
Paper to PDA

Thomas M. Breuel William C. Janssen Kris Popat
Henry S. Baird

Palo Alto Research Center, Palo Alto, CA 94304 USA
Email: {tbreuel,janssen,popat,baird }@parc.com

Abstract

A system is described for the automatic analysis of a doc-
ument image into atomic fragments (e.g. word images) that
can be reconstructed or “reflowed” onto a display device of
arbitrary size, depth, and aspect ratio. The main intent is to
allow scans and other page-image documents to be viewed
effectively on a limited-resolution hand-held computing de-
vice, without any errors and losses due to OCR and retype-
setting. The methods of image analysis and representation
are described.

1 Introduction

One of the familiar advantages of symbolic representa-
tions of documents (ASCII, HTML, etc) over page-image
representations is the ability to reflow the text to fit odd-
sized displays. Reflowing typically breaks or fills lines of
text with words, and may rejustify column margins, so that
the full width of the display is used and no manual ‘pan-
ning’ across the text is needed.

Yet many documents already exist, and in their best
form, as images of pages: that is, as a specification of in-
tensities and colors over a rectangular field, devoid of any
explicit textual information. The canonical example of this
is the scanned document image; another important example
is a book created for on-demand printing. How can such
material be displayed on screens that are the wrong size
and shape? An extreme case is reading images of books on
hand-held devices like portable digital assistants (PDAs).

The obvious thing to try would be to convert the doc-
ument into symbolic form by performing optical character
recognition (OCR). However, even the best OCR systems
are prone to errors which are expensive to correct. Even
perfect character recognition usually discards or confuses
the typefaces and relative type sizes selected by the author
and publisher. To mitigate these problems, it has been pro-
posed that when recognized text is displayed, those char-
acters that received low recognition confidence scores in

the OCR process be replaced by character images extracted
from the original document [3]. We can take this idea a step
further by foregoing the recognition altogether. In particu-
lar, the idea is to locate the text elements without necessar-
ily recognizing them, cut them out of the image, and arrange
the resulting bitmaps in reading order so that they can be re-
flowed in the available display space. While this approach
eliminates errors and losses due to OCR, it presents three
significant challenges:

• Determination of reading order
• Locating the “atomic” text elements to be treated as

tokens
• Representing the resulting stream of elements in a use-

ful form

The first two of these are problems in image and layout
analysis, and are considered in Section 2. The third depends
on the target viewing device or platform; Sections 3 and 4
describe a representation suitable for a class of PDAs.

2 Image and Layout Analysis

Image and layout analysis transforms the raw document
image into a form that is reflowable and can be more com-
pactly represented on hand-held devices (for further refer-
ences about many of the techniques described in this chap-
ter, the reader is referred to [2]).

Image analysis begins with adaptive thresholding and
binarization. For each pixel, we determine the maximum
and minimum values within a region around the pixel using
greyscale morphology. If the difference between these two
values is smaller than a threshold (determined statistically),
the region is judged to contain only white pixels. If the dif-
ference is above a threshold, the region contains both black
and white pixels, and the minimum and maximum values
represent the blank ink and white paper background values,
respectively. In the first case, the pixel value is normalized
by bringing the estimated white level up to the actual white
level of the display. In the second case, the pixel value is

1



normalized by expanding the range between the estimated
white and black levels to the full range between the white
level and the black level of the display. After this normal-
ization process, a standard thresholding method can be ap-
plied.

In the thresholded image, connected components are la-
beled using a scan algorithm combined with an efficient
union-find data structure. Then, a bounding box is deter-
mined for each connected component. This results in a col-
lection of usually several thousand connected components
per page. Each connected component may represent a sin-
gle character, a character part, a collection of touching char-
acters, background noise, or parts of a line drawing or im-
age. These bounding boxes for connected components are
the basis of the subsequent layout analysis.

For layout analysis, we are primarily interested in the
bounding boxes corresponding to characters in the running
text of the document, as well as in a few other page ele-
ments like headers, footers, and section headings. We are
interested in these particular bounding boxes because they
give us important information about the layout of the page
that we need for reflowing it. In particular, these bounding
boxes and their spatial arrangement can tell us page rotation
and skew, where we find column boundaries, what tokens
we should consider for token-based compression, what the
reading order is, and how text should flow between differ-
ent parts of the layout. Bounding boxes that are not found to
represent “text” in this filtering operation are not lost, how-
ever. They can later be incorporated into the output from
the system as graphical elements.

The dimensions of bounding boxes representing body
text are found using a simple statistical procedure. If we
consider the distribution of heights as a statistical mixture
of various components, for most pages containing text, the
largest mixture component is going to be from lower case
letters at the predominant font size. We use this size to find
the x-height of the predominant font and use this dimension
to filter out bounding boxes that are either too small or too
large to represent body text or standard headings.

