Probability Theory - 2015

Class 5: Pairs of random variables

Department of Mathematics and Computer Science
Eindhoven University of Technology
Jacques Resing

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
(5) Covariance and correlation coefficient
(6 Conditioning by an event
(7) Conditioning by a random variable

8 Independent random variables
(9) Bivariate Gaussian random variables
(10 Summary

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
a Expectation
(5) Covariance and correlation coefficient
(a Conditioning by an event
(a) Conditioning by a random variable

8 Independent random variables
(a) Bivariate Gaussian random variables
(10) Summary

Joint cumulative distribution function

The joint cumulative distribution function (joint CDF) of a pair of random variables X and Y is

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)
$$

Properties of joint CDF

For a pair of random variables X and Y :

- $0 \leq F_{X, Y}(x, y) \leq 1$
- $F_{X}(x)=F_{X, Y}(x, \infty)$
- $F_{Y}(y)=F_{X, Y}(\infty, y)$
- $F_{X, Y}(-\infty, y)=F_{X, Y}(x,-\infty)=0$
- If $x \leq x_{1}$ and $y \leq y_{1}$, then

$$
F_{X, Y}(x, y) \leq F_{X, Y}\left(x_{1}, y_{1}\right)
$$

- $F_{X, Y}(\infty, \infty)=1$

Furthermore, we have

$$
\begin{aligned}
P\left(x_{1}<X\right. & \left.\leq x_{2}, y_{1}<Y \leq y_{2}\right) \\
& =F_{X, Y}\left(x_{2}, y_{2}\right)-F_{X, Y}\left(x_{2}, y_{1}\right)-F_{X, Y}\left(x_{1}, y_{2}\right)+F_{X, Y}\left(x_{1}, y_{1}\right)
\end{aligned}
$$

Joint probability mass function

The joint probability mass function (joint PMF) of the discrete random variables X and Y is:

$$
P_{X, Y}(x, y)=P(X=x, Y=y)
$$

The range of the pair of random variables X and Y is defined as

$$
S_{X, Y}=\{(x, y) \mid P(X=x, Y=y)>0\}
$$

For a set B in the (X, Y)-plane we have

$$
P(B)=\sum_{(x, y) \in B} P_{X, Y}(x, y) .
$$

Joint probability density function

The joint probability density function (joint PDF) $f_{X, Y}$ of the random variables X and Y is a function such that

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) \mathrm{d} v \mathrm{~d} u
$$

Consequence:

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}
$$

Interpretation:

$$
f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=P(x<X \leq x+\mathrm{d} x, y<Y \leq y+\mathrm{d} y)
$$

Properties of joint PDF

A joint probability density function $f_{X, Y}(x, y)$ has the following properties:

- $f_{X, Y}(x, y) \geq 0$ for all (x, y),
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x=1$.

Furthermore, we have

$$
P(A)=\iint_{(x, y) \in A} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

Example

Given are two random variables with joint probability density function

$$
f_{X, Y}(x, y)= \begin{cases}2, & 0 \leq y \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the joint cumulative distribution function.

Example (continued)

Given are two random variables X and Y with joint probability density function

$$
f_{X, Y}(x, y)= \begin{cases}2, & 0 \leq y \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the probability $P(A)=P(X+Y \leq 1)$.

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
e Covariance and correlation coefficient
(6) Conditioning by an event

Q Conditioning by a random variable
8 Independent random variables

- Bivariate Gaussian random variables
(10) Summary

Marginal probability mass function

Let X and Y be discrete random variables with joint probability mass function $P_{X, Y}(x, y)$. Then we have

$$
P_{X}(x)=\sum_{y \in S_{Y}} P_{X, Y}(x, y), \quad P_{Y}(y)=\sum_{x \in S_{X}} P_{X, Y}(x, y) .
$$

These functions are called the marginal probability mass functions (marginal PMF's) of the random variables X and Y.

