10. Dynamic networks driven by human mobility

Fabien Tarissan

CNRS

École Normale Supérieure Paris-Saclay

Plan

- 1 Mobile Networks
 - Mobile Networks Capacity Different Protocols Some empirical results on mobility
- 2 Empirical study

Markovian models
Dataset
Methodology
Analyzing real traces
Impact of the markovian model

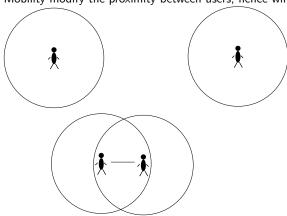
Mobile Networks

Dynamical aspect of networks

Motivation

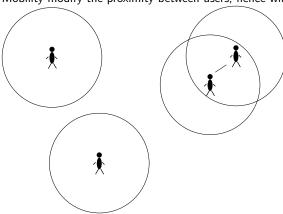
- Development of wireless devices
- A lot of new open dataset
- Dynamics ON and OF the network
- New structural properties
- Redefining usual metrics (graphs)

Issues


- How acquire knowledge from this object? (measure)
- Which notable properties? (analyze)
- Which models best capture those properties? (modelling)

Object under study

Human-contact networks


Mobility modify the proximity between users, hence wireless communications

Object under study

Human-contact networks

Mobility modify the proximity between users, hence wireless communications

Motivations

Ad-hoc communications: transmission hop-by-hop

- Reduce the cost (eg. broadcast)
- Extreme events (eg. earth quake)
- Military applications

Virus propagation

Radio proximity \leftrightarrow physical proximity

Efficiency?

Capacity:

- for a pair source/destination: the amount of data (bits) that can be transmitted (per sec.)
- of the network : average capacity for a random pair source/destination

Need to model:

- who communicates with whom?
 - when
 - how many times (frequecy)
- which protocol of communication?

Point-to-point

For each packet, the source waits until it meets the target.

Advantage :

Drawbacks :

Point-to-point

For each packet, the source waits until it meets the target.

Advantage:

simple

Drawbacks:

Time to send the paquet?

Flooding protocol

Each node send all its packets to all the nodes it meets

Avantages

Drawbacks

Flooding protocol

Each node send all its packets to all the nodes it meets

Avantages

 time to reach every one : proxy for a lower bound in terms of times required for the transmission

Drawbacks

- Waste of memory
- Interference

Two-hop relay

Each source transmits its packets to the first node it meets :

- either directly to the target
- either to a relay

Each relay waits until it meets the target

Avantages/drawbacks

Protocol used in an article. Detailed later

Static nodes

[Gupta, Kumar, 2000]

Settings:

- *n* nodes are randomly placed on a disc whose surface is 1.
- the nodes don't move
- for each source : one destination is randomly chosen one sends an infinity of packets

Results

- Capacity in $cte/\sqrt{n \log n}$ possible
- Capacity in cte/\sqrt{n} impossible

Discussion

Discussion

The capacity desceases while the number of nodes increases

→ the more the number of nodes, the less the efficiency

Discussion

Important theoretical result

What happens if:

- nodes moves?
- pattern of communication changes?
 (who wants to communicate with whom)

[Grossglauser, Tse, 2002]

Settings:

- The nodes move in a disc whose surface is 1.
- $X_i(t)$: position of i at time t.
- Uniform distribution over the disc
- One node → one destination
- One sends an infinity of packets

First idea

Each pair source/destination is infinitly often close \longrightarrow direct communications when distance < threshold

Problem

Better compromise : impossible to reach $1/\sqrt{n}$

First idea

Each pair source/destination is infinitly often close \longrightarrow direct communications when distance < threshold

Problem

- high threshold \rightarrow lot of interferences few communication at the same time
- ullet short threshold : short distances ightarrow needs to wait for longer

Total capacity low in both cases

Better compromise : impossible to reach $1/\sqrt{n}$

Second idea: relay

At each time step : one chooses randomly θn sources $(\theta < 1$, parameter) the other nodes are receptors

2 modes

- if t odd: each source sends its packet to the closest receptor
 - · either the destination
 - either a relay (unique)
- if t even : each source sends a relayed packet, if possible.
 - transmission only to the destination

Results

The capacity of each pair is constant

Discussion

Important theoretical result:

NRS ENSTA

Discussion

Important theoretical result : the mobility plays a great impact

Only one relay: surprising?