Given a collection of bounding boxes representing text,
we are interested in finding text lines and column bound-
aries. The approach used in the prototype system for
identifying text lines and column boundaries relies on a
branch-and-bound algorithm that finds maximum likeli-
hood matches against line models under a robust least
square error model (equivalently, a Gaussian noise model
in the presence of spurious background features) [1]. Text
line models are described by three parameters: the angle
and offset of the line, and the descender height. Bound-
ing boxes whose alignment point, the center of their bottom
side, rests either on the line or at a distance given by the
descender height below it, are considered to match the line;
matches are penalized by the square of their distance from

the model, up to a threshold valueε, usually of the order
of five pixels. After a text line has been found, the bound-
ing box of all the connected components that participated
in the match is computed, and all other connected com-
ponents that fall within that bounding box are assigned to
the same text line; this “sweeps up” punctuation marks, ac-
cents, and “i”-dots that would otherwise be missed. Within
each text line, multiple bounding boxes whose projections
onto the baseline overlaps are merged; this results in bound-
ing boxes that predominantly contain one or more charac-
ters (as opposed to bounding boxes that contain character
parts). The resulting bounding boxes are then ordered by
the x-coordinate of their lower left corner to obtain a se-
quence of character images in reading order. Multiple text
lines are found using a greedy strategy, in which first the top
match is identified, the bounding boxes that participated in
the match are removed from further consideration, and the
next best text line is found, until no good text line matches
can be identified anymore.

This approach to text line modeling has several advan-
tages over the traditional projection or linking methods.
First, different text lines can have different orientations.
This is a common scanning artifact. Second, by taking into
account both the baseline and the descender line, the tech-
nique can find text lines that are missed by other text line
finders. Third, the matches returned by the method follow
the individual text lines more accurately than most other
methods[1].

Column boundaries are identified in an analogous man-
ner, by finding globally optimal maximum likelihood
matches of the center of the left side of bounding boxes
against a line model. In order to reduce background noise,
prior to applying the line finder to the column finding prob-
lem, statistics about the distribution of horizontal distances
between bounding boxes are used to estimate the inter-
character and inter-words spacing (the two largest com-
ponents in the statistical distribution of horizontal bound-
ing box distances), and bounding boxes for characters are
merged into words. This reduces the number of bound-
ing boxes that need to be considered for column matching
severalfold and thereby improves the reliability of column
boundary detection.

Based on the preceding analysis steps, the system now
has a collection of text lines and column boundaries. Any
connected components that are not part of a text line are
grouped together and treated as images. For a single column
document, by enumerating text lines and bounding boxes of
images in order of theiry-coordinates, we obtain a sequence
of characters, whitespace, and images in reading order. For
a double column document, the two columns are treated as
if the right column were placed under the left column.

This simple layout analysis algorithm copes with a fairly
wide number of commonly found layouts in printed docu-

2



(a) (b) (c)

Figure 1. A page from Jepson’s A FLORA OF CALIFORNIA

ments and transform them into a sequence of images that
can be reflowed and displayed on a handheld device. In
part, a simple algorithm works well in these applications
because the requirements of reflowing for a handheld docu-
ment reader are less stringent than for other layout analysis
tasks, like rendering into a word processor. Since the output
of the layout analysis will only be used for reflowing and
not for editing, no semantic labels need to be attached to
text blocks. Because the documents are reflowed on a small
screen, there is also no user expectation that a rendering of
the output of the layout analysis precisely match the lay-
out of the input document. Furthermore, if page elements
like headers, footers, or page numbers are incorporated into
the output of the layout analysis, users can easily skip them
during reading, and such elements may serve as convenient
navigational signposts on the handheld device as well. Even
some errors in layout analysis, like misattributing a figure
caption to the body of a text, can be tolerated by readers.
However, for very complex layouts, as found, for example,
in magazines, more sophisticated document layout analy-
sis techniques will have to be applied in order to arrive at a
readable rendition on the handheld device. We are currently
exploring the application of other layout analysis techniques
developed in our lab to this problem.

3 Document Formats

The result of the decomposition process described above
is a sequence of text images and illustrations, along with
metainformation about formatting such as paragraph breaks
and line justification. Many existing Web formats are well-

Figure 2. The Jepson page rendered by Mi-
crosoft’s Reader electronic book viewer

suited for representation of such data.

HTML[7], the standard for the World Wide Web, sup-
ports the layout in reading order of a sequence of image ele-
ments, along with formatting information. The successor to
HTML, XHTML[8], uses the more rigorous XML syntax,
but provides the same functionality. A group of commercial
electronic-book interests are also defining the Open eBook
Publication Structure[5], which also uses the XML syntax,
incorporates the XHTML functionality, adds the ability to

3



package multiple XHTML files into a single publication,
and provides standards for addition of document metadata.

