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BASIC EMBEDDINGS AND HILBERT’S 13TH PROBLEM 1

A. Skopenkov 2

Abstract. This note is purely expository. In the course of the Kolmogorov-Arnold solution of
Hilbert’s 13th problem on superpositions there appeared the notion of basic embedding. A subset K of
R

2 is basic if for each continuous function f : K → R there exist continuous functions g, h : R → R such
that f(x, y) = g(x)+h(y) for each point (x, y) ∈ K. We present descriptions of basic subsets of the plane
(with a proof) and description of graphs basically embeddable into the plane (solutions of Arnold’s and
Sternfeld’s problems). We present some results and open problems on the smooth version of the property
of being basic. This note is accessible to undergraduates and could be an interesting easy reading for
mature mathematicians. The two sections can be read independently on each other.

HILBERT’S 13TH PROBLEM AND BASIC EMBEDDINGS

Hilbert’s 13th problem

Let us recall informally the concept of superposition. Suppose that there is a set of functions of
several variables, including all variables considered as functions. Represent each of the functions
as an element of a circuit with several entries and one exit. Then a superposition of functions of
this set is a function that can be repsesented by a circuit constructed from given elements; the
circuit should not contain oriented cycles.

For example, a polynomial anx
n + an−1x

n−1 + · · ·+ a1x+ a0 is a superposition of the constant
functions and the functions f(x, y) = x + y, g(x, y) = xy. It is clear that any elementary func-
tion can be represented as a superposition of functions of at most two variables. Is it possible
to represent each function of several arguments as a superposition of functions of at most two
arguments?

Since there is a 1–1 correspondence between a segment and a square, any function of three
and more variables is superposition of (in general, discontinuous) functions of two variables. So
the above question is only interesting for continuous functions. 3 From now on we assume all
functions to be continuous, unless the contrary is explicitly specified.

Hilbert’s 13th problem. Can the equation x7 + ax3 + bx2 + cx + 1 = 0 of degree seven be
solved without using functions of three variables?

This question was answered affirmatively in 1957 by Kolmogorov and Arnold. They proved
that any continuous function of n variables defined on a compact subset ofRn can be represented as
a superposition of continuous functions of one variable and addition. For an exposition accessible
to undergraduates see [Ar58]. See also [Vi04].

Basic embeddings into higher-dimensional spaces 4

Ostrand extended the Kolmogorov-Arnold Theorem this theorem to arbitrary n-dimensional
compacta [St89]. It is in the Kolmogorov-Arnold-Ostrand papers that the notion of basic subset

1 This is an English version of the paper in Russian under the same title. The English version has much shorter
first section (which corresponds to two sections in Russian version), but contains solutions of problems 14a and
16c from the third section. Whenever possible I give references to surveys not to original papers. I would like
to acknowledge V.I.Arnold, Yu.M. Burman, I.N. Shnurnikov, A.R. Safin, S.M. Voronin and M. Vyaliy for useful
discussions, and M. Vyaliy for preparation of figures.

2skopenko@mccme.ru, http://dfgm.math.msu.su/people/skopenkov/papersc.ps
3 Denote by

|x, y| = |(x1, . . . , xn), (y1, . . . , yn)| =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

the ordinary distance between points x = (x1, . . . , xn) and y = (y1, . . . , yn) of Rn. Let K be a subset of Rn. A
function f : K → R is called continuous if for each point x0 ∈ K and number ε > 0 there exists a number δ > 0
such that for each point x ∈ K if |x, x0| < δ, then |f(x) − f(x0)| < ε. E. g. the function f(x1, x2) =

√

x2
1
+ x2

2
is

continuous on the plane, whereas the function f(x1, x2) equal to the integer part of x1 + x2 is not.
4This subsection is not used in the sequel and so can be omitted.

1

http://arxiv.org/abs/1003.1586v1
http://dfgm.math.msu.su/people/skopenkov/papersc.ps


S1 T5 C

Figure 1:

appeared for the first time. It was explicitly introduced by Sternfeld [St89]. A subset K ⊂ Rm is
basic if for each continuous function f : K → R there exist continuous functions g1, . . . , gm : R →
R such that f(x1, . . . , xm) = g1(x1) + · · ·+ gm(xm) for each point (x1, . . . , xm) ∈ K.

Theorem 1. [St89] Any n-dimensional compactum is basically embeddable into R2n+1 and,
for n > 1, is not basically embeddable into R2n.

It is interesting to compare this theorem with the Nöbeling-Menger-Pontryagin theorem on em-
beddability of any n-dimensional compact space into R2n+1 and the example of an n-dimensional
polyhedron non-embeddable into R2n.

Obviously, K is basically embeddable into R if and only if K is topologically embeddable into
R. It follows from Theorem 1 that a compactum K is basically embeddable into Rm for m > 2 if
and only if dimK < m/2. Thus, the only remaining case is m = 2 (Sternfeld’s problem).

Basic embeddings into the plane

A subset K of R2 is basic if for each continuous function f : K → R there exist continuous
functions g, h : R → R such that f(x, y) = g(x) + h(y) for each point (x, y) ∈ K.

Let us present the characterization of arcwise connected compacta basically embeddable into
the plane [Sk95] (this is a partial solution of Sternfeld’s problem). We formulate the criterion
first for graphs and then for the general case. A conjecture on embeddability of (not necessarily
arcwise connected) connected compacta into the plane can be found in [Sk95]. Compacta used in
the statements are defined after the statements.

