
JSON Quick
Syntax
Reference

THE E XPER T ’S VOICE® IN WEB DE VELOPMEN T

—
Wallace Jackson

 JSON Quick
Syntax Reference

Wallace Jackson

 JSON Quick Syntax Reference

Wallace Jackson
Lompoc, California, USA

ISBN-13 (pbk): 978-1-4842-1862-4 ISBN-13 (electronic): 978-1-4842-1863-1
DOI 10.1007/978-1-4842-1863-1

Library of Congress Control Number: 2016941347

Copyright © 2016 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Chád Darby
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Tiffany Taylor
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com/ 9781484218624 . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484218624
http://www.apress.com/source-code/

 Th is JSON syntax book is dedicated to everyone in the open source community
who is working diligently to make professional new media application develop-

ment software and content-development tools freely available for application
developers to use to achieve our creative dreams and fi nancial goals. I also

dedicate this book to my father, Parker Jackson, my family, my life-long friends,
my content production ranch neighbors, and my business partners, for their

continual assistance and those relaxing, beautiful sunset BBQs under pink clouds
here on the Point Conception Peninsula.

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

 ■ Chapter 1: Exploring a JSON Integrated Development
Environment ... 1

 ■Chapter 2: An Introduction to JSON: Concepts and Terminology 15

 ■Chapter 3: The JSON Schema: JSON Structure Validation 21

 ■ Chapter 4: Objects and Object-Oriented Programming:
OOP Primer ... 31

 ■Chapter 5: JSON Arrays: Serialized Data Store Structures 51

 ■Chapter 6: JSON Data Values: Types of Data that JSON Supports 59

 ■Chapter 7: JSON Character Values: Defi ning Strings in JSON 65

 ■Chapter 8: JSON Numeric Values: Defi ning Numbers in JSON 71

 ■ Appendix A: NetBeans 8.1: Setting Up a JSON Integrated
Development IDE .. 83

 ■ Appendix B: Eclipse Mars: Setting Up a JSON Integrated
Development IDE .. 99

 ■ Appendix C: IntelliJ IDEA: Setting Up a JSON Integrated
Development IDE .. 117

Index .. 139

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

 ■ Chapter 1: Exploring a JSON Integrated Development
Environment ... 1

NetBeans 8.1: The Intelligent JSON IDE .. 1

NetBeans 8.1 Is Smart: Code Editing in Hyper-Drive .. 2

NetBeans 8.1 Is Extensible: Coding in All Languages ... 3

NetBeans 8.1 Is Effi cient: Project-Management Tool .. 3

NetBeans 8.1 UI Design: Responsive Web Design .. 4

NetBeans 8.1 Styling: CSS3 Style Editing Support ... 4

NetBeans 8.1 Debugging: Squash Those Bugs! .. 5

NetBeans 8.1 Optimization: Program Code Profi ler .. 5

Creating a JSON Project: A Bootstrap Project ... 5

Summary ... 13

 ■ Chapter 2: An Introduction to JSON: Concepts and
Terminology .. 15

What Is JSON? ... 15

JSON Is Lightweight: Simpler Is Usually Superior .. 15

JSON Is Text-Based: 100% Language Independent .. 16

 ■ CONTENTS

viii

JSON Structures: Data Objects and Data Arrays ... 16

JSON Is JavaScript Compatible: Easy Integration ... 17

JSON Open Licensing: Free for Commercial Use .. 20

Summary ... 20

 ■Chapter 3: The JSON Schema: JSON Structure Validation 21

JSON Schema: Concepts and Defi nitions .. 21

JSON Schema Advantage: Clear JSON Description .. 22

JSON Hyper-Schema Advantage: Links and Forms .. 22

JSON Schema Core: Language Defi nition ... 22

Summary ... 29

 ■ Chapter 4: Objects and Object-Oriented Programming:
OOP Primer ... 31

Object-Oriented Programming: Overview .. 31

Java OOP Concepts: Hard Object Construction ... 32

Java Objects: Virtual Reality Using OOP with Java ... 39

JavaScript OOP Concepts: Hard and Soft Objects... 47

Summary ... 50

 ■Chapter 5: JSON Arrays: Serialized Data Store Structures 51

An Overview of Arrays: Data Structures .. 51

Declaring a JavaScript Array: Variable Declaration... 52

Accessing a JavaScript Array: Using the Index ... 53

Defi ning a JSON Array: Using the Colon Operator ... 54

Java JSON Support: JSON Utility Classes .. 55

JSON Object Model: Java Object and Array Builder .. 55

The JSON Streaming Model: Parser and Generator .. 57

Summary ... 57

 ■ CONTENTS

ix

 ■ Chapter 6: JSON Data Values: Types of Data that JSON
Supports ... 59

JSON Value: Supported JSON Data Types .. 59

String Value: The Sequence or Array of Characters .. 59

Number Value: Representing the World .. 60

Boolean Value: True or False, On or Off, Yes or No .. 61

Null Values: A Placeholder for Future Data Values .. 62

Java and JavaScript: Boolean and Null ... 63

Summary ... 64

 ■Chapter 7: JSON Character Values: Defi ning Strings in JSON 65

JSON String: Unicode Character Support .. 65

Background of String Values .. 67

Escaping Control Characters: JSON Examples ... 67

Java and JavaScript: Using String Values ... 69

Java String Values: Java’s String Class and Object .. 69

JavaScript String Values: Primitives and Objects ... 69

Summary ... 70

 ■Chapter 8: JSON Numeric Values: Defi ning Numbers in JSON 71

Number Types: Integer, Real, Exponential.. 71

JSON Number: Wide Ranging Numerics .. 71

Positive Integers: Positive Whole Number Values ... 72

Negative Integers: Negative Whole Number Values .. 73

Positive Real Number Values: Positive Fractions .. 74

Negative Real Number Values: Negative Fractions ... 76

Exponential Number Values: Scientifi c Notation ... 78

Summary ... 82

 ■ CONTENTS

x

 ■ Appendix A: NetBeans 8.1: Setting Up a JSON
Integrated Development IDE ... 83

Creating a JSON Development Workstation .. 83

Hardware Foundation ... 84

Open Source Software .. 85

Java 8: Installing the Foundation for NetBeans 8.1 .. 85

NetBeans 8.1: Downloading the NetBeans JSON IDE ... 91

GIMP 2.8: Digital Image Editing and Compositing... 93

Blender: 3D Modeling, Rendering, and Animation... 93

Inkscape: Digital Illustration and Digital Painting ... 94

Audacity: Digital Audio Editing and Special Effects .. 94

Visual Effects: BlackMagic Design Fusion 8.0 VFX ... 95

Digital Video Editing: EditShare Lightworks 12.6 .. 96

Offi ce Productivity Suite: Apache OpenOffi ce 4.1.2 .. 97

Summary ... 97

 ■ Appendix B: Eclipse Mars: Setting Up a JSON Integrated
Development IDE .. 99

Creating a JSON Development Workstation .. 99

Hardware Foundation ... 100

Open Source Software .. 101

Java 8: Installing the Foundation for Eclipse Mars ... 101

Eclipse 4.5: Installing the Eclipse Mars JSON IDE .. 107

GIMP 2.8: Digital Image Editing and Compositing... 112

Blender: 3D Modeling, Rendering, and Animation... 112

Inkscape: Digital Illustration and Digital Painting ... 113

Audacity: Digital Audio Editing and Special Effects .. 113

Visual Effects: BlackMagic Design Fusion 8.0 VFX ... 114

Digital Video Editing: EditShare Lightworks 12.6 .. 115

Offi ce Productivity Suite: Apache OpenOffi ce 4.1.2 .. 115

Summary ... 116

 ■ CONTENTS

xi

 ■ Appendix C: IntelliJ IDEA: Setting Up a JSON Integrated
Development IDE .. 117

Creating a JSON Development Workstation .. 117

Hardware Foundation ... 118

Open Source Software .. 119

Java 8: Installing the Foundation for IntelliJ IDEA .. 119

IntelliJ IDEA: Downloading the IntelliJ IDEA for JSON ... 125

GIMP 2.8: Digital Image Editing and Compositing... 135

Blender: 3D Modeling, Rendering, and Animation... 135

Inkscape: Digital Illustration and Digital Painting ... 136

Audacity: Digital Audio Editing and Special Effects .. 136

Visual Effects: BlackMagic Design Fusion 8.0 VFX ... 137

Digital Video Editing: Editshare Lightworks 12.6 .. 137

Offi ce Productivity Suite: Apache OpenOffi ce 4.1.2 .. 138

Summary ... 138

Index .. 139

xiii

 About the Author

 Wallace Jackson has written for several leading multimedia publications about
production for the media content development industry, beginning with an article about
advanced computer processing architectures for the centerfold (a removable “mini issue”
insert) of the original issue of AV Video Multimedia Producer magazine distributed at the
SIGGRAPH trade show.

 Wallace has written for a number of popular publications regarding his work
in interactive 3D and new media advertising campaign design, including 3D Artist
magazine, Desktop Publisher Journal , CrossMedia , Kiosk , AV Video Multimedia Producer ,
and Digital Signage magazine , as well as many other publications.

 Wallace has authored more than 20 Apress book titles, including several in the ever-
popular Apress Pro Android series, Java and JavaFX game engine development titles,
digital image compositing titles, digital audio editing titles, digital video editing titles,
digital illustration titles, VFX special effects titles, digital painting titles, Android 6 new
media content production titles, and JSON and HTML5 titles.

 In his current book on digital video editing and effects, Wallace focuses on Corel
VideoStudio Ultimate X9 digital video software and uses it to demonstrate digital video
editing, as well as digital video effects and compositing fundamentals, to beginners who
want to become more digital video editing savvy.

 Wallace is currently the CEO of MindTaffy Design, a new media advertising agency
that specializes in new media content production and digital campaign design and
development. The company is located by La Purisima State Park in Northern Santa
Barbara County, on the Point Conception Peninsula, halfway between the clientele in
Silicon Valley to the north and Hollywood, The OC, West Los Angeles, and San Diego to
the south.

 MindTaffy Design has created open source, technology-based (HTML5, JavaScript,
Java 8, JavaFX 8, and Android 6.0) digital new media i3D content deliverables for more
than a quarter century, since January 1991.

 The company’s clients consist of a significant number of international brand
manufacturers, including IBM, Sony, Tyco, Samsung, Dell, Epson, Nokia, TEAC,
Sun Microsystems (Oracle), Micron, SGI, KDS USA, EIZO, CTX International, KFC,
Nanao USA, Techmedia, EZC, and Mitsubishi Electronics.

 Wallace received his undergraduate BA degree in business economics from the
University of California at Los Angeles (UCLA) and his graduate degrees in MIS/IT and
business information systems design and implementation from University of Southern
California located in South Central Los Angeles (USC).

 ■ ABOUT THE AUTHOR

xiv

 Wallace also received post-graduate degrees from USC in entrepreneurship and
marketing strategy, and he completed the USC Graduate Entrepreneurship Program.
Wallace earned his two USC degrees while at USC’s night-time Marshall School of
Business MBA Program, which allowed him to work full-time as a COBOL and RPG-II
programmer while completing his business and IT degrees.

 You can visit Wallace’s blog at www.wallacejackson.com to view his multimedia
production content. You can also follow him on Twitter at @wallacejackson or connect
with him on LinkedIn.

http://www.wallacejackson.com/

xv

 About the Technical
Reviewer

 Chád (“Shod”) Darby is an author, instructor, and
speaker in the Java development world. As a recognized
authority on Java applications and architectures, he has
presented technical sessions at software development
conferences worldwide (in the United States, UK, India,
Russia, and Australia). In his 15 years as a professional
software architect, he’s had the opportunity to work for
Blue Cross/Blue Shield, Merck, Boeing, Red Hat, and a
handful of startup companies.

 Chád is a contributing author to several Java books,
including Professional Java E-Commerce (Wrox Press),
 Beginning Java Networking (Wrox Press), and XML and
Web Services Unleashed (Sams Publishing). Chád has Java
certifications from Sun Microsystems and IBM. He holds a
BS in computer science from Carnegie Mellon University.

 You can visit Chád’s blog at www.luv2code.com to
view his free video tutorials on Java. You can also follow
him on Twitter at @darbyluvs2code .

http://www.luv2code.com/#_blank

xvii

 Acknowledgments

 I would like to acknowledge all my fantastic editors and their support staff at Apress, who
worked long hours and toiled diligently on this book to make it the very best JSON syntax
title currently on the market.

 I would like to thank the following people:
 Steve Anglin , for his work as the acquisitions editor for the book and for recruiting

me to write development titles at Apress covering widely popular open source content-
development platforms (Android, Java, JavaFX, HTML5, CSS3, JS, JSON, and so on).

 Matthew Moodie , for his work as development editor and for his experience and
guidance during the process of making this a fantastic JSON title.

 Mark Powers , for his work as the coordinating editor and for his constant diligence
in making sure I either hit my chapter-delivery deadlines or far surpassed them.

 Chád Darby , for his work as the technical reviewer and for making sure I didn’t
make technical mistakes.

xix

 Introduction

 JSON Quick Syntax Reference is intended for individuals who wish to add JSON to
their programming quiver. These include application developers, web site developers,
user interface design architects, user experience designers, social media application
developers, and just about anyone who’s interested in generating superior-quality
applications that use JSON to talk to the server from their client-side applications.

 This book covers JSON syntax and related concepts; JSON editing; integrated
development environments (IDEs) such as NetBeans, IntelliJ, and Eclipse; and how these
relate to open source OOP languages such as Java and JavaScript. This equates to JSON
syntax, JSON IDE, and OOP fundamentals combined in one book, including technical
terms, topics, concepts, and definitions.

 Each chapter builds on the knowledge learned in the previous chapter. Thus, later
chapters in the book have you creating JSON objects, arrays, and data values using
diagrams from the json.org web site, which guide you in making valid data constructs.

 At the end of this book, three appendixes explain how to assemble a complete JSON
development environment and workstation for each of the three major IDEs, including all
related new media content production software packages.

 In Chapter 1 , you take a tour of the NetBeans 8.1 IDE, which supports HTML5,
JavaScript, CSS, and JSON development inherently in its feature set.

 Chapter 2 looks at basic JSON terminology, concepts, and requirements.
 Chapter 3 examines at the JSON Schema, which provides a roadmap regarding what

JSON supports and how to validate JSON data definitions.
 In Chapter 4 , you learn about JSON Object s and the syntax used to create them. The

chapter also reviews OOP languages, in an object-oriented programming primer.
 In Chapter 5 , you explore JSON arrays and their syntax and learn how to create arrays

of data for JSON Object s and JSON Array constructs.
 Chapter 6 introduces the supported types of JSON data values you can use to

construct JSON Object s and JSON Array s, along with background information regarding
these data types and how they are used in popular computer programming languages.

 Chapter 7 covers the important JSON String data type and how it is used to create
text-based data constructs for JSON Object s and JSON Array s.

 Chapter 8 covers the important JSON Number data type and how it is used to
represent a wide range of numeric data for JSON Object s and JSON Array constructs.

 If you’re interested in creating JSON-compatible computer applications, and you want
to learn all the basic JSON syntax and OOP fundamentals as well as how everything works
together in the IDE, this is the reference book for you to read to start your journey to JSON
mastery. The book is overflowing with tips, tricks, tools, topics, terminology, techniques,
concepts, and syntax. JSON Quick Syntax Reference will give you a boost to transition from
being a JSON neophyte to being the knowledgeable JSON data definition professional you
seek to become, at least where a JSON content production pipeline is concerned.

http://dx.doi.org/10.1007/978-1-4842-1863-1_1
http://dx.doi.org/10.1007/978-1-4842-1863-1_2
http://dx.doi.org/10.1007/978-1-4842-1863-1_3
http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_5
http://dx.doi.org/10.1007/978-1-4842-1863-1_6
http://dx.doi.org/10.1007/978-1-4842-1863-1_7
http://dx.doi.org/10.1007/978-1-4842-1863-1_8

1© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_1

 CHAPTER 1

 Exploring a JSON Integrated
Development Environment

 Let’s get started in Chapter 1 by learning everything you can about the NetBeans 8.1
JSON integrated development environment (IDE), because that is the primary piece of
software you use in this book to create JSON projects. I chose the NetBeans 8.1 IDE to use
for the book, even though I cover all the major IDE software in the appendixes, because
it has native JSON project-creation workflows that you see in this chapter. The other IDEs
currently require plug-ins to support JSON development. You start by learning about the
NetBeans 8 IDE is because it is the front end, or window, through which you look at JSON
development projects. Each chapter builds on information from previous chapters,
so a logical progression is from how an IDE works, to JSON concepts and terminology,
to objects, data structures, applications, and so forth.

 NetBeans 8.1 is the official IDE for the Java 8 JDK, and it’s rapidly growing in
popularity for HTML5, CSS3, and JavaScript development as well; as such, this is the IDE
you should use for this book. Also, a major player (Oracle) is behind the software, and it
is freely available for commercial usage (open source). That is not to say you cannot use
another IDE, such as Eclipse or IntelliJ. These are the official IDEs for Android 4.x (32-bit)
and Android 6.x (64-bit), respectively; but I prefer to use NetBeans 8.1 for my new media
apps and game development for Java, JavaFX, HTML5, CSS3, and JavaScript software
development, as well as for HTML5, XML, JSON markup, and JS programming.

 The first thing you do in this chapter is look at what has been added in NetBeans 8.1.
Next you examine the various attributes of the NetBeans 8.1 IDE that make it an invaluable
tool for JSON Development. You'll see all the cool things JSON will do for you during the
course of this book. Finally, you learn how to create JSON projects by using the NetBeans 8.1
New Project dialogs, which specifically support the creation of JSON projects in NetBeans.

 NetBeans 8.1: The Intelligent JSON IDE
 I assume that you already have a professional-level workstation in place for new media
content development and JSON development, as outlined in detail in Appendix A. IDE
installations are covered in the appendixes, including each of the three open source IDEs.
I also assume that you have removed all your outdated JDKs and IDEs and made sure you
have the latest Java and IDE software installed on your PC.

http://dx.doi.org/10.1007/978-1-4842-1863-1_1

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

2

 If you’re new to coding and do not have the appropriate workstation, go to Walmart
or PriceWatch.com, and purchase an affordable multicore (4-, 6-, or 8-core) 64-bit
computer running Windows 10. It should have 4, 6, or 8 GB of DDR3 (1333 or 1600
memory-access speeds) system memory at the very least, and at least a 500 GB or even
1 TB hard disk drive.

 NetBeans 8.1 Is Smart: Code Editing in Hyper-Drive
 Although it is true that an IDE is essentially like a word processor, it is geared toward
writing text for coding or markup rather than business documents. IDEs such as
NetBeans 8.1 can lend a lot more power to your programming work process than a word
processor brings to the document-authoring work process.

 For instance, a word processor does not make suggestions in real time regarding
the content you’re writing for your business, whereas the NetBeans 8 IDE actually
looks at what you are coding while you’re actually writing the code and helps you write
programming statements and constructs. One of the things NetBeans 8.1 will do is finish
lines of code for you, as well as apply colors to your code statements to highlight different
types of constructs.

 NetBeans 8 also applies industry standards to your code, indenting the code to
make it easier to read for both you and for the members of your JSON application
development team.

 NetBeans 8 can provide matching code -structure brackets, colons, and semicolons,
so you don’t get lost when you are creating complex, deeply nested, or dense
programming constructs found in modern programming languages, such as those
supported by NetBeans 8.1. You create such constructs as this book progresses in
complexity and you go from JSON beginner to JSON developer; I point out JSON code
that is dense, complex, or deeply nested as you encounter it.

 NetBeans 8.1 can also provide bootstrap code such as the JSON application
bootstrap code you create a bit later in the chapter. (I know you’re eager to get started
creating JSON projects and structures as soon as possible.)

 As your code becomes more complex, it also becomes a far better candidate for
 code refactoring , which can make your code easier to understand, easier to upgrade,
and far more efficient. NetBeans 8 can refactor your program’s code automatically.
Code refactoring is the process of changing the structure of existing computer code so
it is more efficient or scalable without changing its external behavior—that is, what the
programming logic (your code) accomplishes. For instance, you could take Java 6 or
Java 7 code and make it more efficient by implementing lambda expressions using Java 8,
or even Java 9 when it is released later this year.

 NetBeans includes pop-up helper dialogs containing methods, constants, asset
references, and suggestions regarding how to construct programming statements. For
instance, NetBeans 8.1 can suggest when it might be appropriate to use the powerful new
Java 8 lambda expression features to make your code more streamlined and multithread
compatible.

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

3

 NetBeans 8.1 Is Extensible: Coding in All Languages
 Another thing a word processor doesn’t do is allow you to add features to it. NetBeans
does, using its plug-in architecture. This type of architecture is said to be extensible ,
which means if needed, it can be extended to include additional features. For instance,
if you wanted to extend NetBeans 8.1 to allow you to program using Python, you could.
NetBeans 8.1 also supports older languages such as COBOL and BASIC in this fashion,
although the majority of popular consumer electronic devices today use Java, XML,
JavaScript, and HTML5. I googled this to be sure, and there are people coding in both
 Python and COBOL in NetBeans 8; this is real-world proof that the NetBeans 8.1 IDE is
indeed completely extensible .

 Probably due to its extensibility, the NetBeans 8.1 IDE supports a number of
powerful programming languages, including C, C++, Java SE, JavaDoc, JavaScript, XML,
HTML5, and CSS on the client side; and PHP, Groovy, Java EE, and Java Server Pages (JSP)
on the server side. Client-side software runs on the device the end user is holding or using
(in the case of an iTV set), and server-side software runs remotely on a server somewhere
and talks to the end user over the Internet or similar network. Client-side software is more
efficient, because it is local to the device it is running on and thus is more scalable: no
server is involved that might experience overload as more people use the software at any
given point in time.

 N etBeans 8.1 Is Efficient: Project-Management Tool
 Your programming IDE needs to be able to manage projects that can grow to become
massive, involving over a million lines of code, contained in hundreds of folders in
the project folder hierarchy, and involving thousands of files or new media assets.
Clearly, project-management features should be extremely robust for any mainstream
IDE, and NetBeans 8.1 contains a plethora of project-management features. These
allow you to look at JSON development projects and the corresponding files and their
interrelationships in several different ways.

 NetBeans 8.1 provides four primary project-management views, or panes , that you
can use to see the various types of interrelationships in your project. I jumped ahead to the
end of the chapter, where the example JSON project has already been created, and took the
screen shot shown in Figure 1-1 . It shows the primary project-management panes open in
this new project; you can see the types of project-related information they show you.

 Figure 1-1. Projects, Files, and Services project-management panes

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

4

 The Projects pane shows HTML5 and JSON source files and important files that make
up your JSON project; it’s at far left in Figure 1-1 . The next pane is Files , which shows the
 nbproject folder and file hierarchy on your hard disk drive. The Services pane, to the right
of that, shows databases, servers, cloud, Hudson Builders, task repositories, JS Test
Driver, and Selenium Server, if these are being used in the project. These are primarily
server-side technologies, and technologies used with a development team, so this book
doesn’t get into them in much detail.

 The Projects pane should always be left open on the left side of your IDE, as you
see in all the figures in this chapter. This pane is the primary access point for all of your
project source code and assets (content). The Files pane shows not only the project folder
and its file hierarchy but also data, HTML5 files, JSON files, and all related project files.

 The Navigator pane, shown at the bottom of your NetBeans 8 IDE under the Projects,
Files, and Services panes, shows the relationships that exist in your HTML5, JavaScript,
CSS3, XML, XSL, and JSON code structures.

 NetBeans 8.1 UI Design: Responsive Web Design
 NetBeans 8 also has Design a GUI drag-and-drop design tools for a plethora of platforms,
including Java SE, Java EE, Java ME, JavaFX, and Java Swing, as well as C, C++, PHP,
HTML5, JavaScript, and CSS3. NetBeans 8.1 provides visual editors that can write the
application’s UI code for you, so all you have to do is make what’s on the screen look the
way you want it to look in your JSON application.

 NetBeans 8 IDE supports the use of responsive web design architecture, allowing
you to select among various form factors for your web page. NetBeans 8.1 can quickly
lay out visual elements in your web design using your browser of choice with any form
factor: portrait, widescreen, or super-widescreen. You can select from form-factor
presets ranging from smartphones to tablets to laptops to iTV sets, and using a portrait or
landscape screen display topology.

 NetBeans 8.1 Styling: CSS3 Style Editing Support
 In addition to enhancing browser capabilities, NetBeans’ CSS Style Editor is aware of any
new media assets your browser is currently displaying and automatically places edits to
the CSS markup referencing those new media assets. Editing support is included for LESS
and SASS preprocessors is also provided, including syntactic and semantic coloring for
CSS language constructs, automatic indentation, reformatting, intelligent code folding,
and file templates.

 Code-completion and refactoring tools are available with variables and mixins. The
deep integration of WebKit browsers allows you to preview changes that you make in a
CSS Style Edit window live in your browser as they happen. No more guessing what CSS3
changes will look like until you refresh the browser; the changes are real-time, taken
directly from the source code.

 You can also inspect using the browser, and the NetBeans CSS Style Editor window
can automatically display CSS rules for each style element you select in the browser
window. It does all this automatically. You can edit CSS3 from the CSS Style Editor

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

5

window using properties fields, or you can go into the CSS3 source code and edit the code
directly, using the NetBeans code-completion and inline documentation helpers.

 CSS3 Style Editor previews are also available for mobile devices. These include the
Google Chrome embedded WebKit browser, Chrome on Android, and Safari on iOS
mobile devices. There’s an excellent chance this feature will soon work on other WebKit
browsers as well, such as in Opera OS.

 NetBeans 8.1 Debugging : Squash Those Bugs!
 There’s a logical assumption across computer programming languages that the negative
impact of a bug on a programming project—that is, code that does not do exactly what
you want it to—increases in magnitude the longer it remains unfixed. For this reason,
bugs must be squashed as soon as they are born, so to speak. NetBeans 8’s bug-finding
code-analysis tool, an integrated NetBeans debugger, and NetBeans 8.1 integration with
the third-party FindBugs project on SourceForge.net (http://findbugs.sourceforge.net , if
you want the stand-alone version) supplement NetBeans’ code-correcting and efficiency
tools, discussed at the beginning of this section.

 Your JSON, HTML5, CSS3, and JavaScript code probably will not become
complicated until later in the book, so later chapters cover how these advanced tools
work when you need to use them and your knowledge is more advanced.

 NetBeans 8.1 Optimization: Program Code Profiler
 NetBeans has a profiler that looks at your JSON code while it is running and tells you
how efficiently it uses memory and CPU cycles. This allows you to refine your code
and make it more efficient in its use of key system resources, which is important for
JSON development because it affects the smoothness of play on systems that are not as
powerful (single-core and dual-core CPUs, for instance).

 The profiler is a dynamic software-analysis tool. It looks at your Java code while it’s
running, whereas the FindBugs code-analysis tool is static : it looks at your code in the
editor, when it is not compiled and running in system memory. The NetBeans debugger
lets you step through your code while it is running; this tool can be viewed as a hybrid of
static (editing) and dynamic (executing) code-analysis modes .

 Creating a JSON Project: A Bootstrap Project
 Let’s get down to business and see how to create a bootstrap JSON project foundation
automatically using NetBeans 8.1. This takes you toward the ultimate goal of being up
to speed regarding JSON development tool options, terms, principles, structures, and
projects. This example shows you how to create an empty JSON and HTML5 project using
the NetBeans New Project dialog.

 Click the Quick Launch icon on your taskbar (or double-click the NetBeans icon
on your desktop), and launch NetBeans 8. You see the NetBeans startup screen , shown
in Figure A-11 in Appendix A. Close the Welcome startup screen using the X in the tab.
In the new (empty) IDE, click the New Project icon at upper left; it’s shown selected in
Figure 1-2 . Doing so opens the NetBeans New Project dialog.

http://findbugs.sourceforge.net/

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

6

 In case you’re wondering, you can access the start page and its tutorials at any time!
To do this, in the NetBeans 8.1 IDE, choose Help ➤ Start Menu.

 To create an empty skeleton or bootstrap NetBeans 8 JSON project, you can use
the NetBeans 8.1 New Project series of dialogs. This is one of those helpful JSON
programming features that I talked about in the previous section; it creates a starting-
point project with all the correct JSON files (ending in .json), HTML5 files (ending in
 .html), and JavaScript files (ending in .js), as you saw in Figure 1-1 . You learn about
these components in the rest of this book.

 The first dialog in the series is Choose Project, shown in Figure 1-3 , where you select
the HTML5/JavaScript option. The JS in JSON stands for JavaScript, so this is the logical
place to start. Click the Next button to proceed to the next in the series of New Project
dialogs, where you can name your project and set its location on your JSON development
workstation.

