
If you’re a developer and you’re about to ask another 
developer a technical question (on a forum, via email, on a 
chat channel, or in person), you’d better be ready to answer 
the question “What have you tried?” 

This of course isn’t specific to software developers, but that’s 
my field and it’s thus the area in which I’m most familiar with 
the issue which motivated me to write this. I’m (sadly) quite 
sure that it applies to your own industry too, whatever that 
might be. 

The thing is, there’s a disease in the software development 
world; a sort of sickness. It’s an unusual sickness in that it’s 
often not something you acquire once you actually join the 
industry (like greying hair, caffeine addiction and an ulcer), 
but rather it’s something that new recruits already have when 
they arrive. 

Now, a quick clarification before I continue: when I say “new 
recruits”, I don’t just mean graduates and other young people. 
There are those who will say that this sickness is a product of 
modern western education systems, and that things were 
perhaps better back in the day. Maybe that’s true and maybe 
it’s not, but I’m not qualified to say and that isn’t the position 
I’m putting forward here anyway. The illness I’m talking 
about seems to apply to both young and old alike. 

The illness, of course, is a flawed approach to solving 
problems. Here’s an example, which is an actual quote from a 
web forum: 

1) Can we establish http connection in application. 

if so, i need that code. 

I checked NSURLconnection. I cannot intergrate that code. 

2) I want to display a image from the website 

Can anybody please provide me the code? 



If anybody having sample program please give me. 

So where’s the problem? It’s not in the quality of English (it’s 
reasonably evident that English may not be this person’s first 
language, and that doesn’t matter as long as the intent is clear 
- which it is). It’s not in the punctuation and grammar, 
because those things again aren’t particularly important in 
this context as long as they don’t become barriers to 
understanding what’s being asked. 

The problem is that this person’s problem-solving technique 
is to ask for the solution. Not to seek advice on how to approach 
the task, or ask for the names of likely classes to look into, or 
a link to an example - but to just ask for the code, fully formed 
and ready to go. This is not problem solving, and software 
engineering is entirely about problem solving. 

The interesting thing to note here is that the above example 
isn’t actually as bad as it could be; there’s one tiny glimmer of 
light to be found in the assertion that this person “checked 
NSURLConnection”. That inspires some small amount of 
confidence, since NSURLConnection is indeed a suitable class 
to learn about when wanting to make HTTP connections in 
Cocoa. However, it seems that “checking” it was pretty much 
the sum of our friend’s effort - they “cannot integrate that 
code”, and have thus given up. 

This is an issue we all see constantly (and I don’t mean having 
trouble making HTTP connections). There’s an entire class of 
so-called developers whose first and final tactic when given a 
problem to solve is to simply ask for the completed solution 
elsewhere, commonly on web forums or other suitable help 
channels. Their goal is the same as ours - to have code which 
solves the problem, which can then be presumably delivered 
to the client. This goal is reasonable and quite normal. 

What isn’t normal is the unwillingness (I hesitate to 
say inability - because after all, very few things are truly, 



fundamentally “hard” if you apply sufficient thought and 
effort) to achieve that goal by a process of self-education, 
honest attempts and the classic iterative process of 
refinement and improvement until something acceptable is 
created. This process in turn equips you better to handle the 
next challenge, and sooner or later you find that: 

 there are entire sets of familiar problems to which you already 

know the answer and can approach with confidence; and: 

 you’re quite capable of approaching unfamiliar problems by 

generalising your current knowledge and conducting some 

simple focused research. 

This isn’t some trick of software engineering; this is the entire 

process of learning how to do anything at all. 

It’s not a secret handed out at institutions of higher 
education, it’s just how things work: you begin with a lack of 
understanding about a topic, and a need to solve a problem in 
that topic area. The honest, sustainable means of doing so is 
to improve your understanding. This is achieved by: 

1. Formulating a question which, when correctly answered, will 

improve your understanding in some way; then: 

2. Attempting to answer it. 

Note the second step above. To argue that grabbing the 
completed solution in some way satisfies this process is 
laziness and intellectual dishonesty, and probably renders 
you unworthy of being helped. For after all, why should 
someone else do your work for you? 

I’ve had a lot of personal experience with people displaying 
this troubling unwillingness to learn or research or try. I’ve 
released a lot of code over the years, and I’m very visible in 
the open source community for the platforms I work with. 
Since open source contributors seem to be seen as freelance 



teachers, that means I get a lot of email asking for help with 
one thing or another. And I provide that help whenever I can. 

