
A Tel-based Toolkit for Automating Interactive Programs

O'REILLY· Don Libes

UNIX programming/System Administr:nion

O'REILLY~

Exploring Expect
Expect is quickly becoming a pan of cvely UNIX user'S toolbox. It allows you to
:1ll(Orn:!le tclnet, ftp, pass\vd, rlogin, and hundreds of other applications that normally
require human interaction, Using Expect to automate these applications will :lllow
you to speed up tasks and, in m:llly cases, solve new problems that you never would
have even considered before.

For example, YOll can usc Expeci 10 lest inler.lctive programs with no changes to their interi"<lces.
Or, you can wrap interactive programs with Motif-like fro nt-ends to control applications by bllllons,
scrollbars, and Olher graphic clements with no recompilation of the original programs. You don't
even need Ihe source code! Expect works with remOle applications, too. Usc il to tic logether
Inlernet applications incl uding Iclnet, Archie, ftp , Gopher. and Mosaic.

Don Libes is the creator of Expect :IS well as the :Iuthor of this book. In E,p/on'lIg E.'1JCCI . he
provides a comprehensive IUtori,ll on ;Ill of Expect's features, allowing you to put it immediately to
work on your problems. [n a down-to-eanh and humorous style, he presents numerous examples
of challenging real-wodd applications and how they can be automated using Expect to save you
time and money.

Expeci is the tlrst of a new breed of progrJms based on Tcl. the Tool Comm:llld Language thai is
rocking the computer science community. 111is book provides an introduction to Td and describes
how Expect applies Td's pmver to the ncw tleld of interaction :lutomation. \'(' hether your interest is
in Expect or inter.Ktion :Lutom:llion or you simply want to le:!fI1 about 'I'd and sec how it h:ls been
used in real software, you will lind £'1)/01';11& Expeci a treasure trove of easy-to-understand and
valuable in formation.

HExpe(;1 was IIJe firsl widely used Tel llpplicallo ll, and if is slill o lle of Ibe most popular. Tbis

is a lI/ust-klloW tool for system adlllillisiralors alld mally olbers."
- John Ouslcriloul, creator oJ Tel

"Expecl is fill absolulely wOlldelflll, marlJelo lis progralll. II is olle Of Ibe mosl IIseful lools

I've seell ill 15 + years of UN IX backing. Expect is goillg 10 save liS several tbousallr! dol/aI'S

in licensing fees ill Ibe nexl y ear alolle, sOll/e i lleslill/able n/.lluber Of prog rammillg bours,
and allow IlS 10 protJide 0111' Ilsers lIlucb betler service (ball we olberwise cOl/ld b(we. U

- John W. I'k r<:e, Delmr llllClI1 of C/)ClIliSlry lIIllI JJiOC/)ClIlisIIJ'
Ulli/Jer.~ily oj Califo rllia, Stili Diego

"" is (I lIlysle'J' 10 lIle bow UNIX could bmJe exisled for y ears wi/bolll E.'1)ecl. "
-Erik Basilier. Motorola

www.oreilly.com
US $34.95 CAN $52.95

I SBN: 976 - 1- 56592 - 090 - 3

1III IIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIilIII
9 781565920903

''I'm really impressed with how functional my software has become because of Expect.
Thanks for a wonderful program!!!!!!"

-John Conti, Cisco Systems

"Expect has become a necessary tool for system administration.
In a short time, we have used Expect in six areas and have cut out

seven hours a week in tedious and repetitive tasks."

- Thomas Naughton, Hull Trading Company

"I'd been using Expect for automating various grubby day-to-day system tasks
for a long time. During the procurement for EPA's supercomputer, we found that

we needed a portable way to quantify interactive response time for the benchmark.
Using Expect we were able to 'drive' the standard vi editor to produce an average

of seconds/command keystroke."

-Frank Terhaar-Yonkers, Martin Marietta Technical Services/U.S. EPA

"Thanks for Expect. It just made an impossible project possible."

-Bruce Barnett, GE Corporate Research and Development Center

"My Expect scripts function perfectly.
The original problem defeated several people here

(including those much more expert in Unix than myself),
so it is a relief to have found such a simple solution."

-Richard Gartner, Bodleian Library, Oxford University, United Kingdom

"Expect is great! We at DEC have to go through fip-gateways to get to the real world.
I've written an Expect script that is easier and more reliable than

a previously cobbled together system using perl -> mail -> perl -> kermit.
The whole thing is now one small Expect script."

-Rob Urban, Migration Consultant, Digital Equipment GmbH, Munich, Germany

"Thank you so much!!! Expect is not only a timesaver but a lifesaver, too!"

-Stephen Campos, University of Texas at Austin

"Thanks to Expect, we've solved many problems that would have otherwise needed
a lot of programming-meaning we would not have had time to do them!"

-Pekka KytOlaakso, Centre for Scientific Computing, Espoo, Finland

"I'm changing passwords on over 600 hosts, and BOY! am I glad that Expect's
passmass script exists! Now there's an indispensable tool!"

- Win Bent, University Compo Services, University of Southern California

"Expect is a lifesaver for a project that I am currently involved with.
I have only been working with Expect for the last couple of days,

but it has already shaved about 6 months off of the completion time of the project."

-Ron Young, System Computing Services, University of Nevada

"Thanks for making my life easier.
This program has really helped me shorten the cycle time

for software Q.A. Expect is like a dream come true for automation.
My productivity has really increased."

Brian F. Woodson, 3Com NSD Software Q.A.

"What I really like about Expect is that it lets you shift in and out of interactive and
automated mode as you are driving programs."

-Lloyd Zusman, Master Byte Software, Inc.

"Expect is exactly what I needed to automate some telnet procedures here at Motorola.
I had been pulling my hair out thinking that there HAD to be a way

to get my shell sCript to work, but you just can't do it.
Luckily somebody in my group clued me in to Expect!"

-Marjorie Cartwright, RISC Design Group, Motorola

"Expect helped me to achieve what I first didn't think possible."

-Rennie Rautenbach, Sabinet, Pretoria, South Africa

Exploring Expect

Other books by Don Libes

Life With UNIX (prentice-Hall, co-author Sandy Ressler)

Obfuscated C and Other Mysteries (Wiley)

Exploring Expect
A Tel-Based Toolkit for Automating Interactive Programs

Don Libes

Q'REILLY®
Beijing· Cambridge· Farnham· K6ln . Paris· Sebastopol· Taipei· Tokyo

Exploring Expect: A Tcl-Based Toolkit for Automating Interactive Programs
by Don Libes

Copyright © 1995 O'Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Editor: Tim O'Reilly

Production Editor: Don Libes

Printing History:

January 1995: First Edition.

April 1995: Minor corrections.

November 1996: Minor corrections.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and The Java Series is a trademark of O'Reilly Media, Inc. Exploring Expect: A Tcl
Based Toolkitfor Automating Interactive Programs, the image of a rhesus monkey, and related
trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover" '"
~ This book uses Rep Kover , a durable and flexible lay-flat binding.

ISBN13: 978-1-565-92090-3
[M] [4/08]

To Sue

Brief Table of Contents

Brief Table of Contents ix

Extended Table Of Contents xi

Preface xxiii

How To Read This Book xxxi

1. Introduction - What Is Expect? 1

2. Tcl- Introduction And Overview 23

3. Getting Started With Expect 71

4. Glob Patterns And Other Basics 87

5. Regular Expressions 107

6. Patterns, Actions, And Limits 129

7. Debugging Patterns And Controlling Output 165

8. Handling A Process And A User 185

9. The Expect Program 213

10. Handling Multiple Processes 233
11. Handling Multiple Processes Simultaneously 247

12. Send 271

13. Spawn 287

14. Signals 307

15. Interact 323
16. Interacting With Multiple Processes 349

ix

x Exploring Expect

17. Background Processing 371
18. Debugging Scripts 403

19. Expect + Tk = Expectk 429

20. Extended Examples 465

21. Expect, C, And C++ 491

22. Expect As Just Another Tel Extension 513

23. Miscellaneous 523
Appendix-Commands and Variables 531
Index Of Scripts 537
Index 541

Extended Table Of
Contents

Brief Table of Contents ... ix

Extended Table Of Contents .. xi

Preface XXlll

Expect-Why Another Tool? ... xxiv

Tel-A Little History .. xxv

Acknowledgments ... xxvii

How To Read This Book .. xxxi
Notational Conventions ... xxxii

Exercises .. xxxiii

1: Introduction- What Is Expect? .. 1
Ouch, Those Programs Are Painful! .. 1

A Very Brief Overview ... 3

A First Script-dialback ... 3

Total Automation ... 4

Differing Behavior When Running Non-Interactively .. 7

Partial Automation ... 8

Dangerous, Unfriendly, Or Otherwise Unlikable User Interfaces 9

Graphical Applications .. 10

A Little More About Tel .. 11

xi

xii Exploring Expect

Job Control ... 12

Background Processes ... 12

Using Expect With Other Programs ... 13

Using Expect On UNIX .. 13

Using Expect On Other Operating Systems .. 13

Using Expect In Real Applications ... 14

Using Expect In Commercial Applications-Legalese ... 15

Obtaining Expect And The Examples .. 16

Expect And Tel Resources .. 19

Exercises ... 22

2: Tcl- Introduction And Overview .. 23
Everything Is A String ... 23

Quoting Conventions ... 25

Expressions ... 27

Braces-Deferring Evaluation ... 29

Control Structures ... 29

More On Expressions ... 37

Lists ... 38

More Ways To Manipulate Strings .. .46

Arrays49

Indirect References .. .51

Handling Errors53

Evaluating Lists As Commands .. 56

Passing By Reference .. .57

Working With Files ... 60

File I/O ... 61

Executing UNIX Commands .. 66

Environment Variables ... 67

Handling Unknown Commands .. 68

Libraries .. 68

Is There More To Tel? ... 69

Exercises ... 70

3: Getting Started With Expect ... 71
The send Command ... 71

Table of Contents xiii

The expect Command ... 72

Anchoring ... 73

What Happens When Input Does Not Match ... 74

Pattern-Action Pairs ... 75

Example-Timed Reads In The Shell ... 77

The spawn Command .. 78

The interact Command .. 82

Example-Anonymous ftp .. 83

Exercises ... 85

4: Glob Patterns And Other Basics ... 87
The * Wildcard ... 87

More Glob Patterns .. 91

Backslashes .. 91

Handling Timeout .. 94

Handling End Of File (eot) .. 98

Hints On The spawn Command .. 99

Back To Eof .. 100

The close Command .. 101

Programs That Ignore Eof .. 103

The wait Command ... 105

Exercises ... 106

5: Regular Expressions ... 107
Regular Expressions-A Quick Start ... 107

Identifying Regular Expressions And Glob Patterns ... 109

Using Parentheses To Override Precedence ... 110

Using Parentheses For Feedback .. 111

More On The timed-read Script .. 112

Pattern Matching Strategy .. 113

Nested Parentheses .. 115

Always Count Parentheses, Even Inside Of Alternatives .. 116

Example-The Return Value From A Remote Shell ... 117

Matching Customized Prompts .. 120

Example-A Smart Remote Login Script .. 122

What Else Gets Stored In expecCout .. 124

xiv Exploring Expect

More On Anchoring ... 125

Exercises ... 126

6: Patterns, Actions, And Limits .. 129
Matching Anything But .. 129

Really Complex Patterns .. 131

Really Simple Patterns .. 134

Matching One Line And Only One Line .. 135

Tel's string match Command .. 136

Tel's regexp Command .. 137

Tel's regsub Command ... 138

Ignoring Case ... 139

All Those Other String Functions Are Handy, Too .. 140

Actions That Affect Control Flow ... 140

Example-rogue .. 141

Character Graphics ... 142

More Actions That Affect Control Flow ... 143

Matching Multiple Times .. 145

Recognizing Prompts CYet Again) ... 147

Speed Is On Your Side ... 148

Controlling The Limits Of Pattern Matching Input .. 149

The full_buffer Keyword .. 151

Double Buffering .. 152

Perpetual Buffering .. 154

The Politics Of Patterns .. 154

Expecting A Null Character .. 155

Parity ... 157

Length Limits .. 158

Comments In expect Commands ... 158

Restrictions On expect Arguments .. 159

eval-Good, Bad, And Ugly .. 160

Exercises ... 162

7: Debugging Patterns And Controlling OUtput 165
Pattern Debugging ... 165

Enabling Internal Diagnostics .. 171

Table of Contents xv

Logging Internal Diagnostics ... 173

Disabling Normal Program Output ... 174

The log_user Command .. 175

Example-su2 ... 178

Recording All Expect Output ... 180

Sending Messages To The Log .. 182

About File Names ... 182

Log And Diagnostic State ... 182

Exercises ... 183

8: Handling A Process And A User ... 185
The send_user Command .. 185

The send_error Command ... 187

The expecCuser Command ... 192

Dealing With Programs That Reprompt .. 193

Dealing With Programs That Miss Input ... 196

Sleeping .. 196

Line Versus Character-Oriented And Other Terminal Modes .. 197

Echoing .. 199

Prompting For A Password On Behalf Of A Program ... 201

Security And Insecurity .. 202

Resetting The Terminal Upon Exit .. 204

More On The stty Command ... 204

The system Command ... 207

Redirecting The Standard Input Or Output ... 209

The expecctty Command ... 210

The send_tty Command ... 210

Exercises ... 211

9: The Expect Program 213
Expect -Just Another Program ... 213

Invoking Scripts Without Saying "expect" .. 215

Rewriting The #! Line ... 216

The .exp Extension .. 217

The - And Other Flags ... 217

The -c Flag ... 218

xvi Exploring Expect

The -f Flag .. 220

Writing The #! Line ... 221

The -i Flag .. 221

The -n And -N Flags .. 221

The -d Flag ... 223

The -D Flag .. 223

The -b Flag ... 224

The - Flag ... 224

The interpreter Command < •• 225

Exercises ... 232

10: Handling Multiple Processes .. 233
The spawn_id Variable .. 233

Example-chess Versus chess ... 234

Example-Automating The write Command .. 237

How exp_continue Affects spawn_id .. 238

The Value Of spawn_id Affects Many Commands .. 238

Symbolic Spawn Ids ... 239

Job Control ... 240

Procedures Introduce New Scopes .. 241

How Expect Writes Variables In Different Scopes .. 243

Predefined Spawn Ids .. 245

Exercises ... 246

11: Handling Multiple Processes Simultaneously 247
ImpliCit Versus Explicit Spawn Ids .. 247

Waiting From Multiple Processes Simultaneously ... 249

Example-Answerback ... 250

Which Pattern Goes With Which Spawn Id ... 252

Which Spawn Id Matched .. 253

Spawn Id Lists ... 254

Example-Connecting Together Two Users To An Application 255

Example-Timing All Commands ... 256

Matching Any Spawn Id Already Listed ... 259

The expecCbefore And expeccafter Commands ... 259

Indirect Spawn Ids .. 268

Table of Contents xvii

Exercises ... 270

12: Send ... 271
Implicit Versus Explicit Spawn Ids .. 271

Sending To Multiple Processes .. 272

Sending Without Echoing .. 273

Sending To Programs In Cooked Mode .. 274

Sending Slowly ... 275

Sending Humanly .. 278

Sending Nulls ... 281

Sending Breaks .. 281

Sending Strings That Look Like Flags .. 282

Sending Character Graphics .. 283

Comparing send To puts ... 283

Exercises ... 285

13: Spawn ... 287
The Search Path ... 287

Philosophy-Processes Are Smart .. 288

Treating Files As Spawned Processes .. 289

Opening Ttys ... 290

Bugs And Workarounds .. 291

Process Pipelines And Ptys .. 291

Automating xterm .. 293

Checking For Errors From spawn .. 296

spawn -noecho .. 298

Example-unbuffer ... 299

Obtaining Console Output .. 300

Setting Pty Modes From spawn ... 300

Hung Ptys ... 302

Restrictions On Spawning Multiple Processes .. 303

Getting The Process Id From A Spawn Id ... 304

Using File I/O Commands On Spawned Processes .. 304

Exercises ... 305

xviii Exploring Expect

14: Signals .. 307
Signals ... 307

Signals In Spawned Processes ... 310

Notes On Specific Signals .. 311

When And Where Signals Are Evaluated .. 318

Overriding The Original Return Value .. 320

Using A Different Interpreter To Process Signals .. 321

Exit Handling .. 321

Exercises ... 322

15: Interact .. 323
The interact Command ... 323

Simple Patterns ... 324

Exact Matching ... 327

Matching Patterns From The Spawned Process .. 328

Regular Expressions ... 328

What Happens To Things That Do Not Match .. 331

More Detail On Matching ... 332

Echoing ... 333

Avoiding Echoing ... 335

Giving Feedback Without -echo ... 335

Telling The User About New Features ... 336

Sending Characters While Pattern Matching ... 337

The continue And break Actions ... 339

The return Action ... 339

The Default Action ... 341

Detecting End-Of-File .. 342

Matching A Null Character ... 343

Timing Out ... 343

More On Terminal Modes (Or The -reset Flag) .. 344

Example-Preventing Bad Commands ... 346

Exercises ... 347

16: Interacting With Multiple Processes ... 349
Connecting To A Process Other Than The Currently Spawned Process 349

Connecting To A Process Instead Of The User ... 350

Table of Contents xix

Example-rz And sz Over rlogin .. 351

Redirecting Input And Output ... 353

Default Input And Output ... 354

Controlling Multiple Processes-kibitz .. 355

Combining Multiple Inputs Or Outputs .. 358

Which Spawn Id Matched .. 359

Indirect Spawn Ids ... 359

An Extended Example-xkibitz .. 361

Exercises ... 369

17: Background Processing 371
Putting Expect In The Background ... 371

Running Expect Without A Controlling Terminal ... 372

Disconnecting The Controlling Terminal .. 373

The fork Command .. 374

The disconnect Command ... 375

Reconnecting ... 378

Using kibitz From Other Expect Scripts .. 380

Mailing From Expect .. 383

A Manager For Disconnected Processes-dislocate .. 384

Expect As A Daemon ... 392

Example-Automating Gopher And Mosaic tel net Connections 397

Exercises ... 401

18: Debugging Scripts ... 403
Tracing ... 403

Logging ... 404

Command Tracing ... 405

Variable Tracing ... 406

Example-Logging By Tracing ... 407

UNIX System Call Tracing .. 408

Tk And tkinspect .. 409

Traditional Debugging ... 410

Debugger Command Overview And Philosophy ... 412

Stepping Over Procedure Calls ... 413

Stepping Into Procedure Calls ... 415

xx Exploring Expect

Where Am I .. 416

The Current Scope .. 416

Moving Up And Down The Stack .. 417

Returning From A Procedure .. .418

Continuing Execution .. 418

Defining Breakpoints ... 419

Help .. 426

Changing Program Behavior .. 426

Changing Debugger Behavior ... 426

Exercises ... 428

19: Expect + Tk = Expectk ... 429
Tk-A Brief Technical Overview .. 430

Expectk ... 432

The send Command ... 433

An Extended Example-tkpasswd .. 434

Using Tk Widgets To Prompt For Passwords .. 444

The expect Command And The Tk Event Loop .. 445

The expecCbackground Command .. 446

Multiple Spawn Ids In expecCbackground .. .447

Background Actions ... 447

Example-A Dumb Terminal Emulator .. 447

Example-A Smarter Terminal Emulator .. 448

Using The Terminal Emulator For Testing And Automation458

Exercises ... 462

20: Extended Examples ... 465
Encrypting A Directory ... 465

File Transfer Over telnet .. 467

You Have Unread News-tknewsbiff ... , , ... ,', 475

Exercises " ... ,', " " " " " " " " , .. 489

21: Expect, C, And C++ .. 491
Overview .. 492

Linking493

Include Files ... 493

Table of Contents xxi

Ptys And Processes .. 494

Allocating Your Own Pty ... 498

Closing The Connection To The Spawned Process .. 499

Expect Commands ... 500

Regular Expression Patterns .. 502

Exact Matching ... 504

Matching A Null ... 504

What Characters Matched .. 504

When The Number Of Patterns Is Not Known In Advance .. 506

Expecting From Streams .. 507

Running In The Background ... 507

Handling Multiple Inputs And More On Timeouts ... 508

Output And Debugging Miscellany ... 509

Pty Trapping ... 510

Exercises ... 510

22: Expect As Just Another Tel Extension 513
Adding Expect To Another Tel-based Program .. 513

Differences Between Expect And The Expect Extension In Another Program 515

Adding Extensions To Expect ... 516

Adding Extensions To Expectk ... 517

Creating Scriptless Expect Programs ... 518

Functions And Variables In The Expect Extension ... 518

Exercises ... 522

23: Miscellaneous 523
Random Numbers .. 523

Example-Generating Random Passwords .. 524

The Expect Library ... 526

Expect Versions ... 527

Timestamps .. 528

The time Command ... 529

Exercises ... 530

Appendix - Commands and Variables ... 531
Commands And Flags .. 531

xxii Exploring Expect

Variables .. .535

Index Of Scripts .. 537

Index .. 541

In The Preface:

• About This Book

• The Origin And
Early Days Of
Expect

• Acknowledgments

Preface

This book is a tutorial for Expect, a software suite for automating interactive tools.

Expect has turned out to be very popular. This is good and bad. It's good because
people are able to do things more easily than before and in some cases do things that
they would never have even tried. Expect is not simply another language. It is a
completely new type of tool that addresses problems that were not even recognized as
problems in the past.

The bad news is that since writing Expect, I've been plagued by people asking me ques
tions about it. While it was not originally intended to be a rich or complex piece of
software, it has admittedly become more sophisticated as various features have been
added. But more importantly, the nature of automating interactive programs involves
dealing with issues that are quite unlike the issues involved in traditional programming.

While Expect comes with a "man page" (which is quite a misnomer at 25 pages),
continue to get requests for information that does not properly belong there. Often the
requests are for examples. Sometimes they are simply for advice. This book is an
attempt to write down all of these things and to describe everything in the man page in
a tutorial fashion.

This book draws upon the thousands of Expect applications that people have described
to me, the common and not-so-common problems that people have discussed with
me-and explanations of the limitations-what you can't do with Expect.

I pull no punches. Expect is not meant to do everything for everyone, and I am quite
frank about discussing its limitations. While some may represent my own limitations,
others mirror my beliefs about how UNIX should work rather than what can be accom
plished. Indeed, I have resisted requests for enhancements that do not add anything

xxiii

xxiv Exploring Expect

specifically useful to the original intent of Expect or that can already be done more
easily by another program. Expect is not yet-another kitchen-sink language.

I am convincedt that Expect is very easy to use for the majority of applications that users
put it to. And I am convinced that many people can learn to do useful Expect scripting
in an hour or two.

Nevertheless, I recognize that the language is substantial. Using it is one thing.
Mastering it is quite another. Just reading through the 500+ pages in this book may be
an onerous task for some. However, as I said above, I believe that much of the reason
for the length of this book is due to the unique nature of automating interactive
programs. No matter how you accomplish it-whether using Expect, a commercial
product, or a home-grown set of kludges-automating interactive programs is a task
that is full of surprises. And while the examples in this book are specific to Expect, the
knowledge you gain from them can be taken and applied to other interaction automa
tion tools.

Indeed, Expect represents only the tip of the iceberg in the field of interactive automa
tion. Already, GUI automators are on the market. Eventually, hypermedia automators
will make their debut, combining simulations of human voice, images, and all sorts of
other sensory data.

Expect- Why Another Tool?
I initially did not view Expect as something that would last very long. It struck me as
solving a very simple problem but not in the best way possible. Indeed, I originally
wrote Expect as an experiment to demonstrate the need for a general way of handling
interaction automation. I expected that, having shown the utility of it, the popular shells
of the day would all soon incorporate these functions, allowing Expect-like things to be
accomplished from the shells without requiring the use of another tool.

But to my surprise that has not been the case. Some shells (e.g., Korn shell, Z shell)
provide co-processes but offer no access to pseudo-terminals and no in-line stream
pattern matching. Most shells don't even provide co-processes. Thus, Expect remains
very important to shell programmers.

Expect is also useful with environments that have limited or baffling Expect-like func
tions. For example, Emacs, a popular editor, has actually had the ability to do Expect
like processing for years. However, Emacs is a fairly unusual programming environment
and few people do real Emacs programming. Perl is another unusual programming envi
ronment, again, with its own Expect-like functionality; however, the implementation is

t Meaning that I have no proof.

xxv

difficult to use and many Perl programmers find it easier to call Expect scripts for these
tasks. Perl is also a large language, which makes its use for Expect-like programming all
the more formidable for the casual user.t

By comparison, Expect is simple. It really only does one thing. But it does it very well.
Everything in Expect is optimized to help you automate interactive programs.

That doesn't mean it can't do other things. These other things simply aren't the focus of
Expect. But you can use Expect to work with non-interactive applications. Expect rests
on top of Tel which provides a very pleasant environment in which to work. I have
implemented and used a number of complex software packages that use Tel as a
scripting language, and I look forward to using any other application that does similarly.

Tcl-A Little History
Underneath Expect is Tel, a small and simple language designed to be embedded in
applications. Much of the reason Expect appears so coherent and well thought out is
actually due to Tel.

Tel is a tour de force. It is powerful yet elegant, drawing a fine line between primitives
and extensibility, and between simplicity and overkill. Tel allowed me to concentrate on
the application requirements of Expect. Tel will allow you to call and mix the Expect
primitives in all sorts of interesting ways to control your applications.

The intent behind Tel matches Expect's philosophy perfectly. Expect doesn't need a
specialized language. Any generic but extensible control language would have sufficed.
However, at the time that I was thinking about writing Expect, no such extensible
control language existed. I was irritated at the thought of having to create a language
specifically for such a simple application. There was simply no justification for designing
yet another language.

I had been thinking about writing an Expect-like program after helping Scott Paisley
write a program to automate the initial login and command in a telnet session. The
program understood only a few simple commands. For instance, find waited for a
single fixed string to arrive. Every session ended in a permanent sort of interact with
a single telnet process. There were no variables and no flow control commands such as
if. And the program used pipes instead of ptys. The program solved our immediate
problem, but it had a lot of special-case coding and I thought it could be generalized.
This was in 1987.

t Although Exploring Expect is based on Tel, programmers attempting to automate interactive programs using
Emacs, Perl, Python, Scheme, C, or any other tool will find this book helpful because many of the concepts un
derlying Expect-like programming are common to all of those tools.

xxvi Exploring Expect

For a long time I considered borrowing a shell, integrating the Expect primitives into it,
and then re-releasing it. However, shells are not intended to be used this way and I did
not have any interest in maintaining a shell once I had stuck my hands in it. At that time,
shells were renowned for being messy beasts. For example, the C shell was well known
for not having consistent and robust parsing. And the Bourne shell had stimulated the
Obfuscated C Code Contest-a contest that actually celebrates and revels in torturous
code. I wanted something else.

I was fortunate to be able to attend the 1990 Winter USE NIX Conference in Washington
DC (January 22-26). I had been thinking about writing something like Expect for several
years, and I decided to go there and ask some wizards about what they did for portable
language facilities. To my delight, there was a talk at the conference addressing that very
topic.

John Ousterhout, a professor at the University of California at Berkeley, had designed a
language for embedding into applications-my very need! By the middle of the talk, I
knew I wanted to try using it. At the end of talk, when he said it was freely available, I
swooned.

Four days later, I had a copy of Tel. I couldn't believe it. It was not only everything John
had promised, it was also easy to use and well documented. By February 7 (eight days
after first downloading Tel), I had a working, albeit primitive, Expect. It had the core of
what Expect has today: send, expect, spawn, interact, plus a logging function. At
that time, the compiled Tel code was about 48K, while Expect added on another 12K.
The idea of a control language being larger than the application seemed peculiar, but it
worked too well to go back to the old ways of designing ad hoc interfaces.

Even with minimal functionality, it elearly suggested some interesting uses and I thought
that it might be nice to inform others. I had a USE NIX Call-For-Papers hanging next to
my workstation. It said:

The final deadline for receipt of submissions is February 7, 1990.
Abstracts received after this deadline will not be considered.

It was February 8, one day after the deadline. I sat down, banged out the requested
extended abstract, and sent it in on the 9th.t It was accepted with top marks by all the
referees and appeared at the very next conference. No person was more astonished by
this rapid publication describing a Tel-based application than John. (John published

t The abstract was finished in a couple of hours, but I delayed a day to contemplate several different names for
the software. While "Expect" has worked out well, another leading contender was "Sex" (for either "Super Exec"
or "Send-Expect") which was obviously much more memorable-a key factor for audience attendance in a multi
track conference-plus "intercourse with other programs" seemed reasonably descriptive of what the software
did.

xxvii

another Tel-related paper at the 1991 Winter USE NIX Conference-leading to Tel papers
at three consecutive USE NIX conferences and a high profile very early in its life.)

During 1990 and 1991, my local ftp server distributed over 2500 copies of Tel, all for the
purpose of running Expect. I like to think that Expect was a catalyst in the success of
Tel, but even without Expect, Tel would have caught on eventually. Tel is now used by
thousands of applications and millions of users. Some of the Tel extensions (Tk, in
particular) stand on their own, and like Expect, allow people to do things more easily
than before and in many cases things that they would never even have tried.

Since writing Expect, I've used Tel to build several other applications and extensions.
While none of them are as general purpose as Expect, the results are wonderful. Even
for building specialized tools, Tel is a joy to work with. I hope never to go back to yacc
and lex again.

While the focus here is Expect, not Tel, I believe that this book is worth reading even if
you are learning Tel for other reasons-perhaps contemplating putting it to use in your
own applications. Expect is a good example of what can be accomplished with Tel. Plus
there are many techniques-such as the debugger and the signal handler-that while
invented for Expect, can be applied to just about any other Tel application. By reusing
my efforts (and in some cases, avoiding my mistakes), it will be that much easier when
designing your own Tel-based applications.

Acknowledgments
lowe a large amount to the many people that used Expect and gave me excellent feed
back. There are literally hundreds of people who made contributions. Many
suggestions, although cavalierly made, developed into important aspects of Expect.
Some people donated sizable chunks of code while yet others debated with me on philo
sophical aspects.

Thanks to Scott Paisley who initially sowed the seeds for the idea and then ended up
listening to me rave on about it for several years before I took any action. Scott also
wrote the dialback script that appears in Chapter 1 Cp. 4).

I would also like to thank (in no particular order) John Conti, Mike Gourlay, Frank
Terhaar-Yonkers, Jerry Friesen, Brian Fitzgerald, Mark Diekhans, Kevin Kenny, Rob
Nagler, Terrence Brannon, Ken Manheimer, Steve Clark, Keith Eberhardt, Brian
Woodson, Pete Termaat, Sandy Ressler, Hal Peterson, Mike O'Dell, Steve Legowik, Scott
Hess, David Vezie, Adrian Mariano, Keith Hanlan, Rick Lyons, Jeff Okamoto, Tom
Tromey, Phil Shepherd, Michael Grant, Bob Proulx, Marty Leisner, Ting Leung, Karl
Lehenbauer, Przemek Klosowski, Bill Tierney, Steve Summit, Rainer Wilcke, Alon Albert,
Jay Schmidgall, Corey Satten, Konrad Haedener, Tor Lillqvist, Pasi Kaara, Kartik

xxviii Exploring Expect

Subbarao, Steve Ray, Karl Vogel, Seth Perlman, Dave Mielke, Brian Bebeau, Bob
Bagwill, Dan Bernstein, Pascal Meheut, Rusty Wilson, Jonathan Kamens, Bill Houle,
Todd Richmond, Mark Weissman, Chris Matheus, Lou Salkind, Bud Bach, R.K. Lloyd,
Chip Rosenthal, david d 'zoo' zuhn, John Rouillard, Steven Diamond, Bert Robben, Rick
Cady, Enzo Michelangeli, Josef Sachs, Stephen Fitzpatrick, and numerom others whose
names litter my log books and change files. Of special note are Rob Savoye, who auto
mated the Expect configuration procedure; the people who wrote Autoconf on which
Rob's work rests; Henry Spencer, who wrote the regular expression engine used by
Expect and Tel; and Arnold Robbins, who wrote the POSIX date formatter.

And thanks to John Ousterhout for Tel and for Tk. It is difficult to describe the amount
of work that he has put into making them possible, making them so usable, and then
making them freely available. John is a renaissance computer scientist. He programs
with great style-his code is a pleasure to read, and it is documented in a thoughtful
and readable fashion. Tel is a great accomplishment, yet it is only one of many for John.
John is a continuing source of excellent ideas followed up by gargantuan amounts of
effort.

A significant amount of support for the development of Expect was provided by the
National Institute of Standards and Technology (NIST). The development of Expect fit in
well with the charter of NIST, an agency of the U.S. Department of Commerce, whose
goal is, after all, to promote commerce and assist industry in the development of tech
nology. Even though Expect was never specifically funded as a separate project at NIST,
I was permitted to work on Expect to the extent that it directly aided projects at NIST
because it kept solving problems that would crop up. Thanks to Cita Furlani, Selden
Stewart, Jeane Ford, and Howard Bloom for allowing the flexibility and freedom in the
technical work to explore Expect.

Much of the funding for Expect actually came out of my own pocket. But the person
who really paid the steepest price is Susan Mulroney. She has been especially patient
("Isn't that thing done yeti!"), allowing me to give up lots of quality time ("Please come
home, the toilet is overflowing!") even after I decided the software wasn't enough and I
had to write a book on it. ("What? Another book!?") Even worse, she has to put up with
my sense of humor.

Writing a book is no simple task. Getting permission from the government alone took
eleven months. (Getting permission for the previous sentence took three of them.) With
a full-time job in the way (and fixing bugs, making enhancements, and answering
everyone's questions-all after hours), the writing took another two years. This was
also delayed by changes in Tel, Tk, and Expect themselves.

The secret to successful writing is getting the most dedicated, anal, and brutally honest
reviewers. My readers nitpicked the manuscript to death, pointing out flaws and incor
rect or missing reasoning or explanations. I thank the readers for finding all these

xxix

problems and keeping me on my toes. Thanks to W. Richard Stevens, Henry Spencer,
Brian Kernighan, Gerard Holzmann, Thomas Accardo, Bennett Todd, Miguel Angel
Bayona, Tim 0 Reilly, Frank Willison, Brent Welch (now writing a Tel book of his own!),
Danny Faught, Paul Kinzelman, Barry Johnston, Rob Huebner, Todd Bradfute, David
Dodd, Will Morse, Thomas Brown, Sam Shen, Adrian Mariano, Ken Lunde, Marc Rovner,
Jeffrey Friedl, David Rosenfeld, Stavros Macrakis, Jeremy Mathers, Larry Virden, Keith
Neufeld, Nelson Beebe, and Jeff Moore. Thanks also to Lennie, Sol, and Susan Libes for
proofreading yet another manuscript, evidently under the belief that due to a freak
biological accident many years ago, they are guaranteed the right to be my critics
forever. Due to a more recent biological event, I must also thank Sue Baughman and
Lenore Mulroney for babysitting the Kenna.

Finally, thanks to Sheryl Avruch, Frank Willison, and Clairemarie Fisher 0 Leary for
production help, Edie Freedman for typography advice as well as a most appropriate
and appealing cover, Tanya Herlick and Jessica Perry Hekman for system administration,
Brian Erwin and Linda Walsh for creative and inspired sales and marketing (yes, they do
more than make t-shirts), Seth Maislin for copyediting, Mike Sierra for FrameMaker assis
tance, Jennifer Niederst for Nutshell design standards, Michael Kalantarian and Celinda
Bormeth for numerous sordid little details, and Tim 0 Reilly, who listened patiently to all
my questions and solved them with wisdom and common sense.

Welt Like to Hear From You
We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707 -829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request
a catalog, send email to:

nuts@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreiiiy.com

In This Section:

• What Chapters To
Read And What
Order To Read
Them In

• Notational
Conventions

• How To Do The
Exercises How To Read This Book

This book can be read from front to back. Each chapter flows naturally into the next,
and examples in each chapter only use the concepts that have been introduced up to
that point. Of course, you can skip chapters or jump around if you like. But I recom
mend you come back and read everything eventually. This book is chock-full of
examples-and they are really worth seeing. To further stimulate you, exercises at the
end of each chapter hint at additional thoughts and applications.

Expect draws together a lot of concepts from different programs and even different oper
ating systems. For this reason it is likely that you are familiar with some pieces but not
others. The book is laid out so that it is easy to skip things with which you are already
familiar. The Preface provides mostly historical notes, setting the scene for Expect and
describing how it came into existence. This is not critical to the use of Expect but it
makes interesting reading. You may want to read it later.

Chapter 1 is an overview of Expect, giving a taste of what it can do, why it is worth your
attention, who uses it, and how it fits into the world. If you know little or nothing about
Expect and would like to quickly know what it is all about, read this chapter rather than
flipping through the book.

Chapter 2 is an overview of Tel, the language that Expect uses. Tel is used by many
other software packages so you may already know it-I encourage you to read Chapter
2 anyway. Even if you know Tel already, you will find that aspects of the language that
Expect relies upon are different than in other Tel tools. Chapter 2 emphasizes these
aspects and at the same time puts the rest of Tel into a consistent framework so that it all
fits together.

After Chapter 2 comes the meat of the book-chapters that focus on different parts of
Expect starting with automating simple interactions and ending with sophisticated and
complex applications that use multiple processes and graphic front-ends. The chapter

xxxi

xxxii Exploring Expect

names are suggestive of the main concepts covered in each chapter; however, all of the
chapters include many other concepts that are easier to explain in the context of the
chapters they are in. This makes the titles a little less helpful, but the Extended Table Of
Contents lists all of the concept headings of each chapter.

Near the end of the book are several chapters on subjects that may not be of interest to
everyone. For instance, one such chapter is how to use Expect with Tk; another is how
to use Expect from C or C++ (without Tcl). There is also a chapter on embedding Expect
in with your own Tcl extensions. That particular chapter assumes that you have read the
Tcl reference documentation on the C interface.

The last chapter contains some topics that did not deserve their own chapters nor did
they fit in any others. The concepts there are not that important but may be useful
nonetheless.

I believe strongly in thorough indexes and there are two in this book so that you can
find any item even if it is not in the Extended Table of Contents. The general index cross
references all concepts, commands, examples, and figures. Many of the examples in the
book are interesting in their own right and you will want to use them as tools on their
own. In order to find your way back to them, another index lists the substantive exam
ples. Most of these are also available in machine-readable form with the Expect
distribution itself. I will describe how to obtain the distribution in Chapter 1 (p. 16).

There is also an appendix that contains a list of all of the Expect commands and vari
ables. Each entry has a brief description and a page number back to the body of the
book where you can get the full explanation. I recommend you turn to page 531 and
dog-ear it right now!

Most of the chapters are heavily illustrated with code fragments. Code-reading is essen
tial to see how things look in context. And the more code to which you are exposed, the
more ideas you can learn. It is also important to see larger pieces of code, and I have
provided several significantly bigger programs in chapters towards the rear of the book.
Unlike most programs found in the Tcl archives, the ones in this book are extensively
and carefully described.

Finally, a gentle warning before you start reading-this book describes how to use
Expect, but it is not a reference manual. While terse and lacking in background and
examples, the man page that comes with the Expect software is always the latest and
most accurate documentation. If Expect changes, it will be reflected there.

Notational Conventions
Body text is set in ITC Garamond Light. Terms being defined or emphasized are itali
cized. Parameterized input or output (i.e., rrn filename) appears as Courier Italic.

xxxiii

Courier is used for source code, files, hostnames, literal I/O, or anything that is
computer input or output. Characters typed by a person are in Courier Bold. Due to
the nature of Expect, it may sometimes appear that a person has typed something when
in reality it was typed by Expect. Thus, the boldness of the font will be helpful in these
otherwise misleading situations.

Straight quotes (' or n or ,) are used when they are literally part of the characters or
strings. Curly quotes ("") are occasionally used to distinguish literal text from the
surrounding text or nearby punctuation if it might not otherwise be obvious (or for
consistency with other strings in the same sentence).

Inter-chapter references such as "Chapter 1 (p. 19)" include page numbers describing
exactly where in the chapter the referenced topic appears. In this example, the discus
sion of Expect and Tcl resources appears in the first chapter and the discussion itself
begins on page 19.

Exercises
At the end of each chapter are exercises. These exercises are well worth reading-even
if you do not do them. The exercises are not of the form "now repeat the examples
shown but with slightly changed parameters". You do not need busy work. You want to
apply Expect immediately to your problems.

Instead, the exercises are deliberately meant to be thought provoking. Many of them
suggest entirely different ideas than the examples elsewhere in the book. One of the
problems with a tool like Expect is that it is so different, it is hard to recognize certain
things are possible without actually being told or seeing an example.

Alas, without making the book significantly bigger, there was a limit to the examples I
could include. Rather than devoting another two or three pages to explaining each one
(or saying "you can do XYZ but I don't have the space to explain it"), I have left them as
exercises. All of them are possible with Expect.

Again, do not approach the exercises as lessons to be done. Rather, think about them
and use them as stimulation for discovering other problems you can solve. Together, the
examples and exercises in this book are only a tiny fraction of what you can do with
Expect.

In This Chapter:

• ~atExpect1)oes
And 1)oes Not 1)0

• Simple Examples

• ~o Uses Expect
And How

• How to Get Expect

1
• How Expect Fits

Into UNIX And
Other Operating
Systems

Introduction - What Is
Expect?

Expect is a program to control interactive applications. These applications interactively
prompt and expect a user to enter keystrokes in response. By using Expect, you can
write simple scripts to automate these interactions. And using automated interactive
programs, you will be able to solve problems that you never would have even consid
ered before.

Expect can save you hours of drudgery, and this book will start you on your way. This
first chapter is an overview of Expect. I will describe some simple applications and
present some short scripts. However, the explanations are not intended to be complete
but rather to whet your appetite and give you a taste of the good things to come. In the
following chapters, I will revisit all of the concepts mentioned in this chapter and cover
them in more detail.

Ouch, Those Programs Are Painful!
fsck, the UNIX file system check program, can be run from a shell script only with the
-y or -n options. The manual defines the -y option as follows:

Assume a yes response to all questions asked by fsck; this should be
used with extreme caution, as it is a free license to continue, even
after severe problems are encountered.

The -n option is safer, but almost uselessly so. This kind of interface is inexcusably bad,
yet many programs have the same style. ftp, a file transfer program, has an option that
disables interactive prompting so that it can be run from a script. But it provides no way
to take alternative action should an error occur.

1

2 Exploring Expect

Expect is a tool for controlling interactive programs. It solves the fsck problem,
providing all the interactive functionality non-interactively. Expect is not specifically
designed for fsck and can handle errors from ftp as well.

The problems with fsck and ftp illustrate a major limitation in the user interface
offered by shells such as sh, csh, and others (which I will generically refer to as "the
shell" from now on). The shell does not provide a way of reading output from and
writing input to a program. This means the shell can run fsck, but only by missing out
on some of its useful features. Some programs cannot be run at all from a shell script.
For example, passwd cannot be run without a user interactively supplying the input.
Similar programs that cannot be automated in a shell script are telnet, crypt, su,
rlogin, and gdb. A large number of application programs are written with the same
fault of demanding user input.

Expect was designed specifically to interact with interactive programs. An Expect
programmer can write a script describing the dialogue. Then the Expect program can
run the "interactive" program non-interactively. Expect can also be used to automate
only parts of a dialogue, since control can be passed from the script to the keyboard and
vice versa. This allows a script to do the drudgery and a user to do the fun stuff.

Before Expect

!@#!&%!!

After Expect

L ~ (}-(interactive)
c::::;? -----i. Expect process

X ~

Introduction- What Is Expect? 3

A Very Brie! Overview
Expect programs can be written in C or C++, but are almost always written using Tcl.t

Tel is an interpreted language that is widely used in many other applications. If you
already use a Tel-based application, you will not have to learn a new language for
Expect.

Tel is a very typical-looking shell-like language. There are commands to set variables
(set), control flow (if, while, foreach, etc.), and perform the usual math and string
operations. Of course, UNIX programs can be called (exec). I will provide a quick
introduction to the language in Chapter 2 (p. 23).

Expect is integrated on top of Tel and provides additional commands for interacting
with programs. Expect is named after the specific command that waits for output from a
program. The expect command is the heart of the Expect program. The expect
command describes a list of patterns to watch for. Each pattern is followed by an
action. If the pattern is found, the action is executed.

For example, the following fragment is from a script that involves a login. When
executed, the script waits for the strings "welcome", "failed", or "busy", and then it
evaluates one of the corresponding actions. The action associated with busy shows
how multiple commands can be evaluated. The timeout keyword is a special pattern
that matches if no other pattern matches in a certain amount of time.

expect {
"welcome" break
"failed" abort
timeout abort
"busy" {

puts "busy"
continue

A First Script-dialback
It is surprising how little scripting is necessary to produce something useful. Below is a
script that dials a phone. It is used to reverse the charges so that long-distance phone
calls are charged to the computer. It is invoked with the phone number as its argument.

t Tel is pronounced "tickle". Some people are uncomfortable using this particular word in a formal setting. In
that case, I recommend either saying the letters (Le., "tee cee ell") or coming up with a name suitable to your
audience (e.g., "macho stud language"). Whatever works for you.

4

spawn tip modem
expect "connected"
send "ATD$argv\r"
modem takes a while to connect
set timeout 60
expect "CONNECT"

Exploring Expect

The first line runs the tip program so that the output of a modem can be read by
expect and its input written by send. Once tip says it is connected, the modem is
told to dial using the command ATD followed by the phone number. The phone
number is retrieved from argv, which is a variable predefined to contain the original
argument with which the script was called.

The fourth line is just a comment noting that the variable being set in the next line
controls how long expect will wait before giving up. At this point, the script waits for
the call to complete. No matter what happens, expect terminates. If the call succeeds,
the system detects that a user is connected and prompts with "login: ".

Actual scripts do more error checking, of course. For example, the script could retry if
the call fails. But the point here is that it does not take much code to produce useful
scripts. This six-line script replaced a 60Kb executable (written in C) that did the same
thing!

In Chapter 16 (p. 351), I will talk more about the dialback concept and show a different
way to do it.

Total Automation
Earlier I mentioned some programs that cannot be automated with the shell. It is diffi
cult to imagine why you might even want to embed some of these programs in shell
scripts. Certainly the original authors of the programs did not conceive of this need. As
an example, consider pas swd.

passwd is the command to change a password. The passwd program does not take
the new password from the command line. Instead, it interactively prompts for it
twice. Here is what it looks like when run by a system administrator. (When run by
users, the interaction is slightly more complex because they are prompted for their old
passwords as well.)

passwd libes
Changing password for libes on thunder.
New password:
Retype new password:

This is fine for a single password. But suppose you have accounts of your own on a
number of unrelated computers and you would like them all to have the same

Introduction - What Is Expect? 5

password. Or suppose you are a system administrator establishing 1000 accounts at the
beginning of each semester. All of a sudden, an automated passwd makes a lot of
sense. Here is an Expect script to do just that-automate passwd so that it can be
called from a shell script.

spawn passwd [lindex $argv 0]
set password [lindex $argv 1]
expect "password:"
send "$password\r"
expect "password:"
send "$password\r"
expect eof

The first line starts the passwd program with the username passed as an argument. The
next line saves the password in a variable for convenience. As in shell scripts, variables
do not have to be declared in advance.

In the third line, the expect command looks for the pattern "password:". expect
waits until the pattern is found before continuing.

After receiving the prompt, the next line sends a password to the current process. The
\r indicates a carriage-return. (Most of the usual C string conventions are supported.)
There are two expect-send sequences because passwd asks the password to be
typed twice as a spelling verification. There is no point to this in a non-interactive
passwd, but the script has to do it because passwd assumes it is interacting with a
human who does not type consistently.

The final command "expect eof" causes the script to wait for the end-of-file in the
output of passwd. Similar to timeout, eof is another keyword pattern. This final
expect effectively waits for passwd to complete execution before returning control to
the script.

Take a step back for a moment. Consider that this problem could be solved in a
different way. You could edit the source to passwd (should you be so lucky as to have
it) and modify it so that given an optional flag, it reads its arguments from the command
line just the way that the Expect script does. If you lack the source and have to write
pas swd from scratch, of course, then you will have to worry about how to encrypt pass
words, lock and write the password database, etc. In fact, even if you only modify the
existing code, you may find it surprisingly complicated code to look at. The passwd
program does some very tricky things. If you do get it to work, pray that nothing
changes when your system is upgraded. If the vendor adds NIS, Kerberos, shadow pass
words, a different encryption function, or some other new feature, you will have to
revisit the code.

6 Exploring Expect

Testing
Despite all the reasons against it, suppose you decide to make changes to the passwd

source anyway. After recompiling, it is a good idea to test your changes, right? You
want to make sure passwd operates correctly when used interactively. Oh, but you
cannot test the old interactive half of your new passwd program in a simple shell
script-that is the whole reason you modified it in the first place!

This idea of testing interactive programs for correct behavior is another reason why
Expect is useful. Even if you never want to automate a program, you may want to test
it. passwd is just one example. Your own programs are another. Suppose you write a
program that responds immediately to each command or keystroke. You cannot test it
simply by piping a file of commands at it. It may discard characters that arrive before
they are wanted, it may want a terminal in raw mode, it may want keystrokes such as /\C
to activate signals, or you may need to see its responses in order to know how to phrase
each subsequent command.

For example, suppose you are writing a debugger. The debugger may layout a
program in memory differently each time the program is recompiled, but the debugger
should otherwise function the same (apart from any bugs you are fixing). If you are
trying to verify that the debugger correctly handles the symbol table, you might ask for
the value of all variables, verifying that each value is the same whether asked by
memory address or variable name.

There is no way to embed the commands in a script because the script itself must
change each time as elements are laid down in memory differently. For example, gdb,
the GNU debugger, accepts the command "print &var" to print the address of var.
Here is what an interaction might look like.

(gdb) print &var
$1 = (int *) Oxe008

In response, gdb numbers the output and then prints an equal sign followed by the
type and value. It is possible for Expect to ask for and then print the type and value
with the following code:

send "print &var\r"
expect "Ox*\r" {

send_user "$expect_out(O,string)\n"

The pattern Ox*\r is a pattern that matches the output Oxe008 followed by a carriage
return. The "*" in the pattern is a wildcard meaning "match anything". This is a conve
nient shortcut to specifying patterns. Later on, I will demonstrate how to be more
precise in what you are asking for.

Introduction - What Is Expect? 7

Following the pattern is an action-triggered when the pattern matches. Here the
action is just one command, but it could be more than one, even including another
expect command.

send_user sends the quoted string back to the user rather than to gdb. The $ in the
string indicates that a variable reference follows and that its value is to be substituted in
the string. Specifically, the variable expect_out is an array that contains the results of
the previous expect. In this case, the results are just what matched the beginning of
the pattern "Ox*" up to and including the return character.

Expect is useful for more than just testing a debugger. It can be used to test all of the
same programs that it automates. For example, the script used to automate passwd can
be extended to test it, checking passwd with regard to improper passwords, unusually
slow response, signals, and other sorts of problematic behavior.

Differing Behavior When Running
Non-Interactively
Some programs behave differently when run interactively and non-interactively, and
they do so intentionally. For example, most programs prompt only when running inter
actively. Non-interactively, prompting is not needed.

A more serious problem occurs when dealing with programs that change the way they
buffer output depending on whether they are running interactively or not. Programs
using the standard I/O library provided by UNIX automatically buffer their output when
running non-interactively. This causes problems when you need to see the output
immediately. Expect can make the programs think they are running interactively,
thereby resolving the buffering problem.

As another example, shells force the user to press control characters (/\Z, /\C) and
keywords (fg, bg) to switch jobs. These cannot be used from shell scripts. Similarly,
the shell running non-interactively does not deal with history and other features
designed solely for interactive use. This presents a similar problem as with passwd
earlier. Namely, it is impossible to construct shell scripts which test certain shell
behavior. The result is that these aspects of the shell will inevitably not be rigorously
tested. Using Expect, it is possible to drive the shell using its interactive job control
features. A spawned shell thinks it is running interactively and handles job control as
usual.

8 Exploring Expect

Partial Automation
Expect's interact command turns control of a process over to you so that you can
type directly to the process instead of through send commands.

Consider fsck, the UNIX program I mentioned earlier, which checks file system consis
tency. fsck provides almost no way of answering questions in advance. About all you
can say is "answer everything yes" or "answer everything no".

The following fragment shows how a script can automatically answer some questions
differently than others. The script begins by spawning f sck and then in a loop
answering yes to one type of question and no to another. The \ \ prevents the next
character from being interpreted as a wildcard. In this example, the asterisk is a wild
card but the question mark is not and matches a literal question mark.

while 1 {
expect {

eof
"UNREF FILE*CLEAR\\?"
"BAD INODE*FIX\\?"
"\\? "

{break}
{send "y\r"}
{send "n\r"}
{interact +}

The last question mark is a catch-all. If the script sees a question it does not understand,
it executes the interact command, which passes control back to you. Your
keystrokes go directly to fsck. When done, you can exit or return control to the script,
here triggered by pressing the plus key. If you return control to the script, automated
processing continues where it left off.

Without Expect, fsck can be run non-interactively only with very reduced function
ality. It is barely programmable and yet it is the most critical of system administration
tools. Many other tools have Similarly deficient user interfaces. In fact, the large number
of these is precisely what inspired the original development of Expect.

The interact command can be used to partially automate any program. Another
popular use is for writing scripts that telnet through a number of hosts or front-ends,
automatically handling protocols as encountered. When such a script finally reaches a
point that you would like to take over, you can do so. For example, you could browse
through remote library catalogs this way. Using Expect, scripts can make a number of
different library systems seem like they are all connected rather than different and
disconnected.

The interact command also provides arbitrarily complex macros. If you find yourself
repeatedly typing out long names, you can create a short character sequence to type
instead. A simple example is the following interact command, which sends the

Introduction - What Is Expect? 9

(meaningless but long and hard to type) string "set def qwk/term=vtlOO
yhoriz=200" when (the short and easy to type) "y2" is entered. This ability to abbre
viate is useful when dealing with interactive programs that require you to enter the
same gobbledegook over and over again.

interact {
"y2" {send "set def qwk/term=vtlOO yhoriz=200"}
"--d" {send [exec date]}

This fragment also sends the current date if you press "--d". Arbitrary actions can be
invoked, including other expect and interact commands. This example uses the
exec command to run the UNIX date command.

Macros can be used in the other direction, too. If the program you are dealing with
prints things out that you do not want to see or want to see but in a different way, you
can change the appearance entirely.

Dangerous, Unfriendly, Or Otherwise
Unlikable User Interfaces
The interact command is just a shorthand for the simplest and most common types
of filtering that can be done in interactions. It is possible to build arbitrarily sophisti
cated mechanisms using the tools in Expect.

For example, commands can be filtered out of interfaces to prevent users from entering
commands that you would prefer they not enter. Programs can also be wrapped even
more tightly. The adb program, for instance, can crash a UNIX system with a slip of the
finger or, more likely, inexperience. You can prevent this from happening by securely
wrapping the adb program in a script. Not only does this increase the safety of your
system, but your system administrators no longer all have to be masters of its intricacies.

The UNIX dump program is another program with an unlikable interface. For example,
dump often guesses incorrectly about the length of a tape and will prompt for a new
tape even if one is not needed. An Expect script can be used to respond to dump so that
it can continue automatically. A script can answer just this question or any question
from dump.

Expect can, in general, be applied to interfaces that you simply do not like for whatever
reason. For example, you might like to automate sequences of your favorite game,
perhaps because you have long since mastered some of it and would like to practice the
end game but without laboriously replaying the beginning each time.

10 Exploring Expect

It is possible to customize exactly how much of the underlying programs show through.
You can even make interactions entirely invisible so that users do not have to be irri
tated by underlying programs that they have no interest in anyway. Their attitude is
"Use any tool. Just get the job done." And they are right.

Graphical Applications
Expect can be combined with Tk, a toolkit for the X Window System. The combination
of Expect and Tk is called Expectk.t Using Expectk, it is possible to take an existing
interactive application and give it a Motif-like X interface without changing any of the
underlying program. No recompiling is necessary, and because the underlying
programs are not changed, there is no need to retest them again. All your efforts can be
focused on the graphical user interface. Making it look pretty is all you have to do.

new
Expectk

GUI process

original
non-GUI
process

While Expectk will allow you to build X applications, it is limited in the amount it can
automate existing X applications. Currently, Expect can automate xterm and other
applications that specifically provide automation support, but Expect cannot automate
any arbitrary X application.

Expect is also limited in its knowledge of character graphics such as is done by Curses.
Nonetheless, with a little scripting, testing and automation of character graphics can be
accomplished, and in Chapter 19 Cp. 458), I will describe one way of doing this. Ulti
mately, I believe that Expect will do best with this capability built in rather than
provided via scripts. However, the requirements and interfaces are not obvious, and
further experimentation and design is required. ExpecTerm is an example implementa-

t Tk is pronounced "tee kay'''. Expectk is pronounced "ek spec' tee kay".

Introduction - What Is Expect? 11

tion of a built-in character-graphic capability based on an earlier version of Expect.
ExpecTerm is available from the Tel archive (see page 20).

A Little More About Tel
Expect's language is general-purpose. It has control structures and data structures so
that you can do just about anything. This can make up for the lack of programmability
in other programs. For example, most debuggers do not provide very sophisticated
methods of programmed control. Typically, you cannot deelare variables and are
restricted to simple loops.

The core of Expect's language facilities are provided by Tel, a language used by many
other tools. "Tel" stands for Tool Command Language. It comes as a library intended to
be embedded in applications, providing a generic language facility to any application.
Tel solves a long-standing problem in designing application languages.

Actually, most tools do not have very sophisticated internal control languages. The shell
represents the extreme-it has a very rich language and can even call upon other
programs. Start-up scripts such as . cshrc and .profile can be very complex. Few
programs have such flexibility. And that is just as well. Such programs each have their
own language and it is daunting to master each new one.

In the middle of the spectrum are programs such as ftp that have a limited ad hoc
language-such as permitted in the file . netrc-not very flexible but better than
nothing. A lot of programs are designed like ftp-their languages are limited, not
extensible, and different from one tool to the next.

At the far end are programs such as telnet which have no control language whatso
ever. The bulk of all interactive programs are like ftp and telnet-severely lacking
in programmability.

This lack of programmability is understandable. Consider writing an application that
controls the printer. It is not worth writing a big language that requires a scanner, a
parser, symbol table, etc. The application alone might only be 10Kb. However, it is
impossible to predict what uses you might put your program to in the future. Suppose
you get another printer. Then your program needs to understand this. Suppose you
give your program to someone else and they have two printers but they are of two
different types. Suppose they want to reserve one printer for printouts of a special kind
for a day-printing checks on payday, for example. You can see that the possibilities
are endless. So rather than customizing the application each time and extending the
language as required (if you have not boxed yourself into a corner already), it makes
sense to use a general-purpose language from the beginning.

12 Exploring Expect

Programs that already use Tcl are all set. They have a nice language from the outset.
But many tools we are blessed with were written before Tcl existed. And most of them
will not be rewritten. Development of most of these programs has stopped long ago
(although for $$$ you can buy new versions). Fortunately, Expect allows you to layer
Tcl on top of any interactive program without making any changes whatsoever to the
original program. In effect, Expect makes nonprogrammable programs programmable.

Job Control
Just as you personally can interact with multiple programs at the same time, so can
Expect. Analogous to the way you can say fg and bg to switch between processes in a
shell, Expect can also switch its attention. Of course, Expect does it a lot more quickly
than you can. The result is that Expect can act as "glue" for programs that were never
designed to operate with other programs. An amusing example is the original chess
program distributed with V7 and BSD UNIX written by Ken Thompson. It was designed
to interact with a user-it prompts for moves and echoes user input in algebraic nota
tion. Unfortunately, it does not accept its own output as input. Even if it did, there is no
way to pipe both inputs and outputs between two processes simultaneously from the
shell.

With a few lines of Expect, it is possible to make one chess process play another,
including both the communication and the massaging of the output so that it is accept
able as input. I will show this in Chapter 10 (p. 233), along with some more serious uses
for these techniques.

Background Processes
Expect is useful for automating processes in the background such as through cron. By
using Expect with cron, you can not only automate the interactions but also automate
starting the process in the first place. For example, you might want to copy over files
each night between two networked but otherwise unrelated systems. And you can be
arbitrarily selective about choosing files. You might want to copy over only executables
that are less than 1 Mb and were created on a Saturday unless the current load exceeds
2.5 and the previous transfer took less than 5 seconds, or some other such complicated
set of rules. There are no ftp clients that have such complex front-ends. But you can
write Expect scripts to make whatever decisions seem appropriate while driving ftp.

It is even possible to have a cron process interactively contact you while it is in the
background. For example, an ftp script may need a password to continue what it is
doing. It can search the network for you and then ask you for it. Or you can have it
look for a set of users. After getting the password, Expect will go back and use it to

Introduction - What Is Expect? 13

complete the task. By having Expect query for passwords, you do not need to embed
them in scripts.

Doing backups from cran is another common reason to use Expect. If the backup
program needs another tape, an Expect script can tell it to go on (for example, if your
tapes are physically longer than the backup program thinks), or it can, again, contact
you for assistance.

Using Expect With Other Programs
Most of the examples in this chapter use programs that are common to all UNIX
systems. But Expect is not restricted to these programs. You can apply Expect to other
programs. Even (gasp!) programs that you have written.

In the previous section, I described how you might automate ftp. But if you have a
different program on your system to do file transfer, that's fine. Expect can use it.
Expect does not have a built-in mechanism for file transfer, remote login, rebooting
your colleague's workstation, or a million other useful things. Instead, Expect uses what
ever local utilities you already have. This means that you do not have to learn a new file
transfer protocol or a new host-to-host security system. If you use". rhosts", then that
is what Expect will use when it does remote host operations. If you use Kerberos, then
Expect will use that. And so on.

Using Expect On UNIX
I have mentioned a number of UNIX programs that can be controlled by Expect. Expect
can run any UNIX program, not just interactive ones. So you can invoke programs like
cat or ls if you need them too.

Expect can do just about anything that any shell script can do. But that is not the point
of Expect. Indeed, Expect scripts are meant to be small. By wrapping badly behaving
programs with Expect scripts, you can use them from other scripting languages, such as
the shell. The resulting scripts behave just like any UNIX program. Users have no way
of knowing that the programs are just scripts.

Using Expect On Other Operating Systems
Expect makes use of a number of features that are present in all UNIX systems. The
family of standards known as "POSIX" describes most but not all of these features. So
while Expect can run on any UNIX system, it may have trouble providing all of its
features on non-UNIX systems that nonetheless claim strict POSIX compliance. While

14 Exploring Expect

Expect works just fine on some non-UNIX POSIX systems and can work in a limited
way on all POSIX systems, I prefer to be conservative in my claims, so I use the phrase
"UNIX systems" when referring to the systems on which Expect runs.

Fortunately, Expect can be used to control other operating systems indirectly. Since
Expect is capable of making network connections (through telnet, rlogin, tip,
etc.), it can remotely contact other computers even while running on a UNIX computer.
In this way, it is very common to use Expect scripts to control non-UNIX computers
such as Lisp machines, PostScript printers, modems, pagers, etc.

Testing and setting modems and other network devices (routers, bridges, etc.) is a partic
ularly popular use of Expect. It is possible to write scripts that regularly test sets of
modems to make sure that they are functional and that previous users have not left
them in a bad state. Such scripts can even simulate a real user-placing a phone call,
connecting to a remote host, and even logging in. An Expect script can remember the
port numbers and other trivia that users do not bother to note until they have scrolled
off the screen. So if a line turns out to be faulty, the script can record this and other
information to a log.

Using Expect In Real Applications
Expect is a real program used in real applications. In my own environment, my
colleagues depend on many Expect scripts to do important and critical tasks. We also
use Expect to whip up demos and to automate ad hoc programs.

I have already mentioned lots of other uses for Expect. Many more cannot be described
without also going into detail about proprietary or one-of-a-kind programs that people
are stuck with using every day. But I will mention some companies and examples of
how each uses Expect to give you a warm fuzzy feeling that Expect is widely accepted.

3Com does software quality assurance with Expect. Silicon Graphics uses it to do
network measurements such as echo response time using telnet. The World Bank
uses it to automate file transfers and updates. IBM uses it as part of a tape backup
production environment. HP uses it to automate queries to multiple heterogenous
commercial online databases. Sun uses it to sweep across their in-house network testing
computer security. Martin Marietta uses it to control and extract usage statistics from
network routers. Tektronix uses it to test software simulations of test instruments. The
National Cancer Institute uses it to administer accounts across multiple platforms. Cisco
uses it for network control and testing. Xerox uses it for researcher collaboration.
Motorola uses it to control and backup multiple commercial databases. Data General
uses it for software quality engineering. The Baha'i World Centre uses it to automate
and coordinate data collection and storage from different telephone exchange locations.
Amdahl uses it to automatically retrieve stock prices. CenterLine Software uses it for

Introduction - What Is Expect? 15

software quality assurance. Encore Computer uses it to simulate 500 users logging into
one system at the same time. AT&T uses it to copy files between internal hosts through
a firewall to and from external Internet hosts. Sandia National Laboratories uses it to
control unreliable processes that need to be watched constantly. Schlumberger uses it
to manage a network environment including routers, repeaters, bridges, and terminal
servers all from different manufacturers. ComputerVision built an automated testbed
using it. This is just a fraction of some of the users and uses of Expect. The whole list is
truly astonishing, and it continues to grow rapidly.

In addition to this list of internal applications, companies such as IBM, AT&T, and Data
General have incorporated Expect into applications that they sell. One of the best
known commercial products utiliZing Expect is DejaGnu, written by Rob Savoye for
Cygnus Support. DejaGnu is a software testing utility designed to simplify the running
of large collections of regression tests. Using Tcl and Expect, DejaGnu provides a frame
work in which tests can be written, run, and analyzed quickly and easily. Due to the
power of Expect, DejaGnu is capable of testing both interactive and non-interactive
applications, including embedded applications and applications on other hosts to
support cross-platform and remote target board development. Cygnus has created freely
available DejaGnu test suites for the GNU C and C++ compiler, debugger, assembler,
and binary utilities. These test suites can be used to test any similar program or port of
such a program, whether it is freely available or proprietary. According to the Free Soft
ware Report, Vol. 3, No.1, "Cygnus supports over 70 platform configurations of the
GNU compilers fully tested by DejaGnu. DejaGnu executes 8000 test cases in
16,000,000 documented tests for a typical release."

Using Expect In Commercial Applications
Legalese
It is not necessary to license Expect. Most of Expect is in the public domain, but two
parts of it have copyrights. The Tcl core and the regular expression engine inside
Expect are copyrighted but otherwise freely available, allowing the software to be used
for any purpose and without fee, and with few restrictions on the code other than main
taining the copyright internally. The full copyright notices follow:

Copyright (c) 1987-1993 The Regents of the University of California. All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty
fees, to use, copy, modify, and distribute this software and its documentation for any pur
pose, provided that the above copyright notice and the following two paragraphs appear
in all copies of this software.

In no event shall the University of California be liable to any party for direct, indirect, spe
cial, incidental, or consequential damages arising out of the use of this software and its

16 Exploring Expect

documentation, even if the University of California has been advised of the possibility of
such damage.

The University of California specifically disclaims any warranties, including, but not lim
ited to, the implied warranties of merchantability and fitness for a particular purpose. The
software provided hereunder is on an "as is" basis, and the University of California has no
obligation to provide maintenance, support, updates, enhancements, or modifications.

Copyright (c) 1986 by University of Toronto.
Written by Henry Spencer. Not derived from licensed software.

Permission is granted to anyone to use this software for any purpose on any computer
system, and to redistribute it freely, subject to the following restrictions:

1. The author is not responsible for the consequences of use of this software, no matter
how awful, even if they arise from defects in it.

2. The origin of this software must not be misrepresented, either by explicit claim or by
omission.

3. Altered versions must be plainly marked as such, and must not be misrepresented as
being the original software.

The following notice is required on the NIST-authored portions of Expect:

This software was produced by the National Institute of Standards and Technology
(NIST), an agency of the U.S. government, and by statute is not subject to copyright in the
United States. Recipients of this software assume all responsibility associated with its
operation, modification, maintenance, and subsequent redistribution.

So you can use Expect in other freely-redistributable or commercial packages. You can
even use pieces of the code in other software products. Just don't blame the authors for
any problems encountered with the software.

Obtaining Expect And The Examples
Expect may already be installed on your system, typically in /usr / local/bin. If you
cannot find Expect, ask your system administrator. If you do not have a system adminis
trator, you can obtain Expect by following the instructions below. Expect requires no
special permissions to install, nor does it have to be installed in any particular place.
You can even try it out in your own directory.

Expect includes a number of examples, several of which are useful as tools in their own
right. Indeed, quite a few have man pages of their own and can be installed along with
Expect. If the examples are not installed, you can find them in the example directory
of the Expect distribution. Ask your local system administrator where the distribution is.

The examples provided with Expect are subject to change, but below is a list of just a
few of the examples. The README file in the example directory contains a complete
list as well as full explanations about each of the examples:

Introduction - What Is Expect? 17

chess. exp play one chess game against another

dislocate allow disconnection from and reconnection to back
ground processes

dvorak

ftp-rfc

kibitz

lpunlock

mkpasswd

passmass

rftp

rlogin-cwd

rogue.exp

timed-read

timed-run

tkpasswd

tknewsbiff

tkterm

unbuffer

weather

emulate a Dvorak keyboard

retrieve an RFC from the Internet via anonymous ftp

let several people control a program at the same time for
remote assistance, group editing, etc.

unhang a printer waiting for a lock

generate a good random password and optionally run
passwd with it

set a password on many machines simultaneously

allow recursive get, put, and list from ftp

rlogin with the same current working directory

find a good game of rogue

limit the amount of time a read from the shell can take

limit the amount of time for which a program can run

change passwords in a GUI

pop up a window (or play sounds, etc.) when news
arrives in selected newsgroups

emulate a terminal in a Tk text widget

disable output buffering that normally occurs when
program output is redirected

retrieve a weather forecast from the Internet

These and additional examples are available with the Expect distribution. The README

file in the distribution also describes the location of the Expect archive which holds
even more scripts. You can also contribute your own scripts to the archive. Particularly
large or sophisticated applications (such as those which combine Expect with other
extensions) can be found separately in the Tcl archive (see page 20).

There is a high probability that you already have Expect on your system. Expect is
shipped by many vendors with their operating system utilities. Expect can also be found
on many software distributions including GCT from Testing Foundations, USENET Soft
ware from UUNET, the Sun User Group CD-ROM, the Prime Time Freeware CD-ROM,

18 Exploring Expect

the Lemis CD-ROM, and others. Even if you do not have one of these, some other user
on your system may have already retrieved Expect from an Internet repository.

The entire Expect distribution can be obtained from many sites around the Internet.
Your best bet to finding a nearby site is to use an Archie server. Archie maintains a data
base of thousands of computers across the Internet and what programs they are willing
to supply. If you do not know how to use Archie, you can obtain instructions by
sending email to archie@archie. sura. net with the word help as the contents of
the message.t

As this book is being written, Archie reports at least one site in the following countries
where Expect can be obtained:

Country

Australia

Austria

Canada

England

France

Germany

Greece

Ireland

Israel

Japan

Netherlands

Norway

Sweden

Switzerland

United States

Internet site

rninnie.cs.adfa.oz.au

ftp.tu-graz.ac.at

julian.uwo.ca

unix.hensa.ac.uk

ftp.irnag.fr

ftp.inforrnatik.tu-rnuenchen.de

pythia.csi.forth.gr

walton.rnaths.tcd.ie

cs . huj i. ac . il

akiu.gw.tohoku.ac.jp

svin02.info.win.tue.nl

ftp.eunet.no

ftp.sunet.se

ftp.switch.ch

ftp.crne.nist.gov

Currently, the site ftp. crne. nist. gOY always contains the latest version of Expect (or
a pointer to it). To retrieve it from there, you can use anonymous ftp or request auto
matic email delivery.

To get Expect from ftp.crne.nist.gov via ftp, retrieve the file pub/expect/
README. This will tell you what other files you need to retrieve and what to do after
that. Typically, you need a copy of Expect and a copy of Tel. You may also want to get
a copy of Tk. These can be found in the same directory as Expect.

t All hostnames and filenames in this chapter are subject to change.

Introduction - W'bat Is Expect? 19

If you are not directly on the Internet but can send mail, you can request email delivery
of the files. Send a message to "library@cme.nist.gov". The message body should
be:

send pub/expect/README

The site ftp. smli. com always contains the latest releases of Tel and Tk. This site
permits anonymous ftp. If you would like to request email from that site, any of the
other sites listed above, or any other anonymous ftp sites, you can use an "ftp by mail"
agent, such as the one provided by Digital Equipment's Western Research Laboratories.
Complete instructions for using ftp-mail may be retrieved by emailing to
ftpmail@decwrl. dec. com. The subject should be "ftpmail" and the message
body should be "help".

Expect And Tel Resources
This book contains a great deal of information about Expect and Tel. Yet there are other
resources that you may find useful. I will occasionally refer to some of these resources.
The others are just for extra reading on your own.

Important Reading Material
The software for Expect, Tel, and related packages inelude online manuals often called
man pages. This is the definitive reference material. I will occasionally use the phrase
Tel reference material, for example, to refer to the Tel man pages. As with most refer
ences, the reference material does not provide a lot of background or examples.
Nevertheless, it is the most crucial documentation and therefore comes with the soft
ware itself.

I encourage you to use TkMan for reading man pages. Written by Tom Phelps at the
University of California at Berkeley, TkMan provides an extremely pleasant GUI for
browsing man pages. I cannot describe all the nice features of TkMan in this small
space. Instead I will merely say that I now actually look forward to reading man pages
as long as I can do it with TkMan. TkMan is written in Tel and Tk and offers a splendid
example of their power. Instructions on how to obtain TkMan can be found in the Tel
FAQ (see page 20).

Authoritatively written by the author of Tel and Tk, John Ousterhout's Tel and the Tk
Toolkit (Addison-Wesley, 1994) is really four books in one, all written in a very readable
and balanced style. Two of the books introduce Tel and Tk. The other two describe
how to write extensions for Tel and Tk. If you find yourself writing many Expect scripts
or becoming interested in applying Tel to other projects, I strongly recommend you read
this book.

20 Exploring Expect

Although Ousterhout's book does not cover all the features of Tel and Tk, it nonetheless
may be the place to turn for your questions left unanswered by Exploring Expect. For
example, Tel and the Tk Toolkit provide a more thorough treatment of some of the
exotic features of Tel. Ousterhout also provides a number of fascinating historical asides
as well as some philosophical notes that contrast interestingly with my own.

Other Books
Software Solutions in C edited by Dale Schumacher (Academic Press, to appear)
ineludes a chapter by Henry Spencer on the implementation of his regular expression
pattern matcher which is used by Tel and Expect. His explanation of how pattern
matching is actually accomplished is lucid and fascinating. This book is intended for C
programming experts, but it may provide additional insight on designing efficient
patterns and otherwise using patterns effectively.

Practical Programming in Tel and Tk by Brent Welch (Prentice Hall, 1995) focuses on
the more useful parts of Tel, Tk, and several important extensions. With his own
perspective, Welch provides very good explanations of topics that have proven tricky to
people even after reading Ousterhout's book. Welch also illustrates Tel scripting and C
programming issues by way of numerous program fragments, providing many building
blocks that can be used in your own applications.

Other Online Documentation
The Tel Frequently Asked Questions List (FAQ) contains many common questions and
answers that somehow do not belong in either the manual pages or books. For
example, the FAQ contains lists of Tel extensions, documents, ftp sites, and of course
common questions and answers. The F AQ was created by Larry Virden and is available
from the Tel archive on the Internet site ftp.aud.alcatel.comas tcl/docs/tcl
faq.partxxx, where xxx represents part numbers and file types. The file Index in
the same directory lists the literal file names. The Tel archive is maintained by Sam
Kimery.

The Tel FAQ can also be found on a number of other Internet sites. For example, it can
be found on rtfm.mit. edu, which contains many other FAQs. The FAQ is also avail
able through World Wide Web (WWW) as http://www . cis .ohio-state. edu: 801
hypertext/faq/usenet/tcl-faq/top.html. The World Wide Web also
provides access to other information on Tel and Tk. The link http://www.sco.com/
IXI/of_interest/tcl/Tcl.html contains links to other Tel material with a focus
on World Wide Web-related information such as browsers and HTML converters.
Created by Mike Hopkirk, this link contains much other interesting and useful informa
tion as well. Another useful link is http://web . cs . ualberta. cal -wadel

Introduction - What Is Expect? 21

HyperTcl. Created by Wade Holst, this link concentrates on Tel extensions. Ineluded
are a jobs database and an idea database. You can register ideas that you are working
on and read what others are doing with Tel. Many other Tel-related WWW pages can be
found in the Tel FAQ.

A large number of scholarly papers on Expect and Tel have appeared in journals and
conference proceedings. These papers are not useful for people writing simple Expect
scripts. Most of these papers are intended for computer scientists and cover topics such
as implementation, performance, and comparisons to other methodologies. A Tel bibli
ography is available on the Internet site ftp.aud.alcatel.com in the directory tcll
docs. The same directory contains other miscellaneous documents such as quick refer
ence cards and essays on miscellaneous topics.

Support
A number of companies and individuals sell support for Tel. These are described in the
Tel FAQ. Cygnus Support and Computerized Processes Unlimited sell support for
Expect as well, and it is likely that other companies and individuals would also offer
support if approached. This is not to mean that you will need support if you use Expect;
however, it is not uncommon to find that management requires software be commer
cially supported before it is acceptable. As an aside, it may well be cost effective to have
a professional support service solve your problems for you. Support can inelude modifi
cations at your request, round-the-elock consulting by phone, site visits, and other
services.

Cygnus Support
1937 Landings Drive
Mountain View, CA 94043
+1 (415) 903-1400
info@cygnus.com

Computerized Processes Unlimited
4200 S. 1-10 Service Rd., Suite 205
Metairie, LA 70006
+1 (504) 889-2784
info@cpu.com

Many questions can be also be answered with the help of the Use net newsgroup
camp . lang . tcl. This newsgroup contains announcements for new releases of Tel
and Tel extensions. The newsgroup is the right place to post bug reports, fixes, observa
tions, and, of course, humor. Many of the people who read it are experts at Tel and
Expect, and they will answer questions. Simple questions that can be found in a book
or the FAQ are discouraged. But challenging problems or requests for advice are
welcomed.

22 Exploring Expect

The camp . lang . tel newsgroup can be subscribed to by mail. In addition, there are
dozens of mailing lists on particular extensions and aspects of Tel. All of these are docu
mented in the FAQ.

Exercises
1. Using. netrc or « redirection in a shell script, have ftp retrieve a file. Make the

script retry if the remote site is too busy but not if the file cannot be found.

2. Count the number of times that people have rewritten ftp to make it more flexible.
Use Archie if you need help.

3. Count the number of programs you use that each have a different language for writing
scripts or . rc files.

4. Find Expect's example directory online and try out some of the examples. Rewrite
one in your favorite language.

5. Think about each keystroke that you press today. How much is the same from one
session to the next? How much can be automated?

6. UNIX existed for over 20 years-without Expect. What did people do before? Which
of those solutions still make sense today?

In This Chapter:

• What Is Tel

• Tel Syntax

• Tel Commands

Tcl- Introduction And
Overview

Expect does not have its own special-purpose language. Expect uses Tel, a popular
language for embedding in applications. Tel provides lots of basic commands such as
if/then/else, while, and set. Expect extends the language with commands such
as expect and interact.

This chapter is an introduction and overview of Tel. While not covering all of Tel, this
chapter does provide everything that the rest of the book depends on, and this is
enough to write virtually any Expect script. Even if you already know Tel, you may find
it helpful to read this chapter. In this chapter, I will emphasize things about Tel that you
may not have thought much about before.

You probably want to get on with using Expect, and I can understand the urge to skip
this chapter in the hopes of learning as little Tel as possible so you can put Expect to
work for you now. Please be patient and it will all fit together that much more easily.

If you do skip this chapter and you find yourself wondering about points in the other
chapters, turn back to this chapter and read it.

A few concepts will not be covered here but will be explained as they are encountered
for the first time in other chapters. The index can help you locate where each command
is first defined and used.

I will occasionally mention when a particular Tel command or feature is similar to C. It

is not necessary that you know C in order to use Tel, but if you do know it, such state
ments are elues that you can rely on what you already know from that language.

Everything Is A String
The types of variables are not deelared in Tel. There is no need since there is only one
type: string. Every value is a string. Numbers are strings. Even commands and variables

23

24 Exploring Expect

are strings! The following commands set the variable name to the string value "Don",
the variable word to the value "foobar", and the variable pi to "3 .14159".

set name Don
set word foobar
set pi 3.14159

Variable names, values, and commands are case sensitive. So the variable "name" is
different than "Name".

To access a variable's value, prefix the variable name with a dollar sign ($). The
following command sets the variable phrase to foobar by retrieving it from the vari
able word.

set phrase $word

Variable substitutions can occur anywhere in a command, not just at the beginning of an
argument. The following command sets the variable phrase2 to the string
"word=foobar".

set phrase2 word=$word

You can insert a literal dollar sign by prefixing it with a backslash. The following
command sets the variable money to the value "$1000".

set money \$1000

The backslash is also a useful way to embed other special characters in strings. For
example, "\ t" is a tab and "\b" is a backspace. Most of the Standard C backslash
conventions are supported induding \ followed by one to three octal digits and \x
followed by any number of hex digits.t I will mention more of these escapes later.

stick control-Z in a variable
set controlZ \032
define control-C
set controlC \x03
define string with embedded control-Z and tab
set oddword foo\032bar\tgorp

A command beginning with "#" is a comment. It extends to the end of the line . You can
think of "#" as a command whose arguments are discarded.

Multiple commands can be strung together if they are separated by a semicolon. A
literal semicolon can be embedded by prefacing it with a backslash.

set word1 foo; set word2 bar
set word3 foo\;bar

;# two commands
;# one command

t The use of \ 0 hy itself to represent the null character is the only escape not supported. I will describe how to
handle nulls in Chapter 6 (p. 155),

Tcl- Introduction And Overview 25

The"; #" sequence above is a common way of a tacking comments on the end of a line.
The" ;" ends the previous command and the "#" starts the comment. Writing the"; #"

together avoids the possibility of having your comment unintentionally accepted as addi
tional arguments because of a forgotten semicolon.

Commands are normally terminated at the end of a line, but a backslash at the end of a
line allows multi-line commands. The backslash-newline sequence and any following
whitespace behaves as if it were a single space. Later, I will show other ways of writing
multi-line commands.

set word \
really-Iong-string-which-does-not-quite-fit-on-previous-line

Quoting Conventions
Tel separates arguments by whitespace (blanks, tabs, etc.). You can pass space charac
ters by double quoting an argument. The quotes are not part of the argument; they just
serve to keep it together. Tel is similar to the shell in this respect.

set string1 "Hello world"

Double quotes prevent ";" from breaking things up.

set string2 "A semicolon ; is in here"

Keeping an argument together is all that double quotes do. Character sequences such as
$, \ t, and \b still behave as before.

set name "Sam"
set age 17
set word2 "My name is $name; my age is $age;"

After execution of these three commands, word2 is left with the value "My name is

Sam; my age is 17;".

Notice that in the first command Sam was quoted, while in the second command 17
was not quoted, even though neither contained blanks. When arguments do not have
blanks, you do not have to quote them but I often do anyway-they are easier to read.
However, I do not bother to quote numbers because quoted numbers simply look
funny. Anyway, numbers never contain whitespace.

You can actually have whitespace in command names and variable names in which
case you need to quote them too. I will show how to do this later, but I recommend you
avoid it if possible.

26 Exploring Expect

Return Values
All commands return values. For example, the pid command returns the process id of
the current process. To evaluate a command and use its return value as an argument or
inside an argument, embed the command in brackets. The bracketed command is
replaced by its return value.

set p "My pid is [pidl."

The set command returns its second argument. The following command sets b and a
to O.

set b "[set a Ol"

When it comes to deciding what are arguments, brackets are a special case. Tcl groups
everything between matching brackets, so it is not necessary to quote arguments that
already have all their whitespace enclosed entirely within brackets. The following are
all legal.

set b [set a 0]
set b "[set a Ol"
set b "[set a Olhello world"
set b [set a O]hello

After execution of this last command, a is set to "0" and b is set to "Ohello".

With only one argument, set returns the value of its first argument.

set c [set b]

Calling set with one argument is similar to using the dollar sign. Indeed, the previous
command can be rewritten as "set c $b". However they are not always interchange
able. Consider the two commands:

set $phello
set [set plhello

The first returns the value of the variable phello. The second returns the value of the
variable p concatenated with the string "hello".

The $ syntax is shorter but does not automatically terminate the end of the variable. In
the rare cases where the variable just runs right into more alphanumeric characters, the
one-argument set command in brackets is useful.

The one-argument set command is also useful when entering commands interactively.
For example, here is what it looks like when I type a command to the Tcl interpreter:t

t When Tel is installed. it creates a program called tclsh (which stands for "Tel shell" but is usually pronounced
"ticklish"). tclsh is a program that contains only the Tel commands and interpreter. Typing directly to tclsh
is not the usual way to use Tel, but tclsh is convenient for experimenting with the basic Tel commands. tclsh
actually prompts with a bare "%". but I show it here as "tclsh> "so that you cannot confuse it with the C-shell
prompt.

Tcl- Introduction And Overview

tclsh> set p

12389

27

After entering "set p", the return value was printed. When using Tcl interactively, you
will always see the return value printed. When executing commands from a script, the
return values are discarded. Inside scripts, use the puts command to print to the stan
dard output.

Puts
You can print values out with the puts command. In its simplest form, it takes a single
string argument and prints it followed by a newline.

puts "Hello world!"
puts "The value of name is $name"

Expressions
Strings can be treated as expressions having mathematical values. For example, when
the string "1+1" is treated as an expression, it has the value 2. Tcl does not automati
cally treat strings as expressions, but individual commands can. I will demonstrate this
in a moment. For now, just remember that expressions are not complete commands in
themselves.

Expressions are quite similar to those in the C language. The following are all valid
expressions:

1 + 5
1+5
1+5.5
1e10+5.5
(5%3)*sin(4)
1 <= 2
(1 <= 2) II (2 != 3)

All of the usual mathematical operators are available including +, -, *, /, and %

(modulo). Many functions exist such as sin, cos, log, and sqrt. Boolean operators
include I I (or), && (and), and ! (not). The usual comparison operators are available
«= (less than or equal), == (equal), ! = (not equal), etc.). They return 0 if the expres
sion is false and 1 if it is true.

Whitespace may be used freely to enhance readability. A number of numeric forms are
supported including scientific notation as well as octal (any number with a leading 0)
and hexadecimal (any number with a leading Ox). Functions such as floor, ceil, and
round convert from floating-point to integral values.

28 Exploring Expect

Precedence and associativity follow C rules closely. For instance, the expression "1-

2 * 3" is interpreted as "1- (2 * 3) " because multiplication is of higher precedence than
subtraction. All binary operators at the same level of precedence are left-associative.
This means, for instance, that the expression "1-2 - 3" is interpreted as "(1-2) - 3".
Since Tcl expressions rarely become complex, I will omit a lengthy discussion of the
numerous levels of precedence, and instead note that you can always use parentheses
to override a particular precedence or associativity.t See the Tcl reference material for
the complete list of operators and their precedences.

Variable values may also be used in expressions.

1 + Sage
Sarge < 10

Return values can be used in expressions using the bracket notation. For example, an
expression to compare the current process id to 0 is:

[pid] == 0

If the process id is 0, the expression equals 1; otherwise it equals O.

Expressions are not commands by themselves. Rather, certain commands treat their
arguments as expressions, evaluating them in the process of command execution. For
example, the while command treats its first argument as an expression. I will describe
while and similar commands later.

The expr command takes any number of arguments and evaluates them as a single
expression and returns the result.

set x "The answer is 1 + 3"
set y "The answer is [1 + 3]"
set z "The answer is [expr 1 + 3]"

After evaluation of the first command, x has the value "The answer is 1 + 3". The
last command leaves z with the value "The answer is 4". The middle command
causes an error. "1 + 3" is not a valid command because 1 is not a command.

Here is a more complicated-looking command (legal this time). It computes a result
based on the current process id value and the value of the variable mod.

set x [expr (5 % $modl + (17 == [pid])]

t I have long considered numerous levels of precedence to he more a hindrance than a henefit. I am reminded
of this whenever I switch back and forth hetween languages that have differing precedence tahles, each with doz
ens of levels. To avoid mental anguish, I frequently use more parentheses than necessary. In Tel and the Tk Tool
kit, Ousterhout echoes my sentiments when he says: "Except in the Simplest and most ohvious cases you sbould
use parentheses to indicate the way operators should he grouped; this will prevent errors by you and by others
who modify your programs."

Tcl- Introduction And Overview 29

Braces-Deferring Evaluation
Braces are similar to double quotes. Both function as a grouping mechanism; however,
braces defer any evaluation of brackets, dollar signs, and backslash sequences. In fact,
braces defer everything.

set varl "a$b[set cJ\r"
set var2 {a$b[set cJ\r}

After evaluation of these two commands, varl contains an "a" followed by the values
of band c, terminated by a return character. The variable var2 contains the characters
"a", "$", "b", "[", "8", "e", "t"," ", "e", "] ", "\", and "r",

As with double quotes, the braces are not part of the argument they enclose. They just
serve to group and defer. The primary use of braces is in writing control commands
such as while loops, for loops, and procedures. These commands need to see the
strings without having $ substitutions and bracket evaluations made.

Control Structures
Control structures are commands that direct the flow of control. Many of the control
structures in Tcl are patterned directly after their C equivalents. Tcl gives you the power
to write your own control structures, so if you do not like those of C, you may yet find
happiness. I will not describe how to do it, but it is surprisingly easy. (The hard part is
designing something that makes sense.)

The while Command

The while command loops until an expression is false. It looks very similar to a while
in the C language. The following while loop computes the factorial of the number
stored in the variable count.

set total 1

while {$count > O} {
set total [expr $total * $countJ
set count [expr $count-1J

The body of the loop is composed of the two set commands between the braces. The
body is executed as long as $count is greater than O.

Taking a step back, the while command has two arguments. The first is the controlling
expression. The second is the body. Notice that both arguments are enclosed in braces.
That means that no $ substitutions or bracket evaluations are made. For instance, this

30 Exploring Expect

while command literally gets the string "$eount > 0" as its first argument. Similarly,
for the body. So how does anything happen?

The answer is that the while command itself evaluates the expression. If true
(nonzero), the while command evaluates the body. The while command then re-eval
uates the expression. As long as the expression keeps re-evaluating to a nonzero value,
the while command keeps re-evaluating the body.

It is useful to compare this with the set command. The set command does not do any
evaluation of its second argument. Consider this command:

set count [expr $count-1]

The [expr ... 1 part is evaluated before the set command even begins. If count is
7, the set command sees an argument of 6. In contrast, the while command sees the
argument "$eount > 0". It would not make any sense to evaluate that expression
before the while command, since it has to change every time through the loop.

Using braces this way is fundamental toward the correct use of Tel's control structures.
You will see that all the other ones follow easily from this.

The incr Command
Many loops use a counter of some sort. Incrementing or decrementing a counter is so
common that there is a command to simplify it. It is called iner. It modifies the vari
able given as its first argument. With no other argument iner adds one, otherwise
iner adds the remaining argument.

The two commands are equivalent:

set count [expr $count-1]
incr count -1

The for Command
The for command is similar to the while command. The for command has a control
ling expression and a body. However, before the expression is a "start" argument, and
after the expression is a "next" argument.

for start expression next {
commands here make up
the body of the for

Both the start and next arguments are commands. The start argument is executed before
the first evaluation of the controlling expression. The next argument is evaluated imme
diately after the body of the loop.

Tel-Introduction And Overview 31

The code shown earlier to compute a factorial can be simplified using the iner
command and a for loop as follows:

for {set total l} {$count > O} {incr count -l} {
set total [expr $total * $countl

Either of the start or next argument can be empty, but you have to leave a placeholder.
For example, you could express an infinite loop as:

for {} {l} {} {

. .. some command ...

The if Command

In its simplest form, the if command takes a controlling expression and a body to
execute if the expression is nonzero. It looks a lot like a while command, but the body
is executed at most once.

if {$count < O}
set total 1

If present, an optional else fragment is executed only if the expression evaluates to
zero. Here is an example:

if {$count < 5} {
puts "count is less than five"

else {
puts "count is not less than five"

It is also possible to add more conditions using elseif arguments. Any number of
elseif arguments may be used.

if {$count < O} {
puts "count is less than zero"

elseif {$count > O} {
puts "count is greater than zero"

else {
puts "count is equal to zero"

In the while and for commands, the controlling expressions are written with braces to
defer their evaluation. Their evaluation is deferred because they need to be re-evaluated
repeatedly. The expression in an if is not re-evaluated and so it does not need to be
deferred. The braces are still useful to group the arguments of the expression together

32 Exploring Expect

but if the grouping behavior is not needed, then the braces can be omitted entirely. For
example, the following two commands are equivalent:

if $a {iner a}
if {Sa} {iner a}

The following two commands are not equivalent.

while $a {iner a}
while {Sa} {iner a}

It does not hurt to write braces around all expressions; however, if you frequently read
other people's code, you must get used to seeing the braces omitted in some
expressions.

The switch Command
The switch command is similar to the if command but is more specialized. Instead of
evaluating a mathematical expression, the swi tch command compares a string to a set
of patterns. Each pattern is also associated with a body of Tel commands. The first
pattern that matches has its associated body evaluated.

Here is a fragment that sets the variable type depending on the value of count. For
example, if count is the string big, then type is set to array. If count matches none
of the choices, the special defaul t body is used.

switch -- $eount \
1 {

set type byte
2 {

set type word
big {

set type array
default {

puts "$eount is not a valid type"

By default, a pattern must match the string exactly. But the switch command can
match patterns in several different ways. For example, shell-style pattern matching is
used when the switch command starts out with the -glob flag:

switch -glob -- $eount \

With shell-style pattern matching, "?" matches any single character and "*,, matches any
string. The -regexp flag indicates that patterns are interpreted as regular expressions. I
will describe all of these different types of pattern matching in more detail later.

Since the switch command supports several flags, you must always use the -- as the
final flag to prevent inadvertent interpretation of your string as a flag.

Tcl- Introduction And Overview 33

Continuation Lines

By default, commands do not continue beyond the end of a line. However, there are
several exceptions to this. One exception is that a backslash at the end of a line
continues the command. I used this in the previous example where the first line of the
swi tch had a backslash to continue the command. Without it, the command would
have ended after $count and the 1 on the next line would have mistakenly been inter
preted as another command.

Another exception is that open braces cause commands to continue across lines. This is
precisely how I have written all of the other multi-line examples so far. Fortunately, this
style looks a lot like another common style-the C language. Even if you are not used
to C, it will be helpful if you adopt the C formatting style-just leave an open brace at
the end of the current line and you can omit the backslashes.

Consider the following three if commands:

if {$count < O} {
puts "count is less than zero"

if {$count < O} \
{ puts "count is less than zero"

if {$count < O}
{

puts "count is less than zero"

The first two examples are correct. The third one is incorrect-the if command is
missing a body.

Open braces nest, so this guideline works if you write braced commands inside of
braces. Later in this chapter and in the next, I will return to the subject of braces and
how to use them effectively.

Double quotes and brackets also cause commands to continue across lines. As before, a
\n or literal newline is retained and a backslash-newline-whitespace sequence is
replaced by a Single space. Compare the following two commands:

set oneline "hello\
world"

set twolines "hello
world"

After execution, oneline is set to "hello<space>world", while twolines is set to
"hell o<newline><space><space><space><space>wor ld".

34 Exploring Expect

The break And continue Commands
The break and continue commands change the normal flow inside looping control
structures such as for and while.

The break command causes the current loop command to return so that the next
command after the loop can run. For example, the following would loop infinitely
except for the break command in the middle. If a ever equals three, the break
command will execute and the while command will return.

set a 0
while {l}

incr a
if {Sa 3} break
puts "hello"

The continue command drives control back to the top of the loop so that no more
commands are executed during the current iteration. In the following example, the
continue is executed whenever the value of a modulo three is not equal to zero. This
has the effect of printing "hello" three times for every "there" printed.

set a 0
while {l} {

incr a
puts "hello"
if {$a%3 != O} continue
puts "there"

The proc And return Commands
It is possible to create your own commands using the proc command. Such commands
are called procedures but they behave the same as if they were built-in commands.

The proc command takes three arguments. The first argument is a command name.
The second argument is a list of variables, each initalized to an argument of the proce
dure when it is called. (The variables are occasionally called formal parameters or just
parameters to distinguish them from the actual arguments to which they are set.) The
third argument of proc is a body of code.

The following command defines a procedure called fib that computes the nth
Fibonacci number given any two starting numbers. Fibonacci numbers are sequences of
numbers where each new number in the sequence is generated by adding the most
recent two together. The starting two numbers are the first two arguments. The last
argument defines which element of the sequence to return.

Tcl- Introduction And Overview

proe fib {pen ult n} {
for {set i O} {$i<$n} {iner i} {

set new [expr $ult+$pen]
set pen $ult ;# new penultimate value
set ult $new ;# new ultimate value

return $pen

35

The return command in the last line takes its argument and makes the procedure fib
itself return with that value. Once defined, fib can then be used as a command. For
example, it could be called as:

set m [fib 0 1 9]

Although fib always returns a number, any string can be returned using return. A lot
of procedures do not have a need to return anything-they just need to return. In this
case, it is not necessary to provide return with an argument. The return command
itself may be omitted if it would otherwise be the last command executed in a proce
dure. Then, the procedure returns with whatever is returned by the last command
executed within the procedure.

You can force a single procedure to return by using return. In contrast, use the exit
command to make the script (Le., process) end and return to the shell (or whatever
invoked the original script). The exit command works even inside of a procedure.
The exi t command can only return a number because that is all that UNIX permits. For
example:

exit 1

Procedures can be called only after they are defined. Procedures share a single
namespace with no name scoping. That means that once a procedure is defined, it can
be called from any procedure, including itself. Here is another version of fib. This one
is recursive-it calls itself.

proe fib {pen ult n}
if {$n == O} {

return $pen

return [fib $ult [expr $pen+$ult] [expr $n-l]]

Earlier I noted that the return command may be omitted if it is the last command
executed in a procedure. Based on this, the previous procedure can be Simplified:

proe fib {pen ult n}
if {$n == O} {

return $pen

36 Exploring Expect
--

fib $ult [expr $pen+$ult] [expr $n-l]

In contrast to procedures, variables are usually local to the current procedure. In the
example above, the variables ul t, pen, and n, are not visible to any procedures that
call fib such as expr. They are not even visible to other invocations of the fib proce
dure. The fib procedure calls expr, passing it the value of ult but not the string
"ult". The expr command cannot modify the variable ult. Computer scientists call
this pass by value.

It is possible for a procedure to change a variable in the caller's scope. The set and
iner commands handle their first argument this way. This technique is called pass by
reference, and I will explain how to write procedures that do this on page 57. Another
technique to communicate values between commands is to use global variables. Using
a lot of global variables can be confusing, but since most scripts are short, global vari
ables are a very popular technique.

The global command identifies variables to consider global. This means that refer
ences to those variables inside the procedure are the same as references to those
variables outside all the procedures.

For example, you could define the constant pi as a global variable outside any proce
dure. A procedure that needed the value would then access it using the global
command. For example:

proc circumference_of_circle {radius} {
global pi

expr 2*$pi*$radius

You can list additional variable names as arguments to a global command, and you
can have multiple global commands in a procedure.

global pi e golden_ratio

The source Command
Procedures and variables that are used in numerous scripts can be stored in other files,
allowing them to be conveniently shared. A file of commands can be read with the
source command. Its argument is the name of a file to read. Tel understands the tilde
convention from the C shell. For example, the following command reads the file
definitions. tel from your home directory:

source -/definitions.tcl

Tel-Introduction And Overview 37

As the file is read, the commands are executed. So if the file contains procedure defini
tions, the procedures will be callable after the source command returns. Tel's source
command is similar to the C shell's source command.

Tel's library facility provides a way to automatically source files as needed. It is
described on page 68.

The return command can be used to make a source command return. Otherwise,
source returns only after executing the last command in the file.

More On Expressions
In the while and if command examples, I enelosed the expressions in braces and said
that the expressions were evaluated by the commands themselves. For example, in the
while command, the expression was

$count > 0

Because the expression was wrapped in braces, evaluation of $count was deferred.
During expression evaluation, a $ followed by a variable name is interpreted in just the
same way it is done with arguments that are not wrapped in braces. Similarly, brackets
are also interpreted the same way in both contexts. For this reason, commands like the
following two have the same result. But in the first command, $count is evaluated
before expr executes, while in the second command, expr itself evaluates $count.

expr $count > 0
expr {$count > O}

The expr command can perform some string operations. For example, quoted strings
are recognized as string literals. Thus, you can say things like:

expr {$name == "Don"}

Unquoted strings cannot be used as string literals. The following fails:

expr {$name == Don}

Unquoted strings are not permitted inside expressions to prevent ambiguities in interpre
tation. But strings in expressions can still be tricky. In fact, I recommend avoiding expr
for these implicit string operations. The reason is that expr tries to interpret strings as
numbers. Only if they are not numbers, are they treated as uninterpreted strings.
Consider:

tclsh> if {"OxO"
equal

"O"} {puts equal}

38 Exploring Expect

Strings which are not even internally representable as numbers can cause problems:

tclsh> expr {$x==llE500"}
floating-point value too large to represent

while executing
"expr {$x==llE500 1

}"

On page 47, I will describe the "string compare" operation which is a better way of
comparing arbitrary strings. However, because many people do use expr for string
operations, it is important to be able to recognize and understand it in scripts.

Lists
In the proc command, the second argument was a list of variables.

proc fib {ult pen n} {

The parameter list is just a string containing the characters, "u", "1", "t", " ", "p", "e",
"n"," ", and "n". Intuitively, the string can also be thought of as a list of three elements:
ult, pen, and n. The whitespace just serves to separate the elements.

Lists are very useful, and Tel provides many commands to manipulate them. For
example, llength returns the length of a list.t

tclsh> llength "a b e"
3
tclsh> llength
0
tclsh> llength [llength "a b e"]
1
tclsh> llength {llength "a b e"}
2

In the next few sections, I will describe more commands to manipulate lists.

Selecting Elements Of Lists
The lindex and lrange commands select elements from a list by their index. The
lindex command selects a single element. The lrange command selects a set of
elements. Elements are indexed starting from zero.*

tclsh> lindex "a bed e" 0
a
tclsh> lindex "a bed e" 2
c

t That is not a misspelling-all of the list manipulation commands start with an "1". * When I use ordinal terms such as "first", I mean "index 0".

Tcl- Introduction And Overview 39

telsh> lrange "a bed e" 0 2
abe
telsh> llength [lrange "a bed e" 0 2]
3

You can step through the members of a list using an index and a for loop. Here is a
loop to print out the elements of a list in reverse.

for {set i [expr [llength $list]-I]} {$i>=O} {iner i-I} {
puts [lindex $list $i]

Iterating from front to back is much more common than the reverse. In fact, it is so
common, there is a command to do it called foreach. The first argument is a variable
name. Upon each iteration of the loop, the variable is set to the next element in the list,
provided as the second argument. The third argument is the loop body.

For example, this fragment prints each element in list.

foreaeh element $list
puts $element

After execution, the variable element remains set to the last element in the list.

Varying Argument Lists
Usually procedures must be called with the same number of arguments as they have
formal parameters. When a procedure is called, each parameter is set to one of the argu
ments. However, if the last parameter is named args, all the remaining arguments are
stored in a list and assigned to args. For example, imagine a procedure pi definition
that begins:

proe pI {a b args} {

If you call it as "pi red box cheese whiz", a is set to red, b is set to box, and
args is set to "cheese whiz". If called as "pi red box", args is set to the empty
list.

Here is a more realistic example. The procedure sum takes an arbitrary number of argu
ments, adds them together, and returns the total.

proe sum {args} {
set total 0
foreaeh int $args

iner total $int

return $total

40 Exploring Expect

I will show another example of a procedure with varying arguments on page 59.

Lists Of Lists

List elements can themselves be lists. This is a concern in several situations, but the
simplest is when elements contain whitespace. For example, there must be a way to
distinguish between the list of "a" and "b" and the list containing the single element
"a b".

Assuming an argument has begun with a double quote, the next double quote ends the
argument. It is possible to precede double quotes with backslashes inside a list, but this
is very hard to read, given enough levels of quoting. Here is a list of one element.

set x "\"a b\"" ;# correct but ugly

As an alternative, Tel supports braces to group lists inside lists. Using braces, it is easy to
construct arbitrarily complex lists.

set a "a b {c d} {e {f g {xyz}}}"

Assuming you do not need things like variable substitution, you can replace the top
level double quotes with braces as well.

set a {a b {c d} {e {f g {xyz}}}}

This looks more consistent, so it is very common to use braces at the top level to write
an argument consisting of a list of lists.

The reason braces work so much better for this than double quotes is that left and right
braces are distinguishable. There is no such thing as a right double quote, so Tel cannot
tell when quotes should or should not match. But it is easy to tell when braces match.
Tel counts the left-hand braces and right-hand braces. When they are equal, the list is
complete.

This is exactly what happens when Tel sees a for, while, or other control structure.
Examine the while command below. The last argument is the body. There is one open
brace on the first line and another on the fourth. The elose brace on the sixth line
matches one, and the elose brace on the last line matches the other, terminating the list
and hence the argument.

while {l} {

incr a
puts "hello"
if {$a%3 != O}

continue

puts "there"

;# one open brace

;# two open braces

;# one open brace

;# zero open braces

Tel-Introduction And Overview 41

Double quotes and brackets have no special meaning inside of braces and do not have
to match. But braces themselves do. To embed a literal brace, you have to precede it
with a backslash.

Here are some examples of lists of lists:

set x {a be}
set y {a b {Hello world!}}
set z {a [{ 1 } }

All of these are three-element lists. The third element of y is a two-element list. The first
and second elements of y can be considered one-element lists even though they have
no grouping braces around them.

tclsh> llength $y
3
tclsh> llength [lindex $y 2]
2

tclsh> llength [lindex $y 0]
1

The second and third elements of z are both one-element lists.

tclsh> lindex $z 1

tclsh> lindex $z 2

Notice the spacing. Element two of z is a three-character string. The first and last charac
ters are spaces, and the middle character is a right bracket. In contrast, element one is a
single character. The spaces separating the elements of z were stripped off when the
elements were extracted by lindex. The braces are not part of the elements.

The braces are, however, part of the string z. Considered as a string, z has eleven char
acters including the inner braces. The outer braces are not part of the string.

Similarly, the string in y begins with a space and ends with a right brace. The last
element of y has only a single space in the middle.

tclsh> lindex $y 2
Hello world!

The assignment to y could be rewritten with double quotes.

tclsh> set y2 { a b "Hello world!" }
a b "Hello world!"

tclsh> lindex $y2 2
Hello world!

In this case, the last element of y2 is the same. But more complicated strings cannot be
stored this way. Tcl will complain.

42

tclsh> set y3 { a b "My name is "Goofy"" }
a b "My name is "Goofy""

tclsh> lindex $y3 2

Exploring Expect

list element in quotes followed by "Goofy""" instead of space

There is nothing wrong with y3 as a string. However, it is not a list.

This section may seem confusing at first. You might want to come back to it after you
have written some Tel scripts.

Creating Lists
With care, lists can be created with the set command or with any command that
creates a string with the proper structure. To make things easier, Tel provides three
commands that create strings that are guaranteed to be lists. These commands are
list, lappend, and linsert.

The list And concat Commands

The list command takes all of its arguments and combines them into a list. For
example:

tclsh> list a b "Hello world"
a b {Hello world}

In this example, a three-element list is returned. Each element corresponds to one of the
arguments. The double quotes have been replaced by braces, but that does not affect
the contents. When the third element is extracted, the braces will be stripped off.

tclsh> lindex [list a b "Hello World"] 2
Hello World

The list command is particularly useful if you need to create a list composed of vari
able values. Simply appending them is insufficient. If either variable contains embedded
whitespace, for example, the list will end up with more than two elements.

tclsh> set a "foo bar \"hello\""
foo bar "hello"
tclsh> set b "gorp"
gorp
tclsh> set ab "$a $b" ;# WRONG
foo bar "hello" gorp
tclsh> llength $ab
4

In contrast, the list command correctly preserves the embedded lists. The list
command also correctly handles things such as escaped braces and quotes.

Tcl- Introduction And Overview

If you want to append several lists together, use the concat command.

tclsh> concat a b "Hello world"
a b Hello world

43

The conca t command treats each of its arguments as a list. The elements of all of the
lists are then returned in a new list. Compare the output from concat (above) and
list (below).

tclsh> list a b "Hello world"
a b {Hello world}

Here is another example of concat. Notice that whitespace inside elements is
preserved.

tclsh> concat a {b {c d}}
a b {c d}

In practice, concat is rarely used. However, it is helpful to understand concat
because several commands exhibit concat-like behavior. For example, the expr
command concatenates its arguments together before evaluating them-much in the
style of concat. Thus, the following commands produce the same result:

tclsh> expr 1 - {2 - 3}
-4
tclsh> expr 1 - 2 - 3
-4

Building Up Lists With The lappend Command

Building up lists is a common operation. For example, you may want to read in lines
from a file and maintain them in memory as a list. Assuming the existence of commands
get_a_line and more_lines_in_file, your code might look something like this:

while {[rnore_lines_in_file]} {
set list "$list [get_a_line]"

The body builds up the list. Each time through the loop, a new line is appended to the
end of the list.

This is such a common operation that Tel provides a command to do this more effi
ciently. The lappend command takes a variable name as its first argument and
appends the remaining arguments. The example above could be rewritten:

while {[rnore_lines_in_file]}
lappend list [get_a_line]

44 Exploring Expect

Notice that the first argument is not passed by value. Only the name is passed. Tel
appends the remaining arguments in place-that is, without making a copy of the orig
inallist. You do not have to use set to save the new list. This behavior of modifying
the list in place is unusual-the other list commands require the list to be passed by
value.

The linsert Command
Like its name implies, the linsert command inserts elements into a list. The first argu
ment is a list. The second argument is a numeric index describing where to insert into
the list. The remaining arguments are the arguments to be inserted.

tclsh> set list {a bed}
abc d
tclsh> set list [linsert $list 0 new]
new abc d
tclsh> linsert $list 1 foo bar {hello world}
new foo bar {hello world} abc d

The lreplace Command
The lreplace command is similar to the linsert command except that lreplace
deletes existing elements before inserting the new ones. The second and third argu
ments identify the beginning and ending indices of the elements to be deleted, and the
remaining arguments are inserted in their place.

tclsh> set list {a bed e}
abc d e
tclsh> lreplace $list 1 3 x y

a x y e

The lsearch Command
The lsearch command is the opposite of the lindex command. The lsearch
command returns the index of the first occurrence of an element in a list. If the element
does not exist, -1 is returned.

tclsh> lsearch {a b c d e} "e"
2
tclsh> lsearch {a b c d e} IIfll

-1

Tcl- Introduction And Overview 45

The lsearch command interprets the element as a shell-style pattern by default. If you
want an exact match, use the -exact flag:

tclsh> lsearch {a b c d ?} II?II

0
tclsh> lsearch -exact {a b c d ?} II?II

4

The lsort Command
The lsort command sorts a list. By default, it sorts in increasing order.

tclsh> lsort {one two three four five six}
five four one six three two

Several flags are available including -integer, -real, and -decreasing to sort in
ways suggested by their names.

It is also possible to supply lsort with a comparison procedure of your own. This is
useful for lists with elements that are lists in themselves. However, lists of more than a
hundred or so elements are sorted slowly enough that it is more efficient to have them
sorted by an external program such as the UNIX sort command.t

The split And join Commands
The split and join commands are useful for splitting strings into lists, and vice
versa-joining lists into strings.

The split command splits a string into a list. The first argument is the string to be
split. The second argument is a string of characters, each of which separates elements in
the first argument.

For example, if the variable line contained a line from / etc/passwd, it could be split
as:

tclsh> split $line a:"
root Gw19QKxuFWDX7 0 1 Operator I Ibin/csh

The directories of a file name can be split using a "I".

tclsh> split "/etc/passwd" "I"
{} etc passwd

Notice the empty element because of the / at the beginning of the string.

t Alternatively, you can write your own Tel command to do this in C, C++, or any other faster language.

46 Exploring Expect

The join command does the opposite of split. It joins elements in a list together.
The first argument is a list to join together. The second argument is a string to place
between all the elements.

tclsh> join {{} etc passwd} "I"
letc/passwd

With an empty second argument, spli t splits between every character, and join joins
the elements together without inserting any separating characters.

tclsh> split "abc" ""
abc
tclsh> join {a b c} ""
abc

More Ways To Manipulate Strings
There are a number of other useful commands for string manipulation. These include
scan, format, string, and append. Two more string manipulation commands are
regexp and regsub. Those two commands require a decent understanding of regular
expressions, so I will hold off describing regexp and regsub until Chapter 6 Cp. 137).
Then, the commands will be much easier to understand.

The scan And format Commands
The scan and format commands extract and format substrings corresponding to low
level types such as integers, reals, and characters. sean and format are good at
dealing with filling, padding, and generating unusual characters. These commands are
analogous to sseanf and sprintf in the C language, and most of the C conventions
are supported.

As an example, the following command assigns to x a string composed of a /\A immedi
ately followed by "foo ==1700. 000000" (the number of zeros after the decimal
point may differ on your system). The string "foo" is left-justified in an eight-character
field.

set x [format n%lc%-8s==%f n 1 foo 17.0e2]

The first argument is a description of how to print the remammg arguments. The
remaining arguments are substituted for the fields that begin with a "%". In the example
above, the "-" means "left justify" and the 8 is a minimum field width. The "e", "s", and
"f" force the arguments to be treated as a character, a string, and a real number Cf stands
for float), respectively. The "==" is passed through literally since it does not begin with a
"%".

