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ABSTRACT 

 

This paper presents a tool and a novel Fast Invariant Transform 

(FIT) algorithm for language independent e-documents access. 

The tool enables a person to access an e-document through an 

informal camera capture of a document hardcopy. It can save 

people from remembering/exploring numerous directories and 

file names, or even going through many pages/paragraphs in 

one document. It can also facilitate people’s manipulation of a 

document or people’s interactions through documents. 

Additionally, the algorithm is useful for binding multimedia 

data to language independent paper documents. Our document 

recognition algorithm is inspired by the widely known SIFT 

descriptor [4] but can be computed much more efficiently for 

both descriptor construction and search. It also uses much less 

storage space than the SIFT approach. By testing our algorithm 

with randomly scaled and rotated document pages, we can 

achieve a 99.73% page recognition rate on the 2188-page 

ICME06 proceedings and 99.9% page recognition rate on a 

504-page Japanese math book [2]. 

 

Index Terms— Document Retrieval, Image Descriptor, 

SIFT, SURF, Paper Document, Cell Phone Interface. 

 

1. INTRODUCTION 

 

People frequently want to find the original or related e-files of 

paper documents. With current technology, we have to explore 

numerous directories and file names to find these documents. If 

a document has many pages, we also need to go through many 

pages and paragraphs to find a specific patch location in the 

document. To overcome this problem, more and more people 

prefer using proper keywords to find files or specific pages. 

However, selecting proper and distinctive keywords is not 

always an easy task. Even if people can select one or several 

keywords correctly, a simple text input may frequently lead to a 

large number of text matches that a person cannot easily 

handle. 

 In this paper, we present a tool for accessing an e-document 

(e.g. pdf file) by capturing an image of a document hardcopy. 

Figure 1 shows two usage scenarios where a user accesses an e-

document by capturing a document hardcopy or an image of a 

3D object (cookie jar in the example). Beyond the usage for 

regular desktop systems, this interface is also good for cell 

phones whose keyboards are too tiny for comfortable typing. 

Additionally, in a tele-collaboration scenario, when regular 

collaboration cameras cannot capture a paper hardcopy clearly, 

the system can automatically retrieve the original document for 

display or manipulation based on some blurred images. 

 
To realize the proposed system, we must address several 

challenges. First, we need to find robust features to represent a 

document hardcopy or captured object under various camera 

setups and capture conditions. Second, the feature search in 

this algorithm should be fast enough to handle a large number 

of files. Third, it is better that the algorithm can be language 

independent so that the system can support the document 

access functions in different languages. With these challenges 

in mind, we designed a novel image descriptor that can 

overcome the language problem. This new descriptor can 

achieve high accuracy on document recognition. Additionally, 

it uses much less memory and can be constructed and searched 

much faster than the well known SIFT feature. 

In the following sections, we first talk about early work 

related to this research. In section 3, we give an overview of 

our system. In section 4, we describe the image descriptor 

construction process. In section 5, we report preliminary 

evaluations of our algorithm. 

 

2. RELATED WORK 

 

There are various ways to find an e-document based on a 

hardcopy. A typical approach for this is to feed keywords to a 

text based search engine. Many efficient text-based search 

algorithms have been developed in various commercial 

products. By using text, these algorithms can also use language 

knowledge to assist the search. These services are useful when 

people can find distinctive keywords from a document 

hardcopy. When a user cannot find a sufficient number of 

Figure 1. Some usage examples of the proposed system. 

Left: get an original file by capturing a hardcopy. 

Right: get more information of a 3D object (e.g. cookie 

jar). 



distinctive keywords or the hardcopy is in a language unknown 

to a system, it will be hard to use this approach. 

Some systems, such as [1], use OCR packages to convert 

scanned document hardcopies to text and use text for e-

document retrieval. These systems are only useful for document 

hardcopies that have enough distinctive text in a certain 

language. They also require very high resolution cameras to 

capture small characters clearly for OCR packages. Paper [3] 

tries to overcome the OCR package limitation by using word 

bounding box relations and achieves 60~80% recognition rate. 