Theorem 2. [Sk95] A finite graph K is basically embeddable into the plane if and only if any
of the following two equivalent conditions holds:

(a) K does not contain subgraphs homeomorphic to S, C1, C2 (fig. 1), that is, a circle, a five-
point star, and a cross with branched endpoints;

(b) K is contained in one of the graphs Rn, n = 1, 2, 3, . . . (fig. 2).
Let F1 be a triod. The graph Fn+1 is obtained from Fn by branching its endpoints (fig. 2).

The graph Rn is obtained from Fn by by adding a hanging edge to each non-hanging vertex.

Theorem 3. [Sk95] An arcwise-connected compactum K is basically embeddable into the plane
if and only if it is locally connected (i.e., is a Peano continuum) and any of the two following
(equivalent) conditions hold:

(1) K does not contain S1, C2, C4, B as subcompacta and contains only finitely many subcon-
tinua Fn, Hn (fig. 1,2,3);

(2) K does not contain any of the continua S1, C1, C2, C3, B, F , H+, H−, h+, h− (fig. 1,3,4).

Let I = [0; 1]. A sequence of sets is called a null-sequence if their diameters tend to zero.
Define

• Hn to be the union of I with a null-sequence of triods having endpoints attached to I at
points 3−l1 + · · ·+ 3−ls, where s ≤ n and 0 < l1 < · · · < ls are integers;
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• C3 to be a cross with a null-sequence of arcs attached to one of its branches and converging
to its center;

• C4 to be a cross with a sequence of points converging to its center;
• B to be the union of the arc I and a null-sequence of arcs attached to (0; 1) by their endpoints

at rational points;
• F to be the union of I with a null-sequence of sets Fn each having an endpoint attached to

the point 1/n ∈ I;
• H+ (H−) to be the union of I with a null-sequence of continua Hn connected to the points

1/n ∈ I by arcs that intersect Hn at the points 1 ∈ I ⊂ Hn (0 ∈ I ⊂ Hn−1, respectively);
• h+ (h−) to be obtained from a null-sequence of continua Hn by pasting together the points

1 ∈ I ⊂ Hn and 0 ∈ I ⊂ Hn−1 (0 ∈ I ⊂ Hn and 1 ∈ I ⊂ Hn−1, respectively).

An embedding K ⊂ X × Y is basic if for any continuous function f : K → R there exist
continuous functions g : X → R, h : Y → R such that f(x, y) = g(x) + h(y) for any point
(x, y) ∈ K.

Denote by Tn an n-od, i.e., an n-pointed star. A vertex of a graph K is called horrible if its
degree is greater than 4 and awful if its degree is equal to 4 and it is not an endpoint of a hanging
edge. The defect of a graph K is the sum δ(K) = (degA1−2)+ · · ·+(degAk−2), where A1, . . . , Ak

are all the horrible and awful vertices of K.

Theorem 4. [Ku99] A finite graph K admits a basic embedding K ⊂ R× Tn if and only if K
is a tree and either δ(K) < n or δ(K) = n and K has a horrible vertex with a hanging edge.

BASIC PLANAR SETS

The material is presented as a sequence of problems, which is peculiar not only to Zen monas-
teries but also to elite mathematical education (at least in Russia). Difficult problems are marked
by a star, and unsolved problems by two stars. If the statement of a problem is an assertion, then
it is required to prove this assertion.

Discontinuously basic subsets.

1. (a) Is it true that for any four numbers f11, f12, f21, f22 there exist four numbers g1, g2, h1, h2

such that fij = gi + hj for each i, j = 1, 2?
(b) Andrey Nikolaevich and Vladimir Igorevich play the ’Dare you to decompose!’ game. Some

cells of chessboard are marked. A. N. writes numbers in the marked cells as he wishes. V. I. looks
at the written numbers and chooses (as he wishes) 16 numbers a1, . . . , a8, b1, . . . , b8 as ’weights’ of
the columns and the lines. If each number in a marked cell turns out to be equal to the sum of
weights of the line and the row (of the cell), then V. I. wins, and in the opposite case (i.e., when
the number in at least one marked cell is not equal to the sum of weights of the line and the row)
A. N. wins.

Prove that V. I. can win no matter how A. N. plays if and only if there does not exist a closed
route of a rook starting and turning only at marked cells (the route is not required to pass through
each marked cell).

Let R2 be the plane with a fixed coordinate system. Let x(a) and y(a) be the coordinates of
a point a ∈ R2. An ordered set (either finite or infinite) {a1, . . . , an, . . . } ⊂ R2 is called an array
if for each i we have ai 6= ai+1 and x(ai) = x(ai+1) for even i and y(ai) = y(ai+1) for odd i. It is
not assumed that points of an array are distinct. An array is called closed if a1 = a2l+1.

2. Consider a closed array {a1, . . . , an = a1}. A decomposition for such an array is an assign-
ment of numbers at the projections of the points of the array on the x-axis and on the y-axis. Is
it possible to put numbers f1, . . . , fn ∈ R, where f1 = fn, at the points of the array so that for
each decomposition there exists an fi that is not equal to the sum of the two numbers at x(ai)
and y(ai)?

5



A subset K ⊂ R2 is called discontinuously basic if for each function f : K → R there exist
functions g, h : R → R such that f(x, y) = g(x) + h(y) for each point (x, y) ∈ K.

3. (a) The segment K = 0× [0; 1] ⊂ R2 is discontinuously basic.
(b) The cross K = 0× [−1; 1] ∪ [−1; 1]× 0 ⊂ R2 is discontinuously basic.
(c) A criterion for a subset of the plane to be discontinuously basic. A subset of the plane is

discontinuously basic if and only if it does not contain any closed arrays.