 Figure 1-2. Launch NetBeans 8.1, and click the New Project icon

 Figure 1-3. Select HTML/JavaScript in the Choose Project dialog

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

7

 In the Name and Location dialog, shown in Figure 1-4 , enter a Project Name of
 HTML5+JSON . Leave the Project Location and Project Folder fields set with the default
data specified by NetBeans 8.1. Once everything is configured, click Next to advance.

 In the Site Template dialog, shown in Figure 1-5 , select the first radio button, labeled
No Site Template. I recommend that you shy away from using site templates —they
make your site look like everyone else’s, when your objective may be to have a uniquely
branded web site design (look and feel).

 Figure 1-4. Name the project HTML5- JSON , and click the Next button

 Figure 1-5. Select No Site Template, and click Next

 Click the Next button to advance to the fourth dialog, which allows you to select
tools you wish to use for your JSON and JavaScript development. Select the JSON and
JavaScript tools that NetBeans 8.1 suggests, as shown in Figure 1-6 . I will be sure to cover
these so you know what they do for your HTML5, JavaScript, and JSON application
project-development workflow, although I prefer to code JS from scratch.

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

8

 package.json is for the Node.JS Package Manager (NPM) ; this file holds various
metadata relevant to your project. You can use the file to give information to NPM that
allows it to identify the project as well handle project dependencies. project.json can
contain metadata such as the project description, the project’s versioning, licensing
information, configuration data, and so on, all of which is important to NPM and its
end users.

 Here’s a sample project.json file with lots of goodies:

 {
 "name" : "jsonproject",
 "description" : "Sample JSON Project NPM description format using JSON",
 "homepage" : "example://cloudy.github.com/fakejsonprojectexample/wj/",
 "keywords" : ["util", "functional", "server", "client", "browser"],
 "author" : "Apress Author Wallace Jackson <wallacejack@apress.com>",
 "contributors" : [],
 "dependencies" : [],
 "repository" : {"type": "git", "url": "git://github.com/cloudy/wj.git"},
 "main" : "jsonproject.js",
 "version" : "1.1.6"
 }

 This package.json file would normally be located in the root directory for your
NetBeans 8 JSON project, as highlighted in Figure 1-1 . Bower is another package-
management system you can use to define project packages, much like the NPM
 project.json file you just learned about.

 Gruntfile. js is for Grunt, which also works with NPM and is a task-running utility.
Grunt and its plug-ins are installed and managed via NPM. A Grunt 0.4.x installation
requires stable Node.js versions greater than 0.8. Odd version numbering for Node.js
is considered to be unstable. gulpfile.js is used for the Gulp streaming build system,
which is a Grunt alternate. (I selected these to show you the tool options.)

 Click the Finish button in the last New Project dialog, and NetBeans 8.1 creates the
entire project as shown in Figure 1-7 , with folders, subfolders, and files. Now this JSON
project is ready for you to populate with your own code and new media assets that the
code references.

 Figure 1-6. The Tools dialog in the New Project series

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

9

 As you can see, NetBeans 8.1 created the project and opened the index.html file and
the Bower, Grunt, Gulp, and NPM tool-related files in the IDE. Figure 1-8 shows package.
json with name , version , keywords , author , contributors , and dependencies entries,
which you can populate if you’re going to use Node.js.

 Figure 1-9 shows the bower.json file, featuring the name , version , main , ignore ,
 dependencies , and devDependencies data entries. You can customize these if you are
using Bower. It is important to note that you are not required to use Node, Bower, Grunt,
or Gulp; I’m just showing you the NetBeans tools.

 Figure 1-7. Your bootstrap JSON project, created by NetBeans 8.1

 Figure 1-8. The package.json file defines package-level options

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

10

 Figure 1-10 shows the gulpfile.js file , which defines a variable named gulp and
then designates it as requiring the Gulp engine. It then calls the .task() method from this
 gulp object, defining a 'default' string and an empty function() that you can fill with
your own functional program logic.

 Figure 1-11 shows a Gruntfile.js file that instantiates an object named grunt in the
 function() parameter area, calls the .initConfig() method from the grunt object, and
includes an empty {} code structure in an initialization configuration method parameter
area body, which you can code.

 Figure 1-9. The bower.json file defines a project-level CSS path

 Figure 1-10. The gulpfile.js file defines project Gulp tasks

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

11

 Now that you’ve seen how to create an empty JSON, JS, and HTML5 project that
supports Node.js, Grunt, Gulp, NPM, and Bower, let’s take a look at what happens to the
NetBeans 8 IDE when you choose the Run ➤ Run Project menu sequence. This is shown
at the top of Figure 1-12 .

 The first time you run any NetBeans 8 HTML5-related project, you need to establish
a bridge to your Chrome browser using the NetBeans Connector plug-in , which you can
get at the Google Chrome Web Store for free; see Figure 1-13 .

 Figure 1-11. The Gruntfile.js file defines project Grunt tasks

 Figure 1-12. Use the NetBeans Run ➤ Run Project menu sequence

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

12

 Instead of trying to enter a cryptic URL like the one shown in Figure 1-13 (which,
because it is algorithmically generated, could change at any time), you should let the
NetBeans 8 IDE do the shopping for you, as shown at far left in Figure 1-14 . Simply click
the Go To Chrome Web Store button, and NetBeans will automatically open the Google
Chrome Web Store page in Figure 1-13 .

 Once you click the blue Add To Chrome button, shown at upper right in Figure 1-13 ,
you see the pop-up dialog in the middle of Figure 1-14 , advising you of the install
completion. When you return to NetBeans, you see the dialog shown at right in Figure 1-14 ;
click the Re-Run Project button to run your (empty) bootstrap code. Running empty projects
doesn’t produce an application, but NetBeans opens a few more (CSS Styles, Output,
Browser DOM) panes. You have now previewed the JSON-capable IDE from Oracle!

 Figure 1-13. Add your NetBeans Connector plug-In to Chrome

 Figure 1-14. Install Chrome Extension dialog and work process

CHAPTER 1 ■ EXPLORING A JSON INTEGRATED DEVELOPMENT ENVIRONMENT

13

 Summary
 In this first chapter, you looked at the NetBeans 8.1 JSON-capable IDE. You saw NetBeans’
powerful, intuitive features and learned how to have NetBeans create JSON projects.
I wanted to make sure you understood your software tools before proceeding!

 In the next chapter, you start learning about JSON: what it is, what it’s used for, and
similar foundational information you need throughout the rest of this reference book.

 Figure 1-15. Several new panes have been opened by NetBeans 8.1

15© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_2

 CHAPTER 2

 An Introduction to JSON:
Concepts and Terminology

 Now that you have had an overview of the integrated development environment (IDE) you
use to work with JSON and compatible OOP languages—the most common of which is
Oracle NetBeans 8.1 for Java, JavaFX, and HTML5 development—this chapter takes a high-
level look at what defines JSON, including the concepts behind it, advantages of using
JSON, terms used to describe it, and the various rules that dictate its data-object definition
design approach. JSON is well on its way to replacing XML as a definition format, at least
where object-oriented data is concerned. Chapter 3 looks at object-oriented concepts and
design; here you focus on learning other JSON-related information, so later you can focus
on the definition format and what it supports and allows you to do with objects. After these
core chapters, the book examines real-world applications for JSON as well.

 What Is JSON?
 J SON stands for JavaScript Object Notation . It is based on the ECMA-262 3rd Edition
JavaScript Standard established in December 1999. This subset of the JavaScript
programming language, often called ECMAScript , is what I use for JavaScript programming.
This is so my JavaScript code is sure to run across all WebKit-based HTML5 browsers and
HTML5 operating systems. This is why I use ECMAScript in my HTML5 with CSS3 and
JavaScript projects, rather than one of the proprietary JS package solutions (Node.JS, for
instance), which might not have native support on any given OS, platform, or device. To have
native support, the Node.JS library would have to be part of an OS, browser, or platform API,
as ECMAScript-262 is. More about this later on in the chapter. Let’s look at JSON’s advantages.

 JSON Is Lightweight: Simpler Is Usually Superior
 The JSON object structure definition language originally was designed and developed
for use as a lightweight, JavaScript object-oriented data-interchange programming
structure. This JSON format was specifically designed to be as simple as possible so that
programmers can read JSON data structures effortlessly as well as encode JSON data
structures optimally, concisely, quickly, and efficiently.

http://dx.doi.org/10.1007/978-1-4842-1863-1_3

CHAPTER 2 ■ AN INTRODUCTION TO JSON: CONCEPTS AND TERMINOLOGY

16

 Obviously, this also makes JSON easy for programming algorithms to parse, process,
and generate; but then again, what streamlined algorithm can’t a 2 GHz, multicore
processor handle these days? Still, the less processing power is used to parse and process
JSON data structures, the more is left over for your application to use.

 No matter how powerful a server, network, or client-side device may be, data-
footprint optimization is always a great thing. You want scalability to be maximized in
case your application takes off and millions of users flock to it as it becomes the “in thing.”
This is exactly what JSON has been optimized for in its design, structure, language, and
implementation. XML, for instance, uses far more characters to design data structures
than a JSON structure would.

 JSON Is Text-Based: 100% Language Independent
 JSON uses a text-based format that’s completely language independent. The specification
uses conventions familiar to programmers of OOP languages, including C, C+, C++,
Objective-C, C#, Java, JavaFX, JavaScript, Ruby, Visual Basic .NET, Object COBOL, Object
Pascal, Scala, Smalltalk, ADA, Perl, PHP5, Python, Prolog, and dozens of others. (In case
you are wondering, Simula was the first OOP language; it was created in Norway by Ole-
Johan Dahl and Kristen Nygaard back in the 1960s. The creator of C++, Bjarne Stroustrup,
was influenced by the object-based approach of Simula. The Java programming language
was also influenced by this object-oriented approach.)

 This object-based, text-scripted approach makes JSON the perfect data-interchange
definition language for use in today’s popular OOP languages, operating systems, devices,
and platforms. Let’s take a closer look at the types of data structures that can be used in
a JSON data-definition language construct. After that, you explore the close relationship
JSON has with ECMAScript-262 JavaScript as its primary parsing OOP language.

 JSON Structures: Data Objects and Data Arrays
 Only two primary types of data structures can be used in JSON, and they’re covered in
this section. This doesn’t mean JSON data constructs are not powerful; these two types of
data structures can be used in conjunction to build complex data representations, as you
see throughout this book.

 It is important to note that the structures used in JSON are what are called universal
data structures, because they are used in virtually all current programming languages and
platforms in one format or another. It is therefore logical that JSON is based on these two
types of data structures, in order for each language that supports using JSON to be able to
parse, or deconstruct, JSON representations into objects in memory.

 Data Objects: Collections of Name:Value Pairs for Data
Structures
 A collection of name:value pairings is known across programming languages by a many
terms. The most common is object , due to C++ and Java, but terms such as record , from
database languages; struct , for structure (which I prefer); and hash table are also common,
as you know. Other terms include associative array , data dictionary , and keyed list .

CHAPTER 2 ■ AN INTRODUCTION TO JSON: CONCEPTS AND TERMINOLOGY

17

 Thanks to the curly brace { ... } encapsulation construct and the ability to nest
these constructs, objects can become complex and powerful for defining precise
data-structure organization and object-design hierarchies. You look at this in Chapter 3 ,
which reviews OOP concepts, structure, and terminology using the popular Java and
JavaScript languages.

 Data Arrays : An Ordered List Defining Sequential Data Values
 In addition to data objects, you can also define data arrays, which are ordered lists of data
values that can be accessed by positional pointers or references in that sequence. This
is a database or datastore in its simplest format. In conjunction with the allowed object
structure, your database record structure can be simulated handily using JSON.

 An ordered list of sequential data values is also recognized across programming
languages by a number of terms. This construct is most commonly referred to as a
 data array . Other terms, such as vector , from 2D and 3D mathematics; sequence , also
from mathematics; and list are also common. Other terms may include data collection ,
 datastore , and ordered data .

 JSON Is JavaScript Compatible: Easy Integration
 Because JavaScript is half of what JSON stands for, it is logical that JSON works seamlessly
with JavaScript (JS). JavaScript is a general-purpose programming language originally
introduced with the Netscape Navigator browser, as its document scripting language.
JavaScript works in conjunction with HTML5 and CSS3. One of the popular myths
regarding JavaScript is that it is somehow related to Oracle’s Java, but it is in fact not
related to Java other than being another popular OOP language. JavaScript has been
standardized in ECMAScript using the ECMAScript-262 Language Specification, 3rd
Edition .

 JavaScript is similar to the Scheme language and uses a syntax much like the original
C programming language. It uses soft objects , where new object members can be added to
the soft object via simple assignment. A hard object , on the other hand, would require a
new class to instantiate it. You look at this difference in more detail in Chapter 3 .

 JSON is a subset of JavaScript’s object literal notation and is therefore seamlessly
compatible using that OOP language. Because JSON is a subset of JavaScript, it can be
used in that language with no alteration of format, structure, or code design. This means
less work for the JavaScript (HTML5) developer.

 JSON object members can be retrieved in JavaScript using dot notation (object.member)
or subscript operators, so you can reference members in the JSON defined object right
in the JavaScript code. You can also convert JSON object definitions to JavaScript objects
using the JS eval() function.

http://dx.doi.org/10.1007/978-1-4842-1863-1_3
http://dx.doi.org/10.1007/978-1-4842-1863-1_3

CHAPTER 2 ■ AN INTRODUCTION TO JSON: CONCEPTS AND TERMINOLOGY

18

 Converting a JSON Object Definition to an Object: Using eval()
 To convert JSON text to an object in JavaScript, you can use a JavaScript eval() function.
The eval() function invokes the JavaScript compiler. Because JSON is a subset of
JavaScript, your compiler will correctly parse the JSON object definition text, produce
that object’s structure, and load it in system memory. The JSON object definition must be
wrapped in parentheses to avoid triggering any code ambiguities when you are compiling
JavaScript syntax. The JavaScript syntax looks like this:

 var yourJSONobject = eval (' (' + yourJSONobjectDefinition + ') ');

 The algorithm used by JavaScript’s eval() function is well optimized, so it executes
very rapidly. The eval() function can also compile and execute other JavaScript
programs, so security issues may arise. Therefore, if you’re going to use an eval()
function, make sure your source is trusted and the programmers who wrote the source
were competent.

 If your web application is using an XMLHttpRequest call, communication is allowed
only via the same server providing the page. This determines that it’s trusted. However,
that source JSON object definition may still be incompetent. If your server is not robust in
its JSON encoding, or if it does not meticulously validate all of its data input, then it could
deliver invalid JSON object definition text that may carry dangerous script. An eval()
function might execute this scripting and unleash malware.

 Parsing JSON Object Definitions into Objects: Using
JSON.parse()
 Because of the security issue with the eval() function, it is safer to use the JSON parser .
The JSON parser recognizes only JSON object definitions, rejecting other scripts that do
not define properly formed JavaScript Object Notation.

 In HTML5 browsers that provide native JSON support, the JSON parser approach
should be significantly faster than using the eval() function. Native JSON support
is included in the sixth ECMAScript standard, also called the ECMAScript 2015
Language Specification. A PDF of the specification can be found at
 http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf .

 Using JSON.parse() on the JSON definition looks like this:

 var yourJSONobject = JSON.parse (yourJSONobjectDefinition, reviver);

 The (optional) reviver parameter can contain a function , which is called for every
key:value pair at every level of the final object. Each value is replaced by the result of
this reviver function. The reviver function may be used to reform generic objects to
pseudoclass instances or, for instance, to transform any date strings into actual Date
objects with a Date function.

 There is also a JSON.stringify() function, if you want to go in the other direction
and turn your JavaScript objects into JSON definitions. This function, like JSON.parse() ,
is included in the ECMAScript 2015 Language Specification. Let’s take a look at this
JavaScript function next.

http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf

CHAPTER 2 ■ AN INTRODUCTION TO JSON: CONCEPTS AND TERMINOLOGY

19

 Stringifying JSON Objects into Definitions: Using
JSON. stringify()
 The JSON.stringify() function lets you process in the opposite direction and convert
JavaScript object structures into JSON definitions. Because JSON does not support
cyclical data structures, be careful not to give any cyclical data structures to a JSON
stringifier. Using JSON.stringify() on your JSON object looks like this:

 var yourJSONobjectDefinition = JSON.stringify (yourJSONobject, replacer);

 If the stringify() method encounters any JavaScript object that contains a
 toJSON() method, it calls that method. This stringifies the value that is returned, whch
should allow the object to determine its own JSON representation.

 The JSON.stringify() method can take an (optional) array of strings. These strings
are used to select the properties that are included in the JSON object definition’s text.

 The JSON.stringify() method can also take the (optional) replacer function. This
is called only after the toJSON() method, if there is one present, on each of the values in
your object data structure. This is passed each key:value pair as parameters and is bound
to the object holding the key. The returned value is stringified.

 Values that don’t have any representation in JSON, such as functions and undefined,
are excluded. Nonfinite numbers are replaced with a null value . To substitute other
values, you should use the replacer function.

 A customized replacer(key, value) function is coded something like this in
JavaScript:

 function replacer(key, value) {
 if (typeof value === 'number' && !isFinite(value)) {
 return String(value);
 }
 return value;
 }

 Giving your corresponding reviver to JSON.parse() can undo the replacer
function, so these are analogs (opposites) of each other.

 JSON.parse() and JSON.stringify() : Open Source Code Available
 The open source code for a JSON parser or a JSON stringifier is available at creator
Douglas Crockford’s GitHub account https://github.com/douglascrockford/JSON-js .
There are cycle.js utilities for JSLint, JSON_Parse, and JSON2.js functions available.
When minified, these are less than 2.5 KB.

 JSON became a built-in feature of JavaScript when the ECMAScript-262 5th Edition
was adopted in 2009.Most of the files on this web site are for applications that are
expected to run in deprecated (obsolete) web browsers. For most purposes, you should
use the JSON2.js version or functions that are native to the latest ECMAScript version.

https://github.com/douglascrockford/JSON-js

CHAPTER 2 ■ AN INTRODUCTION TO JSON: CONCEPTS AND TERMINOLOGY

20

 JSON Open Licensing: Free for Commercial Use
 JSON has an exceptionally open license , which I copied from the popular www.json.org
website and included here for review. As you see, you must always include this
licensing text.

 JSON LICENSE Copyright (c) 2002 JSON.org

 Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

 The Software shall be used for Good, not Evil.

 THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Summary
 This chapter defined what JSON is, its advantages and attributes, concepts and
terminology, and so forth, to give you a broad foundational understanding of JSON before
the rest of the book starts breaking it down into its logical components. In the Chapter 3 ,
you learn about OOP languages with an object-orientation primer (review), before the
book gets into defining JSON objects and taking a look at how to create a JSON object
definition.

http://www.json.org/
http://dx.doi.org/10.1007/978-1-4842-1863-1_3

21© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_3

 CHAPTER 3

 The JSON Schema: JSON
Structure Validation

 Now that you have had an overview of the JSON data-definition language, this chapter
looks at the schema that defines JSON, including the concepts behind the JSON Schema,
advantages of using it, terms used to describe it, and the various rules that dictate its
definition and design approach. The chapter also looks at the JSON Hyper-Schema
definition and design approach.

 Just as the JSON language can be found at: www.json.org , the JSON Schema is at
 www.json-schema.org . The web site has four primary sections: About, Docs, Examples,
and Software. This chapter outlines the core JSON Schema information found on this
web site so you understand the full scope of what can be done using JSON on both
the client side and the server side of your asynchronous processing connection. JSON
allows you to implement both client-side and server-side processing and components
for your application’s JSON data objects. After the book covers the JSON Schema Core,
Chapters 4 – 8 get into how to define JSON definition structures.

 JSON Schema: Concepts and Definitions
 The JSON Schema lets you describe the JSON object definition data format. It is based
on the JSON Schema Definition, Version 4, which is located at www.json-schema.org
and referenced in of the JSON Schema definition file, as you see later in this chapter.
The JSON Schema specification is split into three primary working components : JSON
Schema Core , JSON Schema Validation , and JSON Hyper-Schema .

 This chapter covers these and how they work together. Let’s get started by looking
at the advantages of JSON Schema and JSON Hyper-Schema. You see examples in this
chapter and those that follow of how curly braces ({}), colons, and commas are used to
define JSON’s syntax, so you know how to define objects and their (nested) sub-objects.
For now, just follow along; the next chapter gets into this in more detail when you see how
to define and encode JSON data objects using these curly-braces structures.

http://www.json.org/
http://www.json-schema.org/
http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_8
http://www.json-schema.org/

CHAPTER 3 ■ THE JSON SCHEMA: JSON STRUCTURE VALIDATION

22

 JSON Schema Advantage : Clear JSON Description
 The JSON Schema definition language was designed and developed for use in describing
an existing JSON data format. Like JSON, the JSON Schema uses a lightweight, JavaScript
object-oriented data-interchange programming structure. In fact, JSON Schema uses the
JSON data-structure format, because it was specifically designed to be as simple as possible.

 Obviously, this makes JSON Schema very clear and concise, so it is easy for
programmers and programming algorithms to parse, process, and validate. It provides
both human-readable and machine-readable documentation for JSON definitions.

 JSON Schema definitions provide you with complete JSON structure-validation
roadmap capability, allowing you to define your client-server JSON relationship so that
JSON data-object definitions can be synchronized on both ends of the client-server
transaction (work process). This lets you implement things such as automated testing and
validate client-submitted JSON data objects, because JSON Schema can make sure data
types and ranges match correctly with what your server-side programming logic is able to
(or looking to) process.

 Next, let’s look at the JSON Hyper-Schema. As you may have guessed, it handles
more advanced JSON constructs and multimedia assets.

 JSON Hyper-Schema Advantage: Links and Forms
 The JSON Hyper-Schema definition language was designed and developed for use in
describing more advanced capabilities for existing JSON data formats such as links, URLs,
URIs, and forms, and multimedia assets such as digital images, digital video, and digital
audio. Like JSON, JSON Hyper-Schema uses a lightweight, JavaScript object-oriented
data-interchange programming structure. JSON Hyper-Schema also uses the JSON data-
definition structure format, because it was specifically designed to be as simple as possible.

 JSON Hyper-Schema adds the capability to define links (also known as hyper-links)
in JSON objects, using the URI Template data format. More information regarding this
data format can be found at http://tools.ietf.org/html/rfc6570 . Obviously, links in
JSON Hyper-Schema let you craft a more powerful and flexible user experience.

 JSON Hyper-Schema also makes it possible to define forms : you can define a form’s
data structure using JSON Schema for the form’s JSON data-object definition format.
Forms in JSON Hyper-Schema allow a more useful, powerful, flexible user experience:
users can fill out and submit forms that are inherently validated by JSON Schema.

 Now, let’s look at JSON Schema Core. It provides the foundational definitions and
terminology for the JSON Schema and JSON Hyper-Schema components.

 JSON Schema Core : Language Definition
 JSON Schema Core provides a contract (a rigid syntax-processing specification for
programmers to follow) for what JSON data-definition format is required for any given
application, and how to interact with that data-object structure. JSON Schema is intended
to define validation, documentation, hyperlink navigation, and interaction control for
your JSON data. The Core specification defines JSON Schema Core terminology and
mechanisms.

http://tools.ietf.org/html/rfc6570

CHAPTER 3 ■ THE JSON SCHEMA: JSON STRUCTURE VALIDATION

23

 Related JSON specifications are built on this specification and define different
applications. Current examples are JSON Schema Validation and JSON Hyper-Schema.

 JSON uses conventions and terminology that are described in RFC2119 and
 RFC4627 . JSON Schema Core uses RFC2119 to define the following keywords: MUST , MUST
NOT , REQUIRED , SHALL , SHALL NOT , SHOULD , SHOULD NOT , RECOMMENDED , MAY , and OPTIONAL .
It uses RFC 4627 to define the following terms: JSON , JSON text , JSON value , member ,
 element , object , array , number , string , boolean , true , false , and null .

 Section 3 of JSON Scheme Core defines the core terminology used. Section 3.1
defines the terms property and item . When referring to a JSON object, as defined by
 RFC4627 , the terms member and property can be used interchangeably. When you refer
to JSON arrays, the terms element and item , again as defined in RFC4627, can be used
interchangeably.

 Section 3.2 defines a JSON Schema document and its keywords. A JSON Schema
document is a JSON document, and that document must be a JSON object. Object
members or properties defined by this JSON Schema (this JSON Schema Core
specification or related specifications) are called keywords or schema keywords . A JSON
Schema may contain properties that are not schema keywords as well, if you desire for
your JSON applications.

 Section 3.3 defines an empty schema . An empty schema is a JSON Schema using no
properties, or with properties that are not schema keywords.

 Section 3.4 defines a root schema and a subschema . Here is an example of a JSON
root schema that has no subschemas:

 { "title" : "root" }

 JSON Schemas can also be nested, in which case they are subschemas. Here is an
example, where nested and alsoNested are subschemas, and root is a root schema:

 { "title" : " root ",
 "otherSchema": {
 "title": " nested ",
 "anotherSchema": {
 "title": " alsoNested "
 }
 }
 }

 In Section 3.5, the JSON Schema defines seven distinct primitive types for JSON
values: array , which is a JSON array; boolean , which is a JSON boolean; integer , which
is a JSON number without a fractional or exponent portion; number , which is any JSON
number (number includes integer); null , which is the JSON null value; object , which is a
JSON object; and string , which is a JSON string. The next several chapters cover these in
detail; they are core to the JSON definition.

 Section 3.6 defines JSON value equality . Two JSON values are said to be equal if
and only if both are nulls or both are booleans, and they are set to the same value; or if
both are strings and contain the same value; or if both are numbers and have the same
mathematical value. If both are arrays, to be considered equal, they must have the same

CHAPTER 3 ■ THE JSON SCHEMA: JSON STRUCTURE VALIDATION

24

number of items, and items at the same index must also be equal, according to the
previous definitions. If both are objects, they must have the same set of property names
and values for each property.

 Section 3.7 defines an instance as being any JSON value. An instance may be
described by one or more schemas. An instance may also be referred to as a JSON
instance or JSON data.

 Section 4 of the JSON Schema Core contains an overview of the JSON Schema
definition. This document proposes a new media type, also called the MIME type ,
denoted as follows:

 "application/schema+json"

 This identifies the JSON Schema for describing JSON data. A JSON Schema is itself
defined using JSON. The JSON Schema Core and related specifications define keywords
allowing these JSON Schemas to describe JSON data in terms of allowable values and
textual descriptions, and allowing the interpretation of relations with other types of data
resources. The following Section 4 subsections contain a summary of features that are
defined by related specifications.

 Section 4.1 defines JSON validation . JSON Schema allows applications to validate
instances, either non-interactively or interactively. For instance, an application may
collect JSON data and check that this data matches a given set of constraints; another
application may use a JSON Schema to build an interactive interface, in order to collect
user input according to constraints described by the JSON Schema.

 Section 4.2 defines hypermedia and linking . This JSON Schema provides a method
for extracting link relations to other resources from a JSON instance, as well as describing
the interpretations of instances as multimedia data. This allows JSON data to be
interpreted as rich hypermedia documents, placed in the context of the larger collection
of related JSON data resources.

 Section 5 of the JSON Schema Core defines all general considerations. Section 5.1
defines the JSON Schema’s applicability to all JSON data values. It is acknowledged that
an instance may be any valid JSON value, as defined by RFC4627. It is interesting to note
that the JSON Schema does not mandate that any instance be of any particular type; a
JSON Schema can describe any JSON value, including the null value.

 Section 5.2 defines the JSON Schema’s programming language independence. The
JSON Schema inherently needs to be programming-language agnostic, as covered in
Chapter 2 . The only limitations to this programming-language independence are those
expressed in RFC4627 or those of a host programming language.

 Section 5.3 defines the JSON Schema Core as it relates to HTTP. This specification
acknowledges the role of HTTP in document RFC2616 as being the dominant protocol
in use on the Internet, along with the large number of official specifications related to
HTTP. This specification uses a subset of the HTTP specifications to recommend a set of
mechanisms usable by this protocol to associate JSON instances to one or more schemas.

 Section 5.4 defines the JSON Schema Core’s relation to other protocols. A JSON
Schema doesn’t define any semantics for JSON client-server interfaces for any other
protocols other than HTTP. These semantics are application dependent or subject to
agreement between parties involved in use of the JSON Schema for their own private
development requirements.

http://dx.doi.org/10.1007/978-1-4842-1863-1_2

CHAPTER 3 ■ THE JSON SCHEMA: JSON STRUCTURE VALIDATION

25

 Section 5.5 defines mathematical integers . It is acknowledged by this specification
that some programming languages, and their associated numeric parsers, use different
internal representations for floating-point numbers and integers, whereas other
languages do not. For this reason, for interoperability purposes, JSON data values used
in the context of a JSON Schema—whether that JSON data is a JSON Schema or a JSON
instance—should ensure that mathematical integers are represented using the integer
type defined in this specification.