Tcl- Introduction And Overview 47

The scan command does the opposite of format. For example, the output above can
be broken back down with the following command:

scan $x "%c%8s%*\[=]%f" char string float

The first argument, $x, holds the string to be scanned. The first character is assigned to
the variable char. The next string (ending at the first whitespace or after eight charac
ters, whichever comes first) is assigned to the variable string. Any number of blanks and
equal signs are matched and discarded. The asterisk suppresses the assignment. Finally,
the real is matched and assigned to the variable float. The scan command returns
the number of percent-style formats that match.

I will not describe scan and format further at this point, but I will return to them later
in the book. For a complete discussion, you can also consult the Tel reference material
or any C language reference.

The string Command
The string command is a catchall for a number of miscellaneous but very useful string
manipulation operations. The first argument to the string command names the partic
ular operation. While discussing these operations, I will refer to the remaining
arguments as if they were the only arguments.

As with the list commands, the string commands also use zero-based indices. So the first
character in a string is at position 0, the second character is at position 1, and so on.

The compare operation compares the two arguments lexicographically (Le., according
to the underlying hardware alphabet of the machine). The command returns -1, 0, or 1,
depending on if the first argument is less than, equal to, or greater than the second
argument.

As an example, this could be used in an if command like so:

if {[string compare $a $b] == O} {
puts "strings are equal"

else {
puts "strings are not equal"

The match operation returns 1 if the first argument matches the second or ° if it does
not match. The first argument is a pattern similar in style to the shell, where * matches
any number of characters and ? matches any single character.

tclsh> string mateh "*.e" "main.e"
1

I will cover these patterns in more detail in Chapter 4 (p. 87). The regexp command
provides more powerful patterns. I will describe those patterns in Chapter 5 Cp. 107).

48 Exploring Expect

The first operation searches for a string (first argument) in another string (second
argument). It returns the first position in the second argument where the first argument
is found. -1 is returned if the second string does not contain the first.

tclsh> string first "uu" "uunet.uu.net"
o

The last operation returns the last position where the first argument is found.

tclsh> string last "uu" "uunet.uu.net"
6

The length operation returns the number of characters in the string.

tclsh> string length "foo"
3
tclsh> string length
o

The index operation returns the character corresponding to the given index (second
argument) in a string (first argument). For example:

tclsh> string index "abcdefg" 2
c

The range operation is analogous to the lrange command, but range works on
strings. Indices correspond to character positions. All characters between the indices
inclusive are returned. The string "end" may be used to refer to the last position in the
string.

tclsh> string range "abcdefg" 2 3
cd

The tolower and toupper operations convert an argument to lowercase and upper
case, respectively.

tclsh> string tolower "NeXT"
next

The trimleft operation removes characters from the beginning of a string. The string
is the first argument. The characters removed are any which appear in the optional
second argument. If there is no second argument, then whites pace is removed.

string trimleft $num "-" ;# force $num nonnegative

The trimright operation is like trimleft except that characters are removed from
the end of the string. The trim operation removes characters from both the beginning
and the end of the string.

Tel-Introduction And Overview 49

The append Command
The following command appends a string to another string in a variable.

set var "varstring"

Appending strings is a very common operation. For example, it is often used in a loop
to read the output of a program and to create a single variable containing the entire
output.

Appending occurs so frequently that there is a command specifically for this purpose.
The append command takes a variable as the first argument and appends to it all of the
remaining strings.

tclsh> append var "abc"
abc
tclsh> append var "def" "ghi"
abcdefghi

Notice that the first argument is not passed by value. Only the name is passed. Tel
appends the remaining arguments in place-that is, without making a copy of the orig
inal list. This allows Tel to take some shortcuts internally. Using append is much more
efficient than the alternative set command.

This behavior of modifying the string in place is unusual-none of the string opera
tions work this way. However, the lappend command does. So just remember that
append and lappend work this way. It might be helpful to go back to the lappend
description (page 43) now and compare its behavior with append.

Both append and lappend share a few other features. Neither requires that the vari
able be initialized. If uninitialized, the first string argument is set rather than appended
(as if the set command had been used). append and lappend also return the final
value of the variable. However, this return value is rarely used since both commands
already store the value in the variable.

Arrays
Earlier, I described how multiple strings can be stored together in a list. Tel provides a
second mechanism for storing multiple strings together called arrays.

Each string stored in an array is called an element and has an associated name. The
element name is given in parentheses following the array name. For example, an array
of user ids could be defined as:

set uid(O)
set uid(l)
set uid(2)

"root I!
"daemon"
"uucp"

50

set uid(100)
set uid(101)

"dave"
"josh"

Once defined, elements can then be accessed by name:

set number 101
puts var "User id $number is $uid($number)"

Exploring Expect

You can use any string as an array element, not just a number. For example, the
following additional assignments allow user ids to be looked up by either user id or
name.

set uid(root) 0
set uid(daemon) 1
set uid(uucp) 2
set uid(dave) 100
set uid(josh) 101

Because element names can be arbitrary strings, it is possible to simulate multi-dimen
sional arrays or structures. For example, a password database could be stored in an
array like this:

set uid(dave,uid) 100
set uid(dave,password) diNBXuprAac4w
set uid(dave,shell) /usr/local/bin/zsh
set uid(josh,uid) 101
set uid(josh,password) gS4jKHp1AjYnd
set uid(josh, shell) /usr/local/bin/tcsh

Now an arbitrary user's shell can be retrieved as $uid ($user , shell) . The choice of
a comma to separate parts of the element name is arbitrary. You can use any character
and you can use more than one in a name.

It is possible to have element names with whites pace in them. For example, it might be
convenient to find out the user name, given a full name. Doing it in two steps is easy
and usually what you want anyway-presumably, the name variable is set elsewhere.

set name "John Ousterhout"
set uid($name) ouster

If you just want to embed a literal array reference that contains whitespace, you have to
quote it. Remember, any string with whitespace must be quoted to keep it as a single
argument (unless it is already in braces).

set "uid(John Ousterhout)" ouster

This is not specific to arrays. Any variable containing whitespace can be set similarly.
The following sets the variable named "a b".

set "a b" 1

Tcl- Introduction And Overview 51

This may seem strange at first, but it just a natural result of the few simple rules that
describe Tel commands and arguments.

From now on when I want to explicitly talk about a variable that is not an array, I will
use the term scalar variable.

Earlier, I described how to pass scalar variables into procedures-as parameters or
globals. Arrays can be accessed as globals, too. (Name the array in a global command
and all of the elements become visible in the procedure.) Arrays can be passed as
parameters but not as easily as scalar variables. Later in this chapter (page 58), I will
describe the upvar command that provides the means to accomplish this.

Indirect References
On page 26, I described how the Single-argument set command is useful to separate
variable names from other adjacent characters. This can be used for arbitrarily complex
indirect references. For example, the following commands dynamically form a variable
name from the contents of b and a literal c character. This result is taken as another vari
able name, and its contents are assigned to d.

set xc 1
set b x
set d [set [set b]c] ;# sets d to value of xc

This type of indirection works with array names too. For example, the following
sequence stores an array name in a and then retrieves a value through it.

set a(l) faa
set a2 a
puts [set [set a2] (1)]

In contrast, replacing either of the set commands with the $ notation fails. The first of
the next two commands incorrectly tries to use a2 as the array name.

tclsh> puts [set $a2(1)]
can't read "a2(1)": variable isn't array
tclsh> puts $[set a2] (1)
$a(l)

In the second command, the dollar sign is substituted literally because there is not a vari
able name immediately following it when it is first scanned.

Variable Information

Tel provides the info command to obtain assorted pieces of internal information about
Tel. The most useful of the info operations is "info exists". Given a variable

52 Exploring Expect

name, "info exists" returns 1 if the variable exists or 0 otherwise. Only variables
accessible from the current scope are checked. For example, the following command
shows that haha has not been defined. An attempt to read it would fail.

tclsh> info exists haha
o

Three related commands are "info locals", "info globals", and "info vars".
They return a list of local, global, and all variables respectively. They can be constrained
to match a subset by supplying an optional pattern On the style of the "string
match" command). For example, the following command returns a list of all global vari
ables that begin with the letters "mail".

info globals mail*

Tel has similar commands for testing whether commands and procedures exist. "info
commands" returns a list of all commands. "info procs" returns a list of just the
procedures (commands defined with the proc command).

"info level" returns information about the stack. With no arguments, the stack
depth is returned. "info level 0" returns the command and arguments of the
current procedure. "info level -1" returns the command and arguments of the
calling procedure of the current procedure. -2 indicates the next previous caller, and so
on.

The "info script" command returns the file name of the current script being
executed. This is just one of a number of other information commands that give related
types of information useful in only the most esoteric circumstances. See the Tel refer
ence material for more information.

Array Information
While the info command can be used on arrays, Tel provides some more specialized
commands for this purpose. For example, "array size b" returns the number of
elements in an array.

tclsh> set color (pavement) black
black
tclsh> set color (snow) white
white
tclsh> array size color
2

The command "array names" returns the element names of an array.

tclsh> array names color
pavement snow

Tcl- Introduction And Overview 53

Here is a loop to print the elements of the array and their values.

tclsh> foreach name [array names color] {
puts "The color of $name is $color($name)."

The color of snow is white.
The color of pavement is black.

Unsetting Variables
The unset command unsets a variable. After being unset, a variable no longer exists.
You can unset scalar variables or entire arrays. For example:

unset a
unset array (elt)
unset array

After a variable is unset, it can no longer be read and "info exists" returns o.

Tracing Variables
Variable accesses can be traced with the trace command. Using trace, you can eval
uate procedures whenever a variable is accessed. While this is useful in many ways, I
will cover trace in more detail in the discussion on debugging (Chapter 18 (p. 406))
since that is almost always where trace first shows its value. In that same chapter, I
will also describe how to trace commands.

Handling Errors
When typing commands interactively, errors cause the Tel interpreter to give up on the
current command and reprompt for a new command. All well and good. However, you
do not want this to happen while running a script.

While many errors are just the result of typing goofs, some errors are more difficult to
avoid and it is easier to react to them "after the fact". For example, if you write a proce
dure that does several divisions, code before each division can check that the
denominator is not zero. A much easier alternative is to check that the whole procedure
did not fail. This is done using the catch command. catch evaluates its argument as
another command and returns 1 if there was an error or 0 if the procedure returned
normally.

54

Assuming your procedure is named di val ot, you can call it this way:

if [catch divalot] {
puts "got an error in divalot!"
exit

Exploring Expect

The argument to catch is a list of the command and arguments to be evaluated. If your
procedure takes arguments, then they must be grouped together. For example:

catch {puts "Hello world"}
catch {divalot some args}

If your procedure returns a value itself, this can be saved by providing a variable name
as the second argument to catch. For example, suppose di valot normally returns a
value of 17 or 18.

tclsh> catch {divalot some args} result
o
tclsh> set result
17

Here, catch returned 0 indicating divalot succeeded. The variable result is set to
the value returned by di valot.

This same mechanism can be used to get the messages produced by an error. For
example, you can compute the values of x for the equation 0 = ax2 + bx + c by using the
quadratic formula. In mathematical notation, the formula looks like this:

Here is a procedure for the quadratic formula:

proc qf {a b c} {
set s [expr sqrt($b*$b-4*$a*$c)]
set d [expr 2*$a]
list [expr (-$b+$s)/$d] \

[expr (-$b-$s)/$d]

When run successfully, qf produces a two-element list of values:

tclsh> catch {qf 1 0 -2} roots
o
tclsh> set roots
1.41421 -1.41421

Tel-Introduction And Overview

When run unsuccessfully, this same command records the error in roots:

tclsh> catch {qf 0 0 -2} roots
1
tclsh> set roots
divide by zero

55

By using catch this way, you avoid having to put a lot of error-checking code inside
qf. In this case, there is no need to check for division by zero or taking the square root
of a negative number. This simplifies the code.

While it is rarely useful in a script, it is possible to get a description of all the commands
and procedures that were in evaluation when an error occurred. This description is
stored in the global variable errorlnfo. In the example above, errorlnfo looks like
this:

tclsh> set error Info
divide by zero

while executing
"expr (-$b+$s)/$d"

invoked from within
"list [expr (-$b+$s)/$d] ... "

invoked from within
"return [list [expr (-$b+$s)/$d] ... "

(procedure "qf" line 4)
invoked from within

"qf 0 0 -2"

errorlnfo is actually set when the error occurs. You can use errorlnfo whether or
not you use catch to, well, ... catch the error.

Causing Errors

The error command is used to create error conditions which can be caught with the
catch command. error is useful inside of procedures that return errors naturally
already.

For example, if you wanted to restrict the qf routine so that the variable "a" could not
be larger than 100, you could rewrite the beginning of it as:

proc qf {a b c} {
if {$a > lOO} {error "a too large"}
set s [expr sqrt($b*$b-4*$a*$c)]

Now if "a" is greater than 100, "catch {qf ... }" will return 1. The message "a too
large" will be stored in the optional variable name supplied to catch as the second
argument.

56 Exploring Expect

Evaluating Lists As Commands
Everything in Tcl is represented as a string. This includes commands. You can manipu
late commands just like any other string. Here is an example where a command is
stored in a variable.

tclsh> set output "puts"
puts
tclsh> $output "Hello world!"
Hello world!

The variable output could be used to select between several different forms of output.
If this command was embedded inside a procedure, it could handle different forms of
output with the same parameterized code. The Tk extension of Tcl uses this technique
to manipulate multiple widgets with the same code.

Evaluating an entire command cannot be done the same way. Look what happens:

tclsh> set cmd "puts ,"Hello world!'
puts "Hello world!"
tclsh> $cmd
invalid command name "puts "Hello world!""

The problem is that the entire string in cmd is taken as the command name rather than a
list of a command and arguments.

In order to treat a string as a list of a command name and arguments, the string must be
passed to the eval command. For instance:

telsh> eval $cmd
Hello world!

The eval command treats each of its arguments as a list. The elements from all of the
lists are used to form a new list that is interpreted as a command. The first element
becomes the command name. The remaining elements become the arguments to the
command.

The following example uses the arguments "append", "vI", "a b", and "c d" to
produce and evaluate the command "append vI abc d".

telsh> eval append vl "a b" "c d"
abed

Remember the concat command from page 43? The eval command treats it argu
ments in exactly the same was as concat. For example, notice how internal space is
preserved:

telsh> eval append v2 {a b} {c {d e}}
abed e

Tel-Introduction And Overview

The list command will protect any argument from being broken up byeval.

telsh> eval append v3 [list {a b}] [list {c {d e}}]
a be d e

57

When the arguments to eval are unknown (because they are stored in a variable), it is
particularly important to use the list command. For example, the previous command
is more likely to be expressed in a script this way:

eval append somevar [list $argl] [list $arg2]

Unless you want your arguments to be broken up, surround them with list
commands.

The eval command also performs $ substitution and [l evaluation so that the
command is handled as if it had originally been typed in and evaluated rather than
stored in a variable. In fact, when a script is running, eval is used internally to break
the lines into command names and arguments, and evaluate them. Commands such as
if, while, and catch use the eval command internally to evaluate their command
blocks. So the same conventions apply whether you are using eval explicitly, writing
commands in a script, or typing commands interactively.

Again, the list command will protect unwanted $ substitution and [l evaluation.

These eval conventions such as $ substitution and [l evaluation are only done when a
command is evaluated. So if you have a string with embedded dollar signs or
whitespace, for example, you have to protect it only when it is evaluated.

telsh> set a "\$foo"
$foo
telsh> set b $a
$foo
telsh> set b
$foo

Passing By Reference
By default, you can only refer to global variables (after using the global command) or
variables declared within a procedure. The upvar command provides a way to refer to
variables in any outer scope. A common use for this is to implement pass by reference.

When a variable is passed by reference, the calling procedure can see any changes the
called procedure makes to the variable.

The most common use of upvar is to get access to a variable in the scope of the calling
procedure. If a procedure is called with the variable v as an argument, the procedure
associates the caller's variable v with a second variable so that when the second variable
is changed, the caller's v is changed also.

58 Exploring Expect

For example, the following command associates the variable name stored in name with
the variable p.

upvar $name p

After this command, any references to p also refer to the variable named within name. If
name contains "v", "set p 1" sets p to 1 inside the procedure and v to 1 in the caller
of the procedure.

The qf procedure from page 54 can be rewritten to use upvar. As originally written,
qf returned a list. This is a little inconvenient because the list always has to be torn
apart to get at the two values. Lists are handy when they are long or of unknown size,
but they are a nuisance just for handling two values. However, Tel only allows proce
dures to return a single value, and a list is the only way to make two values "feel" like
one.

Here is another procedure to compute the quadratic formula but written with upvar.
This procedure, called qf2, writes its results into the caller's fourth and fifth parameters.

proc qf2 {a b c name1 name2} {
upvar $name1 r1 $name2 r2

set s [expr sqrt($b*$b-4*$a*$c)]
set d [expr $a+$a]
set r1 [expr (-$b+$s)/$d]
set r2 [expr (-$b-$s)/$d]

The qf2 procedure looks like this when it is called.

tclsh> catch {qf2 1 0 -2 rooti root2}
o
tclsh> set rooti
1. 41421
tclsh> set root2
-1.41421

A specific caller can be chosen by specifying a level immediately after the command
name. Integers describe the number of levels up the procedure call stack. The default is
1 (the calling procedure). If an integer is preceded by a "#", then the level is an absolute
level with #0 equivalent to the global level. For example, the following command asso
ciates the global variable curved_intersect ion_count with the local variable x.

upvar #0 curved_intersect ion_count x

The upvar command is especially useful for dealing with arrays because arrays cannot
be passed by value. (There is no way to refer to the value of an entire array.) However,
arrays can be passed by reference.

Tel-Introduction And Overview 59

For example, imagine you want to compute the distance between two points in an xyz
coordinate system. Each point is represented by three numbers. Rather than passing six
numbers, it is simpler to pass the entire array. Here is a procedure which computes the
distance assuming the numbers are all stored in a single array:

proc distance {name}
upvar $name a

set xdelta [expr $a(x,2) - $a(x,l)]
set ydelta [expr $a(y,2) - $a(y,l)]
set zdelta [expr $a(z,2) - $a(z,l)]
expr {sqrt(

$xdelta*$xdelta +

$ydelta*$ydelta +
$zdelta*$zdelta)

Evaluating Commands In Other Scopes
The uplevel command is similar in spirit to upvar. With uplevel, commands can
be evaluated in the scope of the calling procedure. The syntax is similar to eval. For
example, the following command increments x in the scope of the calling procedure.

uplevel incr x

The uplevel command can be used to create new control structures such as variations
on if and while or even more powerful constructs. I will describe such a construct in
Chapter 19 (p. 459). However, a full discussion of this topic is beyond the scope of this
book.

As a simple example, the following procedure (written by Karl Lehenbauer with a modi
fication by Allan Brighton) provides static variables in the style of C. Like variables
declared global, variables declared static are accessible from other procedures.
However, the same static variables cannot be accessed by procedures in different
files. This can be helpful in avoiding naming collisions between two programmers
both of whom unintentionally choose the same names for global variables that are
private to their own files.

proc static {args}
set unique [info script]
foreach var $args {

uplevel 1 "upvar #0 static ($unique: $var) $var"

60 Exploring Expect

The procedure makes its arguments be references into an array (appropriately called
static). Because of the uplevel command, all uses of the named variable after the
static call become references into the array. The array elements have the file name
embedded in them. This prevents conflicts with similarly-named variables in other files.
By setting unique to" [lindex [info level -1] 0] ", static can declare persis
tent variables that cannot be accessed by any other procedure even in the same file.

If you have significant amounts of Tcl code, you may want to consider even more
sophisticated scoping techniques. For instance, [incr Tcl], written by Michael
McLennan, is a Tcl extension that supports object-oriented programming in the style of
C++. [incr Tcl] provides mechanisms for data encapsulation within well-defined
interfaces, greatly increasing code readability while lessening the effort to write such
code in the first place. The Tcl FAQ describes how to obtain [incr Tcl]. For more
information on how to get the FAQ, see Chapter 1 (p. 20).

Working With Files
Tcl has commands for accessing files. The open command opens a file. The second
argument determines how the file should be opened. "r" opens a file for reading; "w"
truncates a file and opens it for writing; "a" opens a file for appending (writing without
truncation). The second argument defaults to "r".

open "/etc/passwd" "r"
open "/tmp/stuff. [pid] " "w"

The first command opens /etc/password for reading. The second command opens a
file in /tmp for writing. The process id is used to construct the file name-this is an
ideal way to construct unique temporary names.

The open command returns a file identifier. This identifier can be passed to the many
other file commands, such as the close command. The close command closes a file
that is open. The close command takes one argument-a file identifier. Here is an
example:

set input [open" /etc/passwd" "r"]
close $input

; # open file
;# close same file

The open command is a good example of a command that is frequently evaluated from
a catch command. Attempting to open (for reading) a nonexistent file generates an
error. Here is one way to catch it:

if [catch {open $filename} input] {
puts "$input"
return

Tcl- Introduction And Overview 61

By printing the error message from open, this fragment accurately reports any problems
related to opening the file. For example, the file might exist yet not allow permission to
read it.

The open command may also be used to read from or write to pipelines specified as I
bini sh-like commands. A pipe character (" I ") signifies that the remainder of the argu
ment is a command. For example, the following command searches through all the files
in the current directory hierarchy and finds each occurrence of the word book. Each
matching occurrence can be read as if you were reading it from a plain file.

open "I find . -type f -print I xargs grep book"

The argument to open must be a valid list. Each element in the list becomes a
command or argument in the pipeline. If you needed to search for "good book", you
could do it in a number of ways. Here are just two:

open "I find -type f -print xargs grep \ "good book\" "
open {I find -type f -print I xargs grep {good book}}

File I/O
Once a file is open, you can read from it and write to it.

Use the puts command to write to a file. If you provide a file identifier, puts will write
to that file.

set file [open /tmp/stuff wI
puts $file "Hello World" ;# write to /tmp/stuff

Remember that puts writes to the standard output by default. Sometimes it is conve
nient to refer to the standard output explicitly. You can do that using the predefined file
identifier stdout. (You can also refer to the standard input as stdin and the standard
error as stderr.)

The puts command also accepts the argument -nonewline, which skips adding a
newline to the end of the line.

puts -nonewline $file "Hello World"

If you are writing strings without newlines to a character special file (such as a terminal),
the output will not immediately appear because the I/O system buffers output one line
at a time. However, there are strings you want to appear immediately and without a
newline. Prompts are good examples. To force them out, use the flush command.

puts -nonewline $file $prompt
flush $file

62 Exploring Expect

Use the gets command or read command to read from a file. gets reads a line at a
time and is good for text files in simple applications. read is appropriate for everything
else.

The gets command takes a file identifier and an optional variable name in which to
store the string that was read. When used this way, the length of the string is returned.
If the end of the file is reached, -1 is returned.

I frequently read through files with the following code. Each time through the loop, one
line is read and stored in the variable line. Any other commands in the loop are used
to process each line. The loop terminates when all the lines have been read.

while {[gets $file line] != -1}
do something with $line

The read command is similar to gets. The read command reads input but not line by
line like gets. Instead, read reads a fixed number of characters. It is ideal if you want
to process a file a huge chunk at a time. The maximum number to be read is passed as
the second argument and the actual characters read are returned. For example, to read
100000 bytes you would use:

set chunk [read $file 100000]

The characters read may be less than the number requested if there are no more charac
ters in the file or if you are reading from a terminal or similar type of special file.

The command eaf returns a 1 if the end of the file has been encountered (e.g., by a
previous read or gets). Otherwise eaf returns a O. This can be used to rewrite the
loop above (using gets) to use read.

while {! [eof $file]} {
set buffer [read $file 100000]
do something with $buffer

If you omit the length, the read command reads the entire file. If the file fits in physical
memory, you can read things with this form of read much more efficiently than with
gets. t For example, if you want to process each line in a file, you can write:

foreach line [split [read $file] "\n"] {
do something with $line

There are two other commands to manipulate files: seek and tell. They provide
random access into files and are analogous to the UNIX lseek and tell system calls.

t If the file is larger than physical memOty, algorithms that require multiple passes over strings will cause thrash
ing.

Tel-Introduction And Overview 63

They are rarely used, so I will not describe them further. See the Tel reference material
for more information.

File Name Matching
If a file name starts with a tilde character and a user name, the open command trans
lates this to the named user's home directory. If the tilde is immediately followed by a
slash, it is translated to the home directory of the user running the script. This is the
same behavior that most shells support.

However, the open command does not do anything special with other metacharacters
such as "*,, and "?". The following command opens a file with a "*,, at the end of its

name!

open "/tmp/foo*" "w"

The glob command takes file patterns as arguments and returns the list of files that
match. For example, the following command returns the files that end with . exp and
. c in the current directory.

glob *. exp *. c

An error occurs if no files are matched by glob unless you use the -nocomplain flag.

The result of glob can be passed to open (presuming that it only matches one file).
Using glob as the source in a foreach loop provides a way of opening each file
separately.

foreach filename [glob *.expl
set file [open $filenamel
do something with $file
close $file

The characters understood by glob are - (match a user's home directory), * (match
anything), ? (match any single character), [J (match a set or range of characters), {}
(match a choice of strings), and \ (match the next character literally). I will not go into
details on these-they are similar to matching done by many shells such as csh. Plus I
will be talking about most of them in later chapters anyway.

Setting And Getting The Current Directory

If file names do not begin with a "-" or "/", they are relative to the current directory.
The current directory can be set with cd. It is analogous to the cd command in the
shell. As in the open command, the tilde convention is supported but all other shell
metacharacters are not. There is no built-in directory stack.

64

Here is an example of cd and pWd:

tclsh> cd -libes/bin
tclsh> pwd
/usr/libes/bin

Exploring Expect

cd with no arguments changes to the home directory of the user running the script.

File Name Manipulation

The file command does a large number of different things all related to file names.
The first argument names the function and the second argument is the file name to work
on.

Four functions are purely textual. The same results can be accomplished with the string
functions, but these are particularly convenient.

The "file dirname" command returns the directory part of the file name. (It returns a
" ." if there is no slash. It returns a slash if there is only one slash and it is the first char
acter.) For example:

tclsh> file dirname /usr/libes/bin/prog.exp
/usr/libes/bin

The opposite of "file dirname" is "file tail". It returns everything after the last
slash. (If there is no slash, it returns the original file name.)

The "file extension" command returns the last dot and anything following it in the
file name. (It returns the empty string if there is no dot.) For example:

tclsh> file extension /usr/libes/src/my.prog.c
.c

The opposite of "file extension" is "file rootname". It returns everything but
the extension.

tclsh> file rootname /usr/libes/src/my.prog.c
/usr/libes/src/my.prog

While these functions are very useful with file names, they can be used on any string
where dots and slashes are separators.

For example, suppose you have an IP address in addr and want to change the last field
to the value stored in the variable new. You could use spl i t and join, but the file
name manipulation functions do it more easily.

tclsh> set addr
127.0.1.2
tclsh> set new
42
tclsh> set addr [file root name $addrJ .$new
127.0.1.42

Tel-Introduction And Overview 65

When you need to construct arbitrary compound names, consider using dots and
slashes so that you can use the file name commands. You can also use blanks, of
course, in which case you can use the string commands. However, since blanks are
used as argument separators, you have to be much more careful when using commands
such as eval.

File Information
The file command can be used to test for various attributes of a file. Listed below are
a number of predicates and their meanings. Each variation returns a 0 if the condition is
false for the file or 1 if it is true. Here is an example to test whether the file /tmp/foo
exists:

tclsh> file exists /tmp/foo
1

The predicates are:

file isdirectory file

file is file file

file executable file

file exists file

file owned file

file readable file

file writable file

true if file is a directory

true if file is a plain file (i.e., not a directory,
device, etc.)

true if you have permission to execute file

true if file exists

true if you own file

true if you have permission to read file

true if you have permission to write f i 1 e

All the predicates return 0 if the file does not exist.

While the predicates make it very easy to test whether a file meets a condition, it is occa
sionally useful to directly ask for file information. Tel provides a number of commands
that do that. Each of these takes a file name as the last argument.

The "file size" command returns the number of bytes in a file. For example:

tclsh> file size /etc/motd
63

The "file atime" command returns the time in seconds when the file was last
accessed. The "file mtime" command returns the time in seconds when the file was
last modified. The number of seconds is counted starting from January 1,1970.

The "file type" command returns a string describing the type of the file such as
file, directory, characterSpecial, blockSpecial, link, or socket. The
"file readlink" command returns the name to which the file points to, assuming it
is a symbolic link.

66 Exploring Expect

The "file stat" command returns the raw values of a file's inode. Each value is
written as elements in an array. The array name is given as the third argument to the
file command. For example, the following command writes the information to the
array stuff.

file stat /etc/motd stuff

Elements are written for atime, ctime, mtime, type, uid, gid, ino, mode, nlink,
dey, size. These are all written as integers except for the type element which is
written as I described before. Most of these values are also accessible more directly by
using one of the other arguments to the file command. However, some of the more
unusual elements (such as nlink) have no corresponding analog. For example, the
following command prints the number of links to a file:

file stat $filename fileinfo
puts "$filename has $fileinfo(nlink} links"

If the file is a symbolic link, "file stat" returns information about the file to which it
points. The "file lstat" command works similarly to "file stat" except that it
returns information about the link itself. See the UNIX stat documentation for more
information on stat and lstat.

All of the non-predicate file information commands require the file to exist or else they
will generate an error. This error can be caught using catch.

Executing UNIX Commands
In the previous section, I described many commands for working with files. Yet, you
may have noticed some omissions. For example, there are no Tel commands to remove
files or make directories. These commands already exist outside of Tel. In order to take
advantage of them, Tel provides a way of calling existing UNIX commands. This makes
Tel simpler to learn and use. You can reuse commands that you are already familiar
with such as rm and mkdir. There is little point in having Tel duplicate these.

UNIX commands can be executed by calling exec. The arguments generally follow the
same /bin/sh-like conventions as open ineluding ">", "<", "I", "&", and variations on
them. Use whitespace before and after the redirection symbols.

tclsh> exec date
Thu Feb 24 9:32:00 EST 1994
tclsh> exec date I wc -w

6
tclsh> exec date > /tmp/foo
tclsh> exec cat /tmp/foo
Thu Feb 24 9:32:03 EST 1994

Tcl- Introduction And Overview 67

Unless redirected, the standard output of the exec command is returned as the result.
This enables you to save the output of a program in a variable or use it in another
command.

tclsh> puts "The date is [exec date]"
The date is Thu Feb 24 9:32:17 EST 1994

Tel assumes that UNIX programs return the exit value 0 if successful. Use catch to test
whether a program succeeds or not. The following command returns the exit value
from mv which could, for example, indicate that a file did not exist.

catch {exec mv oldname newname}

Many programs return nonzero exit values even if they were successful. For example,
diff returns an exit value of 1 when it finds that two files are different. Some UNIX
programs are sloppy and return a random exit value which can generate an error in
exec. An error is also generated if a program writes to its standard error stream. It is
common to use catch with exec to deal with these problems.

Tilde substitution is performed on the command but not on the arguments, and no glob
bing is done at all. So if you want to delete all the . a files in a directory, for instance, it
must be done as follows:

exec rm [glob *.0]

Beyond the /bin/ sh conventions, exec supports special redirections to reference
open files. In particular, an @ after a redirection symbol introduces a file identifier
returned from open. For example, the following command writes the date to an open
file.

set file [open /tmp/foo]
exec date >@ $file

The exec command has a number of other esoteric features. See the reference docu
mentation for more information.

Environment Variables
The global array env is pre-initialized so that each element corresponds to an environ
ment variable. For example, the path is a list of directories to search for executable
programs. From the shell, the path is stored in the variable PATH. When using Tel, the
path is contained in env (PATH) . It is manipulated just like any other variable.

tclsh> set env(PATH)
/usr/local/bin:/usr/bin:/bin
tclsh> set env(PATH) ".:$env(PATH)"
.:/usr/local/bin:/usr/bin:/bin

;# prepend current dir

68 Exploring Expect

Modifications to the env array do not affect the parent environment, but new processes
that are created (using exec, for instance) will inherit the current values (ineluding any
new elements that have been created).

Handling Unknown Commands
The unknown command is called when another command is executed which is not
known to the Tel interpreter. Rather than simply issuing an error message, this gives
you the opportunity to handle the problem and recover in an intelligent way. For
example, you could attempt to re-evaluate the arguments as an expression. This would
allow you to be able to evaluate expressions without using the expr command.

set a [1+1]

To make unknown do what you want, simply define it as a procedure. The list of argu
ments is available as a parameter to the unknown command. Here is a definition of
unknown which supports expression evaluation without having to specify the expr
command:

proc unknown {args}
expr $args

By default, Tel comes with a definition for unknown that does a number of things such
as attempt history substitution. I will only go into detail on the most useful action that
unknown takes-retrieving procedure definitions from libraries.

Libraries
By default, the unknown command tries to find procedure definitions in a library. A
library is simply a file that contain procedure definitions. Libraries can be explicitly read
using the source command. However, it is possible to prepare an index file which
describes the library contents in such a way that Tel knows which library to load based
on the command name. Once a library is loaded, the unknown command calls the new
procedure just defined. After the procedure completes, unknown completes and it
appears as if the procedure had been defined all along.

As an example, one of Tel's default libraries defines the parray procedure. parray
prints out the contents of an array. It is a parameterized version of the code on page 53.

Tel-Introduction And Overview 69

The info command shows that parray is not defined before it is invoked, but it is
defined afterwards:

tclsh> info command parray
tclsh> par ray color
color (pavement) = black
color (snow) = white
tclsh> info command parray
parray

You can add procedures to the libraries or create new libraries. See the Tel reference
material for more information on using libraries.

Is There More To Tel?
This chapter has covered most of the Tel commands and data structures. I will expand
on a few of these descriptions later in the book, but for the most part, you have now
seen the entire Tel language.

Even though Tel is a small language, it is capable of handling very large and sophisti
cated scripts. However, Tel was originally designed for writing small scripts with most
of the work being done in the underlying commands themselves. Indeed, Tel supports
the ability to add additional commands written in other languages such as C and C++.
This is useful for commands that must be very fast or do something unusual (such as the
Expect commands do).

Fortunately, the need to resort to implementing your own commands is becoming
increasingly unnecessary. People have already written commands for just about
anything you can imagine. They are packaged into collections called extensions and are
available from the Tel archive. I have already mentioned [iner Tel] which provides
commands for object-oriented programming. Another popular extension is TelX, which
provides commands for most of the UNIX system and library calls. There are a variety of
extensions to support different databases (e.g., SQL, Oraele, Dbm). And there are many
extensions to support graphics (e.g., GL, PHIGS, SIPP, YART). These extensions and
others are described in the Tel FAQ (page 20). In Chapter 22 (p. 513), I will describe
how to add existing extensions to Expect.

If none of these extensions provides what you are looking for, you can always write
your own. Tel has always supported this way of adding new commands and it is surpris
ingly easy to do. If you are interested in learning more about this, I recommend
Ousterhout's Tel and the Tk Toolkit.

70 Exploring Expect

Exercises
1. Is Tel like any other language you know? Bourne shell? C shell? Lisp? C?

2. As best as you can remember (or guess), write down the precedence table for Tel
expressions. Now look it up in the reference material. How elose were you? Repeat
this exercise with Perl, C, Lisp, and APL.

3. What is the best thing about Tel? What is the worst thing about Tel? (That bad, eh?)

4. Try putting comments where they do not belong-for instance, between the parame
ters of a procedure. What happens?

5. Write a procedure to reverse a string. If you wrote an iterative solution, now write a
recursive solution or vice versa.

6. Repeat the previous exercise but with a list instead of a string.

7. Write a procedure to rename all the files in a directory ending with . c to names end
ing in ". cc".

8. Write a procedure that takes a list of variable names and a list of values, and sets each
variable in the list to the respective value in the other list. Think of different alterna
tives to handle the case when the lists are of different lengths.

9. Write a procedure that creates a uniquely-named temporary file. Make sure it works
even if you run it multiple times in the same process.

10.Write a procedure that can define other procedures that automatically have access to
global variables.

In This Chapter:

• The Basic Expect
Commands

• Starting Processes

• Sending Input

• Waiting For Output

• Interacting

Getting Started With
Expect

Three commands are central to the power of Expect: send, expect, and spawn. The
send command sends strings to a process, the expect command waits for strings from
a process, and the spawn command starts a process.

In this chapter, I will describe these commands and another one that is very useful:
interact. To best understand this chapter, it will help to have some basic familiarity
with Tel. If you are wondering about a command that is not explained, look it up in the
index for a reference in the previous chapter and read about it there.

The send Command
The send command takes a string as an argument and sends it to a process. For
example:

send "hello world"

This sends the string "hello world" (without the quotes). If Expect is already inter
acting with a program, the string will be sent to that program. But initially, send will
send to the standard output. Here is what happens when I type this to the Expect inter
preter interactively:

expectl.l> send "hello world"
hello worldexpectl.2>

The send command does not format the string in any way, so after it is printed the next
Expect prompt gets appended to it without any space. To make the prompt appear on a
different line, put a newline character at the end of the string. A newline is represented
by "\n".

71

72

expectl.l> send "hello world\n"
hello world
expectl.2>

Exploring Expect

If these commands are stored in a file, speak, the script can be executed from the UNIX
command line:

% expect speak
hello world
%

With a little magic it is possible to invoke the file as just "speak" rather than "expect
speak". On most systems it suffices to insert the line "#! /usr/local/bin/expect
--" and say "chmod +x speak; rehash". I will explain this in more detail in
Chapter 9 Cpo 215). For now, just take it on faith.

The expect Command
expect is the opposite of send. The expect command waits for a response, usually
from a process. expect can wait for a specific string, but more often expect is used
to wait for any string that matches a given pattern. Analogous to send, the expect
command initially waits for characters from the keyboardt . Using them, I can create a
little conversation:

expect "hi\n"
send "hello there!\n"

When run, the interaction looks like this:

hi
hello there!

I typed the string hi and then pressed return. My input matched the pattern "hi \n".
Ideally, a return would be matched with "\r"; however, the UNIX terminal driver trans
lates a return to "\n".* As you will see later on, it is rarely necessary to have to worry
about this mapping because most of Expect's interactions occur with programs not
users, anyway. Nonetheless, it is occasionally useful to expect input from people. Plus,
it is much easier to experiment with Expect this way.

If expect reads characters that do not match the expected string, it continues waiting
for more characters. If I had typed hello followed by a return, expect would
continue to wait for "hi \n".

t It actually reads from standard input which is typically the keyboard. For now, I will treat them as if they were
the same thing. * You can disable this behavior by saying "stty -icrnl" to the shell, but most programs expect this mapping
to take place so learn to live with it.

Getting Started With Expect 73

When the matching string is finally typed, expect returns. But before returning,
expect stores the matched characters in a variable called expect_out (0, string) .
All of the matched characters plus the characters that came earlier but did not match are
stored in a variable called expect_out (buffer). expect does this every time it
matches characters. The names of these variables may seem odd, but they will make
more sense later on.

Imagine the following script:

expect "hi\n"
send "you typed <$expect_out (buffer) >"
send "but I only expected <$expect_out(O,string»"

The angle brackets do not do anything special. They will just appear in the output,
making it clear where the literal text stops and the variable values start. When run the
script looks like this:

Nice weather, eh?
hi
you typed <Nice weather, eh?
hi>
but I only expected <hi>

I typed "Nice weather, eh?" <return> "hi" <return>. expect reported that it
found the hi but it also found something unexpected: "Nice weather, eh?\n".

Anchoring
Finding unexpected data in the input does not bother expect. It keeps looking until it
finds something that matches. It is possible to prevent expect from matching when
unexpected data arrives before a pattern. The caret (") is a special character that only
matches the beginning of the input. If the first character of the pattern is a caret, the
remainder of the pattern must match starting at the beginning of the incoming data. It

cannot skip over characters to find a valid match. For example, the pattern "hi matches
ifI enter "hiccup" but not ifI enter "sushi".

The dollar sign ($) is another special character. It matches the end of the data. The
pattern hiS matches if I enter "sushi" but not if I enter "hiccup". And the pattern
"hi$ matches neither "sushi" nor "hiccup". It matches "hi" and nothing else.

Patterns that use the " or $ are said to be anchored. Some programs, such as sed,
define anchoring in terms of the beginning of a line. This makes sense for sed, but not
for expect. expect anchors at the beginning of whatever input it has received
without regard to line boundaries.

74 Exploring Expect

When patterns are not anchored, patterns match beginning at the earliest possible posi
tion in the string. For example, if the pattern is hi and the input is philosophic, the
hi in philo is matched rather than the hi in sophic. In the next section, this subtlety
will become more important.

What Happens When Input Does Not Match
Once expect has matched data to a pattern, it moves the data to the expect_out
array as I showed earlier. The matched data is no longer eligible to be matched. Addi
tional matches can only take place with new data.

Consider the following fragment:

expect "hi"
send "$expect_out(O,string) $expect_out(buffer) "

If I execute these two commands, Expect waits for me to enter hi. If I enter philo
sophic followed by a return, Expect finds the hi and prints:

hi phi

If I execute the two commands again, Expect prints:

hi losophi

Even though there were two occurrences of hi, the first time expect matched the first
one, moving it into expect_out. The next expect started from where the previous
one had left off.

With simple patterns like these, expect always stops waiting and returns immediately
after matching the pattern. If expect receives more input than it needs, that input is
remembered for the possibility of matching in later expect commands. In other words,
expect buffers its input. This allows expect to receive input before it is actually ready
to use it. The input will be held in an input buffer until an expect pattern matches it.
This buffer is internal to expect and is not accessible to the script in any way except by
matching patterns against it.

After the second expect above, the buffer must hold c\n. This is all that was left after
the second hi in philosophic. The \n is there, of course, because after entering the
word, I pressed return.

What happens if the commands are run again? In this case, expect is not going to find
anything to match hi. The expect command eventually times out and returns. By
default, after 10 seconds expect gives up waiting for input that matches the pattern.
This ability to give up waiting is very useful. Typically, there is some reasonable amount
of time to wait for input after which there is no further point to waiting. The choice of
10 seconds is good for many tasks. But there is no hard rule. Programs almost never

Getting Started With Expect 75

guarantee that "if there is no response after 17 seconds, then the program or computer
has crashed".

The timeout is changed by setting the variable timeout using the Tel set command.
For example, the following command sets the timeout to 60 seconds.

set timeout 60

The value of timeout must be an integral number of seconds. Normally timeouts are
nonnegative, but the special case of -1 signifies that expect should wait forever. A
timeout of 0 indicates that expect should not wait at all.

If expect times out, the values of expect_out are not changed. Therefore, the
commands above would have printed:

hi losophi

even though only c \n remained in the buffer.

Pattern-Action Pairs
You can directly associate a command with a pattern. Such commands are referred to as
actions. The association is made by listing the action immediately after the pattern in
the expect command itself. For example:

expect "hi" {send "You said $expect_out(buffer)"}

The command "send "You said $expect_out (buffer) "" will be executed if
and only if hi is matched in the input.

Additional pattern-action pairs can be listed after the first one:

expect "hi"
"hello"
"bye"

send "You said hi\n" } \
{ send "Hello yourself\n" } \
{ send "That was unexpected\n"

This command looks for "hi", "hello", and "bye" Simultaneously. If any of the three
patterns are found, the action listed immediately after the first matching pattern is
executed. It is possible that none of them match within the time period defined by the
timeout. In this case, expect stops waiting and execution continues with the next
command in the script. Actions can be associated with timeouts, and I will describe that
in Chapter 4 Cp. 94).

In the expect command, it does not matter how the patterns and actions visually line
up. They can all appear on a single line if you can fit them, but lining up the patterns
and actions usually makes it easier for a human to read them.

76 Exploring Expect

Notice how all the actions are embedded in braces. That is because expect would
otherwise misinterpret the command. What is the problem with the following command?

expect "hi" send "You said hi\n" ;# wrong!

In this case, hi is taken as a pattern, send is the associated action and "You said
hi \n" is taken as the next pattern. This is obviously not what was intended! If the
action is more than a single argument, you must enclose it in braces.

Because Tcl commands normally terminate at the end of a line, a backslash is used to
continue the command. Since all but the last line must end with a backslash, it can be a
bit painful to cut and paste lines. You always have to make sure that the backslashes are
there. The expect command supports an alternate syntax that lets you put all the argu
ments in one big braced list. For example:

expect {
"hi" { send "You said hi\n"}
"hello" { send "Hello yourself\n"}
"bye" { send "That was unexpected\n"}

The initial open brace causes Tcl to continue scanning additional lines to complete the
command. Once the matching brace is found, all of the patterns and actions between
the outer braces are passed to expect as arguments.

Here is another way of writing the same expect commands:

expect "hi" {
send "You said hi\n"

"hello" {
send "Hello yourself\n"

"bye" {
send "That was unexpected\n"

Each open brace forces more lines to be read until a close brace is encountered. But on
the same line that the close brace appears, another open brace causes the search to
continue once again for a mate. Even though all the arguments are not enclosed by yet
another pair of braces, the whole command is nonetheless read as one. This style has
the advantage that it is easier to have multi-line actions, and the actions can be moved
around more easily because they are not on the same line as their patterns (presuming
your editor can cut and paste by lines more easily than half-lines). If you want to further
separate the patterns, you can rewrite it as:

Getting Started With Expect

expect {
"hi" {

send "You said hi\n"

"hello"
send "Hello yourself\n"

"bye" {
send "That was unexpected\n"

77

While this looks like it wastes a lot of space, you can now cut and paste the first action
(hi) without disturbing the "expect {". You can decide for yourself which style is
appropriate. Depending on the context, I may use anyone of these. If commands are
very short, I may even pack them all on a line. For example, the following command
has two patterns, "exit" and "qui t". Their actions are listed immediately to the right
of each pattern.

expect "exit" {exit 1} "quit" abort

Example-Timed Reads In The Shell
I have shown how to wait for input for a given amount of time and how to send data
back. I will wrap this up in a script called timed-read.

#!/usr/local/bin/expect
set timeout $argv
expect "\n" {

send [string trimright "$expect_out(buffer)" "\n"]

The timeout is read from the variable argv which is predefined to contain the argu
ments from the command line. I will describe argv further in Chapter 9 (p. 213). The
next command waits for a line to be entered. When it is, "string trimright
" \n "" returns the string without the newline on the end of it, and that is returned as the
result of the script.

You can now call this script from a shell as follows:

% timed-read 60

This command waits 60 seconds for the user to type a line and then it returns whatever
the user typed. This ability is very useful. For example, suppose your system reboots
automatically upon a crash. You could set up your system so that it gives someone the
opportunity to log in to straighten out any problems before coming up all the way. Of
course, if the machine crashes when no one is around, you do not want the computer to

78 Exploring Expect

wait until someone comes in just to tell it to go ahead. To do so, just embed this in your
shell script:

echo "Rebooting ... "
echo "Want to poke around before coming up all the way?"
answer='timed-read 60'

Now you could test to see if the answer is yes or no. If no one is around, the script will
just time out after 60 seconds and the answer will be empty. The shell script could then
continue with the rebooting process.

Surprisingly, there is no simple way for a shell script to wait for a period of time for an
answer. The standard solution is to fork off another shell script that sends a Signal back
to the original shell script that catches the signal and tries to recover. This sounds easy
but is fairly difficult to code. And if you are already in a forked process or have forked
other processes, it is very tricky to keep everything straight.

By comparison, the Expect solution is straightforward. In the next chapter, I will show
how to make the expect command strip off the newline automatically. This will make
the script even simpler.t

The spawn Command
While interacting with a person is useful, most of the time Expect is used to interact with
programs. You have already seen enough to get a feeling for send and expect. There
is more to learn about them, but now I want to explore the spawn command.

The spawn command starts another program. A running program is known as a
process. Expect is flexible and will view humans as processes too. This allows you to
use the same commands for both humans and processes. The only difference is that
processes have to be spawned first.*

The first argument of the spawn command is the name of a program to start. The
remaining arguments are passed to the program. For example:

spawn ftp ftp.uu.net

This command spawns an ftp process. ftp sees ftp. uu. net as its argument. This
directs ftp to open a connection to that host just as if the command "ftp
ftp. uu. net" had been typed to the shell. You can now send commands using send
and read prompts and responses using expect.

t Shell hackquotes automatically strip trailing newlines, so the script could be simplified in this scenario just by
omitting the "string trimright" command. However, in other contexts it is useful to strip the newlines. * Admittedly, humans have to be spawned as well; however, this type of spawning is probably best left to the
confines of the bedroom.

Getting Started With Expect 79

It is always a good idea to wait for prompts before sending any information. If you do
not wait, the program might not be ready to listen and could conceivably miss your
commands. I will show examples of this in a later chapter. For now, play it safe and
wait for the prompt.

ftp begins by asking for a name and password. ftp. uu. net is a great place for
retrieving things-they let anyone use their anonymous ftp service. They ask for
identification (you must enter your e-mail address at the password prompt) but it is
primarily for gathering statistics and debugging.

When I run ftp by hand from the shell, this is what I see:

% ftp ftp.uu.net
Connected to ftp.uu.net.
220 ftp.UU.NET FTP server (Version 6.34 Thu Oct 22 14:32:01 EDT

1992) ready.
Name (ftp.uu.net:don): anonymous
331 Guest login ok, send e-mail address as password.
Password:
230- Welcome to the UUNET archive.
230-
230-

For information about UUNET, call +1 703 204 8000 ...
Access is allowed all day ...

< a lot of stuff here omitted>

230 Guest login ok, access restrictions apply.

To automate this interaction, a script has to wait for the prompts and send the
responses. The first prompt is for a name, to which the script replies "anonymous\r".
The second prompt is for a password (or e-mail address) to which the script replies
"don@libes.com\r". Finally, the script looks for a prompt to enter ftp commands.
This looks like "ftp> "

expect "Name"
send "anonymous\r"
expect "Password:"
send "don@libes.com\r"
expect "ftp> "

Notice that each line sent by the script is terminated with \r. This denotes a return char
acter and is exactly what you would press if you entered these lines at the shell, so that
is exactly what Expect has to send.

It is a common mistake to terminate send commands to a process followed by \n. In
this context, \n denotes a linefeed character. You do not interactively end lines with a
linefeed. So Expect must not either. Use "\r".

Contrast this to what I was doing earlier-sending to a user, or rather, standard output.
Such strings were indeed terminated with a \n. In that context, the \n denotes a

80 Exploring Expect

newline. Because standard output goes to a terminal, the terminal driver translates this
to a carriage-return linefeed sequence.

Similarly, when reading lines from a program that would normally appear on a terminal,
you will see the carriage-return linefeed sequence. This is represented as \r\n in an
expect pattern.

This may seem confusing at first, but it is inherent in the way UNIX does terminal I/O
and in the representation of characters and newlines in strings. The representation used
by Tel and Expect is common to the C language and most of the UNIX utilities. I will
have more to say on the subject of newlines and carriage returns in Chapter 8 (p. 185).

Running this script produces almost the same output as when it was run by hand. The
only difference is when the program is spawned. When you manually invoke ftp, you
normally see something like:

% ftp ftp.uu.net

Instead expect shows:

spawn ftp ftp.uu.net

The difference is that there is no shell prompt and the string spawn appears. In Chapter
13 (p. 298), I will show how to customize this string or get rid of it entirely.

The remainder of the output is identical whether run interactively via the shell or auto
mated via Expect.

Uunet is a very large repository of public-access on-line information. Among other
things stored there are the standards and other documents describing the Internet.
These are called RFCs (Request For Comments). For instance RFC 959 describes the FTP
protocol and RFC 854 describes the Telnet protocol. These RFCs are all in separate files
but stored in one common directory. You can go to that directory using the following
commands:

send "cd inet/rfc\r"

Each RFC is assigned a number by the publisher. Uunet uses this number to name the
file containing the RFC. This means that you have to know the mapping from the title to
the number. Fortunately, Uunet has such an index stored as a separate document. You
can download this with the following additional commands:

expect "ftp> "
send "binary\r"
expect "ftp> "
send "get rfc-index.Z\r"
expect "ftp> "

Getting Started With Expect 81

The first line waits to make sure that the ftp server has completed the previous
command. The binary command forces ftp to disable any translation it might other
wise attempt on transferred files. This is a necessity because the index is not a text file
but a compressed file. This format is implied by the . Z extension in the name.

The RFCs are named rfc###. Z, where ### is the RFC number. Along with the index,
they are all stored in the directory inet/rfc. By passing the RFC number as an argu
ment, it is possible to add two more commands to download any RFC.

send "get rfc$argv.Z\r"
expect "ftp> "

This extracts the number from the command line so that you could call it from the shell
as:

% ftp-rfc 1178

Notice that after the get command is another expect for a prompt. Even though the
script is not going to send another command, it is a good idea to wait for the prompt.
This forces the script to wait for the file to be transferred. Without this wait, Expect
would reach the end of the script and exit. ftp would in turn exit, and the file transfer
would almost certainly not be completed by then.

ftp actually has the capability to tell if there were problems in transferring a file, and
this capability should be used if you want a robust script. In the interest of simplicity I
will ignore this now, but eventually I will start presenting scripts that are more robust.

However, there is one change for robustness that cannot be ignored. The default
timeout is 10 seconds, and almost any ftp transfer takes at least 10 seconds. The
simplest way to handle this is to disable the timeout so that the script waits as long as it
takes to get the file. As before, this is done by inserting the following command before
any of the expect commands:

set timeout -1

So far this script simply retrieves the RFC from Uunet. As I noted earlier, the file is
compressed. Since you usually want to uncompress the RFC, it is convenient to add
another line to the script that does this. The uncompress program is not interactive so
it can be called using exec as:

exec uncompress rfc$argv.Z

You could certainly spawn it, but exec is better for running non-interactive programs
you do not have to mess around with send and expect. If uncompress has any prob
lems, Expect reports them on the standard error.

82 Exploring Expect

The final script looks like this:

#!/usr/local/bin/expect
retrieve an RFC (or the index) from uunet via anon ftp

if {[llength $argv] == O}
puts "usage: ftp-rfc {-indexl#}"
exit 1

set timeout -1
spawn ftp ftp.uu.net
expect "Name"
send "anonymous\r"
expect "Password:"
send "don@libes.com\r"
expect "ftp> "
send "cd inet/rfc\r"
expect "ftp> "

send "binary\r"
expect "ftp> "
send "get rfc$argv.Z\r"
expect "ftp> "

exec uncompress rfc$argv.Z

I have added a comment to the top describing what the script does, and I have also
added a check for the arguments. Since the script requires at least one argument, a
usage message is printed if no arguments are supplied.

More checks could be added. For example, if a user runs this script as "ftp-rfc
1178 1179", it will not find any such file-the get will try to get a file named
rfc1178 and save it locally as 1179. z-obviously not what the user intended. How
might you modify the script to handle this case?

The interact Command
All of the uses of Expect so far have been to totally automate a task. However, some
times this is too rigid. For a variety of reasons you may not want to completely automate
a task. A common alternative is to automate some of it and then do the rest manually.

In the previous example, anonymous ftp was used to retrieve files automatically from
the site ftp. uu. net. At the beginning of that script was some interaction to identify

Getting Started With Expect 83

myself to the ftp server. This consisted of entering the string anonymous\r followed
by my email address. Here was the Expect fragment to do it:

expect "Name"
send "anonymous\r"
expect "Password:"
send "don@libes.com\r"

Now consider doing this manually. If you like to browse through the many computers
that support anonymous ftp, repeating this little identification scenario can be a
nuisance. And it seems rather silly since your computer is perfectly capable of
supplying this information. This so-called password is not really a secret password-it is
just an email address. Let Expect do this part while you do the browsing.

Expect provides a command that turns control from the script over to you. It is named
interact and called as:

interact

When this command is executed, Expect stops reading commands from the script and
instead begins reading from the keyboard and the process. When you press keys, they
are sent immediately to the spawned process. At the same time, when the process sends
output, it is immediately sent to the standard output so that you can read it.

The result is that you are effectively connected directly to the process as if Expect was
not even there. Conveniently, when the spawned process terminates, the interact
command returns control to the script. And if you make interact the last line of the
script, then the script itself terminates as well.

Example -Anonymous ftp
The interact command is ideal for building a script I call aftp. This script consists of
the user/password interaction from the previous example and an interact command.
The complete aftp script is shown below.

Anytime you want to begin anonymous ftp, you can use this little script. It will auto
matically supply the appropriate identification and then turn control over to you. When
you type quit to ftp, ftp will exit, so interact will exit, and then the script will
exit.

#!/usr/local/bin/expect
spawn ftp $argv
expect "Name"
send "anonymous\r"
expect "Password:"
send "don@libes.com\r"
interact

84 Exploring Expect

Notice that the script does not wait for "ftp> " before the interact command. You
could add another expect command to do that, but it would be redundant. Since the
interact waits for characters from the process as well as the keyboard simulta
neously, when the "ftp> " finally does arrive, interact will then display it.
Presumably, a user will wait for the prompt before typing anyway so there is no func
tional benefit to using an explicit expect.

With only a little more work, this script can be jazzed up in lots of ways. For example,
rather then embedding your name in the script, you can pull it out of the environment
by using the expression $env (USER) . The full command in the script would be:

send "$env(USER)@libes.com\r"

It is a little more difficult to make this script portable to any machine because there is no
standard command to retrieve the domain name (presuming you are using domain
name style email addresses, of course). While many systems have a command literally
called domainnarne, it often refers to the NIS domain name, not the Internet domain
name. And the hostnarne command does not dependably return the domain name
either.

One solution is to look for the domain name in the file "/etc/resolv.conf". This
file is used by the name server software that runs on most UNIX hosts on the Internet.
Here is a procedure to look up the domain name:

proc domainname {} {
set file [open /etc/resolv.conf r]
while {[gets $file buf] ! = -l} {

if {[scan $buf "domain %s" name] l} {

close $file
return $name

close $file
error "no domain declaration in /etc/resolv.conf"

The domainnarne procedure reads / etc/resol v. conf until it encounters a line that
begins with the string domain. The rest of the line is returned. If no string is found, or
the file cannot be read, an error is generated.

The full command in the script can now be written as:

send "$env(USER)@[domainname]\r"

Getting Started With Expect 85

Exercises
1. The ftp-rfc script does not understand what to do if the user enters multiple RFC

numbers on the command line. Modify the script so that it handles this problem.

2. Modify ftp-rfc so that if given an argument such as "telnet", the script first
retrieves the index, then looks up which RFCs mention the argument in the title, and
downloads them. Cache the index and RFCs in a public directory so that they do not
have to be repeatedly downloaded.

3. Most ftp sites use a root directory where only pub is of interest. The result is that "cd
pub" is always the first command everyone executes. Make the aftp script automati
cally cd to pub and print the directories it finds there before turning over control to
interact.

4. Make the aftp script cd to pub only if pub exists.

5. Write a script to dial a pager. Use it in the error handling part of a shell script that per
forms a critical function such as backup or fsck.

6. The domainname procedure on page 84 is not foolproof. For example, the file
resol v . conf might not exist. Assume the procedure fails on your system and ask
nslookup for the current domain name.

7. Write a script that connects to a modem and dials phone numbers from a list until one
answers.

In This Chapter:

• Glob (Shell-style)
Patterns

• Keyword Patterns:
eo/, timeout

• Ending Processes

• Ending Scripts

Glob Patterns And
Other Basics

In the last chapter, I showed some simple patterns that allow you to avoid having to
specify exactly what you want to wait for. In this chapter, I will describe how to use
patterns that you are already probably familiar with from the shell-glob patterns. I will
also describe what happens when patterns do not match. I will go over some other
basic situations such as how to handle timeouts. Finally I will describe what to do at the
ends of scripts and processes.

The * Wildcard
Suppose you want to match all of the input and the only thing you know about it is that
hi occurs within it. You are not sure if there is more to it, or even if another hi might
appear. You just want to get it all. To do this, use the asterisk (*). The asterisk is a wild
card that matches any number of characters. You can write:

expect "hi*"
send "$expect_out(O,string) $expect_out(buffer)"

If the input buffer contained "philosophic\n", expect would match the entire
buffer. Here is the output from the previous commands:

hilosophic
philosophic

The pattern hi matched the literal hi while the * matched the string "losophic\n".
The first p was not matched by anything in the pattern so it shows up in
expect_out (buffer) but not in expect_out (0, string).

87

88 Exploring Expect

Earlier I said that * matches any number of characters. More precisely, it matches the
longest string possible while still allowing the pattern itself to match. With the input
buffer of "philosophic \n", compare the effects of the following two commands:

expect "hi*"
expect "hi*hi"

In the first one, the * matches losophic\n. This is the longest possible string that the
* can match while still allowing the hi to match hi. In the second expect, the * only
matches losop, thereby allowing the second hi to match. If the * matched anything
else, the entire pattern would fail to match.

What happens with the following command in which there are two asterisks?

expect "*hi*"

This could conceivably match in two ways corresponding to the two occurrences of "hi"
in the string.

possibility (1)

possibility (2)

* matches hi matches * matches

philosop

p

hi

hi

c\n

losophic\n

What actually happens is possibility 0). The first * matches philosop. As before, each
* tries to match the longest string possible while allowing the total pattern to match, but
the *'s are matched from left to right. The leftmost *'s match strings before the right
most *'s have a chance. While the outcome is the same in this case (that is, the whole
pattern matches), I will show cases later where it is necessary to realize that pattern
matching proceeds from left to right.

* At The Beginning Of A Pattern Is Rarely Useful
Patterns match beginning at the earliest possible character in a string. In Chapter 3 (p.
74), I showed how the pattern hi matched the first hi in philosophic. However, in
the example above, the subpattern hi matched the second hi. Why the difference?

The difference is that hi was preceded by "*". Since the * is capable of matching
anything, the leading * causes the match to start at the beginning of the string. In
contrast, the earliest point that the bare hi can match is the first hi. Once that hi has
matched, it cannot match anything else-including the second hi.

In practice, a leading * is usually redundant. Most patterns have enough literal letters
that there is no choice in how the match occurs. The only remaining difference is that
the leading * forces the otherwise unmatched leading characters to be stored in

Glob Patterns And Other Basics 89

expect_out (0 I string). However, the characters will already be stored in
expect_out (buffer) so there is little merit on this point alone.t

* At The End Of A Pattern Can Be Tricky
When a * appears at the right end of a pattern, it matches everything left in the input
buffer (assuming the rest of the pattern matches). This is a useful way of clearing out
the entire buffer so that the next expect does not return a mishmash of things that
were received previously and things that are brand new.

Sometimes it is even useful to say:

expect *

Here the * matches anything. This is like saying, "I don't care what's in the input buffer.
Throw it away." This pattern always matches, even if nothing is there. Remember that *
matches anything, and the empty string is anything! As a corollary of this behavior, this
command always returns immediately. It never waits for new data to arrive. It does not
have to since it matches everything.

In the examples demonstrating * so far, each string was entered by a person who
pressed return afterwards. This is typical of most programs, because they run in what is
called cooked mode. Cooked mode includes the usual line-editing features such as back
space and delete-previous-word. This is provided by the terminal driver, not the
program. This simplifies most programs. They see the line only after you have edited it
and pressed return.

Unfortunately, output from processes is not nearly so well behaved. When you watch
the output of a program such as ftp or telnet (or cat for that matter), it may seem as
if lines appear on your screen as atomic units. But this is not guaranteed. For example,
in the previous chapter, I showed that when ftp starts up it looks like this:

% ftp ftp.uu.net
Connected to ftp.uu.net.
220 ftp.UU.NET FTP server (Version 6.34 Thu Oct 22 14:32:01 EDT

1992) ready.
Name (ftp.uu.net:don):

Even though the program may have printed "Connected to ftp. uu. net. \n" all at
once-perhaps by a single printf in a C program-the UNIX kernel can break this
into small chunks, spitting out a few characters each time to the terminal. For example,
it might print out "Conn" and then "ecte" and then "d to" and so on. Fortunately,
computers are so fast that humans do not notice the brief pauses in the middle of

t The more likely reason to see scripts that begin many patterns with "*'" is that prior to Expect version 4. all
patterns were anchored, with the consequence that most patterns required a leading "*".

90 Exploring Expect

output. The reason the system breaks up output like this is that programs usually
produce characters faster than the terminal driver can display them. The operating
system will obligingly wait for the terminal driver to effectively say, "Okay, I've
displayed that last bunch of characters. Send me a couple more." In reality, the system
does not just sit there and wait. Since it is running many other programs at the same
time, the system switches its attention frequently to other programs. Expect itself is one
such "other program" in this sense.

When Expect runs, it will immediately ask for all the characters that a program
produced only to find something like "Conn". If told to wait for a string that matches
"Name*: ", Expect will keep asking the computer if there is any more output, and it
will eventually find the output it is looking for.

As I said, humans are slow and do not notice this chunking effect. In contrast, Expect is
so fast that it is almost always waiting. Thus, it sees most output come as chunks rather
than whole lines. With this in mind, suppose you wanted to find out the version of ftp
that a host is using. By looking back at the output, you can see that it is contained in the
greeting line that begins "220" and ends with "ready. ". Naively, you could wait for
that line as:

expect "220*" ;# dangerous

If you are lucky, you might get the entire line stored in $expect_out (0, string) .
You might even get the next line in there as well. But more likely, you will only get a
fragment, such as "220 f" or "220 ftp.UU.NE". Since the pattern 220* matches
either of these, expect has no reason to wait further and will return. As I stated earlier,
expect returns with whatever is the longest string that matches the pattern. The
problem here is that the remainder of the line may not have shown up yet!

If you want to get the entire line, you must be more specific. The following pattern
works:

"220*ready. "

By specifying the text that ends the line, you force expect to wait for the entire line to
arrive. The"." is not actually needed just to find the version identifier. You could just
make the pattern:

"220*re"

Leaving off the e would be too short. This would allow the pattern to match the r in
server rather than ready. It is possible to make the overall pattern even shorter by
looking for more unusual patterns. But quite often you trade off readability. There is an
art to choosing patterns that are correct, yet not too long but still readable. A good
guideline is to give more priority to readability. The pattern matching performed by
Expect is very inexpensive.

Glob Patterns And Other Basics 91

More Glob Patterns
In all the examples so far using the * wildcard, it has matched an arbitrarily long string
of characters. This kind of pattern specification is called shell-style since it is similar to
the way filename matching works in the shell. The name of the program which did this
matching for the Bourne shell was called glob. Hence such patterns are often called
glob-style also. From now on, I will just call them glob patterns.

Tel's "string match" command also uses glob patterns. Glob patterns support two
other wildcards. They are "?" and" []".

? matches any single character. For example, the pattern a?d would match abd but not
abcd.

Ranges match any character specified between square brackets. For example,
[abcde f 0 12 3 4 5 6789] matches any hexadecimal digit. This pattern can also be
expressed as [a - f 0 - 9]. If you want to match a literal hyphen, make it the first or last
character. For example, [-a-c] matches "-", "a", "b", or "c".

Unfortunately, brackets are also special to Tel. Anything in brackets is evaluated immedi
ately (unless it is deferred with braces). That means that an expect command using a
pattern with a range must be written in one of two ways:

expect n\[a-fO-9]n
expect {[a-fO-9]}

;# strongly preferred

In the first case, the backslash (\) allows the bracket to be passed literally to the
expect command, where it is then interpreted as the start of a range. In the second
case, the braces force everything inside to be read as their literal equivalents. I prefer
the first style-because in the second case, sequences such as \n and $pat embedded
in braces are not processed but are taken as literal character sequences of \ and nand
$ and p and a and t. This is usually not what is intended.

You can prefix the right bracket with a backs lash if it makes you feel good, but it is not
necessary. Since there is no matching left-hand bracket to be matched within the
double-quoted string, nothing special happens with the right-hand bracket. It stands for
itself and is passed on to the expect command, where it is then interpreted as the end
of the range.

Backslashes
Tel makes various substitutions when you have backslashes, dollar signs, and brackets
in command arguments. You should be familiar with these from Chapter 2 (p. 23). In
this section, I am going to focus on backslashes.

92 Exploring Expect

Backslash translations are done by Tel only when processing command arguments. For
example, \n is translated to a linefeed, \ [is translated to a "[", and \ \ is translated to a
"\". Sequences that have no special translation are replaced by the character without
the backslash. For example, \z is translated to a "z".

While pattern matching, Expect uses these translated values. For example:

expect lI\n ll ;# matches \n (linefeed character)
expect lI\r ll ;# matches \r (return character)
expect II\ZIl ;# matches z (literal z)
expect "\{" ;# matches (literal left brace)

If any backslashes remain after Tel's translation, the pattern matcher (i.e., pattern
matching algorithm) then uses these remaining backslashes to force the following char
acter into its literal equivalent. For example, the string "\ \ *" is translated by Tel to
"\ *". The pattern matcher then interprets the "\ *" as a request to match a literal "*".

expect "*" ;# matches * and? and X and abc
expect "*" ;# matches * but not? or X or abc

Similarly, backslashes prevent a ? from acting like a wildcard.

expect "?" ;# matches * and? and X but not abc
expect "\\?" ;# matches? but not * or X or abc

So that you can see the consistency here, I have written out some more examples. Do
not try to memorize these. Just remember two rules:

1. Tel translates backs lash sequences.

2. The pattern matcher treats backs lashed characters as literals.

These rules are executed in order and only once per command.

For example, in the second command below, Tel translates the "\n" to a linefeed. The
pattern matcher gets the linefeed and therefore tries to match a linefeed. In the third
command, Tel translates the "\ \" to "\" so that the pattern matches sees the two charac
ters "\n". By the second rule above, the pattern matcher interprets this as a literal n. In
the fourth command, Tel translates "\ \" to "\" and "\n" to a linefeed. By the second
rule, the pattern matcher strips off the backslash and matches a literallinefeed.

In summary, \n is replaced with a linefeed by Tel but a literal n by the pattern matcher.
Any character special to Tel but notto the pattern matcher behaves similarly.

expect "n" ;# matches n
expect "\n" ;# matches \n (linefeed character)
expect "\\n" ;# matches n
expect "\ \ \n" ; # matches \n
expect "\\\\n" ;# matches sequence of \ and n
expect "\\\\\n" ;# matches sequence of \ and \n

Glob Patterns And Other Basics

expect "\\\\\\n" ;# matches sequence of \ and n
expect "\\\\\\\n" ;# matches sequence of \ and \n
expect "\\\\\\\\n" ;# matches sequence of \, \, and n

93

In the next set of examples, \ * is replaced with a literal * by Tel and by the pattern
matcher. Any character special to the pattern matcher but not Tel behaves similarly.

expect "*,, ;# matches anything
expect "*" ;# matches anything
expect "*" ;# matches *
expect "*" ;# matches *
expect "*" ;# matches \ followed by anything
expect "*" ;# matches \ followed by anything
expect "*" ;# matches \ followed by *

The" [" is special to both Tel and the pattern matcher so it is particularly messy. To
match a literal" [", you have to backs lash once from Tel and then again so that it is not
treated as a range during pattern matching. The first backslash, of course, has to be
backs lashed to prevent it from turning the next backslash into a literal backslash!

expect "\\\[" ;# matches literal [

This is quite a headache. In fact, if the rest of the pattern is sufficiently specific, you may
prefer to improve readability by just using using a ? and accepting any character rather
than explicitly forcing a check for the" [".

The next set of examples shows the behavior of " [" as a pattern preceded by differing
numbers of backslashes. If the" [" is not prefixed by a backslash, Tel interprets what
ever follows as a command. For these examples, imagine that there is a procedure
named XY that returns the string "n *w".

expect" [XYl" ;# matches n followed by anything
expect "\[XYl" ;# matches X or Y
expect "\\[XYl" ;# matches n followed by anything followed by w
expect "\\\[XYl" ;# matches [XYl
expect "\\\\[XYl" ;# matches \ followed by n followed ...
expect "\\\\\[XYl" ;# matches sequence of \ and X or Y

The \ \ [XY] case deserves elose scrutiny. Tel interprets the first backslash to mean that
the second is a literal character. Tel then produces "n*w" as the result of the XY

command. The pattern matcher ultimately sees the four character string "\n *w". The
pattern matcher interprets this in the usual way. The backslash indicates that the n is to
be matched literally (which it would even without the backslash since the n is not
special to the pattern matcher). Then as many characters as possible are matched so
that a w can also be matched.

By now, you may be wondering why I write all patterns in double quotes in preference
to using braces. It is true that braces shorten some of the patterns I have shown here.

94 Exploring Expect

However, braces do not allow patterns to be specified from variables, nor do they allow
backslashed characters such as newlines. But such patterns occur so frequently that you
have to be familiar with using double quotes anyway. Constantly thinking about
whether to use braces or double quotes is unproductive. Learn how to use double
quotes and do not think further about using braces for patterns. If you know Tel very
well and skipped Chapter 2 Cp. 23), it may be helpful for you to now go back and read
the beginning of it as well as the discussion of eval on page 56.

Handling Timeout
Much of the time, expect commands have only one argument-a pattern with no
action-similar to the very first one in this chapter:

expect "hi"

All this does is wait for hi before continuing. You could also write this as:

expect "hi" {}

to show the empty action, but expect does not require it. Only the last action in an
expect command can be omitted:

expect
"hill
"hello"
"bye"

{send "You said hi\n"}
{send "Hello yourself\n"}

As a natural consequence of this, it is typical to write expect commands with the
exception strings at the top and the likely string at the bottom. For example, you could
add some error checking to the beginning of the anonymous ftp script from the
previous chapter:

spawn ftp $argv
set timeout 10
expect {

"connection refused" exit
"unknown host" exit
II Narne II

send "anonymolls\r"

If the script sees Name it will go on and send anonymous\r. But if it sees "unknown
host" or "connection refused", the script will exit. Scripts written this way flow
gracefully from top to bottom.

If, after 10 seconds, none of these patterns have been seen, expect will timeout and
the next command in the script will be executed. I used this behavior in constructing

Glob Patterns And Other Basics 95

the timed_read script in the previous chapter. Here, however, I only want to go to
the next command if Name is successfully matched.

You can distinguish the successful case from the timeout by associating an action with
the timeout. This is done by using the special pattern timeout. It looks like this:

expect {
timeout {puts "timed out"; exit}
"connection refused" exit
"unknown host" exit
11 Name "

If none of the patterns match after ten seconds, the script will print "timed out" and
exit. The result is that the script is more robust. It will only go on if it has been
prompted to. And it cannot hang forever. You control how long it waits.

Although the timeout pattern is invaluable, it is not a replacement for all error
handling. It is tempting to remove the patterns "connection refused" and
"unknown host":

expect {
timeout exit
"Name II

Now suppose "unknown host" is seen. It does not match Name and nothing else
arrives within the ten seconds. At the end of ten seconds, the command times out.
While the script still works, it fails very slowly.

This is a common dilemma. By explicitly specifying all the possible errors, a script can
handle them more quickly. But that takes work on your part while writing the script.
And sometimes it is impossible to find out all the error messages that a program could
produce.

In practice, it suffices to catch the common errors, and let timeout handle the obscure
conditions. It is often possible to find a pattern with appropriate wildcards that match
many errors. For example, once ftp is connected, it is always possible to distinguish
errors. ftp prefaces all output with a three-digit number. If it begins with a 4 or 5, it is
an error. Assuming ftp's line is the only thing in expect's input buffer, you can match
errors using the range construct described on page 91:

expect {
timeout {unexpected ... }
"A\ [45]" {error ... }
"ftp>"

96 Exploring Expect

As I described in Chapter 3 Cp. 73), the /'0, serves to anchor the 4 or 5 to the beginning of
the buffer. If there are previous lines in the buffer-as is more likely-you can use the
pattern "\n \ [45] ". The linefeed C\n) matches the end of the carriage-return linefeed
combination that appears at the end of any line intended to be output on a terminal.

When the timeout pattern is matched, the data that has arrived is not moved to
expect_out (buffer). (In Chapter 11 Cp. 252), I will describe the rationale for this
behavior.) If you need the data, you must match it with a pattern. You can use the *
wildcard to do so:

expect *

As I noted earlier, this command is guaranteed to return immediately, and
expect_out (buffer) will contain what had arrived when the previous timeout
occurred.

By convention, the timeout pattern itself is not quoted. This serves as a reminder to
the reader that expect is not waiting for the literal string "timeout". Putting quotes
around it does not change expect's treatment of it. It will still be interpreted as a
special pattern. Quotes only protect strings from being broken up, such as by spaces.
For that reason, you can actually write a subset of expect patterns without any quotes.
Look at the following intentionally obfuscated examples:

expect "hi" there
expect hi there
expect "hi there"

In the first and second commands, hi is the pattern, while "hi there" is the pattern
in the third command. For consistency, use quotes around all textual patterns, and leave
them off the special pattern timeout. In Chapter 5 Cp. 109), I will show how to wait for
the literal string timeout.

Here is another example of the timeout pattern. You can use the ping command to
test whether a host is up or not. Assume that host elvis is up and houdini is down.
Not all versions of ping produce the same output, but here is how it looks when I run it:

% ping elvis
elvis is alive
% ping houdini
no answer from houdini

What ping actually does is to send a message to the host which the host should
acknowledge. ping usually reports very quickly that the host is up, but it only says
"no answer" after waiting quite a while-20 seconds is common.

If the host is on your local network, chances are that if the host does not respond within
a second or two, it is not going to respond. If you are only looking for a host to farm out
some background task, this heuristic works well. Realistically, it is exactly the same

Glob Patterns And Other Basics 97

heuristic that ping uses-just a little less tolerant. Here is an Expect script that provides
a ping-like response within 2 seconds.

spawn ping $host
set timeout 2
expect "alive" {exit O} timeout {exit 1}

If the expect sees alive within two seconds, it returns 0 to the caller; otherwise it
returns 1. When called from a /bin/ sh script, you find the result by inspecting the
status. This is stored in the shell variable $? (or $status in csh).

$ echo $?
o

Strictly speaking, the status must be an integer. This is good in many cases-integers
are easier than strings to check anyway. However, it is possible to get the effect of
returning a string simply by printing it out. Consider the following commands which
print out the same messages as ping:

spawn ping $host
set timeout 2
expect "alive" {exit O} timeout

puts "no answer from $host"
exit 1

The timeout action prints the string "no answer from ... " because the script will
abort ping before it gets a chance to print its own error message. The al i ve action
does not have to do anything extra because ping already prints the string. Both strings
are sent to the standard output. In Chapter 7 (p. 175), you will see how to prevent
printing strings from the underlying process, and even substitute your own if desired.

Some versions of ping have a user-settable timeout. But the technique I have shown is
still useful. Many other programs are completely inflexible, having long fixed time outs
or none at all.

rsh is a program for executing shell commands remotely.t rsh is an example of a
program that is very inflexible when it comes to timeouts. rsh waits for 75 seconds
before deciding that a machine is down. And there is no way to change this tin,e
period. If rsh finds that the machine is up, rsh will then execute the command but
without any ability to timeout at all. It would be nice if rsh and other commands all
had the ability to timeout, but it is not necessary since you can achieve the same result
with an Expect script.

t Some systems call it remsh.

98 Exploring Expect

Rather than writing separate scripts to control rsh and every other problem utility, you
can write a parameterized script to timeout any program. The two parameters of interest
are the program name and the timeout period. These can be passed as the first and
second arguments. Assuming the script is called maxtime, it could be used from the
shell to run a program prog for at most 20 seconds with the following:

% maxtime 20 prog

Here is the script:

#!/usr/local/bin/expect
set timeout [lindex $argv 0]
spawn [lindex $argv 1]
expect

The script starts by setting the timeout from the first argument. Then the program
named by the second argument is spawned. Finally, expect waits for output. Since
there are no patterns specified, expect never matches using any of the output. And
because there are no patterns to match, after enough time, expect times out. Because
there is no timeout action, expect simply returns, and the script ends. Alternatively,
if the program ends before the timeout, expect notices this and returns immediately.
Again, the script ends.

Handling End Of File (eo.D
In the previous example, the expect command waited for output for a specific period
of time. If the program terminates, there can be no more output forthcoming. expect
recognizes this. SpeCifically, expect recognizes the closing of the connection to the
spawned process. This closing is referred to as end of file or more succinctly, eoft

While it is not a rule, usually a process closes the connection just prior to exiting. By
default, the expect command simply returns when it sees an eof (i.e., closing). In light
of this, it is worth reviewing the maxt ime script.

After the maxtime script spawned a process, expect waited. Since there were no
patterns, the output could not match. If the process continued running up to the
timeout period, expect would return and the script would return. If the process
stopped running before the timeout period, the process would first close the connec
tion. expect would see this as an eof. Again, expect would return and then the script
would return.

t The terminology comes straight from UNIX, where all output sources can be viewed as files, including devices
and processes.

Glob Patterns And Other Basics 99

Similarly to the wayan action is associated with a timeout, it is possible to associate an
action with an eof. The special pattern eof is used. For example, the maxtime script
could use this to report whether the spawned program completed within the allotted
time or ran over.

#!/usr/local/bin/expect
set timeout [lindex $argv 0]
eval spawn [lrange $argv 1 end]
expect {

timeout {puts "took too much time"}
eof {puts "finished in time"}

Here are some test cases called from the shell using the UNIX sleep command. The
sleep command is the perfect program to test with since it waits for exactly the amount
of time you request.

% maxtime 2 sleep 5
spawn sleep 5
took too much time
% maxtime 5 sleep 2
spawn sleep 2
finished in time

In the first case, sleeping for five seconds took longer than two, so the script reported
that it "took too much time". In the second case, sleeping for two seconds is easily
accomplished in five seconds, so the script said "finished in time".

Hints On The spawn Command
I made one other change to the script that is worth noting. The first script only accepted
a Single argument as a program name. But this new version of maxtime understands
that additional arguments after the program name are arguments to the program. This is
accomplished with the command:

eval spawn [lrange $argv 1 end]

The lrange extracts all but the first argument (the timeout) and returns a list where the
first element is the program name and the remaining elements are the arguments to the
program. Assuming lrange produces "sleep 5", eval joins that to spawn ending up
with:

spawn sleep 5

eval executes this as if it were the original command line. Compare the eval
command with the following:

spawn [lrange $argv 1 end] ;# WRONG!

100 Exploring Expect

In this case, spawn takes the result of lrange as a program name and tries to run that
program. Again, the result of lrange is "sleep 5", and this entire string is then used
as the program name. Needless to say, there is no program by the name "sleep 5".

It is worth remembering the command "eval spawn [lrange $argv ... end]".
It is handy for writing scripts that allow optional command-line arguments to be passed
in to become the arguments to the spawned process. This command or a variation of it
appears in many of the later examples in this book.

Here is the production version of the maxt ime script:

#!/usr/local/bin/expect --
set timeout [lindex $argv 0]
eval spawn [lrange $argv 1 end]
expect

One other precautionary note about spawn should be observed for now. Do not use
spawn from within a procedure. Just call spawn from outside procedures. In scripts
that only run a single process, this is an easy guideline to follow. In Chapter 10 (p. 240),
you will learn more about spawn and at that point, the restriction will be lifted.

Back To Eo!
In the ping script on page 97, there was no specific handling of the eof. Here is that
script again:

spawn ping $host
set timeout 2
expect "alive" {exit O} timeout {exit 1}

If expect sees an eof, then ping terminates within the timeout but without producing
output containing "alive". How is this possible? After all, a host is either up or incom
municado, right? In fact, there is a third case. ping also reports if the host does not
exist- that is, if there is no computer with such a name. In this case, ping says
"unknown host", closes the connection, and exits. expect sees an eof, but since
there is no eof pattern and corresponding action, the expect command returns. There
are no more commands so the script ends.

When the script ends by running out of commands, an implied "exi t 0" is executed.
This is typical for interpreters, and UNIX commands conventionally return 0 to indicate
that a command is successful. But in this case, the script returns 0 when given a non
existent host. This is clearly the wrong behavior. Unfortunately, the right behavior is not
as clear. You could return 1 and revise the definition of what that means from "failure
due to timeout" to simply "failure". Or you could choose a different number, say, 2.
Either can be justified depending on the use to which you want to put the script. ping

Glob Patterns And Other Basics 101

returns 1 when the host is unknown so I will follow suit. Here is the revised script to
handle the eof:

spawn ping $host
set timeout 2
expect "alive" {exit O} timeout {exit 1} eof {exit 1}

In some ways this still does not handle the problem perfectly. For example, without
looking directly at the source to ping, I do not know if there are other ways it could
behave. For now, I am just lumping everything I do not know into an error.

But this may be sufficient. Indeed, one of the reasons for using Expect is that you may
not be able to see the source in the first place. So taking a conservative approach of
calling everything that is not expected an error, is a practical and common solution.

Timeout and eof are the only types of exception conditions possible. As in the ping
example, both exceptions often deserve the same type of handling. For this reason,
there is a special pattern called defaul t that represents both conditions. The last line
of the ping script could be rewritten to use defaul t as:

expect "alive" {exit O} default {exit 1}

Using default (or both timeout and eof) covers all possible conditions that an
expect command can match. It is a good idea to account for all conditions in every
expect command. This may seem like a lot of work, but it can payoff handsomely
during debugging. In Chapter 11 (p. 259), I will describe how to use the
expect_before and expect_after commands to catch all timeouts and eofs
without specifying them on each expect. Those commands can greatly simplify your
scripts.

The close Command
When a spawned process closes its connection to Expect, the expect command sees
an eof.

(Expect)1--------((spawned)
. eof ... close process
~---~

(2) Expect sees an eof.

(1) Spawned
closes its end
connection.

process
of the

This scenario can also occur in the reverse direction. Expect can close the connection
and the spawned process will see an eof.

102 Exploring Expect

(Expect)l-C-Io-s-e-----.--e-o-if (sg:~~~~)
(1) Expect closes its end of
the connection. (2) Spawned process sees

an eof and a "hangup"
signal.

By closing the connection, Expect is telling the spawned process that it has nothing
more to say to the process. Usually the process takes this as an indication to exit. This is
similar to what occurs when you press AD while manually interacting with a process.
The process does not see the AD. Rather, the system turns this into an eof. The process
reads the eof and then responds by closing the connection and exiting.

There is one difference between how Expect and the spawned process treat a closed
connection. When Expect closes the connection, the spawned process sees an addi
tional indication in the form of a hangup signal. Most processes take this as an
instruction to immediately exit. The net result is very similar to reading an eof. In either
case, the process exits. Later in the book, I will go into more detail about what signals
are and how you can ignore them or take advantage of them.

From Expect, the command to close the connection to a process is close. It is called as:

close

No matter which side-the Expect process or the spawned process-closes the connec
tion first, the other side must also close the connection. That is, if the spawned process
first closes the connection, then the Expect process must call close. And if the Expect
process first calls close, the spawned process must then call close.

Fortunately, in many scripts it is not necessary to explicitly close the connection because
it can occur implicitly. There are two situations when you do not have to use close:

• when the Expect process ends, or

• when the expect command reads an eof from the spawned process.

In both of these cases, Expect closes the connection for you. This effectively means that
the only time you need to explicitly write close is when you want to close the connec
tion before the spawned process is ready to and you are not ready to end the entire
Expect script.

In all the examples so far it has not been necessary to explicitly close the connection.
Either expect read an eof or the script exited, thereby sending an eof to the spawned
process, which in turn closed its end of the connection. It is not necessary to wait for an

Glob Patterns And Other Basics 103

eof after you have already closed the connection. Indeed, it is not even possible. When
the connection is closed, you cannot read anything-data or eof. The connection no
longer exists.

Here is an example of why you might want to call close explicitly. Imagine you are
interacting with ftp. If you have an "ftp> "prompt, you can send the command
qui t \r and ftp will immediately exit, closing the connection from its end. But
suppose ftp is in the middle of transferring a file and you need to close the connection
immediately. You could interrupt ftp, wait for it to prompt, and then send the quit\r
command. But it is simpler to just close the connection. ftp will abort the transfer and
quit.

This may seem like a fairly rude way of doing things. After all, you do not have to
abruptly close connections like this. You can always work through whatever scenario a
program wants for it to initiate the close on its side. But it is important to understand
this technique in order to handle things such as when you kill an Expect script, for
example, by pressing /\c.

By default, /\C causes Expect to exit (i.e., "exit 0"). This in turn will close the connec
tion to the spawned process, and the spawned process will die. If you want the
spawned process to continue on after the Expect script exits, you have to make special
arrangements. I will describe more about this later.

Programs That Ignore Eo!
There is an exception to the scenario that I just described. Some interactive programs
are rather cavalier when they encounter an eof and do not handle it correctly. However,
if you are prepared for this situation, you can work around it easily enough. There are
two kinds of common misbehavior:

• Some programs ignore eof.

• Some programs ignore data just before eof.

I will discuss the two cases separately.

Some programs ignore eo! Even if you close the connection (by calling close, exiting
the script, or pressing /\C), they ignore the eof and continue waiting for more characters
to arrive. This is characteristic of the ubiquitous telnet implementation and many
other programs that run in raw mode. Raw mode means that no special interpretations
are applied to input characters. For instance, /\C no longer serves as an interrupt, and
/\D no longer acts as an eof. Since users cannot send an eof, these programs have no
reason to expect it and thus do not look for it. The problem is, an eof is exactly what
they get when the connection is closed.

104 Exploring Expect

Avoid explicitly closing programs like these before they are ready. Instead, force them
to close the connection in the way they would when using them manually. For instance,
telnet will close the connection on its own once you log out of the remote host. If
you do not gracefully log out, thereby letting telnet shut down the connection, you
will be left with a telnet process on your system talking to no one. Such a process
must then be killed by hand using the UNIX ki 11 command. (It is possible to do this
from Expect, but I will not go into it until Chapter 13 (p. 296).)

Some programs detect eo! but ignore any other data that comes along with it. An
example is the following Expect script which runs ftp. Three files are requested but
after the script has finished, only two of the files are found.

spawn ftp ...
assume username and password are accepted here
expect "ftp> " {send "get filel\r"}
expect "ftp> " {send "get file2\r"}
expect "ftp> " {send "get file3\r"}

After sending "get file3 \r", Expect immediately closes the connection to ftp and
exits. Then ftp reads the command but also finds the eof as well. Unlike telnet in
the previous example, ftp checks for the eof but it mistakenly assumes that the eof also
means there is no data to process. It simply does not check and therefore the "get
file3 \r" is never done.

In this example, the solution is to add a final expect command to wait for another
prompt. An even simpler example is the following script which starts the vi editor and
sends a command. The command inserts "foo" into a file which is then saved. The "q"
tells vi to quit.

spawn vi file
send "ifoo\033:wq\r"

Because of the final quit command, there is no prompt for which to wait. Instead, it
suffices to wait for an eof from vi itself. And since the eof has no action, the eaf
keyword can be omitted as well. Here is the corrected script:

spawn vi file
send "ifoo\033:wq\r"
expect

Spawned processes that exit on the hangup signal behave similarly to programs that
ignore data just before an eof. The solution is the same. Wait for the spawned process
itself to close the connection first.

Glob Patterns And Other Basics 105

The wait Command
After closing the connection, a spawned process can finish up and exit. Processes exit
similarly to the way that Expect scripts do, with a number (for example, "exi t a"). The
operating system conveniently saves this number and some other information about
how the process died. This information is very useful for non-interactive commands but
useless for interactive commands. Consequently, it is of little value to Expect. Nonethe
less, Expect must deal with it.

Expect must retrieve this information-even if only to discard it. The act of retrieving
the information frees various valuable resources (process slots) within the computer.
Until the information is retrieved, the operating system maintains the information indefi
nitely. This can be seen from the output of ps. Assuming a spawned process has died
and the connection has been closed, ps shows something like this:

PID
4425

TT
?

STAT
Z

TIME
0:00

COMMAND
<defunct>

The Z stands for zombie-someone's attempt to humorously describe a process that is
dead but still haunts the system in an almost useless way. Even the process name and
arguments have been discarded-no matter what they were originally, they show up
here as <defunct>.

To get rid of this zombie, use the wai t command. It is called simply as:

wait

The wai t command returns a list of elements including the spawn id and process id.
These elements are further described in Chapter 14 (p. 313). For now, ignore the return
value of wait.

Because a process will not disappear from the system until you give the wait
command, it is common to speak of waiting for or waiting on a process. Some people
also like to use the term reap as in "reaping a process".

Because wait follows close, it is very common to see people write "close;wait" on
a single line. But if the connection is closed implicitly, the wai t must appear by itself.
Like close, the wait command can also occur implicitly. Unlike close, however,
wait implicitly happens in only one case-when an Expect process (i.e., script) exits.
On exit, all the spawned processes are waited for.

This means that Expect scripts that only spawn a single process and then exit, need not
call wai t since it will be done automatically. The example scripts so far have all taken
advantage of this. Later on, I will show a script in which it is important to explicitly wait.

106 Exploring Expect

One last thing about wai t: If you call it before a process has died, your Expect script
will wait for the process to die-hence the name. It is possible to avoid the delay by
using the -nowai t flag.

wait -nowait

Exercises
1. Write a pattern to match hexadecimal numbers. Write a pattern to match Roman num

bers.

2. Write a pattern to match the literal string timeout. Write a pattern to match the literal
string" timeout" (with the double quotes).

3. Write a script that takes a string and produces a pattern that will match the string.
Make the script prompt for the string to avoid any interpretation of it by the shell.

4. On page 101, I described what happens if the spawned process closes the connection
first and what happens if the script closes the connection first. What happens if both
the script and the spawned process close the connection simultaneously?

5. Write a script that automatically retrieves the latest release of Expect and installs it. In
what ways can you generalize the script so that it can retrieve and install other soft
ware?

In This Chapter:

• Sophisticated
Patterns: Regular
Expression

• Finding Out What
Strings Matched

• How To Match
Prompts Regular Expressions

The previous chapter described glob patterns. You were probably familiar with them
from the shell. Glob patterns are very simple and are sufficient for many purposes.
Hence they are the default style of pattern matching in expect commands. However,
their simplicity brings with it limitations.

For example, glob patterns cannot match any character not in a list of characters, nor
can glob patterns match a choice of several different strings. Both of these turn out to be
fairly common tasks. And while both can be simulated with a sequence of several other
commands, Expect provides a much more powerful and concise mechanism: regular
expressions.

Regular Expressions -A Quick Start
In order to jumpstart your knowledge of regular expressions Cregexp for short), I will
start out by noting the similarities. As the following table of examples shows, every glob
pattern is representable by a regular expression. In contrast, some regular expressions
cannot be represented as glob patterns.

For example, both the glob pattern foo and the regular expression faa match the
literal string "faa". Backslash works in the usual way, turning the following character
into its literal equivalent. "A" and "$" also work the same way as before. Regular expres
sion ranges work as before, plus they can also be used to match any character not in the
range by placing a "A" immediately after the left bracket. (I will show more detail on
this later.) Besides this, the only significant differences in the table are the last two lines
which describe how to match any single character and any number of any characters.

Except for". *", each of the patterns in the table is called an atom. A * appended to an
atom creates a pattern that matches any number (including zero) of the particular atom.

107

J08 Exploring Expect

Table 5-1. Comparison of glob patterns and regular expressions.

glob regexp English

s s literal s

* * literal *
A beginning of string

$ $ end of string

[a-z] [a-z] any character in the range a to z
[Aa-z] any character not in the range a to z

? any single character

* * any number of characters

For example, the regular expression "a *" matches any string of a's, such as "a", "aa",
"aaaaaaaaa" and "". That last string has no a's in it at all. This is considered a match of
zero a's.

The pattern [0-9] * matches strings made up of integers such as "012" and "888".
Notice that the atom does not have to match the same literal value each time. When
matching "012", the range" [0-9]" first matches "0", then it matches "1", and finally
matches "2".

You can uses ranges to construct more useful patterns. For example [1- 9] [0 - 9] *
matches any positive integer. The first atom matches the first digit of the number, while
the remaining digits are matched by the" [0 - 9] *".

C language identifiers can be matched with the pattern" [a-zA-Z_] [a-zA-ZO-
9_] *". This is similar to the previous pattern. In both cases the first character is
restricted to a subset of the characters that can be used in the remaining part of the
string.

In both cases the * only applies to the immediately preceding range. That is because
the * only applies to the immediately preceding atom. One range is an atom; two
ranges are not an atom.

Atoms by themselves and atoms with a * appended to them are called pieces. Pieces
can also consist of atoms with a + or ? appended. An atom followed by + matches a
sequence of one or more matches of the atom. An atom followed by ? matches the
atom or the empty string. For example, "a+" matches "a" and "aa" but not "", while
"a?" matches "a" and "" but not "aa". The pattern "Ox [0-9a-fA-F] +" matches a hexa
decimal number in the C language such as "OxOb2e" or "Oxffff". The pattern "-? [1-
9] [0-9] *" matches positive or negative integers such as 1,10,1000, -1, and -1000.
Notice how the [1- 9] range prevents a zero from being the first digit, avoiding strings
like -05 and 007.

Regular Expressions 109

"-? [1- 9] [0 - 9] *" is a sequence of three pieces. Any sequence of pieces is called a
branch. Branches separated by a I match any of the branches. For example, you could
extend the previous pattern to match any integer with the pattern "-? [1-9] [0-
9] * I 0". The first branch matches any nonzero integer while the second branch
matches zero itself.

Tel integers can be written in decimal, hex, or octal. The following pattern uses three
patterns to match such integers: "-?[1-9] [0-9]*IOx[0-9a-fA-F]+10[0-7]*".

The first branch (" -? [1- 9] [0 - 9] *") matches any positive or negative decimal
constant. The second branch matches any hex constant. The third branch matches any
octal constant. A separate branch for zero is not needed, since it is matched by the octal
branch already. Fortunately, zero in octal is equal to zero in decimal, so there is no
problem interpreting it in a different way!

Identifying Regular Expressions And Glob
Patterns
In order to actually use a regular expression, you must do two things. First, you must
backslash any characters that are special to Tel. For example, the regular expression to
match a single digit is "[0-9]". To prevent Tel from trying to evaluate 0-9 as a
command, the leading bracket must be prefixed with a backslash so that it looks like
this:

\[0-9]

See Chapter 4 (p. 91) for more information on using backslashes.

The second thing you must do is to tell expect that a pattern is a regular expression.
By default, expect assumes patterns are glob patterns. Another line can be added to
Table 5-1.

glob regexp English

-gl -re pattern type prefix

Patterns prefixed with -re are regular expressions. For example, the following
command matches "a", "aa", and "aaaaa". It does not match "ab".

expect -re "a*" ;# regexp pattern

Without the -re, the command matches "aa", "ab", and "ac" (among other things).

expect "a*" ;# glob pattern

It is possible to have a mixture of glob patterns and regular expressions. In the
following example, "a*" is a regular expression but "b*" is a glob pattern.

110

expect
-re "a*" {actionl}
"b*" {action2}

Exploring Expect

The expect command also accepts the -gl flag. The -gl flag tells expect that the
pattern is a glob pattern. This is useful if the pattern looks like one of the keywords
such as timeout or a flag such as -re. t

expect
eof {found_real_eof}
-gl "timeout" {found_literal_timeout}
-gl "-reO {found_real_dash_r_e}

You might also want to pass the pattern as a variable. In this case, the -gl flag also
protects the pattern from matching a keyword or flag.

expect -gl $pattern

If you completely declare your pattern types, you can embed them inside of subroutines
and pass patterns as arguments without worrying about them being misinterpreted. This
is especially useful if you might reuse the subroutines in the future or allow users to
pass arbitrary patterns in to a script. Users of your scripts should not have to care about
the keywords inside of Expect.

Using Parentheses To Override Precedence
Once you understand how to build regular expressions, you need not worry about
remembering the terms "atom", "piece", and "branch". The terms exist only to help you
learn the precedence of the regular-expression operators. To avoid confusion, from
now on I will generically refer to any sub pattern of a complete pattern when it is unim
portant whether it is an atom, piece, or branch.

Because operators such as * and + act only on atoms, they cannot be applied directly to
pieces and branches. For example, the pattern ab* matches an a followed by any
number of b's. In order to treat any subpattern-atom, piece, or branch-as an atom,
enclose it in parentheses. Thus, in order to match any number of ab's, use the pattern
"(ab) *".

Matching real numbers is a good exercise. Real numbers have a whole portion to the
left of the decimal point and a fractional portion to the right. A direct rendering of this
concept is "-? [0-9] *\.? [0-9] *". Notice the period is escaped by placing a

t Any non-keyword pattern beginning with a hyphen must be preceded with "-gl" (or some other pattern type).
This permits the addition of future flags in Expect without breaking existing scripts.

Regular Expressions 111

backslash in front of it. This forces it to match a literal period rather than any character.
The entire pattern matches things like "17.78", "-8", and "0.21". Unfortunately, it also
accepts 0 0 0 0 . 5, which does not seem quite right. You can reject leading zeros while
still accepting a single zero the same way I did earlier-with a branch: "-? (0 1 [1-
9 J [0 - 9 J *) ? \ . ? [0 - 9 J *". This pattern accepts the earlier numbers but it rejects
"0000.5". Unfortunately, it still matches "-0". You can fix this as an exercise but it is
not worth worrying about that much. In Chapter 6 (p. 140), I will demonstrate how to
handle this problem much more easily.

To use this regular expression in a command, any characters special to Tel must also be
escaped as I described in the previous section. Here is what the complete command
might look like:

expect -re "-?(01\[1-9J\[0-9J*)?\\.?\[0-9J*"

In practice, most patterns do not get very complex. It is almost always possible to get by
using simple patterns. For example, you could use patterns that accept bad data (such
as numbers with multiple leading zeros) if you know that the program never generates
them anyway. Deciding how much effort to invest in writing patterns takes a little expe
rience. But it will come with time.

Using Parentheses For Feedback
In the previous section, parentheses were used to group subpatterns together. Paren
theses also play another role-a role that leads to much shorter scripts than would
otherwise be possible. When a regular expression successfully matches a string in the
input buffer, each part of the string that matches a parenthesized subpattern is saved in
the array expect_out. The string that matches the first parenthesized subpattern is
stored in "expect_out (1, string)". The string that matches the second is stored in
"expect_out (2, string)". And so on, up to "expect_out (9, string)".

For example, suppose you want to know the characters that occur between two other
characters. If the input buffer contains "junk abcbcd" and I use the pattern
"a (. *) c", this matches the input buffer and so expect makes the following
assignment:

set expect_out (1, string) "bcb"

expect also stores the string that matches the entire pattern in the variable
"expect_out (0, string)":

set expect_out (O,string) "abcbc"

Finally, expect stores the whole string that matches the entire pattern as well as every
thing that came before it in expect_out (buffer):

set expect_out (buffer) "junk abcbc"

112 Exploring Expect

The "d" in the input buffer was never matched, so it remains there.

The last two assignments (to expect_out (buffer) and expect_out (0 I string))
occur with glob patterns as well.

The values of expect_out are never deleted but can be overwritten by new expect
commands. Assuming that the input buffer holds "j unk abcbcd", the following
sequence of commands both match:

expect -re "a(.*)c"
expect -re "d"

Earlier I showed the assignments that occur during the first command. When the second
command executes, two other assignments take place:

set expect_out (buffer) "d"
set expect_out (O,string) "d"

expect_out (1, string) remains equal to "bcb" from the earlier expect command.

More On The timed-read Script
In Chapter 3 (p. 77), I defined an Expect script called timed-read. Called from the
shell with the maximum number of seconds to wait, the script waits for a string to be
entered, unless the given time is exceeded. Here it is again:

set timeout $argv
expect "\n" {

send [string trimright "$expect_out(buffer)" "\n"l

In that earlier example I used "string trimright" to trim off the newline. It is
possible for the expect command to do this in the pattern matching process, but not
with glob patterns. I will use a regular expression to rewrite the script above without
using the string command.

timed read using a regular expression
set timeout $argv
expect -re "(. *) \n" {

send $expect_out(l,string)

In the expect command, the -re flag declares the following pattern to be a regular
expression instead of a glob pattern. As before, the pattern is quoted with double
quotes. The pattern itself is:

(. *) \n

Regular Expressions 113

This matches any string of characters followed by a "\n". All the characters except for
the \n get stored in expect_out (1, string). Since the pattern is successfully
matched, the action is executed. The action is to send all the characters in
$expect_out (1, string) to the standard output. Of course, these characters are
exactly what was just typed without the terminating "\n".

Pattern Matching Strategy
At the beginning of the previous chapter was an example where the string "philo
sophic\n" was matched against the pattern "*hi *". This pattern can be rewritten as a
regular expression:

expect -re ".*hi.*"

Adding parentheses around various pieces of the pattern makes it possible to see
exactly how the string is matched. Here is a snapshot of Expect running interactively.
First I entered the expect command to wait for a string. Then I entered philosophic
and pressed return. Finally I printed the first four elements of expect_out surrounded
by angle brackets.

expect1.l> expect -re "(. *) (hi)(. *)"

philosophic
expectl.2> puts "<$expect_out(O,string»"
<philosophic
>
expectl.3> puts "<$expect_out(l,string»"
<philosop>
expectl.4> puts "<$expect_out(2,string»"
<hi>
expectl.5> puts "<$expect_out(3,string»"
<c
>
expectl.6>

You can see that the entire string matched was "philosophic\n". The first". *"
matched "philosop" while the second". *" matched "c\n". "hi", of course, matched
"hi" but notice that it was the second "hi" in the string, not the first "hi". This is similar
to the way the analogous glob pattern worked in the previous chapter.

But regular expressions are more complex than glob patterns. For instance, a subexpres
sion may not necessarily match as many characters as possible if there is another
interpretation that allows the regular expression to match earlier in the string. Consider
the regular expression "a ?b" and the string "ba". In this case, the pattern matches the
substring "b" at the beginning of the string. The "a" at the end is left unmatched. This is

114 Exploring Expect

the most important rule of regular expressions: A regular expression matches at the
earliest possible position in the string.

The next rule is: The left-most matching branch is used. Consider the behavior of the
regular expression "a I ab" on the string "ab". The first branch matches only the first
character while the second branch matches the entire string. Following the rule, the first
branch is used even though it matches fewer characters.t

The first rule is more important than the second (branching) rule. Imagine the string
"acab" with the regular expression "a (b I c)". This matches "ac". The second branch
is used because it allows the match to begin at an earlier character in the string than
does the first branch.

Only after these two rules are observed is length of importance. The third rule is: The
longest match is used. For example, the regular expression "a *" matches every char
acter of the string "aaaa". And the expression". *" always matches the entire string, no
matter what it is!

The least important rule is: Subexpressions are considered from left to right.

These last two rules describe the behavior shown earlier with the pattern". *hi. *" on
the string "philosophic". As a simple case, consider the expression". * . *". The
fourth rules requires that the left-hand". *" be considered first. By the third rule, it
matches the entire string. The right-hand" . *" necessarily matches the empty string.

Does the pattern "a * (b * I (ab) *) " match the string "aabab"? The only way to satisfy
all four rules is for the pattern to match the first three characters and leave the trailing
"ab" unmatched. The "a*" matches the first two a's and the "b*" branch matches the
first "b". Since only one branch is necessary for the entire pattern to match, the entire
pattern is considered to have matched successfully.

It is possible to match every character in aabab by only matching one "a" with the
pattern "a*" and then using the second branch to match "abab", but this violates the
third and fourth rules. This matching can be forced by appending a "$" anchor to the
expression. Then no other matches are possible. Another solution is just to reverse the
branches.

It is useful to draw parallels between types of regular expressions and control struc
tures. Often this can lead to simpler or more readable code. For instance two
consecutive expect statements:

t The regular expressions described here differ slightly from POSIX.2 regular expressions. For example, POSIX
regular expressions take the branch that matches the longest sequence of characters. As of May 1994, no plans
have been formalized to introduce POSIX-style regular expressions. There are enough minor differences that, if
POSIX regular expressions were added, they would likely be added as a new pattern type, rather than as a re
placement for the existing regular expressions.

Regular Expressions

expect -re "a"
expect -re "b"

can often be combined:

expect -re "a.*b"

115

Similarly, branches are similar to writing the patterns entirely separately. For example, it
might be helpful to write the pattern "c (d *) I d" as two separate patterns:

expect
-re "c(d*)" action
-re "d" action

In this example, the d at the end of the branch is hard to see, while the second version
makes it very clear.

However, it is worth recognizing that both forms in these last two examples do not have
precisely the same behavior. In the first example, the lone "b" will match the first "b"
after the "a" while". *b" will match the last "b" after the "a". In the second example,
the second branch C"d") can match strings with the first branch C"c") present, while the
rewrite with the two -re's will always match using the first regular expression. Both of
these differences are because a regular expression matches at the earliest possible posi
tion in the string.

Nested Parentheses
The regular expression a * ((ab) * I b*) has nested parentheses. How are the results
stored in the expect_out array? They are determined by counting left parentheses: the
sub expression which starts with the Nth left parenthesis corresponds with
expect_out (N, ...). For example, the string that matches ((ab) * I b*) is stored
in expect_out (1, string), and the string that matches (ab) is stored in
expect_out (2, string) . Of course, the only string that could possibly match "ab" is
"ab". If you want to record the string of ab's that corresponds to (ab) * then you have
to put another pair of parentheses around that, as in " ((ab) *) ".

~ expect_out (1, string)

a* ((ab) * Ib*)

~ expect_out (2,string)

Strings that match parenthesized sub patterns are stored in the expecCout array.

116 Exploring Expect

The string matched by the whole pattern is stored in expect_out (0, string). This
makes sense if you imagine the whole pattern is wrapped in another set of parentheses.
And you can also imagine the whole pattern prefaced by a . * patternt and wrapped in
yet another pair of parentheses to determine the value of expect_out (buffer).

r;;;expect_out(bUffer)
expect_out (O,string)
expect_out (1, string) ~expect_out(2,string)

(. * (a* ((ab) * I b*)))

~=&
The original pattern is shaded. Text that matches the imaginary pattern (*(..)) is stored in

expecCout(O,string) and expecC fJut(buffer).

Always Count Parentheses, Even Inside Of
Alternatives
To decide which element of expect_out to use, count the number of prior parenthe
sized expressions. The simplest way to do this is just to count the number of left
parentheses. This works even if the parentheses occur in an alternative.

Consider the pattern" (a) I (b)". If the string is "a", then expect_out (1, string)
will be set to "a". If the string is "b", expect_out (2, string) will be set to "b". In
this way, it is possible that expect_out (2, string) can be defined but not
expect_out (1, string).

This behavior may seem to be a disadvantage-the limit of nine parentheses can be
used up even when appearing in non-matching alternatives.* But the advantage is that
you can know ahead of time where in expect_out matching strings will be without
worrying about whether other alternatives matched or not. For instance, the pattern
a * ((ab) * I b *) (c *) is similar to the pattern from the previous example but with
(c*) appended. expect_out (1, string) and expect_out (2, string) are set as
before. The string matching (c*) is stored in expect_out (3,string) whether or
not (ab) is matched.

t Unlike the usual meaning of . * which matches as many characters as possible, this imaginary. * matches as
few characters as possible while still allowing the match to succeed. Chapter 3 Cp. 73) describes this in terms of
anchoring. * In reality, it is fairly unusual to use more than four or five pairs of parentheses. I have never run up to the limit
of nine.

Regular Expressions 117

In cases like this one, it may not be immediately evident whether elements of
expect_out were written by the current expect since the elements can retain values
from prior expect commands. If you need to be certain, unset the variables before the
expect command. Occasionally, it is convenient to set them to default values. The
following example shows both ideas:

set expect_out (l,string) "ab"
unset expect_out (2,string)
expect -re "a* ((ab) * I b*) (c*) "

;# if no match, use this
;# if no match, notice

if [info exists expect_out(2,string)] {
expect_out (2,string) has been assigned, so use it

Example - The Return Value From A Remote
Shell
While I have shown some fairly complex patterns, real patterns are usually pretty
simple. In fact, sometimes other issues can make the patterns seem like the easy part of
writing scripts.

The rsh program executes a command on a remote host. For example, the following
command executes the command "quack twice" on host duck.

% rsh duck quack twice

While quack is a mythical program, you can imagine it shares a trait common to many
programs. Namely, quack reports its status by returning an exit value. If quack works
correctly, it exits with the value 0 (which by convention means success). Otherwise it
exits with the value 1 (failure). From the C-shell, the status of the last command is stored
in the variable status. I can demonstrate a successful interactive invocation by inter
acting directly with the C-shell.

% quack twice
% echo $status
o

Unfortunately, if quack is executed via rsh, the same echo command will not provide
the exit status of quack. In fact, rsh does not provide any way of returning the status
of a command. Checking the value of status after running rsh tells you only whether
rsh itself ran successfully. The status of rsh is not really that useful. It reports prob
lems such as "unknown host" if you give it a bogus host. But if rsh locates the host
and executes the command, that is considered a success and 0 is returned no matter
what happens inside the command. In fact, the rsh is considered a success even if the
command is not found on the remote host!

118

% rsh duck date
Wed Feb 17 21:04:17 EST 1993
% echo $status
o
% rsh duck daet
daet: Command not found.
% echo $status
o
% rsh duuck date
duuck: unknown host
% echo $status
1

Exploring Expect

There is no easy way to fix rsh without rewriting it. However, it is possible to write an
Expect script that uses rlogin to do the job. Fortunately, rsh aims to provide an envi
ronment as close as possible to rlogin, so the hard part is done already. All that is left
is to extract the right status. Here is an Expect script that does it-executing the
command remotely and returning the remote status locally.

#!/usr/local/bin/expect --
eval spawn rlogin [lindex $argv 0]
expect n% n
send n[lrange $argv 1 end]\r n

expect n% n
send necho \$status\r n

expect -re n\r\n(.*)\r\nn
exit $ expect_out (l,string)

The second line spawns an rlogin process to the remote host. Next, the script waits
for a prompt from the remote host. For simplicity here, the prompt is assumed to end
with "% ". The lrange extracts the commands and any arguments from the original
invocation of the script. A return character is appended, and the command is sent to the
remote host. After reading another prompt, the status is read by having the shell echo it.

Notice that in the second send command, the $ is preceded by a backslash. This
prevents Tcl from doing variable substitution on the variable status locally. The string
"$status" has to be sent literally. (When using the Bourne shell, the Expect script
would have to ask for $? instead of $status.)