4.** Given a set of marked unit cubes in the cube 8 × 8 × 8, how can we see who wins in
the 3D analogue of the ‘Dare you to decompose!’ game? In this analogue V. I. tries to choose
24 numbers a1, . . . , a8, b1, . . . , b8, c1, . . . , c8 so that the number at the unit cube (i, j, k) would be
equal to the sum ai + bj + ck of the three weights.

5.** (a) Define discontinuous basic subsets of the 3-space. Discover and prove the 3D analogue
of the above criterion.

(b) The same for higher-dimensional case.

Solutions.

1. (a) It is not true. If fij = gi + hj for each i, j = 1, 2, then f11 + f22 = f12 + f21, but this is false
for some numbers fij.

(b) The statement ‘only if’ follows from the problem 2. Let us prove the ‘if’ part by induction on the
number of the marked cells. If only one cell is marked then we are done. Let K be the set of centres of
the marked cells. The set E(K) is defined in the following subsection after Problem 9. The set K does
not contain any closed array, therefore #E(K) < #K. So by the induction hypothesis V. I. can win for
E(K). Each cell from K −E(K) is the only marked cell on its line or column, thus V. I. can choose the
remaining weights for K.

2. Yes, it is. If every fi is equal to the sum of two numbers at x(ai) and y(ai), then f1 − f2 + f3 −
· · · − fn−1 = 0, but this is false for some numbers fi.

3. (a) Set h(y) = f(0, y) and g(x) = 0.
(b) Set g(x) = f(x, 0) and h(y) = f(0, y)− f(0, 0).
(c) The statement ‘only if’ follows from the problem 2. Let us prove the ‘if’ part. Consider a function

f : K → R. Our aim is to construct functions g and h so that f(x, y) = g(x) + h(y). Two points
a, b ∈ K are called equivalent if there is an array {a = a1, . . . , an = b} ⊂ K. Now take an equivalence
class K1 ⊂ K. Define function g : x(K1) → R and h : y(K1) → R in the following way. Take any point
a1 ∈ K1 and set g(x(a1)) = f(a1) and h(y(a1)) = 0. If {a1, a2, . . . , a2l} is an array, then set

h(y(a2l)) := f(a2l)− f(a2l−1) + · · · − f(a1) and g(x(a2l)) := f(a2l−1)− f(a2l−2) + · · ·+ f(a1).

If {a1, a2, . . . , a2l+1} is an array, then set g(x(a2l+1)) := f(a2l+1) − f(a2l) + · · · + f(a1) (h(y(a2l+1)) is
already defined). Make this construction for each equivalence class. Then set g = 0 and h = 0 at all
other points of R.

Continuously basic subsets.

A subset K ⊂ R2 is called (continuously) basic if for each continuous function f : K → R

there exist continuous functions g, h : R → R such that f(x, y) = g(x) + h(y) for each point
(x, y) ∈ K.

The Arnold problem. Which subsets of the plane are basic? [Ar58]

In order to approach a solution consider some examples.

6. (a) A closed array is not basic.
(b) The segment K = 0× [0; 1] ⊂ R2 is basic.
(c) The cross K = 0× [−1; 1] ∪ [−1; 1]× 0 ⊂ R2 is basic.
(d) The graph V of the function y = |x|, x ∈ [−1; 1] is basic.

A sequence of points {a1, . . . , an, . . . } ⊂ R2 converges to a point a ∈ R2 if for each ε > 0 there
exists an integer N such that for each i > N we have |ai, a| < ε.
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7. (a) If a subset of the plane is basic, then it is discontinuously basic.
(b) A completed array is the union of a point a0 ∈ R2 with an infinite array {a1, . . . , an, . . . } ⊂

R2 of distinct points which converges to the point a0. Prove that any completed array is not basic.
(Note that it is discontinuously basic).

(c) Let [a, b] be the rectilinear arc which connects points a and b. Prove that the cross K =
[(−1,−2), (1, 2)] ∪ [(−1, 1), (1,−1)] is not basic.

(d) Let mij = 2− 3 · 2−i + j · 2−2i. Consider the set of points (mi,2l, mi,2l) and (mi,2l, mi,2l−2),
where i varies from 1 to ∞ and l = 1, 2, 3, . . . , 2i−1. Prove that this subset of the plane does not
contain any infinite arrays but contains arbitrary long arrays.

(e) The union of the set from the previous problem and the point (2, 2) is not basic.

A subset K ⊂ R2 of the plane is closed, if for each sequence ai ∈ K converging to a point a
this point belongs to K.

8. A subset K ⊂ R2 of the plane is closed if and only if for each point a 6∈ K there exists
ε > 0 such that if for a point b of the plane we have |a, b| ≤ ε, then b does not belong to K.

The Sternfeld criterion for being a basic subset. A closed bounded subset K ⊂ R2 of
the plane is basic if and only if K does not contain arbitrary long arrays.

9. (a) The criterion is false without the assumption that K closed.
(b) The criterion is false without the assumption that K bounded.
(c)** Find a criterion of being a basic subset for closed (but unbounded) subsets of the plane.

Suppose that K is a subset of R2. For every point v ∈ K consider the pair of lines passing
through v and parallel to the x-axis and the y-axis. If one of these two lines intersects K only at
point v, we colour v in white. Define E(K) as the set of noncoloured points of K:

E(K) = {v ∈ K : |K ∩ (x = x(v))| ≥ 2 and |K ∩ (y = y(v))| ≥ 2}.

Let E2(K) = E(E(K)), E3(K) = E(E(E(K))) etc.

