CHAPTER 16

Known-fate models

In previous chapters, we've spent a considerable amount of time modeling situations where the prob-
ability of encountering an individual is less than 1. However, there is at least one situation where we
do not have to model detection probability — known-fate data, so-called because we know the fate of each
marked animal with certainty. In other words, encounter probability is 1.0 (which must be true if we
know the fate of a marked individual with certainty). This situation typically arises when individuals
are radio-marked, although certain kinds of plant data can also be analyzed with the known fate data
type. In such cases, known-fate data are important because they provide a theory for estimation of
survival probability and other parameters (such as emigration). The focus of known fate models is
the estimation of survival probability S, the probability of surviving an interval between sampling
occasions. These are models where it can be assumed that the sampling probabilities are 1. That is,
the status (dead or alive) of all tagged animals is known at each sampling occasion. For this reason,
precision is typically quite high, as precise as the binomial distribution allows, even in cases where
sample size is often fairly small. The only disadvantages might be the cost of radios and possible effects
of the radio on the animal or its behavior. The model is a product of simple binomial likelihoods. Data
on egg mortality in nests and studies of sessile organisms, such as mollusks, have also been modeled
as known fate data.

In fact, the known fate data type is exactly the same as logistic regression in any statistical package.
The main advantage of using MARK for known fate analysis is the convenience of model selection, and
the capabilities to model average survival estimates easily, and compute random effects estimates.

16.1. The Kaplan-Meier Method

The traditional starting point for the analysis of known-fate data is the Kaplan-Meier (1958) — we’ll
discuss it briefly here, before introducing a more flexible approach that will serve as the basis for the
rest of this chapter.

The Kaplan-Meier (hereafter, K-M) estimator is based on observed data at a series of occasions, where
animals are marked and released only at occasion 1. The K-M estimator of the survival function is

M)

i=1 !

where 7; is the number of animals alive and at risk of death at occasion i (given that their fate is known
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at the end of the interval), d; is the number known dead at occasion i, and the product is over i up to
the fth occasion (this estimator is often referred to as the product-limit estimator). Critical here is that
n; is the number known alive at the start of occasion i and whose fate (either alive or dead) is known at
the end of the interval. Thus, the term in parentheses is just the estimated survival for interval i. Note
that n; does not include individuals censored during the interval. It is rare that a survival study will
observe the occasion of death of every individual in the study. Animals are ‘lost’ (i.e., censored) due
to radio failure or other reasons. The treatment of such censored animals is often important, but often
somewhat subjective. These K-M estimates produce a survival function (see White and Garrott 1990);
the cumulative survival up to time t. This is a step function and is useful in comparing, for example,
the survival functions for males vs. females.

If there are no animals that are censored, then the survival function (empirical survival function or

ESF) is merely,

A number alive longer than ¢
S5, = ” fort >0

This is the same as the intuitive estimator where no censoring is occurring: S, =n,,,/n,; for example,
S, = nz/n,. The K-M method is an estimate of this survival function in the presence of censoring.
Expressions for the variance of these estimates can be found in White and Garrott (1990).

A simple example of this method can be illustrated using the data from Conroy et al. (1989) on 48
radio-tagged black ducks. The data are

survived to occasion
week 1 2 3 4 5 6 7 8

number alive at start 48 47 45 39 34 28 25 24
numberdying 1 2 2 5 4 3 1 0
number aliveatend 47 45 39 34 28 25 24 24
number censored 0 0 4 0o 2 0 0 0

Here, the number alive at the start of an interval are to known be alive at the start of sampling occasion
j. This is equivalent to being alive at the start of interval j. For example, 47 animals are known to be
alive at the beginning of occasion 2. Forty-five are alive at the start of interval 3, but 4 are censored from
these 45 because their fate is unknown at the end of the interval, so that 113 = 41. A further example is
that 34 ducks survived to the start of occasion 5. Thus, the MLEs are

S, =47/48=0.979

S, =45/47 = 0.957

8, =39/41=10.951 (note: only 41 because 4 were censored)
S, =34/39=0.872

55 =128/32=0.875 (note: only 32 because 2 were censored)
S =25/28 = 0.893

S, =24/25 = 0.960

Sg =24/24=1.00

Here one estimates 8 parameters — call this model S(t). One could seek a more parsimonious model
in several ways. First, perhaps all the parameters were nearly constant; thus a model with a single
survival probability might suffice (i.e., S(.)) If something was known about the intervals (similar to
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the flood years for the European dipper data) one could model these with one parameter and denote
the other periods with a second survival parameter.

Finally, one might consider fitting some smooth function across the occasions and, thus, have perhaps
only one intercept and one slope parameter (instead of 8 parameters). Still other possibilities exist
for both parsimonious modeling and probable heterogeneity of survival probability across animals.
These extensions are not possible with the K-M method and K-L-based (i.e., AIC) model selection is not
possible. To do this, we need an approach based on maximum likelihood estimation — as it turns out,
the simple binomial model will do just that for known-fate data.

16.2. The Binomial Model

In the K-M approach, we estimated the survival probability by

5[]

i=1 !

where d; is the number dying over the ith interval, and n; is the number alive (‘at risk’) at the start of
the interval and whose fate is also known at the end of the interval (i.e., not censored). Here, we use
the equivalence (under some conditions) of the K-M estimator, and a binomial estimator, to recast the
problem in a familiar likelihood framework.

Consider the situation for the case in which all animals are released at some initial time f = 0, and
there is no censoring. If we expand the product term from the preceding equation, over the interval

[0, t],
g ng )\
We notice that in the absence of censoring (which we assume for the moment), the number of animals

at risk at the start of an interval is always the previous number at risk, minus the number that died the
previous interval.

Thus, we can re-write the expanded expression as

() (5
: g ny T
_ (no—do)(no— (d0+d1))x(”o—(do+d1+d2)) y

My ny —dy ny — (do +dy)
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OK, while this looks impressive, its importance lies in the fact that it can be easily simplified to

¢ =

5 (”o_do)(”o_(do"‘dl))xmx( ng—(do+dy +---+dy) )

- 1, ny —d ng— (do+dy+---+d;_y)

= no
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If you look at this expression closely, you'll see that the numerator is the number of individuals from
the initial release cohort (1) that remain alive (i.e., which do not die — the number that die is given by
(dy+dy+---+d,)), divided by the number initially released. In other words, the estimate of survival to
time £ is simply the number surviving to time t, divided by the number released at time 0.

Now, this should sound familiar — hopefully you recognize it as the usual binomial estimator for
survival as (in this case) number of survivors (‘successes’, in a literal sense) in 7, trials. Thus, if

SAI'=£
n;

where y; is the number surviving to time i (on the interval [i — 1, ]), and #n; is the number alive (‘at
risk’) at the start of the interval (i.e., at time ), then we can write

)6

i=1 't

If you recall the brief introduction to likelihood theory in Chapter 1 (especially the section discussing
the binomial), it will be clear that the likelihood expression for this equation is

t

£(0 ) =] [sra-sy®

i=1

where 0 is the survival model for the t intervals, #; is the number of individuals alive (at risk) during
each interval, y; is the number surviving each interval, and S; is the MLE of survival during each
interval.

