
CHAPTER 16

Known-fate models

In previous chapters, we’ve spent a considerable amount of time modeling situations where the prob-

ability of encountering an individual is less than 1. However, there is at least one situation where we

do not have to model detection probability – known-fate data, so-called because we know the fate of each

marked animal with certainty. In other words, encounter probability is 1.0 (which must be true if we

know the fate of a marked individual with certainty). This situation typically arises when individuals

are radio-marked, although certain kinds of plant data can also be analyzed with the known fate data

type. In such cases, known-fate data are important because they provide a theory for estimation of

survival probability and other parameters (such as emigration). The focus of known fate models is

the estimation of survival probability S, the probability of surviving an interval between sampling

occasions. These are models where it can be assumed that the sampling probabilities are 1. That is,

the status (dead or alive) of all tagged animals is known at each sampling occasion. For this reason,

precision is typically quite high, as precise as the binomial distribution allows, even in cases where

sample size is often fairly small. The only disadvantages might be the cost of radios and possible e�ects

of the radio on the animal or its behavior. The model is a product of simple binomial likelihoods. Data

on egg mortality in nests and studies of sessile organisms, such as mollusks, have also been modeled

as known fate data.

In fact, the known fate data type is exactly the same as logistic regression in any statistical package.

The main advantage of using MARK for known fate analysis is the convenience of model selection, and

the capabilities to model average survival estimates easily, and compute random e�ects estimates.

16.1. The Kaplan-Meier Method

The traditional starting point for the analysis of known-fate data is the Kaplan-Meier (1958) – we’ll

discuss it brie�y here, before introducing a more �exible approach that will serve as the basis for the

rest of this chapter.

The Kaplan-Meier (hereafter, K-M) estimator is based on observed data at a series of occasions, where

animals are marked and released only at occasion 1. The K-M estimator of the survival function is

Ŝt �

t
∏

i�1

(

ni − di

ni

)

where ni is the number of animals alive and at risk of death at occasion i (given that their fate is known
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at the end of the interval), di is the number known dead at occasion i, and the product is over i up to

the tth occasion (this estimator is often referred to as the product-limit estimator). Critical here is that

ni is the number known alive at the start of occasion i and whose fate (either alive or dead) is known at

the end of the interval. Thus, the term in parentheses is just the estimated survival for interval i. Note

that ni does not include individuals censored during the interval. It is rare that a survival study will

observe the occasion of death of every individual in the study. Animals are ‘lost’ (i.e., censored) due

to radio failure or other reasons. The treatment of such censored animals is often important, but often

somewhat subjective. These K-M estimates produce a survival function (see White and Garrott 1990);

the cumulative survival up to time t. This is a step function and is useful in comparing, for example,

the survival functions for males vs. females.

If there are no animals that are censored, then the survival function (empirical survival function or

ESF) is merely,

Ŝt �

(

number alive longer than t

n

)

for t ≥ 0

This is the same as the intuitive estimator where no censoring is occurring: Ŝt � nt+1/nt ; for example,

Ŝ2 � n3/n2. The K-M method is an estimate of this survival function in the presence of censoring.

Expressions for the variance of these estimates can be found in White and Garrott (1990).

A simple example of this method can be illustrated using the data from Conroy et al. (1989) on 48

radio-tagged black ducks. The data are

survived to occasion

week 1 2 3 4 5 6 7 8

number alive at start 48 47 45 39 34 28 25 24

number dying 1 2 2 5 4 3 1 0

number alive at end 47 45 39 34 28 25 24 24

number censored 0 0 4 0 2 0 0 0

Here, the number alive at the start of an interval are to known be alive at the start of sampling occasion

j. This is equivalent to being alive at the start of interval j. For example, 47 animals are known to be

alive at the beginning of occasion 2. Forty-�ve are alive at the start of interval 3, but 4 are censored from

these 45 because their fate is unknown at the end of the interval, so that n3 � 41. A further example is

that 34 ducks survived to the start of occasion 5. Thus, the MLEs are

Ŝ1 � 47/48 � 0.979

Ŝ2 � 45/47 � 0.957

Ŝ3 � 39/41 � 0.951 (note: only 41 because 4 were censored)

Ŝ4 � 34/39 � 0.872

Ŝ5 � 28/32 � 0.875 (note: only 32 because 2 were censored)

Ŝ6 � 25/28 � 0.893

Ŝ7 � 24/25 � 0.960

Ŝ8 � 24/24 � 1.00

Here one estimates 8 parameters – call this model S(t). One could seek a more parsimonious model

in several ways. First, perhaps all the parameters were nearly constant; thus a model with a single

survival probability might su�ce (i.e., S(.)) If something was known about the intervals (similar to
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the �ood years for the European dipper data) one could model these with one parameter and denote

the other periods with a second survival parameter.

Finally, one might consider �tting some smooth function across the occasions and, thus, have perhaps

only one intercept and one slope parameter (instead of 8 parameters). Still other possibilities exist

for both parsimonious modeling and probable heterogeneity of survival probability across animals.

These extensions are not possible with the K-M method and K-L-based (i.e., AIC) model selection is not

possible. To do this, we need an approach based on maximum likelihood estimation – as it turns out,

the simple binomial model will do just that for known-fate data.

16.2. The Binomial Model

In the K-M approach, we estimated the survival probability by

Ŝt �

t
∏

i�1

(

ni − di

ni

)

where di is the number dying over the ith interval, and ni is the number alive (‘at risk’) at the start of

the interval and whose fate is also known at the end of the interval (i.e., not censored). Here, we use

the equivalence (under some conditions) of the K-M estimator, and a binomial estimator, to recast the

problem in a familiar likelihood framework.

Consider the situation for the case in which all animals are released at some initial time t � 0, and

there is no censoring. If we expand the product term from the preceding equation, over the interval

[0, t],

Ŝt �

(

n0 − d0

n0

) (

n1 − d1

n1

)

. . .

