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Motivations
Almost all networks are dynamic. Which dynamic?

Dynamic OF the network
Appearing and disappearing of

nodes
links

Dynamic ON the network
diffusion of viruses
sending messages

Question
How to describe properly the dynamics?
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Classical approach

Rely on previous metrics used to describe static networks

degree
clustering
communities
. . .
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Example

Evolution of the average degree for two different graphs
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−→ Provide meaningful information

... but it is not enough. Why ?
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Inconvenients

Lack of properties dealing truely with dynamics

How long last the nodes/links
Temporal paths
. . .
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Different types of dynamics

Two major approaches providing temporal insights

Periodic measures (eg. a radar)
Record of temporal events (eg. exchanges of emails)
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Temporal paths
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Path from A to B
No path from B to A

Strong difference with the static version of distance
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Temporal path – definition

Définition intuitive
Succession of nodes u1, . . . ,uk such that:

there exists a link (u1,u2) at time t1,
(u2,u3) at time t2, . . .
t1 < t2 < . . .
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Variants

Several variants according to different authors:

The use of a link is immediat
(nb of links one can use at a given time is then infinite)
One need δ to go through a link
(given as a parameter)

More or less reallistic according to the context
More or less easy to compute

Several definitions rely on paths, such as ...?
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Distance

At least 3 natural definitions:

the least number of hops

shortest in time to reach the target node

Fastest when transfer begins

All the notions are useful depending on the context
We will focus on the shortest in time to reach the target node
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Distance – definition

Définition
Let i , j be nodes, t a starting time.
Let ta be the smallest time one needs to send a message from i
to j (if possible)

Then the temporal distance from i to j at time t is: ta − t
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Distance – examples
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Distance – examples
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Distance de A à B

Shortest in time to reach B: A – C – E – B

Less number of hops: A – D – B

Fastest when transfer begins: A – F – G – B

The distance depends on the starting time!
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Distance – examples
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Distance de A à B

Shortest in time to reach B: A – C – E – B

Less number of hops: A – D – B

Fastest when transfer begins: A – F – G – B

The distance depends on the starting time!
Exercise: ideas to obtain shortest (in time) from s to all nodes.
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Distance – computation
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Distance – computation
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Exercise: Formalize the algorithm to obtain shortest (in time)
from s to all nodes.
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Complexity of the brute force approach

Brute force algorithm: transmission from node s to all others starting ts

Q = {(s, x , t) ∈ E |t ≥ ts}
Mark s
tcur = ts
While Q 6= ∅:

take the closest link to the border s.t. tcur ≤ t (u, v , t)
tcur = t
If v unmarked:

mark v as reached at time t
∀(v , x , t) ∈ E , add (v , x , t) to Q
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Complexity of the brute force approach

Brute force algorithm: transmission from node s to all others starting ts

Q = {(s, x , t) ∈ E |t ≥ ts}
Mark s
tcur = ts
While Q 6= ∅:

take the closest link to the border s.t. tcur ≤ t (u, v , t)
tcur = t
If v unmarked:

mark v as reached at time t
∀(v , x , t) ∈ E , add (v , x , t) to Q

Complexity

While : look at (almost) all links: m

maintaining Q : ∼ log m

∼ m log m steps
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Complexity of the brute force approach
Brute force algorithm: transmission from node s to all others starting ts

Q = {(s, x , t) ∈ E |t ≥ ts}
Mark s
tcur = ts
While Q 6= ∅:

take the closest link to the border s.t. tcur ≤ t (u, v , t)
tcur = t
If v unmarked:

mark v as reached at time t
∀(v , x , t) ∈ E , add (v , x , t) to Q

Complexity

While : look at (almost) all links: m

maintaining Q : ∼ log m

∼ m log m steps
... and for any node to any node? ... and for any node to any node starting at any time?
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Better algorithm
Computation in two steps:

For all pairs of nodes

For all starting times

One memorizes the arrival time of a message
(instead of the distance)

Idea

Suppose known all the arrival times for all starting times > t

A link (u, v) at time t − 1 leads to the following:

u and v can be reached with distance 0 at time t − 1
For all node x 6= u, v

dux : temp. dist. from u to x , dvx : temp. dist. from v to x
si dux < dvx then v can use u to reach x sooner
and vice-versa.
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Algorithm

Sort the link by decreasing order of time

One uses two matrices n × n : dist and prev_dist
(initialized at∞: impossible to send a message)

t_cur = current time

dist[x][x] = t_cur, prev_dist[x][x] = t_cur for all x
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Algorithme (2)

For all link (u,v) at time t
If t != t_cur

Copy dist in prev_dist
cur_t = t
dist[x][x] = t_cur for all x

dist[u][v] = cur_t, dist[v][u] = cur_t
For all x != u,v

If prev_dist[u][x] != ∞ and prev_dist[v][x] != ∞
If dist[u][x] > prev_dist[v][x]
dist[u][x] = prev_dist[v][x]

Else, if dist[v][x] > prev_dist[u][x]
dist[v][x] = prev_dist[u][x]

Else, if prev_dist[u][x] != ∞ and dist[v][x] > prev_dist[u][x]
dist[v][x] = prev_dist[u][x]

Else, if prev_dist[v][x] != ∞ and dist[u][x] > prev_dist[v][x]
dist[u][x] = prev_dist[v][x]
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Contact networks Rollernet

Tournoux et al. - INFOCOM, 2009

Measurements
Measure the communication capabilities among individials
Each participant is equipped with a bluetooth device
Periodic record of the neighborhood

Rollerblade tour experiment:
62 nodes
180 minutes
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Average delay