10. A subset K of the plane does not contain arbitrary long arrays if and only if En(K) = ∅
for some n.

12. (a)* Give an elementary proof that if K is a closed bounded subset of R2 and E(K) = ∅,
then K is basic [Mi09].

Hint. It can be proven that for piecewise-linear maps f there is a decomposition f(x, y) =
g(x) + h(y) with |g|+ |h| < 5|f |.

(b)* Prove the ‘if’ part of the criterion without using the functional spaces as below.
Hint. Same as above with |g| + |h| < Cn|f |, where Cn depends only on that n for which

En(K) = ∅.

11. A subset K ⊂ R3 is called (continuously) basic if for each continuous function f : K → R

there exist continuous functions g, h, l : R → R such that f(x, y, z) = g(x) + h(y) + l(z) for each
point (x, y, z) ∈ K.

(a) The ‘hedgehog’ 0× 0× [−1; 1] ∪ 0× [−1; 1]× 0 ∪ [−1; 1]× 0× 0 ⊂ R3 is basic.
(b) The set of 4 points (0, 0, 0); (1, 1, 0); (0, 1, 1); (1, 0, 1) is basic. (But En(K) 6= ∅ for each n,

see below.)
(c)* Define E(K) analogously to the above, only instead of lines use planes orthogonal to the

axes:

E(K) = {v ∈ K : |K ∩ (x = x(v))| ≥ 2, |K ∩ (y = y(v))| ≥ 2 and |K ∩ (z = z(v))| ≥ 2}.

Let K be a closed bounded subset of R3. Prove that if En(K) = ∅ for some n, then K is basic
[St89, Lemma 23.ii].

7



Solutions.

6. (a) If an array A = {a1, . . . , a2l+1} is basic, then f(a1)− f(a2) + · · · + f(an−2)− f(a2l) = 0. But
this is false for some functions f . Cf. problem 2.

(b),(c) Analogously to problems 3a,3b.
(d) Take h(y) = 0 and g(x) = f(x, y).

7. (a) If the subset is not discontinuously basic, then it contains a closed array. Hence the statement
follows by extension of f on the subset and using problem 6a.

(b) Define function f by f(an) =
(−1)n

n . Suppose that f(x, y) = g(x) + h(y) for some g and h. Then

f(a1)− f(a2) + f(a3)− f(a4) + · · · − f(a2l) = h(y(a1))− h(y(a2l)).

Since liml→∞ h(y2l) exists and equals to h(y(a0)), it follows that
∑2l

i=1(−1)if(ai) converges when l → ∞,
which is a contradiction.

(c) The cross contains a completed array

a4k+1 = (−2−2k, 2−2k), a4k+2 = (2−2k−1, 2−2k), a4k+3 = (2−2k−1,−2−2k−1), a4k+4 = (−2−2k−2,−2−2k−1).

Define a function f on this array using problem 7.b and then extend it (e.g. piecewise linearly) to the
cross. Then there are no functions g and h such that f(x, y) = g(x) + h(y).

(d) For every i the set (mi,2l,mi,2l)
2i−1

l=1 ∪ (mi,2l,mi,2l−2)
2i−1

l=1 is an array of 2i points.
(e) Define a function f by

f((mi,2l,mi,2l)) := 2−i and f(mi,2l,mi,2l−2) := −2−i.

If f(x, y) = g(x) + h(y) for some g and h, then for every i using array of points (mi,2l,mi,2l) and
(mi,2l,mi,2l−2), where l = 1, 2, 3, . . . 2i−1, we obtain h(2 − 3

2i
) − h(2 − 2

2i
) = 1. This contradicts to the

continuity of h.

8. Let us prove the ‘only if’ part. Let K be a closed subset of the plane. Suppose that for some point
a = (x, y) 6∈ K and for each ε = 1

n > 0 there exists a point an ∈ K (at least one) such that |a, an| ≤
1
n .

The sequence of points an ∈ K converges to the point a, thus a ∈ K. Contradiction.
Now let us prove the ‘if’ part. Suppose that a sequence an converges to a point a and the point

a = (x, y) is not in K. There exists ε > 0 such that for every point an ∈ K the distance |a, an| > ε. This
is a contradiction.

9. (a) Any infinite array A not containing closed arrays and converging to a point a 6∈ A is basic.
This follows because each function defined on A is continuous.

(b) A counterexample is {(k, k)}∞k=1 ∪ {(k, k − 1)}∞k=1.

10. Let us prove the ‘only if’ part. Suppose that En(K) 6= ∅ for each n. For each n take a point
a0 ∈ En(K). Then there exist points a−1, a1 ∈ En−1(K) such that x(a−1) = x(a0) and y(a1) = y(a0).
Analogously there exist points a−2, a2 ∈ En−2(K) such that {a−2, a−1, a0, a1, a2} is an array. Analogously
we construct an array of 2n+ 1 points in K, which is a contradiction.

Let us prove the ‘if’ part. Suppose that K contains an array of 2n + 1 points {a−n, . . . , a0, . . . , an}.
Then there is an array of 2n − 1 points {a−n+1, . . . , an−1} in E(K). Analogously a0 ∈ En(K). Thus if
En(K) = ∅, then K does not contain an array of 2n + 1 points.

11. (a) For each functuion f : K → R on K define g(x) := f(x, 0, 0), h(y) := f(0, y, 0) − f(0, 0, 0)
and l(z) := f(0, 0, z) − f(0, 0, 0).

(b) Set g(0) = f(0, 0, 0), h(0) = 0, l(0) = 0,

2g(1) = f(0, 0, 0)+f(1, 1, 0)+f(1, 0, 1)−f(0, 1, 1), 2h(1) = −f(0, 0, 0)+f(1, 1, 0)−f(1, 0, 1)+f(0, 1, 1)

and 2l(1) = −f(0, 0, 0) − f(1, 1, 0) + f(1, 0, 1) + f(0, 1, 1).

