
IAS/Park City Mathematis Series

Volume 00, 0000

Probabilistially Chekable Proofs

Madhu Sudan

Sribe: Venkatesan Guruswami

1

2 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Aknowledgments

Mostly, I would like to thank Venkatesan Guruswami for sribing these notes so

diligently (despite the fat that tax laws prevented him from getting the honorarium

that he fully deserved!).

Thanks also to Johan H�astad and Jakob Nordstr�om for pointing out many

errors and typoes.

� Madhu Sudan.

LECTURE 1. INTRODUCTION TO PCPS 3

LECTURE 1

Introdution to PCPs

1. Overview

Researh in the 1990's has led to the following striking theorem: There is a format

of writing proofs and a probabilisti method of verifying their validity, suh that

the veri�er needs to reads only 3 bits of the proof (irrespetive of the length of the

proof) to obtain probabilisti on�dene in the orretness of the proof. Spei�ally,

the veri�er aepts orret proofs with probability 1 (Completeness) and given any

purported \proof" of an inorret assertions it aepts with probability at most

3=4 (Soundness). In fat, this probability an be made arbitrarily lose to 1=2.

Furthermore, the proof in the new format is only polynomially longer than the

original \lassial" proof.

1

In addition to being a surprising result bridging probability and logi, the above

result also turns out to have appliations to proving intratability results for �nding

near-optimal solutions to many NP-hard optimization problems. Our goal in these

letures will be to provide insight into the onstrution of these proof systems

and the assoiated probabilisti veri�ers. We will not pursue the appliations to

hardness of approximations (i.e., solving optimization problems near-optimally).

The interested reader is referred to the survey artile of Arora and Lund [1℄ for

more information on suh onsequenes. Our spei� target will be to desribe the

main steps that lead to a weaker result (whih we all the PCP Theorem) that the

omplexity lass NP has Probabilistially Chekable Proofs in whih the veri�er uses

logarithmi randomness, queries the proof in only O(1) loations, aepts orret

proofs with probability 1, and aepts false proofs with probability bounded away

from 1 (say (1 � �) for some onstant � > 0).

2

We will also outline some of the

ingredients that lead to the sharper result desribed in the opening sentene.

In the �rst leture, we will formally de�ne a Probabilistially Chekable Proof

(heneforth PCP). We will briey disuss the history of its de�nition and the main

initial results in this area. We also de�ne the notion of \gap problems" { the

NP-hardness of ertain gap problems turns out to be equivalent to the existene

of PCPs of the type we seek. Our goal thus leads us to the task of establishing

NP-hardness of some onvenient (and yet interesting) gap problem. To this end we

will de�ne a onstraint satisfation problem based on polynomials that we all PCS

(for Polynomial Constraint Satisfation). We will then state an NP-hardness result

of a gap version of PCS and two algorithmi results about polynomials. We will

then show that putting these ingredients together, we will see how we an build a

non-trivial (but not our �nal) PCP.

1

The result alluded to here is that of H�astad [20℄. The piky reader may note some minor

disrepanies between result as laimed above and the main result of [20℄. Suh a reader is

direted to the work of Guruswami et al. [19℄ (a derivative of [20℄), whih ertainly ahieves all

the laimed properties.

2

This result was proven by [3, 2℄. Our presentation of even this result will not be omplete

| the reader is referred to the original artiles for full details. However, we do hope to give a

fairly detailed overview of the steps involved. It may be pointed out that the presentation here is

somewhat di�erent than in the original works.

4 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Looking ahead to future letures, in the seond leture we will show how to

establish the hardness of PCS with a gap; as well as some overview of the algorithmi

results for polynomials. This will onlude the �rst phase of our task | that of

establishing a non-trivial PCP onstrution. In the third leture, we will launh

into a seond phase of PCP onstrutions. We will see how to onstrut a variety

of PCPs with very di�erent parameters using algebrai methods. None of these

PCPs will ome lose to our spei� target PCP. However, they give an idea of the

nature of the tools that are available and useful to build PCPs. In the fourth and

�nal leture, we will introdue a non-algebrai tool in the onstrution of PCPs,

spei�ally a omposition theorem for PCPs. We will show how the omposition

theorem allows us to use the PCPs onstruted in the third leture (or to lose

variants of the same) and ompose them with eah other to get a new PCP that

has all the desired properties (for our spei� target).

2. De�nitions and Formal Statement of Results

The entral ingredient of a PCP system is the veri�er: a probabilisti polynomial

time mahine with orale aess to a proof �. The primary resoures used by the

veri�er that are of interest to PCP are the amount of randomness used, and the

number of bits of � that are queried by the veri�er (one the random oins tossed

by the veri�er are �xed). This leads to the notion of an (r; q)-restrited veri�er:

For integer valued funtions r(�) and q(�), a veri�er is said to be (r; q)-restrited if

on every input of length n, it tosses at most r(n) oins and queries the proof for at

most q(n) bits.

De�nition 1. For integer valued funtions r(�); q(�) de�ned on integers, and fun-

tions (�); s(�) , the lass PCP

;s

�

r; q

�

onsists of all languages L for whih there

exists a (r; q)-restrited veri�er V with the following properties:

� [Completeness℄: x 2 L) 9 � s.t V

�

(x) aepts with probability at least

 (over the oin tosses of V).

� [Soundness℄: x =2 L) 8 � V

�

(x) aepts with probability < s (over the

oin tosses of V).

In this notation the PCP Theorem states that there exists a onstant q suh

that

NP = PCP

1;

1

2

�

O(log n); q

�

:

At this point some explanation of the role and interrelationships of the param-

eters may be in order. Note that the de�nition has four parameters: ; s; r and

q. Of these four, the randomness (r)and query (q) parameters are the ones of pri-

mary interest. Usually, the other two parameters will be of subordinate interest. In

partiular, most PCP onstrutions today set = 1. Suh PCPs are said to have

perfet ompleteness, so that \orret" proofs are aepted with probability 1. It

is sometimes useful to have the extra exibility of having < 1 as o�ered by the

de�nition. However, we won't onstrut any suh PCPs in these letures. so that

is one less parameter to worry about. The soundness of a PCP, in turn, is related

to the query omplexity and the two an be traded of against eah other. Stan-

dard tehniques used for ampliation of error in probabilisti algorithms show how

soundness may be redued by inreasing the number of queries. On the other hand,

the lassial redution from SAT to 3SAT an be employed to redue the queries to

LECTURE 1. INTRODUCTION TO PCPS 5

3, from any onstant, while inreasing the soundness but preserving boundedness

away from one. Thus to simplify our study we may �x the soundness to some �xed

value and then try to minimize the randomness and query omplexity. Our hoie

for this value will be s =

1

2

. When we omit subsripts in the notation PCP[r; q℄, it

is implied that = 1 and s =

1

2

. Finally, we remark on a parameter that we seem

to have omitted in the de�nition, namely the size of the proof. While some papers

in the literature study this parameter expliitly, we don't do so here. Instead we

let this parameter be aptured impliitly by the other parameters. Note that a

(r; q)-restrited veri�er an make at most 2

r+q

distint queries to the proof, and

thus the proof size need not be larger than 2

r+q

. Thus the randomness omplexity

and query omplexity impliitly apture the size of the proof required by a PCP

veri�er, and we will be satis�ed with studying this rough upper bound.

2.1. Some History of De�nitions

The de�nition of PCP atually evolved over a series of surprising developments in

the late 80s and early 90s. The notion of heking proofs in a probabilisti sense

(where the veri�ation proess is allowed to err with small probability) dates bak to

the seminal work of Goldwasser, Miali and Rako� [18℄ and Babai [4℄ on Interative

Proofs (IP). In the IP proof system, a probabilisti veri�er interats with a prover

who wishes to onvine the veri�er that some assertion is true. The model of the

interative proofs evolved over time, partly motivated by e�orts to understand the

model better. One suh model was that of \multi-prover interative proof systems"

(MIP) introdued by Ben-Or, Goldwasser, Kilian and Wigderson [12℄. In this

model, a single veri�er interats with multiple provers to verify a given assertion.

The MIP proof systems inuened the development of PCPs in two signi�ant

ways. On the one hand, many tehnial results about PCPs go through MIP proof

systems, in essential ways. More important to our urrent ontext, it led to the

de�nition of the notion of the PCP veri�er (though it was not so named then),

i.e., a probabilisti veri�er with aess to an orale. This notion originated in the

work of Fortnow, Rompel and Sipser [16℄ as part of an e�ort to understand the

omplexity of MIP proof systems.

All the above works did not plae any expliit restritions on the resoures used

by the veri�er, exept the minimal one that it run in (probabilisti) polynomial time.

Fous on the eÆieny of the veri�ation proess started with the work of Babai,

Fortnow, Levin and Szegedy [5℄. Their work foussed on the omputation time

of the veri�er and the size of the proof. They de�ned the notion of transparent

or holographi proofs, whih are proofs that an be heked very eÆiently (in

polylogarithmi time). The resoures of fous in De�nition 1 were highlighted by

the seminal paper of Feige, Goldwasser, Lov�asz, Safra and Szegedy [14℄. Feige et al.

established an astonishing onnetion between probabilisti proof systems for NP

and the hardness of approximate solutions to theMax Clique problem. It beame

evident from their work that the randomness and query omplexity of proof systems

were parameters of entral interest to inapproximability. However, their work did

not abstrat a de�nition of the omplexity lass PCP. Suh a de�nition was �nally

abstrated in the work of Arora and Safra [3℄. Their work expliitly de�nes the two

resoures: randomness and query omplexity; and maintains them as parameters

(rather than plaing absolute bounds on them), reeting the importane of the

6 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

two resoures and the very distinguishable impat that they tend to have on the

veri�ation apabilities of the PCP.

2.2. History of Results

The sequene of results ulminating in the PCP Theorem is a long one. We will

attempt to give a bird's eye view of this history, presenting some of the landmark

results. We break this history into four phases.

Phase 0. Some properties of PCPs follow immediately from their de�nition.

These properties, typially attributed to folklore, inlude results suh as NP =

PCP

�

0; poly(n)

�

. This is the ase beause, for any language L 2 NP, the veri�er

an deterministially read the entire polynomial size witness of the membership of

x 2 L and then hoose to aept or rejet. It is also not hard to see that NP =

PCP

�

logn; poly(n)

�

. In partiular, the the ontainment PCP

�

logn; poly(n)

�

� NP

is obtained as follows:

Given a PCP veri�er V, tossing r = O(log n) oins and querying

(possibly non-adaptively) poly(n) queries, a non-deterministi Turing

mahine an determine if it aepts with probability 1, by guessing,

for eah random string, the sequene of queries made and the answers

reeieved, and then by verifying in polynomial time the following

two onditions (1) On eah random string verify that the sequene

of guessed queries is onsistent with V 's ations and the responses

reeived lead to aeptane by V . (2) For every pair of random strings

idential queries lead to same response.