The regular expression "\r\n (. *) \r\n" is used to pick out the status. To see why this
particular pattern is used, it helps to consider what the process sends back after the
script has sent the string "echo $status\r". The following figure shows the whole
dialogue.

Upon logging in, the first thing to appear is the message of the day followed by the
prompt ("% "). Then the command "quack twice" is sent with a return appended.
This is echoed by the remote shell, and you can see that the return is echoed as a \r\n

Regular Expressions 119

script sends rlogin sends back

~" __ ---<message-of-the-day> %

quack twice\r •

.. quack twice\r\n%

echo $status\r •

.. echo $status\r\nO\r\n%

Dialogue from an automated rsh script.

sequence. Some time passes as the command runs. If it produces output, it would
appear at this point. Finally another prompt appears after which the script requests that
the status be echoed. The request itself is echoed followed by a "\r\n", the status itself,
and yet another "\r\n". Another prompt appears, but the script has the information it
wants in expect_out (1, string) already. So the script immediately terminates with

the appropriate exit value.

It still may not be clear why the shell responds the way it does in this interaction. By
default, a shell echoes everything that is sent to it. This is perfectly normal and is exactly
what happens when you type directly to a shell. The shell arranges things so that when

you press the x key, the letter x is echoed so that you can see it. Some translations also
take place. For instance, when you press return, a return-linefeed sequence (\r\n) is
echoed. Sure enough, that is just what can be seen from the remote shell. And it
explains why the result of echo is seemingly surrounded by these characters. The first
pair is the end of the echoed command, while the second is formatting from the echo
command itself. (As I mentioned earlier, the echo command actually writes a newline

(\n) and the terminal driver converts this to a return-linefeed sequence (\r\n).)

A few minor modifications can help the script. First, it is unlikely that you want any of
the expect commands to time out, so the timeout should be disabled by saying "set
timeout -1". Second, it is not necessary to send the two commands separately. Third,
it is not necessary to explicitly write both characters in the return-newline sequence.

You just need the characters that directly surround the status. Finally, I have wrapped
the send with an eval to handle strings with embedded whitespace.

The rewritten script is:

#!/usr/local/bin/expect
eval spawn rlogin [lindex $argv 0]
set timeout -1
expect -re "(% I # I \ \ \ $) "
eval send "[lrange $argv 1 end];echo \$status\r"
expect -re "\n (. *) \r"
exit $expect_out(1,string)

120 Exploring Expect

Although it is a good start, even this new script is not yet a complete replacement for
rsh. This script only works for remote commands that produce no output because the
final expect command matches anything after the first line of output. Try fixing the
script so that it works for commands that produce any amount of output.

Matching Customized Prompts
This new script (above) manages to find yet another excuse for a regular expression.
The string it is capable of finding is either "% "or "$ "or "# ". This is a pretty good
stab at recognizing common prompts since traditionally most C-shell users end prompts
with "% ", most Bourne shell users end prompts with "$ ", and root prompts in any
shell typically end with "# ". The $ has to be quoted because it is special to the pattern
matcher. (More on this on page 125.)

Of course, users are free to customize prompts further, and some do, wildly so. There is
no way to pick a pattern for the prompt that suffices for everyone. If you are just writing
a script for yourself, you can always find a pattern that will match your prompt. But if
you want a script that works for any user, this can be a challenge. Users are free to
change their prompt at any time anyway and you cannot predict the future.

One reasonable solution is to have each user define a pattern that matches their own
prompt. A good way to do this is to have users store their patterns in the environment
variable EXPECT_PROMPT. As a reminder, this variable should be set immediately after
the customization of the real prompt in their. cshrc or wherever they do set it. By
keeping them together, when the user changes their prompt, they will naturally think to
change their prompt pattern at the same time.

Here is Tel code to read the environment variable EXPECT_PROMPT. The variable is
retrieved from env, a predefined variable that holds all environment values. If the vari
able is not set, a default prompt pattern is used so that there is a good chance of still
having a script function correctly.

set prompt "(% I # I \ \ \$) " ; # default prompt
catch {set prompt $env(EXPECT_PROMPT)}

Once prompt is set, you can use it as follows:

expect -re $prompt

An extract of a . cshrc file that has a prompt specialized to contain the current direc
tory followed by"> " might look like this:

setenv PROMPT "$cwd\!> "
setenv EXPECT_PROMPT "> "

Regular Expressions 121

There is another potential problem with trying to match shell prompts. Namely, the
pattern may match something unexpected such as the message-of-the-day while logging
in. In this case, the command will be sent before the prompt appears. When it does
eventually appear, the prompt will be misinterpreted as a sign that the program has
completed. This one-off error is a general problem that manifests itself when a pattern
matches too early.

One way to defend against this problem is to end the pattern with "$".

set prompt "(%1#1\\\$) $"

A bare $ matches the end of the input, analogously to the way A matches the beginning
of the input. If more data has arrived that cannot be matched, expect continues
waiting. This is very similar to the way people distinguish prompts. If you see your
prompt (or something that looks even close to a prompt) in the middle of the message
of-the-day, you will not be fooled because you will see the computer continuing to print
more text.

On the other hand, Expect is much faster than you are. The computer may appear to
have stopped typing, perhaps even in the middle of the message-of-the-day, only
because the CPU is being shared among many tasks. This unintentional pause can make
Expect think that all the input has arrived.

There is no perfect solution. You can start another expect command to wait for a few
more seconds to see if any more input arrives. But there is no guarantee even this or
any time limit is good enough. Even humans can be faked out by random system indi
gestion. When was the last time you thought your program was hung, so you started
pressing flC only to find out that the network or some other resource was just tempo
rarily overloaded?t

While it is possible to take extra steps, there simply is no way to guarantee that some
thing that looks like a prompt really is a prompt, considering that even humans can be
fooled. But for most purposes, a $ helps substantially in the face of unknown data that
could unintentionally cause a premature match.

t In Computer Lib, Ted Nelson descrihed a system administrator who was plagued by continual computer crash
es. The system administrator eventually decided to blame a miscreant with the initials RH after discovering that
a program named RHBOMB was always running when the system crashed. Several months later, the same system
administrator noticed a file called RHBOMB. Rather than immediately accuse RH of hacking again, the system ad
ministrator decided to first look at the file. He issued the command to print the file on the screen: PRINT RH
BOMB. All of a sudden, his terminal printed '·TSS HAS GONE DOWN" and stopped. No prompt. Nothing else
appeared. The system administrator thought to himself: '·Incredible-a program so virulent that just listing it
crashed the system!'·

His fear was unjustified. The file turned out to be the string "TSS HAS GONE DOWN" followed by thousands
of null characters, effectively not printing anything but delaying the system from printing the next prompt for a
long time.

122 Exploring Expect

Fortunately, the specific problem of changing messages-of-the-day is moot. On most
systems, the message-of-the-day no longer serves as a news distribution mechanism,
having been replaced by superior interfaces such as Usenet news or other bulletin
board-like systems. Instead, the message-of-the-day usually contains a message
describing the revision level of the system, copyrights, or other information that rarely
changes. In this case, users just need to choose patterns that avoid matching this charac
teristic information while still matching their prompts.

Example-A Smart Remote Login Script
In Chapter 3 Cp. 83), I showed a script called aftp. This automated the initialization for
an anonymous ftp session and then passed control from the script to the user. The
same idea can be applied to many other programs.

Imagine the following scenario. You try to create a file only to find out that your
computer has no permission to change the file system because it is mounted read-only
from another computer, the file server.

% rm libc.a
rm: libc.a not removed: Read-only file system

All you have to do is log in to the server and then repeat the command:

% rlogin server
You are logged in to the server. Please be careful.
% rm libc.a
rm: libc.a: No such file or directory

Oops. You are not in the right directory. rlogin does not propagate your current
working directory. Now you have to find out what directory you were in, and enter the
appropriate cd command. If the directory is long enough or if you do this kind of thing
frequently, the procedure can become a nuisance.

Here is a script to automatically rlogin in such a way that you are automatically placed
in the same directory on the remote host.

set cwd [pwdj
spawn rlogin $argv
expect "% "
send "cd $cwd\r"
expect "% "
interact

The scripts starts by running pwd, which returns the current directory. The result is
saved in the variable cwd. Then rlogin is spawned. When the prompt arrives, the
script sends the cd command and then waits for another prompt. Finally, interact is
executed and control is returned to the keyboard.

Regular Expressions 123

When you run the script, the output appears just as if you had actually typed the cd
command yourself.

mouse1% rloginwd duck
spawn rlogin duck
You are logged in to duck. Quack!
duck1% cd /usr/don/expect/book/chapter4/scripts
duck2%

The script is purposely simplified for readability. But it can be simplified even further.
Doing so illustrates several important points. When pwd is executed, it runs on the same
machine on which the script is running. Even after rlogin is spawned, pwd is run on
the original system. You can move the pwd right into the send command, therebyobvi
ating the need for the variable cwd altogether. pwd will still refer to the original
directory. Indeed, even if you send yet another rlogin command to the remote host,
the script continues to run on the original host. Remember that commands started via
exec, spawn, catch or otherwise evaluated by Tel are run on the original host in the
original process. Commands that are sent via send operate in whatever new context
has been established in the spawned process.

Just before the interact command is an expect command to wait for the prompt.
This is actually unnecessary. What happens without the expect? The interact
command gets control immediately. But what happens then? interact waits for either
the user to type or the system to print something. Of course, the user will wait for the
prompt, and when it arrives, interact will echo it so that the user can see it.

The difference then is that with the explicit expect, expect does the waiting, while
with no expect, interact waits. In theory, the user could type only during
interact, but in reality, the user will wait for the prompt in either case, so there is no
functional difference. Hence, the expect can be omitted. Here is the final script, with
these minor changes and all the other good stuff added back.

#!/usr/local/bin/expect
set timeout -1
eval spawn rlogin $argv
set prompt "(%1#1\\\$) $" ;# default prompt
catch {set prompt $env(EXPECT_PROMPT)}
expect -re $prompt
send "cd [pwd]\r"
interact

The technique shown in this script can be used for all sorts of things besides setting the
current working directory. For example, you could copy all the environment variables.
On systems running the X window system, it is useful to initialize the environment vari
able DISPLAY with the display name of your local host. Then commands executed on
the remote system will be displayed on your local screen. If you use the same script on

124 Exploring Expect

the second host to remotely login to yet another host, the original host definitions will
continue to be used. If the remote system has no access to the local file system, it might
also be useful to copy the X authority file.

What I have shown here is just the tip of the iceberg. The interact command can do
all sorts of other interesting things. These are described in Chapter 15 Cp. 323) and
Chapter 16 Cp. 349).

One final note: This script assumes that rlogin does not prompt for a password. If it
does, the script will fail. Explicitly waiting for passwords requires a little extra work. I
will demonstrate how to do that in Chapter 8 Cpo 199). In Chapter 15 Cp. 340), I will
demonstrate a simpler and more general approach to this kind of script that allows pass
words and any other interactions to be handled automatically.

What Else Gets Stored In expect_out
In this chapter and the previous one I have shown how the expect_out array is used
to store strings that match parenthesized subpatterns. The expect command can also
set several other elements of expect_out.

If the pattern is preceded by the -indices flag, two other elements are stored for each
element expect_out (x, string) where X is a digit. expect_out (x, start) is set
to the starting position of the first character of the string in expect_out (buffer).
expect_out (x, end) is set to the ending position.

Here is a fragment of one of the earlier rsh scripts, just as it queries the remote shell for
the status, but with the -indices flag added:

send "echo \$status\r"
expect -indices -re "\r\n(.*)\r\n"

The -indices flag precedes the pattern (including its type). In later chapters, you will
learn about other expect flags. All of these flags follow this model-they precede the
pattern.

With the - indices flag, the expect command implicitly makes the following
assignments:

set expect_out (O,start) "12"
set expect_out (O,end) "16"
set expect_out (O,string) "\r\nO\r\n"
set expect_out (1,start) "14"
set expect_out(1,end) "14"
set expect_out(1,string) "0"
set expect_out(buffer) "echo \$status\r\nO\r\n"

Regular Expressions 125

These elements are set before an expect action begins executing. To be precise, the
scope inside an expect action is exactly the same scope as that which contains the
expect itself. In simple terms, as long as you are in a single procedure, a variable
defined before the expect (or within it) can be referred to from inside an expect
action. Similarly, a variable defined by expect or within an expect action can be
accessed after the expect has completed. I will provide more detail about actions and
scopes in Chapter 6 (p. 140).

Later in the book, I will describe yet additional elements of expect_out. However,
these are the only ones that are important for now.

More On Anchoring
In the example on page 119, I defined a prompt as "(% 1 # 1 \ \ \ $) $". An obvious ques
tion is: "Why do you need those backslashes? (Or perhaps, "Okay, I know I need
backslashes, but why three? Why not seventeen or some other random number?!")

The answer is exactly the same reason as I described in Chapter 4 (p. 91). In this case,
the dollar sign is special both to the pattern matcher and to Tel. This is similar to the
problem with the" [".

To restate, the dollar sign must be prefaced with a backslash to get the pattern matcher
to use it as a literal character. Without the backslash, the pattern matcher will use the
dollar sign to match the end of the string. However, both the backslash and the dollar
sign are also special to Tel. When Tel parses command arguments, it will try to make
substitutions whenever it sees backslashes and dollar signs.

To avoid losing the backslash, the backslash itself must be prefaced with a backslash.
Similarly, the dollar sign must be prefaced with a backslash. The result is "\ \" and "\$",
or when combined, "\ \ \ $".

As always, there is more to this sorry story. The dollar sign substitution made by Tel
only occurs when an alphanumeric character follows. That is, "$foo" is replaced by the
value of the variable foo. Since "$" all by itself would imply a variable name of no
characters-obviously meaningless-Tel does not perform any substitution on the
dollar sign in such cases. For this reason, you can write the original pattern with two or
three backslashes. Both have the same effect.

expect -re "(%1#1\\$) $"
expect -re "(%1#1\\\$) $"

;# RIGHT
;# RIGHT

However, in the case where you are matching the literal "$a", you need three.

expect -re "(%I#I\\$a) $"
expect -re "(%I#I\\\$a) $"

;# WRONG
;# RIGHT

126 Exploring Expect

This non-substitution behavior occurs anywhere "$" is not followed by an alphanumeric
character such as in the string "$+". It is good programming practice to always use three
backslashes when trying to match a dollar sign. For example, if you unthinkingly
change the" +" to an "x" one day, the script will continue to work if you had used three
backslashes originally but not if you had used two.

Nonetheless, even if you always use three backslashes, you should be aware that two
work in this case. Matching a dollar sign prompt is so common, you are likely to see this
a lot in other people's scripts.

Earlier in this section, I mentioned that the $ is special to the pattern matcher. To be
more specific, unless preceded by a backslash, the $ is special no matter where in the
string it appears. The same holds for """. At this point, you might be asking yourself:
Why does the pattern matcher insist on interpreting a $ as the end of a string even when
it is in the middle of the pattern? The reason is that there are patterns where this is
exactly the behavior you want. Consider the following:

expect -re "% $Ifoo"

This commands waits for either a "% " prompt or the string faa to appear. Clearly, the
$ is in the middle of the pattern and makes sense. More complex scenarios are possible.
For example, the pattern above might be stored in a variable and substituted into the
middle of another pattern. You would still want the $ to have the same effect.

In contrast, glob patterns are much simpler. They do not support concepts such as alter
nation. So attempting to anchor the middle of a glob pattern is pointless. For this
reason, the glob pattern matcher only treats " as special if it appears as the first char
acter in a pattern and a $ if it appears as the last character.

Exercises
1. Modify the timed-read script on page 112 so that it can take an optional default

answer which will be returned if the timeout is exceeded.

2. Modify the rsh script on page 119 so that it returns the remote status of programs no
matter how much output they produce.

3. Modify the rlogin script on page 122 so that it copies the X authority file. Modify the
script so that it also supports telnet.

4. The dump program starts by printing an estimate such as:
DUMP: estimated 1026958 blocks (501.44MB) on 0.28 tape(s).
Write a script to print out how many tapes the next backup will take.

Regular Expressions 127

5. dump's knowledge of backup peripherals is often out of date. Assuming you are using
a device much bigger than dump realizes, write a script so that dump never stops and
asks for a new tape.

6. Enhance the script you wrote for the previous question so that it does a better job of
asking for tapes. For example, if your tapes are ten times as big as dump thinks, then
the script should ask only once for every ten times that dump asks.

In This Chapter:

• Very Complex
Patterns

• Executing Actions
When Patterns
Match

• Patterns Matching
Plain Strings

• The Limits Of
Pattern Matching

• Handling Parity
And Nulls

Patterns, Actions,
And Limits

In this chapter, I will describe the limits of patterns, including what to do when you hit
them. I will also cover the darker side of range patterns-matching anything but certain
characters. In the second half of the chapter, I will go into more detail on pattern
actions including flow control. Finally, I will cover some miscellaneous pattern
matching issues that do not fit anywhere else.

Matching Anything But
As I said in Chapter 5 Cp. 113), pattern pieces match as many characters as possible.
This makes it a little tricky to match a single line, single word, or single anything. For
example, the regular expression " . * \n" matches a single line, but it also matches two
lines because two lines end with a "\n". Similarly, it matches three lines, four lines, and
so on. If you want to read lines one at a time from another program, then you cannot
use this kind of pattern. The solution is to use the "A".

In Chapter 3 Cp. 73), I showed that the "A" matches the beginning of the input buffer.
When A is the first character of a regular-expression range, it means match anything but
the given characters. For example, the regular expression [A ab 1 matches any character
except a or b. The pattern [A a - zA- Z 1 matches any character but a letter.t

A range can be used to build larger patterns. The pattern" [A 1 *" matches the longest
string not including a blank. For example, if the input buffer contained "For
example, if the input buffer contained ", the following expect
command could be called repeatedly to match each word in the input.

t To match any character but a "A", use the pattern" [AA 1 ". To match a ''A'' outside a range, quote it with a back
slash. To match a ''A'' inside a range, put it in any position of the range but the first. To match any character but
a "1 ", use the pattern " [All".

129

130 Exploring Expect

expect -re ,,(\[A J*) "

The range matches each word and the result is stored in $expect_out (1, string).
The space at the end of the word is matched explicitly. Without the explicit space, the
input buffer is left beginning with a space (" cow jumped ... ") and subsequent
matches return the null string before the first space.

Remember that the length of the match is important, but only after the starting position
is taken into account. Patterns match the longest string at the first possible position in
the input. In this example, 0 characters at column 0 are successfully matched even
though the pattern can also match 3 characters at column 1. Because column 0 is before
column 1, the earlier match is used.

There is no explicit means to match later matches than earlier ones, but often it is
possible to simply pick a more descriptive pattern. In this example, the space can be
skipped over. Alternatively, the * can be replaced by a + to force the pattern to be at
least one letter. This effectively skips over the space between the words without the
need to explicitly match it.

expect -re "\[A J+"

Now the word is stored in "expect_out (0, string)". Because the pattern does not
match whitespace, there is no need to select pieces of it, and the parentheses are no
longer needed, simplifying the pattern further.

Here is the opening dialogue greeting from Uunet's SMTP server. SMTP is the mail
protocol used by most Internet computers. The server is normally controlled by a mail
program to transfer mail from one host to another, but you can telnet to it directly
and type commands interactively. The telnet program adds the first three lines, and
Uunet sends back the line that begins "220":

% telnet relayl.uu.net smtp
Trying 192.48.96.5 ...
Connected to relay1.uu.net.
Escape character is 'AJ'.
220 relay1.UU.NET Sendmail 5.61/UUNET-internet-primary ready at

Mon, 22 Feb 93 23:13:56 -0500

In the last line (which wraps over two physical lines on the page), the remote hostname
appears immediately after the "220". In order to match and extract the hostname, use
the following command:

expect -re "\n220 (\[A J+) "

There are several subtle things about this command. First of all, the SMTP protocol
dictates that responses are terminated by \r\n and that the initial response to the
connection begins with the string 220 followed by the host or domain identification.
Thus, you are guaranteed to see the string "220".

Patterns, Actions, And Limits 131

Unfortunately, the telnet program prints out the IP address of the remote host name
in its "Trying ... " message. Since it is quite possible for part of the IP address to actu
ally be "220", the pattern starts with \n to match the end of the previous line, effectively
forcing the 220 to be the first thing on its own line. A space is skipped and then the
familiar" [A 1 +" pattern matches the hostname.

Unlike the previous example, yet another space follows the" [A 1 +" pattern. Since the
pattern explicitly forces the hostname to be non-null, why is space needed at the end of
the name? As I described in Chapter 4 Cp. 89), network or other delays might crop up at
any time. For example, if the greeting line had only partially printed by the time the
pattern matching had begun, the input buffer might contain just "220 rela". Without
the explicit space after the hostname, the pattern would match "rela". With the explicit
space, the pattern will match the full "relayl. UU .NET".

Matching the hostname from the SMTP dialogue is not an artificial example. This tech
nique can be used to convert IP addresses to hostnames when the IP-to-hostname
directory entries do not exist, a common fault in many domains. In practice, the likeli
hood of a host running an SMTP server is much higher than the likelihood that its
domain name server is correctly configured with complete reverse mappings. The
gethostbyaddr example script that comes with the Expect distribution resorts to this
and a number of other techniques to convert host addresses to names.

The ability to automate telnet opens up worlds of possibilities. All sorts of useful data
can be collected and manipulated through interfaces that were originally designed only
for humans.

Much of this information is rather open-ended. There may be no standards describing it
other than a particular implementation. However, by studying sufficient output, you can
usually come up with Expect scripts to read it back in. And if you cannot write an
Expect script to understand a program's output, chances are that humans cannot under
stand the output to begin with.

Really Complex Patterns
Writing scripts to understand natural language is not particularly difficult, but Expect
does not give any particular assistance for the task. Regular expressions by themselves
are certainly not sufficient to describe arbitrarily complex patterns. In some situations, it
is even reasonable to avoid using complex patterns and instead match input algorithmi
cally using Tel commands.

Take the case of automating ftp. In Chapter 3 Cp. 83), I showed that it was very easy to
retrieve a file if the name was known in advance-either by the script or the user. If the
name is not known, it is harder. For example, ftp does not support directory retrieval.

132 Exploring Expect

This can be simulated by retrieving every file in the directory individually. (You can
automate this to some degree using ftp's built-in wildcards, but that does not handle
subdirectories so it is not a complete solution and I will ignore it for now.)

Further, imagine that you want to only retrieve files created after a certain date. This
requires looking at a "long" directory listing. As an example, here is a listing of the direc
tory /published/usenix on ftp. uu. net.

ftp> cd published/usenix
250 CWD command successful.
ftp> Is -It
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
total 41
drwxrwsr-x 3 3 2 512 Sep 26 14:58 conference
drwxr-sr-x 1695 3 21 39936 Jul 31 1992 faces
lrwxrwxrwx 1 3 21 32 Jul 31 1992 bibliography

-> /archive/doc/literary/obi/uSENIX
226 Transfer complete.
remote: -It
245 bytes received in 0.065 seconds (3.7 Kbytes/s)
ftp>

It is easy to pick out the directory listing from this output. As before, you can see the
protocol responses that each start with a three-digit number. These can be matched
directly, but there is no way of separately matching all of the bits and pieces of informa
tion in the directory listing in a single pattern. There is just too much of it. And this is a
short directory. Directories can contain arbitrarily many files.

Upon close examination, you can see that the directory lines use different formats. For
example, the third file is a symbolic link and shows the link target. The second and third
files show modification dates with the year while the first file shows the date with the
time. And for a dash of confusion, the formatting is inconsistent-the columns do not
line up in the same place from one entry to the next.

One way to deal with all of this is to match the fields in each line, one line at a time in a
loop. The command to match a single line might start out like this:

expect -re "d(\["]*) +(\["]*) +(\["]*) +(\["]*) +(\ ...

The command is incomplete-the pattern does not even fit on the page, and it only
describes directories (notice the "d" in the front). You would need similar patterns to
match other file types. This complexity might suggest that this is the wrong approach.

An alternative is to use patterns only at a very superficial level. You can match the indi
vidual lines initially and then later break up the lines themselves. At this point, matching

Patterns, Actions, And Limits 133

a single line should be no surprise. It is just a variation on what I have already shown in
many different forms:

expect -re ,,(\[A\r]*)\r\n"

To get the individual pieces out, you can now use any of the plain old Tel commands.
You can treat $expect_out (1, string) as a simple list and index it. For example, to
obtain the file name:

lindex $expect_out(l,string) 8

To obtain the month and day:

lrange $ expect_out (1, string) 5 6

Using the following commands, you can get the file's type field (the first character on
each line from "ls -1") and then process the files, directories, and symbolic links
differently:

set type [string index $expect_out(l,string) 0]
switch -- $type \

11 _ 11 {

file
"d" {

directory
"l" {

symbolic link
default {

unknown

With no flags other than "- -", the patterns in the swi t ch command are a subset of the
glob patterns (everything but A and $). This fragment of code actually comes out of the
recursive ftp script (rftp) that comes with Expect as an example.

With actions, the whole command to switch on the file type is not much more compli
cated. There are two of them-one to "get" files and one to "put" files. Below is a
procedure to put files. The procedure is called for each file in the directory listing. The
first argument is the name of the file, and the second argument is the first character of
the type field.

proc putentry {name type}
switch -- $type \
"d" {

directory
if {$name=="." I I $name==" .. "} return
putdirectory $name

"-" {

file
putfile $name

134

"1" {
symlink, could be either file or directory
first assume it's a directory
if [putdirectory $namel return
putfile $name

default {

Exploring Expect

puts "can't figure out what $name is, skipping\n"

For each directory encountered, putdirectory is called, which changes directories
both remotely and locally and then recursively lists the new directory, calling
putentry again for each line in the list. The files (current directory) and" .. "
(parent directory) are skipped.

Regular files are transferred directly by sending a put command inside putfile.
Symbolic links are trickier since they can point either to directories or plain files. There
is no direct way to ask, so the script instead finds out by blindly attempting to transfer
the link as a directory. Since the attempt starts by sending a "cd" command, the putdi
rectory procedure fails if the link is not a directory. Upon failure, the script then goes
on to transfer it as a plain file. Upon success, the procedure returns.

Really Simple Patterns
Occasionally it is useful to prevent the pattern matcher from performing any special
interpretation of characters. This can be done using the -ex flag, which causes exact
matching. For example, the following command matches only an asterisk.

expect -ex "*,,

When using -ex, patterns are always unanchored. The" and $ match themselves liter
ally even if they appear as the first or last characters in a pattern. So the following
command matches the sequence of characters """, "*", "\n", and "$". The usual Tel
interpretations apply. Hence, the \n is still interpreted as a single character.

expect -ex ""*\n$" ;# matches" * \n $

Consider another example:

expect -ex "\\n"

Tel interprets the \ \n as the two-character string "\n" and the exact matching occurs
with no further backslash processing. This statement matches a backs lash followed by
ann.

Patterns, Actions, And Limits 135

The results of exact matches are written to expect_out (buffer) and
expect_out (0, string) as usual, although expect_out (0, string) is neces
sarily set to the original pattern.

Using -ex may seem like a way to simplify many patterns, but it is really only useful in
special circumstances. Most patterns either require wildcards or anchors. And strings
such as "faa" are so simple that they mean the same thing when specified via -gl in
the first place. However, -ex is useful when patterns are computer-generated (or user
supplied). For example, suppose you are creating Expect patterns dynamically from a
program that is producing SQL queries such as:

select * from tbl.col where col like 'name?'

To protect this from misinterpretation by -gl or -re, you would have to analyze the
string and figure out where to insert backslashes. Instead, it is much simpler to pass the
whole thing as a pattern using -ex. The following fragment reads a pattern from a file
or process and then waits for it from the spawned process.

set pat [gets $patfile]
expect -ex $pat

If you are hand-entering SQL commands in your Expect scripts, then you have to go a
step further and protect the commands from being interpreted by Tel. You can use
braces to do this. Here is an example, combined with the -ex flag.

expect -ex {select from * tbl.col where col like 'name?'}

I show this only to discourage you again from using braces around patterns. While it
works in this example, it is not necessary since you can prevent the substitutions at the
time you handcode it by adding backslashes appropriately. Chances are that you will
want to make variable substitutions in these or else they would have been stored in a
file anyway. And if you are using more than a few patterns like these, you probably will
not have them embedded in your scripts, so you do not need to worry about the Tcl
substitutions in the first place.

Matching One Line And Only One Line
Matching a single line is such a common task that it is worth getting very familiar with it.
The one-line script on page 133 matches a single line and this same technique will show
up in many more scripts so it is worth examining closely here.

Suppose you want to search for a file in the file system with the string "frob" at the
beginning of the name. There may be many files named "frob" (well, maybe not). You
are just interested to know if there is at least one. The obvious tool to use is find.

136 Exploring Expect

Unfortunately, find provides no control over the number of files it finds. You cannot
tell it to quit after one. Here is an Expect script to do just that:

spawn find. -name II frob* II -print
set timeout -1
expect -re 1\["\rJ*\r\n"

The script starts by spawning the find command. The timeout is disabled since this
could be a very long running command. The expect pattern waits for one complete
line to appear, and then the script exits. This works because the range waits for any
character that is not a \r and the * waits for any number of them-that is, any number
of characters that are not \r's. The second \r both allows and forces a single \r.
Finally the \n matches the linefeed in the carriage-return linefeed sequence. The only
thing that can be matched is a single line.

Without Expect, it is possible to get find to kill itself by saving its process id in a file
and then forking the kill command from an -exec clause in the find. However,
doing this is fairly painful. And find is just a special case. Many other commands do
not have the power of find yet share the same problem of lacking any sophisticated
control. For example, grep does not have any way to execute arbitrary commands
when it matches. There is no way to tell grep to print only the first match.

For this and other commands, here is an Expect script which I call firstline:

#!/usr/local/bin/expect
eval spawn $argv
set timeout -1
expect -re 1\["\rJ*\r\n"

Immediately after matching the first line of output, firstline exits. Note that if the
underlying process produces output quickly enough, the script may actually print
several lines of output. That does not mean the pattern is matching multiple lines. It is
still only matching one. However, by default Expect prints out everything it sees
whether or not it matches.

In Chapter 7 Cp. 175), I will describe how to change this default so that you can write
scripts that only print out what they match.

Tcfs string match Command
Having matched a single line, it is no longer possible to automatically break it up into
pieces stored in the array expect_out. Tcl does, however, offer a standalone version
of both the regular expression and glob pattern matchers.

Patterns, Actions, And Limits 137

Glob pattern matching is explicitly done using the "string match" command. The
command follows the format:

string match pattern string

The string replaces the implicit reference to the input buffer in an expect command.
The command returns 1 if there is a match or 0 if there is no match. For example:

if [string match "f*b*" "foobar"j {
puts "match"

else {
puts "no match"

The switch command (demonstrated on page 133) is a little more like the expect
command. It supports multiple patterns and actions, but like "string match",
switch uses an explicit string. Neither switch nor "string match" support the A

and $ anchors.

Tel's regexp Command
Tel's regexp command matches strings using regular expressions. The regexp
command has the same internal pattern matcher that expect uses but the interface is
different. The expect command provides the string implicitly while regexp requires
that the string be an explicit argument.

The calling syntax is as follows:

regexp pattern string varO varl var2 var3 . . .

The first argument is a pattern. The second argument is the string from which to match.
The remaining arguments are variables, set to the parts of the string that match the
pattern. The variable varO is set to the substring that was matched by the whole pattern
(analogous to expect_out (0, string)). The remaining variables are set to the
substrings that matched the parenthesized parts of the pattern (analogous to
expect_out (1, string) through expect_out (9, string)).

expectl.l> set addr "usenet@uunet.uu.net"

For example, the following command separates the Internet email address (above) into
a user and host:

expectl.2> regexp (.*)@(.*) $addr ignore user host
1
expectl.3> set user
usenet
expectl.4> set host
uunet.uu.net

138 Exploring Expect

The first parenthesized pattern matches the user and is stored in the variable user. The
@ matches the literal @ in the address, and the remaining parenthesized pattern matches
the host. Whatever is matched by the entire pattern is stored in ignore, called this
because it is not of interest here. This is analogous to the expect command where
expect_out (0, string) is often ignored. The command returns 1 if the pattern
matches or 0 if it does not.

The regexp command accepts the optional flag "-indices". When used, regexp
stores a list of the starting and ending character positions in each output variable rather
than the strings themselves. Here is the previous command with the -indices flag:

expectl.5> regexp -indices (.*)@(.*) $addr ignore user host
1
expectl.6> set user
o 5
expectl.7> set host
7 18

The expect command also supports an "-indices" flag (shown in Chapter 5 Cp.
124)) but there are differences between the way expect and regexp support it. The
expect command writes the indices into the expect_out array alongside the strings
themselves so you do not have to repeat the expect command to get both strings and
indices. Also, the elements are written separately so that it is possible to extract the start
or ending index without having to break them apart.

Tel's regsub Command
The regsub command makes substitutions in a string that matches a regular expres
sion. For example, the following command substitutes like with love in the value of
olddiet. The result in stored in the variable newdiet.

expectl.l> set olddiet "r like cheesecake!"
I like cheesecake!
expectl.2> regsub "like" $olddiet "love" newdiet
1
expectl.3> set newdiet
I love cheesecake!

If the expression does not match, no substitution is made and reg sub returns 0 instead
of 1. However, the string is still copied to the variable named by the last parameter.

Strings that match parenthesized expressions can be referred to inside the substituted
string (the third parameter, love in this example). The string that matched the first
parenthesized expression is referred to as "\1", the second as "\2", and so on up to
"\9". The entire string that matched is referred to as "\0".

Patterns, Actions, And Limits 139

In the following example, cheesecake matches the parenthesized expression. It is first
substituted for \ 1 in the fourth argument, and then that string replaces "cheesecake!"
in the original value of olddiet. Notice that the backslash must be preceded by a
second backslash in order to prevent Tel itself from rewriting the string.

expect1.4> set substitute "the feel of \\1 in my nose."
the feel of \1 in my nose.
expect1.S> regsub "(c.*e)!" $olddiet $substitute odddiet
1
expect1.6> set odddiet
I like the feel of cheesecake in my nose.

If you find this a little confusing, do not worry. You can usually accomplish the same
thing as regsub with a couple of other commands. The situations in which regsub
can be used do not arise that often-indeed, reg sub is used only one other place in
this book (page 216). However, when the need arises, regsub is a real times aver. To
make it even more useful, the regsub command can be applied to every matching
pattern in the string by using the -all flag.

Ignoring Case
The -nocase flag indicates that a match should occur as if any uppercase characters in
the string were lowercase. The -nocase flag works for both regexp and expect.
Like other expect flags, -nocase is applied separately to each pattern.

The -nocase flag can dramatically simplify patterns. Compare the following
commands. All of them match the strings "hi there!", "Hi there!", "Hi There!",
and "HI THERE!", but the last command is the shortest and most readable.

expect "\ [Hh] \ [Ii] \ [Tt] \ [Hh] \ [Ee] \ [Rr] \ [Ee] !"
expect -re "(hi therelHi therelHi TherelHI THERE)!
expect -re "(hi I Hi I HI) (there I There I THERE) !"
expect -nocase "hi there!"

From the expect command, the -nocase flag can be used with glob patterns, regular
expressions, and exact strings. Non-alphabetic characters are not affected by the -
nocase flag.

Do not use -nocase with uppercase characters in the pattern. Uppercase characters in
the pattern can never match.

expect -nocase "HI THERE!"
expect -nocase "hi there"

;# WRONG, CAN NEVER MATCH!
;# RIGHT!

140

All Those Other String Functions
Are Handy, Too

Exploring Expect

There are numerous other string manipulation functions that can be used when working
with patterns. For example, in Chapter 3 (p. 77), I used "string trimright" to
remove all the newline characters from the end of a string.

Another function that is very handy is scan. The scan command interprets strings
according to a format. scan is analogous to the C language scanf function. For the
most part, scan is less powerful than regexp, but occasionally the built-in capabilities
of scan provide exactly the right tool. For example, a regular expression to match a C
style real number is:

-? ([0 - 9] + . ? [0 - 9] * I [0 - 9] * . [0 - 9] +) ([eE] [- +] ? [0 - 9] +) ?

And that is before adding the backslashes in front of "[" and" ."! A much better alterna
tive is to use the scan command. This can match real numbers, plus you can constrain
it for precision. All you have to do is feed it a string containing a number. You can have
expect look for the end of the number (such as by seeing whitespace) and then call:

scan $expect_out(O,string) U%f U num

In this example, the number is stored in the variable num. The %f tells scan to extract a
real number. Chapter 2 Cp. 46) has more information on scan and other string manipu
lation commands.

Actions That Affect Control Flow
So far, all I have used in the way of expect actions are commands such as set or if!
then or lists of such commands. The following expect command illustrates both of
these:

expect
a {set foo bar}
b {

if {Sa == l} {set c 4}
set b 2

It is possible to use commands that affect control flow. For example, the following
while command executes someproc again and again until the variable a has the value
2. When a equals 2, the action break is executed. This stops the while loop and
control passes to the next command after the while.

Patterns, Actions, And Limits

while 1 {
if {$a
someproc

2} break

141

You can do similar things with expect commands. The following command reads
from the output of the spawned process until either a 1 or 2 is found. Upon finding a 1,
sorneproc is executed and the loop is repeated. If 2 is found, break is executed. This
stops the while loop, and control passes to the next command after the while. This is
analogous to the way break behaved in the if command earlier.

while 1 {
expect

"2" break
11111

someproc

Example - rogue
This previous example is a very typical Expect fragment. It does not take much more to
produce a useful script. As an example, the following script provides a small assist in
playing the game of rogue. rogue is an adventure game which presents you with a
player that has various physical attributes, such as strength. Most of the time, the
strength rating is 16, but every so often-maybe one out of 20 games-you get an
unusually good strength rating of 18. A lot of rogue players know this, but no one in
their right mind restarts the game 20 times to find those really good configurations-it is
too much typing. The following script does it automatically:

while 1 {
spawn rogue
expect {

"Str: 18" break
"Str: 16"

send "Q"

expect "quit?"
send "y"
close
wait

interact

Inside a loop, rogue is started and then the strength is checked to see if it is 18 or 16. If
it is 16, the dialogue is terminated. Like telnet (see Chapter 4 (p. 103)), rogue does

142 Exploring Expect
--~--

not watch for an eof either, so a simple close is not sufficient to end the dialogue. "Q"

requests that rogue quit. The game asks for confirmation to which the script replies
"y". At this point, both the script and rogue close the connection. Then the script
executes wait. As I described in Chapter 4 Cp. 105), wait tells the system that it can
discard the final exit status of the rogue process.

When rogue exits, the loop is restarted and a new game of rogue is created to test.
When a strength of 18 is found, the break action is executed. This breaks control out
of the while loop and control drops down to the last line of the script. The interact
command passes control to the user so that they can play this particular game.

If you run this script, you will see dozens of initial configurations fly across your screen
in a few seconds, finally stopping with a great game for you to play. The only way to
play rogue more easily is under the debugger!

Character Graphics
The output produced by rogue in the previous section contains explicit cursor posi
tioning character sequences. This can potentially cause the screen to be drawn in such a
way that patterns fail to match the visible output. For example, imagine a score of 1000
being updated to 2000. To make the screen reflect this change, the program need only
position the cursor appropriately and then overwrite the 1 with a 2. Needless to say,
this will not match the string 2000 because the 2 arrived after the 000.

This particular problem does not arise in the rogue example because the screen is
being drawn from scratch. This idea can be used to proVide a general solution. To read
the screen as if it were printed from top to bottom, force the spawned program to
redraw the screen from scratch. Typically, sending a /\L suffices.

Alas, redrawing the screen does not solve other problems. For instance, there is still no
way to tell where the cursor is. This may be critical if you are testing, for example, a
menu-application to make sure that the cursor moves correctly from one entry to the
next.

In Chapter 19 (p. 458), I will describe a way to handle this and other related problems
more directly by maintaining an explicit representation of the terminal screen.

Patterns, Actions, And Limits 143

More Actions That Affect Control Flow
Just as break was used in the rogue script, so can all of the other flow-control
commands be used inside of expect commands. For example, a return command
inside of an expect causes the current procedure to return:

proc foo {
expect {

"1" return
11211

someproc

The continue command causes control to resume at the beginning of the nearest
enclosing while or for loop. continue, break, and return can be mixed in intui
tive ways. In the following example, the patterns 1, 2, and 3 do not mean anything in
particular. They are just placeholders. The actions are what is interesting.

proc foo {
while 1 {

expect {
"1" {

return

"2" {
break

"3" {

;# return from foo

;# break out of while

if {O==[func]} {

someproc

exit
else {

continue

some-other-proc

;# exit program

;# restart while

In Chapter 3 Cp. 83), I showed a script that started an anonymous ftp session and let
you interact after performing the login automatically. Using some of the things you have
seen since, it is possible to write a more capable version of the anonymous ftp script,
aftp. The one below retries the connection if the remote host refuses because it is
down or there are too many users. A procedure called connect is defined and called
repeatedly in a loop. Anonymous ftp administrators may not appreciate this approach,

144 Exploring Expect

but it is sometimes the only way to get through to a site that is very popular. Once
connected, the script sends the binary command to disable any data conversions. As
with the earlier version, this script ends by dropping into an interact. Then you can
interact as in the earlier script.

#!/usr/local/bin/expect

proc connect {host} {
expect "ftp>"
send "open $host\r"
expect {

"Name*:" {
send "anonymous\r"
expect {

"Password:" {
send "don@libes.com\r"
expect "login ok*ftp>"
return 0

"denied*ftp>"
too many users, probably
send "close\r"
return 1

"failed*ftp>"
some other reason?
send "close\r"
return 1

"timed out"
return 1

set timeout -1

spawn ftp -i
while {[connect $argv]} {}
send "binary\r"
interact

Patterns, Actions, And Limits 145

Matching Multiple Times
Many tasks require an expect to be repeated some number of times. Reading files
from a list is an example of this. In the example on page 133, I matched a single line
with the command:

expect -re "(\["\r]*)\r\n"

This can be wrapped in a loop to read multiple lines and break when a prompt appears:

while 1 {
expect

-re "(\["\r]*)\r\n"
$prompt break

This version has additional patterns upon which to break out of the loop:

while 1 {
expect

-re "(\["\r]*)\r\n" process_line
eof

handle_eof
break

timeout {
handle_timeout
break

$prompt break

Here, handle_eof and handle_timeout are imaginary procedures that perform
some processing appropriate to the condition. More importantly, notice that all of the
patterns but one terminate by breaking out of the loop. It is possible to simplify this by
using the exp_continue command.

When executed as an expect action, the command exp_continue causes control to
be continued inside the current expect command. expect continues trying to match
the pattern, but from where it left off after the previous match. expect effectively
repeats its search as ifit had been invoked again.

Since expect does not have to be explicitly reinvoked, the while command is not
necessary. The previous example can thus be rewritten as:

expect
-re "(\ ["\r] *) \r"

146

process_line
exp_continue

eof handle_eof
timeout handle_timeout
$prompt

Exploring Expect

In this example, each line is matched and then processed via process_line. expect
then continues to search for new lines, processing them in turn.

Compare this version with the previous one which was written with an explicit loop.
The rewrite is a lot shorter because it does not need all the explicit break commands.
There is no hard and fast rule for when to use an explicit loop instead of
exp_continue, but a simple guideline is to use exp_continue when there are fewer
actions that repeat the loop than those that break out of the loop. In other words,
explicit loops make actions that repeat the expect shorter. exp_continue makes
actions that break out of the loop shorter.

When the exp_continue action is executed, the timeout variable is reread and
expect's internal timer is reset. This is usually what is desired since it is exactly what
would happen with an expect in an explicit while or for loop. For example, if
timeout is set to ten seconds and input lines arrive every second, the expect
command will continue to run even after ten lines have arrived. Each time
exp_continue is executed, expect then waits up to ten more seconds.

To avoid resetting the timer, call exp_continue with the -continue_timer flag.

exp_continue -continue_timer

With a very small timeout, exp_continue offers a convenient way to discard addi
tional characters that arrive soon after a match.

set timeout 1
expect -re ".+" exp_continue

In the command above, characters are ignored as long as they keep arriving within
$timeout seconds of one another. When the output finally settles down, the expect
command completes and control passes to the next command in the script.

Here is a variation on the same idea. The following fragment recognizes the string "ok"
if it arrives in output, each character of which arrives within $timeout seconds of one
another.

set buf ""
expect -re ". +" {

append buf $ expect_out (buffer)

Patterns, Actions, And Limits 147

if [regexp "ok" $bufl

In Chapter 15 Cp. 344), I will show how to do the same thing but without the explicit
buffering in the action.

Recognizing Prompts (Yet Again)
In Chapter 5 Cp. 120), I described how to match a variety of different prompts and poten
tially any prompt that a user might choose. A problem I did not address is that programs
can require interaction even before the first prompt. One such program is tset, which
is used to set the terminal type.

tset is fairly clever, but if it cannot figure out the terminal type, tset prompts the
user. The tset prompt is well defined. The prompt starts with a fixed string and then
has a default terminal type in parentheses, such as:

TERM = (xterrn)

At this point, the user can either enter the terminal type or simply press return, in which
case the type is set to the default. In most scripts, the default is fine.

The following fragment handles this interaction:

expect {
"TERM = *) " {

send "\r"
exp_continue

-re $prornpt

Both the prompt from tset and the shell are expected. If the shell prompt shows up
first, the expect is satisfied and the script continues. If the tset prompt appears, the
script acknowledges it and uses exp_continue to repeat and look for the shell
prompt.

The fragment does a little more work than it needs. If it finds the tset prompt once, it
looks for it again even though it will not appear. To avoid this, the loop would have to
be unrolled-but it would have no substantive benefit. It is easier to write and more
readable as it is.

Fortunately, tset is the only interactive program that is commonly encountered while
logging in. If you have need to handle anything else, it is likely unique to a user or situa
tion. If need be, a hook can be provided for users that invoke other interactive
programs while logging in.

148 Exploring Expect

Similarly to the way users can define their own EXPECT_PROMPT environment variable,
users can also write their own Expect fragments to automate a login interaction. For
example, suppose a user's . login always prompts "read news (y I n) :" upon
logging in. To handle this, have the user create a file called" .login. exp". Inside it
would be just the fragment to automate their personal interaction:

expect "read news (y I n) : "
send "n\r"

Application scripts can then handle the interaction by detecting the presence of the file
and using it just prior to looking for the shell prompt.

if [file readable -/.login.exp]
source -/.login.exp

expect -re $prompt

Speed Is On Your Side
Another use of exp_continue appears in the robohunt script that comes with
Expect as an example. robohunt automates the game of hunt. Unlike the rogue
script mentioned earlier, robohunt plays the whole game for you. hunt is a character
graphics game that lets you navigate through a maze. You attack other players or crash
through walls simply by moving into them. Certain walls cannot be broken through. If
you try to do so, the game responds by ringing the bell, done by sending a I\G.

The other details of the game or script are not important except for one aspect. The
script works by precalculating a number of moves and sending each batch of moves out
at once. The script uses a crude heuristic for deciding which way to move, so it occa
sionally runs into a wall and keeps running into a wall for the rest of the batch of
moves. This causes the game to send back a whole slew of I\G's. The script handles it
with the following command:

set bell "\007"
expect

-re ""$bell+" exp_continue
-re "again\\? " {send y}
-re 11.+11

The first pattern checks if the output starts out with a sequence of I\G's (here denoted
by "\007"). If the I\G's are found, they are matched and effectively discarded as the
action simply restarts the expect command.

If the script's player is killed, the game stops and asks "Do you want to play
again? ". It suffices to check for the final question mark and space, but this would

Patterns, Actions, And Limits 149

leave the script with a fairly cryptic pattern. Adding "again" to the pattern makes it
more readable with no significant impact on performance.

The third pattern checks for anything else. The only reason why anything else might
appear is that the game is printing out its usual display of the screen which in turn
means that it is waiting for new moves. So the expect command completes and
control passes to another part of the script that computes and sends a new move.

The robohunt script may seem rather lacking in sophisticated logic and in many ways
just plain stupid. It is. But it can overwhelm a human opponent by sheer speed despite
constant blunders and an obvious lack of any deep understanding of its task. Nonethe
less, it is not to be scoffed at. This is precisely the idea used by many computer
algorithms that accomplish seemingly difficult tasks.

The robohunt script is virtually impossible for a human player to play against simply
because the script is so fast. While this technique is not the usual reason Expect scripts
are useful, it is certainly a technique worth remembering.

Controlling The Limits Of Pattern
Matching Input
Expect is usually much faster than any human. However, certain behavior can force
Expect to be slower than it could be or even worse, to fail altogether.

Some programs produce an astounding amount of output. Graphics programs are one
example, but even programs that simply list files can produce a flood of output. The
rate is not a problem. Expect can consume it and make way for more very quickly. But
Expect has a finite amount of memory for remembering program output. By default, the
limit is enough to guarantee that patterns can match up to the last 2000 bytes of output.t

This is just the number of characters that can fit on a 25 row 80 column screen. When a
human is viewing a program producing a lot of output, everything but the last 2000 or
so characters scroll off the screen. If a decision has to be made, the human must do it
based only on those last 2000 characters. Following the philosophy that Expect does
what a human does, Expect effectively defaults to doing the same thing: throwing away
everything but the last 2000 characters.

This may sound like a lot of information can be missed, but there are some ameliorating
factors. In particular, if an interactive program produces a lot of output (more than a
screenful) and wants to make sure that everything is seen, it will present the user with a
prompt (e.g., "more?"). Expect can recognize this too.

t This is not exactly the same thing as simply saying "the limit is 2000 bytes" for reasons I will get to shortly.

150 Exploring Expect

The behavior of Expect to forget (i.e., throw things away) does not mean that Expect
will not attempt to match output against the current patterns. Output actually arrives in
small groups of characters-typically no more than 80 characters (i.e., a line)
maximum. Faster programs produce these chunks faster rather than producing larger
chunks. As I described in Chapter 4 (p. 89), as each chunk arrives, Expect attempts to
match against it with whatever is remembered from the previous output. No matter how
big the chunks used, Expect attempts to match every character in the output at least
once after 1999 additional characters have arrived.

Much of the time, this works quite well. However, it does not always make sense to
force Expect into literally following human behavior. A human, for example, might
want to see a large directory listing. Since it will immediately scroll off the screen, the
choice is to pipe it through a program like more, redirect it into a file, or perhaps run
the session inside of a scrollable shell provided by an emacs or xterm window. This is
not necessary with Expect. It is a computer program after all, and can remember as
much information as it is told.

The maximum size of matches that Expect guarantees it can make is controlled with the
match_max command. As an example, the following command ensures that Expect
can match program output of up to 10000 characters.

match_max 10000

The figure given to match_max is not the maximum number of characters that can
match. Rather, it is a minimum of the maximum numbers of characters that can be
matched. Or put another way, it is possible to match more than the current value but
larger matches are not guaranteed.t

The limit to how high you can set match_max is governed by your particular operating
system. Some systems add additional limits (such as by your system administrator or the
shell's limit command), but these are usually arbitrary and can be increased. In any
implementation, you can count on being able to set the limit to a megabyte or more, so
you probably do not have to worry about this limit when designing Expect algorithms.

To change the default buffer size of all future programs that will be spawned in the
current script, use the -d flag. The "d" stands for "default". This does not change the
size for the currently spawned process.

match_max -d 10000

t The peculiar definition of match_max is a concession to performance. In order to efficiently carry out the pro
cess of reading and matching new characters along with old ones, during the matching process Expect uses up
to double the space declared by match_max . Thus, it is possible to match up to twice as much as match_max
guarantees.

Patterns, Actions, And Limits 151

With no arguments, match_max returns the value for the currently spawned process.
With a -d flag and no numeric argument, match_max returns the default value.

Setting the buffer size sufficiently large can slow down your script, but only if you let
the input go unmatched. As characters arrive, the pattern matcher has to retry the
patterns over successively longer and longer amounts of input. So it is a good idea to
keep the buffer size no larger than you really need.

As soon as a pattern matches, the input that matches and anything before it in the buffer
is removed. You can use this to speed up pattern matching. Just remove any unneces
sary input by matching it. For example, imagine you want to collect the body of a mail
message. Unfortunately, the mail program starts off by displaying several thousand
bytes worth of headers before it gets to the body of the message. You are not interested
in the headers-they only slow down the pattern matching.

Rather than just matching everything Cor the prompt at the end), it is quicker to match
the headers, throw them away, and then return to searching for the prompt. This could
be done conveniently using exp_continue. If you need the headers, too, consider
matching for them separately. While you have to write two expect commands, the
result also speeds up the overall matching process. You can speed up the matching
even further by matching each line individually. If the line containing the prompt
arrives, you are done. If any other line arrives, append the line to a buffer and repeat
the expect command as before. In this way, the pattern matcher never has to rematch
more than a line's worth of data. This technique can produce a significantly faster
response if you are waiting for the prompt at the end of a lOOK mail message!

For most tasks, the speed of pattern matching is not a concern. It usually happens so
quickly that you never notice a delay. But enormous amounts of unmatched input
combined with sufficiently complex patterns can take several seconds or more, causing
noticeable delays in processing. In such cases, if you cannot simplify your patterns, it
may pay to change your strategy from trying to match a large amount of data with a
single pattern to iteratively matching characters or lines or whatever chunks are conve
nient as they arrive and storing them for later processing.

The full_buffer Keyword
On page 149, I described how expect discards input when its internal buffer is
exceeded. The special pattern full_buffer matches when no other patterns match
and expect would otherwise throwaway part of the input to make room for more.t

t There is a way to obtain the discarded input without explicitly matching full_buffer or any other action.
However, I will not introduce the tools to accomplish this until Chapter 18 Cp. 407).

152 Exploring Expect

When full_buffer matches, all of the unmatched input is moved to
expect_out(buffer).

As with other special patterns, such as eof and timeout, full_buffer is only recog
nized when none of the -gl, -re, or -ex flags has been used.

The following fragment was written for someone who needed a program that would
"spool up" a relatively slow stream from the standard input and send it to a telnet
process every 3 seconds. They wanted to feed telnet with a few big chunks of data
rather than lots of tiny ones because they were running on a slow network that could
not afford the overhead.

set timeout 3
while 1 {

expect_user
eof exit
timeout {

expect_user "*,,

send $expect_out(buffer)

full_buffer {send $expect_out(buffer)}

The program works by sitting in a loop which waits for three seconds or a full buffer,
whichever comes first. If the buffer fills, it is sent out immediately. If three seconds pass,
another expect command is executed to retrieve whatever data has arrived, and that
data is sent to the remote side.

The expect_user command is a special version of the expect command that reads
from the standard input. I will describe this command in detail in Chapter 8 Cp. 192).

Double Buffering
When a spawned process produces a line of output, it does not immediately go into
Expect's buffer. In Chapter 4 Cp. 89), I described how the UNIX kernel processes charac
ters in chunks. The kernel, in a sense, contains its own buffer from which it doles out
these chunks when expect asks for more.

This kernel buffer is separate from expect's buffer. The kernel's buffer is only checked
when expect cannot find a match using the data already in its own buffer. This double
buffering rarely has any impact on the way scripts behave. However, there are some
cases in which the buffering does make a difference. For instance, imagine that you
have a shell script named greet that prints hello, sleeps five seconds, and then prints
goodbye.

Patterns, Actions, And Limits

echo hello
sleep 5
echo goodbye

Now, consider the following Expect script:

spawn /bin/sh greet
expect "h"
exec sleep 10
expect -re ".*0"

153

This script finds the h from hello and then sleeps for 10 seconds. During that time, the
shell script prints goodbye. This string is handed to the kernel which buffers it until
Expect asks for it.

When Expect awakens, expect searches its input buffer for anything with an 0 at the
end. This is satisfied by ello and expect returns. The string goodbye is not tested
because it is never read by expect.

A more realistic situation arises when using the simple "*,, pattern. This always matches
everything in expect's internal buffer and returns immediately. It never causes
expect to ask the kernel for more input, even if there is no data waiting.

So "expect II *"" clears expect's internal buffer but not the kernel's buffer. How can
the kernel's buffer be cleared? Intuitively, you need to read everything that is waiting.
But how do you know what "everything" is? expect can only ask for the amount of
data described by the match_max command. If you can guarantee how much the
spawned process has written, you can do this:

expect "*"
match_max $big
expect -re ".+"

;# clear Expect's internal buffer
;# get ready for everything waiting
;# read it, match it, discard it

If you are not prepared to declare how much could have been written, you cannot have
expect read in a loop. The spawned process may be writing at the same time that you
are reading in which case you can start throwing away more than what was "old".

Realistically, system indigestion can throw off any timing that you are hoping to rely on
to decide when it is time to flush buffers. The best solution is still to explicitly provide
patterns to match old output and then have the script throw the buffer away.

In general, asking for expect to flush kernel buffers usually indicates that something is
poorly designed-either the Expect script or the application. In Chapter 8 Cp. 192), I
will describe an application where these kinds of problems have to be dealt with.

154 Exploring Expect

Perpetual Buffering
The -notransfer flag prevents expect from removing matching characters from the
internal buffer. The characters can be matched repeatedly as long as the -notransfer
flag is associated with the pattern.

expect -notransfer pat

The -notransfer flag is particularly useful for experimenting with patterns. You can
drive a program up to a point where it loads up the internal buffer and then try various
patterns against it again and again. For convenience, the -notransfer flag can be
abbreviated "-n" when Expect is running interactively.

In the next chapter, I will show some additional debugging aids that can be usefully
combined with the -notransfer flag.

The Politics Of Patterns
Creating a pattern that matches a string is not always an easy task. A common dilemma
is whether to use a very conservative pattern or a more liberal pattern.

Conservative patterns typically have few or no wildcards and only match a limited
number of strings. While easy to read, they carry the potential risk of not being able to
match a string that deviates from the expected.

Liberal patterns are more forgiving with the ability to match any string that could
conceivably appear. However, these patterns underspecify the requirements of a string
and therefore risk matching strings that were not intended to be matched.

For example, automating a login requires that the initial prompt be accepted. There is
surprising nonconformity even at this level. For instance, UNIX systems commonly
prompt with "login:" while VMS systems prompt with "Username:". One way to
automate this might be:

expect -re "(login I Usernarne): "

But if you run into a system someday that just prompts "User", it will not be accepted.
This string and others can be added to the command, but eventually you may end up
just accepting anything that ends with a colon and a space:

expect -re ".*: $"

The $ lowers the risk of the string appearing in the middle of some other output.

Incidentally, handling VMS and UNIX systems in a single script may seem hard to
believe. However, the passmass script that comes with Expect as an example does just
this. passmass sets your password on any number of hosts. The idea is that you want

Patterns, Actions, And Limits 155

to keep your password the same on all the computers that you use, but when it comes
time to change it, you only want to do it once. passmass does this-it logs into each
machine and changes your password for you.

The actual password-changing dialogue is fairly similar from one operating system to
another. Of course, the prompts are wildly different. So are the diagnostics reporting,
for example, that your new password is not acceptable.

Here is an excerpt from passmass, where it sends the new password and then resends
it as a verification. The badhost function records the hosts that fail so that it is easy to
see afterwards which ones require manual assistance.

send "$newpassword\r"
expect -re "not changedlunchanged"

badhost $host "new password is bad?"
continue

-re "(passwordIVerificationIVerify) :.*"
send "$newpassword\r"
expect -re "(not changed I incorrect I choose new) .*" {

badhost $host "password is bad?"
continue

$prompt

Expecting A Null Character
The null character is another name for a zero-valued byte.t Tel provides no way to
represent nulls in strings. Indeed, internally Tel reserves null to delimit strings-so even
if you could get a null in a string, you cannot do anything useful with the result. Fortu
nately, this is not a problem.

Nulls are almost never generated by interactive processes. Since they have no printing
representation, users cannot see them and so there is little point in sending nulls to
users. Nonetheless, nulls have valid uses. The most common use for nulls is to control
screen graphics. The nulls are used either to delay character arrival on slow screens or
as parameters to screen formatting operations. Both of these operations work correctly
in Expect. Expect passes nulls to the standard output just like any other character.

By default, Expect removes any nulls before doing pattern matching. This is done for
efficiency-it allows the pattern matcher to use the same internal representation of
strings that Tel uses.

Removal of nulls can be disabled with the remove_nulls command. The nulls can
then be matched explicitly using the null keyword. To prevent nulls being removed

t Pedants insist that the correct term is NUL and that "null character" is meaningless. However. both Standard C
and POSIX define "null character" so I believe this term to be accepted and understood by most people.

156 Exploring Expect

from the output of the currently spawned process, use the command remove_nulls
with an argument of o. The following fragment calls remove_nulls and then looks
for a null in the output.

remove_nulls 0
expect null

;# disable null removal
;# match a null

An argument of 1 causes nulls to be removed. The remove_nulls command handles
its arguments similarly to the match_max command. With no arguments, the value for
the currently spawned process is returned. With a -d, the default value is returned. A
new default is set by using -d followed by 0 or 1.

You cannot directly embed the null keyword inside of another pattern. Nulls can only
be matched by themselves. Null matching is unanchored. Hence, when expect looks
for a null it skips over any other characters to find it. Any characters that are skipped
can be found, as usual, in expect_out (buffer). Since nulls are internally used to
terminate strings, unanchored patterns cannot be matched into the buffer past a null.
Fortunately, this is not a problem since the null pattern can always be listed (and
searched for) last. I will show an example of this shortly.

If nulls are being used to pad data, it is just a matter of waiting for the correct number of
nulls. For example, to wait for two nulls:

expect null
expect null

The more typical use is when receiving binary data. For example, suppose you expect
an equal sign followed by an integer represented as four bytes, most significant byte
first. This task is best separated into two parts, illustrated by the two commands in the
following fragment:

expect "="
set result [expect_four_byte_int]

The first command looks for the equals sign. The second is a procedure to collect a four
byte integer that may contain binary zeros. This procedure is not predefined by Expect
but here is an example of how you might write it:

proc expect_four_byte_int {} {
set x 0
for {set i O} {$i<4} {incr i}

set x [expr $x*256]
expect "?" {

scan $expect_out(O,string) %c d
incr x $d

null

Patterns, Actions, And Limits 157

return $x

The procedure works by expecting a single byte at a time. Null bytes are matched with
the null keyword. Non-null bytes are matched with the "?". Each time through the
loop, the previous subtotal is shifted up to make room for the new byte. The new byte
value is added to the current subtotal. Since a null has a 0 byte value, no addition and
hence no action is even necessary in that case. It just has to be matched.

This approach to handling null bytes may seem slow and awkward (and it is), but the
reality is that Tel is optimized as a user interface, and handling binary data in a user inter
face almost never happens. The tradeoff of allowing null to be handled differently is
that it allows the rest of Tel to be much simpler than it otherwise would be.

Parity
Parity refers to the process of error detection by modification and inspection of a single
bit in each byte. There are two basic types of parity. Odd parity means that the number
of 1 bits in the byte is odd. If a letter is not naturally represented by an odd number of 1
bits, the high-order bit is forced to be 1. Even parity is just the opposite.

Parity was never much good, being very susceptible to transmission noise. In this day
and age, parity is totally useless. Nonetheless, some old computer peripherals generate
it anyway. And worse, they provide no way of disabling it. Locally spawned processes
do not add parity in the first place. You only have to worry about parity when communi
cating with other peripherals, such as modems or telecommunication switches.

By default, expect respects parity. expect passes characters with their parity on to
the standard output (or log file) and also does pattern matching with the original parity.
The reason this is useful, of course, is that many programs use all the bits in a byte to
represent data. Eight-bit character sets (prevalent in Europe) do not work if one of the
bits is used for parity.

Usually, parity is not a consideration. Indeed, if your Expect dialogues are working just
fine, then you can skip this section. However, you may occasionally find that some of
your characters are unreadable or just plain wrong. For example, suppose that you use
tip to dial up another computer and the following gibberish appears instead of a
prompt to login:

In this case, the G represents a character that would have had an even number of bits
but was modified to force odd parity. You may not see this particular symbol but similar
garbage will definitely clue you in that there is a problem.

158 Exploring Expect

In many cases, you can just tell the remote side not to generate parity. If the equipment
does not support any way of changing parity, you can use the parity command.

The parity command handles its arguments similarly to the match_max and
remove_nulls commands. When called with an argument of 0, parity is stripped from
the current process. If called with a nonzero argument, parity is not stripped. With no
argument, the current value is returned. With the -d flag, the parity is set or examined
for future processes.

parity 0 ;# strip parity

The parity command only affects how Expect treats parity. Your terminal parameters
can affect it as well. For example, if your terminal is set to strip parity on input, any
eight-bit characters you enter will arrive without the high-order bits. Output from
spawned processes can also be affected because they have their own terminal settings.
If your system does not have a "sane" idea of initial terminal parameters, you will have
to correct or override it. I will describe how to do this in Chapter 13 Cp. 300).

Length Limits
I have already mentioned that the number of parenthesized expressions in regular
expressions is limited to 9. There are two other limits worth mentioning. While it is
highly unlikely that you will run into them, describing them may help your peace of
mind.

There is a limit on the length of regular expressions. The precise figure depends on the
details of a particular regular expression, but 30,000 characters is a safe bet. The length
of glob patterns and the strings against which either glob patterns or regular expressions
match are limited only to the amount of available memory.

Comments In expect Commands
It is tempting to add comments after patterns and actions. However, it cannot be done
arbitrarily. For example, the following example does not do what was intended.

expect {
"orange" squeeze-proc
"banana" pee1-proc

happens every morning

The problem in this code fragment is that the comment occurs in a place where the
expect command is expecting patterns and actions. The expect command does not
have any speCial way of handling comments. In this example, the expect command

Patterns, Actions, And Limits 159

simply assumes that "#" is a pattern and happens is the associated action. every and
morning are also interpreted as a pattern and action.

This particular comment is rather lucky. The pattern banana is still used as a pattern.
However, if the comment had one more word in it, banana would be used as an action
and pee1-proc as a pattern!

Remember that comments behave a lot like commands.t They can only be used where
commands can be used. If you want to associate a comment with an action, then use
braces to create a list of commands and embed both the comment and the action within
the list. In the following fragment, all of the comments are safe.

expect {
"orange" {

comments can appear here safely, too
squeeze-proc ;# happens every morning
comments can appear here safely, too

"banana" peel-proc

Restrictions On expect Arguments
The expect command allows its arguments to be surrounded by a pair of braces. This
behavior was described in Chapter 3 Cp. 76) and is used heavily throughout the book.
Bracing the argument list is a convenient feature. Without it, you would have to put
backslashes at the ends of many lines to keep long expect commands together.

Consider these two forms:

expect \
patl actl \
pat2 act2 \
pat3 act3

expect {
patl actl
pat2 act2
pat3 act3

Unfortunately, there is one pitfall with the second form. When the second form is used,
there is a question whether the list is a list of patterns or just a single pattern. Although
unlikely, it is possible that a pattern could really be "\npatl actl \npat2

t The only significant difference between comments and commands is that arguments of a comment are not eval
uated.

160 Exploring Expect

act2 \npat3 act3 \n". And while this pattern does not visually look like the multiline
expect command above, internally the same representation is used for both.

The expect command uses a heuristic to decide whether the argument is a pattern or a
list of patterns.t The heuristic is almost always correct, but can be fooled by very
unusual patterns or indentation. For instance, the pattern in the previous paragraph is
misinterpreted as a list of patterns. It simply looks too much like a list of patterns. Fortu
nately, situations like this almost never arise. Nonetheless, you may need to worry
about it, particularly if you are machine-generating your Expect scripts.

In order to force a single argument to be treated as a pattern, use the -gl flag. (The
pattern must be a glob pattern or else it would already have a -re or -ex flag which
necessarily would mean there must already be two arguments.) For example:

expect -gl $pattern

The opposite problem can also occur. This is, Expect may mistake a list of patterns for a
single pattern. The most likely reason for this to happen is if you provide the list all on
the same line. Consider the following command:

expect {patl actl pat2 act2}

The expect command will assume you are looking for the pattern "patl actl
pat2 act2". Here, expect is thrown off by the lack of newlines. After all, there is no
point in using braces if you are just going to put all the patterns on the same physical
line as the expect command. Leaving them off would be simpler (and take less space).

A newline after the opening brace is sufficient to clue expect in to the fact that the
argument is intended as a list of patterns and actions. Alternatively, you can force a
single argument to be treated as a list of patterns by using the -brace flag before the
list. This allows you to have an expect command with multiple patterns-all of which
fits on a single line.

expect -brace $arglist

In the next section, I will demonstrate another use for the -brace flag.

eval- Good, Bad, And Ugly
It is occasionally useful to dynamically generate expect commands. By that I mean
that the commands themselves are not prewritten in a script but rather are generated
while the script is running.

t Both the expect and interact commands use this same heuristic.

Patterns, Actions, And Limits 161

As an example, suppose you want to wait for a particular pattern C"patl") and option
ally look for another pattern ("pat2") depending on whether a variable ("v2") is 1 or O.
An obvious rendering of this logic is as follows:

if {$v2} {
expect patl actl pat2 act2

else {
expect patl actl

This works. However, lengthy lists of patterns and actions can make this code difficult
to maintain. If you want to make a change to an expect command, you will have to
make it twice. The odds of a programming error are going to go up.

Even worse, this solution does not extend well if you add another pattern that is depen
dent on another variable. You will need to have four expect commands to cover all
the possibilities. Additional variables quickly cause this technique to become totally
unmanageable.

It is tempting to store the patterns and actions into variables which are later appended
to the remaining patterns; however, this must be done with care. Examine this incorrect
attempt:

if {$v2}
set v2pats "pat2 act2"

else {

set v2pats

if {$v3} {

set v3pats "pat3 act3"
else {

set v3pats

expect patl actl $v2pats $v3pats ;# WRONG

In the expect command, the patterns in v2pats and v3pats are listed as separate
arguments. expect interprets $v2pats as a pattern and $v3pats as the associated
action. Obviously this is not what is intended.

A better and very efficient solution is to iteratively build up a list of the patterns and
actions, adding to it as appropriate. When ready, the list is passed to expect.

set patlist ""
if {$v2} {lappend patlist "pat2" act2}
if {$v3} {lappend patlist "pat3" act3}
expect -brace "patl actl $patlist"

162 Exploring Expect

Each additional variable and pattern adds only one line. At the end is a single expect
command. Notice the -brace argument which forces expect to interpret the argu
ment as a list instead of a single pattern. This is one of the few situations where it is
absolutely necessary to give expect a hint about its argument actually being a set of
patterns.

One remaining drawback is that patterns and actions on the last line cannot use double
quotes in the usual way (to surround the patterns) since the entire list is already double
quoted. If patl is a variable reference that expands to a string with embedded
whitespace, expect sees this as two separate arguments. Using braces instead of either
set of quotes (inner or outer) does not help because then the variable substitutions
cannot occur.

The only way out of this dilemma is to use eval. The eval command appends all of its
arguments together and then evaluates the resulting string as a new command. Here is
the idea:

eval expect "$patl" actl $patlist ;# almost right!

The eval command dynamically generates a new expect command with the
remaining arguments. The -brace flag is no longer necessary since the arguments are
now passed separately.

The eval command breaks apart any arguments that are also lists. This is just what you
need to handle patlist, but it is not right for $patl and actl. They must be
protected if they include whitespace. The most general solution is to put $patl and
actl inside of a list command. This also protects patterns with special symbols like
braces. Consider either of these:

eval expect [list "$patl"] [list actl] $patlist
eval expect [list "$patl" actl] $patlist

If act 1 is just a list of commands already in braces, a second set of braces suffices.

eval expect [list "$patl"] {{
cmdl
cmd2

}} $patlist

This may look peculiar, but then most eval commands do. Fortunately, this kind of
situation rarely arises, but if it does you have a general solution for it.

Exercises
1. Experiment with telnet by writing a script to try all of the different port numbers.

Record what comes back.

Patterns, Actions, And Limits 163

2. In the aftp script on page 144, I hardcoded my own name and address. Modify the
script so that it uses the name and address of whomever runs it.

3. Write the putfile and putdirectory procedures that are used by the excerpt from
rftp on page 133.

4. Write a procedure to count the number of lines in a string. Do it without looping.
Modify the procedure so that it counts the number of digits in a string. Where might
this be useful?

5. Enhance the maxtime script from Chapter 4 Cp. 98) so that it can exit after there is no
output for the given amount of time. Provide a command-line option to select this
behavior.

In This Chapter:

• Figuring Out Why
Patterns Do Not
Match

• Suppressing
Output From
Processes

• Capturing Output
From Processes Debugging Patterns

And Controlling Output

In this chapter, I will discuss the generation and suppression of certain types of output,
including normal and diagnostic output. Diagnostic output includes information helpful
for debugging pattern matching problems. I will discuss debugging of script control
flow and scripts as a whole in Chapter 18 Cpo 403).

Pattern Debugging
In the last couple of chapters, I described how to write patterns. Clearly there are some
tricky issues of which you have to be aware. Writing effective patterns is a challenging
art for several reasons.

First, you have to know the rules for constructing patterns. Second, you have to under
stand the rules for expressing them in Tel. Third, you have to know what characters are
in the string you expect. Misunderstanding anyone of these steps can cause you to
write patterns that do not match.

When patterns do not match as intended, a common symptom is that the script executes
very slowly. For example, the following is a fragment of a script to log in. It ought to
execute quickly.

expect "Login: "
send "don\r"
expect "Password: "
send "swordfish\r"

However, on a typical system this fragment takes 20 seconds to execute instead of one
or two seconds. There are two problems. The first is with the patterns. The first pattern
says to expect "Login: " but on a typical UNIX system the prompt is "login: "

165

166 Exploring Expect

Instead of matching, the script waits for more input for another 10 seconds (because
that is the default timeout). After 10 seconds, expect times out. Since there is no
timeout action, the user is not informed that the pattern failed to match. The expect
simply returns and control passes to the next command in the script.

This kind of mistake is not uncommon. Part of the reason is that on a UNIX system, the
default login prompt starts with a lowercase letter while the password prompt starts
with an uppercase letter. This kind of inconsistency, rampant in many interactive inter
faces, is ignored by most users and naturally shows up in scripts like these.

The second problem is due to another user-interface inconsistency. There is a space
character at the end of the "Password: " pattern. But the actual prompt received is
"Password:", which does not have a space at the end! This type of incorrect pattern is
an easy mistake to make because most prompts include a trailing space-but not the
one for the password. Repeating the earlier logic, the script waits for another 10
seconds.

Scripts with these kinds of errors may work, but with snail-like speed. One way to find
out the problem is to ask Expect what it is doing internally.

The command "exp_internal I" causes Expect to print diagnostics describing some
of its internal operations. Among other things, this includes the comparisons that occur
within the expect command. Here is the script using "exp_internal I" along with
a telnet command.

spawn telnet uunet.uu.net
exp_internal 1
expect "Login: "
send "don\r"
expect "Password: "
send "swordfish\r"

When run through the first expect-send sequence, the output starts out like this:

spawn telnet uunet.uu.net
expect: does "" (spawn_id 5) match glob pattern "Login: "? no
Trying
expect: does "Trying" (spawn_id 5) match glob pattern "Login: "?

no
192.48.
expect: does "Trying 192.48." (spawn_id 5) match glob pattern

"Login: "? no
96.2 ..
expect: does "Trying 192.48.96.2

pattern "Login: "? no
" (spawn_id 5) match glob

Debugging Patterns And Controlling Output 167

What you see is the normal output from Expect plus the diagnostic output describing
exactly what is in the input buffer and what the current patterns are. Each line that
begins with "expect: does" prefaces a comparison. The current input buffer follows,
surrounded by double quotes, and then the pattern that is being used, also in double
quotes. For instance, expect initially starts out with nothing in the input buffer and so
you see:

expect: does "" (spawn_id 5) match glob pattern "Login: "7 no

Then the string "Trying "arrives. This is part of the string that telnet normally
prints when it opens a connection. Expect adds this to the input buffer and retries the
pattern:

expect: does "Trying" (spawn_id 5) match glob pattern "Login: "7
no

After each test, expect prints the word "no" if the match was unsuccessful or "yes" if it
was successful. The (spawn_id 5) is an indication of which spawned process was
participating in this match. I will describe the particular meaning of this further in
Chapter 10 Cp. 233). For now, I assume there can only be one process, and I will omit
the process identifier in the rest of this example.

Skipping ahead, you can eventually find Uunet's greeting message:

UUNET Communications Services (uunet)
expect: does "Trying 192.48.96.2 ... \r\nConnected to

uunet.uu.net.\r\nEscape character is 'A]' .\r\n\r\nUUNET
Communications Services (uunet)\r\n\r\r\n\r" match glob pattern
"Login: "7 no

Notice how the input buffer has been converted to a kind of backslash-like representa
tion. That is, carriage-returns are displayed as "\r" and linefeeds as "\n". This is very
helpful if you need to match these explicitly.

Immediately after this, Uunet sends its login prompt-for which the script has been
waiting.

login:
expect: does "Trying 192.48.96.2 ... \r\nConnected to

uunet.uu.net.\r\nEscape character is 'A]' .\r\n\r\nUUNET
Communications Services (uunet)\r\n\r\r\n\rlogin: " match glob
pattern "Login: "7 no

Now you can see the login prompt, and it becomes obvious that the pattern will never
match. Sure enough, expect sits for the remaining time and then finally reports that it
timed out.

expect: timed out
send: sent "don\r"

168 Exploring Expect

The send command similarly produces messages describing what it has done. In this
case, it has sent the string don \ r back to the process.

Now that the script has sent the username, it immediately goes on to the next step
waiting to be prompted for the password:

expect: does "Trying 192.48.96.2 .. . \r\nConnected to
uunet.uu.net.\r\nEscape character is 'A]' .\r\n\r\nUUNET
Corrununications Services (uunet)\r\n\r\r\n\rlogin: " match glob
pattern "Password: "? no

don

expect: does "Trying 192.48.96.2 .. . \r\nConnected to
uunet.uu.net.\r\nEscape character is 'A]' .\r\n\r\nUUNET
Corrununications Services (uunet)\r\n\r\r\n\rlogin: don\r\n"
match glob pattern "Password: "? no

At this point, the password has not appeared. What has appeared, however, is the user
name that the script sent earlier. You see the username come back simply because the
remote side is echoing it. This is normal and is the reason why you see most of your
own keystrokes when you type them. By comparison, the password will not be echoed.

Password:
expect: does "Trying 192.48.96.2 ... \r\nConnected to

uunet.uu.net.\r\nEscape character is 'A]' .\r\n\r\nUUNET
Corrununications Services (uunet)\r\n\r\r\n\rlogin:
don\r\nPassword:" match glob pattern "Password: "? no

expect: timed out
send: sent "swordfish\r"

You can now see very clearly that the input buffer contains "Password: "-without a
space-but the pattern is looking for "Password: "-with a space. The pattern fails
to match of course. And if you look closely, you can even see that the login prompt is
still in the input buffer. That is because it was never matched and so never got removed
from the buffer either.

The current expect command eventually times out, and the script continues with the
next line. If the rest of the script works, the errors at the beginning do not add up to
much; however, they really should be fixed. At the very least, they unnecessarily slow
down the script. At the very worst, the script could send things at times when it does
not make sense, ending up with unpredictable behavior and an unreliable script.
Remember this as you write scripts. If your script pauses for a significant amount of
time, even though the prompt it is looking for has already come, there is almost
certainly something going wrong that you should investigate.

Here is another version of the script. It is worth studying because it works quite differ
ently than a straightline script where one expect command follows another rigidly. In

Debugging Patterns And Controlling Output 169

this script, there is a while loop enclosing a single expect command in which all the
patterns are listed together. The sole advantage to doing so here is that you need only
write one timeout action rather than a timeout in every expect command. In some
situations, this kind of processing is very useful toward simplifying the overall control
while adding flexibility. But in Chapter 11 (p. 259) I will show better ways of econo
mizing on the number of times you have to write t imeou t.

More importantly, the patterns are correct this time. The diagnostic output will show the
two patterns being matched against the same input each time, and ultimately one
pattern will always be matched. I have also added the -indices flag (see Chapter 5
(p. 124)) so that you can see its effect.

spawn telnet ftp.uu.net
exp_internal 1
set timeout 30
while 1 {

expect {
-indices "login: " {

send "don\r"
-indices "Password:"

send "swordfish\r"
timeout {

puts "warning: timed out"

The script starts the same way as before: by spawning a telnet process.

spawn telnet ftp.uu.net
expect: does "" match glob pattern "login: "? no
"Password:"? no

expect starts out by attempting to match both patterns against an empty buffer since
nothing is received immediately. Here, they both fail. The string "trying "arrives and
then some more input dribbles in. In each case, the patterns fail to match.

Trying
expect: does "Trying" match glob pattern "login: "? no
"Password: "? no
192.48.96.9 ...
expect: does "Trying 192.48.96.9 ... \r\n" match glob pattern

" login: "? no
"Password:"? no
Connect
expect: does "Trying 192.48.96.9 ... \r\nConnect" match glob pattern

"login: "? no
"Password:"? no
ed to f

170 Exploring Expect

expect: does "Trying 192.48.96.9 ... \r\nConnected to f" match glob
pattern "login: "? no

"Password:"? no
tp.uu.net.
Escape character is 'A]'.
expect: does "Trying 192.48.96.9 ... \r\nConnected to

ftp.uu.net.\r\nEscape character is 'A]' .\r\n" match glob
pattern "login: "? no

"Password:"? no

Finally you can see Uunet's greeting message. The script is still looking for "login:
(and "Password:" for that matter).

SunOS UNIX (ftp)
expect: does "Trying 192.48.96.9 ... \r\nConnected to

ftp.uu.net.\r\nEscape character is 'A]' .\r\n\r\n\r\nSunOS UNIX
(ftp)\r\n\r\r\n\r" match glob pattern "login: "? no

"Password:"? no
login:
expect: does "Trying 192.48.96.9 .. . \r\nConnected to

ftp.uu.net.\r\nEscape character is 'A]' .\r\n\r\n\r\nSunOS UNIX
(ftp)\r\n\r\r\n\rlogin: " match glob pattern "login: "? yes

Here is the first successful match. Expect prints out yes after the pattern that has been
matched and then prints the internal assignments that are made before any actions are
executed.

expect: set expect_out (O,start) "103"
expect: set expect_out (O,end) "109"
expect: set expect_out(O,string) "login: "
expect: set expect_out (buffer) "Trying 192.48.96.9 ... \r\nConnected

to ftp.uu.net.\r\nEscape character is 'A]' .\r\n\r\n\r\nSunOS
UNIX (ftp)\r\n\r\r\n\rlogin: "

Now the corresponding action is executed, sending the string don \r to the process.

send: sent "don\r"
expect: does match glob pattern "login: "? no
"Password: "? no
don
expect: does "don\r\n" match glob pattern "login: "? no
"Password:"? no
Password:
expect: does "don\r\nPassword:" match glob pattern "login: "? no
"Password:"? yes
expect: set expect_out (O,start) "7"
expect: set expect_out (O,end) "15"
expect: set expect_out(O,string) "Password:"

Debugging Patterns And Controlling Output 171

expect: set expect_out (buffer) "don\r\nPassword:"
send: sent "swordfish\r"

Dunet responds with a prompt for the password. This is immediately matched by the
script and the password itself is sent back.

You may have noticed that the script does not do anything differently after sending the
password. It is rather dumb-it just continues looking for "login: " or "Password:"
whether it logs in successfully or not. Nonetheless, it suffices to show the kind of diag
nostics you can get from the exp_internal command.

In Chapter 6 Cp. 154), I described the -notransfer flag. Together, the -notransfer
flag and the internal diagnostics should be very helpful for debugging most of the
pattern matching problems you encounter.

Enabling Internal Diagnostics
In long scripts, it is convenient to be able to turn Expect's internal diagnostics off. You
can do this with the command "exp_internal 0". You can use the exp_internal
command to turn the diagnostics off and on as you like. For example, it is common to
surround just a small group of commands or even one command with exp_internal
commands as you narrow down where the problem lies in a script.

exp_internal 1
expect
exp_internal 0

You may also find it convenient to conditionalize the use of exp_internal. For
example, you can set a global variable that controls whether all of the exp_internal
commands are actually executed. The following code permits "exp_internal 1"

commands in the code to execute only when the variable debug_enable is nonzero.
The idea is that this variable is set once-which is much easier than adding or
commenting in and out commands scattered throughout a script. (In Chapter 9 Cp. 223),
I will describe how to get this effect on a script-wide basis without changing the script at
all.)

if $debug_enable {exp_internal 1}
expect ...
exp_internal 0
send .. .
expect .. .
if $debug_enable {exp_internal 1}
send .. .
expect .. .
exp_internal 0

172 Exploring Expect

The "exp_internal 0" commands do not have to be conditionalized. It is not an
error to execute "exp_internal 0" even if diagnostics have not been enabled. In this
case, "exp_internal 0" is just ignored.

An even more convenient way to control diagnostic output is to define procedures such
as the following one:

proc debug_on {} {
global debug_enable
if {$debug_enable} {exp_internal 1}

Now the code would look slightly simpler. Here is just the beginning of the code above
rewritten to use debug_on and a similar procedure debug_off.

debug_on
expect
debug_off
send ..
expect ..
debug_on

The advantage to this, besides being simpler to write, is that the variable
debug_enable will also be accessible because of the global command in the proce
dure debug_on. With the earlier technique, global commands have to be added to
every procedure containing the "if $debug_enable" test.

Enabling Expect's internal diagnostics can cause a tremendous amount of output to be
produced since many of the internal actions and decisions that Expect makes are
printed out. The process of producing diagnostic output does not change any of the
external behavior of Expect except for what is shown at the terminal. Since Expect
continues to display the output of whatever process it controls as well as the diagnostic
output, the total effect can be very disorienting, sometimes making it difficult to figure
out what is normal process output and what is diagnostic output. It is possible,
however, to separate the two output streams so that they are readable.

It is important to understand that normal terminal output consists of two "streams of
output". One is called the standard output and the other is called the standard error.
Most program output gets written to the standard output but error messages get written
to the standard error. The usual shell output redirection ("program > output
file") redirects only the standard output. This allows programs to print error messages
to the user and not have them go down the pipe where they will not be seen. Try
invoking grep, for example, on a non-existent file while redirecting the output. You
will still see the error message.

Expect works the same way. Most output is sent to the standard output while the diag
nostic output is sent to the standard error. These can be separated by shell redirection

Debugging Patterns And Controlling Output 173

when the Expect program or script is started. For example, you might want to send the
diagnostics to the file "diag". In the Bourne or Korn shell, you do this by starting your
Expect script like this:

$ scriptname args 2> diag

Most people consider the C-shell syntax so peculiar that they find it easier to explicitly
run one of the other shells in such situations and type the previous command. If you do
need to stay in the C-shell for some reason, use the following command:

% (scriptname args > /dev/tty) >& diag

Once you have redirected the output, you can watch it from another window, in this
case by executing the command "tail -f diag" which prints out any new diagnos
tics as they are written to the file. The command "tail -f diag I more" lets you
read the diagnostics before they roll off the screen. If there are not that many diagnos
tics or if you do not need to save them in a file, you might consider writing them directly
to another window. Get the name of the window where you want the output to appear
by executing the tty command in that window. The response will be the name of a
terminal device such as "I dey It typ1". Now start the script in the other window as:

$ scriptname args 2> /dev/ttypl

Redirecting the standard error can introduce one tiny problem into your interaction with
Expect. Namely, any real errors that occur in your script or session are also sent to wher
ever you have redirected the standard error. You cannot see them in the window from
which you started Expect even if you normally see them there. Fortunately, this
problem only arises when doing script development since production scripts should not
produce any errors. Just remember to watch wherever you have the standard error
redirected.

Logging Internal Diagnostics
It is possible to achieve all sorts of effects by playing games with redirection. One of the
more useful things is to log both the standard output and standard error to a file. Expect
provides this same capability in a more flexible way than can be achieved with redirec
tion. This is done using the exp_internal command with the - f argument. An
output file name must follow the - f along with a 0 or 1. The 0 or 1 disables or enables
the generation of diagnostics just as before. However, the standard output and standard
error is still logged to the file even if a 0 is supplied to exp_internal.

174 Exploring Expect

To summarize:

exp_internal 0

exp_internal 1

exp_internal -f file 0

exp_internal -f file 1

no diagnostics

send pattern diagnostics to standard error

copy standard output and pattern diagnostics
to file

copy standard output and pattern diagnostics
to file and send pattern diagnostics to stan
dard error

The form "exp_internal -f file 0" is particularly useful because Expect appears
to act just as if no diagnostics were being generated, even though it is actually writing
the usual output and diagnostics to a file at the same time. You can put this particular
command in production scripts and users will not be affected by the command. If a user
then reports a bug, you can check the file and see exactly what went wrong.

As before, exp_internal commands can be placed around pieces of code to limit the
amount of diagnostics they produce. Each exp_internal command closes any
previous file that was named by an exp_internal command. So you can log different
parts of a script to different files. When the script ends, any open exp_internal file is
closed.

Disabling Normal Program Output
In the previous section, I showed how to generate, control, and suppress diagnostics
produced by Expect. All output produced by spawned programs, however, appears on
Expect's standard output. It is possible to redirect or suppress this as well, but it is done
in a different way.

spawned
process

'--___J standard output

Expect
standard error

standard output

Inside of Expect, the standard output and standard error of a spawned process are
joined together and ultimately appear as the standard output of Expect.

The standard error and standard output of a spawned process are joined together inside
of Expect. This is done before pattern matching occurs so that patterns must account for
both streams appearing simultaneously. The reason this is done is partly philosophical
and partly practical.

Debugging Patterns And Controlling Output 175

Philosophically speaking, interactive programs always have the outputs merged
together anyway-on the screen. It is impossible for users to visually distinguish
between characters appearing on the standard output versus the standard error. Their
minds make up for it by scanning the output, both for normal output and errors at the
same time. If humans can do it, then so can scripts. This is the philosophy that Expect
takes.

Practically speaking, few interactive programs send things to the standard error. What is
the point? A user is watching the standard output anyway. The user sees the error
whether it appears on one stream or the other. (When was the last time you ran ftp,
for example, with either output stream redirected?) Ironically, Expect could be cited as
a counterexample to this. It goes out of its way to send its errors to the standard error.
However, it does this specifically to assist in the case when it is run non-interactively. In
such a situation, the standard output could very understandably be redirected. But used
interactively, the separation of standard error and standard input is not particularly
useful.

I showed earlier how the standard error of Expect can be redirected. Similarly, so can
the standard input. This is done using the traditional "<" notation. However, this kind of
redirection is crude. It can only be done once, when starting Expect, and the redirection
can never be changed after that.

The log_user Command
In Expect scripts, it is very useful to hide the underlying dialogue, perhaps substituting
new output. Sometimes it is useful just to show parts of the dialogue. You can do this
with the log_user command. "log_user 0" stops the output of the spawned
process from appearing in the standard output of Expect. "log_user I" restores it.

The following script verifies email destinations at remote hosts by exercising the vrfy

command supported by SMTP, a mail transfer protocol commonly used on the Internet.
The script takes an email address as an argument.

#!/usr/local/bin/expect --

regexp (.*)@(.*) $argv ignore user host
spawn telnet $host smtp
set timeout -1
expect -re "220.*\r\n"
send "vrfy $user\r"
expect -re "(2501550) .*\r\n"

The first command in the script extracts the user and host names from the original argu
ment. This is done using the very same regexp command that I used as an example in

176 Exploring Expect

Chapter 6 Cp. 137). The remainder of the script performs the interaction with the remote
host.

The script is named vrfy. When I run it, here is what appears:

% vrfy jobs@next.com
spawn telnet next.com smtp
Trying 129.18.1.2 ...
Connected to next.com.
Escape character is 'A] '.
220 NeXT.COM Sendmail NX5.67d/NeXTO.5-Aleph-arnm ($Revision: 1.4 $

$State: Exp $) ready at Thu, 1 Apr 93 21:32:19 -0800
vrfy jobs
250 <jobs>

By adding "log_user 0" to the script and giving the final expect command an
explicit action, the output is simplified dramatically. Here is the new version using
log_user.

#!/usr/local/bin/expect

log_user 0
regexp (.*)@(.*) $argv ignore user host
spawn telnet $host smtp
set timeout -1
expect -re "220.*\r\n"
send "vrfy $user\r"
expect "250" {puts "GOOD"} \

"550" {puts "BAD"}

Here is what it looks like when I run it with a few test cases.

% vrfy jobs@next.com
GOOD
% vrfy jobs@apple.com
BAD

This new version is just as functional, and the output is much easier to read.

Output generated by the puts command still appears in Expect's standard output. The
effect of "log_user 0" only disables output from the underlying spawned process.

send commands are not directly affected by log_user. The characters still go to the
spawned process. However, the same characters normally show up eventually in the
output of a spawned process because of echoing. While the echoing is still done by the
spawned process, "log_user 0", as before, prevents the characters from being sent
on to Expect's standard output. So it may seem that log_user has an effect on send,
but this is true only indirectly.

Debugging Patterns And Controlling Output 177

As an example, suppose a connection to a remote host has been spawned and you want
to get the remote date, but without seeing the date command itself echoed. A common
error is to write:

log_user 0 ;# WRONG
send "date\r" ;# WRONG
log_user 1 ;# WRONG
expect -re .*\n ;# WRONG

When run, the log_user command has no effect because Expect does not read the
echoed "date" until the expect command. The correct way to solve this problem is as
follows:

send "date\r"
log_user 0
expect -re "\n(\["\r]*)\r"

log_user 1

;# match "date" cmd
;# and actual date

puts "$expect_out(l,string)" ;# print actual date only

In this rewrite, the expect command skips over the date command string by matching
for the \n echoed back. The pattern also matches the next line, which is the actual
date. The parentheses select just the information wanted (the date), which can then be
printed with an explicit puts command. (If you are sending a lot of commands to a
remote shell it may be more convenient to just disable all echoing in the first place. I
will demonstrate this in Chapter 12 Cp. 273).)

One other thing suppressed by "log_user 0" is the side-effect of spawn. The spawn
command normally echoes itself to the standard output. This is disabled with
"log_user 0".

Because output describing everything going on underneath can be surpressed, it is
possible to write scripts that produce no output at all. Instead, a script can cause side
effects such as writing files or setting a final status value. The vrfy script can be
rewritten to set a testable status value by changing the last line from:

expect "250" {puts "GOOD" } \
"550" {puts "BAD" }

to:

expect "250" {exit O} \
"550" {exit 1}

178 Exploring Expect

Now vrfy can be used in a shell script without producing any output. For example,
from a Bourne shell script, you can use the script as:

if vrfy jobs@apple.com; then
. . . do something . . .

fi

Note that the shell considers an exit value of zero as true. Anything else is considered
false. This differs from most languages (e.g., Tel, C) where anything but zero is true.

I can now go back to some earlier scripts and modify them not only to be non-interac
tive but to suppress all output. Here is a modified version of the ping script from
Chapter 4 (p. 97) which only waits two seconds to complete the ping.

#!/usr/local/bin/expect
log_user 0
spawn ping $host
set timeout 2
expect "alive" {exit O} timeout {exit 1}

Whether or not the ping succeeds, the script prints nothing. The final command sets
the status value though, so that the script can be used easily from shell scripts.

Remember the firstline script from Chapter 6 (p. 136)? It ran an arbitrary program,
stopping after matching the first line of output. As written, however, the script had the
drawback that if input arrived quickly enough, several lines could appear in the output.

You can fix this script by using log_user and handling the output explicitly. Here is a
new version that does just that.

#!/usr/local/bin/expect
log_user 0
eval spawn $argv
set timeout -1
expect -re "(\[A\r]*)\r"
puts "$expect_out(l,string)"

Example-su2
Suppose you accidentally type a command that requires root access, but are not root at
the time. If it is just one command, you can type "su root !!", but more commonly
you need to enter several more commands that need root access. su provides no way
to pass the old command in to the new root shell and then remain in the new root shell.

The usual solution is to invoke su, type the password, and then retype the command. If
you have windows, you can start su and then copy and paste the command from one
window to another. Either way, it is a bit of a hassle. The problem is that su provides
no mechanism for going back in the history and bringing it to the new environment. If it

Debugging Patterns And Controlling Output 179

did, you would not need to retype or copy and paste the old command-su would
automatically know it.

Here is a script that addresses this problem. It starts su, gives it the command supplied
as the script argument, and then passes control to the user. For simplicity, the password
is taken from the command line. (In Chapter 8 (p. 201), I will show how to provide it in
a much more secure way.) This version is called su2.

#!/usr/local/bin/expect

set timeout -1
log_user 0
spawn su
expect "Password:"
send" [lindex $argv O]\r"
expect "\r\n"
log_user 1

;# discard su's password prompt
;# send password to su

expect "Sorry" exit "# "
send" [lrange $argv 1 end]\r"
interact ;# let user type more cmds to root shell

The script temporarily suppresses the output from the su command when the password
is prompted for and consumed. Here is how it appears when I use it. First I set up the
scenario by typing a command that is rejected:

% touch /etc/passwd
touch: cannot touch /etc/passwd: no write permission

Now I call the Expect script with the root password and !! to refer to the previous
command. This shell echoes it because it contains a history reference.

57% su2 xxj24k !!

su2 xxj24k touch /etc/passwd
1# touch /etc/passwd
2#

The script then kicks in and starts suo With "log_user 0", the script responds to the
password prompt without displaying it, and then feeds the command to the root shell.
Finally, the script passes control to the keyboard via the interact command, leaving
me in the root shell.

The result is that I have typed no more than necessary. In fact, with a shell function, you
can even have your shell provide the history reference for you. But passing an argu
ment such as ! ! is a good way. This allows fast references to other commands in the
history. And, if your shell supports command-line editing, you can back up to the
previous command and just insert the "su2" in front of it.

In this example, "log_user 1" came after "log_user 0", but like "exp_internal
1" and "exp_internal 0", either "log_user 1" or "log_user 0" may be repeated

180 Exploring Expect

without the other. For example, using "log_user 0" twice in a row is legitimate. It is
not necessary to keep track of what has happened in the past.

Recording All Expect Output
It is possible to save in a file all the output that Expect produces. This includes not only
the output from a spawned process, but anything that Expect itself generates such as
diagnostics. Conceptually, this is akin to piping Expect's standard output and standard
error through the tee program. However, tee is fairly inflexible in that its piping
cannot be modified once Expect has started.

Expect has a programmatic means to start and stop recording (or logginiJ. Given a file
name argument, the log_file command opens the file and begins recording to it. If a
log file is already open, the old file is closed first. Using the -open or -leaveopen
flag, the log_file command can also record to a file opened by the open command.
The use of these flags is identical to their use in the spawn command which I will
describe in detail in Chapter 13 (p. 289).

Recording is done by appending to the file, so if anything has previously been stored in
the file, it remains. To start over, use the -noappend flag (or simply remove the file
first).

For example, the UNIX script command can be emulated with the following
commands:

spawn $env(SHELL)
log_file -noappend typescript
interact

First a shell is started. Notice how the user's desired shell is determined by getting it
from the environment where it is stored in the variable SHELL. This is much more polite
than simply starting up, say, Ibin/csh. The log_file command then opens the file
typescript. The -noappend flag forces the log to start out empty. Finally,
interact passes control to the user. Everything the program sends to the user is
recorded. As before, user keystrokes are not recorded directly. The keystrokes are only
recorded if they are echoed. Thus, if a user types a password, the password is not
recorded.

In Chapter 15 (p. 334), I will show a modified version of this script that allows a user to
turn recording on and off as desired.

log_file is very useful for debugging Expect scripts. It can be used to transparently
record everything the user sees. Then, if a user reports a problem with the script, you
can examine the log file to see exactly what the user was doing. If parity is being

Debugging Patterns And Controlling Output 181

stripped, characters are saved to the log without parity. Nulls are recorded to the log
even if they are being removed for the purposes of pattern matching.

You can save space by turning off logging when it is not necessary. This is accom
plished by calling log_file with no arguments. For example, the following fragment
starts recording, does some I/O, stops recording, does some more I/O, and then starts
recording again.

expect . . . ; send
start recording
log_file telnetlog
expect . . . ; send
stop recording
log_file
expect . . . ; send
start recording
log_file telnetlog
expect . . . ; send

By default, log_file records only what the user sees. If the log_user command has
been invoked to suppress output from a spawned program, the suppressed output is
not recorded by log_file since the user is not seeing it either. The log_file can
record the suppressed output by using the -a flag (for "all output").

log_file -a log

As before, this logging can be disabled by issuing log_file with no arguments. To
return to logging just what the user sees, invoke log_file without the -a.

log_file -a log
expect . . . ; send . . .
log_file log

The log_file command should not be viewed as the only way to log sessions. It is
useful for many purposes, however it does not provide support for very sophisticated
types of logging. Many of these can be achieved not with the log_file command but
with a little straightforward coding. For example, I will describe how to log multiple
process to separate files in Chapter 18 (p. 407) without using the log_file command.

Another deficiency of the log_file command is that it does not save the output of Tel
commands. Arbitrary Tel commands provide their own output mechanism. Fortunately,
this is not a real problem because there is only one Tel command that ordinarily sends
character to the standard output: puts. Expect provides a substitute for puts:
send_user. For example, to send the string "hello world\n" to the standard output:

send_user "hello world\n"

send_user is a little different than puts in that send_user does not append a
newline at the end of every string. send_user also supports some other behaviors that

182 Exploring Expect

will be covered in Chapter 8 Cp. 185) and Chapter 12 Cp. 271). Most importantly though,
send_user allows logging of output through log_file. So if your other choices are
equal, use send_user instead of puts.

Sending Messages To The Log
The send_log command is similar to the send command; however, send_log writes
to the log without writing to the standard output. It also writes to any file opened by
exp_internal. The log_user command has no affect on send_log.

send_log "Beginning transaction at [exec date]\n"

About File Names
Both the exp_internal and log_file commands accept filename arguments that
begin with a tilde C"-"). The tilde is interpreted as meaning "home directory" exactly
the way it is defined by the C-shell. For example:

exp_internal -f -fred/debuglog 0

This command saves diagnostic information to the file debuglog in fred's home
directory.

No other interpretation is given to the file name. If you include a wildcard such as a "*",

the file will be created with that name, exactly as you have specified. If you want wild
cards expanded, use the glob command.

Log And Diagnostic State
The log and diagnostic states can be obtained by calling the original commands with the
-info flag. The previous parameters are returned. This is commonly used to establish
a temporary state.

For example, a subroutine that must be sure that output to the user is disabled should
save and restore the state of log_user.

proc sub {} {
set state [log_user -info]
log_user 0
your code goes here
eval log_user $state

;# save old state
;# set new state

;# restore old state

Debugging Patterns And Controlling Output 183

Notice the final call to restore the old state. It uses eval in order to support the possi
bility of a multi-element state. The list of elements will be split in such a way that the
command sees them as separate arguments.

The log_user command is not currently defined to take multiple parameters;
however, future expansion is likely so it is a good idea to handle it this way. The
log_file and exp_internal commands take multiple arguments already.

Exercises
l. On page 172, I described a convenient but simplistic procedure for enabling diagnos

tics. Write a procedure that uses keywords to select subsets of information to be
printed.

2. Write a procedure called assert, patterned after the one in the C language. The pro
cedure should evaluate an expression given as its argument. If the expression is false,
it should be printed with an appropriate diagnostic.

3. Modify the script implementation on page 180 so that it writes a welcome message
(to the log as well) just like the real script command.

4. Your system administrators are paranoid. They are willing to give you the root pass
word only if you send them a log of everything you do while using it. Write anon-set
uid script that provides root access and records all of your interactions.

In This Chapter:

• Interacting With A
User And Process In
The Same Script

• Passwords And
Other Security
Issues

• Sleeping

• Setting Terminal
Parameters

• Executing
Programs With And
Without
Redirection

Handling A Process
AndA User

In this chapter, I will describe how to use the send and expect commands to interact
with the user and a process in the same script. For scripts that require passwords, a
common approach is to interact with the user only to get the password and then to auto
mate the remainder of the program. I will describe how to do this in a secure manner
and I will also describe other topics related to passwords and security.

It is desirable to suppress character echoing while prompting for passwords. I will
describe how to do this along with a broader discussion of terminal modes and how
you can control them to achieve a variety of other effects.

The send_user Command
In Chapter 3 Cp. 71), send was used to print strings to the the standard output. The first
program in that chapter printed out "hello world" and was just one command:

send "hello world\n"

However, once a process has been spawned, the send command no longer prints to
the standard output but instead sends strings to the spawned process. In the following
script, the send command sends its argument to the spawned process, ftp:

spawn ftp ftp.uu.net
expect "Name"
send "anonymous\r"

185

186 Exploring Expect

The expect command works the same way. Initially, it reads from Expect's standard
input but as soon as a process has been spawned, expect reads from the process.

If the process dies and a new process is spawned, send and expect refer to the new
process. In Chapter 10 Cp. 233), I will describe how to use send and expect to commu
nicate with two processes simultaneously. Communicating with a process and a user is
a special case of this. Because it is so common, it merits special commands in Expect.

The send_user command sends strings to the standard output just the way send does
when Expect starts. Both can initially be used to send strings to the standard output. But
after a process is spawned, send sends strings to the process while send_user
continues to send strings to the standard output. The command send_user is so
named because normally the standard output is immediately sent to the user. Of course,
if the standard output is redirected, the send_user command sends strings according
to that redirection.

A common use of send_user is to issue informative messages on the progress of an
interaction with a spawned process. This is helpful when log_user has been invoked
to suppress the normal output of a process. For example, here is the ftp-rfc script
from Chapter 3 Cp. 82). The log_user command has been added to suppress output
from ftp, and a couple of send_user commands have been added.

#!/usr/local/bin/expect --
retrieve an RFC (or the index) from uunet via anon ftp

if {[llength $argv] != I} {

send "usage: ftp-rfc {-indexl#}\n"
exit

set timeout -1
log_user 0

send "spawning ftp\n"
spawn ftp ftp.uu.net
expect "Name"

send_user "logging in as anonymous\n"
send "anonymous\r"
expect "Password:"
send "don@libes.com\r"
expect "ftp> "
send "cd inet/rfc\r"
expect "ftp> "
send "binary\r"
expect "ftp> "

Handling A Process And A User

send_user "retrieving file\n"
send "get rfc$argv.Z\r"
expect "ftp> "

send_user "uncompressing\n"
exec uncompress rfc$argv.Z

send_user "all done\n"

187

When this new script runs, none of the underlying interaction is seen. Instead what
appears is:

% ftp-rfc -index
spawning ftp
logging in as anonymous
retrieving file
uncompressing
all done

The most immediate benefit of doing this is that it is much easier to immediately tell
what the state of the process is. But a more likely use is that this script can now be run
by someone who would not otherwise be able to handle the complexities of ftp or
whatever process is being automated.

All sorts of sins can be covered up in this way. For example, a script can log into a
remote computer and make it seem like the process is running locally. If you need a
few more days to finish porting your software to a machine, you can make it look like it
already works when pressed to give a demonstration before the work has been
completed. Or suppose that your program has a bug that causes it to crash every so
often. An Expect script could hide this pesky little detail by just restarting the program
when it crashes but otherwise letting the normal output of the program appear. It is
even possible to run programs under the debugger. The script could set breakpoints
during buggy maneuvers, fix things up, and then let the program continue to run. In
Chapter 15 Cp. 323), I will show how the interact command makes these subtle trans
lations even easier to write.

The send_error Command
A task related to printing information is that of printing error messages. It is a good idea
to print error messages in such a way that they can be easily separated from the normal
output of the program. In particular, error messages go to the standard error stream
while normal output goes to the standard output stream.

The benefit of sending errors to a separate stream is that, once separated, the two
streams can be easily sent to different places. Typically, the standard output is

188 Exploring Expect

redirected to a file or piped to another process while the standard error remains undi
rected so that it can be seen at the terminal.t For example, the command "eat faa I
we" (to count the words in faa) will print "faa: no sueh file" if faa does not
exist. You see the error message because the standard error is not redirected. If the diag
nostic was sent along with the normal output of eat, we would report that faa had
four words only because that is how many are in the error message!

Expect scripts should be written the same way. Normal output that you might wish to
redirect or pipe should be sent to the standard output. Error messages should be sent to
the standard error. There are two ways of doing this: send_error and "puts
stderr". send_error is similar to send_user and send whereas "puts stderr"
is similar to pu t s .

I will show more differences later. To summarize the differences so far between varia
tions on puts and the variations on send:

puts

send

automatically appends newline unless -nonewline flag given

is recorded by log_file

It is a good idea to add error checking to any script which might conceivably fail. It is
almost always easier to fix problems if you have made some attempt at detecting them
in the first place. And it is certainly easier for users to report problems if they see error
messages that relate to them rather than the underlying application.

The ftp-rfe script can be beefed up with error detection and send_error in a
number of places. For instance, the first command verifies that there is at least one argu
ment. This could be rewritten to check that only - index or a number is provided. At
the very least, the error message should be sent to the user via send_error.

If a lot of usage checking must be done, it is convenient to have a function to call that
prints out the usage string and exits. Notice that usage calls send_error.

proc usage {} {
send_error "usage: ftp-rfc {-indexl#}\n"
exit 1

Since functions must be defined before being used, a usage function like this should
generally be the first thing in the script (besides comments). Having it at the top of the
script also makes it convenient in the event that you or someone else lists out the script
trying to figure out how to call it.

t It is occasionally useful to do the opposite-redirecting only the standard error. I showed how to do this in
Chapter 7 Cp. 173).

Handling A Process And A User 189

Multiple tests can now be made against the arguments-if any fail, usage can be
invoked.

if {[llength $argv] != 1} usage
if {[string compare $argv "-index"] != O}

if {[regexp ""\[0-9]+$" $argv] != 1} {
usage

The first check is the same as before. The argument is next checked against the string
"- index". If this fails, the script attempts to interpret the argument as an integer.
regexp will return 1 if the argument can be interpreted as a number. If that does not
work, then the usage function is called and the script exits.

Using llength (or any of the list functions) can be dangerous here because the argu
ment may not be a list. For example, if the argument has unmatched braces, llength
will generate an error. It is better to use the non-list functions when you have no idea of
what the input is like. An even better solution in this example is to skip the call to
llength entirely-the test is actually redundant here. If the argument is a multiple
element list, then obviously it cannot be a number or the string "-index". The
remaining operations can be further compressed into a single regexp. The result is:

if {[regexp ""(-indexl\[0-9]+)$" $argv] != 1} usage

Each expect should check for any likely incorrect result as well as the correct result.
Deciding what constitutes a "likely incorrect" result is often a difficult problem. This
particular script disables the timeout, which removes the possibility of timeouts entirely.
This simplifies the script. However, the script can now hang if all possibilities are not
accounted for in the expect patterns. Deciding whether or not to work this way is a
judgement call. There is no choice that is always right or wrong.

Certain parts of the ftp conversation are so likely to work that it is pointless to check
them. For example, if ftp does not initially prompt for a user name, chances are that
something so peculiar has happened that it is impossible to write a script that would
correctly predict in advance how to recover from the situation anyway.t

The conversation becomes more interesting once the script begins interacting with the
remote host. At this point, the remote host prefixes all textual responses with a three
digit code and follows the final response with the prompt "ftp> "

The original script assumed that the string "ftp> "was a sign that the previous
command had executed successfully. However, interactive programs that prompt

t One possible error that could be checked involves the operating system rather than the process. In particular,
the operating system may not have sufficient resources (Le., memory) to even start the process. I will cover this
in Chapter 13 (p. 296).

190 Exploring Expect

virtually always reprompt whether the previous command was right or wrong. Not only
does ftp work this way, but so do shells, debuggers, and even Expect itself.

Unfortunately, ftp has a large number of possible responses, even relying on the three
digit prefixes of each response. Generally, however, a successful response begins with
the digit "2". For the purposes of this script, anything else is considered an error.

It is important to make sure that ftp has no more to say before sending new
commands. ftp uses a convention that makes this condition easy to detect. A dash
following the third digit of the three-digit prefix indicates that more responses follow. A
blank space following the third digit indicates that no more responses follow.
Responses are also defined so that they are terminated by a \r\n and have no other
embedded \r\n within.

Based on all of this, a very reliable way to check for a successful command is:

expect
-re "\n2 .. \[A\rJ*\r\nftp>" {}
-re "\n ... \[A\rJ*\r\nftp>" {

send_error "failure"
exit

The first pattern looks for a line beginning with a "2" followed by two more characters,
a space, and then a single line immediately followed by a new line containing only the
prompt "ftp> ".

Notice that in the event of a successful response, the action is just an empty set of
braces. This is a no-op. What happens is that after the match, the no-op is executed (or
rather, nothing is executed), and control passes to the line following the expect.

The no-op cannot be omitted. Reversing the patterns in order to omit the no-op action
is a mistake. Consider the following fragment:

expect {
-re "\n ... (\[A\rJ*)\r\nftp> " ;# WRONG!

send_error "failed: $cmd\n"
send_error "reason: $expect_out(l,string)\n"
exit

-re "\n2 .. \[A\rJ*\r\nftp> "

In this example, the failure pattern would always match whenever the success pattern
matches, and since the failure pattern is listed first, the success pattern can never match.

Handling A Process And A User

The original test used throughout the script was simply:

expect "ftp> "

The new command can now replace this. Here is a fragment of the resulting script:

send "cd inet/rfc\r"
expect

-re "\n2 .. \[A\rJ*\r\nftp>" {}
-re "\n ... \[A\rJ*\r\nftp>" {

send_error "cd failed"
exit

send "binary\r"
expect

-re "\n2 .. \[A\rJ*\r\nftp>" {}
-re "\n ... \[A\rJ*\r\nftp>" {

send_error "binary failed"
exit

191

Notice the repetition of the huge expect command. One way of avoiding this is to put
the whole thing in a procedure:

proc sendexpect {cmd}
send "$cmd\r"
expect

-re "\n2 .. \[A\rJ*\r\nftp>" {}
-re "\n ... \[A\rJ*\r\nftp>" {

send_error "failed: $cmd\n"
exit

This section of the resulting script could then be simplified to look like this:

sendexpect "cd inet/rfc\r"
sendexpect "binary\r"
sendexpect "get rfc$argv.Z\r"

By passing the outgoing command through the procedure, the error messages can also
be improved. If an error occurs, say in the get command, the script says:

failed: get rfc-2001.Z

Adding the error message from ftp is easy. Just modify the failure pattern to save the
text string. It can then be retrieved from expect_out (1, string).

