in the pnga device, to which it's glued. Obviously, it's
important for PDF 1.4 to work with all devices. This note raises some
relevant architectural issues toward that end. Comments and discussion
are more than welcome.

 One design decision made early on is that support for PDF 1.4 is to
be concentrated into a single device. This is largely because PDF 1.4
is such a radical rework of the PostScript imaging model. Trying to
extend the Ghostscript device interface to support the entire PDF 1.4
imaging model would be quite difficult, to say the least. If it were a
simple matter of doing alpha compositing over the target buffer, then
the existing get_bits_rectangle interface as used in gsalphac.c would
be sufficient. However, PDF 1.4 requires, in general, for the
destination buffer to have target alpha. In addition, up to two alpha
channels are required to properly support knockout groups. Finally,
rendering a PDF 1.4 document requires lots of temporary buffers. In
the present architecture, these are managed within the PDF 1.4 device,
in response to begin_transparency_group and friends.

 On the converse, while for the PostScript imaging model, much of
the flexibility in allowing different implementations of the basic
paint operators is useful, it isn't for PDF 1.4. In particular, with
the "cut and stencil" model of PostScript, halftoning distributes
through composition - you can either composite first and then
halftone, or halftone and composite into a halftoned buffer, and
you'll get the same results. That's not the case whenever you have any
form of transparency. Thus, note that Ghostscript's existing alpha
compositing support, in the Next DPS extensions, does not work with
halftoned devices.

 So, how do we make this work with other drivers? The generic
solution is to chain devices, a technique already much used in
Ghostscript. Thus, all imaging operations will go to the PDF 1.4
device, which will then render them and send the resulting bitmap to
the real target.

 This raises several questions:

* How does this chain get built?

* What happens when the target device has alpha?

* How do we deal with banding?

 I'll deal with each of these in turn.

How to build the chain
======================

 I feel pretty strongly that the chain should be built explicitly
by the PDF main code, when it detects the presence of PDF 1.4
operators (the code to do this detection is already in place). Peter's
original design had the chain being built "by magic" when the first
begin_transparency_group call was invoked on the target device.
However, this places the onus on each device to be able to interpose
the PDF 1.4 device before itself in response to this call. To my
taste, that makes Ghostscript's device architecture even more tangled,
which is a step in the wrong direction.

 Rather, I'm strongly leaning toward a model in which two devices
are exported to the PostScript language layer. Peter calls these the
"real" and "effective" devices in analogy to Unix uid's, but I feel
these are confusing and would rather call them the "physical" and
"filter" devices. Of course, if you have a better proposal for naming,
I'd love to hear it.

 In this model, all imaging operations go to the filter device,
which is instantiated with the physical device as a target. My feeling
is to make the .device field of the gs_state structure refer to the
filter device, and add a .physical_device field, as the majority of
references to the current device will deal with the filter device.

 By default, the filter device is set equal to the physical device.
The PDF main code will call a routine that creates the PDF 1.4 device
with the physical device as a target, and install the newly created
device as the filter device. The PDF 1.4 device could then remove
itself upon end of page.

 One reason I like this architecture is that it is useful for other
applications besides PDF 1.4. In particular, it could be used to
implement PDF 1.3 overprint and overprint mode functionality, using
get_bits as necessary. Again, the PDF code would explicitly interpose
the device when these parameters are set in the graphics state.

What happens when the target device has alpha?
==

 In the generic case, the PDF 1.4 sends the rendered page to the
target device by emulating the PostScript colorimage operator. This
guarantees that it will work with all devices, even when halftoning is
enabled. However, colorimage lacks the power to express an image with
an associated alpha channel, as would be needed by a PNG image in RGBA
format, for example.

 Clearly, some mechanism is required to send data with an alpha
channel to the target device. I'll give one proposal below.

How to deal with banding
========================

 Banding is tricky. I consider the current code for activating the
banding logic to be messy. It's possible to simply hack it to make it
PDF 1.4-aware, but I wouldn't mind cleaning it up a bit in the
process.

 Currently, banding is invoked primarily from the printer device.
Basically, a printer device contains the union of a memory device and
a command list device, with some extra fields. On setup,
gdev_prn_allocate attempts to allocate a buffer large enough to hold
the entire page. If this succeeds, it initializes the device as a
memory device. If it fails, it initializes the device as a command
list device.

 To my mind, this kind of dynamic reassigment of the "class" of the
device object is the object-oriented equivalent of unstructured
programming or even self-modifying code.

 I believe that a much cleaner approach would be to have the printer
device be a forwarding device. The gdev_prn_allocate function would
then create a (pure) memory or clist device based on the same policy
it implements now, then set this device as the target.

 PDF 1.4 in banded mode could then be implemented as follows. The
printer device is "PDF 1.4 aware", probably by implementing a newly
created device procedure for probing this. Then, the explicit call to
create a PDF 1.4 device from the PDF main code has slightly different
behavior: it tests whether the target device is PDF aware. If so, then
it does nothing, expecting the target device to successfully handle
PDF 1.4 extensions. If not, then it interposes the generic PDF 1.4
device as above.