Thus a little bit of randomness does not inrease the power of the PCP veri�ers

in terms of the languages for whih they an verify membership. However it does

allow them to be signi�antly more eÆient. (A olletion of these and other suh

folklore results about PCPs may be found in [9℄.)

Phase 1. The �rst non-trivial result on PCPs did not talk about the lass NP but

rather about the lass NEXP. This result, due to Babai, Fortnow, and Lund [6℄,

showed that NEXP = PCP[poly(n); poly(n)℄. Note that the traditional veri�er of

NEXP languages looks at a proof in exponentially many plaes, while the PCP veri-

�er is only allowed to look at it in polynomially many plaes. Thus this landmark re-

sult redued the number of queries by a poly-logarithmi amount by using the power

of randomness. Subsequently, saling this result down to NP, Babai, Fortnow, Levin

and Szegedy [5℄, NP � PCP

�

poly logn; poly logn

�

. The result of [5℄ atually got

extremely small blowups, nearly linear, in proof size too, though the impliit bound

promised by examining the randomness and query omplexity is not even polyno-

mially bounded. The next improvement in the parameters was brought about by

Feige et al. who improved the result to NP � PCP

�

logn log logn; logn log logn

�

.

The good news about results in this phase was that they redue the number

of queries made by the veri�er by a poly-logarithmi amount (from poly(n) to

poly logn), a result that was ompletely unexpeted at the time. However the bad

news, is that the randomness and query omplexities were still super-logarithmi

LECTURE 1. INTRODUCTION TO PCPS 7

and hene the above ontainment are not equalities and thus these do not give

haraterizations of NP in terms of (non-trivial) PCP lasses.

3

Phase 2. The �rst exat haraterization of NP ame in the work of Arora and

Safra [3℄ who showed that NP = PCP

�

O(log n); o(logn)

�

. This work also intro-

dued the powerful idea of reursive omposition of proofs whih played a ritial

role in their and all subsequent improvements to PCP onstrutions. The PCP The-

orem itself (i.e., NP = PCP

�

O(log n); O(1)

�

) was proved by Arora, Lund, Motwani,

Sudan and Szegedy [2℄.

4

As in the results of Phase 1, the results of Phase 2 were startling surprises.

The query omplexity is independent of the proof size! And both parameters an

be redued to funtions whih were within onstant fators away from the smallest

amount oneivable.

5

However these were not yet the ultimate possible PCP results.

Spei�ally, they were not tight in either the randomness omplexity (or equivalently

the proof size) or the query omplexity.

Phase 3. Examination of the (non-asymptoti) tightness of the parameters of

the PCP theorem was initiated by Bellare, Goldwasser, Lund and Russell [10℄.

Several intermediate results improved the onstants in the parameters [15, 11,

9℄. Eventually near-tight results whih optimize both these parameters (but not

simultaneously!) were shown. Spei�ally:

� Polishhuk and Spielman [23℄ showed that Sat 2 PCP

�

(1 + ") logn;O(1)

�

for every " > 0.

� It is a folklore result that the number of queries required in the PCPTheorem

is at least 3. H�astad [20℄ proved the tight result that for every " > 0, NP =

PCP

1�";

1

2

�

O(log n); 3

�

. (Note that this result does not have perfet om-

pleteness: a later result in [19℄ shows that NP = PCP

1;

1

2

+"

�

O(log n); 3

�

.)

The result of H�astad, one again, was a startling development. A folklore result

shows that any PCP for an NP-omplete language must use q � 3 to attain perfet

ompleteness. It was also believed that suh a PCP ould not have soundness s �

1

2

(though this was not proven till muh later). Work prior to H�astad's however were

far from show that any s > 1=2 ould be ahieved with q = 3. In fat, if any-

thing, the belief in days just prior to H�astad's works tended to the onjeture that

PCP

1;s

[O(log n); 3℄ may be ontained in P for some s > 1=2. These beliefs were

bolstered by the strong algorithmi tehniques, based on \semide�nite program-

ming", introdued in the work of Goemans and Williamson [17℄. H�astad's results

thus brought about (yet another) unexpeted settlement of these onjetures. Sub-

sequently, Karlo� and Zwik [22℄ used semide�nite programming methods to show

the optimality of H�astad's results by showing that PCP

1;1=2

[O(log n); 3℄ = P. Our

letures will unfortunately not be able to go into this phase of developments in the

onstrutions of PCPs; however, we will attempt to provide pointers to this in the

onluding leture.

3

Atually a areful analysis of the protool in [5℄ shows that the randomness an be made log-

arithmi; a fat that is related to the fat that the proof size an be made n

1+"

for arbitrarily

small " > 0.

4

More formally, by a statement like NP = PCP[O(logn); O(1)℄, we mean the following: 9

q

suh

that 8L 2 NP, 9

r

suh that L 2 PCP[

r

� log n;

q

℄.

5

That
(1) queries are required is lear, and a result in [3℄ shows that if NP �

PCP[o(log n); o(log n)℄ then NP = P.

8 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

3. Broad Skeleton of the proof

We now move towards the proof of the PCP theorem. The proof that we present

will roughly follow the historial path to the proof. We will start by proving

a statement similar in spirit to the prinipal results of Phase 1. Namely, we

will �rst prove (modulo some tehnial theorems that we will only state) NP =

PCP

�

O(log n); poly logn

�

. Two fundamental tehniques that will be used in its

proof are Arithmetization and Low-degree testing. This will oupy the �rst two

letures. We will then take some digressions. The �rst one will take us into MIPs

and show how the poly logn queries in the above PCP an be \aggregated" so that

the veri�er needs to read only O(1) loations of the proof (and reeive poly logn size

answers from eah loation). This will be very useful for us in the �nal step(s) when

we will apply proof omposition to redue the number of queries down to O(1). As

a seond digression we will show a new PCP veri�er for NP that makes only O(1)

queries (thus is very good from this perspetive) but uses poly(n) randomness (and

hene results in exponential sized proofs). Finally, in the �nal leture, we will sketh

how to prove the PCP Theorem itself by applying the idea of proof omposition to

the MIP system and this veri�er, and show NP = PCP[O(log n); O(1)℄.

4. Gap Problems and Polynomial Constraint Satisfation

4.1. Constraint Satisfation Problems

Constraint satisfation problems are a speial ategory of optimization problems

that arise naturally in the study of PCP. An instane of the problem onsists

of a olletion of onstraints on some variables that take values from some set

[B℄ = f1; : : : ; Bg. The goal is to �nd an assignment to the variables that maximizes

the number of satis�ed onstraints. More formally, an instane of Max w-CSP(B)

onsists of n B-ary variables V = fx

1

; : : : ; x

n

g and t w-ary onstraints C

1

; : : : ; C

t

de�ned on subsets of V of size w. The goal is to �nd an assignment a

1

; : : : ; a

n

2 B

to the variables V that maximizes the number of satis�ed onstraints. A well-known

example of a onstraint satisfation problem is Max 3-SAT where w = 3, B = 2

and the onstraints are of the form (`

i

1

_ `

i

2

_ `

i

3

) where eah `

i

j

is either x

i

j

or

�x

i

j

.)

As mentioned earlier the Constraints Satisfation Problems (heneforth, CSPs)

arise naturally in the study of PCP. Informally, PCP[r; q℄ \orresponds" to Max

w-CSP(2) with appropriate relation between the parameters. Roughly, the bits of

the proof orrespond to the variables (whih is why B = 2). Eah ondition heked

by the veri�er orresponds to a onstraint (thus the number of onstraints is t = 2

r

,

assuming the veri�er is non-adaptive in its queries). The number of queries q equals

the \width" w of the CSP. Finally, the aeptane probability of the veri�er on a

proof equals the fration of satis�ed onstraints in the assoiated assignment to

the variables. Thus omputing (or even approximating) the maximum number of

satis�able onstraints amounts to answering the question: Is the veri�er's aep-

tane probability greater than the ompleteness, or not? To formally, study the

orrespondene one needs to work with the notion of gapped problems.

LECTURE 1. INTRODUCTION TO PCPS 9

4.2. Gap problems

When dealing with hardness of approximations, it is useful to formulate optimiza-

tion problems as deision problems with \gaps" assoiated with them. Gap prob-

lems fall into the more general lass of \promise" problems whose instanes are

partitioned into disjoint YES, NO and Don't Care sets. The omputational ques-

tion assoiated with suh a problem is that of deiding whether a given instane

is a YES or a NO instane under the promise that the given instane is either a

YES instane or a NO instane. (In partiular, any answer on an instane from the

Don't are set is aeptable.) For CSPs, the assoiated gap problem, alled Gap

w-CSP

;s

(B) where s � , is the following:

YES instanes: 9 assignment that satis�es at least fration of the onstraints.

NO instane: No assignment satis�es s fration of the onstraints.

The orrespondene between PCP and CSP skethed above implies the follow-

ing whih we leave as an (instrutive) exerise:

Lemma 1 (Exerise). NP = PCP

1;1�"

�

O(log n); 3

�

if and only if Gap 3-CSP

1;1�"

(2)

is NP-hard.

(In proving the above, assume that NP-hardness is shown via a many-one

redution from a standard NP-omplete problem suh as SAT.)

4.3. Polynomial Constraint Satisfation

From the previous setion, to onstrut PCPs we need to prove NP-hardness of

ertain gap problems. But then this is only a restatement of the question, and to

prove NP-hardness of a gap problem, we need a CSP whose onstraints are \robust"

in the sense that either all of them an be satis�ed or at most a small fration of

them an be satis�ed. Low-degree polynomials (over �elds) have suh a robustness

property: if they are zero at \many" plaes, then are in fat zero everywhere. We

now de�ne a CSP alled Polynomial Constraint Satisfation (heneforth referred to

as PCS).

Consider a Max w-CSP(B) problem where B = F is a �nite �eld and the

number of variables n = jFj

m

for some integerm. Thus assignments to the variables

an be viewed as funtions f : F

m

! F. The PCS problem is obtained by restriting

the assignments f to be some polynomial of (total) degree at most d over F. The

formal de�nition, formulated as a gap problem follows:

Polynomial Constraint Satis�ability Gap PCS

1;"

(t;m;w; s; d; q):

Instane: Integer valued funtions m;w; s; d; q; Finite �eld F with jFj = q(t);

Constraints

~

C

1

;

~

C

2

; : : : ;

~

C

t

with eah

~

C

j

=

�

C

j

; hx

(j)

1

; : : : ; x

(j)

w(t)

i 2 F

m(t)

�

where eah C

j

: F

w(t)

! f0; 1g is a w(t)-ary onstraint over F that an be

omputed by a size s(t) algebrai iruit).