Proof of the criterion for being a basic subset.

Let K be a closed bounded subset of the plane. It is known that each continuous function
f : K → R is bounded. A function f : K ∈ R is called bounded, if there exists a number M such
that |f(x)| < M for every x ∈ K. For a bounded functionG : K → R denote |G| := supx∈K |G(x)|.

8



Beginning of the proof of the ‘only if ’ part of the criterion. Assume to the contrary that K
contains arbitrary long arrays and is basic. Choosing subsequences we may assume that points of
each array are distinct. Therefore for each n there is an array {an1 , . . . , a

n
2n+5} of 2n + 5 distinct

points in K.
Then there exists continuous function

fn : K → R such that fn(a
n
i ) = (−1)i and |fn(x)| ≤ 1 for each x ∈ K.

(Indeed, first define such a continuous function f : R2 → R. Denote s = mini<j |ai, aj|. Take n
disks with centers ai and radii s

3
. Outside of these disks set f = 0. Inside the i-th disk take f to

be (−1)i in the center ai, 0 on the boundary and extend it linearly in the distance to ai. Then
restrict f to K ⊂ R2.)

Define integers sn and functions Fn : K → R inductively as follows. Set s0 = 1 and F0 = 0.
Suppose now that Fn−1 and sn−1 are defined. If Fn−1 is not representable as Gn−1(x) +Hn−1(y),
then we are done. If it is representable in this way, then take

sn > sn−1!(|Gn−1|+ n) and Fn = Fn−1 +
fsn
sn−1!

It remains to prove that if we can construct in this way an infinite number of sn and Fn, then the
function

F = lim
n→∞

Fn =
∞
∑

n=1

fsn
sn−1!

is not representable as G(x) +H(y).
Assume to the contrary that F (x, y) = G(x) + H(y) for some G and H . It suffices to prove

that |G| > n for each n. For this it suffices to prove that sn−1!|G − Gn−1| > sn: then we would
have

|G|+ |Gn−1| ≥ |G−Gn−1| >
sn

sn−1!
> |Gn−1|+ n.

Lemma. Let m ≥ 4,
• K = {a1, . . . , a2m+5} be an array of 2m+ 5 distinct points,
• f(a1), . . . , f(a2m+5) numbers such that |(−1)i − f(ai)| ≤ 1/m,
• g(x(ai)), h(y(ai)), i = 1, . . . , 2m+ 5, numbers such that fi = g(x(ai)) + h(y(ai)) for each i.
Then maxi |g(x(ai))| > n.

Proof. We may assume that a1a2‖Ox. Then

|(f(a1)− f(a2) + f(a3)− f(a4) + · · · − f(a2m+4)− (2m+ 4)| ≤
2m+ 4

m
≤ 3.

Therefore g(x(a1))− g(x(a2m+4)) ≥ (2m+ 4)− 3 > 2m. This implies the required inequality.

Completion of the proof of the ‘only if ’ part of the criterion. We have

F − Fn = F − Fn−1 −
fsn
sn−1!

=
sn−1!(F − Fn−1)− fsn

sn−1!
.

Apply the Lemma to

m = sn, ai = asni , f = sn−1!(F−Fn−1), g = sn−1!(G(x)−Gn−1(x)), h = sn−1!(H(y)−Hn−1(y)).

This is possible because f(x, y) = g(x) + h(y) and (since sn − 1 > sn−1 for n > 2)

|f − fsn | = sn−1!|F − Fn| <
1

(sn − 1) · sn

∞
∑

k=0

1

(sn + 1) · · · · · sn+k

<
1

(sn − 1) · sn

∞
∑

k=0

1

2k
<

1

sn
.
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By Lemma we obtain sn−1!|G−Gn−1| > sn.

Proof of the criterion. 5 The proof is based on a reformulation of the property of being a
basic subset in terms of bounded linear operators in Banach functional spaces. Denote by C(X)
the space of continuous functions on X with the norm |f | = sup{|f(x)| : x ∈ X}. In this proof
denote by prx(a) and pry(a) the projections of a point a ∈ K on the coordinate axes.

For K ⊂ I2 := [0; 1]× [0; 1] define a map (linear superposition operator)

φ : C(I)⊕ C(I) → C(K) by φ(g, h)(x, y) := g(x) + h(y).

Clearly, the subset K ⊂ I2 is basic if and only if φ is surjective, or equivalently, epimorphic.
Denote by C∗(X) the space of bounded linear functions C(X) → R with the norm |µ| =

sup{|µ(f)| : f ∈ C(X), |f | = 1}. For a subset K ⊂ I2 define a map (dual linear superposition
operator)

φ∗ : C∗(K) → C∗(I)⊕ C∗(I) by φ∗µ(g, h) := (µ(g ◦ prx), µ(h ◦ pry)).

Since |φ∗µ| ≤ 2|µ|, it follows that φ∗ is bounded. By duality, φ is epimorphic if and only if φ∗ is
monomorphic. 6

It is clear that φ∗ is monomorphic if and only if
(*) there exists ε > 0 such that |φ∗µ| > ε|µ| for each unzero µ ∈ C∗(K).
We leave as an excercise the proof that (*) implies the abcense of arbitrarily large arrows.