As suggested at the start of this section, the binomial model allows standard likelihood-based estima-
tion and is therefore similar to other models in program MARK. To understand analysis of known-fate
data using the binomial model in MARK, we first must understand that there are 3 possible scenarios
under the known fate model. In a known-fate design, each tagged animal either:

1. survives to end of study (detected at each sampling occasion so fate is known on every
occasion)

2. dies sometime during the study (its carcass is found on the first occasion after its death so
that its fate is known)

3. survives up to the point where its fate is last known, at which time it is censored — the fate
is known

Note, for purposes of estimating survival probabilities, there is no difference between animals seen
alive and then removed from the population at occasion k and those censored due to radio failure or
for other reasons. The binomial model assumes that the capture histories are mutually exclusive and
that animals are independent, and that all animals have the same underlying survival probability when
individuals are modeled with the same survival parameter (homogeneity across individuals). Known
fate data can be modeled by a product of binomials.

Let us reconsider the black duck data (seen previously), using the binomial model framework : n; =
48, and n, = 44; the likelihood is

(8, [y, my) = (Z;)s;lzu -5 = (jj)s%‘*u — ;)
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Clearly, one could find the MLE, $;, for this expression (e.g., 5; = 44/48 = 0.917). We could also easily
derive an estimate of the variance (see section 1.3.1 in Chapter 1). Of course, the other binomial terms
are multiplicative, assuming independence. The survival during the second interval is based on 11, = 44
and ny =41,

L(S1[ny,my) = (:;)5;2(1 —Gy) ) = (31)5‘211(1 _5,)4-

As noted above, the likelihood function for the entire set of black duck data (modified to better make
some technical points below) is the product of these individual likelihoods.

16.3. Encounter Histories

Parameterization of encounter histories for a known-fate data is critical, and is structurally analogous
to the LDLD format used in some other analyses (e.g., Burnham'’s live encounter-dead recovery model) —
these are discussed more fully in Chapter 2. For the encounter histories for known-fate data, each entry
is paired, where the first position (L) is a 1 if the animal is known to be alive at the start of occasion j;
that is, at the start of the interval. A ‘0" in this first position indicates the animal was not yet tagged or
otherwise not known to be alive at the start of the interval j or else its fates is not known at the end of
the interval (and thus the animal is censored and is not part of the estimation during the interval).

The second position (D) in the pair is ‘0" if the animal survived to the end of the interval. It is a ‘1" if
it died sometime during the interval. As the fate of every animal is assumed known at every occasion,
the sampling probabilities (p) and reporting probabilities (r) are 1. The following examples will help
clarify the coding;:

encounter history  probability — interpretation

10 10 10 10 515,535, tagged at occasion 1 and survived until the end of
the study

10 10 11 00 5:5,(1 =5;) tagged atoccasion 1, known alive during the second
interval, and died during the third interval

10 11 00 00 5:(1=S5,) tagged at occasion 1 and died during the second
interval

11 00 00 00 1-5) tagged at occasion 1 and died during the first
interval

10 00 00 10 5154 tagged at occasion 1, censored for interval 2 and 3

(not detected, or removed for some reason), and re-
inserted into the study at occasion 4

00 00 10 11 S;(1-S,)  tagged at occasion 3, died during the 4th interval

10 00 00 00 S tagged at occasion 1, known alive at the end of
the first interval, but not released at occasion 2 and
therefore censored after the first interval

Estimation of survival probabilities is based on a release (1) at the start of an interval and survival
to the end of the interval (0), mortality probabilities are based on a release (1) and death (1) during the
interval; if the animal then was censored, it does not provide information about S; or 1 - S;).
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Some ‘rules’ for encounter history coding for known-fate analysis:

a. The two-digit pairs each pertain to an interval (the period of time between occasions).
b. There are only 3 possible entries for each interval:

® 10 = an animal survived the interval, given it was alive at the start of the interval
* 11 = an animal died during the interval, given it was alive at the start of the interval
* 00 = an animal was censored for this interval

c. In order to know the fate of an animal during an interval, one must have encountered it
both at the beginning and the end of the interval.

16.4. Worked example: black duck survival

Here, we consider the black duck radio-tracking data from Conroy et al. (1989). These data are contained
in the BLCKDUCK . INP file contained in the MARK examples subdirectory that is created when you install
MARK on your computer. The data consists of 50 individual encounter histories, 8 encounter occasions,
1 group, and 4 individual covariates: age (0 = subadult, 1 = adult), weight (kg), wing (length, in cm)
and condition. In this study, it was suspected that variation in body size, condition (or both) might
significantly influence survival, and that the relationship between survival and these covariates might
differ between adult and subadult ducks.

Here is what a portion of the BLCKDUCK. INP file looks like, showing the encounter histories and
covariate values for the first 10 individuals:

2 KEDIT - [C:\Program Files\MARK\Examples\BLCKDUCK.INP] =Jo&d
§| File Edit Actions Options Window Help - ax
sl EEE = &lal s o] slm(a
A
* % * Top of File * * * =
<% Conroy blacl duck radiotracking data, =
Encounter occasions=8., groups=1l. individual covariates=4,
individual covariate names = Age ((O=subadult, l=adult),
Weight (kg), Wing Length {cm)., and Condition Index. #*-
~*® 01 =~ 1100000000000000 1 1 1.1s 27.7 4.19;
T A . S e T Y SO TN R
<% 04 =~ 1011000000000000 1 01.16 26.4 4.39;
~*® (05 =~ 1011000000000000 1 11.08 26.7 4.04;
<% 06 =< 1010000000000000 1 01.12 26.2 4.27;
~*® 07 =~ 1010000000000000 1 1 1.14 27.7 4.11;
<% (08 =~ 1010110000000000 1 1 1.20 28.3 4.24;
* 1010000000000000 1 1 1 4 4.17;
~1010110000000000 1 1 1.42 27.0 5. 26;
B
Col=52 Alt=0,0;0 Size=h3 Files=1 |Stream Selection® |OWVE |RAW | 8:24 PM

For example, the 10" individual in the data set has the encounter history ‘1010110000000000’, mean-
ing: marked and released alive at the start of the first interval, was detected alive at the start of the
second interval, and then died during the third interval. The individual was radio-marked as an
adult, and weighed 1.42 kilograms, had a wing length of 27.0 cm, and a condition index of 5.26. Ah
— but look carefully — notice that in this .INP file, age is not coded as a classification variable (as is
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typically done for ‘groupings’ of individuals — see Chapter 2), but instead as a dichotomous covariate.
Coding dichotomous groups as simple linear covariates is perfectly acceptable — sometimes it is more
straightforward to implement — the only ‘cost’ (for large data sets) might be efficiency (the numerical
estimation can sometimes be slower using this approach). However, the advantage of coding age as an
individual covariate is that if age turns out to be not important, then you are not required to manipulate
PIMs for 2 age groups.

