In the case when $\bar{\mu}(E(K)) \geq 3 / 4$ we have $\bar{\mu}(K-E(K)) \leq 1 / 4$. By the case $n=1$ above without loss of generality $\bar{\mu}_{x}\left(\operatorname{pr}_{x}(E(K))\right) \geq \bar{\mu}(E(K)) / 2$. Hence $\left|\mu_{x}\right| \geq \frac{1}{2} \cdot \frac{3}{4}-\frac{1}{4}=\frac{1}{8}$, thus (*) holds for $\varepsilon=\frac{1}{8}$.

Smoothly basic subsets of the plane.

Let K be a subset of the plane \mathbf{R}^{2}. A function $f: K \rightarrow \mathbf{R}$ is called differentiable if for each point $z_{0} \in K$ there exist a vector $a \in \mathbf{R}^{2}$ and infinitesimal function $\alpha: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that for each point $z \in K$

$$
f(z)=f\left(z_{0}\right)+a \cdot\left(z-z_{0}\right)+\alpha\left(z-z_{0}\right)\left|z, z_{0}\right| .
$$

Here the dot denotes scalar product of vectors $a=:\left(f_{x}, f_{y}\right)$ and $z-z_{0}=:(x, y)$, i.e. $a \cdot\left(z-z_{0}\right)=$ $x f_{x}+y f_{y}$. A function $\alpha: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is infinitesimal, if for each number $\varepsilon>0$ there exists a number $\delta>0$ such that for each point $(x, y) \in \mathbf{R}^{2}$

$$
\text { if } \sqrt{x^{2}+y^{2}}<\delta, \quad \text { then } \quad|\alpha(x, y)|<\varepsilon
$$

Let V be the graph of the function $y=|x|$, where $x \in[-1 ; 1]$. A function $f: V \rightarrow \mathbf{R}$ is differentiable if and only if $f(x,|x|)$ is differentiable on the segments $[-1 ; 0]$ and $[0 ; 1]$.

A subset $K \subset \mathbf{R}^{2}$ of the plane is called differentiably basic if for each differentiable function $f: K \rightarrow \mathbf{R}$ there exist differentiable functions $g: \mathbf{R} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(x, y)=$ $g(x)+h(y)$ for each point $(x, y) \in K$.
13. (a) (b) (c) Solve the analogues of problem 6 for differentiably basic sets.
14. (a) The graph V is differentiably basic.
(b) $W:=(V-(2,0)) \cup(V+(2,0))$ is not differentiably basic.
(c) The broken line whose consecutive vertices are $(-2,0),(-1,1),(0,0),(1,1)$ and $(2,0)$ is not differentiably basic. (Note that it is continuously basic).
(d) The completed array $\left\{\left(\left[\frac{n+1}{2}\right]^{-1 / 2},\left[\frac{n}{2}\right]^{-1 / 2}\right)\right\}_{n=2}^{\infty} \cup\{(0,0)\}$ is not differentiably basic. (Note that it is also not continuously basic.)
(e) The completed array $\left\{\left(2^{-\left[\frac{n+1}{2}\right]}, 2^{-\left[\frac{n}{2}\right]}\right)\right\}_{n=1}^{\infty} \cup\{(0,0)\}$ is differentiably basic. (Note that it is not continuously basic.)
(f) (I. Shnurnikov) The cross $K=[(-1,-2),(1,2)] \cup[(-1,1),(1,-1)]$ is not differentiably basic. (This assertion and Conjecture 15a imply that the property of being differentably basic is not hereditary.)
(g) If a graph is basically embeddable in the plane, then it is differentiably basically embeddable in the plane. (This is non-trivial because the plane contains graphs which are basic but not differentaibly basic and vice versa.) [RZ06]
15.** Conjectures. (a) (I. Shnurnikov) A completed array $\left\{a_{n}\right\}_{n=1}^{\infty} \cup\{(0,0)\}$ is differentiably basic if and only if the sequence $\frac{\sum_{n=k}^{\infty}\left|a_{n}\right|}{\left|a_{k}\right|}$ is bounded.
(b) The subset $\left\{\left(t^{2}, \frac{t^{2}}{(1+t)^{2}}\right)\right\}_{t \in\left[-\frac{1}{2} ; \frac{1}{2}\right]}$ of the plane is not differentiably basic.

Hint. One can try to prove this analogously to 14f. Cf. [Vo81, Vo82].
(c) A piecewise-linear graph in \mathbf{R}^{2} is differentiably basic if and only if it does not contain arbitrary long arrays and for each two singular points a and b we have $x(a) \neq x(b)$ and $y(a) \neq y(b)$. A point $a \in K$ is singular if the intersection of K with each disk centered at a is not a rectilinear arc.

It would be interesting to find a criterion of being differentiably basic for closed bounded subsets of the plane. Apparently a simple-to-state criterion (analogous to the Sternfeld criterion) does not exist. Another interesting question: is there a continuous map $[0 ; 1] \rightarrow \mathbf{R}^{2}$ whose image is differentiably basic but not basic?

