
1 Introduction

Much of computer science is about state machines. This is as obvious a
remark as saying that much of physics is about equations. Why state some-
thing so obvious?

Imagine a world in which physicists did not have a single concept of
equations or a standard notation for writing them. Suppose that physicists
studying relativity wrote the “einsteinian” m↗c2 ←↩ E instead of E = mc2,

while those studying quantum mechanics wrote the “heisenbergian” E
c2
m

∧ ;
and that physicists were so focused on the syntax that few realized that these
were two ways of writing the same thing. In such a world, it would be worth
observing that relativity and quantum mechanics both used equations.

This imagined world of physics seems absurd. Its analog is the reality
of computer science today. Computation is a major topic of computer sci-
ence, and almost every object that computes is naturally viewed as a state
machine. Yet computer scientists are so focused on the languages used to
describe computation that they are largely unaware that those languages
are all describing state machines.

Teaching our imaginary physicists that einsteinians and heisenbergians
are different ways of writing equations would not lead to any new physics.
The equations of relativity are different from those of quantum mechanics.
Similarly, realizing that so much of computer science is about state machines
might not change the daily life of a computer scientist. The state machines
that arise in different fields of computer science differ in important ways,
and they may be best described with different languages. Still, it seems
worthwhile to point out what they have in common.

State machines provide a framework for much of computer science. They
can be described and manipulated with ordinary, everyday mathematics—
that is, with sets, functions, and simple logic. State machines therefore
provide a uniform way to describe computation with simple mathematics.

The obsession with language is a strong obstacle to any attempt at uni-
fying different parts of computer science. When one thinks only in terms
of language, linguistic differences obscure fundamental similarities. Simple
ideas can become complicated when they must be expressed in a particular
language. A recurring theme is the difficulty that arises when necessary
concepts cannot be introduced either because the language has no way of
expressing them or because they are considered to be politically incorrect.
(A number of different terms have been used to mean politically correct,
such as “fully abstract”, “observable”, and “denotational”.)
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Here is a simple example. Suppose we have a
chain complex

· · · ∂−→ Cd+1
∂−→ Cd

∂−→ Cd−1
∂−→ ·· ·

that is “graded”, i.e., each Cd splits into a direct sum

Cd =
n⊕

p=1

Cd,p

and moreover the boundary map ∂ respects the
grading in the sense that ∂Cd,p ⊆ Cd−1,p for all d
and p. Then the grading allows us to break up the
computation of the homology into smaller pieces:
simply compute the homology in each grade in-
dependently and then sum them all up to obtain
the homology of the original complex.

Unfortunately, in practice we are not always so
lucky as to have a grading on our complex. What
we frequently have instead is a filtered complex, i.e.,
each Cd comes equipped with a nested sequence
of submodules

0 = Cd,0 ⊆ Cd,1 ⊆ Cd,2 ⊆ · · · ⊆ Cd,n = Cd

and the boundary map respects the filtration in the
sense that

(1) ∂Cd,p ⊆ Cd−1,p

for all d and p. (Note: The index p is called the fil-
tration degree. Here it has a natural meaning only
if 0 ≤ p ≤ n, but throughout this paper, we some-
times allow indices to “go out of bounds,” with the
understanding that the objects in question are
zero in that case. For example, Cd,−1 = 0.)

Although a filtered complex is not quite the
same as a graded complex, it is similar enough
that we might wonder if a similar “divide and con-
quer” strategy works here. For example, is there a
natural way to break up the homology groups of a
filtered complex into a direct sum? The answer
turns out to be yes, but the situation is surprisingly
complicated. As we shall now see, the analysis
leads directly to the concept of a spectral sequence.

Let us begin by trying naïvely to “reduce” this
problem to the previously solved problem of graded
complexes. To do this we need to express each Cd
as a direct sum. Now, Cd is certainly not a direct
sum of the Cd,p; indeed, Cd,n is already all of Cd.
However, because Cd is a finite-dimensional vector
space (recall the assumptions we made at the out-
set), we can obtain a space isomorphic to Cd by
modding out by any subspace U and then direct
summing with U; that is to say, Cd � (Cd/U)⊕U .
In particular, we can take U = Cd,n−1. Then we can
iterate this process to break U itself down into a
direct sum, and continue all the way down. More
formally, define

(2) E0
d,p

def
= Cd,p/Cd,p−1

for all d and p. (Warning: There exist different in-
dexing conventions for spectral sequences; most
authors write E0

p,q where q = d − p is called the
complementary degree. The indexing convention I
use here is the one that I feel is clearest pedagog-
ically.) Then

(3) Cd �
n⊕

p=1

E0
d,p.

The nice thing about this direct sum decomposi-
tion is that the boundary map ∂ naturally induces
a map

∂0 :
n⊕

p=1

E0
d,p →

n⊕

p=1

E0
d−1,p

such that ∂0E0
d,p ⊆ E0

d−1,p for all d and p. The rea-
son is that two elements of Cd,p that differ by an
element of Cd,p−1 get mapped to elements of
Cd−1,p that differ by an element of
∂Cd,p−1 ⊆ Cd−1,p−1, by equation (1).

Therefore we obtain a graded complex that splits
up into n pieces:

(4)
· · · ∂0

�→ E0
d+1,n

∂0
�→ E0

d,n
∂0
�→ E0

d−1,n
∂0
�→ ·· ·

· · · ∂0
�→ E0

d+1,n−1
∂0
�→ E0

d,n−1
∂0
�→ E0

d−1,n−1
∂0
�→ ·· ·

...
...

...

· · · ∂0
�→ E0

d+1,1
∂0
�→ E0

d,1
∂0
�→ E0

d−1,1
∂0
�→ ·· ·

Now let us define E1
d,p to be the pth graded piece

of the homology of this complex:

(5) E1
d,p

def= Hd(E0
d,p) =

ker∂0 : E0
d,p → E0

d−1,p

im ∂0 : E0
d+1,p → E0

d,p

(For those comfortable with relative homology,
note that E1

d,p is just the relative homology group
Hd(Cp,Cp−1).) Still thinking naïvely, we might hope
that

(6)
n⊕

p=1

E1
d,p

is the homology of our original complex. Unfortu-
nately, this is too simple to be true. Although each
term in the the complex (

⊕
p E0

d,p, ∂
0)—known as

the associated graded complex of our original fil-
tered complex (Cd, ∂)—is isomorphic to the corre-
sponding term in our original complex, this does
not guarantee that the two complexes will be iso-
morphic as chain complexes. So although 

⊕
p E1

d,p
does indeed give the homology of the associated
graded complex, it may not give the homology of
the original complex.


