Networks Structure and Dynamics 9. Dynamical properties of networks
 Propriétés dynamiques

Maximilien Danisch, Fabien Tarissan

LIP6 - CNRS and Université Pierre et Marie Curie

```
first_name.last_name@lip6.fr
```

Decembre $5^{\text {th }} 2017$

Plan

(9) Introduction
(2) Paths, reachability and temporal distances
(3) Observations - Rollernet

4 Reachability graphs
(5) Dynamic centralities

Paths, reachability and temporal distances

Outline

2 Paths, reachability and temporal distances
3) Observations - Rollernet

4 Reachability graphs
(5) Dynamic centralities

Motivations

Almost all networks are dynamic. Which dynamic?

Motivations

Almost all networks are dynamic. Which dynamic?
Dynamic OF the network
Appearing and disappearing of

- nodes
- links

Dynamic ON the network

- diffusion of viruses
- sending messages

Question

How to describe properly the dynamics?

Classical approach

Rely on previous metrics used to describe static networks

- degree
- clustering
- communities
- ...

Example

Evolution of the average degree for two different graphs

\longrightarrow Provide meaningful information
... but it is not enough. Why ?

Inconvenients

Lack of properties dealing truely with dynamics

- How long last the nodes/links
- Temporal paths
- ...

Different types of dynamics

Two major approaches providing temporal insights

- Periodic measures (eg. a radar)
- Record of temporal events (eg. exchanges of emails)

Plan

(1)
 Introduction

(2) Paths, reachability and temporal distances
(3) Observations - Rollernet

4 Reachability graphs
(5) Dynamic centralities

Temporal paths

Path from A to B
No path from B to A
Strong difference with the static version of distance

Temporal path - definition

Définition intuitive

Succession of nodes u_{1}, \ldots, u_{k} such that:

- there exists a link $\left(u_{1}, u_{2}\right)$ at time t_{1},
$\left(u_{2}, u_{3}\right)$ at time t_{2}, \ldots
- $t_{1}<t_{2}<\ldots$

Variants

Several variants according to different authors:

- The use of a link is immediat (nb of links one can use at a given time is then infinite)
- One need δ to go through a link (given as a parameter)

More or less reallistic according to the context More or less easy to compute

Several definitions rely on paths, such as ...?

Distance

Distance

At least 3 natural definitions:

- the least number of hops
- shortest in time to reach the target node
- Fastest when transfer begins

All the notions are useful depending on the context
We will focus on the shortest in time to reach the target node

Distance - definition

Définition

Let i, j be nodes, t a starting time.
Let t_{a} be the smallest time one needs to send a message from i to j (if possible)
Then the temporal distance from i to j at time t is: $t_{a}-t$

Distance - examples

Distance - examples

Distance de A à B

- Shortest in time to reach $B: A-C-E-B$
- Less number of hops: $\mathrm{A}-\mathrm{D}-\mathrm{B}$
- Fastest when transfer begins: $\mathrm{A}-\mathrm{F}-\mathrm{G}-\mathrm{B}$

The distance depends on the starting time!

Distance - examples

Distance de A à B

- Shortest in time to reach $\mathrm{B}: \mathrm{A}-\mathrm{C}-\mathrm{E}-\mathrm{B}$
- Less number of hops: $\mathrm{A}-\mathrm{D}-\mathrm{B}$
- Fastest when transfer begins: $\mathrm{A}-\mathrm{F}-\mathrm{G}-\mathrm{B}$

The distance depends on the starting time!
Exercise: ideas to obtain shortest (in time) from s to all nodes.

Distance - computation

Distance - computation

A 1
D 1

Distance - computation

A 1
D 1
C 3

Distance - computation

Distance - computation

A 1
D 1
C 3
E 5
B 6

Distance - computation

Exercise: Formalize the algorithm to obtain shortest (in time) from s to all nodes.

Complexity of the brute force approach

Brute force algorithm: transmission from node s to all others starting t_{s}
$Q=\left\{(s, x, t) \in E \mid t \geq t_{s}\right\}$
Mark s
$t_{\text {cur }}=t_{s}$
While $Q \neq \emptyset$:
take the closest link to the border s.t. $t_{\text {cur }} \leq t$
$t_{\text {cur }}=t$
If v unmarked:
mark v as reached at time t
$\forall(v, x, t) \in E$, add (v, x, t) to Q

Complexity of the brute force approach

Brute force algorithm: transmission from node s to all others starting t_{s}
$Q=\left\{(s, x, t) \in E \mid t \geq t_{s}\right\}$
Mark s
$t_{\text {cur }}=t_{s}$
While $Q \neq \emptyset$:
take the closest link to the border s.t. $t_{\text {cur }} \leq t$
$t_{\text {cur }}=t$
If v unmarked:
mark v as reached at time t
$\forall(v, x, t) \in E$, add (v, x, t) to Q

Complexity
While : look at (almost) all links: m
maintaining $Q: \sim \log m$
$\sim m$ log m steps

Complexity of the brute force approach

Brute force algorithm: transmission from node s to all others starting t_{s}
$Q=\left\{(s, x, t) \in E \mid t \geq t_{s}\right\}$
Mark s
$t_{\text {cur }}=t_{s}$
While $Q \neq \emptyset$:
take the closest link to the border s.t. $t_{\text {cur }} \leq t$
$t_{\text {cur }}=t$
If v unmarked:
mark v as reached at time t
$\forall(v, x, t) \in E$, add (v, x, t) to Q

Complexity
While : look at (almost) all links: m
maintaining $Q: \sim \log m$
$\sim m \log m$ steps
... and for any node to any node?