(

nt − dt

nt

)

We notice that in the absence of censoring (which we assume for the moment), the number of animals

at risk at the start of an interval is always the previous number at risk, minus the number that died the

previous interval.

Thus, we can re-write the expanded expression as

Ŝt �

(

n0 − d0

n0

) (

n1 − d1

n1

)

. . .

(

nt − dt

nt

)

�

(

n0 − d0

n0

) (

n0 −
(

d0 + d1

)

n0 − d0

)

×

(

n0 −
(

d0 + d1 + d2

)

n0 −
(

d0 + d1

)

)

× . . .

×

(

n0 −
(

d0 + d1 + · · · + dt

)

n0 −
(

d0 + d1 + · · · + dt−1

)

)

OK, while this looks impressive, its importance lies in the fact that it can be easily simpli�ed to

Ŝt �

(

n0 − d0

n0

) (

n0 −
(

d0 + d1

)

n0 − d0

)

× · · · ×

(

n0 −
(

d0 + d1 + · · · + dt

)

n0 −
(

d0 + d1 + · · · + dt−1

)

)

�

(

n0 −
(

d0 + d1 + · · · + dt

)

n0

)
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If you look at this expression closely, you’ll see that the numerator is the number of individuals from

the initial release cohort (n0) that remain alive (i.e., which do not die – the number that die is given by

(d0 + d1 + · · ·+ dt )), divided by the number initially released. In other words, the estimate of survival to

time t is simply the number surviving to time t, divided by the number released at time 0.

Now, this should sound familiar – hopefully you recognize it as the usual binomial estimator for

survival as (in this case) number of survivors (‘successes’, in a literal sense) in n0 trials. Thus, if

Ŝi �
yi

ni

where yi is the number surviving to time i (on the interval [i − 1, i]), and ni is the number alive (‘at

risk’) at the start of the interval (i.e., at time i), then we can write

Ŝt �

t
∏

i�1

(

ni − di

ni

)

�

t
∏

i�1

(

yi

ni

)

If you recall the brief introduction to likelihood theory in Chapter 1 (especially the section discussing

the binomial), it will be clear that the likelihood expression for this equation is

L
(

θ �
� ni , yi

)

�

t
∏

i�1

S
yi

i

(

1 − Si

) (ni−yi )

where θ is the survival model for the t intervals, ni is the number of individuals alive (at risk) during

each interval, yi is the number surviving each interval, and Si is the MLE of survival during each

interval.

As suggested at the start of this section, the binomial model allows standard likelihood-based estima-

tion and is therefore similar to other models in program MARK. To understand analysis of known-fate

data using the binomial model in MARK, we �rst must understand that there are 3 possible scenarios

under the known fate model. In a known-fate design, each tagged animal either:

1. survives to end of study (detected at each sampling occasion so fate is known on every

occasion)

2. dies sometime during the study (its carcass is found on the �rst occasion after its death so

that its fate is known)

3. survives up to the point where its fate is last known, at which time it is censored→ the fate

is known

Note, for purposes of estimating survival probabilities, there is no di�erence between animals seen

alive and then removed from the population at occasion k and those censored due to radio failure or

for other reasons. The binomial model assumes that the capture histories are mutually exclusive and

that animals are independent, and that all animals have the same underlying survival probability when

individuals are modeled with the same survival parameter (homogeneity across individuals). Known

fate data can be modeled by a product of binomials.

Let us reconsider the black duck data (seen previously), using the binomial model framework : n1 �

48, and n2 � 44; the likelihood is

L
(

S1
�
� n1 , n2

)

�

(

n1

n2

)

S
n2

1

(

1 − S1

) (n1−n2)
�

(

48

44

)

S44
1

(

1 − S1

) (48−44)
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Clearly, one could �nd the MLE, Ŝ1, for this expression (e.g., Ŝ1 � 44/48 � 0.917). We could also easily

derive an estimate of the variance (see section 1.3.1 in Chapter 1). Of course, the other binomial terms

are multiplicative, assuming independence. The survival during the second interval is based on n2 � 44

and n3 � 41,

L
(

S1
�
� n1 , n2

)

�

(

n1

n2

)

S
n2

2

(

1 − S2

) (n1−n2)
�

(

41

44

)

S41
2

(

1 − S2

) (44−41)

As noted above, the likelihood function for the entire set of black duck data (modi�ed to better make

some technical points below) is the product of these individual likelihoods.

16.3. Encounter Histories

Parameterization of encounter histories for a known-fate data is critical, and is structurally analogous

to the LDLD format used in some other analyses (e.g., Burnham’s live encounter-dead recovery model) –

these are discussed more fully in Chapter 2. For the encounter histories for known-fate data, each entry

is paired, where the �rst position (L) is a 1 if the animal is known to be alive at the start of occasion j;

that is, at the start of the interval. A ‘0’ in this �rst position indicates the animal was not yet tagged or

otherwise not known to be alive at the start of the interval j or else its fates is not known at the end of

the interval (and thus the animal is censored and is not part of the estimation during the interval).

The second position (D) in the pair is ‘0’ if the animal survived to the end of the interval. It is a ‘1’ if

it died sometime during the interval. As the fate of every animal is assumed known at every occasion,

the sampling probabilities (p) and reporting probabilities (r) are 1. The following examples will help

clarify the coding:

encounter history probability interpretation

10 10 10 10 S1S2S3S4 tagged at occasion 1 and survived until the end of

the study

10 10 11 00 S1S2(1 − S3) tagged at occasion 1, known alive during the second

interval, and died during the third interval

10 11 00 00 S1(1 − S2) tagged at occasion 1 and died during the second

interval

11 00 00 00 (1 − S1) tagged at occasion 1 and died during the �rst

interval

10 00 00 10 S1S4 tagged at occasion 1, censored for interval 2 and 3

(not detected, or removed for some reason), and re-

inserted into the study at occasion 4

00 00 10 11 S3(1 − S4) tagged at occasion 3, died during the 4th interval

10 00 00 00 S1 tagged at occasion 1, known alive at the end of

the �rst interval, but not released at occasion 2 and

therefore censored after the �rst interval

Estimation of survival probabilities is based on a release (1) at the start of an interval and survival

to the end of the interval (0), mortality probabilities are based on a release (1) and death (1) during the

interval; if the animal then was censored, it does not provide information about Si or 1 − Si).
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Some ‘rules’ for encounter history coding for known-fate analysis:

a. The two-digit pairs each pertain to an interval (the period of time between occasions).

b. There are only 3 possible entries for each interval:

• 10 = an animal survived the interval, given it was alive at the start of the interval

• 11 = an animal died during the interval, given it was alive at the start of the interval

• 00 = an animal was censored for this interval

c. In order to know the fate of an animal during an interval, one must have encountered it

both at the beginning and the end of the interval.