Marginal probability density function

Let X and Y be continuous random variables with joint probability density function $f_{X, Y}(x, y)$. Then we have

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y, \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
$$

These functions are called the marginal probability density functions (marginal PDF's) of the random variables X and Y.

Example

Given two random variables with joint probability density function

$$
f_{X, Y}(x, y)= \begin{cases}\frac{5}{4} y, & -1 \leq x \leq 1, \quad x^{2} \leq y \leq 1, \\ 0, & \text { otherwise. }\end{cases}
$$

Determine the marginal probability density functions $f_{X}(x)$ and $f_{Y}(y)$.

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
(5) Covariance and correlation coefficient
(a Conditioning by an event
(2) Conditioning by a random variable
(8) Independent random variables
(a) Bivariate Gaussian random variables
(10) Summary

Functions of two random variables

For discrete random variables X and Y, the function $W=g(X, Y)$ has probability mass function

$$
P_{W}(w)=\sum_{\substack{(x, y) \\ g(x, y)=w}} P_{X, Y}(x, y)
$$

Functions of two random variables

For continuous random variables X and Y, the function $W=g(X, Y)$ has cumulative distribution function

$$
F_{W}(w)=P(W \leq w)=\iint_{g(x, y) \leq w} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

For $W=\max (X, Y)$ we have

$$
F_{W}(w)=\int_{-\infty}^{w} \int_{-\infty}^{w} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x .
$$

Example

Given are two random variables with joint probability density function

$$
f_{X, Y}(x, y)= \begin{cases}\lambda \mu e^{-(\lambda x+\mu y)}, & x \geq 0, \quad y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the probability density function of $W=Y / X$.

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
(5) Covariance and correlation coefficient
(6) Conditioning by an event
(a) Conditioning by a random variable

8 Independent random variables
(9) Bivariate Gaussian random variables
(10) Summary

Expectation

For random variables X and Y, the expectation of $W=g(X, Y)$ is

Discrete:

$$
\begin{aligned}
& E(W)=\sum_{x \in S_{x}} \sum_{y \in S_{y}} g(x, y) P_{X, Y}(x, y) \\
& E(W)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Continuous:

Expectation

We have

$$
E\left(g_{1}(X, Y)+\cdots+g_{n}(X, Y)\right)=E\left(g_{1}(X, Y)\right)+\cdots+E\left(g_{n}(X, Y)\right)
$$

In particular:

$$
E(X+Y)=E(X)+E(Y)
$$

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
(5) Covariance and correlation coefficient
(6) Conditioning by an event
(7) Conditioning by a random variable
(8) Independent random variables
(9) Bivariate Gaussian random variables
(10) Summary

Covariance

The variance of the sum of two random variables is:

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

The covariance of the random variables X and Y is:

$$
\operatorname{Cov}[X, Y]=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

We call the random variables X and Y uncorrelated if $\operatorname{Cov}[X, Y]=0$.

We have

- $\operatorname{Cov}(X, Y)=E(X Y)-\mu_{X} \mu_{Y}$,
- $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]$,
- If $X=Y$, then $\operatorname{Cov}(X, Y)=\operatorname{Var}[X]=\operatorname{Var}[Y]$.

Correlation coefficient

The correlation coefficient of two random variables X and Y is:

$$
\rho_{X, Y}=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}}=\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}}
$$

We always have $-1 \leq \rho_{X, Y} \leq 1$.
If $Y=a X+b$, then

$$
\rho_{X, Y}= \begin{cases}-1, & \text { if } a<0 \\ 0, & \text { if } a=0 \\ 1, & \text { if } a>0\end{cases}
$$

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
(3) Covariance and correlation coefficient
(6) Conditioning by an event
(3) Conditioning by a random variable
(8) Independent random variables
(a Bivariate Gaussian random variables
(10) Summary

Conditional joint PMF

For discrete random variables X and Y and an event B with $P[B]>0$, the conditional joint PMF of X and Y given B is

$$
P_{X, Y \mid B}(x, y)=P(X=x, Y=y \mid B)
$$

We have

$$
P_{X, Y \mid B}(x, y)= \begin{cases}\frac{P_{X, Y}(x, y)}{P(B)}, & \text { if }(x, y) \in B \\ 0, & \text { otherwise }\end{cases}
$$