Complexity of the brute force approach

Brute force algorithm: transmission from node s to all others starting t_{s}
$Q=\left\{(s, x, t) \in E \mid t \geq t_{s}\right\}$
Mark s
$t_{\text {cur }}=t_{s}$
While $Q \neq \emptyset$:
take the closest link to the border s.t. $t_{\text {cur }} \leq t$
$t_{\text {cur }}=t$
If v unmarked:
mark v as reached at time t
$\forall(v, x, t) \in E$, add (v, x, t) to Q

Complexity
While : look at (almost) all links: m
maintaining $Q: \sim \log m$
$\sim m$ log m steps
... and for any node to any node? ... and for any node to any node starting at any time?

Better algorithm

Computation in two steps:

- For all pairs of nodes
- For all starting times

One memorizes the arrival time of a message (instead of the distance)

Idea

- Suppose known all the arrival times for all starting times $>t$
- A link (u, v) at time $t-1$ leads to the following:
- u and v can be reached with distance 0 at time $t-1$
- For all node $x \neq u, v$
- $d_{u x}$: temp. dist. from u to $x, d_{v x}$: temp. dist. from v to x
- si $d_{u x}<d_{v x}$ then v can use u to reach x sooner
- and vice-versa.

Algorithm

Sort the link by decreasing order of time
One uses two matrices $n \times n$: dist and prev_dist (initialized at ∞ : impossible to send a message)
t_cur = current time
dist $[x][x]=t _c u r, ~ p r e v _d i s t[x][x]=t _c u r f o r a l l x$

Paths, reachability and temporal distances

Algorithme (2)

For all link (u, v) at time t
If t ! $=t$ _cur
Copy dist in prev_dist
cur_t = t
dist $[\mathrm{x}][\mathrm{x}]=\mathrm{t}$ _cur for all x
dist[u][v] = cur_t, dist[v][u] = cur_t
For all $\mathrm{x}!=\mathrm{u}, \mathrm{v}$
If prev_dist $[\mathrm{u}][\mathrm{x}] \quad!=\infty$ and prev_dist $[\mathrm{v}][\mathrm{x}] \quad!=\infty$ If dist [u] [x] > prev_dist [v][x] dist[u][x] = prev_dist[v][x] Else, if dist [v$][\mathrm{x}]$ > prev_dist [u$][\mathrm{x}]$ dist[v][x] = prev_dist[u][x]
Else, if prev_dist $[\mathrm{u}][\mathrm{x}] \quad!=\infty$ and dist $[\mathrm{v}][\mathrm{x}]$ > prev_dist $[\mathrm{u}][\mathrm{x}]$ dist[y][x] = prev_dist[u][x]
Else, if prev_dist [v][x] != ∞ and dist[u$][\mathrm{x}]$ > prev_dist[v][x] dist[u][x] = prev_dist[v][x]

Plan

(1)
 Introduction

2 Paths, reachability and temporal distances
(3) Observations - Rollernet

4 Reachability graphs
(5) Dynamic centralities

Contact networks Rollernet

Tournoux et al. - INFOCOM, 2009

Measurements

- Measure the communication capabilities among individials
- Each participant is equipped with a bluetooth device
- Periodic record of the neighborhood

Rollerblade tour experiment:

- 62 nodes
- 180 minutes

Average delay

Modification of the delay, due to the regular stops (and the beggining of the tour) Impact on the quality of the communications

Plan

(1)
 Introduction

2 Paths, reachability and temporal distances
(3) Observations - Rollernet

4 Reachability graphs
(5) Dynamic centralities

Temporal reachability graphs

Whitbeck et al. - MOBICOM, 2012
Goal: better understanding of dynamic graphs Reachability graph: directed dynamical graph

Definition: $R_{\delta}(t)$

Given δ :
$(u, v) \in R_{\delta}(t)$ if there exists a path from u to v :

- starting at time t
- arriving before $t+\delta$

Note: assumption of the article: following a link takes time (τ).