 When the printer device learns that PDF 1.4 is required, it then
attempts to allocate the appropriate buffers (possibly much larger
than the pre-1.4 case). If this succeeds, then it creates a generic
PDF 1.4 device, but without the mechanism to emulate colorimage to
deliver the rendered page to the target. Rather, the PDF 1.4 device
implements the get_bits() call to get the bits (with alpha channel
"flattened") directly from the buffer. Recall that printer devices
usually work by repeatedly calling gdev_prn_get_bits().

 If the allocation fails, then the printer device sets up a clist
device much the same as it does now, but uses the PDF 1.4 information
to decide the buffer sizes. The target of the clist is the PDF 1.4
device. However, the get_bits() call of the PDF 1.4 device is now set
up to play back the clist, rendering into the band buffer, as
necessary.

 Finally, this architecture offers a solution to providing alpha
without having to muck with colorimage - add a new get_bits_alpha
device procedure.

 I find myself uneasy with overloading the device object to have so
many functions. To me, it feels like there are multiple different
interfaces being implemented in the same class. In particular, the
printer device functions as both a target for rendering operations and
a source of bits in response to get_bits(), for the client printer
driver code. There are a lot of cases, particularly banding, in which
it makes sense for these to be two separate objects. Also, we're
adding a get_bits_alpha method which _only_ makes sense as an image
source for printer-like devices, which suggests that there should be a
new class of objects for this type of image source. Any strong
feelings pro or con?

 Comments or questions about any of the issues I've raised here are
most welcome.

Raph

Hi,

Given a gx_device, how do I find out if it's a forwarding device?

Explanation: in the DPS extension, X-specific data (such as which
window to render to) is held in the gx_device_dps. There are some PS
operators that can be used to find out this data.

This works fine if the current device is a DPS device. However, the
current device may be a forwarding device that points at a DPS device.
How do I find out the underlying device in that case?

Unless there's already a way to do that, I'm thinking of adding a new
field to gx_device_common.

By the way, please note that I'm working with 6.01.

 Juliusz

On Tue, Feb 27, 2001 at 03:41:42PM +0100, Juliusz Chroboczek wrote:
> Hi,
>
> Given a gx_device, how do I find out if it's a forwarding device?
>
> Explanation: in the DPS extension, X-specific data (such as which
> window to render to) is held in the gx_device_dps. There are some PS
> operators that can be used to find out this data.
>
> This works fine if the current device is a DPS device. However, the
> current device may be a forwarding device that points at a DPS device.
> How do I find out the underlying device in that case?
>
> Unless there's already a way to do that, I'm thinking of adding a new
> field to gx_device_common.
>
> By the way, please note that I'm working with 6.01.

This code should work:

 const gx_device_procs *procs = dev->static_procs;

 if (procs == 0)
	procs = &dev->procs;
 if (procs->get_xfont_procs == gx_forward_get_xfont_procs)

That fragment is taken from gx_device_make_struct_type() in gsdevice.c,
so it's "official".

Raph

 Apologies for the delay, but I've just had a chance to look over
the various proposals and discussion for dynamically loadable drivers
for Ghostscript. I was pleased to see that the two draft
implementations are not that far apart. I think that by combining the
best of the two, with a few more additions, we can do an excellent
implementation that meets most or all of the original goals. In this
note, I'll try to sketch out what I liked and didn't like from each of
the proposals, as well as some more thoughts.

 The version identification from Iain's code looks pretty good.
However, I am not fond of naming the .so (or .dll) files after the
driver. For one, it seems to restrict drivers to providing a single
device per .so file. What I'd rather do is have each driver return a
list of devices it provides, using a similar calling convention as
gs_lib_device_list in gconf.c.

 It also seems to me that it would be cleanest to have a single
identifier for the "init" call, for all driver .so files, something
like gs_dynamic_driver_init(). As far as I can tell, since the files
will be opened with dlopen(), LoadLibrary(), or the equivalent, the
resulting "collisions" won't cause any problems, even if multiple
drivers are loaded at the same time. In fact, it seems to me quite
consistent with the _init() convention of dlopen() itself. The
implementation of this function should simply be #ifdef'd out in the
case of static compilation.

 Now we get to a tricky issue: avoiding loading lots of .so files
when many are available. This isn't in the original list of
requirements, but I believe it's important. One can easily expect
installations with dozens or even hundreds of drivers. Dynamically
loading all of them on each Ghostscript startup could be quite
painful. At the same time, I am very reluctant to add to the
complexity of the installation process, or to provide fun and
interesting new failure modes when config files get out of sync with
the actual state of the system.

 Thus, I propose that Ghostscript follows the semantics of scanning
all directories in a dynamic driver path (set by environment variable,
and with a sensible default) for the presence of driver .so files.
These directories also contain a "cache" file with enough information
to build the devicedict without actually loading the drivers. Each
entry in the cache should contain a file name, modification time and
file size info from a stat() call, and a list of the driver names
supplied. Ghostscript then scans the directory using the existing file
enumeration mechanism, compares the stat info against what's in the
cache, loads any drivers that do not match, and discards any cache
entries for which the driver file does not exist.

 I envision the primary source of the cache file to be a read-only
file installed at the same time as the drivers themselves. I'm willing
to consider automatically writing updates to user-specific permanent
writable storage (ie, ~/.gs/driver-cache), but am not convinced it's
worth the extra complexity.

 This approach has the following desirable characteristics:

* No needless dlopens in the common case where the cache file is up to
 date.