(This proves the ‘only if’ part of the criterion, for which we already have an elementary proof.)
So it remains to prove that En(K) = ∅ implies the condition (*). We present the proof for

n ∈ {1, 2}. The proof for arbitrary n is analogous. We use the following non-trivial fact: C∗(X) is
the space of σ-additive regular real valued Borel measures on X (in the sequel we call them simply
‘measures’). We have

φ∗µ = (µx, µy), where µx(U) = µ(pr−1
x U) and µy(U) = µ(pr−1

y U) for each Borel set U ⊂ I.

If µ = µ+ − µ− is the decomposition of a measure µ into its positive and negative parts, then
|µ| = µ̄(X), where µ̄ = µ+ + µ− is the absolute value of µ.

Let Dx (Dy) be the set of points of K which are not shadowed by some other point of K in x-
(y-) direction. Take any measure µ on K of the norm 1.

If n = 1, then

E(K) = ∅, then Dx ∪Dy = K, so 1 = µ̄(K) ≤ µ̄(Dx) + µ̄(Dy).

Therefore without loss of generality, µ̄(Dx) ≥ 1/2. Since the projection onto the x-axis is injective
over Dx, it follows that |µx| ≥ 1/2, thus the required assertion holds for ε = 1

2
.

If n = 2, then

E(E(K)) = ∅, hence Dx ∪Dy = K − E(K), so E(Dx ∪Dy) = ∅.

In the case when µ̄(E(K)) < 3/4 we have µ̄(Dx ∪ Dy) > 1/4 and without loss of generality
µ̄(Dx) > 1/8. Then as for n = 1 we have |µx| > 1/8, thus (*) holds for ε = 1

8
.

5This proof is not elementary, is not used in the sequel and could be omitted.
6We remark that φ∗ can be injective but not monomorphic. In other words not only some linear relation on

imφ can force it to be strictly less than C(K).
If an embedding K ⊂ R

2 is basic, then we can prove that φ∗ is monomorphic without use of φ as follows. Define
a linear operator

Ψ: C∗(I)⊕ C∗(I) → C∗(K) by Ψ(µx, µy)(f) = µx(g) + µy(h),

where g, h ∈ C(I) are such that g(0) = 0 and f(x, y) = g(x) + h(y) for (x, y) ∈ K. Clearly, Ψφ∗ = id and Ψ is
bounded, hence φ∗ is monomorphic.
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In the case when µ̄(E(K)) ≥ 3/4 we have µ̄(K − E(K)) ≤ 1/4. By the case n = 1 above
without loss of generality µ̄x(prx(E(K))) ≥ µ̄(E(K))/2. Hence |µx| ≥

1
2
· 3
4
− 1

4
= 1

8
, thus (*) holds

for ε = 1
8
.

Smoothly basic subsets of the plane.

Let K be a subset of the plane R2. A function f : K → R is called differentiable if for each
point z0 ∈ K there exist a vector a ∈ R2 and infinitesimal function α : R2 → R such that for
each point z ∈ K

f(z) = f(z0) + a · (z − z0) + α(z − z0)|z, z0|.

Here the dot denotes scalar product of vectors a =: (fx, fy) and z−z0 =: (x, y), i.e. a · (z−z0) =
xfx + yfy. A function α : R2 → R is infinitesimal, if for each number ε > 0 there exists a number
δ > 0 such that for each point (x, y) ∈ R2

if
√

x2 + y2 < δ, then |α(x, y)| < ε.

Let V be the graph of the function y = |x|, where x ∈ [−1; 1]. A function f : V → R is
differentiable if and only if f(x, |x|) is differentiable on the segments [−1; 0] and [0; 1].

A subset K ⊂ R2 of the plane is called differentiably basic if for each differentiable function
f : K → R there exist differentiable functions g : R → R and h : R → R such that f(x, y) =
g(x) + h(y) for each point (x, y) ∈ K.

13. (a) (b) (c) Solve the analogues of problem 6 for differentiably basic sets.

14. (a) The graph V is differentiably basic.
(b) W := (V − (2, 0)) ∪ (V + (2, 0)) is not differentiably basic.
(c) The broken line whose consecutive vertices are (−2, 0), (−1, 1), (0, 0), (1, 1) and (2, 0) is

not differentiably basic. (Note that it is continuously basic).
(d) The completed array {([n+1

2
]−1/2, [n

2
]−1/2)}∞n=2 ∪ {(0, 0)} is not differentiably basic. (Note

that it is also not continuously basic.)

(e) The completed array {(2−[n+1
2

], 2−[n
2
])}∞n=1 ∪ {(0, 0)} is differentiably basic. (Note that it is

not continuously basic.)
(f) (I. Shnurnikov) The cross K = [(−1,−2), (1, 2)] ∪ [(−1, 1), (1,−1)] is not differentiably

basic. (This assertion and Conjecture 15a imply that the property of being differentably basic is
not hereditary.)

(g) If a graph is basically embeddable in the plane, then it is differentiably basically embeddable
in the plane. (This is non-trivial because the plane contains graphs which are basic but not
differentaibly basic and vice versa.) [RZ06]

15.** Conjectures. (a) (I. Shnurnikov) A completed array {an}
∞
n=1∪{(0, 0)} is differentiably

basic if and only if the sequence

∞∑

n=k

|an|

|ak|
is bounded.

(b) The subset {(t2, t2

(1+t)2
)}t∈[− 1

2
; 1
2
] of the plane is not differentiably basic.

Hint. One can try to prove this analogously to 14f. Cf. [Vo81, Vo82].
(c) A piecewise-linear graph in R2 is differentiably basic if and only if it does not contain

arbitrary long arrays and for each two singular points a and b we have x(a) 6= x(b) and y(a) 6= y(b).
A point a ∈ K is singular if the intersection of K with each disk centered at a is not a rectilinear
arc.

