

Fig. 1.23.

Fig. 1.23A. 7Ω 7Ω _ 60 V

Fig. 1.23B. Circuit for illustration 18 with current directions marked, for evaluation of I2

The current I hence is, 60/10 = 6 A

The power delivered by the source is the product of its V and I. That is $60 \times 6 = 360$ W (Ans).

The current I will flow through 7 ohms resistor also. The power absorbed by it will be

$$(6^2)$$
 $(7) = 252 W (Ans).$

Referring to Fig. 23-B and applying the current division technique of equation (1.29).

$$I_2 = \frac{I(R_1)}{R_1 + R_2} = \frac{6 \times 4}{4 + 12} = 1.5 \text{ A}$$

Current in 7 ohm resistor = current in 5 Ω resistor = I_2 , as they are in series

∴ Power absorbed by 7 Ω resistor = (1.5²) 7

= 15.75 W (Ans).

Power absorbed by 5 Ω resistor = $(1.5)^2 \times 5$

$$= 11.25 \text{ W (Ans)}.$$

Illustration 19

Three resistors of 2, 5 and 10 Ω are joined in parallel and a total current of 24 A is passed through them. Find the current through each resistor.

Solution

The problem is dipicted in Fig. 1.24.

Fig. 1.24. Circuit for illustration 19