* A new driver can be installed simply by placing the .so file in any
 directory in the path, without needing to modify any config files.

* If the cache file is deleted, corrupted, or becomes stale, behavior
 is still correct, just slower.

 This proposal is based on the pluginrc mechanism of the Gimp. The
Gimp relies on user-specific storage rather than a read-only file. One
consequence is a noticeably slow startup the first time the user loads
the application, which is avoided by my proposal.

 I'd like to see the scanning and collating of devices done entirely
in C, building a devicedict essentially identical to what's in
Ghostscript now. I'm willing to accept either a stub device that loads
the real device when opened, or alternatively a hook in copydevice
that loads the device in the case that it's dynamic. The latter seems
cleaner and simpler to me, but I'm open to argument.

 A few more details: Sidney's dlopen code covers more targets than
Iain's, which is good. On the other hand, it relies too heavily on
#ifdefs. I'd rather see the code divided into gp_*.c, with #ifdefs for
the various flavors within a file (ie, elf and a.out within
gp_unix.c). I believe the gmodule component of glib will be an
excellent source of information on making dynamic loading work on a
wide variety of target platforms.

 The formatting and indentation of Sidney's code is not consistent
with Ghostscript standards (nor with itself). Among other things, this
gives a bad impression. To get accepted, a patch will have to have
neat, clean formatting.

 From what I can tell, Ghostscript will need to be linked with
-export-dynamic or its non-Linux (non-ELF, actually, I think)
equivalent. Otherwise, drivers won't be able to call into Ghostscript
as needed. I have no idea whether this option is available on all
interesting target systems.

 Comments and discussion welcome, and working code even more so.

Raph

Raph wrote:

> From what I can tell, Ghostscript will need to be linked with
> -export-dynamic or its non-Linux (non-ELF, actually, I think)
> equivalent. Otherwise, drivers won't be able to call into Ghostscript
> as needed. I have no idea whether this option is available on all
> interesting target systems.

On Windows you would have to build the Ghostscript DLL first, then
each driver would need to link against the .lib file. Any function
you wish to call in Ghostscript would need to be marked as exported,
preferable by using the Microsoft specific __declspec(dllexport).
There appears to be no way (in Visual C++ 5) to specify "export all".

I think we need to make sure that both Ghostscript and the driver are
using the same C run time library. At present Ghostscript is
statically linked with the C run time library. Changing to dymamic
linking will require changes to the install program to make sure the
CRTL DLL is installed.

While these dynamic driver loading is being considered, one change I
would like is to change each driver from writing directly to a file
and instead call a single Ghostscript function for writing printer
output. Within Ghostscript this might write to a file or it might
write directly to the spooler. In Windows and OS/2, there are
specific functions that write to the spooler - it is not a normal
file. At present Ghostscript writes to a temporary file (possibly
huge) which then gets copied to the spooler, which doubles the amount
of disk space required. If we do this, then the issue of the driver
using the same run time library as Ghostscript becomes less important
because the driver would not need to write to a file. This is a major
change because it would affect every driver in Ghostscript.

Russell Lang, Ghostgum Software Pty Ltd
gsview@ghostgum.com.au

Raph wrote :
Subject: Dynamic driver loading

> A few more details: Sidney's dlopen code covers more targets than
> Iain's, which is good. On the other hand, it relies too heavily on
> #ifdefs. I'd rather see the code divided into gp_*.c, with #ifdefs for
> the various flavors within a file (ie, elf and a.out within
> gp_unix.c). I believe the gmodule component of glib will be an
> excellent source of information on making dynamic loading work on a
> wide variety of target platforms.
>
I don't have all the built platforms of Ghostcript ...
I try to put the code in a one file. But we can do differently. Put a code
for a specific platform (gp_*.c) , it will be different, dependent the
facilities of the platform.
We have one point of beginning ... Perhaps it will better to use libtools ?

> The formatting and indentation of Sidney's code is not consistent
> with Ghostscript standards (nor with itself). Among other things, this
> gives a bad impression. To get accepted, a patch will have to have
> neat, clean formatting.
>

This code to be improved, it's an alpha code to show it will be possible to
do it :)
I 'am conscious it is not a perfect code and it have somme lack functions
like versionning,
emumerations of driver. I modify the postscript code and not implement the
install the code to be functionnal ...
(Are you a little maniac or too perfectionist ?)
I a not a real computer scientist, not known about all the rules for
programming, and organising code. There is more big difficulties to resolve
I think.
The best for us is to a precise idea of what we want to do and how to do it.
I don't have enough knowledge of the internal mecanisms of ghostscript and
how to do for the best. I'am convinced we need the best of ian's code and
mine to reach our goals. I don't have THE SOLUTION.

To be continued.

On Thu, 1 Feb 2001, Raph Levien wrote:

 Could it be disclosed whether GNU GS to be released soon will have dynamic
driver loading or it will be present only in GNU GS coming after upcoming GNU
GS?

 Thanks,

> Apologies for the delay, but I've just had a chance to look over
> the various proposals and discussion for dynamically loadable drivers
> for Ghostscript. I was pleased to see that the two draft
> implementations are not that far apart. I think that by combining the
> best of the two, with a few more additions, we can do an excellent
> implementation that meets most or all of the original goals. In this
> note, I'll try to sketch out what I liked and didn't like from each of
> the proposals, as well as some more thoughts.