16.4. Worked example: black duck survival

Here, we consider the black duck radio-tracking data from Conroy et al. (1989). These data are contained

in the BLCKDUCK.INP �le contained in the MARK examples subdirectory that is created when you install

MARK on your computer. The data consists of 50 individual encounter histories, 8 encounter occasions,

1 group, and 4 individual covariates: age (0 = subadult, 1 = adult), weight (kg), wing (length, in cm)

and condition. In this study, it was suspected that variation in body size, condition (or both) might

signi�cantly in�uence survival, and that the relationship between survival and these covariates might

di�er between adult and subadult ducks.

Here is what a portion of the BLCKDUCK.INP �le looks like, showing the encounter histories and

covariate values for the �rst 10 individuals:

For example, the 10th individual in the data set has the encounter history ‘1010110000000000’, mean-

ing: marked and released alive at the start of the �rst interval, was detected alive at the start of the

second interval, and then died during the third interval. The individual was radio-marked as an

adult, and weighed 1.42 kilograms, had a wing length of 27.0 cm, and a condition index of 5.26. Ah

– but look carefully – notice that in this .INP �le, age is not coded as a classi�cation variable (as is
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typically done for ‘groupings’ of individuals – see Chapter 2), but instead as a dichotomous covariate.

Coding dichotomous groups as simple linear covariates is perfectly acceptable – sometimes it is more

straightforward to implement – the only ‘cost’ (for large data sets) might be e�ciency (the numerical

estimation can sometimes be slower using this approach). However, the advantage of coding age as an

individual covariate is that if age turns out to be not important, then you are not required to manipulate

PIMs for 2 age groups.

Obviously, this has some implications for how we specify this data set in MARK. Start a new project

in MARK. Select ‘known fates’ as the data type. Enter 8 encounter occasions. Now, the ‘trick’ is to

remember that even though there are two age groups in the data, we’re coding age using an individual

covariate – as such, there is still only 1 attribute group, not two. So, leave attribute groups at the default

of 1. For individual covariates, we need to ‘tell’ MARK that the input �le has 4 covariates which we’ll

label as age, weight, wing, and cond (for condition), respectively.

Once we’ve speci�ed the data type, we’ll proceed to �t a series of models to the data. Let’s consider

models St , Sa ge , S., Swei ght , Swin g, and Scond. Clearly, the most parameterized of these models is model

St , so we’ll start with that. Here is the PIM for survival:
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Not only is this particular PIM rather ‘boring’ (only a single row), in fact, there are no other PIMs

for this analysis! Why? Easy – for known-fate data, we assume that all individuals are detected at each

occasion, conditional on being alive and in the sample (i.e., we assume detection probability equals 1).

Thus, the only parameter to model is the survival parameter (this should make sense – look back at the

table on page 4 of this chapter – notice that the probability expressions corresponding to the di�erent

encounter histories are functions only of Si – no encounter probability is included).

Why only a single row? Again, the assumption in the ‘known-fate’ analysis is that all individuals are

released on the same occasion – presumably, at the start of the study (we’ll consider staggered entry

designs later). So, a single row, since all individuals in the analysis are in the same release cohort. Of

course, this means that you aren’t able to separate ‘time’ e�ects from ’age’ e�ects in the analysis – at

least, using the ‘known fates’ data type in MARK. Remember, the age factor in this analysis is acting

as a classi�cation variable – and does not indicate the e�ects of aging (getting older over the course of

the study) on survival. If you’re marked individuals are all adults, then this may not be a particular

problem. But, if your marked sample are subadults or young individuals, or perhaps a heterogeneous

mixture of adults which might contain some proportion of transient individuals (see Chapter 7), you

might have a problem. We’ll deal with this later on in the chapter. For now, we’ll proceed with the

analysis, assuming all the assumptions of the classic known-fates analysis have been met.

Given the preceding discussion, it should be clear that for a known-fate data, the PIMs (and as a

result, the model-�tting in general) is very straightforward. The default PIM (shown on the previous

page) corresponds to model St . We go ahead, �t the model, and add the results to the browser. Recall

that the default link function when using the PIM approach to model �tting is the sin link.

But, also recall that ultimately, we want to use the complete �exibility of the design matrix for �tting

models in MARK. So, let’s ‘re-build’ our starting model St , using the design matrix. In this case, since

the model we’re �tting corresponds to the fully time-dependent model, we can generate the design

matrix simply by selecting ‘Design | Full’, which yields the following design matrix:

Go ahead and �t this model, and add the results to the browser – label the model ‘S(t) - DM’, to

indicate it is the St model, constructed using a design matrix (DM) approach. Once you’ve added this

model to the results browser (shown at the top of the next page), you’ll notice that the two models (which

are structurally identical) report di�erent numbers of estimated parameters – 7 estimated parameters

for the model �t using the DM (and the logit link), and 8 estimated parameters for the model �t using

the PIM approach (and the sin link).
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In fact, what we see here is fairly common for known-fate studies – in many such studies, the

sampling interval is often relatively short, such that the survival probabilities over each interval are

often relatively close to 1.0. We discussed previously (Chapter 6) how the di�erent link functions

behave when parameter values are near the [0, 1] boundary. In the present example, examination of

the reconstituted parameter values on the probability scale are in many cases close to the boundary –

the two models di�er in the estimate of survival for the last interval – the sin link estimates survival for

the �nal interval at 1.00, whereas the logit link estimates the survival as 1.00, but fails to properly count

this parameter as being estimated. We know that the number of estimated parameters for this analysis

is 8 – so, we manually adjust the number of parameters for the model �t using the design matrix from

7 to 8 (when we do so, we see that the AICcand related statistics for the two models are now identical).