However, it is still limited to documents that have clear word 

bounding boxes (i.e. western languages). When a document 

does not have clear bounding boxes (e.g. Chinese and Japanese 

documents), the approach in [3] cannot work either. Those 

requirements limit the deployments of those systems. 

In [4], Lowe proposed a robust low level image feature set, 

called SIFT, for general object recognition. This approach 

works well with a small object dataset. It was also tried on a 50 

page document set [12]. However, because the SIFT feature has 

a very high dimension (128 dimensions) and its feature 

construction involves Gaussian weighting of gradients over a 

large area, the memory requirement, feature construction time 

and searching time cost of using this algorithm will become 

prohibitive on a large dataset. For example, a 612 by 792 image 

in our dataset uses more than 1.6MB for saving its features. 

In [8], Bay et al. proposed a fast 64 dimension descriptor 

called SURF. Unlike SIFT, SURF uses integral images to save 

keypoint finding and orientation assignment time. On the other 

hand, SURF still needs to access all sampling points in a 20s (s 

is the scale of a keypoint) by 20s region (minimum 400 points) 

and it still needs to use a Gaussian window to weight all 

computed wavelet coefficients. Similarly to SIFT, SURF also 

needs to verify all points in a sampling region with a keypoint-

orientation dependent transform and use all verified points for 

feature extractions. 

Through the project reported in this paper, we explore a 

method for constructing descriptors with pre-computed 

pyramid data. We also consider skipping the Gaussian 

weighting process in the descriptor construction procedure. 

Moreover, we want to investigate descriptor construction with 

less image values for computation time saving. 

 

3. SYSTEM OVERVIEW 

 

To make the system work for both camera-equipped cell 

phones and cameras directly connected to PCs, we separate the 

software into three modules: mobile-client module, service-

proxy module, and file-manipulation module. 

The mobile-client module is a client application that is used 

to collect input images for the system. It can be deployed on a 

cell phone or a PC connected to a camera to respond to user’s 

image capture requests. The service-proxy module is a web 

service that analyzes the captured image, extracts low level 

image features, and searches the original/appearance-similar e-

files based on matched features. The file manipulation module 

is a service application module that has the authority to access 

those original e-files and related applications. It normally 

resides on a user’s document access machine. 

4. ALGORITHM DESIGN 

 

A system for finding correspondences between a camera-

captured image and an image converted from original e-

document can be separated into three modules: key point 

detector, descriptor constructer, and correspondence locator. In 

these three modules, the descriptor’s construction complexity 

and dimensionality have direct and significant impact to the 

performance of the whole system. The goal of our algorithm is 

a local image descriptor that has a comparable distinctiveness 

with state-of-the-art descriptors and significantly reduced 

computational complexity and dimensionality. Our algorithm, 

named FIT for Fast Invariant Transform, is inspired by the well 

known SIFT descriptor and can be constructed and searched 

much faster than SIFT. In this section, we will briefly describe 

the SIFT descriptor and explain the difference between our 

descriptor and the SIFT descriptor. 

 

4.1. The SIFT Descriptor Construction 

 
The SIFT feature computation can be summarized by the 

following steps: 

1. Gradually Gaussian-blur the input-image to construct a 

Gaussian-pyramid. 

2. Construct the Difference of Gaussian (DOG) pyramid by 

computing the difference of any two consecutive 

Gaussian-blurred images in the Gaussian pyramid. 

3. Find local maximums and local minimums in the DOG 

space and use the locations and scales of these maximums 

and minimums as key-point locations in the DOG space. 

4. Compute gradients around each key-point (at least a 16 by 

16 region) at the key-point scale and assign an orientation 

to each key-point based on nearby gradients. 

5. Compute 8-direction Gaussian weighted gradients’ 

histograms in 16 sub-blocks (minimum size is 4 by 4). 

6. Concatenate the 16 histograms from 16 sub-blocks to form 

a 128 dimensional vector as a feature descriptor.  

2. Figure 2. The construction of a SIFT descriptor 



Figure 2 illustrates the SIFT feature construction process. 