Conditional joint PDF

For contintuous random variables X and Y and an event B with $P[B]>0$, the conditional joint PDF of X and Y given B is

$$
f_{X, Y \mid B}(x, y)= \begin{cases}\frac{f_{X, Y}(x, y)}{P(B)}, & \text { if }(x, y) \in B \\ 0, & \text { otherwise }\end{cases}
$$

Example

Given random variables with joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{15}, & 0 \leq x \leq 5, \quad 0 \leq y \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the conditional joint PDF of X and Y given

$$
B=\{X+Y \geq 4\}
$$

Conditional expectation

For random variables X and Y and an event B with $P(B)>0$, the conditional expectation of $W=g(X, Y)$ given B is:

Discrete:

$$
\begin{aligned}
& E[W \mid B]=\sum_{x \in S_{x}} \sum_{y \in S_{y}} g(x, y) P_{X, Y \mid B}(x, y) \\
& E[W \mid B]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y \mid B}(x, y) \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Example (continued)

Given random variables with joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{15}, & 0 \leq x \leq 5, \quad 0 \leq y \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the conditional expectation of $W=X+Y$ given

$$
B=\{X+Y \geq 4\}
$$

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation

- Covariance and correlation coefficient
(6) Conditioning by an event
(7) Conditioning by a random variable

8 Independent random variables
(9) Bivariate Gaussian random variables
(10) Summary

Conditional PMF

For discrete random variables X and Y and an event $Y=y$ with $P_{Y}(y)>0$, the conditional PMF of X given $Y=y$ is

$$
P_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)
$$

We have

$$
P_{X, Y}(x, y)=P_{X \mid Y}(x \mid y) P_{Y}(y)=P_{Y \mid X}(y \mid x) P_{X}(x)
$$

Conditional expectation

Let X and Y be discrete random variables. For any $y \in S_{y}$, the conditional expectation of $g(X, Y)$ given $Y=y$ is

$$
E[g(X, Y) \mid Y=y]=\sum_{x \in S_{X}} g(x, y) P_{X \mid Y}(x \mid y)
$$

In particular:

$$
E[X \mid Y=y]=\sum_{x \in S_{X}} x P_{X \mid Y}(x \mid y)
$$

Conditional PDF

Let X and Y be continuous random variables. For y such that $f_{Y}(y)>0$, the conditional PDF of X given $Y=y$ is

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} .
$$

We have

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)=f_{Y \mid X}(y \mid x) f_{X}(x)
$$

Example

Given are random variables X and Y with joint probability density function:

$$
f_{X, Y}(x, y)= \begin{cases}2, & 0 \leq y \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the conditional probability density function of X given Y.

Conditional expectation

For continuous random variables X and Y and an event $Y=y$ with $f_{Y}(y)>0$, the conditional expectation of $g(X, Y)$ given $Y=y$ is

$$
E[g(X, Y) \mid Y=y]=\int_{-\infty}^{\infty} g(x, y) f_{X \mid Y}(x \mid y) \mathrm{d} x
$$

In particular:

$$
E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \mathrm{d} x
$$

Conditional expectation

The conditional expectation $E[X \mid Y]$ is a function of random variabele Y such that if the realization of the random variable Y is equal to y, then the realization of the random variable $E[X \mid Y]$ is equal to $E[X \mid Y=y]$.

We have

$$
\begin{aligned}
E[E[X \mid Y]] & =E[X], \\
E[E[g(X) \mid Y]] & =E[g(X)] .
\end{aligned}
$$

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
(3) Covariance and correlation coefficient
(6) Conditioning by an event
(3) Conditioning by a random variable

8 Independent random variables
© Bivariate Gaussian random variables
(10) Summary

Independent random variables

Random variables X and Y are independent if and only if:

$$
\begin{array}{ll}
\text { Discrete: } & P_{X, Y}(x, y)=P_{X}(x) P_{Y}(y) \\
\text { Continuous: } & f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
\end{array}
$$

Example

Given are random variables U and V with joint PDF

$$
f_{U, V}(u, v)= \begin{cases}24 u v, & u \geq 0, v \geq 0, u+v \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Are the random variables U and V independent?