Discussion

Important theoretical result : the mobility plays a great impact

Only one relay: surprising?

The modelling of the mobility assumes a trajectory :

- stationnary
- uniformly distributed on the disc
- independant in regards to the nodes
- \longrightarrow each node has the same probability to meet the destination

Is it a reallistic model?

Let's find out

Contact and inter-contact duration times

For radio badges networks:

Contacts duration times

How long two nodes stay in contact

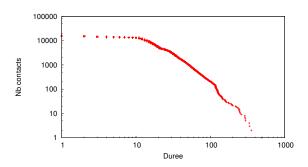
Inter-contact duration times

How long before two given nodes meets again

 $\longrightarrow \mathsf{Distribution}$

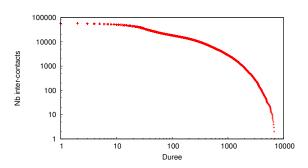
One example: rollerblade tour

[Tournoux, Leguay, Benbadis, Conan, Dias de Amorim, Whitbeck, 2009]


Rollernet

- Rollerblade tour in Paris
- 62 nodes
- 3 hours

Contacts duration times


Inverse CDF (cumulative distribution frequency)

Inter-contacts duration times

Inverse CDF

Discussion

Distributions not homogeneous

(more or less heterogeneous depending on the dataset)

Mobility

Consequences

[Chaintreau, Hui, Crowcroft, Diot, Gass, Scott, 2006]

Inter-contacts duraction times following a powerlaw

Discussion

Distributions not homogeneous

(more or less heterogeneous depending on the dataset)

Mobility

Observations incompatible with hypothesis made in the previous article : It is not reallistic to model a regular and uniform mobility

Consequences

[Chaintreau, Hui, Crowcroft, Diot, Gass, Scott, 2006]

Inter-contacts duraction times following a powerlaw

⇒ no efficient communications possible

$Empirical\ study$

Goal

The existing:

- Studies analyzing mobile networks [CHA07, TOU09, ...]
- Few models but recently : [CLE08, CLE09]

Used to study diffusion protocols:

- flooding protocol [BAU09, CLE10]
- push protocol [CLE13]

Goal

The existing:

- Studies analyzing mobile networks [CHA07, TOU09, ...]
- Few models but recently: [CLE08, CLE09]

Used to study diffusion protocols:

- flooding protocol [BAU09, CLE10]
- push protocol [CLE13]

In this course : is the model realistic?

Models for evolving graphs

Background:

- Evolving graph model : recent [FER02]
- Evolving graph = Succession of distinct graphs G_0 , G_1 , ... with V given
- Capture all types of dynamics

Models for evolving graphs

Background:

- Evolving graph model : recent [FER02]
- Evolving graph = Succession of distinct graphs G_0 , G_1 , ... with V given
- Capture all types of dynamics

Variant of edge-markovian evolving graph:

- Temporal dependency in the evolution of the graph
- G_{t+1} determined by G_t and 2 parameters :
 - p : probability of creation of a non-existing link
 - d : probability of deletion of an existing link

Example

Example with 4 nodes, p = 0.3, d = 0.2 and 5 time steps.

```
1 3 2 3
1 4 1 3
2 3 1 2
2 3 4 4
2 4 1 2
2 4 4 4
3 4 1 3
```

- 1st and 2nd column: identifiers of nodes involved in the contact
- 3rd column : starting time of contact
- 4th column : ending time of contact

Advantages / drawbacks

Interest is twofold:

- $\forall G_0, p, d$: converge towards an Erdös Rényi graph with $\hat{p} = rac{p}{p+d}$
- ullet Few parameters \Longrightarrow theoretical results

But it is also its weakness:

Advantages / drawbacks

Interest is twofold:

- $\forall G_0, p, d$: converge towards an Erdös Rényi graph with $\hat{p} = rac{p}{p+d}$
- Few parameters ⇒ theoretical results

But it is also its weakness:

- 2 parameters to rule all creations/deletions
- Suppose that those 2 values are representative for the l'entire evolution of the de network

Methodology

Goal of the course :

Conduct a study to see if it is true.