YES instanes: 9 a degree d(t) polynomial p : F

m(t)

! F suh that for all

j 2 f1; 2; : : : ; tg, C

j

�

p(x

(j)

1

); : : : ; p(x

(j)

w(t)

)

�

= 0.

NO instanes: 8 degree d(t) polynomials p : F

m(t)

! F, the number of j 2

f1; 2; : : : ; tg suh that C

j

�

p(x

(j)

1

); : : : ; p(x

(j)

w(t)

)

�

= 0 is less than "t.

For notational onveniene we will often omit the parameter t and refer tom(t); w(t),

s(t); d(t); q(t) as simply m;w; d; q.

10 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

4.4. Hardness of Gap-PCS

The following Lemma (whih will be proved in the next Leture) shows that a Gap

version of the PCS problem is NP-hard and thus forms the stepping stone for our

PCP onstrutions.

Lemma 2. For all onstants " > 0, Gap-PCS

1;"

(m;w; s; d; q) is NP-hard, for

w; s; d; q = poly log t and m = O

�

log t

log log t

�

.

First note all the good things whih the above Lemma gives us. To begin

with, we have a gap! Also by the hoie of parameters in the NP-hardness, we

have jFj

m

= poly(t) and thus the table of values of f is a reasonable proof to

ask the prover to provide. Also the veri�er an just pik a random one of the t

onstraints (whih takes only log t randomness), reading the orresponding w =

poly log t loations from the table for f and verify that the onstraint is satis�ed in

time poly(s(t)) = poly log t. Thus by Lemma 1 we seem to have our �rst non-trivial

PCP haraterization (namely NP � PCP[O(log); poly log℄). There is a aveat,

however; namely the gap (and hene the soundness of the PCP) is guaranteed only

when f is restrited to a degree d polynomial, and there is no guarantee that the

prover will oblige by onforming to this restrition. Thus we need an eÆient way

to enfore this low-degree restrition on f whih is given by low-degree tests.

5. Low-degree Testing

Ideally, we would like a low-degree test to have the following spei�ation:

Given: d 2 Z

+

; and orale f : F

m

! F

Task: Verify that f is a degree � d polynomial in time poly(m; d); i.e.,

Completeness: If deg(f) � d then aept with probability 1.

Soundness: If deg(f) > d then rejet with high probability.

The above, however, is not possible, sine, for every a 2 F

m

, one an have an f

whih disagrees with a degree d polynomial at a 2 F

m

and agrees with p everywhere

else, and thus will pass any test that only queries f at poly(m; d) plaes with high

probability. We thus need to relax the soundness ondition.

De�nition 2. Funtions f; g : F

m

! F are said to be Æ-lose if Pr

x

�

f(x) 6= g(x)

�

�

Æ when x is drawn uniformly at random from F

m

.

Low-degree Test (revised de�nition):

Given: Æ > 0, d 2 Z

+

; and orale f : F

m

! F

Task: Verify that f is lose to a degree � d polynomial; i.e.,

Completeness: If deg(f) � d then aept with probability 1.

Soundness: Rejet with high probability if f is not Æ-lose to any

degree � d polynomial.

The following result from [2℄ building upon the previous analyses in Rubinfeld and

Sudan [25℄ and Arora and Safra [3℄, shows that very eÆient low-degree testers

do indeed exist. The proof of this result is ompliated and we will not delve into

it here. We will desribe the testing algorithm fully in the seond leture. The

interested reader an �nd all details of the proof in [2℄ and the referenes ited

therein.

LECTURE 1. INTRODUCTION TO PCPS 11

Lemma 3 ([2℄). There exists a Æ

0

> 0 suh that for every Æ < Æ

0

there exists a

probabilisti solution to the low-degree test that has running time poly(m; d;

1

Æ

) and

that tosses O(m log jFj) random oins.

6. Self-orretion of polynomials

For the hoie of parameters in the hardness result of Lemma 2, it follows that the

low-degree test of Lemma 3 uses O(log t) randomness and makes poly log t queries

to the orale f . However the gap between the ompleteness and the soundness of

the low-degree test still leaves us with a problemati situation: What to do if the

prover provides as proof, a funtion that is Æ-lose to a degree d polynomial, whih

satis�es most onstraints? In this ase, we get around the problem by testing if

the degree d polynomial g that is Æ-lose to the orale f satis�es most onstraints.

But how an we get our hands an orale for g? It turns out we an implement

suh an orale, probabilistially, using the orale for f . The self-orretion problem

formalizes the task at hand; and the subsequent lemma shows how eÆiently this

problem an be solved.

Self-orretion of Multivariate polynomials:

Given: Æ > 0; d 2 Z

+

; x 2 F

m

; orale f : F

m

! F suh that f is Æ-lose to

some degree d polynomial p. (We assume Æ <

d

2jFj

so that a polynomial p

that is Æ-lose to f , if one exists, is unique.)

Task: Compute p(x).

The following result from [7℄ shows the existene of randomized self-orretors for

multivariate polynomials.

Lemma 4. There exists a randomized algorithm that solves the self-orretion prob-

lem that runs in time poly(m; d;

1

Æ

) and tosses O(m log jFj) random oins, and

outputs the right answer (for every x) with probability at least (1 � ") provided

Æ < minf

d

2jFj

;

"

d+1

g.

The proof of the above lemma is not diÆult and will be presented in the next

leture. For now we just assume this lemma for a fat and move towards the PCP

that gives us the result of Phase 1.

7. Obtaining a non-trivial PCP

Armed with Lemmas 2, 3 and 4 we an now give our �rst PCP veri�er that works

as follows. Let L 2 NP. Given x purportedly in L, the veri�er omputes (in

polynomial time) an instane � of Gap-PCS as guaranteed in the NP-hardness

result of Lemma 2. The prover supplies an orale for an assignment f : F

m

! F

(plus other auxiliary information whih may be used by the low-degree test). The

veri�ation proess proeeds as follows:

1. Run the Low-degree test from Lemma 3 on f . Rejet if the test rejets.

2. Pik a random onstraint C of � and verify that Self-orret(f) satis�es C

(where the algorithm Self-orret is obtained from Lemma 4). Rejet if not.

3. Aept otherwise.

From the statements of Lemmas 2, 3 and 4, it follows that the above veri�er

queries poly log jxj bits in the proof, tosses O(log jxj) random oins, has perfet

ompleteness = 1 and soundness s�

1

2

. We thus have our �rst step:

12 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Theorem 1. NP = PCP

�

O(log n); poly logn

�

.

The agenda for the next leture is to give further details on the proofs of Lemmas 2-

4 on the NP-hardness of Gap-PCS.

LECTURE 2

NP-Hardness of PCS

In this leture we will set out and prove the NP-hardness of Gap-PCS (Lemma 2

from previous leture) and present a self-orretor for multivariate polynomials

(Lemma 4 from previous leture) and there by omplete Phase I of the proof; i.e.,

establish NP = PCP[O(log n); poly logn℄. (For the other result, Lemma 3, on low-

degree tests, we will only present a test and and take its analysis on faith.)

1. Multivariate polynomials

All of our lemmas seem to involve polynomials, while our original goal of onstrut-

ing PCPs (seemingly) had nothing to do with polynomials. Before, plunging into

the proofs of the lemmas, it may be worth our while to see why polynomials arise

naturally in this ontext.

We �rst note a robustness property that proofs in the PCP format seem to

have. Spei�ally, if we take a valid proof (aepted with probability 1) in the

3-query PCP of, say H�astad, the proof has the property that when 1% of the bits

are ipped at random then its aeptane probability is still at least 97%. Thus

PCP proofs are speial in that they retain the power to onvine a veri�er even

when a reasonably large fration of their bits are ipped, ompletely at random.

A natural question to ask is: How does the proof develop this resiliene to error?

Turns out that a previous ontext in whih similar resiliene to error was explored

was in the ontext of information transmission over noisy hannels. This researh

led to the development of error-orreting odes. Informally, an error-orreting

ode onsists of an enoding funtion that maps a small string (message) into a

large one (odeword) suh that ipping a few bits of the odeword, still allows for

reovery of the message. Our strategy to endow the PCP proofs with redundany

will exploit the theory diretly. We will simply enode traditional proofs using well-

known error-orreting enodings and this will bring about the neessary resiliene.

However an arbitrary error-orreting ode will not suÆe for our purposes. We will

use a speial onstrution of error-orreting odes: those obtained by employing

(multivariate) polynomials over �nite �elds.

Polynomials (over a �eld) are known to have exellent error-orretion proper-

ties (in addition to their nie algebrai struture). As an example, onsider the fol-

lowing enoding of a string a

1

; : : : ; a

n

2 f0; 1g

n

. Pik a �nite �eld F of size about n

2

13

14 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

and let f be a polynomial of degree less than n suh that f(1) = a

1

; � � � ; f(n) = a

n

1

.

Note that suh a polynomial does indeed exist, and an be found be interpolation.

Then hf(x)i

x2F

is a redundant enoding of a

1

; : : : ; a

n

in the following sense: Given

the value of f at any subset of F of size n, we an interpolate to �nd f and thus

the oeÆients a

1

; : : : ; a

n

. The original string an be reonstruted even if

jF�nj

2

of the symbols in its enoding are in error.

Codes based on univariate polynomials gives robustness against a huge fration

of errors and is extremely eÆient in this sense. For our purposes the primary

disadvantage of these odes is that to enode an n-bit string, it needs degree
(n).

In partiular, this implies that any version of the Low-degree test would need to

query the value of any funtion f at
(n) plaes at the very least, before being able

to onlude that the given funtion is not a degree n polynomial.

To get better low-degree tests, one needs to �nd funtions whose algebrai

degree is somehow smaller than the number of degrees of freedom that the funtion

exhibits. Bivariate polynomials already exhibit better tradeo�s. For example we

may pik a �eld F of ardinality � n and pik a polynomial f in two variables

x and y of degree at most

p

n in eah suh that the value of f at the points

f(i; j)j0 � i �

p

ng orrespond to the values a

1

; : : : ; a

n

2 f0; 1g. (Again, one needs

to verify that suh an f exists, and an be found. This task is left to the reader as

an exerise.) Now the sequene hf(x; y)i

x;y2F

forms another redundant enoding of

the string a

1

; : : : ; a

n

.

We an now generalize this idea further to m-variate polynomials over a large

enough �eld F as follows: Pik a subset H � F of size n

1=m

so that the information

a

1

; : : : ; a

n

an be viewed as a funtion a : H

m

! f0; 1g. In this ase, it an be shown

(again left as an exerise to the reader) that there exists an m-variate polynomial

f of degree less than jH j in eah variable suh that f(x) = a(x) for eah x 2 H

m

.

Now enode a by hf(x)i

x2F

m

. This onstrution will be invoked often in the sequel,

and it will be useful to give it a name | we all f the low-degree extension of a.