 Section 5.6 defines extending the JSON Schema. Implementations may choose
to define additional proprietary keywords for the JSON Schema. In the absence of an
explicit agreement, schema authors must not expect that these additional keywords are
supported by peer implementations. Implementations should ignore keywords that they
do not support and that are not a part of these public JSON Schema definitions.

 Section 5.7 defines JSON security considerations. Both schemas and instances are
JSON values. As such, all security considerations defined in document RFC4627 apply.

 Section 6 defines the JSON Schema $schema keyword , and Section 6.1 defines the
purpose of this $schema . The $schema keyword can be used as the JSON Schema version
identifier as well as the location of the resource that in and of itself is the JSON Schema
definition that describes any JSON schema written for this particular version.

 The $schema keyword must be located at the root of the JSON Schema. The value
of the keyword must be a URI as defined in document RFC3986 and must also be a valid
JSON Reference, and the URI must be both absolute and normalized. The resource
located at this URI must successfully describe itself. It’s recommended that JSON schema
authors include this keyword at the beginning of their schema definition, like this:

 { "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "A JSON Schema",
 "description": "example",
 "type": "object",
 "properties":
 { remainder of JSON Schema definition properties are nested in this area }
 }

 The following JSON Schema $schema HTTP values are currently p redefined:

 http://json-schema.org/schema# (Written against the current Schema version)
 http://json-schema.org/hyper-schema# (Written against the current version)
 http://json-schema.org/draft-04/schema# (Written against Draft 4 version)
 http://json-schema.org/draft-04/hyper-schema# (Written against Draft 4 ver.)

 Section 6.2 defines JSON Schema customization . When extending the JSON Schema
with custom keywords, schema authors should define a custom URI for $schema . This
custom URI must not be one of the previous predefined (publicly used) values.

 Section 7 defines URI resolution scopes and dereferencing mechanisms for JSON.
Section 7.1 contains the definition of the JSON Schema, and it uses JSON Reference as
the mechanism for the schema addressing. It extends the JSON Schema specification in
two ways: JSON Schema offers facilities to alter the base URI against which a reference
must resolve by the means of the id keyword; and it defines a specific dereferencing

CHAPTER 3 ■ THE JSON SCHEMA: JSON STRUCTURE VALIDATION

26

mechanism, extending JSON Reference to accept arbitrary fragment parts. Altering this
URI in the schema is called defining a new resolution scope . The initial resolution scope
of a schema is the URI of the schema itself, if any, or the empty URI if the schema was not
loaded by using the URI.

 Section 7.2 defines URI resolution-scope alteration by using an id keyword. Section 7.2.1
defines valid values for this id keyword. The value for this keyword must be a string and
 must be a valid URI. This URI must be normalized and should not be an empty fragment
(#) or the empty URI.

 Section 7.2.2 defines the usage of the id keyword. The id keyword is used to alter the
URI resolution scope. When id is encountered, an implementation must resolve it against
the most immediate parent scope . The resolved URI is the new resolution scope for this
subschema and all of its children, until another id is encountered. When using id to
alter resolution scopes, schema authors should ensure that resolution scopes are unique
within the schema. Here is an example from the www.json-schema.org web site:

 {
 "id": "http://x.y.z/rootschema.json#",
 "schema1": {
 "id": "#foo"
 },
 "schema2": {
 "id": "otherschema.json",
 "nested": {
 "id": "#bar"
 },
 "alsonested": {
 "id": "t/inner.json#a"
 }
 },
 "schema3": {
 "id": "some://where.else/completely#"
 }
 }

 Subschemas at the following URI-encoded JSON Pointers starting from the root
schema define the following resolution scopes:

 # (document root) http://x.y.z/rootschema.json#
 #/schema1 http://x.y.z/rootschema.json#foo
 #/schema2 http://x.y.z/otherschema.json#
 #/schema2/nested http://x.y.z/otherschema.json#bar
 #/schema2/alsonested http://x.y.z/t/inner.json#a
 #/schema3 some://where.else/completely#

http://www.json-schema.org/

CHAPTER 3 ■ THE JSON SCHEMA: JSON STRUCTURE VALIDATION

27

 Section 7.2.3 defines canonical dereferencing and inline dereferencing for JSON
Schemas. When resolving a URI against a resolution scope, an implementation may
choose two modes of operation: canonical dereferencing , where the implementation
dereferences all resolved URIs, or inline dereferencing , where the implementation chooses
to dereference URI values within the schema. Implementations must support canonical
dereferencing and may support inline dereferencing. For example, consider this schema
found at www.json-schema.org :

 {
 "id": "http://my.site/myschema#",
 "definitions": {
 "schema1": {
 "id": "schema1",
 "type": "integer"
 },
 "schema2", {
 "type": "array",
 "items": { "$ref": "schema1" }
 }
 }
 }

 When the implementation encounters a schema1 reference, it resolves the
reference against the most immediate parent scope, which references URI
 http://my.site/schema1 # . The way to process this URI value differs according to your
chosen dereferencing mode. If canonical dereferencing is used, the implementation
dereferences this URI and fetches your content at this URI. If inline dereferencing is used,
the implementation notices that URI scope http://my.site/schema1 # is already defined
in your schema and uses the appropriate subschema.

 Section 7.2.4 defines JSON Schema in-line dereferencing and fragment support.
When using inline dereferencing, a resolution scope may lead to a URI that has a
non-empty fragment part, which is not a JSON Pointer, as in this example from
 www.json-schema.org :

 {
 "id": "http://some.site/schema#",
 "not": { "$ref": "#inner" },
 "definitions": {
 "schema1": {
 "id": "#inner",
 "type": "boolean"
 }
 }
 }

http://www.json-schema.org/
http://my.site/schema1
http://my.site/schema1
http://www.json-schema.org/

CHAPTER 3 ■ THE JSON SCHEMA: JSON STRUCTURE VALIDATION

28

 An implementation choosing to support in-line dereferencing should be capable of
using this kind of referencing. Implementations choosing to use canonical dereferencing,
however, are not required to support this.

 Section 7.3 defines security considerations for the JSON Schema. Inline
dereferencing can produce canonical URIs that differ from the canonical URI for the
root schema. Schema authors should ensure that implementations that use canonical
dereferencing obtain the same content as implementations using inline dereferencing.
Extended JSON References that use fragments that are not JSON Pointers are not
dereferenceable using implementations choosing not to support inline dereferencing.
This kind of referencing is defined for backward compatibility and should not be used in
new JSON schemas.

 Section 8 defines recommended correlation mechanisms for use with the HTTP
protocol. It is acknowledged by the specification that the majority of interactive JSON
Schema processing is over HTTP. Section 8 therefore provides recommendations for
materializing an instance/schema correlation using mechanisms that are currently
available for this protocol. An instance is said to be described by one or more schemas.

 Section 8.1 defines HTTP correlation by means of the Content-Type header. It is
 recommended that a MIME type parameter by the name of profile be appended to
the Content-Type header of the instance being processed. If present, the value of this
parameter must be a valid URI, and this URI should resolve to a valid JSON Schema.
The MIME type must be application/json or any other subtype.

 An example of a header from the www.json-schema.org web site is as follows:

 Content-Type: application/my-media-type+json;
 profile=http://example.com/my-hyper-schema#

 Section 8.2 defines the correlation by means of the Link header. When using the Link
header, the relation type used must be describedBy , as defined by document RFC5988,
Section 5.3. The target URI of the Link header must be a valid JSON Schema. Here is an
example of a header from www.json-schema.org :

 Link: <http://example.com/my-hyper-schema#>; rel="describedBy"

 Section 9 describes IANA considerations. The proposed MIME media type for JSON
Schema is defined as follows:

 type name: application;
 subtype name: schema+json.

 Before getting into the more advanced JSON Schema (Validate and Hyper-Schema)
definitions, I want to make sure you understand how to define JSON data objects using all
of their different types, from a syntactic perspective. Chapters 4 – 8 present some hands-on
examples. The book revisits more advanced topics such as validation and hypermedia
once you begin looking at real-world examples of how JSON syntax works.

http://www.json-schema.org/
http://www.json-schema.org/
http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_8

CHAPTER 3 ■ THE JSON SCHEMA: JSON STRUCTURE VALIDATION

29

 Summary
 This chapter defined what the JSON Schema is, its advantages and attributes, concepts
and terminology, and so forth, to give you a broad foundational understanding. The next
five chapters break down JSON data objects and their definitions into logical types and
components.

 You learned that you can use JSON Schema(s) to define how your JSON data objects
are processed when you are using JSON as an asynchronous data communications
protocol between server-side and client-side applications. You looked at the JSON
Schema Core in detail, including all nine sections and their subsections, and learned how
this provides a foundation for JSON Schema Validate and JSON Hyper-Schema, which
define more complex JSON processing.

 In Chapter 4 , you learn about two popular OOP languages. You then get into the
definition of JSON objects and look at how to create JSON object definitions.

http://dx.doi.org/10.1007/978-1-4842-1863-1_4

31© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_4

 CHAPTER 4

 Objects and Object-Oriented
Programming: OOP Primer

 Now that you have had an overview of JSON in Chapter 2 and the JSON Schema Core
and its components in Chapter 3 , this chapter examines what defines object-oriented
programming (OOP), including the concepts behind it, advantages of using OOP, terms
used to describe OOP, and the difference between hard objects used in Java and soft
objects used in JavaScript. Remember that JSON is used with JavaScript, Java, C++, and
a great many other OOP languages, but it is best integrated with JavaScript and also
integrates seamlessly with ECMAScript-262.

 First you look at OOP concepts via Java, which is used on every OS as well as in the
popular Android operating system. Java uses a more complex, hard object paradigm,
because it requires classes and constructors to create an object. Then you examine OOP in
JavaScript, which uses a soft object paradigm: objects can be created without using special
classes and constructor methods. (By the way: methods are called functions in JavaScript.)

 Object-Oriented Programming: Overview
 The initial programming languages were top down or linear and either had line numbers,
as in BASIC, or processed lines of code in the order that they appeared. As you learned in
Chapter 2 , the first OOP was Simula, and it introduced some very advanced concepts that
made programming an order of magnitude more flexible, extensible, and powerful, all at
the same time. These faculties also made OOP more difficult to learn and comprehend,
which is why this book spends this chapter making sure you understand OOP and the two
types of objects created in the two most popular programming languages today: Java and
JavaScript.

 This chapter starts with Java because chances are you use it for application
development or mobile development; the chapter finishes with JavaScript and at that
point also introduces the JSON object value and how to define a JSON object. JavaScript
has fewer complexities than Java, so covering Java first gets those complexities out of the
way. Then you can look at how JavaScript differs; it is less rigid regarding rules, which
is why it is called a soft object model whereas Java is called a hard object model . As far
as JSON goes, it is as widely used with Java as it is with JavaScript, so all of this chapter

http://dx.doi.org/10.1007/978-1-4842-1863-1_2
http://dx.doi.org/10.1007/978-1-4842-1863-1_3
http://dx.doi.org/10.1007/978-1-4842-1863-1_2

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

32

is directly relevant to JSON no matter how you slice it. Java has extensive JSON class
libraries, just as JavaScript has a plethora of JSON functions. Some of these, such as
 JSON.parse() , you saw in Chapter 2 .

 Java OOP Concepts: Hard Object Construction
 Let’s make sure you and I are on the same page by reviewing the core concepts and
principles behind the Java programming language. This chapter gives you a primer or
comprehensive overview of an entire OOP language. The Java JDK (and JRE) that you
install in the appendixes of this book are the foundation for the JSON IDE and Java
applications as well as for the NetBeans 8.1 IDE, which you saw in Chapter 1 . You also
learned the basics of how the IDE you are using to code JSON using Java or JavaScript
(HTML5) applications functions as a code editor or application-testing tool.

 Many of the core Java OOP constructs and principles covered in this chapter go back
quite far in the Java programming language—most of them as far back as Java 1 (known
as 1.02). The most widely used version of Java SE currently is Java 6 (1.6); Java EE uses Java
8. Android 4.4 and earlier use Java 6, until the advent of Android 5 and 6, which use Java 7
(1.7). This chapter also covers the features added in Java 8 (1.8), which is the most recent
release, as well as the new features planned for Java 9 (1.9), which will be released in the
fourth quarter of 2016. All these versions of Java are used on billions of devices, including
Java 6, which is used in the 32-bit Android 2.x, 3.x, and 4.x OS, and applications; Java 7,
used in the 64-bit Android 5.x and 6.x OS and applications; Java 8, used across all popular
personal computer operating systems, such as Microsoft Windows, Apple, Open Solaris,
and a plethora of popular Linux distributions (custom Linux OS versions) such as: SUSE,
Ubuntu, Mint, Fedora, and Debian; and Java 9. This chapter covers the most foundational
Java programming language concepts, techniques, principles, and structures that span
these four major versions of Java that are currently in widespread use today on personal
computers, iTV sets, and handheld devices, such as tablets and phones.

 You start out with the easiest concepts and progress to the more difficult ones.
The chapter begins at the highest level of Java—the Java API and its package—and
progresses to the hands-on Java programming constructs contained in the Java
packages, which are called Java classes . You learn about methods, as well as the variables
or constants that classes contain, and what superclasses, subclasses, and nested classes
are. Finally, you learn about Java Object s and how they form the foundation of OOP.
You see what a constructor method is and how it creates a Java Objec t using a special kind
of method that has the same name as the class in which it is contained.

 Java Packages: Organizing a Java API Using Functional Classes
 At the highest level of a programming platform—such as Google’s 32-bit Android 4 or
earlier, which uses Java SE 6; or 64-bit Android 5 or later, which uses Java SE 7; or the
current Oracle Java SE platform, which was released as Java SE 8—there is a collection of
 packages that contain classes , interfaces , methods , and constants , which collectively form
the application programming interface (API) . This collection of Java code can be used by
application developers to create professional-level software across many OSs, platforms,
and consumer electronics devices, such as desktops, laptops, netbooks, tablets, HD iTV
sets, UHD iTV sets, eBook readers, and smartphones.

http://dx.doi.org/10.1007/978-1-4842-1863-1_2
http://dx.doi.org/10.1007/978-1-4842-1863-1_1

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

33

 To install any given version of a Java API, you install the software development
kit (SDK) as described in the book’s appendixes. The Java SDK has a special name: the
 Java development kit (JDK) . If you’re familiar with Android 5/6, which is actually Java 7
on top of Linux OS, you know that a new API level is released every time a few new
features are added.

 In addition to the API level defined by the SDK you install and use, the highest-level
construct in the Java programming language is the package . You always use the package
keyword to declare an application package at the top of your Java code. This needs to be
the first line of code declared other than comments, which are not processed.

 As you may have ascertained from the name, a Java package packages together all of
your Java programming constructs. These include classes and methods (functions) that
relate to the application: for example, a board game package contains all of your code,
as well as the code you import to create, compile, and run the 3D board game. You take
a look at the concept of importing and the Java import keyword next; they are closely
related to the package concept.

 A Java package is useful for organizing and containing your application code. But it is
even more useful for organizing and containing the SDK’s (API’s) Java code that you use
along with your own Java programming logic to create Java games or IoT applications .

 You can use any of the classes that are part of the API packages you are developing
with, by using the Java import keyword in conjunction with your package and the classes
that you wish to use. This is called an import statement .

 An import statement begins with import , followed by the package name and
class reference path (full proper name); the statement needs to be terminated using a
semicolon. For example, an import statement used to import the JavaFX EventHandler
class from the javafx.event package should look like the following (also see Figure 4-1):

 package invincibagel; // custom invincibagel package for game
 import javafx.event.EventHandler; // imports EventHandler into invincibagel

 Figure 4-1. The package and import keywords used in the Java code for the
InvinciBagel game

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

34

 You can see the Java single-line comment // and multiline comment convention in
this example, as well as in Figure 4-1 . If you are interested in learning more about Java
game programming, I took this example and screenshot from my book Beginning Java 8
Game Programming (Apress 2015), which covers the JavaFX new media engine.

 An import statement informs the Java compiler that it needs to bring a specified
external package into your custom package (in this example, import it into the
 invincibagel package), because you are using methods (and constants) from the class that
is referenced using the import keyword, as well as specifying what package the class you
are importing is stored in. If you use a class, method, or constants in your own Java class,
such as the BoardGame class, and you haven’t declared the class for use by using an import
statement, the Java compiler will throw an error because it can’t find the class it needs to
use in your package.

 Java Classes: OOP Modular Structures
 The next-largest programming structure beneath the package level is the Java class ; as you
just saw, the import statement references both the package that contains the class and
the class itself. Just as a package organizes all the related classes, a class organizes all of its
related methods, data variables or data constants, and sometimes other nested classes as
well (discussed in the next section). Classes let you make your code more modular,
so it’s not as structured (linear) as top-down programming languages. A Java class can be
used to organize your Java code at the next logical level of functional organization,
and therefore your classes contain Java code constructs that add specific functionality.
These include methods, variables, constants, and nested classes, all of which are covered
in this chapter.

 Java classes can also be used to create Java hard objects, which are discussed after
you learn about classes, nested classes, methods, and data fields. Java Object s are
constructed using a Java class and have the same name as the Java class and the exact
same name as the class’s constructor method, which you also see later in this chapter.

 You can preface the declaration with Java modifier keywords that declare the class as
being public or private or with other designators regarding what the class can and will do
and for whom. Java modifier keywords are always placed before the Java class keyword,
using the following format:

 <modifier keywords> class <your custom classname goes here>

 One of the powerful features of Java classes is that they can be used to modularize
Java code. Your core application features can be a part of a high-level class, which can be
subclassed to create more specialized versions of that class. This is a core feature of OOP.
Once a Java class has been used to create a subclass, it becomes the superclass . A class
always subclasses another superclass using the Java extends keyword.

 As you can see in Figure 4-2 , you declare a class using a Java public access modifier,
then the Java class keyword, and a name for the class (in this case, InvinciBagel), which
then uses the extends keyword to become a JavaFX Application . The import statement
for Application is shown in Figure 4-1 , under the package statement, naming the project
(custom) package invincibagel . Notice that I am using NetBeans 8, which can be
used for both Java and HTML5 development, supporting JSON development across all
environments.

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

35

 Using the Java extends keyword tells a Java compiler that you want the superclass’s
capabilities and functionality added (extended) to your class, which, once it uses extends ,
becomes a subclass . A subclass extends the core functionality that is provided by the
superclass it is extending. To extend your class definition to include a superclass, you add
to (or extend, no pun intended) your existing class declaration using the following format:

 <modifier keywords> class <your custom classname> extends <superclass>

 When you extend a superclass using your class, which becomes the subclass of that
superclass, you can use all of that superclass’s features (nested classes, inner classes,
methods, constructors, variables, and constants) in your subclass. You can use this code
without having to explicitly rewrite (recode) these Java constructs in the body of your
class, which would be redundant (and disorganized), because your class extends this
superclass, making it a part of itself.

 The body of a class is coded in curly braces, shown in the outer red box in
Figure 4-2 , which follow your class declaration. In Figure 4-2 , the InvinciBagel class
extends the Application superclass from the JavaFX application package. Doing this
gives InvinciBagel everything it needs to host, or run, the JavaFX application. The
JavaFX Application class constructs this Application object so that it can use system
memory and call an .init() method to initialize anything that may need initializing,
and also call a .start() method, which you can see in Figure 4-2 in the second red
box. A .start() method is where you put Java code statements that will ultimately be
needed to fire up (start) any JavaFX application. When an end user finishes using your
InvinciBagel Java application, the Application (object) created by this Application class,
using the .Application() constructor method, will call its .stop() method and remove
your application from system memory. This will free up system memory space for other
applications used by your end users.

 Figure 4-2. Public class InvinciBagel extends Application , creating a JavaFX game
application

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

36

 The chapter explores Java methods, constructors, and objects next, as you progress
from the higher-level package and class constructs, to lower-level constructs.

 Java Methods: Code Constructs Providing Core Logic Functions
 In Java classes, you generally have methods and the data fields (variables or constants)
that the methods use for data they operate on. Because you are going from outer
structures to inner structures, or top-level structures to lower-level structures, this
chapter covers methods next. Methods are sometimes called functions in other
programming languages, such as JavaScript.

 You can see an example of the .start() method in Figure 4-2 ; this method holds
the programming logic that creates the basic Hello World application. The programming
logic in this .start() method uses Java programming statements to create a stage and a
scene, place a button on the screen in the StackPane , and define event-handling logic so
that when the button is clicked, the bootstrap Java code writes the “Hello World” text to
the NetBeans IDE output area.

 Declaring a Method: Modifier, Return Type, and Method Name
 A method declaration starts with an access-control modifier keyword: public , protected ,
 private , or package private. Package private is designated by not using any access-
control modifier keyword. In Figure 4-2 , the .start() method is declared using the
 public access-control modifier.

 After the access-control modifier, you declare the method’s return type . This is the
 type of data that the method will return after it is called (invoked). Because this .start()
method performs setup operations but doesn’t return any specific type of value, it uses the
 void return type, which signifies that the method performs tasks but does not return any
data to the calling entity. In this case, the calling entity is the JavaFX Application class,
because the .start() method is one of the key methods; the others are the .stop() and
 .init() methods provided by the Application superclass that the InvinciBagel class
extends. This class controls the application lifecycle stages for this JavaFX application.

 After the return type, you supply your method’s name, which, by convention (or
programming rules) should start with a lowercase letter (or word, preferably a verb). Any
subsequent (internal) words (nouns or adjectives) start with a capital letter.

 For instance, the method to display the SplashScreen should logically be named
 .displaySplashScreen() . Because it does something but does not return a value, it is
 void and is therefore declared using this empty Java code structure:

 public void displaySplashScreen() { Java code to display splashscreen here }

 You may need to pass parameters , which are named data values that need to be
passed in and operated on in the body of the method, which is the part in curly braces.
These parameters go in the parentheses attached to the end of the method name. In
Figure 4-2 , the .start() method receives the Stage object named primaryStage as its
parameter, using the following Java method declaration programming syntax:

 public void start(Stage primaryStage) { code to start your Application }

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

37

 You can provide as many parameters as you like, using data type /parameter name
pairs, with each pair separated by a comma. Methods are not required to have any
parameters. If a method has no parameters, the parentheses are empty (right next to
each other). This is how method names are written in this book, so you know they are
methods: dot notation before and parentheses characters after the method name,
like this: .start() , .stop() , and so on.

 The programming logic that defines this method is contained in the body of the
method, which as you have already learned is in curly braces that define the beginning
and the end of the method. The programming logic in a method includes variable
declarations, programming logic statements, and iterative control structures (loops),
among other things, all of which you use to create JavaFX applications.

 Constructor Methods: Turning a Java Class into a Java Object
 This section covers a specialized type of Java method: a constructor method . This can be
used to create, or construct , Java Object s, as you see later in the chapter. A constructor
method could be considered a hard object in contrast to a JSON soft object, because Java
requires a constructor method to create a Java Object. Object s in Java are simply called
 objects ; the hard versus soft distinction is in JavaScript, which has both types of object
declarations, as you see soon.

 Objects are the foundation of OOP, so it is important for you to have an
understanding of constructor methods before you learn about the Java Object itself.
Because this section covers methods, this is the most logical place to look at object
constructors (as constructor methods are sometimes called by veteran Java developers).

 Creating a Java Object: Invoking the Class Constructor Method
 A Java class contains a constructor method that must use the exact same name as the
class itself. This method can be used to create Java Object s using the class. constructor
methods use the Java class that contains them as the blueprint to create an instance of
that class in system memory, which creates the Java Object . This constructor method
always returns a Java Object type and thus does not use any of the Java return types that
other methods typically use (void , String , float , int , byte , and so on). A constructor
method should always be invoked using the Java new keyword, because you are creating a
new Java Object ! If you do not create a constructor method, the Java compiler will auto-
create one for each class.

 You can see an example of this in the bootstrap JavaFX code in Figure 4-2 , in lines 20,
28, and 30. The new Button , StackPane , and Scene objects are created, respectively, using
the following object-declaration, object-naming, and object-creation Java code structure:

 <class name> <object instance name> = new <constructor method name> ;

 A Java Object is declared in this fashion, using the class name, the name of the object
you are constructing, the Java new keyword, and that class’s constructor method name
(and parameters, if any) in a single Java statement terminated with a semicolon character
because each Java Object is an instance of a Java class. For example, on line 20 of the Java

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

38

code in Figure 4-2 , the portion to the left of the equals operator tells the Java language
compiler that you want to create the Button object named btn using the JavaFX Button
class as that object’s blueprint. This declares the Button class (object type) and gives it a
unique name.

 The first part of creating the object is thus called the object declaration . The second
part of creating a Java Object is called the object instantiation ; it takes place on the right
side of the equals operator and involves the object (class) constructor method along with
the Java new keyword.

 To instantiate the Java Object , you invoke, or use, the Java new keyword in
conjunction with the object constructor method call. Because this takes place to the right
of the equals operator, the result of the object instantiation is placed into the declared
object, which is on the left side of the Java statement.

 This completes the process of declaring (class name), naming (object name),
creating (using the new keyword), configuring (using the constructor method), and
loading (using the equals operator) your very own custom Java Object .

 It’s important to note that the declaration and instantiation parts of this process
can be coded using separate lines of Java code as well. For instance, the Button object
instantiation (Figure 4-2 , line 20) could be coded as follows:

 Button btn; // Declare a Button object named btn
 btn = new Button(); // Instantiate btn object using the Java new keyword

 This is significant because coding object creation this way allows you to declare the
object at the top of your class, where each method in the class that uses or accesses the
objects can see it. In Java, objects or data fields are only visible in the Java programming
construct (class or method) that they are declared in. So if methods are nested in a class,
you should declare anything you want the methods to be able to access (see) at the top of
the class construct and before the method constructs.

 If you declare an object in a class, and therefore outside all the methods contained
in the class, the methods in the class can then access (see or use) that object. Similarly,
anything declared in a method is local to that method and is only visible to other members
of that method, meaning all Java statements in that method’s scope (what is within the
 {...} delimiters). In the current example, if you wanted to implement this separate object
declaration in the class, outside the methods and object instantiation in the .start()
method, the first few lines of the InvinciBagel class would look like the following:

 public class InvinciBagel extends Application {
 Button btn ; // Declared outside of your start() method construct
 @Override
 public void start(Stage primaryStage) {
 btn = new Button(); // Instantiated in your start() method
 btn.setText ("Say 'Hello World'"); // Object can now be utilized
 // other programming statements could continue in here
 }
 }

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

39

 When the object declaration and instantiation are split up this way, the Button object
can be used or accessed by methods in the class other than .start() . In the previous
code, other methods of the InvinciBagel class could call .btn.setText() without the
Java compiler throwing any errors. The way the Button object is declared in Figure 4-2 ,
only the .start() method can see the object, so only .start() can implement the
method call; thus the btn Button object belongs solely to .start() , using the single-
statement declare and instantiate approach.

 Java Objects: Virtual Reality Using OOP with Java
 Objects are the foundation of OOP languages—in this use case, Java. Everything
in Java is based on the Java Object superclass. I like to call this the master class . The
 Object class is in the java.lang package, so an import statement for it references
java.lang.Object (the full pathname to the Java Object class). All other Java classes are
created (subclassed) using this class, because everything in Java is ultimately an Object .

 Java Object s can be used to virtualize reality by allowing objects you see in everyday
life. In Java applications, you can create objects using your imagination, to be realistically
simulated. You do so by using data fields (variables and constants) and methods.
These Java programming constructs make up your object’s characteristics or attributes
(constants), states (variables), and behaviors (methods). Java class constructs organize
each object definition (constants, variables, and methods) to give birth to an instance of
that object, using the constructor method for the class, which designs and defines the
object construction.