- Analyze properties of the dynamics as observed in several dataset
- Comparison with the markovian model

Elements of response

- Yes for [WHI11] (and [VOJ11]) but ...
- ... study over 1 dataset
- ... the criteria is weak : time needed to flood the network

Rollernet

- Rollerblade tour in Paris
- Date: August 2006.
- Duration: 3h with a break (30 min) couvering approx. 30km,
- Location: street of Paris
- Technology: *iMotes* (bluetooth)
- Size: 62 participants
- Frequency: every 15s.

Infocom06

- Experiment made during Infocom conference at Barcelona.
- Date : April 2006
- Duration : 3 days
- Technology : iMote
- Size: 98 iMotes (78 participants, 17 static, and 3 in elevators)
- Frequency : every 120s.

Sociopattern

- Exhibition in at a gallery (deseases propagations).
- Date: 2009
- Duration: 3 months
- Technology : radio bagdes
- Size: 88 to 410 (depends on the day)
- Frequency : every 20s.

6 case studies

Dataset	RollerNet	Infocom05	Infocom06	HT09	Socio	PMTR
Duration	3 hours	4 days	4 days	2,5 days	1 day	10 days
Participants	62	41	98	113	151	44
Contacts	60 146	17 682	148 784	9 865	2 051	11 895
Frequency (sec.)	15	120	120	20	20	1

For each:

- "Physical" contact network among individuals
- Each individual is equipped with a sensing device
- Detection between devices if proximity between individuals (2 to 10 m.)
- Frequency of detection varies, as well as duration of the experiments

In the rest of the presentation, 3 dataset only:

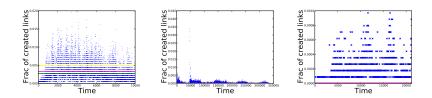
- RollerNet
- Infocom06: similar to Infocom05
- SocioPattern: similar to HT09 and PMTR

Methodology

For each dataset and for each time step

- Fraction of created links (over possible new links)
- Fraction of deleted links (over existing links)

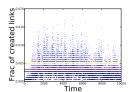
Corresponds to the parameters p and d of the model

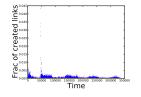

Analyze:

- Evolution over time
- Distribution of the values
- Generation of artificial graphs according to the markovian model
- Comparison between real/artificial graph

CNRS ENSTA

Created links




 $\ensuremath{\mathrm{Figure}}$: Evolution of the proportion de created links over time

NRS ENSTA

Created links

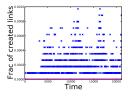
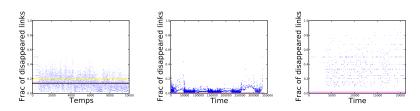
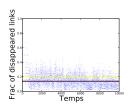
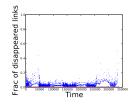



FIGURE : Evolution of the proportion de created links over time

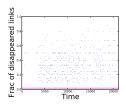
- RollerNet: notion of average is relevant
- Infocom06, SocioPattern : wide range of values
- Infocom06, SocioPattern: average, median and 75th percentile overcome by weak values
- Infocom06, SocioPattern : non realistic

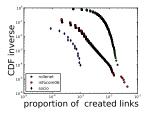

Deleted links

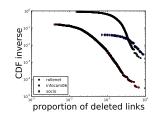


 $\ensuremath{\mathrm{Figure}}$: Evolution of the proportion of deleted links over time

Deleted links

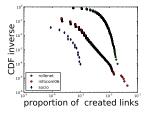


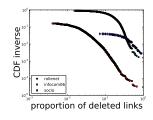

FIGURE: Evolution of the proportion of deleted links over time


- Same observation but amplified
- Range of values is covered ([0 : 1])
- Particular case for d = 1

Distribution of p and d values

Dataset		Infocom06	~
Fractions of created links (average)			
Fractions of deleted links (average)	$1.4 (10^{-1})$	$4.5 (10^{-3})$	$1.6 (10^{-2})$





NRS ENSTA

Distribution of p and d values

Dataset		Infocom06	Socio
Fractions of created links (average)			
Fractions of deleted links (average)	$1.4 (10^{-1})$	$4.5 (10^{-3})$	$1.6 (10^{-2})$

- Clearly heterogeneous for Infocom06
- and on several order of magnitudes
- RollerNet : sudden slope around the average value

Methodology

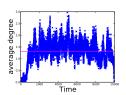
So far:

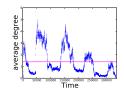
- Studied the dynamics related to creation and delation of links
- Provided evidences that the models is probably not suited to particular dataset

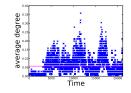
How to demonstrate that the model is not pertinent?