 

4.2. FIT Descriptor Construction 

 

In the SIFT feature construction steps (steps 4-6), we found 

interesting issues for further study. The first issue that interests 

us is the signal sampling rate. More specifically, is the 2D 

sampling rate of 16 by 16 or higher at a key point level a must 

for SIFT’s distinctiveness? Since SIFT is proven to be 

distinctive by many object recognition tasks, we guess the 

aliasing problem can be ignored at this sampling rate. Then the 

following question is: is the sampling rate too high? If the 

sampling rate is much higher than the Nyquist sampling rate, 

we have to pay much more computation cycles than we need 

for the feature computation. 

The second interesting issue for us is the Gaussian weighting 

and histogram accumulating process. Since the non-linear 

operation (set negative gradient values to zero) does not 

increase the information in a descriptor for its distinctiveness, 

we can ignore that part in our analysis. If we ignore the non-

linear process, the Gaussian windowing process will be 

equivalent to a Gaussian filtering process. On the other hand, 

filtering key point level data with a Gaussian window is 

equivalent to operating on data at a larger scale in the spatial-

scale space. Fortunately, the Gaussian pyramid can provide us 

larger scale data of the signal. In other words, if we can use 

larger scale data properly, we should be able to bypass the 

expensive Gaussian weighting process. 

The third issue that interests us is the histogram 

computation. The local histograms make the feature robust to 

feature point localization errors. On the other hand, the feature 

point localization errors may not be a big problem if we can 

operate on data at a larger scale with lower frequency signal. 

Finally, the SIFT algorithm only uses one Gaussian window for 

its feature construction, which may limit the scale information 

usage by a feature. With all these considerations in mind, we 

design the following procedure for the FIT feature 

construction: 

1-4. Gaussian-pyramid construction, Difference of Gaussian 

(DOG) pyramid construction and keypoint/orientation 

search. Currently, we use the same approach as SIFT. 

5. Identify descriptor sampling points based on each key 

point location in the Gaussian pyramid space. We use 5 

scale-dependent 3D vectors from a key point to 

corresponding sampling points to identify sampling points 

for the key point. 

6. Compute 8 scale-dependant gradients at each sampling 

point. If a gradient is less than 0, the gradient will be set to 

0. 

7. Concatenate gradients from all sampling points of a key 

point to form a 40 dimensional vector as a feature 

descriptor. 

Figure 3 illustrates the FIT feature construction process. 

Based on the comparison between SIFT and FIT computation 

procedures, we can see that FIT and SIFT have similar steps for 

DOG pyramid building, key-point localization and orientation 

assignment. We keep these steps intact for proper comparisons 

between our FIT approach and the SIFT approach. They may be 

further improved in our later explorations. Unlike SIFT which 

accumulates histograms of Gaussian weighted gradients at a 

key point level, the FIT descriptor directly computes its features 

at multiple scales higher than the key point scale. This 

approach can greatly reduce the number of image-pixel-

operations involved in feature extraction. Moreover, FIT uses 

the pre-computed pyramid to save computational cost on the 

expensive Gaussian weighting process. 

 
For describing descriptor details in the spatial-scale space, 

we need to define a local sub-coordinate system originated at a 

key point. In the sub-coordinate system, the key point has 

coordinates (0,0,0), and the u direction will align with the key 

point orientation in spatial domain. By rotating the u axis 90 

degrees in a counter clockwise direction in the spatial domain 

centred at the origin, we can get the v direction in the spatial 

domain. The w axis corresponding to scale change is 

perpendicular to the spatial domain and pointing to the scale-

increase direction. 

The descriptor information is collected at 5 sampling points. 