192 Exploring Expect

-re "\n ... (\["\r]*)\r\nftp> "
send_error "failed: $cmd\n"
send_error "reason: $expect_out(l,string)\n"
exit

If the file was not found, the output would look like this:

failed: get rfc-2001.Z
reason: rfc-2001.Z: No such file or directory

The expect_user Command
In Chapter 3 Cp. 72), you saw how to read from the user Ci.e., standard input of the
Expect process) using the expect command. expect reads from the standard input
until a program is spawned. After that, expect reads from the spawned process.

expect is analogous to send. Both communicate with the user until a process is
spawned, after which, both commands communicate with the spawned process. It

should be no surprise that a command called expect_user exists analogous to
send_user. expect_user continues communicating with the user even after a
process has been spawned.t

For example, the following fragment might appear in a script which has spawned ftp
and is about to transfer a file.

expect "ftp> "
send_user "ftp is running. Press return to transfer file:"
expect_user "\n"
send "get foo\r"

The first command waits for ftp's prompt. The user is then prompted to press return,
and expect waits for it. As I mentioned in Chapter 3 Cp. 72), the terminal driver trans
lates the return to \n while using expect, and the same thing occurs with
expect_user. Once expect_user is satisfied, the script sends a get command to
ftp.

All of the expect flags and patterns work with expect_user. For example, the
following code fragment queries the user for an RFC number. The fragment illustrates
the use of regular expressions, timeout, and a break action.

t If the standard input has been redirected (by shell redirection when the script was started), expect_user will
read from the standard input. It is possible to read directly from (and write directly to) the user nonetheless. I
will cover this on page 210.

Handling A Process And A User

while 1 {
send_user "Enter an RFC number: "
expect_user {

-re "(\[O-9]+)\n" break
-re (. *) \n {

send_error "$expect_out(l,string) is garbage!\n"

timeout {
send_error "Sorry, I can't wait any longer!\n"
exit 1

send_user "You asked for RFC $expect_out(l,string) .\n"

When run, the interaction looks like this:

Enter an RFC number: aerasdf
aerasdf is garbage!
Enter an RFC number: 34
You asked for RFC 34.

193

And if the user does not respond within the timeout, the script prints a message and
exits.

Sorry, I can't wait any longer!

Dealing With Programs That Reprompt
As a matter of style, it is bad form to reissue a prompt upon a timeout. It is even worse
to issue a different prompt. The problem is that the user may have been in the middle of
entering a response. Users will wonder if their previous keystrokes have been discarded
and should be re-entered or changed. While terminal drivers usually offer a way to find
out this information (typically by pressing I\R), an automated program such as an Expect
script may not notice that a new prompt has been issued. If a new prompt is asking a
different question than the script is answering, serious problems could result.

In the general sense, there is a race condition (unresolvable timing problem) raised by
reprompting, and this can result in problems for humans as well as scripts. There are
three strategies which I have outlined below. In each case, there is a gamble that can
lose, described by the scenario following it. I will explain the steps in each scenario, ital
izicing the step at which things go awry.

1. The program does not discard its input buffer ever. This causes trouble if:

The user begins to enter a response.

The program decides the timeout has expired.

194

The user presses return.

The program prints a new prompt.

The program reads the user's old answer.
The user is left with a new prompt.

The user answers it.

Exploring Expect

The program reads the old answer at the next prompt (and the user again
answers when the program is not listening) or the program flushes the buffer
as in scenario 2 or 3.

2. The program discards its input buffer and then prints the new prompt. This causes
trouble if:

The program decides the timeout has expired and flushes the buffer.

The user presses a key.

The new prompt is printed.

The program reads the keystroke entered after the buffer was flushed.

3. The program prints the new prompt and then discards its input buffer. This causes
trouble if:

The program decides the timeout has expired and reprompts.

The user sees the new prompt and presses some keys.

The program discards the buffer and the new keystrokes.
The user does not realize the buffer has been flushed and presses more key
stokes and presses return.

The program reads the end of the user's response but misses the beginning of
it.

Fortunately, reprompting is rarely done, in part because it just introduces problems, but
also because it adds so much complexity to the program itself in order to flush buffers
and interrupt reads. Expect happens to make this functionality very easy. But do not get
carried away with enthusiasm. Reprompting is still a bad thing.

While there are no guaranteed ways to work with programs that reprompt, Expect
scripts generally do not have a problem with them or can be made to work with them
easily. An example program that follows strategy 1 is the UNIX dump program, which
copies files to backup media. If dump reaches the end of a tape, dump prompts for a
new tape to be mounted. Since tape drives have no way of automatically signalling that
a new tape has been mounted, the operator must also press return on the terminal. If
there is no response from the operator after several minutes, dump rings the terminal's
bell several times and sends out the new prompt. The idea is that the operator's atten
tion is probably on a nearby terminal. Since the terminal is only waiting for a return to
be pressed rather than some long answer that might be partially entered, dump does not
have to flush the buffer.

Handling A Process And A User 195

Expect scripts to automate dump do not run into any problems because of this. Typi
cally, dump can be "faked out". For instance, if the system can automatically change
tapes via a carousel or if the tapes are virtual, nothing physical has to take place. In
either case, the Expect script responds to dump so quickly after dump's initial response
that the problem is avoided entirely. In a similar way, Expect avoids problems with
programs that use strategy 2 in prompting.

Another example program that does reprompting is rn, a popular program for reading
Usenet news. The obvious script to drive rn fails. Here is a fragment:

expect "read now \\\[ynq] "
send "y" ;# WRONG

The problem is that rn uses strategy 3. It prompts and then flushes the input buffer.
This is actually convenient for real users. People often scan through the prompts to read
each newsgroup by simply holding down the n key to go from one to the next. If rn
did not flush the buffer, the number of n's could get way ahead of the questions and
when you saw a newsgroup you were interested in, rn would not stop until much later.

rn has a "-T" flag which allows it to run without this feature (which it calls typeahead),
but many programs are not so considerate. A simple solution is to pause briefly. One
way to do it is by invoking the UNIX sleep command:

exec sleep 1

A simpler way to achieve the same result is to just set the timeout to 1 and do an
expect. You can put this in a procedure, thereby localizing the timeout so that it does
not have to be reset afterwards. By declaring timeout as a formal parameter, an
explicit set is unnecessary because timeout is initialized when the procedure is
called. The resulting procedure definition is short!

proc sleep {timeout} {
expect

The rewritten fragment to automate rn looks like this:

expect "read now \\\[ynq] "
sleep 1
send "y"

Of course, the sleep and send could be packaged up in a single procedure to make
this look cleaner.

196 Exploring Expect

Dealing With Programs That Miss Input
A problem related to buffer flushing can happen when Expect is used to drive modems
or other communications devices. Serial interfaces (i.e., UARTs) can go through states
during which time they cannot accept input. For example, characters are ignored when
the speed or some other characteristic of the interface is changed. This also occurs
when making initial connections (via telnet, tip, kermit, etc.) to a new host,
modem, or communications switch.

Consider the following fragment used to dial a Hayes-compatible modem:

spawn tip modem
expect "connected"
send "atd1234567\r"
expect "CONNECTED"

When run, tip says the modem is connected but yet it does not respond. Mysteriously,
when you do the same interaction by hand, it works fine.

The problem is that the modem is not yet listening when you have sent the dial
command to it. It may seem like the modem ought to be listening, but in fact all the
"connected" message means is that the UART control lines (e.g., DTR) have been
raised. The modem then has to initialize itself. If you do not allow time for the initializa
tion, the modem will miss your command.

Unfortunately, Hayes-compatible modems do not prompt, so you cannot use a simple
expect command to wait. Inserting a brief pause is a simple enough solution.
However, the most reliable solution is to loop, sending AT commands and waiting for
an OK in response before sending anything further.

Some systems exhibit even worse problems-due to a limited hardware input buffer,
characters can be missed if they arrive too quickly after one another. I will describe how
to handle this problem in Chapter 12 (p. 275).

Sleeping
In the previous section, I showed two ways to get Expect to sleep for a while. Either
way is a little painful. Using exec to sleep for a second is a tad expensive. Because of
the overhead in creating a new process-inherent in exec-the actual time slept can
be significantly greater than one second. The second way requires the "borrowing" of a
spawned process. Although this works, it is possible to imagine unintended conse
quences, such as missing an eof when the spawned process unexpectedly closes the
connection while the script is sleeping. In Chapter 20 (p. 488), I will show that there is a
time and place for this style of sleeping.

Handling A Process And A User 197

Expect provides a command called sleep that avoids all of the complications I just
mentioned. sleep does not require an existing spawned process nor does it create a
new process. It is called with a single argument describing how many seconds for
which to sleep. For example, the following command sleeps two seconds:

sleep 2

Fractional seconds are also permitted. The following command sleeps for two and a half
seconds.

sleep 2.5

Any nonnegative floating-point argument is acceptable. As with the UNIX sleep
command, the time slept may be slightly longer than requested.

Line Versus Character-Oriented And Other
Terminal Modes
In all of the examples of expect_user so far, the script does not actually get to see
any user input until a return is pressed. This is a natural result of the terminal interface
being line-oriented. By default, the terminal driver buffers all the keystrokes until a
return is pressed. Only when the return is pressed are the characters delivered to the
script. While characters are being buffered, the terminal driver performs some minimal
processing of the keystrokes such as echoing them, and erasing them if you press back
space or delete. By doing this processing in the terminal driver, many programs are
drastically simplified while still providing a minimally intelligent user-interface.

If the following fragment is used to get input, the user can fix corrections by erasing
characters and retyping up until a return is pressed. The value of expect_out will not
have any of the editing characters that were entered to fix typos.

send "Enter your name: "
expect_user "\n"

All the examples so far have ended patterns from the standard input with a "\n". In line
oriented mode, however, there is nothing else with which lines can end, so it is really
just a formality. If the pattern has no "\n", expect_user will still wait for the return to
be pressed before attempting any matches.

It is possible to put the terminal into a mode in which it is character-oriented. In this
case, expect_user does not wait until a return has been pressed. expect_user
attempts to match the input against the patterns immediately. In fact, since humans are
so slow (relatively speaking), the pattern matcher will likely run after every keystroke.

198 Exploring Expect

The terminal modes are changed with the stty command. Expect's stty command
takes arguments similarly to the way that the UNIX stty command does. For example:

stty raw

This command puts the terminal into raw mode, meaning that keystrokes are not inter
preted in any way by the terminal driver but are immediately passed on to the
expect_user command. Raw mode is a specific type of character-oriented mode, but
is almost always what is desired. The opposite of raw mode is cooked mode. It repre
sents the most common form of line-oriented modes.

Once the terminal is in raw mode, patterns without the \n can match without the user
pressing return:

send "Continue? Enter y or n: "
expect -re "yin"

The return character itself is also handled differently. In line-oriented mode, the return
is translated to a \n (often called "newline"). In raw mode, no such translation is
performed. Thus, if you want to match when the user presses return, the \r musr be
used:

send "Enter your name: "
expect -re ".*\r"

All other control characters such as backspace, delete, control-C, etc. are also stored in
expect_out rather than performing their normal function. For this reason, raw mode
is not generally used when prompting users for names, files, passwords, etc. Users want
the ability to edit these as they type. Raw mode is better for entering short confirmations
or commands, such as one- or two-letter sequences inside a menu system or in a screen
oriented editor.

The terminal driver also performs output processing as well as input processing. While
in cooked mode, the terminal driver translates \n to carriage-return linefeed sequences.
The send_user command performs this same translation when in raw mode. To skip
this translation, the -raw flag should be given to send_user.

send_user "A new\nline character\n"
stty raw
send_user -raw "A new\nline character\r\n"
send_user "A new\nline character\r\n"

Handling A Process And A User

When this script is run, it produces the following output:

A new
line character
A new

line character
A new
line character

199

Notice that the second send_user was completely untranslated. The first send_user
was translated by the terminal driver, while the third was translated by send_user.

The following command returns the terminal to line-oriented mode:

stty -raw

Bearing in mind the earlier discussion of the possibility of losing characters while
switching modes, s t ty should be executed during times when the user is not typing,
such as before a prompt rather than after.

stty raw ;# Right time to invoke stty
send "Continue? Enter y or n: "
stty raw ;# Wrong time to invoke stty

Echoing
Another mode that is frequently changed is echoing. By default, the terminal driver
echoes printable characters typed at the keyboard. If a script needs to query for, say, a
password, the echoing should be disabled. The following two commands disable and
re-enable echoing.

stty -echo
stty echo

;# disable echo
;# enable echo

Here is an archetypal procedure to query the user for a password:

proc getpass {} {
set timeout -1
stty -echo
send_user "password: "
expect_user -re "(.*)\n"
send_user "\n"
stty echo
return $expect_out(l,string)

When called, getpass returns the password as its return value. Inside, you can see two
stty commands surround the expect_user that waits for the password. Notice how
the first stty is done before the prompt. This guarantees that user input cannot

200 Exploring Expect

possibly be echoed no matter how fast it starts arriving after the prompt. (In Chapter
Chapter 17 Cp. 399), I will describe the opposite situation-when you are stuck auto
mating a process that works this way.)

After expect_user returns, the cursor remains at the end of the prompt. Even though
the user pressed return, nothing happens because echoing is disabled. It is important to
give the user feedback that the line was accepted. Hence a \n is printed. This simulates
the effect of echoing being disabled just for the bare password. This is not a problem
specific to Expect. Any password reading routine has to do the same thing.

In Chapter 7 Cp. 179), I presented a script called su2 which spawned an su process to
reexecute a command and then leave the user in a root shell. As I originally defined it,
the password was entered as a parameter on the command line. That approach presents
a security problem. The command line is viewable by someone reading over the user's
shoulder. But even worse, the command line is accessible via commands such as ps to
anyone logged in on the same system.

To avoid exposure, programs that require passwords must prompt for them interac
tively. Examples include su, passwd, crypt, and rlogin. Responding to this
interactive prompting cannot be automated by the shell but can by Expect.

Here is the su2 script modified to prompt the user for the password.

#!/usr/local/bin/expect

stty -echo
send_user "password: "
expect_user {

timeout {
send_user "\nSorry\n"
exit

-re "(.*)\n" {
set password $expect_out(1,string)

send_user "\n"
stty echo

set timeout -1
log_user 0
spawn su
expect "Password:"
send "$password\r"
expect "\r\n"
log_user 1
expect "Sorry" exit "# "

;# discard su's password prompt
;# send password to su

Handling A Process And A User

send "$argv\r"
interact ;# let user type more cmds to root shell

201

The script starts off by querying the user for the root password. A timeout pattern has
been added. Using the default timeout, the script prints Sorry and exits if nothing has
been entered after 10 seconds.

The remainder of the script is almost exactly the same. The password is now retrieved
from expect_out instead of argv, and there is no longer a need for the lrange
command to extract the argument from argv since there is no password in the list.

Prompting For A Password On Behalf Of A
Program
Reading passwords is the most frequent reason to use "stty -echo", and it comes up
in many places and in many ways. Here is an excerpt from a script that logs in to
another host. If the second host demands a password, the script turns around and asks
the user. The script does not print the original prompt but instead manufactures a new
prompt including the username and host so that the user understands exactly which
password is expected, even though the user has seen no other dialogue (and may not
even know what the script is doing).

expect {
assword:

stty -echo
send_user "password (for [exec whoami]) on $host:"
set old_timeout $timeout; set timeout -1
expect_user -re "(.*)\n"
send_user "\n"
set timeout $old_timeout
send "$expect_out(l,string)\r"
exp_continue

" incorrect" {
send_user "invalid password or account\n"
exit

timeout {
send_user "connection to $host timed out\n"
exit

eof {
send_user "connection to host failed: "
send_user "$expect_out(buffer) "
exit

-re $prompt

202 Exploring Expect

The first expect looks for a password prompt, a shell prompt, and various failure
conditions all at the same time. If no password is required, the final pattern matches and
the script goes on to the next command. If the remote computer does prompt for a pass
word, the user is requested to supply the password. The current timeout is saved in
old_timeout and restored later. This is analogous to setting it as a local variable in a
procedure.

Once the user has supplied the password, the script sends it on to the remote host, and
exp_continue causes the expect command to go back and look for more output
hopefully the shell prompt.

The various failure conditions are all reported back to the user. If an eof is detected, any
remaining output from the remote host is printed. The final output presumably contains
the reason that the remote host closed the connection. There is no need to terminate it
with a newline, since it invariably has one already, being originally formatted for human
viewing.

Security And Insecurity
Quite often, it is possible to automate everything except reading the password. As I
explained earlier, the password should not be passed as an argument to a script for secu
rity reasons. An alternative to prompting is to embed the password directly in the script.
There are two ways to secure such files-by file protection or by host protection. I
prefer host protection but I will cover file protection first-if only to make the merits of
host protection more obvious.

Securing Scripts By File Protection
Scripts containing passwords should be unreadable to users with normal utilities such as
cat and vi. However, such scripts must still be executable. Unfortunately, the UNIX
file system has no direct way of creating scripts which are executable but unreadable.
On systems which support setgid shell scripts, you may indirectly simulate this as
follows:

Create the Expect script (that contains the password) as usual. Make its permissions be
750 (-rwxr-x---) and owned by a trusted group, i.e., a group which is allowed to
read it. If necessary, create a new group for this purpose. Next, create a /bin/ sh script
with permissions 2751 (-rwxr-s--x) owned by the same group as before. The shell
script should invoke both Expect and the script name by their absolute pathnames.

The resulting shell script can be run by anyone, and the shell script in turn has permis
sion to run the Expect script which is otherwise unreadable to everyone.

Handling A Process And A User 203

This may seem a little kludgey. In fact, it is worse than that. Storing unencrypted pass
words in files is almost always a disaster, and there are usually better ways of getting the
same effect. Consider that when the password is stored in your head, it is much easier
to update. But once a password is stored in a script, each script containing the pass
word has to be found and changed. Even worse, the scripts are more susceptible (than
your brain) to yielding their contents. Consider what might happen if you mn out of
your office for a bathroom emergency. Someone could walk in, sit down at your work
station, and immediately have complete access to your files induding the ones
containing passwords. If a hacker steals a backup tape or stumbles onto a root login, all
the files on the system can be read along with any unencrypted passwords in scripts.

As if this is not bad enough, the implementation of setuid and setgid scripts is insecure
on some UNIX systems. It is often possible to trick such scripts into mnning a
completely different program than the script originally called for. To avoid this problem,
you must write a C program that is setuid to invoke the Expect script. To avoid a total
breech of security, it is best to avoid root-setuid shell scripts on such systems. The use
of a non-root group in the technique described earlier is a reasonable compromise at
medium security sites.

A very different problem is that of writing setuid or setgid Expect scripts in the first
place. Setuid Expect scripts have many of the same problems as setuid shell scripts.
Writing such scripts should be avoided except by very experienced programmers. Exam
ples and explanations of such scripts are beyond the scope of this book. If you are
interested in more information on this aspect of scripts, read the Computer Security FAQ
frequently posted to the Use net newsgroup news. answers.

Securing Scripts By Host Protection
As I described in the previous section, it is unwise to depend on the file system to
protect passwords embedded in scripts. A better alternative is to depend on the protec
tion of a secure host. Such a host must prevent users who should not read the script
from even logging in. In this case, the file protections are irrelevant since the users
cannot even get to the file system that holds the file. Ideally, the host should be physi
cally secure as well. This means that random users cannot physically access it nor can
they walk off with the backup tapes. The host should not even permit root access over
the network. Of course, remote mounting should not be permitted. Indeed, all unneces
sary daemons should be disabled.

Given a secure host, passwords may be embedded in scripts. If necessary, the scripts
can begin by connecting to another host and then performing the desired interaction.
Passwords will be available to a network sniffer, of course, but the risk is no greater
than from a real person doing the same thing.

204 Exploring Expect

Such scripts may be run out of cron, allowing scripts to run programs that normally
require passwords to run automatically and at times when no users are available. This is
a common problem with databases that collect information that must be processed in
the wee hours of the morning.

Scripts may also be run on demand at user request. Although users cannot log in to
secure hosts, Expect scripts may be installed as inetd daemons allowing them to be
started simply by running telnet with the specific port number or service name. I will
describe this further in Chapter 17 Cp. 392) with an example demonstrating how to
allow users to interact with remote applications that require secret passwords.

Resetting The Terminal Upon Exit
When an Expect script ends, the terminal modes are automatically restored to those that
were in effect when the Expect script began. For example, if the script put the terminal
into raw mode, the terminal is taken out of raw mode when the script ends. This occurs
whether the exi t command is called explicitly or the script simply ends.

This makes error handling a little easier especially while debugging. During script devel
opment, it is not uncommon to have the script blow up as errors are encountered. By
default, when an error occurs, Expect restores the terminal modes and exits. This makes
it very easy to recover even from severe errors in the script.

More On The stty Command
Except for stty, all of the non-interactive UNIX programs executed so far have been
run by the exec command. Compare:

exec kill -9 $pid
exec cat letc/motd
exec touch foo
stty raw

It is possible to execute stty via exec on some systems but the required redirection is
system dependent. Some stty implementations <'<re sensitive to any redirection of stan
dard error while other implementations require the standard error be redirected in order
to catch errors. There is no way to call stty with exec that is both portable and
reliable.

Expect addresses this problem by providing a built-in stty that uses the native UNIX
stty command with redirection defined appropriately for your system. Additional redi
rection should be omitted if you want to affect the controlling terminal. For example,
the following command disables echoing on the controlling terminal.

Handling A Process And A User 205

stty -echo

Because Expect's stty command in turn calls your native stty command, you can
pass to Expect's stty any arguments already understood by your native stty. That
means that vendor or site-dependent arguments can be used with Expect's stty. On
the other hand, if you want your scripts to be portable, you should stick with the POSIX
1003.2 stty arguments or perhaps even those from the archaic-but-last-common-to-all
UNIX Version 7.

For a number of reasons, Expect's stty command recognizes several stty arguments.
When the arguments are recognized, Expect's stty command changes the terminal
modes without calling the native s t ty. While the time saved by not creating a process
is minimal, mode changes often occur precisely when interacting with a user. Avoiding
these extra processes allows Expect to respond more quickly to user interaction just
when users are most likely to notice it. Knowledge of the current terminal setting also
enables a few commands (e.g., interact) to take several shortcuts and run faster. Yet
another reason Expect's stty recognizes certain arguments is to make up for the lack
of support by the UNIX stty command for these arguments.

The arguments recognized by Expect's stty are:

raw

-raw

cooked

-cooked

echo

-echo

rows

rows #

columns

columns #

< /dev/ttyxx

raw mode-do not process characters

cooked mode-process characters

same as -raw

same as raw

echo characters

do not echo characters

return the number of rows

set the number of rows to #

return the number of columns

set the number of columns to #

set the named terminal

If an argument which sets the terminal mode is recognized, stty returns the previous
settings of raw and echo. For example, suppose Expect is running with the terminal set
to -raw and echo. If I issue a command to put the terminal into raw mode and then
back to cooked mode, the interaction looks like this:

expectl.3> stty raw
-raw echo
expectl.4> stty cooked
raw echo
expectl.5> stty raw
-raw echo

206 Exploring Expect

In the first command, s t ty recognized the argument. It put the terminal into raw mode
and then returned the previous raw and echo settings.t Next, I put the terminal in cooked
mode. Finally, I put it back into raw mode. Notice that stty reported the final terminal
mode using -raw even though I used the argument cooked. They both mean the same
thing but raw and -raw are the official names.

It is common to use s t ty inside a procedure where the terminal mode is immediately
set and later restored just before the procedure returns. This can be done by saving the
return value from stty and using it as the argument later. However, the stty
command expects separate arguments. It is possible to extract the appropriate argu
ments using lindex but it is simpler to use eval. Based on this observation, the
procedure to get a password that I showed on page 199 can be rewritten:

proc getpass {prompt} {
set oldmode [stty -echo -raw]
send_user "$prompt"
set timeout -1
expect_user -re "(.*)\n"
send_user "\n"
eval stty $oldmode
return $expect_out(l,string)

The getpass procedure works no matter whether the terminal is already in cooked
mode or raw mode. While in getpass, the terminal is put into cooked mode, and
upon completion the previous mode is restored. Echoing is handled similarly.

If the terminal is already in cooked (or another recognized) mode, stty does nothing
except return the current value of the mode. This means it is unnecessary for you to try
to avoid calling stty in the interest of efficiency. The stty performs this test very
quickly internally.

In the earlier getpass definition, the prompt was hardcoded. This new definition of
getpass parameterizes the prompt. You might question why getpass does the
prompting in the first place rather than having the calling procedure do it. After all, the
caller could send a prompt and then call getpass, right? In theory, this is true. Unfortu
nately, in reality this opens a tiny window of vulnerability. When the stty command
changes the terminal parameters, any characters being typed at that moment can be
discarded by the terminal driver. To avoid any loss of characters, prompting should be
done after the dangerous time when characters can be lost-in other words, after the
stty command. Since getpass executes stty and expect, getpass also neces
sarily needs to know the prompt since it must be sent between the other two

t You might expect the output in this example to be improperly formatted in raw mode. This formatting problem
does not occur because Expect specifically avoids this problem. I will describe this further in Chapter 9 Cp. 226).

Handling A Process And A User 207

commands. This is similar to the problem with AT-style modems that I described on
page 196.

The arguments to set and return the rows and columns are described and used in
Chapter 14 Cpo 316) and Chapter 16 Cpo 364).

Any of the stty arguments can be applied to other terminals by ending the command
with the input redirection symbol followed by the terminal name. For example:

stty raw < /dev/ttya

The terminal settings can also be queried in this way. I will show examples of this in

Chapter 13 Cpo 290), Chapter 14 Cp. 316), and Chapter 16 Cp. 364).

With no or unrecognized arguments, Expect's stty command returns system-specific
output from the UNIX stty command. Shown below are several examples of how
Expect's stty behaves on my own system. Note that while the parameters I have used
are portable to all modern UNIX systems, the output is not and varies from system to
system.

expect1.1> stty
speed 9600 baud;
-inpck -istrip imaxbel
iexten crt
expect1.2> stty -a
speed 9600 baud, 24 rows, 80 columns
-parenb -parodd cs8 -cstopb -hupcl cread -clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr -icrnl

-iuclc
-ixon -ixany -ixoff -imaxbel
-isig -iexten -icanon -xcase echo -echoe -echok -echonl -noflsh

-tostop
-echoctl -echoprt -echoke
-opost -olcuc -onlcr -ocrnl -onocr -onlret -of ill -of del
min 1, time 0
erase kill werase rprnt flush Inext susp intr quit stop

eof
"? "U "W "R "0 "V "Z/"Y "C "SI"Q

The system Command
The system command is similar to the exec command. But unlike the exec
command, system runs UNIX commands without redirecting either of the standard
output or standard error.

In early releases of Tel, there was no support for running programs without unredi
rected I/O. Now it is possible, yet the system command remains-partly for historical

208 Exploring Expect

reasons and partly because the interface is simpler than exec for a few common
problems.

For example, if the script needs to allow a program such as more to directly interact
with a user, this is accomplished slightly more easily with system. Compare:

system more file
exec more file >@ stdout 2>@ stderr

The system command is also much more efficient than exec. If you are executing
many fast UNIX commands (e.g., renaming or removing lots of files via mv or rm), the
system-based approach will operate more quickly. On the other hand, if you are
executing long-running commands or just a few commands, the difference between
exec and system is not likely to be important.

Another difference between system and exec is in the way arguments are handled.
The exec command passes the original arguments to the program untouched. In

contrast, the system command appends them together in the style of the concat
command. Consider the following commands:

exec
system

Eprog a b "c d"
Sprog a b "c d"

system "Sprog abc d"

With exec, Eprag is called with three arguments C"a", "b", and "c d") while both invo
cations of Sprag called with system receive four arguments C"a", "b", "c", and "d").

This difference in argument handling was not designed capriciously. Rather, it reflects a
difference in how exec and system work. Internally, exec duplicates much of the
behavior of the shell: scanning, parsing, setting up redirection, and creating processes.
The system command, on the other hand, gathers all the arguments into a Single string
and literally passes it to the shell itself C!bin/ sh). If you want exact Bourne-shell
semantics, the simplest way is to call system.

It is possible to make either command handle its arguments more like the other. With
exec, the solution is to use eval. For instance, suppose you want to remove a number
of files stored in a list. This can be done through either of the following commands:

eval exec rm $files
system "rm $files"

Alternatively, suppose you want to remove the file named "faa bar" -with a space in
the middle of it. Ordinarily, the space would separate arguments in Tel. Thus, the argu
ment must be quoted:

exec rm "foo bar"

Handling A Process And A User 209

Passing this command to /bin/ sh is a little trickier because Tel tries to process the
double quotes before /bin/ sh gets to see them. Using single quotes works well in this
example:

system "rm 'foo bar'"

Handling characters that are special to both Tel and /bin/ sh requires a little more
work. For example, the following commands show how a dollar sign is treated using
different styles of quotes. If you want to learn more about /bin/ sh, read its
documentation.

system "echo 'foo $PATH'" ;# Tcl expands $ PATH
system "echo \"foo $PATH\"" ;# Tcl expands $ PATH
system "echo \"foo \$PATH\" " ;# shell expands $ PATH
system {echo "foo $ PATH " } ;# shell expands $ PATH
system {echo 'foo $PATH' } ;# no one expands $ PATH
system "echo 'foo \$PATH' " ;# no one expands $ PATH
system {echo "foo \$PATH" } ;# no one expands $ PATH

I will not describe /bin/ sh any further here. There are many good books on it which
describe its quoting conventions in detail.

Redirecting The Standard Input Or Output
Earlier I showed that the expect_user command reads from the standard input. By
default, the standard input is the keyboard. However, like any program, Expect can
have its standard input redirected. This is done using the usual shell redirection syntax.

% script < input-file

In the command above, the Expect script reads its standard input from input-file.
Whenever an expect_user command occurs, input is also read from input-file.
In this way, Expect can act as a filter. The same thing happens when Expect is called in
these other ways:

% expect script < input-file
% cat input-file I expect script
% cat input-file I expect script I yet-another-script

In all of these commands, input comes from input-file, and the Expect script
controls what happens.

The send_user command is analogous to expect_user. The send_user command
sends output to the standard output. By default, the standard output is the screen. If the
standard output is redirected, then send_user will send output to where the redirec
tion indicates.

210 Exploring Expect

It is also possible to read commands (rather than data) from the standard input. I will
describe this in Chapter 9 (p. 224).

The expect_tty Command
If you have redirected the standard input, it is still possible to read from the terminal.
This is done by using the expect_t ty command. It is called just like expect or
expect_user. The following example waits for the string foo to be entered followed
by a return.

expect_tty "foo\n"

If this command is embedded in a script and the script is invoked with the input redi
rected, Expect will wait until the user physically types the string on the keyboard.

expect_t ty has its advantages and its disadvantages. An advantage is that by over
riding shell redirection, very powerful effects can be produced that are not possible any
other way. For instance, the more program, which pages through files, reads from the
standard input and the keyboard at the same time. This allows more to read files in a
pipeline and still be controlled from the keyboard as it runs. To build a script that
behaves like more, use expect_t ty to read from the keyboard while using
expect_user to read from the standard input.

The disadvantage to using expect_t ty is that it cannot be redirected from the shell.
This may seem circular. After all, that is the very point of the command. However, there
is always a time when you want to force commands to come from a file-for example,
if you are testing the more command. Because more behaves this way, it cannot be
automated from the shell (although more can be automated from Expect). So
expect_tty should not be used capriciously. expect_tty generally produces
programs that do not work well in pipelines, with the result that they cannot easily be
used as building blocks in the UNIX style of a workbench of small synergistic tools.

The send_tty Command
send_tty is analogous to expect_tty. The send_tty command sends its output to
the screen in such a way that it cannot be redirected by the shell. send_tty shares the
very same advantages and disadvantages of expect_tty.

expect_t ty and send_tty work by communicating through a special file called
/dev/tty. Expect is one of a few programs that has the power to redirect communica
tions with programs that communicate through / dey / tty. When programs are
spawned by Expect, all of their inputs CI dey / t ty and unredirected standard input) are
merged into a single input to which the send command can write. Similarly, all of their

Handling A Process And A User 211

outputs CI dev / t ty and any unredirected standard output or standard error) are
merged into a single output from which the expect command can read.

Thus, Expect reads and writes from processes with the same view that a real person
has. In the same way a person can read all of the unredirected output or write all of the
unredirected input, so can Expect. If a human can control a program, then the program
can be controlled with Expect also. This is the power of Expect.

Exercises
1. It takes a long time for GNUS, the Emacs news reader, to start. Rather than watching

the window out of the corner of your eye, write a script that starts an iconic window
running GNUS. When it is ready to use, get the user's attention in some way such as
by playing a sound or deiconifying the window.

2. On page 196, I described why it is a good idea to embed the sending of the first AT

command to a modem inside a loop. Write the code for this.

3. The getpass script on page 199 uses the regular expression" (. *) \n" to wait for a
password from the user. What might happen if the computer is really bogged down
and the user enters several lines in advance? Think of at least two reasons why users
will not do this. Modify the script anyway to avoid the problem.

4. The newgrp command has some peculiar characteristics. For instance, newgrp
behaves differently when run from a terminal. And some shells (e.g., /bin/ sh) rec
ognize it and run it in such a way that the newgrp removes any traces of the original
shell process. Write an Expect script to fix this behavior.

5. Use the -nocase flag from Chapter 6 (p. 139) to make the script on page 201 a little
less vulgar.

6. On page 202, I described why it is dangerous to store passwords in scripts. Is it any
safer if the scripts are encrypted?

7. Using grep, search through all the source code on your system. Find programs that
directly talk to /dev /tty. Justify each program's use of /dev /tty.

8. After accidentally falling asleep and rolling your head on the keyboard, you need to
delete the files "a sd/\F", "-", and "-r *". How would you do this using exec? How
would you do this using a spawned shell?

In This Chapter:

• Running Expect
Scripts From Shells

• Running Expect
Interactively

• Expect's Command
Line Arguments

• Giving The User
Access To The
Command-Line
Interpreter

The Expect Program

• Changing Expect's
Prompt

In this chapter, I will cover Expect's command-line arguments and describe more about
how Expect scripts fit in with other UNIX utilities. I will also focus on the difference
between running Expect interactively versus non-interactively.

Expect-Just Another Program
To the operating system, Expect is just another program. There is nothing special about
it. For example, it has attributes similar to many other programs you are familiar with:

• Expect has standard input, standard output, and standard error. They can be read
from and written to. They can be redirected.

• Expect can be run in the background from the command-line using & or from cron
orat.

• Expect can be called from other programs, such as C programs, shell scripts, awk
scripts, and even other Expect scripts.

Expect is also an interpreter, and it shares attributes of most other interpreters:

• Expect supports the #! convention.

• Expect can be run interactively, taking commands from the keyboard, or non-inter-
actively, taking commands from scripts or standard input.

• Expect takes flags or can pass them on to scripts.

Like most interpreters, Expect takes a file name as an argument, and uses it as a source
from which to read commands.

213

214 Exploring Expect

% expect script.exp

If you want to pass additional information to the script, you can do so just by putting it
at the end of the command line.

% expect script.exp foo bar 17

Inside the script, this information can be found in the variable argv. The value of argv
can be manipulated as a list. Here is a script called "echo. exp". It echoes each argu
ment, prefaced with its index in argv.

#!/usr/loeal/bin/expeet -
set arge [llength $argvJ
for {set i O} {$i<$arge} {iner i} {

puts "arg $i: [lindex $argv $iJ"

When I run this script from the command line with some random arguments, it looks
like this:

% expect echo.exp foo bar "17 and a half"
arg 0: faa
arg 1: bar
arg 2: 17 and a half

The last argument was kept together by double quoting it. This is a shell mechanism.
Without the double quotes, the shell breaks apart arguments that are separated by
whitespace. If present, the double quotes are stripped off before passing the arguments
to Expect. Notice that this is exactly the same way that Tcl uses double quotes.

The script name is not included in the argument list. The arguments are only those of
the script, not of Expect. This is convenient in many scripts because the argument list
can be directly used without stripping out the command name.

The script name is stored in the variable argvO. Adding the command "puts
"argvO : $argvO "" as the first line of the example script causes it to print an addi
tionalline:

argvO: eeho.exp
arg 0: faa
arg 1: bar
arg 2: 17 and a half

The expect from the original command line vanishes as if the script itself had been
called without it. There is little reason to have the expect in there anyway. Obviously,
the Expect script knows that it is an Expect script. But there is an even more important
reason to get rid of it-so that a script sees the same arguments whether it is invoked as
"expect script" or just "script". I will show later why this is so useful.

The Expect Program 215

The echo. exp script explicitly calculates the length of argv according to llength.
As a convenience, Expect sets argc to this value at the same time that argv and argvO
are set, so it is possible to omit the initialization of argc in echo. expo

Invoking Scripts Without Saying ((expect"
On all but the most ancient UNIX systems, it is not necessary to type "expect" to run
an Expect script. Just the script name is necessary. Assuming the script is constructed
properly, both of the following commands do the same thing:

% expect script
% script

In the first command, the operating system runs Expect which executes the script. In
the second case, the operating system has to use some other means of deducing that the
script wants to be executed by the Expect interpreter. The system figures this out by
reading the first line of the script. The name of the interpreter must appear after the char
acters #! in the first line. You must specify the complete path for Expect (even if its
directory is in your PATH). In this book, I have assumed that Expect is in lusr/locall
bini expect but that may not be true for your system.

#!/usr/local/bin/expect

If you mark the script as executable (using "chmod +x script"), you can run the
script without typing "expect" in front of the script name each time.t

% script

This is shorthand for explicitly saying "expect script". I will occasionally explain
the shorthand form in terms of the full "expect script" form to help describe how
other arguments are handled.

The #! mechanism has one significant drawback. On many systems, the total length of
the first line is limited to 32 characters. If you use more than 32 characters, the operating
system will not pass them to Expect. Expect will not see them.

A simple way to verify this (or find out the limit on your system) is to invoke the
following in a script using just the script name. Where your system truncates its argu
ments will be visually obvious from the output.

#!/bin/echo 1234567890123456789012345678901234567890

The 32 character limit includes the #! and any arguments after the script name. As I will
describe later, arguments are typically "--" or "-f". Subtracting five for "#!" and" --"

t The directory containing the script must be in the PATH environment variable. Some shells also require you to
execute the rehash command in order to recognize brand new scripts as commands. Do this after the chmod.

216 Exploring Expect

leaves 27. As an example, /usr/local/bin/expect is 21 characters and so that path
will work because 21 is not greater than 27.

If you keep programs in a common directory that has more than 27 characters in its
name, create another directory with a shorter name. In the new directory, create a
symbolic link to the true Expect executable.

For more information on the #! mechanism, read the execve man page on your own
system. Some systems may be different than what I have described here.

Very old systems do not follow the #! convention at all, and instead use /bin/ sh to
execute all scripts. Inserting the following lines at the beginning of your script allows it
to be portable between such systems and modern ones that do invoke the correct
interpreter.t

#!/bin/sh
set kludge { ${1+"$@"}
shift
shift
exec expect -f $0 ${1+"$@"}
}

rest of script follows

Rewriting The #/ Line
If you need to move your scripts to another system which has Expect installed in a
different place, you may need to rewrite the first line of many scripts. For instance, the
Expect installation does this when installing the sample scripts that accompany it. The
installation accomplishes this by running a script called fixlinel on each Expect
script. Here is fixlinel:

#!/usr/local/bin/expect
regsub "A#! (.*/)*(.*)" [gets stdin] "#!$argv/\\2" linel
puts -nonewline "$linel\n[read stdin]"

The script works by reading the first line and looking for #! followed by a slash. This is
replaced with the new path and then the remainder of the file is rewritten as well. This
rewrites scripts that have first lines such as the following:

#!expect
#!expect --
#! .. / expectk
#!/usr/local/bin/expectk anyoldargs

t Thanks to Paul Mackerras, Dept. of Computer Science, Australian National University, for this gem.

The Expect Program 217

The script is called (usually from a Makefile) as follows:

expect fixlinel newpath < oldscript > newscript

where oldscript is the original script and newscript is the new version with the path
set to newpa tho This script can be used to rewrite any file that uses the #! in the first
line. Of course, the literal "expect" is needed only before fixlinel has rewritten its
own first line.

The .exp Extension
Expect script names need not end with" . exp" although this can serve as an easy way
to distinguish Expect scripts from other files. Modern versions of the UNIX file
command can also report that a file is an Expect script. They do this by looking at the
#! in the first line. Thus, it is a good idea to use this line even if you always invoke
Expect explicitly when using the script.

% file echo.exp
echo.exp: executable lusr/local/bin/expect script

The - - And Other Flags
In Chapter 3 (p. 72), I mentioned the #! line with "--" at the end. I did not explain it at
the time, but most of the scripts so far have used this line. I described the #! earlier in
this chapter. Now I will explain " __ ". The "--" is a flag to Expect. It says not to inter
pret any of the script arguments but just to pass them on to the script. This is
comparable to saying:

expect -- script args

Without the "--", Expect itself interprets arguments that look like flags. Arguments that
look like flags begin with a "-" and appear before arguments that do not look like flags.
What is important here is that after Expect finds an argument that does not look like a
flag, then no other argument can be a flag. I will discuss this more later.

Flags that Expect knows about are:

-b

-c

-f

-d

-D

-i

cmd

file

read the script a line at a time (i.e., unbuffered)

execute this command before any in the script

read commands from this file

print internal (diagnostic) information

enable the debugger

run interactively

218

-n

-N

do not source - / . expect. rc

do not source $expect_library / expect. rc

read commands from the standard input

do not interpret remaining arguments

Exploring Expect

Some flags take arguments. These can be run together with the flag itself, but for consis
tency I always put a space between them. For the sake of accuracy, the term flag
includes both the dash, letter, and any arguments.

In the following sections, I will describe each of these flags in detail.

The -c Flag
The -c flag provides a way of executing commands specified on the command line
rather than in a script. This is handy when writing shell scripts, and you have a really
short task for Expect that does not justify a separate script. For instance, the following
shell command is similar to the timed-read command in Chapter 3 (p. 77).

expect -c 'expect "\n" {send $expect_out(buffer)}'

Since no timeout is specified, the command waits up to 10 seconds. If the user types a
string and presses return within the allotted time, the user's string is returned, otherwise
the empty string is returned. Notice that the entire argument to -c is quoted using
single quotes. This tells the shell not to perform any variable expansion.

The -c flag can also be used to execute commands before a script takes control. For
example, you can set the variable debug to 1 by invoking Expect from the shell as:

% expect -c "set debug 1" script

Inside the script, you can check the value of this variable:

if [info exists debug] {
puts "debugging mode: on"

else {
set debug 0

imagine more commands here

if $debug {puts "value of x = $x"}

When the script is run, it checks if debug is defined by evaluating "info exists", a
Tcl command which returns 1 if the variable is defined or 0 if it is not. If it is defined,
the script can then test it later to determine if it should print debugging information

The Expect Program 219

internal to the script. The else clause sets debug to 0 just so that later a simple "if
$debug" test can be used.

There is nothing special about the variable "debug". Any command could be executed.
Multiple commands can be executed either by separating them with semicolons or by
using additional -c arguments. Multiple -c arguments are executed from left to right.

% expect -c "set debug 1; set foo bar" -c "puts hi" script

In Chapter 18 Cp. 405), I will cover a command that enables command tracing so that
you can easily follow the flow of control in a script. This command is almost always
issued via "-c".

If you give the -c before the script name, it will not be included in the argv variable
when the script ultimately gets control. Here is an example of this behavior using the
echo. exp script from page 214, amended to also print argvO.

% expect -c "set foo 1" echo.exp foo bar 17
argvO: echo.exp
arg 0: foo
arg 1: bar
arg 2: 17

If you give the -c after the script name, it will not be interpreted but passed on to the
script itself in the argv variable.

% expect echo.exp -c "set debug 1" foo bar 17
argvO: echo.exp
arg 0: -c
arg 1 : set debug 1
arg 2 : foo
arg 3 : bar
arg 4 : 17

The same thing happens if you invoke the script by its name without "expect":

% echo.exp -c "set debug 1" foo bar 17
argvO: echo.exp
arg 0: -c
arg 1 : set debug 1
arg 2 : foo
arg 3 : bar
arg 4 : 17

The behavior demonstrated here is not specific to -c but occurs with any Expect flag. It

occurs because of the -- in the first line of the script. As an example, this causes the
previous invocation to be interpreted as:

% expect -- echo.exp -c "set debug 1" foo bar 17

220 Exploring Expect

The -- means "do not interpret the remaining arguments as flags", so that the -c is not
interpreted as a flag but is passed on to the script. It is possible to change this behavior
by removing the -- from the #! line in the script. Unfortunately, simply removing it
leaves a line interpreted as if it had been typed:

% expect echo.exp -c "set debug 1" foo bar 17

The -c still appears after something that does not look like a flag-namely the script
name. And anything that appears after something else that does not look like a flag,
cannot itself be a flag. The script name, however, can be made to look like a flag by
prefacing it with a "-f".

The -fFlag
The -f flag names a file from which to read commands, i.e., a script. Interactively, this
may seem pointless. If you say "expect script", it is assumed that you meant
"expect -f script" anyway. In fact, there is no reason to ever use -f from the
command line. It is only provided so that it can be used from the #! line as:

#!/usr/local/bin/expect -f

Just as with "--", when a script starts out with this -f line and is invoked just by its
name (without "expect"), it behaves as you had entered the following command:

% expect -f script args

Now you can use Expect flags such as -c and they will be correctly handled. Since the
"-f script" looks like a flag, Expect continues looking and finds the -c and inter
prets this as a flag, too.

% echo.exp -c "set debug 1" foo bar 17
argvO: echo.exp
arg 0: faa
arg 1: bar
arg 2: 17

The drawback, of course, is that if you want to pass flags to your own script, you then
have to also use " __ ". For example:

% echo.exp -- -e -ZZ -c

-e and -ZZ are not flags known to Expect, but you must still use the -- or else Expect
will tell you that you have used an illegal flag.

% echo.exp -e -zz -c
expect: illegal option -- e

The Expect Program 221

Writing The #/ Line
Now that you have seen all the nitty gritty details, I will state two simple guidelines on
how to write the #! line that should help you manage the other flags.

• During development, either invoke expect scripts as "expect script" or use the
line "# !path/expect -f".

• Production scripts should be invoked by name and use the line "# !path/expect

Replace "path" (above) with whatever is appropriate for your system as I described on
page 215.

The -i Flag
The - i flag makes Expect run interactively. Expect will read commands from the stan
dard input (which usually means the keyboard). This is useful if you are using the -c
flag, which otherwise would have Expect exit after it finishes executing the given
command.

Normally, the first argument to Expect is taken as a script name, but if you provide a - i
flag, the argument is just passed uninterpreted. Compare the following invocations
where "I", "2", and "3" are not intended as filenames. This can be useful if you are
feeding Expect commands from a pipe into Expect's standard input.

% expect 1 2 3
couldn't read file "1": No such file or directory
% expect -i 1 2 3
expect1.1> set argv
123
expect1.2>

In the simple case where there is no script name or -c flag, Expect runs interactively by
default. So it is never necessary to say "expect -i" by itself. You could, but it is
redundant.

The -n And -N Flags
By default, Expect reads and evaluates the commands in two files when it starts. It does
this whether you run Expect interactively or from a script. Generically, the files are
called dot rc or . rc files.

The first file Expect reads is expect. rc in the directory $expect_library. The vari
able expect_library is predefined by the person who installed Expect on your

222 Exploring Expect

computer. It contains a directory for common Expect scripts and fragments that can be
used from other scripts.

The file expect. rc can be used to customize Expect on a particular computer without
changing the binary. This is very useful if Expect is shared among many computers
because it is on a common file system. Rather than having multiple different copies of
Expect, each host can modify expect. rc-presumably a very short file.

Next, the file . expect. rc is read. Expect looks for . expect. rc in the directory spec
ified by the environment variables DOTDIR or HOME in that order. The . expect. rc
file can be used to customize Expect on a personal basis. This would, for example, be
an appropriate way to define your own personal prompts for Expect to use when it is
interactively prompting for commands. Changing the prompt is shown in more detail
on page 228.

Another common use for . expect. rc is to configure Expect applications that use the
Tk extension to control the X Window System. For example, the tk_strictMotif
flag can be used to disable Tk's default behavior of automatically highlighting buttons as
the cursor crosses them. During demos, people who are not in control of the mouse
must concentrate more closely on the cursor. If I have to move the mouse to the other
side of the window, the buttons flashing in the middle of the window actually make it
harder for the audience to find the cursor because it is so much smaller than most
buttons. To avoid this distraction during demos, I add "set tk_strictMotif 0" to
my . expect. rc file to disable this behavior in all my programs.

If the . expect. rc and expect. rc files do not exist, Expect just goes on. It is also
possible to skip these files by using the -n and -N flags. The -n flag skips the
. expect. rc file while the -N flag skips the expect. rc file.

Any commands that appear in -c flags are executed before the expect. rc and
. expect. rc files.

You must be very careful when adding commands to these . rc files. They are used
even when you run someone else's script, and it is therefore possible to affect the way
any Expect scripts behaves. For example, if you define a variable in expect. rc that a
script attempts to use as an array, the script will fail in an unexpected way.

On the other hand, the . rc files make it possible to create very powerful results. For
instance, you can declare debugging functions that are activated only when a certain
procedure is called or a certain variable is used, even if the Expect script is indirectly
started from another Expect script. Without . rc files, there is no way to have this type
of control short of editing the scripts.

This style of invoking . rc files all the time is different from most other Tcl applications
which invoke the . rc files only when running interactively. In Expect, the script always

The Expect Program 223

has the potential to become interactive even if it is not interactive at the start. The
interpreter command (see page 225) is an obvious example of this, but it is even
possible for scripts that are running in the background disconnected from a terminal to
become interactive. I will describe this further in Chapter 17 (p. 378).

More traditional Tel applications set the variable tel_interactive to 1 when Tel is
running interactively and to a otherwise. This is used, for instance, during Tel's initializa
tion to allow unknown commands to be evaluated as UNIX commands. Expect does its
best to honor the spirit of this behavior difference by also setting tel_interactive
when Expect starts. However, tel_interactive is not updated over time. This is no
great loss since it is usually not referenced over time either. Expect scripts that care
about the value of tel_interactive are free to update it themselves.

The -dFlag
The -d flag causes diagnostics to be printed out that describe the internal operation of
Expect. Do not read too much into this-the diagnostics are not a systematic means for
debugging. Rather, it is an accumulation of tiny windows that have been carved into
various places in Expect, enabling you to see what is going on without too much effort.

The -d flag does not change the behavior of Expect. Nonetheless, it can provide
extremely enlightening information, especially with respect to pattern matching. This
information is further described in Chapter 7 (p. 165).

The -DFlag
The -D flag enables a debugger that is described in more detail in Chapter 18 (p. 410),
so I will just explain the flag very briefly here. "-D" takes a boolean argument
describing whether to start the debugger or to just initialize it so that the debugger can
be started at a later time (such as by a command or by pressing AC).

Here is an example that starts the debugger so that you get interactive control before the
first command in script is executed.

% expect -D 1 script

Arguments to the left of the -Dare processed before starting the debugger. Arguments
to the right are processed after starting the debugger. Consider the following command:

% expect -c "set a 1" -D 1 -c "set b 2"
1: set b 2
dbg1.1>

224 Exploring Expect

In this example, Expect evaluated "set a 1" and then started the debugger. The
debugger shows that the next command to be executed is "set b 2" and then interac
tively prompts for a command.

The -b Flag
The -b flag forces the script file to be read one line at a time (i.e., unbuffered). This is
not normally necessary, but could be useful if the script file has not been completely
written by the time Expect begins executing it. In general, however, it is simpler just to
feed commands to the standard input of Expect (see next section). This avoids the
necessity of a temporary script file.

By default (i.e., without the -b flag), the entire script is read into memory before being
executed. A benefit of this is that you can edit scripts while executing them, and you do
not have to worry about Expect (or a user) getting confused by the script changing out
from under them.

The - Flag
Normally, Expect reads commands from a script. And if no script is named on the
command line (or the -i flag is used), Expect prompts to the standard output and reads
commands from the standard input.

The "-" flag tells Expect to read commands from the standard input without prompting.
Using "-", another program that is dynamically generating commands can redirect them
to the standard input of Expect.

Strictly speaking, the "-" is not a flag but a reserved file name. (Using a "-" for this is a
common UNIX convention.) Therefore, the "-" must appear separately and after all of
the other command-line flags. If you actually have a script file called "-" (for some
insane reason), you can invoke it as "expect . / -" to get Expect to understand that it
really is the name of a script file.

Here are two example invocations of Expect from the shell:

% expect - < command-file
% command-generator I expect -

The first command reads the commands in command-file. The second command
runs command-generator and feeds its output to Expect.

Reading commands and data from the same file is not supported. For example, if
Expect is reading commands from the standard input, the expect_user command
should not be one of the commands read.

The Expect Program 225

The interpreter Command
When Expect runs interactively, it prompts for a command. The command is evaluated
and Expect prompts for another command. This continues, typically, until you press I\D

or enter the exi t command. It is possible to kill Expect in a myriad of other ways, such
as by sending it a kill signal or closing the standard input but I will not describe these
further here.

When Expect is interactively prompting for commands, it is actually running a command
called interpreter. The interpreter command can be invoked just like any
command. It takes no arguments and is invoked simply as:

interpreter

The interpreter command is often used just for experimenting with Expect. For
example, you might write a dozen or so lines of code at a time and then want to test
them out even though the script is not complete. Rather than just having the script exit,
you can stick in an interpreter command at the end. When the script is executed,
you will get control so that you can see what has been accomplished and can play
around a little more.

With a small modification to any script, you can use interpreter as part of a general
strategy for catching any errors. Just nest any executable commands at the top level
inside a catch command. This technique is ideal once you have a complete script but
are still running across occasional errors. Make your script look like this:

define all procedures
proc first { . . .
proc second { . . .
proc third {

call first procedure that starts things rolling
if [catch first rnsg] {

puts $rnsg
interpreter

If no uncaught error occurs, the script runs to completion. If an error is not caught, a
message describing the error is printed and interpreter is run so that you can poke
around.

In Chapter 17 Cp. 371), I will describe how to extend this technique to handle two other
cases-when other users are running your script and when the script is running in the
background.

226 Exploring Expect

The Terminal Mode During The interpreter Command
If the terminal is not in cooked mode, the interpreter command temporarily
switches the terminal back to cooked mode while prompting the user for a command.
This is helpful if the terminal is in raw or no-echo mode. Users can see and edit
commands in the way they are used to. Once the command is entered, the terminal is
restored to its prior mode for execution of the command itself.

Output is handled similarly to the way input is handled. The interpreter command
prints the return value of each command on the standard output. This is performed in
cooked mode so that it is formatted appropriately. Output produced explicitly (i.e.,
puts, send) is not affected since that output is produced while the command is in
execution and the terminal is in the original mode.

The interpreter Prompt
By default, the interpreter prompts with a string like "expect1.1> After each
command, the number on the right advances by one. That number is the history event
number. The following example shows the first command being reexecuted using its
history event number.

expectl.l> puts "hello"
hello
expectl.2> expr 2*100
200
expectl.3> history redo 1
hello
expectl.4>

Notice how the first prompt contains "1.1", the second "1.2", and the third "1.3". The
third command reinvokes the first command by using Tel's history command. While
this example is not terribly impressive, the different subcommands of Tel's history
command might be worth learning if you spend a lot of time experimenting interac
tively.t I will not describe the history command further in this book. See the Tel
reference material for more information.

t The default definition of unknown provides a csh-like interface which supports! and A style history. There
are several alternatives to this that provide a friendlier user interface. However, you have to obtain and install
them yourself. One is to use an emacs shell which has multi-line editing and recall ability built in. I find this
sufficient for my needs as I do not spend a lot of time interactively typing to Expect. Another alternative is GNU's
readline. This provides more limited functionality but is easier to use than emacs. readline is linked to
Expect during compilation. A third alternative is ile (Interactive Line Editor), written by Bob Pendleton. ile is
similar to GNU's readline, although ile works in an entirely different way. Much like Expect, ile sits on top
of a program and requires no changes to the program itself.

The Expect Program 227

The first number in the prompt is the number of pending calls to Tcl_Eval.
(Tcl_Eval is the function inside of Tel that evaluates commands.) For instance, if I
type "interpreter", Tcl_Eval runs the interpreter. While the interpreter is running,
Tcl_Eval is suspended so the number of pending calls to Tcl_Eval is one more than
before.

expectl.4> interpreter
expect2.5>

The second number is incremented as usual. The depth of Tcl_Eval calls are irrele
vant to the history event number. For example, it is possible to refer to a history event
from a different call to Tcl_Eval. The following reinvokes the puts command
entered from the earlier level.

expect2.5> history redo 1
hello
expect2.6>

You can return from the interpreter with the return command.

expect2.6> return
expectl.7>

You cannot return beyond the first level. Conceivably, a return from this level could
exit Expect but since you can type exi t to do that, Expect assumes that returns from
this level are an accident and discards them.

Any command that can, in turn, call the interpreter command can increment the
number of Tcl_Eval calls. For instance, here is a while loop that calls the
in t erpret er.

expectl.7> while 1 interpreter
expect3.8>

Tcl_Eval was invoked once to process the while and again to process the inter
preter, so the number of Tcl_Eval calls in the prompt is raised by two. What
happens when you return from this?

expect3.8> return
expect3.9>

The number of calls to Tcl_Eval remains the same indicating that the interpreter
command is still running. Actually, it returned to the while loop which simply recalled
the interpreter command again. Later, I will show how to get out of this kind of
loop.

228 Exploring Expect

Changing The Prompt-promptl And prompt2
The prompt can be changed by defining your own procedure called promptl.

expectl.l> proc promptl {} {send_user "yes master? "}
yes master? puts hello
hello
yes master?

The definition of the default prompt is:

proc promptl {} {
send_user "expect[expr l+[info level]]."
send_user " [history nextid] > "

You can build all sorts of interesting prompts this way. Here is one that displays the
current directory followed by the history event number:

yes master? proc promptl {}
+> send_user II [pwdl [history nextidl> II

+> }
/usr/libes4> cd /tmp
/tmp5> puts hello
hello
/tmp6>

If you type an incomplete command, a different prompt is used. By default, the prompt
is "+> ". You can see it in the previous example where I redefined prompt 1 to contain
the current directory. In general, leaving a brace, bracket, or double quote unmatched
prevents the command from being evaluated.

This second type of prompt can be redefined by changing the function prompt2. The
default definition is:

proc prompt2 {} {
send_user "+> "

Causing The interpreter Command To Return
In general, the interpreter command executes its commands and continues
prompting for more commands. If there is an error, interpreter simply reprompts. It
is expected that lots of commands will have errors since the interpreter is specifi
cally designed for experimenting.

The break, continue, and return commands are treated differently, however. The
break and continue commands cause interpreter to generate a break or
return in its caller.

The Expect Program

while {l} {

interpreter

229

In the example above, a break command would cause the loop to break, and a
continue command would cause it to continue. Here is what happens when I interac
tively enter them to an Expect process. I have added a puts before and after the
interpreter command so that it is more obvious which commands are being
evaluated.

expectl.l> while {l} {
+> puts "x"
+> interpreter
+> puts "y"
+> }i puts "z"
x
expect3.2> continue
x
expect3.3> break
z
expectl.4>

After entering continue, the interpreter command returned and the loop
continued. After entering break, the interpreter command returned and the loop
ended, passing control to the following command (puts "z ").

The interpreter command handles return differently than break or continue.
Instead, return causes the interpreter command to return to its caller and proceed
with the next command.

Examine the following commands in which I define a procedure p, immediately invoke
it, and then return:

expectl.l> proc p {} {
+> interpreter
+> puts "x"
+> }
expect 1. 2> p
expect3.3> return
x
expectl.4>

The interpreter command returned and the command immediately after it was
called next.

It is also possible to cause interpreter's caller to return. To do this, use the
command inter_return. Here is another execution of the procedure p terminating
with inter_return. Notice that an x is not printed this time, indicating that p
returned immediately after interpreter did.

230

expectl.4> p
expect3.S> inter_return
expectl.6>

Exploring Expect

The handling of return may seem to be artificially different than the handling of
break and continue. But this is for good reason. Almost always, you want the
behavior offered by return rather than inter_return. Also, your scripts may allow
users to use interpreter. In this case, it is much easier to tell them to "type
"return" to return to your session" than the alternative.

I just mentioned that inter_return is rarely used with interpreter. In fact,
break and continue are hardly ever used with interpreter either. However,
these same behaviors of continue, break, return, and inter_return will arise
much more usefully in the context of the interact command in Chapter 15 (p. 339).

Earlier I mentioned that the interpreter command is sensitive to AD. Like many
UNIX programs, the interpreter command understands AD to mean eof. When you
press AD, the interpreter command returns in such a way that Expect is also forced
to exit as if you had typed exi t.

If you just want the interpreter command to return so that more commands are
executed, use the return command as I described earlier. If you want to be able to
make sure some code is executed no matter whether you exit by AD or by typing exi t
or return, use an exit handler (see Chapter 14 (p. 321)). This is useful if you are just
playing around and want to kill the script as quickly as possible while still letting it clean
itself up.

Using interpreter In Production Scripts
While I have mentioned that the interpreter command is very useful while experi
menting, it can also be used in production scripts. Indeed, this is one of the reasons it is
so useful to be able to change the prompt. With only a little work you can produce a
customized interaction.

For example, if you press telnet's escape character, you are placed into a little interac
tion where you can do things like query and set variables. By using the interpreter
command, you do not have to write a lot of new commands because the basic Tcl
commands are sufficient for so many things.

Here is the escape procedure from dislocate, a script that moves processes into and
out of the background.

The Expect Program

proc escape {}
puts "\nto disconnect, enter: exit (or AD)"
puts "to suspend, press appropriate job control char"
puts "to return to process, enter: return"
interpreter
puts "returning ... "

231

If you press the escape sequence while interacting with your process, this is what you
see. Here, I am interacting with lpc. (The escape character does not actually appear
even though I typed it.)

lpc>
to disconnect, enter: exit (or AD)
to suspend, press appropriate job control char
to return to process, enter: return
dislocate> return
returning ...
lpc>

You can choose to throw out whatever messages you like. In this example, I wanted to
remind users how to do disconnection, suspension, and resumption. But if setting vari
ables are important, then remind them of that. Consider defining a help procedure and
then saying "to get more information, enter: help".

Allowing users total access to Tcl can be a great idea. Users can use your scripts in new
ways that you never thought of. Because they can write loops and procedures, they can
automate things that are of interest only to themselves, and so you do not have to do a
lot of special case coding for each one.

On the other hand, your users may not be technically competent enough to handle this
responsibility. With complete access to the internals of your script, they can set vari
ables that they should not and thus can potentially cause any kind of disaster. If you do
not trust your users to follow directions, or if you just want a bulletproof script, then do
not use interpreter. Instead, write your own command loop and parse commands
yourself. This is pretty easy to do, depending on what you need. If you only want to
provide a couple of commands, a swi tch inside of a while loop is often sufficient.

For example, here is a fragment that allows users to enter just a few predeclared
commands. If a user enters "read faa" for example, "user_read faa" is executed.
Also, the commands help or ? both call user_help. And anything that is not in the
list calls user_badcmd.

while 1 {
if {[gets stdin buf] == -l} break
set cmd [lindex $buf 0]
if {[string compare $cmd ""] == O} continue
set args [lrange $buf 1 end]

232

switch -- $cmd \
"read" {

user_read $args
"write" {

user_write $args
"save" {

user_save $args
"help" {

user_help
"? II {

user_help
default {

user_badcmd $cmd

Exercises

Exploring Expect

1. Use the -c flag to implement the maxtime script from Chapter 4 Cp. 100) but without
using a file to store the script.

2. Figure out how the script on page 216 works.

3. Redefine your Expect prompt so that it shows the host name, the last two elements in
your current working directory, and the history event number. Save this in your
. expect. rc file.

4. Rewrite the script on page 231 so that the references to the user_xxx commands are
dynamically generated. Wrap the result in a procedure called app_interpreter.

5. Using the aftp script in Chapter 6 Cp. 144), create aliases in your shell's. rc file for
your favorite hosts so that you can type the host name as the command rather than
having to type aftp first.

6. The rup program shows the status of machines on the local network. Unfortunately,
rup can wait a significant amount of time for responses before timing out, and it pro
vides no flags to modify this behavior. Write a rup script that understands a
-timeout flag.

7. The command loop on page 231 can blow up if the user feeds it strings that are not
valid lists. Fix the script so that it cannot blow up.

In This Chapter:

• Multiple Processes

• What Is A Spawn
Id?

• Interacting With
Multiple Processes

• Scopes

• job Control Handling Multiple
Processes

In this chapter, I will describe how to build scripts that communicate with multiple
processes. Using multiple processes, you can build scripts that do much more than
simple automation. For instance, you can connect programs together or borrow the facil
ities of one to enhance those of another. You can also do it transparently so that it
seems like a single program to anyone running the script.

The spawn_id Variable
In the following script, two processes are spawned. The first is bc, an arbitrary preci
sion arithmetic interpreter. The second is a shell. By default, send and expect
communicate with the most recently spawned process. In this case, the following
expect reads from the shell because it was spawned after bc.

spawn bc

spawn /bin/sh
expect $prompt ;# communicate with /bin/sh

Why is this? When a spawn command is executed, the variable spawn_id is set to an
identifier that refers to the process. The spawn_id variable is examined each time
send and expect are called. send and expect know how to access the process by
using the value in spawn_id.

If another process is spawned, spawn_id is automatically set to an identifier referring
to the new process. At this point, send and expect then communicate with the new
process. In this example, "spawn bc" stored an identifier into spawn_id, but "spawn
/bin/ sh" replaced that with a new identifier to the shell process. The following
expect command therefore communicates with the shell.

233

234 Exploring Expect

It is possible to communicate with the old process by setting spawn_id back to the
identifier for that process. spawn_id is not special in this regard. It is read or written
using the same commands that access other variables. For example:

spawn bc
set bc_spawn_id $spawn_id

spawn /bin/sh
set shell_spawn_id $spawn_id

set spawn_id $bc_spawn_id
send "scale=50\r"

;# save bc's spawn id

;# save shell's spawn id

;# talk to bc

Clearly, the value of spawn_id is very important. Indeed, the process whose identifier
is stored in spawn_id is known as the currently spawned process. In the script above,
bc is initially the currently spawned process, and then /bin/ sh becomes the currently
spawned process. When spawn_id is reset by an explicit set command, bc once
again becomes the currently spawned process.

While not the only ones, the UNIX program bc and the related program dc are very
useful to have spawned while other programs are running. Both bc and dc are capable
of arbitrary precision mathematics. For example, suppose you are interacting with a
process which requires you to multiply some very large number together but does not
provide support itself to do it. Just change to the spawn id from bc and get the answer
through an interaction like this:

send "1234567897293847923*234229384318401298334234874\r"
expect -re "\n (. *) \r\n

Here is an interaction with dc to change a decimal number to the oddball base of 6.

send "1928379182379871\r6op\r"
expect -re "\n.*\n(.*)\r\n"

Both of these leave the result in expect_out (1, string).

Example - chess Versus chess
Very useful results can be produced by communicating with multiple processes. A
simple but amusing example is the problem of having one chess process play a
second chess process. In order to accomplish this, the standard output of one process
must be fed to the standard input of another, and vice versa.

Handling Multiple Processes 235

As an Expect script, the basic idea might be implemented this way:

set timeout -1

spawn chess ;# start player one
set chess1 $spawn_id

spawn chess ;# start player two
set chess2 $spawn_id

while 1 {
expect" (. *) \n" ;# read move
set spawn_id $chess1
send $expect_out(1,string) ;# send move to other

;# player

expect "(. *) \n" ;# read response
set spawn_id $chess2
send $expect_out(1,string) ;# send back

The first four lines start two chess processes and save the respective spawn ids. Then
the script loops. The loop starts by reading a move from the first process. spawn_id is
changed to the second process, and the move is sent there. The response is collected,
spawn_id is set back to the original chess process, and the response is sent back to
the first process. The loop repeats, allowing moves to go back and forth.

Alas, the UNIX chess program was not intended to read its own output, so the output
has to be massaged a little before being used as input.t Oddly, the program prints out
moves differently depending on if it goes first or second. If the program goes first, its
own moves look like this:

1. n/kn1-kb3

But if the program goes second, its own moves have an extra" ... " in them and look
like this:

1 n/kn1-kb3

Pairs of moves are numbered from 1 on up. The "1." is the move number and has to be
ignored. The program also echoes the opponent's moves. Indeed, they are echoed
twice-once when they are entered, and then once again prefixed by a move number.
Here is what this looks like to the person who moves first:

p/k2-k4
1. p/k2-k4
1 p/qb2-qb3

echo as first player types move
chess program reprints it
chess program prints new move

t Ken Thompson wrote this chess program which continues to be distributed with most versions of UNIX.

236 Exploring Expect

Following is a command that matches the new move, leaving it in
expect_out (1, string). Notice that the literal periods are prefaced with back
slashes since they would otherwise match any character:

expect -re "\ \ . \ \. \ \. (. *) \n"

To the person who moves second, the interaction looks like this:

p/k2-k4
1. ... p/k2-k4
2. p/q2-q4

echo as second player types move
chess process reprints it
chess process prints new move

In this case, the new move is matched slightly differently:

expect -re "\\.\\.\\ .. *\\. (.*)\n"

The patterns themselves are straightforward; however, the chess processes themselves
must be started differently so that one moves first while the other waits to hear a move
first. The script sends the string first \r to one of the processes to get it to move first.
Of course, before doing this the script waits until the process acknowledges that it is
listening. The process does this by printing "Chess\r\n". Here is what that looks like:

Chess
first
1. p/k2-k4

chess process says it is ready
type this to get process to move first
chess process prints first move

Once the first move has been read, it is possible to loop, handling moves the same way
each time. Here is the code to start both processes. The first process is told to move
first. The second process moves second.

set timeout -1

spawn chess
set id1 $spawn_id
expect "Chess\r\n"
send "first\r"
expect -re "1\\. (.*)\n"

spawn chess
set id2 $spawn_id
expect "Chess\r\n"

;# start player one

;# force it to go first
;# read first move

;# start player two

Now the loop can be expressed more parametrically:

while 1 {
send $expect_out(l,string)
expect -re "\ \. \ \. (. *) \n"
set spawn_id $id1

send $expect_out(l,string)
expect -re "\\.\\ .. *\\. (.*)\n"

Handling Multiple Processes 237

set spawn_id $id2

One tiny simplification has been made that deserves elaboration. In the patterns, it is
only necessary to match two periods even though three are printed, since nothing else
in the output could possibly match the two periods. One period would not be
sufficient-that could match the period in the move number. The space following the
two periods serves to enforce that they are the second and third periods rather than the
first and second.

The script could use one other improvement. Currently there is no check for the end of
the game. The game ends by either player resigning. Resignation is actually trivial to
check. The program prints a little message and then exits. Since the program does not
print a new move, Expect will read an eof. Adding "eof exit" to the two expect
commands in the loop will thus allow the script to cleanly exit.

Example -Automating The write Command
Scripts are not limited to interactions with two processes. Large numbers of processes
can be spawned from a single script. As an example, imagine a script that runs several
wri te processes Simultaneously. Why would this be useful? The UNIX wri te program
allows a person to type messages on one other person's terminal. The wall program
allows messages to be typed on everyone's terminal, but there is nothing in between-a
program that types to a subset of terminals.

Using Expect, it is possible to write a script that writes messages to any set of users
simultaneously. Here is the first half of such a script.

#!/usr/local/bin/expect
set ulist {}
foreach user $argv {

spawn write $user
lappend ulist $spawn_id

The script reads the user names from the argument list. Each spawn id is appended to
the list ulist. ulist is not a special variable. It could have been called anything.
Notice that ulist is initialized to an empty list and then lappend is used to append to
it. This is a common idiom for adding elements to lists. As an aside, lappend pennits
the initialization ("set ulist {} ") to be omitted. But making it explicit protects you
if the code is later moved to a place where ulist might have a previous value.

Once all the spawn ids have been created, text can be sent to each process. In the
second half of the script, text is read from the user via expect_user. Each time the
user presses return, the line is sent to each spawned process.

238

set timeout -1
while 1 {

expect_user {
-re n\nn {}

eof break

foreach spawn_id $ulist {
send $expect_out(buffer)

Exploring Expect

Each time through the foreach loop, spawn_id is assigned an element from ulist.
This conveniently changes the currently spawned process so that the send command
sends the text to each spawned process.

If the user presses AD, expect_user reads an eof, the loop breaks, and the script
exits. The connection to each wri te process is closed, and each process exits.

How exp_continue Affects spawn_id
Earlier I noted that the expect command decides which process to communicate with
based on the value of spawn_id. The expect command checks the value of
spawn_id at two times: when it starts and after every exp_continue command. This
means that with an appropriate action in an expect command, you can change the
currently spawned process while the expect command is running.

The Value Of spawn_id Affects Many
Commands
The chess and write scripts are good examples of how spawn_id affects both the
send and expect commands. To recap, send and expect communicate with the
currently spawned process-that is, the process whose spawn id is stored in the vari
able spawn_id. Other commands that are affected by spawn_id include interact,
close, wait, match_max, parity, and remove_nUlls. In later chapters, I will
describe still more commands that are affected by spawn_id.

As an example, here is a code fragment to close and wai t on a list of spawn ids.

foreach spawn_id $spawn_ids {
close
wait

Handling Multiple Processes 239

This loop could have been added to the earlier wri te script-except that the script
effectively does the close and wait upon exit anyway. However, remember from
Chapter 4 (p. 103) that programs that run in raw mode (such as telnet) often need
explicit code to force them to exit. That code might be appropriate in such a loop.

Imagine writing a script that telnets to several hosts and simultaneously sends the
same keystrokes to each of them. This script could be used, for example, to reboot a set
of machines, change passwords, test functionality, or any number of things that have to
be performed directly on each machine.

Symbolic Spawn Ids
For efficiency, Expect uses integers to represent spawn ids. For instance, if you examine
the value of spawn_id, you will find it is an integer. However, you should avoid
relying on this knowledge-it could change in the future.

One thing you can rely on is that a spawn id can be used as an array index. You can use
this fact to associate information with the spawn ids. For example, if you have spawned
several telnet sessions, you can retrieve the original hostname if you save it immedi
ately after the spawn.

spawn telnet potpie
set hostname($spawn_id) potpie

Once saved, the hostname can be retrieved just from the raw spawn id alone. This tech
nique can be used inside a procedure. With only the spawn id passed as an argument,
the hostname is available to the procedure.

proc wrapup {who} {
global hostname
set spawn_id $who
send "exit\r"
puts "sent exit command to $hostname($spawn_id)"

Similar associations can be made in the reverse direction. It is also possible to associate
several pieces of information with a spawn id. Consider these assignments.

spawn $cmdname $cmdarg
set proc($spawn_id,cmdname) $cmdname
set proc($spawn_id,cmdarg) $cmdarg
set proc($cmdname,spawn_id) $spawn_id

These assignments could be wrapped up in a procedure so that they occur every time
you spawn a process.

240 Exploring Expect

Job Control
Changing spawn_id can be viewed as job control, similar to that performed by a user
in the shell when pressing /\Z and using fg and bg. In each case, the user chooses
which of several processes with which to interact. After making the choice, the process
appears to be the only one present-until the user is ready to switch to interacting with
another process.

Shell-style job control, however, cannot be automated in a shell script. It is tied to the
idea of a controlling terminal, and without one, job control makes no sense. You cannot
embed commands such as fg or bg in a shell script. Shell-style job control is oriented
towards keyboard convenience. Jobs are switched with a minimum of keystrokes.
Expect's job control-spawn_id-is not intended for interactive use. By comparison
with the shell, Expect's job control is verbose. But it is quite appropriate for a program
ming language. In later chapters, I will show an alternative form of job control that is
less verbose, plus I will demonstrate how to imitate C-shell job control. For now,
though, I will stick with this verbose form.

In a programming language, you can embed the repetitive things inside of procedures.
This is the right way to use Expect as well. If you find yourself frequently writing "set
spawn_id . . . OJ, consider defining a procedure to automate these commands.

For example, suppose you have a script that automates an ftp process. As the ftp
process runs, it writes status messages to a user via wri teo In this case, you need two
spawn ids, one for write and one for ftp.

spawn write; set write $spawn_id
spawn ftp ; set ftp $spawn_id

To send a status message, spawn_id is changed from $ftp to $write and then the
send command is called. Finally, spawn_id is set back so that the ftp interaction can
continue.

send "get $filel\r"; expect "220*ftp> "

set spawn_id $write
send "successfully retrieved file\r"

set spawn_id $ftp
send "get $file2\r"; expect "220*ftp> "

Handling Multiple Processes

This example can be simplified by writing a procedure called, say, report.

proc report {message}
global write

set spawn_id $write
send $message

In the report procedure, the message is passed as an argument. It is called as:

report "successfully retrieved file\r"

241

The spawn id of the write process is retrieved from the global environment by
declaring wri te as a global variable. spawn_id is then set to this value. As before,
send uses spawn_id to determine which process to communicate with.

This spawn_id variable is local to the procedure. It is only visible to commands (such
as send) inside the procedure, and it goes away when the procedure returns. This
greatly simplifies the caller. It is no longer necessary to reset spawn_id to ftp because
it is done implicitly by the procedure return. Here is what the caller code would now
look like:

send "get $filel\r"; expect "220*ftp> "
report "successfully retrieved file\r"
send "get $file2\r"; expect "220*ftp> "

This is much cleaner than without the procedure call. Using procedures in this fashion
greatly simplifies code.

Procedures Introduce New Scopes
A procedure introduces a new scope. This normally hides variables unless the global
command (or upvar or uplevel) is used. Because Expect depends so much on
implicit variables (spawn_id, timeout, etc.), Expect commands have a special
behavior when it comes to reading variables.

• When reading a variable, if a global command has declared the variable, the vari
able is looked up in the global scope. If undeclared, the variable is first looked up
in the current scope, and if not found, it is then looked up in the global scope.

The italicized phrase emphasizes how Expect differs from the usual Tcl scoping mecha
nism. To say this a different way, while reading variables, Expect commands search the
global scope for variables if they are not found in the local scope.

242 Exploring Expect

In the report procedure defined above, spawrcid was defined locally. By the rule
just stated, spawn_id would be found in the local scope. Without the set command in
report, spawn_id would be found in the global scope.

This rule can be used to simplify scripts. In the ftp example on page 241, each time a
command was sent to ftp, it was immediately followed by an expect to check that the
command succeeded.

send "get $file2\r"; expect "220*ftp> "

You can wrap this sequence into a procedure so that each time a command is sent, the
response is checked:

proc ftpcmd {cmd}
send "$cmd\r"
expect "220*ftp> "

In this procedure, again, spawn_id is not defined locally, nor is it mentioned in a
global command. Thus, both the send and expect commands look it up from the
global scope.

The expect command also does the same thing with the timeout variable. Because
none is defined in the procedure, the global timeout is used. Compare this new defini
tion of ftpcmd:

proc ftpcmd {cmd}
set timeout 20
send "$cmd\r"
expect "220*ftp> "

Here, the set command explicitly sets timeout to 20. This instance of timeout is
local to the procedure scope. It is used by expect, but when ftpcmd returns, this local
timeout disappears.

Here is yet another definition of ftpcmd. In it, a global command makes timeout
refer to the global version. The set command changes the global timeout, and send
and expect refer to the global timeout.

proc ftpcmd {cmd}
global timeout
set timeout 20
send "$cmd\r"
expect "220*ftp> "

Before leaving this example, it is worth noting that tiny procedures like this one can be
very helpful. They simplify the calling code-in this example, you no longer have to

Handling Multiple Processes 243

remember to write the expect command after every send command. If sophisticated
actions are required in expect commands to handle error checking, then you need edit
only a single procedure. Without a procedure, you need to add the error checking to
every expect command. And if the expect command ever changes, by isolating the
code in one place, it only has to be changed once.

How Expect Writes Variables In Different Scopes
Although Expect commands look in two scopes when reading variables, only one scope
is used when writing variables.

• When writing a variable, the variable is written in the current scope unless a
global command has declared the variable, in which case, the variable is written
in the global scope.

This is the usual Tcl behavior, but since it differs from the previous rule, I will describe it
in more detail.

In the previous definition of ftpcmd, the expect command looks for ftp to return
"220*ftp> The expect command, as usual, writes what it finds into
expect_out (buffer). However, expect writes the variable into the local scope.
That means that the caller does not see the updated expect_out. In the following
code, the caller assumes expect_out is not overwritten by ftpcmd.

expect $shellprompt
ftpcmd "get file"
send_user "found shell prompt: $expect_out(buffer)\n"

If you need a procedure to write into the global version of expect_out, then a
global command must be used in the procedure. Here is a definition for ftpcmd
which does that.

proc ftpcmd {cmd} {
global expect_out

send "$cmd\r"
expect "220*ftp> "

The rules just described for expect_out hold for spawn_id as well. You need a
global command if you want to write the value of spawn_id outside the current
procedure. Without a global command, the spawn command writes spawn_id into
the local scope. As soon as the procedure returns, spawn_id reverts back to its old defi
nition. In Chapter 4 Cp. 100), I suggested that you should not invoke spawn from a
procedure-until after reading this chapter. Now you can see the reason why: Without
knowing about the spawn_id variable and how it is scoped, it is impossible to use

244 Exploring Expect

spawn from a procedure and be able to interact with the spawned process after the
procedure returns.

A procedure that spawns a process to be used later should provide some means for
returning the spawn id. One way is to use a global command.

proc spawn_ftp {host}
global spawn_id

spawn ftp $host

It is possible to return the information in other ways, such as by explicitly returning it or
by writing it into some other variable in an another scope. Here is the same procedure
written to return the spawn id. Notice that it does not use a global command.

proc spawn_ftp {host}
spawn ftp $host
return $spawn_id

And here is a procedure that returns it to the caller by using the upvar command. If the
caller is another procedure, spawn_id will be local to that procedure-unless, of
course, one of the techniques illustrated here is used.

proc spawn_ftp {host} {
upvar spawn_id spawn_id
spawn ftp $host

The upvar command requires spawn_id to be mentioned twice. The first mention is
the name in the calling scope. The second is the name in the current scope. After the
upvar, every use of spawn_id in spawn_ftp references the spawn id in the caller.
For example, in the earlier script the variable ftp was set to the spawn id of an ftp
process. To do this in a script, the upvar command would be:

upvar ftp spawn_id

The upvar command is commonly used when passing parameters by reference. For
example, it is possible to have the caller decide the name of the variable in which to
save the spawn id. The name of the variable is passed as an additional variable and then
dereferenced inside of spawn_ftp.

proc spawn_ftp {host spawn_id_var}
upvar $spawn_id_var spawn_id
spawn ftp $host

Handling Multiple Processes

proc work {
spawn_ftp uunet.uu.net uunet id
uunet id is valid in here

work
uunet_id is no longer valid out here

245

After execution of spawn_ftp in the procedure work, the variable uunet id will
have the spawn id of an ftp process to uunet. uu. net. After work returns,
uunet_id will no longer be set (presuming it was not set to begin with).

Predefined Spawn Ids
Three variables contain spawn ids predefined by Expect. These do not correspond to
actual processes, but can be logically used as if they do. They are:

user_spawn_id

error_spawn_id

tty_spawn_id

standard input and standard output

standard error

controlling terminal (i.e., /dev/tty)

user_spawn_id contains a spawn id associated with the standard input and standard
output. When spawn_id is set to the value of user_spawn_id, expect reads from
the standard input, and send writes to the standard output. This is exactly what
happens when Expect is started, before any processes have been spawned.

set spawn_id $user_spawn_id
expect -re "(. *) \n" ; # read from standard input

tty_spawn_id contains a spawn id associated with the controlling terminal. Even if
the standard input, standard output, or standard error is redirected, the spawn id in
tty _spawn_id still refers to the terminal.

expect -re "(.*)\n" ;# read from /dev/tty

With these spawn ids, you can view the user running the Expect script as a process. The
user can be sent input and can provide output to the Expect script, just like a process.
While users are less reliable (usually), they can effectively be treated just like a process
when it comes to interacting with them from Expect. Viewing processes as users and
vice versa works well and can be quite handy. Because of this, algorithms do not have
to be rewritten depending on from where input comes or output goes.

In the case that input and output are always associated with a human, scripts can use
send_user, send_tty, expect_user, and expect_tty. These produce the same

246 Exploring Expect

result as setting spawn_id to the values in user_spawn_id or tty _spawn_id and
then calling send or expect.

Exercises
1. Write a procedure called bc which evaluates an arbitrary precision arithmetic expres

sion (see page 233). The procedure should pass the expression to a bc process that
has already been spawned and return the result so that it can used with other Tel com
mands. For example:

set foo [be 9487294387234/sqrt(394872394879847293847)]

2. Modify the chess script so that it keeps track of the time spent by each player and
optionally halts the game if either player exceeds a time limit.

3. Named pipes allow unrelated processes to communicate. Write a script that creates a
named pipe and writes a chess move to it. Write another script that opens the other
end of the pipe and reads a chess move from it. Create another pipe so the scripts can
communicate in the other direction as well.

In This Chapter:

• Waiting For Output
From Multiple
Processes At The
Same Time

• Simplifying Scripts
That Frequently
Use The Same
Patterns

11
Handling Multiple

Processes
Simultaneously

In the previous chapter, I introduced the concept of a spawn id and how the spawn_id
variable could be used to change the attention of Expect commands between multiple
processes. In this chapter, I will demonstrate a mechanism that provides a more explicit
way of denoting the current spawn id. Explicitly naming spawn ids makes it possible to
handle multiple spawn ids in the same command.

I will also cover the expect_before and expect_after commands, which can
greatly simplify scripts by performing common tests (such as for eof and timeout) in
only a single command of the script.

Implicit Versus Explicit Spawn Ids
The previous chapter demonstrated various ways of interacting with two processes, an
ftp process and a write process. By setting the variable spawn_id, the send and
expect commands can communicate with either process. Here is an example of that
from the previous chapter:

set spawn_id $ftp
send "get $filel\r";

set spawn_id $write

expect "220*ftp> "

send "successfully retrieved file\r"

set spawn_id $ftp
send "get $file2\r"; expect "220*ftp> "

247

248 Exploring Expect

It is also possible to supply send and expect with an explicit parameter representing a
spawn id. In this case, the commands do not use the spawn_id variable. Instead the
spawn id is passed as an argument following the flag "-i". For example:

send -i $write "successfully retrieved file\r"

This command sends the string to the write process. The value of spawn_id is irrele
vant, as send uses the value following the - i flag. The value of spawn_id remains
what it was before the command.

Using this line, you can rewrite the earlier fragment as:

set spawn_id $ftp
send "get $filel\r"; expect "220*ftp> "

send -i $write "successfully retrieved file\r"

send "get $file2\r"; expect "220*ftp> "

The "send - i" sends the string to the wri te process while all the other commands
communicate with the ftp process.

Using - i is convenient when the script only has to send one thing to another process
while a lot of interaction is occurring with the currently spawned process.

The - i flag is also supported by the expect command. The expect commands in the
previous example could have been written:

expect -i $ftp "220*ftp> "

If multiple patterns are used, they are all tested against the output from the spawn id
following the -i flag. In the following example, expect executes action if either of
the 220 or 550 codes are returned by the f t P process.

expect {
-i $ftp
"220*ftp> "
"550*ftp> "

action
action

Notice how the braces enclose all of the arguments including the - i flag. Patterns can
be specified on the same line as the - i flag. Do whatever you think is most readable.
Here is another rendition of the command. It looks different but does the same thing.

expect {
-i $ftp "220*ftp> "
"550*ftp> "

action
action

Handling Multiple Processes Simultaneously 249

All of the other expect flags and keywords work with the -i flag as well. The
following example shows two regular expressions, the timeout keyword, and the
exp_continue action.

expect {
-i $ftp -re "2(510) .*ftp> " {actionl}
-re "220-.*ftp>" {

exp_continue

timeout

Many of the commands in Expect support the -i flag in the same way as send and
expect. Other commands supporting -i include close, interact, match_max,
parity, remove_nulls, and wait.

Waiting From Multiple Processes
Simultaneously
By using multiple - i flags in a single expect command, it is possible to wait for
different processes simultaneously. The following fragment executes ftp_action if an
ftp process sends its prompt, or it executes the shell action if the shell sends its prompt.

expect {
-i $ftp "ftp> " {ftp_action}
-i $shell $prompt {shell_action}

At most one of the actions can be executed. After the action, control passes to the next
line in the script. This is very similar to prior expect commands.

There is an input buffer associated with each spawn id. So any output from ftp is kept
separate from that of the shell. Of course, when the output(s) appear on the terminal,
they are mixed together, but that is just what you would see at the terminal yourself
while running multiple processes simultaneously. Usually, this is not a problem. But if
you do not want to see the outputs mixed together, expect one spawn id at a time.
Alternatively, use log_user 0 to disable the normal output, and then explicitly write
the output by calling "send_user $expect_out (buffer)" when convenient.

If some but not all of the ftp prompt appears and the entire shell prompt appears,
shell_action will execute. The beginning of the ftp prompt will remain in the
input buffer for the next expect command.

250 Exploring Expect

Patterns corresponding to a single -i flag are matched sequentially as before. Because
multiple processes are never active simultaneously, patterns with different - i flags are
not ordered. Consider the next example:

expect {
-i $procl "patlx" actlx

"patly" actly
-i $proc2 "pat2x" act2x

In this command, there are two patterns for procl and one for proc2. While the
expect command is waiting, if procl produces output, it is examined first for patlx
and then for patly. If proc2 produces output, it is examined for pat2x. Whichever
process produces output first determines which of the sets of patterns is tested first.

Example -Answerback
At login time, some systems attempt to figure out the type of terminal being used. This
is done by a technique called answerback. The system queries the terminal by sending
it a special escape sequence.t Instead of printing the escape sequence on the screen,
the terminal responds by returning an identification code describing what type of
terminal it is.

The fragment below telnets to a host, logs in, and then begins interacting with a
program. What happens if the systems asks the terminal to identify itself?

spawn telnet hostname
expect "name: " {send "$username\r"}
expect "word: " {send "$password\r"}

possible answerback occurs here

expect $prompt {send "$program\n"}

After the password, the script waits for the prompt. Instead, the system sends the
request for identification sequence. Expect handles this just like any other output from
the process-it echoes the request to the standard output and continues looking for the
prompt. Now the terminal intercepts the escape sequence and responds with its identifi
cation code. The identification code appears to Expect on the standard input, just as if
the user had typed it. Unfortunately, the Expect script is not watching the standard
input. So the script continues to wait, the system also waits, and the user fumes.

t Many programs do similar things. For instance, XlI's resize program queries for the terminal size rather than
the type. resize can be handled with the same approach as I describe here for handling terminal type queries.

Handling Multiple Processes Simultaneously

Here is a better version:

spawn telnet hostname
expect "name: " {send "$username\r"}
expect "word: " {send "$password\r"}

handle possible answerback here

stty raw -echo
expect {

"$prompt" {send $program\r}
-i $user_spawn_id -re ".+" {

send $expect_out(buffer)
exp_continue

stty -raw echo

251

This script starts out the same way, but while looking for the prompt, the script also
watches for characters coming from the standard input. There is no need to recognize
the precise response (or request for that matter). Whatever characters are sent back
must be the response, so the regular expression". +" (which matches any sequence of
one or more characters) is sufficient. exp_continue forces the expect to repeat. If
more characters appear from the standard input, they are also sent back. Eventually the
prompt appears and control passes to the next command in the script.

If the system stops requesting the terminal identification or (more likely) the same script
is used on a system where no identification is required, the script still works. It is even
conceivable that the system interacts in a very complex way with the terminal, perhaps
responding to the terminal identification by asking for further information. It would not
be possible to write the script while only listening to one source of information at a time.

The expect is surrounded by two stty commands. The first stty command has the
arguments raw and -echo. Without the raw argument, the terminal would have to end
its response with a carriage-retum-which it almost certainly does not do. The -echo
disables echoing so that the response is not echoed back to the terminal. The second
stty simply undoes the effect of the first stty. In Chapter 15 Cp. 340), I will describe a
shorter way of writing this same script.

Here is the main body of the chess script from the previous chapter, rewritten to
accept input from either source at any time. While the real game of chess does not
benefit from this rewrite, it demonstrates that the script can be written without regard to
whether moves alternate strictly or not:

while 1 {
expect

252

-i $id2 -re "\\.\\. (.*)\n" (
send -i $idl $ expect_out (l,string)

-i $idl -re "\\.\\ .. *\\. (.*)\n" (
send -i $id2 $ expect_out (l,string)

Exploring Expect

Which Pattern Goes With Which Spawn Id
In the chess script on page 251, it is very clear which pattern associates with which
spawn id-any pattern immediately preceded by a "-i" flag is associated with the
spawn id that follows. If additional patterns are specified before another "-i" flag, the
additional patterns are associated with the most recently specified spawn id. Here is an
example:

expect
-i $idl
"patternX"
"patternY"
-i Sid 2
"patternZ"

actionX
actionY

actionZ

In the fragment above, expect waits for either patternX or patternY from spawn
id idl, orpatternZ from id2.

Patterns that appear before any - i flags are associated with the currently spawned
process, described by the contents of the spawn_id variable. This is exactly what was
done earlier in the second telnet example on page 250.

The keyword pattern eaf works just like any other pattern associated with the most
recent spawn id. Here is the chess script augmented with eof patterns.

while 1 {
expect {

-i $id2 -re "\.\. (.*)\n" (
send -i $idl $ expect_out (l,string)

eof exit
-i $idl -re "\.\ .. *\. (.*)\n" (

send -i $id2 $expect_out(l,string)

eof exit

Handling Multiple Processes Simultaneously 253

In this example, the first "eof exit" is associated with id2 and second "eof exit"
with idl. It is possible to associate the same pattern with multiple spawn ids. I will
show how to do that shortly.

The timeout keyword works as before; however, it is worth pointing out that the
timeout does not associate with any particular spawn id. So it does not matter where
you put the timeout keyword (or even if you leave it off entirely). Here is a previous
fragment written with a timeout pattern.

set timeout 15
expect {

timeout timeout_action
-i $idl
"patternX" actionx
"patternY" actionY
-i $id 2
"patternZ" actionZ

This fragment times out after 15 seconds if none of the patterns match from either
spawn id idl or id2. Even though there is no -i flag preceding timeout, the pattern
does not associate with the currently spawned process. Timeouts do not associate with
processes.

For the same reason, it does not make sense to have two different timeouts. The
shortest one will always win, after all. However, there are certainly algorithms for which
it does make sense to wait different amounts of times for input from different sources. I
will address this situation in Chapter 15 (p. 343).

Which Spawn Id Matched
Except for timeout, patterns are always associated with a particular spawn id. You
have already seen cases where actions are completely different. A common technique is
to pass the spawn id itself to each action as a parameter, reusing the same action.

The following fragment runs a command on the fastest of three systems.

spawn rlogin $host1; set spawn_idl $spawn_id
spawn rlogin $host2; set spawn_id2 $spawn_id
spawn rlogin $host3; set spawn_id3 $spawn_id
expect {

-i $spawn_idl $prompt {work $hostl}
-i $spawn_id2 $prompt {work $host2}
-i $spawn_id3 $prompt {work $host3}

254 Exploring Expect

There is no explicit comparison to find which is fastest. Rather, it is implicitly derived
just by virtue of it being the first to complete the rlogin sequence and return a prompt.

When the first of the three systems returns the prompt, the "winning" spawn id is passed
to the procedure work which does the actual interacting. The remaining spawn ids are
simply ignored.

The technique demonstrated here can certainly be refined. For example, the systems
could all have their load average checked, memory usage checked, etc., but the general
idea extends to other applications involving multiple processes being controlled. As an
aside, the simplistic use of rlogin as a test for speed is in many cases quite accurate.
Both the initial network connection and login sequences themselves are fairly high-over
head operations, and serve as good indicators of subsequent response time for many
interactive programs.

This example can be simplified. The expect command records the matching spawn id
in expect_out (spawn_id) before executing an action. This value can be stored into
spawn_id itself or used as the argument to a - i flag. The following fragment passes
the spawn id as an argument to another procedure. This version of the work procedure
is especially designed to expect the spawn id as a parameter.

expect {
-i $hostl $prompt {}
-i $host2 $prompt {}
-i $host3 $prompt {}

work $expect_out(spawn_id)

This method avoids having to write a different action for each spawn id. Conceivably,
the work procedure could even refer (perhaps by upvar or global) to expect_out
so that a parameter is not even necessary. In the next section, I will show how to
simplify this even further.

Spawn Id Lists
It is possible to associate a single action with the multiple spawn ids Simultaneously.
This is accomplished by using a list of spawn ids as an argument to the - i flag. The
previous expect command could be written:

expect {
-i "$hostl $host2 $host3" $prompt

work $expect_out(spawn_id)

Handling Multiple Processes Simultaneously 255

This syntax is just a generalization of the earlier syntax. For example, additional patterns
can be added, in which case they also refer to the three processes. The following adds
on a test that catches an eof from any of the processes.

expect {
-i "$hostl $host2 $host3" $prompt

work $ expect_out (spawn_id)

eof exit

More - i flags can be used as before. For example, if you wanted to look for the prompt
from the three processes and also the possibility of a special pattern from just hostl,
you could write that as:

expect {
-i "$hostl $host2 $host3" $prompt

work $expect_out(spawn_id)

eof exit
-i $hostl another-pattern {hostl-action}

If you want, you can put all - i arguments in double quotes when using a single spawn
id. The quotes are only absolutely necessary when using lists. Do not use braces since
they force the $ to be interpreted literally.

expect -i " $hostl $host" pattern ;# OK
expect -i "$hostl" pattern ;# OK
expect -i $hostl pattern ;# OK
expect -i {$hostl} pattern ;# WRONG!

Example-Connecting Together Two Users To
An Application
The following fragment is one possible way of writing the kernel of kibi t z, an Expect
script that connects together two users and an application (such as a shell). Both users
can type to the application, and both users see the results. This is very useful for
consulting or group editing.

Here, app is the spawned process shared between the users. One user is connected to
the standard input and the other user is referred to by the spawn id user2.

256

expect
-i "$user_spawn_id $user2" -re ".+"

send -i $app $expect_out(buffer)
exp_continue

-i $app -re ".+"
send_user -raw $ expect_out (buffer)
send -i $user1 $expect_out(buffer)
exp_continue

Exploring Expect

The script waits for input from both users and the application, all at the same time. The
. + pattern in each case allows the script to process as many characters as arrive. Actual
processing is simple. Characters from either user are sent to the application. Characters
from the application are sent to both users.

No code is necessary to send the keystrokes of one user to the other for echoing
purposes. The application takes care of all the echoing automatically. For example, a
program such as a shell normally echos typed characters back to the user. In this case,
the script ends up sending them to both users. So both users see what each other types.

Each action ends by executing exp_continue. This is more verbose than wrapping
the entire expect in a while loop, but it is more efficient. By remaining in the
expect after each action, no time is spent reparsing the expect command each time.
The parsing time is insignificant in all but the most CPU-intensive applications.

In Chapter 16 Cpo 355), I will show how to rewrite the kibitz loop in an even more
compact and efficient form.

Example - Timing All Commands
In Chapter 7 Cpo 180), I showed how to emulate the UNIX script command which
records all input and output in an interactive session. Suppose you want a record of just
the lines input by the user along with a timestamp showing when each was entered.
That can be done with the following script called timeallcmds. It is split into two
parts: an initialization and a loop. Here is the initialization:

log_user 0
spawn $env(SHELL)
stty raw -echo
set timeout -1
set fp [open typescript wJ

Logging is turned off and the terminal is put into no-echo mode. This allows the script
complete control over all output that the user sees. The terminal is also put into raw

Handling Multiple Processes Simultaneously 257

mode. Then the timeout is disabled. Finally, a log file is created. It is called type
script just as in the UNIX script command.

Once the initialization is complete, the script loops executing an expect command
repeatedly. The expect command waits for characters from either the user or the
process. Characters from the process get sent to the user so that they can be immedi
ately seen. Characters from the user are logged and sent on to the process.

expect {
-re ".+" {

send -i $user_spawn_id $expect_out(buffer)
exp_continue

eof exit
-i $user_spawn_id -re "(.*)\r" {

send -i $spawn_id $expect_out(buffer)
puts $fp $expect_out(l,string)
puts $fp [exec date]
exp_continue

-re ".+" {
send -i $spawn_id $ expect_out (buffer)
puts -nonewline $fp $ expect_out (buffer)
exp_continue

Two patterns are used to wait for characters from the user. One accepts strings termi
nated with a return. In both cases, the characters are logged and sent to the process.
But if the user presses return, a timestamp is also sent to the log.t

Also notice that the \ r from the user is matched but not sent to the log. This lets the log
look a little cleaner in most editors since the log does not have \r\n sequences at the
end of each line. Instead, only newlines remain.

If I took a photo of the screen after I finished running it, it might look like this:

56% timeallcmds
1% date
Thu Dec 23 22:57:44 EST 1993
2% echo foo
foo
3 % qwertyuiop
command not found: qwertyuiop
3% vi /tmp/foo.c

t In Chapter 23 Cp. 528), I will show a much more efficient and flexible way of generating timestamps.

258

4%
57%

The transcript file ends up with the following:

date
Thu Dec 23 22:57:44 EST 1993
echo foo
Thu Dec 23 22:57:45 EST 1993
qwertyuiop
Thu Dec 23 22:57:47 EST 1993
vi foo.cA?A?A?A?A?/tmp/foo.c
Thu Dec 23 23:06:31 EST 1993
ihello there
Thu Dec 23 23:06:37 EST 1993
this is line 2
Thu Dec 23 23:06:41 EST 1993
A[:wq

Thu Dec 23 23:06:42 1993
AD

Exploring Expect

After each line of input is the timestamp when I pressed the return key. While it is not
apparent from the scenario above, the transcript shows where I changed my mind and
deleted characters. At one point I typed "vi foo. c" but then I changed my mind and
replaced the file name with / tmp / f 00 • c.

After the invocation of vi, you can see where I typed some vi commands. The idea of
logging vi may need more care then I have given here. But it is interesting to see that
everything has indeed been logged.

The script ended after I typed the vi exit sequence and then a AD which exited the
shell. You can strip any of this out, of course. You can add another line to send the
output from the shell to the log as well. There are many other possibilities.

Unfortunately, it is difficult to extend this script in some ways. In particular, it is not
possible to wait for a two character sequence simply by changing the \r to, say, \r\r.
Here are just the two patterns that are read from the user with the new \r\r pattern.

-i $user_spawn_id
-re "(.*)\r\r" { ...
-re ". +" { . . .

With this new addition, the first pattern will never match. Well, it will try to match but
humans type so slowly that both patterns will be tested before the second return
arrives. Since the second pattern always matches any character, the likelihood of two
returns matching the first pattern is almost non-existent. Humans simply cannot type
fast enough.

Handling Multiple Processes Simultaneously 259

In Chapter 15 (p. 334), I will show how to use the interact command to solve this
problem, and I will show how to emulate the UNIX script command with yet more
features.

Matching Any Spawn Id Already Listed
Frequently, different spawn ids may be watched for different patterns as well as a
common pattern. For example, suppose you are waiting for pattern X from hostA or
hostB, and pattern Y from hoste, or pattern Z from any of the three hosts. You might
write:

expect
-i "$hostA $hostB" X
-i "$hostC" Y
-i "$hostA $hostB $hostC" Z

The global variable any _spawn_id contains a predefined value that matches any
spawn id named in the current expect command. It can be used to simplify the
previous command to:

expect {
-i "$hostA $hostB" X
-i "$hostC" Y
-i "$any_spawn_id" Z

any _spawn_id can be used in a list as well. Suppose, you also want to watch one
other process (hostD) but only for the common pattern z. It could be done this way:

expect {
-i "$hostA $hostB" X
-i "$hostC" Y
-i "$any_spawn_id $hostD" Z

The expect_before And expect_after Commands
One of the most common uses for any _spawn_id is to check for an eof. Even if an eof
is not expected, it is a good idea to test for it. That way the script can gracefully shut
down even if something unexpected happens.

Unfortunately, adding eof patterns to all expect commands can make for a lot of extra
typing. It is possible to create and call a new procedure that automatically tacks on the
eof patterns, but Expect provides a more direct solution.

260 Exploring Expect

The commands expect_before and expect_after declare patterns that are used
automatically by subsequent expect commands. As an example, consider the
following commands. Each one explicitly checks for an eof as well as the pattern. If the
pattern is found, the next command is executed. If an eof occurs, the fictitious
command eofproc is called.

expect {
"login:" {send "$user\r"}
eof eofproc

expect
"password:" {send "$password\r"}
eof eofproc

expect
"$prompt" {send "$command\r"}
eof eofproc

Because the "eof eofproc" is the same in each, it is possible to declare it once using
expect_after. The following code behaves identically to the earlier code.

expect_after eof eofproc
expect "login:" {send "$user\r"}
expect "password:" {send "$password\r"}
expect "$prompt" {send "$command\r"}

As you can see, the code is much shorter than before. You can drastically simplify a lot
of code this way and at the same time make it much more robust.

The difference between expect_before and expect_after is the order in which
the patterns are applied. Patterns declared using expect_before are tested first
before any patterns in the expect command. Patterns declared with expect_after
are tested last-after any patterns in the expect command.

This means that you can use the same patterns in the expect_after or
expect_before commands as in the expect command. Only one pattern will be
matched. For instance, it probably makes sense to treat the eof in a different way when
the spawned process exits normally. Consider the following script:

spawn $program
expect_after {

eof "$program died unexpectedly?"
exit 1

expect $prompt {send $cmdl}
expect $prompt {send $cmd2}
expect $prompt {send $cmd3}

Handling Multiple Processes Simultaneously 261

expect $prompt {send $exit-cmd}
expect eof {puts "program completed normally"}

This script performs several interactions before telling the program to exit. In the first
four expect commands, an eof is unexpected but will be matched by the pattern in the
expect_after command. In the last expect, the eof is matched by the explicit
pattern in the command itself. Because expect_after patterns are matched after
expect patterns, the expect_after action will not be executed. Instead, when the
program exits normally, the script will print:

program completed normally

Suppose a script needs to know if the operator is about to take down the system. For
example it could cleanly wrap up what it is doing rather than having the system die in
the middle of its work. An expect_before command could declare a pattern and
action to do this:

expect_before "system going down" wrapup

The procedure wrapup would be called if "system going down" is ever seen. Since
expect_before is used, the pattern will be checked before any patterns in the
expect command.

When an expect_before or expect_after action is triggered, it evaluates as if it
originally appeared in the current expect command. For example, variable references
in the action are evaluated in the context of the scope of the expect command. And
actions such as break and continue affect the loop encloSing the expect.

expect_before and expect_after take the very same arguments as the expect
command. For example, multiple patterns can be declared. Even the - i flag can be
used. The chess script shown earlier can benefit from the following expect_before
command, which terminates the script if either chess program resigns.

expect_before {
-i $any_spawn_id eof

send_user "player resigned!\n"
exit

As I mentioned on page 259, the spawn id any_spawn_id matches any spawn id used
in the expect command. This works as well with expect_before and
expect_after. Similarly, any_spawn_id matches all spawn ids used in any
expect_before or expect_after commands whether any _spawn_id is used
from expect, expect_before, or expect_after.

As before, if an action needs to know from which spawn id the pattern was matched, it
can check expect_out (spawn_id) .

262 Exploring Expect

As the previous example shows, being able to use any _spawn_id from
expect_before is very useful.t It avoids the burden of having to change the argu
ments of expect_before each time the spawn ids in the expect command change.
If you need to call expect_before before every expect, then there is no benefit to
using expect_before.

When using this technique, expect_before relies on expect for the spawn ids. In
all the examples so far, the - i flag and spawn id have preceded a pattern. A pattern is
not necessary, however. The mere use of the - i flag alone associates the following
spawn id with any_spawn_id.

Using the chess script, you can wait for an eof from both players while only waiting for
a pattern from one. This is done using the same expect_before command as above.
But in the expect command itself, the first - i flag has no pattern.

expect_before {
-i $any_spawn_id eof {

puts "player resigned!"
exit

expect
-i $idl -i $id2 -re "\.\. (.*)\n" {

send -i $idl $expect_out(l,string)

Contrast the expect command to the following:

expect {
-i "$idl $id2" -re "\.\. (.*)\n"

send -i $idl $ expect_out (l,string)

In the first version, the pattern is only expected from spawn id id2. In the second
version, the pattern is expected from either spawn id.

How Long Are expect_before And expect_after In Effect?
All the examples so far have used a single expect_before in the script. It is possible
to use multiple expect_before commands. The effect of multiple expect_before
commands either augment or modify the effect of previous expect_before
commands.

t Unless I am talking about the order in which patterns are matched or I explicitly mention an exception, every
thing I say about expect_before also holds true for expect_after.

Handling Multiple Processes Simultaneously 263

By default, the patterns named by expect_before remain in effect until another
expect_before. (Similarly with expect_after.) Consider the following commands:

expect_before "bpati" bacti
expect "pi"
expect "p2"
expect_before "bpat2" bact2 "bpat3" bact3
expect "p3"

When expect is waiting for pi, it also waits for bpatl (from the expect_before).
At the next command, expect waits for p2 and bpatl. However the last expect
command waits for p3, bpat2, and bpat3. The bpatl pattern is no longer waited for.
The effect of the second expect_before is to replace the patterns and actions of the
first expect_before.

As long as you are working with the same spawn id, an expect_before replaces the
patterns and actions of the previous expect_before.

If you change spawn ids either by using the spawn_id variable or by using an explicit
-i flag, the new expect_before does not affect the previous expect_before.
Consider the following:

expect_before -i $proci "bpati"
expect_before -i $proc2 "bpat2"

After execution of these two commands, subsequent expect commands wait for both
bpatl from procl and bpat2 from proc2. This behavior is convenient. As you
spawn new processes, old ones continue to be watched and are unaffected by new
processes being created.

Here is a more complex example:

spawn program; set proci
spawn program; set proc2
spawn program; set proc3
spawn program; set proc4
spawn program; set proc5

expect_before -i $proci
expect
expect_before -i "$proci
expect
expect_before -i "$proc2
expect
set spawn_id $proci
expect
expect_before "bpat5"
expect

$ spawn_ id
$ spawn_ id
$ spawn_ id
$ spawn_ id
$spawn_id

"bpati"

$proc2" "bpat2"

$proc3" "bpat3" act3 "bpat4"

264 Exploring Expect

After the first expect_before, the expect command waits for bpatl from procl. It
also returns if an eof is received from either the currently spawned process (proc5) or
procl.

The second expect command waits for the pattern bpat2 from either procl or
proc2 and an eof from either of them or the currently spawned process. The pattern
bpatl is forgotten because procl was specified with a different pattern in the second
expect_before command.

The third expect command waits for the patterns bpat3 and bpat4 from proc2 and
proc3. procl is still monitored for bpat2. All of these processes including the
currently spawned process are monitored for an eof.

The next expect comes immediately after spawn_id is changed. This expect
command waits for the patterns bpat3 and bpat4 from proc2 and proc3, bpat2
from procl, and an eof from procl, proc2, and proc3. proc4 and proc5 are not
checked for anything.

The final expect_before changes the patterns associated with the current process
which is now procl. So the final expect command waits for the patterns bpat3 and
bpat4 from proc2 and proc3, bpat5 from procl, and an eof from procl, proc2,
and proc3. As before, proc4 and proc5 are not checked for anything.

The patterns remembered by expect_before are completely separate from those of
expect_after. In the following fragment, the expect command looks for both
pattern X and pattern Y from the currently spawned process.

expect_before "X"
expect_after "Y"
expect

Using expect_before And expect_after With The Currently
Spawned Process-DANGER
When an expect_before command is used with patterns that have no explicit spawn
id, the patterns are associated with the currently spawned process at the time of the
expecCbefore command rather than at the time of the expect command.

Consider the following:

spawn procl
expect_before "patl" actionl
spawn proc2
expect pat2 action2

The expect_before associates the pattern patl with procl. Later, the expect
command will wait for pat2 from the spawned process proc2. The pattern patl will

Handling Multiple Processes Simultaneously 265

be ignored if it comes from proc2. Action action1 will only be executed if pat1 is
seen coming from proc 1.

This behavior is consistent, but nonetheless, may seem a little non-intuitive in certain
contexts. Consider the following:

expect_before "patl" actionl
spawn proc2
expect "pat2" action2

This script is the same as before, except that no process has been spawned before the
expect_before. Thus, pat1 will be expected from the standard input since that is
the default "process" at that point.

