

Fig. 1.23.

Fig. 1.23A.

Fig. 1.23B. Circuit for illustration 18 with current directions marked, for evaluation of I_{2}

The current I hence is, $60 / 10=6 \mathrm{~A}$
The power delivered by the source is the product of its V and I. That is $60 \times 6=360 \mathrm{~W}$ (Ans).

The current I will flow through 7 ohms resistor also. The power absorbed by it will be
$\left(6^{2}\right)(7)=252 \mathrm{~W}$ (Ans).
Referring to Fig. 23-B and applying the current division technique of equation (1.29).

$$
\mathrm{I}_{2}=\frac{\mathrm{I}\left(\mathrm{R}_{1}\right)}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{6 \times 4}{4+12}=1.5 \mathrm{~A}
$$

Current in 7 ohm resistor $=$ current in 5Ω resistor $=I_{2}$, as they are in series
\therefore Power absorbed by 7Ω resistor $=\left(1.5^{2}\right) 7$
$=15.75 \mathrm{~W}$ (Ans).
Power absorbed by 5Ω resistor $=(1.5)^{2} \times 5$

$$
=11.25 \mathrm{~W} \text { (Ans). }
$$

Illustration 19

Three resistors of 2,5 and 10Ω are joined in parallel and a total current of 24 A is passed through them. Find the current through each resistor.

Solution

The problem is dipicted in Fig. 1.24.

Fig. 1.24. Circuit for illustration 19