 Best regards,
 -Vlad

On Thu, Feb 01, 2001 at 01:22:21PM +0100, LOUIS-SIDNEY Rodolphe wrote:
> I don't have all the built platforms of Ghostcript ...
> I try to put the code in a one file. But we can do differently. Put a code
> for a specific platform (gp_*.c) , it will be different, dependent the
> facilities of the platform.
> We have one point of beginning ... Perhaps it will better to use libtools ?

I don't think so. Libtool is complex and messy, and generally only supports
Unix systems. So we certainly won't be relying on it.

It's _possible_ we'll be using autoconf as an optional, parallel build
system for Unix. This will be useful for checking the existence of
dlopen() and related calls, as is currently done in glib, a good
reference for a dynamic module loading facility.

> > The formatting and indentation of Sidney's code is not consistent
> > with Ghostscript standards (nor with itself). Among other things, this
> > gives a bad impression. To get accepted, a patch will have to have
> > neat, clean formatting.
> >
>
> This code to be improved, it's an alpha code to show it will be possible to
> do it :)
> I 'am conscious it is not a perfect code and it have somme lack functions
> like versionning,
> emumerations of driver. I modify the postscript code and not implement the
> install the code to be functionnal ...
> (Are you a little maniac or too perfectionist ?)

Yes, I am afraid that I am a bit of a perfectionist when it comes to
fundamental changes in the Ghostscript core code. There is a lot that
can go wrong here, and I don't want to make any more users unhappy than
absolutely necessary.

Peter has also been quite a perfectionist in terms of accepting patches
into Ghostscript, but in somewhat different ways than myself.

> I a not a real computer scientist, not known about all the rules for
> programming, and organising code. There is more big difficulties to resolve
> I think.
> The best for us is to a precise idea of what we want to do and how to do it.
> I don't have enough knowledge of the internal mecanisms of ghostscript and
> how to do for the best. I'am convinced we need the best of ian's code and
> mine to reach our goals. I don't have THE SOLUTION.

Sure, that's why we're discussing it now. Thanks very much for your
original code and all the followup discussion - it's been very helpful
in moving this project along. I think the best thing is for the discussion
here to result in constructive criticism, and refine the design and
implementation until we're all happy with it.

Take care,

Raph

On Thu, Feb 01, 2001 at 05:42:18PM +0400, Vlad Harchev wrote:
> On Thu, 1 Feb 2001, Raph Levien wrote:
>
> Could it be disclosed whether GNU GS to be released soon will have dynamic
> driver loading or it will be present only in GNU GS coming after upcoming GNU
> GS?

Our current plans are to develop the dynamic loading only in the 7.0
release, which will be released (hopefully in April) under the AFPL
license, then under a GPL license about a year later.

I'm certainly not planning to do the work to retrofit the 6.5x series
to support dynamic loading, but if somebody else wants to, that will
be fine. The latest 6.5x release will be re-released under GPL at
the same time that 7.0 ships.

Hope this answers your questions,

Raph

On Thu, Feb 01, 2001 at 05:56:54PM +1300, Glenn Ramsey wrote:
> Hi,
>
> I have an updated version of the uniprint driver (gdevupd.c) that
> contains an additional driver for the epson stylus color 300 from
> me and some compilation warning fixes from Gunther Hess, the
> original author of uniprint. It has been available to users of
> this printer from my web page for about 8 months and seems to be
> working OK.
>
> At my suggestion Gunther has agreed that it probably should be
> included in the main distribution and that I should do it. Would
> someone please let me know how I go about getting it included in
> the test release?
>
> I couldn't find many clues about how to submit the code either on
> the sourceforge page or on ghostscript.com.

Hi Glenn,

 Sorry for not responding earlier - I'm trying to work through my
backlog after a couple of consecutive trips.

 I'm very pleased that you are taking the initiative to maintain
the Uniprint driver. I'll look at the code you posted to gs-code-
review (which is, by the way, the Right Way to submit new code to
Ghostscript) and then commit it. If you'd like, I can also add you to
the CVS commit list on SourceForge so you can keep the code up to
date without having to wait for someone to do the commit.

Thanks again,

Raph

On Thu, 1 Feb 2001, Raph Levien wrote:

> On Thu, Feb 01, 2001 at 05:42:18PM +0400, Vlad Harchev wrote:
> > On Thu, 1 Feb 2001, Raph Levien wrote:
> >
> > Could it be disclosed whether GNU GS to be released soon will have dynamic
> > driver loading or it will be present only in GNU GS coming after upcoming GNU
> > GS?
>
> Our current plans are to develop the dynamic loading only in the 7.0
> release, which will be released (hopefully in April) under the AFPL
> license, then under a GPL license about a year later.
>
> I'm certainly not planning to do the work to retrofit the 6.5x series
> to support dynamic loading, but if somebody else wants to, that will
> be fine. The latest 6.5x release will be re-released under GPL at
> the same time that 7.0 ships.

 Thank you for the precise answer again.
 Just curious: how difficult it would be to backport dynamic driver loading
from GS 7.x to 6.5x? Are there any serious architectural differencies between
these branches that make backporting very difficult? Would it be allowed to
stick a GPL on the GNU GS 6.5x with dynamic driver loading backported?