 Designing a Java Object: Constants, Variables, and Methods
 One way to think about Java Object s is that like they are nouns; things (objects) that exist
in and of themselves. The object behaviour is created using methods like verbs: things the
nouns can do. As an example, let’s consider that very popular object in everyone’s life: a
car. Let’s define the Car object’s attributes to see how an object can be defined using Java.
Some characteristics, or attributes that do not change, held in constants , might be defined
as follows:

 • Paint Color (Candy Apple Red, Metallic Blue, Silver, White, Black)
 • Engine Fuel (gas, diesel, biodiesel, hydrogen, propane, electric)
 • Drive Train (2 Wheel Drive or 4 Wheel Drive)

 Some states , which change, and which define the car in real time, held in variables ,
could be defined as follows. They hold the current values for direction, speed, and what
gear you are in:

 • Direction (N, S, E, W)
 • Speed (15 miles per hour)
 • Current Gear (1, 2, 3, 4, 5, Reverse, Park)

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

40

 The following are some things the Car object should be able do—its behaviors , or
how it functions. In JavaScript, these are called functions; in Java, however, they are called
methods. Java Object behaviors might be defined using these methods:

 • Accelerate!
 • Shift Gears
 • Apply Brake
 • Turn the wheels
 • Turn on the stereo
 • Use the headlights
 • Use the turn signals

 You get the idea. Figure 4-3 shows a simple diagram of this Java Object structure.
It includes the characteristics, or attributes, of the car that are central to defining the
 Car object, and the behaviors that can be used with the Car object. These attributes and
behaviors define the car to the outside world.

 Figure 4-3. The anatomy of a Car object, with methods encapsulating variables or constants

 Objects can be as complicated as you want them to be. Java Object s can also nest or
contain other Java Object s in the object structure (object hierarchy). An object hierarchy
is like a tree structure, with a main trunk, branches, and sub-branches as you move up (or
down) the tree, very similar to JavaFX or 3D software scene graph hierarchies.

 A perfect example of a hierarchy that you use every day is the multilevel directory
(file folder) structure on your computer’s hard disk drive (see Figure 1-1). Directories or
folders on a hard drive can contain other directories or folders, which can in turn contain
yet other directories and folders . This allows complex organizational hierarchies to be
created—and an object is similar in its hierarchical organizational capabilities.

 You’ll notice that, in real life, objects can be made up of other objects. For
example, a car engine object is made up of hundreds of discrete objects contained in
subcomponents (like the carburetor) that all function together to make the engine object
work as a whole.

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

41

 This same construction of more complicated objects out of simpler objects should
be mirrored using OOP languages: complex hierarchies of objects can contain other
objects so the structure is well organized and logically defined. Many of these objects are
created using preexisting, or previously developed, Java or JavaScript code. This is one of
the objectives of object-oriented, modular programming practices.

 As a good exercise, you should practice identifying different complex objects in the
room around you and then break their definition, or description, down into variable
states and constant characteristics, as well as behaviors, or things that these objects
can do. Practice creating hypothetical object and sub-object hierarchies. This is a great
exercise, because this is how you eventually need to start thinking in order to become
more successful in your professional OOP endeavors using Java, JavaScript, or the JavaFX
engine in the Java 8 programming language framework.

 Encoding Objects: Turning an Object Design into Java Code
 To illustrate how to define an object in Java, let’s construct a basic class for the Car
example. To create a Car class, you use the Java keyword class , followed by the custom
name for the new class you are coding, and then curly brackets, which contain a Java
class definition. The first things that you usually put in the class (in the curly {} brackets)
are the data fields (variables). The variables hold the states, or characteristics, of this Car
object. In this case, six data fields define the car’s current gear, current speed, current
direction, fuel type, color, and drive-train (two-wheel drive or four-wheel drive), as
specified earlier in Figure 4-3 .

 With all six variables in place, the Car class (object blueprint) definition initially
looks something just like this:

 class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas";
 }

 Remember that because you’re specifying the starting values using the equals sign
for all the variables, these object properties (variables) all contain these default data
values. These initial data values are set in the system memory as the Car object’s default
values at construction.

 The next part of the Java class definition file contains the object methods. Java
methods should define how your Car object functions—that is, how it operates on the
variables you defined at the beginning of the class. Remember, these hold the Car object’s
current state of operation. Calling these methods invokes the variable state change;
methods can also return data values to the entity that calls or invokes the method.
Return values may include data values that have been successfully changed, or the result
of an equation.

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

42

 For instance, there should be a method to allow users to shift gears by setting the Car
object’s gear variable or attribute to a different value. This method should be declared
 void , because it performs a function but does not return any data values. In the Car class
and Car object definition example, you have four methods, as defined in Figure 4-3 .

 The .shiftGears() method sets the Car object’s gear attribute to the newGear value
passed in to the .shiftGears() method. You should allow an integer to be passed in to
this method to allow for user errors, just as in the real world a user might accidentally
shift from first into fourth gear:

 void shiftGears (int newGear) {
 gear = newGear;
 }

 The .accelerateSpeed() method takes your object’s speed state variable and
adds an acceleration factor to it. It then sets the result of this addition operation back
into the original speed variable, so that the object’s speed state now contains the new
(accelerated) speed value:

 void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 The .applyBrake() method takes the object’s speed state variable and subtracts
 brakingFactor from it. It then sets the result of this subtraction back into the original
 speed variable, so the object’s speed state now contains the updated (decelerated)
braking value:

 void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 The .turnWheels() method is straightforward, much like the .shiftGears()
method, except that it uses a String value of N , S , E , or W to control the direction in which
the car turns. When .turnWheels("W") is used, the Car object turns to the left; and when
 .turnWheels("E") is used, the car turns to the right—given, of course, that the Car object
is currently heading north, which, according to its default direction setting, it is:

 void turnWheels (String newDirection) {
 direction = newDirection;
 }

 The methods that make a Car object function go in the class after the variable
declarations, as follows:

 class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

43

 String direction = "N";
 String color = "Red";
 String fuel = "Gas";

 void shiftGears (int newGear) {
 gear = newGear;
 }

 void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 void turnWheels (String newDirection) {
 direction = newDirection;
 }
 }

 Next, let’s take a look at how to add the .Car() constructor method into this class.

 Constructing Objects: Coding Your Constructor Method
 This Car class lets you define a Car object even if you don’t specifically include a . Car()
constructor method , discussed in this section. This is why a collection of variable
settings becomes the Car object’s defaults. It is best to code your own constructor
method, however, so that you take total control over your object creation and don’t have
to preinitialize the variables to one value or another. The first thing to do is make your
variable declarations undefined, removing the equals sign and initial data values, as
shown in this modified Car class:

 class Car {
 String name;
 int speed;
 int gear;
 int drivetrain;
 String direction;
 String color;
 String fuel;

 public Car (String carName) {
 name = carName;
 speed = 15;
 gear = 1;
 drivetrain = 4;

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

44

 direction = "N";
 color = "Red";
 fuel = "Gas";
 }
 }

 The . Car() constructor method sets the default data values as a part of the
construction and configuration of a Car object. As you can see, you add a String variable to
hold the Car object’s name, with a default name parameter set to the text data value carName .

 Java constructor methods differ from regular Java methods in a number of distinct
ways. First, they do not use any data return type, such as void or int , because they are
used to create Java Object s rather than to perform functions. They do not return nothing
(void keyword) or a number (int or float keyword), but rather return an object of
type java.lang.object . Note that every class that needs to create an object features
a constructor with the same name as the class itself, so a constructor is one method
type whose name can and should always start with a capital letter. If you do not code a
constructor, your Java compiler will create one for you.

 Another difference between constructor methods and standard Java methods is
that constructors need to use a public , private , or protected access-control modifier
and cannot use any non-access-control modifiers. Therefore, be sure not to declare your
constructor as static, final, abstract, or synchronized.

 Creating Objects: Object Instantiation Using the new Keyword
 The syntax for constructing an instance of a Java Object is similar to declaring a variable.
It also uses the Java new keyword and the constructor method, using this format:

 Car myCarObject = new Car();

 To access the Car object’s properties (variables) or characteristics (constants), you
can use dot notation , which is used to chain, or reference, Java constructs to each other.
For strict Java programming, you would follow the OOP principle of encapsulation and
use getter .getProperty() and setter .setProperty() methods that must be called to
access the object property in a more controlled fashion. I am covering the similarities
to JavaScript here: dot notation can be used in both Java and JavaScript to access object
properties directly without any encapsulation enforced.

 Once a Java Car object has been declared, named, and instantiated, you can then
reference its properties. This is done, for example, using the following Java Object format:

 objectName.propertyName;

 So to access the Car object name, you use the following Java code construct:

 myCarObject.name

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

45

 To invoke your Car object methods using this myCarObject Car object also requires
the use of dot notation. For example, you can use the following Java construct:

 objectName.methodName(parameter list variable);

 So, to shift a Car object into third gear, if this Car object instance is named
 myCarObject , you use the following Java programming statement:

 myCarObject.shiftGears(3);

 This calls or invokes the .shiftGears() method of the myCarObject Car object and
passes the gear parameter, which contains the integer value of 3. This is placed into the
 newGear variable, which is used by the .shiftGears() method’s internal code to change
the gear attribute of the myCarObject Car object instance to third gear. If you think about
it, how Java works is very logical, and pretty darned cool as well.

 Extending an Object Structure: The OOP Concept of Inheritance
 There is also support in Java for developing different types of enhanced classes, and
therefore enhanced (more complex or detailed) objects. This is done using a technique
called inheritance . Inheritance lets you create more specialized classes that contain
uniquely defined objects using your original (foundational) object. For instance, the Car
class can be subclassed using the original Car superclass. Once you subclass any class, it
becomes a superclass. Ultimately, there can be only one superclass, at the very top of the
class chain, but there can be an unlimited number of subclasses. All of these subclasses
inherit the methods and data fields from their superclass. The ultimate example of this in
Java is the java.lang.Object superclass (I sometimes call this the master class), which is
used to create all other classes in Java. Every class in Java, because it has a constructor, is
also an object! Mind-boggling, to say the least—but once you wrap your head around it,
OOP is both logical and powerful.

 As an example of inheritance using the Car class, you can subclass an SUV class, using
the Car class as the superclass. This is done by using the Java extends keyword, which
extends a Car class definition in order to create an SUV class definition. The SUV class
then defines only those additional attributes (constants), states (variables), and behaviors
(methods) that apply to the SUV type of Car object. The SUV object additionally extends
all the attributes (constants), states (variables), and behaviors (methods) that apply to all
types of Car objects as defined by the Car superclass.

 This is the functionality that the Java extends keyword provides for this subclassing
(or inheritance) operation, and this is one of the more important and useful features
of code modularization in OOP languages. You can see the modularization visually in
Figure 4-4 , which adds Car features for each of the subclasses (at the top, in orange).

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

46

 As an example, the SUV Car object subclass can have additional .onStarCall() and
 .turnTowLightOn() methods defined in addition to inheriting the usual operational methods
that allow a Car object to shift gears, accelerate, apply the brakes, and turn the wheels.

 Similarly, you can generate a second subclass called the Sport class, which creates
 Sport Car objects. These may, for example, include an .activateOverdrive() method
to provide faster gearing, and maybe an .openTop() method to put down the convertible
roof. To create the subclass using the superclass, you extend the subclass from the
superclass by using a Java extends keyword in your class declaration. The Java subclass
construct thus looks like the following Java SUV class construct, which uses the Java super
keyword to generate a new applyBrake() method programming structure that makes the
brakes twice as effective:

 class SUV extends Car {
 void applyBrake (int brakingFactor) {
 super .applyBrake(brakingFactor);
 speed = speed - brakingFactor;
 }
 }

 This extends the SUV object to have access to (essentially, to contain) all the data
fields and methods that the Car object (class) features. You can focus on just the new, or
different, data fields and methods, which relate to differentiating the SUV object from the
regular or master Car object superclass definition.

 To refer to one of your superclass’s methods from within the subclass you are
coding, you can use the Java super keyword. For example, in the new SUV class, you
may want to use the Car superclass’s .applyBrake() method and then apply some
additional functionality to the brake that is specific to the SUV . You call the Car object’s
 .applyBrake() method by using super.applyBrake(brakingFactor); in the Java code
for the SUV Car object.

 Figure 4-4. OOP inheritance of the Car object allows you to create an SUV object or
 Sport object

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

47

 The Java code shown previously adds functionality to the Car object’s .applyBrake()
method, in the SUV object’s .applyBrake() method, by using the super keyword to access
the Car object’s .applyBrake() method; it then adds logic to make brakingFactor apply
twice. This serves to give the SUV object twice the braking power of a standard car, which
an SUV needs in order to stop its far greater mass.

 Next, let’s take a closer look at JavaScript’s OOP approach. JavaScript is even more
closely aligned with JSON than the Java programming languages are.

 JavaScript OOP Concepts: Hard and Soft Objects
 JavaScript can create objects in a couple of different ways. There are hard (constructed)
objects and or soft (literal notation) objects, which is what you define using JSON. This
section looks at the difference between them and how you access JavaScript objects using
each of these two object-encoding approaches. This provides a parallel—at least, using the
hard-object approach—to what you looked at in the previous Java Object sections.
(I capitalize Object in Java usage because it is a proper class name, from the java.lang.Object
master class.) You will find, possibly due to the popularity of Java, that JavaScript allows
you to do things in a very similar fashion to Java, using constructor functions . Let’s look at
the hard-object encoding approach first and then look at the soft-object approach, which
is more compatible with JSON structures. Finally, you see the JavaScript Object Notation
(JSON) description format to finish this chapter.

 JavaScript Hard Objects: Using a Constructor Function
 Just as you saw with Java Object s and constructor methods, you can also create a
constructor function in JavaScript to create an object. This section doesn’t look at this
in much detail, because you already saw this approach using the Java 9 OOP language,
and because the JSON model is tailor-made for using the JavaScript soft-object approach
(discussed next). A Car object constructor function in JavaScript looks like the following
code, if you follow the object diagram shown in Figure 4-3 and the definition created in
the previous section:

 function carObject() {
 this.name = 'carName';
 this.speed = 15;
 this.gear = 1;
 this.drivetrain = 4;
 this.direction = 'North';
 this.color = 'Red';
 this.fuel = 'Gas';
 this.ApplyBrake = function() { Brake Application Code in Here };
 this.shiftGears = function() { Gear Shifting Code in Here };
 this.TurnWheels = function() { Wheel Turning Code in Here };
 this.accelerate = function() { Acceleration Code in Here };
 };

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

48

 JavaScript literal notation defines an object as a variable, using the var
keyword, instead of as a constructor function. Let’s take a look at that slightly different
approach next.

 JavaScript Soft Objects: Using Literal Notation to Define a
Variable
 The second way to define an object in JavaScript is as a variable using literal notation .
A Car object variable declaration in JavaScript using literal notation looks like the
following data construct, if you again follow the Car object diagram in Figure 4-3 :

 var carObject = {
 name : 'myCarsName',
 speed : 15,
 gear : 1,
 drivetrain : 4,
 direction : 'North',
 color : 'Red',
 fuel : 'Gas',
 ApplyBrake : function() { Brake Application Code in Here },
 shiftGears : function() { Gear Shifting Code in Here },
 TurnWheels : function() { Wheel Turning Code in Here },
 accelerate : function() { Acceleration Code in Here }
 };

 Let’s look at the differences between these two object-definition approaches.

 Differences Between a Constructor Function and Literal
Notation
 As you can see, the primary difference in the declaration of the constructor function is
that it uses the this keyword. The this keyword is used in both Java and JavaScript and
allows an object to reference itself. The literal notation does not use the this keyword.
Secondarily, a constructor function uses the equals operator (=) to assign values to the
object’s properties and functions, whereas the literal notation object definition uses the
colon assignment operator (:).

 A constructor function can use (optional) semicolons (;) at the end of each
assignment statement for both properties and functions. On the other hand, an object
defined as a variable via literal notation is supposed to use commas (,) after each
assignment statement if there is more than one, which there is in the majority of JSON
applications.

 As you can see, other than using different keywords (JavaScript uses function, and
Java uses method), the OOP languages JavaScript and Java define object construction
logic in a similar fashion. These also access object properties and functions in a similar
format, using dot notation. Let’s take a look at this next.

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

49

 Accessing JavaScript Objects: Using Dot Notation
 To access an object property, you use the object name, then a dot (period), and then
the property name, like this: ObjectName.PropertyName . If you are using a constructor
function (or method in Java), you first instantiate the object using the OOP new keyword,
like this:

 var myCarObject = new carObject; (First Construct Your Object Instance)
 myCarObject.name (this will return a String: myCarName)
 myCarObject.accelerate() (executes code inside the accelerate() function)

 If you create an object using literal notation, you do not have to construct the object
first, so you can access the JavaScript object without having to first construct an instance
of it. The following code example accesses a property and a function:

 carObject.name (this will return the String myCarName)
 carObject.accelerate() (executes the code inside the accelerate() function)

 Now you’re ready to see the differences when you define objects using JSON.

 Defining Soft Objects: Using JavaScript Object Notation (JSON)
 As you can see from the json.org object definition diagram reproduced in Figure 4-5 , the
 JSON object definition uses the soft-object literal notation approach but does not support
the function definitions. The JSON object data definition is contained in curly braces ({})
and uses a colon (:) to separate the key (object attribute name) from the value (object
attribute data value) and a comma (,) to separate key-value pairs (object attributes and
values) from each other.

 Figure 4-5. The JSON object-definition diagram (from the json.org web site)

 This is what the Car object’s attributes (data definition) look like using JSON:

 { "name": "carName",
 "speed": 15,
 "gear": 1,
 "drivetrain": 4,
 "direction": "North",
 "color": "Red",
 "fuel": "Gas" }

CHAPTER 4 ■ OBJECTS AND OBJECT-ORIENTED PROGRAMMING: OOP PRIMER

50

 There are ways to get JavaScript functions into a JSON object by using String data
and parsing that into functions as part of your JSON parsing and evaluation process.
If you really need this functionality (no pun intended), this limitation can be worked
around. JSON is primarily designed to construct data object definitions that contain
object parameters and their corresponding data values, so functions are generally
externalized with JSON application development design approaches.

 Summary
 This chapter looked at two of the most popular object OOP languages in the world today:
Oracle Java and ECMAScript-262 JavaScript. You saw how OOP languages allow you
to logically stratify, define, and modularize your apps, and looked at how objects are
constructed and referenced using Java, JavaScript, and JSON. In the next chapter, you get
into arrays of data and how these are handled in JSON.

51© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_5

 CHAPTER 5

 JSON Arrays: Serialized
Data Store Structures

 This chapter examines a data structure that holds more complex data representations: an
 array . An array is similar to a database structure, but far more simplified in nature. Arrays
are found in most every programming language, including OOP languages as well as
non-OOP languages. You even hear the word array used in natural languages, such as in
the phrase “We have a wide array of products,” referring to a store’s stock or collection of
items to be sold.

 In this chapter, you look at what an array of data is and how it is used and accessed
using JavaScript, because this language is tied the most closely to JSON. After that, you
see how arrays of data are represented using JSON, and how the popular Java open source
language supports JSON arrays using custom classes and libraries.

 An Overview of Arrays: Data Structures
 The term array is most often used to mean the array data type . This is a type of data
collection that is provided by almost all high-level programming languages. An array
consists of an ordered collection of data values held in variables that can be selected by
your code constructs. This is done by using one or more indices that are computed at
runtime. In some cases, the term vector is used in computing to refer to an array, although
 tuple is the more correct mathematical equivalent and is another synonym. Arrays are
often used to implement data tables, especially lookup tables in databases. For this
reason, the word table is also sometimes used as a synonym for array .

 An array is the oldest and most important computer programming data structure:
holds the data to be operated on and is used by almost every software program ever
coded. Arrays are also used to implement other important data structures, such as strings
and lists. This is because arrays effectively use the inherently linear memory addressing
logic and schema used by modern-day computers.

 In most computers, as well as most external storage devices, the memory is a
one-dimensional array of byte words, whose indices are the memory addresses
themselves. Processors, also known as CPUs, are also optimized for array operation so
that data can be quickly and efficiently retrieved, speeding up application performance
and therefore also enhancing the user experience.

CHAPTER 5 ■ JSON ARRAYS: SERIALIZED DATA STORE STRUCTURES

52

 Array data types are implemented using some type of array structure . These may
vary across languages and are often implemented by using hash tables, linked lists, search
trees, and similar data structures that are all akin to simplified databases (data stores).
In computer programming, an array data structure, usually referred to simply as an array,
is a data structure consisting of a collection of elements (data values held in variables).

 Each of these elements is identified by at least one array’s index . An index is also
sometimes referred to as the key because it allows you to reference (retrieve) the data.
The simplest type of data structure is a linear array , also called a one-dimensional array .

 An array is stored in such a way that the data access (position in the array) for
each element can be computed from the array index or key using a basic mathematical
formula to access linear data items (records). As an example, the array of eight 32-bit
integer variables with indices 0 through 7 is stored as eight words at memory addresses
2000, 2004, 2008, 2012, 2016, 2020, 2024, and 2028. So, the element with index i has the
address index[i] = 2000 + 4 × i .

 There are also two-dimensional arrays , sometimes referred to as matrices because
the mathematical concept of a matrix can be represented as a two-dimensional grid;
there are three-dimensional arrays as well. The data elements of array data structures are
usually required to have the same data size and the same data structure, and also use the
same data-type representation, so that an element index can be accurately computed
during runtime. Among other things, this data-uniformity requirement allows any single
iterative statement to process an arbitrary number of data elements in any data array. Sets
of valid index tuples and the addresses of the elements, and hence the element-addressing
formula, usually, but not always, are 100% fixed while a data array is being accessed.

 Declaring a JavaScript Array: Variable Declaration
 Let’s follow the format used in Chapter 4 and first look at how to define a data array
using the JavaScript programming language. Then you see how to access this data using
JavaScript dot notation (this works in Java as well) and how arrays can be represented
using JSON. Similar to soft-object literal notation, you start the array data declaration
with the var (variable) keyword and the name that you wish to use for your array,
followed by an equals operator. Instead of the curly braces {...} used for defining
objects, arrays use square brackets [...] instead. To define an array containing a used
car dealership’s inventory, including make, model, color, and list price, you can create an
array data structure where each data record is an object, with colon-delimited key:value
pairs separated using commas, and with the object definitions themselves separated
by commas within the array, which is defined using square brackets. Remember that
attribute names and string values are contained in double quotes. The JavaScript code
looks like the following array data definition:

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "price":24995 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "price":21795 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "price":26495 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "price":27895 }
]

http://dx.doi.org/10.1007/978-1-4842-1863-1_4

CHAPTER 5 ■ JSON ARRAYS: SERIALIZED DATA STORE STRUCTURES

53

 Now that you have defined an array of data objects, let’s look at how you access
elements of arrays using the array name, element indices, object properties, and
dot notation.

 Accessing a JavaScript Array: Using the Index
 Array data elements are accessed by using their indices, which are contained in square
brackets just like the array itself. As you may imagine, the array name comes first, using
an integer index specification, to specify which data record you wish to access. Then the
dot-notation syntax is used to chain together that data record with the property name you
wish to reference. The following example puts together a construct that accesses the first
(carName) object attribute ("Toyota"):

 carInventory[0].carName // Will return the String value: "Toyota"

 You can also concatenate data together using a plus operator and insert blank space
using quotation mark delimiters with a space in between. The following example takes a
 carName object attribute and appends it to the model object attribute, creating the full car
manufacturer and model name as a result ("Toyota Prius"):

 carInventory[0]. carName + " " + carInventory[0]. model // "Toyota Prius"

 There’s an alternate way to access object attributes in an array data record, which
does not use dot notation. This involves using the square brackets used with arrays to
hold a quoted attribute name value. So instead of using arrayName[n].attributeName ,
you can use [n]["attributeName"] , as shown in the following JavaScript code example:

 carInventory[0]["carName"] // Will also return the String value: "Toyota"

 Again, you can concatenate data together using a plus operator and insert blank
space using quotation mark delimiters with a space between them. This example takes
a carName object attribute and appends it to the model object attribute, resulting in the
manufacturer and model name ("Toyota Prius"):

 carInventory[0]["carName"] +" "+ carInventory[0]["model"] // "Toyota Prius"

 You can create constructs that access the array object data in whatever order suits
your purpose. The following data-access example outputs a more descriptive formatting
of the object data, perhaps for sales and marketing purposes:

 carInventory[3]. color + " " +
 carInventory[3]. carName + " " +
 carInventory[3]. model + ": $" +
 carInventory[3]. price // Returns: "Blue Chevy Camaro: $27895"

CHAPTER 5 ■ JSON ARRAYS: SERIALIZED DATA STORE STRUCTURES

54

 This can also be represented using the alternate array object attribute data -access
format, which uses the following JavaScript code syntax:

 carInventory[3][" color "] + " " +
 carInventory[3][" carName "] + " " +
 carInventory[3][" model "] + ": $" +
 carInventory[3][" price "] // Returns: "Blue Chevy Camaro: $27895"

 Next, let’s look at the syntax for defining an array using JSON. This is similar to the
JavaScript approach but uses a colon instead of the equals operator and does not use
the var (variable) keyword. After that, you look at how Java 8 provides JSON array and
object libraries for handling the object and array structures you saw in the previous two
chapters.

 Defining a JSON Array: Using the Colon Operator
 The basic format for JSON array data structures can be found on the json.org web
site and uses square brackets to contain the data values, which are comma delimited
(separated by commas). You saw this in the previous section, where you separated data
objects using commas, with each object structure contained in curly braces. The basic
JSON array format diagram, from json.org, is reproduced in Figure 5-1 .

 Figure 5-1. A JSON array is contained in square brackets and uses commas to
separate values

 A basic JSON array of number values thus uses the following data format:

 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

 The name for a JSON array is contained in double quotation marks, using the colon
operator between the JSON array name and the JSON array structure itself. Here is an
example of how the array data structure from the previous section is created as a JSON
array data definition structure:

 "carInventory" : [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "price":24995 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "price":21795 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "price":26495 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "price":27895 }
]

CHAPTER 5 ■ JSON ARRAYS: SERIALIZED DATA STORE STRUCTURES

55

 Now that you’ve seen the two major JSON data structure types, objects and arrays,
the next section presents an overview of the Java 8 programming language capabilities
regarding JSON, and after that, you can proceed to the chapters covering numbers,
characters and other data values.

 Java JSON Support: JSON Utility Classes
 Java has an API called JSR 353 created solely for JSON data processing. This API provides
portable API components that allow you to parse, generate, transform, and query JSON
data definitions using both Object Model and Streaming API libraries and classes. The
JSON Object Model API creates a random-access, tree-like structure that represents the
JSON data in system memory. This tree-like data structure can subsequently be navigated
or queried.

 The object programming model is the most flexible approach, enabling processing
that requires a random access to the complete contents of the object data-tree structure.
This object model usually is not as efficient as a streaming model, requiring more system
memory to implement, because it must install the entire data representation into system
memory locations.

 The JSON Streaming API provides a way to parse and generate JSON using a
 streaming approach without having to have all the data in memory at one time. This
streaming model gives you JSON parsing or generation control. The JSON Streaming API
provides an event-based parser, letting you request the next event rather than handle the
event using an event callback infrastructure.

 This approach gives you more procedural control over JSON data processing. JSON
streaming model application code can process or discard the parser event and ask for the
next event, which is called pulling the event.

 The streaming model is appropriate for local processing, where random access of
other parts of JSON data is not required. Additionally, the JSON Streaming API provides a
way to generate well-formed JSON to a stream by writing one event at a time.

 JSON Object Model: Java Object and Array Builder
 The JSON Object Model API is similar to the Document Object Model (DOM) API for
XML or HTML5. The JSON Object Model is a high-level API that provides immutable
object models for JSON object structures, which you learned about in Chapter 5 ; and
JSON array structures, which you saw earlier in this chapter. These JSON structures are
represented as Java object models using the Java types JSONObject and JSONArray .

 The JSONObject class provides a Map object view to access an unordered collection
of zero or more key:value pairs from a JSON data-object definition model. The JSONArray
class provides a List object view to access an ordered sequence of zero or more values
from a JSON data-array definition model.

 The JSONObject , JSONArray , JSONString , and JSONNumber classes are subclasses,
and therefore subtypes, of the JSONValue superclass. Constants are defined in this JSON
API for null , true , and false JSON values, which are covered in Chapter 6 . These are
held in the JSONNull and JSONBoolean subclasses.

http://dx.doi.org/10.1007/978-1-4842-1863-1_5
http://dx.doi.org/10.1007/978-1-4842-1863-1_6

CHAPTER 5 ■ JSON ARRAYS: SERIALIZED DATA STORE STRUCTURES

56

 The JSON Object Model API uses builder patterns to create JSON object models from
scratch. Application code can use the JSONObjectBuilder interface to create the JSON
data-definition models that represent JSON objects. The resulting model is of the Object
type JSONObject .

 Application code can use the Java interface JSONArrayBuilder to create models that
represent JSON Array Object s. The resulting model from this type of builder is of Object
type JSONArray .

 These object models can also be created using an input source (such as InputStream
or Reader) using the Java interface JSONReader . Similarly, these object models can
be written to an output source, such as OutputStream or Writer , using the Java class
 JSONWriter . These classes and interfaces are shown in Table 5-1 , which lists the primary
Java classes and Java interfaces contained in the JSON Object Model API for the Java
programming language.