Obviously, this has some implications for how we specify this data set in MARK. Start a new project
in MARK. Select ‘known fates’ as the data type. Enter 8 encounter occasions. Now, the ‘trick’ is to
remember that even though there are two age groups in the data, we're coding age using an individual
covariate — as such, there is still only 1 attribute group, not two. So, leave attribute groups at the default
of 1. For individual covariates, we need to ‘tell’ MARK that the input file has 4 covariates which we’ll
label as age, weight, wing, and cond (for condition), respectively.

Enter Specifications for MARK Analysis

Select Data Type )
Recaptures only Title for this set of data:

Recoveries only |black duck data - known fate

Both (Bumham) Encounter Histories File Name:  (Click to Select File

Known Fates
Closed Capt ]C:\Documents and Settings“egc'Desktopegcbooks mark \chapt View File
os ures

BTO Ring Recoveries

Robust Design

Both (Barker)

Multi-strata Recaptures only

Brownie et al. Recoveries

Jolly-Seber

Pradel Models Including Robust Design
Barker Robust Design

POPAN Attribute groups: 1_1—- j Enter Group Labels | Default Group Labels Used
VPA - Virtual Population Analysis
Mutti-strata — Live and Dead Enc.
e e Strata:[2 :j Enter Strata Flames | Default Strata Names Used
Occupancy Estimation Mistures: 1—“ :j

Robust Design Occupancy

Open Robust Design Multistrata

Closed Robust Design Multistrata

*Young Survival from Marked Adults Help Cancel ] ’TI

o e e

Resuits File Name:
]C:\Documents and Settings“egc'Desktop'egcbooks mark chapt

Encounter jons: | 8 ii Set Time Intervals ]Default Time Intervals Used

Individual covariates: [ 4 il Enter Ind. Cov. Names | Default Ind. Cov. Names Used

TR IR N MM IR MMM NN MR R W)

Once we've specified the data type, we'll proceed to fit a series of models to the data. Let’s consider
models Sy, S,40, S, Sweights Swings and S¢y,4- Clearly, the most parameterized of these models is model
S;, so we'll start with that. Here is the PIM for survival:

—1 Survival Parameter (S) Group 1 of Known Fate g@

ERPEEL

7 J2 J3 |4+ Js5 J& |7 |3

u [

o | |
PIM Chart J ™

| (2]
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Not only is this particular PIM rather ‘boring’ (only a single row), in fact, there are no other PIMs
for this analysis! Why? Easy — for known-fate data, we assume that all individuals are detected at each
occasion, conditional on being alive and in the sample (i.e., we assume detection probability equals 1).
Thus, the only parameter to model is the survival parameter (this should make sense —look back at the
table on page 4 of this chapter — notice that the probability expressions corresponding to the different
encounter histories are functions only of S; — no encounter probability is included).

Why only a single row? Again, the assumption in the ‘known-fate” analysis is that all individuals are
released on the same occasion — presumably, at the start of the study (we’ll consider staggered entry
designs later). So, a single row, since all individuals in the analysis are in the same release cohort. Of
course, this means that you aren’t able to separate ‘time” effects from ‘age’ effects in the analysis — at
least, using the "known fates’ data type in MARK. Remember, the age factor in this analysis is acting
as a classification variable — and does not indicate the effects of aging (getting older over the course of
the study) on survival. If you're marked individuals are all adults, then this may not be a particular
problem. But, if your marked sample are subadults or young individuals, or perhaps a heterogeneous
mixture of adults which might contain some proportion of transient individuals (see Chapter 7), you
might have a problem. We'll deal with this later on in the chapter. For now, we’ll proceed with the
analysis, assuming all the assumptions of the classic known-fates analysis have been met.

Given the preceding discussion, it should be clear that for a known-fate data, the PIMs (and as a
result, the model-fitting in general) is very straightforward. The default PIM (shown on the previous
page) corresponds to model S;. We go ahead, fit the model, and add the results to the browser. Recall
that the default link function when using the PIM approach to model fitting is the sin link.

But, also recall that ultimately, we want to use the complete flexibility of the design matrix for fitting
models in MARK. So, let’s ‘re-build” our starting model S;, using the design matrix. In this case, since
the model we're fitting corresponds to the fully time-dependent model, we can generate the design
matrix simply by selecting ‘Design | Full’, which yields the following design matrix:

"] Design Matrix Specification: Known Fate g@

> o & A4
Design Matrix Specification (B = Beta)

B1 B2 B3 |, B4 B5 B B7
S5t1 | stz | st3 [T°™| st4 | St5 | St6 | 5t7

=5
25
35

BO
5int

ERE=RE=R — E=RE=RE=—RE=]
[=RE=N — E=RE=NE=0E=3E=]
=0 — E=RE=RE=NE-—0F=—N N

oOlo | o|lo|o| o Rl o
[=RE=—RE-RE-RE—-N — E=—RE-]
olo | ool o|o|o

Go ahead and fit this model, and add the results to the browser — label the model ‘S(t) - DM/, to
indicate it is the S; model, constructed using a design matrix (DM) approach. Once you've added this
model to the results browser (shown at the top of the next page), you'll notice that the two models (which
are structurally identical) report different numbers of estimated parameters — 7 estimated parameters
for the model fit using the DM (and the logit link), and 8 estimated parameters for the model fit using
the PIM approach (and the sin link).
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| Results Browser: Known Fate g@
E=lal|x| Bl o 22 4 4
Madel AlCe Delta AlCc AlCz Weight || Model Likelihood | Ma. Par. Deviance
{Sit) - DM} 138.1008 0.0000 0.74248 1.0000 7 1236550
H{S8) - PIM} 140.2186 21178 0.25752 0.3468 2 123.6550

In fact, what we see here is fairly common for known-fate studies — in many such studies, the
sampling interval is often relatively short, such that the survival probabilities over each interval are
often relatively close to 1.0. We discussed previously (Chapter 6) how the different link functions
behave when parameter values are near the [0, 1] boundary. In the present example, examination of
the reconstituted parameter values on the probability scale are in many cases close to the boundary —
the two models differ in the estimate of survival for the last interval — the sin link estimates survival for
the final interval at 1.00, whereas the logit link estimates the survival as 1.00, but fails to properly count
this parameter as being estimated. We know that the number of estimated parameters for this analysis
is 8 — so, we manually adjust the number of parameters for the model fit using the design matrix from
7 to 8 (when we do so, we see that the AIC and related statistics for the two models are now identical).
We then delete the model fit using the PIM, since it is redundant to the model fit using the DM.

