
Situation
PyMuPDF is a Python binding for MuPDF, a library written in C. By nature of this construct, there
obviously co-exist two levels of code: object-oriented Python code, which serves as an API to the
programmer and the C-functions of MuPDF, which do the actual work.

The glue between these levels is generated by SWIG. SWIG translates MuPDF's C structures and
functions into Python classes and their methods, respectively. For example, calling the C function
fz_open_document not only opens a document for access, but also also creates a Document object in
the Python code. A plethora of other functions dealing with opened documents in MuPDF are being made
available as methods and properties of the created Document object at the same time. Examples of such
functions are decryption, determining number of pages, accessing meta information and loading pages for
further processing - another example of a Python object creation: a Page object.

While all this works marvelously as long as everybody is behaving well, it is at the same time frighteningly
easy to provoke Python interpreter crashes by seemingly small errors.

An example
Obviously, a 1:n relationship exists between a document and its pages. When a document is closed,
most of its resources on the C-level are being freed. But in Python any Page objects are not deleted. Most
or all Page methods and properties are disabled by the closed status of the parent Document, but the
object as such continues to exist.

Premature Deletion of Document object
If the programmer deletes his Document object without closing it, an erroneous situation may result:

1. The Python document object is not accessible anymore.

2. Any Page objects have no knowledge about this and will show unexpected behaviour when being
accessed.

3. In MuPDF's C code, the opened document continues to exist. There is no way to access it again
during the current interpreter session. Any changes applied to it will be lost.

Complication

Methods select(), deletePage(), etc.
These methods change the structure of the current document and will very probably invalidate any
existing Page object.

For similar reasons as in the previous section, accessing Page objects created before method execution
afterwards will probably crash the interpreter.

There is even more ...
The annotations of a page (including links) also are in a 1:n relationship to their page. When the owning
page gets deleted, nothing takes care of these orphans currently.

Solution
We need a mechanism similar to referential integrity of relational databases.

But a simpler version suffices as follows:

1. Before a document is closed or deleted, all existing page objects should be deleted (or at least be
marked as invalid for any access).



2. Likewise, before execution of any of the methods select(), copyPage(), movePage(),
deletePage() and deletePageRange(), all (!) existing page objects should be deleted.

3. Similarly, before a page object is deleted, all of its annotations and links should be deleted. As page
objects will be deleted via the previous two conditions, a cascading effect will result, when a
document is closed.

Point 2. above deserves some comment to address objections like "why should page objects be deleted
that are not affected by those methods?".

Short answer: In most cases, there are no unaffected page objects. Long answer:

1. Methods select() et al. work on the document level and by page number. They are not connected to
any Page object. It would be very hard or impossible to find out whether there exist page objects
whose numbers are among those deleted by these methods. Additionally, when pages get deleted,
copied or moved, not only their own page number will change, but also those of many others.

2. Working on the document level means dealing with the document structure. It seems improbable,
that Page level work like rendering or text extraction should occur at the same time or otherwise
interfere. Because the above methods implicitely also change page numbers across the document,
there is no reasonable way for the programmer to keep track of this.

So the easiest and clearest approach seems to be the suggested one.

Technical Approach

The Document and its Pages

• When a Page is (loadPage()) created, it records itself in the document-owned dictionary
_page_refs = {id(page): page, ...}. This dictionary is of type
weakref.WeakValueDictionary to make sure pages can be deleted even if they are recorded
here.

• Currently, page objects reference back to their containing document object (via
page.parent = document). In order to intercept any unsolicited del doc or doc = None
statement, this referencing is replaced by a weak reference (weakref.proxy(doc)).

• When all page objects get deleted:

• Loop through the dictionary, and delete / invalidate each page object.

• Empty the dictionary.

• When a Page is deleted, it deletes its entry in the Document's dictionary via its object-id.

The Page and its Annotations / Links
This works much the same way as in before section:

• When an annotation or link is created, it records itself in its page's dictionary
_annot_refs = {id(annot): annot, ...}. This dictionary is of type
weakref.WeakValueDictionary too.

• Annotations and links reference their containing page via annot.parent = page. This is replaced
by weak reference annot.parent = weakref.proxy(page).

• When an Annot is deleted, it deletes its entry in the page's dictionary.





API changes
PyMuPDF users do not need to change anything and should even not realize that anything has changed -
provided that no flaws in their script's flow exist.

However, if a page, annotation or link is referenced for which the respective parent has gone, a
RuntimeException is now raised with text orphaned object: parent is None. This situation can
be obviously be avoided by checking whether parent is None.

Because dependent objects are now being recorded and only weak references are being used, the
Python and C levels of PyMuPDF applications should be kept much more in parallel. When a document is
not referenced elsewhere, then whether doc.close(), doc = None or del doc are issued, all page
objects and their respective annotations are dropped (freed) on the C level and become unusable on the
Python level.


	Situation
	An example
	Premature Deletion of Document object


	Complication
	Methods select(), deletePage(), etc.
	There is even more ...

	Solution
	Technical Approach
	The Document and its Pages
	The Page and its Annotations / Links

	API changes