 Table 5-1. Primary Classes and Interfaces in the Java JSON Object Model API

 Class or Interface Description

 JSON Contains static methods to create JSON readers, writers,
builders, and their factory objects

 JSONGenerator Writes JSON data to a stream one value at a time

 JSONReader Reads JSON data from a stream, and creates an object model in
memory

 JSONObjectBuilder Creates an object model in memory by adding values from
application code

 JSONArrayBuilder Creates an array model in memory by adding values from
application code

 JSONWriter Writes an object model from memory to a stream

 JSONObject Represents the JSON Object data type

 JSONArray Represents the JSON Array data type

 JSONValue Represents data types for values in JSON data

 JSONNumber Represents data types for numbers in JSON data

 JSONString Represents data types for strings in JSON data

 JSONBoolean Represents Boolean data types for TRUE and FALSE in JSON data

 JSONNull Represents the Empty data type for NULL in JSON data

 The next section presents a brief overview of the JSON Streaming Model API for
Oracle Java.

CHAPTER 5 ■ JSON ARRAYS: SERIALIZED DATA STORE STRUCTURES

57

 The JSON Streaming Model: Parser and Generator
 The JSON Streaming API is a low-level API that is designed to process very large amounts
of JSON data efficiently. Other JSON frameworks (such as JSON binding) can also
be implemented using this API. The JSON Streaming API is similar to the StAX XML
Streaming API. The JSON Streaming API consists of the Java interface JSONParser as well
as the Java interface JSONGenerator .

 As you may have guessed, the JSONParser interface contains methods to parse JSON
data using this JSON streaming model. The JSONGenerator interface contains methods
for writing JSON data stream into an output source.

 The JSONParser interface provides forward-moving, sequential, read-only access to
JSON data by using the pull-parsing programming model. In this model, your application
code controls the thread and calls methods in the JSONParser interface to move the
parser forward sequentially or, alternately, to obtain JSON data from the current state of
this parser.

 The JSONGenerator interface , on the other hand, provides Java methods to write
JSON data out to a datastream. This interface should be used to write your key:value pairs
into JSON objects and to write sequential data values into JSON arrays. The primary Java
classes and interfaces contained in the JSON Streaming API are shown in Table 5-2 ; note
that the JSON class spans both the object and streaming models.

 Table 5-2. Primary Classes and Interfaces in the Java JSON Streaming Model API

 Class or Interface Description

 JSON Contains static methods to create JSON readers, writers, builders,
and their factory objects

 JSONParser Represents an event-based parser that can read JSON data from a stream

 JSONGenerator Writes JSON data to the stream one value at a time

 Now that you have learned about JSON objects and arrays, you can examine the
different types of data values that can be contained in these two types of JSON structures.

 Summary
 This chapter looked at how to define and access data arrays in JavaScript, JSON, and Java
using the JSON APIs. You saw how data arrays allow you to store large collections of
sequential data for applications, and how data arrays can be constructed and
referenced using JavaScript, JSON, and Java. In Chapter 6 , you learn about the data
types and values that are allowed in JSON.

http://dx.doi.org/10.1007/978-1-4842-1863-1_6

59© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_6

 CHAPTER 6

 JSON Data Values: Types of
Data that JSON Supports

 You have looked at the two types of JSON data structures: one used to define objects,
covered in Chapter 4 ; and the other used to define data arrays, covered in Chapter 5 .
This chapter discusses the different types of data values that can be supported in your
JSON data-definition structures. Many types of data values are supported in computer
programming languages, and JSON must work across most if not all of these to define
data structures. Thus it must implicitly support all the core types of data values, such as
numbers, characters, and booleans, as well as more advanced data structures, such as
objects and arrays.

 This chapter looks at the data types that are supported in JSON and also how they are
supported in JavaScript and Java, because these languages are used the most frequently
with JSON. After that, you examine each of these data types.

 JSON Value: Supported JSON Data Types
 The diagram in Figure 6-1 , from the json.org web site, shows the data value types that
JSON supports. String values hold textual values, number values hold numeric values,
objects and arrays work as discussed in Chapters 4 and 5 , and Boolean values can be
 true or false . An empty data value is represented using a null value. This chapter covers
strings, numbers, Booleans, and null at a basic level. Chapter 7 covers string values in
detail, and Chapter 8 looks at number values.

 String Value: The Sequence or Array of Characters
 A string is traditionally a sequence of characters and is commonly used in computer
programming for text data to allow programmers to represent a word, sentence, paragraph,
or document. A string variable may be represented either as a literal constant, which has
a fixed data value, or as some kind of variable, which can hold different text data values at
different times during the execution of the computer software application. A variable’s

http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_5
http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_5
http://dx.doi.org/10.1007/978-1-4842-1863-1_7
http://dx.doi.org/10.1007/978-1-4842-1863-1_8

CHAPTER 6 ■ JSON DATA VALUES: TYPES OF DATA THAT JSON SUPPORTS

60

elements can mutated ; that is, the length of the string (number of characters) can be
changed, as can the characters used to form the string. A string can also be fixed after it
is created, in which case it is used as a constant. A string is generally understood to be a
data type, as it is in JSON (as shown at the top of Figure 6-1). It is usually implemented as
an array of characters that are represented as bytes (or words, depending on the character
set used) and that stores a sequence of elements using a character-encoding format such
as UTF-16.

 Figure 6-1. JSON supports string, number, object, array, Boolean, and null data values

 When a string appears literally in the source code, it’s known as a string literal or an
 anonymous string . In formal programming languages used for mathematical logic, or
theoretical computer science, a string is defined as a finite sequence of symbols that are
chosen from a character set commonly called an alphabet . Chapter 7 covers JSON strings,
in particular, in greater detail, including Java and JavaScript string usage.

 Number Value: Representing the World
 A number is a mathematical object used to calculate, measure, count, estimate, or label
what you see around you in the real world. Examples of a numeric value include what
are known as the natural numbers, such as 1, 2, 3, and 4. The symbolic notation that
represents a number is called a numeral , such as a Cardinal numeral (1, 2, 3, 4, 5) or
a Roman numeral (I, II, III, IV, V). In addition to their use in counting, numerals are
also used for labeling, like the numbers on your smartphone dialer; measuring, as in
architectural blueprints; ordering, such as highway mile markers; estimating, as in repair
estimates from an auto repair shop; and tracking, such as the Dewey Decimal System
used a public libraries.

 In everyday usage, the term number could refer to a plethora of different things,
including a quantity, a symbol, a word, an estimate, or even a complex mathematical
abstraction or calculation. In mathematics, the concept of a number has been extended

http://dx.doi.org/10.1007/978-1-4842-1863-1_7

CHAPTER 6 ■ JSON DATA VALUES: TYPES OF DATA THAT JSON SUPPORTS

61

over the centuries to include zero (no number, or nothing); negative numbers; rational
numbers, such as fractions; real numbers, such as pi and the square root of any number;
and complex numbers, which further extend the concept of real numbers by including,
for instance, the square root of a negative number. Calculations using numbers are
most commonly done using arithmetical operations, the most familiar being addition,
subtraction, multiplication, division, and exponentiation.

 The study or use of numbers is generally known as arithmetic . This same term can
also refer to number theory , which is the study of the properties of these natural numbers.
Chapter 8 covers JSON numbers, including Java and JavaScript number usage.

 Boolean Value: True or False, On or Off, Yes or No
 Booleans are named after George Boole, who first defined an algebraic system of logic in
the mid-19th century. Boolean data values are intended to represent the truth values of
logic with Boolean algebra and are often used to implement decision making.

 In computer science, the Boolean data type has two opposing values, such as On and
 Off , Yes and No , or Stop and Go . These are usually quantified as TRUE and FALSE , at least
in the Java and JavaScript languages. In programming languages that feature this Boolean
data type, such as Java and JavaScript (and therefore JSON), comparison operators such
as greater-than (>), NOT (!), and less-than (<) are usually defined as returning a Boolean
value from a Boolean comparison operation. Conditional and Iterative programming
constructs may also be defined to test Boolean-valued expressions and control the
internal program logic using these Boolean values as switches to guide what you want
your program logic to decide.

 Boolean data types are primarily associated with the implementation of conditional
statements , which allow different actions, and change the logic-control flow, depending
on whether the programmer-encoded Boolean condition evaluates to TRUE or FALSE .
Booleans are a specialized case of more general logical data types. It is important to note
that logic does not always have to be Boolean in nature; however, Boolean logic is well-
suited to programming languages, which is why it is implemented in all the most popular
languages.

 Most programming languages, including those that do not include Boolean data
types, support Boolean algebraic operations, such as conjunction, using AND (&);
disjunction, using OR (|); equivalence, using = and == ; exclusion, using XOR (!=); and
negation, using NOT (!).

 Sometimes a Boolean variable is regarded and implemented as a numerical variable
using a single binary digit (a bit that is 0 for false or 1 for true), which is logical, because
a bit can store only two values. It is important to note that most implementations of
Boolean values in computer languages are represented as a full word, rather than using a
single bit; this is due to the way computers transfer blocks of information.

 In some AI OOP languages, such as Alice and Smalltalk, the true and false values
are created using separate classes, True and False . Thus there is no single Boolean
data type.

 To create a Boolean value in JSON, you use a lowercase true or false keyword
without quotations, which would signify that it was a string value to the JSON parser
rather than a Boolean value. Let’s add a "sold" attribute to the Car object data definition

http://dx.doi.org/10.1007/978-1-4842-1863-1_8

CHAPTER 6 ■ JSON DATA VALUES: TYPES OF DATA THAT JSON SUPPORTS

62

created in Chapter 4 , so you can add a Boolean value that tells you whether a car is still
available for sale ("sold":false) or has already been sold ("sold":true). The new JSON
data definition is as follows:

 { "name": "carName",
 "speed": 15,
 "gear": 1,
 "drivetrain": 4,
 "direction": "North",
 "color": "Red",
 "fuel": "Gas",
 "sold": false }

 Next, let’s take a look at the null value data type for undefined (empty) data values.

 Null Values: A Placeholder for Future Data Values
 The final type of data value you look at in this chapter is the null data value , which is
often used to signify that a data field or data variable is undefined or currently empty
(unused). The null character has a long history in computer science, starting as a
zero-valued ASCII character in the original character set for 8-bit computing. This null
data value is designated in some computer languages using NULL or even NUL ; but in
JSON, like true and false , it is written lowercase and without quotation marks (which
again would turn the null value into a string value, "null").

 The null character is also frequently used in computer programming as a data-stream
terminator or file terminator, a separator of data collections, or a filler. It’s important to note
that a null value, symbol, or character has no visual representation, much like the space
character; but null uses a different ASCII (or other character set) code.

 There is also a software design pattern using an Object with defined neutral behavior
that is called the null object software design pattern ; and in computer programming languages,
there is also the concept of a null pointer . This can be designated as NULL , Nil , or NONE and
is used to designate an uninitialized, undefined, empty, or meaningless data value.

 The concept of a null value also extends to string values: there’s a null string, in
which the string value has a zero length (it’s empty, or currently unused). There is also
a null-terminated string, which is a string value filled with characters where the string’s
length is determined by the first null character that is encountered. This is equivalent to
using null as a termination value; in this case, it’s used to terminate the string, but a null
value can also terminate a file or a data stream.

 Some statically typed programming languages include a nullable type. This
programming feature allows a data type to be set to the special value NULL . In SQL, null
is used as a special marker and keyword for SQL data structures; the null value indicates
that a particular data field has no current data value assigned.

 There is also the concept of a null device , which is a special virtual computer
device or console that discards all data written to it, kind of like a virtual black hole. Null
devices are even used in real-world hardware, such as a null modem, which is a serial
communications cable with special wiring to create null-device behavior.

http://dx.doi.org/10.1007/978-1-4842-1863-1_4

CHAPTER 6 ■ JSON DATA VALUES: TYPES OF DATA THAT JSON SUPPORTS

63

 Let’s add a null value to the growing Car data object JSON definition to hold a value
for the buyer of the car. If the "sold" attribute or parameter for the Car object is set to
 false , the car has no buyer (yet), and so the "buyer" attribute or parameter data field is
set to null :

 {
 "name": "carName",
 "speed": 15,
 "gear": 1,
 "drivetrain": 4,
 "direction": "North",
 "color": "Red",
 "fuel": "Gas",
 "sold": false // false Boolean value designates there is no buyer
 "buyer": null
 }

 On the other hand, if the "sold" attribute or parameter is set to true , the car has
a buyer, and so the "buyer" attribute or parameter data field is set to a string variable
(covered in the next chapter). The Car data object JSON definition in this case changes
to look like the following. Because the car has been sold ("sold": true), a buyer’s name
appears in the "buyer" data field:

 {
 "name": "carName",
 "speed": 15,
 "gear": 1,
 "drivetrain": 4,
 "direction": "North",
 "color": "Red",
 "fuel": "Gas",
 "sold": true
 "buyer": "buyerName" // null value replaced with a string value
 }

 Now that you have learned about Boolean and null value data types and how
they are used in JSON data-definition structures, let’s take a brief look of how they are
represented in Java and JavaScript.

 Java and JavaScript: Boolean and Null
 Boolean values in Java are represented using the java.lang.Boolean class, which
contains two static fields for the Boolean object: FALSE and TRUE . The Boolean class is a
subclass of the java.lang.Object class. In JavaScript, Boolean values are a data type and
use lowercase true and false values, just like JSON, which should not be a surprise to
you at this point.

CHAPTER 6 ■ JSON DATA VALUES: TYPES OF DATA THAT JSON SUPPORTS

64

 Both Java and JavaScript define null using lowercase as a primitive . A null primitive
type is used to reset or empty an object and defines something that does not (yet) exist.
JavaScript also has a type called undefined that is a keyword used in a way similar to null.

 Summary
 This chapter examined the different types of data values supported in JSON and how
the Boolean and null data types are used in JavaScript, JSON, and Java. You looked at
the basic details of string and number values, which are covered next, and you added
Boolean and null values to the object definitions created in Chapter 4 . The same format
and syntax are used to add these values to a JSON array. Chapter 7 explores the different
string data types and values allowed in JSON.

http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_7

65© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_7

 CHAPTER 7

 JSON Character Values:
Defining Strings in JSON

 Chapter 6 looked at the two different types of special data types, Boolean and null ;
Chapter 4 covered JSON object data structures, the primary structures used to define
objects; and Chapter 5 discussed the secondary array data structure used to define data
arrays. This chapter looks at the string data values that define the text values supported in
JSON data-definition structures. You saw how to use strings to some extent in Chapters 4
and 5 . In this chapter, you go over the finer details of strings, Unicode character support,
and some of the specifics of how strings, characters, and special characters are supported
in the JSON format specification.

 This chapter looks at the string data type supported in JSON and how string
values are supported in JavaScript and Java, because these languages are used the most
frequently with JSON. You see some examples of this string data type and how it can be
used to extend the current Car object data definition to include some special characters
such as quotation marks, forward and back slashes, and custom character codes, such as
the one used for the copyright symbol.

 JSON String: Unicode Character Support
 As you know already, string values in JSON need to be delimited using double quotation
marks , as do the parameter (or attribute) names used as keys in key:value pairs. This
is because these data-value names, also known as variable names , parameter names ,
 attribute names , or characteristic names , are strings containing the descriptive key to be
used in JavaScript, Java, or other programming languages as the handle to reference the
data value for that key:value pairing for that particular piece of data. In this chapter, that
data value consists of a string of characters; in Chapter 8 , it consists of different types of
numbers, such as integers, real numbers, and exponents.

 JSON string values are based on the popular Unicode universal character set. This
set of predefined standard characters, symbols, and functions references characters using
decimal numbers in the format &#nnnn; or, alternately, by using the hexadecimal format
 &#xhhhh; with the x preceding the hexadecimal always lowercase. You can see a list of the
 Unicode character set in table format, organized by function, at https://en.wikipedia.
org/wiki/List_of_Unicode_Characters .

http://dx.doi.org/10.1007/978-1-4842-1863-1_6
http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_5
http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_5
http://dx.doi.org/10.1007/978-1-4842-1863-1_8
https://en.wikipedia.org/wiki/List_of_Unicode_Characters
https://en.wikipedia.org/wiki/List_of_Unicode_Characters

CHAPTER 7 ■ JSON CHARACTER VALUES: DEFINING STRINGS IN JSON

66

 Figure 7-1 shows a diagram of JSON string data value type character support
and guidelines, from the json.org web site. It also shows supported escaped control
characters.

 Figure 7-1. JSON string values support Unicode characters, except escaped control
characters

 A JSON string value may contain a sequence of zero or more Unicode characters.
A single character can also be represented as a string containing only that character; this
is how the char data type found in many programming languages can be simulated using
a JSON string value.

 JSON string values must be contained in double quote characters. You can escape
special characters using the backslash character (\), called a reverse solidus in Figure 7-1 ;
this backslash tells the JSON parser that a special character representation is about to
be read. As you can see in the figure, a number of important textual functions are also
supported.

 The quotation marks used to delineate quotations need to be escaped themselves,
because the JSON string value is contained in quotation marks; this allows the parser
to understand that quotation marks internal to the JSON string value are not the ending
quotes. Thus the JSON parser can “see” the end of the JSON string value as being the
unescaped quotation marks, so string-value parsing is not ended (aborted) prematurely.

 The backslash is also escaped using itself—so, adding a backslash character to a
JSON string value requires the use of two backslashes. A forward slash (/), or solidus ,
requires a backslash and then a forward slash.

CHAPTER 7 ■ JSON CHARACTER VALUES: DEFINING STRINGS IN JSON

67

 The backspace character is represented by the letter b for backspace and is escaped
by using the \b character sequence. This is more of a printer-related character, as is the
form-feed character, which is represented by the letter f and is escaped using \f .

 The newline is a typewriter legacy as well as a printing-related character. It is
represented by the letter n and advances the printer or text editor to the next line. It is
escaped using \n . This newline is closely related to the carriage return.

 The carriage return is another typewriter legacy and print-related operation
represented by the letter c . It is escaped using \c .

 The tab character places even amounts of space between text and is meant to
provide precise text alignment. It is represented by the letter t and escaped using \t .

 Finally, there’s support for the custom Unicode character set, which allows you to
access specialized characters such as the trademark, registered, and copyright symbols.
The escaped sequence is \u followed by the four hexadecimal digits of any special
Unicode character you may wish to use in your character string.

 Background of String Values
 A string is traditionally a sequence of characters and is commonly used in computer
programming for text data to allow programmers to represent a word, sentence,
paragraph, or document. A string variable may be represented either as a literal constant,
which is fixed in its data value, or as a variable, which can hold different text data values
at different times during the execution of the computer software application. A variable’s
elements can be mutated ; that is, the length of the string (number of characters) can be
changed, as can the characters used to form the string value. A string can also be fixed
after it is created, in which case it is used as a constant. A string is generally understood to
be a data type in computer programming languages, as it is in JSON (as shown at upper
left in Figure 7-1). It is usually implemented as an array of characters that are represented
as bytes (or words, depending on the character set used) and that stores a sequence of
elements using a character-encoding format such as UTF-16.

 When a string appears literally in the source code, it’s known as a string literal or an
 anonymous string . In formal programming languages used for mathematical logic, or
theoretical computer science, a string is defined as a finite sequence of symbols that are
chosen from a character set commonly called an alphabet .

 Escaping Control Characters: JSON Examples
 Let’s take a look at some of the more advanced forms of JSON string values; you have used
simple string values in several other chapters already. This section goes through some
examples that add new data fields to the Car object data definition: you add a nickname
using quotes, a directory path (folder filename path), and a copyright symbol, to see how
to escape characters in JSON string values so that you can add control characters and
special symbols (nonstandard characters).

CHAPTER 7 ■ JSON CHARACTER VALUES: DEFINING STRINGS IN JSON

68

 First, let’s look at how you add a nickname to the "buyer" attribute by escaping
the quotation marks using the backslash character. Let’s say the buyer name is Johnny
“RocketMan” Starship. If you just used quotes in the string value, a JSON parser would
read it as "Johnny" and then throw an error. You need to escape the quotes using a
backslash, which makes the JSON object data definition look like the following:

 { "name": "carName",
 "speed": 15,
 "gear": 1,
 "drivetrain": 4,
 "direction": "North",
 "color": "Red",
 "fuel": "Gas",
 "sold": true
 "buyer": "Johnny \" RocketMan \" Starship" }

 Next, let’s see how you add a "folder" attribute. Folders have backslash characters
between the drive specifier, directory name, subdirectory names, and filename, and you
implement this by escaping each backslash character using another backslash character.
Let’s say the folder path to the buyer name is C:\Buyers\Name . You need to escape the
backslashes using a second backslash, which makes the new ten-attribute JSON object
data definition as follows:

 { "name": "carName",
 "speed": 15,
 "gear": 1,
 "drivetrain": 4,
 "direction": "North",
 "color": "Red",
 "fuel": "Gas",
 "sold": true
 "buyer": "Johnny \" RocketMan \" Starship"
 "folder": "C: \\ Buyers \\ Name" // Equates to C:\Buyers\Name folder }

 Finally, let’s look at how to add a "copyright" attribute and symbol. You escape u
(Unicode) using a backslash and add the copyright character code 00A9 immediately
thereafter. This makes a new 11-attribute JSON object data definition:

 { "name": "carName",
 "speed": 15,
 "gear": 1,
 "drivetrain": 4,
 "direction": "North",
 "color": "Red",
 "fuel": "Gas",
 "sold": true
 "buyer": "Johnny \" RocketMan \" Starship"
 "folder": "C: \\ Buyers \\ Names"
 "copyright": " \u00A9 2016, All Rights Reserved." // Equates to ©2016 }

CHAPTER 7 ■ JSON CHARACTER VALUES: DEFINING STRINGS IN JSON

69

 The next section discussed how string values are handled in Java and JavaScript, to
make sure you have a comprehensive overview of how string data is handled using two of
the most popular OOP languages used in conjunction with JSON.

 Java and JavaScript: Using String Values
 String values in Java are represented using the java.lang.String class, which creates a
 String Object using the Char (Character) data type. The String class is a subclass of
the java.lang.Object class. In JavaScript, String values are primitive data types and use
either the single-quote character to contain other characters or, more commonly, double
quotes, like JSON. Just as in Java, JavaScript can also define strings as objects using the
 String() function. Let’s take a look at these two different approaches for defining strings
of characters.

 Java String Values: Java’s String Class and Object
 The Java programming language builds a String Object by using individual characters,
which is a powerful and flexible approach. The java.lang.String class can be customized
if necessary by subclassing it, thereby making it a superclass. The java.lang.String
class is a subclass of java.lang.Object and is a public final class that implements three
Java interfaces: Serializable , CharSequence , and Comparable<String> . Java String s are
constants, and therefore their values cannot be changed after they are created.

 Strings in Java can be created in several ways. For instance, you can declare a string
using the String classname, the string constant name, and a data value in quotes, like this:

 String stringName = "Jon";

 Or you can declare it using the char primitive, an array, and the Java new keyword,
using two lines of Java code:

 char stringData [] = {'J', 'o', 'n'};
 String stringName = new String(stringData);

 The String class has a plethora of methods for manipulating strings, examining
string contents, concatenating strings, measuring strings, and the like. If you want to
look into this more closely, see https://docs.oracle.com/javase/8/docs/api/index.
html?java/lang/String.html .

 JavaScript String Values: Primitives and Objects
 JavaScript can define strings as primitive data values created from literals, and can also
define strings as objects by using the String() function in conjunction with the new
keyword. Let’s look at both of these approaches.

https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/String.html

CHAPTER 7 ■ JSON CHARACTER VALUES: DEFINING STRINGS IN JSON

70

 JavaScript String Primitives: Using Var to Create a Literal
 JavaScript strings contain a sequence of characters in either single quotes or double
quotes. You can use quotes in a JavaScript string as long as they don’t match the quotes
that contain the string. Most JavaScript programmers use double quotes on the outside of
the string value and single quotes in the string value, like this:

 var sampleStringValue = "This is a string with an 'inside quotation' in it";

 You can find the length of a JavaScript string using its length property, like this:

 var sampleStringLength = sampleStringValue. length ;

 The same escape-character sequences relating to Figure 7-1 work in JavaScript
exactly the same way they work in JSON, not surprisingly.

 JavaScript String Objects: Using String() with the new Keyword
 JavaScript strings can also be created as objects by using the String() function and new
keyword , although this is not recommended because it is more memory- and processor-
intensive. The String() function parameter area contains your sequence of characters,
again in either single quotes or double quotes. As stated earlier, most JavaScript
programmers use double quotes on the outside of the string value, but let’s mix it up and
reverse that convention in this example (which also works):

 var sampleStringValue = new String('String with "inside quotation" in it');

 Strings are an important data type, so be sure to master them!

 Summary
 This chapter looked at how string values are represented in JSON and how the String
data type is used in JavaScript and Java. You learned about the basics of string values,
and you added attributes to the Car object JSON data definition that included custom
escaped character string values. You saw how to use quotation marks, directory backslash
separators, and special character (nonstandard) characters in string data values. The
same format and syntax are used to add these values to your JSON array structures.
Chapter 8 discusses the different number data types and numeric value representations
allowed in JSON.

http://dx.doi.org/10.1007/978-1-4842-1863-1_8

71© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1_8

 CHAPTER 8

 JSON Numeric Values:
Defining Numbers in JSON

 Chapter 7 looked at the string data type; now let’s examine the number data value in
JSON. It lets you define a wide range of numeric data values that can be supported in your
JSON data-definition structures. You learned some things about numbers in Chapters
 4 and 5 ; this chapter goes over some of the finer details, including different types of
numbers and specifics of how integers, fractions, decimals, and exponents are supported
in the JSON format specification.

 This chapter looks at the number data type supported in JSON. These numeric data
values are supported in the same ways and formats in JavaScript as well as Java. You see
examples of JSON number data and how it’s used to extend the current Car object.

 Number Types: Integer, Real, Exponential
 As you learned in Chapter 6 , a wide range of number representations are used in both
everyday life as well as complex mathematics, physics, and similar advanced studies.
JSON uses three main types : whole numbers, called integers ; fractional numbers,
called real numbers or decimal numbers ; and exponential numbers, which use the
 E or e designation to tell you where the decimal point goes in fractional numbers that
are extremely large or small in their magnitude. This chapter shows you how these are
represented in JSON. These three types of numbers should allow you to represent any
numeric value you need in your JSON application development.

 JSON Number: Wide Ranging Numerics
 The diagram in Figure 8-1 , from json.org , shows the JSON number data value type
numeric support and guidelines along with supported negative (minus sign), decimal
(0 and fractional or real numbers using a decimal point), and exponential (E or e notation
with a plus or minus sign) number support. This chapter explains how to traverse this
diagram to create the different types of number values in JSON.

http://dx.doi.org/10.1007/978-1-4842-1863-1_7
http://dx.doi.org/10.1007/978-1-4842-1863-1_4
http://dx.doi.org/10.1007/978-1-4842-1863-1_5
http://dx.doi.org/10.1007/978-1-4842-1863-1_6

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

72

 Let’s start with positive integers—the most common numbers. You then progress
to negative integer values, positive real (decimal or fractional) numbers, negative real
numbers, and finally exponential numbers.

 Positive Integers: Positive Whole Number Values
 The path through the JSON number diagram is shown in red in Figure 8-2 . It simply
involves adding whole-number digits together, much as you did for the Car object
 "price" data field (or characteristic, or attribute) in Chapter 5 .

 Figure 8-1. JSON supports integers, negative numbers, real numbers, and exponential
numbers

 Figure 8-2. Creating positive integer value using the JSON number value diagram

http://dx.doi.org/10.1007/978-1-4842-1863-1_5

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

73

 Here is the JSON array from Chapter 5 so that you can revisit using positive integer
number values:

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "price":24995 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "price":21795 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "price":26495 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "price":27895 }
]

 Notice that there are no commas: formatting is done in the code, not in the JSON
data array or data object. As Figure 8-2 shows, you add digits as needed; a plus sign
is not needed to designate a positive value. Next, let’s look at negative integer (whole)
number values, which are created very similarly using a slightly different path through
this diagram.

 Negative Integers: Negative Whole Number Values
 The path through the JSON number diagram to create a negative number is shown in red
in Figure 8-3 . You add whole-number digits together, but with a minus sign designator
appended onto the front of the number data value (which you are familiar with as a
programmer, as well as from school).

 Figure 8-3. Creating negative integer value using the JSON number value diagram

http://dx.doi.org/10.1007/978-1-4842-1863-1_5

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

74

 If you used a negative data value to designate the cost (how much you would need
to pay) for the Car object "price" attribute in the example in Chapter 5 , the array of
inventory data values would look like the following, replacing “price” with "cost" :

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "cost":-24995 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "cost": -21795 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "cost": -26495 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "cost": -27895 }
]

 Now, let’s look at partial or fractional numbers that use decimal components to hold
fractions of whole numbers. These are commonly called real numbers or floating-point
numbers in the popular computer programming languages.