We then delete the model �t using the PIM, since it is redundant to the model �t using the DM.

The next model in our candidate model set is model Sa ge . Recall that for this analysis, age is entered

as a linear covariate in the .INP �le, where age = 0 for subadults, and age = 1 for adults. Recall from

Chapter 11 that individual covariates are introduced directly into the design matrix. So, for model Sa ge ,

the design matrix will look like

With this design matrix, we can interpret β2 as the di�erence in survival between subadults and

adults, i.e., what should be added on a logit scale to the subadult survival estimate to obtain the adults

survival estimate (interpretation of the βi terms in the linear model is discussed at length in Chapter 6).

We run this model, and add the results to the browser. We do much the same thing for each of the

remaining models in the model set – each time, making simple modi�cations to the design matrix. The

results browser showing the results from all of the models in our candidate model set is shown at the

top of the next page. Interpretation and processing of the results follows the usual process outlined in

earlier chapters, so we will not elaborate further here.
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16.5. Pollock’s staggered entry design

The usual application of the Kaplan-Meier method assumes that all animals are released at occasion 1

and they are followed during the study until they die or are censored. Often new animals are released

at each occasion (say, weekly); we say this entry is ‘staggered’ (Pollock et al. 1989). Assume, as before,

that animals are �tted with radios and that these do not a�ect the animal’s survival probability. This

staggered entry �ts easily into the K-M framework by merely rede�ning the ni to include the number

of new animals released at occasion i. Therefore, conceptually, the addition of new animals into the

marked population causes no di�culties in data analysis.

But, you might be wondering how you handled staggered entry designs in MARK – after all, how do

you handle more than one cohort, if the survival PIM has only one row? If you think that the survival

of the newly added animals is identical to the survival of animals previously in the sample, then you

can just include the new animals in the encounter histories �le with pairs of ‘00’ LD codes prior to when

the animal was captured and �rst put into the sample.

But what if you think that the newly added animals have di�erent survival. Obviously, you need

more rows. How? As it turns out, there is a straightforward and fairly intuitive way to tweak the

known-fate data type (in this case, allowing it to handle staggered entry designs) – you simply add in

additional groups for each release occasion (each release cohort), thus allowing cohort-speci�c survival

probabilities. For this to work, you need to �x the survival probabilities for these later cohorts prior to

their release to 1, because there is no data available to estimate these survival rates. With multiple

groups representing di�erent cohorts, analyses equivalent to the upper-triangular PIMs of the CJS and

dead recovery data types can be developed.

16.5.1. Staggered entry – worked example

To demonstrate the idea, we’ll consider a somewhat complex example, involving individuals radio-

marked as young – the complexity lies in how you handle the age-structure. Within a cohort, age and

time are collinear, but with multiple release cohorts, it is possible to separate age and time e�ects (see

Chapter 7). We simulated a dataset (staggered.inp) where individuals were radio-marked as young

and followed for 5 sampling intervals – assume each interval is (say) a month long. We assume that

all individuals alive and in the sample were detected, and that all fatalities were recorded (detected).

We let survival in the interval following marking be 0.4, while survival in subsequent intervals (with

a given cohort) was 0.8. For convenience, we’ll refer to the two age classes as ‘newborn’ and ‘mature’,

respectively.

Chapter 16. Known-fate models



16.5.1. Staggered entry – worked example 16 - 11

If this were a typical ‘age’ analysis (see Chapter 7), this would correspond to the following PIM

structure:

1 2 2 2 2

1 2 2 2

1 2 2

1 2

1

But, here we are considering a known-fate data, with staggered entry. To begin, let’s �rst have a look

at the .INP �le – the �rst few lines are shown below:

Now, at �rst glance, the structure of this �le might seem perfectly reasonable. There are 5 occasions,

in LDLD format. We see, for example, there were 865 individuals marked and released in the �rst cohort

which died during the �rst interval (as newborns), 126 which were marked and released in the �rst

cohort which died during the second interval (as mature individuals), and so on. But, what about the

second cohort, and the third cohort, and so on?

How do we handle these ‘additional cohorts’? As mentioned, we accomplish this in the known-fate

data in MARK by specifying multiple groups – one group for each additional release cohort (in this

case, 5 groups). However, while it is easy enough to specify 5 groups in the data speci�cation window

in MARK, we �rst need to modify the .INP �le to indicate multiple groups. Recall from earlier chapters

(especially Chapter 2), that each grouping requires a frequency column. So, 5 groups mean 5 frequency

columns – not just the single frequency column we start with. The fully modi�ed staggered.inp �le is

shown at the top of the next page (we’ll let you make the modi�cations yourself). Notice that there are

now 5 frequency columns – the �rst frequency column corresponds to number of individuals marked

and released in cohort 1, the second frequency column corresponds to the number of individuals

marked and released in cohort 2, and so on. Pay particular attention to the structure of these frequency

columns.
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Now that we’ve modi�ed the .INP �le (above), we can go ahead and run the analysis in MARK. We

select the known-fate data type, and specify 5 groups (which we’ll label as C1, C2,. . . ,C5, for cohort 1,

cohort 2, and so on, respectively, to cohort 5):
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OK, so far, so good. Now for the only real complication – how to structure the PIMs for each cohort,

and which parameters to �x to 1, in order for the analysis to make sense. Let’s consider the following

2 models for our model set: Sa2×cohort, and Sa2
. The �rst model indicates 2 age classes (newborn, and

mature), with di�erences among cohorts. This corresponds to the following PIM structure:

1 6 6 6 6

2 7 7 7

3 8 8

4 9

5

The second model has di�erences in survival among the two age classes, but no di�erences among

cohorts. This corresponds to the following PIM structure:

1 2 2 2 2

1 2 2 2

1 2 2

1 2

1

OK, so these are the 2 models we want to �t in MARK. The challenge is �guring out how to build

them, and which parameters to �x. Clearly, the �rst model S(a2 - cohort) is the most general (since

it has the most parameters), so we’ll start there. Here is the default PIM chart for these data:

We see from the following PIM structure for this model that the �rst cohort consists of 2 age classes,

as does the second, third, and so on. So, we might choose to simply right-click on the various ‘blue-

boxes’ in the PIM chart, and select ‘age’ – specifying 2 age-classes. Now, while you could, with some

care, get this to work, there is an alternative approach which, while appearing to be more complex (and

initially perhaps less intuitive), is in fact much easier.
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The key is in remembering that in the known-fates staggered entry analysis, we treat each cohort as

if it were a separate group, �xing any ‘00’ cells preceding the initial encounter in a cohort to 1.0. Again,

keep in mind that each row (cohort) represents (analytically) a separate group. And, as noted, we want

to �x the estimate for any of the preceding ‘00’ cells to 1.0. Where do these cells occur? We’ve added

them to the PIM in the following:

1 6 6 6 6

00 2 7 7 7

00 00 3 8 8

00 00 00 4 9

00 00 00 00 5

Now for the big step – if all of the ‘00’ cells are ultimately to be �xed to 1.0, then we clearly would

need only one parameter to code for them. So, let’s rewrite the PIM, using the parameter 1 for the ‘00’

cells, and then increasing the value of all of the other parameters by 1:

2 7 7 7 7

1 3 8 8 8

1 1 4 9 9

1 1 1 5 10

1 1 1 1 6

OK, now what? Well, each cohort is a group. So, we open up the PIM chart for each of the 5 groups

(cohorts) in our example analysis – each of them has the same structure: a single line – here is the

starting PIM for cohort 1:

So, remembering that we want the overall PIM structure (over all cohorts) to look like

2 7 7 7 7

1 3 8 8 8

1 1 4 9 9

1 1 1 5 10

1 1 1 1 6

then it should be clear how to modify the PIM for cohort 1 - it needs to be modi�ed to correspond to

the �rst row of the overall PIM structure.
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In other words, for cohort 1

and for cohort 2,

and so on – each PIM modi�ed to match the corresponding row (representing a speci�c cohort) in the

overall PIM.

Before we run our analysis, it’s worth looking at the PIM chart for the model we’ve just created:

Note that the new parameter 1 occurs only in groups (cohorts) 2 to 6. The ‘staircase’ pattern for

parameters 2 to 6, and 7 to 10 shows that we’re allowing survival to vary among release cohorts as a
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function of age: in the �rst period following marking (newborns, parameters 2 to 6), and subsequent

intervals (mature, 7 to 10). Note that in cohort 5, there are no ‘mature’ individuals.

Now, all that is left to do is to run the model, and add the results to the browser. All you need to do is

remember that parameter 1 is �xed to 1.0. Go ahead and run the model, after �rst �xing the appropriate

parameter to 1.0 – add the results to the browser – call the model ‘S(a2 - cohort) - PIM’ (we add the

word PIM to indicate the model was built by modifying the PIMs).

OK, what about the second model – model S(a2) (no cohort e�ect)? Well, if you reached this point

in the book (i.e., have worked through the preceding chapters), you might realize that this model

corresponds to

1 2 2 2 2

1 2 2 2

1 2 2

1 2

1

Again, if we add a parameter 1 to indicate the ‘00’ cells preceding the �rst encounter within each

cohort, and subsequently increment the parameter indexing for all other parameters by 1, we get

2 3 3 3 3

1 2 3 3 3

1 1 2 3 3

1 1 1 2 3

1 1 1 1 2

We can build this model conveniently by simply modifying the PIM chart for the preceding model

S(a2 - cohort). Recall that the PIM chart for that model was (see top of the next page)
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So, to build model S(a2), all we need to do is ‘remove’ the cohort variation for parameters 2 to 6, and

7 to 10 – this is shown in the modi�ed PIM chart, below:
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Now, run this model, �rst �xing parameter 1 to 1.0, label it ‘S(a2) - PIM’, and add the results to the

browser:

As expected, model S(a2) (the true, underlying model which we used to generate the data) gets

virtually all of the AIC weight, relative to the other model. And, the reconstituted parameter estimates

are very close to the true underlying values.

Now, while ‘�ddling’ with the PIM chart (and the underlying PIMs) is convenient for these simple

models, we know from earlier chapters that there are structural limits to the types of models we can

construct this way. Most obviously, we can’t use the PIM approach to build models with additive e�ect.

Ultimately, it’s to our advantage to build models using the design matrix (DM), since all reduced

parameter models can be constructed simply by manipulating the structure of the DM for the most

general model. Let’s build the DM for model ‘S(a2 - cohort)’, which is the most general model of the

two models in our candidate model set).

First, we start by writing out the conceptual structure of the linear model corresponding to this model:

S � cohort + age + cohort.age

The �rst term is fairly straightforward – we have 5 cohorts, so we need (5 − 1) � 4 columns to code

for cohort. What about age? Well, look again at the PIM for this model:

2 7 7 7 7

1 3 8 8 8

1 1 4 9 9

1 1 1 5 10

1 1 1 1 6

Remembering that parameter 1 is �xed at 1.0, and is thus a constant. We can ignore it for the moment

(although we do need to account for it in the DM). Pay close attention to the parameters along and above

the diagonal. These represent each of the two age classes in our model – the vary among rows within

an age class, but are constant among columns within a row, specifying cohort variation for a given age

class, but no time variation (recall from Chapter 7 that a fully age-, time- and cohort-dependent model

is generally not identi�able, since the terms are collinear). So, we have 2 age classes, meaning we need

(2 − 1) � 1 column to code for age. What about cohort? Well, 5 cohorts, so (5 − 1) � 4 columns to code

for cohort. Again, hopefully familiar territory. If not, go back and re-read Chapter 6.