We define these sampling points with 3D vectors 

)4,3,2,1,0( =iOi

r
from the sub-coordinate origin to sampling 

point locations and these vectors can be described with the 

following equation using one variable d in spatial domain and 

one variable sd in scale domain: 
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Around each sampling point iO
r

, we define 8 points 

ijO
r

(j=0, …, 7) on a circle with radius ir according to the 

following equation: 

3. Figure 3. The construction of a FIT descriptor 



)4,3,2,1(

8

2
sin

8

2
cos

0

0
8

2
sin

8

2
cos 0000

=
















 ⋅⋅
⋅







 ⋅⋅
⋅+=

=
















 ⋅⋅
⋅







 ⋅⋅
⋅+=

ifor

sd
j

r
j

rOO

ifor

j
r

j
rOO

iiiij

j

ππ

ππ

rr

rr

  (2) 

If we denote I([x,y,s]) as a value in a 3D spatial-scale space, 

where (x,y) corresponds to a location in the spatial domain 

(image domain), s corresponds to a Gaussian filter scale in the 

scale domain, I corresponds to the image intensity level at that 

location, and Iij corresponds to the image intensity difference 

between sampling point iO
r

 point ijO
r

, we can compute a 

vector iV
v

 for the sampling point i with the following equation: 
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By concatenating vectors collected at 5 sampling points, we 

can get the descriptor vector V
v

for a key point by the following 

equation: 

[ ]54321 ,,,, VVVVVV
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=              (4) 

In equations 1-4, parameters 
i

randsdd ,,  all depend 

on the key point scale of a sub-coordinate system. Assume the 

key point scale is s. By setting three constants 

rrandsdrdr ,, , we can represent randsdd ,,  in 

terms of s using the following equation: 
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Even though the computation of FIT is much simpler, all 

information preserving operations in SIFT [4] and SURF [8] 

computations have corresponding operations in the FIT 

procedure. More specifically, we use operations on existing 

larger scale signals to substitute the expensive Gaussian 

weighting process and compute gradients on properly down-

sampled signals. From this aspect, we believe that a FIT 

descriptor can work as efficiently as SIFT and SURF on 

capturing distinctive information. On the other hand, since FIT 

gives us more freedom to move sampling points corresponding 

to a key point in a 3D spatial-scale space, it gives us a good 

chance to find a more optimal descriptor than the SIFT and 

SURF descriptors. Additionally, since FIT accesses many less 

points in the spatial-scale space than SIFT and SURF for 

feature extraction, the FIT feature composition is expected to 

be fast. Different from PCA-SIFT [7], which builds a more 

efficient key point representation with more descriptor 

construction time, FIT searches for a more efficient key point 

representation with less descriptor construction time. 

5. ALGORITHM EVALUATION 

 

We gave the FIT algorithm a preliminary test on the 2188-page 

ICME06 proceedings and a 504-page Japanese text book [2]. In 

the 504-page Japanese document, we removed 8 blank pages. 

To load more page representations in computer memory, we set 

the training image size to 306 by 396 pixels, and grey level at 

each pixel to 8 bits for FIT feature extraction. For our test, we 

randomly scaled (0.18~2) and rotated (0º~360º) the image of 

each page to generate 12 test images for each page, and fed 

features of these test images to an ANN (Approximate Nearest 

Neighbor) algorithm [5] for fast correspondence search in 

training features. By using the FIT features, we achieved 

99.73% page recognition rate for the ICME06 proceedings and 

99.9% page recognition rate for the Japanese text book. 

Because the SIFT feature for the 2188-page proceeding is 

too large for our current computer memory, we compared the 

FIT feature with our fine tuned SIFT feature on 1000 pages 

from the ICME06 proceedings. We got 99.9% page recognition 

rate for FIT and 99.93% recognition rate for SIFT. Even though 

the SIFT feature has a little higher recognition rate, FIT only 

uses less than 1/3 of SIFT’s storage space. Moreover, with the 

same ANN settings and an Intel 2.4G CPU, the average search 

time with FIT descriptor was only 24 ms while the average 

search time with SIFT descriptor was 220 ms. According to the 

principles described in [6], this speedup can be even bigger for 

a larger dataset because of the lower dimensionality of FIT. 

Because we did not fully optimize our FIT implementation 

yet, it is still too early to report a fair speed comparison 

between the constructions of these two descriptors. Since FIT 

construction removes many expensive and redundant 

operations in the SIFT construction, we are sure that the FIT 

construction is faster than the SIFT construction. 
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