 Positive Real Number Values: Positive Fractions
 The path through the JSON number diagram to create a positive real number is shown
in red in Figure 8-4 . You add a 0 if the fractional value is less than 1, and then a decimal
point and the digit(s) that specify the fractional component.

 Figure 8-4. Creating a positive fractional number value that is less than 1

http://dx.doi.org/10.1007/978-1-4842-1863-1_5

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

75

 As an example of using a positive real number that is less than 1, let’s create a "gas"
attribute that tells how much gas is currently in a car’s gas tank. This is a real number that
is greater than 0 but less than 1 and that essentially represents a percentage on the gas
gauge: 0.33 is a third of a tank, 0.75 is three quarters, 0.25 is a quarter, and so on. A JSON
array data for this usage scenario looks like the following:

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "gas":0.33 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "gas": 0.75 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "gas": 0.99 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "gas": 0.25 }
]

 If the fractional value is greater than 1, you take a different path through the diagram,
as shown in Figure 8-5 . In this case you add one or more non-zero digits before the
decimal point. The value can be much greater than 1, such as 12345.6789, if needed for a
real number data representation.

 Figure 8-5. Creating positive fractional number values greater than 1

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

76

 For example, let’s create a "tax" attribute that tells how much tax will be charged in
the municipality where that car is being sold. This is a real number that is greater than 1
but less than 2, representing a percentage of the purchase price (represented as 1.00) that
is added: 1.08 is an 8% sales tax, 1.06 is a 6% sales tax, 1.07 is a 7% sales tax, and so on.
Here is a JSON array for this scenario:

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "tax":1.08 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "tax": 1.06 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "tax": 1.09 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "tax": 1.07 }
]

 Next, let’s look at negative real (fractional or decimal) number values, which are
created using a slightly different path through the JSON diagram.

 Negative Real Number Values: Negative Fractions
 The path through the JSON number diagram to create a negative real number value less
than 1 is shown in red in Figure 8-6 . You add a minus sign to the front of the fractional
(less than 1) number representation created in Figure 8-4 .

 Figure 8-6. Creating a negative real number value less than 1

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

77

 For example, let’s create a "fee" attribute that tells what percentage of the car’s price
you need to give to the person who sells the car for the dealership, as a commission. This
is a negative real number that is less than 0. So, -0.12 is a 12% commission, -0.09 is a 9%
commission, -0.11 is an 11% commission, -0.08 is an 8% commission, and so forth. The
JSON data array structure is as follows:

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "fee":-0.12 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "fee": -0.09 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "fee": -0.11 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "fee": -0.08 }
]

 You can also create negative fractional numbers that are greater than 1. This is done
by using the path through the JSON number diagram that is shown in Figure 8-7 . This
allows you to add a minus sign, loop as many integers before the decimal point as you
need to represent your number, and then loop as many integers after the decimal point as
you need for the numeric precision of your fractional number representation.

 Figure 8-7. Creating negative real number values greater than 1

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

78

 For example, let’s create a "loss" attribute that is a negative real number greater
than 0, representing the sales price plus the percentage of the commission given to
the sales team. So, -1.12 is a reduction of 100% of the car’s price plus a reduction of a
12% commission, -1.09 is a reduction of 100% of the car’s price plus a reduction of a 9%
commission, -1.11 is a reduction of 100% of the car’s price plus a reduction of an 11%
commission, and so forth. The JSON data array structure is as follows:

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "loss":-1.12 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "loss": -1.09 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "loss": -1.11 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "loss": -1.08 }
]

 Next, let’s look at scientific notation and how to use exponential notation.

 Exponential Number Values: Scientific Notation
 Scientific notation, sometimes called exponential notation, is closely related to the
fractional (floating-point or decimal) number representation you looked at in the
previous sections. In scientific notation, all numbers are written in the form n × 10 e .
That represents a number n times 10 raised to the power of the exponential factor
e, where the exponent e is an integer and the coefficient n is any real number. The
coefficient is called the significand or the mantissa . If the number needs to be negative,
then a minus sign precedes the n , as in ordinary decimal notation.

 Scientific notation is a way of expressing number values that are too big or
too small to be conveniently written in a decimal form—that is, they take up too
many spaces or columns. Exponential notation is most commonly used by scientists,
mathematicians, and engineers. On scientific calculators, it is known as the SCI display
mode and uses the EXP, exp, ex, e, eex, E, EX, and EEX keys. Table 8-1 shows some
common decimal-to-exponential conversions.

 Table 8-1. Integers and Decimal Numbers Converted into Scientific or Exponential Notation

 Integer or Decimal Representation Scientific and Exponential Representation

 7 7 x 10 1 or 7e10 1 or 7E10 1

 -9 -9 x 10 1 or -9E 1 or: -9e 1

 500 5e 2 or 5E 2

 5,432.109 5.432109E 3 or 5.432109e 3

 -19,876,543.21 -1.987654321E 7 or -1.987654321e 7

 0.0004321 4.321E -4 or 4.321e -4

 -0.00000000098765 -9.8765E -10 or -9.8765e -10

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

79

 Let’s take a closer look at how these exponential notation representations are formed
using the JSON number diagram. Then you’ll be ready to create JSON objects and JSON
arrays for any JSON-compliant applications.

 Integer Exponential Number Values: Using Positive Exponents
 To create a positive integer value using exponential notation, follow the path shown in
Figure 8-8 to create the fractional component, add an e or E, and then add an integer
magnitude value.

 Figure 8-8. Creating a positive integer exponential number

 If you use an exponential number value to designate the price (how much you need
to pay) for the Car object’s "price" attribute in the example, then the array of inventory
data values looks like the following:

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "price": 2.4995e4 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "price": 2.1795e4 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "price": 2.6495e4 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "price": 2.7895e4 }]

 Next, let’s go in the other direction and look at how to create small fractional
numbers by using negative exponential magnitude values. After that, you’ll see how to
create negative exponential number values in JSON.

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

80

 Fractional Exponential Number Values: Negative Exponent
 To create a positive fractional value by using exponential notation, follow the path shown
in Figure 8-9 . The first decimal portion creates the fractional component; then add the
e (or E) and a negative integer to establish the magnitude value—that is, how many tens
(decimal places, or orders of magnitude) to use to set the magnitude of how small your
fractional exponential value should be.

 Figure 8-9. Creating a positive fractional exponential number

 As an example, let’s recreate a "gas" attribute that tells how much gas is in a car’s
gas tank using exponential notation instead of decimal notation. The JSON array data
looks like this:

 var carInventory = [
 { "carName":"Toyota", "model":"Prius", "color":"Green", "gas": 3.3e-1 },
 { "carName":"Nissan", "model":"300ZX", "color":"Brown", "gas": 7.5e-1 },
 { "carName":"Dodge", "model":"Viper", "color":"White", "gas": 9.9e-1 },
 { "carName":"Chevy", "model":"Camaro", "color":"Blue", "gas": 2.5e-1 }]

 Now, let’s see how to define negative exponential values.

 Negative Integer Exponential Number Values: Positive Exponent
 To create a negative integer value using exponential notation, follow the path shown in
Figure 8-10 . You add a minus sign to define the negative overall value for the number,
then create the fractional (decimal) component, add the e (or E), and finally add the
positive integer magnitude value that defines the positive magnitude (how large the
negative number is) for the number value.

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

81

 There isn’t a good example that fits the Car object definition paradigm. Instead,
let’s say you were at the Auto Show in Las Vegas and lost $127,346,000 playing poker.
The JSON object to define your losses and where you lost them uses the following JSON
object data-definition syntax:

 var moneyLostAtTradeShow = { "city": "Las Vegas", "losses": -1.27346e9 }

 Negative Fractional Exponential Numbers: Negative Exponent
 To create a negative fractional value by using exponential notation, follow the path shown
in Figure 8-11 . First add a minus sign to designate the value as being negative, then add
the decimal portion that creates the fractional component, add the e (or E), and then
add the negative integer to establish the magnitude of smallness—that is, how many tens
(decimal places, or orders of magnitude) to use to set the magnitude of how small your
fractional exponential value should be.

 Figure 8-10. Creating a negative integer exponential number

CHAPTER 8 ■ JSON NUMERIC VALUES: DEFINING NUMBERS IN JSON

82

 Again, there is no good example using the Car object definition paradigm.
Suppose that while you are at the Auto Show in Las Vegas, the chances that you will lose
$127,346,000 playing poker are -1 million to 1. The JSON object to define the percentage
loss and where you lost it is as follows:

 var ChanceOfLossAtTradeShow = { "city": "Las Vegas", "pctChance": -1.0e-9 }

 Now you have taken every possible path through the JSON number value diagram.
You should be able to define any numeric value that your JSON applications require.

 Summary
 This chapter looked at how number values are represented in JSON, which is also how
the Number data type is used in JavaScript and Java. You learned the basics of number
values, and you created attributes for the Car object JSON data definition that added
different number values to the JSON array data definitions from Chapter 5 . You saw
how to use negative (minus sign), 0, decimal (fractional), and exponential designators
with number data values. The same format and syntax are used to add these values to
JSON object structures.

 I hope you have found the JSON syntax overview in this book enlightening and
helpful for your future JSON object and array data-definition endeavors!

 Figure 8-11. Creating a negative fractional exponential number

http://dx.doi.org/10.1007/978-1-4842-1863-1_5

83© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1

 APPENDIX A

 NetBeans 8.1: Setting Up a
JSON Integrated
Development IDE

 In this first appendix, let’s put together your foundation for a highly professional,
JSON-friendly, NetBeans 8.1 integrated development environment (IDE). Your development
workstation is the most important combination of PC hardware and software, allowing
you to reach your goal of JSON-compatible application development. This appendix
considers your hardware needs and the software infrastructure to put together a
professional, well-rounded JSON workstation that gives you a bunch of arrows in your
software development quiver right off the bat. You will then have everything you need
when you’re reading the book’s chapters, no matter what type of JSON application you
decide that you want to develop for your end users!

 All readers of this book should be developing with identical JSON application
software development environments, because everything you learn over the course of
this book needs to be able to be experienced equally by everyone. Appendix B outlines
all the steps to put together an Eclipse Mars IDE based JSON development workstation,
and Appendix C does the same for IntelliJ IDEA. These three IDE-customized appendixes
get all the tedious setup tasks out of the way. If you already have your workstation
configured, you can proceed to Chapter 2 for an overview of JSON; or, if you are already
familiar with JSON, you’re ready to read the rest of the book.

 In this appendix, you learn where to download and how to install several of the
most impressive, professional, open source software packages on the face of this planet.
You are about to max out your JSON, HTML5, CSS3, and JavaScript (JS) development
workstation, so hold on tight and enjoy this virtual download ride!

 Creating a JSON Development Workstation
 The first thing you’ll do after taking a look at hardware requirements is to download and
install the entire Java software development kit (SDK), which Oracle calls Java SE 8 Java
Development Kit (JDK). The NetBeans 8.1 IDE uses the Java 8 Standard Edition (SE).

http://dx.doi.org/10.1007/978-1-4842-1863-1_2

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

84

 The second thing you’ll download and install is the NetBeans 8.1 IDE that you get
from www.netbeans.org . The NetBeans 8.1 IDE allows you to develop JSON-compatible
applications using all the popular programming languages, including C, C++, Java, PHP,
Python, JavaFX, Ruby, HTML5, CSS3, ECMAScript, and JavaScript.

 After your JSON application development environment is set up, you can then
download and install new media asset development tools, if you wish. These are used in
conjunction with NetBeans 8.1 for things such as image editing (GIMP) and nonlinear
digital video editing (Lightworks); special effects (Fusion); digital audio sweetening, or
editing (Audacity); i3D modeling, rendering, and animation (Blender); digital illustration
(Inkscape); and business productivity (OpenOffice).

 This appendix will take your development to an all-new level, showing you how to
create the media development and programming workstation that will run your business.
All the software development tools you’ll download and install come close to matching
all the primary feature sets of expensive paid software packages, such as those from Apple
(Final Cut Pro), Autodesk (3D Studio Max), Adobe (Photoshop, Illustrator, After Effects),
and Avid (ProTools), and all at zero cost to your production company!

 Open source software is free to download, install, and upgrade and is continually
adding features. It’s becoming more and more like professional software every day. You
will be amazed at how professional open source software packages have become over the
last decade or so.

 Hardware Foundation
 Because in this appendix you put together the foundation for the JSON-capable
application development workstation you use throughout this book , I want to
take a moment to review NetBeans 8.1’s JSON development workstation hardware
requirements. This is a factor that will influence your development performance (speed).
This is clearly as important as the software itself, because hardware is what is actually
running the software package’s algorithms.

 Minimum requirements for the NetBeans 8.1 IDE include 512MB of memory, 750MB of
hard disk space, and an XGA (1024×768) display. Next, let’s discuss what you need to make
the NetBeans 8 JSON IDE usable. Start with upgrading the 1024×768 XGA display to an HDTV
(1920×1080 at 120FPS refresh rate) or UHD (4096×2160 at 120FPS refresh rate) widescreen
display. These are now affordable and give you 4 to 16 times the display real estate of an XGA
display. HDTVs are now $250 to $500, and UHDTV displays are under $1,000.

 I recommend using, at a bare minimum, the Intel i7 quad-core processor or the
AMD 64-bit octa-core processor. Install at least 8GB of DDR3-1600 memory. I’m using
a 64-bit, octa-core AMD 8350, with 16GB of DDR3-1600. Intel also has a hexa-core i7
processor. This would be the equivalent of having 12 cores, because each i7 core can host
two threads. Similarly, an i7 quad-core should look like 8 cores to your 64-bit operating
system’s thread-scheduling algorithm.

 There are also high-speed DDR3-1800 as well as DDR3-2133 clock-speed memory
module components available. A high number signifies fast memory-access speeds. To
calculate actual megahertz speeds at which the memory is cycling, divide the number
by 4 (1333 = 333Mhz, 1600 = 400Mhz, 1800 = 450Mhz, 2133 = 533Mhz). Memory- access
speed is a massive workstation performance factor, because your processor is usually
bottlenecked by the speed at which processor cores can access the data (in memory) that
that processor core needs to process.

http://www.netbeans.org/

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

85

 With high-speed processing and memory access going on in the workstation
while it is operating, it’s extremely important to keep everything cool so that you do not
experience thermal problems. I recommend using a wide, full-tower enclosure with
120mm or 200mm cooling fans (one or two at least), as well as a captive liquid-induction
cooling fan on the CPU. It is important to note that the cooler the system runs, the faster
it can run, and the longer it will last, so load the workstation up with lots of silent high-
speed fans!

 If you really want maximum performance, install a solid state disk (SSD) drive as the
primary disk drive from which your applications and operating system software can load.
Use legacy HDD hardware for your D:\ hard drive for slower data storage (long-term). Put
your current project files on the SSD.

 As far as OS goes, I am using a 64-bit Windows 8 operating system that is fairly
memory efficient. The Linux 64-bit OS is extremely memory efficient. I recommend using
any 64-bit OS so you can address more than 3.24GB of system memory.

 Open Source Software
 To create a well-rounded, professional JSON application development workstation,
you’ll install all the primary genres of open source software. First you’ll install Java SE
8 and NetBeans 8.1. I will also show you how to download GIMP, Lightworks, Fusion,
Blender3D, and Audacity, which are also all open source software packages, in case your
JSON applications will use a graphical front end. I also recommend other free software at
the end of the appendix so you can put together the major production workstation you
have always dreamed of.

 Open source software is approaching the level of professionalism of paid
development software packages that cost thousands of dollars each. Using open source
software packages like Java 8, NetBeans 8, Blender, GIMP, Audacity, Lightworks, Fusion,
OpenOffice, and others, you can put together a free application development workstation
and rival paid software workstations.

 If you just purchased a new JSON development workstation PC and are going to put
together the entire development software suite from scratch, this appendix goes through
the entire work process.

 Java 8: Installing the Foundation for NetBeans 8.1
 The first thing to do is visit the NetBeans web site at www.netbeans.org to find out what
you need to run this IDE. Click the Download button, shown at right in Figure A-1 .

http://www.netbeans.org/

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

86

 As you can see, there are nine different download options to consider; six support
JavaScript, which JSON is based on. I suggest the All version, which supports all the
popular programming languages, all of which JSON works with. If you are wondering
why some of these downloads offer 32-bit and 64-bit versions and some do not, as you
can see at the bottom of Figure A-2 , it is because the ones with both versions have been
 precompiled , whereas the other three require a Java 8 JDK to be installed. This tells you
that if you want to use the All version, so that any programming languages you want to
use JSON with will be supported, you have to first install Java SE 8.

 Figure A-1. Go to netbeans.org , and click Download

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

87

 Figure A-2. Download one of the HTML5/JavaScript IDE versions

 Open Google Chrome, and Google “Java JDK”, as is shown in Figure A-3 . Look for the
Java SE Development Kit 8 - Downloads search result, and click it to open Oracle Java 8.

 Figure A-3. Google “Java JDK”, and then click the Downloads link

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

88

 At the Oracle web site, download and install the latest Java JDK environment, which
at the time of this writing is Java SE Development Kit 8u66, as shown in Figure A-4 .
The URL is in the address bar in Figure A-4 and opens the download page for Java SE
Development Kit 8u65 and 8u66.

 Figure A-4. The Oracle TechNetwork Java SE JDK Download web site

 Here is the URL, in case you wanted to simply cut and paste it, copy it in, or
click it to launch: www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html .

 Pull the scrollbar halfway down the page to display the Java 8 SE Development Kit (or
a later version) download links table, as can be seen at the bottom of Figure A-4 . You can
also click the links above the table to read the explanation of the new CPU and PSU Java
release versions; you’re going to use Java SE 8.

 Once you click Accept License Agreement, the links in the table become bolded and
you can click the link you wish to use. If you are on Windows and your OS is 64-bit, use
the Windows x64 link; otherwise, use the Windows x86 link. I am using what is described
in these links as Windows x64, which is the 64-bit versions of Windows, for my Windows 7
and Windows 8.1 workstations.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

89

 Make sure you use this Java SE Development Kit 8u66 downloading link and not a
Java Runtime Edition (JRE) link. The JRE is part of the JDK 8u66, so you do not have to
worry about getting the Java Runtime separately. In case you’re wondering, you use the
JRE to launch and run the IntelliJ IDE, and you use the JDK in that software package to
provide the Java core class foundation that is used as the foundation for the Android OS
Java-based API classes.

 Before you run this installation, you should remove older versions of Java. In
Windows Control Panel, use Add Or Remove Programs (XP) or Programs And Features
(Windows Vista, 7, 8, or 10), as shown selected in Figure A-5 .

 Figure A-5. Launch your Control Panel, and choose Programs And Features

 This is necessary especially if your workstation is not brand new. You do this so that
only the latest Java SE 8u66 and JRE 8u66 Java versions are currently installed on your
JSON development workstation.

 Select all the older Java versions, right-click each one, and select the Uninstall
option, as shown in Figure A-6 .

 Figure A-6. Find old versions of Java, right-click, and choose Uninstall

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

90

 Once you have done this and downloaded the installation executable, locate it, and
double-click the .EXE file. Doing so launches a Setup dialog, seen at left in Figure A-7 .
You can also right-click your installer file and then select the Run As Administrator option.

 Figure A-7. Setup, Custom Setup, and Extracting Installer dialogs

 Figure A-8. Destination, Progress, and Complete Install dialogs

 Click Next to access the Custom Setup dialog, shown in the middle of Figure A-7 .
Accept the default settings, and then click the button to access the Extracting Installer
progress dialog shown at right in Figure A-7 .

 Once you’ve extracted the installation software, you can select a Java JDK software-
installation folder. Use the default C:\ProgramFiles\Java\jre1.8.0_66 in the
Destination Folder dialog, as shown at left in Figure A-8 .

 Click Next to install a JRE edition in the default specified folder. Interestingly, the
installer won’t ask you to specify the JDK folder name for some reason, probably because
it wants your Java JDK to always be in a set or fixed (locked in the same location) folder.

 The JDK folder is named C:\ProgramFiles\Java\jdk1.8.0_66 . Notice that
internally, Java 8 is referred to as Java 1.8.0. Thus Java 6 should be 1.6.0, and Java 7 is 1.7.0.
This is useful to know, in case you are looking for Java versions using a search utility, for
example, or just to show off your knowledge of legacy Java version numbering.

 Once you click Next, you get the Java Setup Progress dialog shown in the middle of
Figure A-8 . Once Java 8 is finished installing, you finally see the Complete dialog, at right
in Figure A-8 . Congratulations! You have successfully installed Java 8!

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

91

 Remember that the reason you did not download a JRE is because it is part of this
JDK 8u66 installation. The Java 8 Runtime Edition is the executable (platform) that runs
the Java software app once it has been compiled into an application. The latest JRE is also
needed to run NetBeans 8, which, as you now know, is 100% completely written using the
Java SE 8 development platform.

 Once Java 8u66 or later is installed on your workstation, you can then download and
install the latest NetBeans 8 software installer from www.netbeans.org . You can use the
same Programs And Features (or Add Or Remove Programs) utility in your Control Panel
to remove any older versions of the NetBeans development environment that may be
currently installed on your JSON development workstation.

 Now you are ready to add the second layer of the NetBeans 8.1 IDE software on top
of Java.

 NetBeans 8.1: Downloading the NetBeans JSON IDE
 The second step in the process is to install the All version of the software that you
saw back in Figure A-2 , when you downloaded the IDE. If you have not done this yet,
download the latest NetBeans version from www.netbeans.org/downloads/ .

 Click the Download button at the bottom of the All column, to the right of the
download versions grid. Doing so starts the browser download function, which should
put the netbeans-8.1-windows.exe file in your Downloads folder.

 Find this executable file on your workstation and either double-click it or right-click
it, and select the Run As Administrator option. This opens a Welcome To The NetBeans
IDE 8.1 Installer dialog, shown at left in Figure A-9 .

 Figure A-9. NetBeans install Welcome and License Agreement dialogs

 Click Next, select the “I accept the terms in the license agreement” option, and
then click Next again. Accept the default Windows Program Files folder locations for all
software installations, and again, click Next.

 This opens the Summary dialog, shown in Figure A-10 . Select Check For Updates,
and then click the Install button to start the NetBeans 8.1 installation.

http://www.netbeans.org/
http://www.netbeans.org/downloads/

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

92

 Once the setup is complete, click the Finish button, and launch the software to make
sure it works; see Figure A-11 . You get into how to use NetBeans 8.1 to create a JSON
project in chapter 1 covering the NetBeans 8.1 JSON IDE.

 Figure A-10. NetBeans Summary, Installation, and Complete dialogs

 Figure A-11. Launch NetBeans, and explore using Learn & Discover

 If you’re going to be creating new media-compatible JSON applications, you need
to get seven more open source packages so you can create new media assets referenced
by JSON and JavaScript (or Java, PHP, C++, AJAX, and so forth. These span the new media
genres including digital image compositing, 3D modeling and 3D animation, digital
illustration and digital painting, digital audio editing, visual effects (VFX), and digital
video editing.

http://dx.doi.org/10.1007/978-1-4842-1863-1_1

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

93

 This is a professional-level software package with many of the same features as 3D
Studio Max, Maya, XSI, and Lightwave.

 GIMP 2.8: Digital Image Editing and Compositing
 The GIMP project offers a professional imaging software package that allows you to do
digital image editing and compositing, much as you would using Adobe Photoshop or
Corel PaintShop Professional. Download this software package at www.gimp.org and
install it; it is quite professional. GIMP is currently at version 2.8.16, but version 3.0 is
just around the corner and a preview (2.9.2) of V3 is available! The GIMP home page and
download button are shown in Figure A-12 .

 Figure A-12. Go to www.gimp.org , and download GIMP 2.8.16

 Figure A-13. Go to blender.org , and download the latest version

 If you want to learn digital image compositing, check out Digital Image Compositing
Fundamentals (Apress, 2015).

 Blender: 3D Modeling, Rendering, and Animation
 The Blender Foundation project offers a professional i3D software package called
 Blender that allows you to do modeling of 3D objects as well as rendering and animation.
Download this software package at www.blender.org , and install it. Blender’s home page
and blue download button are shown in Figure A-13 .

http://www.gimp.org/
http://www.gimp.org/
http://www.blender.org/

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

94

 Inkscape: Digital Illustration and Digital Painting
 The Inkscape Project offers a professional digital illustration software package called
Inkscape that can also do digital painting. Download this software package at
 www.inkscape.org . Inkscape’s home page and download button are shown in Figure A-14 .

 Figure A-14. Go to inkscape.org , and download the latest version

 If you want to learn digital illustration, check out Digital Illustration Fundamentals
(Apress, 2015), as well as Digital Painting Techniques (Apress, 2015).

 Audacity: Digital Audio Editing and Special Effects
 The Audacity team offers a professional digital audio software package called Audacity
that is for digital audio editing, sweetening, and special effects. You can download this
software package at www.audacityteam.org . The Audacity home page and Download link
are shown in Figure A-15 .

http://www.inkscape.org/
http://www.audacityteam.org/

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

95

 Audacity offers many of the same digital audio editing features as many professional
audio editors, and it is adding 64-bit capabilities and professional features every month.
The next version will have a more professional user interface look and feel. If you want
to learn more about digital audio editing, synthesis, and special effects, check out Digital
Audio Editing Fundamentals (Apress, 2015). Digital audio can greatly enhance the user
experience for any of the JSON applications you create in the future.

 Visual Effects: BlackMagic Design Fusion 8.0 VFX
 BlackMagic Design’s Fusion 8 used to cost thousands of dollars; it offers a professional
visual effects (VFX) software package used in film and television. Download this software
package at www.blackmagicdesign.com/products/fusion/ . Fusion 8’s home page and
blue Download button are shown in Figure A-16 . If you want to learn more about VXF
pipelines, check out Visual Effects (VFX) Fundamentals (Apress, 2016).

 Figure A-16. Go to blackmagicdesign.com , and download Fusion 8

 Figure A-15. Go to audacityteam.org , and download version 2.1.2

http://www.blackmagicdesign.com/products/fusion/

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

96

 Figure A-17. Go to lwks.com , and download Lightworks for your OS

 Digital Video Editing: EditShare Lightworks 12.6
 Next, let’s look at a free digital video editing software package called Lightworks 12. 6
from EditShare. This software package has been used to create a large number of feature
films—I am not setting you up here with just any software package, but rather with
software that has been used for professional, commercial development. (That goes for
each of these new media software packages I’m having you download and install—I’m
not messing around!)

 EditShare Lightworks offers professional digital video editing in a software package
that also does special effects. Download the software package at www.lwks.com after
signing up for the download. Lightworks’ home page and Downloads tab are shown in
Figure A-17 , where you can select your OS version. I recommend using a 64-bit OS and
software so that you can use 8MB of memory!

http://www.lwks.com/

APPENDIX A ■ NETBEANS 8.1: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

97

 Office Productivity Suite: Apache OpenOffice 4.1.2
 Apache OpenOffice , originally Sun Microsystems’ StarOffice, was acquired by Oracle
and released as open source. This will provide your JSON development business with
professional office and business productivity software support. Download this great
software package at www.openoffice.com . The Apache OpenOffice home page and
Download button are shown in Figure A-18 , where you can select your OS, language,
and software version. I recommend using a 64-bit OS and software so that you can use
8MB of memory.

 Figure A-18. Download Apache OpenOffice 4.1.2 at OpenOffice.com

 Summary
 In this appendix, you set up a NetBeans 8 JSON workstation by downloading and
installing the open source Java 8 JDK and NetBeans 8.1 IDE software that you can use
to code JSON applications. I also showed you some valuable professional new media
software that is free for commercial use. Appendix B shows you how to set up an Eclipse
4.5.1 Mars JSON workstation in much the same fashion. You also see how to set up an
IntelliJ IDEA 15 JSON workstation in Appendix C, if you’re an Android Studio developer
and prefer to use that IDE instead.

http://www.openoffice.com/

99© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1

 APPENDIX B

 Eclipse Mars: Setting
Up a JSON Integrated
Development IDE

 In this appendix, let’s put together your foundation for a highly professional, JSON-friendly,
Eclipse 4.5.1 (Mars) integrated development environment (IDE). Your development
workstation is the most important combination of PC hardware and software, allowing
you to reach your goal of JSON-compatible application development. This appendix
considers your hardware needs and the software infrastructure to put together a
professional, well-rounded JSON workstation that gives you a bunch of arrows in your
software development quiver right off the bat. You will then have everything you need
when you’re reading the book’s chapters, no matter what type of JSON application you
decide that you want to develop for your end users!