It is a common error to use expect_before before the appropriate spawn id has been
defined. The solution is either to use an explicit - i flag or to delay use of the
expect_before until after the spawn id has been correctly set. In this example,
reversing the order of the first and second lines suffices.

spawn proc2
expect_before "patl" actionl
expect "pat2" action2

Undoing The Effects Of expect_before And expect_after
If a spawn id is closed, the patterns from expect_before and expect_after associ
ated with the spawn id are removed. It is also possible to explicitly remove the patterns
associated with a particular spawn id. This is done by issuing the expect_before
command with the spawn id but no patterns. For example, to remove the patterns asso
ciated with proc:

expect_before -i $proc

This form of expect_before supports all the same syntax as the other forms. For
example, multiple spawn ids can be given either separately or together:

expect_before -i $procl -i $proc2
expect_before -i "$procl $proc2"

New patterns and spawn ids can be named at the same time. The following command
removes any "before" patterns associated with proc1 and associates the pattern pat
withproc2.

expect_before -i $procl -i $proc2 "pat" action

266 Exploring Expect

A spawn id with no patterns is one place where the meaning between expect and
expect_before differ. Consider the following two commands:

expect
expect_before

The expect command waits for an eof from the currently spawned process (or it times
out). The expect_before command merely removes any patterns for the current
spawn id established by a previous expect_before. In order to establish the eof
pattern, the expect_before command must explicitly mention it.

expect_before eof

Information On The Current expecCbefore
And expect _after Patterns

Both expect_before and expect_after can be queried for the patterns with which
they are currently associated. Use "-info" as the first argument to expect_before or
expect_after.

expect_before -info

By default, information about the current spawn id is returned. Here is a simple
example of using expect_before and then verifying it.

expectl.l> expect_before
+> pat act
+> eof eofact
+> -re repat
+> }
expectl.2> expect_before -info
-gl patl actl eof eo fact -re repat {}

The output of "expect_before -info" may not immediately look recognizable, but
it is functionally identical to the original specification. The "-gl" signifies that the first
pattern is a glob pattern. A pair of braces signifies that there is no action associated with
the last pattern.

The output of "expect_before -info" may be used as an argument to
expect_before again. This could be useful if you want to temporarily change
expect_before and then reset it. To do this, first query and save the settings in a vari
able. Later, reset them by calling expect_before with the old settings.

Handling Multiple Processes Simultaneously 267

While "expect_before - info" looks like (and indeed is) a list, it is also a string. To
prevent expect_before from treating the entire string as a simple pattern, use the
-brace argument (or the eval command). It looks like this:

set oldpats [expect_before -info]
modify expect_before patterns here

now reset them
expect_before -brace $oldpats

With an optional spawn id, information about the named spawn id is returned.

expect_before -info -i $proc

Only one spawn id can be explicitly named at a time. However, the flag -all may be
used to get the information on all the spawn ids simultaneously. In this case, - i flags
are also produced in the output.

expectl.3> expect_before -info -all
-i 0 -gl patl actl eof eo fact -re repat {}

Notice that the -i flag is a zero-the actual value of the current spawn id. The "-info"
flag always returns the real values of spawn ids. It has to, even if the original spawn id
was provided using an expression such as $proc because the original
expect_before never saw the string "$proc". Tel replaces it with the value before
expect_before ever gets a hold of the arguments. For the same reason, if you specify
a pattern by using brackets or the form $variable, the patterns will be returned in
their literal form. Any special characters are appropriately quoted so that they can be
reused as arguments without damage. However, the representation may not match your
original form, again for the same reason-expect_before will not see the arguments
until they have been massaged by Tel.

Here is an example:

expectl.l> expect_before ""*"
expectl.2> expect_before -info
-gl {*} {}

Although I entered ""\ *"", "expect_before -info" returned "{*}". However,
they are functionally identical.

expect_before And expect_after Actions
Actions from the expect_before command are executed using the scope of the
current expect command. Consider the fragment below. If an X is found in the output
of the currently spawned process, the "puts $a" action is executed. The value of a is
found from the scope of the exp procedure. Hence local is printed.

268

proc exp {} {
set a "local"
expect

set a "global"
expect_before X {puts Sa}
exp

Exploring Expect

Similarly, control commands such as break, continue, and procedure calls also
execute in the context of the current expect command. For example, if an
exp_continue action is executed due to a pattern from an expect_before, the
current expect is restarted.

Indirect Spawn Ids
Earlier, I showed how to store a list of spawn ids in a variable and pass that to the
expect command. In this case, the argument to the - i flag is called a direct spawn id.

set list "$spawn_idl $spawn_id2 $spawn_id3"
expect -i $list pattern {

conunand
exp_continue

Instead of passing a list directly, it is occasionally useful to pass the name of a global
variable that contains the list of direct spawn ids. This is known as an indirect spawn
id. For example:

set list "$spawn_idl $spawn_id2 $spawn_id3"
expect -i list pattern { ;# DIFFERENT! No "$"!!

conunand
exp_continue

This example is identical to the previous example except that the list variable following
the -i flag is passed without the $ preceding it. When the expect command begins, it
reads the variable and uses the spawn ids in the list as if they had been specified
directly. If the variable is changed while the expect command is in progress, the
expect command accordingly modifies what processes are watched for patterns.

The following example shows how new spawn ids could be added to an expect in
progress. Each time the add command is read, its argument is appended to the spawn
id list stored in list.

Handling Multiple Processes Simultaneously

expect -i list "add (.*l\n" {
lappend list $expect_out (1, stringl
exp_continue

269

Indirect spawn ids can also be used with expect_before and expect_after. For
example, the following command removes closed spawn ids from the list, terminating
the expect command when the list is empty and continuing it otherwise. It is possible
to determine which spawn id to remove from the list by examining the
expect_out (spawn_id) variable.

expect_before -i list eof {
set index [lsearch $list $expect_out(spawn_idl]
set list [lreplace $list $index $index]
if [llength $list] exp_continue

The first command in the action locates where the spawn id is in the list. The next
command removes the spawn id. After the exp_continue, the list is reread and the
expect command continues.

The previous example explicitly tested the list to see if it was empty. In the context of
that example, it does not make sense to have an empty list. The expect command
would not have any process to listen to.

There is no restriction in expect itself that requires lists to be non-empty. Indeed, it is
not even necessary for the variable containing the list to exist. expect ignores patterns
for which it has no spawn ids. If the expect command has no valid spawn ids at all, it
will just wait. In Chapter 14 Cp. 307), you will see that asynchronous events can provide
a way of coming out of a spawn id-Iess expect.

As with direct spawn ids, the -info and -i flags can be used to retrieve information on
indirect spawn ids. For example, the following command retrieves information about
the patterns associated with the indirect spawn id list ping:

expect_before -info -i ping

If you retrieve the patterns using a direct spawn id, expect_before returns all the
patterns associated with the spawn id, irrespective of whether the patterns were origi
nally specified by the direct or indirect form of the spawn id. The patterns associated
with the indirect form can be suppressed by using the -noindirect flag.

expect_before -info -i $id -noindirect

There is no -nodirect flag since the patterns associated only with the indirect form
are returned by using - i with the indirect spawn id.

270 Exploring Expect

Indirect Spawn Ids-Are They Really That Useful?
Indirect spawn ids are most useful with long-lived expect commands. They are useful
if you are looping inside of expect with exp_continue. But they are even more
useful with expect_before and expect_after. You can avoid reissuing these
commands every time a process is created or dies by using indirect spawn ids.

This idea can be simulated by writing a procedure that calls, say, expect_before for
you each time a process is created. So the indirect spawn ids can still be considered a
mere convenience at this point.

Later in the book, you will learn about the expect_background command (see
Chapter 19 (p. 429» which runs in the background and the interact command (see
Chapter 16 Cp. 359), both of which are generally very long-lived. Indirect spawn ids are
particularly useful with these commands.

Exercises
1. Write an ftp mirror script-which copies a file hierarchy from one anonymous ftp

site to another. Do it using a single spawn id. Do it again, but use two spawned ftp
processes-one to retrieve the listings and one to do the I/O. What are the advan
tages and disadvantages of these two approaches.

2. Extend one of the scripts from the previous exercise to update multiple ftp sites
simultaneously.

3. Write a script that watches a user interacting with a process and produces a new
Expect script that automates the session.

In This Chapter:

• Sending To
Multiple Processes

• Sending Without
Echo

• Sending Slowly

• Sending Erratically

• Sending Versus
Putting

12
Send

In this chapter, I will provide more detail about the send command, including its ability
to send strings with special timings between the letters of a string. I will revisit the
concepts from the previous two chapters-dealing with multiple processes-in the
context of send. Finally, I will describe some interactions between send and other
parts of Expect such as how to send without echoing.

The descriptions in this chapter will explicitly refer to the send command, but most of
them apply to the related commands send_user, send_error, and send_tty.

Implicit Versus EXPlicit Spawn Ids
The previous chapter showed the differences between controlling expect with
spawn_id versus using the -i flag. The send command can be controlled in the same
way. For example, the two lines are equivalent-both send the string faa to the
process corresponding to the spawn id in the proc variable.

set spawn_id $proc; send "foo"
send -i $proc "foo"

While the first line is longer, setting the spawn id is simpler if a single process is the
focus of interaction for a group of commands. For example, if a login is performed, the
implicit method (using spawn_id) looks like this:

set spawn_id $proc
expect "login:"
send "$narne\r"
expect "Password:"
send "$password\r"
expect "$prornpt"

271

272 Exploring Expect

Using explicit - i parameters requires more characters and is more difficult to read:

expect -i $proc "login:"
send -i $proc "$name\r"
expect -i $proc "Password:"
send -i $proc "$password\r"
expect -i $proc "$prompt"

Setting spawn_id makes it possible to easily localize which process is being interacted
with. If the process has to be changed to a different one, only the set command has to
change.

Procedures are excellent ways of localizing variables, thereby reducing complexity. For
example, the following procedure takes a spawn id as an argument and performs a
login interaction.

proc login {id} {
set spawn_id $id

expect "login:"
send "$name\r"
expect "Password:"
send "$password\r"
expect "$prompt"

If only a single process is being controlled, it is convenient to name the formal param
eter spawn_id. Then, no explicit set is needed. It occurs implicitly at the time the
procedure is called. Here is the same procedure definition rewritten using this
technique:

proc login {spawn_id}
expect "login:"
send "$name\r"
expect "Password:"
send "$password\r"
expect "$prompt"

Sending To Multiple Processes
Unlike the expect command, the send command has no built-in support for sending
to multiple processes simultaneously. The support is not necessary, since it is possible
to achieve the same effect by writing a group of send commands or by writing one in a

Send 273

loop or procedure. For example, a string can be sent to a list of processes with the
following command:

foreach spawn_id $procs {
send $string

Notice that spawn_id is implicitly set by the foreach command. This is analogous to
a formal parameter except that spawn_id retains the last value after the foreach
finishes. This could be avoided by using a different variable and then passing it explic
itly with -i, or alternatively by placing the entire command in a procedure.

In comparison, waiting for output from multiple processes cannot be simulated easily,
hence it is built in. A number of other options are built into the send command
because they are inherently difficult to achieve. These will be covered in the remainder
of this chapter.

Sending Without Echoing
Many programs echo their input. For example, if you send the date command to the
shell, you will see the string date followed by a date. More preCisely, you will see
everything that you would ordinarily see at a terminal. This includes formatting, too.

send "date\r"
expect -re $prompt

The command above ends with expect_out (buffer) set to "date\r\nSun Jun
13 18: 54: 11 EDT 1993 \r\n%2 "(your date or prompt may be different). The %2
at the end is a typical prompt. More importantly, the string date has been echoed.
Also, each line ends with a \r\n, including the one you sent with a \r.

The echoing of date has nothing to do with the send command. To put this another
way, there is no way to send the string and have send not echo it because send is not
echoing it in the first place. The spawned process is.

In many cases, the spawned process actually delegates the task of echOing to the
terminal driver, but the result is the same-you see your input to the process as output
from the process.

Often, echoed input can be handled by accounting for it in patterns. Chapter 7 (p. 177)
demonstrated a simple example of this. In general, when dealing with the shell, you can
just search for the prompt, and you need not worry about anything that comes before it.
One unfortunate possibility is that your command looks like a prompt. In this case, you
have to adjust your pattern or take some other action. Another possibility is to change
your prompt to something that will never resemble your input. This is often much easier
than selecting a new pattern.

274 Exploring Expect

Yet another possibility is to turn off the echoing entirely. Few programs let you do this,
but fortunately all shells do, and shells can be used to start any other programs. This
provides a general solution. For example, you can spawn a shell and then send the
command "stty -echo", after which your commands will no longer be echoed.
"stty echo" reenables echoing.

After sending stty to a spawned shell, other commands started by the shell are simi
larly affected. Imagine starting a cat process from within the shell and then sending
characters to it. Normally these characters would be echoed (no matter what cat's desti
nation). By preceding it with "stty -echo", no characters will be echoed.

Disabling the echo can greatly simplify scripts. For example, cat never prompts. But
because of the default echoing, its output accumulates waiting to be read with the
expect command. If you do not use expect, the operating system will eventually
block cat from further execution because there is no more space for its output. The
solution is either to do an expect every so often to flush output of cat, or to turn off
echoing entirely. By turning off the echoing, you avoid having to use expect while
sending to cat. I will show an example of this in Chapter 20 (p. 467).

Sending To Programs In Cooked Mode
When dealing with programs that run in cooked mode, you must observe certain
precautions. In particular, the terminal driver has a big impact on how characters are
understood by the program. The terminal driver makes all the translations that it
normally does when you are typing by hand. For instance, the return character is trans
lated to a \n, and the line kill character (typically /\U) removes all the characters typed
so far in the current line.

Some characters generate signals. For instance, /\C and /\Z are usually tied to signals that
interrupt and suspend a process. For example, in cooked mode a process never reads a
/\Z. Rather, the terminal driver turns it into a signal which stops the process. When
sending a /\Z by hand, control returns to a shell automatically. However, if the process
was created directly by spawn, there is no shell to which to return, so once the process
stops, it will not say "suspended" or anything else. The process is really stopped and
will remain so until it receives a continue signal. Unless you are explicitly testing how a
process reacts to a signal, there is no point in sending it characters like these. (Expect
does not need to suspend processes anyway. To do job control, Expect scripts merely
change spawn_id or use a - i flag.)

Another problem that arises in cooked mode is limitations in the device driver itself. For
instance, you must avoid sending "too many" characters in a row without a return. Most
UNIX systems do not allow you to send more than 256 characters while in cooked
mode. Some allow as many as 1000 characters, but there is always a limit and it is

Send 275

always surprisingly low. These low limits may sound hard to believe, but systems can
get away with them because people never type commands longer than this. Indeed,
people rarely type commands longer than 80 characters.

These limits occur even on window systems. If you paste a large hunk of text into a
shell window, the shell may lock up, beep, or perform some other distasteful behavior.

Don't confuse these limits with the length of a command that can be fed to the shell.
That limit is typically 10K on older systems and a megabyte or more on modern
systems. Stemming from the kernel, that limit holds for arguments to any program invo
cation (including the spawn and exec commands within Expect). The cooked mode
limits, however, are due to the terminal drivers and occur only in interactive use.

Generally, these limits are easy to avoid. Write scripts so that they run programs just like
a real human does. Send a command, read a response, send a command, read a
response. Don't send multiple commands at once-unless that is what a real user
would do.

I used the following script to test the number of characters that could be entered on a
system that sent a !\G when the limit was exceeded.

spawn Ibinlsh
expect "\\$ " ;# match literal $ in shell prompt
for {set i O} 1 {incr i}

send "I"
expect "\007" break \

11 / II

puts "terminal driver accepted $i characters"

In raw mode, this problem does not exist. Any number of characters can be entered
without pressing return.

Sending Slowly
It is often useful to send large quantities of information. A common scenario in which
this arises is when sending mail via a commercial mail system such as GEnie or
CompuServe. To reduce costs, you create and edit mail messages offline. Once the
messages are prepared, you can then log in, start up the mailer, and feed the messages
to it. This allows you to use your own editor as well as lower your costs for connect
time.

276 Exploring Expect

The fragment of the script that sends the message from your system to the remote
system can be very simple. For example, if the message is already stored in the variable
message, one send command is sufficient:

send $message

The size of things that can be sent this way is limited only by the amount of memory
that can be dynamically allocated on your system. On modern computers, this limit is
well above a megabyte, and a 32-bit computer should have no problem with 50Mb or
even 100Mb.

Before sending very large files, it is wise to ensure that the remote side is not echoing
(as described earlier). If the echoing cannot be disabled, the process output must be
consumed, such as by an expect command. Otherwise, your operating system has to
store all these characters in memory. Most systems limit unread characters to 10K or
even less. If more characters arrive, the operating system temporarily stops the spawned
process until the Expect process can read them into its own buffers. Expect's own
buffers are limited only by the amount of virtual memory on the computer.

This behavior of the operating system works in reverse as well. Expect can easily write
output faster than a spawned process can read it. Most programs simply do not read
data as quickly as another program can write it. Again, the operating system has to
buffer the input, and if too much arrives, the Expect process itself will be temporarily
stopped until the reading processing has consumed sufficient output so as to make
room for more. The temporary halt is transparent to Expect itself. It may just seem like
the send command has taken a long time to execute.

Some operating systems do not buffer interactive input well. Upon receiving more char
acters than they have space for, they might ignore new characters, respond with error
messages, or other anomalous behavior. Many serial devices (e.g., modems, terminal
drivers) behave similarly.

One solution is to break the outgoing string into pieces, sending a piece at a time sepa
rated by a delay. Here is a procedure that prints out 10 characters at a time, pausing one
second between each group.

proc ten_chars-per_sec {s} {
while {[string length $sl > 10} {

send [string range $s 0 9]
set s [string range $s 10 end]
sleep 1

send $s

ten_chars-per_sec loops over a string, sending the first ten characters, recreating
the string without the first ten characters, and delaying for one second before looping.

Send 277

When there are less than ten characters remaining, the loop exits, and the remaining
characters are sent out by the final command. If s happens to be empty (because the
original length was perfectly divisible by 10), the command "send $s" has no effect at
all.

The delay is achieved by executing a sleep command. Although the sleep command
is efficient, the string manipulation might not be. If the string was large enough,
constantly shifting the string could be fairly expensive. While the
ten_chars-per_sec procedure can be rewritten more efficiently, Expect addresses
the problem directly by providing explicit support for this common operation. The
send command has a -s flag which causes the operation to occur slowly.

The slowness is controlled by the variable send_slow. The variable is a list of two
numbers. The first is the number of characters to send at a time. The second number is
a time to pause after each group of characters is sent. Here is an example:

set send_slow {2 .001}
send -s "Now is the time"

The fragment above sends the string "Now is the time" two characters at a time.
Each pair of characters is separated by .001 seconds (i.e., one millisecond). This might
be appropriate for a system that has a hardware serial interface that can accept two char
acters at a time before overflowing-a very common situation.

Arbitrarily large groups of characters and pauses can be used as well. This is useful
when dealing with logical interfaces. They may allocate huge buffers, but without flow
control, even the largest buffers can overflow. For example, to send 1000 characters
with one second between each group of characters, you would say:

set send_slow {1000 1}
send -s $text

The first number, the number of characters, is always integral. The second number, the
timeout, may be either integral or real (scientific notation is acceptable).

The following script may be used as a filter. It copies the standard input to the standard
output at the rate of one hundred characters per second--a very slow rate.

#!/usr/local/bin/expect
set send_slow {1 .01}
while {l} {

;# send 1 character every .01 seconds

expect_user eof exit -re ".+"
send_user -8 $expect_out(buffer)

278 Exploring Expect

Sending Humanly
With the - h flag, the send command sends characters in a way that resembles a human
typing. Unlike "send -s", "send -h" enables variability and randomness. The time
periods between every character can be different from one character to the next.

A varying sending speed is quite useful when trying to simulate the effect of interactive
loads. For example, suppose you are testing a computer to see if it can handle a partic
ular mix of CPU-intensive background processes and some interactive processes.
Processing human interaction usually requires only a tiny fraction of the CPU. But by
default, Expect scripts skip all the delays that real humans produce. Such scripts
produce a very inaccurate simulation of interactive performance since the scheduler
handles Expect processes as if they were just CPU-intensive processes.

The algorithm Expect uses to produce output at varying speeds is based upon a Weibull
distribution, a common statistical tool for generating pseudo-random inter-arrival times.
A few modifications have been made to suit its use in Expect. The output is controlled
by the value of the send_human variable which takes a five-element list. The first two
elements are average interarrival times of characters in seconds. The first is used by
default. The second is used at word endings, to simulate the subtle pauses that occasion
ally occur at such transitions. The third parameter (the shape) is a measure of variability
where 0.1 is quite variable, 1 is reasonably variable, and 10 is almost invariable. The
whole range is from 0 to infinity.t The last two parameters are, respectively, a minimum
and maximum interarrival time.

Intuitively, the elements are used from left to right. First, one of the two average arrival
times is chosen. Then, it is shaped according to the variability and a pseudo-random
factor. Finally, the result is clipped according to the minimum and maximum elements.
The ultimate average can be quite different from the stated average if enough times are
clipped by the minimum and maximum values.

As an example, the following command produces characters like a fast and consistent
typist:

set send_human {.1 .3 1 .05 2}
send -h "I'm hungry. Let's do lunch."

Characters are output at an average of one every .1 seconds, except for word endings
where they average one every .3 seconds. (Word ending are transitions from an alpha
numeric character to anything but an alphanumeric character.) The minimum time
between characters is .05 seconds and the maximum time is 2 seconds. The shape
parameter will be described further later.

t Expect has no concept of infinity, but numbers over 1000 are sufficiently close for the purposes of this algo
rithm.

Send

The following might be more suitable after a hangover:

set send_human {.4 .4 .2 .5 lOO}
send -h "Goodd party lash night!"

279

Errors are not simulated. It is impossible for Expect to know what a "reasonable error" is
or how to correct it-this depends on the particular spawned program. You can set up
error correction situations yourself by embedding or programmatically generating
mistakes and corrections in a send argument. For example, if the spawned process
understands that a backspace removes earlier characters, the previous example can be
"fixed" as follows:

send -h "Goodd\b party lash\bt night!"

The shape parameter controls the variability. The term shape refers to the control that
the parameter has over a bell-like curve in which the time is likely to appear. The
various curves are not particularly intuitive. However, you can examine several runs I
made printing out the characters 0123456789 with an average time between characters
of.1 seconds, and a minimum time of .05 seconds and maximum of 2 seconds.

The following graphs show the times between characters with the shape ranging from
.125 to 16. The left-hand axis is the time in seconds that passed before the particular
character was sent. Each character is shown in the axis at the bottom of the graph.

16 is almost large enough that no variation is seen. The line is essentially straight. Each
character was sent almost exactly .1 seconds after the previous one. The graph showing
the shape of 8 has a slight bend in the middle, but you probably would not notice the
differences if you were watching the characters print. A scheduler might not either.

l.0

0.8
'" "0 0.6 c
0
u
Q) 0.4 '"

0.2

0.0'
0 1

shape = 16
shape = 8

2 3 4 5
characters

6 7 8 9

A shape of 4 allows a little bit more variability. You would probably not notice the differ
ence however. The extremes are still within .07 seconds of one another.

A shape of 2 allows enough variability that the minimum time bound is reached. All
times below .05 seconds are truncated back up to .05 seconds. The maximum time is
.06 seconds above the maximum time when the shape was 4.

280

1.0

0.8
<IJ

"0
0.6 t::

0
u
Q) 0.4 <IJ

0.2 -
0.0

0 1

shape = 4
shape = 2

2 3 4 5
characters

Exploring Expect

6 7 8 9

A shape of 1 shows significant inconsistencies, yet the values are still within .16 seconds
of one another. A shape of between 1 to 2 probably represents a good typist.

A shape of .5 is the lowest in this sequence that could still be considered consistent.
Several values have hit the minimum time. Without this bound, there would be a spread
of a half of a second.

1.0

0.8 shape = 1
<IJ shape = .5 "0 0.6 t::
0
u
Q) 0.4 <IJ

0.0 L'::::::::~""::::;=====:::::;:==:::=::~---,-_'::::::::_---,-_~
o 1 2 3 4 5 6 7 8 9

characters

A shape of .25 shows significant inconsistencies. The maximum bound of 2 seconds has
been reached. (The graph has been extended to show this behavior, but the scale
remains the same.) Only three of the characters have times that are not truncated by the
minimum or maximum bounds. This is probably a fair simulation of someone using the
hunt-and-peck technique.

A shape of .125 is extremely variable. All but one of the inter-character times have been
truncated. This probably does not describe the typing of any human. Nonetheless, it
could conceivably be used to test some facet of the scheduler.

Send 281

2.0

1.8

1.6

1.4

'Jl 1.2
'"0
:::
0 1.0 u
V
'Jl

0.0 L_.L.-_'::::=:==~_~==~==~_~_---'-_--.J
o 1 2 3 4 5 6 7 8 9

characters

One final note-the timeouts described by send_slow and send_human have no
interaction with the expect command and its timeouts. They are completely separate.

Sending Nulls
In Chapter 6 Cp. 155), I described how to detect a null character. A null can be sent by
calling send with the -null flag. By default, one null is sent to the currently spawned
process.

send -null

An optional integer may be used to send several nulls. For example, the following
command sends three nulls.

send -null 3

send uses the pattern "-null" while expect uses "null". The absence of a hyphen is
historical-all of the special patterns lack a hyphen.

Sending Breaks
A break is a special condition of a serial communications line. It does not correspond to
a particular ASCII character sequence, so it requires special handling in order to

282 Exploring Expect

produce it using send. A break condition is generated by calling send with the
- break flag.

send -break

The spawned program to which you are sending must understand and expect the
break. Most programs do not understand a break as input even if they can generate it
on output. For example, the tip program translates the input character sequence \r-#
into an output break condition. tip itself does not accept the break condition from the
user.

Historically, keyboards contained special keys to generate break conditions. However,
such keyboards are rare today. Hence, most modern programs are like tip, accepting
some combination of keystrokes to signify a break.

The only situation in which you are likely to generate a break directly by using "send
- break" is when the spawned process is not an actual process but is instead a serial
device. I have not yet described how to make such a connection, but I will in Chapter
13 (p. 290).

A break condition cannot be detected using the expect command. However, breaks
can be turned into signals. This is similar to how a /\C in cooked mode is interpreted as
an interrupt. I will discuss signals and how to detect them in Chapter 14 (p. 307). See
your local stty documentation for more information on the break condition.

Sending Strings That Look Like Flags
Because the send command looks for special arguments such as -s and -h, you
cannot send strings like these without taking some special action. An argument of "- -"
(two hyphens) forces send to interpret the following argument literally.t So if you want
to send - h, you can say:

send -- "-h"

The "- -" does not affect strings that do not otherwise have a special meaning to send.
Thus you can preface any string with it. For example, the following two commands
both do exactly the same thing-they send the string foo.

send -- "foo"
send "foo"

This behavior is particularly useful if you are sending the contents of a variable that can
have any value.

t In contrast, the expect command does not provide "--" because the pattern-type nags (e.g., -gl) already
provide a mechanism for preventing a nag-like interpretation of the following argument.

Send

send $unknown
send -- $unknown

;# DANGEROUS
;# SAFE

283

Without the "- -", it is possible that the unknown variable might contain something that
looks like one of send's special flags. Using the "--" guarantees that the command is
interpreted correctly.

You might also use the "--" with literals when you are generating Expect commands
from another program rather than writing them by hand. For example, imagine that you
are writing a C program which in turn spits out Expect commands. Your code might
look like this:

printf (" send \" %s \" " ,unknown) ;
printf (" send -- \" %s \ " " ,unknown) ;

/* DANGEROUS */
/* SAFE */

While the resulting Expect script supplies the send command with literal values, the
same problem arises. The C program is not checking to make sure that the value it is
supplying to the send command does not look like one of the send flags. The solu
tion, again, is to use the "--".

Sending Character Graphics
In Chapter 6 Cp. 142), I described how to handle spawned programs that generate char
acter graphics. It is occasionally useful to generate character graphics from the script
itself. Expect provides no built-in support for doing this. It is not necessary because you
can call external programs such as tput. t For example, the cup operation moves the
cursor. The following command moves it to row 23, column 4:

send_user -raw [exec tput cup 23 4]

Executing many calls to tput can be slow because it is a separate program. However,
its different outputs can be saved in variables and reused, thereby avoiding excessive
calls of exec. More sophisticated handling is possible with Curses extensions to Tel.
These are listed in the Tcl FAQ.

Comparing send To puts
Both the send command and the puts command cause characters to be output.
However, they have differences which should already be apparent. But I will compare
and contrast them here just to make things clear. Note that all of the variations on send

t Probably a more significant reason that Tel scripts do not perform character graphics is because of Tk, a Tel
extension for the X Window System. Tk is so easy to use that it is hard to justify spending time writing character
graphic interfaces when the same amount of time can produce a much better interface in X. I will describe the
lise ofTk with Expect in Chapter 19 Cp. 432).

284 Exploring Expect

follow the style of the send command itself. For example, it is possible to call
send_user with the -h flag or send_tty with the -- flag.

The primary difference between send and puts is that send works with processes
started by spawn, whereas puts works with files opened by Tel's open command. For
example, to write an AT-style reset command (the characters "ATZ \r") to a modem with
a serial interface, puts could be used as follows:

set file [open" I dev/modem " "w" 1
puts -nonewline $file "ATZ\r"

Doing the same thing with send requires a spawned process instead of an open file.

spawn tip modem
send -i $spawn_id "ATZ\r"

In this example, the "-i $spawn_id" is not needed. It is just here to contrast it with
the $file argument in the puts. Without the -i specification, send writes to the tip
process anyway because spawn automatically sets spawn_id. In contrast, with no file
specification, puts writes to the standard output. The previous open has no effect on
the default destination of puts.

puts "ATZ\r"
send "ATZ\r"

;# write to standard output
;# write to currently spawned process

In UNIX, processes can be viewed as files (to a degree). The puts command, thus, can
write to processes as well-but only those opened by open. The open command starts
processes (and process pipelines if a "I" prefaces the command). For example, the
following fragment starts the word-count program, we, and then sends it a list of words
to count. The result of that is sent to Ipr, which prints the word count out on a hard
copy printer.

set file [open "I wc I lpr" "w" 1
puts $wordlist

By using the flag "w+" with open, it is possible to use both gets and puts.

set file [open" I tip modem" "w+" 1
puts "ATZ\r"

Unfortunately, some (but not all) interactive programs do rather peculiar things with
their standard input. For example, tip expects to read its input from a terminal inter
face and it tries to put this interface into raw mode. In this case, there is no terminal
interface so tip will fail.

Some programs are not so demanding, but many are. Expect is the best way of dealing
with these programs. In general then, puts is used for communicating with files and
send is used for communicating with processes.

Send 285

send and puts do not work with each other's identifiers. You cannot take a file
created by open and use it with send. Nor can you take a spawn id and give it to puts.

puts $spawn_id "ATZ\r"
send -i $file "ATZ\r"

;# WRONG
;# WRONG

This does not mean, however, that puts and send cannot be usefully used together.
Because they both deal with strings, they can be called with the same input. For
example, upon receiving input (either from expect or gets), the output can be sent to
both files and processes.

expect -re ".+" {
send -i $idl $expect_out(buffer)
puts $filel $ expect_out (buffer)

Waiting for input from both processes and files is a little trickier and will be described
further in Chapter 13 (p. 289).

This chapter has already covered the major features of the send command. send has
several other features which were mentioned in earlier chapters. In particular, -raw is
useful in raw mode (see Chapter 8 (p. 197». The send command is also controlled indi
rectly by log_user (see Chapter 7 (p. 175».

In contrast, the puts command is unaffected by log_user. Similarly, puts has no
analog to -raw. The puts command provides no automatic translation mechanisms to
deal with cooked or raw mode.

One final difference between puts and send is that puts terminates lines with a
newline (unless you use the -nonewline flag). This is convenient when it comes to
writing text files but not when controlling interactive programs that rarely want
newlines. Most interactive programs either read characters one at a time or look for
commands to end with a \r. The send command has no preference one way or the
other and instead makes this explicit in every command. If you prefer, embed your
send commands in a procedure that always tacks on the line terminator of your choice.

Exercises
1. Parameterize the send_slow script on page 277.

2. Write a script which runs a shell such that all of the output written to the standard out
put and standard error is written humanly.

3. Write a procedure that takes a 32-bit integer and sends it encoded as four bytes, each
byte representing 8 bits worth. It should be analogous to the procedure
expect_four_byte_int in Chapter 6 Cp. 156).

286 Exploring Expect

4. Run the script on page 275 to find out the size of your system's canonical input buffer.
Modify it if necessary to account for your system's behavior when the limit is reached.
Is this behavior documented anywhere? Is the limit documented anywhere? Try the
script on other systems.

5. Write statements that simulate the sending of the Up, Down, Left, and Right arrow keys
on your keyboard.

6. Solve the previous exercise in a terminal-independent way by using information from
the termcap file or terminfo database.

In This Chapter:

• Spawning Process
Pipelines

• Converting Spawn
Ids To File
Identifiers And Vice
Versa

• Setting Pty modes Spawn

Besides starting processes, spawn can be used to begin interactions with files and pipe
lines. In this chapter, I will go into detail on the spawn command. I will also cover
ptys-what they are, how to control them, and their features and pitfalls.

The Search Path
The spawn command follows the "usual" rules in finding programs to invoke. Both rela
tive and absolute filenames are acceptable. If a filename is specified with no directory at
all, the value of the environment variable PATH is treated as a list of directories and each
directory is searched until the given file is found. This searching is performed by the
operating system and behaves identically to the way that programs are found from
shells such as the Bourne shell and the C shell.

spawn /bin/passwd
spawn passwd

;# absolute
;# relative

In some cases, naming programs absolutely is a good idea. In other cases, relative
names make more sense. If you do use relative names, it is a good idea to set PATH

explicitly. For example:

set env(PATH) "/bin:/usr/bin"

Setting the path avoids the possibility of picking up local versions of utilities that users
might otherwise have on their paths. Users at other sites may need to change the path,
but the single definition at the top of a script makes the path easy to change.

While resetting the path is easy enough, there are circumstances when it makes more
sense to refer to programs absolutely. For example, your system may have several
versions of a utility (e.g., BSD, SV, POSIX, GNU). Naming a utility absolutely may be
safer than using the path.

287

288 Exploring Expect

Rather than embedding a name literally, use variables so that all the references in a
script can be changed easily if necessary. For example, you might localize a particular
telnet as:

set telnet /usr/ucb/telnet

Later in the script, telnet would then be started this way:

spawn $telnet

Sets of programs that live in different subdirectories under a common directory could be
localized with separate variables such as in this example:

set root "/usr/kidney"
set bindir "$root/bin"
set testdir "$root/test/bin"
set demoprog "$bindir/nephron-demo"

Scripts that use these initializations would have spawn commands such as:

spawn $bindir/control
spawn $testdir/simulate
spawn $demoprog

If you have a number of scripts using these definitions, they can be stored in a common
file that is sourced by the scripts at start-up.

Like Tel's exec command and the C-shell, spawn also supports the tilde notation. A
tilde preceeding the first component of a filename is understood to mean the home
directory corresponding to the user named by that component. For example, the
following command spawns the pike program from the files of a user named shaney:

spawn -shaney/bin/pike

Philosophy-Processes Are Smart
The previous chapter demonstrated how to open files or devices and send commands
to them with puts. This technique calls upon another program to do the handling of
the device. At first glance, you might consider this inefficient. Why run two programs
when one will do? Consider that reusing another program allows you to isolate all the
device-specific problems in one place. If the tip program already knows about serial
devices and how, for example, to choose among baud rates, why burden other
programs with the same knowledge?

Ideally, if you just had one program that knew everything about, say, your serial
devices, you would not need any others. Or perhaps, other programs could call upon
your serial device program when they needed to access a serial device. This is

SPawn 289

analogous to the concept of device drivers. Unfortunately, real device drivers are not
high-level enough to isolate out the device dependencies for our purposes.

It is all too common to have numerous programs (kermit, procomm, tip, CU, etc.)
that all do the same thing. The reason for having multiple programs to do the same
thing is that one has features that another does not have and vice versa. So you keep
them all around. Not only is this a problem when you require both features at the same
time, but it is a problem when you upgrade or modify your serial device. For example,
if you change some phone numbers in your kermi t scripts, you also have to change
them in any procomm scripts. Some of these programs use a database but none use the
same one, so you have to change multiple databases, too.

Expect tries to avoid this quagmire by reusing programs and their knowledge. Expect
does not have to be told any device-specific information-it relies entirely upon the
device-specific program. If you want to communicate with a serial device, Expect can
spawn tip (or kermit, etc.). To communicate with sockets, Expect can spawn
telnet. And so on. This works because each of these devices is controlled by interac
tive programs which in turn can be controlled by Expect.

If you have a device unique to your machine with its own interactive interface, Expect
can use it. By unburdening Expect from a lot of device specific information, it is simpler
to use, plus you get to use the interface with which you are already familiar.

Treating Files As Spawned Processes
In UNIX, devices are files. Or at least, it is convenient to think that they are. Devices
appear in the file system, and file-like operations can be performed on them. Expect
uses these beliefs to support operations like expect and send.

In fact, these can be applied to files as well. In the previous chapter, I described how
you can make any file look like a spawned process-for example, by spawning a
process to read it with cat. A more direct way is possible.

Tcl's open command is capable of opening files. The open command returns a file
identifier which can be used as an argument to gets, puts, etc. Using the -open argu
ment of spawn, the file id can be turned into a spawn id.

set file [open "/etc/passwd" rJ
spawn -open $file
expect .

This example opens the /etc/passwd file and searches through it until the given
pattern appears. After the spawn, the file behaves exactly like a process. While there is
no real process, for consistency, the file must be waited for after being closed. The
value returned by wai t always indicates a normal exit and can be ignored. This allows

290 Exploring Expect

you to write code in which it does not matter whether a real process was spawned or
not.

The first two commands in the fragment above can be condensed to one:

spawn -open [open "/etc/passwd" rJ

Once the file has been passed to spawn, it should not be accessed by gets, puts, or
any other Tcl function. Expect and Tcl do not share buffers internally, so joint access
should generally be avoided. The file will be closed automatically when the spawn id is
closed. If the file must be left open after the spawn id is closed, use -leaveopen
instead of -open.

The spawn id in this example cannot be written to (with send) because open only
opened the file for reading. To open for writing, the w flag should be used. "w+" allows
reading and writing. Several variations on this exist. Read Tcl's open documentation for
the complete details.

While the spawn command can convert a Tcl file to a spawn id, it is also possible to do
the opposite. On page 304, I will describe how to convert a spawn id to a Tcl file
identifier.

Opening Ttys
Normally, Expect calls upon tty-aware programs such as tip or cu to interact with ttys.
However, using the technique described in the previous section, it is possible to open
ttys or other devices directly. For example, if you have a tty port named / dey / t tya,
you can open it as follows:

spawn -open [open /dev/ttya w+J

Unfortunately, that is not the whole story. Tty devices must be initialized. This is some
thing that a program such as tip would do for you. Without such a program, you must
do it yourself. In the interest of generality, Expect performs no special handling
depending upon the type of file it has been handed. That is up to you.

You can initialize a tty using stty with the appropriate arguments. The only hard part
is figuring out the arguments. There is no standard, and the parameters can vary
depending on your task.

For most tasks, you want to disable special character processing. You also want to
disable echo. These are accomplished as follows:

stty raw -echo < /dev/ttya

Flags such as -echo apply to the tty input. Unlike a traditional tty to which you log in,
this tty is being used to "go out". So the tty's input (in the sense that stty cares) is

Spawn 291

provided by the remote side. For example, if you use the tty to connect to another serial
port, then the output of that serial port is the input of this one.

If the serial port generates parity, you may need to handle that either by disabling it or
telling s t ty to ignore it. Another s t ty command suffices:

stty istrip < /dev/ttya

The istrip flag strips off the parity bit. If you need an eight-bit connection, you can
modify the terminal modes of both the tty and the remote serial port after you are
logged in.

Note that raw is a conglomeration of other stty modes. This includes parity on some
systems, so you may have to issue the stty commands separately as I have shown here.

The dozens of flags supported by stty vary from system to system. If the stty man
page is unenlightening, examine your tty modes while your are using tip (or whatever
program you are trying to simulate). This will tell you what the correct configuration
should be.

Bugs And Workarounds
On some systems, bugs in the operating system prevent correct operation of "spawn
-open [open. . 1 " on some special files. For example, on SunOS, Expect cannot
detect an eof from a fifo. Yet another operating system bug prevents AIX 3.2 from
detecting input from physical tty devices.t

Fortunately, as bugs like these are infrequent but Expect does a number of unusual
things and you must gird yourself to work around such bugs. In the next section, I will
describe a workaround for the fifo problem. A similar workaround can be applied to the
other problem.

Process Pipelines And Ptys
The spawn command does not provide any facility for redirection or pipelines because
the need for it is almost non-existent. Automating interactive programs virtually always
require much more sophisticated handling of input and output, such as looking at the
output before deciding on the next input.

Rather than burden the spawn command with features that are almost never used, it is
easier to call upon existing programs in those rare occasions. There are a variety of

t The effect of this particular bug also shows up in the failure of expect_ user to read input. A patch is available
from the vendor.

292 Exploring Expect

programs that support redirection including Tcl's open command. Tcl's open command
is also capable of building pipelines.

In the previous section, I noted that fifos cannot be handled with spawn on some oper
ating systems. The following command interposes a cat process. The" I" indicates that
the following file should be started as a process rather than a file that is simply read or
written.

spawn -open [open "Icat -u $fifo" rJ

While seemingly redundant, the fifo eof is now handled by cat which converts this to
an eof that is detectable by Expect.t The same solution works with other devices that
are not supported by select or poll.*

Additional processes can be strung together in the first argument to open by separating
them with" I " symbols. Bidirectional processes and process pipelines can be generated.
They require the w+ flag to indicate that they will be both read and written.

All of the files, processes, and pipelines opened by open are opened without a terminal
interface. For many programs, this is a problem. They expect to be dealing with a
terminal. For example, they may want to change the terminal modes. This will fail if
there is no terminal involved.

In contrast, each spawned process has a terminal interface associated with it. To
programs, the interface "feels" like a real tty is behind it. The program can tell the tty to
echo or not echo, for example. But the tty does not physically exist. Rather, it is simu
lated, and for this reason is known as a pseudoterminal or pty (pronounced "pity") for
short. With a pty, interactive programs work properly.

When spawn is called with -open, no pty is provided. In the rare cases that a pty is
needed along with a process pipeline or redirection, /bin/ sh can be spawned before
invoking whatever is needed. For example, in Chapter 7 (p. 174), I described how
spawn normally combines the standard output and standard error. In contrast, the
following command separates the standard error of a process so that it is written to a file.

spawn /bin/sh -c "exec 2> error.out; exec prog"

It works as follows: /bin/ sh is spawned. The -c flag tells /bin/ sh to execute the
following argument as a command. The argument is composed of two commands that
will be executed sequentially.

t On some systems, the -u flag to cat has a negative impact on performance. Chapter 23 Cp. 526) shows a fast
and simple way to test for this. * Deficient select orpoll support is such a severe defect that it is usually documented in the brief cover notes
that accompany the operating system. For this reason, it is not necessary to understand further details about se
lect and poll, so I will not provide any.

Spawn 293

The first command is "exec 2> error. out". This command directs the shell to asso
ciate file descriptor 2 (i.e., the standard error) with the file error. out.

The next command is "exec prog". This command runs prog. Its input and output
are still associated with the input and output of the shell (from /bin/ sh) which in turn
are associated with the spawn id. But the standard error remains tied to the file
error. out. The exec in front of prog tells the shell that prog can take over the
process resources of the shell. In effect, the shell exits leaving prog in its place.

While initially this may look rather confusing and complex, the result effectively leaves
only the intended process running. The shell goes away after setting up the indirection.
More complex redirection and pipelines can be constructed but they usually share the
same underlying ideas.

Automating xterm
Expect normally works with programs that read either from the standard input or
/dev/tty. Some programs do not read their input in this way. A good example is the
xterm program. xterm is an X Window System client that provides a shell in a
terminal emulator. In this section, I will describe three different ways to control xterm.

The xterm program reads user input from a network socket. The standard input and
/ dey / t ty are both ignored. Hence, spawning xterm in the usual way is fruitless.

spawn xterm ;# WRONG

Interacting in this way-with no special knowledge of xterm-requires a program that
can drive X applications the way Expect drives character-oriented programs. Such
programs exist. However, discussion of them is beyond the scope of this book.

Instead of attempting to control an xterm, it often suffices to have an xterm execute
an Expect script. For example, suppose you want to be able to pop up a window that
automatically runs the chess script defined in Chapter 10 (p. 234). The following
command would suffice:

xterm -e chess.exp

The xterm continues to take input in the usual way. Therefore it is even possible to
have scripts that accept user input. For example, the auto-ftp script defined in Chapter
3 (p. 83) could be started up with the following command. Once running, it is control
lable from the keyboard just the wayan xterm normally is.

xterm -e aftp.exp

294 Exploring Expect

Both of these examples give up the possibility of controlling the xterm from another
script. It is possible to do this by having xterm run an open-ended script such as
kibitz. I will present an example of this in Chapter 16 (p. 355).

A third way to control xterm is to spawn it so that the script replaces the process that
xterm normally spawns internally. When xterm starts, it no longer starts a new
process but talks to Expect. Expect reads what the user types and tells the xterm what
to display.

This is a little more complicated, but it allows a script the ability to start multiple xterms
and interact with them. Rather than the xterm driving Expect, Expect drives the xterm.

In order to talk to an xterm in this way, Expect must obtain a pty and pass it to the
xterm. Expect will communicate using one end of it (the master), and the xterm will
communicate using the other end (the slave).

When a process is spawned, Expect allocates the pty, creates the process, and arranges
for the process to use the pty for its standard input among other things. However, as I
mentioned earlier, xterm does not read its standard input. xterm normally spawns its
own process. It is possible to start xterm so that it does not spawn a process but
instead interacts with an existing one.

To do this, xterm requires that the pty name and file descriptor be passed to it when it
is invoked. Expect normally allocates the pty as the process is created, but this is too
late for xterm. xterm wants the pty name on the command line. The -pty flag
causes the spawn command to generate a pty with no new process.

spawn -pty

During the spawn command, the name of the slave end of the pty is written to the vari
able spawn_out (slave, name) . This occurs whenever a process is spawned,
whether or not the -pty flag is present. (In Chapter 14 (p. 315), I will show another use
for this variable.)

The pty must be initialized to raw mode and have echoing disabled.

stty raw -echo < $ spawn_out (slave,name)

In X11R5 and earlier versions, the flag to run xterm in slave mode is rather peculiar.
The flag is -So It is followed by two characters denoting the suffix of the pty name and
an integer representing the file descriptor. For example, if the slave is named
/dev/ttypO and the file descriptor is 6, xterm is started with the flag "-Sp06".

The two-character format does not support all pty names and because of this, many
vendors have modified xterm. For example, some versions of xterm use a 0 to pad
suffixes that would otherwise be one character. The following code generates the two
character suffix, padding if necessary:

SPawn

regexp "0*(0) (0)" $ spawn_out (slave, name) dummy cl c2
if {[string compare $cl "/"] == O} {

set cl "0"

295

There is no backward-compatible solution for ptys that use more than three characters
for identification. However, as of X11R5, xterm does not actually use the information.
So the code above suffices (unless your vendor has made radical changes).t

xterm also requires the open file descriptor corresponding to the slave. This informa
tion is written to the variable spawn_out (slave, fd) by the spawn command.

Now the xterm can be started. It is not necessary to use spawn since the pty has
already been allocated. The exec command is appropriate. An ampersand forces it to
run in the background so the script can go on to do other things.

exec xterm -Sclc2$spawn_out(slave,fd) &

Like spawn, the exec command returns the process id of the xterm.

Once the xterm is running, Expect should close its copy of the slave file descriptor.
This is done by invoking the close command with the -slave argument.

close -slave

When xterm starts this way, it immediately sends back an X window id on a line by
itself. Extensions such as TkSteal can use the X window id to provide reparenting,
allowing an xterm to appear in a Tk widget hierarchy. If you do not want the X
window id, just discard it.

expect "\n" ;# match and discard X window id

At this point, the xterm can now be controlled. The send command will print strings
on the xterm display. The expect command will read input from the user (including
insertions made using the mouse).

For example, the following code spawns a shell and lets the user interact in the xterm
until X is pressed. Then the user is prompted for a return, after which the xterm is
killed and the script exits. (The "interact _u" ties the xterm and the shell
together-this will be explained further in Chapter 16 (p. 350).)

t As this book is being written, an initial release of R6 has appeared in which the relevant flag toxterm is iden
tical to R5. So it is likely that the description of xterm in this section will continue to be valid. I have recom
mended to the X Consortium that xterm be modified so that it takes complete pty names. Then, xterm would
not have to make any assumptions about the structure of the names. As of this writing, the code shown here is
the most portable that can be written.

296

assume xterm is initialized, spawn id is in $xterm,
and xterm pid is in $xterm-pid

spawn $env(SHELL)

interact -u $xterm "X" {
send -i $xterm "Press return to go away: "
set timeout -1
expect -i $xterm "\r"

send -i $xterm "Thanks!\r\n"
exec kill $xterm-pid
exit

Exploring Expect

A real example that is more sophisticated than this one will be shown in Chapter 16 Cp.
361).

Checking For Errors From spawn
All of the examples so far have assumed that spawn always succeeds. The bad news is
that spawn does not always succeed. The good news is that it only fails in peculiar envi
ronments or in peculiar situations. In this section, I will describe the meaning of
"peculiar" and how to check whether spawn succeeded or not.

The spawn command normally returns the process id of the newly spawned process.t

This is generally of little value since spawned processes are more easily manipulable by
their spawn ids. However, it is occasionally useful to be able to kill a process using its
process id rather than going through some long interaction.

set pid [spawn program]

some time later
exec kill $pid

Once killed, the process connection should be recycled by calling close and wait.

Running out of various system resources can cause spawn to fail. For example, spawn
allocates dynamic memory as well as a logical terminal interface. Failures like this can
be caught using Tcl's catch command:

if [catch "spawn program" reason]
send_user "failed to spawn program: $reason\n"
exit 1

t "spawn -open" returns a process id of 0 to indicate no process was spawned. There is no process to kill.

Spawn 297

Even if spawn does not return an error, that is not a guarantee that it was entirely
successful. To understand why, it is necessary to explain a little of how spawn is
implemented.

The spawn command follows the traditional UNIX paradigm for running a new
program. First, Expect forks. Forking is the UNIX way of generating a new process.
Initially, the new process is still running Expect code. This allows Expect to prepare the
environment appropriately for the new program. The last step is for Expect (in the new
process) to overlay itself with the new program. At this point, the original Expect
process is still running, and the new process is running the requested program.

This last step of loading the program can fail if, for example, the program does not
exist. If it does not exist, the new process must communicate this back to the Expect
process. Ironically, the failure of the program to be found can be communicated but not
its success. The reason is that the very act of successfully running the program removes
any functionality of the earlier program (i.e., Expect). Thus, the new program has no
idea how to signal success or even that it should.

Because of this, the original Expect process cannot wait around for a possible failure.
The spawn command returns immediately. If the process does fail however, the new
process sends back an error report in such a way that the Expect process hears it at the
next convenient moment-the first expect command.

Here is an example of interactively running Expect and attempting to spawn a non-exis
tent program:

% expect
expect1.1> spawn noprog
spawn noprog
18961
expect1.2> expect -re .+
noprog: No such file or directory
expect1.3> puts "expect_out = <$expect_out(buffer»\n"
expect_out <noprog: No such file or directory>

The error message is returned exactly the way any other output from the spawned
process is-via expect_out. Differentiating between an error from the shell and real
program output from the process may be difficult, if not impossible. The recognition
problem is identical to what a real human faces when using interactively starting
programs from the shell. How one differentiates between an error message and real
program output is left to the user.

The format of the error message is as shown above. It is the program name, followed by
a colon and space, followed by your particular system's standard error message. Other
messages are possible in other scenarios, such as if the file exists but is not executable.

298 Exploring Expect

Checking the return value of spawn (as shown above with catch) is a good idea if you
want your code to be bulletproof. These kinds of errors are often due to transient condi
tions that may go away if the operation is retried, such as a lack of memory.

On the other hand, checking spawn's success via the first expect is less valuable. For
example, if a standard utility such as /bin/ sh is being spawned, there is little point in
checking if it succeeded. If it did not, the computer has such severe problems that few
programs will be able to continue to nm.

The primary circumstance in which to check the first expect after a spawn is when the
program is unknown at the time the script is written. For example, if a user can type in
arbitrary command names dynamically, these names should be checked. Note that
using "file executable" is a reasonable test but it is not guaranteed since there is a
window between the time the file can be tested and the time it is executed, during
which the file can change.

spawn -noecho
In the previous example, all of the commands were entered interactively. When this is
done, the return values of all commands are automatically printed by Expect. In the
case of the spawn command, the return value was the process id. In that example, the
process id was 18961. The command also echoed itself as a side effect. This is not the
return value. If a spawn command appears in a script, the process id will no longer be
printed to the standard output, but the command itself still echoes.

This echoing is intended as a convenience for simple scripts, much as the echoing
performed by the expect command itself is. Both of these can be disabled with the
log_user command. However, the log_user command disables all of the spawned
program's output. To disable just the echoing produced by the spawn command, use
the -noecho flag. This flag affects nothing else. Here is the previous example repeated
using that flag.

% expect
expect1.1> spawn -noecho noprog
18961
expect1.2> expect -re .+
noprog: No such file or directory
expect1.3> puts "expect_out = <$expect_out(buffer»\n"
expect_out = <noprog: No such file or directory>

Here is the same example, but using "log_user 0" instead of -noecho. Notice that
both spawn and expect no longer echo anything.

% expect
expect1.1> log_user 0

Spawn

expect1.2> spawn noprog
18961
expect1.3> expect -re .+
expect1.4> puts "expect_out = <$expect_out(buffer»\n"
expect_out = <noprog: No such file or directory>

299

In all cases, spawn still produces a return value. This and all other return values disap
pear if run from a script.

Example - unbuffer
Most non-interactive programs behave differently depending on whether their output
goes to the terminal or is redirected. In particular, output to a terminal normally appears
as soon as a full line is produced. In contrast, output that is redirected to a file or a
process is buffered by much larger amounts in the name of efficiency. This difference in
buffering is automatically chosen by the UNIX stdio system.

Unfortunately, this means that some simple UNIX commands do not work as nicely as
you might expect. For example, suppose a slow source is sending output to a fifo called
/tmp/fifo and you want to read it using od and then pipe it into a pager such as
more. The obvious shell command to do this is:

od -c /tmp/fifo I more

Alas, the stdio system compiled into od sees that its output is a pipe so the output is
automatically buffered. Even if od receives a complete line, od does not send anything
down the pipe until the buffer has been filled.

There is no way to fix od short of modifying and recompiling it. However, by using
Expect, it is possible to make od think that its output is destined for a terminal. Since
Expect connects processes to a pty, this is sufficient to satisfy the stdio system, and it
changes to line-buffered I/O.

A script to do this is simple. All it has to do is spawn the process and wait for it to finish.
Here is a script which does this, called unbuffer:

#/usr/local/bin/expect -
Name: unbuffer
Description: unbuffer stdout of a program

eval spawn -noecho $argv
set timeout -1
expect

The original command can now be rewritten to use unbuffer:

unbuffer od -c /tmp/fifo I more

300 Exploring Expect
--~--~--~-

Most other non-interactive UNIX utilities share the problem exhibited here by od.
Dealing with the stdio system is one of the few times where it makes sense to run
Expect on non-interactive processes.

Obtaining Console Output
Historically, the console was a dedicated terminal to which critical messages were sent
concerning the status of the computer. The idea was that a person would be watching
at all times and could take immediate action if necessary. With modern workstations,
there is no physical console with a dedicated operator. Instead, the console is simulated
with a dedicated window. For example, in the X window system, the command
"xterm -C" starts an xterm window and tells the operating system to send all console
messages to it.

Expect can do the same thing with the spawn command. The -console flag redirects
all console messages so that they appear to be generated from a spawned process. It is
sufficient to spawn any process. Even cat will do.

spawn -console cat

A simple use for this flag is to watch for errors from device drivers. For example, when
performing backups, errors writing to the backup media may be sent to the console
rather than the backup program. This is a consequence of the way certain drivers are
written and is surprisingly common.

By spawning the backup program using the -console flag, it is possible to catch prob
lems with the backup that might not otherwise be reported. In Chapter 17 Cp. 380), I
will describe how to make an Expect script actively look for a skilled user to fix any
problems encountered, and initiate a session for the user connected to the spawned
process automatically.

The -console feature can only be used by one program at a time. It is also a relatively
recent addition to UNIX. Therefore, it is not yet supported by all systems. The
-console flag is ignored on systems that do not support the ability to redirect console
output.

Setting Pty Modes From spawn
Pty modes can have a big effect on scripts. For example, if a script is written to look for
echoing, it will misbehave if echoing is turned off. Suppose a script is driving a shell
that prompts with a bare "% ". If the script sends the command "who ami \r", the shell
might return "who ami \r\ndon\r\n% ". In this case, the response could be matched
with:

Spawn 301

expect -re "\r\n (. *) \r\n% "

If the shell did not echo its input, the shell would return "don\r\n% ". But the expect
command just shown fails to match this output.

For this reason, Expect forces "sane" pty modes by default. In fact, the sane flag is
known to stty, the program which configures ttys and ptys. The particulars of sane
differ from system to system; however, sanity typically implies characteristics as
echoing, and recognition of erase and kill characters. Expect invokes stty to set the
pty, so you can be assured that Expect's version of sanity is just what your local stty
thinks. If for some reason you believe stty's understanding of sane is flawed and you
are not in the position to change it (i.e., you do not have the source), you can redefine it
when installing Expect on your system. This is covered in the installation procedure.

Unfortunately, one program's sanity is another program's gibberish. Some programs
have special demands. As an example, it is possible to interact with a shell from inside
of the Emacs editor (this has nothing to do with Expect so far). The shell session
appears as a normal file (or "buffer" in Emacs-speak) except that when you press return,
the current line is sent as a command to the shell and the results are appended to the
end of the buffer. This has many benefits. For example, with an Emacs shell session,
you can use Emacs commands to directly edit the input and output.

To make the Emacs shell-session work similarly to a session outside Emacs, Emacs
changes the pty modes. For example, echoing is disabled so that you can edit the
command line before passing it to the shell. Also, newlines produced by programs are
no longer translated to carriage-return linefeed sequences. Instead, newlines remain as
newlines.

Expect scripts written for the "normal" pty modes could fail if they were to only use
Emacs' idea of pty modes. To avoid this, Expect performs a three-step pty initialization
which leaves the pty with a suitable mixture of Emacs and user pty characteristics.

The first step initializes the pty so that it is configured just like the user's terminal. Next,
the pty is forced into a sane state (as I described earlier). In most cases, this changes
nothing; however, anything too unusual is reset. This is also important when the
process is running from cron where there is no terminal from which to copy attributes
in the first place. Finally, any other pty modes are changed according to the require
ments of the script.

Each of these steps is controllable. The first step, copying the user's terminal modes, is
done unless spawn is invoked with the -not tycopy flag. The second step, forcing the
pty into a sane state, is done unless spawn is invoked with the -nottyinit flag. The
third step is only done if the s t ty _ini t variable is defined, in which case it is passed
as arguments to the stty program.

302 Exploring Expect

The order that the flags are given to spawn is irrelevant, but they must appear before
the program name. Here are several examples. In each case, prog stands for a program
to be spawned.

spawn -nottyinit prog
spawn -nottyinit -nottycopy prog
set stty_init "kill ! susp 7"
spawn prog

The last example sets the kill character to "!" and the suspend character to "?". Conceiv
ably, this could be useful or necessary for running or testing a particular program. The
spawn command does not enforce any kind of pty initialization. It is possible to use
-nottycopy and -nottyinit and not define stty_init but this is not a good idea.
Ptys are not otherwise initialized by most systems.

These options may seem complex, but in most cases they are not necessary. Going
back to Emacs for a moment, the default behavior of spawn allows the correct func
tioning of Expect scripts. Expect scripts may "look funny" inside of Emacs with respect
to character echoing, but then, so do commands such as telnet and rlogin. If you
absolutely have to have Emacs look correct, use the -nottyinit flag. However, you
must then go to extra effort to make your scripts avoid any dependencies on echOing,
line termination characters, and anything else that the Emacs terminal modes affect.

Another example of how st ty can introduce unexpected results is with the line kill
character. On some UNIX implementations, s t ty believes the @ is the default line kill
character (i.e., pressing it removes all previous characters typed on the line). The @ was
a popular convention many years ago. Now, it is just archaic and AU is much more
common. On such archaic systems, sending strings such as "user@hostname\r" ends
up sending only "hostname\r".

Yet another problem that occasionally crops up is what to do with parity. On some
UNIX implementations, stty believes that parity should be disabled. This confuses
programs that work with 8-bit character sets. If you can not fix your local stty, work
around the problem by using the -nosttyinit flag or by setting stty_init to
-istrip.

Hung Ptys
Historically, UNIX systems have provided a fixed number of ptys, pre-allocating file
names in the file system for each one. Most versions of UNIX no longer do this, but
there are still some that do. With a static set of ptys, it is necessary to search through the
list of files. Expect performs several tests on each pty before using it. These tests ensure
that no other process is still using the pty.

Spawn 303

Usually these tests are very quick, but programs that have misbehaved and are sloppy in
their pty allocation and de allocation can force Expect to take up to ten seconds, waiting
for a response from a pty that is still in use.t Normally, Expect goes on and continues
trying other ptys until it finds one that can be allocated; however, such ptys can cause
problems for most other programs. For example, programs that use ptys, such as xterm
and Emacs, simply give up when encountering such a pty. If you see this happening,
you can try spawning a process with Expect's diagnostic mode enabled. Expect will
then report the ptys it is ignoring and you can verify that each one is in use by a func
tioning program. In some cases, the program may have exited but left the pty in a
bizarre state. Expect's thorough pty-initialization procedure will reset the pty so that
other processes can use it.

You can take advantage of Expect's ability to fix ptys with the following script called
ptyfix.

#!/usr/local/bin/expect
spawn cat

Or even simpler, just put the following shell command in an alias or menu:

expect -c "spawn cat"

Restrictions On Spawning Multiple Processes
There is no explicit restriction on spawning multiple processes-any number of
processes may be running under control of Expect. However, some old-perhaps
archaic is a better word-systems do not provide a facility for listening from multiple
processes simultaneously. When Expect is installed, it looks for the presence of the
select or poll system call. Either of these usually indicates that Expect can listen to
multiple processes simultaneously.

Some systems provide select or poll but do not allow them to be used the way
Expect needs. In this case, Expect simulates this functionality using the read system
call with alarms. When using read, Expect has one major restriction. Only one process
can be listened to (with either expect or interact) at a time.

Fortunately, such systems are rare and growing rarer.* Although you cannot run Expect
with all of its power on them, you can still get useful work done even by automating
one application at a time.

t Expect leaves a timestamp in the form of a file in / tmp recording such ptys so that later attempts do not bother
waiting. The file is left even after Expect exits, allowing later Expect processes to take advantage of this informa
tion. After an hour, the next Expect deletes the file and retests the pty. * Expect detects and reports at installation time if your system cannot spawn multiple processes simultaneously.

304 Exploring Expect

Getting The Process Id From A Spawn Id
While the spawn command returns a process id, Expect can provide this information at
any time by using the exp-pid command. With no arguments, exp-pid returns the
process id of the currently spawned process. The process id of a particular spawn id can
be returned by using a - i flag. For example:

expectl.l> exp-pid -i $shell
20004

Do not confuse this command with pid. The pid command is a built-in Tel command
that returns the process id of the Expect process itself.

Using File I/O Commands On Spawned
Processes
You cannot directly read from or write to spawned processes with puts and gets. In

general, there is little need for it because you can emulate the behavior with suitable
send and expect commands. Nonetheless, it may be convenient to do so at times.

Earlier, I showed how the -open flag of the spawn command converts a file identifier
to a spawn id. The exp_open command does the opposite. It converts a spawn id to a
file identifier that may be used with gets and puts. The file identifier will be open for
both reading and writing. If exp_open is called with no arguments, it converts the
spawn id of the currently spawned process. If called with a - i argument, exp_open
converts the given spawn id.

By default, after calling exp_open, the spawn id can no longer be accessed using send
and expect. It becomes owned entirely by Tel and should eventually be elosed in the
Tel style and without doing a wait. On some systems, processes return spurious error
indications during a close operation. Expect knows to ignore these errors; however,
you may have to explicitly catch them from Tel.

spawn Ibin/csh
set file [exp_open]
catch {close $file}

You may have to call flush explicitly after I/O operations because the file commands
normally buffer internally. Process output that does not terminate with a newline may
be impossible to read unless you disable buffering or read it explicitly with read. In the
following example, the first output from telnet is read using read since it does not
end with a newline.

% expect
expectl.l> spawn -noecho telnet

Spawn

4484
expectl.2> exp_open
file5
expectl.3> read fileS 7
telnet>

305

The spawn id can be left open by calling exp_open with the -leaveopen flag. In this
case, both the file and the spawn id must be closed explicitly. A wait must be
executed. As with the -leaveopen flag in the spawn command, alternation of Tcl and
Expect commands is best avoided because Tcl and Expect do not share buffers
internally.

Exercises
1. On page 146 of Advanced UNIX Programming (Prentice Hall), Marc Rochkind

describes how deadlock can occur when using pipes for bidirectional communication.
Why does this not apply to Expect?

2. Modify the first line script (page 178) to make it check that the spawn command
succeeds and that the program is successfully executed. Upon failure, send any diag
nostics to the standard error and return a nonzero status.

3. On page 292, there are two commands in the string passed to Ibinl sh. Simplify the
string.

4. Write a script that starts two xterms, each of which use a separate shell (as usual).
Make the script create a transcript of both xterms in a single file. Provide a parameter
that switches from logging by line to logging by individual character.

5. It is possible to write a better version of ptyfix (page 303) using the diagnostic out
put from Expect. Modify the script so that when Expect reports that a pty is hung, the
new version finds the process that is responsible and kills it.

In This Chapter:

• Handling I\C

• Generating And
Taking Actions On
Signals

• The wait
Command

• Taking Action
Tl7hen The Script
Ends

Signals

If at all possible, avoid signals. They are tricky to use correctly, and signal-handling
code is perhaps the most difficult to debug. Despite these warnings, there are situations
in which signals are the only solution. In this chapter, I will describe the reasons why
you may have to deal with signals and how to handle them. I will also present related
details of the wai t and exi t commands.

Signals
Signals are software interrupts. They can be generated for a variety of reasons such as
the pressing of certain keystrokes. In cooked mode, pressing control-C usually gener
ates an interrupt signal in the foreground process. Processes can also generate signals in
other processes-or even in themselves. This is commonly referred to as sending or
raising or generating a signal. Finally, the operating system can generate signals for a
number of reasons, such as if a power failure is imminent and the system is about to
halt. For more in-depth information on signals, read your local man pages.

Specific signals are commonly referred to in several ways. For example, signal number
9 is usually written as SIGKILL in C programs. However, many utilities (e.g., kill)

only accept 9 or KILL (without the SIG prefix). Expect accepts all three forms (9,
KILL, or SIGKILL). For clarity in this book, I like to use the C-style although I will give
examples of why the other two forms are occaSionally useful.

The exact list of signals varies from one system to another but modern systems include
those shown in the following table. There are others but the signals shown here are the
ones you are most likely to deal with in an Expect script.

307

308 Exploring Expect

Name Description

SIGHUP hangup

SIGINT interrupt
SIGQUIT quit

SIGKILL kill
SIGPIPE pipe write failure

SIGTERM software termination

SIGSTOP stop (really "suspend")

SIGTSTP keyboard stop

SIGCONT continue

SIGCHLD child termination
SIGWINCH window size change

SIGUSRl user-defined

SIGUSR2 user-defined

Assuming you have permission, these signals can be generated by using the kill
command from a shell script or "exec kill" from an Expect script. For example, from
an Expect script the following command sends an interrupt signal to process 1389.

exec kill -INT 1389

Expect processes can receive as well as generate signals. In the example above, if
process 1389 is an Expect process, upon receiving a signal, the process looks for a
command that is associated with the signal. An associated command is known as a
signal handler or trap. If there is a handler, it is evaluated. When the handler has
completed execution, the script (usually) returns to what it was doing before the signal
arrived.

The association between a signal and its handler is created by the trap command.
Only one handler can be associated with a signal at a time. If you make the association
from within a procedure, the association remains in effect even after the procedure
returns. Each association replaces the previous one for the signal of the same name.

For example, the following command causes a script to print ''bye bye" and then to
exit if an icterrupt signal (SIGINT) is received.

trap {send_user "bye bye"; exit} SIGINT

Signals 309

The first argument of the trap command is the handler. A handler can be as simple as
a procedure name or as complex as a long list of commands. Here are more examples:

trap intproc SIGINT
trap {

send_user "bye bye"
exit

SIGINT

A handler can also return in the middle as if it were a procedure. Any return value is
discarded.

trap {
if [expr $test] return
morestuff

SIGINT

Multiple signals can be associated with the same command by enclosing them in a list.
The following command associates the procedure sigproc with the signals SIGINT,

SIGUSR1, and SIGUSR2. Using the "SIG" prefix in a long list of signals is tiresome, so I
do not specify it in such cases.

trap sigproc {INT USRl USR2}

If you associate a common procedure with multiple signals, you can use trap with the
-name or -number flag to find out what signal is being processed.

trap {
puts "got signal named [trap -name]"
puts "got signal numbered [trap -number]"

{INT USRl USR2}

The command "trap -name" returns the name without the "SIG" prefix. If you want
the name with the "SIG" prefix, just prep end "SIG" to the result.

trap {
puts "got signal named SIG[trap -name]"

} {INT USRl USR2}

You can redefine a signal while its handler is being evaluated. The change does not
take effect until the next evaluation of the handler.

Signals may be ignored by using the keyword SIG_IGN as the first argument of the trap
command. The "SIG" and underscore are not optional.

trap SIG_IGN {INT USRl USR2}

By default, most signals cause Expect to terminate ungracefully. So if you intend to send
signals to Expect, you should trap them. Scripts that terminate ungracefully do not have
their exit handlers run and can also leave the terminal in raw mode.

310 Exploring Expect

You can reset the default behavior of a signal to that defined by the operating system by
using the keyword S1G_DFL. If Expect's default behavior is different than S1G_DFL, I
will mention it when describing the details of each signal (later). Otherwise, you can
assume Expect's default behavior is precisely S1G_DFL.

As with "S1G_1GN", the "S1G_" prefix is required in "S1G_DFL".

trap SIG_DFL {INT USR1 USR2}

Signals In Spawned Processes
Most of this chapter covers signals occurring in the Expect process itself. But signals are
also of concern to spawned processes. Unfortunately, there is little Expect can do to
control the signal activity of a spawned process. In particular, there is no analog to the
expect command for signals.

Signals can, however, be sent. As I mentioned on page 308, the UNIX kill command
can be used to send arbitrary signals to a process.

Signals in spawned processes start out with the default behavior-corresponding to
S1G_DFL. Processes override this for signals that they expect and care about. However,
some unexpected signals may be delivered and the Expect programmer can control this
to some extent.

As an example, recall that I mentioned in Chapter 4 Cp. 101) that S1GHUP is delivered to
a process when the Expect process closes its side of the connection. The default
behavior of S1GHUP forces the spawned process to exit. Therefore, if you want the
spawned process to continue after closing the connection, you must arrange for the
signal to be ignored.

A signal is initially ignored in a spawned process by using spawn with the - ignore
flag followed by a signal name. The -ignore flag understands the same style of Signal
names as the trap command; however, the signal names must be separated, one per
flag. For example, the following command creates a sleep process immune to S1GHUP

and S1GP1PE.

spawn -ignore SIGHUP -ignore SIGPIPE sleep 1000

Unless the spawned process overrides this signal handling, ignored signals are also
initially ignored by children of the spawned process (and so on for children related in
any way to the spawned process). This is particularly important in the case of S1GHUP

because hangup signals are sent to the children of a spawned process when the
spawned process dies. This is analogous to the behavior of most shells where the
nohup command prevents processes from receiving a S1GHUP when the shell exits.

Signals 311

An explanation of the rationale for this is beyond the scope of this book, but it is related
to job control. Job control-aware processes such as shells do not have problems with
signals since they are generally carefully written with respect to signals, and they always
reset all of their signals upon initialization.

Notes On Specific Signals
Signals are highly nonportable. Their behavior varies quite a bit from one system to
another. Nonetheless, it is possible to state some generalizations about each one.

SIGINT-Software Interrupt Signal

SIGINT is an interrupt signal. It is usually generated by pressing !\C from the keyboard.
The specific key can be changed using stty. The signal can, of course, also be gener
ated via the kill command. If the SIGINT handler is set to SIG_DFL, a SIGINT will
cause Expect to die without evaluating exit.

By default, Expect traps SIGINT and defines it to call exit. This association is defined
with the command "trap exit SIGINT", which is evaluated when Expect starts. If
you redefine the exit procedure, the trap will invoke your exit. t

If Expect is in raw mode, the !\C will not automatically generate a SIGINT but will
instead be handled like any other character. For example, interact implicitly puts the
terminal in raw mode so that a !\C is sent to the spawned process. You can define a
pattern to match !\C and generate a SIGINT using kill, but that is not common prac
tice and would be confusing to users.

In Chapter 9 (p. 223), I described how the debugger is enabled if Expect is started with
the - D flag. Part of what - D does is to redefine the behavior of SIGINT as follows:

trap {exp_debug 1} SIGINT

Pressing !\C will then invoke the debugger rather than causing Expect to exit. If you
want to redefine SIGINT so that it performs some other action (and does not exit), you
can have the best of both worlds by defining it only if the debugger is not active:

if ! [exp_debug] {trap myproc SIGINT}

The procedure myproc will only be called when the debugger is not active. If the
debugger is active, !\C will invoke the debugger.

t The exp_exi t command is an alias for Expect's exi t. You should either invoke exp_exi t from your exi t
or you should change the trap to invoke exp_exit. This will make sure that the terminal modes are reset cor
rectly. I will describe the "exp_" aliases in more detail in Chapter 22 Cp. 515)

312 Exploring Expect

There is nothing special about using SIGINT to invoke the debugger. This is just
common practice. You can associate the debugger with no interrupts, a different inter
rupt, or several different interrupts. For example, to associate the debugger with both
SIGUSRl and SIGUSR2:

trap {exp_debug l} {SIGUSRl SIGUSR2}

While Expect comes with a debugger, you are free to use a different one, arranging it so
that -D calls another routine on SIGINT. To do this, define the environment variable
EXPECT_DEBUG_INIT. If this variable is defined, it is evaluated instead of the default
trap definition for SIGINT. In fact, you are not limited to defining a handler for
SIGINT. You can define it to be any command you want.

SIGTERM-Software Termination Signal

SIGTERM is similar to SIGINT except that SIGTERM usually implies that the process
should clean itself up and exit. Expect defines SIGINT to do this initially, but SIGINT

is frequently redefined to do other things that allow the process to continue.

Expect's default definition of SIGTERM is:

trap exit SIGTERM

If the SIGTERM handler is set to SIG_DFL, SIGTERM will cause Expect to die without
evaluating exi t.

SIGQUIT- Quit Signal

SIGQUIT is similar to SIGTERM; however, SIGQUIT is not usually caught. Instead,
SIGQUIT provides a simple and reliable way to kill an Expect process. This is very
useful if the script (or perhaps even Expect) has a bug and you want to stop the process
as soon as possible. When the Expect process dies, a file called core is written to the
current directory. The core file provides a representation of what was in memory when
the SIGQUIT was received. With a C debugger, it is possible to look at this and see
what was going on.

When in cooked mode, SIGQUIT is usually generated by 1\\.

SIGKILL -Kill Signal

SIGKILL cannot be caught. It provides the surest way of killing an Expect process
(short of rebooting). Do not worry about the fact that you cannot catch SIGKILL. It

should only be used in the event that the process has already made some obvious error
or is wildly out of control. There is no point in trying to clean up gracefully as if the

Signals 313

process actually knew what it was doing. If it did, it would not be getting a SIGKILL in
the first place.

SIGCHLD-Child Termination Signal

SIGCHLD is generated on the death of a child process. By default, the signal has no
effect on an Expect process. That means you do not have to define a SIGCHLD handler.
However, a SIGCHLD handler is useful if you want to get the exit status but do not want
to block the script while waiting for the spawned process.

Some systems claim SIGCHLD is spelled SIGCLD but Expect insists that it be spelled
SIGCHLD (as per POSIX) for portability. Take this as an omen. Expect goes to great
lengths to make SIGCHLD work the same on all systems, but it is still a good idea to
avoid trapping or ignoring SIGCHLD to avoid portability problems.

A signal handler for SIGCHLD must call wait within the signal handler. The wait
command will fail if no child is waiting, if another signal handler fails during its execu
tion, or if other reasons not having to do with a particular process occur. Otherwise,
wai t returns a list describing a process that was waited upon.

The list contains the process id, spawn id, and a 0 or -1. A 0 indicates that the process
was waited upon successfully. In this case, the next value is the status.

expectl.3> wait
13866 4 0 7

In this sample output, the process id was 13866 and the spawn id was 4. The 0 indicates
the process was waited upon successfully and that the next value (7 in this example)
was the status returned by the program.

If the spawned process ends due to a Signal, three additional elements appear in the
return value. The first is the string CHILDKILLED, the second is the C-style signal name,
and the last is a short textual description. For example:

expectl.l> spawn cat
spawn cat
2462
expectl.2> exec kill -ILL 2462
expectl.3> expect; wait
2462 4 0 0 CHILDKILLED SIGILL {illegal instruction}

If the third element returned by wai t is -1, then an error occurred and the fourth
element is a numeric error code describing the error further. Additional elements
appear in the return value following the style of Tcl's errorCode variable. For
example, if a system error occurred, three additional elements appear. The first element

314 Exploring Expect

is the string "POSIX". The second element is the symbolic name of the errno error
code. The third element is a short textual description of it.

SIGCHLD is unusual among signals in that a SIGCHLD is guaranteed to be delivered for
each child termination. (In comparison, if you press !\C three times in a row, you are
guaranteed only that at least one SIGINT will be delivered.) Therefore, the SIGCHLD

handler need not call wai t more than once-the handler will be recalled as necessary.

No assumption can be made about the ordering of processes to be waited on. In order
to wait on any spawned process, use the flags "-i -1". Since SIGCHLD can be gener
ated for any child (not just spawned processes), such a wait should be embedded in a
catch so that other deaths can be ignored.

Here is a sample SIGCHLD handler.

trap {
if [catch {wait -i -I} outputJ return
puts "caught SIGCHLD"
puts "pid is [lindex $output OJ"
puts "status is [lindex $output 3J"

SIGCHLD

Here is an example using the handler above to catch the completion of the date
command. Notice that the output begins where the next command is about to be typed.

expect2.2> spawn date
spawn date
5945
expect2.3> caught SIGCHLD
pid is 5945
status is 0

SIGHUP-Hangup Signal

SIGHUP is named after "hang up" to denote the historical action of hanging up the
phone line connecting a user to a computer. Most shells preserve this ritual by sending
a SIGHUP to each process started by the shell just before the shell itself exits.

Thus, if a user logs in, starts an Expect process in the background, and then logs out,
SIGHUP will be sent to the Expect process.

By default, SIGHUP causes the Expect process to die without executing exit. If you
want the Expect process to continue running, ignore SIGHUP:

trap SIG_IGN SIGHUP

For analogous reasons, Expect sends a SIGHUP to each spawned process when Expect
closes the connection to the process. Normally, this is desirable. It means that when

Signals 315

you call close, the spawned process gets a signal and exits. If you want the process to
continue running, add the flag "-ignore HUP" to the spawn command. If the process
does not reset the signal handler, then the SIGHUP will be ignored.

SIGPIPE-Broken Pipe Signal

SIGPIPE is generated by writing to a pipe after the process at the other end has died.
This can happen in pipelines started by Tel's open command, and for this reason
SIGPIPE is ignored (SIG_IGN) by default. If the handler is set to SIG_DFL, the Expect
process will die without executing exi t.

SIGWINCH- Window Size Change Signal

A SIGWINCH signal can be generated when the window in which Expect is running
changes size. For example, if you are using X and you interactively resize the xterm
within which an Expect script is running, the Expect process can receive a SIGWINCH.

By default, Expect ignores SIGWINCH. The SIG_DFL and SIG_IGN handlers both
cause SIGWINCH to be ignored.

Some spawned processes are not interested in the size of a window. But some
processes are. For example, editors need this information in order to know how much
information can fit in the window.

Initially, a spawned process inherits its window size by copying that of the Expect
process. (If the Expect process has no associated window, the window size is set to
zero rows and zero columns.) This suffices for many applications; however, if you wish
to resize the window, you have to provide a SIGWINCH handler.

In some cases, it is possible to send a command to the spawned process to inform it of
the window size change. For example, if the spawned process is an rlogin that in turn
is speaking to a shell, you can send it a stty command. In practice, however, the
spawned process is almost certainly going to be something that does not provide any
direct interface (or even an escape) to the shell. Fortunately, a simpler and more
portable solution is possible.

All that is necessary is to change the window size of the spawned process. The
following command establishes such a handler.

trap {
set rows [stty rows]
set cols [stty columns]
st~y rows $rows columns $cols < $ spawn_out (slave, name)

WINCH

316 Exploring Expect

The "stty rows" returns the number of rows of the local window, and "stty
columns" returns the number of columns. (The assignments are not necessary, of
course, but the resulting code is a little more readable.) The final stty command
changes the window size of the spawned process. When stty changes the window
size, a SIGWINCH is automatically generated and given to the spawned process. It is
then up to the spawned process to react appropriately. For example, in the case of
rlogin, the spawned process (the rlogin client) will fetch the new window size and
send a message to rlogind (the rlogin server), informing it of the new size. The
rlogind process, in turn, will set its window size, thereby generating a SIGWINCH

which can then be detected by any application running in the remote session.

This SIGWINCH handler must have the true name of the pty of the spawned process. As
written, the example handler assumes the pty name has been left in
spawn_out (slave, name) . However, this variable is reset by every spawn
command, so you probably want to save a copy in another variable and refer to the
other variable in the handler.

SIGTSTP- Terminal-Generated Stop Signal
SIGSTOP-Kernel-Generated Stop Signal
SIGCONT- Continue Signal

By default, jf the suspend character (normally /\2) is pressed while Expect is in cooked
mode, Expect stops (some people say "suspends"). If a shell that understands job
control invoked Expect, the shell will prompt.

1% expect
expect1.1> AZ

Stopped
2%

Expect is oblivious to its suspension (although when it is restarted, it may notice that
significant time has passed).

If you want to perform some activity just before Expect stops, associate a handler with
SIGTSTP. The final command in the handler should send a SIGSTOP. SIGSTOP

cannot be trapped and necessarily forces Expect to stop. Expect does not allow you to
define a trap for SIGSTOP.

For example, if a script has turned echo off, the following handler changes it back
before stopping.

trap {
puts "I'm stopping now"
stty echo

Signals 317

exec kill -STOP [pidl
SIGTSTP

When interact is executing, SIGTSTP cannot be generated from the keyboard by
default. Instead, a /\Z is given to the spawned process. However, it is possible to get the
effect of suspending Expect when pressing /\Z. The following command does this by
having the Expect process send a stop signal back to itself. It is triggered by pressing a
tilde followed by a /\Z. (I will describe these features of interact in Chapter 15 Cp.
344).) Although the tilde is not necessary, it allows a bare /\Z to still be sent to the
spawned process conveniently.

interact -reset -\032
exec kill -STOP [pidl

The -reset action automatically restores the terminal modes to those which were in
effect before the interact. If the modes were not cooked and echo, you will have to
explicitly set them with another command before stopping. I will describe this in more
detail in Chapter 15 Cp. 333).

When Expect is stopped, it can be restarted by typing fg from the shell or by sending a
SIGCONT. Common reasons to catch SIGCONT are to restore the terminal modes or to
redraw the screen. If SIGCONT is not caught, it has no other effect than to continue the
process.

If Expect was stopped from an action using the -reset flag within interact, the
terminal modes are restored automatically. In all other cases, you must restore them
explicitly.

SIGUSRI And SIGUSR2-User-Defined Signals

SIGUSRI and SIGUSR2 are signals that have no special meaning attached to them by
the operating system. Therefore, you can use them for your own purposes.

Of course, your purposes must still fit within the capabilities of signals. For example,
you must not assume that signals can be counted. After a signal is generated but before
it is processed by Expect, further signals of the same type are discarded. For example,
pressing /\C (and generating SIGINT) twice in a row is not guaranteed to do any more
or less than pressing it once. SIGUSRl and SIGUSR2 work the same way. Once the
signal handler has run, additional signals of the same type can again be received.

The SIGUSRl and SIGUSR2 signals by themselves carry no other information other
than the fact that they have occurred. If you generate one of these two signals for
different reasons at different times, you also need some mechanism for allOWing the
receiving process to know what the reason is, such as by reading it from a file.

318 Exploring Expect

With this lack of ability to communicate extra information, it is rather mysterious that
only two such user-defined signals exist. It is similarly mysterious that more than one
exists. Chalk it up to the wonders of UNIX.

By default, SIGUSRl and SIGUSR2 cause Expect to die.

Other Signals
Many other signals exist but it is generally not useful to catch them within an Expect
script for their intended purposes. You might consider using other signals as additional
user-defined signals, but the details are beyond the scope of this text.

One signal specifically worth mentioning is SIGALRM. SIGALRM is reserved to Expect
and must not be sent or generated artificially. Expect does not allow it to be trapped.

While not shown here, other signals are all named in the same fashion. See your /usr /
include/ signal. h file for more information.

The signal. h file also defines the mapping between names and signal numbers (see
page 307). The minimum signal number is 1. The -max flag causes the trap command
to return the highest signal number. Identifying the signals by number is particularly
convenient for trapping all signals. The trap command is nested in a catch since
some of the signals (i.e., SIGSTOP) cannot be caught.

for {set i 1} {$i<=[trap -max]} {incr i}
catch {trap $handler $i}

After executing this loop, selected signals can be redefined appropriately.

When And Where Signals Are Evaluated
Signal handlers are evaluated in the global scope. Global variables are directly acces
sible. Local variables in current procedures are inaccessible.

Ideally, handlers are evaluated immediately after the signals are received. However, in
reality there may be a delay before evaluating handlers in order to preserve the consis
tency of the internal data structures of Expect.

Generally, you can count on Signal handlers being evaluated before each Tel command.
Consider the following command:

set a [expr $b*4]

A signal that arrives just prior to this line in a script has its handler evaluated immedi
ately. If a signal arrives while expr is executing, expr completes, the signal handler is

Signals 319

run, and then the set command is executed. If a signal arrives while set is executing,
the handler is deferred until just before the next command in the script.

Signal handlers are also evaluated during most time-consuming operations such as I/O.
For example, if an expect command is waiting for a process to produce output, signal
handlers can be executed.

Because signals are handled between each command and in the middle of long-running
commands, delays in handling signals should not be significant and you should not be
able to notice them even when using Expect interactively. There is one exception
however. If a signal handler is in the process of being evaluated, no other signal
handlers can be evaluated. For example, the following fragment prints acb after a !\C is
pressed.

trap
send_user lib"

} SIGUSR1

trap {

send_user II all

exec kill -USR1 [pidl
sleep 10
send_user lIe ll

SIGINT

The reason this fragment behaves the way it does is as follows: A!\C generates a
SIGINT. The first line prints a. Then kill generates a SIGUSRl signal back to the
Expect process. But because a Signal is currently being processed, the SIGUSRl is not
processed. Instead, Expect continues with the sleep command, causing the script to
sleep for 10 seconds. Then c is printed. When the trap finishes, Expect processes the
SIGUSRl trap. This simply prints out b and returns. Thus, the total effect is to print acb.

Keep signal handlers short (in duration) to avoid these kinds of surprises. Even better,
do not depend on the ordering of signals. If you find yourself thinking very hard about
how a script is going to react to a number of signals that arrive very close to one
another, you probably should be using some other communications mechanism instead
of Signals in the first place.

If you are just using Expect as an extension, it is possible that signals may be evaluated
in a different way than described here. See Chapter 22 Cp. 515) for further information.

Avoiding Problems Caused By Signal Handlers

When designing signal handlers, consider the consequences of evaluating them
between any commands in your program. For example, if you manipulate a data struc
ture from within a signal handler while the data structure is Simultaneously being

320 Exploring Expect

manipulated outside of the handler, your data structure may end up partly with new
values and partly with old values.

To avoid this kind of problem, stick to simple commands set as "set sigint 1", indi
cating that the signal handler has been run. Outside of the signal handler, check the
sigint variable when it is safe to do so and take the relevant action at that time.

Another type of problem caused by signal handlers is that they can disturb time-sensi
tive operations. For example, a signal handler can cause an expect command to
timeout if the handler takes sufficiently long to execute.

These are just a sampling of the difficulties of using signals. Further discussion of these
tricky problems is beyond the scope of this book but may be found in most advanced
UNIX programming texts.

Overriding The Original Return Value
If Expect is evaluating a Tel or Expect procedure or command when a signal occurs, it is
possible to change the return code that would otherwise be returned. Given a -code
flag, the trap command substitutes the return code of the trap handler for the return
code that would have been returned. For example, a break command in the handler
causes the interrupted loop to break. A return command causes the interrupted proce
dure to return. And a normal return causes a command that is failing to succeed.

Clearly, this can be very confusing and disruptive to normal script flow, so you should
avoid using it if possible. However, there are valid uses. For example, you can force an
interpreter command to stop what it is doing and reprompt. This can be done on
/\C using the following command:

trap -code {
error unwound -nos tack

} SIGINT

The error command generates an error and the -code flag forces the error to override
whatever code would have been returned. The precise handling of error in this
context is further described in Chapter 9 (p. 228).

If no command is in execution when the signal occurs, the return code is thrown away.
In vanilla Expect (with no change from the way it is distributed), a command is always
in execution, but when using Expect with Tk for example, there can be times when no
command is in execution.

Signals 321

Using A Different Interpreter To Process Signals
This section is only useful if you have multiple interpreters in a single process. If you
are using vanilla Expect, then you can skip this section.

By default, the signal handler is evaluated in the interpreter in which the trap
command was evaluated. It is possible to evaluate the handler in the interpreter active
at the time the signal occurred by using the -interp flag.

For example, if you are running several simulations whose speeds are controlled by the
variables speed (one per interpreter), you could reverse the speed by pressing /\C with
the following definition in effect:

trap -interp
set speed [expr -$speed]

} SIGINT

Exit Handling
It is often useful to execute commands when a script is about to exit. For example, you
might want to make sure all temporary files are deleted before exiting. A list of
commands can be declared in such a way that it is automatically executed when the
script exits. Such a list is called an exit handler.

To declare an exit handler, invoke the exi t command with the -onexi t flag followed
by the commands to execute. The commands are saved and will be invoked later when
the script is about to exit.

exit -onexit {
exec rm $tmpfile
puts "bye bye!"

The exit handler runs whether a script exits by an explicit exi t command or by
running out of commands in a script. Signals which normally call exit, in turn run the
exit handler. Thus, if you press /\C and have not changed the default action for SIGINT,

the exit handler will be called. Signals that cause an ungraceful exit (i.e., core dump) do
not execute the signal handler.

There are a few things which do not make sense inside an exit handler. Redefining the
exit handler inside the exit handler does not cause the new exit handler to execute. No
attempt is made to execute the exit handler twice. If an error (without a catch) occurs
in the exit handler, there can be no recovery.

322 Exploring Expect

The exit handler can be removed and queried in the same way as signals. An empty
command removes the exit handler. If the -onexi t flag is given with no handler at all,
the current handler is returned.

expectl.l> exit -onexit foo i# set
expectl.2> exit -onexit i# query
foo
expectl.3> exit -onexit {} i# unset
expectl.4> exit -onexit i# query
expectl.S>

Exercises
1. Write a procedure that defines reasonable default handlers for all signals.

2. Write a script that sends signals back to itself. Do the signals arrive while the kill
command is still executing? After? Long after? What happens when the system is
heavily loaded?

3. On page 319, I described several problems that signals can cause even when they are
caught and handled. Do these problems apply to any example scripts in this book?

4. Write a script without using signals. Reread the first sentence in this chapter.

In This Chapter:

• Typing Shortcuts

• Controlling
Interactions

• Patterns and
Actions

Interact

In earlier chapters, interact was used in a very simple way. In reality, the interact
command simplifies many tasks and opens up a world of new problems that can be
solved. In this chapter, I will describe the more common uses for interact. In the
next chapter, I will focus on using interact with multiple processes.

The interact Command
In Chapter 3 (p. 82), I introduced the interact command in the context of a script to
automate ftp. The script carried out the initial part of the procedure-entering the user
name and password-and then returned control to the user by calling interact.

The interact command is much more flexible than that example demonstrated.
interact can also:

• execute actions when patterns are seen from either a user or a spawned process

• allow the user to take control of a spawned process, and return control to the script
for further automated interaction, any number of times

• suppress parts or all of an interaction

• connect two or more spawned processes together, pairwise or in other
combinations

Many of the things interact does can also be done by expect, but interact can
do them more easily and efficiently. In this sense, interact is a higher-level
command than expect. In other ways, expect and interact are duals. They do the
same thing but have a very different way of looking at the world. As I explain
interact, I will frequently bring up expect to compare the similarities and contrast
the differences between the two.

323

324 Exploring Expect

In its simplest form, the interact command sets up a connection between the user
and the currently spawned process. The user's terminal is put into raw mode so that the
connection is transparent. It really feels like the user is typing to the process.

In its basic form, the interact command connects a user and spawned process.

If the spawned process exits, the interact command returns and the next line of the
script is executed. In a simple script such as the anonymous ftp script (aftp), the
interact command is the last line in the script, so the script simply exits when
interact does.

Simple Patterns
Like the expect command, the interact command can execute actions upon
detecting patterns. However, interact and expect behave very differently in many
respects.

The syntax for specifying patterns and actions is similar to expect. Patterns and actions
are listed as pairs of arguments. For example, the following interact command
causes the date to be printed if -d is typed by the user.

interact "_dO {puts [exec date]}

By default, a matched pattern is not sent on to the process. (Later, I will show how to
change this behavior.) Thus, in this example, the process never sees the -d.

Unlike the expect command, interact continues after matching a pattern and
executing an action. interact continues shuttling characters back and forth between
the user and process. It also continues matching patterns. In the example above, the -d
pattern can be matched again and again. Each time, the action will execute.

As with the expect command, additional pattern-action pairs may be listed. Also, all
the arguments may be surrounded by a pair of braces, provided they do not all appear

Interact 325

on the same line as the command. The -brace convention from the expect
command is also supported. Here are two ways of expressing the same command:

interact "_dO {exec date} "_en {eproc}

interact
"_dO {exec date}
"_en {eproc}

There are all sorts of useful effects that can be accomplished with these patterns. A very
simple one is translating characters. For example, one of the problems with the UNIX
terminal driver is that you can have only one erase character. Yet, it is often convenient
to have both the backspace key and and the delete key generate erase characters
especially if you frequently switch from using one badly-designed keyboard to another.
Assuming that you have defined delete as the erase character already (using stty), the
following script translates the backspace character to a delete character. This effectively
provides you with two erase characters.

interact "\b" {send "\177"}

This technique is often useful when you have to connect (e.g., telnet) to another
computer that does not support remapping of keys at all. If you are used to pressing
delete but the remote system wants to see backspace, just reverse the above script:

interact "\177" {send "\b"}

Single character translations are not the only possibility. For example, the following
interact command maps all the lowercase keys to their Dvorak equivalents. There is
no algorithmic mapping so each translation is explicitly spelled out.

interact {

IIq" {send " I II } IIW" {send II I " } "e" {send II • " }

IIrll {send "pO } lit I! {send "yO } "y" {send "f" }
UUII {send "gO } "i" {send "ell} 110 11 {send fir" }

lip 11 {send "I"} liS" {send "Oil} "d ll {send "e" }
Ufl! {send IIU" } "gil {send "ill} I1hll {send "dO }
"j 11 {send "h" } "k" {send IItll} "111 {send lin" }
II; 11 {send IISII} 11 z" {send 11 ; 11 } "XII {send "q" }
"c" {send " j " } "V" {send Ok" } lib II {send "x" }
IInll {send "b" } " " {send IIWIl } " " {send "v" } ,
11 / II {send "zIT}

Patterns can differ in length. For example, you can make abbreviations that automati
cally expand to their longer forms. Imagine that you are a physiologist writing a report
on "glomerular nephritis". Rather than typing this phrase literally each time, you can
define a few keystrokes which will expand into the full phrase.

326

interact
"_gn"
"-seal"
lI adrn"

"relief"

Exploring Expect

{send "glomerular nephritis"}
{send "supercalifragalisticexpealidocious"}
{send "antidisestablishmentarianism"}
{send "rolaids"}

The effect of this is very similar to that offered by editors such as vi's auto abbreviation
mode. However, unlike these programs, interact's abbreviations work inside of any
program that is running underneath Expect. If you spawn a shell and then interact with
it, any program started from that shell is able to use these abbreviations.

Incidentally, I often start interact patterns with some unusual character such as a
tilde (-). It is a good idea to use a special character like this. It protects you from
unthinkingly entering a sequence for which interact is watching. Characters or
sequences like these are knowns as escapes. Unfortunately, there is no best escape char
acter or sequence. Tilde, for example, is often used in specifying home directories. If
-gn was someone's home directory, for instance, I would not be able to type it using
the interact command above. It would always be intercepted and translated to
glomerular nephritis.

One solution is to "double up" the escape to generate the same literal escape. Adding
the following line to the example above guarantees that you can always be able to send
a tilde followed by anything else by just typing an extra tilde first.

{send "-"}

With this addition, you can send -gn by entering --gn even though -gn is a pattern
itself.

If you cannot give up a single character, sometimes two or even more characters work
better. It is also possible to mix escapes. For example, some can start with one tilde,
others with two tildes. And it is not necessary that all escapes be the same. For instance,
some can start with % or -, and yet others can have none at all as in the Dvorak script.

Actually, interact does not know anything about escapes. To it, characters are just
characters. While I have been using the term "patterns", interact's default patterns
have no wildcard matching at all and work in the style of the exact strings supported by
the -ex flag in the expect command. For example, the following command runs
starproc only when an asterisk is typed. No other character matches the "*".

interact "*,, starproc

Backslash is still interpreted directly by Tel and therefore retains its special properties.
For example, \r matches a return, \b matches a backspace, and \ followed by one to

Interact 327

three octal digits matches a character specified by its octal value. A backslash itself can
be matched by two backslashes or enclosing it in braces. Here are some examples:

interact "\ \" proc ;# match backs lash
interact U\r" proc ;# match return
interact "\\r" proc ;# match backs lash and r character
interact "\\\r" proc ; # match backs lash and return

With these interact patterns, there is no feedback analogous to expect_out to
record what matched. The reason is that you can always tell what matched. The charac
ters only match themselves, so the patterns automatically define the resulting match.

Much like the expect command, the interact command also supports regular
expressions. These do provide feedback to the application; however, regular expres
sions are generally overkill for reading user input. More importantly, matching
complicated user input in raw mode is very hard; users expect to be able to edit their
input but interact simply passes the editing keystrokes on to the pattern matcher.
For this reason, it usually makes more sense to detect these situations before they
happen-by disabling raw mode temporarily and using expect_user. I will provide
examples of this later on.

Exact Matching
This style of matching that I have used so far is called exact matching. It is simple to
use, but you must take precaution that your patterns do not look like any of
interact's flags. Rather than memorizing them, the simplest way to prevent this from
happening is to use the -ex flag. This is especially useful when patterns are stored in a
variable.

interact
-ex $var actionl
-ex "-ex" action2

The first pattern above matches whatever is stored in the variable var. The second
pattern matches the string -ex itself. Without the -ex flag, interact would look for
action2.

Most of the time, you will not need to use -ex and you should not feel obliged to use it.
The -ex flag is only necessary to match patterns that would otherwise be accepted as a
keyword (e.g., eof, timeout) or a flag (any argument starting with a hyphen).

328 Exploring Expect

Matching Patterns From The SPawned Process
Output from the spawned process can be matched by using the -0 flag. (Think of the
"0" as standing for the "opposite" or "other direction".) The following command trans
lates unix into eunuchs, vms into vmess, and dos into dog.

interact {
-0

"unix" {send_user "eunuchs"}
"vms" {send_user "vmess"}
"dos" {send_user "dog"}

All the patterns before the -0 apply to the user keystrokes. All the patterns after the -0

apply to the spawned process. For example, the following command is similar to the
previous one except that if the user accidentally types one of the humorous nicknames,
it is translated back to the correct name. Notice that the first three actions use send to
send to the spawned process. The latter three actions use send_user to send to the
user.

interact
" eunuchs" { send "unix"}
"vmess" {send "vms"}
"dog" {send "dos"}
-0

"unix" {send_user "eunuchs"}
"vms" {send_user "vmess"}
"dos" {send_user "dog"}

This example is artificial and may not seem to make a convincing case for using -0. In
practice, matching output from a spawned process almost always requires using regular
expressions, in part because process output can be very verbose.

Earlier I said that regular expressions are hard to use from interact. That is only true
when reading keystrokes from users. Spawned processes, on the other hand, never do
editing so the associated complexities disappear. Regular expressions are an extremely
convenient way of matching output from spawned processes. I will describe regular
expressions in the next section.

Regular Expressions
The interact command provides the ability to match regular expressions just like the
expect command. The syntax is identical. The pattern is preceded by the -re flag.

Interact 329

For example, the following sends an X each time the user presses a tilde followed by
any other character.

interact -re "-." {send "X"}

The tilde matches a tilde while the period matches any other character. Other special
characters work as before.

When using regular expressions, it is possible to find out what characters were typed.
Similar to the expect command, the interact command writes its matches to the
array interact_out. If the characters -abc were entered in the previous example,
interact_out (0 I string) would be set to -a. The bc would be sent on to the
spawned process and would not be saved anywhere.

As before, the -indices flag causes indices to be saved as well. Using this flag, the
complete set of assignments would be:

set interact_out (O,start) "0"
set interact_out (O,end) "1"
set interact_out (O,string) "-a"

The number 0 plays the same role that it did in the expect command. Parentheses can
be used to pick out submatches. Matching strings are stored in interact_out using
the indices 1 through 9.

There is no buffer element in interact_out as there is in expecCout. The reason
for this is that the interact command processes unmatched characters as they arrive.
So by the time a match occurs, unmatched characters are no longer present. Hence,
matches always start with the first character remaining in the output buffer. I will revisit
this concept shortly (page 331). For now, just remember that the buffer element of
interact_out is never written. In theory, it would always have the same value as the
"0, string" element so the buffer element is redundant and omitted for efficiency.

A simple use for interact_out is shown in the next script, written to aid a person
who was unable to press two keys at the same time. Uppercase letters were not a
problem-the user could press the shift-lock key, then the letter, then the shift-lock
again to go back to lower case. But control characters could not be entered in a similar
fashion because there was no way to lock the control key down.

I used a two character escape-after entering a / and \, the next character would be
turned into its control equivalent. This worked out well. I did not want to reserve a
single character as an escape mechanism-all the single characters might have to be
entered, and it was very intuitive to remember since the sequence / \X graphically looks
like I\X, a common way of writing "control-X" in text.

330

spawn $env(SHELL)
interact -re "/\\\\(.)"

scan $interact_out(l,string) %c i
send [format %c [expr $i-96]]

Exploring Expect

; # match /\char

The first command spawns the user's requested shell. The second command performs
the interaction with the appropriate regular expression. The pattern / \ \ \ \ (.) matches
the three character sequences beginning with / and \. The four backslashes are
required to match a literal backslash because inside double-quotes, Tel represents a
backslash by two backslashes and the regular-expression pattern matcher does the
same thing. (See Chapter 4 (p. 91) for a complete explanation of this.)

The remaining commands are executed if there is a match. The variable
interact_out (1, string) contains the character itself. Tel's scan command
converts the character to its integer equivalent in ASCII. Subtracting 96 converts a lower
case value to a control value, and then format converts the integer value back to an
ASCII character. Finally, the send command sends it on to the spawned process.

This all looks complicated but it works nicely and executes quickly. The script was a
very short solution for the problem. This technique can be applied to many other prob
lems. As an exercise, rewrite the Dvorak script (shown earlier) so that it uses a single
action instead of one for each possible character.

As I mentioned earlier, regular expressions are used more often to match output from a
spawned process than from a user. A simple but common use is to detect and deal with
system inactivity monitors. For example, a VMS system used by a colleague of mine logs
users out after 15 minutes of inactivity in the top-level shell (called "DCL"). DCL starts
warning after 10 minutes of inactivity. The warnings look like this:

%DCL-W-INACT, session inactive for more than 10 minutes - you will
be logged out in 5 minutes.

There is no way of disabling this behavior or message from VMS. To avoid the
messages, they use the following interact command:

interact -0 -re "%DCL-W-INACT.*\r\n"
send "show time\r"

The regular expression matches the warning message whenever it appears. The
matched characters themselves are discarded. The . * \ r \n near the end allows it to
absorb all of the error message without specifying the entire text. Next, a very simple
command (show time) is sent which resets the inactivity timer.

The result is that users see timestamps every 10 minutes when they are idle. But they
see no irritating messages, and more importantly, they are not logged out automatically.

Interact 331

With one additional expect command in the action (expect -re ". *$prompt II),
the timestamp and following prompt could be absorbed as well. This might be useful if
you are trying to build a seamless application for users who should not have to know
what is going on behind the scenes.

The talk program sends messages to the console window describing the user
requesting the connection. A typical message looks like this:

Message from Talk_Daemon@lobotomy at 0:55 ...
talk: connection requested by bimmler@research.
talk: respond with: talk bimmler@research

This message can be captured using the -console flag described in Chapter 13 (p.
300). The following script uses this flag and the resulting message to automatically start
an xterm that mns a talk session back to the original user.

spawn -console $env(SHELL)
interact -0 -re "talk: respond with: talk (\[A \rJ*)\[\rJ" (

exec xterm -e talk $interact_out(l,string) &

The pattern is not quite trivial. What is not apparent when looking at the message is that
talk may pad the username with spaces. Hence, the pattern has to go to some effort to
allow the username to terminate at either a space or return character. Can you think of a
better pattern for this?

What Happens To Things That Do Not Match
As characters are entered, they are compared to the patterns. Characters that do not
match any of the patterns are sent to the spawned process. This includes characters
before and after any matches. Any characters involved in a match are not sent to the
spawned process. Consider the following interact command, which sends "hugs
and kisses" if it sees XOx.

interact "XOX" {send "hugs and kisses"}

If the user types AXOXB, the spawned program receives "Ahugs and kissesB". The
A does not match so it is sent literally. The XOX is replaced by the phrase "hugs and
kisses". And the trailing B does not match so it is sent literally.

If the user types AXOYB, the spawned program receives AXOYB. The pattern XOX cannot
match any part of what was entered, so it is all sent on.

If the user types XOXO, the spawned program receives "hugs and ki s sesO". The first
XOX matches so it is translated and sent on, but the 0 that remains cannot possibly
match XOX so it is sent literally.

332 Exploring Expect

If the user types XOXOX, the spawned program receives "hugs and kissesO"
following the logic of the previous case. The trailing X can match the pattern XOX if
another OX is entered so the interact command waits for more characters to be
entered before deciding whether to send on the X or not. Suppose the user instead
enters Z. In this case, the X can no longer match so interact sends the string XZ to
the spawned process. What would have happened if the user entered another X rather
than a Z? The new X would be eligible to match but the previous could no longer match
so the previous X would be sent to the spawned process. The user will have typed
xoxoxx and the spawned process will have received "hugs and kissesOX". The
last X remains with interact waiting for more characters.

To summarize, the interact command buffers input until it can decide whether char
acters can or cannot match. If they cannot match, they are removed from the buffer and
sent to the spawned process. If they match, their associated action is executed and the
characters are removed from the buffer. And if they might match if more characters
arrive, nothing at all happens-the characters simply remain buffered. This buffering
behavior allows interact to do "the right thing" no matter how slowly or quickly char
acters are entered.

More Detail On Matching
If two or more patterns can match the same output, only one action will be executed.
The action corresponds to the pattern that appears first in the command. This is just the
way the expect command works. Here is an example that has both an exact pattern
and a regular expression. When abc is entered, actionl is executed while action2
is executed ifaxc is entered. If the patterns were reversed, the exact pattern would
never match since the regular expression would always match first.

interact {
"abc" actionl
-re "a.c" action2

Pattern matching works differently in one respect between expect and interact.
The expect command attempts to match a pattern beginning at every place in the
input. Only after failing to match anywhere will expect try another pattern. In
contrast, if interact fails to match a pattern starting from a particular place in the
input, it then tries the next pattern beginning at the same place in the input.

The difference is only noticeable in a situation where two or more patterns can match in
the input. This does not normally occur in user input but can be common when making

Interact 333

substitutions in spawned process output, such as when using -0. Earlier I showed an
example of -0. Here it is again:

interact {
-0

"unix" {send_user "eunuchs"}
"vms" {send_user "vmess"}
"dos" {send_user "dog"}

Now consider what happens when a spawned process produces the following output:

This software runs on both vms and unix.

Both unix and vms appear in the output so both can potentially match. Although unix
is the first pattern listed, it appears later in the output so it does not match at first.
Instead, vms matches and its action is executed. The input from "This software" up
to "vms" is removed from the output and interact continues running. It then matches
unix and the corresponding action is executed. The resulting output looks like this:

This software runs on both vmess and eunuchs.

With the expect matching algorithm, vms would not have been matched. Reversing
the order of the patterns would change this behavior-allowing expect to match vms.
But then, expect would misbehave if the order of vms and unix were reversed in the
output.

There is no way to make expect work precisely as interact does and vice versa
which is partly why there are two different commands. Generally though, expect and
interact are used for very different types of interaction, and their algorithms are well
suited to their purpose. The expect command is primarily used to look for responses
or prompts where it is important not to be distracted by things in the middle that may
otherwise resemble patterns. In contrast, the interact command is not normally used
for recognizing prompts but instead makes substitutions wherever they appear.

Echoing
Normally, the interact command depends on the spawned process to echo charac
ters. For example, when you have spawned a shell and are interacting with it through
the interact command, all the printable characters that you type are echoed by the
shell. Nonprintable characters are not usually echoed back but instead invoke special
actions such as erasing previous characters or generating signals. As with echoing, this
special processing of nonprintables is also handled by the shell. The interact
command does no special processing. It just shuttles characters back and forth.

334 Exploring Expect

The interact command works the same way when matching patterns. That is, no
special action is taken to echo characters. However, because the characters are being
buffered and not sent on to the spawned process, you will not see them appear on your
screen. This is similar to the way the tip program works. tip does not echo its escape
character unless additional characters are entered that force the escape not to match any
known sequence.

For patterns that match short character sequences, the lack of echoing is rarely a
problem. In most cases, users do not need to see a single character being echoed before
they enter the next one. But patterns that are long enough (however you choose to
define this) can use some sort of feedback. A simple strategy is to echo the typed
characters.

By preceding a pattern with the -echo flag, interact echoes characters that match a
pattern. Partial matches are also echoed. This echOing is most useful with actions that
cause a local effect, such as modifying the behavior of a script. In this case, the user
might not otherwise get any feedback.

The following script behaves similarly to the UNIX script command, which records all
input and output in a file called typescript. However, this script also allows the user
to turn recording on and off by typing -r (to record) or -s (to stop recording). This can
be used to avoid recording things such as vi or emacs editor interactions in the middle
of a longer shell session. The script starts with recording disabled.t

spawn $env(SHELL)
catch {exec rm typescript}
interact {

"-s" {log_file}
"-r" {log_file typescript}

As is, the script gives no feedback when the user types -s or -r, nor when the actions
are executed. Adding -echo allows the escapes to echo.

interact
-echo "-s" {log_file}
-echo "-r" {log_file typescript}

Once patterns are completely matched, you can add any kind of additional feedback
you like. For example:

interact
-echo "-s" {

t The catch around the exec catches systems on which rm complains if no file is present. POSIX standardizes
the -f flag to prevent such a diagnostic. but some systems complain anyway. Use catch to be maximally por
table.

Interact

send_user "\n stopped recording\n"
log_file

-echo "-r" {
send_user "\n recording\n"
log_file typescript

335

The \n at the beginning of each send_user puts the message on another line, but you
can take advantage of what is already on the screen to accomplish interesting effects.
For example, you can incorporate the echoed keystrokes into new messages by writing
the send_user commands as follows:

send_user "topped recording\n" ;# prefaced by "s"
send_user "ecording\n" ;# prefaced by "r"

This kind of thing can be very cute but generally leads to torturous code, so I only
recommend it in very simple cases.

Avoiding Echoing
A problem with -echo is that a user may start entering a pattern that echoes but then go
on to enter other characters that do not match the remainder of the pattern. The buff
ered characters plus the new ones will be sent to the spawned process. Assuming that
the spawned process echoes them, if a pattern using -echo was causing them to echo
already, the user will see characters echoed twice.

For example, in the recording script above, suppose the user enters -q. The tilde
matches and is echoed by Expect. The q does not match, so the tilde and q are sent to
the spawned process and are likely echoed by the spawned process. Unfortunately,
there is no trivial way to "unecho" a character without getting involved in knowing how
to erase characters on the screen as well as what was on the screen in the first place. So
the user ends up seeing "--q"-one tilde too many.

There is no perfect solution for this problem except to avoid it to begin with (perhaps
by not using -echo at all). But the next best possibility is to choose patterns that are
less likely to match at any point unless the user is definitely entering a pattern.

Giving Feedback Without -echo
In practice I rarely use -echo. If the user really needs feedback, I give it immediately
after recognizing that a pattern is being entered. There is no special support for this.
Instead, simply use the escape prefix itself as the sole pattern and then pass control to

336 Exploring Expect

another procedure that carries out the rest of the recognition. Here is an example from a
script which uses -- to start commands.

interact "--" cmd

In the cmd procedure, the user can now be directly prompted for commands:

proc cmd {} {
send_user "command (g, p, ? for more): "
expect_user {

"g" get_cmd
"p" put_cmd
"?" help_cmd
"-" {send "--"}
... and so on

The user now clearly knows what they are dealing with because the prompting is very
explicit. There is no way for the user to be confused about echoing because the two
tilde sequence always invokes the cmd procedure, which in turn entirely suspends the
interact until the procedure returns.

Note that if the user really intended to enter two tildes and not have them interpreted as
a command, another tilde has to be entered. This is a fairly standard and customary
inconvenience with interactions that suspend interact commands. This style is iden
tical to that used by the UNIX te1net command when its escape is entered.