The redundany of this enoding follows by the following lemma, referred to in the

omputer siene literature as the Shwartz-Zippel lemma.

Lemma 5. For every integer m, d, �eld F and �nite subset S � F, if P : F

m

! F is

a non-zero polynomial of total degree at most d, then the probability that P (x) = 0,

when x is hosen uniformly at random from S

m

, is at most d=jSj.

The lemma is easy to prove by indution on the number of variables and we

skip the proof.

For our appliation to PCS, we will pikm(n) = O(

logn

log logn

) and jH j = poly logn.

Thus the degree of the low-degree extension of a is poly logn (whih is good) and

we an work with a �eld F of size poly logn and still have jFj

m

= poly(n) so that

the size of enoding is polynomial in n.

1

Note that we are abusing notation by using integers to represent elements of the �nite �eld. We

do so only for notational onveniene.

LECTURE 2. NP-HARDNESS OF PCS 15

2. Hardness of Gap-PCS

2.1. Arithmetizing 3-SAT

We will establish the NP-hardness of Gap-PCS by reduing from 3-SAT. We begin

by desribing the powerful idea of arithmetizing 3-SAT whih is at the heart of the

redution.

An instane � of 3-SAT onsists of n variables and t lauses C

1

; : : : ; C

t

where

eah lause C

j

is of the form

�

x

i

1

= b

1

or x

i

2

= b

2

or x

i

3

= b

3

�

where eah b

j

2

f0; 1g. We �nd it onvenient to view � as an indiator funtion � : f1; 2; : : : ; ng

3

�

f0; 1g

3

! f0; 1g where �(i

1

; i

2

; i

3

; b

1

; b

2

; b

3

) = 1 exatly if the lause

�

x

i

1

=

b

1

or x

i

2

= b

2

or x

i

3

= b

3

�

is present in the instane �.

To arithmetize �, we begin by piking h;m where h = poly logn and m =

O(log n= log logn) suh that h

m

= n. Now, set H = f1; 2; : : : ; hg and identify

f1; : : : ; ng with H

m

in some anonial way. Extending f0; 1g to H , the instane �

an be viewed as a funtion � : H

`

! f0; 1g where ` = 3m+ 3 (we set �(� � �) = 0

if the arguments do not make sense).

In this language, 3-SAT an be restated as follows: we want an \assignment"

a : H

m

! f0; 1g suh that 8i

1

; i

2

; i

3

2 H

m

and 8b

1

; b

2

; b

3

2 H ,

�(i

1

; i

2

; i

3

; b

1

; b

2

; b

3

) = 0 or a(i

1

) = b

1

or a(i

2

) = b

2

or a(i

3

) = b

3

:

Let F be a �eld that ontains H and let

^

� and A be low-degree extensions of �

and a respetively. Now the \proof" of satis�ability is an m-variate polynomial (of

degree h in eah variable) A : F

m

! F and the goal of the veri�er is to hek that

for all z = hi

1

; i

2

; i

3

; b

1

; b

2

; b

3

i 2 H

`

,

^

�(z) � (A(i

1

)� b

1

) � (A(i

2

)� b

2

) � (A(i

3

)� b

3

) = 0 :(1)

It is easy to see that suh an m-variate polynomial A exists i� � is satis�able.

Thus if we onsider the instane of the PCS problem, onsisting of t = jH j

`

on-

straints of the form (1) for every z 2 H

`

, we obtain an instane of the PCS problem

for whih it is NP-hard to deide if all onstraints are satis�able or not. Thus we

have the NP-hardness of a PCS problem. However, there is no gap in the number

of onstraints (1) that an be satis�ed.

2.2. Making Constraints Robust

We now show how to make the onstraints above robust, i.e., transform them

into a di�erent olletion in whih either all of them an be satis�ed, or few an

be satis�ed. To this end we de�ne an `-variate polynomial

~

P

0

as follows: 8z =

hi

1

; i

2

; i

3

; b

1

; b

2

; b

3

i,

~

P

0

(z)

def

=

^

�(z) � (A(i

1

)� b

1

) � (A(i

2

)� b

2

) � (A(i

3

)� b

3

) :(2)

Sine

^

� and A have degree at most jH j in eah variable,

~

P

0

(z) is an `-variate

polynomial of degree at most 2jH j in eah variable and thus has (total) degree at

most 2`jH j. Let us assume that the prover gives not only the polynomial A, but

also a polynomial P

0

(of degree at most 2`jH j) that is supposedly

~

P

0

. The goal of

the veri�er is now to hek the onstraints

1. (C0): 8z 2 F

`

P

0

(z) =

~

P

0

(z) (note that the veri�er an eÆiently ompute

^

�(z) and thus also

~

P

0

(z) one it is given the assignment polynomial A).

2. (C0

0

) 8z 2 H

`

P

0

(z) = 0.

16 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Sine both P

0

and

~

P

0

are low-degree polynomials (they have degree at most

2`jH j), the onstraints (C0) are robust (either all of them are satis�ed or a small

fration (at most

2`jHj

jFj

: see lemma below) of them are satis�ed.

Lemma 6. If P

0

,

~

P

0

are degree d polynomials that violate (C0) for some z, then

they violate (C0) for at least

�

1�

d

jFj

�

fration of the z's.

Proof: Follows from the Shwartz-Zippel Lemma applied to P

0

�

~

P

0

sine a degree

d polynomial is zero on at most

d

jFj

fration of the domain.

The onstraints (C0

0

) are not robust, sine it is possible for a degree 2`jH j

polynomial to be zero on all but one point of H

`

. Our idea would be to inrease the

size of the domain on whih we would like the polynomial to be zero. Spei�ally we

will de�ne a sequene of (low-degree) polynomials P

1

; P

2

; : : : ; P

`

suh that P

1

= 0

over F � H

`�1

i� P

0

= 0 over H

`

, and similarly for 1 < i � `, P

i

= 0 over

F

i

�H

`�i

i� P

i�1

= 0 over F

i�1

�H

`�i+1

. Hene P

`

will be identially zero on

F

`

i� P

0

(z) = 0 8z 2 H

`

. Eah of these onstraints (and in partiular P

`

(z) = 0

8z 2 F

`

are all robust onstraints and this will give us the desired \gap" in the

PCS instane.

As a motivation for de�ning these polynomials, let us �rst look at an analogous

transformation for univariate polynomials. Let fh

1

; h

2

; : : : ; h

jHj

g be an enumeration

of the elements of H . Given a univariate polynomial p 2 F[X ℄, de�ne a polynomial

q by:

q(y) =

jHj

X

j=1

p(h

j

)y

j

:

Clearly, if p(h) = 0 for all h 2 H , the q � 0. Conversely, if p

jH

6� 0, then q is some

non-zero polynomial of degree at most jH j and so is non-zero on at least jF n H j

points. Thus q is identially zero on F i� p is identially zero on H .

In the multivariate ase, we will apply the above transformation, one in eah

variable. Starting with a polynomial P

0

in formal variables (x

1

; x

2

; : : : ; x

`

), we will

obtain a sequene of polynomials

P

1

(y

1

; x

2

; : : : ; x

`

)

P

2

(y

1

; y

2

; x

3

; : : : ; x

`

)

.

.

.

P

i

(y

1

; y

2

; : : : ; y

i

; x

i+1

; : : : ; x

`

)

.

.

.

P

`

(y

1

:y

2

; : : : ; y

`

)

where eah transition from an x-variable to a y-variable follows the sheme desribed

above for univariate polynomials, namely, for 1 � i � `, de�ne

P

i

(y

1

; : : : ; y

i

; x

i+1

; : : : ; x

`

) =

jHj

X

j=1

P

i�1

(y

1

; : : : ; y

i�1

; h

j

; x

i+1

; : : : ; x

`

)y

j

i

:(3)

Note that if P

i�1

has degree d

i�1

, then the degree d

i

of P

i

is at most d

i�1

+ jH j.

Sine P

0

has degree at most 2`jH j, the degree of eah P

i

for i 2 f0; 1; : : : ; `g is

learly at most 3`jH j. By the same reasoning as in the univariate ase, we have

P

i

jF

i

�H

`�i � 0() P

i�1

jF

i�1

�H

`�i+1 � 0 :

LECTURE 2. NP-HARDNESS OF PCS 17

(By our de�nitions, we have

P

`

(y

1

; : : : ; y

`

) =

X

1�i

1

;i

2

;:::;i

`

�jHj

P

0

(h

i

1

; : : : ; h

i

l

)y

i

1

1

� � � y

i

`

`

:

and this is another way of verifying that P

`

� 0 on F

`

i� P

0

is identially zero on

H

`

.)

2.3. The Gap-PCS instane

We are now ready to desribe the onstraints of our Gap-PCS instane. Given a

3-SAT instane �, onsider the following (polynomial) onstraint satisfation prob-

lem: The required \solution" onsists of polynomials A;P

0

; P

1

; : : : ; P

`

where A is

an m-variate polynomial of degree at most mjH j and P

0

; : : : ; P

`

are `-variate poly-

nomials of degree at most 3`jH j. The \onstraints" plaed on the polynomials are

the following.

For all z = (z

1

; : : : ; z

`

) 2 F

`

:

(C0): P

0

(z) =

~

P

0

(z) where

~

P

0

(z) is de�ned based on � and A : F

m

! F as in

Equation (2).

For i = 1; 2; : : : ; `,

(Ci): P

i

(z

1

; : : : ; z

i

; z

i+1

; : : : ; z

`

) =

P

jHj

j=1

P

i�1

(z

1

; : : : ; z

i�1

; h

j

; z

i+1

; : : : ; z

`

)z

j

i

(the ondition from Equation (3) at the point z).

(C(`+ 1)): P

`

(z) = 0.

By the \robustness" of all these onstraints (see Lemma 6 above), we have the

following:

Lemma 7. If P

0

; : : : ; P

`

and

~

P

0

are polynomials of degree at most d, then for eah

set of jFj

`

onstraints (Ci), 0 � i � `+1, either all of them are satis�ed or at most

a fration (d+ jH j)=jFj of them are satis�ed.

Proof: Follows from Lemma 6 sine all polynomials involved in the onstraints

have degree at most d+ jH j.

Bundling polynomials into a single polynomial. Note that in a PCS instane

the \solution" asked for is a single low-degree polynomial, where as in the above

we have several polynomials (A;P

0

; : : : ; P

`

) involved in the onstraints. There is a

simple trik to handle to this: we just require that all the polynomials be \bundled

together" and presented as a single degree D = (3`jH j + ` + 1) polynomial Q :

F

`+1

! F suh that for 0 � i � `, Q(i; � � �) = P

i

(� � �) and Q(`+ 1; hz

1

; : : : ; z

`

i) =

A(z

1

; : : : ; z

m

). The existene of suh a polynomial is guaranteed by the following

Lemma:

Lemma 8. Given polynomials q

0

; : : : ; q

t

: F

`

! F over a �nite �eld F with jFj > t,

eah of (total) degree at most �, there exists a degree �+t polynomial Q : F

`+1

! F

suh that for i = 0; 1; : : : ; t and all z 2 F

`

, Q(i; z) = q

i

(z).