 All readers of this book should be developing with identical JSON application
software development environments, because everything you learn over the course of
this book needs to be able to be experienced equally by everyone. Appendix A outlines
all the steps to put together a NetBeans 8.1 IDE based JSON development workstation,
and Appendix C does the same for IntelliJ IDEA. These three IDE-customized appendixes
get all the tedious setup tasks out of the way. If you already have your workstation
configured, you can proceed to Chapter 2 for an overview of JSON; or, if you are already
familiar with JSON, you’re ready to read the rest of the book.

 In this appendix, you learn where to download and how to install several of the
most impressive, professional, open source software packages on the face of this planet.
You are about to max out your JSON, HTML5, CSS3, and JavaScript (JS) development
workstation, so hold on tight and enjoy this virtual download ride!

 Creating a JSON Development Workstation
 The first thing you’ll do after taking a look at hardware requirements is to download
and install the entire Java software development kit (SDK), which Oracle calls Java SE 8
Java Development Kit (JDK). Eclipse 4.5.1, which is called the Mars IDE , uses the Java 8
Standard Edition (SE).

http://dx.doi.org/10.1007/978-1-4842-1863-1_2

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

100

 The second thing you’ll download and install is the Eclipse Mars IDE that you get
from www.eclipse.org . The Eclipse Mars IDE allows you to develop JSON compatible
applications using all the popular programming languages, including Java EE, Java SE,
Java Server Faces (JSF), JavaFX, as well as HTML5, CSS3 and JS.

 After your JSON application development environment is set up, you can then
download and install new media asset development tools, if you wish. These are used in
conjunction with NetBeans 8.1 for things such as image editing (GIMP) and nonlinear
digital video editing (Lightworks); special effects (Fusion); digital audio sweetening, or
editing (Audacity); i3D modeling, rendering, and animation (Blender); digital illustration
(Inkscape); and business productivity (OpenOffice).

 This appendix will take your development to an all-new level, showing you how to
create the media development and programming workstation that will run your business.
All the software development tools you’ll download and install come close to matching
all the primary feature sets of expensive paid software packages, such as those from Apple
(Final Cut Pro), Autodesk (3D Studio Max), Adobe (Photoshop, Illustrator, After Effects),
and Avid (ProTools), and all at zero cost to your production company!

 Open source software is free to download, install, and upgrade and is continually
adding features. It’s becoming more and more like professional software every day. You
will be amazed at how professional open source software packages have become over the
last decade or so.

 Hardware Foundation
 Because in this appendix you put together the foundation for the JSON-capable application
development workstation you use throughout this book, I want to take a moment to review
Eclipse Mars’ JSON development workstation hardware requirements. This is a factor that will
influence your development performance (speed). This is clearly as important as the software
itself, because hardware is what is actually running the software package’s algorithms.

 Minimum requirements for the Eclipse Mars IDE include 2GB of memory, 900MB
of hard disk space, and a WXGA (1280x768) display. Next let’s discuss what you need
to make an Eclipse Mars JSON IDE usable. Start by upgrading your 1280×768 WXGA
display to an HDTV (1920×1080 at 120FPS refresh rate) or UHD (4096×2160 at 120FPS
refresh rate) widescreen display. These are now affordable and give you 3 to 12 times
the display real estate of a WXGA display. HDTVs are now $250 to $500, and UHDTV
displays are under $1,000.

 I recommend using, at a bare minimum, the Intel i7 quad- core processor or the
AMD 64-bit octa-core processor. Install at least 8GB of DDR3-1600 memory. I’m using
a 64-bit, octa-core AMD 8350, with 16GB of DDR3-1600. Intel also has a hexa-core i7
processor. This would be the equivalent of having 12 cores, because each i7 core can host
two threads. Similarly, an i7 quad-core should look like 8 cores to your 64-bit operating
system’s thread-scheduling algorithm.

 There are also high-speed DDR3-1800 as well as DDR3-2133 clock-speed memory
module components available. A high number signifies fast memory-access speeds. To
calculate actual megahertz speeds at which the memory is cycling, divide the number
by 4 (1333 = 333Mhz, 1600 = 400Mhz, 1800 = 450Mhz, 2133 = 533Mhz). Memory- access
speed is a massive workstation performance factor, because your processor is usually
bottlenecked by the speed at which processor cores can access the data (in memory) that
that processor core needs to process.

http://www.eclipse.org/

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

101

 With high-speed processing and memory access going on in the workstation
while it is operating, it’s extremely important to keep everything cool so that you do not
experience thermal problems. I recommend using a wide, full-tower enclosure with
120mm or 200mm cooling fans (one or two at least), as well as a captive liquid-induction
cooling fan on the CPU. It is important to note that the cooler the system runs, the faster
it can run, and the longer it will last, so load the workstation up with lots of silent high-
speed fans!

 If you really want maximum performance, install a solid state disk (SSD) drive as the
primary disk drive from which your applications and operating system software can load.
Use legacy HDD hardware for your D:\ hard drive for slower data storage (long-term). Put
your current project files on the SSD.

 As far as OS goes, I am using a 64-bit Windows 8 operating system that is fairly
memory efficient. The Linux 64-bit OS is extremely memory efficient. I recommend using
any 64-bit OS so you can address more than 3.24GB of system memory.

 Open Source Software
 To create a well-rounded, professional JSON application development workstation,
you’ll install all the primary genres of open source software. First you will install Java SE
8 and Eclipse Mars. I will also show you how to download GIMP, Lightworks, Fusion,
Blender3D, and Audacity, which are also all open source software packages, in case your
JSON applications will use a graphical front end. I also recommend other free software at
the end of the appendix so you can put together the major production workstation you
have always dreamed of.

 Open source software is approaching the level of professionalism of paid
development software packages that cost thousands of dollars each. Using open source
software packages like Java 8, NetBeans 8, Blender, GIMP, Audacity, Lightworks, Fusion,
OpenOffice, and others, you can put together a free application development workstation
and rival paid software workstations.

 If you just purchased a new JSON development workstation PC and are going to put
together the entire development software suite from scratch, this appendix goes through
the entire work process.

 Java 8: Installing the Foundation for Eclipse Mars
 The first thing to do is visit the Eclipse web site at www.eclipse.org . Click the orange
Download button on the home page, as shown in Figure B-1 .

http://www.eclipse.org/

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

102

 As you will see, there are a plethora of download options to consider, including
one that can support JavaScript, which JSON is based on. I suggest this Java EE version,
which supports all the popular Java programming languages, with web applications, each
of which JSON works with. Each of the downloads offers 32-bit and 64-bit versions, as
you can see at the bottom of Figure B-2 . This is because these have been precompiled,
whereas the other NetBeans IDE installs required Java 8 JDK to be installed. This tells
you that although Eclipse Mars was created with Java SE 8, it is distributed in a Windows
binary format, not in Java bytecode format, like NetBeans is. You can see further proof of
this in Figure A-2, where non-Java versions of NetBeans 8.1 are also compiled out to OS
binary format, whereas the Java versions use the Java bytecode format binaries and do not
specify a bit level (the Java SE 8 environment does this for you).

 Figure B-2. Download the Java EE with HTML5/JavaScript version

 Figure B-1. Go to eclipse.org , and click the orange Download button

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

103

 Because JSON works with Java 8, just like with JavaScript, get the Java 8 JDK just to be
thorough in your development system configuration process. If you want an Enterprise
Edition (EE) version of Java 8, download the Java 8 EE JDK.

 Open Google Chrome and Google “Java JDK”, as shown in Figure B-3 . Look for the
Java SE Development Kit 8 - Downloads search result, and click it to open the Oracle Java
SE site, which is shown in Figure B-4 and located at www.oracle.com/technetwork/java/
javase/downloads/jdk8-downloads-2133151.html .

 Figure B-3. Google “Java JDK”, and then click the Downloads link

 Go to the Oracle web site, and download the latest Java 8 JDK environment, which
at the time of this writing is Java SE Development Kit 8u74, as shown in Figure B-4 . The
URL listed earlier opens a download page for Java SE 8 Development Kit JDK 8u73 as
well as JDK 8u74.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

104

 Pull the scrollbar halfway down the page to display the Java 8 SE Development Kit
8u74 (or a later version) download links table, as can be seen at the bottom of Figure B-4 .
You can also click the links above the table to read the explanation of the new CPU and
PSU Java release versions; you’re going to use the latest Java 8u74 version.

 Once you click Accept License Agreement, the links in the table become bolded and
you can click the link you wish to use. If you are on Windows and your OS is 64-bit, use
the Windows x64 link; otherwise, use the Windows x86 link. I am using what is described
in these links as Windows x64, which is the 64-bit version of Windows, for my Windows 7
and Windows 8.1 workstations.

 Make sure you use this Java SE Development Kit 8u74 download link, and not the
Java Runtime Edition (JRE) link. This JRE is part of the JDK 8u74, so you do not have to
worry about getting the Java Runtime separately.

 Before you run this installation, you should remove older versions of Java. In
Windows Control Panel, use Add Or Remove Programs (XP) or Programs And Features
(Windows Vista, 7, 8, or 10), as shown selected in Figure B-5 .

 Figure B-4. Oracle TechNetwork Java 8 SE JDK downloads web site

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

105

 This is necessary especially if your workstation is not brand new. You do this so
that only the latest Java SE 8u74 and JRE 8u74 versions are currently installed on your
JSON development workstation. You will also do this for any older IDEs that you have
(NetBeans, Eclipse, or IntelliJ).

 Select all the older Java versions, right-click each one, and select the Uninstall
option, as shown in Figure B-6 . You can also perform this process before installing other
software packages, although traditional media production software packages should
replace older versions automatically, as part of their install process.

 Figure B-5. Launch your Control Panel, and choose Programs And Features

 Figure B-6. Find old versions of Java, right-click, and choose Uninstall

 Once you have done this and downloaded the installation executable, locate it, and
double-click the .EXE file. Doing so launches a Setup dialog, seen at left in Figure B-7 .
You can also right-click your installer file and then select the Run As Administrator option;
this gives you better file access so that you have OS permissions granted, such as read,
write, overwrite, append, and delete, which a installer may need to access in order to
complete the installation.

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

106

 Click Next to access the Custom Setup dialog, shown in the middle of Figure B-7 .
Accept the default settings, and then click the button to access the Extracting Installer
progress dialog shown at right in Figure B-7 .

 Once you’ve extracted the installation software, you can select a Java JDK software
installation folder. Use the default C:\ProgramFiles\Java\jre1.8.0_74 in the
Destination Folder dialog, as shown at left in Figure B-8 .

 Figure B-8. Destination, Progress, and Complete Install dialogs

 Figure B-7. Setup, Custom Setup, and Extracting Installer dialogs

 Click Next to install a JRE edition in the default specified folder. Interestingly, the
installer won’t ask you to specify the JDK folder name for some reason, probably because
it wants your Java JDK to always be in a set or fixed (locked in the same location) folder.

 The JDK folder is named C:\ProgramFiles\Java\jdk1.8.0_74 . Notice that
internally, Java 8 is referred to as Java 1.8.0. Thus Java 6 should be 1.6.0, and Java 7 is 1.7.0.
This is useful to know, in case you are looking for Java versions using a search utility, for
example, or just to show off your knowledge of legacy Java version numbering.

 Once you click Next, you get the Java Setup Progress dialog shown in the middle of
Figure B-8 . Once Java 8 is finished installing, you finally see the Complete dialog, at right
in Figure B-8 . Congratulations! You have successfully installed Java 8!

 Remember that the reason you did not download a JRE is because it is part of this
JDK 8u74 installation. The Java 8 Runtime Edition is the executable (platform) that runs
the Java software app once it has been compiled into an application. the latest JRE is also
needed to run NetBeans and Eclipse Mars which, as you now know, is 100% completely
written using the Java SE 8 development platform, as well as to work with Android Studio 2.

 Once Java 8u74 or later is installed on your workstation, you can then download and
install the latest Eclipse software installer from www.eclipse.org .

http://www.eclipse.org/

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

107

 You can use the same Programs And Features (or Add Or Remove Programs)
utility in your Control Panel to remove any older versions of the NetBeans development
environment that may be currently installed on your JSON development workstation.

 Now you are ready to add the second layer of the Eclipse 4.5 Mars IDE software.

 Eclipse 4.5: Installing the Eclipse Mars JSON IDE
 The second step in this process, give that you visited the eclipse.org web site and
downloaded the installer in the previous section, is to install that JavaEE version
of the software, which you saw back in Figure B-2 . Find the executable file on
your workstation and either double-click it or right-click it, and select the Run As
Administrator option. This should open the Security Warning “Do you want to run this
file?” dialog, as shown in Figure B-9 .

 Figure B-9. NetBeans install Welcome and License Agreement dialogs

 Figure B-10. Eclipse Installer By Oomph loader screen

 Click the Run button to launch the installation. You see the Eclipse Installer By
Oomph loader screen, shown in Figure B-10 .

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

108

 Once the installer has loaded into memory, the software version selector dialog
shown in Figure B-11 appears. Select the version that supports JavaScript
(web applications), which is the Eclipse IDE for Java EE Developers.

 Figure B-12. Select Launch Options, default installation folder

 Figure B-11. Click the Eclipse IDE For Java EE Developers option

 In the Installation Folder dialog, accept the default folder name offered by Eclipse,
and select the Create Start Menu entry and Create Desktop Shortcut option (if needed)
for your workstation. These are shown at left in Figure B-12 .

 Click the Install button. Then, in the Eclipse Foundation Software User Agreement
dialog, shown in Figure B-13 , select the “I accept the terms in the license agreement”
option, after you (or your legal department) have reviewed the terms and conditions
specifying what you can and cannot do using this software. Acceptance of the licensing
terms and conditions is accomplished in this case by clicking the Accept Now button.

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

109

 Once you agree to the terms of your licensing agreement, you see an Installing dialog
with a green progress bar, as shown in Figure B-14 .

 Figure B-14. The Installing progress bar appears in green

 When the installation is completed, Eclipse Mars should launch automatically,
displaying the branded startup screen shown in Figure B-15 . This appears as the software
loads into memory from your hard disk drive for the first time.

 Figure B-13. Click the Accept Now button to agree to the terms

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

110

 I selected the default C:\Users\Walls\workspace directory, because I felt that name
was acceptable. As you can see in Figure B-17 , if you have a previous version of Eclipse
installed, an Older Workspace Version dialog prompts you to update.

 Figure B-16. Select a Workspace folder name for Eclipse projects

 Figure B-17. Update the older version of Workspace (if necessary)

 Figure B-15. Eclipse Mars launch

 Once Eclipse Mars launches, it displays the Workspace Launcher dialog. It prompts
you to select a Workspace location for your hard disk drive, as shown in Figure B-16 .

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

111

 Figure B-19 shows Eclipse Mars with the sample FirstApp.

 Figure B-18. Eclipse Mars loading screen

 Figure B-19. Eclipse IDE on startup, with the FirstApp sample app

 After all of this is complete, Eclipse Mars launches, using the Eclipse Mars Loader
screen shown in Figure B-18 .

 If you’re going to be creating new media-compatible JSON applications, you need to
get open source packages to create new media assets referenced by JSON. They span new
media genres including digital imaging, digital illustration, digital audio, digital painting,
visual effects, digital video editing, and 3D.

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

112

 GIMP 2.8: Digital Image Editing and Compositing
 The GIMP project offers a professional imaging software package that allows you to do
digital image editing and compositing, much as you would using Adobe Photoshop or
Corel PaintShop Professional. Download this software package at www.gimp.org and
install it; it is quite professional. GIMP is currently at version 2.8.16, but version 3.0 is
just around the corner and a preview (2.9.2) of V3 is available! The GIMP home page and
download button are shown in Figure B-20 .

 Figure B-20. Go to www.gimp.org , and download GIMP 2.8.16

 Figure B-21. Go to blender.org , and download the latest version

 If you want to learn digital image compositing, check out Digital Image Compositing
Fundamentals (Apress, 2015).

 Blender: 3D Modeling, Rendering, and Animation
 The Blender Foundation project offers a professional i3D software package called
 Blender that allows you to do modeling of 3D objects as well as rendering and animation.
Download this software package at www.blender.org , and install it. Blender’s home page
and blue download button are shown in Figure B-21 .

http://www.gimp.org/
http://www.gimp.org/
http://www.blender.org/

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

113

 This is a professional-level software package with many of the same features as 3D
Studio Max, Maya, XSI, and Lightwave.

 Inkscape: Digital Illustration and Digital Painting
 The Inkscape Project offers a professional digital illustration software package called
Inkscape that can also do digital painting. Download this software package at www.
inkscape.org . Inkscape’s home page and download button are shown in Figure B-22 .

 Figure B-22. Go to inkscape.org , and download the latest version

 If you want to learn digital illustration, check out Digital Illustration Fundamentals
(Apress, 2015), as well as Digital Painting Techniques (Apress, 2015).

 Audacity: Digital Audio Editing and Special Effects
 The Audacity team offers a professional digital audio software package called Audacity
that is for digital audio editing, sweetening, and special effects. You can download this
software package at www.audacityteam.org . The Audacity home page and Download link
are shown in Figure B-23 .

http://www.inkscape.org/
http://www.inkscape.org/
http://www.audacityteam.org/

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

114

 Audacity offers many of the same digital audio editing features as many professional
audio editors, and it is adding 64-bit capabilities and professional features every month.
The next version will have a more professional user interface look and feel. If you want
to learn more about digital audio editing, synthesis, and special effects, check out Digital
Audio Editing Fundamentals (Apress, 2015). Digital audio can greatly enhance the user
experience for any of the JSON applications you create in the future.

 Visual Effects: BlackMagic Design Fusion 8.0 VFX
 BlackMagic Design’s Fusion 8 used to cost thousands of dollars; it offers a professional
visual effects (VFX) software package used in film and television. Download this software
package at www.blackmagicdesign.com/products/fusion/ . Fusion 8’s home page and
blue Download button are shown in Figure B-24 . If you want to learn more about VXF
pipelines, check out Visual Effects (VFX) Fundamentals (Apress, 2016).

 Figure B-23. Go to audacityteam.org , and download version 2.1.2

 Figure B-24. Go to blackmagicdesign.com , and download Fusion 8

http://www.blackmagicdesign.com/products/fusion/

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

115

 Digital Video Editing: EditShare Lightworks 12.6
 EditShare Lightworks offers professional digital video editing in a software package that
also does special effects. Download the software package at www.lwks.com after signing up
for the download. Lightworks’ home page and Downloads tab are shown in Figure B-25 ,
where you can select your OS version. I recommend using a 64-bit OS and software so
that you can use 8MB of memory!

 Figure B-25. Download Lightworks 12.6 for your OS

 Office Productivity Suite: Apache OpenOffice 4.1.2
 Apache OpenOffice , originally Sun Microsystems’ StarOffice, was acquired by Oracle
and released as open source. This will provide your JSON development business with
professional office and business productivity software support. Download this great
software package at www.openoffice.com . The Apache OpenOffice home page and
Download button are shown in Figure B-26 , where you can select your OS, language, and
software version. I recommend using a 64-bit OS and software so that you can use 8MB
of memory.

http://www.lwks.com/
http://www.openoffice.com/

APPENDIX B ■ ECLIPSE MARS: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

116

 Summary
 In this appendix, you set up your JSON workstation by downloading and installing the
open source Java 8 JDK and Eclipse Mars IDE software you should use to code JSON
applications. I also showed you some professional new media and business software that
is free for commercial use. I recommend installing all of these packages so you have them
on your development workstation if and when you need them for your JSON-capable
applications development workflow.

 Figure B-26. Download the Apache OpenOffice 4.1.2 full installation

117© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1

 APPENDIX C

 IntelliJ IDEA: Setting
Up a JSON Integrated
Development IDE

 In this appendix, let’s put together your foundation for a highly professional, JSON-friendly,
IntelliJ IDEA integrated development environment (IDE). Your development workstation
is the most important combination of PC hardware and software, allowing you to reach
your goal of JSON-compatible application development. This appendix considers
your hardware needs and the software infrastructure to put together a professional,
well-rounded JSON workstation that gives you a bunch of arrows in your software
development quiver right off the bat. You will then have everything you need when you’re
reading the book’s chapters, no matter what type of JSON application you decide that you
want to develop for your end users!

 All readers of this book should be developing with identical JSON application
software development environments, because everything you learn over the course of
this book needs to be able to be experienced equally by everyone. Appendix A outlines
all the steps to put together a NetBeans 8.1 IDE based JSON development workstation,
and Appendix B does the same for Eclipse Mars. These three IDE-customized appendixes
get all the tedious setup tasks out of the way. If you already have your workstation
configured, you can proceed to Chapter 2 for an overview of JSON; or, if you are already
familiar with JSON, you’re ready to read the rest of the book.

 In this appendix, you learn where to download and how to install several of the
most impressive, professional, open source software packages on the face of this planet.
You are about to max out your JSON, HTML5, CSS3, and JavaScript (JS) development
workstation, so hold on tight and enjoy this virtual download ride!

 Creating a JSON Development Workstation
 The first thing you’ll do after taking a look at hardware requirements is to download and
install the entire Java software development kit (SDK), which Oracle calls Java SE 8 Java
Development Kit (JDK). IntelliJ IDEA, which is called the IntelliJ IDE , uses Java 8 Standard
Edition (SE).

http://dx.doi.org/10.1007/978-1-4842-1863-1_2

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

118

 The second thing you’ll download and install is the IntelliJ IDEA, which you can
get at the http://www.jetbrain.org web site. IntelliJ IDEA (Integrated Development
Environment App or Integrated Development Environment Advanced) allows you to
develop JSON compatible applications with all the popular programming languages,
including Java EE, Java SE, JavaScript, HTML5, CSS3, JavaFX, Android Studio 2, XML, XSL,
PHP, and SQL.

 After your JSON application development environment is set up, you can then
download and install new media asset development tools, if you wish. These are used in
conjunction with NetBeans 8.1 for things such as image editing (GIMP) and nonlinear
digital video editing (Lightworks); special effects (Fusion); digital audio sweetening, or
editing (Audacity); i3D modeling, rendering, and animation (Blender); digital illustration
(Inkscape); and business productivity (OpenOffice).

 This appendix should take your JSON development to an all-new level, showing
you how to create a media development and programming workstation that will
run your JSON business. All the software development tools you’ll download and
install come close to matching all the primary feature sets of expensive paid software
packages, such as those from Apple (Final Cut Pro), Autodesk (3D Studio Max), Adobe
(Photoshop, Illustrator, After Effects), and Avid (ProTools), and all at zero cost to your
production company!

 Open source software is free to download, install, and upgrade and is continually
adding features. It’s becoming more and more like professional software every day. You
will be amazed at how professional open source software packages have become over the
last decade or so.

 Hardware Foundation
 Because in this appendix you put together the foundation for the JSON-capable
application development workstation you use throughout this book, I want to take a
moment to review Eclipse Mars’ JSON development workstation hardware requirements.
This is a factor that will influence your development performance (speed). This is clearly
as important as the software itself, because hardware is what is actually running the
software package’s algorithms.

 Minimum requirements for IntelliJ IDEA include 1 GB of memory, 300MB of
hard disk space, and a Java 6 JDK, or higher. Next, let’s discuss what you need to make
your IntelliJ JSON IDE usable. Start by upgrading your 1280×768 WXGA display to an
HDTV (1920×1080 at 120FPS refresh rate) or UHD (4096×2160 at 120FPS refresh rate)
widescreen display. These are now affordable and give you 3 to 12 times the display
real estate of a WXGA display. HDTVs are now $250 to $500, and UHDTV displays are
under $1,000.

 I recommend using, at a bare minimum, the Intel i7 quad-core processor or the
 AMD 64-bit octa-core processor. Install at least 8GB of DDR3-1600 memory. I’m using
a 64-bit, octa-core AMD 8350, with 16GB of DDR3-1600. Intel also has a hexa-core i7
processor. This would be the equivalent of having 12 cores, because each i7 core can host
two threads. Similarly, an i7 quad-core should look like 8 cores to your 64-bit operating
system’s thread-scheduling algorithm.

http://www.jetbrain.org/

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

119

 There are also high-speed DDR3-1800 as well as DDR3-2133 clock-speed memory
module components available. A high number signifies fast memory-access speeds. To
calculate actual megahertz speeds at which the memory is cycling, divide the number
by 4 (1333 = 333Mhz, 1600 = 400Mhz, 1800 = 450Mhz, 2133 = 533Mhz). Memory- access
speed is a massive workstation performance factor, because your processor is usually
bottlenecked by the speed at which processor cores can access the data (in memory) that
that processor core needs to process.

 With high-speed processing and memory access going on in the workstation while it
is operating, it’s extremely important to keep everything cool so that you do not experience
 thermal problems . I recommend using a wide, full-tower enclosure with 120mm or
200mm cooling fans (one or two at least), as well as a captive liquid-induction cooling fan
on the CPU. It is important to note that the cooler the system runs, the faster it can run,
and the longer it will last, so load the workstation up with lots of silent high-speed fans!

 If you really want maximum performance, install a solid state disk (SSD) drive as the
primary disk drive from which your applications and operating system software can load.
Use legacy HDD hardware for your D:\ hard drive for slower data storage (long-term). Put
your current project files on the SSD.

 As far as OS goes, I am using a 64-bit Windows 8 operating system that is fairly
memory efficient. The Linux 64-bit OS is extremely memory efficient. I recommend using
any 64-bit OS so you can address more than 3.24GB of system memory; this is a limitation
with a 32-bit operating system that does not exist once you have upgraded to 64-bit OS
and have that full 64-bits of memory-addressing headroom.

 Open Source Software
 To create a well-rounded, professional JSON application development workstation,
you’ll install all the primary genres of open source software. First you will install Java SE
8 and Eclipse Mars. I will also show you how to download GIMP, Lightworks, Fusion,
Blender3D, and Audacity, which are also all open source software packages, in case your
JSON applications will use a graphical front end. I also recommend other free software at
the end of the appendix so you can put together the major production workstation you
have always dreamed of.

 Open source software is approaching the level of professionalism of paid
development software packages that cost thousands of dollars each. Using open source
software packages like Java 8, NetBeans 8, Blender, GIMP, Audacity, Lightworks, Fusion,
OpenOffice, and others, you can put together a free application development workstation
and rival paid software workstations.

 If you just purchased a new JSON development workstation PC and are going to put
together the entire development software suite from scratch, this appendix goes through
the entire work process.

 Java 8: Installing the Foundation for IntelliJ IDEA
 The first thing to do is visit the IntelliJ web site at http://www.jetbrains.com/idea/ .
Click the black Download button in the center of the IntelliJ IDEA home page, as shown
in Figure C-1 .

http://www.jetbrains.com/idea/

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

120

 As you can see, there are two different download options, but only one that supports
JavaScript, which JSON is based on. I am therefore forced to suggest the Ultimate version!
This supports all the popular programming languages that work with JSON. If you don’t
want to purchase IntelliJ IDEA Ultimate, use the 30-day trial version, or use NetBeans 8.1
(see Appendix A) or Eclipse 4.5.1 Mars (see Appendix B), both of which are free. The two
different versions of IntelliJ IDEA are shown in Figure C-2 along with the programing
features they support.

 Figure C-1. Load jetbrains.com/idea/ , and click Download

 Figure C-2. Download the IntelliJ Ultimate 30-day trial version

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

121

 If you’re wondering why the IntelliJ IDEA download isn’t offered in 32-bit and 64-bit
versions, this is because the IDEs that do this have both versions precompiled, whereas
IntelliJ IDEA requires the Java 6 (or later Java 8) JDK to be installed. This tells you that if
you want to use the IntelliJ IDEA version, so that any Java or web programming languages
you want to use JSON with are supported, you have to first install Java SE 6 or later. In this
case, this should be Java 8. This is very similar to what you see using NetBeans 8.1 (see
Appendix A); both of these use a Java bytecode .JAR file to run off of, by using the JRE.

 This approach allows the bit-versions to be handled by a JRE bit-version, so be sure
to install the correct JDK version: 32-bit for Windows Vista and XP or 64-bit for
Windows 7, 8.1, or 10. Note that there are other bit-versions of these OSs, and I am just
generalizing here; XP and Vista were 32-bit, and Windows 7, 8, and 10 are 64-bit, due to
when they came out.

 Dowload IntelliJ. After that is completed, go get the latest Java 8 SE JDK, so you can
run IntelliJ.

 Open Google Chrome, and Google “Java JDK”, as shown in Figure C-3 . Look for the
Java SE Development Kit 8 - Downloads search result, and click it to open the Oracle Java
web site.

 Figure C-3. Google “Java JDK”, and then click the Downloads link

 Download and install the latest Java 8 JDK, which at the time I wrote this book was
Java SE 8u74, as shown in Figure C-4 .