Telling The User About New Features
In the examples so far, the escape sequences were layered on top of the spawned
process. Tn each case, the user must be informed of these new commands in order to
take advantage of them. Indeed, the more obvious the underlying spawned process is,
the more likely the user is to forget that there are extra commands available.

Printing out documentation while the program is running can be very helpful and is
easy to do. The previous script showed one such example-printing out a list of
choices when an escape prefix is entered. Here are some others.

The following extract is from a script that layers several commands on top of the tradi
tional ftp client to enable it to perform recursive ftp. (Called rftp, this script comes
with Expect as an example.) These new commands are entered as -g (get recursively),
-p (put recursively), and -1 (list recursively).

Interact 337

puts "Once logged in, cd to the directory to be transferred and\
press:\n"

puts " -p to put the current directory from the local to the remote\
host\n"

puts " -g to get the current directory from the remote host to
local host\n"

puts "_1 to list the current directory from the remote host\n"
if {[llength $argv] == 1} {

spawn ftp
else {

spawn ftp [lindex $argv 1]

the\

When the script starts up, it prints the messages above, which describe the new
commands. Then the script drops into an interact so that ftp can enter its usual
dialogue. The tilde escape works well, because ftp does not use tilde for anything
anyway.

Below is the complete version of the script to emulate the UNIX script command. A
couple of things have been added to make it more like the original, but most important
is the message that tells the user about the new commands. This message prints out
immediately when the script starts. The first shell prompt then follows on a new line.

log_file typescript
spawn -noecho $env(SHELL)
send_user "recording to file typescript\n"
send_user "-s to stop recording, -r to record\n"
interact "-s" {log_file} "-r" {log_file typescript}
send_user "recording to file typescript complete\n"

Here is how it looks to the user when run:

28% newscript
recording to file typescript
-s to stop recording, -r to record
1%

Sending Characters While Pattern Matching
By default, characters are not sent to the spawned process until either a match is made
or no match is possible. Characters that may potentially match are buffered. It is occa
Sionally useful to disable this buffering.

The buffering is disabled using the -nobuffer flag. Using this flag, all characters are
sent to the spawned process whether or not they match, do not match, or might match
in the future.

338 Exploring Expect

For example, a site had a modern that was available to all users. The site administrators
wanted to monitor the phone numbers being dialed. Using tip or some other interac
tive program, there was no way of recording the numbers. They used the following
fragment in a script that ran on top of tip.

proc lognumber {} {
interact -nobuffer -re "(.*)\r" return
puts $log "[exec date]: dialed $ interact_out (1,string)"

interact -nobuffer "\ratd" lognumber

The interact command (see last line) passes all characters to the spawned process. If
the user presses return followed by atd, the lognurnber procedure is invoked. The
return forces the command to be entered at the beginning of a line-just one more safe
guard against detecting the pattern at the wrong time.

Unlike the example on page 336, lognumber records everything until another return is
pressed. The characters between the first \ratd and the next \r are the phone
number. Because of the -nobuffer on the second interact command, the phone
number is sent to the spawned process and echoed normally. The user cannot tell that
the number is being recorded.

When the final return is pressed, the pattern matches and the return action is
executed. The return action simply forces the interact to return to its caller (more
on this in the next section), and the next command, puts, executes. The puts records
the date and the phone number in a log file.

The log file will eventually look something like this:

Wed Aug 25 21:16:28 EDT 1993: dialed 2021234567
Wed Aug 25 23:00:43 EDT 1993: dialed 3013594830

The phone numbers in the log file will also contain things like backspaces or whatever
erase characters the user might press to delete characters and fix errors. You could, of
course, write a procedure to interpret these and strip them out after they are matched
but before they are put in the log.

interact -nobuffer -re "(.*)\r" return
set number [cleanup $interact_out(1,string)]
puts $log "[exec date]: dialed $number

A much easier solution is just to change to cooked mode temporarily and call expect
to read the number. However, this approach also has a drawback in this example
users could conceivably press \ratd in some other context besides dialing a modern.
In that case, you may well get a "number" that turns out not to be a number at all. In
this example, the likelihood is pretty low- \ratd is a very unusual character
sequence. In the general case, more heuristics could be added but there is no sure-fire

Interact 339

way to know. For example, the user could be writing a manual on how to dial a
modem. Obviously, making this look like a number was being dialed could be crucial
to the task!

The continue And break Actions
Like the expect command, it is possible to have the interact command cause its
caller to break or continue. Each of these can be used as an action. For example, in
the following loop, if a user presses "+", interact returns and the while loop breaks.

while {l} {

interact "+" break

The continue command works similarly. In the following loop, if a user presses "+",
the interact returns and the loop breaks. If the "-" is pressed, the interact returns,
and the while loop continues.

while {l} {

interact "+" break "-" continue

The return Action
By default, the return command does not behave in a way analogous to break or
continue. The return command does not cause the caller to return. Instead, when
used as an action, return causes interact itself to return.

For example, consider the following commands:

interact "X" return
puts "interact done"

If the user presses X, the interact command returns and the puts command
executes.

This behavior is very useful when you have a problem that is almost automated but has
sections that require attention. The script will do most of the work, but you can grab
control when necessary. You can interact and then return control to the script.

For example, fsck, the file system checker, looks for discrepancies in the file system.
fsck describes the problems it encounters and interactively asks whether it should fix
the problem. fsck waits for a y or n as an answer. The following script automatically
answers one type of question yes and another type no. Everything else causes control
to be turned over to the user via the interact command.

340

while 1 {
expect

eof
nUNREF FILE*CLEAR\\?n
nBAD INODE*FIx\\?n
n\\? n

break
{send ny\rn}
{send nn\rn}
{interact + return}

Exploring Expect

When the user is through interacting, a plus causes interact to return, after which the
script resumes control and continues answering questions.

In this example, control is completely turned over to the user. This is especially useful
when the situation is very complicated and the user might need to explore things a lot.
In more controlled situations-for example, when you do not trust the user or when the
user does not understand what is happening behind the scene-the script should stick
with expect_user and send_user commands.

It is also possible to have interact cause a return in its caller. This is more like
what the expect command does with a return action. This behavior is useful if you
call interact from within a procedure. The caller will return if interact executes
the inter_return command. For example, the procedure below returns if a plus is
pressed. If a minus is pressed, the interact command ends, but the procedure
continues executing the next command after interact.

proc x {} {
interact {

n+n {inter_return}
n_n {return}

send n.
expect n.

In Chapter 11 (p. 250), I presented a script that used expect commands to handle
answerback at login. Answerback requires communications to flow in both directions,
and this should make you think of interact. The earlier script required nine lines to
solve the problem. Using interact, it is possible to handle answerback using only
one line:

interact -0 -nobuffer $prompt return

This command permits the spawned process to interact with the terminal. When the
prompt appears, return is executed which causes interact itself to return. The
-nobuffer flag allows the prompt to appear in the output even though it has been
matched.

This same idea can be used to convert the rlogin script in Chapter 5 Cp. 122) into a
telnet script. Remember that the script provided an interactive rlogin session with

Interact 341

the same directory as the one on the local host. The script assumed that rlogin does
not prompt for either account or password. In comparison, telnet is guaranteed to
prompt. The solution is to substitute the code above in place of the wait for the prompt
done by an expect command.

Here is the resulting script using telnet:

#!/usr/local/bin/expect --
telnet-cwd - telnet but with same directory

eval spawn telnet $argv
if [info exists env(EXPECT_PROMPT)]

set prompt $env(EXPECT_PROMPT)
else {

set prompt "(%1#1\\\$) $" ;# default prompt

interact -0 -nobuffer -re $prompt return
send "cd [pwd]\r"
interact

The Default Action
The interpreter command lets you interactively give commands to Expect and is
described further in Chapter 9 Cp. 225). The interpreter command is very useful
when debugging scripts or avoiding having to hardcode commands beyond some point
where the interactions are stable enough. Just call interpreter with no arguments.

interpreter

The last action in an interact may be omitted in which case it defaults to inter
preter. The following two commands are equivalent:

interact X
interact X interpreter

The first form is simply a shorthand. There is no other inherent value to omitting the
action. Note that this shorthand can only be used with the final pattern-with any other
pattern, the subsequent pattern would be misinterpreted as the action to the previous
pattern. Consider the following two commands. If X is pressed, the first command
invokes interpreter while the second mistakenly invokes pattern.

interact X interpreter pattern action
interact X pattern action ;# OOPS!

It is common to write scripts that end by leaving the user in an interact command,
interacting with a process in raw mode. The interpreter command provides a way

342 Exploring Expect

to get back out to Expect before the script terminates. The environment can then be
explored or manipulated while the script is still running.

While I just said that omitting the action is only a shorthand, it is intended to be a
compellingly convenient shorthand. Indeed, it should be so compelling that you should
never use interact without some sort of escape unless you have intentionally consid
ered all the implications. When prototyping, get used to writing "interact X" (or
whatever your favorite escape character is) rather than just interact. It will save you
in lots of situations such as when the spawned process hangs.

Detecting End-Of-File
Normally, a spawned process generates an eof when it exits. This can be detected by
using the special pattern eof. When an eof occurs, the following action is executed.
The syntax is identical to expect. For example, the following command prints out a
message when an eof occurs. The return causes interact to return to its caller.

interact -0 eof {
puts "detected end-of-file"
return

If an eof occurs but no eof pattern is given, the return action is executed by default.
So you could write the fragment above more simply as just:

interact
puts "detected end-of-file"

You usually want to end an action for the eof pattern with return. It rarely makes
sense to continue the interaction if the spawned process has exited. However, the next
chapter has examples where it is meaningful to continue the interaction.

When interact detects an eof, it automatically closes the connection to the spawned
process so that there is no need to call close explicitly. This is identical to the behavior
of expect when it detects an eof. One tiny difference between expect and
interact is that interact can never detect an eof from the user. Because
interact puts the terminal into raw mode, the user has no way of generating an end
of-file. In expect, a AD closes the input, but in interact a AD is just sent on to the
spawned process.

Interact 343

Matching A Null Character
The interact command can match a null character using the null pattern. This
pattern works the same way as in the expect command. See Chapter 6 (p. 155) for
more information.

Timing Out
The special timeout pattern matches after a given amount of time. Unlike the expect
command, the timeout pattern does not depend on the timeout variable. Instead,
the timeout is given after the keyword itself. The timeout is specified in seconds. The
action follows the number of seconds. For example, the action in the interact
command below is executed if the user presses no keys for more than an hour.

interact timeout 3600 {
send_user "Idle for 1 hour - you are being logged out"
return

In this example, the output of the spawned process is not timed. This is useful in
preventing irrelevant system messages ("System going down at midnight.")
from making the session seem active.

The interact command uses explicitly specified timeouts so that you can use
different timers simultaneously. For instance, the following fragment times out the user
after 10 seconds and the spawned process after 600 seconds.

interact {
timeout 10 {

send_user "Keep typing-we pay you by the character!"

-0

timeout 600 {
send_user "It's been ten minutes with no response.\

I recommend you go to lunch!"

On many systems, the following script can be used to fake out shells that automatically
exit after periods of inactivity. The script works by detecting the inactivity and sending
a space and immediately removing it.

spawn $env(SHELL)
interact timeout 3000 {send" \177"}

As shown here, the script waits for a little less than an hour under the assumption that
the spawned program's timeout is exactly an hour. You can modify or parameterize the

344 Exploring Expect

timeout. Some programs will need different keystroke fakes. For example, editors such
as emacs and vi are more appropriately faked by sending AG and escape respectively.
In contrast, ftp would need a simple but real command such as "binary\r" to force
the client to actually send something to the server since it is the ftp server that times
out, not the client.

The following code achieves an effects similar to the fragment in Chapter 6 (p. 146).
Both watch for output containing a pattern where each character is not separated from
the next by more than $timeout seconds.

set status bad
interact {

-0

timeout $timeout inter_return
$pattern {set status ok}

This code works differently but ultimately does much the same thing. The -0 flag
makes the subsequent patterns apply to the output of the spawned process. If too much
time occurs between characters, the inter_return action causes the interact to
complete. If $pattern appears in the output, a status variable is set and the
interact command continues waiting for more characters to arrive (or the timeout to
occur). The only significant difference in the code is that the buffering is done internally
by interact rather than explicitly in the user-supplied actions.

A timeout value of -1 is equivalent to infinity. The associated action can never be
executed. This is useful when the need for a timeout is not known in advance. Rather
than rewriting the interact command dynamically, the timeout can be suppressed
just by an appropriate variable assignment.

Compare:

interact timeout $timeout $action

with:

if {Sneed_timeout > a} {
interact timeout 100 $action

else {
interact

More On Terminal Modes (Or The -reset Flag)
The interact command puts the terminal into raw mode so that all characters can
pass uninterpreted to the spawned process. When a pattern matches, actions are
executed in raw mode as well. Usually this works well. Most actions do not depend on

Interact 345

the terminal mode. For example, the following commands are all terminal-mode
independent:

set a [expr 8*$al
send "k\r"
send_user "hello\n"

You may be surprised that the last command works correctly since it includes a
newline. Normally, newlines become linefeeds in raw mode. However, the
send_user command automatically translates newlines to carriage-return linefeed
sequences when the terminal is in raw mode. (See Chapter 8 (p. 197) if you want to
disable this.) Thus, you can write such commands and not worry about the mode.

Some commands are mode dependent. Here are three example commands, each of
which is mode dependent.

system cat file
exec kill -STOP [pidl
expect -re "(. *) \n"

The first command ("system cat ... ") executes a program that writes directly to the
standard input and output. The program assumes the terminal is in cooked mode and
will misbehave if it is not. A common symptom of this misbehavior is displayed in the
following output:

this is line one
this is line two

this is line three
and so on

The next command (exec kill ...) suspends the Expect process, placing the user
back in the original shell. Shells that do not force cooked mode will behave incorrectly,
leaving processes to run in raw mode when they expect cooked mode.

The last command (expect ...) is intended to read a single line in cooked mode.
(This is similar to "gets stdin".) Not all expect commands require cooked mode.
In fact, the example on page 336 was specifically intended to work in raw mode.
However, when accepting long strings via expect_user, it is helpful to be in cooked
mode to allow the user to edit the strings.

The expect command above checks for the newline character explicitly. This could be
changed to look for either the linefeed or return character, but the cooked mode editing
would still be lacking. The only way to obtain that is to go to cooked mode.

346 Exploring Expect

The simplest solution to fix all of these is to use the -reset flag when defining the
action. For example, to define that /\Z (ASCII 32 in octal) suspends the Expect process,
you can write the following:

interact -reset "\032" {exec kill -STOP [pid]}

The other actions could be written similarly. When the actions return, the mode is reset
in the other direction-back to raw.

The -reset flag does not specifically force the terminal into cooked mode. Rather, it
forces the terminal into whatever mode was set just before the interact command
was executed. This allows you to set up your own (however bizarre) definition of a
"normal" mode and flip between it and raw mode inside of interact and actions.

Unfortunately, this ability to set the "normal" mode means that -reset may not have
the desired effect inside of an interact command that was in turn invoked from
another interact. If you want cooked mode in such cases, you have to explicitly set
it using stty in the action. Fortunately, this kind of situation is extremely uncommon.

If you do explicitly set the terminal mode inside an action without using -reset, reset
the mode before returning to the interact. If you do not reset it, interact will
continue running with your new terminal modes.

In Chapter 8 (p. 206), I mentioned that characters can be lost when terminal parameters
are modified. This problem carries over to using -reset as well, since -reset poten
tially modifies terminal parameters. Fortunately, users do not type very quickly so this is
rarely a problem; conceivably, however, this problem could arise if interact were
used as a noninteractive filter. If you need absolute assurance that characters will not be
lost, do not use the -reset flag.

Example-Preventing Bad Commands
The following fragment demonstrates how -reset could be used to prevent a user
from entering certain commands. For example, suppose you want to provide an inter
face to another program that allows two commands that you would rather people not
enter. You want to allow any others, just not these two.

Consider the following reasonable-looking but incorrect approach:

set badcmds "badcmdllbadcmd2"
interact -re "$badcmds.*\r" {

put "command not allowed\r"

;# WRONG
;# WRONG
;# WRONG
;# WRONG

Interact 347

But as with the earlier modem monitor script, users can enter command-line editing
characters to force the pattern to fail. For example, "ba<backspace>adcmdl" does not
match the interact pattern and will be accepted by the spawned process.

One solution is to recognize the program prompt and shift into cooked mode while the
user enters a command. Any command not in badcmds will be allowed. This algorithm
could also be reversed to allow only a set of good commands.

set badcmds "badcmdllbadcmd2"
interact {

-0 -reset -nobuffer -re $prompt
expect_user {

-re "A$badcmds.*\n" {
puts "Command not allowed\n"

-re "(. *) \n" {
send "$expect_out(l,string)\r"

This script can also be written as an expect loop with an interact inside of it
similar to the one above but "inside out". How you structure the script is not that impor
tant. What is important is that you use cooked mode to read the results of potentially
edited input. In general, if the spawned process is using cooked mode, then your script
should too. Conversely, if the spawned process is using raw mode, your script should
also.

There are some programs that provide much more sophisticated interfaces than what
can be supported in cooked mode. In general, trying to follow what they are doing can
require a lot of work. This is unfortunate but understandable-they are internally
complicated and any script that attempts to track them will be also.

Exercises
1. Modify the Dvorak keyboard script (page 325) to so that it uses a single send com

mand. Use an array to provide the mapping between input and output. Can you tell
any difference in speed between the two implementations?

2. On page 330, I showed a script that responded to an inactivity message. However,
some systems do not print a warning message. Rewrite the script so that it does not
require a warning message. Experiment with resetting the timer by sending a null or a
/\Q or a space-delete sequence.

348 Exploring Expect

3. Modify the script script Con page 334) so that it strips out carriage returns. Does
"stty -ocrnl" help? How about "tr -d '\015'''?

4. Write a script to boot and simultaneously allow interaction with an auxiliary processor
such as a vxWorks board. Make the script respond appropriately if the board hangs for
more than one minute or if the board is power-cycled behind Expect's back.

5. Write a script that allows you to repeat a command in the shell Cor any program) by
pressing a single function-key. Write a second version that suspends this behavior
when the shell is not prompting.

6. Write a script that provides "hotkey" service in the style of a DOS TSR, which will tem
porarily bring a background process to the foreground. Allow triggering either by key
presses or specific times.

In This Chapter:

• Shuffling InputAnd
Output Of Processes
Every Which Way

• Connecting
Multiple Processes
Together

• kibitz And xkibitz Interacting With
Multiple Processes

The previous chapter had numerous examples, all showing how to create a connection
between a user and the currently spawned process. The interact command does this
by default, but it is possible to create connections in other ways. In this chapter, I will
cover how to use the interact command with a process other than the user and
currently spawned process, or with multiple processes.

Connecting To A Process Other Than The
Currently Spawned Process
Like many of the other commands in Expect, the interact command accepts the -i
flag to indicate a spawn id to be used in place of the currently spawned process. For
example:

spawn telnet
set telnet $spawn_id
spawn ftp
interact -i $telnet

In this example, interact connects the user to the telnet process. Without the "-i
$telnet", the ftp process is connected.

Output from the process is tested against any patterns appearing after the - i flag. In
other words, the -i behaves as if a -0 flag had also appeared.

349

350 Exploring Expect

Connecting To A Process Instead Of The User
Just as the - i flag allows substitution of one side of the connection created by
interact, the -u flag allows substitution of the other side. Specifically, the -u flag
identifies a process to be used instead of the user.

spawn procl
set procl $spawn_id
spawn proc2
interact -u $procl

The interact command above connects the input of procl to the output of proc2
and vice versa. The processes interact as shown in the following figure.

process selected
by spawn_id

process selected

by-uflag ~

(proc2)1-------i~-/-.~--,-_EI'i*_··!fiP_·3t--~~ .•. ~_···;f-.. ~_ .. -.. ;--'-/ -----1(proc1)

With the -u flag, the interact command connects two spawned processes together.

In the figure, there is no user involved. The user is still present but does not participate
in the interact connection. The user keystrokes are not read nor is there any output
to the user.

In Chapter 11 Cp. 251), I showed how to have two chess processes communicate using
expect commands in a loop. This could be rewritten using "interact -u" with the
second chess process replacing the user. The original script was an expect command
wrapped in a while loop, but the interact command loops internally. So using
interact would avoid the extra command, making the script slightly shorter.

The chess problem is a familiar example but contrived-there is no real reason to use
interact since the moves are synchronized. But in real uses, "interact -u" leads
to much shorter programs.

Here is a script fragment to perform dialback, the act of having a computer dial a
modem and connect to a user. This is useful in situations where the user cannot or does
not want to be responsible for the connection. For example, dialback allows the phone
charges to be billed to the computer rather than the user.

Interacting With Multiple Processes

spawn login
set login $spawn_id
spawn tip modem
dial $argv
interact -u $login

;# you supply this procedure

351

The script starts by spawning a login process. A tip process is spawned so that it can
talk to a modem. A dial procedure dials the remote modem where the user is waiting.
Finally, the interact command connects the modem to the login process, thereby
establishing a complete connection.

The user may initially have to start this script, but can then immediately log out to let the
computer call back. The cost to connect long enough to run the script is minimal. The
computer picks up the remaining costs.

Another use for dialback is to improve security. Without dialback, anyone who can steal
or guess a password can dial up and login. If dialback is enforced, the rogue can
request a connection, but the computer can refuse if the number to be called back is not
on a pre-approved list.

The dial procedure can be as simple as just "send "ATDT ... \r"". With retry, secu
rity, logging, etc., a couple of dozen lines might be necessary.

It is worth comparing this dialback script with the one in Chapter 1 Cp. 4). The earlier
one takes advantage of modems that are directly connected to serial ports. And the
serial ports must allow connections to be established in either direction. Some systems
do not provide these capabilities. For example, you may have to telnet to another
computer to get to a pool of modems shared by many hosts. In this case, only the script
shown here will work.

In the first dialback script, Expect disappeared after the connection was made. The
script shown here requires that Expect stick around to perform the interact. This can
be an advantage because interact can still execute actions based on the characters
that pass through it.

Patterns listed after the -u apply to the named process. To apply patterns to the other
side of the connection, precede them with a -0 or -i flag.

Example-rz And sz Over rlogin
rz and sz are popular programs that perform XMODEM, YMODEM, and ZMODEM
transfers with the controlling terminal. sz sends a file to the controlling terminal and rz
reads a file from the controlling terminal. Used together, they can transfer files between
two hosts. The following script uses rz and sz to transfer a file across a connection
created by r login. This is handy if security restrictions do not permit the use of rcp.

352

spawn rlogin $host; set rz $spawn_id
expect "% "
send "stty -echo\r"
expect "% "
send "rz -v\r"

spawn sz $file
interact -u $rz "\r-"

send -i $rz "\r--"

Exploring Expect

After starting rlogin, the script turns off echoing. This prevents the rz command itself
from being echoed by the shell and simplifies starting sz. rz is started with the -v flag
which inhibits printing of the message "rz ready. Type" sz file ... " to
your modem program". Once rz is ready, sz is started and the two are connected
together using "interact -u".

By default, rlogin provides an almost seamless connection. Unfortunately, there is no
way to disable its escape character. The script works around this by watching for the
character. The default escape is "-" but it is only detected by rlogin after a "\r". The
script watches for this sequence and sends an extra "-" to force rz to receive both the
"\r" and "-",

Most communication programs, rlogin included, provide an 8-bit connection. Alas,
not all communication programs are so clean. Some implementations of telnet, for
instance, strip the high-order bit of each character. Because of this, you cannot use rz
and sz with those versions of telnet. If you are forced to use a 7-bit connection, then
you must use a 7-bit protocol. In Chapter 20 (p. 467), I will present a script that sends
files across a link that passes only 7 bits (e.g., telnet). That script also starts with the
user interacting with the remote system. If you want to interactively decide which files
to transfer, you will find that script more convenient than the example shown here,
which is oriented toward being run non-interactively.

Chapter 17 (p. 378) will show another example of -u that allows a user to interact with
background processes as if they were foreground processes. This is useful for debug
ging, for example, processes running under cron.

That chapter also describes how to make the script detach itself from the terminal. This
is desirable with a script like dialback. You want to initially see any diagnostics
(modem is busy, phone number is illegal, etc.) before logging out and waiting for the
call back.

Interacting With Multiple Processes 353

Redirecting Input And Output
The - i and -u flags each connect both the input and output of a process. It is possible
to connect just the input or just the output using the - input and -output flags.

The -input flag identifies a spawn id from which input should be read. The -output
flag identifies a spawn id to which output should be written. The general syntax for
specifying connections is that a -output flag applies to the most recent -input flag.
For example, the following flags indicate that input from spawn id i is written to spawn
id o.

-input $i -output $0

The following fragment connects three processes together. Input from idl is sent to
id2 and id3. Input from id2 is sent to idl. Input from id3 is discarded.

interact {
-input $idl -output $id2 -output $id3
-input $id2 -output $idl
-input $id3

If id3 does not produce any output, it does not need to be listed. However, if a process
is producing unwanted data, it must be discarded or else the operating system will even
tually stop the process when its internal buffers fill up. Listing it without an associated
-output flag as I have done here effectively causes the output to be discarded.

Patterns may be applied to spawned processes identified with -input flags. As with
the - i and -u flags, patterns immediately follow the spawn id specifications to which
they apply. For example, to execute the procedure dox whenever the character X is
generated by id2, the pattern is listed immediately after the -input flag for id2.

interact {
-input $idl -output $id2 -output $id3
-input $id2 "X" doX -output $idl
-input $id3

The timeout and eof patterns behave just like other patterns with respect to -input
(and -i and -u). For example, timeout follows the spawn id specification to which it
applies.

Patterns canrlOt apply to a -output except in one case. The eof pattern following a
-output may be matched if the output spawn id is closed. The eof pattern following
a - input similarly matches if the input spawn id is closed.

354 Exploring Expect

Default Input And Output
When the interact command is given with no arguments, it is equivalent to:

interact {
-input $user_spawn_id -output $spawn_id
-input $spawn_id -output $user_spawn_id

Besides omitting all of the arguments, it is possible to omit just some of them and still
get reasonable defaults. There are defaults for the first two processes since an interac
tion invariably involves at least two processes.

If the first - input is omitted, user_spawn_id is used. If the first -output is omitted,
spawn_id is used. If the -output after the second -input is omitted,
user_spawn_id is used. These can also be affected by the -u and -i flags. For
example, if the -u flag appears, the new spawn id is used in place of the first - input
and the second -output.

As an example, the following command establishes a connection between the user and
an external process (not started by Expect). The external process provides two fifos for
communication, one for input and one for output.

interact -output $out -input Sin

The first input is implicit and is therefore user_spawn_id. User keystrokes are sent to
out. Input from in is sent back to user_spawn_id so that the user can read it. The
following figure shows the Expect process with the interact in progress.

ftfas
Ex ect

The external process could be a C program, but it is also expressible as another Expect
script with an interact of its own. For example, the second script might connect a
spawned process to the fifos with the following command:

interact -u $proc -output $out -input Sin

The command looks exactly the same as the previous interact except that the
spawned process has been substituted for the user with the -u flag. The spawned
process will become the implicit output of the input from in.

Both of these commands actually appear in the dislocate script that comes with
Expect. (The dislocate script is described in more detail on page 384.) The user-side

Interacting With Multiple Processes 355

interact command uses one pattern to provide the user with an escape character.
The following fragment invokes the interact with an escape, preceded by a message
to explain it:

puts "Escape sequence is $escape"
interact {

-reset $escape escape
-output $out
-input $in

The escape is preceded by a -reset flag so that the messages in the escape proce
dure itself do not have to worry about the end-of-line formatting while in raw mode.

Controlling Multiple Processes-kibitz
It is possible to connect more than two processes simply by identifying more than two
spawn ids with the -input or -output flags. The kibitz script that comes with
Expect does this. First, I will describe kibitz from the user's point of view.

By default, kibitz runs a shell and connects both the original user and another user to
it. The keystrokes of both users are sent to the shell and both users see the results.
kibitz is ideal for allowing two people to see what one another is doing. For
example, a novice user who is having a problem can use kibitz to let an expert see in
real time what is going awry. The expert can begin typing at any time, showing the user
the correct way to do something.

Lots of other uses are possible. For example, by running a full-screen editor, two people
may carry out a conversation, and have the ability to scroll backwards, save the entire
conversation, or even edit it while in progress. People can team up on games, docu
ment editing, or other cooperative tasks where each person has strengths and
weaknesses that complement one another.

kibitz is started by the first user typing "kibitz" followed by the user name.

% kibitz debt ron

This causes the second user (debt ron) to be prompted to run kibitz. A message
appears in their console asking them to run kibitz. The user sees:

Can we talk? Run: kibitz -20899

The request includes a special argument that allows kibitz to uniquely distinguish
one out of any number of other kibi t z sessions in progress on the same host. So the
second user types:

% kibitz -20899

356 Exploring Expect

Both users then see a shell prompt. As one user types characters, they are echoed to
both users' screens. Any output from the shell goes to both users. kibitz continues in
this way until either of the users makes the shell exit.

How kibitz Works

On page 354, I mentioned that interact could be used to connect fifos. This is
exactly what kibitz does. The first kibitz spawns a shell and creates two fifos. The
second kibitz opens the same fifos and then lets the user interact with the fifos. The
first kibitz uses interact to tie the user, shell, and fifos together. The fifos are
chosen by the first kibi t z and presented to the second user as the argument to
kibi t z. In the example above, the 20899 from the argument is the unique part of the
fifo name.

In the script, the user who started kibi tz initially is accessed via user_spawn_id.
Another user is connected by fifos, known as userin and userout. Lastly, the
process is referred to as process.

The script executes a command similar to the following one to connect all three
together. I have lined all the -output flags up to make them easier to see but that is
not necessary.

interact
-input $user_spawn_id -output $process
-input $userin -output $process
-input $process -output $user_spawn_id

-output $userout

The interaction established is shown graphically in the figure below. The second user,
communicating through the fifos, uses a second kibi t z process to send keystrokes
through the fifos to the shared process and similarly read the output produced by the
shared process.

ftfos

Interacting With Multiple Processes 357

In Chapter 11 (p. 255), I showed how kibitz could be rendered with just expect
commands. Compare this to the version using interact. The version using expect
commands is more verbose because the looping (via exp_continue) is explicit as are
the patterns (-re II • + ") and send actions. All of that is implicit when using
interact.

A number of things fall out of the kibitz design serendipitously. For example, while
kibitz spawns a shell by default, it can just as easily spawn any process. For example,
to spawn a different program, the program name and optional arguments are appended
to the kibitz command line. Here is how one user might share an emacs process
with another user.

% kibitz debt ron emacs

Of course, you can run any program from the shell anyway. But the shell is totally
unnecessary in some cases.

kibitz does not have any special code for handling more than two people. While
such code could be added, it is easy enough just to have kibi t z invoke another
kibitz. For example, a user that wants to share a vi process with two users
(debt ron and jim) could say:

% kibitz debt ron kibitz jim vi

kibitz goes to some effort to make things work as gracefully as possible. For
example, kibitz understands hostname references in user names.

% kibitz jim@titan

Hostname references are implemented by having kibitz rlogin to the remote host
and run kibi t z there. As long as a password is not required, this is entirely transparent
to the user. If a password is required, kibitz asks the user for it and then continues. A
proxy account can be set up to allow users without accounts to kibitz into a host.

All of these approaches avoid having to install a special network daemon just for
kibi t z. In fact, kibi t z avoids having to worry about all of the programming hassles
having to do with machine portability, networking, and security. kibitz just uses
whatever tools are already available on a host.

One last technical aspect of the internetwork kibi t z implementation is worth
mentioning because it can be applied to many other programs. Normally, characters are
passed uninterpreted between kibitz processes. However, it is possible for the
remote kibitz to need to report problems during initialization (e.g., "no such user
exists by that name"). It would be inappropriate for the remote kibitz to pass such
error messages back to the local kibi t z only to have them sent to the shared process.
Rather, the local kibitz should send them only to the user who originally invoked
kibitz.

358 Exploring Expect

To deal with this, a tiny in-band protocol is used between the first two kibitz
processes. Once the remote kibitz is running, it sends the string KRUN. This tells the
local kibitz that the remote kibitz has begun running. Whatever the remote
kibitz sends now (presumably diagnostics) is sent directly back to the user by the
local kibitz. If the local kibitz fails to establish the connection, KABORT is sent to
the local kibitz that, having already passed on any diagnostics to the user, exits as
does the remote kibi t z. If the remote kibi t z successfully establishes the connec
tion, it sends back KDATA meaning that anything after this is user data and should be
sent back to the shared process.

The local kibitz implements all of this in two expect commands. The first waits for
KRUN. The second (shown below) waits for KABORT or KDATA. The default pattern
covers the case when the remote kibi t z cannot even be started.

expect {
-re ".*\n"

pass back diagnostics to user
send_user $expect_out(buffer)
exp_continue

default exit
KABORT exit
KDATA

Combining Multiple Inputs Or Outputs
It is possible to combine multiple spawn ids in a single -input or -output. This uses
the same syntax as the expect command uses to combine multiple spawn ids in a - i
flag. Both of the following interact commands have the same result.

interact -input $i -output $01 -output $02
interact -input $i -output "$01 $02"

The second form is preferred unless the two output spawn ids have different eof
actions. For example, in the following command, the action for an end-of-file on 01 is
return, while the action for an end-of-file on 02 is "close $i".

interact -input $i -output $01 -output $02 eof {
close $i

Input spawn ids can be combined similarly. The following command takes the input
from i1 and i2 and sends it to 01.

interact -input "$i1 $i2" -output $01

Interacting With Multiple Processes 359

Note that writing two -input flags in a row with no -output in between causes the
first input source to be discarded. This can be quite useful for the same reasons that it is
occasionally handy to redirect output to I dey Inull in the shell.

Using these shorthands, it is possible to write the interact in kibi tz more succinctly:

interact {
-input "$user_spawn_id $userin" -output $process
-input $process -output "$user_spawn_id $userout"

Which Spawn Id Matched
The expect command always sets expect_out (spawn_id) to the spawn id associ
ated with the matching output. This allows a single action parameterized on its spawn
id to be shared between a number of spawn ids. For effiCiency reasons, the interact
command does not automatically do a similar assignment. Instead, the -iwrite flag
controls whether the spawn id is recorded, in this case, to
interact_out (spawn_id) .

The -iwrite flag should appear before each pattern to which it applies. For example,
in the following fragment, actionl and action3 can access the value of
interact_out (spawn_id) but action2 cannot.

interact {
-input "$user_spawn_id $userin"
-iwrite "foo" {actionl}

"bar" {action2}
-iwrite "baz" {action3}

See Chapter 11 (p. 253) for more examples of the spawn_id element.

Indirect Spawn Ids
Indirect spawn ids are lists of direct spawn ids that are stored in global variables; the
variables are in turn passed by name. Commands using these variables as indirect
spawn ids detect when they are modified. (This is described in more detail in Chapter
11 (p. 268).) Indirect spawn ids may be used in the interact command, similarly to
the way they are used in the expect command. However, they are much more useful
in the interact command, simply because interact commands are usually long
lived.

360 Exploring Expect

Indirect spawn ids may appear anywhere that explicit spawn id lists can. In the expect
command, spawn id lists appear only as arguments to -i flags. In the interact
command, spawn id lists appear as arguments to -i, -u, -input, and -output flags.

The following script connects to two hosts and allows you to interact with either
one. Pressing IIA causes further interaction to occur with hostA. Pressing liB causes
further interaction to occur with hostB.

spawn telnet hostA; set A $spawn_id
spawn telnet hostB; set B $spawn_id
set proc $A

interact
"\1" {set proc $A}
"\2" {set proc $B}
-i proc

The variable proc is used to contain the indirect spawn id, but any variable can be
used, even spawn_id. While spawn_id is the default, interact is not sensitive to
changes in spawn_id unless it is explicitly named as an indirect spawn id.

Here is a different way to control the same scenario. In this case, IIA is used to toggle
between the two processes.

spawn te1net hostA
set old $spawn_id
spawn telnet hostB

interact {
"\1" {

set tmp $spawn_id
set spawn_id Sold
set old $tmp

Both of these examples could be said to implement shell-style job control. Unlike csh
style job control, however, you can customize these to your application. For example,
you can choose the character sequences to switch on, and they can be any number of
characters. You can control whether they toggle or flip or whatever. These techniques
are not difficult to extend. For example, if you wanted to bounce around a ring of
processes, you could create a list containing all of the spawn ids and then use the
following action:

set spawn_id [lindex $list 0]
set list "[lrange $list 1 end] $spawn_id"

Interacting With Multiple Processes 361

The following command connects a set of users to a single process so that their
keystrokes go to the process and any results are returned to all of them. When the last
user's connection closes, the interact returns.

interact {
-input inputs -iwrite eof {

set index [lsearch $inputs $interact_out(spawn_idl]
set inputs [lreplace $inputs $index $index]
set outputs [lreplace $outputs $index $index]
if {[llength $inputs]==O} return

-output $process
-input $process -output outputs

The users' spawn ids are stored in two lists. This gives users the flexibility to read their
input from one place and write it to another, as is the case with fifos. Users represented
by a single spawn id can have the same spawn id placed in both lists.

The input list is named by the -input flag. Input goes from there to the process named
by the following -output flag. The -iwrite flag forces the spawn_id element of
interact_out to be written so that any spawn id that is closed can be detected and
removed from both lists. Only the input list is searched for the spawn id, so the spawn
ids in the output list are assumed to be stored in the same order as those in the input list.

The length of the input list is checked to see if any spawn ids remain. If this check is not
made, the interact will continue the connection. However, with only the process (in
process) participating, all that will happen is that the output of it will be discarded.
This could conceivably be useful if, for example, there was a mechanism by which
spawn ids could be added to the list (perhaps through another pattern).

When inputs and outputs are modified, interact modifies its behavior to reflect the
new values on the lists.

An Extended Example-xkibitz
This section covers an extended example: xkibi t z. xkibi t z is similar in effect to
kibitz but works in a very different way. This script uses indirect spawn ids to be
added and dropped dynamically. The script also draws together a number of other
concepts including interacting with an xterm and handling a SIGWINCH.

xkibitz uses xterms to give multiple users the same view of a shell (or any applica
tion). The xterms provide a vehicle for easy interhost communication. xkibitz does
I/O with remote hosts by spawning an xterm with the display set appropriately. By
doing so, the script avoids having to deal with passwords, remote logins, or proxy
servers. Interhost communication comes free because X provides it along with an

362 Exploring Expect

authentication mechanism. This will become more meaningful as I walk through the
script.

The script starts by defining a help procedure which just prints a message. The
message lists the commands that can be used once the program starts. The "+"
command adds a display. The "-" drops a display. The "=" lists the displays. And
"return" returns xkibitz to the usual user-application interaction.

When a display is added, it is given a tag-a small integer that allows the user an easier
means of identifying a display than the display name itself which can be very long.

#!/usr/local/bin/expect

proc help {} {
puts "commands
puts ,,--------
puts "return
puts "=
puts "+ <display>

meaning"

return to program"
list"
add"

puts "- <tag> drop"
puts "where <display> is an X display name such as"
puts "nist.gov or nist.gov:O.O"
puts "and <tag> is a tag from the = command."

Rather than reading commands directly, the script calls the Expect interpreter and lets
that prompt the user for commands. The prompt is modified appropriately.

proc promptl {} {
return "xkibitz> "

A couple of aliases for the help procedure are defined so that the user is more likely to
get help when they need it. Also, the unknown procedure is redefined so that invalid
commands can be handled with a hint to the user about what is expected.

proc h {} help
proc ? {} help
proc unknown {args}

puts "$args: invalid command"
help

xkibi t z keeps track of what it is doing by means of several global arrays. They are as
follows:

tag2pid

pid2tty

pid2display

Process id associated with a tag

Tty name associated with a process id

Display name associated with a process id

Interacting With Multiple Processes

pid2tag

pid2sid

Tag associated with a process id

Spawn id associated with a process id

363

These arrays make it easy to find out any information based on the tag or the process id.
For example, the spawn id associated with $pid is $pid2sid ($pid). To get the
spawn id from the tag requires knowing the process id. That is just $tag2pid ($tag) .
This can then be used as an index into pid2sid to get the spawn id.

An initial entry is made in the tables for the current process. Entries in all of the tables
are not necessary for this process since it will never be deleted. The 0 tag is associated
with this process. The integer variable, maxtag, always stores the highest active tag.
This will be used to make sure that new displays get new tags.

set tag2pid(O) [pid]
set pid2tty ([pid]) "/dev/tty"
if [info exists env(DISPLAY)] {

set pid2display([pid]) $env(DISPLAY)
else {

set pid2display ([pid])

small int allowing user to more easily identify display
maxtag always points at highest in use
set maxtag 0

Next, user commands are defined. "+" is defined as a Tel procedure. It may look funny
because there are no alphabetic characters but it is legal, convenient, and mnemonic.
And Tel provides a reasonable message if the wrong number of arguments are
provided. unknown handles things that make no sense at all.

Letting the user interact with the Tel interpreter directly is not always the best idea. But
in this case, it simplifies the script a bit.

The code to add a display starts by spawning an xterm so that the script can read user
keystrokes and write the screen display. This was described in detail in Chapter 13 Cp.
293). The geometry is set to that of the controlling terminal of the script itself so that
each xterm is the same size.

The new spawn id is appended to the variable ids. This variable will later be used as
the indirect spawn id list. Appropriate entries are made in all the tables. The maxtag
variable is incremented to get a new tag.

A bare return is used to make the procedure return silently. Without the return, the
procedure would return the value of the previous set command-which is not some
thing that the user cares about in the dialogue and might otherwise find confusing.

364 Exploring Expect

proc + {display} {
global ids pid2display pid2tag tag2pid maxtag pid2sid
global pid2tty

if ! [string match *:* $display]
append display :0.0

spawn -pty -noecho

stty raw -echo < $ spawn_out (slave,name)
regexp ".*(.) (.)" $ spawn_out (slave , name) dummy cl c2
if {[string compare $cl "I"] == O} {

set cl "0"

set pid [exec xterm \
-display $display \
-geometry [stty columns]x[stty rows] \
-Sclc2$spawn_out (slave, fd) &]

close -slave

xterm first sends back window id, discard
log_user 0
expect {

eof {waitireturn}
-re (. *) \n

lappend ids $spawn_id
set pid2display($pid) $display
incr maxtag
set tag2pid($maxtag) $pid
set pid2tag($pid) $maxtag
set pid2sid($pid) $spawn_id
set pid2tty($pid) $ spawn_out (slave , name)
return

Interacting With Multiple Processes 365

All users added by the "+" procedure are directly controlled by the same xkibitz
process. Here is a picture of the single process letting three users communicate with a
shell. Compare this with the figure on page 356.

process
seen by

all xterms

xterm
client

window
manager

The "=" is another user command defined with a Tel procedure. It examines each tag
known to the script and prints out a little table based on the information. Here is an
example of the output while three displays are active:

xkibitz> =
Tag Size Display

o 80x14 unix:O.O
1 80x14 calvin:O.O
2 80x14 hobbes:O.O

Some of the information-such as the display name-is extracted from other tables.
Some information-such as the logical tty size-is fetched from the operating system
itself.

proc = {} {

global pid2display tag2pid pid2tty

puts "Tag Size Display"
foreach tag [lsort -integer [array names tag2pid]] {

set pid $tag2pid($tag)
set tty $pid2tty($pid)

puts [format "%3d [stty columns < $tty]x[stty \
rows < $tty] $pid2display($pid)" $tag]

The "-" commands drops a display. After checking the validity of the tag, it undoes
everything that the "+" command did. First it removes the spawn id from the indirect

366 Exploring Expect

spawn id list. Then it kills the xterm process. (Closing the spawn id is not enough
since xterm does not listen for an eof. Instead xterm waits for a SIGCHLD. However,
xterm will never get one because it did not create a process!)

The appropriate entries are then removed from the tables. Lastly, the maxtag variable
is lowered until it once again describes the highest tag in use.

proc - {tag} {
global tag2pid pid2tag pid2display maxtag ids pid2sid
global pid2tty

if ! [info exists tag2pid($tag)]
puts "no such tag"
return

if {$tag == O} {
puts "cannot drop self"
return

set pid $tag2pid($tag)

close and remove spawn_id from list
set spawn_id $pid2sid($pid)
set index [lsearch $ids $spawn_id]
set ids [lreplace $ids $index $index]

exec kill $pid
close
wait

unset tag2pid($tag)
unset pid2tag($pid)
unset pid2display($pid)
unset pid2sid($pid)
unset pid2tty($pid)

lower maxtag if possible
while {! [info exists tag2pid($maxtag)]}

incr maxtag -1

As I mentioned above, the xterm program does not test its input for end of file. Hence
if the script exits, xterms will be left around. To prevent this, an exit handler is estab
lished to kill the orphaned xterms. To avoid killing the script, its entry is immediately
removed in the first command of the exit handler.

Interacting With Multiple Processes

exit -onexit {
unset pid2display ([pid]) ;# avoid killing self

foreach pid [array names pid2display]
catch {exec kill $pid}

367

A handler for the WINCH signal is defined so that the window size of the first user is
propagated to all the other ptys. First, the terminal is queried. Then the terminal size of
the application is changed. Finally, in a loop the other ptys are set. The name of the
terminal is saved (in the variable app_tty) later in the code immediately after the appli
cation is started.

As of XllR5, xterm lacks several hooks to make a more useful WINCH handler, but
these may be added in the future. For instance, it should be possible to resize the
window rather than just the pty. The operating system itself could also be more helpful.
Alas, POSIX.l only delivers WINCH when the size of the controlling terminal changes. In
this script, all the ptys associated with xterms are not controlling terminals so there is
no way to have WINCHs generated when these windows are updated. xterm could
make up for this deficiency; however, xterm provides no way to be told of a pid to
which signals should be sent upon resize events.

trap {
set r [stty rows]
set c [stty columns]
stty rows $r columns $c < $app_tty
foreach pid [array names pid2tty] {

if {$pid == [pid]} continue
stty rows $r columns $c < $pid2tty($pid)

WINCH

Near the end of the script is the code that handles the arguments to the script itself. This
code appears here rather than earlier because the -display argument calls "+" and
this procedure has to be defined and all of the data structures have to be initialized first.

Given an -escape flag, the user can change the escape string. By default, it is a control
right-bracket, which does not normally show upon being printed, so the variable
escape-'printable is set to something that "looks right". If the user changes the
escape, then escape-.printable is changed to the same thing. No conversion is
made to a printable representation, but presumably the user does not need one since
they just overrode the default.

After the arguments are parsed, the shell or application is spawned.

368

set escape \035 ;# control-right-bracket
set escape-printable ""\J"

while [llength $argvJ>O {
set flag [lindex $argv OJ
switch -- $flag \
"-escape" {

set escape [lindex $argv 1J
set escape-printable $escape
set argv [lrange $argv 2 endJ

" -di splay" {
+ [lindex $argv 1J
set argv [lrange $argv 2 endJ

default {
break

if [llength $argvJ>O {
eval spawn -noecho $argv

else {
spawn -noecho $env(SHELL)

set prog $spawn_id
set app_tty $ spawn_out (slave , name)

puts "Escape sequence is $escape-printable"

Exploring Expect

Once everything has been set up, the user is dropped into an interact command that
connects everything together. The user's keystrokes go to the application. So do all the
keystrokes from the xterms. The output from the application goes to the user and the
xterms.

If the user running the script enters the escape, an informative message is printed and
then interpreter is started so that commands can be issued directly. When a
return command is entered, interpreter returns and the interaction between the
application and the ptys resume.

If the user quits the script or the application exits, interact returns. In this case, the
exit handler is invoked to kill all the xterms, and the script exits.

interact {
-input $user_spawn_id -reset $escape

puts "\nfor help enter: ? or h or help"
interpreter

-output $prog

Interacting With Multiple Processes 369

-input ids -output $prog
-input $prog -output $user_spawn_id -output ids

Exercises
1. Modify xkibitz so that it is not necessary to use whitespace to separate the interac

tive commands from the arguments.

2. Write the missing dial procedure (page 351).

3. Modify the dialback script (page 351) so that when the computer calls back, it pro
vides a shell immediately instead of a login prompt.

4. Modify the rz-sz script (page 352) so that it transfers files in the other direction.

In This Chapter:

• Running Scripts In
The Background

• Disconnecting
Script From The
Foreground

• Communicating
With Scripts In The
Background

• A Manager For
Disconnected
Processes

• Expect Daemons
For Gopher And
Mosaic

Background Processing

It is useful to run scripts in the background when they are totally automated. Then your
terminal is not tied up and you can work on other things. In this chapter, I will describe
some of the subtle points of background processing.

As an example, imagine a script that is supposedly automated but prompts for a pass
word anyway or demands interactive attention for some other reason. This type of
problem can be handled with Expect. In this chapter, I will discuss several techniques
for getting information to and from background processes in a convenient manner.

I will also describe how to build a telnet daemon in Expect that can be run from
inetd. While rewriting a telnet daemon is of little value for its own sake, with a few
customizations such a daemon can be used to solve a wide variety of problems.

Putting Expect In The Background
You can have Expect run in the background in several ways. You can explicitly start it
asynchronously by appending & to the command line. You can start Expect and then
press liZ and enter bg. Or you can run Expect from cron or at. Some systems have a
third interface called batch.t Expect can also put itself into the background using the
fork and disconnect commands.

t cron, at, and batch all provide different twists on the same idea; however, Expect works equally well with
each so I am going to say "cron" whenever I mean any of cron, at, or batch. You can read about these in
your own man pages.

371

372 Exploring Expect

The definition of background is not precisely defined. However, a background process
usually means one that cannot read from the terminal. The word terminal is a historic
term referring to the keyboard on which you are typing and the screen showing your
output.

Expect normally reads from the terminal by using expect_user, "gets stdin", etc.
Writing to the terminal is analogous.

If Expect has been started asynchronously (with an & appended) or suspended and
continued in the background (via bg) from a job control shell, expect_user will not
be able to read anything. Instead, what the user types will be read by the shell. Only
one process can read from the terminal at a time. Inversely, the terminal is said to be
controlling one process. The terminal is known as the controlling terminal for all
processes that have been started from it.

If Expect is brought into the foreground (by fg), expect_user will then be able to
read from the terminal.

It is also possible to run Expect in the background but without a controlling terminal.
For example, cron does this. Without redirection, expect_user cannot be used at all
when Expect lacks a controlling terminal.

Depending upon how you have put Expect into the background, a controlling terminal
mayor may not be present. The simplest way to test if a controlling terminal is present
is to use the stty command. If stty succeeds, a controlling terminal exists.

if [catch stty] {
controlling terminal does not exist

else {
controlling terminal exists

If a controlling terminal existed at one time, the global variable tty _spawn_id refers
to it. How can a controlling terminal exist at one time and then no longer exist? Imagine
starting Expect in the background (using "&"). At this point, Expect has a controlling
terminal. If you log out, the controlling terminal is lost.

For the remainder of this chapter, the term background will also imply that the process
lacks a controlling terminal.

Running Expect Without A Controlling
Terminal
When Expect has no controlling terminal, you must avoid using tty _spawn_id. And if
the standard input, standard output, and standard error have not been redirected,

Background Processing 373

expect_user, send_user, and send_error will not work. Lastly, a stty
command without redirection will always fail.

If the process has been started from cron, there are yet more caveats. By default, cron
does not use your environment, so you may need to force cron to use it or perhaps
explicitly initialize parts of your environment. For example, the default path supplied by
cron usually includes only /bin and /usr /bin. This is almost always insufficient.

Be prepared for all sorts of strange things to happen in the default cron environment.
For example, many programs (e.g., rn, telnet) crash or hang if the TERM environment
variable is not set. This is a problem under cron which does not define TERM. Thus,
you must set it explicitly-to what type is usually irrelevant. It just has to be set to
something!

Environment variables can be filled in by appropriate assignments to the global array
env. Here is an assignment of TERM to a terminal type that should be understood at any
site.

set env(TERM) vt100

Later, I will describe how to debug problems that arise due to the unusual environment
in cron.

Disconnecting The Controlling Terminal
It is possible to start a script in the foreground but later have it move itself into the back
ground and disconnect itself from the controlling terminal. This is useful when there is
some point in the script after which no further interaction is required.

For example, suppose you want to automate a command that requires you to type in a
password but it is inconvenient for you to enter the password when it is needed (e.g.,
you plan to be asleep later).

You could embed the password in the script or pass the password as an argument to it,
but those are pretty risky ideas. A more secure way is to have the script interactively
prompt for the password and remember it until it is needed later. The password will not
be available in any public place-just in the memory of the Expect process.

In order to read the password in the first place, Expect needs a controlling terminal.
After the password is read, Expect will still tie up the terminal-until you log out. To
avoid the inconvenience of tying up the controlling terminal (or making you log out and
back in again), Expect provides the fork and disconnect commands.

374 Exploring Expect

The fork Command
The fork command creates a new process. The new process is an exact copy of the
current Expect process except for one difference. In the new (child) process, the fork
command returns O. In the original Expect process, fork returns the process id of child
process.

if [fork]
code to be executed by parent

else {

code to be executed by child

If you save the results of the fork command in, say, the variable child-pid, you will
have two processes, identical except for the variable child-pid. In the parent
process, child-pid will contain the process id of the child. In the child process,
child-pid will contain O. If the child wants its own process id, it can use the pid
command. (If the child needs the parent's process id, the child can call the pid
command before the fork and save the result in a variable. The variable will be acces
sible after the fork.)

One process before fork- - -

Two processes after fork- - -
child-pid is- - - - - -

set child-pid [fork]

~+
new (child)

o
original (parent)

8356

If your system is low on memory, swap space, etc., the fork command can fail and no
child process will be created. You can use catch to prevent the failure from propa
gating. For example, the following fragment causes the fork to be retried every minute
until it succeeds:

while {l}

if {[catch fork child-pid]
sleep 60

O} break

Forked processes exit via the exit command, just like the original process. Forked
processes are allowed to write to the log files. However, if you do not disable debug
ging or logging in most of the processes, the results can be confusing.

Certain side-effects of fork may be non-intuitive. For example, a parent that forks
while a file is open will share the read-write pointer with the child. If the child moves it,
the parent will be affected. This behavior is not governed by Expect, but is a

Background Processing 375

consequence of UNIX and POSIX. Read your local documentation on fork for more
information.

The disconnect Command
The disconnect command disconnects the Expect process from its controlling
terminal. To prevent the terminal from ending up not talking to anything, you must
fork before calling disconnect. After forking, the terminal is shared by both the orig
inal Expect process and the new child process. After disconnecting, the child process
can go on its merry way in the background. Meanwhile, the original Expect process can
exit, gracefully returning the terminal to the invoking shell.

This seemingly artificial and arcane dance is the UNIX way of doing things. Thankfully,
it is much easier to write using Expect than to describe using English. Here is how it
looks when rendered in an Expect script:

if {[fork] 1= O} exit
disconnect
remainder of script is executed in background

A few technical notes are in order. The disconnected process is given its own process
group (if possible). Any unredirected standard I/O descriptors (e.g., standard input,
standard output, standard error) are redirected to I dey Inull. The variable
tty_spawn_id is unset.

The ability to disconnect is extremely useful. If a script will need a password later, the
script can prompt for the password immediately and then wait in the background. This
avoids tying up the terminal, and also avoids storing the password in a script or passing
it as an argument. Here is how this idea is implemented:

stty -echo
send_user "password? "
expect_user -re "(.*)\n"
send_user "\n"
set password $expect_out(l,string)

got the password, now go into the background
if {[fork] 1= O} exit
disconnect

now in background, sleep (or wait for event, etc)
sleep 3600

now do something requiring the password
spawn rlogin $host

376

expect "password:"
send "$password\r"

Exploring Expect

This technique works well with security systems such as MIT's Kerberos. In order to run
a process authenticated by Kerberos, all that is necessary is to spawn kini t to get a
ticket, and similarly kdestroy when the ticket is no longer needed.

Scripts can reuse passwords multiple times. For example, the following script reads a
password and then runs a program every hour that demands a password each time it is
run. The script supplies the password to the program so that you only have to type it
once.

stty -echo
send_user "password? "
expect_user -re "(.*)\n"
set password $expect_out(l,string)
send_user "\n"
while 1 {

if {[fork] 1= O} {
sleep 3600
continue

disconnect
spawn priv-prog
expect "password:"
send "$password\r"

exit

This script does the forking and disconnecting quite differently than the previous one.
Notice that the parent process sleeps in the foreground. That is to say, the parent
remains connected to the controlling terminal, forking child processes as necessary. The
child processes disconnect, but the parent continues running. This is the kind of
processing that occurs with some mail programs; they fork a child process to dispatch
outgoing mail while you remain in the foreground and continue to create new mail.

It might be necessary to ask the user for several passwords in advance before discon
necting. Just ask and be specific. It may be helpful to explain why the password is
needed, or that it is needed for later.

Consider the following prompts:

send_user "password for $userl on $hostl: "
send_user "password for $user2 on $host2: "
send_user "password for root on hobbes: "
send_user "encryption key for $user3: "
send_user "sendmail wizard password: "

Background Processing 377

It is a good idea to force the user to enter the password twice. It may not be possible to
authenticate it immediately (for example, the machine it is for may not be up at the
moment), but at least the user can lower the probability of the script failing later due to
a mistyped password.

stty -echo
send __ user "root password: "
expect_user -re "(.*)\n"
send_user "\n"
set passwd $expect_out(l,string)
send_user "Again:"
expect_user -re "(.*)\n"
send_user "\n"
if {O !=[string compare $passwd $expect_out(l,string)]}

send_user "mistyped password?"
exit

You can even offer to display the password just typed. This is not a security risk as long
as the user can decline the offer or can display the password in privacy. Remember that
the alternative of passing it as an argument allows anyone to see it if they run ps at the
right moment.

Another advantage to using the disconnect command over the shell asynchronous
process feature (&) is that Expect can save the terminal parameters prior to disconnec
tion. When started in the foreground, Expect automatically saves the terminal
parameters of the controlling terminal. These are used later by spawn when creating
new processes and their controlling terminals.

On the other hand, when started asynchronously (using &), Expect does not have a
chance to read the terminal's parameters since the terminal is already disconnected by
the time Expect receives control. In this case, the terminal is initialized purely by setting
it with "stty sane". But this loses information such as the number of rows and
columns. While rows and columns may not be particularly valuable to disconnected
programs, some programs may want a value-any value, as long as it is nonzero.

Debugging disconnected processes can be challenging. Expect's debugger does not
work in a disconnected program because the debugger reads from the standard input
which is closed in a disconnected process. For simple problems, it may suffice to direct
the log or diagnostic messages to a file or another window on your screen. Then you
can use send_log to tell you what the child is doing. Some systems support programs
such as syslog or logger. These programs provide a more controllable way of
having disconnected processes report what they are doing. See your system's documen
tation for more information.

378 Exploring Expect

These are all one-way solutions providing no way to get information back to the
process. I will describe a more general two-way solution in the next section.

Reconnecting
Unfortunately, there is no general way to reconnect a controlling terminal to a discon
nected process. But with a little work, it is possible to emulate this behavior. This is
useful for all sorts of reasons. For example, a script may discover that it needs (yet
more) passwords. Or a backup program may need to get someone's attention to change
a tape. Or you may want to interactively debug a script.

To restate: You have two processes (your shell and a disconnected Expect processes)
that need to communicate. However they are unrelated. The simplest way to have unre
lated processes communicate is through fifos. It is necessary to use a pair since
communication must flow in both directions. Both processes thus have to open the fifos.

The disconnected script executes the following code to open the fifos. infifo
contains the name of the fifo that will contain the user's input (i.e., keystrokes).
out fifo contains the name of the fifo that will be used to send data back to the user.
This form of open is described further in Chapter 13 (p. 291).

spawn -open [open "Icat $catflags < $infifo" "r"]
set userin $spawn_id

spawn -open [open $outfifo w]
set userout $spawn_id

The two opens hang until the other ends are opened (by the user process). Once both
fifos are opened, an interact command passes all input to the spawned process and
the output is returned.

interact -u $spawn_id -input $userin -output $userout

The -u flag declares the spawned process as one side of the interact and the fifos
become the other side, thanks to the -input and -output flags.

What has been accomplished so far looks like this:

(disconnected)

~utfil~ C) Cspawned) .1 Expect)-------1
infile .. process

The real user must now read and write from the same two fifos. This is accomplished
with another Expect script. The script reads very similarly to that used by the discon
nected process-however the fifos are reversed. The one read by the process is written
by the user. Similarly, the one written by the process is read by the user.

Background Processing

spawn -open [open $infifo wl
set out $spawn_id

spawn -open [open" I cat $catflags < $outfifo" "r" 1
set in $spawn_id

379

The code is reversed from that used by the disconnected process. However, the fifos
are actually opened in the same order. Otherwise, both processes will block waiting to
open a different fifo.

The user's interact is also similar:

interact -output $out -input Sin -output $user_spawn_id

The resulting processes look like this:

& (connected) (disconnected)

SDi1-----i(Expect)~ - ~(Expect)f------iCE::::~~~)

In this example, the Expect processes are transparent. The user is effectively joined to
the spawned process.

More sophisticated uses are possible. For example, the user may want to communicate
with a set of spawned processes. The disconnected Expect may serve as a process
manager, negotiating access to the different processes. One of the queries that the
disconnected Expect can support is disconnect. In this case, disconnect means breaking
the fifo connection. The manager closes the fifos and proceeds to its next command. If
the manager just wants to wait for the user, it immediately tries to reopen the fifos and
waits until the user returns. (Complete code for such a manager is shown beginning on
page 384.)

The manager may also wish to prompt for a password or even encrypt the fifo traffic to
prevent other processes from connecting to it.

One of the complications that I have ignored is that the user and manager must know
ahead of time (before reconnection) what the fifo names are. The manager cannot
simply wait until it needs the information and then ask the user because doing that
requires that the manager already be in communication with the user!

A simple solution is to store the fifo names in a file, say, in the home directory or /tmp.
The manager can create the names when it starts and store the names in the file. The
user-side Expect script can then retrieve the information from there. This is not sophisti
cated enough to allow the user to run multiple managers, but that seems an unlikely
requirement. In any case, more sophisticated means can be used.

380 Exploring Expect

Using kibitz From Other Expect Scripts
In the previous chapter, I described kibitz, a script that allows two users to control a
common process. kibitz has a -noproc flag, which skips starting a common process
and instead connects together the inputs and outputs of both users. The second user
will receive what the first user sends and vice versa.

By using -noproc, a disconnected script can use kibitz to communicate with a user.
This may seem peculiar, but it is quite useful and works well. The disconnected script
plays the part of one of the users and requires only a few lines of code to do the work.

Imagine that a disconnected script has reached a point where it needs to contact the
user. You can envision requests such as "1 need a password to continue' or "The 3rd
backup tape is bad, replace it and tell me when 1 can go on'.

To accomplish this, the script simply spawns a kibitz process to the appropriate user.
kibitz does all the work of establishing the connection.

spawn kibitz -noproc $user

Once connected, the user can interact with the Expect process or can take direct control
of one of the spawned processes. The following Expect fragment, run from cron,
implements the latter possibility. The variable proc is initialized with the spawn id of
the errant process while kibitz is the currently spawned process. The tilde is used to
return control to the script.

spawn some-process; set proc $spawn_id

script now has question or problem so it contacts user
spawn kibitz -noproc some-user
interact -u $proc -0 - {

close
wait
return

If proc refers to a shell, then you can use it to run any UNIX command. You can
examine and set the environment variables interactively. You can run your process
inside the debugger or while tracing system calls (i.e., under trace or truss). And
this will all be under cron. This is an ideal way of debugging programs that work in the
normal environment but fail under cron. The following figure shows the process rela
tionship created by this bit of scripting.

Background Processing

(~1
\\
logica~ ------/

data flow""""
during intera;t-""-",_~

381

Those half-dozen lines (just shown) are a complete, albeit simple, solution, A more
professional touch might describe to the user what is going on, For example, after
connecting, the script could do this:

send "The Frisbee ZQ30 being controlled by process $pid\
refuses to reset and I don't know what else to do. \
Should I let you interact (i), kill me (k), or\
execute the dangerous gorp command (g)? "

The script describes the problem and offers the user a choice of possibilities, The script
even offers to execute a command (gorp) it knows about but will not do by itself.

Responding to these is just like interacting with a user except that the user is in raw
mode, so all lines should be terminated with a carriage-return linefeed. (Sending these
with "send -h" can lend a rather amusing touch.)

Here is how the response might be handled:

expect {
g {

send "\r\nok, I'll do a gorp\r\n"
gorp
send "Hmm. A gorp didn't seem to fix anything. \

Now what (kgi)? "

382

k

i

send "\r\nok, I'll kill myself. .. thanks\r\n"
exit

Exploring Expect

send "\r\npress X to give up control, A to abort\
everything\r\n"

interact -u $proc -0 X return A exit
send "\r\nok, thanks for helping ... I'm on my own now\r\n"
close
wait

Numerous strategies can be used for initially contacting the user. For example, the script
can give up waiting for the user after some time and try someone else. Or it could try
contacting multiple users at the same time much like the rlogin script in Chapter 11
Cp.253).

The following fragment tries to make contact with a single user. If the user is not logged
in, kibi t z returns immediately and the script waits for 5 minutes. If the user is logged
in but does not respond, the script waits an hour. It then retries the kibitz, just in case
the user missed the earlier messages. After maxtries attempts, it gives up and calls
gi veup. This could be a procedure that takes some last resort action, such as sending
mail about the problem and then exiting.

set maxtries 30
set count 0
set timeout 3600 ;# wait an hour for user to respond

while 1 {
spawn kibitz -noproc $env(USER)
set kib $spawn_id
expect eof {

sleep 600
incr count
if {$count > $maxtries} giveup
continue

-re "Escape sequence is.*" {
break

timeout
close; wait

If the user does respond to the kibitz, both sides will see the message from kibitz
describing the escape sequence. When the script sees this, it breaks out of the loop and
begins communicating with the user.

Background Processing 383

Mailing From Expect
In the previous section, I suggested using mail as a last ditch attempt to contact the user
or perhaps just a way of letting someone know what happened. Most versions of cron
automatically mail logs back to users by default, so it seems appropriate to cover mail
here. Sending mail from a background process is not the most flexible way of communi
cating with a user, but it is clean, easy, and convenient.

People usually send mail interactively, but most mail programs do not need to be run
with spawn. For example, /bin/mail can be run using exec with a string containing
the message. The lines of the message should be separated by newlines. The variable
to names the recipient in this example:

exec Ibin/mail $to « "this is a message\nof two lines\n"

There are no mandatory headers, but a few basic ones are customary. Using variables
and physical newlines makes the next example easier to read:

exec Ibin/mail $to « "From: $from
To: $to
From: $from
Subject: $subject
$body"

To send a file instead of a string, use the < redirection.

You can also create a mail process and write to it:

set mailfile [open" I/bin/mail $to" wJ
puts $mailfile "To: $to"
puts $mailfile "From: $from"
puts $mailfile "Subject: $subject"

This approach is useful when you are generating lines one at a time, such as in a loop:

while { } {
;# compute line

puts $mailfile "computed another line: $line"

To send the message, just close the file.

close $mailfile

384 Exploring Expect

A Manager For Disconnected Processes
dislocate
Earlier in the chapter, I suggested that a disconnected background process could be
used as a process manager. This section presents a script which is a variation on that
earlier idea. Called dislocate, this script lets you start a process, interact with it for a
while, and then disconnect from it. Multiple disconnected processes live in the back
ground waiting for you to reconnect. This could be useful in a number of situations. For
example, a telnet connection to a remote site might be impossible to start during the
day. Instead you could start it in the evening the day before, disconnect, and reconnect
to it later the next morning.

A process is started by prefacing any UNIX command with dislocate, as in:

% dislocate rlogin io.jupiter.cosmos
Escape sequence is 'A]'.
io.jupiter.cosmos:-l%

Once the processing is running, the escape sequence is used to disconnect. To recon
nect, dislocate is run with no arguments. Later, I will describe this further, including
what happens when multiple processes are disconnected.

The script starts similarly to xkibitz in Chapter 16 Cp. 361)-by defining the escape
character and several other global variables. The file -/ .dislocate is used to keep
track of all of the disconnected processes of a single user. "disc" provides an applica
tion-specific prefix to files that are created in /tmp.

#!/usr/local/bin/expect --
set escape \035 ;# control-right-bracket
set escape-printable "A\]"

set pidfile "-/.dislocate"
set prefix "disc"
set timeout -1

while {$argc} {
set flag [lindex $argv 0]
switch -- $flag \
"-escape" {

set escape [lindex $argv 1]
set escape-printable $escape
set argv [lrange $argv 2 end]
incr argc -2

default {
break

Background Processing 385

Next come several definitions and procedures for fifo manipulation. The mkfifo proce
dure creates a single fifo. Creating a fifo on a non-POSIX system is surprisingly non
portable-mknod can be found in so many places!

prac mkfifa {f} {
if [file exists $f] {

if

fifa already exists?
return

0== [catch {exec mkfifa $f}]
if 0== [catch {exec mknad $f p}]

return
return

if 0== [catch {exec /etc/mknad $f p}] return
if 0== [catch {exec /usr/etc/mknad $f p} 1 return
puts "failed ta make a fifa - where is mknad?"
exit

;# POSIX

;# AIX,Cray
;# Sun

Suffixes are declared to distinguish between input and output fifos. Here, they are
descriptive from the parent's point of view. In the child, they will be reset so that they
appear backwards, allowing the following two routines to be used by both parent and
child.

set infifasuffix ".i"
set autfifasuffix ".a"

prac infifaname {pid} {
glabal prefix infifasuffix

return "/tmp/$prefix$pid$infifasuffix"

prac autfifaname {pid} {
glabal prefix autfifasuffix

return "/tmp/$prefix$pid$autfifasuffix"

Embedded in each fifo name is the process id corresponding to its disconnected
process. For example, process id 1005 communicates through the fifos named /tmp/
discl005. i and /tmp/discl005. o. Since the fifo names can be derived given a
process id, only the process id has to be known to initiate a connection.

While in memory, the relationship between the process ids and process names (and
arguments) is maintained in the proc array. The array is indexed by process id. For
example, if the process id is 1005, the variable proc (1005) might hold the string
"telnet io.jupiter.cosmos". A similar array maintains the date when each

386 Exploring Expect

process was started. These are initialized with the following code which also includes a
utility procedure for removing process ids.

allow element lookups on empty arrays
set date (dummy) dummy;unset date (dummy)
set proc(dummy) dummy;unset proc(dummy)

proc pid_remove {pid}
global date proc

unset date ($pid)
unset proc($pid)

When a process is disconnected, the information on this and any other disconnected
process is written to the . dislocate file mentioned earlier. Each line of the file
describes a disconnected process. The format for a line is:

pid#date-started#argv

Writing the file is straightforward:

proc pidfile_write {} {
global pidfile date proc

set fp [open $pidfile w]
foreach pid [array names date] {

puts $fp "$pid#$date($pid)#$proc($pid)"

close $fp

The procedure to read the file is a little more complex because it verifies that the
process and fifos still exist.

proc pidfile_read {}
global date proc pidfile

if [catch {open $pidfile} fp] return

set line 0
while {[gets $fp buf] !=-l} {

while pid and date can't have # in it, proc can
if [regexp "(\["'#]*)#(\["'#]*)#(.*)" $buf junk \

pid xdate xproc] {
set date($pid) $xdate
set proc($pid) $xproc

else {
puts "warning: error in $pidfile line $line"

Background Processing

incr line

close $fp

see if pids are still around
foreach pid [array names date]

if [catch {exec /bin/kill -0 $pid}]
pid no longer exists, removing
pid_remove $pid
continue

pid still there, see if fifos are
if {! [file exists [infifoname $pid]] II \

! [file exists [outfifoname $pid]]} {
$pid fifos no longer exists, removing
pid_remove $pid
continue

387

The following two procedures create and destroy the fifo pairs, updating the. dislo
cate file appropriately.

proc fifo-pair_remove {pid}
global date proc prefix

pidfile_read
pid_remove $pid
pidfile_write

catch {exec rm -f [infifoname $pid] \
[outfifoname $pid]}

proc fifo-pair_create {pid argdate argv} {
global prefix date proc

pidfile_read
set date($pid) $argdate
set proc($pid) $argv
pidfile_write

mkfifo [infifoname $pid]
mkfifo [outfifoname $pid]

388 Exploring Expect

Things get very interesting at this point. If the user supplied any arguments, they are in
turn used as arguments to spawn. A child process is created to handle the spawned
process.

A fifo pair is created before the fork. The child will begin listening to the fifos for a
connection. The original process (still connected to the controlling terminal) will imme
diately connect to the fifos. This sounds baroque but is simpler to code because the
child behaves precisely this way when the user reconnects later.

Notice that initially the fifo creation occurs before the fork. If the creation was done
after, then either the child or the parent might have to spin, inefficiently retrying the fifo
open. Since it is impossible to know the process id ahead of time, the script goes ahead
and just uses O. This will be set to the real process id when the child does its initial
disconnect. There is no collision problem because the fifos are deleted immediately
anyway.

if {$argc}
set datearg [exec date]
fifo-pair_create 0 $datearg $argv

set pid [fork]
if $pid==O {

child $datearg $argv
}

parent thinks of child as having pid 0 for
reason given earlier
set pid 0

If dislocate has been started with no arguments, it will look for disconnected
processes to connect to. If multiple processes exist, the user is prompted to choose one.
The interaction looks like this:

% dislocate
connectable processes:

pid date started
1 5888 Mon Feb 14 23:11:49
2 5957 Tue Feb 15 01:23:13
3 1975 Tue Jan 11 07:20:26

enter # or pid: 1
Escape sequence is A]

process
rlogin io.jupiter.cosmos
telnet ganymede
rogue

Here is the code to prompt the user. The procedure to read a response from the user is
shown later.

if ! [info exists pid] {
global fifos date proc

Background Processing

pid does not exist
pidfile_read

set count 0
foreach pid [array names date] {

incr count

if $count==O {
puts "no connectable processes"
exit

elseif $count==1 {
puts "one connectable process: $proc($pid)"
puts "pid $pid, started $date($pid)"
send_user "connect? \[y] "
expect_user -re "(. *) \n" {

set buf $ expect_out (1,string)

if {$bufl="y" && $bufl=""} exit
else {

puts "connectable processes:"
set count 1
puts "# pid date started process"
foreach pid [array names date] {

puts [format "%2d %6d %.19s %s" \
$count $pid $date($pid) $proc($pid)]

set index ($count) $pid
incr count

set pid [choose]

389

Once the user has chosen a process, the fifos are opened, the user is told the escape
sequence, the prompt is customized, and the interaction begins.

opening [outfifoname $pid] for write
spawn -noecho -open [open [outfifoname $pid] w]
set out $spawn_id

opening [infifoname $pid] for read
spawn -noecho -open [open [infifoname $pid] r]
set in $spawn_id

puts "Escape sequence is $escape-printable"

390

proc promptl {}
global argvO

return "$argvO[history nextid]> "

interact
-reset $escape escape
-output $out
-input $in

Exploring Expect

The escape procedure drops the user into interpreter where they can enter Tel or
Expect commands. They can also press /\2 to suspend dislocate or they can enter
exi t to disconnect from the process entirely.

proc escape {} {
puts "\nto disconnect, enter: exit (or AD)"

puts "to suspend, enter appropriate job control chars"
puts "to return to process, enter: return"
interpreter
puts "returning

The choose procedure is a utility to interactively query the user to choose a process. It
returns a process id. There is no specific handler to abort the dialogue because /\C will
do it without harm.

proc choose {}
global index date

while 1 {
send_user "enter # or pid: "
expect_user -re "(. *) \n" {

set buf $expect_out(l,string)

if [info exists index($buf)] {
set pid $index($buf)

elseif [info exists date($buf)]
set pid $buf

else {
puts "no such # or pid"
continue

return $pid

Background Processing 391

All that is left to show is the child process. It immediately disconnects and spawns the
actual process. The child then waits for the other end of each fifo to be opened. Once
opened, the fifos are removed so that no one else can connect, and then the interaction
is started. When the user-level process exits, the child process gets an eof, returns from
the interact, and recreates the fifos. The child then goes back to waiting for the fifos
to be opened again. If the actual process exits, the child exits. Nothing more need be
done. The fifos do not exist nor does the entry in the. dislocate file. They were both
removed prior to the interact by fifoJ)air_remove.

proc child {argdate argv} {
global infifosuffix outfifosuffix

disconnect

these are backwards from the child's point of view
so that we can make everything else look "right"
set infifosuffix ".0"
set outfifosuffix ".i"
set pid 0

eval spawn $argv
set proc_spawn_id $spawn_id

while {l} {

spawn -open [open [infifoname $pidl rl
set in $spawn_id

spawn -open [open [outfifoname $pidl wl
set out $spawn_id

fifo-pair_remove $pid

interact {
-u $proc_spawn_id eof exit
-output $out
-input Sin

catch {close -i Sin}
catch {close -i $out}

set pid [pidl
fifo-pair_create $pid $argdate $argv

392 Exploring Expect

Expect As A Daemon
When you log in to a host, you have to provide a username and (usually) a password. It
is possible to make use of certain services without this identification. finger and ftp
are two examples of services that can be obtained anonymously-without logging in.
The programs that provide such services are called daemons. Traditionally, a daemon is
a background process that is started or woken when it receives a request for service.

UNIX systems often use a program called inetd to start these daemons as necessary.
For example, when you ftp to a host, inetd on that host sees the request for ftp
service and starts a program called in. ftpd ("Internet ftp daemon") to provide you
with service. There are many other daemons such as in. telnetd ("Internet telnet
daemon") and in. fingerd ("Internet finger daemon").

You can write Expect scripts that behave just like these daemons. Then users will be
able to run your Expect scripts without logging in. As the large number of daemons on
any host suggests, there are many uses for offering services in this manner. And Expect
makes it particularly easy to build a daemon-to offer remote access to partially or
completely automated interactive services. In the next section, I will discuss how to use
Expect to enable Gopher and Mosaic to automate connections that would otherwise
require human interaction.

Simple Expect scripts require no change to run as a daemon. For example, the
following Expect script prints out the contents of I etc/motd whether run from the
shell or as a daemon.

exec cat /etc/rnotd

Such a trivial script does not offer any benefit for being written in Expect. It might as
well be written in Ibinl sh. Where Expect is useful is when dealing with interactive
programs. For example, your daemon might need to execute ftp, telnet, or some
other interactive program to do its job.

The telnet program (the "client") is normally used to speak to a telnet daemon (the
"server") but telnet can be used to communicate with many other daemons as well.
In Chapter 6 (p. 131), I showed how to use telnet to connect to the SMTP port and
communicate with the mail daemon.

If you telnet to an interactive program invoked by a daemon written as a shell script,
you will notice some interesting properties. Input lines are buffered and echoed locally.
Carriage-returns are received by the daemon as carriage-return linefeed sequences. This
peculiar character handling has nothing to do with cooked or raw mode. In fact, there is
no terminal interface between telnet and telnetd.

Background Processing 393

This translation is a by-product of telnet itself. telnet uses a special protocol to talk
to its daemon. If the daemon does nothing special, telnet assumes these peculiar
characteristics. Unfortunately, they are inappropriate for most interactive applications.
For example, the following Expect script works perfectly when started in the fore
ground from a terminal. However, the script does not work correctly as a daemon
because it does not provide support for the telnet protocol.

spawn /bin/sh
interact

Fortunately, a telnet daemon can modify the behavior of telnet. A telnet client and
daemon communicate using an interactive asynchronous protocol. An implementation
of a telnet daemon in Expect is short and efficient.

The implementation starts by defining several values important to the protocol. IAC

means Interpret As Command. All commands begin with an IAC byte. Anything else is
data, such as from a user keystroke. Most commands are three bytes and consist of the
IAC byte followed by a command byte from the second group of definitions followed
by an option byte from the third group. For example, the sequence IACWILL$ECHO

means that the sender is willing to echo characters.

The IAC byte always has the value "\xff". This and other important values are fixed
and defined as follows:

set lAC "\xff"

set DONT "\xfe"
set DO "\xfd"
set WONT "\xfc"
set WILL "\xfb"
set SB "\xfa" ;# subnegotation begin
set SE "\xfO" ;# subnegotation end

set TTYPE "\x18"
set SGA "\x03"
set ECHO "\xOl"
set SEND "\xOl"

The response to WILL is either DO or DONT. If the receiver agrees, it responds with DO;

otherwise it responds with DONT. Services supplied remotely can also be requested
using DO, in which case the answer must be WILL or WONT. To avoid infinite protocol
loops, only the first WILL or DO for a particular option is acknowledged. Other details
of the protocol and many extensions to it can be found in more than a dozen RFCs
beginning with RFC 854.t

394 Exploring Expect

The server begins by sending out three commands. The first command says that the
server will echo characters. Next, line buffering is disabled. Finally, the server offers to
handle the terminal type.

send "IACWILL$ECHO"
send "IACWILL$SGA"
send "IACDO$TTYPE"

For reasons that will only become evident later, it is important both to the user and to
the protocol to support nulls, so null removal is disabled at this point.

remove_nulls 0

Next, several patterns are declared to match commands returning from the client. While
it is not required, I have declared each one as a regular expression so that the code is a
little more consistent.

The first pattern matches IACDO$ECHO and is a response to the IACWILL$ECHO.

Thus, it can be discarded. Because of the clever design of the protocol, the acknowledg
ment can be received before the command without harm. Each of the commands above
has an acknowledgment pattern below that is handled similarly.

Any unknown requests are refused. For example, the IACDO\ (.) pattern matches
any unexpected requests and refuses them. (Notice the parenthesis has a preceding
backslash to avoid having "$DO" be interpreted as an array referenceO

expect_before {
-re ''''IACDO$ECHO''

treat as acknowledgment and ignore
exp_continue

-re ''''IACDO$SGA''
treat as acknowledgment and ignore
exp_continue

-re ""IACDO\(.)"
refuse anything else
send_user "IACWONT$expect_out(l,string)"
exp_continue

-re " "IACWILL$TTYPE"
respond to acknowledgment
send_user "IACSB$TTYPE$SENDIACSE"
exp_continue

t TePIIP Illustrated, Volume 1 by W. Richard Stevens (Addison-Wesley, 1994) contains a particularly lucid ex
planation of the protocol, while Internet System Handbookby Daniel Lynch and Marshall Rose (Addison-Wesley,
1993) describes some of the common mistakes. If you are trying for maximum interoperability, you must go be
yond correctness and be prepared to handle other implementation's bugs!

Background Processing

-re ''''IACWILL$SGA'' {
acknowledge request
send_user "IACDO$SGA"
exp_continue

-re ""IACWILL\(.)"
refuse anything else
send_user "IACDONT$expect_out (1, string) "
exp_continue

-re ""IACSB$TTYPE"
expect_user null
expect_user -re "(.*)IACSE"
set env(TERM) [string tolower $expect_out(l,string)]
now drop out of protocol handling loop

-re ""IACWONT$TTYPE" {
treat as acknowledgment and ignore
set env(TERM) vt100
now drop out of protocol handling loop

395

The terminal type is handled specially. If the client agrees to provide its terminal type,
the server must send another command that means "ok, go ahead and tell me". The
response has an embedded null, so it is broken up into separate expect commands.
The terminal type is provided in uppercase, so it is translated with "string lower". If
the client refuses to provide a terminal type, the server arbitrarily uses vt 1 0 O.

All of the protocol and user activity occurs with the standard input and output. These
two streams are automatically established if the daemon is configured with inetd.

Next, the timeout is disabled and a bare expect command is given. This allows the
protocol interaction to take place according to the expect_before above. Most of the
protocol actions end with exp_continue, allowing the expect to continue looking
for more commands.

set timeout -1
expect ;# do negotiations up to terminal type

When the client returns (or refuses to return) the terminal type, the expect command
ends and the protocol negotiations are temporarily suspended. At this point, the
terminal type is stored in the environment, and programs can be spawned which will
inherit the terminal type automatically.

spawn interactive-program

396 Exploring Expect

Now imagine that the script performs a series of expect and send commands, perhaps
to negotiate secret information or to navigate through a difficult or simply repetitive
dialogue.

expect
send .
expect

Additional protocol commands may have continued to arrive while a process is being
spawned, and the protocol commands are handled during these expect commands.
Additional protocol commands can be exchanged at any time; however, in practice,
none of the earlier ones will ever reoccur. Thus, they can be removed. The protocol
negotiation typically takes place very quickly, so the patterns can usually be deleted
after the first expect command that waits for real user data.

remove protocol negotation patterns
expect_before -i $user_spawn_id

One data transformation that cannot be disabled is that the telnet client appends
either a null or linefeed character to every return character sent by the user. This can be
handled in a number of ways. The following command does it within an interact
command which is what the script might end with.

interact n\rn {
send n\rn
expect_user \n {} null

Additional patterns can be added to look for commands or real user data, but this
suffices in the common case where the user ends up talking directly to the process on
the remote host.

Ultimately, the connection established by the Expect daemon looks like this:

local host remote host

interactive
process

Background Processing

Example-Automating Gopher And Mosaic
telnet Connections

397

Gopher is an information system that follows links of information that may lead from
one machine to another.t The Gopher daemon does not support the ability to run inter
active programs. For instance, suppose you offer public access to a service on your
system, such as a library catalog. Since this is an interactive service, it is accessed by
logging in, usually with a well-known account name such as "info".

Put another way, for someone to use the service, they must telnet to your host and
enter "info" when prompted for an account. You could automate this with an Expect
script. Not so, under Gopher. The Gopher daemon is incapable of running interactive
processes itself. Instead, the daemon passes the telnet information to the Gopher
client. Then it is up to the Gopher client to run telnet and log in.

This means that the client system has to do something with the account information. By
default, the Gopher client displays the information on the screen and asks the user to
type it back in. This is rather silly. After all, the client knows the information yet insists
on having the user enter it manually. It is not a matter of permission. The client literally
tells the user what to type! Here is an example (with :xxx: to protect the guilty) from an
actual Gopher session.

+----------University of xxx XXXXXX XXXXXXXY.-----------+
I Connecting to library.XXX.edu, port 23 using telnet. I
I I
I Use the account name "info" to log in I
I I
I [Cancel: "G] [OK: Enter] I
+--

Even Mosaic, with its slick user interface, does not do any better. It looks pretty, but the
user is still stuck typing in the same information by hand.

log in illS 'info'.

Unfortunately, Mosaic and Gopher clients cannot perform interaction automation. One
reason is that there is no standard way of doing it. For instance, there is no reason to

t While the WWW(e.g., Mosaic) interface is different than Gopher, both have the same restrictions on handling
interactive processes and both can take advantage of the approach I describe here.

39B Exploring Expect

expect that any arbitrary host has Expect. Many hosts (e.g., PCs running DOS) do not
even support Expect, even though they can run telnet.

And even if all hosts could perform interaction automation, you might not want to give
out the information needed to control the interaction. Your service might, for example,
offer access to other private, internal, or pay-for-use data as well as public data. Auto
mating the account name, as I showed in the example, is only the tip of the iceberg.
There may be many other parts of the interaction that need to be automated. If you give
out the account, password, and instructions to access the public data, users could poten
tially take this information, bypass the Gopher or Mosaic client and interact by hand,
doing things you may not want.

The solution is to use the technique I described in the previous section and partially
automate the service through an Expect daemon accessible from a telnet port. By
doing the interaction in the daemon, there is no need to depend on or trust the client. A
user could still telnet to the host, but would get only what the server allowed.

By controlling the interaction from the server rather than from the client, passwords and
other sensitive pieces of information do not have a chance of being exposed. There is
no way for the user to get information from the server if the server does not supply it.
Another advantage is that the server can do much more sophisticated processing. The
server can shape the conversation using all the power of Expect.

In practice, elements of the earlier script beginning on page 393 can be stored in
another file that is sourced as needed. For instance, all of the commands starting with
the telnet protocol definitions down to the bare expect command could be stored in
a file (say, expectd. proto) and sourced by a number of similar servers.

source /usr/etc/expectd.proto

As an example, suppose you want to let people log into another host (such as a
commercial service for which you pay money) and run a program there, but without
their knowing which host it is or what your account and password are. Then, the local
server would spawn a telnet (or tip or whatever) to the real server.

The following example is a script that communicates with the popular FirstSearch
system provided by OCLC Online Computer Library Center, a research organization
used by more than 17,000 libraries. FirstSearch searches databases such as WorldCat.
(WorldCat alone holds more than 29 million records!) Access to FirstSearch costs money
so it is appropriate to hide the password while still allowing access. For instance, you
could make the service available to your staff this way.t Then if they took another job
elsewhere, they would not be able to continue using the account, since they never
knew the account information and password in the first place.

t I will mention one way of doing access control in the next section.

Background Processing 399

This example merely automates the initial login. You could, of course, do more but this
is sufficient to show that there are all sorts of other possibilities.

source /usr/etc/expectd.proto
log_user 0 ;# turn output off
set timeout -1
expect ;# do negotiations up to terminal type
spawn telnet fscat.oclc.org
expect "authorization*=> "
send "123-4S6-789\r"
expect "password*=> "
send "jellyroll\r"
log_user 1 ;# turn output on
expect "WELCOME TO FIRSTSEARCH"

The script ends as before-removing the protocol patterns and dropping the user into
an interact.

expect_before -i $user_spawn_id
interact "\r"

send "\r"
expect_user \n {} null

The interface provided by OCLC suffers from the very problem I warned against in
Chapter 8 (p. 199). Namely, the interface leaves a window between the time it prompts
for the password and disables echoing. This naturally shows up here. Since Expect is so
fast, the password is almost always entered in the critical window and echoed. A simple
solution is just to sleep for a few seconds. However, this is unreliable. There is no guar
antee that any amount of time is enough. A better solution is to absorb the password if it
appears. Here is the critical fragment of the script rewritten to do so:

expect "password*=> "
send [set password "jellyroll"]\r
expect -re "(.*$password)?(.*WELCOME TO FIRSTSEARCH.*)"

send_user -raw $expect_out(2,string) "

;# turn output on

If the password appears, the regular expression skips over it. The remainder of the
output is matched and sent to the user. Once beyond the password interaction, logging
to the standard output is restored, so that it can be done automatically by Expect.

In this example, the script is logging in to another host, and the password appears liter
ally in the script. This can be very secure if users cannot log in to the host. Put scripts
like these on a separate machine to which users cannot log in or physically approach.
As long as the user can only access the machine over the network through these Expect
daemons, you can offer services securely.

400 Exploring Expect

Providing the kind of daemon service I have just described requires very little resources.
It is not CPU intensive nor is it particularly demanding of I/O. Thus, it is a fine way to
make use of older workstations that most sites have sitting around idle and gathering
dust.

Telling The System About Your Daemon
Daemons like the one I described in the previous section are typically started using
inetd. Several freely available programs can assist network daemons by providing
access control, identification, logging, and other enhancements. For instance,
tcp_wrapper does this with a small wrapper around the individual daemons, whereas
xinetd is a total replacement for inetd. tcp_wrapper is available from
cert. sei. cmu. edu as pub/network_tools. xinetd is available from the
comp. source. unix archive.

Since anyone using xinetd and tcp_wrapper is likely to know how to configure a
server already, I will provide an explanation based on inetd. The details may differ
from one system to another.

Most versions of inetd read configuration data from the file /etc/inetd.conf. A
single line describes each server. (The order of the lines is irrelevant.) For example, to
add a service called secret, add the following line:

secret stream tcp nowait root /usr/etc/secretd secretd

The first field is the name of the port on which the service will be offered. The next
three parameters must always be stream, tcp, and nowait for the kind of server I
have shown here. The next parameter is the user id with which the server will be
started. root is common but not necessary. The next argument is the file to execute.
In this example, /usr / etc/ secretd is the Expect script. This follows the tradition of
storing servers in /usr/etc and ending their names with a "d". The script must be
marked executable. If the script contains passwords, the script should be readable, writ
able, and executable only by the owner. The script should also start with the usual #!
line. Alternatively, you can list Expect as the server and pass the name of the script as an
argument. The next argument in the line is the name of the script (again). Inside the
script, this name is merely assigned to argvO. The remaining arguments are passed
uninterpreted as the arguments to the script.

Once inetd is configured, you must send it a HUP signal. This causes inetd to reread
its configuration file.

The file /etc/services (or the NIS services map) contains the mapping of service
names to port numbers. Add a line for your new service and its port number. Your

Background Processing 401

number must end with /tcp. "#" starts a comment which runs up to the end of the
line. For example:

secret 9753/tcp # Don's secret server

You must choose a port number that is not already in use. Looking in the /etc/
services file is not good enough since ports can be used without being listed there.
There is no guaranteed way of avoiding future conflicts, but you can at least find a free
port at the time by running a command such as "netstat -na I grep tcp" or
lsof. lsof (which stands for "list open files") and similar programs are available free
from many Internet source archives.

Exercises
1. Write a script that retrieves an FAQ. First the script should attempt to get the FAQ

locally by using your local news reading software. If the FAQ has expired or is not
present for some other reason, the script should anonymously ftp it from
rtfm.mit. edu. (For instance, the first part of the Tcl FAQ lives in the file /pub/
usenet/news. answers/tc1-faq/partl.) If the ftp fails because the site is too
loaded or is down, the script should go into the background and retry later, or it
should send email to mai 1-server@rtfm.mi t . edu in the form:

send usenet/news.answers/tcl-faq/partl

2. Write a script called netpipe that acts as a network pipe. Shell scripts on two differ
ent machines should be able to invoke netpipe to communicate with each other as
easily as if they were using named pipes (Le., fifos) on a single machine.

3. Several of your colleagues are interested in listening to Internet Talk Radio and Inter
net Town Hall. t Unfortunately, each hour of listening pleasure is 30Mb. Rather than
tying up your expensive communications link each time the same file is requested,
make a cron entry that downloads the new programs once each day. (For informa
tion about the service, send mail to info@radio. com.)

4. The dia1back scripts in Chapter 1 (p. 4) and Chapter 16 (p. 351) dial back immedi
ately. Use at to delay the start by one minute so that there is time to log out and
accept the incoming call on the original modem. Then rewrite the script using fork
and disconnect. Is there any functional difference?

5. Take the te1net daemon presented in this chapter and enhance it so that it under
stands when the client changes the window size. This option is defined by RFC 1073
and is called Negotiate About Window Size (NAWS) and uses command byte \xlf.

t The book review from April 7, 1993 is particularly worthwhile!

402 Exploring Expect

NAWS is similar to the terminal type subnegotation except that 1) it can occur at any
time, and 2) the client sends back strings of the form:

IACSB$NAWS$ROWHI$ROWLO$COLHI$COLLO$IAC$SE

where ROWHI is the high-order byte of the number of rows and ROWLO is the low
order byte of the number of rows. COLHI and COLLO are defined similarly.

6. You notice someone is logging in to your computer and using an account that should
not be in use. Replace the real telnet daemon with an Expect script that transpar
ently records any sessions for that particular user. Do the same for the rlogin dae
mon.

In This Chapter:

• Tracing Commands
And Variables

• Peeking And
Poking Into Other
Processes

• A Generalized
Debugger For Tel
Programs Debugging Scripts

A description of debugging techniques could easily fill an entire book or more-and
rightfully so. In any software development, debugging often takes more time than the
programming (not to mention designt:J.

The need for debugging is even more exaggerated in Tcl where many people code
while thinking. The interpretive nature of the language makes this seductively easy.

Good design principles can help avoid getting stuck in a quagmire. Careful thought can
prevent many common traps. In the same way, careful (and imaginative) thought is
helpful in solving problems. Some people claim never to use debuggers. I am not one
of them, but sometimes it helps to walk away from the keyboard and simply think
through what could possibly be happening-or what cannot possibly be happening but
is anyway.

Tracing
In this section, I will briefly recap some useful techniques and mention a few more that
are very useful for tracking down problems. All of these have to do with tracing control.
I will go into other debugging techniques later.

Simple output commands (using puts and send) can go a long way towards finding
problems. However, putting commands in and taking them out is a hassle. You can
conditionalize their execution with a variable.

if (verbose)
puts "

t Assuming you did any.

403

404 Exploring Expect

Rather than having raw if/puts commands throughout your code, it is cleaner to
isolate them in one place, such as a procedure called vprint (for "verbose print").

proc vprint {msg}
global verbose

if {$verbose} {puts "$msg"}

Later if you decide to redirect output to a file or window, you only have to change the
one output command in vprint.

This idea can be augmented in many different ways. For example, the following defini
tion prints the procedure name before the message.

proc vprint {msg}
global verbose

if {$verbose} {
puts "[lindex [info level -1] 0]: $msg"

Logging
It is often useful to write information to files so that you can study it later. You can write
log files yourself or you can use Expect's logging functions.

The commands log_user, log_file, and exp_internal can all be helpful while
debugging. These commands can also be controlled indirectly through procedures
similar to the puts example above.

I will summarize what these commands do. The log_user command controls whether
the output of spawned processes is seen. In most scripts, you want to leave this set one
way or the other, but it is nice to have the flexibility to turn it off and on during develop
ment. The log_user command is described further in Chapter 7 (p. 175).

The log_file command is related to the log_user command. However, log_file
has almost no uses other than for debugging. The log_file command records every
thing from a spawned process. Even output suppressed via "log_user 0" can be
recorded. The log_file command is further described in Chapter 7 (p. 180).

The exp_internal command is another command that is useful only for debugging.
The exp_internal command enables the printing of internal information, mostly
concerning pattern matching. This command was discussed in Chapter 7 (p. 165).

Debugging Scripts 405

In Chapter 17 Cp. 383), I described how to use mail to save information. This technique
can be very useful because you can get an immediate indication as soon as the mail has
been generated. With the log commands, you have to remember to look at the files they
create. For example, in Chapter 1 Cp. 13) I described a script that regularly checks a set
of modems. If the script encounters a problem that it cannot resolve, it sends mail rather
than simply logging the error to a file. This way the problem is brought to an adminis
trator's attention immediately.

Command Tracing
The strace command is yet another command that is useful only for debugging. The
command enables the printing of commands before they are executed. Here is what it
looks like when commands are traced.

expect1.2> set foo [split "a b [expr 10+5] "]
3 expr 10+5
2 split "a b [expr 10+5]"
1 set foo [split "a b [expr 10+5]"]

a b 15

Each command is prefixed by an integer describing the depth of the evaluation stack.
Each bracketed command increases the evaluation stack. In this example, you can see
the expr command being evaluated at the third stack level, the split command being
evaluated at the second stack level, and the set command being evaluated at the first
level.

Each command is indented by two spaces for each additional level in the stack. The
precise level numbers are not that important except as a guide to bounding the amount
of information that is produced.

The strace command takes an integer argument that bounds the depth to which
commands are traced. For example, the following command traces only commands
executed at the first three levels.

strace 3

This could be useful when there are a lot of subroutines being executed and you want
to ignore, for example, many iterations of a loop at some deep level. Unfortunately, this
control is not very fine. In practice, I often just use a very high value no matter what
kind of script I am using. It is simply not worth the effort of figuring out a precise cut
off. This command is likely to be revised in the future. t

t The name is particularly likely to change. The s stands for "statement"'. Once a synonym for "command", "state
ment" has been relegated to the historical wastebasket.

406 Exploring Expect

Given the flag -info, the strace command returns the current depth to which it is
tracing.

Variable Tracing
Tcl supports the ability to invoke procedures when variables are read or written. This
can be useful in regular programming (for example, Tk makes extensive use of tracing)
but it is especially useful during debugging.

For example, the following command traces any assignments to the array expect_out.

trace variable expect_out w traceproc

The w argument in the command stands for "write". The last argument is a procedure
which is called whenever the variable is written (i.e., assigned to). Instead of w, you can
also put r (read) or u (unset). A variable is unset when the unset command is used or
the variable goes out of scope.

All trace procedures must be declared with three parameters. The first parameter is the
variable name, the second is the element name (if the variable is an array), and the third
is the letter r, w, or u, depending on if the variable is being read, written, or unset.

The usual thing to do with a trace procedure when debugging is to print out the vari
able. Here is a trace procedure to do that. The procedure prints the variable name
followed by the value. The type argument is ignored since it will always be w in this
example.

proc traceproc {array element type} {
upvar [set array] ($element) var
puts "new value of [set array] ($element) is $var"

The trace procedure executes in the context of the scope in which the variable was
accessed, so the upvar command is necessary. It gets the variable from the caller's
scope, where it is meaningful.

The array name is stored in array and the element name is stored in element. The
expression" [set array] ($element)" produces the compound name. The more
obvious $array ($element) would return the value and not the name.

Here is what it looks like when I trace the array expect_out and type the string
"hello world" to an expect command that is just looking for ''world'':

expectl.2> trace variable expect_out w traceproc
expectl.3> expect world
hello world
new value of expect_out(O,string) is world

Debugging Scripts

new value of expect_out (spawn_id) is 0
new value of expect_out (buffer) is hello world
expectl.4>

407

Tracing can also be limited to particular array elements. The following command
creates a trace only on the element named buffer in the expect_out array.

expectl.S> trace variable expect_out(buffer) w traceproc

Tracing variables that are not arrays is a little simpler. The second argument to the trace
procedure is just an empty string and can be ignored. Here is a trace procedure for
scalar variables.

proc traceproc_simple {v null type}
upvar $v var
puts "new value of $v is $var"

Using this procedure, you can trace non-array variables. Here are some examples:

trace variable spawn_id w traceproc_simple
trace variable timeout w traceproc_simple

You can associate the same trace procedure with multiple variables, and you can also
associate multiple trace procedures with the same variable. They will all be triggered
(sequentially of course). You can even associate the same trace procedure multiple
times with the same variable.

Example-Logging By Tracing
The log_file command does not provide any special support for writing the output
of different processes to different log files. This can be simulated by tracing the
expect_out array. Remember that the spawn_id element identifies the particular
spawn id that produced the output.

The following trace procedure writes the value of expect_out (buffer) to a file
specific to the spawn id.

proc log_by_tracing {array element op} {
uplevel {

global logfile
set file $logfile($expect_out(spawn_id))
puts -nonewline $file $expect_out(buffer)

The association between the spawn id and each log file is made in the array logfile
which contains a pointer to the log file based on the spawn id. Such an association
could be made with the following code when each process is spawned.

408 Exploring Expect

spawn
set logfile($spawn_id) [open ... wJ

The trace is armed in the usual way:

trace variable expect_out(buffer) w log_by_tracing

Internally, the expect command saves the spawn_id element of expect_out after
the X, string elements but before the buffer element. For this reason, the trace must
be triggered by the buffer element rather than the spawn_id element. A trace trig
gered on expect_out (spawn_id) will see an old value of expect_out (buffer).

In Chapter 6 Cp. 149), I described how process output could be discarded if more
arrived than was permitted by match_max. In fact, a copy of the output is saved in
expect_out (buffer) before it is removed from the internal buffer. So even if the
expect command does not pass control to a user-supplied action, the buffer to be
discarded can be saved with the trace command just shown.

Saving output from the interact command in the same fashion is a little trickier. The
interact command is optimized for speed and there is no automatic saving of the
spawn id or buffer. This can be simulated but requires the use of explicit actions and
flags.

UNIX System Call Tracing
Before I finish with tracing, I will mention one more tracing aid-for UNIX system calls.
Tracing UNIX system calls is totally outside Tel and yet that is exactly the reason why it
is so valuable. Systems calls are precisely the points at which Tel interacts with the
outside world.

By tracing system calls, you can see files being opened and accessed. You can see
when your process is sleeping or creating new processes. You can see signals being
sent or received. This kind of information is very useful because, after all, programs are
run for the side-effects that they have on the outside world. By tracing system calls, you
get an idea of all the side-effects that your script is causing.

I will not go into a lot of detail here because so much of this is system specific.
However, there are three programs that are particularly useful. truss is a very flexible
system call tracer that is found on System V derivatives. trace is a similar program that
is found on BSD-based systems. strace is a public-domain version of trace that is a
lot better than the original. I highly recommend getting familiar with at least one of
these tools.

Debugging Scripts 409

Tk And tkinspect
The Tk extension to Tel provides commands that are primarily used for the purpose of
building graphic user interfaces. However, one Tk command that has nothing to do
with graphics is the send command. t Tk's send command sends a command from one
Tk application to another. The command is evaluated by the second application and
returned to the first.

An obvious command to send to an application is "set foo" to find out, for example,
what the value of foo is. To do this, all you have to do is send the command from
another Tk application. Below, I typed the shell command to start expectk-a
program that combines Expect and Tk. Using expectk, I then sent to the application
named frogger a request to get the value of the variable named frogcount:

% expectk
expect1.1> send frogger set frogcount
17

Because X applications typically spend most of their life waiting in an event loop, appli
cations in Tk are almost always ready to respond to send requests. The applications do
not have to do anything special to handle them. Most importantly, applications do not
have to be stopped to handle them. Tk applications process send requests as they are
received. This makes the send command quite useful for debugging. Without any prep
aration, you can pry into the internal data structures of scripts while they are running!

In fact, you are not restricted to looking at variables. You can change variables. You can
execute procedures. You can even redefine procedures as the script is running.
Although you may not want to do this last type of operation frequently, all of the
commands mentioned previously in this chapter are good candidates for sending to an
application that needs to be debugged.

To facilitate the use of send for debugging purposes, I recommend tkinspect.
Written by Sam Shen, tkinspect provides a graphic browser to all the global variables
and procedures in all the Tk-based applications currently running. You can scroll
through variables and values, and change them just by pointing at and editing them
using emacs-style commands. At any time, you can send back new values or
commands by pressing the send button. tkinspect is so easy to use that you may
find yourself using it on bug.Jree programs simply because tkinspect provides a
direct view into Tk programs. The Tel FAQ describes how to obtain tkinspect. For
more information on the FAQ, see Chapter 1 Cp. 20).

t When using Tk, Expect's send command can be accessed as exp_send. For more information, see Chapter
19 Cp. 433).

410 Exploring Expect

Despite my enthusiasm for send and tkinspect, there are several drawbacks. You
can see only global variables. You cannot stop the application to look at variables that
are frequently changing. And you may have to switch from using Expect (or some deriv
ative) to Expectk. Chapter 19 (p. 429) explains the changes that are required to run
Expect scripts in Expectk.

Tk's send command is really worth exploring. I have brought it up here in the context
of debugging, but the ability to have applications send arbitrary commands to each
other is very powerful. Although the interprocess communication that send uses is built
in to X, Tk brings this capability out in such a way that it is very easy to use. The send
command is much more than a debugging tool.

Traditional Debugging
Expect offers a debugging mechanism that is similar to traditional source-level debug
gers such as dbx and gdb. From now on, I will call it the debugger. This particular
debugger is just one of several that are available as separate extensions to Tel. Read the
Tel FAQ to learn about other Tel debuggers.

The debugger can be started with the command "debug 1" or by starting Expect itself
with the command-line flag "-D". The -D flag is just shorthand for a form of the debug
command, so I will talk about debug first.

The debug command can be used to start or stop the debugger. With an argument of 1,
the debugger is started. It is stopped with an argument of O.

debug 1

When the debugger starts running, it prints the next command to be executed and then
prompts you for what to do next. At this point you can do things like single-step the
script, set breakpoints, or continue the script. You can also enter any Expect or Tel
commands as well.

The following Tel commands illustrate that the debugger evaluates Tel commands as
usual.

dbg2.1> set m {a b c}
abc
dbg2.2> llength $m
3

The debugger interaction looks a lot like that of the Expect interpreter command.
As with the interpreter command, the second number of the prompt is the Tel
history identifier. The first number is the depth of the evaluation stack. In the context of
a script, the initial depth of the evaluation stack is 1 but the debugger always introduces
a new level to the stack. So the debugger prompts are always 2 . X or higher.

Debugging Scripts 411

The debug command can appear anywhere in a script. If you have a good idea of
where your script is misbehaving, add the debug command at that point. If the misbe
havior is dependent on some data, put the debug command in the appropriate side of
an if command.

if {$a<O} { i# code only misbehaves when a is negative?
debug 1 i# turn on debugger

The command-line flag "-D 1" makes Expect execute a "debug 1" command before
executing any commands in the script. The effect is as if you had made this command
the first line in your script. This is probably not where you would actually want to start
debugging; however, the flag avoids having to edit the script to manually add the
command.

The -D flag also initializes a trap so that if you generate SIGINT (e.g., press I\C), the
debugger takes control before the next command.

The command-line flag "-D 0" arms the trap without executing the "debug 1"
command. This is convenient if you want to run your script for a while and then press
I\C when you want to take control. If you want to arm a different trap or take some
other action upon - D, you can replace the default trap initialization by defining the envi
ronment variable EXPECT_DEBUG_INIT with an appropriate Tel command.

If "debug 1" is executed from an interrupt handler, control is not passed to the
debugger until the next command is about to execute. By using the -now flag, the
debugger takes control at the first point at which the interrupt can be fully processed.
(See Chapter 14 (p. 318) for more information.)

debug -now 1

Being able to interrupt a command is particularly useful if the command is of a type that
can run for a long time, such as an expect command. However, in this situation the
debugger may be unable to show the current command, so -now should not be used if
it is not necessary. It may be convenient for you to associate the "debug -now 1"
command with a different interrupt than I\c.

The remainder of this tutorial will assume that the debugger has been started by using
the command-line flag "-D 1".

412 Exploring Expect

Debugger Command Overview And Philosophy
The debugger commands are:

Name Description

s step into procedure

n,N step over procedure

r return from procedure

b set, clear, or show breakpoint

c continue

w show stack

u move scope up

d move scope down

h help

\r repeat last action

The debugger commands are all one letter} This is partly for convenience. Since the
debugger is purely an interactive application, commands should be easy to enter. Also,
scripts rarely use one-letter commands, so the chances of name conflicts between the
debugger and scripted applications is very low.

The command names are very similar and, in some cases, identical to other popular
debuggers (e.g., gdb, dbx). Existing Tcl procedures are directly usable, so there are no
new commands, for example, to print variables since Tcl already provides such
commands (e.g., set, puts, parray).

For the purposes of describing the debugger commands, I will use a script called
debug-test. exp. It is shown below. The script does not do anything particularly
useful. It merely serves to illustrate how the debugger is used.

set b 1

proc p4 {x} {
return [

expr 5+[expr l+$xJJ

set z [
expr l+[expr 2+[p4 $bJJ

t The "repeat last action" command is entered by just pressing the return key.

Debugging Scripts

proc p3 {}
set rn 0

proc p2 {}
set c 4
p3
set d 5

proc p1 {}

set a 2
p2
set a 3
set a 5

p1
set k 7
p1

413

If the debugger is started at the beginning of the script, no commands have been
executed. Tel and Expect commands have global scope.

% expect -D 1 debug-test.exp
1: set b 1
dbg2.1>

When a new command is about to be executed, the debugger prints the evaluation
stack level followed by the command. "set b 1" is the first line in the script. It has
not yet been executed. "info exists" confirms this.

dbg2.1> info exists b
o

Stepping Over Procedure Calls
The n command executes the pending command-in this case "set b l"-and
displays the next command to be executed.

dbg2.2> n
1: proc p4 {x} {

return [
expr 5+[expr l+$xJJ

dbg2.3> info exists b
1

414 Exploring Expect

The command "info exists b" confirms that b has been set. The procedure p4 is
about to be defined.

dbg2 .4> n
4: p4 $b
dbg5.5>

The procedure p4 has now been defined. The next command to be executed is p4
itself. It appears in the command:

set z [
expr l+[expr 2+[p4 $bll

The three sets of braces introduce three new levels on the evaluation stack; hence the
stack level in which p4 is about to be executed is shown as 4.t

Notice that the evaluation stack level does not affect the scope. I am still in the top-level
scope and b is still visible.

dbg5.5> info exists b
1

The argument to p4 is $b. The value of this variable can be evaluated by using set or
puts.

dbg5.6> set b
1
dbg5.7> puts $b
1

Another n command executes p4, popping the stack one level. Additional n commands
continue evaluation of the "set z" command, each time popping the stack one level. It
is not necessary to enter "n" each time. Pressing return is sufficient. Expect remembers
that the last action command was an n and executes that.

dbg5.8> n
3: expr 2+[p4 $bl
dbg4.9>
2: expr l+[expr 2+[p4 $bll
dbg3.10>
1: set z [

expr l+[expr 2+[p4 $bll

dbg2.11>

t Whether the word "stack" refers to procedure call stack or evaluation stack is either explicit or clearly implied
by the context.

Debugging Scripts 415

It is often useful to skip over multiple commands embedded in a single complex
command and just stop the debugger before it executes the last command. The N
command does this. Here is what the interaction looks like if I restart the debugging just
before the definition of p4:

1: proc p4 {x} {
return [

expr 5+[expr l+$xll

dbg2.2> N

1: set z [
expr l+[expr 2+[p4 $bll

dbg2.3>

Having typed N, the debugger executes the proc command but does not stop before
execution of p4. Instead, the debugger executes all the commands (p4, and expr
twice) up to the set before stopping. The N command is a convenient way of stepping
over complex commands such as if, for, and source commands that invoke many
other commands at the current scope.

Stepping Into Procedure Calls
The n command executes a procedure atomically. In contrast, it is possible to step into
a procedure with the s command. (If the command that is about to be executed is not a
procedure, then sand n behave identically.)

Imagine that p4 is just about to be executed. After the s command, the debugger stops
before the first command in the procedure and waits for more interactive commands.

4: p4 $b
dbg5.5> s
7: expr l+$x
dbg8.6>

"expr l+$x" is the first command to be executed inside of p4. It is nested inside of
two brackets, plus the procedure call ofp4, so the stack level is increased by three.

s, n, and N take an optional argument in the form of a number describing how many
commands to execute. For example:

s 2
s 100
s $b
s [expr 2+[p4 $bll

416 Exploring Expect

The arguments are evaluated according to the usual Tel rules because s, n, and N are
commands known to Tel.