But, what about the interaction terms (age.cohort) – do we need (4 × 1) � 4 columns? If you think

back to some of the models we constructed in Chapter 7 (age and cohort models), especially those

models involving individuals marked as young only you might see how we have to handle interaction

terms for this model. Recall from Chapter 7 that the interaction columns in the DM re�ected ’plausible’

interactions – if a speci�c interaction of (say) age and time wasn’t possible, then there was no column in

the DM for that interaction. For example, for an analysis of individuals marked as young, there can be
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no interaction of age (young or adult) with time in the �rst interval, since if the sample are all marked

as young, then there are no marked adults in the �rst interval to form the interaction (i.e., there can be

no plausible interaction of age and cohort in the �rst interval, since only one of the two age classes is

present in the �rst interval).

OK, so what does this have to do with our known-fate data? The key word is ‘plausible’ – we build

interactions only for interactions that are plausible, given the structure of the analysis. In this case, there

are only 2 true age classes (newborn, and mature). All of the other ‘age’ classes are ‘logical’ – we’ve

‘created’ them to handle the preceding ‘00’ terms in the PIM. They are not true ‘age’ classes, since there

are no marked animals in those classes. As such, there are no interactions between cohort and any of

these logical ’00’ age classes – we need only consider the interactions of the two true ‘biological’ age

classes (newborn, and mature), with cohort. But, how many columns? Look closely again at the PIM:

2 7 7 7 7

1 3 8 8 8

1 1 4 9 9

1 1 1 5 10

1 1 1 1 6

Pay particular attention to the fact that the ’newborn’ age class shows up in all 5 cohorts, while

the ’mature’ age class shows up only in the �rst 4 cohorts (and not in the �fth). So, not all age.cohort

interactions are ‘plausible’. Which ones are ’plausible’? Well, both age classes are represented in the �rst

4 cohorts, but both age classes are represented only over intervals 2 to 4. Thus, we only need include

cohorts 2, 3 and 4, in the interaction terms. See the pattern? If not, try again. It’s very similar to problems

we considered in Chapter 7.

OK, penultimate step – what about parameter 1? Well, as noted earlier, since it’s �xed to 1.0, then it’s

simply a constant across cohorts, and thus, enters into the linear model as a single parameter.

Now, �nally, we’re ready to write out the linear model corresponding to S(a2 - cohort).

Ŝ � β1(constant)

+ β2(intercept)

+ β3(age)

+ β4(c1) + β5(c2) + β6(c3) + β7(c4)

+ β8(age.c2) + β9(age.c3) + β10(age.c4)

Is this correct? It has the same number of terms (10), as there are parameters in the PIM chart, so it

would seem to be correct.

The next step, then, is to actually build the DM. We start by having MARK present us with a 10-

column ’reduced’ DM as the starting point. The completed DM for this model is shown at the top of

the next page. Column 1 (labeled B1) contains a single ‘1’ - this represents parameter 1, which is a

constant – �xed to 1.0 for all cohorts. The next column (labeled B2) represents the intercept for the ‘age

and cohort’ part of the model. Column B3 codes for age – 1 for newborn individuals, and 0 for mature

individuals (note the di�erent number of rows for each age class – this is key – 5 rows for newborns, and

4 rows for mature individuals). Columns B4 to B7 code for cohort. Note how the �rst row for newborn

individuals for cohort 1 is coded, and note that this row does not show up for mature individuals –

since, in cohort 1, there are no mature individuals! Finally, the interaction terms – columns B8 to B10,

for those ‘age.cohort’ combinations that represent ‘plausible’ interactions.
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Go ahead and run this DM-based model (label it S(a2-cohort - DM)), and con�rm that the results

exactly match those for the model you constructed using the PIM chart, as shown below:

Now that you have the DM for the general model, try constructing model S(a2) – the second model.

We already did this a few pages back using the PIM approach, but we can generate the same model

easily using the DM approach by simply deleting (i) the columns of the DM coding for cohort, and (ii)

the (age.cohort) interaction columns:
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If you run this model, again you’ll see the results exactly match those for model S(a2) built using

the PIM approach:

We’ll leave building an additional model S(a2+cohort) (i.e., a model with additive e�ects between

age and cohort) to you as an exercise (hint: simply delete the interaction columns from the design matrix

for model S(a2-cohort)).

So, we see that by treating di�erent release cohorts as ‘groups’, we can use the known fate data type in

MARK to handle staggered entry designs. Are there any other design types we can handle using known

fate data? In fact, there are, but they involve using a di�erent approach, based on treating known fate

data in a live-encounter, dead-recovery context.

16.6. Known fate and joint live-dead encounter models

As noted earlier, the encounter history format for known-fate data is structurally similar to the classic

LDLD format used for Burnham’s live encounter-dead recovery analysis (Chapter 9). Recall that in that

case, it is possible to observe an individual alive at the start of a particular interval (L), and dead at some

point during the interval (D).

With a little thought, you might think that you could apply the live encounter-dead recovery model

structure directly to known-fate data, if you simply �x the ‘detection parameters’ (r and p), and the

‘�delity parameter ’ (F) to 1 (remember, for a known-fate data, we assume we know the fate of all

individuals). With a little more thought, however, you might realize there is a complication – the live

encounter-dead recovery model does not correctly handle the censoring of ‘00’ LD pairs in a known-

fate data. In the live encounter-dead recovery data type, the ‘00’ is handled as an animal that was not

detected as either alive or dead on this occasion. In a known-fate data, the ‘00’ indicates that the animal

was censored from the study. The distinction is made clearer in the following table, where we contrast

the probability expressions, and interpretations,of the encounter history ‘100010’ under the known-fate,

and live-dead encounter models, respectively.

model probability interpretation

known fate S1S3 tagged at occasion 1, censored for interval 2 (not

detected, or removed for some reason), and re-

inserted into the study at occasion 3.

live-dead S1F1S2(1 − p2)S3p3

+S1F1S2(1 − p2)(1 − S3)(1 − r3)

(i) tagged at occasion 1, stays in sample, survives

to occasion 2 but not encountered, survives to

occasion 3, where it is encountered alive, not shot;

(ii) tagged at occasion 1, stays in sample, survives

to occasion 2 but not encountered, survives to

occasion 3, where it is encountered alive, shot, but

not recovered.
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Clearly, the probability expressions di�er considerably between the two model types. And, as such,

you can’t simply apply the live-dead encounter model to known-fate data without somehow accounting

for the di�erence in how the ‘00’ values in the encounter history are handled. Speci�cally, how can you

’tell’ the live-dead model that a ‘00’ means ‘censored’ and not either ‘dead and missed’, or ‘live and

missed’?