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

122

 The URL is in the address bar in Figure C-4 and opens the download page for Java
SE Development Kit 8u73 and 8u74. I will put this link here as well, in case you want
to simply cut and paste it, copy it in, or click it to launch the site: www.oracle.com/
technetwork/java/javase/downloads/jdk8-downloads-2133151.html .

 Pull the scrollbar halfway down the page to display the Java 8 SE Development Kit
8u74 (or a later version) download links table, as can be seen at the bottom of Figure C-4 .
You can also click the links above the table to read the explanation of the new CPU and
PSU Java release versions; you’re going to use the latest Java 8u74 version.

 Figure C-4. The Oracle TechNetwork Java SE JDK Download web site

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

123

 Once you click Accept License Agreement, the links in the table become bolded and
you can click the link you wish to use. If you are on Windows and your OS is 64-bit, use
the Windows x64 link; otherwise, use the Windows x86 link. I am using what is described
in these links as Windows x64, which is the 64-bit version of Windows, for my Windows 7
and Windows 8.1 workstations.

 Make sure you use this Java SE Development Kit 8u74 download link, and not the
Java Runtime Edition (JRE) link. This JRE is part of the JDK 8u74, so you do not have to
worry about getting the Java Runtime separately.

 In case you are wondering, you indeed use this JRE to launch and run the IntelliJ IDE.
You’ll use the JDK in that IntelliJ software package to provide the Java SE 8 core class foundation
that is used as the foundation for JavaFX and for Android’s Java-based API classes.

 Before you run this installation, you should remove older versions of Java. In
Windows Control Panel, use Add O r Remove Programs (XP) or Programs A nd Features
(Windows Vista, 7, 8, or 10), as shown selected in Figure C-5 . This opens a Windows utility
that manages installed software packages, allowing you to remove them from your OS.

 Figure C-5. Launch your Control Panel, and choose Programs And Features

 Figure C-6. Find old versions of Java, right-click, and choose Uninstall

 This is necessary especially if your workstation is not brand new. You do this so that
only the latest Java SE 8u74 and JRE 8u74 versions are currently installed on your JSON
development workstation.

 Select all the older Java versions, right-click each one, and select the Uninstall option,
as shown in Figure C-6 .

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

124

 As you can see, I am more than 100 versions old, because I am at Java 7, update 71! If
you install different versions of the Java SE JDK on your system, they will not replace each
other and will instead exist in parallel, or next to each other.

 The reason is that you may have older projects and software (such as IDEs), which
use these older versions of Java without crashing. For instance, Android 4.4 and earlier
use the Java 6 SDK, Android 5.x or 6.x (64-bit Android) use Java 7 SDK, and JavaFX and
everything else use Java 8 and, soon, Java 9!

 Once you have done this and downloaded the installation executable, locate it, and
install Java SE 8u74 JDK on your system by double-clicking the .EXE file. Doing so launches
a Setup dialog, seen at left in Figure C-7 . You can also right-click your installer file and then
select the Run As Administrator option, ensuring that you have proper file access.

 Figure C-7. Setup, Custom Setup, and Extracting Installer dialogs

 Figure C-8. Destination, Progress, and Complete Install dialogs

 Click Next to access the Custom Setup dialog, shown in the middle of Figure C-7 .
Accept the default settings, and then click the button to access the Extracting Installer
progress dialog shown at right in Figure C-7 .

 Once you’ve extracted the installation software, you can select a Java JDK software
installation folder. Use the default C:\ProgramFiles\Java\jre1.8.0_74 in the
Destination Folder dialog, as shown at left in Figure C-8 .

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

125

 Click Next to install a JRE edition in the default specified folder. Interestingly, the
installer won’t ask you to specify the JDK folder name for some reason, probably because
it wants your Java JDK to always be in a set or fixed (locked in the same location) folder.

 The JDK folder is named C:\ProgramFiles\Java\jdk1.8.0_74 . Notice that
internally, Java 8 is referred to as Java 1.8.0. Thus Java 6 should be 1.6.0, and Java 7 is 1.7.0.
This is useful to know, in case you are looking for Java versions using a search utility, for
example, or just to show off your knowledge of legacy Java version numbering.

 Once you click Next , you get the Java Setup Progress dialog shown in the middle of
Figure B-8. Once Java 8 is finished installing, you finally see the Complete dialog, at right
in Figure C-8 . Congratulations! You have successfully installed Java 8!

 Remember that the reason that you did not download a JRE is because it is part of
this JDK 8u74 installation. The Java 8 Runtime Edition is the executable (platform) which
willthat runs the Java software app once it has been compiled into an application. and
also the latest JRE will be is also needed to run NetBeans 8, IntelliJ and Eclipse, which, as
you now know, is 100% completely written using the Java SE 8 development platform.

 Once Java 8u74 or later is installed on your workstation, you can then download and
install the latest IntelliJ software installer from www.jetbrains.com/idea/ .

 You can use the same Programs And Features (or Add Or Remove Programs)
utility in your Control Panel to remove any older versions of the NetBeans development
environment that may be currently installed on your JSON development workstation.

 Now you are ready to add the second layer of the IntelliJ IDEA IDE software, which
runs on top of the Java 8 environment you have now installed.

 IntelliJ IDEA: Downloading the IntelliJ IDEA for JSON
 The second step in this process is to install IntelliJ, which you downloaded earlier, as
shown in Figure C-2 . This starts a download function, which should put the ideaIU-
15.0.3.exe file into your C:\Users\Your-Name-Goes-Here\Downloads\ folder.

 Find this executable file on your workstation, and either double-click it or right-click
it, and select the Run As Administrator option. This opens a Security Warning: “Do
you want to run this file?” dialog, shown at left in Figure C-9 . The two steps shown are
numbered in red.

http://www.jetbrains.com/idea/

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

126

 Figure C-10. Start your install, and accept the default location

 Figure C-9. Right-click IDEA Installer and Run As Administrator

 Click the Run button, and launch the installer. This opens the IntelliJ IDEA Setup
Wizard dialog, shown in Figure C-10 . Click Next to continue, as the dialog instructs you.
In the Choose Install Location dialog, select a default value provided for the Destination
Folder data field. Click Next to proceed with your install.

 In the Installation Options dialog, select the shortcuts you want to have created for
you, and specify an association for Java and Groovy files that you wish to have put into
your system registry, as shown in Figure C-11 . Click Next.In the Choose Start Menu Folder
dialog, select the default JetBrains Start Menu folder name. Then click the Install button
to start your installation process.

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

127

 The Installing dialog shows you a progress bar along with the files that are being
installed and the percentage complete for each one, as shown at left in Figure C-12 . Once
the IDEA installation is complete, you see the Completing the IntelliJ IDEA Setup Wizard
dialog shown at right in Figure C-12 . Notice that I have selected the Run IntelliJ IDEA
option so I can show you the IDE itself.

 Figure C-11. Installation Options and Choose Start Menu Folder dialogs

 Figure C-12. Select Run IntelliJ IDEA after install completes

 When you click the Finish button to exit the install, you see the IntelliJ IDEA 15
loading screen. This is shown every time you start IntelliJ IDEA; see Figure C-13 .

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

128

 If you have a previous version of IntelliJ IDEA, you can import its settings using the
Complete Installation dialog, shown in Figure C-14 .

 Figure C-13. IntelliJ IDEA 15 software loading startup screen

 Figure C-14. Complete Installation dialog

 Click the OK button, and you see the IDEA License Activation dialog shown in
Figure C-15 . If you want to purchase IntelliJ IDEA, click Buy IntelliJ IDEA, and enter
an activation code in the data field. Otherwise, click “Evaluate for free for 30 days”
at right.

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

129

 In the next dialog, click Accept to accept the licensing agreement at the JetBrains web
site’s store, so that you can use the IDEA software for JSON development (see Figure C-16).

 Figure C-15. IDEA License Activation

 Figure C-16. License Agreement dialog

 Accept the default IntelliJ UI theme or choose the dark version, and click Next, as
shown in Figure C-17 .

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

130

 I left all the IntelliJ capabilities enabled and then clicked the Next: Featured Plugins
button shown in Figure C-18 .

 Figure C-17. IntelliJ Set UI Theme dialog

 Figure C-18. Tune IDEA To Your Tasks dialog

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

131

 If there are any featured plug-ins you want to add to IntelliJ, select them in the
Download Featured Plugins dialog shown in Figure C-19 , and click Start Using IntelliJ IDEA.

 Figure C-19. Download Featured Plugins dialog

 The first time IntelliJ launches, you see the screen shown in Figure C-20 , with a
Create New Project option as well as configuration and help options. Click Create New
Project to create a new, empty project so you can make sure IntelliJ IDEA is working.

 Figure C-20. IntelliJ IDEA startup screen

 The default New Project dialog has the Java project type selected (left) with options
(right) as shown in Figure C-21 .

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

132

 Select the Static Web project type shown in Figure C-22 .

 Figure C-21. New Project dialog with the default Java project

 Figure C-22. New Project dialog with Static Web (JSON) project selected

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

133

 Name your project IntelliJ-JSON using the Project Name dialog shown in Figure C-23 ,
and click Finish.

 Figure C-23. Name the project IntelliJ-JSON, and click Finish

 An empty IntelliJ IDEA loads with the Tip of the Day dialog showing and tooltip
pop-ups enabled, as shown in Figure C-24 . You can use these to explore IntelliJ
IDEA features.

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

134

 You can also see the loading progress bar at lower right in Figure C-24 . When this
finishes, the IntelliJ IDEA shown in Figure C-25 appears with an empty project structure.

 Figure C-25. IntelliJ has an empty project and is ready to use

 Figure C-24. The empty IDEA loads, showing tips and pop-ups

 If you’re going to be creating new media-compatible JSON applications, you need to
get more open source packages so you can create new media assets referenced by JSON,
JavaScript, Java, and so forth. These span all new media genres, including digital imaging,
i3D, digital illustration, VFX, digital audio, digital painting, and digital video editing.

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

135

 GIMP 2.8: Digital Image Editing and Compositing
 The GIMP project offers a professional imaging software package that allows you to do
digital image editing and compositing, much as you would using Adobe Photoshop or
Corel PaintShop Professional. Download this software package at www.gimp.org and
install it; it is quite professional. GIMP is currently at version 2.8.16, but version 3.0 is
just around the corner and a preview (2.9.2) of V3 is available! The GIMP home page and
download button are shown in Figure C-26 .

 Figure C-26. Go to www.gimp.org , and download GIMP 2.8.16

 If you want to learn digital image compositing, check out Digital Image Compositing
Fundamentals (Apress, 2015).

 Blender: 3D Modeling, Rendering, and Animation
 The Blender Foundation project offers a professional i3D software package called
Blender that allows you to do modeling of 3D objects as well as rendering and animation.
Download this software package at www.blender.org , and install it. Blender’s home page
and blue download button are shown in Figure C-27 .

 Figure C-27. Go to blender.org , and download the latest version

 This is a professional-level software package with many of the same features as 3D
Studio Max, Maya, XSI, and Lightwave.

http://www.gimp.org/
http://www.gimp.org/
http://www.blender.org/

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

136

 Inkscape: Digital Illustration and Digital Painting
 The Inkscape Project offers a professional digital illustration software package called
Inkscape that can also do digital painting. Download this software package at
 www.inkscape.org . Inkscape’s home page and download button are shown in Figure C-28 .

 Figure C-28. Go to inkscape.org , and download the latest version

 Figure C-29. Go to audacityteam.org , and download version 2.1.1

 If you want to learn digital illustration, check out Digital Illustration Fundamentals
(Apress, 2015), as well as Digital Painting Techniques (Apress, 2015).

 Audacity: Digital Audio Editing and Special Effects
 The Audacity team offers a professional digital audio software package called Audacity
that is for digital audio editing, sweetening, and special effects. You can download this
software package at www.audacityteam.org . The Audacity home page and Download
link are shown in Figure C-29 .

http://www.inkscape.org/
http://www.audacityteam.org/

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

137

 Audacity offers many of the same digital audio editing features as many professional
audio editors, and it is adding 64-bit capabilities and professional features every month.
The next version will have a more professional user interface look and feel. If you want
to learn more about digital audio editing, synthesis, and special effects, check out Digital
Audio Editing Fundamentals (Apress, 2015). Digital audio can greatly enhance the user
experience for any of the JSON applications you create in the future.

 Visual Effects: BlackMagic Design Fusion 8.0 VFX
 BlackMagic Design’s Fusion 8 used to cost thousands of dollars; it offers a professional
visual effects (VFX) software package used in film and television. Download this software
package at www.blackmagicdesign.com/products/fusion/ . Fusion 8’s home page and
blue Download button are shown in Figure C-30 . If you want to learn more about VXF,
check out VFX Fundamentals (Apress, 2016).

 Figure C-30. Go to blackmagicdesign.com , and download Fusion 8

 Digital Video Editing: Editshare Lightworks 12.6
 EditShare Lightworks offers professional digital video editing in a software package
that also does special effects. Download the software package at www.lwks.com after
signing up for the download. Lightworks’ home page and Downloads tab are shown in
Figure C-31 , where you can select your OS version. I recommend using 64-bit OS and
software so that you can use 8MB of memory!

http://www.blackmagicdesign.com/products/fusion/
http://www.lwks.com/

APPENDIX C ■ INTELLIJ IDEA: SETTING UP A JSON INTEGRATED DEVELOPMENT IDE

138

 Figure C-31. Go to lwks.com , and download Lightworks for your OS

 Figure C-32. Download the Apache OpenOffice 4.1.2 full installation

 Office Productivity Suite: Apache OpenOffice 4.1.2
 Apache OpenOffice , originally Sun Microsystems’ StarOffice, was acquired by Oracle
and released as open source. This will provide your JSON development business with
professional office and business productivity software support. Download this great software
package at www.openoffice.com . The Apache OpenOffice home page and Download
button are shown in Figure C-32 , where you can select your OS, language, and software
version. I recommend using a 64-bit OS and software so that you can use 8MB of memory.

 Summary
 In this appendix, you set up your JSON workstation by downloading and installing
the open source Java 8 JDK and the IntelliJ IDEA IDE software you should use to
code JSON applications. I also showed you some professional new media software
that is free for commercial use and that you should avail yourselves of, because it is
exceptionally valuable.

http://www.openoffice.com/

139© Wallace Jackson 2016
W. Jackson, JSON Quick Syntax Reference, DOI 10.1007/978-1-4842-1863-1

 A, B
 Apache OpenOffi ce , 97, 115–116, 138

 C
 Character values

 copyright attribute , 68
 defi nition , 68
 folder attribute , 68
 JavaScript (see String values)
 newline , 67
 reverse solidus , 66
 string literal , 67
 tab character , 67
 Unicode character set , 65

 Classes , 32
 COBOL , 3
 Constants , 32

 D
 Data arrays , 17
 Data structures , 16

 array object data , 53
 data collection , 51–52
 data defi nition structure , 54
 data format , 54
 object attribute data , 54
 one-dimensional array , 52
 two-dimensional array , 52
 variable declaration , 52

 Data types
 Boolean value , 61–64
 null value , 62–64
 number value , 60–61
 string value , 59–60

 Document Object Model (DOM) , 55

 E, F, G
 Eclipse Mars

 Apache OpenOffi ce 4.1.2 , 115
 Audacity , 113
 BlackMagic Design Fusion 8.0 VFX ,

114
 Blender , 112
 core processor , 100
 digital video editing , 115
 Eclipse 4.5

 accept now button , 109
 Eclipse Installer , 107
 Eclipse Mars launch , 110
 Eclipse Mars Loader screen , 111
 FirstApp sample app , 111
 installation folder , 108
 Installing progress bar , 109
 Java EE developers , 108
 NetBeans install , 107
 update older version , 110
 Workspace Launcher dialog , 110

 GIMP 2.8 , 112
 hardware , 100
 Inkscape Project , 113
 Java 8

 destination folder dialog , 106
 downloads web site , 104
 download eclipse.org , 102
 download Java EE , 102
 Java JDK , 103
 programs and features , 105
 setup dialog , 106
 uninstall option , 105

 Mars IDE , 99
 memory access , 100
 Open source software , 101

 ECMAScript , 15

 Index

■ INDEX

140

 H
 Hard objects

 constructor function , 47–48
 dot property , 49
 literal notation , 48

 Hyper-Schema , 22

 I
 Inheritance , 45
 IntelliJ IDEA

 administrator option , 126
 Apache OpenOffi ce , 138
 Audacity , 136
 BlackMagic Design Fusion 8.0 VFX ,

137
 Blender , 135
 complete installation dialog , 128
 EditShare Lightworks 12.6 , 137
 empty IDEA , 134
 GIMP 2.8 , 135
 hardware , 118
 Inkscape Project , 136
 installation options dialog , 127
 install complete , 127
 IntelliJ-JSON , 133
 Java 8

 destination folder dialog , 124
 installer dialogs , 124
 Java JDK , 121
 Java SE JDK , 122
 load jetbrains.com/idea/ , 120
 programs and features , 123
 trial version , 120
 uninstall , 123

 Java project type , 132
 license activation , 129
 license agreement dialog , 129
 memory access , 119
 open source software , 119
 plugins dialog , 131
 run button , 126
 start IntelliJ IDEA , 128
 startup screen , 131
 Static Web project type , 132
 tasks dialog , 130
 theme dialog , 130

 Interfaces , 32

 J, K, L, M
 Java development kit (JDK) , 33
 JavaScript Object Notation (JSON)

 advantages , 15
 description , 15
 eval() function , 18
 hard object , 17
 license , 20
 parse() function , 18–19
 soft objects , 17
 stringify() function , 19
 text-based format , 16

 JSON Object Model
 DOM , 55
 Java classes and Java interfaces , 56
 JSONArrayBuilder , 56
 JSONGenerator interface , 57
 JSONParser interface , 57
 JSR 55 , 353
 parser event , 55
 streaming approach , 55
 streaming model API , 57

 N
 NetBeans 8.1

 Apache OpenOffi ce , 97
 Audacity , 94
 BlackMagic Design Fusion 8.0 VFX , 95
 Blender , 93
 bootstrap code , 2
 client-side software , 3
 code refactoring , 2
 CSS3 style editing support , 4
 debugging , 5
 EditShare Lightworks 12.6 , 96
 extensible architecture , 3
 GIMP 2.8 , 93
 hardware , 84
 Inkscape Project , 94
 Installer dialog , 91
 Java 6/Java 7 code , 2
 Java 8

 Destination Folder dialog , 90
 HTML5/JavaScript IDE , 87
 installation , 86
 Java JDK , 87
 Java SE JDK , 88

■ INDEX

141

 Programs And Features , 89
 uninstall , 89

 JSON project creation
 bower.json fi le , 10
 Chrome Extension dialog , 12
 Google Chrome Web Store

page , 12
 Gruntfi le.js fi le , 8, 11
 gulpfi le.js fi le , 10
 HTML5-JSON project , 7
 HTML/JavaScript , 6
 NetBeans Connector plug-in ,

11–12
 output , 9
 package.json fi le , 8–9
 Re-Run Project button , 12
 site templates , 7
 starting-point project , 6
 startup screen , 5
 Tools dialog , 8

 Launch NetBeans , 92
 matching code , 2
 memory access , 84
 Open source software , 85
 program code profi ler , 5
 project-management tool , 3
 responsive web design , 4
 Summary dialog , 92

 Node.JS Package Manager (NPM) , 8
 Numeric values

 exponential notation , 78
 array data , 80
 data value , 79
 integer value , 79
 negative fractional value , 81–82
 negative integer value , 80–81
 positive fractional value , 80

 json.org , 71
 negative real number values , 76–78
 negative whole number values , 73–74
 positive real number values , 74–76
 positive whole number values , 72–73
 types , 71

 O
 Object-Oriented Programming languages

(OOPs) , 31
 Java

 Car object , 40
 Car() constructor method , 43–44

 class constructor method , 37
 classes , 32
 concepts and principles , 32
 constants , 39
 constructor method , 37
 directories and folders , 40
 encoding objects , 41
 event handling functions , 36
 features , 32
 games/IoT application , 33
 hard objects (see Hard objects)
 import statement , 33
 inheritance , 45
 instance , 37
 InvinciBagel class , 39
 InvinciBagel game , 33
 JavaFX EventHandler class , 33
 JavaScript (HTML5) , 32
 JDK , 33
 method declaration , 36
 methods , 40
 new keyword , 38, 44
 object creation , 37
 object instantiation , 38, 44
 packages , 32
 programming structure , 34
 soft objects (see Soft objects)
 variables , 39
 virtual reality , 39

 JSON.parse() , 32

 P, Q, R
 Python , 3

 S, T, U
 Schema

 advantage , 22
 components , 21
 Hyper-Schema , 22
 Schema Core (see Schema Core)

 Schema Core
 applicability , 24
 array , 23
 Boolean , 23
 client-server interfaces , 24
 correlation mechanisms , 28
 customization , 25
 empty schema , 23
 HTTP specifi cations , 24

■ INDEX

142

 HTTP values , 25
 hypermedia and linking , 24
 initial resolution scope , 26
 instance , 24
 integer , 23
 keywords , 23, 25
 mathematical integers , 25
 MIME type , 24, 28
 null , 23
 number , 23
 object , 23
 programming language , 24
 RFC2119 , 23
 RFC4627 , 23
 root schema , 23
 security , 25, 28
 string , 23
 subschema , 23
 URI resolution-scope alteration , 26

 validation , 24
 value equality , 23

 Soft objects
 attributes , 49
 JSON object , 49

 String values
 char primitive , 69
 defi nition , 59
 java.lang.String class , 69
 new keyword , 70
 primitive data values , 69
 string literal/anonymous string , 60
 Unicode character

support , 65–66
 var sampleStringValue , 70

 V, W, X, Y, Z
 Visual Eff ects (VFX) software package , 95,

114, 137

Schema Core (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Exploring a JSON Integrated Development Environment
	NetBeans 8.1: The Intelligent JSON IDE
	NetBeans 8.1 Is Smart: Code Editing in Hyper-Drive
	NetBeans 8.1 Is Extensible: Coding in All Languages
	NetBeans 8.1 Is Efficient: Project-Management Tool
	NetBeans 8.1 UI Design: Responsive Web Design
	NetBeans 8.1 Styling: CSS3 Style Editing Support
	NetBeans 8.1 Debugging: Squash Those Bugs!
	NetBeans 8.1 Optimization: Program Code Profiler
	Creating a JSON Project: A Bootstrap Project

	Summary

	Chapter 2: An Introduction to JSON: Concepts and Terminology
	What Is JSON?
	JSON Is Lightweight: Simpler Is Usually Superior
	JSON Is Text-Based: 100% Language Independent
	JSON Structures: Data Objects and Data Arrays
	Data Objects: Collections of Name:Value Pairs for Data Structures
	Data Arrays: An Ordered List Defining Sequential Data Values

	JSON Is JavaScript Compatible: Easy Integration
	Converting a JSON Object Definition to an Object: Using eval()
	Parsing JSON Object Definitions into Objects: Using JSON.parse()
	Stringifying JSON Objects into Definitions: Using JSON.stringify()
	JSON.parse() and JSON.stringify(): Open Source Code Available

	JSON Open Licensing: Free for Commercial Use

	Summary

	Chapter 3: The JSON Schema: JSON Structure Validation
	JSON Schema: Concepts and Definitions
	JSON Schema Advantage: Clear JSON Description
	JSON Hyper-Schema Advantage: Links and Forms

	JSON Schema Core: Language Definition
	Summary

	Chapter 4: Objects and Object-Oriented Programming: OOP Primer
	Object-Oriented Programming: Overview
	Java OOP Concepts: Hard Object Construction
	Java Packages: Organizing a Java API Using Functional Classes
	Java Classes: OOP Modular Structures
	Java Methods: Code Constructs Providing Core Logic Functions
	Declaring a Method: Modifier, Return Type, and Method Name
	Constructor Methods: Turning a Java Class into a Java Object
	Creating a Java Object: Invoking the Class Constructor Method

	Java Objects: Virtual Reality Using OOP with Java
	Designing a Java Object: Constants, Variables, and Methods
	Encoding Objects: Turning an Object Design into Java Code
	Constructing Objects: Coding Your Constructor Method
	Creating Objects: Object Instantiation Using the new Keyword
	Extending an Object Structure: The OOP Concept of Inheritance

	JavaScript OOP Concepts: Hard and Soft Objects
	JavaScript Hard Objects: Using a Constructor Function
	JavaScript Soft Objects: Using Literal Notation to Define a Variable
	Differences Between a Constructor Function and Literal Notation
	Accessing JavaScript Objects: Using Dot Notation
	Defining Soft Objects: Using JavaScript Object Notation (JSON)

	Summary

	Chapter 5: JSON Arrays: Serialized Data Store Structures
	An Overview of Arrays: Data Structures
	Declaring a JavaScript Array: Variable Declaration
	Accessing a JavaScript Array: Using the Index
	Defining a JSON Array: Using the Colon Operator

	Java JSON Support: JSON Utility Classes
	JSON Object Model: Java Object and Array Builder
	The JSON Streaming Model: Parser and Generator

	Summary

	Chapter 6: JSON Data Values: Types of Data that JSON Supports
	JSON Value: Supported JSON Data Types
	String Value: The Sequence or Array of Characters
	Number Value: Representing the World
	Boolean Value: True or False, On or Off, Yes or No
	Null Values: A Placeholder for Future Data Values

	Java and JavaScript: Boolean and Null
	Summary

	Chapter 7: JSON Character Values: Defining Strings in JSON
	JSON String: Unicode Character Support
	Background of String Values
	Escaping Control Characters: JSON Examples

	Java and JavaScript: Using String Values
	Java String Values: Java’s String Class and Object
	JavaScript String Values: Primitives and Objects
	JavaScript String Primitives: Using Var to Create a Literal
	JavaScript String Objects: Using String() with the new Keyword

	Summary

	Chapter 8: JSON Numeric Values: Defining Numbers in JSON
	Number Types: Integer, Real, Exponential
	JSON Number: Wide Ranging Numerics
	Positive Integers: Positive Whole Number Values
	Negative Integers: Negative Whole Number Values
	Positive Real Number Values: Positive Fractions
	Negative Real Number Values: Negative Fractions
	Exponential Number Values: Scientific Notation
	Integer Exponential Number Values: Using Positive Exponents
	Fractional Exponential Number Values: Negative Exponent
	Negative Integer Exponential Number Values: Positive Exponent
	Negative Fractional Exponential Numbers: Negative Exponent

	Summary

	Appendix A: NetBeans 8.1: Setting Up a JSON Integrated Development IDE
	Creating a JSON Development Workstation
	Hardware Foundation
	Open Source Software
	Java 8: Installing the Foundation for NetBeans 8.1
	NetBeans 8.1: Downloading the NetBeans JSON IDE
	Blender: 3D Modeling, Rendering, and Animation
	GIMP 2.8: Digital Image Editing and Compositing
	Audacity: Digital Audio Editing and Special Effects
	Inkscape: Digital Illustration and Digital Painting
	Visual Effects: BlackMagic Design Fusion 8.0 VFX
	Digital Video Editing: EditShare Lightworks 12.6
	Office Productivity Suite: Apache OpenOffice 4.1.2

	Summary

	Appendix B: Eclipse Mars: Setting Up a JSON Integrated Development IDE
	Creating a JSON Development Workstation
	Hardware Foundation
	Open Source Software
	Java 8: Installing the Foundation for Eclipse Mars
	Eclipse 4.5: Installing the Eclipse Mars JSON IDE
	GIMP 2.8: Digital Image Editing and Compositing
	Blender: 3D Modeling, Rendering, and Animation
	Inkscape: Digital Illustration and Digital Painting
	Audacity: Digital Audio Editing and Special Effects
	Visual Effects: BlackMagic Design Fusion 8.0 VFX
	Digital Video Editing: EditShare Lightworks 12.6
	Office Productivity Suite: Apache OpenOffice 4.1.2

	Summary

	Appendix C: IntelliJ IDEA: Setting Up a JSON Integrated Development IDE
	Creating a JSON Development Workstation
	Hardware Foundation
	Open Source Software
	Java 8: Installing the Foundation for IntelliJ IDEA
	IntelliJ IDEA: Downloading the IntelliJ IDEA for JSON
	GIMP 2.8: Digital Image Editing and Compositing
	Blender: 3D Modeling, Rendering, and Animation
	Inkscape: Digital Illustration and Digital Painting
	Audacity: Digital Audio Editing and Special Effects
	Visual Effects: BlackMagic Design Fusion 8.0 VFX
	Digital Video Editing: Editshare Lightworks 12.6
	Office Productivity Suite: Apache OpenOffice 4.1.2

	Summary

	Index