The debugger will not interrupt procedures invoked from the command line. This is
usually the desired behavior although it is possible to change this.

s, n, and N are action commands. This means that the debugger remembers the last one
and uses it if you press return without a command. The arguments are remembered as
well. So if you want to execute 10 steps at a time, you need only enter "s 10" once and
then press returns thereafter.

Where Am I
In the current scenario, I am about to execute "expr l+$x" in the procedure p4. I can
remind myself of this by displaying the stack of procedure scopes using the w command.

7: expr l+$x
dbgS.6> w

0: expect -D 1 debug-test.exp
*1: p4 1

7: expr 1+1

The first line of the response describes scope O. This is the top-level scope of the file
itself, and the command used to invoke the program is shown. The second line
describes scope 1 which is the invocation of procedure p4. The last line is not a scope
but just repeats the evaluation stack level and the command about to be executed.

Notice that when w prints commands, they are displayed using the actual values of each
parameter. In contrast, when the debugger automatically prints out the next command
to be executed, the command is printed as it was originally entered in the script. For
example, the debugger initially stopped and printed "expr l+$w", but the same
instruction shows as "expr 1+1" in the output from the w command. Being able to see
the values of the parameters this way is exceedingly useful.

The Current Scope
By typing "s 14", the debugger executes fourteen steps. This brings me to the first
command in procedure p3.

dbgS.S> s 14
4: set m 0
dbgS.9> w

0: expect -D 1 debug-test.exp
1: pi
2: p2

Debugging Scripts 417

*3: p3
4: set In 0

The asterisk denotes that p3 is the current scope. I can now execute Tcl commands
appropriate to the scope of p3. This includes commands that can look or operate
directly in other scopes such as global, uplevel, and upvar, but it is simpler yet to
move the current scope up and down the stack.

dbgS.l0> uplevel {set c}
4

Moving Up And Down The Stack
The current scope can be changed by the u and d commands. u moves the current
scope up, while d moves it down. Interactive variable accesses always refer to the
current scope.

dbgS.ll> u
dbgS.12> w

0: expect -D 1 debug-test.exp
1: pI

*2: p2
3: p3
4: set In 0

dbgS.13> set c
4

Both u and d accept an argument representing the number of scopes by which to
move. For example, "u 2" moves from scope 2 to scope O.

dbgS.14> u 2
dbgS.lS> w
*0: expect -D 1 debug-test.exp
1: pI
2: p2
3: p3
4: set In 0

An absolute scope is also accepted in the form of "#" followed by a scope number, such
as "#3".

dbgS.16> u #3
dbgS.17> w

0: expect -D 1 debug-test.exp
1: pI
2: p2

*3: p3
4: set In 0

418 Exploring Expect

When an absolute scope is named, either u or d may be used, irrespective of which
direction the new scope lies.

Moving the scope does not affect the next script command that is about to be executed.
If a command such as s or n is given, the current scope is automatically reset to wher
ever is appropriate for execution of the new command.

Returning From A Procedure
The r command completes execution of the current procedure. In other words, it stops
after the current procedure returns.

dbg5.18> r
3: set d 5
dbg4.19> w

0: expect -D 1 debug-test.exp
1: pi

*2: p2
3: set d 5

dbg4.20> r
2: set a 3
dbg3.21> w

0: expect -D 1 debug-test.exp
*1: pi
2: set a 3

dbg3.22> r
1: set k 7
dbg2 .23> w
*0: expect -D 1 debug-test.exp
1: set k 7

dbg2.24> r
nowhere to return to

Continuing Execution
The c command lets execution continue without having to single-step. In the scenario
so far, given a command anywhere, the program would continue until the script ends
and the shell prompt appears.

dbg2.25> c
%

The c command is also useful in other ways. After setting breakpoints, the program can
be continued until it hits a breakpoint. The program can also be continued until a signal
occurs, such as by pressing AC.

Debugging Scripts 419

rand c are action commands just like s, n, and N. Thus, they can be executed by
pressing return if they were the previous action command executed. All other
commands are not action commands. For example, W is not an action command. If you
enter a c command, hit a breakpoint, and then enter a w command, pressing return after
that continues the script.

Defining Breakpoints
So far, I have shown how to execute a fixed number of commands or procedure calls
with debugger commands such as sand n. In contrast, breakpoints provide a way to
stop execution upon a condition. The conditions include:

• line number and filename matching

• expression testing

• command and argument name matching

Now I will demonstrate these conditions and also show how Tcl's trace facility can be
used to cause breakpoints.

Breakpoint By Line Number And Filename

Line numbers and filenames are the most common way to specify a breakpoint.t This
form is correspondingly the most compact. For example, the following command
causes execution to break before executing line 7.

dbg2.26> b 7
o

After creation of a breakpoint, an integer identifying the breakpoint is printed. Later, I
will show how this is helpful when you have to keep track of multiple breakpoints.

By default, the line number refers to the file associated with the current scope. A file
name may be used to refer to a different file. A colon is used to separate the filename
and line number.

dbg2.27> b foo.exp:7
1

t Breakpoints by line number and filename have yet to be implemented as this book goes to press. They will
likely be supported in the near future with the syntax shown here.

420 Exploring Expect

Breakpoint By Expression
It is possible to break only when an expression is true. For example, the following
command causes execution to break only when foo is greater than 3.

dbg2.28> b if {$foo > 3}
2

Expressions follow the usual Tel syntax and may be arbitrarily complex.

No breakpointing occurs inside of the evaluation of breakpoint expressions (unless
another breakpoint dictates this).

Line numbers and expressions may be combined. Here is the same command as before
but augmented with a line number so that execution breaks only when foo is greater
than 3 on line 7.

dbg2.28> b 7 if {$foo > 3}
2

I will show the general form for breakpoints on page 425.

Breakpoint By Pattern Match
It is also possible to define breakpoints by pattern matching on commands and argu
ments. Regular expressions are introduced by the flag "-re".t The following command
stops if the string p4 appears within the command about to be executed:

dbg2.29> b -re "p4"
3

Here are the results of this based on the sample script:

% expect -D 1 debug-test.exp
1: set b 1
dbg2.1> b -re "p4"
o
dbg2.2> c
breakpoint 0: -re "p4"
1: proc p4 {x} {

return [
expr S+[expr l+$xll

t The debugger permits all flags to be abbreviated to the smallest unique prefix. For example, "-re" can be ab
breviated "-r". The usual quoting conventions around patterns should be observed. In this example, the quotes
around p4 can be omitted.

Debugging Scripts

dbg2.3> c
breakpoint 0: -re "p4"
4: p4 $b
dbgS.4> c
breakpoint 0: -re "p4"
3: expr 2+[p4 $bl
dbg4.S> c
breakpoint 0: -re "p4"
2: expr l+[expr 2+[p4 $bll

421

The first breakpoint occurred upon the definition ofp4. The second occurred when p4
was called. Two more breakpoints occurred only because p4 was mentioned in the
command.

With appropriate regular expressions, anyone of these can be selected by itself. For
example, to stop only on a definition ofp4:

dbg2.1> b -re "proc p4 "

To stop only on a call to p4 itself:

dbg2.2> b -re "Ap4 "

To stop only on commands which call p4:

dbg2.3> b -re "\\\[p4 "

The complexity of this last example is somewhat ameliorated by the unlikelihood of it
ever being used. I have shown it simply for completeness. The point is, the ability to
match on regular expressions is extremely powerful.

Multi-line patterns may be matched in the usual way-using characters such as \n and
\r. Using braces instead of double quotes permits the previous pattern to be simplified
to "{ \ [p4 }". However, the braces prevent the possibility of explicitly matching
escaped characters such as \n.

Glob-style matching is available by using the flag -gl instead of -reo Because glob
patterns match an entire string by default, the equivalents to the previous example look
slightly different-anchors are not used and asterisks are required in several places.

To stop only on definitions:

dbg2.4> b -gl "proc p4 *"

On calls to p4:

dbg2.S> b -gl "p4 *"

On commands which call p4:

dbg2.6> b -gl "*\\\[p4 *"

422 Exploring Expect

Expressions can be combined with patterns just as they are with line numbers. For
example, the following command defines a breakpoint which occurs on a call to p4 but
only when foo is greater than 3

dbg2.7> b -gl "p4 *" if {$foo>3}

Strings which match regular expressions are saved in the array dbg. The palt of the
command matched by the entire pattern is saved in $dbg (0). Up to nine parenthesized
subpattern matches are stored in $dbg (1) through $dbg (9) .

For example, the name of a variable being set can be accessed as $dbg (1) after the
following breakpoint:

dbg2.8> b -re {Aset ([A])+ }

This can be used to construct more sophisticated breakpoints. For example, the
following breakpoint occurs only when the variable being set was already set.

dbg2.9> b -re {Aset ([A])+ } if {[info exists $dbg(l)]}

Breakpoint Actions
Breakpoints may trigger actions. The default action prints the breakpoint id and defini
tion. It is possible to replace this action with any Tel command. As an example, the
following command defines a breakpoint which prints a descriptive message whenever
the variable a is being defined:

dbg2.1> b -re "Aset a " then {
+> puts "a is being set"
+> puts "old value of a = $a"
+> }
2

When run, it looks like this:

dbg2.2> c
a is being set
2: set a 2
dbg3.3> c
a is being set
old value of a 2
2: set a 3
dbg3.4> c
a is being set
old value of a 3
2: set a 5

Each time the breakpoint occurs, the old and new values of a are displayed. Notice that
the first time the breakpoint occurred, a was not defined. In this case, $a was meaning-

Debugging Scripts 423

less and the puts command was not executed. If there had been further commands in
the breakpoint, they would also have been skipped.

Implicit error messages generated by actions are discarded. Error messages generated in
breakpoint expressions are also discarded. The debugger assumes that such errors are
just variables temporarily out of scope.

By default, breakpoints stop execution of the program. It is possible to tell the debugger
not to stop by using the commands c, s, n, N, or r from within an action. In this way,
breakpoints can be used to trace variables, although Tel's built-in variable tracing
commands perform this particular task much more efficiently.

Here is the trace procedure for simple variables (from page 407) amended with an extra
command to interrupt the script if the variable's value ever exceeds 100.

proc traceproc_simple {v null type}
upvar $v var
puts "new value of $v is $var"
if {$var > lOO} s

The s command here still means "step". However, because the script is not being single
stepped to begin with, the s command forces the script back into single-step mode and
returns control back to the debugger's interactive prompt at the next command. The n,
N, and r commands work similarly.

The following breakpoint prints out the name of each procedure as it is being defined.

dbg2.l> b -re "proc (\[A]*)" then
+> puts "proc $dbg(l) defined"
+> c
+> }
o

The c command in the last line allows execution to continue after each breakpoint.

dbg2.2> c
proc p4 defined
proc p3 defined
proc p2 defined
proc pl defined

The following breakpoint causes the debugger to break after execution of any proce
dure which has called p4.

dbg2.l> b -gl "p4 *" then "r"

The following command prints out the string "entering p4" when p4 is invoked.
Execution continues for four more steps after that.

424

dbg2.2> b -re ''''p4 " then
+> puts "entering p4"
+> s 4

+> }

Exploring Expect

Multiple breakpoints can occur on the same line. All corresponding actions are
executed. At most one debugger command will be executed, however. For example, if
breakpoints trigger commands containing both "s 1" and "s 2", only the second (or
last in general) will have any effect.

Limitations Of Breakpoint Actions And Interactive
Commands

Debugger commands specified in a breakpoint action occur only after all the breakpoint
pattern matching and other tests have completed. For example, the following break
point appears to print out the old and new values of every variable about to be set.

dbg2.1> b -re {Aset ([A]+) } then {

+> puts "old $dbg(l) [set $dbg(l)]"

+> n
+> puts "new $dbg(l)
+> }

[set $dbg(l)]"

However, the debugger does not execute the next command (i.e., from the n) until the
breakpoint action completes. This breakpoint therefore prints the old value twice, incor
rectly claiming that the latter is the new value.

dbg4.7> c
old a 2
new a = 2

In this case, it is possible to get the new value by just omitting the last puts. The
debugger will then automatically print the new value as part of echoing the next
command to be executed.

dbg4.7> c
old a = 2
2: set a 3

This example illustrates a limitation of the debugger. The debugger does not use a sepa
rate thread of control and therefore does not allow arbitrary automation of its own
commands.

Debugging Scripts 425

General Form Of Breakpoints

Expressions and actions may be combined. This follows the syntax of Tel's if-then
(but no else). For example, the following command prints the value of foo whenever
it is nonzero.

dbg2.1> b if {$foo} then
+> puts "foo = $foo"
+>}

The general form of the breakpoint command permits up to one location (specified by
pattern, or line number and filename), one expression, and one action. They must
appear in this order, but all are optional.

If a location is provided or the if-expression does not look like a line number and/or
filename, the if token may be omitted. If an if-expression has already appeared, the
then token is also optional. For example, the following two commands have the same
effect:

dbg2.1> b if {$foo} then
+> puts "foo = $foo"
+>}
o
dbg2.2> b {$foo} {
+> puts "foo = $foo"
+>}
1

When the first argument resembles both a line number and expression, it is assumed to
be a line number. The following command breaks on line 17:

dbg2.3> b 17
2

Listing Breakpoints

If no arguments are supplied, the b command lists all breakpoints. The following
example assumes the previous three breakpoints have been set and creates two more.
Notice that breakpoints 0 and 1 are identical.

dbg2.4> b -re nAp4"

3
dbg2.S> b zz.exp:17 if {$foo}
4
dbg2.6> b
breakpoint 4 : zz.exp:23 if {$foo}
breakpoint 3 : -re II Ap4 II if {Ap4}
breakpoint 2 : b 17

426

breakpoint 1: if {$foo} then {
puts "foo = $foo"

breakpoint 0: if {$foo} then {
puts "foo = $foo"

Exploring Expect

Each breakpoint is identified by an integer. For example, breakpoint 4 occurs if faa is
true just before line 23 is executed in file z z . expo

When multiple breakpoints occur on the same line, the actions are executed in the
order that they are listed by the b command.

Deleting Breakpoints
A breakpoint can be deleted with the command "b - #" where # is the breakpoint
number. The following command deletes breakpoint 4.

dbg2.7> b -4

All of the breakpoints may be deleted by omitting the number. For example:

dbg2 .8> b -

Help
The h command prints a short listing of debugger commands, arguments and other
useful information.

Changing Program Behavior
When the debugger is active, the variable dbg is defined in the global scope. When the
debugger is not active, dbg is not defined nor are the debugger commands such as s
and n. This allows scripts to behave differently when the debugger is running.

Changing Debugger Behavior
By default, long (multi-line) commands are truncated so that the debugger can fit them
on a line. This occurs when the debugger prints out a command to be executed and
also in the listing from the w command.

The w command has a -width flag which can change the current printing width. It

takes a new width as an argument. For example to display long commands (such as
procedure definitions):

Debugging Scripts 427

dbg2.2> w -w 300

Because of the parameter substitutions, the w command may try to display extremely
lengthy output. Imagine the following script:

puts [exec cat /etc/passwd]

When the debugger is run, w command output will be truncated unless the printing
width is quite large.

2: exec cat /etc/passwd
dbg3.1> s
1: puts [exec cat /etc/passwd]
dbg2.2> w
*0: expect -D 1 debug-test3.exp
1: puts {root:Xu.VjBHD/xM7E:0:1:0perator:/:/bin/csh

nobody:*:65534:65534::/ ...
dbg2.3> w -w 200
dbg2 .4> w
*0: expect -D 1 debug-test3.exp
1: puts {root:Xu.VjBHD/xM7E:0:1:0perator:/:/bin/csh

nobody:*:65534:65534::/:
daemon:*:l:l::/:
sys:*:2:2: :/:/bin/csh
bin:*:3:3::/bin:
uucp:*:4:8::/var/spool/uucppublic:
news:*:6:6::/var/spool/news:/bin ...
dbg2.5>

When output is truncated, an ellipsis is appended to the end. The default width is 75
which allows some space at the beginning of the line for the procedure call depth
information.

By default, no other output formatting is performed. But even short commands can
cause lots of scrolling. The following declaration of p4 is less then 75 characters but still
takes several lines.

% expect -D 1 debug-test.exp
set b 1
dbg2.1> s
1: proc p4 {} {

return [
expr 5+[expr l+$x]]

428 Exploring Expect

The -compress flag with argument 1 tells the debugger to display control characters
using escape sequences. For example:

dbg2.2> w -c 1
dbg2.3> w
*0: expect -D 1 debug-test.exp
1: proc p4 {x} {\n\treturn [\n\t expr 5+[expr l+$xJJ\n}

The compressed output is useful for preventing excessive scrolling and also for
displaying the precise characters that should be used in order to match patterns in
breakpoints.

To revert to uncompressed output, use the same flag with value O.

dbg2.4> w -c 0

With no value specified, flags to the w command print out their current values.

dbg2 .5> w -c
o
dbg2.6> w -w
75

Exercises
1. The debugger assumes you use the commands set and parray for printing scalars

and arrays. Write a command named "p" that prints out a variable no matter what kind
it is. Add additional features, such as checking the next higher scope or the global
scope if the named variable is not found in the current scope.

2. The next chapter describes Tk, a Tel-based extension for the X Window System. Try
using the debugger with Tk. Does it work as you expected?

In This Chapter:

• Using Expect And
Tk Together

• A GUI For Setting
Passwords

• Expecting Process
Output In The
Background

• A Terminal
Emulator

• Expecting
Character Graphics

Expect + Tk Expectk

Tk provides commands to build user interfaces for the X Window System. With Tk, you
can build graphic user interfaces (GUIs) entirely using Tcl and its extensions. In this
chapter, I will cover how to use Expect with Tk. Some of the examples are particularly
noteworthy. These include a GUI for setting passwords, a terminal emulator, and a
mechanism to watch for patterns in character graphic applications.

Tk is one of the most popular Tcl extensions-and deservedly so. Tk provides a layer
of abstraction that is quite high-level and yet still provides a lot of flexibility. It is
possible to do things much more quickly in Tk than in other toolkits, and even better
it is likely that you will do things with Tk that you never would have even tried without
it.t

Unlike the Tel chapter (page 23), I will give only a brief overview of Tk here-it is not
the primary focus of this book and is only mentioned a few times in other chapters.
Nonetheless, a little knowledge of Tk is necessary to understand the gist of this chapter.
I will make up for the lack of a complete introduction by giving a little more information
when I use some of the Tk commands for the first time. However, I will skip parts of Tk
that are not immediately relevant. For more information, refer to the Tk reference mate
rial. For more information on X, refer to the X Window System Series from O'Reilly &

Associates.

Experienced Tk programmers may skip the introductory material in the next section and
go right to the Expectk section beginning on page 432.

t Despite my enthusiasm for Tk. it is no longer the only game in town. New interpreted window systems are
popping up everywhere. The good news is that many are incorporating Expect-like functionality within them.
As an example, Neils Mayer's WINTERP is similar to Tel and Tk but is based on David Betz's XLISP and asP's
Motif. WINTERP includes the Expect library described in Chapter 21 Cp. 491).

429

430 Exploring Expect

Tk -A Brief Technical Overview
Tk provides commands to build user interfaces for the X Window System. For example,
the button command creates an object that can be "pushed" analogously to a physical
pushbutton. The scrollbar command creates an object that can be manipulated to
change the view in other objects. Tk GUIs are built from these and other commands.
The actions that Tk GUIs control use the same Tel commands that you already know.

Widgets
Commands to create objects are simple, and all of the commands follow a similar style.
For example, the following command creates a button labelled "Get File".

button .getbutton -text "Get File"

.getbutton is the name of the newly created button. Any further references to the
button in the script are made using this string. Objects such as buttons and scrollbars are
called widgets.

Commands may be associated with most widgets by using the -command flag. For
example, the following command creates a button that when pushed, invokes the
getfile command.

button .getbutton -text "Get File" -command "getfile"

The -command flag can name any Tel command. This is one of the keys to the power
of Tk. The screen layout is defined with simple commands, all in Tk and Tel. And their
behavior is defined with simple commands, also, all in Tk and Tel. Of course, when
used with Expect, any Expect commands may also be given.

Other Widgets And Naming Conventions
Besides push buttons, there are also radio buttons (pushing one in forces others out)
and check buttons (they stay in until you push them again). Besides buttons, Tk comes
with a variety of widgets such as scrollbars, menus, drawing canvases, etc. Some of
these can be used to contain other widgets. For example, a file browser might be made
up of a listbox widget and a scrollbar widget, sitting within a frame widget. The frame
widget groups other widgets together much like a directory groups files together in the
file system. In fact, the analogy is paralleled in the naming convention. The "." in
widget names is analogous to a "I" in filenames. The widget. files could be a frame
containing the list widget . files .list and the scrollbar widget . files. sb. This
naming convention is not required, but it is normally followed if it makes the code
simpler to read. Following the analogy, the widget " ." represents a top-level window
that is not enelosed by anything else.

Expect + Tk = Expectk 431

Each widget name automatically becomes the name of a command to manipulate the
widget. For example, the button created in the previous section could be flashed this
way:

.getbutton flash

The size of the listbox widget stored in the variable $lb could be returned this way:

$lb size

Displaying Widgets
Before widgets can appear on the screen, their relationship to other widgets must be
described. For example, two buttons may be displayed inside a frame using Tk's pack
command as follows:

pack .buti .but2 -in .files

The -in flag makes the button widgets appear inside the. files widget. If the hierar
chic naming convention is used (described in the previous section), the -in flag and
the container widget can be omitted.

pack .files.buti .files.but2

The pack command decides on the layout and size of the widgets, although additional
flags may be used for guidance. The pack command is so named because it typically
packs widgets together as tightly as possible so as to make the best possible use of the
space in the window. Other commands are available to describe widget relationships in
different ways, but in this chapter, the examples all use pack.

Bindings And Events
Tk's bind command describes what actions should be taken when events occur. Events
include user input (keystrokes, button clicks) as well as window changes (resizes,
exposures).

The following bind command declares that the exi t command should be executed
when the user enters a Control-C in the widget. files.

bind .files <Control-c> exit

The next command defines a binding for the first mouse button.

bind .files <Buttoni> {puts "You pressed button i"}

It is also possible to associate events on a class of widgets. The following binding
causes all buttons to invoke highlight_button when the cursor enters the window.

bind Button <Any-Enter> {highlight_button %W}

432 Exploring Expect

When the event occurs, strings in the action beginning with % are replaced with more
event information. For example, %W is replaced with the actual name of the window.

The Event Loop
Tk scripts are similar to X programs in that they are usually event driven. Event-driven
programs spend most of their time waiting for events to arrive. As events arrive, they are
processed by executing any actions that have been declared with bindings. This simple
idea of waiting for events and processing them is known as the event loop.

There is no explicit command in scripts where the event loop occurs. The event loop is
simply entered after all the commands in the scripts have been read and processed.

Expectk
You can include the Expect and Tk extensions together when you build your Tcl-based
application. Alternatively if you have Tk installed on your system, the Expect Make

file automatically builds a program called Expectk.

Expectk is a mixture of Expect and Tk. Most of the commands work as before.
However, some new commands exist and some old commands have different names.

The most common use of Expectk is to take existing command-line-oriented programs
and wrap them with X GUIs. As with Expect, no changes have to be made to the orig
inal programs.

Wrapping existing programs avoids several common problems. For example, changing
an underlying program requires that you test the result, including features that were
working before you touched the program. And it is much more work to test GUIs than
to test command-line interfaces. Another problem is version control. If you modify a
program, you will have two versions of the original program to maintain-a command
line version and a GUI version. And of course, all of these problems presume that you
have the source in the first place, which is often not the case.

Expectk allows you to focus on the GUI, since the original application already exists.
This reduces the amount of testing that has to be done and avoids version problems
you will be using the same version of the application whether you use its command-line
interface or its GUI interface.

All of the benefits of Tk itself carry through to Expectk. Scripts are much shorter than
their compiled equivalents in C or C++. Scripts require no lengthy compilations and can
be modified quickly and easily. And the widget library offered by Tk is high-level and
compares favorably to more traditional widget libraries. In addition, a GUI builder exists
for Tk. Written by Sven Delmas, XF allows you to build a GUI by pointing and clicking,

Expect + Tk = Expectk 433

reducing the amount of work required to create the graphical elements and layout of
the GUI. The Tel FAQ describes how to obtain XF. For more information on the FAQ,
see Chapter 1 (p. 20).

Expectk can also be useful when creating brand new applications. Many applications
do not require an intimate connection to a GUI. By separating the GUI from the back
end, you can concentrate on each part separately. Write simple command-line inter
faces to the application and you will not have to be debugging X code just to test out
your application. Similarly, it is much easier to test a GUI without having to worry about
the application code at the same time.

Expectk Scripts
Expectk scripts are executed using the Expectk program. Expectk is very similar to
Expect. For example, you can invoke scripts in an analogous way, such as with the
command line:

% expectk script

Expectk scripts may also be executed as:

% script

if the first line of the script starts with:

#!/usr/local/bin/expectk

The -- and -f flags work with Expectk just like they do with Expect. However, many
of the other flags are different because there are so many additional flags required by Tk
and X. For example, as with most X applications, the -display flag allows you to
specify an X server. Expectk uses a skeleton framework provided by Tk which is subject
to change with little control from Expect. Thus, your best bet to finding out the current
list of flags is a quick look at the source.

The send Command
Both Tk and Expect have a command named send.t Expectk detects this collision and
lets Tk "win" the fight for command names. So if you type "send", you get Tk's send
command. Alternate names are provided for any Expect commands that could collide.
In particular, Expect commands that do not already begin with "exp" can be invoked by
prefixing them with "exp_". For example, Expect's send command can be invoked as
exp_send.

t I described Tk's send function in Chapter 18 (p. 409) so I will not provide further explanation of it here. Tk's
send is implemented using X primitives but is not otherwise intrinsically related to graphics or windows.

434 Exploring Expect

% exp_send "foo\r"

If you accidentally call Tk's send when you want Expect's send, you will see the
following error:

% send "foo\r"
wrong # args: should be "send interpName arg ?arg

The alias exp_send works in both Expect and Expectk, so you can use exp_send all
the time if you find it simpler to remember or read. You should also stick with
exp_send if you are writing code that is to be portable to both Expectk and Expect.

An Extended Example - tkpasswd
tkpasswd is an Expectk script that creates a GUI for changing passwords conveniently.
You might wonder how there could be any value in a GUI for such a trivial program;
however, people who change passwords frequently (such as system administrators) will
find many benefits. For instance, the GUI provides the same interface whether you are
changing local passwords C/etc/passwd) or remote passwords (NIS). The GUI can
show accounts in different ways, such as sorted by name or uid. The GUI also high
lights accounts that have no passwords-a potential security problem. Lastly, the GUI
can reject passwords that are inappropriate. Naturally, all of this is done without modi
fying the passwd program itself.

Even with these and other features, the script is only 300 lines (of which 60 are empty or
comment lines). About 100 lines are related to laying out the graphics. Only about 10 of
the lines are directly related to driving the passwd program, but it is worthwhile to
examine other parts of the program to see how, for example, the press of a button is
translated into a behavior change in the passwd interaction. The script comes with the
Expect distribution as an example.

When run, the script displays the image shown on page 435. At the top are several radio
buttons which control the script. In the middle is a user browser. Below this are several
more buttons and an entry widget in which passwords can be entered.

The script begins with the usual incantation and commentary (trimmed for publication):

#!/usr/local/bin/expectk --
tkpasswd - Change passwords using Expectk

The first two buttons choose between a local password database C/etc/passwd) or an
NIS database. When either button is activated, the variable passwd_cmd is assigned the
list of "passwd" and "cat /etc/passwd" or the list "yppasswd" and "ypcat
passwd". The first element in each list is the appropriate UNIX command to set a pass
word, and the second element is the matching UNIX command to read the password
database.

Expect + Tk = Expectk

1M tkpaSSlvd • ~

passwd

yppasswd ~ radio buttons con-
I""""''''''''''''''''''''''"'''''''''''''~''~-''''~~''''''''''''''''"'''~~'~,-,~,~~ ~ trol which password

~ database to modify
~ and how to display it

~ users with no pass
word highlighted in

/ red to signify danger

current user high
~ lighted in green

editable field for
I:_®®'"''"''''''''''''''''''''''''''''''''''''''®'''''®'''''_~'' _____ ''' I , _____ passwords or other

~ feedback

435

Each time a button is pressed, the get_users command is also called to reload the
correct password database.

I will briefly describe some of the graphical aspects but just for the first set of buttons.
This will help to give you more of a feel for Tk if you have never used it.

Both buttons are embedded in a frame with a raised border so that it is easy for the user
to see that they are related. "-bd 1" means the border is one pixel wide. The
"-anchor w" aligns the buttons on the west side of the frame. The pack command
places the buttons into the frame and then the frame itself is placed on the screen. The

436 Exploring Expect

"-fill x" makes the buttons and the frame expand horizontally to fill the display.
(The actual width is determined later.)

frame .type -relief raised -bd 1
radiobutton .passwd -text passwd -variable passwd_cmd \

-value {passwd {cat /etc/passwd}} \
-anchor w -command get_users -relief flat

radiobutton .yppasswd -text yppasswd -variable passwd_cmd \
-value {yppasswd {ypcat passwd}} \
-anchor w -command get_users -relief flat

pack .passwd .yppasswd -in .type -fill x
pack .type -fill x

In another frame, three more buttons control how users are sorted in the display. As
before, a value is assigned to a control variable (sort_cmd) which conveniently is just
the right UNIX command to sort a file. Providing sorted and unsorted displays is impor
tant because the NIS database is provided in a randomized order (which usually cries
for sorting) while the local database is provided in the original order (and mayor may
not need sorting).

frame .sort -relief raised -bd 1
radiobutton .unsorted -text unsorted -variable sort_cmd \

-value " " -anchor w -relief flat \
-command get_users

radiobutton .name -text name -variable sort_cmd \
-value "I sort" -anchor w -relief flat \
-command get_users

radiobutton .uid -text uid -variable sort_cmd \
-value "I sort -t: -n +2" \
-anchor w -relief flat -command get_users

pack .unsorted .name .uid -in .sort -fill x
pack .sort -fill x

In the center of the display is a frame containing a user browser (user list and scroll
bar). The users are displayed in a text widget. The currently selected user is displayed
in green. Users with no passwords are highlighted in red (to suggest danger). On a
monochrome monitor, black on white and white on black is used with an additional
border to distinguish between the usual white on black entries.

The default number of users shown is 10 but the window is defined so that the user can
increase or decrease it, in which case the user list expands or contracts appropriately.
The remainder of the display is fixed.

The width of the users is set at 14-enough for an eight character user name, a blank,
and a five character user id. Everything else in the display is fixed to this width and the
user is not allowed to change it.

Expect + Tk = Expectk

frame .users -relief raised -bd 1
text .names -yscrollcommand ".scroll set" -width 14 \

-height 1 -font "*-bold-o-normal-*-120-*-m-*" \
-setgrid 1

.names tag configure nopassword -relief raised

.names tag configure selection -relief raised
if {[tk colormodel .l=="color"} {

.names tag configure nopassword -background red

.names tag configure selection -background green
else {

.names tag configure nopassword -background black \
-foreground white

.names tag configure selection -background white \
-foreground black

scrollbar .scroll -command ".names yview" -relief raised
pack .scroll -in .users -side left -fill y
pack .names -in .users -side left -fill y
pack .users -expand 1 -fill y

wm minsize . 14 1
wm maxsize . 14 999
wm geometry . 14x10

437

A field within a frame labelled "Password" is provided in which the user can enter new
passwords. The focus is moved to the entry field allowing the user to enter passwords
no matter where the cursor is in the display. Special bindings are added (later) which
allow scrolling via the keyboard as well.

frame .password_frame -relief raised -bd 1
entry .password -textvar password -relief sunken -width 1
focus .password
bind .password <Return> password_set
label .prompt -text "Password:" -bd 0
pack .prompt .password -in .password_frame -fill x -padx 2 -pady 2
pack .password_frame -fill x

Several more buttons are created and placed at the bottom of the display. Rather than
putting them at the top, they are placed at the bottom because it is likely they will be
pressed at most once. In contrast, the buttons at the top are likely to be pressed many
times.

438 Exploring Expect

The first button controls whether passwords are checked against a dictionary. It sets the
variable dict_check appropriately, and the dictionary is loaded if it has not been
already.

set dict loaded 0
checkbutton .dict -text "check dictionary" -variable dict_check \

-command {
if !$dict_loaded load_dict

pack .dict -fill x -padx 2 -pady 2

A quit button causes the program to exit if pressed.

button .quit -text quit -command exit
button .help_button -text help -command help
pack .quit .help_button -side left -expand 1 -fill x -padx 2 -pady

2

A help button pops up a help window describing how to use the program. The actual
text is omitted here.

proc help {}
catch {destroy .help}
toplevel .help
message .help.text -text < ... help text here ... >

button .help.ok -text "ok" -command {destroy .help}
pack .help.text
pack .help.ok -fill x -padx 2 -pady 2

It is interesting to note that all the preceding code is just to set up the display and takes
about a third of the program.

The get_users procedure reloads the password database. It is called when any of the
top buttons are activated.

After clearing the current list, the procedure executes the appropriate UNIX commands
to read and sort the password database. The particular commands are defined by the
radio buttons. They select which database to read and how to sort it.

The remainder of the procedure adds the users to the list of names, appropriately
tagging any that have null passwords. User ids are displayed as well. User names that
have no other information with them are pointers back to the NIS database. They are
displayed without user ids but nothing else is done. The script does not have to worry
about them because the pas swd program itself rejects attempts to set them.

proc get_users {} {
global sort_cmd passwd_cmd
global selection_line

Expect + Tk = Expectk

global nopasswords i# line #s of users with no passwds
global last_line i# last line of text box

.names delete 1.0 end

set file [open n I [lindex $passwd_cmd 1] $sort_cmd n]
set last line 1
set nopasswords {}
while {[gets $file buf] ! = -l} {

set buf [split $buf :]
if [llength $buf]>2 {

normal password entry
.names insert end n[format n%-8s %5d n [\

lindex $buf 0] [lindex $buf 2]]\nn
if O==[string compare [lindex $buf 1] nn]

.names tag add nopassword \
{end - 1 line linestart} \
{end - 1 line lineend}

lappend nopasswords $last_line

else {
+name style entry
.names insert end n$buf\nn

incr last_line

incr last_line -1
close $file
set selection_line 0

439

At various places in the script, feedback is generated to tell the user what is going on.
For simplicity, feedback is displayed in the same field in which the password is entered.
This is convenient because the user probably does not want the password left on the
screen for long anyway. (Making the password entirely invisible could be done by
making some minor changes to the bindings.) The feedback is selected (highlighted) so
that it disappears as soon as the user begins to enter a new password.

proc feedback {msg}
global password

set password $msg
.password select from 0
.password select to end
update

440 Exploring Expect

The dictionary takes considerable time to load into memory (about 10 seconds for
25,000 words on a Sun Spare 2) so it is not loaded unless the user specifically activates
the "check dictionary" button. The first time it is pressed, this procedure is
executed. For each word, it creates an element in an array called diet. No value is
necessary. Later on, passwords will be looked up in the dictionary just by testing if they
exist as an element in the diet array-a very fast operation.

Calling the UNIX grep command would spread the load out, but it would also expose
the password to anyone running ps. Instead, I tried my best to speed this procedure up
(without resorting to C). Using spli t on the entire file reduced the run-time by about
one third from that taken by the more obvious gets in a while loop. While this can
backfire if a file is larger than available memory, it works well with reasonably sized
dictionaries.

Since Tel rescans commands each time they are executed, it is possible to improve
performance simply by using shorter commands. (However, the benefit only becomes
apparent when there are no other bottlenecks left.) I achieved another 10% increase in
speed by temporarily renaming the set command to s. Interestingly, renaming diet
to d had almost no impact so I left it unchanged. Substituting a single bare character for
the "" made no difference at all.

proc load_dict {} {
global dict dict loaded

feedback "loading dictionary ... "

if O==[catch {open /usr/dict/words} file]
rename set s
foreach w [split [read $file] "\n"] {s dict($w) ""}
close $file
rename s set
set dict loaded 1
feedback "dictionary loaded"

else
feedback "dictionary missing"
.dict deselect

The weak-password procedure is a hook in which you can put any security measures
you like. As written, all it does is reject a word if it appears in the dictionary. The mecha
nism to look up a word was described earlier.

put whatever security checks you like in here
proc weak-password {password} {

global dict dict_check

Expect + Tk = Expectk

if $dict_check
feedback "checking password"

if [info exists dict($password))
feedback "sorry - in dictionary"
return 1

return 0

441

After entering a password, the password_set procedure is invoked to set the pass
word. The interactive command is extracted from the radio buttons and it is spawned. If
the prompt is for an "old password", the script queries the user for it and then passes
it on. The new password is sent as many times as requested without telling the user.
(All passwords have to be entered twice. Short passwords have to be entered four
times.) Any unrecognized response is passed back to the user.

proc password_set {} {
global password passwd_cmd selection_line

if {$selection_line==O} {
feedback "select a user first"
return

set user [lindex [.names get selection.first selection. last) 0)

if [weak-password $password) return

feedback "setting password.

set cmd [lindex $passwd_cmd 0)
spawn -noecho $cmd $user
log_user 0
set last_msg "error in $cmd"
while 1 {

expect {
-nocase "old password:" {

exp_send "[get_old-password) \r"
"assword:" {

exp_send "$password\r"
-re "(. *) \r\n" {

set last_msg $expect_out(l,string)
eof break

442

set status [wait]
if [lindex $status 3]==0 {

feedback "set successfully"
else {

feedback $last_rnsg

Exploring Expect

The script is intended to be run by a superuser. Traditionally, the superuser is not
prompted for old passwords so no entry field is permanently dedicated in the display
for this purpose. However, in case the user is prompted, a window is popped up to
collect the old password. This also handles the case when a non-superuser tries to
change their own password. Trying to change any other password will be trapped by
the pas swd program itself, so the script does not have to worry about it.

The procedure temporarily moves the focus to the popup so the user does not have to
move the mouse. After pressing return, the popup goes away and the focus is restored.

proc get_old-password {} {
global old

toplevel .old
label .old.label -text "Old password:"
catch {unset old}
entry .old.entry -textvar old -relief sunken -width I

pack .old.label
pack .old.entry -fill x -padx 2 -pady 2

bind .old.entry <Return> {destroy .old}
set oldfocus [focus]
focus .old.entry
tkwait visibility .old
grab .old
tkwait window .old
focus $oldfocus
return $old

Once enough procedures are defined, the script can initialize the user list and radio
buttons. Initially, the local password database is selected and displayed without sorting .

. unsorted select

.passwd invoke

The remaining effort in the script is in handling user input. The global variable
selection_line identifies the user whose password is about to be changed. The
make_selection procedure scrolls the user list if the selected user is not displayed.
Lastly, the selected user is highlighted.

Expect + Tk = Expectk

proc make_selection {} {
global selection_line last_line

.names tag remove selection 0.0 end

don't let selection go off top of screen
if {$selection_line < l} {

set selection_line $last_line
elseif {$selection_line > $last_line}

set selection_line 1

.names yview -pickplace [expr $selection_line-l]

.names tag add selection $selection_line.O \
[expr l+$selection_line].O

443

The select_next_nopassword procedure searches through the list of users that do
not have passwords. Upon finding one, it is highlighted. The procedure is long because
it can search in either direction and can start searching from the middle of the list and
loop around if necessary.

proc select_next_nopassword {direction}
global selection_line last_line
global nopasswords

if O==[llength $nopasswords]
feedback "no null passwords"
return

if $direction==l {
get last element of list
if $selection_line>=[lindex $nopasswords [\

expr [llength $nopasswords]-l]]
set selection_line 0

foreach i $nopasswords {
if $selection_line<$i break

else {
if $selection_line<=[lindex $nopasswords 0] {

set selection_line $last_line

set j [expr [llength $nopasswords]-l]
for {} {$j>=O} {incr j -l} {

set i [lindex $nopasswords $j]
if $selection_line>$i break

444

set selection_line $i
make_selection

Exploring Expect

The select procedure is called to determine which user has been clicked on with the
mouse. Once it has, it updates selection_line and the display.

proc select {w coords} {
global selection_line

$w mark set insert "@$coords linestart"
$w mark set anchor insert
set first [$w index "anchor linestart"]
set last [$w index "insert lineend + 1c"]
scan $first %d selection_line

$w tag remove selection 0.0 end
$w tag add selection $first $last

The bindings are straightforward. Mouse button one selects a user. AC causes the appli
cation to exit. In the style of emacs, AP and AN move the user up and down by one.
Meta-n and meta-p invoke select_next_nopassword to find the next or previous
user without a password. These bindings are defined for the entry field in which the
new password is entered. Because this field always has the focus, the user can select
different users and enter passwords without touching the mouse.

bind Text <1> {select %w %x,%y}

bind Entry <Control-c>{exit}

bind .password <Control-n> \
{incr selection_line l;make_selection}

bind .password <Control-p> \
{incr selection_line -1; make_selection}

bind .password <Meta-n>{select_next_nopassword 1}
bind .password <Meta-p>{select_next_nopassword -1}

Using Tk Widgets To Prompt For Passwords
In the tkpasswd script, passwords are entered in an entry widget. By default, charac
ters appear in the widget as they are entered. This is not a problem in the tkpasswd
script; however, other applications typically require passwords to be entered so that
onlookers cannot see them. The entry widget has no built-in provision for suppressing
the display. Fortunately, though, it is not difficult to simulate the effect.

Expect + Tk = Expectk 445

A number of approaches are possible. However, people have figured out ingenious
ways to subvert most of them. For instance, by setting the foreground and background
colors alike, the letters cannot be read. However, if you should temporarily leave your
workstation, someone could use the mouse to copy the letters out of the widget and
paste them into another one where they once again would be visible.

The best approach is to store the password off-screen. The following procedure and
bindings store the password in the global variable password which should be intial
ized to an empty string. Asterisks are displayed in the entry widget (. e), one for each
character entered. If a backspace or delete key is pressed, an asterisk (and the last char
acter in the real password) is removed. Notice how regexp is used to delete the last
character in the password.

proc password_backspace {w} {
global password

regexp (.*). $password dummy password dummy
tk_entryBackspace $w
tk_entrYSeeCaret $w

bind .e <Delete> {password_backspace %W}
bind .e <BackSpace> {password_backspace %W}
bind .e <Any-Key> {

if {"%A" 1= ""} {
%W insert insert *
set password "[set password]%A"
tk_entrYSeeCaret %W

Even off-screen, the password is not entirely safe. For example, someone armed with a
debugger or permission to access your screen could still read the password. To avoid
this, once the password has been entered, it should be used and destroyed immedi
ately. For example, a binding for the return key could do that as follows:

bind .e <Return> {
password_set $password
set password ""

;# use the password
;# destroy the password

The expect Command And The Tk Event Loop
When waiting inside of expect (or interact) commands, the Tk event loop is still
active. This means that the user can, for example, press buttons on the screen and Tk
will respond to the buttons while the script is executing an expect command.

446 Exploring Expect

While any specific action is being executed from the Tk event loop, the original expect
command cannot return. During this time, if the user presses a button that kicks off yet
another expect command, the original expect command cannot return until the new
expect command returns. (This is true for any command in Tk, not just expect
commands.)

If both expect commands read from the same spawn id, the later one will see all the
buffered data already received. The new expect command can match data that the
original expect command had read but not matched.

All of the descriptions so far are identical to the way Expect works without Tk but in the
presence of signals. expect commands that are triggered by signal handlers suspend
any currently active expect commands.

The expect_background Command
It is possible to have actions execute whenever input arrives and matches a pattern.
This is accomplished using the expect_background command. Patterns declared this
way are called background patterns. These patterns can match whenever the Tk event
loop is active. This is similar to the way Tk's bind command works.

Contrast expect_background with expect. Although only a single expect
command can be active at any time, any number of background patterns can be active
simultaneously.

The expect_background command takes the same arguments as the expect
command. Both commands also handle spawn ids in the same way. So by default,
expect_background associates patterns with the current spawn id. Other spawn ids
are associated by using the - i flag.

For example, the following command adds any input received from spawn id $shell
to the end of the text widget" . text".

expect_background -i $shell -re ".+" {
.text insert end $ expect_out (O,string)

The expect_background command returns immediately. However, the patterns are
remembered by Expect. Whenever any input arrives, it is compared to the patterns. If
they match, the corresponding action is executed. The patterns are remembered until
another expect_background is entered for the same spawn id. For example, the
following command effectively cancels the previous expect_background command:

expect_background -i $shell

Expect + Tk = Expectk 447

Multiple Spawn Ids In expect_background
Multiple spawn ids and patterns can be provided in a single expect_background
command. Each time a particular spawn id appears, it replaces the previous back
ground pattern associated with that spawn id. It is possible to declare multiple spawn
ids together and change or delete some or all of them separately.

Multiple spawn ids are accepted using the "-i "$idl $id2 $id3"" notation or via
an indirect spawn id specification (see Chapter 11 (p. 268)). When indirect spawn id
lists change, the background patterns are immediately disassociated from the old spawn
ids and reassociated with the new spawn ids.

In Chapter 11 (p. 266), I described how the -info flag is used to return the association
patterns from expect_before and expect_after. The -info flag works with
expect_background as well.

Background Actions
When a background pattern matches, the associated action is evaluated. Evaluation of
the action follows the same rules as for a regular expect command. However, inside
the action, background patterns for the same spawn id are blocked from further
matching. This prevents input that arrived later (i.e., in the middle of an action) from
being processed while input associated with the pending action is still being processed.

Any command may be used in the action of a background pattern including another
expect or expect_background. expect_background commands allow back
ground patterns from a different spawn id to begin matching immediately-even before
the current action finishes. expect commands are executed as usual (i.e., immedi
ately), even if they are for the same spawn id as the one associated with the currently
executing background action.

It is not possible to wait using both expect and expect_background for output
from the same spawn id at precisely the same time. The behavior in such a situation is
undefined.

Example-A Dumb Terminal Emulator
The following script creates two text widgets that work like primitive terminals. One
allows interaction with a telnet process and the other with a shell. The script has a
bind command to pass user keystrokes to the processes and an expect_background
command to handle the output of the two processes.

448 Exploring Expect

Notice that the expect_background command discards \r characters since output
lines ordinarily end with \r\n but the text widget only expects \n as its line terminator.
No further intelligence is provided for more sophisticated emulation. For example, abso
lute cursor motion is not supported. Nonprintable characters appear on the screen as
hex escapes.

start a shell and text widget for its output
spawn $env(SHELL)
set shell $spawn_id
text .shell -relief sunken -bd 1
pack .shell

start a telnet and a text widget for its output
spawn telnet
set telnet $spawn_id
text .telnet -relief sunken -bd 1
pack .telnet

expect_background
-i $telnet -re "\[A\xOdJ+"

.telnet insert end $expect_out(O,string)

.telnet yview -pickplace insert

-i $shell -re "\[A\xOdJ+" (
.shell insert end $expect_out(O,string)
.shell yview -pickplace insert

-i $any_spawn_id "\xOd" {
discard \r

bind Text <Any-Enter> {focus %W}
bind .telnet <Any-KeyPress> {exp_send -i $telnet "%A"}
bind .shell <Any-KeyPress> {exp_send -i $shell "%A"}

Example-A Smarter Terminal Emulator
The previous example was very simple-minded. The characters from the output of the
spawned processes were copied to their own text widget. The only attempt at format
ting was to handle line endings. Most programs expect more than this. For example,
tabs are usually expanded to spaces, and backspaces cause the terminal cursor to move
left instead of right.

More sophisticated programs require character addressing. By sending special terminal
manipulation character sequences (I will just call them sequences from now on),

Expect + Tk = Expectk 449

programs can write to arbitrary character locations on the screen. The following
terminal emulator supports this. You can use it to run programs such as emacs and vi.

As before, a text widget is used for display. Its name is stored in the variable term. For
simplicity, the code only supports a single emulator, assumes a fixed size display of 24
rows of 80 columns, and runs a shell. The following code starts the process and creates
the text widget.

tkterm - term emulator using Expect and Tk text widget

set rows 24 ;# number of rows in term
set cols 80 ;# number of columns in term
set term .t ;# name of text widget used by term

start a shell and text widget for its output
set stty_init "-tabs"
eval spawn $env(SHELL)
stty rows $rows columns $cols < $ spawn_out (slave , name)
set term_spawn_id $spawn_id

text $term -width $cols -height $rows

Once the terminal widget has been created, it can be displayed on the screen with a
pack command. But this is not necessary. You may want to use the terminal widget
merely as a convenient data structure in which case it need never be displayed. In
contrast, the following line packs the widget on to the screen in the usual way.

pack $term

The task of understanding screen manipulation sequences is complicated. It is made
more so by the lack of a standard for it. To make up for this, there are packages that
support arbitrary terminal types through the use of a terminal description language. So
the script has to declare how it would like to hear terminal manipulation requests. The
two common packages that provide this are termcap and terminfo. Because termcap
has a BSD heritage and terminfo has a SV heritage, it is not uncommon to find that you
need both termcap and terminfo. On my own system as delivered from the vendor, half
of the utilities use termcap and half use terminfo!

Surprisingly, it is much easier to design a terminal description from scratch than it is to
mimic an existing terminal description. Part of the problem is that terminfo and termcap
do not cover all the possibilities nor is their behavior entirely well defined. In addition,
most terminals understand a large number of sequences-many more than most data
bases describe. But because the databases can be different for the same terminal from
one computer to another, an emulator must emulate all of the sequences whether they

450 Exploring Expect

are in the database or not. Even sitting down with a vendor's manuals is not a solution
because other vendors commonly extend other vendor's definitions.

Fortunately, few sequences are actually required. For instance, most cursor motion can
be simulated with direct addressing. This turns out to be more efficient than many rela
tive cursor motion operations as I will explain later.

The following code establishes descriptions in both termcap and terminfo style using
the terminal type of "tk". The code succeeds even if termcap and terminfo are not
supported on the system. This code actually has to be executed before the spawn
shown earlier in order for the environment variables to be inherited by the process.

I will briefly describe the termcap definition. (The terminfo definition is very similar so I
will skip those.) The definition is made up of several capabilities. Each capability
describes one feature of the terminal. A capability is expressed in the form xx=value,

where xx is a capability label and val ue is the actual string that the emulator receives.
For instance the up capability moves the cursor up one line. Its value is the sequence:
escape, "[", "A". These sequences are not interpreted at all by Tel so they may look
peculiar. The complicated-looking sequence (em) performs absolute cursor motion.
The row and column are substituted for each %d before it is transmitted. The remaining
capabilities are nondestructive space (nd), clear screen (el), down one line (do), begin
standout mode (so) and end standout mode (se).

set env(LINES) $rows
set env(COLUMNS) $eols

set env(TERM) "tk"
set env(TERMCAP) {tk:

:em=\E[%d;%dH:
:up=\E[A:
:nd=\E[C:
:cl=\E[H\E[J:
:dO=AJ:
:so=\E[7m:
:se=\E[m:

set env(TERMINFO) /tmp
set ttsre "/tmp/tk.sre"
set file [open $tksre wJ

puts $file {tk,
eup=\E [%pl%d; %p2%dH,
euul=\E[A,
euf1=\E [C,
clear=\E[H\E[J,
ind=\n,

Expect + Tk = Expectk

cr=\r,
smso=\E[7m,
rmso=\E[m,

close $file
catch {exec tic $tksrc}
exec rm $tksrc

451

For simplicity, the emulator only understands the generic standout mode rather than
specific ones such as underlining and highlighting. The term_standout global vari
able describes whether characters are being written in standout mode. Text in standout
mode is tagged with the tag standout, here defined by white characters on a black
background.

set term_standout 0 ;# if in standout mode

$term tag configure standout \
-background black \
-foreground white

The text widget maintains the terminal display internally. It can be read or written in a
few different ways. Access is possible by character, by line, or by the entire screen.
Lines are newline delimited. It is convenient to initialize the entire screen (i.e., each
line) with blanks. Later, this will allow characters to be inserted anywhere without
worrying if the line is long enough already. In the following procedure, term_ini t,
the "insert $i. 0" operation adds a line of blanks to row i beginning at column O.

proc term_init {} {
set blankline [format %*s $cols ""J\n
for {set i I} {$i <= $rows} {incr i} {

$term insert $i.O $blankline

For historical reasons, the first row in a text widget is 1 while the first column is O. The
variables cur_row and cur_col describe where characters are next written. Here,
they are initialized to the upper-left corner.

set cur_row 1
set cur_col 0

The visible insertion cursor is maintained as a mark. It generally tracks the insertion
point. Here, it is also set to the upper-left corner.

$term mark set insert $cur_row.$cur_col

The term_ini t procedure is called immediately to initialize the text widget.

452 Exploring Expect

A few more utility routines are useful. The term_clear procedure clears the screen by
throwing away the contents of the text widget and reinitializing it.

proc term_clear {} {
global term

$term delete 1.0 end
term_init

The term_down procedure moves the cursor down one line. If the cursor is already at
the end of the screen, the text widget appears to scroll. This is accomplished by deleting
the first line and then creating a new one at the end.

proc term_down {} {
global cur_row rows cols term

if {$cur_row < $rows}
incr cur_row

else {
already at last line of term, so scroll screen up
$term delete 1.0 "l.end + 1 chars"

recreate line at end
$term insert end [format %*s $cols ""J\n

There is no correspondingly complex routine to scroll up because the termcap/terminfo
libraries never request it. Instead, they simulate it with other capabilities. In fact, the
termcap/terminfo libraries never request that the cursor scroll past the bottom line
either. However, programs like cat and Is do, so the terminal emulator understands
how to handle this case.

The term_insert procedure writes a string to the current location on the screen. It is
broken into three parts. The first part writes from anywhere on a line up to the end. If
the string is long enough and wraps over several lines, the next section writes the full
lines that wrap. Finally, the last section handles the last characters that do not make a
full line. Characters are tagged with the standout tag if the emulator is in standout
mode.

Each one of these sections does its work by first deleting the existing characters and
then inserting the new characters. This is a good example of where termcap/terminfo
fail to have the ability to adequately describe a terminal. The text widget is essentially
always in "insert" mode but termcap/terminfo have no way of describing this.

One capability of which the script does not take advantage, is that termcap/terminfo can
be told not to write across line boundaries. On that basis, this procedure could be

Expect + Tk = Expectk 453

simplified by removing the second and third parts. Again, however, programs such as
cat and Is expect to be able to write over line boundaries. The term_insert proce
dure does not worry about scrolling once the bottom of the screen is reached.
term_down takes care of that already.

proc term_insert {s} {
global cols cur_col cur_row
global term term_standout

set chars_rem_to_write [string length $sl
set space_rem_on_line [expr $cols - $cur_coll

if {$term_standout} {
set tag_action "add"

else {
set tag_action "remove"

##################
write first line
##################

if {$chars_rem_to_write > $space_rem_on_line}
set chars_to_write $space_rem_on_line
set newline 1

else
set chars_to_write $chars_rem_to_write
set newline 0

$term delete $cur_row.$cur_col \
$cur_row. [expr $cur_col + $chars_to_writel

$term insert $cur_row.$cur_col [
string range $s 0 [expr $space_rem_on_line-ll

$term tag $tag_action standout $cur_row.$cur_col \
$cur_row. [expr $cur_col + $chars_to_writel

discard first line already written
incr chars_rem_to_write -$chars_to_write
set s [string range $s $chars_to_write end]

update cur_col
incr cur_col $chars_to_write
update cur_row
if $newline {

term_down

454

##################
write full lines
##################
while {$chars_rem_to_write >= $cols} {

$term delete $cur_row.O $cur_row.end

Exploring Expect

$term insert $cur_row.O [string range $s 0 [expr $cols-l]]
$term tag $tag_action standout $cur_row.O $cur_row.end

discard line from buffer
set s [string range $s $cols end]
incr chars_rem_to_write -$cols

set cur_col 0
term_down

#################
write last line
#################

if {$chars_rem_to_write}
$term delete $cur_row.O $cur_row.$chars_rem_to_write
$term insert $cur_row.O $s
$term tag $tag_action standout $cur_row.O \

$cur_row.$chars_rem_to_write
set cur_col $chars_rem_to_write

At the very end of term_insert is a call to term_chars_changed. This is a user
defined procedure called whenever visible characters have changed. For example, if
you want to find when the string faa appears on line 4, you could write:

proc term_chars_changed {}
global $term
if {[string match *foo* [$term get 4.0 4.end]]} .

Some other tests suitable for the body of term_chars_changed are:

Test if "foo" exists at line 4 col 7
if {[string match foo* [$term get 4.7 4.end]]}

Test if character at row 4 col 5 is in standout mode
if {-l != [lsearch [$term tag names 4.5] standout]} ...

Expect + Tk = Expectk

You can also retrieve information:

Return contents of screen
$term get 1.0 end

Return indices of first string on lines 4 to 6 that are
in standout mode
$term tag next range standout 4.0 6.end

And here is possible code to modify the text on the screen:

Replace all occurrences of "foo" with "bar" on screen
for {set i 1} {$i<=$rows} {incr i} {

regsub -all "foo" [$term get $i.0 $i.end) "bar" x
$term delete $i.O $i.end
$term insert $i.O $x

455

The last utility procedure is term_update_cursor. It is called to update the visible
cursor.

proc term_update_cursor {} {
global cur_row cur_col term

$term mark set insert $cur_row.$cur_col

The term_update_cursor procedure also calls a user-defined procedure,
term_cursor_changed. A possible definition might be to test if the cursor is at some
specific location:

proc term_cursor_changed {} {
if {$cur_row == 1 && $cur_col

By default, both procedures do nothing:

proc term_cursor_changed {} {}
proc term_chars_changed {} {}

O} •••

term_exit is another user-defined procedure. term_exit is called when the
spawned process exits. Here is a definition that causes the script itself to exit when the
process does.

proc term_exit {} {
exit

456 Exploring Expect

The last user-defined procedure is term_bell. term_bell is executed when the
terminal emulator needs its bell rung. The following definition sends an ASCII bell char
acter to the standard output.

proc term_bell {} {
send_user "\a"

Now that all of the utility procedures are in place, the command to read the sequences
is straightforward. For instance, a backspace character causes the current column to be
decremented. A carriage-return sets the current column to O. Compare this to the code
on page 448.

Notice how simple the code is for absolute cursor motion. It is basically two assignment
statements. Because it is so simple, there is no need to supply termcap/terminfo with
information on relative cursor motion commands. They cannot be substantially faster. t

expect_background {
-i $term_spawn_id
-re "A\[A\x01-\x1fJ+"

Text
term_insert $expect_out(O,string)
term_update_cursor

"A\r" {
(cr,) Go to beginning of line
set cur_col °
term_update_cursor

"A\n" {
(ind,do) Move cursor down one line
term_down
term_update_cursor

"A\b" {
Backspace nondestructively
incr cur_col -1
term_update_cursor

"A\a" {
term_bell

eof {
term_exit

"A\x1b\\\[A"
(cuu1,up) Move cursor up one line
incr cur_row -1
term_update_cursor

t The definition for nondestructive space might be seen as a concession to speed, but in fact it is required by
some buggy versions of termcap which operate incorrectly if the capability not defined. The other relative motion
capabilities are assumed by the terminal driver for non-character-graphic tools such as cat and ls.

Expect + Tk = Expectk

""\xlb\\\[C"
(cufl,nd) Nondestructive space
incr cur_col
term_update_cursor

-re ""\xlb\ \ \ [(\ [0-9] *); (\ [0-9] *)H"
(cup,cm) Move to row y col x
set cur_row [expr $expect_out(l,string)+l]
set cur_col $expect_out(2,string)
term_update_cursor

""\xlb\\\ [H\xlb\\\ [J" {
(clear,cl) Clear screen
term_clear
term_update_cursor

" "\xlb \ \ \ [7m" {
(smso,so) Begin standout mode
set term_standout 1

""\xlb\\\[m" {
(rmso,se) End standout mode
set term_standout a

457

Finally, some bindings are provided. The meta key is simulated by sending an escape.
Most programs understand this convention, and it is convenient because it works over
telnet links.

bind $term <Any-Enter>
focus %W

bind $term <Meta-KeyPress>
if {"%A" != ""} {

exp_send -i $term_spawn_id "\033%A"

bind $term <Any-KeyPress> {
if {"%A" != ""} {

exp_send -i $term_spawn_id -- "%A"

Some bindings can be described using capabilities. For instance, the capability for func
tion key 1 could be described in either of two ways:

:kl=\EOP:
:kf1=\EOP:

The matching binding is:

termcap-style
term in/a-style

bind $term <Fl> {exp_send -i $term_spawn_id "\0330P"}

458 Exploring Expect

Using The Terminal Emulator For Testing And
Automation
This book describes a version of Expect that does not provide built-in support for under
standing character graphics. Nonetheless, it is possible to use the terminal emulator in
the previous section to partially or fully automate character-graphic applications.

For instance, each expect-like operation could be a loop that repeatedly performs
various tests of interest on the text widget contents. In the following code, the entrance
to the loop is protected by "tkwait var test-pats". This blocks the loop from
proceeding until the test-pats variable is changed. The variable is changed by the
term_chars_changed procedure, invoked whenever the screen changes. Using this
idea, the following code waits for a % prompt anywhere on the first line:

proc term_chars_changed {} {
uplevel #0 set test-pats 1

while 1 {
if {!$test-pats} {tkwait var test-pats}
set test-pats 0
if {[regexp "%" [$term get 1.0 Lend]]} break

Writing a substantial script this way would be clumsy. Furthermore, it prevents the use
of control flow commands in the actions. One solution is to create a procedure that
does all of the work handling the semaphore and hiding the while loop.

Based on a procedure (shown later) called term_expect, the rogue script in Chapter
6 (p. 141) can be rewritten with the following code. This code is similar to the earlier
version except that instead of patterns, tests are composed of explicit statements. Any
nonzero result causes term_expect to be satisfied whereupon it executes the associ
ated action. For instance, the first test looks for % in either the first or second line on the
screen. The meaning of the rest of the script should be obvious.

while 1 {
term_expect {regexp "%" [$term get 1.0 2.end]}
exp_send "rogue\r"
term_expect \

{regexp "Str: 18" [$term get 24.0 24.end]} {
break

} {regexp "Str: 16" [$term get 24.0 24.end]}
exp_send "Q"

term_expect {regexp " quit" [$term get 1.0 1. end] }
exp_send "y"

Expect + Tk = Expectk 459

In contrast to the original rogue script, there is no interact command at the end of
this one. Because of the bindings, the script is always listening to the keyboard! To
prevent this implicit interact, remove or override the KeyPress bindings that
appear at the end of the terminal emulator.

Since the tests can be arbitrarily large lists of statements, they are grouped with braces.
For example:

term_expect

{

set line [$term get 1.0 2.endJ
regexp "%" $line

action
timeout

puts "timed out!"

Timeouts follow a similar syntax as before. A test for an eof is not provided since a
terminal emulator should not exit just because the applications making use of it do so.
In this example, a shell prompt is used to detect when the rogue program has exited.

The term_expect procedure lacks some of the niceties of expect and should be
viewed as a framework for designing a built-in command. Feel free to modify it. Your
experiences will help in the ultimate design of a built-in command.

The term_expect Procedure
An implementation of term_expect is shown in this section. The code is quite
complex and really beyond the level at which this book is aimed. Fortunately, it is not
necessary to understand in order to use it. Nonetheless, I will briefly describe how it
works. If you follow it all, you are doing very well indeed.

The code assumes that the terminal emulator is available because the text widget main
tains the memory of what is on the screen. Although the terminal emulator is necessary,
the text widget and, indeed, Tk itself can be obviated by maintaining an explicit repre
sentation such as a list of strings representing rows of the terminal. However, even with
Tk and the terminal emulator, the timeout and the scope handling makes the code intri
cate. Without them, the code would be more similar to the fragment on page 458.

Timeouts are implemented using an after command which sets a strobe at the end of
the timeout period. In order to avoid an old after command setting the strobe for a

460 Exploring Expect

later term_expect command, a new strobe variable is generated each time.t A global
variable provides a unique identifier for this purpose and is initialized separately:

set term_counter 0 ;# distinguish different timers

The procedure begins by deciding the amount of time to wait before timing out. This is
rather involved because it looks in the local scope and the global scope as well as
providing a default value. This imitates the behavior of the real expect command.

proc term_expect {args} {
set timeout [

uplevel {
if [info exists timeout] {

set timeout
else {

uplevel #0 {
if {[info exists timeout]} {

set timeout
else {

expr 10

Two unique global variables are used as strobes-to indicate that an event (data or
timeout) has occurred. The strobe variable holds the name of a global variable
changed when the terminal changes or the code has timed out. Later, the code will wait
for this variable to change. To distinguish between the two types of events, tstrobe is
another strobe changed only upon timeout. (It is possible to use a single tri-valued
strobe, but the coding is much trickier.)

global term_counter
incr term_counter
global [set strobe _data_[set term_counter]]
global [set tstrobe _timer_[set term_counter]]

The term_chars_changed procedure is modified to fire the strobe. Note the use of
double quotes around the body of term_chars_changed in order to allow substitu
tion of the strobe command in this scope.

proc term_chars_changed {} "uplevel #0 set $strobe 1"

t Tk 4 promises to provide support for cancelling after commands. This would remove the need for separate
strobe variables.

Expect + Tk = Expectk 461

The next lines set the strobes to make sure that the screen image can be tested immedi
ately since the screen could initially be in the expected state. The after command
arranges for the timer strobe to be set later.

set $strobe 1
set $tstrobe 0

if {$timeout >= O} {

;# force an initial test
;# no timeout yet

set mstimeout [expr 1000*$timeout]
after $mstimeout "set $strobe 1; set $tstrobe 1"
set timeout_act {}

If the user omits the final action, the number of arguments will be uneven. Later code is
simplified by adding an empty action in this case.

set argc [llength $args]
if {$argc%2 == 1} {

lappend args {}
incr argc

If the test is the bare string "timeout", its action is saved for later. Both the string and
the action are removed from the list of tests.

for {set i O} {$i<$argc} {incr i 2} {
set act_index [expr $i+1]
if {! [string compare timeout [lindex $args Sill}

set timeout_act [lindex $args $act_index]
set args [lreplace $args $i $act_index]
incr argc -2
break

Now the procedure loops, waiting for the screen to be changed. A test first checks if the
strobe has already occurred. If not, tkwai t waits. This suspends the loop when no
screen activity is occurring. Once the strobe occurs, the rest of the loop executes. If the
timeout has occurred or any of the tests are true, the loop breaks so that the action can
be evaluated.

while {! [info exists act]}
if {! [set $strobe]} {

tkwait var $strobe

set $strobe 0

if {[set $tstrobe]}
set act $timeout_act

462

else {
for {set i O} {$i<$argc} {incr i 2} {

if {[uplevel [lindex $args Sill} {
set act [lindex $args [incr ill
break

Exploring Expect

To keep the environment clean, the global strobe variables are deleted. If a timeout
could occur in the future, the unset is similarly scheduled; otherwise the variables are
deleted immediately. The term_chars_changed procedure is reset so that it does not
continue setting the data strobe.

proc term_chars_changed {} {}

if {$timeout >= O} {
after $mstimeout unset $strobe $tstrobe

else {
unset $strobe $tstrobe

Finally, the action is evaluated. If a flow control command (such as break) was
executed, it is returned in such a way that the caller sees it as well. (See the Tcl manual
for more detail on this.)

set code [catch {uplevel $act} stringl
if {$code > 4} {return -code $code $string}
if {$code 4} {return -code continue}
if {$code 3} {return -code break}
if {$code 2} {return -code return}
if {$code 1} {return -code error \

-errorinfo $errorlnfo \
-errorcode $errorCode $string}

return $string

Exercises
1. Add scroll bars to the terminal emulator on page 447. Make it allow for resizeable text

widgets.

2. The terminal emulator is based on an ANSI tenninal. Change the emulator so that it
emulates a particular tenninal that is not ANSI-conforming. This could be useful if you
have to interact with a program or service that is hardwired for a terminal type. Make
the emulator understand any type of terminal.

Expect + Tk = Expectk 463

3. Write a version of the UNIX script command that automatically strips out any char
acter graphics as the output is logged to a file.

4. Modify the term_expect procedure on page 459 so that it does not require Tk. Use
a list of character strings to emulate a Tk text widget. Then try it with an array. Which
is faster? Is this what you had expected?

5. Expand on the previous exercise, by emulating multiple terminals. Provide "hotkeys"
so that you can switch between different terminal sessions in a single keystroke.

6. Write a script for browsing through the archives of the camp . lang . tcl newsgroup.
Display the subjects in a scrollable window, allowing them to be ordered by date, sub
ject, or author. Upon selection, download the posting and display it.

7. Modify the script from the previous exercise so that postings may be saved locally or
cached so that the script does not have to ftp them again if they are selected.

8. Modify the tkpasswd script so that it rejects passwords containing fewer than two
digits and two alphabetic characters, one uppercase and one lowercase. Use exercise
4 on page 163.

9. On page 444, I showed how to make an entry widget display asterisks instead of the
real characters. This provides security while giving useful feedback when entering
passwords. Write a procedure that provides this same kind of feedback when entering
passwords to the standard input (i.e., when not using Tk).

In This Chapter:

• Encrypting
Directories

• Transferring Files

• Watching For
Unread News

Extended Examples

Examples are an essential component in learning how to program. The explanations in
this book are littered with examples. And while many are complete programs, most of
them are small.

In contrast, this chapter is composed of several extended examples. Each is a complete
Expect script drawing together many different concepts described in other chapters.

Encrypting A Directory
The UNIX crypt command encrypts a single file. Because it interactively prompts for a
password, crypt is a pain to use if you want to encrypt a number of files all at the same
time.

The cryptdir script, shown here, encrypts all the files in a directory. The current direc
tory is used unless an argument is given, in which case that is used instead. If the script
is called as decryptdir, the files are decrypted. Here is the beginning where the script
figures out what it should do based on its name and arguments.

#!/usr/local/bin/expect --

encrypt/decrypt an entire directory
optional arg is dirnarne, else cwd

if {[llength $argv] > O} {
cd $argv

encrypt or decrypt?
set decrypt [regexp "decrypt" $argvO]

465

466 Exploring Expect

Next, the script queries for a password. If the script is encrypting files, it asks for the
password twice. This lowers the chance of encrypting files with an accidentally
mistyped password.

set timeout -1
stty -echo
send "Password:"
expect -re "(.*)\n"
send "\n"
set passwd $expect_out(1,string)

wouldn't want to encrypt files with mistyped password!
if ! $decrypt {

send "Again:"
expect -re "(. *) \n"
send "\n"
if ! [string match $passwd $expect_out(1,string)]

send_user "mistyped password?"
stty echo
exit

stty echo

Once the password is known, the script loops through the list of files encrypting (or
decrypting) each one. The suffix . crypt is used to store the encrypted version. Not
only is this helpful to the user, but the script also uses this convention to avoid
encrypting files that have already been encrypted.

log_user 0
foreach f [glob *] {

set strcmp [string compare .crypt [file extension $f]]
if $decrypt {

skip files that don't end with ".crypt"
if O!=$strcmp continue
spawn sh -c "exec crypt < $f > [file root $f]"

else {
skip files that already end with ".crypt"
if O==$strcmp continue
spawn sh -c "exec crypt < $f > $f.crypt"

expect "key:"
send "$passwd\r"
expect
wait
exec rm
send_tty

-f $f

Extended Examples 467

File Transfer Over telnet
The ftp program is handy for transferring files but it only works if the remote host is
directly reachable via TCP. Suppose you have to telnet to a modem pool and then
dial out to another modem to reach the remote host. Not only can ftp not handle this
but neither can a lot of other communications programs. In Chapter 16 (p. 350), I
presented a file transfer script that used rz and sz. Like many other communications
programs, rz and sz require binary copies of their counterpart at each end of the link.
If you do not have both, copying one to the other end can be a problem-if it was easy,
you would not need the programs in the first place! Even worse, many versions of
telnet and other programs do not provide 8-bit clean connections. So even if you had
rz and sz, you might not be able to use them over a telnet connection.

The script below works over many kinds of links and does not require a copy of itself
on the other end. The only assumptions made are that the usual UNIX utilities (such as
cat and compress) exist and that the line is error free. If you do not have compress,
that can be removed from the script as well. It is used only to speed the transfers.

The script is quite a bit fancier than the rz/sz script. This one interactively prompts for
file names and other commands.

The script starts off by finding out what the prompt looks like. It then disables the
default timeout. The script has a verbose mode so that the user can see what is
happening internally. By default this mode is disabled.

#!/usr/local/bin/expect --

if [info exists env(EXPECT_PROMPT)]
set prompt $env(EXPECT_PROMPT)

else {
set prompt "(%1#1\\$) $" ;# default prompt

set timeout -1
set verbose_flag 0

As is usually the case, procedures are defined before they are used. Describing the
procedures in that order is hard to understand. Instead, I will present the rest of the
script out of order.

468 Exploring Expect

The final piece of code in the script starts a shell, tells the user about the commands,
and then gives control to the user in an interact:

spawn -noecho $env(SHELL)

send_user "Once logged in, cd to directory to transfer\
to/from and press: --\n"

send_user "One moment ... \n"
interact -- cmd

At this point, the user connects to the remote system using external programs such as
telnet and tip. Once in the remote directory where transfers should take place, the
user invokes the cmd procedure by entering " __ ". A special prompt appears and a
single additional character selects the specific action that should take place such as p for
"put file" and g for "get file". The user can enter another - to send a literal tilde, liZ to
suspend the process, ? for help, or c to change directory on the local system.

proc cmd {} {
set CTRLZ \032

send_user "command (g,p,? for more): "
expect_user {

g get_main
p put_main
c chdir
v verbose
- {send "-"}
"\\?" {

send_user "?\n"
send_user "--g
send_user "--p
send_user "--c

get file from remote system\n"
put file to remote system\n"
change/show directory on local system\n"

send_user " send - to remote system\n"
send_user "--? this list\n"
send_user "--v verbose mode toggle\

(currently [verbose_statusl)\n"
send_user "--"Z suspend\n"

$CTRLZ {
stty -raw echo
exec kill -STOP [pidl
stty raw -echo

-re . {send_user "unknown command\n"}

send_user "resuming session ... \n"

Extended Examples 469

After executing a command, users are returned to the shell. They can then execute
more shell commands or enter -- to do more file transfers.

The v command is the simplest one that executes a procedure, verbose. The proce
dure just toggles a variable. Another procedure, verbose_status, is a simpler version
which just tells the user what the value is. It is called if the user asks for help. Finally,
there is a send_verbose which is called many places in the code. It prints its argu
ments, but only if the script is in verbose mode.

proc verbose {} {
global verbose_flag

set verbose_flag [expr !$verbose_flag]
send_user "verbose [verbose_status]\r\n"

proc verbose_status {} {
global verbose_flag

if $verbose_flag
return "on"

else {
return "off"

proc send_verbose {msg}
global verbose_flag

if $verbose_flag {
send_user $msg

The c command is the simplest command that interacts with users. It starts by resetting
the mode to cooked and enabling echo. This enables users to see what they are typing
and fix any typos. Once the new directory is entered, the process sets it with cd. (If a
user types cd instead of --c, only the remote host is affected.) Finally, the terminal
mode is reset to how interact left it. The get and put functions handle the terminal
mode the same way.

To make this bullet-proof, the cd should be wrapped in a catch. A lot more error
checking could be added throughout the script.

proc chdir {} {
stty -raw echo
send_user "c\n"

470 Exploring Expect

send_user "current directory: [pwd], new directory: "
expect_user -re "(. *) \n" {

cd $expect_out(l,string)

stty raw -echo

The getJIlain and put_main procedures get the names of the files to be copied.
They are written here with expect_user commands although gets could have been
used as well. If one name is entered, it is used as both source and destination name.
Otherwise different names are used.

proc get_main {} {
stty -raw echo
send_user "g\nget remote file \ [localfile] : "
expect_user {

-re ,,(\[A]+) +(\[A]+)\n"
send_user "copying (remote) $ expect_out (l,string) to\

(local) $expect_out(2,string)\n"
get $expect_out(l,string) $expect_out(2,string)

-re ,,(\[A]+)\n" {

send_user "copying $expect_out(l,string)\n"
get $expect_out(l,string) $expect_out(l,string)

-re "\n" {
send_user "eh?\n"

stty raw -echo

proc put_main {} {
stty -raw echo
send_user "p\nput local file \ [remotefile] : "
expect_user {

-re "(\[A]+) +(\[A]+)\n" {

send_user "copying (local) $expect_out(l,string) to\
(remote) $expect_out(2,string)\n"

put $ expect_out (l,string) $expect_out(2,string)
-re "(\[A]+)\n" {

send_user "copying $expect_out(l,string)\n"
put $expect_out(l,string) $expect_out (1, string)

-re "\n" {
send_user "eh?\n"

stty raw -echo

Extended Examples 471

The get and put procedures do the real work of transferring the files. They are rather
entertaining and illustrate how to do a lot of work with very little in the way of tools.

The get procedure gets a file from the remote system and stores it locally. In essence,
the script does this by sending a cat command to the local system. Locally, a file is
created, and as lines arrive, they are written to the new file.

To be able to detect the end of the file, it is first uuencoded which leaves it with an
obvious endmarker. This also solves the problem of transferring binary files. Since
binary files are no problem, the file is compressed first on the remote system and
uncompressed after reception on the local system. This speeds up the transfer.

The process id is used both locally and remotely to prevent collisions between multiple
users. Of course, the remote process id is used on the remote side.

It is amusing to note that the conversation on the remote side is done entirely with
vanilla UNIX commands, such as cat and stty-Expect is only required locally.

The stty command is sent immediately to disable echo. Later this drastically simplifies
what is returned. For example, the echo of the cat command does not have to be
stripped out from the beginning of the file listing.

The put procedure is similar in design to get although the details are different. Here, it
is critical that echoing be disabled so that the whole file is not echoed back. There is
nothing smart waiting to read the file on the other remote system-just cat. It suffices
to send a AD to close the file. Of course, the same compression and encoding occurs in
put; however, it occurs in reverse with the remote system ultimately doing the uude
coding and uncompression.

proc get {infile outfile}
global prompt verbose_flag

if (!$verbose_flag)
log_user 0

send_verbose "disabling echo: "
send "stty -echo\r"
expect -re $prompt

send_verbose "remote pid is "
send "echo $$\r"
expect -re "(.*)\r\n.*$prompt"

set rpid $expect_out(l,string)

set pid [pidl
pid is local pid, rpid is remote pid

472

set infileJ)lain "/tmp/$rpid"
set infile_compressed "$infileJ)lain.Z"
set infile_encoded "$infile_compressed.uu"

set outfileJ)lain "/tmp/$pid"
set outfile_compressed "$outfileJ)lain.Z"
set outfile_encoded "$outfile_compressed.uu"

set out [open $outfile_encoded w]

send_verbose "compressing\n"
send "compress -fc $infile > $infile_compressed\r"
expect -re $prompt

Exploring Expect

use label corresponding to temp name on local system
send_verbose "uuencoding\n"
send "uuencode $infile_compressed $outfile_compressed > \

$infile_encoded\r"
expect -re $prompt

send_verbose "copying\n"
send "cat $infile_encoded\r"

expect {
-re ""end\r\n"

puts $out "end"
close $out

-re ""(\["\r]*)\r\n"
puts $out $expect_out(l,string)
send_verbose
exp_continue

if ($verbose_flag)
send_user "\n"
log_user 1

;# after last

expect -re $prompt;# wait for prompt from cat

send_verbose "deleting temporary files\n"
send "rm -f $infile_compressed $infile_encoded\r"
expect -re $prompt

Extended Examples

send_verbose "switching attention to local system\n\
uudecoding\n"

exec uudecode $outfile_encoded

send_verbose "uncompressing\n"
exec uncompress -f $outfile_compressed

send_verbose "renaming\n"
if [catch "exec cp $outfile-I)lain $outfile" msg] {

send_user "could not move file in place, reason: $msg\n"
send_user "left as $outfile-I)lain\n"
exec rm -f $outfile_encoded

else {
exec rm -f $outfile-I)lain $outfile_encoded

restore echo and serendipitously reprompt
send "stty echo\r"

proc put {infile outfile} {
global prompt verbose_flag

if (!$verbose_flag)
log_user 0

send_verbose "disabling echo: "
send "stty -echo\r"
expect -re $prompt

send_verbose "remote pid is "
send "echo $$\r"
expect -re "(.*)\r\n.*$prompt"

set rpid $expect_out(l,string)

set pid [pid]
pid is local pid, rpid is remote pid

set infile-I)lain "/tmp/$pid"
set infile_compressed "$infile-I)lain.Z"
set infile_encoded "$infile_compressed.uu"

set outfile-I)lain "/tmp/$rpid"
set outfile_compressed "$outfile-I)lain.z"

473

474 Exploring Expect

set outfile_encoded "$outfile_compressed.uu"

set out [open $outfile_encoded wl

send_verbose "compressing\n"
exec compress -fc $infile > $infile_compressed

use label corresponding to temporary name on local
system
send_verbose "uuencoding\n"
exec uuencode $infile_compressed $outfile_compressed > \

$infile_encoded

send_verbose "copying\n"
send "cat > $outfile_encoded\r"

set fp [open $infile_encoded rl
while 1 {

if {-l == [gets $fp bufl} break
send_verbose "."
send "$buf\r"

if ($verbose_flag)
send_user "\n"
log_user 1

send "\004"
close $fp

;# eof

;# after last

send verbose "deleting temporary files\n"
exec rm -f $infile_compressed $infile_encoded

send_verbose "switching attention to remote system\n"

expect -re $prompt ;# wait for prompt from cat

send_verbose "uudecoding\n"
send "uudecode $outfile_encoded\r"
expect -re $prompt

send_verbose "uncompressing\n"
send "uncompress -f $outfile_compressed\r"
expect -re $prompt

Extended Examples

send_verbose "renaming\n"
send "cp $outfileJllain $outfile\r"
expect -re $prompt

send_verbose "deleting temporary files\n"
send "rm -f $outfileJllain $outfile_encoded\r"
expect -re $prompt

restore echo and serendipitously reprompt
send "stty echo\r"

You Have Unread News-tknewsbif.!

475

biff is a UNIX program that reports when mail is received. In its fancier forms, it can
pop up a picture of the sender or play an audio clip. If you receive mail from your boss,
for example, you could have biff shout "Red Alert!"

tknewsbiff is a script to do the same thing but for Use net news. When you have
unread news, an audio clip can be played or some other action can be taken. By
default, newsgroups with unread news are shown in a window along with the numbers
of unread articles. Here is an example:

1M news@coi 1

COJI!P. unix. osf. osfl
COJI!P.unix.pc-clane.3
COJI!P. unix. sys 5. r 3
COJI!P.unix.sys~r4

COJI!P. unix. advocacy
alt. sources. Fanted
COJI!P.sources.m2SC
COJI!P. sources. Fanted
COJI!P.sources.testers
de. dini.nq

10
2
4
4
5

930
3078

12698
310
940

476 Exploring Expect

tknewsbiff is quite different from the other examples in this book. The script is
customizable by additional Tcl commands supplied by the user. Customizations are
stored in the file -/ . tknewsbiff. A simple version might look like this:

set server news.nist.gov
set delay 120
set server_timeout 60
set height 10

watch comp.unix.*
watch *.sources.*
watch dc.dining

ignore *.d

The first four commands set variables that control how often tknewsbiff checks for
news, the news server to check, how long to wait for a response, and the maximum
number of newsgroups to display at a time in the window. There are other variables
which I will mention later. All are defined using set commands.

Next are definitions of which newsgroups to watch. The first command requests that all
of the comp.unix groups be watched. Next is a pattern which matches all of the source
related newsgroups. Finally, the dc.dining newsgroup (Washington DC restaurant
news) is watched.

The watch command is just a Tcl procedure which I will show later. Another proce
dure is ignore. The example here causes all discussion groups to be ignored.

The watch command supports several flags. The -display flag names a command to
execute when a newsgroup has unread news. The default action causes the newsgroup
in the news group variable to be scheduled for display when the window is redrawn.
The -new flag names a command to execute when unread news first appears in a news
group. For example, the following lines invoke the UNIX command play to play a
sound.

watch *.dining -new "exec play /usr/local/sound/yum.au"
watch rec.auto* -new "exec play /usr/local/sound/vroom.au"

By default, -new and -display are evaluated when more than zero articles are
unread. The -threshold flag specifies the number of articles after which actions
should be evaluated. For instance, "-threshold 10" means that the newsgroup will
not be displayed until at least 10 articles are unread.

Extended Examples 477

You can cut down on the verbosity of actions by defining procedures. For example, if
you have many -new flags that all play sound files, you could define a sound proce
dure. This allows the -new specifications to be much shorter.

proc play {sound} {
exec play /usr/local/sound/$sound.au

Using play, the watch commands can be rewritten:

watch *.dining -new "play yum"
watch rec.auto* -new "play vroom"

The user-defined user procedure is run immediately after the newsgroups are sched
uled to be written to the display and before they are actually written. Why is this useful?
Suppose unread articles appear in several rec.auto groups and the same sound is to be
played for each one. To prevent playing the sound several times in a row, the -new
command can set a flag so that in the user procedure, the sound is played once and
only if the flag is set.

The user procedure could also be used to start a newsreader. This would avoid the
possibility of starting multiple newsreaders just because multiple newsgroups contained
unread articles. If started with exec, a check should, of course, be made to verify that a
newsreader is not already nmning. Alternatively, you could send a command to a Tk
based newsreader to switch to a new group or, perhaps, pop open a new window for
the new group.

The tknewsbiff Script
The script starts by removing the default window from the screen. The window will be
replaced when there is something to be displayed and removed when empty. Since this
can happen as news is read or more arrives, two utility procedures are immediately
defined and one is invoked. They also keep track of whether the user iconified the
window or not.

#!/usr/local/bin/expectk

proc unmapwindow {} {
global _window_open

switch [wm state .J \
iconic {

set _window_open 0
normal {

set _window_open 1

WIn withdraw .

478 Exploring Expect

unmapwindow
force window to be open when mapped for the first time
set _window_open 1

proc mapwindow {} {
global _window_open

if $_window_open {
wm deiconify

else {
wm iconify .

Notice that the variable _window_open begins with an underscore. This is a simple
attempt to keep things out of the user's namespace. Anything beginning with an under
score is off-limits to the user (the tknewsbiff man page describes this). On the other
hand, the procedures mapwindow and unmapwindow are public. The user can call
them directly.

Another utility procedure is defined below. _abort is called when an error is encoun
tered that is too severe for tknewsbiff to continue.

proc _abort {msg}
global argvO

puts "$argvO: $msg"
exit 1

The environment is now initialized, primarily by giving variables reasonable defaults.
The directory in which to find the configuration files is located.

if [info exists env(DOTDIR)]
set home $env(DOTDIR)

else
set home [glob -]

set delay 60
set width 27
set height 10
set _default_config_file $home/.tknewsbiff
set _conf ig_f ile $_default_config_file
set default server news -
set server $_default_server
set server_timeout 60

Extended Examples 479

log_user 0

A few Tk commands define the window that displays the newsgroups. More configura
tion will take place later when the newsgroups to be displayed are known.

listbox .list -yscroll ".scrollbar set" -font "*-m-*" -setgrid 1
scrollbar .scrollbar -command ".list yview" -relief raised
pack .scrollbar -side left -fill y
pack .list -side left -fill both -expand 1

Next, the command-line arguments are parsed. The script accepts either a configuration
file name or a hostname. If a hostname is given, it is used to find a host-specific configu
ration file. This enables a user to run multiple copies of tknewsbiff simultaneously,
each monitoring news from a different host.

while {[llength $argv]>O} {
set arg [lindex $argv 0]

if [file readable $arg] {
if 0== [string compare active [file tail $arg]] {

set active_file $arg
set argv [lrange $argv 1 end]

else {
must be a config file
set _config_file $arg
set argv [lrange $argv 1 end]

elseif {[file readable $_config_file-$arg]}
maybe it's a hostname suffix for a newsrc file?
set _config_file $_default_config_file-$arg
set argv [lrange $argv 1 end]

else {
maybe just a hostname for a regular newsrc file?
set server $arg
set argv [lrange $argv 1 end]

Once the configuration file is determined, it is read for additional information such as
the newsrc location, server name, timeout, etc. The _read_config_file procedure
sources the configuration file, allowing any user-written Tel code to be executed in the
global scope. This allows the user complete access to all other procedures and variables
in the script, providing tremendous flexibility.

For simple configurations, the user does not have to know much about the syntax of
Tel. For example, commands such as set are common to most . rc files. On the other
hand, the sophisticated user can write Tel code and make tknewsbiff perform in very
unusual ways. By providing these hooks, tknewsbiff avoids the burden of having a

480 Exploring Expect

lot of special-case code. For example, tknewsbiff does not have to know how to
play sounds on each computer since the user can call any external program to do it via
exec.

The watch and ignore commands merely append their arguments to the lists
watch_list and ignore_list. Making watch and ignore procedures is a little
friendlier to the user. People unfamiliar with Tel might be put off by having to learn
about a command named lappend. ("What does that have to do with news!?")

The user procedure is deleted just in case the user has also deleted it from the configu
ration file. If they have not deleted user, it will be recreated when the file is re
sourced. If no configuration file exists, the last command in the _read_config_file
ensures that all news groups are watched.

proc _read_config_file {} {
global _config_file argvO watch_list ignore_list

proc user {} {}
set watch_list {}
set ignore_list {}

if [file exists $_config_fileJ
uplevel allows user to set global variables
if [catch {uplevel source $_config_file} msgl

_abort "error reading $_config_file\n$msg"

if [llength $watch_listl==O {
watch *

proc watch {args} {
global watch_list

lappend watch_list $args

proc ignore {ng} {
global ignore_list

lappend ignore_list $ng

Extended Examples 481

Once the configuration file is read, a few last details are pinned down. The newsrc file
can be located and the window can be titled to differentiate it from other tknewsbiff
instances.

if user didn't set newsrc, try -/.newsrc-server
if that fails, fall back to just plain -/.newsrc
if 1 [info exists newsrc] {

set newsrc $home/.newsrc-$server
if 1 [file readable $newsrc] {

set newsrc $home/.newsrc
if 1 [file readable $newsrc]

abort "cannot tell what newgroups you read - found\
neither $home/.newsrc-$server nor $home/.newsrc"

initialize display
set min_reasonable_width 8
wm minsize . $min_reasonable_width 1
wm maxsize . 999 999
if {O == [info exists active_file] &&

o 1= [string compare $server $_default_server]}
wm title . "news@$server"
wm iconname . "news@$server"

A number of other procedures are created, and then tknewsbiff loops alternating
between checking for news and sleeping. In the real script, the procedures have to be
defined first, but I will show the loop now because it is easier to understand this way.

for {} 1 {_sleep $delay} {
_init_ngs

_read_newsrc
if [_read_active] continue
_read_config_file

_update_ngs
user
_update_window

After some initialization, the body of the loop goes on to read the user's newsrc file.
This tells how many articles the user has read. tknewsbiff then checks to see how
many new articles exist. Next, the user's configuration file is read.

Once all the raw data has been collected, tknewsbiff decides what actions to take.
_update_ngs creates an internal description of the newsgroups that contain new

482 Exploring Expect

articles based on the work earlier in the loop. Prior to updating the visible window, a
user-defined procedure, user, is called. This allows the user to look at and play with
the internal description. For example, the user procedure could execute an action to
start a newsreader.

Now I will describe each procedure. _read_newsrc reads the user's newsrc file. The
most recently read article is stored in the array db. For example, if the user has read
article 5 in comp.unix.wizards, db (comp. unix. wizards, seen) is set to 5.

proc _read_newsrc {}
global db newsrc

if [catch {set file [open $newsrc]} msg] {
_abort $msg

while {-I != [gets $file buf]} {
if [regexp "!" $buf] continue
if [regexp "(\[":]*) :.*\[-,] (\[0-9]+)" $buf dummy ng seen]

set db($ng, seen) $seen

2nd regexp can fail on lines that have but no #

close $file

Next, tknewsbiff checks the number of articles in each group. By default, an NNTP
connection is spawned to a news server. However, if the variable act i ve_f i le exists,
the local active file is read instead. Notice how the same code reads the data from either
the file or the spawned process.

Each newsgroup is appended to the list active_list. The highest numbered article
in each newsgroup is stored in db (news group, hi) .

proc _read_active {} {
global db server active_list active_file
upvar #0 server_timeout timeout

set active_list {}

if [info exists active_file] {
spawn -open [open $active_file]

else {
spawn telnet $server nntp
expect {

"20*\n" {
should get 200 or 201

} "NNTP server*\n" {

Extended Examples 483

puts "tknewsbiff: unexpected response from server:"
puts "$expect_out(buffer) "
return 1

"unknown host"
_unknown_host

timeout
close
wait
return 1

eof {
loadav too high probably
wait
return 1

exp_send "list\r"
ignore echo of "list" command
expect "list\r\n"
skip "Newsgroups in form" line
expect -re "2l5\["\nJ*\n"

expect
-re "(\[" J*) 0*(\[" J+) \["\nJ*\n"

set ng $expect_out(l,string)
set hi $ expect_out (2,string)
lappend active_list $ng
set db($ng,hi) $hi
exp_continue

" . \r\n" close
eof

wait
return 0

The _unknown_host procedure is called if telnet fails with that error.

proc _unknown_host {} {
global server _default_server

if O==[string compare $_default_server $serverJ {
puts "tknewsbiff: default server <$server> is not known"

else {
puts "tknewsbiff: server <$server> is not known"

484 Exploring Expect

puts "Give tknewsbiff an argument - either the name\
of your news server or active file. I.e.,

tknewsbiff news.nist.gov
tknewsbiff /usr/news/lib/active
\n\
If you have a correctly defined configuration file\
(.tknewsbiff), an argument is not required. See the\

man page for more info."
exit 1

In the main loop of tknewsbiff, the next step is to reread the user's configuration file.
This is done so that the user can change it without having to restart tknewsbiff.

After reading the configuration file, tknewsbiff turns to the job of deciding what to
do with all the data. The _update_ngs procedure looks through the newsgroup data
and figures out which newsgroups should have their -display or -new actions
executed. The code is careful to do actions in the same order that the user specified the
newsgroups in the configuration file. Also, actions are not executed twice even if a
newsgroup matches two different patterns. Following _update_ngs are two utility
procedures that calculate whether newsgroup actions should be shown.

proc _update_ngs {} {
global watch_list active_list news group

for each watch Swatch_list
set threshold 1
set display display
set new {}

set ngpat [lindex Swatch 0]
set watch [lrange Swatch 1 end]

while {[llength Swatch] > O} {
switch -- [lindex Swatch 0] \
-threshold {

set threshold [lindex Swatch 1]
set watch [lrange Swatch 2 end]

-display {
set display [lindex Swatch 1]
set watch [lrange Swatch 2 end]

-new {
set new [lindex Swatch 1]
set watch [lrange Swatch 2 end]

default {
_abort "watch: expecting -threshold, -display or\

-new but found: [lindex Swatch 0]"

Extended Examples

for each ng $active_list {
if [string match $ngpat $ng] {

if [_isgood $ng $threshold]
if [llength $display] {

set news group $ng
uplevel $display

if [_isnew $ng] {
if [llength $new]

set news group $ng
uplevel $new

test in various ways for good news groups
return 1 if good, 0 if not good
proc _isgood {ng threshold} {

global db seen_list ignore_list

skip if we don't subscribe to it
if ! [info exists db($ng,seen)] {return O}

skip if the threshold isn't exceeded
if {$db($ng,hi) - $db($ng,seen) < $threshold}

return 0

skip if it matches an ignore command
foreach igpat Signore_list {

if [string match $igpat $ng] {return O}

skip if we've seen it before
if [lsearch -exact $seen_list $ng] !=-1 {return O}

passed all tests, so remember that we've seen it
lappend seen_list $ng
return 1

485

486 Exploring Expect
--

return 1 if not seen on previous turn
proc _isnew {ng} {

global previous_seen_list

if [lsearch -exact $previous_seen_list $ngl==-l {
return 1

else {
return 0

The display procedure schedules a newsgroup to be displayed. Internally, all it does
is to append the newsgroup to the display_list variable. The current newsgroup is
taken from the global newsgroup variable. The display procedure is the default
action for the -display flag.

proc display {} {
global display_list news group

lappend display_list $newsgroup

The final procedure in the main loop is _update_window which redraws the window,
resizing and remapping it if necessary. The procedure _di splay _ngs is a utility proce
dure which rewrites the newsgroups in the window.

proc _update_window {} {
global server display_list height width
global min_reasonable_width

if {O == [llength $display_listl}
unmapwindow
return

make height correspond to length of display_list or
user's requested max height, whichever is smaller

if {[llength $display_listl < $height} {
set current_height [llength $display_listl

else {
set current_height $height

force reasonable min width
if {$width < $min_reasonable_width}

set width $min_reasonable_width

Extended Examples

wm geometry . ${width}x$current_height
wm maxsize . 999 [llength $display_listJ

if [string compare [wm state .J withdrawnJ==O {
mapwindow

write all newsgroups to the window
proc _display_ngs {width} {

global db display_list

set str_width [expr $width-7J

.list delete 0 end
foreach ng $display_list

.list insert end [
format "%-$str_width.${str_width}s %5d" \

$ng [expr $db($ng,hi) - $db($ng,seen)J

487

The newsgroup window is initialized with a few simple bindings. The left button pops
up a help window. (The help procedure is not shown here.) The middle button
causes tknewsbiff to stop sleeping and check for new unread news immediately.
The right mouse button causes the window to disappear from the screen until the next
update cycle. Finally, if the user resizes the window, it is redrawn using the new size.

bind .list <1> help
bind .list <2> update-now
bind .list <3> unmapwindow
bind .list <Configure> {

scan [wm geometry .J "%%dx%%d" w h
_display_ngs $w

The user can replace or add to these bindings by adding bind commands in their
configuration file. For example, here is a binding to pop up an xterm and run rn:

bind .list <Shift-1> {
exec xterm -e rn &

488 Exploring Expect

Here is a binding that tells rn to look only at the newsgroup that was under the mouse
when it was pressed.

bind .list <Shift-l>
exec xterm -e rn [lindex $display_list [.list nearest %y]] &

The tknewsbiff display can be further customized at this point by additional Tk
commands. For example, the following command sets the colors of the newsgroup
window:

.list config -bg honeydewl -fg orchid2

After each loop, tknewsbiff sleeps. While it is not sleeping, it changes the shape of
the cursor to a wristwatch to indicate that it is busy. The _sleep procedure itself is a
little unusual. Instead of simply calling sleep, it waits for several characters from a
spawned cat process. In the usual case, none arrive and _sleep returns after the
expect times out.

However, if the user calls update-now (earlier this was bound to the middle button), a
carriage-return is sent to the cat process. cat echoes this as four characters
(\r\n\r\n) which is just what the expect in _sleep is waiting for. Thus, tknews
biff wakes up if update-now is run. The cat process is spawned once at the
beginning of the process.

spawn cat -u; set _cat_spawn_id $spawn_id
set _update_flag 0

proc _sleep {timeout}
global _cat_spawn_id _update_flag

restore to idle cursor
.list config -cursor ""; update

sleep for a little while, subject to click from
"update" button
expect -i $_cat_spawn_id -re " ";# two crlfs

change to busy cursor
.list config -cursor watch; update

Extended Examples

proc update-now {} {
global _update_flag _cat_spawn_id

if $_update_flag return
set _update_flag 1

;# already set, do nothing

489

The last things to be done in the script are some miscellaneous initializations.
_init_ngs is called at the beginning of every loop, so that tknewsbiff starts with a
clean slate.

set previous_seen_list {}
set seen_list {}

proc _init_ngs {}
global display_list db
global seen_list previous_seen_list

set display_list {}
set seen_list {}

catch {unset db}

Exercises
1. Use the timeout technique from the tknewsbiff script to cause an interact to

return by pressing a Tk button. Compare this to using a signal.

2. The file transfer script from page 467 assumes very little of the remote host. Modify the
script so that it checks for the existence of rz/sz (or other tools) on the remote
machine and uses them if possible. Similarly, use gzip if possible.

3. Most compression programs can read from or write to a pipeline. Use this to reduce
the number of temporary files used by the file transfer script.

In This Chapter:

• Using Expect
Without Tel

• The Expect Library 21
Expect, C, And C++

In the other chapters of this book, I have described how to use Expect with the
command-oriented Tel environment. However, Expect can be used without Tel. In this
chapter, I will describe how to call Expect functions from C by using the Expect library.
This library is compatible with C++ as well, and most of the examples are identical
between C and C++. For other languages, you are on your own. However, if you know
how to call C routines from your favorite language, you should be able to do the same
with Expect.

Much of the functions in the library work analogously to their counterparts in the Expect
program. Accordingly, it will be very helpful to have some experience with Expect
before using the library. Concepts such as spawned processes and glob patterns versus
regular expressions are not explained here.

This chapter is not meant to encourage the use of C or C++. Especially for Expect-like
programming, working in Tel is much, much easier than working with C or C++ and
their usual edit-compile-debug cyeles. Unlike typical compiled programs, most of the
debugging of Expect programs is not getting the compiler to accept programs-rather,
it is getting the dialogue correct. And this is much faster to do with Tel.

If you are aware of the trade-offs between C and C++ and Tel and have good cause to
use this library, plow ahead. But if you do not know Tel and simply want to avoid
learning another language, I would suggest taking a step back, reexamining your deci
sion, and giving Tel a chance. It is more than meets the eye.

For many tasks, the Tel environment is preferable to that of C and C++. However, C and
C++ may be forced upon you if you already have a large amount of software written
that uses some other mechanism to provide control over symbol tables and program
flow.

491

492 Exploring Expect

For example, you might want to do Expect-like operations from another interpreter
such as Basic, Lisp, or Perl. Adding Tcl to those interpreters is just going to make things
more complicated. Instead, you can invoke Expect-like operations directly.

Rather than provide bindings for every interpreter under the sun, Expect comes with a
library that can be linked with any program. The library has functions that can be used
by hand, or with a little glue, added to any interpreter so they can be called in that new
language.

In Chapter 22 (p. 518), I will describe how to produce standalone Expect binaries that
still use Tcl for control. Often called compiled, such programs require no external scripts
and are a convenient form to use if you want to package everything in a single file.

Overview
Calling Expect from C and C++ is straightforward. I will omit references to C++ from
now on because most of the examples and explanations are identical in both environ
ments. Expect comes as a library that you link with your other object files. The library
contains three types of functions. These functions:

• manipulate ptys and processes

• wait for input using patterns

• disconnect the controlling terminal

You need not use these functions together. For example, you can have Expect spawn a
process, but then read from it directly (without using patterns). In addition, you can use
functions out of the Tcl library (such as the regular expression pattern matcher) or the
Expect extension library.

A number of facilities in the Expect program have no analog. Or to put it another way,
the Expect library does not provide substitutes for all Expect commands. For example,
there is no send function because you can use fprintf or write to do the same
thing.

Here is a simple example to create and interact with a process. It may look confusing at
first but it will make more sense as you read this chapter.

FILE *fp = exp-popen("chess");
exp_fexpectl(fp,exp_glob,"Chess\r\n",O,exp_end);
fprintf(fp, "first\r") ;

The first line runs the chess program. A FILE pointer is returned so that you can
interact with the process. The exp_fexpectl function declares a glob-style pattern for
which to wait. Finally, the last line sends a string back to the process.

Expect, C, And C++ 493

Linking
Linking a program with the Expect library requires only naming the appropriate
libraries. The Expect library is called libexpect. a and must be supplied when the
program is linked. Assuming that it is installed in your system so that the linker can find
it, the library is traditionally named from the command line as "-lexpect".

For example, if your program is composed of the object files "foo. 0" and "bar. 0",

they can be linked together as:

cc foo.c bar.c -lexpect -ltcl

The Tcllibrary is listed here too. The Expect library "borrows" Tcl's regular expression
pattern matcher but nothing else. Rather than shipping yet another copy of the pattern
matcher, it is easier just to link with the Tcl library. The Tcl library may be avoided
entirely by supplying a replacement for the regular expression pattern matcher.

When the library is used with other languages, it may be desirable to replace the glob or
regular expression pattern matchers with different ones. For example, another language
may define regular expressions differently than Tel. Using Tcl's regular expressions with
those of another language would be confuSing. Unfortunately, there is no standard inter
face for pattern matchers. A simple solution is to replace calls to the pattern matchers
with new calls that follow any of the interfaces used by the Expect library. Because
these interfaces are likely to change, they are not formally documented. However, the
current interfaces are relatively trivial and should be easily understandable to anyone
familiar with popular UNIX pattern matchers.

Include Files
Any files that make references to the Expect library must include the following state
ment. The statement should appear before any Expect functions are called.

#include "expect.h"

This statement works for both C and C++ programs.

Some of the Expect library functions work with the C standard I/O package. If you use
these parts of the library, you must also include that header as well.

#include <stdio.h>

If the compiler needs to be told where the Expect include files come from, add an
appropriate argument to the compile command. For example, to compile foo. c, you
might have to say:

cc -I/usr/local/include foo.c

494 Exploring Expect

The precise filename depends on where the include files have been installed. As before,
the Tcl include files should also be available. Normally, both the Expect and Tcl include
files live in the same directory, so one - I flag should suffice.

Ptys And Processes
The Expect library provides three functions to start new interactive processes. Each of
them creates a new process so that its standard input, standard output, and standard
error can be read and written by the current process.

exp_spawnl is useful when the number of arguments is known at compile time.
exp_spawnv is useful when the number of arguments is not known at compile time.
(The third function exp-popen will be described later.) In both cases, the arguments
are passed literally-no shell pattern matching is done and no redirection occurs. The
shell is simply not involved. I occasionally will refer to these functions generically as the
spawn functions.

exp_spawnl and exp_spawnv parallel those of the UNIX functions execlp and
execvp respectively. The calling sequences are as follows:

int
exp_spawnl(file, argO [, argl, ... , argn] (char *)0);
char *file;
char *argO, *argl, ... *argn;

int
exp_spawnv(file,argv);
char *file, *argv[];

In both functions, the file argument is a relative or absolute file specification. No special
character processing occurs (such as - or * expansion). exp_spawnl and
exp_spawnv duplicate the shell's actions in searching for an executable file from the
list of directories associated with the PATH environment variable.

The argv parameter in exp_spawnv is made available to the new process as the argv
parameter in main. exp_spawnl collects its remaining arguments and then massages
them so that they also appear as the argv parameter in main. In both cases, the argu
ments are copied so that you can later change the pointers or what they point to without
affecting the spawned process.

For example, the following command starts a telnet process to the SMTP port of
uunet . uu. net:

fd = exp_spawnl ("telnet " ,
"telnet","uunet.uu.net","smtp", (char *)0);

Expect, C, And C++ 495

Notice that the argO parameter is identical to the file parameter. Remember that the
file parameter is not part of the argv array in the new main. argv [0 1 in the new
process comes from argO in the current process.

In both exp_spawnl and exp_spawnv, the argument list must be terminated by
(char *) O. Forgetting the terminating 0 is a common error and typically leads to a
core dump.

If the functions are successful, they return a file descriptor. This file descriptor corre
sponds to the standard input, standard output, and standard error of the new process.
You can use the wri te system call to write to the standard input:

write (fd, "foo\r", 4) ;

To read from the standard output or standard error, use the read system call.

read(fd,buffer,BUFSIZ);

A stream may be associated with the file descriptor by using fdopen. In almost all
cases, you want to immediately unbuffer the new stream.

fp = fdopen(fd,"r+");
setbuf(fp, (char *)0);

If an error occurs during exp_spawnl or exp_spawnv, -1 is returned and errno is set
appropriately. Errors that occur after a spawn function forks (e.g., attempting to spawn
a non-existent program) are written to the standard error of the spawned process and
are read by the first read. The rationale for this is described in Chapter 13 Cp. 296).

The popen function in the C library accepts a shell command line, runs it, and returns a
stream associated with it. Unfortunately, you can only choose to read from or write to a
process. You cannot do both.

The Expect library defines exp-popen. It is styled after pop en. exp-popen takes a
Bourne shell command line and returns a stream that corresponds to the standard input,
standard output, and standard error of the new process. Redirection and shell pattern
matching are done on the command line. Unlike popen, exp-popen takes no type
flag. popen uses a pipe which only supports one-way communication, but
exp-popen uses a pty which supports two-way communication. Compare the declara
tions of popen and exp-popen:

FILE *popen(command, type)
char * command , *type;

FILE *exp-popen(command)
char * command;

496 Exploring Expect

The following statements spawn telnet. Some file arguments are listed and the stan
dard error is redirected-not because this makes sense-but just to show that it can be
done.

FILE *fp;
fp = exp-popen("telnet host smtp *.c 2> /dev/null");

Since exp-popen returns a stream, you use any of the standard I/O functions to access
it. For example, the stream can be written to with fwrite, fprintf, fputc, and
others. Here is an example with fprintf:

char *my _name = "Don";
fprintf (fp, "My name is %s\r" ,my_name);

The stream can be read using fread, fscanf, fgetc, and others. Here is an example
with fgets:

char buffer[lOO];
fgets(buffer,lOO,fp);

The actual implementation of exp-popen is defined in terms of exp_spawnl. It is
shown below.

FILE *
exp-popen(program)
char *program;
{

FILE *fp;
int ec;

ec = exp_spawnl("sh","sh","-c",program, (char *)0);
if (0 > ec) return(O);

fp = fdopen(ec,"r+");
if (fp) setbuf(fp, (char *)0);
return fp;

Several variables are made available by inclusion of expect. h. They should not be
defined or declared but may be read and written.

Two of these variables are set as side-effects of the spawn functions. These are:

extern int exp-pid;
extern char *exp-pty_slave_name;

The exp-pid variable contains the process id of the process created by the spawn func
tions. The variable exp-pid is rewritten each time a spawn function is called so it
should generally be immediately saved to another variable.

Expect, C, And C++ 497

The spawn functions use a pty to communicate with the process. The variable
exp-pty_slave_name is the name of the slave side of the pty associated with each
spawned process. Put another way, exp-pty _slave_name is the name of the tty that
the spawned process uses for its standard input, standard output, and standard error.

Here is a program to spawn the cat program and print out the process id and tty name
of the spawned process.

#include <stdio.h>
#include "expect.h"

main () {
FILE *fp = exp-popen("cat");
printf ("pid = %d\n", exp-pid) ;
printf ("pty name = %s\n", exp-pty_slave_name) ;

When run on my system, this program printed:

pid = 18804
pty name = /dev/ttyp3

Several other variables control aspects of the spawn functions. They are:

extern int exp_console;
extern int exp_ttyinit;
extern int exp_ttycopy;
extern char *exp_stty_init;

By default, the pty is initialized the same way as the user's tty (if possible, i.e., if the envi
ronment has a controlling terminal.) This initialization is performed only if the variable
exp_ttycopy is nonzero. It is nonzero by default.

The pty is further initialized to a system-wide default if the variable exp_t tyini t is
nonzero. The default is generally comparable to "stty sane". exp_ttyinit is
nonzero by default.

The tty setting can be further modified by setting the variable exp_stty_init. This
variable is interpreted in the style of stty arguments. For example, the following state
ment repeats the default initialization. If exp_st ty _ini t is set to 0, no extra
initialization is performed.

These three initializations may seem like overkill, but they solve a number of problems.
The rationale for all this is described in Chapter 13 Cp. 300).

The variable exp_console attempts to associate the new pty with the console. If the
association is made successfully, any messages to the console are sent to the pty and
can be read as the output of the process.

498 Exploring Expect

If your system supports the environ variable, you can use this to control the environ
ment of the spawned process. It should be declared as:

extern char **environ;

The environ variable is an array of character pointers to strings representing the envi
ronment variables. (This representation is described in detail in most C texts.) When a
new process is spawned, the environ array is copied into the new process and
becomes its environment. You may modify the environ table before spawning a
process, and the spawned process will get the modified environment.

Most other attributes of a process are inherited according to the "usual" rules of the exec
family of functions. This includes things such as user id, group id, current working direc
tory, etc. Signals that are caught are reset to the default action. Lastly, the process is
placed in a new process group with a new session id.

It is possible to change attributes in the context of the child process just before the new
program is given control (via an exec function) by providing a definition for
exp_child_exec-prelude. For example, you might want the child to ignore
SIGHUP and SIGTERM. This could be done as follows:

void exp_child_exec-prelude()
signal (SIGHUP, SIG_IGN);
signal (SIGTERM, SIG_IGN);

Allocating Your Own Pty
By default, a pty is automatically allocated each time a process is spawned. It is possible
to allocate a pty through some other mechanism (of your own). Conceivably, you could
also use a pair of fifos or something similar even though it may not completely emulate
tty functionality.

Two variables control pty allocation. They are:

extern int exp_autoallocpty;
extern int exp-pty[2];

The variable exp_autoallocpty is set to one by default. If you set it to zero, a pty is
not automatically allocated by the spawn functions. Instead, the value of exp-pty [a]
is used as the master pty file descriptor, and the value of exp-pty [1] is used as the
slave pty file descriptor.

The following illustrates pty allocation with the pipe system call. (On traditional UNIX
systems, a pipe is a one-way device, so this example is not suitable for most Expect
applications. Nonetheless, it serves to demonstrate the calling protocol.) The first

Expect, C, And C++ 499

statement turns off the automatic pty allocation. The second statement uses the pipe
system call which conveniently produces two connected file descriptors in the
exp-ptyarray. The exp-popen creates a cat process and uses the two file descrip
tors in the exp-pty array.

exp_autoallocpty = 0;
pipe (exp-pty) ;
exp-popen("cat") ;

When you allocate your own pty, you must also initialize it. The spawn functions do
none of the usual pty initializations (e.g., exp_stty_init is not used).

After the new process is created, the slave pty file descriptor is closed in the current
process and the master pty file descriptor is closed in the spawned process. In the
context of the current process, all further communication takes place with the master
pty file descriptor (Le., exp-pty [0 l).