One way to handle this is to break up the encounter history and use a ‘-1 coding’ – in other words,

take the ‘10 00 10’ encounter history and make it into 2 encounter histories as:

10 00 00 -1;

00 00 10 1;

Now, the live-dead model correctly handles the pair of encounter histories to allow the animal to be

in the sample for the �rst interval, and then be removed from the sample. The animal is then re-injected

back into the sample for interval 3. If all the r and p parameters are �xed to 1, and you also �x F to 1,

then you will get the identical estimates of survival from the live-dead and known fate approaches.

To see that the preceding statement is true, �rst examine the probability of the �rst encounter history:

S1 + (1 − S1)(1 − r1), which reduces to just S1 because r1 � 1. The probability of the second encounter

history is S3 + (1 − S3)(1 − r3), which again reduces to just S3. So, the product of these 2 encounter

histories is identical to the probability of the original encounter history under the known fate model.

To make this ‘trick’ of splitting known fate encounter histories to allow censoring, let’s consider a

bit more complex example. Take the encounter history ‘10 10 00 10 11’. The known fate probability

is just S1S2S4(1 − S5). The split encounter history for live-dead coding looks like:

10 10 00 00 00 -1;

00 00 00 10 11 1;

The probability expression corresponding to the �rst piece is just S1F1p2(S2 + (1−S2)(1− r2)), which

reduces to just S1S2 because all F, p, and r parameters are �xed to 1. The second probability is S4F4p5(1−

S5)r5,which reduces to S4(1−S5). The preceding might seem like a lot of work just to ‘trick’ the Burnham

live-dead model into being able to handle known-fate data. Clearly, for ‘typical’ known-fate data, use

of the known-fate data type in MARK is decidedly more straightforward (and, not surprisingly, why

it’s there in the �rst place). However, there are some situations where using the live-dead model is

particularly helpful – we consider two such applications in the following.

16.6.1. Live-dead and known fate models (1) ‘radio impact’

One of the most pressing questions with known fate data is ‘What is the impact of the radio on the

animal’s survival?’ A useful solution to this question can be obtained by marking some animals with

non-intrusive tags. For example, one sample of ducks can be radio-marked, whereas a second can be

banded with leg bands. Now, the data must be analyzed with a di�erent model that incorporates the

live detection probability p and the dead detection probability r.

The way to do this is to use the live-dead model, and specify 2groups. The �rst group would consist of

the radio-marked sample, where all the p, r, and F parameters are �xed to 1. The second group would

consist of the leg-banded sample, where all the parameters are estimated. The power of this design

comes into play when we compare a model with survival estimated separately for each group against

the equivalent model but with survival estimated in common across both groups. The comparison of

these 2 models provides a powerful test of the e�ects of the radios on survival. For a well-designed study,
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we might consider using a likelihood-ratio test between these 2 models to test the null hypothesis of

no radio e�ect directly. Alternatively, we could use the Akaike weights to assign probabilities to which

hypothesis we believe is most likely the truth.

16.6.2. Live-dead and known fate models: (2) ‘temporary emigration’

The live-dead data type can also be used to estimate the �delity (F) to a study area for known fate data.

The approach is to code the LD pair as ‘00’ for animals that leave the study area. That is, animals that

leave the study area are not censored as if the radio failed, but rather included in the sample with 00 for

periods when they are o� the study area. Then, given that p � 1 and r � 1, F is estimated. So, consider

what the probability would be for the encounter history ‘10 10 10 00 00’ when p � 1 and r � 1 so that

these terms are left out of the expression: S1F1S2F2S3(1−F3). With F estimated, the only way to account

for trailing 00 values is to have the animal emigrate. Remember that the Burnham joint live-dead data

type assumes permanent emigration.

What if you want to model temporary emigration? The solution in this case is to use the Barker

joint live-dead data type (see Chapter 9), where the parameter F′ is the probability that an animal not

available for capture (i.e., o� the study area) returns to the study area. So consider the probability of

the encounter history ‘10 10 00 00 10’ with p � 1 and r � 1, along with no probability of sightings in

between capture occasions (i.e., R � 0 and R′ � 0): S1F1S2(1−F2)S3(1−F′3)S4F′4S5. The point here is that

the Barker joint live-dead data type can also be used to estimate the temporary emigration probability

from known fate data, and hence can also be used to assess the e�ects of radios on animals against a

sample marked in a di�erent fashion.

16.7. Censoring

Censoring appears ‘innocent’ but it is often not. If a substantial proportion of the animals do not have

exactly known fates, it might be better to consider models that allow the sampling parameters to be

< 1. In practice, one almost inevitably will lose track of some animals. Reasons for uncertainty about

an animal’s fate include radio transmitters that fail (this may or may not be independent of mortality)

or animals that leave the study area. In such cases, the encounter histories must be coded correctly to

allow these animals to be censored. Censoring often require some judgment.

When an animal is not detected at the end of an interval (i.e., immediately before occasion j) or at the

beginning of the next interval (i.e., immediately after occasion j + 1), then its fate is unknown and must

be entered as a ‘00’ in the encounter history matrix. Generally, this results in 2 pairs with a ‘00’ history;

this is caused by the fact that interval j is a 00 because the ending fate was not known and the fact that

the beginning fate for the next interval ( j + 1) was not known. Censored intervals almost always occur

in runs of two or more (e.g., ‘00 00’ or ‘00 00 00’). See the example above where the history was ‘10

00 00 11’.