The next model in our candidate model set is model S, . Recall that for this analysis, age is entered
as a linear covariate in the .INP file, where age = 0 for subadults, and age = 1 for adults. Recall from
Chapter 11 that individual covariates are introduced directly into the design matrix. So, for model S
the design matrix will look like

age’

" Design Matrix Specifi... (= [0JE3
o B A 4

Design Matrix Specification (B = Beta)

With this design matrix, we can interpret §, as the difference in survival between subadults and
adults, i.e., what should be added on a logit scale to the subadult survival estimate to obtain the adults
survival estimate (interpretation of the ; terms in the linear model is discussed at length in Chapter 6).
We run this model, and add the results to the browser. We do much the same thing for each of the
remaining models in the model set — each time, making simple modifications to the design matrix. The
results browser showing the results from all of the models in our candidate model set is shown at the
top of the next page. Interpretation and processing of the results follows the usual process outlined in
earlier chapters, so we will not elaborate further here.
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1 Results Browser: Known Fate g@
EE R EEEE NN
Maodel AlCc Delta AlCc AlCc Weight | Model Likelihood | No. Par. Deviance
S0 1361581 0.0000 0.32786 1.0000 1 1341440
{S{condition)} 1365835 04254 0.26504 0.3084 2 132 5408
{St)- DM} 138.1008 1.5427 0.12412 0.3786 7 123.6550
{S{age)} 1381515 19934 0.121Mm 0.3691 2 1341088
{S{wing)} 138.1862 20281 0.11853 0.3628 2 134.1435
{54) - PIM} 140 2186 40605 0.04305 01313 H 1236950

16.5. Pollock’s staggered entry design

The usual application of the Kaplan-Meier method assumes that all animals are released at occasion 1
and they are followed during the study until they die or are censored. Often new animals are released
at each occasion (say, weekly); we say this entry is ‘staggered” (Pollock et al. 1989). Assume, as before,
that animals are fitted with radios and that these do not affect the animal’s survival probability. This
staggered entry fits easily into the K-M framework by merely redefining the n; to include the number
of new animals released at occasion i. Therefore, conceptually, the addition of new animals into the
marked population causes no difficulties in data analysis.

But, you might be wondering how you handled staggered entry designs in MARK - after all, how do
you handle more than one cohort, if the survival PIM has only one row? If you think that the survival
of the newly added animals is identical to the survival of animals previously in the sample, then you
can just include the new animals in the encounter histories file with pairs of ‘00" LD codes prior to when
the animal was captured and first put into the sample.

But what if you think that the newly added animals have different survival. Obviously, you need
more rows. How? As it turns out, there is a straightforward and fairly intuitive way to tweak the
known-fate data type (in this case, allowing it to handle staggered entry designs) — you simply add in
additional groups for each release occasion (each release cohort), thus allowing cohort-specific survival
probabilities. For this to work, you need to fix the survival probabilities for these later cohorts prior to
their release to 1, because there is no data available to estimate these survival rates. With multiple
groups representing different cohorts, analyses equivalent to the upper-triangular PIMs of the CJS and
dead recovery data types can be developed.

16.5.1. Staggered entry — worked example

To demonstrate the idea, we’ll consider a somewhat complex example, involving individuals radio-
marked as young — the complexity lies in how you handle the age-structure. Within a cohort, age and
time are collinear, but with multiple release cohorts, it is possible to separate age and time effects (see
Chapter 7). We simulated a dataset (staggered.inp) where individuals were radio-marked as young
and followed for 5 sampling intervals — assume each interval is (say) a month long. We assume that
all individuals alive and in the sample were detected, and that all fatalities were recorded (detected).
We let survival in the interval following marking be 0.4, while survival in subsequent intervals (with
a given cohort) was 0.8. For convenience, we’ll refer to the two age classes as ‘newborn’ and ‘mature’,
respectively.
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If this were a typical ‘age” analysis (see Chapter 7), this would correspond to the following PIM
structure:

[)S)
= NN DN
= NN NN

But, here we are considering a known-fate data, with staggered entry. To begin, let’s first have a look
at the . INP file — the first few lines are shown below:

A KEDIT - [C:\Documents and S|__{ ||~ |(OJE3

% File Edit Actions Options Window Help - &

x
Dz ] &| [sex - Fla

&
* * = Top of File * * * 3
1100000000 B65; (=

1011000000 126;
Jewatunnadina it 2an a3 .t
===== 1010110000 113:;
===== 1010101100 71:
====x b
] (2]
|ou| ] | 2] %] k|| E|E|
Line=2 Cal=1 Al=0.0,0 Size=20 Files

Now, at first glance, the structure of this file might seem perfectly reasonable. There are 5 occasions,
in LDLD format. We see, for example, there were 865 individuals marked and released in the first cohort
which died during the first interval (as newborns), 126 which were marked and released in the first
cohort which died during the second interval (as mature individuals), and so on. But, what about the
second cohort, and the third cohort, and so on?

How do we handle these ‘additional cohorts’? As mentioned, we accomplish this in the known-fate
data in MARK by specifying multiple groups — one group for each additional release cohort (in this
case, 5 groups). However, while it is easy enough to specify 5 groups in the data specification window
in MARK, we first need to modify the . INP file to indicate multiple groups. Recall from earlier chapters
(especially Chapter 2), that each grouping requires a frequency column. So, 5 groups mean 5 frequency
columns — not just the single frequency column we start with. The fully modified staggered. inp file is
shown at the top of the next page (we’ll let you make the modifications yourself). Notice that there are
now 5 frequency columns — the first frequency column corresponds to number of individuals marked
and released in cohort 1, the second frequency column corresponds to the number of individuals
marked and released in cohort 2, and so on. Pay particular attention to the structure of these frequency
columns.
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A KEDIT - [C:\Documents and|__{|_| (= /[0
File Edit Actions Options Window Help - &
x
D|B”|EI|@| [stack =] £|_
* * * Top of File = * * Eﬂ
1100000000 65 0 0 0 0;
1011000000 126 0 0 0 0O;
1010110000 113 0 0 0 0;
1010101100 71 000 0;
1010101011 71 000 0;
1010101010 254 00 0 0;
0011000000 0921 00 0;
0010110000 0116 00 0O;
0010101100 0102 00 0;
0010101011 0O 75 00 0;
oo10101010 0 286 00 0; —
[P PUUFS- B B
0000110000 00876 0 0;
0000101100 00121 0 0;
0000101011 oo 97 0 0;
0000101010 00 406 0 0;
0000001100 000 909 0;
0000001011 000119 0;
0oooooi010 000 472 0;
0000000011 000 0916;
0oooooooi10 000 0 584;
v
] 2]
| w| =% k|| EIEF
[ Lre=11 | Co=l | AOD0 | Sies=20

Now that we’ve modified the . INP file (above), we can go ahead and run the analysis in MARK. We
select the known-fate data type, and specify 5 groups (which we’ll label as C1, C2,...,C5, for cohort 1,
cohort 2, and so on, respectively, to cohort 5):

Enter Specifications for MARK Analysis

- Select Data Type

Recaptures only

Recoveries only

Both (Bumham})

Known Fates

Closed Captures

BTO Ring Recoveries

Robust Design

Both (Barker)

Multi-strata Recaptures only
Brownie et al. Recoveries
Jolly-Seber

Pradel Models Including Robust Design
Barker Robust Design

POPAMN

VPA - Virtual Population Analysis
Mutti-strata — Live and Dead Enc.