Proof: For eah i 2 f0; 1; : : : ; tg, there is a unique univariate polynomial Æ

i

of

degree t suh that

Æ

i

(v) =

�

1 if v = i

0 if 0 � v � t but v 6= i.

18 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Now de�ne the polynomial Q as

Q(v; z) =

t

X

i=0

Æ

i

(v)q

i

(z) :

Clearly Q(i; � � �) � q

i

(� � �) for eah i 2 f0; 1; : : : ; tg.

Suppose suh a polynomial Q is given (as a solution to the PCS instane on-

struted from �). We wish to desribe the onstraints of the PCS instane. First

we make expliit the de�nition of a polynomial P

0

0

from Q that will serve the role of

~

P

0

from de�nition (2). For z = hz

1

; : : : ; z

`

i 2 F

`

where ` = 3m+3, P

0

(z) is de�ned

as:

P

0

0

(z)

def

=

^

�(z) �

�

Q(`+ 1; hz

1

; : : : ; z

m

; 0; : : : ; 0i)� z

3m+1

�

�

�

Q(`+ 1; hz

m+1

; : : : ; z

2m

; 0; : : : ; 0i)� z

3m+2

�

(4)

�

�

Q(`+ 1; hz

2m+1

; : : : ; z

3m

; 0; : : : ; 0i)� z

3m+3

�

Note that P

0

0

has total degree at most 10`jH j+ 3`+ 3 < 11`jH j.

Summarizing the redution from SAT to PCS. We are now ready to sum-

marize the redution T

3SAT!PCS

whih maps instanes of 3SAT to PCS: Given an

instane � of 3SAT, the reduing algorithm sets m =

logn

log logn

and sets h = n

1=m

,

and ` = 3m+ 3. It then piks a �eld F of suÆiently large size, say q � h

3

. (The

hoie of 3 in the exponent is somewhat arbitrary. We will need q � mh and q � h

3

suÆes for our purpose.) It then omputes the funtion

^

� : F

`

! F, and using this,

it generates t = jFj

`

onstraints (C)(z), one for every z 2 F

`

. The onstraint for z

is:

(C)(z) =

`+1

^

i=0

(Ci)(z)

where (Ci) are the onstraints desribed earlier in this setion. The main exeption

is that these onstraints are de�ned over a single polynomial Q : F

`+1

! F, and

thus every ourene of P

i

(�), 0 � i � ` + 1 is replaed with Q(i; �). Similarly

instead of the polynomial

~

P

0

one uses the polynomial P

0

0

de�ned in Equation (4).

All polynomials involved in onstraints (C)(z) have degree at most 11`jH j, and

hene we get by Lemma 6 that, for any degree D polynomial Q, either all the

onstraints (C)(z) are satis�ed or at most a fration 11`jH j=jFj of the onstraints

are satis�ed. By hoie of jFj this fration is a o(1) funtion and thus is smaller

than �, for any � > 0, for suÆiently large n.

2.4. The hardness result

From the disussion in the preeding paragraph, we an now onlude:

Lemma 9. For every � > 0, the redution T

3SAT!PCS

maps an instane � to an

instane of PCS with m = O(log n= log logn) and w; d; q = poly logn suh that the

following onditions are satis�ed:

Completeness: If � is satis�able, then there exists a polynomial Q of degree

at most d that satis�es all the onstraints.

Soundness: If there exists a polynomial Q of degree at most D that satis�es

more than an �-fration of the onstraints, then � is satis�able.

LECTURE 2. NP-HARDNESS OF PCS 19

Proof: The ompleteness is lear sine we an just take Q to be the polynomial

suh that Q(` + 1; �) = A, Q(0; �) �

~

P

0

(�) (where

~

P

0

is de�ned in Equation (2))

and Q(i; �) = P

i

(�) (where P

i

is de�ned as in Equation (3)) for 1 � i � `. For the

soundness, we know by the disussion at the end of the previous subsetion, that if

more than an �-fration of the onstraints are satis�ed, then in fat all of them are

satis�ed. This in turn implies that

~

P

0

(�) = Q(0; �) is identially zero on H

`

, whih

implies that the assignment A

def

= Q(`+ 1; �) satis�es �.

Note that by the hoie of the parameters, we have m = O(log n= log logn) and

w; d; q = poly logn as required. Finally, for eah z 2 F

l

, the onstraint (C)(z) an

be heked in polylogarithmi time. We have thus proved the �rst of the lemmas

from last leture that we set out to prove:

Lemma 2: For all onstants " > 0, Gap-PCS

1;"

(m;w; s; d; q) is NP-hard, for

w; s; d; q = poly log t and m = O

�

log t

log log t

�

.

3. Low-degree Testing

Reall the following Lemma from the previous leture:

Lemma 3: There exists a Æ

0

> 0 suh that for every Æ < Æ

0

there exists a proba-

bilisti solution to the low-degree test that has running time poly(m; d;

1

Æ

) and that

tosses O(m log jFj) random oins.

We will not be able to prove the above lemma, but we will present the testing

algorithm whih has the properties laimed in the lemma. The idea behind the test

is the following: For x; y 2 F

m

, de�ne f

x;y

(t) = f(x + ty) (i.e., f

x;y

is f restrited

to the \line" passing through x with slope y). If f is a degree d polynomial, then

for every x; y 2 F

m

, f

x;y

is a (univariate) polynomial of degree d, and in fat the

onverse also holds. This suggests the following test:

Pik random x; y and verify that f

x;y

is a degree d polynomial.

We in fat onsider the following weaker test Low-Deg-Test:

� Pik x; y 2 F

m

and t 2 F at random.

� Ask prover for (the at most (d+ 1)) oeÆients of the \polynomial" f

x;y

� Verify that f

x;y

(t) = f(x+ ty).

The following theorem [25, 3, 2℄ shows that the above test indeed satis�es the

onditions of Lemma 3.

Theorem 2. Consider the test Low-Deg-Test spei�ed above.

1. Easy part: If f is a degree d polynomial, then there exist responses f

x;y

suh

that Low-Deg-Test always aepts.

2. Hard part: There exists a onstant Æ

0

> 0 suh that for all m; d; F, if f is any

funtion suh that there exist responses f

x;y

that make Low-Deg-test rejet

with probability Æ � Æ

0

, then f is 2Æ-lose to some degree d polynomial.

4. Self-orretion

We now move to the third and �nal omponent we need to omplete our �rst PCP

haraterization (NP = PCP[O(log n); poly logn℄), namely self-orretion. Reall

the problem de�nition:

20 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Given: Æ > 0; d 2 Z

+

; x 2 F

m

; orale f : F

m

! F suh that f is Æ-lose to

some degree d polynomial p. (We assume Æ <

d

2jFj

so that a polynomial p

that is Æ-lose to f , if one exists, is unique.)

Task: Compute p(x).

We will prove:

Lemma 4: There exists a randomized algorithm that solves the self-orretion

problem that runs in time poly(m; d; log

1

�

) and tosses O(m log jFj) random oins,

and outputs the right answer (for every x) with probability at least (1� ") provided

Æ <

d

2jFj

.

Proof: Consider the following self-orretion proedure. Given x 2 F

m

and orale

for f whih is Æ-lose to a polynomial p, ompute p(x) as follows:

1. Pik y 2 F

m

at random.

2. Query f(x + y), f(x + 2y); � � � ; f(x + (d + 1)y) and let b

1

; : : : ; b

d+1

be the

responses.

3. Find, by interpolation, a degree d (univariate) polynomial h suh that h(i) =

b

i

for 1 � i � d+ 1.

4. Output h(0) as the value of p(x).

Note that the algorithm tosses O(m log jFj) random oins, probes f in d+1 plaes

and runs in time polynomial in m; d. It remains to prove the orretness of

the proedure. If f is a degree d polynomial, then the output is learly or-

ret. But f is only Æ-lose to a degree d polynomial p. However, for every

i, 1 � i � d + 1, x + iy is a random point in F

m

(we are ignoring the pos-

sibility that y = 0 here, but this happens with negligible probability). Thus,

Pr

y

[f(x + iy) 6= p(x + iy)℄ � Æ by the de�nition of Æ-loseness. Hene, by the

union bound, Pr

y

[9i; f(x + iy) 6= p(x + iy)℄ � (d + 1)Æ whih is at most " sine

Æ < "=(d+ 1). Thus, with probability at least (1� "), b

1

; : : : ; b

d+1

are the \right"

values of p(x + y); : : : ; p(x + (d + 1)y) and thus the interpolation step orretly

omputes p(x).

This ompletes the proof of the PCP haraterization NP = PCP[O(log n); poly logn℄.

(Reall that the easier diretion of the ontainment was already shown in Se-

tion 2.2.) This ompletes Phase 1 of our goals.

LECTURE 3

A ouple of digressions

We now move on Phase 2 of the proof of the PCP Theorem. We will approah

this phase somewhat tangentially. In this leture, we will show two results, that will

essentially be digressions for now, and then linked to Phase 2 in the �nal leture.

The �rst result will be an \MIP" haraterization of NP. We will show how the

PCP veri�er of Phase 1 an be modi�ed into an MIP veri�er that \aggregates" the

poly logn queries of the PCP veri�er into a onstant number of queries that it will

send to multiple (mutually non-interating) provers that respond with poly logn

bits eah. While the advantage of this modi�ation will be unlear for now, we

will exploit this MIP veri�er in the �nal leture. The seond result will give a

highly query-eÆient PCP veri�er for NP: spei�ally we will prove that NP =

PCP[poly(n); O(1)℄. Note that this veri�er just makes a onstant number of queries

(as is our �nal goal), however that the randomness used by the veri�er is very large.

Part I: Multiprover Interative Proofs (MIP)

The informal question behind the de�nition of MIP is the following: What

an a probabilisti veri�er interating with p non-ommuniating provers verify, if

allowed to ask one question to eah prover? More formally, we have the following

de�nition:

De�nition 3. For an integer p and integer valued funtions r; a : Z

+

! Z

+

, a

(p; r; a)-restrited MIP veri�er is a probabilisti veri�er that tosses r(n) oins, asks

one question to eah of p provers and reeives a(n)-bit answers, on inputs of length

n.

We an now de�ne MIP lasses similar to PCP lasses.

De�nition 4. For an integer p and integer valued funtions r; a : Z

+

! Z

+

, a

language L is said to be in MIP

;s

[p; r; a℄ if there is a (p; r; a)-restrited MIP veri�er

that heks x 2 L with ompleteness and soundness s.