I’ve helped literally hundreds of people looking to get started 
with Cocoa, since Mac OS X was first released. I don’t send 
boilerplate replies, either - I replied to each email 
individually. Everything from specific code issues (including 
but by no means limited to queries relating to my own code), 
book recommendations, right up to advice on how to get 
started with programming as a whole; I’ve done my duty in 
that regard, and I really do believe it is a duty. People who can 
do something to whatever extent ought to help others who 
wish to be able to do the same; surely that’s a fundamental 
truth and indeed a desire for all of us. 

But this is real life, and no principle comes without the 
consideration of certain realities. Help may be free for the 
most part, but that doesn’t mean there isn’t a cost-benefit 
ratio to be considered. My benefit may come from a warm 
fuzzy feeling rather than cold hard cash, but if you’re wasting 
my time then you’re not going to seem as worthy as someone 
who genuinely wants tolearn. 

Here’s a secret: willingness and desire to learn are the true 

qualifications. 

Not ability; we all have differing innate and developed levels 
of ability to acquire certain skills. Some (probably most) of 
these can be improved with practice, and some can’t - and it’s 
wrong to pigeonhole or generalise a person’s ability in an 
entire discipline just because of their seeming difficulty in one 
particular aspect of that discipline. But if you want someone 
to spend time and effort (especially if it’s time they’re giving 
freely), then you’d better earn it. 

Earning it isn’t about throwing a few units of currency at your 
teacher, and it’s not even about successfully completing your 
task - it’s about bloodytrying. And trying is what so many of 



the type of developers I’m talking about seem bizarrely 
unwilling to do. So, of course, many of us ignore them. 
Problem solved, right? Wrong. 

There’s a huge knock-on negative effect of the proliferation of 
this unwillingness to make the effort to solve problems 
yourself. People who are in a position to help stop frequenting 
the chatrooms, forums and mailing lists. “Bad signal to noise 
ratio”, they say, with some justification. The losers are the 
genuine (by which I mean well-meaning, willing-to-learn 
people who just happen to be new to a particular area) 
developers who naturally choose those places to ask their 
legitimate questions. These people have a reduced chance to 
get meaningful guidance because of the effort involved in 
working out who’s a lazy time-waster and who isn’t. 

This is an awful thing, and it’s never been more relevant - 
since logically, platforms which are young and/or 
experiencing a surge in popularity are exposed to this 
phenomenon the most. There are fewer people who are 
genuinely experienced, the average level of experience is less, 
the amount of help being requested is higher, and there’s a far 
higher proportion of lazy, grab-the-money-and-run types 
mixed up in it all. This is the iPhone, Android and so on. 

So, if you’re going to ask a technical question, I guess the first 
thing I have to say to you is: Great! You’re asking a question, 
and that means we have a better than even chance that you 
want to learn something. That’s usually awesome, and I stand 
ready to salute you. 

But wait. Have you considered - really considered - what it is 
you’re about to ask? Is this the right time to ask, or can you 
take one more step first, which might either make your 
question clearer (good) or even unnecessary (probably 
better)? 

Try taking a few minutes to run through these points: 



 Have you broken the question or problem down sufficiently to 

really ask something concrete? In software engineering, you 

can pretty much divide problems into the two categories of (1) 

things that can be broken down further, and (2) things you 

already know how to do or can look up trivially. 

 Is your problem the sort of standard question for which 

there’s definitelyalready some sample code and documentation 

available? There isn’t a GUI toolkit in the world that doesn’t 

have a section in the tutorial on how to put a window on 

screen. There’s no programming language that doesn’t tell you 

how to read the contents of a file. Skim the documentation, or 

do a quick search. If your problem is that simple, the answer is 

probably just moments away. You can find it! 

 Try searching the web. This is glib advice, I know, but stay 

with me. If you’re having trouble getting a decent result, you 

need to narrow things down. Don’t search for “if statement” if 

you’re just interested in an if-statement in ruby; instead, try 

“ruby if statement”. What might be even better is finding a site 

that’s specific to the language or technology you’re working 

with, and searching there. For Cocoa, this is the CocoaBuilder 

list archives. Someone else has probably asked your question - 

or maybe ahundred someones. 

 

http://www.cocoabuilder.com/
http://www.cocoabuilder.com/