Mest Survival

R TCNECNCRCVRCTR M I I A TR NN NN )

Occupancy Estimation

i~ Robust Design Occupancy

* Open Robust Design Muttistrata

i~ Closed Robust Design Multistrata
 Young Survival from Marked Adults

] Title for this set of data:

|5taqqered entry - multiple cohorts

Encounter Histories File Name:  Click to Select File |

IC:\Documents and Settings‘egc\Desktop®egcbooks markchapt

View File I

Results File Name:
IC:\Documents and Settings‘egc'\Desktop®egcbooks \mark chapt

Encounter occasions:' 5 j Default Time Intervals Used
Attribute groups: | 5 ﬁ X | Group Labels Set

Individual co\rariates:l 1] ::’ Enter Ind. Cav. Namesl Defautt Ind. Cov. Names Used

Stmta:l ﬁ Enter Strata Mames | Default Strata Names Used

Modures: [ ::I

Set Time Intervals

Cancel oK
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OK, so far, so good. Now for the only real complication — how to structure the PIMs for each cohort,
and which parameters to fix to 1, in order for the analysis to make sense. Let’s consider the following
2 models for our model set: S, ,.op0rt and S,,. The first model indicates 2 age classes (newborn, and
mature), with differences among cohorts. This corresponds to the following PIM structure:

1 6 6 6
2 7 7 7

3 8 8

4 9

5

The second model has differences in survival among the two age classes, but no differences among
cohorts. This corresponds to the following PIM structure:

i 2 2
i 2
1

OK, so these are the 2 models we want to fit in MARK. The challenge is figuring out how to build
them, and which parameters to fix. Clearly, the first model S(a2 - cohort) is the most general (since
it has the most parameters), so we’ll start there. Here is the default PIM chart for these data:

Parameter Index Matrix Chart: Known Fate .ﬁ
Inital Renumber Open Parameter Index Matrix  Help

Close 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2b

Parameter Index

We see from the following PIM structure for this model that the first cohort consists of 2 age classes,
as does the second, third, and so on. So, we might choose to simply right-click on the various ‘blue-
boxes’” in the PIM chart, and select ‘age’ — specifying 2 age-classes. Now, while you could, with some
care, get this to work, there is an alternative approach which, while appearing to be more complex (and
initially perhaps less intuitive), is in fact much easier.
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The key is in remembering that in the known-fates staggered entry analysis, we treat each cohort as
if it were a separate group, fixing any ‘00’ cells preceding the initial encounter in a cohort to 1.0. Again,
keep in mind that each row (cohort) represents (analytically) a separate group. And, as noted, we want
to fix the estimate for any of the preceding ‘00’ cells to 1.0. Where do these cells occur? We've added
them to the PIM in the following:

1 6 6 6 6
00 2 7 7 7
00 00 3 8 8
00 00 00 4 9
00 00 00 00 5

Now for the big step — if all of the ‘00" cells are ultimately to be fixed to 1.0, then we clearly would
need only one parameter to code for them. So, let’s rewrite the PIM, using the parameter 1 for the ‘00’
cells, and then increasing the value of all of the other parameters by 1:

2 7 7 7 7
1 3 8 8 8
1 1 4 9 9
1 1 1 5 10
1 1 1 1 6

OK, now what? Well, each cohort is a group. So, we open up the PIM chart for each of the 5 groups
(cohorts) in our example analysis — each of them has the same structure: a single line — here is the
starting PIM for cohort 1:

I Survival Parameter (S) c1 of Known Fate E]@

wa| &) 4] 4| mlg)

1 J2 |3 |4 |5

[

LCloze:

e | -] 5
B (2]

So, remembering that we want the overall PIM structure (over all cohorts) to look like

2 7 7 7 7
1 3 8 8 8
1 1 4 9 9
1 1 1 5 10
1 1 1 1 6

then it should be clear how to modify the PIM for cohort 1 - it needs to be modified to correspond to
the first row of the overall PIM structure.
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In other words, for cohort 1

1 Survival Parameter (S) c1 of Known Fate E]@
Bl & 5] ¥ Bajw)
[7

2 |4 ] T

A~

Close
: Help + v:
<

and for cohort 2,

"I 'Survival Parameter (S) c2 of Known Fate E]@
Bl & 4] X< Bl
T B B B 8 2
Cloze
Help +
PIM Chart -
b
<] B

and so on — each PIM modified to match the corresponding row (representing a specific cohort) in the

overall PIM.
Before we run our analysis, it’s worth looking at the PIM chart for the model we've just created:

Parameter Index Matrix Chart: Known Fate

Inital Renumber Open Parameter Index Matrix Help

Close
Parameter Index

Note that the new parameter 1 occurs only in groups (cohorts) 2 to 6. The ‘staircase” pattern for
parameters 2 to 6, and 7 to 10 shows that we're allowing survival to vary among release cohorts as a
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function of age: in the first period following marking (newborns, parameters 2 to 6), and subsequent
intervals (mature, 7 to 10). Note that in cohort 5, there are no ‘mature” individuals.

Now, all that is left to do is to run the model, and add the results to the browser. All you need to do is
remember that parameter 1 is fixed to 1.0. Go ahead and run the model, after first fixing the appropriate
parameter to 1.0 — add the results to the browser — call the model ‘S(a2 - cohort) - PIM (we add the
word PIM to indicate the model was built by modifying the PIMs).

1 Results Browser: Known Fate E]@
8|S sa)k:x| mm o =2 A8

AlCc Delta AlCc AlCc Weight | Model Likelihood | No. Par. Deviance
:{S(a2-cohort) - PIM} 15143.6584 0.0000 1.00000 1.0000 ] 36876

OK, what about the second model — model S(a2) (no cohort effect)? Well, if you reached this point
in the book (i.e., have worked through the preceding chapters), you might realize that this model
corresponds to

1 2 2
1 2
1

Again, if we add a parameter 1 to indicate the ‘00" cells preceding the first encounter within each
cohort, and subsequently increment the parameter indexing for all other parameters by 1, we get

el
= om RN W
= om N W W
=N W W W
N W W w w

We can build this model conveniently by simply modifying the PIM chart for the preceding model
S(a2 - cohort). Recall that the PIM chart for that model was (see top of the next page)
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Parameter Index Matrix Chart: Known Fate
Initial Renumber Open Parameter Index Matrix  Help

Close 1 2 3 4 5 [}

Parameter Index

So, to build model S(a2), all we need to do is ‘remove’ the cohort variation for parameters 2 to 6, and
7 to 10 — this is shown in the modified PIM chart, below:

Parameter Index Matrix Chart: Known Fate
Initial Renumber Open Parameter Index Matrix  Help

Close 1 2 3

Parameter Index
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Now, run this model, first fixing parameter 1 to 1.0, label it ‘S(a2) - PIM, and add the results to the
browser:

1 Results Browser: Known Fate E]@
B =(a): (x| Blm o 2= A5

Model AlCc Delta AlCc AlCc Weight | Model Likelihood | Mo. Par. | Deviance
{5(@2) - PIM} 15137.6610 0.0000 0.95252 1.0000 2 11.7038
{S(@2-cohort) - PIM} 151436584 59974 004748 0.0438 k] 36876

As expected, model S(a2) (the true, underlying model which we used to generate the data) gets
virtually all of the AIC weight, relative to the other model. And, the reconstituted parameter estimates
are very close to the true underlying values.