Dataset

Rollernet

See previous slides

Stanford

- One day in high school
- 782 nodes

Observations

Stanford dataset $-\delta=20$ minutes

Triangles: professors
Circles: students
Dark red arrows: asymmetric arcs

Observations

Stanford dataset $-\delta=40$ minutes

Triangles: professors
Circles: students
Dark red arrows: asymmetric arcs

Comments

Observation

Study the temporal reachability graph allows to detect coherent groups
(with a well chosen δ)

Observations

Rollernet dataset $-\delta=10$ secondes
Acceleration phase

Red links: asymmetric links

Observations

Rollernet dataset $-\delta=60$ secondes
Acceleration phase

- $\begin{array}{r}0 \\ 0\end{array}$

Red links: asymmetric links

Comments

Observation

Impossible to send a message from the tail to the head. Slow communication from head towards the tail is possible Strong asymmetry

Plan

(1)
 Introduction

2 Paths, reachability and temporal distances

3 Observations - Rollernet

4 Reachability graphs
(5) Dynamic centralities

Centrality measures

Question: how to quatify the importance of a node in a network?
Centrality measures emphisize the role of a node as key node to relay information.

Different metrics highlights differents properties:

- Degree centrality
- Katz centrality
- Betweeness centrality
- Closeness centrality
- Eigevector centrality
- ...

Betweeness centralities

Let G be a graph and v, s and t be nodes of G.
We call betweeness centralities the value:

$$
B C(v)=\sum_{s \neq t \neq v} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

with:

- $\sigma_{s t}: \mathrm{nb}$ of shortest paths between s and t
- $\sigma_{s t}(v): \mathrm{nb}$ of shortest paths between s and t going through v

Meaning

Captures the importance of a node v in a graph as a relay for diffusing information:

- propagation of signals/messages/virus
- connectivity of the network

Exercise : compute $B C(0), B C(1)$ and $B C(4)$.

Algorithm

One needs to know all shortest paths between s and t.

Algorithm

One needs to know all shortest paths between s and t.

- BFS: 1 shortest path
- Needs to modify the algorithm. Idea:

Exercise : Compute the DAG of all shortest paths starting from 3 in the previous graph.

Algorithm

One needs to know all shortest paths between s and t.

- BFS: 1 shortest path
- Needs to modify the algorithm. Idea:
- Compute a spanning DAG (Directed Acyclic Graph)
- Rely on the computation of the distances
- Use the depth of a node (distance to the root) in order to decide if a node is already part of the DAG or not.

Exercise : Compute the DAG of all shortest paths starting from 3 in the previous graph.

Algorithm

Exercice:

- Propose an algorithm computing the DAG of all shortest paths, given a graph G and a node s.
- Given a DAG of shortest paths, propose a formula allowing to compute, for every node v, the coouple ($d n, u p$) où:
- dn : nb of downward paths of v
- up : nb of upward paths of v
- Deduce the number of shortest paths starting from s and going through v
- Apply the algorithm to the DAG starting from 3 in the previous graph
- Propose the final algorithm enabling to compute the betweeness centrality of a given node.

Betweeness centrailty

Which dynamic version for centrality?

Dynamic centrality - several propositions

Evolution of the standard centrality

Compute the betweeness centrality for each time intervals

- depends on the size of the window
- do not take into account reallistic communications in most of the cases

Extension to temporal paths

For a node i, compute the fraction of shortest temporal paths going through i.

- Temporal paths depends strongly on starting time

Temporal Betweenness Centrality

Nicosia et al. - in Temporal Networks, 2013
Take into account the waiting time on the nodes:
If one has a unique shortest time from i to j :
$i \longrightarrow k \longrightarrow j$
the importance of k depends on the time the message "spends" on k

Temporal Betweenness Centrality - definition

Nicosia et al. - in Temporal Networks, 2013
Take into account the waiting time on the nodes:

$$
C_{i}\left(t_{m}\right)=\frac{1}{(n-1)(n-2)} \sum_{j \neq i} \sum_{k \neq i, j} \frac{U\left(i, t_{m}, j, k\right)}{\sigma_{j k}}
$$

- $U\left(i, t_{m}, j, k\right)$: nb of shortests temporal paths from j to k such that one uses i at a time $\leq t_{m}$
- $\sigma_{j k}: \mathrm{nb}$ of shortest temporal paths from j to k

Average centrality: average over all time instants

Temporal Betweenness Centrality - drawbacks

- All paths start at the initila time!
- Only the average value is studied

Mediation

Tang et al. - in Temporal Networks, 2013

Idée

If k is on a shortest temporal path between i and j its importance depends on the second shortest temporal path.

Mediation - in practice

Principe

- Compute all distances between all pairs of nodes
- Suppress the node i
- Compute again all distances Difference : importance of node i

Mediation - example

Cumulative distribution of distances

Need to take into account paths that start at all instants

Importance of a node - other propositions

Alternatives exist

- Closeness centralities and extensions

Time Evolution of the Importance of Nodes in dynamic Networks, Magnien \&
Tarissan - in Asonam, 2015

- ...

No consensus

Conclusion

Properties defined for staric networks are unsufficient to describe dynamics networks In this course:

- Properties related to temporal paths

Other preperties

- Temporal patterns
- Duration of nodes/links
- Resilience of links
- Dynamic communities
-...