In this example, the animal was censored but re-encountered at the beginning of interval 4 (alive)

and it died during that interval. It might seem intuitive to infer that the animal was alive and, thus, �ll

in the 2 censored intervals with ‘10 10’ – this is incorrect and results in bias. The reason for this bias is

because a dead animal is less likely to be encountered at a later occasion than if it lives. So, you have a

biased sampling process – animals are mostly encountered because they are alive, and hence estimates

of survival become too high if the ‘00’ values are replaced with ‘10’.

Censoring is assumed to be independent of the fate of the animal; this is an important assumption.

If, for example, radio failure is due to mortality, bias will result in estimators of Ŝi . Of course, censoring
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reduces sample size, so there is a trade-o� here. If many animals must be censored, then the possible de-

pendence of fates and censoring must be a concern. In such cases, you probably should be analyzing the

data with the live encounters-dead recovery data type, and explicitly estimate the p and r parameters.

16.8. Goodness of fit and known fate models

Consider a model where all the parameters are speci�c to both the time-interval, as well as the cohort

(i.e., year marked and released). This is a fully-saturated model where there are as many unknown

parameters as there are cells. Note, the saturated model always �ts the data perfectly (by de�nition and

design). The concept of a saturated model is necessary in computing model deviance. As discussed

earlier in Chapter 5, the deviance of model j in the candidate model set is de�ned as

Deviance � −2 ln
(

L j (θ)
)

−
[

−2 ln
(

Lsaturated(θ)
) ]

Typically, for most data types, the saturated model contains many uninteresting parameters – its use is

primarily heuristic, in allowing use to estimate the deviance of some less general model, relative to the

saturated model.

Now, if sample size is large (i.e., there are no cells with small expectations), then the deviance is

asymptotically χ2 with df equal to (the number of cells in the saturated model) - (the number of

estimable parameters in model j). OK, �ne, this is the basis of the likelihood ratio test discussed earlier

in Chapter 5. What does this have to do with GOF testing for known-fate data?

Well, the problem with known-fate data is this – for known-fate models where all individuals enter

at the same time (or even with staggered entry data), the saturated model where each cohort has its

own survival estimate for each occasion is a sensible model, and as such, there is no way to estimate the

deviance of the saturated model from itself. Because the saturated model �ts the data perfectly, there

is no GOF test for classical known-fate data. In reality, this is the same with all models in MARK –

we just assume (i.e., make an assumption) that some reduction of the saturated model to a biologically

reasonable model is okay, and use this reduction to assess GOF.

To help you understand this point, consider a simple radio-tracking study where 100 radios are put

on a single age/sex class for one occasion. The saturated model is the simple survival estimate based

on the binomial distribution. There is only one data point, hence one degree of freedom, and that df

is used to make the estimate of survival. Thus, it is fairly obvious that there is no GOF test available –

to obtain a GOF test, we would have to assume a reasonable biological model that is reduced from the

saturated model. This selection can be pretty arbitrary (obviously).

16.9. Known-fate models and derived parameters

Typically you are doing a known fate analysis to be able to estimate survival over an interval, say 1 year.

However, you also want to know something about how survival changes within the year, or maybe

because of censoring and radio failure problems, you want to include animals in the analysis that only

appeared for a period of time within the year period. For example, you are doing a bear study where

you have staggered entries and some radio failures or collars that dropped o� that you have kept track

of on a monthly interval. However, you are interested in estimating annual survival. How do you get

an estimate of annual survival from 12 monthly estimates?

MARK provides derived parameter estimates that are the product of all the estimates for the intervals

in the PIMs. So, suppose you have a 3-year study,where you want 3 annual estimates of survival, but you
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have 36 months of data. The clever way of setting up your analysis is to de�ne 3 groups for the known

fate model, each with 12 occasions (months), with the 3 groups corresponding to the 3 years of interest.

Then, when you examine the derived parameter estimates, you will �nd 3 estimates, representing the

3 years. Variances and covariances of the derived parameters are computed with the Delta method

(Appendix B).

Derived parameter estimates can be used in model averaging and variance components analyses, so

you further have all of the power of these methods available for your analysis of annual survival rates.

Part of the ‘art’ of how to set up the known fate data type is whether attribute variables should

be incorporated as groups or individual covariates. Derived parameter estimates are a function of the

individual covariates used to compute them, so whether age in the black duck example is treated as a

group or an individual covariate won’t make a di�erence in the estimates. However, if age is handled

as a group variable, the derived estimates are clear. To get derived estimates when age is an individual

covariate means that you must specify individual covariate values to obtain the correct estimates.

16.10. Known-fate analyses and ‘nest success models’

Suppose you want/need to estimate the survival of radio-tracked animals when the animals are not

monitored in discrete intervals, as generally required by the known fate data type. Consider that such

data are no di�erent than a set of (say) nests, where all the nests are not visited on the same day. As

such, you could apply a ‘nest success model’ to the data – in such a model, the daily survival rate is

estimated for each day of the study based on the sample of animals available on that day, and the exact

day of death is not required (just as the exact day that a nest was destroyed is not known). We call these

kinds of data ‘ragged telemetry data’ because the sampling scheme is ragged, but useful estimates can

still be obtained. Nest success analysis is the subject of our next chapter.

16.11. Summary

Known-fate models are a very important model type – most commonly applied in situations where

individuals are marked with radios (i.e., radio telemetry studies). The presence of a radio makes is

feasible (under usual circumstances) to determine the ‘fate’ of the individual: is it alive, or dead? Present,

or absent? And so on. Although the assumption that detection and reporting probabilities are both 1.0

simpli�es aspects of the modeling considerably, a number of complex, elegant approaches to handling

known-fate data are possible – especially when known-fate data are combined with data from other

sources.
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