 Thanks,

 Best regards,
 -Vlad

> Hope this answers your questions,
>
> Raph
>

Raph mentioned recently that he'd come around somewhat on the issue of
maintaining parallel build systems. We already more-or-less do this for
MacOS, and I'd like to get those files into mainline cvs. And as I've
said before, I think an autoconf build will help us a great deal with the
open source community. I imagine some of our users might appreciate MSVC
project files as well.

My question is where do we want to put all of this. I'd suggest a couple
of alternatives:

We could have platform-specific directories at the toplevel. 'macos/',
'autotools/', 'make/', 'win32/'. To me this makes more sense if there are
few platforms (not us!) and/or a number of platform-specific source files
you don't want clutting 'src/'.

Alternatively we could hide it all in a 'build/' directory, with or
without arch subdirs within it.

Thoughts? Feelings? Alternate suggestions?

 -ralph

Dear All,

I am writing a VB5 program to batch convert PS files to TIFF images for
faxing.

I have two problems (that I know of):

1 For a limited application such as this, what should be in the
CallBack function? At the moment it is a stub that does nothing at all.

2 The executable grows by 30->70k each time a PS file is converted, am
I calling the gsdll_* functions correctly? I have read the DLL
documentation supplied with GS and *think* I am.... The code that calls
the dll functions is below. I would appreciate comments or suggestions
from anyone, particularly anyone who has used gsdll_* from VB. As far
as I can tell the leak occurs when I convert the PS file (code below)
but I am not convinced as yet.

My environment is:

NT4 SP5
VB5 SP3
GS6.5

Regards

Mike

Mike Lacey
Open Systems, Witham St Hughs.
+44 (0)7785 327 710 (mobile)
+44 (0)1522 556 243 (direct line)
+44 (0)1522 556 100 (switchboard)
www.tek-tips.com - Support for I.T. Professionals

' GhostScript function declarations
Private Declare Function gsdll_revision Lib "gsdll32.dll" (_
 lpString As String, _
 lpString As String, _
 gsrev As Long, _
 gsdate As Long _
) As Integer

Private Declare Function gsdll_init Lib "gsdll32.dll" (_
 ByVal lpGsBack As Any, _
 ByVal hwnd As Long, _
 ByVal argc As Long, _
 argv As Long _
) As Integer

Private Declare Function gsdll_execute_begin Lib "gsdll32.dll" () As
Integer

Private Declare Function gsdll_execute_cont Lib "gsdll32.dll" (_
 ByVal pscommand As String, _
 ByVal commlen As Long _
) As Integer

Private Declare Function gsdll_execute_end Lib "gsdll32.dll" () As
Integer

Private Declare Function gsdll_exit Lib "gsdll32.dll" () As Integer

this code is called for each PS file converted.

 llaArgV(0) = agGetAddressForObject&(Argv0(0))
 llaArgV(1) = agGetAddressForObject&(Argv1(0))
 llaArgV(2) = agGetAddressForObject&(Argv2(0))
 llaArgV(3) = agGetAddressForObject&(Argv3(0))
 llaArgV(4) = agGetAddressForObject&(Argv4(0))
 llaArgV(5) = agGetAddressForObject&(Argv5(0))
 llaArgV(6) = agGetAddressForObject&(Argv6(0))
 llaArgV(7) = agGetAddressForObject&(Argv7(0))
 llaArgV(8) = agGetAddressForObject&(Argv8(0))

 ' rcode = gsdll_revision(vbNullString, vbNullString, 0, 0)
 rcode = gsdll_init(AddressOf Callback, frmAutoFax.hwnd, 8,
llaArgV(0))
 initret = rcode
 rcode = gsdll_execute_begin()
 rcode = gsdll_execute_end()
 rcode = gsdll_exit()

> I am writing a VB5 program to batch convert PS files to TIFF images for
> faxing.
>
> I have two problems (that I know of):
>
> 1 For a limited application such as this, what should be in the
> CallBack function? At the moment it is a stub that does nothing at all.

Nothing is OK, provided that you have set the calling convention
correctly and return 0. The callback function uses the C calling
convention, not WINAPI/__stdcall. If you get this wrong, you will
get stack overflow or corruption.

I recommend handling stdout in the callback function, so you can see
Ghostscript error messages.

> 2 The executable grows by 30->70k each time a PS file is converted, am
> I calling the gsdll_* functions correctly?

It looks correct, but I have never programmed VB.
When you call gsdll_exit(), Ghostscript should release all memory it
allocated. If it doesn't, this is a bug.

> The code that calls
> the dll functions is below. I would appreciate comments or suggestions
> from anyone, particularly anyone who has used gsdll_* from VB. As far
> as I can tell the leak occurs when I convert the PS file (code below)
> but I am not convinced as yet.

Please let me know when you have more information about the memory
leak problem. When you have got it working, I would appreciate being
able to redistribute some example code showing how to call the DLL.

Note that the DLL interface is likely to changed within the next
month. The old one will still be present for a while, but don't
expect it to still be there in 2 years.

Russell Lang gsview@ghostgum.com.au
Ghostgum Software Pty Ltd http://www.ghostgum.com.au/

On Wed, Feb 21, 2001 at 11:39:14PM -0800, ghostscript cvs wrote:

> Updates Changes.htm and History6.htm files in preparation for 6.61 release.