Now, while ‘fiddling” with the PIM chart (and the underlying PIMs) is convenient for these simple
models, we know from earlier chapters that there are structural limits to the types of models we can
construct this way. Most obviously, we can’t use the PIM approach to build models with additive effect.
Ultimately, it’s to our advantage to build models using the design matrix (DM), since all reduced
parameter models can be constructed simply by manipulating the structure of the DM for the most
general model. Let’s build the DM for model ‘S(a2 - cohort)’, which is the most general model of the
two models in our candidate model set).

First, we start by writing out the conceptual structure of the linear model corresponding to this model:
S = cohort + age + cohort.age

The first term is fairly straightforward — we have 5 cohorts, so we need (5 — 1) = 4 columns to code
for cohort. What about age? Well, look again at the PIM for this model:

2 7 7 7 7
1 3 8 8 8
1 1 4 9 9
1 1 1 5 10
1 1 1 1 6

Remembering that parameter 1 is fixed at 1.0, and is thus a constant. We can ignore it for the moment
(although we do need to account for it in the DM). Pay close attention to the parameters along and above
the diagonal. These represent each of the two age classes in our model — the vary among rows within
an age class, but are constant among columns within a row, specifying cohort variation for a given age
class, but no time variation (recall from Chapter 7 that a fully age-, time- and cohort-dependent model
is generally not identifiable, since the terms are collinear). So, we have 2 age classes, meaning we need
(2-1) =1 column to code for age. What about cohort? Well, 5 cohorts, so (5 — 1) = 4 columns to code
for cohort. Again, hopefully familiar territory. If not, go back and re-read Chapter 6.

But, what about the interaction terms (age.cohort) — do we need (4 X 1) = 4 columns? If you think
back to some of the models we constructed in Chapter 7 (age and cohort models), especially those
models involving individuals marked as young only you might see how we have to handle interaction
terms for this model. Recall from Chapter 7 that the interaction columns in the DM reflected "plausible’
interactions — if a specific interaction of (say) age and time wasn't possible, then there was no column in
the DM for that interaction. For example, for an analysis of individuals marked as young, there can be
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no interaction of age (young or adult) with time in the first interval, since if the sample are all marked
as young, then there are no marked adults in the first interval to form the interaction (i.e., there can be
no plausible interaction of age and cohort in the first interval, since only one of the two age classes is
present in the first interval).

OK, so what does this have to do with our known-fate data? The key word is ‘plausible’ — we build
interactions only for interactions that are plausible, given the structure of the analysis. In this case, there
are only 2 true age classes (newborn, and mature). All of the other ‘age’ classes are ‘logical’ — we’ve
‘created’ them to handle the preceding ‘00’ terms in the PIM. They are not true “age’ classes, since there
are no marked animals in those classes. As such, there are no interactions between cohort and any of
these logical '00” age classes — we need only consider the interactions of the two true ‘biological” age
classes (newborn, and mature), with cohort. But, how many columns? Look closely again at the PIM:

2 7 7 7 7
1 3 8 8 8
1 1 4 9 9
1 1 1 5 10
1 1 1 1 6

Pay particular attention to the fact that the '"newborn” age class shows up in all 5 cohorts, while
the ‘'mature’ age class shows up only in the first 4 cohorts (and not in the fifth). So, not all age.cohort
interactions are ‘plausible’. Which ones are ‘plausible’? Well, both age classes are represented in the first
4 cohorts, but both age classes are represented only over intervals 2 to 4. Thus, we only need include
cohorts 2,3 and 4, in the interaction terms. See the pattern? If not, try again. It’s very similar to problems
we considered in Chapter 7.

OK, penultimate step — what about parameter 1? Well, as noted earlier, since it’s fixed to 1.0, then it’s
simply a constant across cohorts, and thus, enters into the linear model as a single parameter.

Now, finally, we're ready to write out the linear model corresponding to S(a2 - cohort).

$= p1(constant)
+ p,(intercept)
+ B3(age)
+Ba(cy) + Bs(c) + Be(cs) + f7(cy)

+ pglage.c,) + Bo(age.c3) + fpage.cy)

Is this correct? It has the same number of terms (10), as there are parameters in the PIM chart, so it
would seem to be correct.

The next step, then, is to actually build the DM. We start by having MARK present us with a 10-
column ‘reduced’ DM as the starting point. The completed DM for this model is shown at the top of
the next page. Column 1 (labeled B1) contains a single ‘1’ - this represents parameter 1, which is a
constant — fixed to 1.0 for all cohorts. The next column (labeled B2) represents the intercept for the ‘age
and cohort’ part of the model. Column B3 codes for age — 1 for newborn individuals, and @ for mature
individuals (note the different number of rows for each age class — this is key — 5 rows for newborns, and
4 rows for mature individuals). Columns B4 to B7 code for cohort. Note how the first row for newborn
individuals for cohort 1 is coded, and note that this row does not show up for mature individuals —
since, in cohort 1, there are no mature individuals! Finally, the interaction terms — columns B8 to B19,
for those “age. cohort’ combinations that represent ‘plausible” interactions.
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*’ Design Matrix Specification: Known Fate {5(a2-cchort) - DM} E'@
o 8 & 4 LA
Design Matrix Specification (B = Beta)
B1 Pam | B2 B3 B4 BS BE B7 BE B9 B10
constant intcpt | age | cohort.1 cohort2 | cohot.d | cohort 4 a.cohort.2 a.cohort.3 a.cohort 4
1] 0 ] ] 1] 0 ] 1] 0
0 25 ] 0 i] ] 0 i]
0 35 ] 0 0 0 0
] 4:5 ] ] i] ] i]
1] 55 ] ] 1] ] 1]
0 6:5 ] ] 0 i] ] 0 i]
0 75 0 ] 0 0 ] 0 0
] 8:s ] ] ] i] ] ] i]
1] 9.5 1] ] ] 1] ] 1] 0
0 10:8 0 ] ] 0 i] ] 0 i]

Go ahead and run this DM-based model (label it S(a2-cohort - DM)), and confirm that the results
exactly match those for the model you constructed using the PIM chart, as shown below:

| Results Browser: Known Fate

BEX

BS/=a|x| B of 22 a5

Model AlCc Delta AlCc AlCc Weight || Model Likelihood | Mo. Par. Deviance
{5(a2) - PIM} 15137.6610 0.0000 0.90934 1.0000 2 11.7038
{5{a2-cohort) - PIM} 15143 6584 5.9974 0.04533 0.0458 ] 36876
:{S{aZ-cohort) - DM} 15143.6584 5.9974 0.04533 0.0498 E] 3.6876

Now that you have the DM for the general model, try constructing model S(a2) — the second model.
We already did this a few pages back using the PIM approach, but we can generate the same model
easily using the DM approach by simply deleting (i) the columns of the DM coding for cohort, and (ii)
the (age.cohort) interaction columns:

*’ Design Matrix Specification: ... EIIEI
o[> o) w88 ol

Design Matrix Specification (B = Beta)

B1:

==l == == == P = = == =]

Parm

B2:
intcpt

B3:
age

0
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If you run this model, again you'll see the results exactly match those for model S(a2) built using
the PIM approach:

1 Results Browser: Known Fate g@
EECEREDEERE
AlCz Delta AlCe AICc Weight | Mode! Likelihood | MNo. Par. Deviance
{5(a2) - PIM} 15137.6610 0.0000 047626 1.0000 2 11.7038
H{5(a2) - DM} 15137.6610 0.0000 047626 1.0000 2 11.7038
{S(a2-cohort) - PIM} 151436584 59974 0.02374 0.0438 9 36876
{S(@2-cohort) - DM} 15143.6584 59574 002374 0.0458 ] 36876

We'll leave building an additional model S(a2+cohort) (i.e., a model with additive effects between
age and cohort) to you as an exercise (hint: simply delete the interaction columns from the design matrix
for model S(a2-cohort)).