Modification of the delay, due to the regular stops (and the
beggining of the tour)
Impact on the quality of the communications
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Temporal reachability graphs

Whitbeck et al. - MOBICOM, 2012

Goal: better understanding of dynamic graphs
Reachability graph: directed dynamical graph

Definition: Rδ(t)

Given δ :
(u, v) ∈ Rδ(t) if there exists a path from u to v :

starting at time t
arriving before t + δ

Note: assumption of the article:
following a link takes time (τ ).
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Dataset

Rollernet
See previous slides

Stanford
One day in high school
782 nodes
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Observations
Stanford dataset – δ = 20 minutes

Triangles: professors
Circles: students
Dark red arrows: asymmetric arcs
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Observations
Stanford dataset – δ = 40 minutes

Triangles: professors
Circles: students
Dark red arrows: asymmetric arcs
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Comments

Observation
Study the temporal reachability graph allows to detect coherent
groups
(with a well chosen δ)

29/48



Introduction
Paths, reachability and temporal distances

Observations – Rollernet
Reachability graphs
Dynamic centralities

Observations

Rollernet dataset – δ = 10 secondes
Acceleration phase

Red links: asymmetric links
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Observations

Rollernet dataset – δ = 60 secondes
Acceleration phase

Red links: asymmetric links
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Comments

Observation
Impossible to send a message from the tail to the head.
Slow communication from head towards the tail is possible
Strong asymmetry
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Centrality measures

Question: how to quatify the importance of a node in a network?

Centrality measures emphisize the role of a node as key node to relay
information.

Different metrics highlights differents properties:

Degree centrality

Katz centrality

Betweeness centrality

Closeness centrality

Eigevector centrality

...
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Betweeness centralities

Let G be a graph and v , s and t be nodes of G.
We call betweeness centralities the value:

BC(v) =
∑

s 6=t 6=v

σst(v)
σst

with:

σst : nb of shortest paths between s and t

σst(v) : nb of shortest paths between s and t going through v
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Meaning
Captures the importance of a node v in a graph as a relay for diffusing
information:

propagation of signals/messages/virus

connectivity of the network

0

1 2

4 5

36
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8

Exercise : compute BC(0), BC(1) and BC(4).
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Algorithm

One needs to know all shortest paths between s and t .
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Algorithm

One needs to know all shortest paths between s and t .

BFS: 1 shortest path

Needs to modify the algorithm. Idea:

Exercise : Compute the DAG of all shortest paths starting from 3 in the
previous graph.
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Algorithm

One needs to know all shortest paths between s and t .

BFS: 1 shortest path

Needs to modify the algorithm. Idea:

Compute a spanning DAG (Directed Acyclic Graph)
Rely on the computation of the distances
Use the depth of a node (distance to the root) in order to decide if
a node is already part of the DAG or not.

Exercise : Compute the DAG of all shortest paths starting from 3 in the
previous graph.
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Algorithm

Exercice :

Propose an algorithm computing the DAG of all shortest paths, given a
graph G and a node s.

Given a DAG of shortest paths, propose a formula allowing to compute,
for every node v , the coouple (dn, up) où:

dn : nb of downward paths of v
up : nb of upward paths of v

Deduce the number of shortest paths starting from s and going through
v

Apply the algorithm to the DAG starting from 3 in the previous graph

Propose the final algorithm enabling to compute the betweeness
centrality of a given node.
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Betweeness centrailty

Which dynamic version for centrality?
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Dynamic centrality – several propositions

Evolution of the standard centrality
Compute the betweeness centrality for each time intervals

depends on the size of the window
do not take into account reallistic communications in most
of the cases

Extension to temporal paths
For a node i , compute the fraction of shortest temporal paths
going through i .

Temporal paths depends strongly on starting time
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Temporal Betweenness Centrality

Nicosia et al. - in Temporal Networks, 2013

Take into account the waiting time on the nodes:
If one has a unique shortest time from i to j :
i −→ k −→ j

the importance of k depends on the time the message
"spends" on k
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Temporal Betweenness Centrality – definition

Nicosia et al. - in Temporal Networks, 2013

Take into account the waiting time on the nodes:

Ci(tm) =
1

(n − 1)(n − 2)

∑
j 6=i

∑
k 6=i,j

U(i , tm, j , k)
σjk

U(i , tm, j , k) : nb of shortests temporal paths from j to k
such that one uses i at a time ≤ tm
σjk : nb of shortest temporal paths from j to k

Average centrality: average over all time instants
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Temporal Betweenness Centrality – drawbacks

All paths start at the initila time!
Only the average value is studied
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Mediation

Tang et al. - in Temporal Networks, 2013

Idée
If k is on a shortest temporal path between i and j
its importance depends on the second shortest temporal path.

1 2

2 40
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Mediation – in practice

Principe
Compute all distances between all pairs of nodes
Suppress the node i
Compute again all distances
Difference : importance of node i
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Mediation - example

Cumulative distribution of distances
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Need to take into account paths that start at all instants
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Importance of a node – other propositions

Alternatives exist
Closeness centralities and extensions
Time Evolution of the Importance of Nodes in dynamic Networks, Magnien &

Tarissan - in Asonam, 2015

. . .
No consensus

47/48



Introduction
Paths, reachability and temporal distances

Observations – Rollernet
Reachability graphs
Dynamic centralities

Conclusion

Properties defined for staric networks are unsufficient to
describe dynamics networks
In this course:

Properties related to temporal paths

Other preperties
Temporal patterns
Duration of nodes/links
Resilience of links
Dynamic communities
. . .
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