Figure 1(a) shows a sample page from Willis Linn Jep-
son’sA FLORA OF CALIFORNIA[4], an important schol-
arly work in the field of botany, in which typeface and rel-
ative type size choices are significant. Once decomposed
into image elements, the logical connections between those
elements can be represented with HTML. Figure 1(b) shows
an HTML representation of the decomposition of the Jepson
page rendered in a standard Web browser, with boxes drawn
around individual image elements.1 Figure 1(c) shows that
same page, but without the bounding boxes around the ele-
ments. Note that fonts and and some characteristics of the
original page have been retained, which would not be the
case for an OCR-based transition strategy.

4 Reader Applications

A problem with all of the Web formats is that a decom-
posed document will typically consist of hundreds of thou-
sands of separate files. This configuration tends to strain
the capabilities of underlying technology support platforms.
Token-based compression schemes[6] can make this prob-
lem somewhat more manageable, but cannot really solve it.
Most electronic-book document formats, however, alleviate
this problem by packaging the image elements together with
the layout directives in a single file.

Dozens of electronic book formats exist, among them
Microsoft Reader, Adobe Acrobat Reader, Palm Reader,
and Gemstar’s RCA 1100 and 1200 formats. Our system
of decomposed image elements can be supported by most
(probably all) of these formats. Figure 2 shows an example
of the Jepson page displayed in Microsoft’s Reader viewer
program. This was achieved by rendering the decomposed
elements into Open eBook Publication Structure, then using
the Overdrive Readerworks distiller for Reader to create the
electronic book. Similar approaches seem to suffice for all
of the other popular electronic book formats.

Common electronic book formats, and the associated
viewer applications, are optimized for ‘books’ consisting
mainly of text, with occasional images. This can lead to
performance problems in both the time and space domains.
Microsoft Reader version 12, for example, running on a 500
MHz Pentium III machine, takes approximately 20 seconds
to lay out and display the first page of the Jepson sample
shown above. But another system called ‘Plucker’3 pro-
vides timely layout and scrolling of the converted docu-
ment, and averages only 70KB per converted page. We are

1The illustrations have been manually removed from the original, and
manually re-inserted into this version. We are investigating ways of doing
this automatically.

2seehttp://www.microsoft.com/reader/
3seehttp://www.plkr.org/

currently investigating alternative storage formats and lay-
out/display techniques optimized for this class of electronic
book.

5 Summary and Conclusions

We began with the observation that documents that orig-
inate as high-resolution page images must be converted for
display on hand-held devices, whose screens often differ
from their desktop counterparts in size, depth, and aspect
ratio. We have described a system for performing the con-
version that is particularly effective when the document is
predominantly textual.

Our system has several strengths. First, it achieves re-
flowing of the text without requiring the brittle and com-
putationally expensive process of text recognition. Second,
the transformed representation can be realized using exist-
ing description protocols, such as HTML and the popular
electronic book formats. Third, by basing the representa-
tion on image fragments from the original, important visual
aspects such as typeface are faithfully preserved. Finally,
the approach is directly amenable to token-based compres-
sion schemes (future work), raising the prospect of greatly
enlarging the amount of such material that may be stored on
a single PDA.

References

[1] T. M. Breuel. Robust least square baseline finding using a
branch and bound algorithm. InDocument Recognition and
Retrieval VIII, SPIE, San Jose, 2002.

[2] H. Bunke and P. S. P. Wang.Handbook of Character Recog-
nition and Document Image Analysis. World Scientific, 1997.

[3] T. Hong and S. N. Srihari. Representing OCRed documents
in HTML. In Proceedings of the IAPR 1997 International
Conference on Document Analysis and Recognition (ICDAR
1997), pages 831–834, Ulm, Germany, April 1997.

[4] W. L. Jepson.A Flora of California. University of California
Press, http://ucjeps.berkeley.edu/jepson-project3.html, 1909-
1943.

[5] John Alger et. al. Open eBook Publication Structure 1.0.1:
Recommended Specification. Technical report, Open eBook
Forum, http://www.openebook.org/, July 2001.

[6] Joint Bi-Level Image Experts Group (JBIG) Committee. In-
formation technology – coded representation of picture and
audio information – lossy/lossless coding of bi-level images.
Technical Report 14492 FDC, ISO/IEC, July 1999.

[7] D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01 Spec-
ification. Technical report, World Wide Web Consortium,
http://www.w3.org/TR/html4/, Dec 1999.

[8] Steven Pemberton et. al. XHTML 1.0: The Extensible Hyper-
Text Markup Language. Technical report, World Wide Web
Consortium, http://www.w3.org/TR/xhtml1/, Jan 2000.

4