Any further thoughts on how we should handle the changelogs? I never
felt the issues around my suggested patch to cvs2hist were resolved.

Hope you're not doing it by hand still!

 -r

On Wed, Feb 21, 2001 at 11:57:32PM -0800, Ralph Giles wrote:
> On Wed, Feb 21, 2001 at 11:39:14PM -0800, ghostscript cvs wrote:
>
> > Updates Changes.htm and History6.htm files in preparation for 6.61 release.
>
> Any further thoughts on how we should handle the changelogs? I never
> felt the issues around my suggested patch to cvs2hist were resolved.
>
> Hope you're not doing it by hand still!

Actually, I just ran the current cvs2hist.py, and, based on a scan of
the resulting Changes.htm file, it seemed to work fine. I may have
overlooked something, in which case I'm sure I'll hear about it soon :).

In any case, I've put up a candidate 6.61 source release at:
ftp://ftp.cs.wisc.edu:/pub/ghost/aladdin/test/

I'm going to sleep now, and will announce it tomorrow morning (assuming
it doesn't catch fire overnight).

Raph

Hi...

Not sure where to post this but would like instructions on
how to get the special character bullet ? to display.

Thanks!

Dear Mr. Jankowski,

This mailing list is to discuss advanced problems in AFPL
Ghostscript development. General questions about PostScript
programming should be posted to comp.lang.postscript

The following program shows the bullet character using
2 common methods. See PostScript Language Reference Manual
for details. See also PDF spec for the glyph table of
ZapfDingbats.

Basically, you need to load the right font and select the right
glyph. "show" uses the encoding vector. "glyphshow" uses the
glyph name.

Regards,
Alex Cherepanov

%!
/ZapfDingbats findfont 30 scalefont setfont
100 400 moveto (\154) show
100 200 moveto /a71 glyphshow
showpage

----- Original Message -----
From: Richard C. Jankowski <aspen@bigplanet.com>
To: <gs-devel@ghostscript.com>
Sent: Thursday, 22 February, 2001 13:48
Subject: [Gs-devel] Special Character... Bullet

> Not sure where to post this but would like instructions on
> how to get the special character bullet � to display.

Hi Ghostscript developers,

 The 7.0 release is currently scheduled for April 8, 2001, so that we
have it ready for Seybold Boston. In order to allow sufficient time for
testing and bug fixing in the beta period, we're going to have a freeze
on March 1. Any new feature for which there is not working code will
not make it into the 7.0 release.

 I realize this is pretty short notice. For the case of dynamically
loadable drivers, I consider the proposals by Graham and Rodolphe to
be _almost_ working code for the purposes of the freeze. If either
party (or anyone else) started moving forward now to incorporate the
latest round of comments into the code, and was also willing to commit
to having it done by the April release date, I'd let it in under the
freeze.

 Other than that, I'm not aware of any projects from the community
that are directly impacted by this freeze. The Epson driver updates I
got from Glenn Ramsey and Gunther Hess will certainly make it. By all
means, let me know if you have further driver updates that you'd like
to see in 7.0.

 Incidentally, one of the improvements that we're very likely to see
in 7.0 is enhancements to the X drivers, work done so far by Ray
Johnston. The main thing is avoiding image put operations for the
initial clearing of the page. The goal is for untouched white areas to
not be drawn at all.

 The current heuristic for determining which areas of the screen to
update has a number of performance problems, sensitive to the tunable
parameters MaxBufferedCount, MaxBufferedArea, and MaxBufferedTotal.
It's designed to show incremental updates on the screen, but can
easily get "stuck" in a mode where it's accumulating the updates and
not displaying them. Even so, for many images it can draw the same
screen area over and over again. I have some ideas on how to improve
this heuristic, but probably don't have time to implement them myself.
Any volunteers?

 Lastly, on the X front, I plan to eliminate the broken x11alph
driver altogether, in favor of using the x11 driver and enabling text
and graphics antialiasing. I'll retain the -sDEVICE=x11alph command
line invocation as an alias for "-sDEVICE=x11 -DTextAlphaBits=4
-dGraphicsAlphaBits=4" for compatibility with existing applications
such as gv, but it will be deprecated.

 Again, apologies for the short notice on the freeze. Let me know if
you have any questions.

Raph

Dear Mr. Raph & official Ghostscript maintainers,

>In order to allow sufficient time for testing and bug fixing
>in the beta period, we're going to have a freeze on March 1.
>Any new feature for which there is not working code will not
>make it into the 7.0 release.

Oops, there's left an open bug - as far as I know.
A possible SEGV (due to wrong GC usage) in CIDFontType 0 handler
is reported by me,

http://www.ghostscript.com/pipermail/bug-gs-beta/2001-February/000029.html
and

Mr. Yamato Masatake in gs-code-review,
http://www.ghostscript.com/pipermail/gs-code-review/2001-January/000183.html

The patch by Yamato fixes the bug. His patch does not introduce
any incompatible features (rather, original implementation is
incompatible with the documents in gsgc.h), I think the patch by
Yamato should be applied into next GS release.
Why his patch is still ignored?

Best Wishes,

mpsuzuki

Raph,

> The 7.0 release is currently scheduled for April 8, 2001, so that we
> have it ready for Seybold Boston. In order to allow sufficient time for
> testing and bug fixing in the beta period, we're going to have a freeze
> on March 1. Any new feature for which there is not working code will
> not make it into the 7.0 release.