A p-prover MIP is also alled a p-prover 1-round protool, sine there is only

one round of veri�er-prover interation. A few omments on the MIP model. MIP

seems to be a natural model within the ontext of interative proofs. It is more

restritive than PCP as MIP

;s

[p; r; a℄ � PCP

;s

[r; pa℄ (sine the responses of the

21

22 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

p provers an be written down as one big proof, and the veri�er will query pa(n)

bits from this proof), and thus good MIP onstrutions suÆe to onstrut good

PCPs. We will now do the opposite and show how to overt a PCP into a MIP

(with some loss in parameters), and this will be a entral intermediate step in our

goal of proving the PCP Theorem.

1. A 3-prover MIP for NP

We will onstrut a 3-prover MIP from the PCP[O(log n); poly logn℄ veri�er of

Phase 1. To do this, let us �rst reall how the veri�er worked (at a high level).

The veri�er is based on a hard instane of PCS with a \gap". It expets as proof

a low-degree polynomial expressed as a table of values f : F

m

! F, and a \lines

orale" f

lines

that it uses for performing a low-degree test. Given aess to orales

for f and f

lines

, the veri�er worked in two steps:

1. Perform a low-degree test on f .

2. Pik a random onstraint of the PCS instane and hek it is satis�ed by

the self-orreted version of the orale f .

The �rst step above is already strutured as a 2-prover 1-round protool: The

veri�er asks one prover for the value of f at a point and a seond prover for the

oeÆients of the polynomial f

x;y

for a line `

x;y

= fx + ty : t 2 Fg for some

x; y 2 F

m

. The seond step, however, queries the table f in many plaes, and we

somehow need a way to \aggregate" these queries into one \big" query.

1.1. Parallelization: Reonstrution via urves

Suppose we need to query f : F

m

! F at w plaes x

1

; : : : ; x

w

. In this setion we will

show how to �nd the value of f at all these points orretly, with high probability,

using only a onstant number of queries to two provers. This solution will work

using the \algebrai" and \randomness" properties of \urves" in m-dimensional

spae (where all terms in quotes will be explained later). Using suh urves, our

strategy an be desribed at a high-level as follows: We will pik a random urve

C through x

1

; : : : ; x

w

and ask a third prover for a desription of the funtion f on

the entire urve C. Denote this restrition by f j

C

. If the prover responds honestly

with f

jC

we are in good shape, while if it responds with a wrong polynomial h,

then we will show that a random point we will have f(C(t)) 6= h(t) and we will be

able to detet this.

We now de�ne what we mean by a \random urve" in F

m

. A urve is simply a

funtion C : F ! F

m

. Note that this urve an be onsidered to be a olletion of

m funtions C

i

: F ! F, where C(t) = hC

1

(t); : : : ; C

m

(t)i. We an now de�ne the

degree of a urve: The degree of C is simply the maximum of the degrees of the

funtions C

i

; i.e., deg(C) = max

i

deg(C

i

).

Curves of low-degree turn out to be useful for this setion, and the following

proposition asserts that urves of reasonably small degree do exist passing through

any small set of points. (The proof is omitted, but an be easily seen to be a

onsequene of the interpolation theorem for univariate polynomials.)

Proposition 1. For any set of (w

1

) points x

0

; x

1

; : : : ; x

w

2 F

m

, there exists a

unique degree w urve C with C(j) = x

j

for j = 0; 1; : : : ; w.

LECTURE 3. A COUPLE OF DIGRESSIONS 23

A \random urve" through x

1

; : : : ; x

w

is de�ned to the urve from the above

proposition for a random value of x

0

2 F

m

. The reason we label suh a urve to be

random, is that most points on this urve (all exept the ones that are expliitly

determined) are randomly distributed (though not independently so) over F

m

. This

is laimed in the next proposition.

Proposition 2. For every x

1

; : : : ; x

w

2 F

m

, if x

0

2 F

m

is piked at random and

C is the unique degree w urve suh that C(j) = x

j

for 0 � j � w, then for any

t =2 f1; : : : ; wg, C(t) is a random point in F

m

.

Reall that our intention is to ask a (third) prover for a desription of the

funtion f j

C

for some urve C. How does the prover desribe this funtion f j

C

?

Turns out that for low degree polynomial funtions, their restrition to a low-degree

durve is still a low-degree polynomials. This is asserted in the next lemma.

Lemma 10. If P : F

m

! F is a degree d polynomial and C : F ! F

m

is a degree

w urve, then P

jC

(de�ned by P

jC

(t) = P (C(t))) is a univariate polynomial over F

of degree wd.

Proof. Follows by susbstituting for eah variable x

i

ouring in the polynomial P ,

the polynomial C

i

(t).

1.2. The 3-prover MIP

We are now ready to present the promised 3-prover MIP for NP in full detail.

Input: An instane of Gap-PCS

1;"

(t;m;w; s; d; q)

Provers: There will be 3 provers �

1

, �

2

, �

3

. We will also refer to the �

i

's as

proofs or orales: the \proof" orresponding to a prover simply onsists of all the

responses of that prover to the various questions it might be asked. The proof �

1

will omprise of the values of the purported \polynomial" P that is a solution to

the Gap-PCS instane. �

2

will be the \lines orale" used to perform the low-degree

test, and �

3

will be the \urves orale" used to perform the parallelization step.

The veri�er operates as follows:

� [Random Choies:℄

1. Pik a onstraint C

j

of the Gap-PCS instane at random.

2. Pik a random urve C through the w points x

1

; : : : ; x

w

2 F

m

that C

j

depends on. (Do this by piking a random x

0

2 F

m

and determining

the unique degree w urve C suh that C(j) = x

j

for j = 0; 1; : : : ; w.)

3. Pik a random point x on C by piking a random t

0

2 F �f0; : : : ; wg

and setting x = C(t

0

).

4. Pik a random line ` through x (i.e., pik y 2 F

m

at random and

random t

00

2 F and set ` = fx+ (r � t

00

)y : r 2 Fg).

� [Queries:℄

1. Queries �

1

for the value P (x); let response be a 2 F.

2. Queries �

2

for the polynomial P

j`

x;y

; let g be the (degree d univariate)

polynomial obtained as response.

3. Queries �

3

for the degree wd polynomial P

jC

; let h be the response.

� [Ation (Aept/Rejet):℄

{ Rejet unless g(t

00

) = h(t

0

) = a.

{ Rejet if hh(1); h(2); : : : ; h(w)i 2 F

w

does not satisfy the onstraint

C

j

.

24 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

{ Aept otherwise.

1.3. Analysis

Presenting the analysis of the above (3-prover) MIP in full rigor with proper hoie

of the several parameters involved will take too long; we therefore only sketh the

main ideas in the analysis. The reader is referred to [2℄ for a rigorous proof.

Completeness: It is lear that if the Gap-PCS instane is satis�able, say by a

low-degree polynomial P

0

, then �

1

= P

0

and �

2

, �

3

de�ned as the restritions

of P

0

to lines and degree w urves respetively, will always satisfy the tests of the

veri�er. We thus have perfet ompleteness = 1.

Soundness: Suppose we have a NO instane of Gap-PCS as input to the MIP

veri�er, i.e., any degree d m-variate polynomial P satis�es at most an " fration

of the t onstraints. Let

~

P be the response of �

1

; if

~

P is not Æ-lose to a degree

d polynomial, then by the Lemma on low-degree testing from last leture, we will

have g(t

00

) 6= a (reall that a

def

=

~

P (x)) with probability at least Æ=2, and thus the

veri�er will rejet with probability at least Æ=2.

Now suppose

~

P is Æ-lose to a (unique) degree d polynomial P . Sine we have

a NO instane of Gap-PCS, with probability at least (1 � "), the veri�er piks a

onstraint C

j

that is not satis�ed by P . Now two ases arise:

� If h = P

jC

, then hh(1); : : : ; h(w)i = hP (x

1

); : : : ; P (x

m

)i and thus does not

satisfy the onstraint C

j

, and the veri�er rejets in this ase.

� If h 6= P

jC

, then sine both h; P

jC

are degree wd polynomials, h(t

0

) 6=

P (x) with probability at least

�

1�

wd

jFj�w�1

�

by the Shwartz-Zippel Lemma

(sine t

0

is a random element of F � f0; : : : ; wg). Also P;

~

P are Æ-lose, so

P (x) =

~

P (x) with probability at least (1�Æ). Thus with probability at least

(1� Æ�wd=(jFj �w � 1)), we will have h(t

0

) 6= a and the veri�er will rejet.

From the preeding disussion, there is a onstant > 0, suh that the veri�er

rejets NO instanes of Gap-PCS with probability at least , and this gives our

desired MIP haraterization:

Theorem 3 ([2℄). There exists > 0 suh that

NP � MIP

1;1�

�

3; O(log n); poly logn

�

:

Part II: A Query-eÆient PCP Veri�er

We now turn to giving a highly query-eÆient PCP veri�er for NP. The veri�er

will only read O(1) bits from the proof. On the down side, it will use polynomial

randomness, and reduing the randomness to logarithmi while retaining the query

omplexity at O(1) will be the subjet of the next leture.

2. NP � PCP[poly; O(1)℄

2.1. Quadrati Polynomials

Just as in the ase of Gap-PCS, we will �rst show (sketh) the NP-hardness of an

algebrai problem, namely \Satis�ability of quadrati polynomials" QP-SAT whih

tests if a set of multivariate degree two polynomials (over F

2

), say P

1

; : : : ; P

t

, have

LECTURE 3. A COUPLE OF DIGRESSIONS 25

a ommon zero. This problem will form the basis of our new PCP veri�er. We �rst

formally de�ne the QP-SAT problem:

QP-SAT (Satis�ability for Quadrati Polynomials)

Instane: t quadrati (degree 2) polynomials P

1

; : : : ; P

t

on n variables x

1

; : : : ; x

n

over F

2

.

Question: Do these polynomials have a ommon zero? I.e., is there an assignment

a = (a

1

; : : : ; a

n

) to x

1

; : : : ; x

n

suh that P

j

(a) = 0 for j = 1; 2; : : : ; t.

Lemma 11. QP-SAT is NP-omplete.

Proof: The problem is learly in NP sine, for Yes instanes, we an guess

(a

1

; : : : ; a

n

) and then verify that it is indeed a ommon zero. To prove NP-hardness,

we redue from Ciruit Sat. An instane of Ciruit Sat onsists of a Boolean

iruit C omprising of Not gates and And, Xor gates of fan-in two, and the

goal is to deide if C has a satisfying input. It is well-known that Ciruit Sat is

NP-omplete.