Whether or not you allocate your own pty, the new process may need to close file
descriptors. By default, all file descriptors to processes created by the spawn functions
are marked close-on-exec. This enforces the behavior described in the previous para
graph of closing the master pty file descriptor in the spawned process. Other non
spawn-related file descriptors should also be marked close-on-exec so that they can be
closed automatically. Alternatively, the function pointer exp_close_in_child may
be set to a function that closes additional file descriptors. By default,
exp_close_in_childisO.

void (*exp_close_in_child) ();

When using Tcl (with or without Expect), the function exp_close_tcl_files can be
used to close all the files above the standard input, standard output, and standard error
to the highest descriptor that Tcl knows about. This is exactly what Expect does. The
following statement enables this behavior.

This behavior is rather crude but often sufficient. A more sophisticated solution requires
delving into the Tcl internals and is beyond the scope of this book.

Closing The Connection To The Spawned
Process
The Expect library provides no special functions to close the connection to a spawned
process. Generally, it is sufficient to call close. If you have converted the file
descriptor to a stream (or used exp-popen which returns a stream), call fclose
instead.

500 Exploring Expect

Once the process exits, it should be waited upon in order to free up the process slot.
When convenient, you can wait for the process using any of the wait family of calls.
You can also catch SIGCHLD before waiting, or you can ignore SIGCHLD entirely.
Further discussion on this can be found in any UNIX system programming text.

As described in Chapter 4 (p. 103), some processes do not automatically terminate when
their standard input is closed. You may have to send them explicit commands to exit, or
alternatively you can kill them outright. As described above, the exp-pid variable
provides the process id of the most recently spawned process.

There is no matching exp-pclose to exp-popen (unlike popen and pclose). It

only takes two functions to close down a connection (fclose followed by waiting on
the process id), but it is not uncommon to separate these two actions by large time inter
vals, so providing a new function for this purpose is of little value. Just close the stream
using fclose and wait for the process.

Expect Commands
The library provides functions that can be used to read files or streams. Like the Expect
program's expect command, the library functions wait for patterns to appear or special
events to occur.

There are four functions to do expect-like processing. Two are for handling file descrip
tors, and the other two are for streams. One of each take lists of arguments similar to
exp_spawnl while the others take a single variable argument descriptor similar to
exp_spawnv. I will occasionally refer to these functions generically as the "expect
functions" .

file

stream

list of
arguments

expectl

fexpectl

one variable
argument

expectv

fexpectv

Table of expect functions-each function is prefixed with "exp_" in actual use.

The names are mnemonic. Like exp_spawnl and exp_spawnv, the expect functions
that end with an "1" take arguments lists, and those ending with "v" take a Single vari
able descriptor. An "f" means that the function reads a stream; otherwise it reads from a
file descriptor.

Expect, C, And C++ 501

The table shows the short names but these are further prefaced by the string "exp_".t
For example, the exp_expectl function takes an argument list and reads from a file
descriptor. A simple example of exp_expectl is:

exp_expect1(fd, exp_g1ob, "prompt*", 1, exp_end);

This call waits for a prompt to arrive from the file descriptor fd. exp_glob is the
pattern type. It says that the pattern "prompt *" is a glob pattern. When it arrives,
exp_expectl returns the value 1.

More patterns can be expected at the same time by adding them to the argument list.

exp_expect1(fd ,exp_g1ob, "prompt*", 1,
exp_g1ob, "another pattern", 2,
exp_g1ob, "and another", 3,
exp_end) ;

The end of the arguments is always marked by exp_end. The objects exp_end and
exp_glob are predefined constants of type "enum exp_type". This is automatically
defined when you include expect. h. The public definition of exp_type follows. I
will mention the other values shown here later on.

enum exp_type
exp_end,
exp_g1ob,
exp_exact,
exp_regexp,
exp_compi1ed,
exp_nu11,

} ;

/* placeholder - no more cases */
/* glob-style */
/* exact string */
/* regexp-sty1e, uncompiled */
/* regexp-sty1e, compiled */
/* matches binary 0 */

The value returned by exp_expectl is the number following the pattern that matches.
The choice in this example of 1, 2, and 3 is arbitrary. You can associate the same
numbers with multiple patterns. In actual code, it is a good idea to use preprocessor
definitions to hide the numeric values unless they have some inherent meaning.

Here is an example that looks for a successful login such as from a telnet dialogue.
When a value is returned, the swi tch statement passes control to an appropriate case.
Notice that this example uses macros to hide the real values of the number to be
returned. This makes the statement much more readable since each value is used in two
places-once in the expect function and once in the case statement.

switch (exp_expect1(
exp_g1ob,"connected",CONN,
exp_g1ob, "busy" ,BUSY,
exp_g1ob,"fai1ed",ABORT,

t In fact, everything in the library is prefaced with "exp_".

502

exp_glob, "invalid password" ,ABORT,
exp_end)) {

case CONN: /* logged in successfully
break;

case BUSY: /* couldn't log in at the
break;

*/

moment

case ABORT: /* can't log in at any moment! */
break;

case EXP_TIMEOUT:
break;

Exploring Expect

*/

If the expect function times out, it returns EXP TIMEOUT. Notice that this does not
appear in the pattern list. Unlike the Expect program, there is no need to ask for the
timeout to be handled. The expect functions do not automatically execute actions
they simply describe what happened. So even though you did not ask for it, you cannot
miss the timeout.

The number of seconds in the timeout is determined by the integer variable
exp_timeout. If exp_timeout is -1, the timeout is effectively infinite and will never
occur. A timeout of 0 is used for polling and is described further on page 508.

There are three other special values that can be returned. EXP _EOF is returned upon
eof. -1 is returned if a system call failed or something otherwise horrible occurred. For
example, if an internal memory allocation fails, -1 is returned and errno is set to
ENOMEM. errno will always be set if -1 is returned.

If the integer variable exp_full_buffer is nonzero, then EXP_FULLBUFFER is
returned when the expect function's buffer is full. If exp_full_buffer is zero and
the buffer is full, the first half of the buffer is dropped, the second half of the buffer is
copied down, and the expect function continues. The buffer is described further on
page 504.

All of the special values are small negative integers, so it is a good idea to associate
patterns with positive integers although there is nothing in the code that enforces this.

Regular Expression Patterns
Regular expressions can be identified with exp_regexp. Here is the first example from
page 501, rewritten to use a regular expression pattern:

exp_expectl(fd, exp_regexp, "prompt.*", 1, exp_end);

The type of all patterns are always identified explicitly, so different pattern types can be
mixed without confusion, Here is an expect call with both glob and regular expression
patterns:

Expect, C, And C++

exp_expectl(fd ,exp_regexp, "prompt.*", 1,
exp_glob, "another pattern", 2,
exp_regexp, "and another", 3,
exp_end) ;

Caching Regular Expressions

503

The regular expression implementation used by Expect converts the pattern to an
internal form that allows strings to be tested very quickly. The conversion procession is
known as compilation. The compilation itself can cost more in terms of time than is
saved later during the pattern matching. But if the pattern is going to be used more than
once, compilation can ultimately save a great deal of time.

In the examples so far, the expect functions compile the regular expressions internally.
Because input usually arrives slowly, patterns get evaluated many times and the compi
lation process pays off and time is saved. However, the compiled form is discarded at
the end of each expect function. If the function is in a tight loop, this can be wasteful.

You can pass the compiled form to the expect functions by using exp_compiled
instead of exp_regexp. Assuming the compiled form is stored in fastprompt, the
earlier example might be rewritten this way:

exp_expectl(fd, exp_compiled, "prompt.*", fastprompt, 1,
exp_end) ;

The string-style pattern is still passed, but it is only used for bookkeeping and debug
ging. The actual pattern matching uses the compiled form.

Patterns are compiled using the function TclRegComp. It takes a pattern and returns
the compiled form which is of type pointer to regexp (a typedef). Here is what it
might look like when used in a loop:

#define PROMPTED 17

char *pat = "prompt.*";
regexp *fastprompt = TclRegComp(pat);

while (1) {
switch (exp_expectl(fd,

exp_compiled, pat, fastprompt, PROMPTED,
exp_end))

case PROMPTED:
/* respond to prompt */

case ...

504 Exploring Expect

Use free to free the memory used by the compiled form when it is no longer needed:

free((char *)fastprornpt);

Malformed patterns cannot be compiled. If TclRegComp returns 0, compilation failed.
The variable tclRegexpError contains an error message describing the problem.
Expressed in C, this looks like:

fastprornpt = TclRegCornp(pat);
if (fastprornpt == NULL) {

fprintf(stderr, "regular expresion %s is bad: %s",
pat, tclRegexpError);

Exact Matching
The pattern type exp_exact identifies a pattern that must be exactly matched in the
input. The usual C escapes must be observed; however, no characters are interpreted as
wildcards or anchors. Exact patterns are unanchored.

exp_expectl(fd, exp_exact, "#*!$", 1, exp_end);

The example above returns 1 only if the character stream contains the consecutive
sequence of characters "#", "*", "!", and "$".

Matching A Null
By default, nulls (bytes with value zero) are automatically stripped from the spawned
process output. This can be disabled by setting the integer variable
exp_remove_nulls to 0 and reenabled by setting it to 1.

Once null stripping is disabled, nulls can be matched using exp_null. A string-style
pattern is still passed, but it is only used for bookkeeping and debugging. For example:

exp_expectl (fd,
exp_null, "zero byte", 1,
exp_end) ;

What Characters Matched
When an expect function returns, the variable exp_buffer points to the buffer of char
acters that were being considered for a match. exp_buffer_end points to one
character past the end of the buffer. The buffer is null-terminated. If a pattern matches,
the variable exp_match is set to point into the same buffer but at the position where

Expect, C, And C++ 505

the pattern first matches. The variable exp_match_end points to one past the last
matching character. All of these variables are character pointers.

char *exp_buffer;
char * exp_buf fer_end;
char *exp_match;
char *exp_match_end;

The following figure graphically shows the relationship of the pointers to a matched
string sitting in a buffer. In practice, it is possible for the match to span the entire buffer.

Parenthesized subpatterns from regular expressions have their match information saved
but only if the compiled form is used. Each regexp object includes the following
members:

#define NSUBEXP 10

char *startp[NSUBEXP);
char *endp[NSUBEXP);

Each subpattern match is defined by a startp and endp pair. startp points to the
start of the matching string, and endp points to one past the end of the matching string.
startp[O] and endp[O] are identical to exp_match and exp_match_end. The
remaining indices correspond to the parenthesized subpatterns in the original pattern.
startp is set to 0 if the subpattern did not match.

For example, here is a fragment to print out all of the match information. In the loop,
the submatch is temporarily null-terminated so that it can be printed. (The endp
pointers are always guaranteed to point to write able memory.) In order to avoid
corrupting the string, the character where the null is to be written is temporarily saved
and then restored.

exp_expectl(fd,
exp_compiled, pattern, regexp, 1,
exp_end) ;

for (i=O;i<NSUBEXP;i++)
char save;

if (regexp->startp[i) 0) continue;

506

/* temporarily null-terminate the match */
save = regexp->endp[i];
regexp->endp[i] = '\0';

prin!:f(nmatch [%d] = %s\nn,i,regexp->startp[i]);

/* restore old character */
regexp->endp[i] = save;

Exploring Expect

The expect functions automatically allocate space for exp_buffer as required. The
variable exp_match_max is an integer that describes the maximum length of a string
guaranteed to match. By default, exp_match_max is 2000.

When The Number Of Patterns Is Not KnouJn
In Advance
The exp_expectl function is appropriate when the list of patterns is known in
advance. At a minimum, the number of patterns must be known in advance.

When the number of patterns can vary, the function exp_fexpectv is more suitable.
This function is called with only two arguments. The first is a file descriptor. The second
is an array of pattern descriptors. The prototype is:

int exp_expectv(int fd, struct exp_case *pats);

struct exp_case is defined as follows:

struct exp_case {
char *pattern;
regexp *re;

} ;

enum exp_type type;
int value;

The information in an exp_case structure is exactly the same information that was
passed as the direct arguments in exp_expectl. The pattern is stored in pattern. An
optional compiled regular expression is stored in reo The type element describes the
type of pattern and is an exp_type enumeration constant (see page 50l). As before,
the final pattern type must be exp_end. Finally, value is the integer returned when
the associated pattern matches.

exp_expectv works slightly differently than exp_expectl when the pattern type is
exp_regexp. In this case, exp_expectv compiles each pattern and stores the
compiled form in reo The compiled form is left accessible in the exp_case structure
for your use or reuse if exp_expectv is recalled with the same patterns. If the type is

Expect, C, And C++ 507

exp_regexp, then exp_expectv checks if re is initialized before compiling the
pattern. The pattern is compiled only if re is not initialized.

When you are done with the regular expression, you must free re in each exp_case
that had a regexp, whether you or exp_expectv compiled it.

Expecting From Streams
Both exp_expectl and exp_expectv have analogous functions that work on
streams instead of file descriptors. The stream functions have the same names as their
file counterparts except that the stream functions have an "f" in the name. This is
similar to the distinction between write and fwrite. Both of the stream versions are
identical to their file counterparts except that the first argument is a stream instead of a
file descriptor.

exp_fexpectl is the stream version of exp_expectl. A simple example looks like
this:

FILE *fp = exp-popen("telnet");
exp_fexpectl(fp, exp_glob, "prompt*" , 1, exp_end);

On some systems, the stream versions of the expect functions are much slower than the
file descriptor versions because there is no way to portably read an unknown number of
bytes without the potential of timing out. Thus, characters are read one at a time. While
automated versions of interactive programs do not usually demand high speed, the file
descriptor functions are likely to be more efficient on all systems.

You can get the best of both worlds, writing with the usual stream functions (i.e.,
fprint f) and reading with the file descriptor versions of expect, as long as you do not
attempt to intermix other stream input functions (e.g., fgetc). To do this, pass
"fileno (stream)" as the file descriptor to exp_expectl or exp_expectv. Fortu
nately, there is little reason to use anything but the expect functions when reading from
interactive programs.

Running In The Background
In Chapter 17 Cp. 373), I described how to move a process into the background after it
had begun running. A typical use for this is to read passwords and then go into the back
ground to sleep before using the passwords to do real work.

Moving a process into the background is tricky. It also differs from system to system.
Fortunately, Expect incorporates this same functionality inside of the spawn routines.
Because moving processes into the background is such a common task for programs
that use the Expect library, it is available through a separate interface.

508 Exploring Expect

To move a process into the background, fork a process, call exp_disconnect in the
child process, and then call exi t in the parent process. Here is code to do this:

switch (fork()) {
case 0: /* child */

exp_disconnect();
break;

case -1: /* error */
perror (" fork") ;

default: /* parent */
exit (0) ;

Calling exp_disconnect disassociates the process from the controlling terminal. If
you wish to move a process into the background in a different way, you must set the
integer variable exp_disconnected to 1. (Initially it is 0.) This allows processes
spawned after this point to be started correctly. The exp_disconnect function sets
exp_disconnectedtol.

int exp_disconnected;

exp_disconnected is also shared with the Expect program. If you invoke Expect's
disconnect command, it will also set exp_disconnected to 1.

Handling Multiple Inputs And More On
Timeouts
In some cases, you do not want to wait inside of an expect function. Instead, you wait
in select, poll, or an event manager such as those provided by window systems. In
this case, give the file descriptor corresponding to the spawned process to the event
loop. When the event loop detects that input can be read from the file descriptor, it calls
back in some fashion, after which you can call an expect function to test the patterns.
You can guarantee that the expect function returns immediately by setting
exp_timeout to O. If none of your patterns match, EXP _TIMEOUT is returned.

Here is an example using the select system call. select is directed to watch the file
descriptor in fd. select returns when it finds that there is data to read.
exp_expectl is then called and it reads the data and performs pattern matching. If
none of the patterns match, exp_expectl returns EXP _TIMEOUT immediately rather
than attempting to read more data.

#define WAIT_FOREVER (struct timeval *)0

FD_SET(fd,&rdrs);
select (fd_max, &rdrs, . .. , WAIT_FOREVER);

Expect, C, And C++ 509

exp_timeout = 0;
exp_expectl(fd, ... , exp_end);

If exp_timeout is nonzero, the expect function can block in the read system call
while reading from a single file descriptor. Internally, an ALARM signal is used to inter
rupt the read. If you define signal handlers, you can choose to restart or abort the
read. The integer variable exp_reading is 1 if and only if the read has been inter
rupted and 0 otherwise. The following statement aborts the read:

longjmp(exp_readenv, EXP_ABORT);

The read is restarted as follows:

/* abort the read */

longjmp(exp_readenv, EXP_RESTART); /* restart the read */

Output And Debugging Miscellany
Some output and debugging controls exist in the library. The variety and flexibility of
these are not great because there is not a lot of demand for more development in this
area. For instance, interaction debugging is usually done using Tcl, not C.

The controls that exist parallel the commands in the Expect program and extension.
They are manipulated using the following variables. All are 0 by default.

int exp_loguser;
int exp_logfile_all;
FILE *exp_logfile;
int exp_is_debugging;
FILE *exp_debugfile;

If exp_loguser is nonzero, the expect functions send any output from the spawned
process to the standard output. Since interactive programs typically echo their input,
this usually suffices to show both sides of the conversation.

If exp_logfile is also nonzero, this same output is written to the stream defined by
exp_logfile.

If exp_logfile_all is nonzero, exp_logfile is written regardless of the value of
exp_loguser.

Debugging information internal to Expect is sent to the standard error when
exp_is_debugging is nonzero. The debugging information includes every character
received and every attempt made to match the current input against the patterns. In
addition, nonprintable characters are translated to a printable form. For example, a
control-C appears as a caret followed by C. If exp_logfile is nonzero, this informa
tion is also written to exp_logfile.

510 Exploring Expect

If exp_debugfile is nonzero and set to a stream pointer, all normal and debugging
information is written to that stream, regardless of the value of exp_is_debugging.

All of these variables directly control their counterparts in the Expect program and exten
sion. For example, the Expect command "log_user I" sets the value of
exp_loguser to 1.

Pty Trapping
Some systems (notably HPs) require that ptys be trapped in order to detect an eof
through select or poll. When trapping is enabled, all ioctls performed by the
spawned process on the pty must be acknowledged. This acknowledgment is normally
performed automatically when Expect is in one of its expect functions. But occasionally,
you may need to explicitly deal with trapping. For example, you might want to change
the mode of the slave's pty afte!" it has been started.

The trap and acknowledgment protocols are described in the documentation for your
system. I will not describe them here because they can be avoided. This is fortunate,
not because they are complex but because they cannot be performed while you are
doing something else (e.g., in the middle of an ioctl call). The solution is to tempo
rarily disable the trapping.

Trapping can be controlled with exp_slave_control. The first argument is the file
descriptor corresponding to the spawned process. The second argument is a 0 if trap
ping is to be disabled and 1 if it is to be enabled.

/* disable trapping */
exp_slave_control(fd,O);

/* fiddle with mode of pty */

/* enable trapping */
exp_slave_control(fd,l);

On systems which do not use trapping, exp_trap_control turns into a no-op. Thus,
if you are concerned about portability to systems which require trapping, use the trap
control function.

Exercises
1. Write a program using the Expect library and then rewrite it using the Expect program.

Compare the time it took you to write (and debug) both. Compare the size of your

Expect, C, And C++ 511

source. Compare the size of the resulting executables. What can you conclude from
these comparisons? Repeat this exercise on a significantly larger example.

2. Create a library specifically optimized for ftp. It should contain functions to start and
stop ftp, and to send and expect ftp requests. How much simplification can be
made over the original expect functions?

3. Create a terminal-emulator widget for Tk. What are the advantages and disadvantages
between such a widget and the approach shown in Chapter 19 Cp. 448).

In This Chapter:

• Adding Expect To
Other Tel-Based
Programs

• Adding Other Tel
Based Programs
To Expect

Expect As Just Another
Tel Extension

In this chapter, I will describe how to use Expect as just another extension to Tel. You
can wrap it together with popular Tel extensions such as Tel-DP, TkSteal, and others.
There are two basic approaches you can take to doing this. You can add extensions to
Expect, or you can add Expect as an extension to another Tel-based program.

While most of the material in this chapter will be of interest only to C and C++ program
mers, I will also mention a couple of differences in how Expect behaves and can be
used when it is combined with other Tel extensions.

Adding Expect To Another Tel-based Program
This section describes how to add Expect to another Tel-based program. I will use the
tclsh program as an example. tclsh is the "Tel shell" that comes with Tel. tclsh
comes with no other extensions, but you can use it as a template for creating a Tel
based program with other extensions.

The Tel source directory contains the template in tclApplni t. c. Copy this file to a
new directory and look inside it at the function Tcl_Applnit. You will find the
following lines:

if (Tcl_Init(interp)
return TeL_ERROR;

After this line, add code to initialize Expect:

if (Exp_Init(interp) == TeL_ERROR)
return TeL_ERROR;

513

514 Exploring Expect

You may want to add other extensions as well. Generally, you can add the extension
initializations in any order unless they attempt to use the same command names. In that
case, the later extensions "win". The basic Tcl commands are actually created before
Tel_1nit; however, it must still appear first. Other xxx_1nit functions generally
define commands for each extension themselves.

Add a line near the top of the file (anywhere after the include of "tel. h") to include
the declaration of Exp_1ni t and other Expect definitions. The include looks like this:

#include "expect_tcl.h"

Now compile the telApp1nit. e file with the following command:

cc -I/usr/local/include tclApplnit.c -L/usr/local/lib \
-lexpect -ltcl -1m

You may need to adjust this command depending on your installation. The -I flag
describes the directory where the include files of Tcl, Expect, and other extensions live.
Similarly, the - L flag lists where the libraries are. You can have multiple - I and - L

flags. The end of the command names particular libraries. You need the Expect library
(-lexpeet), the Tcl library (-ltel), and libraries for any other extensions. Most
systems need the math library (-1m) and you may also need others depending on your
system. If this does not work, look at the Tcl and Expect Makefiles to see what
libraries they use on your system.

If the telApp1ni t . e file compiled and linked, the compiler leaves an a. out file in
the current directory. It is an executable file that understands Tcl commands, Expect
commands, and any other extensions you have defined. You can rename and move this
to whatever and wherever you want.

If you are using C++ or if any of the extensions use C++, you will need to make an extra
step. You must use C to compile telApp1nit. e and C++ for the final command
linking everything together into one executable. Some C++ compilers require that the
main function also be compiled with C++. Because the Tcl library supplies the default
main, you may need to extract or recreate this and compile it with C++.

It is likely that the idea of a library-based main will be revisited in the future. But in all
but the simplest of programs, you are likely to want to create your own main anyway
for example, so that you can handle flag and file arguments appropriately to your
application.

Expect As Just Another Tel Extension

Differences Between Expect And The Expect
Extension In Another Program

515

When using tclsh or any other program to which you have added Exp_Ini t, you
may encounter differences between it and Expect.

• Command-Line Argument Handling

Expect defines the behavior of the command-line flags such as -c and -d. Any
other program is not likely to support these. tclsh supports only the -f flag. Most
Tcl programs make other arguments available to the script using the argv and
argc variables as Expect does.

• Signal Handling

It is possible for other extensions to try and handle signals at the same time that
Expect does. However, only one extension can handle the same signal at a time.
Multiple extensions may claim to be handling the signal but only one of the signal
handlers will be called. Signal definitions should be under control of the user so this
should not be a problem.

The default signal handlers that Expect uses (i.e., SIGINT, SIGTERM) are not auto
matically established by tclsh.

• Command Names

Expect commands that share the same names as commands in another extension
are usually suppressed (unless the other extension also suppresses its own defini
tion). For example, if another extension defines "spawn", it overrides Expect's
spawn.

To guarantee that you get Expect's commands, preface them with "exp_". For
example, when using Tk, "send" is Tk's while "exp_send" is Expect's. The "exp_"
versions are always available, even when not using any other extensions, so you
can use them all the time if you do not want to worry about switching back and
forth.

Prefixed versions are not provided for Expect commands that already begin with
"exp" (such as expect). For example, there is no such command as
"exp_expect" .

• Exit Handling

Multiple extensions may attempt to provide exit handlers and similar functionality
having to do with the exi t command. However, only one exit command can
possibly execute.

Extensions that provide exi t commands are unlikely to provide the functionality
that Expect does or in the way that Expect does.

516 Exploring Expect

Exit handlers deelared with "exit -onexit" can be invoked with "exit
-noexit". The terminal modes are also reset, but unlike a plain "exit", control is
returned so that additional Tel or other extension commands can be executed.

• Interpreter Prompting

When typing commands interactively, Expect processes them with the inter
preter command. tclsh has its own interpreter; however, it is not directly
callable as a command. Most other extensions do not provide interactive command
interpreters.

Expect's interpreter is similar to tclsh's interpreter in most ways. There only signif
icant difference is in prompting. tclsh's interpreter uses the variables
tc1-promptl and tcl-prompt2 to name functions that produce prompts.
Expect's interpreter uses the functions prompt 1 and prompt2 to generate prompts
directly. If you run tclsh you will see Tel's prompts, and if you invoke
exp_interpreter from tclsh, you will see Expect's prompts.

• . rc Files

By default, Expect reads several . rc files when it begins running. This is described
further in Chapter 9 (p. 221). These files are not read when using Expect as an
extension in another program.

Adding Extensions To Expect
You can add other extensions to Expect similarly to the way I described adding exten
sions to tclsh. However, by adding extensions to Expect, you keep aspects of Expect,
such as Expect's command-line argument handling.

The Expect source directory contains the template for Expect in exp_main_exp. c.
Copy this file to a new directory and look inside it at the main function. You will find
the statements (not necessarily in this order)

if (Tcl_Init(interp) == TeL_ERROR)
return TeL_ERROR;

if (Exp_Init(interp)
return TeL_ERROR;

Most other extensions can be added by calling xxx_Ini t, where xxx is the extension
prefix. The actual call should look similar to the ones for Tel and Expect.

You can generally put the other xxx_Ini t calls in any order unless the extensions
attempt to use the same command names. In that case, the later extensions "win". Note

Expect As Just Another Tel Extension 517

that the basic Tcl commands are created before Tcl_lni t. Other xxx_lni t functions
generally define commands for each extension themselves.

Add any include lines near the top of the file (anywhere after the include of "tcl. h") as
appropriate to your extension.

Compile the exp_main_exp . c file with the following command.

cc -I/usr/local/include exp_main_exp.c ... \
-L/usr/local/lib -lexpect -ltcl -1m

You may need to adjust this command depending on your installation. The - I flag
describes the directory where the include files of Tcl, Expect, and other extensions live.
Similarly, the -L flag lists where the libraries are. You can have multiple -I and -L

flags. The end of the command names particular libraries. You need the Expect library
(-lexpect), the Tcl library (-1 tcl), and libraries for any other extensions. Replace
the " ... " with whatever . 0 files or libraries you need. Most systems need the math
library (-1m) and you may also need others depending on your system. If this does not
work, look at the Tcl and Expect Makefiles to see what libraries they use on your
system.

If the exp_main_exp. c file compiled and linked, the compiler leaves an a. out file in
the current directory. It is an executable file that understands Tcl commands, Expect
commands, and any other extensions you have defined. You can rename and move this
to whatever and wherever you want.

Note that if you are using C++ or any of the extensions use C++, you will need to make
an extra step, using C to compile exp_main_exp. c and C++ for the final command
which links everything together into one executable.

Adding Extensions To Expectk
Adding extensions to Expectk is very similar to adding them to Expect. This section
describes only the differences.

The template exp_main_tk. c should be used instead of exp_main_exp. c.

Linking requires the Expectk and Tk libraries, so the compile line should look like this:

cc -I/usr/local/include exp_main_tk.c ... \
-L/usr/local/lib -lexpectk -ltk -ltcl -lXll -1m

As with adding extensions to Expect, you may need to adjust this command also. If this
does not work, look at the Tcl and Expect Makefiles to see what libraries they use on
your system.

518 Exploring Expect

Creating Scriptless Expect Programs
Expect normally uses a script to control its execution. This means that to run an Expect
application, you need both an Expect interpreter and a script.

It is possible to combine the script and the interpreter together, producing a single
executable that does not depend on any other files. This executable can be copied to
new machines. The machines must be binary compatible and the script must make
sense on the new machine. For example, programs that are spawned by the script must
exist on the new machine. Stand-alone executables that run a particular script are often
called compiled, although that is not the usual definition of the word.

Compiled scripts are large. Each one must contain the script plus the executable code
for Expect. If you use a single Expect application on a computer, then a compiled script
makes sense. If you use more than one Expect application, compiled scripts are just a
waste of space. Other than space, there are no significant differences in functionality
between compiled scripts and file-based scripts.

To create a compiled Expect script using the exp_main_exp . c template, replace all of
the calls to the Expect interpretation phase (such as exp_interpret_cmdfilename)
with a call to Tcl_Eval. As an argument to Tcl_Eval, pass the string representing the
file contents.

Tcl_Eval(interp,cmdstring);

The string representation of the command must be in writeable memory. One way to
guarantee this is to declare it in the following style:

static char cmdstring[] = "spawn prog; expect .. ";

Calling Tcl_Eval with a string in read-only memory is a common error. Compare the
declaration above with the following entry which allows the string to be placed in read
only memory:

char *cmdstring = "spawn prog; expect .. "; /* WRONG */

Any source statements must be removed from the command string. Some Tcl exten
sions make substantial use of files for storing Tcl commands. All of these file references
must be removed in the same way as the script file itself.

Functions And Variables In The Expect
Extension
Writing C and C++ code that uses the Expect extension is similar to writing C code that
uses Tel. For example, you can call Tcl_Eval to execute any Expect or Tcl command.

Expect As Just Another Tel Extension 519

The following statements spawn a telnet process and print the new spawn id. Notice
the explicit declaration of telnet_cmd as an array instead of a pointer to a string
constant. The array declaration guarantees that the characters are put into writeable
memory-a requirement of Tcl_Eval.

char *spawn_id;
char telnet_cmd[J = "spawn telnet";

Tcl_Eval(interp,telnet_cmd);
spawn_id = Tcl_GetVar (interp, "spawn_id" , 0) ;
printf ("spawn id is %s\n", spawn_id) ;

It is possible to call Expect's commands directly. However, this is a little harder and
there is generally no good reason to do so, so it is not documented here.

A number of functions and variables are explicitly made public with C and C++ inter
faces. Including the file expect_tcl. h gains access to these public symbols. They are
defined in this section. Most of them are useful for writing your own main customized
from Expect or tclsh. The descriptions are brief since most of the functional aspects
are described in Chapter 9 Cp. 213).

The first group of variables are shared by the Tcl-Iess Expect library, the Expect exten
sion, and the Expect program. In this chapter, only their use in the Expect extension
and program will be described.

Shared Variables
int exp_disconnected;

exp_disconnected is initially set to O. It is set to 1 if Expect's disconnect
command has been used successfully. Setting exp_disconnected to 1 prevents the
disconnect command from being called.

exp_is_debugging mirrors the Expect command exp_internal. That is,
exp_is_debugging contains the most recent value passed as an argument to
exp_internal. Similarly, the exp_internal command reflects the value of
exp_is_debugging.

int exp_loguser;

exp_loguser mirrors the Expect command log_user.

520 Exploring Expect

Non-Shared Variables and Functions
The remaining functions and variables are specific only to the Expect program and
extension.

void (*exp_app_exit) (Tcl_Interp *);

exp_app_exi t is a pointer to a function that describes an applica
tion-specific handler. The handler is executed after the script-defined
exit handler has run. A zero value (the default) indicates that there is
no handler.

FILE *exp_cmdfile;

exp_cmdfile is a stream from which Expect reads commands.

char *exp_cmdfilename;

exp_cmdfilename is the name of a file which Expect opens and
reads commands from.

int exp_cmdlinecmds;

exp_cmdlinecmds is 1 if Expect has been invoked with Expect (or
Tcl) commands on the program command line (using -c for example).

int exp_getpid;

exp_getpid is the process id of the Expect process itself (not of any
spawned processes).

int exp_interactive;

exp_interactive is 1 if Expect has been invoked with the -i flag
or if no scripted commands were invoked when Expect began execu
tion. exp_interacti ve is used to control whether Expect starts its
interpreter command to interact with the user.

Tcl_Interp *exp_interp;

exp_interp points to an interpreter used when no other is available,
such as by a signal handler. exp_interp is automatically set by
Exp_Ini t but may be redefined at any time later.

int exp_tcl_debugger_available;

exp_tcl_debugger_available is 1 if the debugger has been
armed, typically by a command-line argument.

char *exp_cook(char *string,int *length);

exp_cook reads its string argument and returns a static buffer contain
ing the string reproduced with newlines replaced by carriage-return
linefeed sequences. The primary purpose of this is to allow error mes
sages to be produced without worrying about whether the terminal is
in raw mode or cooked mode.

The static buffer is overwritten on the next call to exp_cook.

Expect As Just Another Tel Extension 521

If the length pointer is valid, it is used as the length of the input
string. exp_cook also writes the length of the returned string to
* length. If the length pointer is 0, exp_cook uses strlen to
compute the length of the string, and exp_cook does not return the
length to the caller.

void exp_error(Tcl_Interp *interp,char *fmt, ...);

exp_error is a printf-like function that writes the result to
interp->result. The caller must still return TeL_ERROR to tell the
Tcl interpreter that an error has occurred.

void exp_exit{Tcl_Interp *interp,int status);

exp_exit is comparable to Expect's exit command. exp_exit
calls all the exit handlers (see exp_exit_handlers) and then forces
the program to exit with the value given by status.

void exp_exit_handlers{Tcl_Interp *);

exp_exi t_handlers calls any script-defined exit handler and then
any application-defined exit handler. Lastly, the terminal is reset to its
original mode.

int exp_interpret_cmdfile{Tcl_Interp *,FILE *);

exp_interpret_cmdfile reads the given stream and evaluates any
commands found.

int exp_interpret_cmdfilename{Tcl_Interp *,char *);

exp_interpret_cmdfilename opens the given file and evaluates
any commands found.

void exp_interpret_rcfiles{Tcl_Interp *,int my_rc,int sys_rc);

exp_interpret_rcfiles reads and evaluates the . rc files. If
my _rc is zero, then - / . expect. rc is skipped. If sys_rc is zero,
then the system-wide expect. rc file is skipped.

int exp_interpreter{Tcl_Interp *);

exp_interpreter interactively prompts the user for commands and
evaluates them.

void exp-parse_argv{Tcl_Interp *,int argc,char **argv);

exp-parse_argv reads the representation of the program command
line. Based on what is found on the command line, other variables are
initialized, including exp_interactive, exp_cmdfilenarne,
exp_cmdlinecmds, etc. exp-parse_argv also reads and evaluates
the . rc files if appropriate.

522 Exploring Expect

Exercises
1. In Chapter 19 Cp. 440), I described how it took a long time to load the UNIX dictionary

into memory using pure Tel commands. Design and implement an extension to speed
that up.

2. Calculate the time that it took to solve the previous exercise. Divide that by the time
difference it takes between loading the dictionary with vanilla Tel commands and your
new extension. How many times will you have to load the dictionary before you earn
back the time you spent on the previous exercise?

3. The Tel FAQ lists hundreds of extensions to Tel. Browse through the FAQ and identify
extensions that are useful to you. Download, install, and combine them with Expect.

4. Create your own new extension. If you feel it is of general interest, post a note to the
Tel newsgroup so that others can try it out.

In This Chapter:

• Random Numbers

• The Expect Library

• Expect Versions

• Timing
Commands And
Timestamps

Miscellaneous

This chapter contains some commands, concepts, and thoughts that did not fit
anywhere else but are still worth mentioning.

Random Numbers
It is occasionally useful to generate random numbers in Expect (e.g., playing a game
such as the robohunt script does). There is no built-in command to provide random
numbers, and it is worth contemplating why not and what to do about it, since the
answer generalizes to other questions.

The philosophy of Expect is to not provide commands for which there are already
numerous solutions. Furthermore, in the case of random numbers, there is no imple
mentation of a random number generator (RNe) that will make everyone happy.
Different RNGs make compromises between different goals, so your choice of random
numbers depend on your reason for using them. Indeed, that is one reason why there
are so many RNGs on UNIX.

If there were one RNG wired in to Expect, it would not make everyone happy. Many
people care a great deal about the kind of random numbers they get and want to select
a particular generator or write their own.

If an RNG is already written as a stand-alone program, run it using open or spawn. The
choice of open or spawn allows you to get good performance whether your RNG is
interactive or non-interactive. If it is non-interactive and generates a stream of random
numbers, open it and use gets to read each new random number. If your RNG is inter
active, send the appropriate command as needed and use expect to fetch the result.
Stand-alone mathematical packages work this way.

523

524 Exploring Expect

If the RNG you want is already written as a C subroutine, you can write a command to
call it and then link it in to Expect (see Chapter 21 (p. 491)).

On the other hand, you may not care a lot about the quality of your random numbers
certainly, not enough to relink Expect. You may just want to make sure your program
does not run exactly the same way each time. In this case, you can use the following Tel
procedure. It is a linear congruential generator that produces a number x where
0::; x < 1 . The generator is good enough for many tasks. You can modify the parameters
in random for different types of randomness. I chose the parameters here in a very
scientific way-by copying them from a book-Numerical Recipes in Cby Press et al.
(Cambridge University Press, 1988). According to Press, the maximum periodicity is
period, and the generator passes Knuth's spectral test for 2, 3, 4, 5, and 6. Press also
describes more sophisticated RNGs with even better properties.

The package must be initialized by calling random_init with a positive integer seed.
It is often sufficient to say "random_init [pidl" since the return value of the pid
command changes each time you run your script. You can add yet more randomness by
adding elements of the current time to the initialization.

proc random_init {seed} {
global _ran

set _ran $seed

proc random {}
global _ran

set period 259200
set _ran [expr ($_ran*7141 + 54773) % $period]
expr $_ran/double($period)

Once initialized, each call to random returns a new random value.

Example - Generating Random Passwords
mkpasswd is an example script that comes with Expect. mkpasswd generates a new
password and optionally assigns it to a user by calling a password-setting program. This
automates password creation and assignment while preventing any public exposure of
the password.

In order to generate random passwords, mkpasswd uses a variation of the random
number procedure above. rand generates a random integer from 0 to n-1.

Miscellaneous

proc rand {n} {
global _ran

set period 259200
set _ran [expr ($_ran*7141 + 54773) % $period]
expr int($n*($_ran/double($period)))

525

mkpasswd accepts arguments to control the length and how many digits and letters
must be in a generated password. After parsing the arguments, minnum contains the
minimum number of digits the password must have. minlower and minupper
contain the minimum number of lower and uppercase characters. If the password must
be longer than the sum of these variables, they are increased appropriately.

Once the arguments have been handled, the password generation code is simple. In the
following fragment, the password is initially created with no characters. Each iteration
of each for loop generates a random character of the right type and calls insertchar
which adds the character to password.

initialize password
set password

add digits to the password
for {set i O} {$i<$minnum} {incr i} {

insertchar [rand 10]

add lowercase letters
for {set i O} {$i<$minlower} {incr i}

insertchar [format "%c" [expr Ox61 + [rand 26]]]

add uppercase letters
for {set i O} {$i<$minupper} {incr i}

insertchar [format "%c" [expr Ox41 + [rand 26]]]

insert char itself calls rand as well so that each new character is inserted at a
random location in the password.

proc insert char {c}
global password

set password [linsert $password \
[rand [expr l+[llength $password]]] $c]

526 Exploring Expect

Since insertion into a list is easier than into a string, insert char maintains the pass
word as a list of characters. Before use, the password must be converted to a string:

set password [join $password ""l

The Expect Library
In Chapter 2 (p. 68), I mentioned that Tcl provides support for libraries of Tcl proce
dures. Expect follows the Tcl model. Two directories are provided in which users at
your site can create and use publicly-accessible Expect procedures or other data. The
directory names are stored in the global variables exp_library and
exp_exec_library.

The exp_library directory contains files which are platform-independent. If you
have the directory NFS-mounted to multiple computers of different types, all of them
can share the same common procedures. In contrast, the exp_exec_library direc
tory is specific to a particular machine (and if necessary, different releases of the
operating system).

Although scripts are the most common use for these libraries, non-executable data can
be stored there as well. For example, in Chapter 13 (p. 291) I mentioned that cat might
need a -u flag. Unfortunately, on other systems, the -u flag imposes a performance
penalty. So -u should only be used when it is required. One way to detect this is to
spawn a cat process, send a character to it, and see if it echoes. Unfortunately, the
failure to echo requires an expect command to timeout, and this can take a relatively
long time in a script. To avoid this, Expect executes this ~est upon installation and leaves
a marker behind in the form of a file for which scripts can test. Because the behavior is
dependent upon a particular executable (namely, Ibinl cat), the marker is stored in
exp_exec_library under the name cat_buffers. If cat_buffers exists, then I
bini cat buffers and the -u is needed to unbuffer it.

In a script, the test looks like this:

if [file exists $exp_exec_library/cat_buffersl
set catflags "-u"

else {
set cat flags

The value later might be used as follows:

spawn -open [open" I /bin/cat $catflags $fifo" rl

The directory names exp_library and exp_exec_library also appear in the
global variable auto-path which makes them available to the autoloading facility. If
you have generated index files for the Expect libraries, procedures defined there are

Miscellaneous 527

automatically loaded when you reference them. See the Tel reference documentation
for more information on libraries.

Expect Versions
Like any software, new releases of Expect appear from time to time as features are
added and bugs are found and fixed. The exp_version command is useful for
dealing with version mismatches. It can verify that the script is appropriate for the
current Expect executable and prevent the script from continuing if not. With no argu
ments, Expect reports the current version.

expectl.l> exp_version
5.9.0

This version may then be placed in your script in an exp_version command. If you
know that you are not using features of recent versions, you can specify an earlier
version.

The version checking is relatively simple and will not catch all incompatibilities, but it
will catch many flagrant problems. The checking depends on the way Expect versions
are assigned. Expect versions consist of three numbers separated by dots. First is the
major number. Unless they are very simple, scripts written for versions of Expect with a
different major number will almost certainly not work. In this case, exp_version
generates an error and returns an appropriate message.

For example, if you are using Expect 5.3.0, you can insert the following command in
your script:

if [catch {exp_version 5.3.0} msg] {
puts "warning: $msg"

If your script is run on a much older version of Expect (e.g., 4.3.0), the script will print a
warning that the script was expecting a different version of Expect.

The second number is the minor number. Scripts written for a version with a greater
minor number than the current version may depend upon some new feature and might
not run. exp_version returns an error if the major numbers match, but the script
minor number is greater than that returned by exp_version.

Third is a number that plays no part in the version comparison. However, it is incre
mented when the Expect software distribution is changed in any way, such as by
additional documentation or optimization. It is reset to 0 upon each new minor version.

528 Exploring Expect

The exp_version has an -exit flag which can be used to force the script to exit
rather than return an error. The message explaining the mismatch is sent to the standard
output, and the script exits with a return value of 1.

Timestamps
The timestamp command is useful for generating time representations in various
forms. In its simplest form, timestamp with no arguments returns the time in seconds
since the UNIX epoch (January 1, 1970 UTC).

expect1.1> timestamp
759382559

To convert the time into other forms, use the -format flag with a following string that
describes the format. The command returns the string with appropriate substitutions.
Generally, substitutions are made for each character preceded by a percent sign. For
example, the time of day in 24-hour time is substituted for "%X". Anything not preceded
by a percent sign is passed through untouched. For example:

expect1.1> timestamp -format "The time of day is %X"
The time of day is 17:05:58
expect1.2> timestamp -format "It is a %A in %B"
It is a Monday in January

The substitutions are a superset of those defined by the C strftime function. The full
list supported by Expect is as follows:

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c date-time as in: Wed Oct 6 11:45:56 1993
%d day of the month (01-31)
%H hour (00-23)

%1 hour (01-12)
%j day (001-366)

%m month (01-12)

%M minute (00-59)
%p am or pm
%8 second (00-61)t

%u day (1-7, Monday is first day of week)
%U week (00-53, first Sunday is first day of week 1)

t Leap seconds are occasionally added to correct for the slowing rotation of the Earth.

Miscellaneous

%V
%w
%W
%x
%X
%y
%y

%Z
%%

week (01-53, ISO 8601 style)
day (0-6, Sunday is 0)
week (00-53, first Monday is first day of week 1)

date-time as in: Wed Oct 6 1993
time as in: 23: 59: 59
year (00-99)

year as in: 1993
timezone (or nothing if time zone is not determinable)
a bare percent sign

Any percent sequence not listed here is passed through untouched.

529

Arithmetic on dates is most conveniently done when everything is represented in
seconds either relative to or absolutely from the epoch. A date represented in seconds
can be formatted by using the -seconds flag. For example,

expect1.1> set time [timestamp]
759443622
expect1.2> timestamp -format %X -seconds $time
15:33:42
expect1.3> timestamp -format %X -seconds [expr $time+l]
15:33:43

The time Command
You may want to try different commands and algorithms to compare which is faster.
You can use the timestamp command for this, but Tcl provides a built-in command
called time which is more convenient.

The time command takes a command to execute and an optional iteration count. It

returns a description of the time taken to execute each iteration. As an example, the
following command times three iterations of "sleep 7".

expect1.1> time {sleep 7} 3
7000327 microseconds per iteration

As you can see, each sleep took very close to 7 seconds which is what you would
expect. The precise amount of time will vary from run to run depending on what else is
executing at the same time, of course. So using a high iteration count can smooth out
the difference and provide a more useful answer.

In some cases, it may be useful to run external performance monitors. For example,
memory or network usage may be just as important to your application as CPU usage.

530 Exploring Expect

Exercises
l. Using the random procedure (page 524), write a Tk script that draws a plot of a large

number of random values. Use time (modulo the plot width) as the second dimension
in the plot. Look for patterns in the plot.

2. Many Tel extensions come with libraries that are used by the extension itself but are
not documented for users. Look through all the Tel libraries for useful but undocu
mented utilities.

3. Check the version of Expect that you are running. See if you can find a later one. Do
your scripts still work?

4. Use the time command and compare "string match" against regexp doing simi
lar things. Is this reflected in the -gl and -re flags in the expect command?

5. Time the UNIX sleep command and compare it to the built-in sleep command. At
what point is the difference moot? How does this change if you are on a much slower
or faster machine?

6. What timestamp would exactly duplicate the default output of the UNIX date com
mand? Time date and timestamp.

7. Expect does not have a procedure that does the opposite of timestamp-converts a
string to a date represented as an integer. Why is that? Write one anyway.

Appendix- Commands
and Variables

This appendix is a listing of the commands, flags, and variables built into Expect (not
including those provided by Tcl). The listing does not show the complete syntax for
each command or flag; this is just an aid to jog your memory as to what is available.
Alongside each entry is a brief description and a page number. The page number points
to where the command is best described, not necessarily where it first or literally
appears.

I have omitted information that is redundant (such as the timestamp substitutions
which can all be found on the page which describes timestamp) and the debugger
commands (which can be produced by pressing h while in the debugger). I have also
omitted commands specific to C and C++ programming since that information is well
confined to two short chapters. You can also find all of this in the index.

All of the commands shown here that do not start with "exp" are also callable with the
"exp_" prefix. For instance, close can also be called as exp_close.

Commands And Flags
close

-i
-slave

debug
-now
Oorl

disconnect

exit

close spawned process
identify process
close slave of process

control debugger
start debugger immediately
stop or start debugger

disconnect process from tty

exit

Page 101
249
295

410
411
410

375

35

531

532

-onexit
-noexit

exp_continue
-continue_timer

exp_internal
-info
-f

Oor1

exp_open
-i
-leaveopen

exp-pid
-i

exp_version
-exit
version

expect
timeout
eof
full_buffer
default
null
-brace
-gl
-re
-ex
-notransfer
-nocase
-i
-indices
pattern action

expect_after

-all
-info
-no indirect

expect_background

expect_before

Exploring Expect

declare exit handler
invoke exit handlers but do not exit
exit with this value

continue expect command
do not restart internal timer

control internal diagnostics
return state
direct diagnostics to file
stop or start diagnostics

open spawned process as file identifier
identify process
leave spawned process accessible

return process id
identify process

return version of Expect
exit if version mismatch
version needed by script

wait for pattern
match timeout
match eof
match full buffer
match timeout or eof
match null
arguments are braced
glob pattern
regular expression
exact string
do not update internal buffer
treat input as all lowercase
identify process
save indices of match
pattern action pairs

wait for pattern before others
same flags as for expect, plus
return patterns of all spawn ids
return patterns
do not return patterns of indirects

wait for pattern in background
same flags as for expect_after

wait for pattern after others
same flags as for expect_after

wait for pattern from terminal

321
321

35
145
146
166
182
173
171

304
304
305
304
304
528
528
528
72
94
98

151
101
155
160
109
109
134
154
139
247
124
75

259

266
266
269
446

259

210

533

same flags as for expect

expect_user wait for pattern from user 192
same flags as for expect

fork create child process 374
inter_return return from caller 230
interact pass control of process to user 82

eof match eof 342
timeout match timeout 343
null match null 343
-brace arguments are braced 324
-re regular expression 328
-ex exact string 327
-input input processes 353
-output output processes 353
-u substitute for user process 350
-0 process patterns 328
-i identify process 349
-echo echo 333
-nobuffer do not buffer partial matches 337
-indices save indices of match 328
-reset reset terminal mode 344
-iwrite save process spawn id 359
pattern action pattern action pairs 324

interpreter pass control of Expect to user 225
log_file control output saving to file 180

-a save all output 181
-noappend save to beginning of file 180
-info return state 182
-leaveopen treat file as log 180
-open treat file as log 180
file save output to file 180

log_user control output to screen 175
-info return state 182
o or 1 stop or start output 175

match_max control match buffer size 150
-d default (future processes) 150
-i identify process 249
new buffer size 150

parity control parity 157
-d default (future processes) 157
-i identify process 249
Oorl strip or preserve parity 157

534 Exploring Expect

prompt 1 prompt after complete command 228

prompt2 prompt after incomplete command 228

remove_nulls control nulls 155
-d default (future processes) 155
-i identify process 249
Oori preserve or strip nulls 155

send send string 71
treat next string as literal 282

-i identify process 247
-h send humanly 278
-s send slowly 275
-null send null 281
-raw do not insert returns 198
-break send break 281
string string to be sent 71

send_error send to standard error 187
same flags as send

send_log send to log 182
treat next string as literal 282

string string to be sent 182

send_tty sent to /dev /tty 210
same flags as send

send_user send to standard output 185
same flags as send

sleep # sleep number of seconds 196

spawn start a process 78
-console treat process as console 300
-ignore ignore signal 310
-leaveopen treat file as spawned process 289
-open treat file as spawned process 289
-noecho do not echo spawn command 298
-nottycopy do not initialize pty like /dev/tty 300
-nottyinit do not do sane initialization 300
-pty allocate pty without starting process 293

strace trace statements 405
-info return state 405
depth to which to trace 405

stty modify terminal parameters 197
< ttyname terminal to modify 204
raw raw mode 198
-raw cooked mode 199
cooked cooked mode 205

-cooked
echo
-echo
rows [#]
columns [#]
local-stty-args

system local-cmd

timestamp
-format
-seconds

trap
-code
-interp
-name
-number
-max
action signal-list

wait
-i
-nowait

Variables
any_spawn_id

argc

argv

argvO

dbg

error_spawn_id

exp_library

exp_exec_library

expect_out

interact_out

send_human

send_slow

spawn_out

spawn_id

stty_init

timeout

raw mode
echo
no echo
set or return rows
set or return columns
execute native stty command

execute Bourne shell command

return timestamp
timestamp format
time source

define signal handler
code to return
interpreter to use
return name of current signal
return number of current signal
return number of signals
action to execute upon signals

wait for process to go away
identify process
wait for process in future

any listed spawned process

number of initial arguments

initial arguments

name of script

debugger breakpoint regexp results

spawn id of standard error

platform-independent utility scripts

platform-dependent utility scripts

results of expect

results of interact

controls for send - h

controls for send -s

results of spawn

currently spawned process

s t ty parameters for spawn

maximum time for expect to wait

535

205
199
199
205
205
205

207

528
528
528

307
320
321
309
309
318
309
105
249
106

259
214

214

214

422

245

526

526

111

328

278

275

294

233

300

75

536

tty_spawn_id

user_spawn_id

Exploring Expect

spawn id of / dey / t ty

spawn id of standard input and output

245

245

Index Of Scripts

This is an index to all scripts or substantial fragments of code.

Symbols
#! rewriting 216

A
aftp 83, 144
anonymous ftp 83, 144
answerback 250, 340
area of circle 36

B
bc 233

C
chdir 469
chess 235, 251, 492
choose 390
command loop 231, 346

D
date 177
desk calculator 233
dialback 3, 350
disconnect 375
dislocate 354, 384
Dvorak 325

E
echo arguments 214
emulating ftp 467
encryptdir 465
encrypting a directory 465
escape 231, 390
exit handler 321
exp_popen 495
expectjoucbyte_int 156
Expectk example

F

terminal emulator 449
tknewsbiff 475
tkpasswd 434

factorial 29, 31
fastest machine 253
Fibonacci numbers 34
Fibonacci numbers, recursively 35
file transfer 351
firstline 136, 178
fixlinel 216
fsck 8, 339
ftp

over telnet 467
put 133

ftpcmd 242, 243
ftp-rfc 186

537

538

G
gdb, testing 6
getpass 199, 206

H
hunt, the game of 148

I
idle fakeout 343
inactivity handler 330
interact, complex 361

J
joint control 255

K
keyboard, Dvorak 325
kibitz 255, 355

under cron 380

L
login 272
lognumber 338

M
mail 383
mapwindow 478
maxtime 98, 100
mkflfo 385
mkpasswd 525

N
news, wakeup on unread 475
noidle 343

o
OCLC 398
Online Computer Library Center 398

p
passmass 154
passwd 5

passwd GUI 434
password

generator 525
prompt for 377

Exploring Expect

querying on behalf of a program 201
password, query for 199
password_backspace 445
ping 97, 100, 101, 178
preventing bad commands 346
print array elements and values 53
prompt

default Expect 228
styles 376
tset 147

putentry 133

Q
quadratic formula 54
quadratic formula (call by reference) 58

R
racing with rlogin 253
random numbers 524, 525
random passwords 525
reading lines in a file 62
reading lines in a file (fast) 62
reading nulls 156
reconnecting 378
record a session 180
record phone numbers 338
rlogin

is a test of speed 254
rsh 118, 119
with same directory 123

rlogin with same directory 122
rn (read news) 195
robohunt 148
rogue 141, 458
rsh via rlogin 118, 119
rz 351

S
script 180, 337
script, a better version 334
send slowly 277

send_slow 277
set password on multiple machines

simultaneously 154
SIGCHLD handler 314
SIGTSTP handler 316
SIGWINCH handler 316, 367
slow send 276
slow telnet 152
spawnjtp 244
split host and domain 137
static variables, emulating 59
stop script after some time 98
su2 179, 200
sum a list 39
sz 351

T
te1net 494

slow 152
with same directory 341

ten_chars_pecsec 276
term 460
term_expect 460
terminal emulator 449
timeallcmds 256
timed reads 77
timed_read 77, 112
timed-read 77
timing all commands 256
tip 196
tkpasswd 434
tkterm 449
traceproc 406
trap all signals 318
tset 147
two users connected to an application 255

U
unbuffer 299
unknown 68
unmapwindow 477

V
verbose 469
vi 104

vprint 404
vrfy 175

W
write 237

X
xkibitz 361
xterm 294

539

Italicized page numbers denote the most
definitive references. Other references
denote discussion or examples.

!, 27
history, 179, 226

-,27
!!, 179
!=, 27,482
", 25,33
#, ~4-25,58, 70,120,471,475,479,482,

485-488
scope identifier, 417

#!, 72, 213, 221, 467
limited to (usually) 32 characters, 215
portability kludge, 216, 232
rewriting, 216

#!/usr Ilocallbinl expect, 215
-,72

#!/usr/locallbinlexpectk, 433,477
#0,58,482
$,7,24,57,73,107-108,120-121,472

literal, 134
$?, 97
$expecClibrary/expect.rc, 218,221
$status, 97, 118
%, 27,120,524

for substitutions in bind actions, 432
%W,431

Index

&, 66,372
disadvantages to disconnect, 377

&&,27
(\[I\\r]*)\r\n, 145
*, 6, 27, 32,63, 87, 107, 153

at end of pattern is tricky, 89
at start of pattern is redundant, 88

+, 27
as procedure name, 363,365

+>, 228
., 108

as widget separator or top-level
widget, 430

.*, 107, 116, 331

.*\n, 129

.+, 251
implicit, 357

.crypt suffiX, 466

.cshrc, 11

.dislocate, 386, 391

.expect.rc, 222, 232

.netrc, 11, 22

.newsrc, 481

.0 mes, 517

.prome, 11

.rc, 22,221,232,516,521

.rhosts, 13

.tknewsbiff, 476
I, 27,63, 430
I\X, 329
Ibinlcat, 526

541

542

/bin/mail, 383
/bin/sh, 61,211,292-293,392
/dev/null, 359, 375
/dev/tty, 210-211,245,293
/dev/ttya, 290
/dev/ttypO, 294
/etc/inetd.conf, 400
/etc/motd, 392
/etc/passwd, 45, 289, 434
/etc/resolv.conf, 84
/etc/services, 400
/tmp, 303
/tmp/f"tfo, 299
/usr/etc/expectd.proto, 398-399
/usr/etc/secretd, 400
/usr /inelude/ signal.h, 318
;, 24
<, 66, 209, 383, 486
«, 22,383
<=, 27
<1>, 487
<Any-Enter>, 431,457
<Any-Key>, 445
<Any-KeyPress>, 457
<BackSpace>, 445
<Buttonl>, 431
<Configure>, 487
<Control-c>, 431
<defunct>, 105
<Delete>, 445
<F1>, 457
<Meta-KeyPress>, 457
<Shift-I>, 487
= as procedure name, 365
==, 27, 37, 474
>, 66,172,474,484
>@, 67
?, 32,63,91
@, 67

misbehavior, 302
[, 481
0,26,33,57,63,91,108

overloading, 91
[A, 108
[A]], 129
[M], 129

[incr Tel], 60, 69
\, 8,63,91, 109,470
\ at end of line, 25
\$, 118
*, 108
\[, 96, 109
\[A \r]*\r\n, 136
\\, 8,327
\ \ \$, 121, 125
\ \ \r, 327
\ \r, 327
\0, 24, 155
\004 (AD), 474
\b, 24,326
\n, 96, 197, 274, 335

Exploring Expect

matching everything but, 113
newline on output, 71
on input, 72

\n on output, 79
\ octal, 24
\000, 326
\r, 5, 79, 326-327
\r\n, 80, 119, 448

stripping \r, 257
\r-#, 282
\t, 24
\xhex, 24
A, 73,96,107-108,121,129

history, 226
literal, 134

A\, 312
AC, 274,311,314,317,319,411

exit by default, 103
AD, 102, 230, 238, 342, 471
AG, 148,275,344
AU, 274, 302
AZ, 240,274,316,346,371
{, 29
II, 481

glob matching, 63
I, 61, 66, 209, 284, 292
II, 27

}, 29
-, 63, 182,288
-/.dislocate, 384
-/.expect.rc, 218, 221, 521

032 (I\Z), 468

-1, 81,502
1990 Winter USENIX Conference, xxvi
1991 Winter USENIX Conference, xxvii
2>, 293
3Com, 14
7 versus 8-bit connection, 352, 467

A
absolute cursor motion, 456
Academic Press, 20
Accardo, Thomas, xxix

actions, 75
background, 447

active me, 482
adb,9
adding extensions

to Expect, 516
to Expectk, 517

Addison-Wesley, 19, 394
Advanced UNIX Programming, 305
after, 459,461-462
aftp, 83, 143, 163, 232
aftp.exp, 293
AIX 3.2, 291
AlARM, 509
Amdahl, 14
anchor, 73

differences between glob and regular
expression, 126

and, 27
anonymous ftp, 83
ANSI terminal, 462
answerback, 250, 340
any_spawn_id, 259,261
APL, 70
append, 46, 49, 56
arbitrary precision arithmetic, 233,246
Archie, 18, 22
argc, 215,515
arguments

do not interpret remaining, 217-218
varying, 39

argv, 77,215,515
argvO, 214-215

arithmetic, arbitrary precision, 246
array, 49, 362

information, 52
names, 52, 367
size, 52

arrow keys, simulating, 286
asleep, falling, 211
assert, 183
associativity, 28
at, 371
AT&T, 15
atom, 107, 110
auto_path, 526
Autoconf, xxviii
automatic Expect script writer, 270
automation

of non-UNIX systems, 14
partial, 8, 82
total, 4

avoiding echo, 335

B
background, 372

actions, 447
expect library, 507
patterns, 446
processing, 371

backquotes, 78
backslashes, 24, 109, 125

in patterns, 91
backup, 14

from cron, 13
Baha'i World Centre, 14
base, change, 234
batch, 371
Baughman, Sue, xxix

Bayona, Miguel Angel, xxix

bc, 233-234, 246
bedroom, spawning, 78
begin standout mode, 450
behavior differences of Expect versus

543

Expect as an extension, 513,515
benchmarking, 529
Betz, David, 429
bg, 240,371-372
bidirectional

544

communication over pipes, 305
process pipelines, 292

biff, for news, 475
Bimmler, 331
binaries Expect, 492
bind, 431,437,442,444-445,448,457,487
bindings, 432

for Expect, 492
bold, xxxiii

books
Advanced UNIX Programming, 305
Computer Lib, 121
Internet System Handbook, 394
Numerical Recipes in C, 524
Practical Programming in Tel and

Tk,20
Software Solutions in C, 20
Tel and the Tk Toolkit, 19
TCP/IP illustrated, Volume 1, 394
X Window System Series, 429

boolean operators, 27
Bourne shell, xxvi, 70
braces, 29,32

in lists, 40
nesting, 33
open, 33

Bradfute, Todd, xxix

branch, 109-110,115
break, 34,141,228-229,461,474
breakpoint

action, 422
limitations, 424

by expression, 420
by line number and f"llename, 419
by pattern match, 420
def"tning, 419
deleting, 426
general form, 425
listing, 425

bridges, 14-15
Brighton, Allan, 59
broken pipe signal, 315
Brown, Thomas, xxix

browsing global variables, 409
BSD, 449
buffering

input, 74
interact, 332

Exploring Expect

output perpetually, 154
bug, OS, 291
button, 430, 438

clicks, 431

c
C, xxv, 70,491,513,517,519

subroutine, 524
--c, 217-218,232
c, 418,423
C language identiller, 108
C shell, xxvi, 70
C++, 491,513,517,519

special instructions for, 514
caching regular expressions, 503
Cambridge University Press, 524
canonical input buffer size, 286
capability, 450
caret, 73
carriage-return linefeed, 80
cat, 289, 300, 467

command to remote system, 471
-u, 292, 488, 526

cat buffers, 526
cat~h, 53-54,58,60,67,296,318,334,367,

372,374,438,442,469,473,480,
482,489,527

catching errors, 53
causing errors, 55
cc, 493
cd, 470
CD-ROM, 17
ceil, 27
CenterLine Software, 14
cert.sei.cmu.edu, 400
change the base of a number, 234
character graphics, 142

output, 283
character translations, 325
check dictionary, 438
checkbutton, 438
chess, 12, 234, 262

timed, 246
with expect-i, 251

with interact, 350
chess.exp, 17
child, 391

termination signal, 308, 313
CHILDKILLED, 313
chmod, 72,215
choose, 390
chunking of output, 89-90, 152
Cisco, 14
cl, 450
clear screen, 450
close, 101,249,472,474,482,499

me, 60
implied at end of script, 102
-slave, 295,364

cm, 450
COLUMNS, 450
command

name clashes, 514-515
timestamps, 256
tracing, 405

commands
debugger, 412
evaluating lists as, 56

comments, 24,70
common mistakes, 258,495,518
comp.lang.tcl, 21,463
comp.source.unix, 400
compilation of regular expression, 503
compiled

Expect, 518
Expect programs, 492

compress, 467
CompuServe, 275
Computer Lib, 121
Computer Security FAQ, 203
Computerized Processes Unlimited, 21
ComputerVision, 15
concat, 42-43
conference proceedings, 21
connecting to background processes, 381
console output, 300
contacting multiple users, 382
continuation lines, 33
continue, 34, 143, 228, 339, 482

execution, 418

signal, 308,316
control structures, 29
controlling terminal, 245, 372
controlling unreliable processes, 15
converting from floating-point to

integer, 27
cooked mode, 89
co-processes, xxiv
copying me through f"trewalls, 15
copyright information, 15
core, 312
cos, 27
Courier, xxxii-xxxiii

cron, 12,371,373,380,401
backup, 13

crypt, 2, 200
directory, 465

cryptdir, 465
csh, 226
C-style real number pattern, 140
cu, 289-290
current scope, 417
currently spawned process, 234
Curses, 10

output, 283
testing, 458

cursor motion, 456
cursor positioning character

sequences, 142
Cygnus Support, 15,21

D
d, 417
daemon, 392

telnet, 392
Data General, 14-15
databases, 14
date, 314

versus timestamp, 530
dbg, 426
dbg array, 424
Dbm,69
dbx, 410,412
dc, 234
DCL, 330
deadlock, not a problem, 305

545

546

debtron, 355
debug, 411

1, 410
-now, 411

debugger, 223,410
commands, 412
flag abbreviations, 420
help, 426
output compression, 428
output width, 426
prompt, 410
repeat last action, 412
testing, 6

debugging, 403,509
disconnected processes, 377
logme, 180
patterns, 165

decryptdir, 465
default, 10 1
deferring evaluation, 29
defining breakpoints, 419
definitions, xxxii

DejaGnu, 15
deleting

breakpoints, 426
files with funny names, 211

Delmas, Sven, 432
demos, 14
destroy, 438
device drivers as programs, 289
diagnostics, 171

output, 165, 167
redirecting from shell, 173

dial
pager, 85
phone numbers from a list, 85

dialback, 3,369,401
via interact, 350

dictionary
check, 438
time to load, 522

diff, 67
Digital Equipment's Western Research

Laboratories, 19
direct spawn id, 268
directory encryption, 465

Exploring Expect

disconnect, 371,375,379,388,401,519
advantages over &, 377

disconnected processes
debugging, 377
reconnecting, 378
strategy for getting passwords, 373

dislocate, 17, 230, 354, 390
example interaction, 388
manager for disconnected

processes, 384
DISPLAY, 123
-display, 433, 476
displaying widgets, 431
distance, 59
DO, 393
do, 450
Dodd, David, xxix
dog, 328
domainname, 84
DONT,393
dos, 328
DOS TSR, 348
dot rc me, 221
DOTDIR, 222, 478
double buffering, 152
down one line, 450
DTR, 196
duck: quack, 117
dumb terminal emulator, 447
dump, 9

estimating number oftapes, 126
reprompting, 194

Dvorak, 17, 330, 347
keyboard, 325

dynamically generating procedures, 232

E
ECHO, 393
echo, 119, 199, 273

avoidance, 335
interact, 333, 335
passwords with asterisks, 444, 463

echo.exp, 215, 219
edit-compile-debug cycle, Expect is

easier, 491
efficiency, 359,440

element, 506
else, 31,478,483
elseif, 31
Elvis, 96
emacs, ~v-xxv, 344

shell, 226,301
email address pattern, 137
emulator, 448

dumb terminal, 447
Encore Computer, 15
encrypting a directory, 465
encryption function, 5
end of ide, 98
end standout mode, 450
endp, 505-506
ENOMEM,502
entry, 437, 442
env, 67,120
env(PATH), 287
environ, 498
environment variable

COLUMNS, 450
DISPLAY, 123
DOTDm,222
EXPECT_DEBUG_INIT, 312,411
EXPECT_PROMPT, 120
HOME, 222
LINES, 450
PATH, 287
TERM, 373,450
TERMCAP, 450
TERMINFO, 450

eof, 98, 100, 230, 327, 353, 483
ignored by some programs, 103

epoch, 528
error, 55

general strategy for catching, 225
reporting, inband protocol, 358
spawn, 296-297

error_spawn_id, 245
errorCode, 313
errorInfo, 55
errors, 53

catching, 53
causing, 55

escape, 390

doubling up, 326
eunuchs, 328, 333
Europe, 157
eval, 56,59,341,368

expect, 160
spawn, 99

evaluating
commands in other scopes, 59
lists as commands, 56

evaluation stack, 405,410,414
event loop, 432

expect, 445
event manager, 508
exact, 327

pattern, 332, 504
exec, 9,66,81, 196,466

2>, 293
compress, 474
cp, 473
date, 338

547

deleting ides with funny names, 211
kill, 296, 308, 345, 367

-STOP, 346
-STOP 0, 317,468

mv,67
play, 477
rm, 67,466,473-474
tilde substitution, 67
uudecode, 473
uuencode, 474
versus system, 207
xterm, 295

-e, 488
execlp, 494
execute command before script, 217-218,

232
execute UNIX commands, 66
execvp, 494
exercises, a note about, ~ii
exit, 230,374,390,431,478,484

handling, 321,515
implied at end of script, 100
-noexit, 516
-onexit, 321,367,516
reset terminal, 204

548

status, 97
rsh, 117

value, 178
exp_ preth:, 311,433,501,515
EXP_ABORT, 509
exp_app_exit, 520
exp_autoallocpty, 498-499
exp_buffer, 505-506
exp_buffer_end, 505
exp_case, 506
exp_child_exec_prelude, 498
exp_close_in_child, 499
exp_close_tcCfUes, 499
exp_cmd11Ie, 520
exp_cmdf"tlename, 520
exp_cmdlinecmds, 520
exp_compiled, 501,503,505
exp_console, 497
exp_continue, 145, 147-148,249,268,357,

472,483
affects spawn_id, 238
--continue_timer, 146

exp_cook, 520-521
exp_debug, 311
exp_debugitle, 509-510
exp_disconnect, 508
exp_disconnected, 508,519
exp_end, 492,501-503
EXP _EOF, 502
exp_error, 521
exp_exact, 501,504
exp_exec_library, 526
exp_exit, 311,521
exp_exichandlers, 521
exp_expect (no such command), 515
exp_expectl, 501-509
exp_expectv, 506-507
expjexpectl, 492
exp_fiWrr_buffer, 502
EXP _FULLBUFFER, 502
exp~etpid, 520
exp~ob, 492,501-503
Exp_lnit, 513-514,516
exp_interactive, 520
exp_internal, 166,171,174,404,519

-f, 174

Exploring Expect

exp_interp, 520
exp_interpreccmdfUe, 521
exp_interpret_cmditlename, 518,521
exp_interprecrcfUes, 521
exp_interpreter, 521
exp_is_debugging, 509-510,519
exp_library, 526
exp_Iogitle, 509
exp_Iogitle_all, 509
exp_Ioguser, 509-510,519
exp_main_exp.c, 517-518
exp_main_tk.c, 517
exp_match, 505
exp_match_end, 505
exp_match_max, 506
exp_null, 501,504
exp_open, 304

-leaveopen, 305
exp_parse_argv, 521
exp_pclose, 500
exp_pid, 304, 496, 500
exp_popen, 492, 494-497, 499-500
exp_pty, 498
exp_pty _slave_name, 497
expJeadenv, 509
expJegexp, 501-503,507
exp_remove_nulls, 504
EXP _RESTART, 509
exp_send, 409,433,483,515

-i, 489
exp_slave_control, 510
exp_spawnl, 494-496, 500
exp_spawnv, 494-495,500
exp_stty_init, 497,499
exp_tcCdebugger_available, 520
EXP _TIMEOUT, 502, 508
exp_timeout, 502, 509
exp_ttycopy, 497
exp_ttyinit, 497
exp_type, 506

enum,501
exp_version, 527
Expect

adding extensions to, 513,516
as an extension, 513
binaries, 492

bindings, 492
buffering, 74
compiled, 518
experimenting with, 225
f1nding, 18
in the background, 371
job control, 274
library, 429,492-493,510,514,517,

526
in background, 507
Tel-less, 519

MakenIe,514
philosophy, xxv
prompt, 71
README, 16
retrieve latest version, 106
running interactively, 221
script, 72
scriptless, 518
send, 433
software distributions, 17
version, 527, 530
with no controlling terminal, 372

expect, 71-72,345,357,466,471,482-483
\r\n, 119
argument ambiguity, 159
-brace, 160
braces, 76
common mistakes, 166,177,258
control flow in actions, 140
double buffering, 152
-ex, 134
from nIes, 500
from multiple processes

simultaneously, 249
from streams, 507
function side-effects, 504
function side-effects picture, 505
-gl, 109-110,135,160
-i, 248,488

associates with which
pattern?, 252
list of spawn ids, 255
versus spawn_id, 248

indentation, 75
-indices, 124

internal comments, 158
internal timer, 146
library functions, 504
multiple timeouts, 253
-nocase, 139,211
no-op action, 190
-notransfer, 154
null, 155
output, recording all, 180
pattern-action pairs, 75
-re, 109, 135, 472, 475
regular expression limits, 158
repeating, 145
speed, 148
Tk event loop, 445

expect program, 217-218,232
-, 218,224
-, 217-218
#! guidelines, 221
arguments, 214
-b, 217,224
-c, 515,520

multiple occurrences, 219
-D, 311,410

0, 411
enable debugger, 217,223

-d, 515

549

print internal diagnostics, 217,
223

-f, 217,220
-i, 520

run interactively, 217,221
invoking without saying

"expect", 215
-n, 218,221
prompt, 232
putting into background, 371

expect.h, 493, 496-497
expect.rc, 521
expeccafter, 101,247,259-261

actions, 267
-info, 266

expecCbackground, 446, 448, 456
-info, 447

expecCbefore, 101, 247, 259-261
actions, 267

550

-all, 267
common problems, 264
complex example, 262
-info, 266
-noindirect, 269

EXPECT_DEBUG_INIT, 312,411
expecCfour_byte_int, 285
expecCout, 7,297

tracing, 406
writing, 243

expecCout(O,string), 73
expecCout(l,string), 111, 236, 473
expecCout(2,string), 111
expecCout(9,string), 111
expeccout(buffer), 73,96,111,124,408

tracing, 407
expeccout(spawn_id), 261, 359
expeccout(X,end), 124
expeccout(X,start), 124
expeccout(X,string), 124
EXPECT_PROMPT, 120, 148, 341,467
expect_tcl.h, 514,519
expect_tty, 210

/dev/tty, 210
expecCuser, 192, 197, 199,238,291,340,

345,372-373,468,470
expectd.proto, 398
ExpecTerm, 10
Expectk, 10, 432-433

-flags, 433
expect!, 500
expectv, 500
experimenting, 225
exposure, widget, 431
expr, 28, 443, 469, 487, 524
expressions, 27,37

unquoted strings in, 37
Extended Tcl, 69
extensions, 69,513

others, 522

F
factorial, 29
falling asleep, 211
FAQ, 20

Computer Security, 203

script to retrieve, 401
fastest system, imd, 253
Faught, Danny, xxix

fclose, 499
FD_SET, 508
fdopen, 495

Exploring Expect

feedback without echo, 335
fexpect!, 500
fexpectv, 500
fg, 240,372
fgetc, 496, 507
Fibonacci, 34
irro, 299, 378

creation, 388
nonportable, 385

eof, 292
fifo_pair_create, 387
1Uo_pairJemove, 387, 391
fifos, 246, 292, 356, 378, 498
figure

expect function side-effects, 505
interact, 324

-input/output, 354
-u, 350

kibitz, 356
tknewsbiff, 475
tkpasswd GUl, 435
xkibitz, 365

me, 217
access, 60
atime, 65
close, 60
delete, 67
dirname, 64
executable, 65, 298
exists, 65, 480
extension, 64,466
flush, 61
gets, 62
information, 65
isdirectory, 65
isme, 65
open, 60
owned, 65
read, 62
readable, 65,479, 481

remove, 67
rename, 67, 70
rootname, 64
seek (to location), 62
size, 65
stat, 66
tail, 64, 479
tell (location), 62
transfer over telnet, 467
type, 65
unique name, 70
writable, 65
write, 61

FILE', 492
me identifier, 60

converting to spawn id, 304
fIlename

manipulation, 64
matching, 63
reserved, 224

ides as spawned processes, 289
mtering bad commands, 346
imd, 136

fastest system, 253
imger, 392
itnish, 418
itrstline, 305
FirstSearch, 398
itxlinel, 216-217
flag, 218
floor, 27
flush, 61, 304
focus, 437,442
for, 30,461, 481
foreach,39,238,367,466,484-485,487
fork, 297,371,374,388,401,508

non-intuitive side-effects, 374
formal parameters, 34
format, 46,487,525
four byte integer pattern, 156
fprintf, 492, 496, 504
fputc, 496
frame, 436-437
fread, 496
freak biological accident many years

ago, xxix

free, 504
Free Software Report, 15
Frequently Asked Questions List, 20
Frisbee, 381
fscanf, 496
fsck, 1,8, 339

551

ftp, 1,11-12,22,78,80,103,185,189,336,
344,349,392,467

anonymous, 83
by mail, 19
directory retrieval, 131-132
library, 511
mirror, 270
prompt, 190
recursive, 17, 133, 163, 336
rewriting, 22
with retry, 143

ftpcmd, 242
ftp-rfc, 17,187-188
full_buffer, 151
fun stuff, 2
fwrite, 496

G
game

chess versus chess, 234
robohunt, 148
rogue, 142, 458

Garamond, xxxii

GeT, 17
gdb,2,6,410,412
GEnie, 275
gecold_password, 442
geCusers, 438
gethostbyname, 131
getpass, 199,211

better version, 206
gets, 62,304,474,482

stdin, 345, 372
gibberish, due to parity, 157
GL,69
-gl, 109-110
glob, 63,67,478

patterns, 87,91

552

global, 59,70,241,243,417,442-443,469,
471,473,477-478,480,482,484-
487,489,524

command, 36
scope, 413
variables, 36

glomerular nephritis, 325
GNU C and C++ testing, I:;
GNUS, 211
gone f"tshing!, 2
Goodd party lash night!, 279
Gopher, 392, 397
grab, 442
grep, 440

avoiding, 438
GUI

builder, 432
passwd, 17

guidelines, 221
gzip, 489

H
handler

exit, 321
signal, 308

handling errors, 53
hangup, 102

signal, 308, 314
help, debugger, 426
hexadecimal, 27

pattern, 106, 108
highlighting, 451
history, 226

event number, 228
nextid, 228
redo, 227

Holst, Wade, 21
Holzmann, Gerard, xxix

HOME, 222
home directory, 182
Hopkirk, Mike, 20
host-independent audio program, 480
hostname, 84
hotkeys, 348, 463
Houdini, 96
HP, 14,510

Exploring Expect

HTML browsers and converters, 20
Huebner, Rob, xxix

hugs and kisses, 331
hung pty, 302, 305
hunt-and-peck, 280
IflJP, 400

I
-i is supported by most commands, 249
I like cheesecake, 138
lAC, 393
mM, 14-15
idle workstations, good use for, 400
IT, 31,443,469,471,473-474,478,481,483,

485,489
ile, 226
illegal instruction, 313
in.itngerd, 392
in.ftpd, 392
inactivity monitor, 347
in-band error-reporting protocol, 358
include f"tles, 493
incr, 30,366,461
indigestion, system, 153
indirect spawn id, 268,359
inetd, 204,371,392,395,400
inf"tfo, 378
inf"tnite timeout, 344
inf"tnity, 278
info, 69

commands, 52
exists, 51,218,366,413,481-482,485
globals, 52
level, 52,60
procs, 52
script, 52

info@radio.com, 401
information on current patterns, 266
lnit functions, order of, 516
input limit in cooked mode, 274
insecurity, 202
insert mode, 452
integer pattern, 108
interJeturn, 229-230, 340, 344
interact, 8-9,82,123,249,259,317,323,

337,357,359,368,391,459,468

argument ambiguity, 160
-brace, 325
break, 339
buffering, 332
character translations, 325
characters that do not match, 331
continue, 339
default action, 341
-echo, 334-335
echo, 333, 335
efficiency, 359
eof, 342, 353
-ex, 327
figure, 324, 354
-i, 349,351,353,360
-indices, 329
-input, 353-355,358,360-361,368
inter_return, 340
job control emulation, 360
matching is different than

expect, 329
multiple processes, 378
-nobuffer, 337-338,340
null, 343
-0, 328,340,349,351
optimized for speed, 408
-output, 353-355,358,360-361,368
-re, 329
redirecting to /dev/null, 359
-reset, 317,344,346,355

to prevent character loss, 346
return, 338-340
returning in the caller, 340
simple patterns, 324
terminal mode, 226
timeout, 343, 353
-u, 295-296,351-354,360,378

figure, 350
interact_out, 361
interact_out(O,end), 329
interact_out(O,start), 329
interacCout(O,string), 329
interacCout(buffer) does not exist, 329
interact_out(spawn_id), 359
interacting with background

processes, 381

553

interactive disconnected processes, 223
Interactive Line Editor, 226
Internet System Handbook, 394
Internet Talk Radio, 401
Internet Town Hall, 401
interoperability, 394
Interpret As Command, 393
interpreter, 225,229-230,341,363,368,

390
inter_return, 229
multiple, 321
prompt, 226-227, 516

interrupt signal, 308
iocd, 510
italics, xxxii

J
jim, 357
job control, 7, 12,240

interact, 360
shell, 310
shell-style can't be automated, 240

Jobs, Steve, 176
Johnston, Barry, xxix
join, 45-46, 64, 526
joining lists into string, 45
journals, 21

K
kt, 457
KABORT,358
KDATA,358
kdestroy, 376
Kenna, xxix, 435
Kerberos, 5, 13, 376
kermit, 196, 289
kernel-generated stop signal, 316
Kernighan, Brian, xxix
keyboard stop signal, 308
keystrokes, 431
kft, 457
kibitz, 17,256,355,357-359,382

dynamic, 361
figure, 356
implementation, 356

554

-noproc, 380
proxy account, 357
using from other scripts, 380
versus xkibitz, 361
xterm, 294

KILL, 307
kill, 296, 308

-9, 204
signal, 308, 312
-STOP 0, 317

Kimery, Sam, 20
kinit, 376
Klnzehnan,Paul, xrix

Knuth, 524
Korn shell, xxiv

L
label, 437,442
lappend, 43, 49, 364, 461, 483, 485-486
leap seconds, 528
Legalese, 15
Lehenbauer, Karl, 59
Lemis, 18
levels of precedence, 28
-lexpect, 514
-lexpect, 517
Libes family, xrix

libexpect.a, 493, 514
library, 68

Expect, 492-493,510,514,517,526
ftp, 511
platform-dependent versus -

independent, 526
Tel, 493,514,517

limit program to given time, 98
limitations

input buffer max, 276
terminal driver, 274

lindex, 38,133,443,479,484
line kill character, 274
linefeed, 396
line-oriented, 197
llNES, 450
linsert, 44
Lisp, 70
list, 57

append, 43
command, 42

Exploring Expect

commands can be dangerous, 232
reverse, 70

listbox, 479
listing breakpoints, 425
lists, 38

are strings, too, 41
creating, 42
inserting, 44
joining lists into strings, 45
lists of, 40-41
of spawn ids, 254
replacing elements, 44
searching, 44
selecting elements, 38
sorting, 45
spawn ids, 254
splitting, 45

llength, 38-39,215,337,479,485-486
dangerous, 189

IOlil:l, 157
load_diet, 440
log, 27

by tracing, 407
lo~~e, 180,334,337,404

-a, 181
-noappend, 180

lo~user, 175-177, 179, 249, 285, 298, 364,
404,466,471-474,510,519

-info, 182
logitle, 407
logger, 377
login, 3, 154, 167,272,351
lognumber, 338
longjmp, 509
lpc, 231
lpr, 284
lpunlock, 17
lrange, 39, 201, 479, 484
lreplace, 44
lsearch, 44

-exact, 485
lsort, 45
-ltel, 517
Lynch, Daniel, 394

M
macho stud language, 3
Mackerras, Paul, 216
mail

commercial provider, 275
process, 383
protocol, 130
sending from Expect, 383
verify address, 175

make_selection, 443
Makef"tle, 514,517
man pages, xxiii, 19
manager

disconnection, 379
for disconnected processes, 384

Mariano, Adrian, ~
Martin Marietta, 14
master

and slave, 294
pty,294

match anything but the given
characters, 129

match_max, 150,249,408
-d, 150

maxtime, 98, 100, 163, 232
Mayer, Neils, 429
McLennan, Michael, 60
message-of-the-day, 122
meta key, 457
mirror, ftp, 270
miscreant, 121
missing return, 345
mkdir,66
mkitfo, 385
mkpasswd, 17,524
modem

AT command in a loop, 211
dial, 85
monitoring usage, 338
testing and setting, 14
works by hand but not by script, 196

modulo, 27
monitor

inactivity, 347
modem usage, 338

Moore, Jeff, ~

more, 149
Morse, Will, ~
Mosaic, 392, 397

slick but stupid, 397
Motif, 10, 429
Motorola, 14
moving up or down the stack, 417
Mulroney, Lenore, ~
Mulroney, Sue, xxviii

555

multiple commands on a single line, 24
multiple processes, 233

interacting with one another, 234
multi-user control, 17
mv,67

N
N, 415,423
n, 413,415,423
named pipes, 246
National Cancer Institute, 14
National Institute of Standards and

Technology, xxviii, 16
NAWS, 401
Negotatiate About Window Size, 401
Nelson, Ted, 121
netpipe, 401
netstat, 401
network

devices, 14
pipe, 401
slow, 152

new features, telling the user about, 336
newgrp, 211

newline, 79
news, unread, 475
newsgroup comp_lang_tcl, 21
NIS, 5,434
NIST, xxviii, 16
NNTP,482
nondestructive space, 450, 456
no-op, 190
not, 27
NSUBEXP, 505
NULL, 504
null character, 24, 155, 343, 396, 504

556

o
O'Reilly & Associates, 429
O'Reilly, Tim, xxix

Obfuscated C and Other Mysteries, 401
Obfuscated C Code Contest, xxvi
OCLC, 398
octal, 27
octal integer pattern, 109
older workstations, good use for, 400
one line pattern, 135
Online Computer Library Center, 398
open, 60, 63, 284, 289, 292, 472, 474, 482,

523
pipeline, 526
w+, 284,290,292
with interactive programs, 284

or, 27
Oracle, 69
order ofInit functions, 516
OSF, 429
Ousterhout, John, xxvi, xxviii, 19-20, 28,

69
outfUo, 378
output

disabling, 174
merged with standard error, 175

output chunking, 89-90
overview ofTk, 430

p
p,428
pack,431,435-438,442,479
pager, 85
Paisley, Scott, xxv, xxvii
parallel set, 70
parameters, xxxii, 34
parentheses

for pattern feedback, 111, 115-116
limit of nine, 116
override expression precedence, 28
override pattern precedence, 110

parity, 157,249,291
parray, 68,412,428
partial automation, 82
pass by reference, 36,57
pass by value, 36

Exploring Expect

passmass, 17, 155
passwd, 4-5, 7, 200, 436

executing on multiple hosts
simultaneously, 155

GUI, 434
rewriting, 5

password, 525
echo with asterisks, 444, 463
entering twice, 377,441,466
generating random, 524
prompt, 375
reuse, 376
stored in script, 375

password_backspace, 445
PATH, 215, 287
pattern

any character but], 129
any character but A, 129
any character but a letter, 129
background, 446
backslashes in, 91
computer generated, 135
C-style language identifier, 108
C-style real number, 140
debugging, 165
email address, 137
exact, 327, 332
four-byte integer, 156
ftp listings, 132
ftp prompt, 190
full_buffer, 151
hexadecimal, 106,108
integer, 108
longest string not including a

blank, 129
Is output, 132
message-of-the-day, 122
octal integer, 109
one and only one line, 135-136
politics of, 154
prompt, 119, 121, 125, 147, 167
range, 91
readable, 90
real number, 110
really slow, 165
Roman numbers, 106

shell-style, 32,91
simple, 134
SQL, 135
switch, 133
Tel integer, 109
timeout (literal), 106, 110
type preilX, 109

pattern match
limits, 149
strategy, 113-114,130

pattern-action pairs, 75
pelose, 500
Pendleton, Bob, 226
Perl, xxiv-xxv, 70
perpetual buffering, 154
Phelps, Tom, 19
PHIGS, 69
physiologist, 325
pi, 36
pid, 304,471,473,524
pid2whatever, 362
pidiue_read, 386
pidiue_ write, 386
piece, 110
Pike, Rob, 288
ping, 96, 178
pipe, 498-499

bidirectional communication, 305
write failure signal, 308

pipeline, 61,284
compression through, 489

play audio, 480
politics of patterns, 154
poll, 292,303,508
popen, 495,500
POSIX, 13, 155, 313, 334, 375, 385

stty, 205
POSIX.l, 367
power failure, 307
Practical Programming in Tel and Tk, 20
precedence, levels of, 28
predeitned spawn ids, 245

any _spawn_id, 259
Prentice Hall, 20, 305
Press et aI, 524
preventing bad commands, 346

557

Prime Time Freeware, 17
print array, 68
printf, 497, 521
proc,34,438,445,468-471,473,477-478,

480,482-487,489,524
dynamically generating, 232

procedure, 34
call stack, 414
introduces new scope, 241
recursive, 35
tiny ones are very useful, 242

process, 78
bidirectional pipelines, 292
identifier, 233

procomm, 289
programs

as device drivers, 289
reuse, 288
that ignore eof, 103

prompt, 121, 125, 167
changing, 120, 228, 232, 389
default, 467
ftp, 190
interpreter, 226-227,516
password, 375

by proxy, 201
patterns, 147
vulgar pattern, 211

prompt!, 228, 362
prompt2, 228
protocol

in-band error-reporting, 358
negotiation, teInet, 395

proxy account, 357
ps, 105,200
pseudo-random, 278
pseudoterminal, 292
pty, 292, 294, 305

allocation, 303, 498
hung, 302
modes, 300
three-step initialization, 301
trapping, 510

ptyilX, 303, 305
puts, 27,229,284-285,304,412,472,478,

483

558

me, 61
-nonewline, 61, 284
versus send, 188,283
versus send_user, 182

pwd, 122
Python, xxv

Q
quack said the duck, 117
quadratic formula, 54
quit signal, 308,312
quotes, xxxiii
quoting conventions, 25

R
r, 418,423
race condition, 193
radiobutton, 436
random, 278,524,530

number generator, 523
password generation, 524

random_init, 524
range pattern, 91
rep, when you cannot use, 351
-re, 109
read, 62, 495

commands fromme, 217,220
commands from standard input, 218,

224
from script, one line at a time, 217,

224
readability, 90
readline (GNU), 226
real number pattern, 110
reap, 105
reasonable error, 279
reconnecting disconnected

processes, 378
recursive

ftp, 17, 133, 163, 336
procedures, 35

Red Alert!, 475
redirection

shell, 173
standard I/O, 209

Exploring Expect

regexp, 107,137,175,189,364,465,482,
503

-indices, 138
to delete last character in word, 445
versus string match, 530

regsub, 138, 216
-all, 139

regular expression, xxviii, 107,328,332,
421,502

atom, 107
branch, 109, 115
caching, 503
compilation, 503
figure, 115
fiurtherreading, 20
limits, 158
POSIX.2 style, 114

rehash, 72, 215
remote shell exit status, 117
remove_nulls, 155, 249

-d, 156
remsh,97
rename mes, 70
repeaters, 15
reprompting, 193
Request For Comments, 80
reserved t1le name, 224
resize, 250, 431
retrieveanRFC, 17,186
return, 34-35,143,228,230,339,363,368,

418,442,469,483,485-486
character on input, 72, 79
-code, 462
from interact, 338, 340
from interpreter, 227
from procedure, 418
missing, 345
multiple values, 58
value, 26

overriding, 320
reuse, 288
reverse, 70
rewriting

ftp, 22
passwd, 5

rewriting the #! line, 216

RFC
1073 (Window Size), 401
854 (Telnet), 80, 393
959 (FTP), 80
retrieve, 186

rftp, 17, 133, 163, 336
RHBOMB, 121
rlogin, 2, 126,200,316,340,351-352,357,

402
daemon, 316
script, 122
versus rsh, 118
with same directory, 122

rlogin-cwd, 17
for telnet, 341

rlogind, 316
rm,66

rn
-f, 334,475

behaves oddly in background, 373
reprompting, 195

RNG, 523-524
Robbins, Arnold, xxviii
robohunt, 148
robust, 81
Rochkind, Marc, 305
rogne, 141-142,458-459
rogue.exp, 17
Roman number pattern, 106
Rose, Marshall, 394
round, 27
routers, 14-15
rsh, 97,126

exit status, 117
versus rlogin, 118

rtfm.mit.edu, 401
rup, 232
rz, 352, 369, 467, 489

over rlogin, 351

s
s, 423
Sandia National Laboratories, 15
sane, 158,301,497
Savoye, Rob, xxviii, 15
SB, 393

scalar, 51
scan, 46-47,140,487

regular to control character, 330
scanf, 140
Scheme, xxv
Schlumberger, 15
Schumacher, Dale, 20
scientific notation, 27
scope

current, 417
global, 413
identifier, 417

script, 180, 183, 259, 334, 337, 348, 463
design, 231
robust, 81
send_humanly, 285
with command timestamps, 256

scriptless Expect programs, 518
scrollbar, 430,437, 479
SE, 393
se, 450
search path, 287
security, 200, 202

by me protection, 202
by host protection, 203
problem, 434
testing, 14

seek, 62
select, 292, 303, 444, 508
select_nexcnopassword, 443
semicolon, 24
SEND, 393
send, 71,284-285,433,466,471-474

-,282
-break, 282
-h, 278

good typist, 280
humanly, 278
-i, 248,271
long running, 276
not affected by lo~user, 176
-null, 281
-raw, 285
-s, 277
slow, 275, 277
Tk, 409

559

560

Tk versus Expect, 433,515
to multiple processes, 272
unknown strings, 283
versus puts, 188, 283
without echo, 273, 276

send-i, 352
send_error, 187, 373
send_human, 278,281
send_log, 182, 377
send_slow, 277,281,285
send_tty, 210, 284,466-467
send_user, 7,185,198,284,335,337,340,

373,468,470,472
-raw, 198
translation, 345
versus puts, 182

sendexpect, 191
sendmail, 130
sequences, 448
serial interface, 351

not ready, 196
set, 24,412,428,438,442,461,468,472,

476-486,489
parallel, 70

setbuf, 495
Sex, xxvi
SGA, 393
shadow passwords, 5
Shaney, Mark V., 288
shape, 279
SHELL, 468
shell

backquotes, 78
Bourne, 178
echo, 119
has peculiar behavior as daemon, 392
job control, 7, 372
limit, 150
prompt, 273
rc tIle, 11
testing, 7

shell redirection, 173
shell-style, 91
Shen, Sam, xxix, 409
shortcuts, expect_before and

expect_after, 259

Exploring Expect

SIG pref"tx, 309
SIG_DFL, 310,312,315
SIG_IGN, 309,314-315,498
SIGALRM is reserved, 318
SIGCHLD, 308,313-314,366,500
SIGCLD, 313
SIGCONT, 308,316-317
SIGHUP, 308,310,314,498
SIGILL, 313
SIGINT, 308-309,311-312,317,319,515
SIGKILL, 307-308,312
signal, 274,489,498,509

9, 307
avoid if possible!, 307
evaluation, 318
generation, 307
handler, 308,515

problems, 319
in spawned process versus

Expect, 310
power failure, 307
sending, 307
specillcations, 307

signal.h, 318
SIGPIPE, 308,310,315
SIGQUIT, 308,312
SIGSTOP, 308,316,318
SIGTERM, 308,312,498,515
SIGTSTP, 308, 316
SIGUSRl, 308-309,312,317,319
SIGUSR2, 308-309,312,317
SIGWINCH, 308,315,361
Silicon Graphics, 14
simulating 500 users simultaneously, 15
simulations, 14
sin, 27
sins, covering up, 187
SIPP, 69
slave, pty, 294
sleep, 99, 195-197,277

UNIX versus Expect, 530
slowing rotation of the Earth, 528
smart terminal, 448

emulator, 448
SMTP, 130, 175, 494

connect to port, 392

so, 450
sockets, 289
software

distributions with Expect, 17
interrupt, 307

signal, 311
quality assurance, 14
termination signal, 308, 312
testing, 15

Software Solutions in C, 20
sort, 436
source, 36, 68

$expecClibraryl expect.rc, do
not, 218, 221

-I.expect.rc, do not, 218,221
Sparc, 440
spawn, 71,78,284,287,337,351,388,488,

523
Ibin/sh -c for redirection, 292
absolute versus relative names, 287
catching errors, 296-297
-console, 331
eval, 99
functions, 494
hints, 99
-ignore, 310,315
in the bedroom, 78
-leaveopen, 290
multiple processes, 233
-noecho, 298, 368
-nottycopy, 301
-nottyinit, 302
-open, 289,292,304,379,482,526

tty device, 290
-pty, 294,364
redirection or pipeline, 291
sh-c, 466
telnet, 482
within a procedure is tricky, 100

spawnid
converting to file identifier, 304
direct, 268
indirect, 268, 359
integer representation, 239
lists, 254
multiple, 358

predefined, 245
separate input buffers, 249
useful as array index, 239

spawn_id, 233-234, 238, 242, 247, 274,
360,407

affects many commands, 238
job control, 240
read implicitly, 241
returning, 244
versus -i, 248
writing, 243

561

spawn_out(slave,fd), 295
spawn_out(slave,name), 294,316,364,368
Spencer, Henry, xxviii-xxix, 16, 20
split, 45-46, 64

letc/passwd, 45
filename, 45
versus gets in a while loop, 440

splitting strings into lists, 45
sprint!, 46
SQL, 69

patterns, 135
sqrt, 27
sscanf, 46
stack, 414

evaluation, 405,410
moving up or down, 417

Standard C, 155
standard error, 172, 245

sending to, 187
standard I/O buffering, 7
standard input, 72, 245

redirection, 209
standard output, 172, 245

disabling, 174
redirection, 209

from shell, 173
standout mode, 451
startp, 505
static variables, 59
stderr, correct use of, 188
stdio.h, 493, 497
stepping into procedure calls, 415
stepping over multiple commands, 415
stepping over procedure calls, 413
Stevens, W. Richard, xxix, 394

562

stop signal, 308,316
strace, 405,408

-info, 406
strategy

for catching errors, 225
script design, 231

strftime, 528
string, 46

append, 49
command, 47
compare, 461,466,479,481
everything is a, 23
first, 48
formatting, 46-47
index, 48
last, 48
length, 48
match, 47,91,136,485
match versus regexp, 530
parsing, 46
range, 48
reverse, 70
tolower, 48
toupper, 48
trim operations, 48
trimright, 78, 112, 140

string manipulation, 46
strlen, 521
strobes, 460
struct exp_case, 506
struct timeval *, 508
stty, 198,204,206,251,290,302,315,325,

364,372-373,471
<, 290
-a, 207
arguments, 205
columns, 315
-echo, 199,205,274,290,294
echo, 199
-icrnl, 72
istrip, 291
-ocrnl, 348
POSIX, 205
-raw, 468, 470
raw, 290-291, 294, 470
rows, 315

sane, 301,377
stty_init, 301

-istrip, 302
su,2

with logging, 183
su2, 178, 200
subpattern, 110
sum, 39
Sun, 440
Sun User Group, 17
superuser, 442
support, 21
suspend

character, 316
signal, 308

SV, 449

Exploring Expect

switch, 32, 133, 137, 231,477,484,501,503
syslog, 377
system

call tracing, 408
inactivity monitor, 330
indigestion, 153
versus exec, 207

sz, 352, 369, 467, 489
over rlogin, 351

T
tag2pid, 362
talk, 331
Tel, 11

abbreviation, 11
archive, 20
best and worst things about, 70
extensions, 21,513
idea database, 21
library, 493,514,517,530
Makef"tle, 514
philosophy, :xxv
pronunciation, 3
reference material, 19
shell, 26, 513
source directory, 513
total access to, 231

Tel and the Tk Toolkit, 19,28,69
tc1.h, 514,517
TeL_ERROR, 513,521

TcCEval, 227
argument restrictions, 518

TcCInit, 513-514,516
tel_interactive, 223
TcCInterp, 520-521
tcCpromptl, 516
tcCprompt2, 516
tclAppInit.c, 513-514
Tel-DP, 513
TclRegComp, 503-504
tclRegexpError, 504
tclsh, 26,513,515,519

-f, 515
interpreter, 516

TelX, 69
TCP, 467
TCP/IP illustrated, Volume 1, 394
tcp_wrapper, 400
Tektronix, 14
telephone exchange data collection, 14
tell, 62
telnet, 2,8,14,126,130-131,166,169,196,

204,250,325,340,349,384,392,
397-398,467-468,496,519

behaves oddly in background, 373
daemon, 392

written in Expect, 371,393
escape character, 230
fIle transfer over, 467
lAC, 393
needs code to force exit, 239
protocol, 393

negotation, 395
record session, 402
slow, 152
style escapes, 336
to all different ports, 162
to multiple hosts, 239

telnet-cwd, 341
ten_chars_per_sec, 276
TERM, 373, 450
term_chars_changed, 454, 460
term_elear, 452
term_cursor_changed, 455
term_down, 452
term_exit, 455

term_expect, 458-459, 463
term_init, 451
term_insert, 453
term_standout, 451
term_update_cursor, 455
TERMCAP, 450
termcap, 286, 449, 452
terminal, 372

ANSI, 462
controlling, 372
emulate multiple, 463
emulator, 17

scroll bars, 462
testing, 458

identification code, 250
mode, 226
parameters, 158
servers, 15
type tk, 450

terminal driver, 72,119
buffers, 197
echo, 273
limitations, 274
translations, 274

terminal-generated stop signal, 316
TERMINFO, 450
terminfo, 286, 449-450, 452
testing, 440

GNU C and C++, 15
interactive programs, 6
security, 14
shell, 7
software, 15

Testing Foundations, 17
text, 437

widget, 451,463
Thompson, Ken, 12, 235
tilde, 288
time, 529
timeallcmds, 256
timed-read, 17, 77, 112, 126, 218
timed-run, 17

563

timeout, 3, 94-95, 242, 249, 327, 343, 353,
483

-1, 81
as local variable, 488

564

inItnity, 344
literal pattern, 106, 110
no association with spawn id, 253
none, 81
read implicitly, 241
variable, 75

timestamp, 257, 303, 528
versus date, 530

timing
a read in the shell, 77
dictionary loading, 522
other commands, 529
out, 74
problems, 153

tip, 4,196,282,288-291,351,398,468
Tk, 10, 283, 409, 429, 432

tk

debugger, 428
overview, 430
send, 409,433
suppressing button highlighting, 222
terminal emulator, 511
widget hierarchy, 295

colormodel, 437
terminal type, 450

tk_entryBackspace, 445
tk_entrySeeCaret, 445
tk_strictMotif, 222
tkinspect, 409
TkMan, 19
tknewsbiff, 17,475
tkpasswd, 17,434,463

figure, 435
TkSteal, 295,513
tkterm, 17, 449

example tests, 454
tkwait, 442,461
Todd, Bennett, xxix

Tool Command Language, 11
toplevel, 438, 442
tput, 283
tr-d \015, 348
trace, 53, 408

procedure, 423
tracing, 403

command, 405

system calls, 380, 408
variable, 406

transcript, 305
trap, 308

-<:ode, 320
-interp, 321
-max, 318
-name, 309
-number, 309
pty, 510
SIG_DFL, 310
SIG_IGN, 309

truss, 380,408
tset, 147
TSR, 348

Exploring E.xpect

TSS HAS GONE DOWN, 121
tty_spawn_id, 245,372

unset, 375
ttypO, 294
TTYPE, 393
typeahead, 195
typescript, 334

u
u, 417
u.s. Department of Commerce, xxviii

UART not ready, 196
unbuffer, 17, 299
uncompress, 81,473
underlining, 451
underscore convention, 478
unencrypted passwords in tIles,

NOT!, 203
unhang a printer, 17
uniquely-named me, 70
University of California at Berkeley, xxvi,

16
University of Toronto, 16
University of XXX XXXXXX

XXXXXXXX, 397
UNIX, 14,375

versus VMS, 154
unix, 328
UNIX epoch, 528
unknown, 68, 226, 362
unread news, 475

unset, 53, 367, 462, 489
uplevel, 59,241,417,458,462,480,485
upvar, 57, 241, 244, 417

#0, 482
USENET Software, 17
user_read, 231
user_spawn_id, 245, 354, 356
user-deitned signal, 308, 317
users, contacting multiple, 382
uuencode, 471-472
Uun~t, 80, 130, 170

V
variables

information, 51
static, 59
tracing, 53,406
unsetting, 53

varying argument lists, 39
verbose mode, 404
verify mail address, 175
versions of Expect, 530

testing, 527
vi, 344

autoabbreviation, 326
Virden, Larry, 20
vmess, 328, 333
VMS, 330

versus UNIX, 154
vms, 328
vprint, 404
vrfy, 175
vt100, 395
vulgar prompt pattern, 211
vxWorks board, 348

w
w, 416-418

-compress, 428
-width, 426

wait, 105, 249, 313,466, 483
-nowait, 106
return value, 313

wait for prompts before sending, 79, 81
waiting for a process, 105

watch, 476
weak_password, 440
weather, 17
Weibull distribution, 278
Welch, Brent, xxix,20
What does that have to do with

news!?, 480
where am I, 416
while, 29,231,339,479,482,484
widget, 430

classes, 431
display, 431
exposure, 431
terminal emulator, 511

WILL, 393
Willison, Frank, xxix
WINCH,367
window

change event, 431
size change signal, 308,315

WINTERP, 429
wm, 437,477-478,481,487
wonders of UNIX, the, 318
WONT,393
World Bank, 14
World Wide Web, 20
WorldCat, 398
write, 241,492,495

to multiple people, 237
WWW, 20,397

x
X, 315,361

authority me, 124, 126
client -display flag, 433

565

for interprocess communication, 410
GUI builder, 432
resize, 250
window id, 295, 364

X Consortium, 295
X Window System, 10, 222, 283, 428-429
X Window System Series, 429
XlI

R5, 294,367
R6, 295

Xerox, 14

566

XF, 432
xinetd, 400
xkibitz, 361, 384

figure, 365
versus kibitz, 361

XLISP, 429
XMODEM,351
XOX,331
xterm, 315,363,367-368

-C, 300
-e, 293
resize, 250
-S, 294-295, 364
vehicle for interhost

communication, 361
via kibitz, 294
window id, 364

xterms, 305

y
YART, 69
YMODEM,351
you have unread news, 475
yppasswd, 436

z
Z (from ps), 105
Z shell, xxiv

ZMODEM, 351
zombie, 105

Exploring Expect

About the Author

Don Libes is married to Susan Mulroney, a professor in the Department of Physi
ology and Biophysics at the Georgetown University School of Medicine. Sue
performs research in the area of kidney growth and development. Their well
hydrated daughter, Kenna, has two lovely kidneys.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects. UNIX
and its attendant programs can be unruly beasts. Nutshell Handbooks help you tame
them.

The animal featured on the cover of Exploring Expect is a rhesus monkey, a primate
of the macaque genus. Like all macaques, rhesus monkeys live in matriarchal
communities made up of several family units, each with a female of reproducing age
as its head. Males generally move on to another group when they reach maturity,
while females stay with the same group for life. Occasionally, when a group reaches
80 to 100 members, several of the older females will break off, taking their families
with them, and start a new group.

The communities are strictly hierarchical, and group behavior patterns help to main
tain the hierarchy. Activities such as mutual grooming and "nitpicking" not only
serve to appease the higher-ranking members of the group, but also help to reassure
the lower-ranking members. If there is a dispute between two members of the
group, lower-ranking macaques often take the side of the combatant from the
higher-ranking family, in the hopes that this loyalty will place them in higher favor.

One distinguishing feature of macaques is the sac-like pouches in their cheeks, into
which a large amount of food can be stuffed. This enables them to gather food
quickly in potentially dangerous places, and to eat it later in a safe environment.
When ready to eat, they will force the food from the pouch into the mouth by
pressing on the cheeks.

Macaques are able to adapt to a wider range of environmental conditions than
almost any other animals, with the exception of humans. They live at the heights of
the Himalayas and in low-lying flatlands. They can withstand both hot and arid and
cold and snowy climates. Macaques adapt particularly well to urban areas, where
they often proliferate so well that they become pests. Attempts have been made to
relocate macaque populations back into the wild, but they tend to migrate away
from the forest and back to the nearest city, where they find an abundance of food.

Because of their physiological similarities to humans, rhesus monkeys are
extensively used in scientific experimentation. The rhesus blood factor, or Rh factor,
was discovered in rhesus monkeys in 1937, and later in humans, by pathologists Karl
Landsteiner and Alexander Solomon Wiener. Rh factors are hereditary red blood cell
antigens. Giving Rh-positive blood to a person who is Rh-negative, or vice versa, can
cause the body to have a dangerous and possibly fatal defensive reaction. By testing
for Rh factors, dangerous mismatches are avoided.

Edie Freedman designed this cover and the entire UNIX bestiary that appears on
other Nutshell Handbooks. The beasts themselves are adapted from 19th-century
engravings from the Dover Pictorial Archive. The cover layout was produced with
Adobe Photos hop 2.5 and Quark XPress 3.3 for the Macintosh, using the Adobe
ITC Garamond font. Whenever possible, our books use RepKoverTM, a durable
and flexible lay-flat binding. If the page count exceeds RepKover's limit, perfect
binding is used.

The inside layout was designed by Edie Freedman and Jennifer Niederst and imple
mented by Mike Sierra in FrameMaker using Adobe ITC Garamond and New Courier
fonts. The figures were created in FrameMaker by Don Libes. The colophon was
written by Clairemarie Fisher O'Leary.

Related Titles Available from O'Reilly
Unix Administration

CVS Pocket Reference, 2nd Edition

DNS &: BIND, 4th Edtion

DNS &: BIND Cookbook

Essential CVS

Essential System Administration, 3rd Edition

Essential System Administration Pocket Reference

Postfix: The Definitive Guide

qmail

sendmail, 3rd Edition

sendmail Cookbook

System Performance Tuning, 2nd Edition

The Unix CD Bookshelf, Version 3.0

Unix Backup &: Recovery

Unix Basics
GNU Emacs Pocket Reference

Learning GNU Emacs, 2nd Edition

Learning the bash Shell, 2nd Edition

Learning the Korn Shell

Learning the Unix Operating System, 5th Edition

Learning the vi Editor, 6th Edition

O'REillY'

sed &: awk Pocket Reference, 2nd Edition

sed &: awk, 2nd Edition

Unix in a Nutshell, System V Edition, 3rd Edition

Using csh &: tcsh

Unix Tools
Effective awk Programming, 3rd Edition

lex &: yacc, 2nd Edition

Managing Projects with make, 2nd Edition

Practical PostgreSQL

The Complete FreeBSD, 4th Edition

Unix Power Tools, 3rd Edition

Writing GNU Emacs Extensions

O'REILLY®
Our books are available at most retail and online bookstores.

To order direct: 1-800-998-9938 • order@oreilly.com • www.oreilly.com
Online editions of most O'Reilly titles are available by subscription at safari. oreilly. com

V413HAV
Typewritten Text
V413HAV

Keep in touch with O'Reilly
1. Download examples from our books

To find example files for a book, go to:

www.oreilly.com!catalog

select the book, and follow the "Examples" link.

2. Register your O'Reilly books
Register your book at register. oreilly. com

Why register your books?
Once you've registered your O'Reilly books you can:

Win O'Reilly books, T-shirts or discount
coupons in our monthly drawing.

Get special offers available only to registered
O'Reilly customers.

Get catalogs announcing new books
(US and UK only).

Get email notification of new editions of the
O'Reilly books you own.

3. Join our email lists
Sign up to get topic-specific email announcements
of new books and conferences, special offers, and
O'Reilly Network technology newsletters at:

elists.oreilly.com

It's easy to customize your free elists subscription so
you'll get exactly the O'Reilly news you want.

4. Get the latest news, tips, and tools
www.oreilly.com

"Top 100 Sites on the Web"-PC Magazine

CIO Magazine's Web Business 50 Awards

Our web site contains a library of comprehensive
product information (including book excerpts and
tables of contents), downloadable software, back
ground articles, interviews with technology leaders,
links to relevant sites, book cover art, and more.

5. Work for O'Reilly
Check out our web site for current employment
opportunities:

jobs. oreilly. com

6. Contact us
O'Reilly &: Associates, Inc.
1005 Gravenstein Hwy North
Sebastopol, CA 95472 USA

TEL: 707-827-7000 or 800-998-9938
(6am to 5pm PST)

FAX: 707-829-0104

order@oreilly.com
For answers to problems regarding your order or our
products. To place a book order online, visit:

www.oreilly.com/order_new

catalog@oreilly.com
To request a copy of our latest catalog.

booktech@oreilly.com
For book content technical questions or corrections.

corporate@oreilly.com
For educational, library, government, and
corporate sales.

proposals@oreilly.com
To submit new book proposals to our editors and
product managers.

international@oreilly.com
For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:

international. oreilly. com/distributors. html

adoption@oreilly.com
For information about academic use of O'Reilly
books, visit:

academic. oreilly. com

O'REILLY®
Our books are available at most retail and online bookstores.

To order direct: 1-800-998-9938 • order@oreilly.com • www.oreilly.com
Online editions of most O'Reilly titles are available by subscription at safari.oreilly.com

	Brief Table of Contents
	Extended Table Of contents
	Preface
	How To Read This Book
	1. Introduction - What Is Expect?
	2. Tcl - Introduction And Overview
	3. Getting Started With Expect
	4. Glob Patterns And Other Basics
	5. Regular Expressions
	6. Patterns, Actions, And Limits
	7. Debugging Patterns And Controlling Output
	8. Handling A Process And A User
	9. The Expect Program
	10. Handling Multiple Processes
	11. Handling Multiple Processes Simultaneously
	12. Send
	13. Spawn
	14. Signals
	15. Interact
	16. Interacting With Multiple Processes
	17. Background Processing
	18. Debugging Scripts
	19. Expect + Tk = Expectk
	20. Extended Examples
	21. Expect, C, And C++
	22. Expect As Just Another Tcl Extension
	23. Miscellaneous
	Appendix - Commands and Variables
	Index Of Scripts
	Index