I have currently submitted to gs-code-review patches for
 Windows & OS/2 code cleanup
 replace exit() with return.
 stdio using callouts
I am awaiting responses to these.

I have two more changes to send.
 Put all stdout/stderr access through a single function
 to allow redirection.
 New API (DLL/shared object) interface.
The latter is ready, but depends on the former.
I need to write the stdout/stderr code, but it is straightforward.
Essentially it removes nearly all references to stdout or stderr and
puts all output through functions outprintf() or errprintf().

I will endeavour to get these to you within the next week.

I really do want these changes to be part of the 7.0 release.
It will improve the Ghostscript interface on a number of platforms,
particularly Windows, Linux and Mac.

Russell Lang gsview@ghostgum.com.au
Ghostgum Software Pty Ltd http://www.ghostgum.com.au/

On Sat, Feb 24, 2001 at 05:01:00PM +1000, Russell Lang wrote:
> Raph,
> I have currently submitted to gs-code-review patches for
> Windows & OS/2 code cleanup
> replace exit() with return.
> stdio using callouts
> I am awaiting responses to these.

Yes. I'm working on my code-review backlog now, and will get to these
soon. Sorry for the delay.

>
> I have two more changes to send.
> Put all stdout/stderr access through a single function
> to allow redirection.
> New API (DLL/shared object) interface.
> The latter is ready, but depends on the former.
> I need to write the stdout/stderr code, but it is straightforward.
> Essentially it removes nearly all references to stdout or stderr and
> puts all output through functions outprintf() or errprintf().
>
> I will endeavour to get these to you within the next week.
>
> I really do want these changes to be part of the 7.0 release.
> It will improve the Ghostscript interface on a number of platforms,
> particularly Windows, Linux and Mac.

Definitely. I've always considered the DLL updates part of the 7.0
release. I should have mentioned the DLL project in my announcement.

Raph

Hi Ghostscript developers,

 Some of you have no doubt checked out the PDF 1.4 support under
development in Ghostscript. At the moment, PDF 1.4 rendering happens
only in the pnga device, to which it's glued. Obviously, it's
important for PDF 1.4 to work with all devices. This note raises some
relevant architectural issues toward that end. Comments and discussion
are more than welcome.

 One design decision made early on is that support for PDF 1.4 is to
be concentrated into a single device. This is largely because PDF 1.4
is such a radical rework of the PostScript imaging model. Trying to
extend the Ghostscript device interface to support the entire PDF 1.4
imaging model would be quite difficult, to say the least. If it were a
simple matter of doing alpha compositing over the target buffer, then
the existing get_bits_rectangle interface as used in gsalphac.c would
be sufficient. However, PDF 1.4 requires, in general, for the
destination buffer to have target alpha. In addition, up to two alpha
channels are required to properly support knockout groups. Finally,
rendering a PDF 1.4 document requires lots of temporary buffers. In
the present architecture, these are managed within the PDF 1.4 device,
in response to begin_transparency_group and friends.

 On the converse, while for the PostScript imaging model, much of
the flexibility in allowing different implementations of the basic
paint operators is useful, it isn't for PDF 1.4. In particular, with
the "cut and stencil" model of PostScript, halftoning distributes
through composition - you can either composite first and then
halftone, or halftone and composite into a halftoned buffer, and
you'll get the same results. That's not the case whenever you have any
form of transparency. Thus, note that Ghostscript's existing alpha
compositing support, in the Next DPS extensions, does not work with
halftoned devices.

 So, how do we make this work with other drivers? The generic
solution is to chain devices, a technique already much used in
Ghostscript. Thus, all imaging operations will go to the PDF 1.4
device, which will then render them and send the resulting bitmap to
the real target.

 This raises several questions:

* How does this chain get built?

* What happens when the target device has alpha?

* How do we deal with banding?

 I'll deal with each of these in turn.

How to build the chain
======================

 I feel pretty strongly that the chain should be built explicitly
by the PDF main code, when it detects the presence of PDF 1.4
operators (the code to do this detection is already in place). Peter's
original design had the chain being built "by magic" when the first
begin_transparency_group call was invoked on the target device.
However, this places the onus on each device to be able to interpose
the PDF 1.4 device before itself in response to this call. To my
taste, that makes Ghostscript's device architecture even more tangled,
which is a step in the wrong direction.

 Rather, I'm strongly leaning toward a model in which two devices
are exported to the PostScript language layer. Peter calls these the
"real" and "effective" devices in analogy to Unix uid's, but I feel
these are confusing and would rather call them the "physical" and
"filter" devices. Of course, if you have a better proposal for naming,
I'd love to hear it.

 In this model, all imaging operations go to the filter device,
which is instantiated with the physical device as a target. My feeling
is to make the .device field of the gs_state structure refer to the
filter device, and add a .physical_device field, as the majority of
references to the current device will deal with the filter device.

 By default, the filter device is set equal to the physical device.
The PDF main code will call a routine that creates the PDF 1.4 device
with the physical device as a target, and install the newly created
device as the filter device. The PDF 1.4 device could then remove
itself upon end of page.