To redue Ciruit Sat to QP-SAT, we introdue one variable x

i

for eah

input and for eah gate of the iruit. We plae a onstraint for eah gate of the

iruit whih enfores that the output of that gate is onsistent with its inputs and

the operation of the gate. For example, for an And gate with assoiated variable

x

j

that reeives its inputs from the gates assoiated with variables x

i

1

and x

i

2

, we

would plae the onstraint x

j

� x

i

1

x

i

2

= 0. Similar onstraints are plae for Xor

and Not gates. We also plae a onstraint orresponding to the output gate whih

fores it to equal 1 (so C is satis�ed). Note that these onstraints hek for the

existene of a ommon zero of ertain degree 2 polynomial, and it is easy to see

that a ommon zero exists for these polynomials if and only if C was satis�able.

This ompletes the proof.

2.2. Intuition for the Veri�er

Given an instane of QP-SAT the veri�er must hek that all there exists a suh

that P

j

(a) = 0 for all j = 1; 2; : : : ; n. For now, pretend there were only one

polynomial P (we will see how the many polynomials ase redues to this situation

later). Sine P is a degree two polynomial, it is of the form:

P (x

1

; : : : ; x

n

) = s

0

+

n

X

i=1

s

i

x

i

+

X

1�i;j�n

ij

x

i

x

j

:(5)

where s

0

; s

1

; : : : ; s

n

and the

ij

's are all elements of F

2

. We would like to hek

that P (a

1

; : : : ; a

n

) = 0; sine we want to read very few bits from the proof, just

asking the prover to provide a

1

; : : : ; a

n

will not work for us. Instead we will ask the

prover to write down an appropriate enoding of a

1

; : : : ; a

n

. Considering the form

of P , enoding a

1

; : : : ; a

n

using the Hadamard ode and the Quadrati funtions

ode will be useful, and we turn to the desription of these odes next.

2.3. Hadamard and Quadrati Funtions Code

The Hadamard Code: The Hadamard ode is the most redundant linear ode

and onsists of the evaluations of all linear funtions at the message that is being

enoded. More formally, given a string (a

1

; : : : ; a

n

) 2 F

n

2

, de�ne A : F

n

2

! F

2

as

A(x)

def

=

P

n

i=1

a

i

x

i

. The Hadamard enoding of a is simply hA(x)i

x2F

n

2

. Note that

26 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

a message of length n is enoded into 2

n

bits under the Hadamard ode. It is easy

to prove that the Hadamard enodings of distint strings di�er in exatly half the

bits.

Given the Hadamard enoding A of (a

1

; : : : ; a

n

), we an ompute the lin-

ear funtion

P

n

i=1

s

i

a

i

by just one query into A, sine

P

n

i=1

s

i

a

i

= A(s) for

s = (s

1

; : : : ; s

n

) 2 F

n

2

. Sine we are interested in evaluating some degree two

polynomial P at (a

1

; : : : ; a

n

), we will need a more redundant enoding that also

inludes values of quadrati funtions, and thus one uses the Quadrati funtions

ode.

The Quadrati Funtions Code: Given a

1

; a

2

; : : : ; a

n

, the quadrati funtions

ode (heneforth, QF-ode), enodes it by the 2

n

2

long string hQ(a)i

Q

where Q

ranges over all homogeneous degree 2 polynomials over F

2

. Note that suh a poly-

nomial is spei�ed by n

2

�eld elements Q

ij

, where Q(x) =

P

i;j

Q

ij

x

i

x

j

. We

denote by B the QF-enoding of a

1

; : : : ; a

n

, and B de�nes a map F

n

2

2

! F

2

by

B(Q) = B(Q

11

; : : : ; Q

nn

) =

P

i;j

Q

ij

a

i

a

j

.

2.4. The \Proof"

The QP-SAT veri�er will expet as proof the Hadamard and QF-enodings of a

ommon zero a = (a

1

; : : : ; a

n

) of the quadrati polynomials P

1

; : : : ; P

t

in the QP-

SAT instane. Note that for any degree 2 polynomial P as in Equation (5), the

veri�er an hek P (a) = 0 by reading A(s) and B() from the A and B tables,

thereby just making two queries. Of ourse, we have no guarantee that the proofs

will be legal Hadamard and QF-enodings of a, and therefore as in multivariate

polynomials ase, we need a Testing proedure (alled \Linearity Testing" in the

literature) and Self-orreting proedure for the Hadamard and QF-odes.

2.5. Self-orreting the Hadamard and QF-odes

We �rst deal with self-orretion sine, as in the low-degree polynomial ase, this

is muh easier than testing. We will present a self-orretion algorithm for the

Hadamard ode, and the extension to the QF-ode is ompletely straightforward.

Note that Hadamard ode is simply the enoding using multi-linear polynomial

ode, and the reader an verify that the algorithm below is in fat the same as the

one for self-orreting multivariate polynomials speialized to the multi-linear ase.

First let us formalize the self-orretion question for the Hadamard ode.

Self-Corr(A; x):

Given: x 2 F

n

2

and an orale A : F

n

2

! F

2

whih is Æ-lose to a linear funtion

~

A

(for some Æ < 1=4 so that there is a unique Æ-lose linear funtion

~

A to A).

Task: Compute

~

A(x).

Lemma 12. There is a self-orretion proedure that uses O(n) random bits, makes

two queries and whih, for every x 2 F

n

2

, returns the orret value of

~

A(x) with

probability at least (1� 2Æ).

Proof: Consider the following self-orretion proedure. Given x 2 F

n

2

and orale

for A whih is Æ-lose to a linear funtion

~

A, ompute

~

A(x) as follows:

1. Pik y 2 F

n

2

at random.

2. Output A(x + y)�A(y).

LECTURE 3. A COUPLE OF DIGRESSIONS 27

To prove the laim of the Lemma, note that sine y and x+y are random points

in F

n

2

, we have Pr

y

[A(y) 6=

~

A(y)℄ � Æ and Pr

y

[A(x + y) 6=

~

A(x+ y)℄ � Æ. Thus with

probability at least (1� 2Æ), we will have A(y) =

~

A(y) and A(x + y) =

~

A(x + y),

and by linearity of

~

A, this implies we output

~

A(x).

2.6. Linearity Testing

A funtion f : F

m

2

! F

2

is alled linear if f(x+ y) = f(x) + f(y) for all x; y 2 F

m

2

.

This is equivalent to < f(x) >

x2F

m

2

being a Hadamard odeword. The veri�er for

QP-SAT we wish to onstrut, needs to hek linearity of both the A and B tables

it is presented as proof, and thus Linearity Testing is a ruial omponent in this

onstrution. It is also a very natural ombinatorial problem in its own right.

Formally, the spei�ation of the linearity testing problem is the following:

Given: Æ > 0; orale f : F

m

2

! F

2

.

Task: Test if f is Æ-lose to a linear funtion

~

f .

The following asserts the existene of a good Linearity test:

Lemma 13. There is a Linearity Test whih uses O(m) random bits, makes just

3 queries into f , and has the following properties:

(i) It aepts with probability 1 if f is linear.

(ii) It aepts with probability at most (1� Æ) if f is not Æ-lose to linear.

Proof: The test itself is quite simple:

1. Pik x; y 2 F

m

2

at random

2. Aept i� f(x) = f(x+ y)� f(y).

It is lear that the test makes only 3 queries into f and that it always aepts if f is

a linear funtion. The soundness laim (ii) above is, however, not straightforward to

prove, and was �rst proved (with a weaker dependene of the aeptane probability

on the loseness to linearity) by Blum, Luby and Rubinfeld [13℄ in their seminal

paper. The result in the form laimed was shown by Bellare, Coppersmith, H�astad,

Kiwi and Sudan [8℄.

2.7. Testing \Consisteny"

From the preeding two subsetions, we are equipped to test that the tables A;B

whih are purportedly the Hadamard and QF-enodings of some (a

1

; : : : ; a

n

) (whih

ought to be a ommon zero of the QP-SAT instane we are testing for satis�ability)

are lose to linear funtions and to self-orret them. Now, suppose we have linear

funtions

~

A : F

n

2

! F

2

and

~

B : F

n

2

2

! F

2

that are Æ-lose to A and B respetively.

Sine

~

A is linear, there exists a = (a

1

; : : : ; a

n

) suh that

~

A = �

a

, i.e.

~

A(x) =

P

n

i=1

a

i

x

i

for all x 2 F

n

2

. Similarly there exists b = (b

11

; : : : ; b

nn

) suh that

~

B = �

b

,

i.e.

~

B(q) =

P

i;j

b

ij

q

ij

for all q 2 F

n

2

2

. But we would like

~

B to be the QF-enoding

of a, and thus we need to hek \onsisteny", namely that b

ij

= a

i

a

j

for all

1 � i; j � n.

Lemma 14. Given orale aess to A : F

n

2

! F and B : F

n

2

2

! F

2

whih are Æ-

lose to �

a

; �

b

respetively for some a 2 F

n

2

and b 2 F

n

2

2

, there is a probabilisti test

that uses O(n

2

) random bits, makes 6 queries and satis�es the following properties:

(i) If A = �

a

, B = �

b

and b

ij

= a

i

a

j

for all i; j, then the test always aepts.

28 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

(ii) If there exist i; j suh that b

ij

6= a

i

a

j

, then the test rejets with probability

at least (

1

4

� 6Æ).

Proof: The test does the following:

1. Pik x; y 2 F

n

2

at random; Let q 2 F

n

2

2

suh that q

ij

= x

i

y

j

for 1 � i; j � n.

2. Aept i� Self-Corr(A; x)� Self-Corr(A; y) = Self-Corr(B; q).

(In the above Self-Corr(A; x) stands for the element returned by alling the self-

orretion proedure from Lemma 12.) Clearly the above only uses O(n

2

) random

bits. Sine the self-orretion proedure makes 2 queries, the above test makes a

total of 6 queries. Also the ompleteness ondition (i) is learly met.

Now onsider the soundness Case (ii). De�ne n � n matries M

1

;M

2

over F

2

as: fM

1

g

ij

= a

i

a

j

and fM

2

g

ij

= b

ij

. By hypothesis, there exist i; j suh that

a

i

a

j

6= b

ij

, so we have M

1

6= M

2

. Sine A is Æ-lose to �

a

and B is Æ-lose to �

b

,

by Lemma 12, with probability (1 � 6Æ), the test in Step (2) above heks that

�

a

(x) � �

a

(y) = �

b

(q), or in other words

P

i;j

a

i

a

j

x

i

y

j

=

P

i;j

b

ij

x

i

y

j

whih is the

same as x

T

M

1

y = x

T

M

2

y. Sine M

1

6=M

2

, this happens with probability at most

3=4 for a random hoie of x; y 2 F

n

2

(this is easy to show). The overall probability

of aeptane is thus at most 3=4 + 6Æ, as laimed.

2.8. Putting Everything Together

To give the veri�er in the �nal form, we need one more trik. To verify satis�ability

of the QP-SAT instane, we need to hek P

j

(a) for every j = 1; 2; : : : ; t. For

eÆient heking, we need to \aggregate" these into a single onstraint. This is

done as follows:

1. Pik r = (r

1

; : : : ; r

t

) 2 F

t

2

at random.