So, we see that by treating different release cohorts as ‘groups’, we can use the known fate data type in
MARK to handle staggered entry designs. Are there any other design types we can handle using known
fate data? In fact, there are, but they involve using a different approach, based on treating known fate
data in a live-encounter, dead-recovery context.

16.6. Known fate and joint live-dead encounter models

As noted earlier, the encounter history format for known-fate data is structurally similar to the classic
LDLD format used for Burnham’s live encounter-dead recovery analysis (Chapter 9). Recall that in that
case, itis possible to observe an individual alive at the start of a particular interval (L), and dead at some
point during the interval (D).

With a little thought, you might think that you could apply the live encounter-dead recovery model
structure directly to known-fate data, if you simply fix the ‘detection parameters’ (r and p), and the
‘fidelity parameter ’ (F) to 1 (remember, for a known-fate data, we assume we know the fate of all
individuals). With a little more thought, however, you might realize there is a complication — the live
encounter-dead recovery model does not correctly handle the censoring of ‘00" LD pairs in a known-
fate data. In the live encounter-dead recovery data type, the ‘00" is handled as an animal that was not
detected as either alive or dead on this occasion. In a known-fate data, the ‘00" indicates that the animal
was censored from the study. The distinction is made clearer in the following table, where we contrast
the probability expressions, and interpretations, of the encounter history ‘100010’ under the known-fate,
and live-dead encounter models, respectively.

model probability interpretation

known fate  5;S; tagged at occasion 1, censored for interval 2 (not
detected, or removed for some reason), and re-
inserted into the study at occasion 3.

live-dead  S;F;S,(1 —p,)S;p5 (i) tagged at occasion 1, stays in sample, survives
+S,F;S,(1 - Pz)(l — S3)(1 - 73) to occasion 2 but not encountered, survives to
occasion 3, where it is encountered alive, not shot;
(ii) tagged at occasion 1, stays in sample, survives
to occasion 2 but not encountered, survives to
occasion 3, where it is encountered alive, shot, but
not recovered.
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Clearly, the probability expressions differ considerably between the two model types. And, as such,
you can’t simply apply the live-dead encounter model to known-fate data without somehow accounting
for the difference in how the ‘00’ values in the encounter history are handled. Specifically, how can you
"tell” the live-dead model that a “00” means ‘censored” and not either ‘dead and missed’, or ‘live and
missed’?

One way to handle this is to break up the encounter history and use a -1 coding” — in other words,
take the ‘10 00 10" encounter history and make it into 2 encounter histories as:

10 00 00  -1;
00 00 10 1;

Now, the live-dead model correctly handles the pair of encounter histories to allow the animal to be
in the sample for the first interval, and then be removed from the sample. The animal is then re-injected
back into the sample for interval 3. If all the r and p parameters are fixed to 1, and you also fix F to 1,
then you will get the identical estimates of survival from the live-dead and known fate approaches.

To see that the preceding statement is true, first examine the probability of the first encounter history:
S;+ (1 =S5;)( —r;), which reduces to just S; because r; = 1. The probability of the second encounter
history is S3 + (1 — 53)(1 — r3), which again reduces to just S;. So, the product of these 2 encounter
histories is identical to the probability of the original encounter history under the known fate model.

To make this “trick” of splitting known fate encounter histories to allow censoring, let’s consider a
bit more complex example. Take the encounter history ‘10 10 00 10 11’. The known fate probability
is just ${5,54(1 — S5). The split encounter history for live-dead coding looks like:

10 10 00 00 00 -1;
00 00 00 10 11 1;

The probability expression corresponding to the first piece is just S; F;p, (S, + (1 =5,)(1—r,)), which
reduces tojust S; S, becauseall F, p, and r parameters are fixed to 1. The second probability is S, F,p5(1—
S5)15, whichreduces to S,(1-S5). The preceding might seem like a lot of work just to “trick” the Burnham
live-dead model into being able to handle known-fate data. Clearly, for ‘typical” known-fate data, use
of the known-fate data type in MARK is decidedly more straightforward (and, not surprisingly, why
it’s there in the first place). However, there are some situations where using the live-dead model is
particularly helpful — we consider two such applications in the following.

16.6.1. Live-dead and known fate models (1) ‘radio impact’

One of the most pressing questions with known fate data is “What is the impact of the radio on the
animal’s survival?” A useful solution to this question can be obtained by marking some animals with
non-intrusive tags. For example, one sample of ducks can be radio-marked, whereas a second can be
banded with leg bands. Now, the data must be analyzed with a different model that incorporates the
live detection probability p and the dead detection probability r.

The way to do this is to use the live-dead model, and specify 2 groups. The first group would consist of
the radio-marked sample, where all the p, 7, and F parameters are fixed to 1. The second group would
consist of the leg-banded sample, where all the parameters are estimated. The power of this design
comes into play when we compare a model with survival estimated separately for each group against
the equivalent model but with survival estimated in common across both groups. The comparison of
these 2 models provides a powerful test of the effects of the radios on survival. For a well-designed study,
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we might consider using a likelihood-ratio test between these 2 models to test the null hypothesis of
no radio effect directly. Alternatively, we could use the Akaike weights to assign probabilities to which
hypothesis we believe is most likely the truth.

16.6.2. Live-dead and known fate models: (2) ‘temporary emigration’

The live-dead data type can also be used to estimate the fidelity (F) to a study area for known fate data.
The approach is to code the LD pair as ‘00’ for animals that leave the study area. That is, animals that
leave the study area are not censored as if the radio failed, but rather included in the sample with 00 for
periods when they are off the study area. Then, given that p = 1 and r = 1, F is estimated. So, consider
what the probability would be for the encounter history ‘10 10 10 00 00" when p =1and r = 1 so that
these terms are left out of the expression: S F;S,F,55(1 — F3). With F estimated, the only way to account
for trailing 00 values is to have the animal emigrate. Remember that the Burnham joint live-dead data
type assumes permanent emigration.