 One reason I like this architecture is that it is useful for other
applications besides PDF 1.4. In particular, it could be used to
implement PDF 1.3 overprint and overprint mode functionality, using
get_bits as necessary. Again, the PDF code would explicitly interpose
the device when these parameters are set in the graphics state.

What happens when the target device has alpha?
==

 In the generic case, the PDF 1.4 sends the rendered page to the
target device by emulating the PostScript colorimage operator. This
guarantees that it will work with all devices, even when halftoning is
enabled. However, colorimage lacks the power to express an image with
an associated alpha channel, as would be needed by a PNG image in RGBA
format, for example.

 Clearly, some mechanism is required to send data with an alpha
channel to the target device. I'll give one proposal below.

How to deal with banding
========================

 Banding is tricky. I consider the current code for activating the
banding logic to be messy. It's possible to simply hack it to make it
PDF 1.4-aware, but I wouldn't mind cleaning it up a bit in the
process.

 Currently, banding is invoked primarily from the printer device.
Basically, a printer device contains the union of a memory device and
a command list device, with some extra fields. On setup,
gdev_prn_allocate attempts to allocate a buffer large enough to hold
the entire page. If this succeeds, it initializes the device as a
memory device. If it fails, it initializes the device as a command
list device.

 To my mind, this kind of dynamic reassigment of the "class" of the
device object is the object-oriented equivalent of unstructured
programming or even self-modifying code.

 I believe that a much cleaner approach would be to have the printer
device be a forwarding device. The gdev_prn_allocate function would
then create a (pure) memory or clist device based on the same policy
it implements now, then set this device as the target.

 PDF 1.4 in banded mode could then be implemented as follows. The
printer device is "PDF 1.4 aware", probably by implementing a newly
created device procedure for probing this. Then, the explicit call to
create a PDF 1.4 device from the PDF main code has slightly different
behavior: it tests whether the target device is PDF aware. If so, then
it does nothing, expecting the target device to successfully handle
PDF 1.4 extensions. If not, then it interposes the generic PDF 1.4
device as above.

 When the printer device learns that PDF 1.4 is required, it then
attempts to allocate the appropriate buffers (possibly much larger
than the pre-1.4 case). If this succeeds, then it creates a generic
PDF 1.4 device, but without the mechanism to emulate colorimage to
deliver the rendered page to the target. Rather, the PDF 1.4 device
implements the get_bits() call to get the bits (with alpha channel
"flattened") directly from the buffer. Recall that printer devices
usually work by repeatedly calling gdev_prn_get_bits().

 If the allocation fails, then the printer device sets up a clist
device much the same as it does now, but uses the PDF 1.4 information
to decide the buffer sizes. The target of the clist is the PDF 1.4
device. However, the get_bits() call of the PDF 1.4 device is now set
up to play back the clist, rendering into the band buffer, as
necessary.

 Finally, this architecture offers a solution to providing alpha
without having to muck with colorimage - add a new get_bits_alpha
device procedure.

 I find myself uneasy with overloading the device object to have so
many functions. To me, it feels like there are multiple different
interfaces being implemented in the same class. In particular, the
printer device functions as both a target for rendering operations and
a source of bits in response to get_bits(), for the client printer
driver code. There are a lot of cases, particularly banding, in which
it makes sense for these to be two separate objects. Also, we're
adding a get_bits_alpha method which _only_ makes sense as an image
source for printer-like devices, which suggests that there should be a
new class of objects for this type of image source. Any strong
feelings pro or con?

 Comments or questions about any of the issues I've raised here are
most welcome.

Raph

Hi,

Given a gx_device, how do I find out if it's a forwarding device?

Explanation: in the DPS extension, X-specific data (such as which
window to render to) is held in the gx_device_dps. There are some PS
operators that can be used to find out this data.

This works fine if the current device is a DPS device. However, the
current device may be a forwarding device that points at a DPS device.
How do I find out the underlying device in that case?

Unless there's already a way to do that, I'm thinking of adding a new
field to gx_device_common.

By the way, please note that I'm working with 6.01.

 Juliusz

On Tue, Feb 27, 2001 at 03:41:42PM +0100, Juliusz Chroboczek wrote:
> Hi,
>
> Given a gx_device, how do I find out if it's a forwarding device?
>
> Explanation: in the DPS extension, X-specific data (such as which
> window to render to) is held in the gx_device_dps. There are some PS
> operators that can be used to find out this data.
>
> This works fine if the current device is a DPS device. However, the
> current device may be a forwarding device that points at a DPS device.
> How do I find out the underlying device in that case?
>
> Unless there's already a way to do that, I'm thinking of adding a new
> field to gx_device_common.
>
> By the way, please note that I'm working with 6.01.

This code should work:

 const gx_device_procs *procs = dev->static_procs;

 if (procs == 0)
	procs = &dev->procs;
 if (procs->get_xfont_procs == gx_forward_get_xfont_procs)

That fragment is taken from gx_device_make_struct_type() in gsdevice.c,
so it's "official".

Raph

image2.png
{38 2001-February.txt.gz (evaluation copy)

File Commands Tools Favorites Options Help

@oodme \® @

Add ExtractTo Test View Delete Find Wizard Info | VirusScan

» 2001-February.txt.g; packed size 88,290 bytes

Name Size Packed Type

51 2001-February.txt 88,290 28282 Text Document