It would be interesting to find a criterion of being differentiably basic for closed bounded
subsets of the plane. Apparently a simple-to-state criterion (analogous to the Sternfeld criterion)
does not exist. Another interesting question: is there a continuous map [0; 1] → R2 whose image
is differentiably basic but not basic?
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16. Let r ≥ 0 be an integer and K ∈ R2 a subset. A function f : K → R is called r
times differentiable if for each point z0 ∈ K there exist a polynomial f(z) = f(x, y) of degree
at most r of 2 variables x and y and an infinitesimal function α : R2 → R such that f(z) =
f(z − z0) + α(z − z0)|z, z0|

r for each point z ∈ K. (This definition differs from the one generally
accepted.)

(a) Functions differentiable zero times are exactly continuous functions, and functions differ-
entiable one time are exactly differentiable functions.

(b) For each positive integer r define the property of being an r times differentiably basic
subset of the plane R2.

(c) For each integer k ≥ 0 there is a subset of the plane which is r times differentiably basic
for r = 0, 1 . . . k but is not r times differentiably basic for each r > k.

(d)** Find a criterion for graphs in R2 to be r times differentiably basic.

Solutions.

13. (a), (b), (c) Analogously to problems 6(a), 3(a) and 3(b).

14. (a) Take a differentiable function f : V → R. Since f is differentiable at (0, 0), it follows that
there exist a, b ∈ R such that

f(x, |x|) = f(0, 0) + ax+ b|x|+ α(x), where α(x) = o(
√

x2 + |x|2) when x → 0.

Take h(y) := by and g(x) := f(0, 0)+ax+α(x). Clearly, h is differentiable and g is differentiable outside
0. Since α(x) = o(x) when x → 0, it follows that g is differentiable also at 0.

(b) See 16c for k = 0.
(c) Suppose the broken line is differentiably basic. The function f(x, y) = xy is differentiable. We

have f(x, y) = g(x) + h(y), where both g and h are differentiable. Then

2−2d = f(1+d, 1−d)+ f(1−d, 1−d) = g(1+d)+ g(1−d)+2h(1−d) = 2g(1)+2h(1)−2h′(1)d+ o(d).

Hence h′(1) = 1. Analogously

2d−2 = f(−1+d, 1−d)+f(−1−d, 1−d) = g(−1+d)+g(−1−d)+2h(1−d) = 2g(−1)+2h(1)−2h′(1)d+o(d).

Hence h′(1) = −1. A contradiction.
(d) Suppose that this completed array is differentiably basic. Set an = ([n+1

2 ]−1/2, [n2 ]
−1/2), f(an) :=

(−1)n

n , n = 2, 3, . . . . If f(x, y) = g(x) + h(y) for some functions g(x) and h(y), then the series f(a2) −
f(a3)+ f(a4)− . . . converges to g(1)− g(0) (analogously to Problem 7b). This is a contradiction because
the series 1

2 +
1
3 +

1
4 + . . . diverges.

(e) Without loss of generality assume that f(0, 0) = 0, then take g(0) = 0 and h(0) = 0. Set

h(2−k) = f(2−(k+1), 2−k)− f(2−(k+1), 2−(k+1)) + f(2−(k+2), 2−(k+1))− . . . ,

g(2−k) = f(2−k, 2−k)− f(2−(k+1), 2−k) + f(2−(k+1), 2−(k+1))− . . . ,

where the right-hand sides are sums of alternating series. Now g(x) and h(y) may be extended to
differentiable functions R → R.

(f) Define

w(0) = w(4−i + 4−3i) = w(4−i) = 0 and w(4−i + 4−3i−1) = 23i for i = 1, 2, 3, . . . .

Extend piecewice-linearly to obtain a function w : [0; 1] → R. For x ∈ [0; 1] define W (x) as the area
under the graph of w on [0;x]. (This is well-defined because this area is finite.) Define f(x,−x) = W (x)
for x ∈ [0; 1] and f(x, y) = 0 on the rest of the cross.

Clearly, f is differentiable outside (0, 0). It is easy to check that f is differentiable at (0, 0).
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Suppose that f(x, y) = g(x)+h(y) for some differentiable functions g and h. Without loss of generality
we assume that g(0) = h(0) = 0. The function g is not differentiable at x = 1/4 because for 0 < d < 1

4
we have

g

(

1

4
+ d

)

− g

(

1

4

)

= W

(

1

4
+ d

)

−W

(

1

4

)

+W

(

1

42
+

d

4

)

−W

(

1

42

)

+ · · · >

> W

(

1

4k+1
+

d

4k

)

−W

(

1

4k+1

)

=
23k · 4−3k

2
≥

(4d)3/4

2
.

Here
• the first equality is proved using two infinite arrays starting at points (14 + d,−1

4 − d) and (14 ,−
1
4)

and converging to the point (0, 0);
• k ≥ 0 is such that 4−2k ≥ 4d > 4−2(k+1);
• the first inequality follows because W is a non-decreasing function;
• the second inequality follows because d

4k
> 1

43(k+1) ;
• the second equality follows by definition of k.
(In the same way one can prove that g is not differentiable at x = 4−i for each i.)

15. (a) Hints. For the ‘only if’ part use the idea of Problem 7b and prove that if
∞
∑

n=1
|an| = ∞, then

there is a sequence bn → 0 such that
∞
∑

n=1
|an|bn = ∞.