Methodology

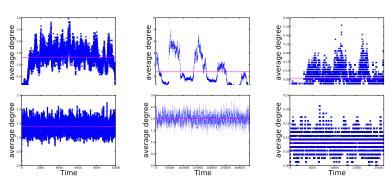
So far:

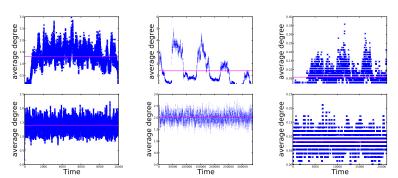

- Studied the dynamics related to creation and delation of links
- Provided evidences that the models is probably not suited to particular dataset


How to demonstrate that the model is not pertinent?

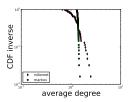

- Choose an external criteria (ie not the fraction of created and deleted links) ...
- ... but close enough the meaning of p and d (for fairness)
- Compute the value of the criteria for the real and the artificial graphs.
- Comparison between real/artificial graph.

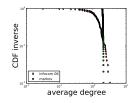
Evolution of mean degree

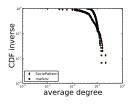



Evolution of mean degree

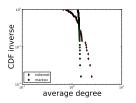
NRS ENSTA

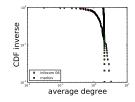

Evolution of mean degree

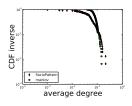



- "Uniformization" for Infocom06 and SocioPattern (not the same range of values!)
- Seems to have little impact on RollerNet
- Except at the beginning (expected)

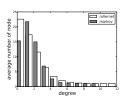
Average degree distribution

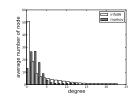


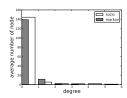




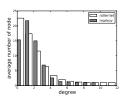
Average degree distribution

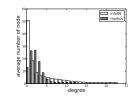


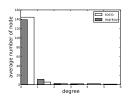



- Infocom06 : clear differences between model and real data (expected)
- RollerNet and SocioPattern : also different, although less obvious

Degree distribution

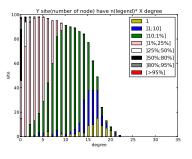


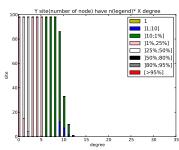




CNRS ENSTA

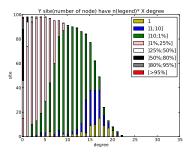
Degree distribution

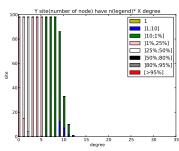



Results

average value relevant \Longrightarrow the model reproduces well the **global** properties of the networks

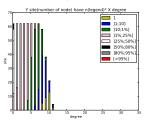
Distribution and frequency of the degrees (Infocom06)

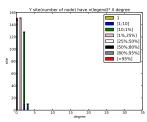


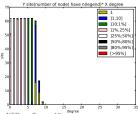


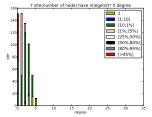
NRS ENSTA

Distribution and frequency of the degrees (Infocom06)






- Nodes are more degree-stable in real networks
- Small degrees are over-represented
- ullet No node with the same degree more than 50 % of the time in the model



Distribution and frequency of the degrees (RollerNet, SocioPattern)

Conclusions and perspectives

Conclusions

- Confrontation markovian model vs. real data
- Hypothesis of homogeneity does not stand in most of the cases
- Even in favourable case, it does not reproduce the dynamics
- Still remain useful : cf [wнi11, voj11]

Perspectives

- Consider other way to define p and d (following an heterogeneous distribution? different for each nodes? depending on the graph state? ...)
- Study refined properties (repartition of connexions)
- Analyze correlation between creations and deletions
- Take into account the local density
- Study gossip protocols of diffusion on real data