Properties of independent random variables

For independent random variables X and Y :

- $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$,
- $E(X Y)=E(X) E(Y)$,
- $\operatorname{Cov}(X, Y)=\rho_{X, Y}=0$,
- $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$,
- $E(X \mid Y=y)=E(X)$ for all $y \in S_{Y}$,
- $E(Y \mid X=x)=E(Y)$ for all $x \in S_{X}$.

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
e Covariance and correlation coefficient
(6) Conditioning by an event
(7) Conditioning by a random variable
(8) Independent random variables
(9) Bivariate Gaussian random variables
(10) Summary

Bivariate Gaussian PDF

Random variables X and Y have a bivariate Gaussian PDF with parameters $\mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}$, and ρ if

$$
\begin{aligned}
& f_{X, Y}(x, y) \\
& \quad=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-\frac{2 \rho\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}}{2\left(1-\rho^{2}\right)}\right]
\end{aligned}
$$

with μ_{1} and μ_{2} arbitrary real numbers, $\sigma_{1}>0$ and $\sigma_{2}>0$ and $-1<\rho<1$.

Interpreation of the parameters

We have

- $E(X)=\mu_{1}$,
- $\operatorname{Var}[X]=\sigma_{1}^{2}$,
- $E(Y)=\mu_{2}$,
- $\operatorname{Var}[Y]=\sigma_{2}^{2}$,
- $\rho_{X, Y}=\rho$,
- $\operatorname{Cov}(X, Y)=\rho \sigma_{1} \sigma_{2}$.

Marginals of bivariate Gaussian random varaibles

If X and Y are bivariate Gaussian random variables, then X is a Gaussian (μ_{1}, σ_{1}) random variable and Y is a Gaussian $\left(\mu_{2}, \sigma_{2}\right)$ random variable:

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} e^{-\left(x-\mu_{1}\right)^{2} /\left(2 \sigma_{1}^{2}\right)}, \\
& f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} e^{-\left(y-\mu_{2}\right)^{2} /\left(2 \sigma_{2}^{2}\right)} .
\end{aligned}
$$

Conditional PDF's of bivariate Gaussian random varaibles

If X and Y are bivariate Gaussian random variables, then the conditional PDF of X given $Y=y$ is equal to

$$
f_{X \mid Y}(x \mid y)=\frac{1}{\sqrt{2 \pi \tilde{\sigma}_{1}^{2}}} e^{-\left(x-\tilde{\mu}_{1}(y)\right)^{2} /\left(2 \tilde{\sigma}_{1}^{2}\right)}
$$

with

$$
\tilde{\mu}_{1}(y)=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(y-\mu_{2}\right), \quad \tilde{\sigma}_{1}^{2}=\sigma_{1}^{2}\left(1-\rho^{2}\right) .
$$

Remark: Bivariate Gaussian random variables X and Y are uncorrelated if and only if X and Y are independent!

Outline

(1) Joint CDF, joint PMF and joint PDF
(2) Marginal PMF and PDF
(3) Functions of two random variables
(4) Expectation
(3) Covariance and correlation coefficient
(6) Conditioning by an event
(7) Conditioning by a random variable
© Independent random variables
© Bivariate Gaussian random variables
(10) Summary

Summary

- We discussed the joint CDF, joint PMF and joint PDF of a pair of random variables.
- We showed how to obtain the marginal PMF's (or marginal PDF's) of the two random variables from their joint PMF (or joint PDF).
- We studied functions of a pair of random variables.
- We defined covariance and correlation coefficient.
- We looked at conditioning by an event and by a random variable.
- We defined independence between two random variables.
- We studied bivariate Gaussian random variables.