What if you want to model temporary emigration? The solution in this case is to use the Barker
joint live-dead data type (see Chapter 9), where the parameter F’ is the probability that an animal not
available for capture (i.e., off the study area) returns to the study area. So consider the probability of
the encounter history ‘10 10 00 00 10" with p =1 and r = 1, along with no probability of sightings in
between capture occasions (i.e., R = 0and R" = 0): S;F;S,(1—F,)S5(1—F4)S,F;Ss. The point here is that
the Barker joint live-dead data type can also be used to estimate the temporary emigration probability
from known fate data, and hence can also be used to assess the effects of radios on animals against a
sample marked in a different fashion.

16.7. Censoring

Censoring appears ‘innocent’ but it is often not. If a substantial proportion of the animals do not have
exactly known fates, it might be better to consider models that allow the sampling parameters to be
< 1. In practice, one almost inevitably will lose track of some animals. Reasons for uncertainty about
an animal’s fate include radio transmitters that fail (this may or may not be independent of mortality)
or animals that leave the study area. In such cases, the encounter histories must be coded correctly to
allow these animals to be censored. Censoring often require some judgment.

When an animal is not detected at the end of an interval (i.e., immediately before occasion j) or at the
beginning of the next interval (i.e., immediately after occasion j + 1), then its fate is unknown and must
be entered as a ‘00" in the encounter history matrix. Generally, this results in 2 pairs with a ‘00’ history;
this is caused by the fact that interval j is a 00 because the ending fate was not known and the fact that
the beginning fate for the next interval (j + 1) was not known. Censored intervals almost always occur
in runs of two or more (e.g., ‘00 00" or ‘00 00 00’). See the example above where the history was 10
00 00 11'.

In this example, the animal was censored but re-encountered at the beginning of interval 4 (alive)
and it died during that interval. It might seem intuitive to infer that the animal was alive and, thus, fill
in the 2 censored intervals with ‘10 10’ — this is incorrect and results in bias. The reason for this bias is
because a dead animal is less likely to be encountered at a later occasion than if it lives. So, you have a
biased sampling process —animals are mostly encountered because they are alive, and hence estimates
of survival become too high if the ‘00" values are replaced with 10",

Censoring is assumed to be independent of the fate of the animal; this is an important assumption.
If, for example, radio failure is due to mortality, bias will result in estimators of S;. Of course, censoring
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reduces sample size, so there is a trade-off here. If many animals must be censored, then the possible de-
pendence of fates and censoring must be a concern. In such cases, you probably should be analyzing the
data with the live encounters-dead recovery data type, and explicitly estimate the p and r parameters.

16.8. Goodness of fit and known fate models

Consider a model where all the parameters are specific to both the time-interval, as well as the cohort
(i.e., year marked and released). This is a fully-saturated model where there are as many unknown
parameters as there are cells. Note, the saturated model always fits the data perfectly (by definition and
design). The concept of a saturated model is necessary in computing model deviance. As discussed
earlier in Chapter 5, the deviance of model j in the candidate model set is defined as

Deviance = —2In(£;(0)) — [-2In(£L,pyrarea (0)) ]

Typically, for most data types, the saturated model contains many uninteresting parameters — its use is
primarily heuristic, in allowing use to estimate the deviance of some less general model, relative to the
saturated model.

Now, if sample size is large (i.e., there are no cells with small expectations), then the deviance is
asymptotically x> with df equal to (the number of cells in the saturated model) - (the number of
estimable parameters in model j). OK, fine, this is the basis of the likelihood ratio test discussed earlier
in Chapter 5. What does this have to do with GOF testing for known-fate data?

Well, the problem with known-fate data is this — for known-fate models where all individuals enter
at the same time (or even with staggered entry data), the saturated model where each cohort has its
own survival estimate for each occasion is a sensible model, and as such, there is no way to estimate the
deviance of the saturated model from itself. Because the saturated model fits the data perfectly, there
is no GOF test for classical known-fate data. In reality, this is the same with all models in MARK -
we just assume (i.e., make an assumption) that some reduction of the saturated model to a biologically
reasonable model is okay, and use this reduction to assess GOF.

To help you understand this point, consider a simple radio-tracking study where 100 radios are put
on a single age/sex class for one occasion. The saturated model is the simple survival estimate based
on the binomial distribution. There is only one data point, hence one degree of freedom, and that df
is used to make the estimate of survival. Thus, it is fairly obvious that there is no GOF test available —
to obtain a GOF test, we would have to assume a reasonable biological model that is reduced from the
saturated model. This selection can be pretty arbitrary (obviously).

16.9. Known-fate models and derived parameters

Typically you are doing a known fate analysis to be able to estimate survival over an interval, say 1 year.
However, you also want to know something about how survival changes within the year, or maybe
because of censoring and radio failure problems, you want to include animals in the analysis that only
appeared for a period of time within the year period. For example, you are doing a bear study where
you have staggered entries and some radio failures or collars that dropped off that you have kept track
of on a monthly interval. However, you are interested in estimating annual survival. How do you get
an estimate of annual survival from 12 monthly estimates?

MARK provides derived parameter estimates that are the product of all the estimates for the intervals
in the PIMs. So, suppose you have a 3-year study, where you want 3 annual estimates of survival, but you
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have 36 months of data. The clever way of setting up your analysis is to define 3 groups for the known
fate model, each with 12 occasions (months), with the 3 groups corresponding to the 3 years of interest.
Then, when you examine the derived parameter estimates, you will find 3 estimates, representing the
3 years. Variances and covariances of the derived parameters are computed with the Delta method
(Appendix B).

Derived parameter estimates can be used in model averaging and variance components analyses, so
you further have all of the power of these methods available for your analysis of annual survival rates.

Part of the ‘art’ of how to set up the known fate data type is whether attribute variables should
be incorporated as groups or individual covariates. Derived parameter estimates are a function of the
individual covariates used to compute them, so whether age in the black duck example is treated as a
group or an individual covariate won’t make a difference in the estimates. However, if age is handled
as a group variable, the derived estimates are clear. To get derived estimates when age is an individual
covariate means that you must specify individual covariate values to obtain the correct estimates.

16.10. Known-fate analyses and ‘nest success models’

Suppose you want/need to estimate the survival of radio-tracked animals when the animals are not
monitored in discrete intervals, as generally required by the known fate data type. Consider that such
data are no different than a set of (say) nests, where all the nests are not visited on the same day. As
such, you could apply a ‘nest success model” to the data — in such a model, the daily survival rate is
estimated for each day of the study based on the sample of animals available on that day, and the exact
day of death is not required (just as the exact day that a nest was destroyed is not known). We call these
kinds of data ‘ragged telemetry data’ because the sampling scheme is ragged, but useful estimates can
still be obtained. Nest success analysis is the subject of our next chapter.

16.11. Summary

Known-fate models are a very important model type — most commonly applied in situations where
individuals are marked with radios (i.e., radio telemetry studies). The presence of a radio makes is
feasible (under usual circumstances) to determine the ‘fate’ of the individual: is it alive, or dead? Present,
or absent? And so on. Although the assumption that detection and reporting probabilities are both 1.0
simplifies aspects of the modeling considerably, a number of complex, elegant approaches to handling
known-fate data are possible — especially when known-fate data are combined with data from other
sources.
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