For the ‘if’ part we may assume that numbers x(ai) are distinct, numbers y(ai) are distinct, x(a2i) =
x(a2i+1), y(a2i) = y(a2i−1). If f(0, 0) = 0, define

g(x(a2i)) := f(a1)− f(a2) + f(a3)− · · ·+ f(a2i+1), g(0) :=

∞
∑

i=1

(−1)if(ai),

h(y(a2i)) := −f(a1) + f(a2)− f(a3)− · · ·+ f(a2i−2) and h(0) :=
∞
∑

i=1

(−1)if(ai).

Prove that g and h are differentiable at 0.

16. (a) It is clear.
(b) A subset K ⊂ R

2 is called r times differentiably basic if for each r times differentiable function
f : K → R there exist r times differentiable functions g : R → R and h : R → R such that f(x, y) =
g(x) + h(y) for each point (x, y) ∈ K.

(c) We can take the graph Vk of the function y = |x|k, x ∈ [−1; 1] for k odd, and Wk+1 = (Vk+1 −
(2, 0)) ∪ (Vk+1 + (2, 0)) for k even.

Proof for k even. Let us prove that Wk+1 is r times differentiably basic for each 0 ≤ r ≤ k. Given an
r times differentiable function f : Wk+1 → R, take functions h(y) = 0 and g(x) = f(x, |x− 2 sign x|k+1).
Clearly, h is r times differentiable and f(x, y) = g(x) + h(y) for each (x, y) ∈ Wk+1. Since the function
p(t) = |t|k+1 is k times differentiable and r ≤ k, it follows that g is r times differentiable.

Let us prove that Wk+1 is not r times differentiably basic for k even and each k < r. Define a
function f : Wk+1 → R by f(x, y) = y signx. Clearly, f is r times differentiable. If Wk+1 is r times
differentiably basic, then there are r times differentiable functions g and h such that f(x, y) = g(x)+h(y).
For t ∈ [−1; 1] we have

g(±2 + t) + h(|t|k+1) = f(±2 + t, |t|k+1) = ±|t|k+1.

Since g is (k + 1) times differentiable and k + 1 is odd, it follows that h′(0) = +1 and h′(0) = −1, which
is a contradiction.

Proof for k odd. First we prove that Vk is r times differentiably basic for each 0 ≤ r ≤ k. Take an r
times differentiable function f : Vk → R. Since f is r times differentiable at (0, 0), it follows that there
exist {aij}

r
i,j=0 ⊂ R such that

a00 = f(0, 0) and f(x, |x|k) =
r

∑

i,j=0

aijx
i|x|kj + o([x2 + x2r]r/2) when x → 0.
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Since

o([x2 + x2r]r/2) = o1(x
r), we have f(x, |x|k) = a00 + a01|x|

k + a10x+ · · ·+ ar0x
r + o2(x

r).

Take h(y) = a01y and g(x) = f(x, |x|k) − h(|x|k). Clearly, h is r times differentiable and g is r times
differentiable outside 0. We also have g(x) = a00 + a10x + · · · + ar0x

r + o2(x
r) when x → 0. So g is r

times differentiable also at 0.
Next we prove that V = V1 is not r times differentiably basic for each 1 < r. Define a differentiable

function f : V → R by f(x, y) = xy, where y = |x|. If V is r times differentiably basic for some r ≥ 2,
then there are r times differentiable functions

g, h : R → R such that f(x, |x|) = x|x| = g(x) + h(|x|).

Hence g(x)− g(−x) = 2x2 for x ∈ [0; 1]. But this is impossible because g is 2 times differentiable, hence
for x → +0

g(x) = g(0) + ax+ bx2 + o(x2) and g(−x) = g(0) − ax+ bx2 + o(x2).

At last we prove that Vk is not r times differentiably basic for k odd and each k < r. Define a
differentiable function f : Vk → R by f(x, y) = xy, where y = |x|k. If V is r times differentiably basic
for some r > k, then there are r times differentiable functions

g, h : R → R such that f(x, |x|k) = x|x|k = g(x) + h(|x|k).

Hence g(x) − g(−x) = 2xk+1 for each x ∈ [0; 1]. But this is impossible for k odd because g is (k + 1)
times differentiable, hence for x → +0

g(x) = g0 + g1x+ · · ·+ gk+1x
k+1 + o(xk+1) and g(−x) = g0 − g1x+ · · ·+ gk+1x

k+1 + o(xk+1).

References

[Ar58] V.I. Arnold, Representation of functions of some number of variables as superposi-
tion of functions of less number of variables (in Russian), Mat. Prosveschenie, 3 (1958), 41–61.
http://ilib.mirror1.mccme.ru/djvu/mp2/mp2-3.djvu?, djvuopts&page=43

[Ar58’] V.I. Arnold, Problem 6 (in Russian), Mat. Prosveschenie, 3 (1958), 273-274.
http://ilib.mirror1.mccme.ru/djvu/mp2/mp2-3.djvu?, djvuopts&page=243

[Ku00] V. Kurlin, Basic embeddings into products of graphs, Topol.Appl. 102 (2000), 113–137.
[Ku03] V. A. Kurlin, Basic embeddings of graphs and the Dynnikov method of three-pages

embeddings (in Russian), Uspekhi Mat. Nauk, 58:2 (2003), 163–164. English transl.: Russian
Math. Surveys, 58:2 (2003).

The full text of dissertation is available at http://maths.dur.ac.uk/∼dma0vk/PhD.html
[Mi09] E. Miliczka, Constructive decomposition of a function of two variables as a sum of

functions of one variable, Proc. AMS, 137:2 (2009), 607-614.
[MK03] N. Mramor-Kosta and E. Trenklerova, On basic embeddings of compacta into the plane,

Bull. Austral. Math. Soc. 68 (2003), 471–480.
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