2. Replae the onstraints P

j

(a) = 0 for all j = 1; : : : ; t by the single onstraint

P

r

(a) = 0 where

P

r

def

=

t

X

j=1

r

j

P

j

:(6)

The key fat about P

r

is aptured by the following easy lemma.

Lemma 15. (i) If P

j

(a) = 0 for all j, then P

r

(a) = 0.

(ii) If there exists j suh that P

j

(a) 6= 0, then P

r

(a) 6= 0 with probability (exatly)

1=2.

The Veri�er: We (�nally!) present the veri�er with all omponents put together:

Input: An instane (n; P

1

; : : : ; P

t

) of QP-SAT.

Goal: Verify that the polynomials P

j

have a ommon zero a 2 F

n

2

.

Expeted Proof: Tables A : F

n

2

! F

2

and B : F

n

2

2

! F

2

whih are supposedly the

Hadamard and QF enodings of a ommon zero a 2 F

n

2

of the P

j

's.

The veri�ation proedure operates as follows:

1. Perform a Linearity Test on A, B (Lemma 13). Rejet it the test fails.

2. Perform the \Consisteny hek" (Lemma 14) on A, B. Rejet if the hek

fails.

(We have now veri�ed with good on�dene that A;B are Æ-lose to �

a

, �

b

respetively where b

ij

= a

i

a

j

for all i; j.)

LECTURE 3. A COUPLE OF DIGRESSIONS 29

3. Pik r 2 F

t

2

at random and ompute the (oeÆients of the) polynomial

P

r

=

P

j

r

j

P

j

. Let

P

r

(x

1

; : : : ; x

n

) = s

0

+

n

X

i=1

s

i

x

i

+

X

1�i;j�n

ij

x

i

x

j

:

Let s = (s

1

; : : : ; s

n

) and = (

11

; : : : ;

nn

).

4. Aept i� s

0

+ Self-Corr(A; s) + Self-Corr(B;) = 0. (This orresponds to

heking that P

r

(a) = 0.)

Note that the above veri�er used O(t + n

2

) = O(n

2

) random bits (from the

proof of Lemma 11, we an assume t � n

2

{ in fat t = O(n) { for the hard instane

of QP-SAT). The veri�er also makes only 16 queries in all (6 in Step 1, 6 in Step

2, and 4 in Step 4 above). From the NP-hardness of QP-SAT (Lemma 11) and

Lemmas 15, 13, 12 and 14, we an show that the veri�er has ompleteness 1 and

soundness at most (1 � ") for some " > 0 (we leave it to the reader to �ll in the

details, or see [2℄). We thus get:

Theorem 4 ([2℄). There exists " > 0 suh that

NP � PCP

1;1�"

�

O(n

2

); 16

�

:

LECTURE 4

Proof Composition and the PCP Theorem

1. Where are we?

Reall from the last leture that we now have the following two proof systems for

NP. The �rst is a 3-prover MIP for NP whose veri�er uses O(log n) randomness,

reeives answers of poly logn bits from eah of the 3 provers, and deides to aept

or rejet based on the verdit of a iruit of size poly logn on the (onatenation

of the) reeived answers. The seond is a PCP for NP whose veri�er makes only

16 queries into the proof and uses O(n

2

) randomness. From the high level, the

former proof system has small randomness, but large query omplexity; while the

latter has small query omplexity, but large randomness. In ontrast, our goal is

to have small randomness and small query omplexity, and it seems neither the

PCPs obtained so far give us what we want. In this leture we desribe a method

of omposing proofs together that magially puts the two PCPs together to get

(lose) to our goal. Spei�ally omposition takes an \outer PCP" with small

randomness and an \inner PCP" with small query omplexity and ombines them

to get a \omposed PCP" with small randomness and small query omplexity.

Composition also maintains some basi properties on ompleteness and soundness,

and in partiular it preserves perfet ompleteness and the property of soundness

being bounded away from 1.

In this leture, we �rst illustrate omposition with an example. This example

already builds a PCP with muh better parameters than we know of. But ompo-

sition an take us further. We desribe from a high-level how omposition applies

to a fairly general lass of PCPs, and assert that the PCPs we have seen so far are

amenable to omposition. Modulo this assertion, we then obtain a proof of the PCP

theorem. In fat, the omposition theorem even takes us further | to the optimal

PCP theorem, and we list some of the steps that yield this stronger onlusion.

2. Composing the Veri�ers

2.1. A �rst attempt

Composition is based on the following simple observation. Suppose we have a

power PCP (all it the inner veri�er) that knows how to verify that iruits are

satis�able. Maybe we an use this PCP to make the veri�ation step of another

31

32 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

PCP (alled the outer veri�er) easier. Note that the outer veri�er typially behaves

as follows: It tosses some random oins and based on these it devises a strategy on

how to hek the proof. In partiular it generates some queries, and then prepares a

Boolean prediate that will determine if a olletion of responses to the queries are

aeptable or not. Typially this Boolean prediate is desribed by a small iruit

C. The outer veri�er then sends the queries to some provers, and then obtains

responses to these queries. It then plugs in these responses into the iruit C, to

determine whether to aept or not. The omposition paradigm is motivated by

the intuition that it should be possible to use the inner veri�er to verify that C is

satis�ed by these responses. However the exat desription of this paradigm involves

some surprisingly subtle issues and we motivate this by desribing an attempt to

ompose the two PCP veri�ers of the previous leture together.

1. Start with the veri�ation proedure of the 3-prover MIP.

2. Prepare queries q

1

; q

2

; q

3

and a small iruit C that determines the a-

ept/rejet deision of the veri�er.

3. Send the queries to the provers, but now instead of just reeiving the re-

sponses a

1

; a

2

; a

3

from the three provers (whih would ause the query om-

plexity to be poly logn), ask the prover to write down a proof that (a

1

; a

2

; a

3

)

is a satisfying assignment to the iruit C using the enoding standard of

the 16 query PCP veri�er. (Here we are using the fat that Ciruit Sat is

in NP and thus there exists a PCP for the fat that a

1

; a

2

; a

3

satis�es C.)

Note that above applies a PCP reursively to the task of heking that a

1

; a

2

; a

3

is a satisfying assignment to C, and thus the above is also referred to in the literature

as \reursive proof heking" or \reursive omposition of proofs". The idea of proof

omposition originated in the work of Arora and Safra [3℄ and has been a ruial

omponent in all PCP onstrutions that followed.

Analyzing the above Composition: The above omposed veri�er makes only

16 queries and uses O(log n) randomness for the initial veri�ation proess in Steps

1 and 2 (alled \outer" veri�ation) and another O((poly logn)

2

) = poly logn ran-

domness when it simulates the seond veri�er in Step 3 (alled \inner" veri�ation),

for a total of poly logn randomness. Thus it at least has better quantitative pa-

rameters than both of the veri�ers we started with! The veri�er, however, does

not inherit the soundness of the two original veri�ers. The reason is that we are

asking the prover for a proof that there exists an input (a

1

; a

2

; a

3

) that satis�es

C, whih is not the same as asking the prover to prove that a given triple a

1

, a

2

,

and a

3

ombine together to satisfy C. In partiular, when the query q

1

is asked

in a di�erent ontext, we do not hek to verify that the answer to q

1

in the other

ontext is the same as the answer in the urrent ontext. Thus the prover an

\heat" by using a satisfying assignment for C that has nothing to do with the

3 answers that would have been given by the MIP prover. (To onsider a simple

but illustrative example, onsider a single prover veri�er for 3SAT, who just piks

a random lause in a given formula, whose satis�ability is to be veri�ed, and then

asks a prover for the value of the literals in the lause. Clearly the prover would

have no problem onvining the veri�er that this lause an be satis�ed, and so the

veri�er aepts with probability 1, independent of the satis�ability of the formula.

The omposition method desribed above is funtioning analogous to this veri�er

and hene does not have a hope to testing anything.)

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 33

To �x the bug above, somehow we need to make sure that the various answers

given by the prover for the various tests are all \onsistent" (i.e. the di�erent

lauses referring to the same variable use the same assignment to that variable)

and would hene \glue together" to give a single global assignment that satis�es all

(or most of) the lauses.

In a nutshell, we need to ensure onsisteny between the answers ommitted

to by the prover in response to various di�erent iruit tests C, so that we an

argue that if the omposed veri�er aepts with large probability then one an �x

responses for the three provers in the \outer" MIP that will ause the MIP veri�er

to aept with large probability. Together with the soundness of the MIP, this will

imply the soundness of the omposed veri�er.

2.2. A modi�ed omposition sheme

We now disuss at an intuitive level the way to �x this problem in the omposed

veri�er. The idea is to fore the prover to ommit to responses to individual queries

(e.g. q

1

) by writing down an appropriate (e.g. the Hadamard) enoding of the

answers. We will view suh an enoding as a table (denoted �

q

1

) that we wish

to probe minimally, but something that already ommits to the answer to query

q

1

. In addition to providing suh a table for every query that the 3-prover MIP

an possible ask, the prover for the omposed veri�er is also asked to write down

proofs � that (a

1

; a

2

; a

3

) satis�es C (for various hoies of q

1

; q

2

; q

3

; C made by the

MIP veri�er in the �rst stage of the omposed veri�ation). The veri�er will now

hek that C(a

1

; a

2

; a

3

) aepts by making queries to the orresponding proof � of

the inner (16-query) PCP, and in addition will perform onsisteny heks between

the various omponents of � and the proofs �

q

1

;�

q

2

;�

q

3

. More spei�ally, for

the veri�ers we have, we an require �

q

1

to be the Hadamard enoding A

1

of

the response a

1

, and reall from the last leture that the proof � for the \inner"

PCP inludes the Hadamard enoding, say B, of a

1

Æ a

2

Æ a

3

(here Æ denotes the

onatenation operation). The onsisteny hek between � and �

q

1

will now hek

that A

1

(x) = Self-Corr(B(xÆ0

b

)) for a random x of length ja

1

j (here b is the suitable

number of zeroes padded at the end of x). Note that the query omplexity of this

omposed veri�er will be 16 plus the 3 queries made in eah of the three onsisteny

heks, for a total of 25 queries.

We have been very informal in our desription of proof omposition, and the

interested reader an �nd the formal details in [3, 2℄. We now give a semi-formal

summary of the omposed veri�er for easy referene.

Composed PCP veri�er for NP:

Struture of expeted proof: The veri�er has orale aess to a proof � whih is

expeted to have the enodings of all the answers of the 3 provers of the MIP (as

per some suitable error-orreting ode) for the various possible queries of the MIP

veri�er. More spei�ally, for 1 � i � 3 and query q

i

of the MIP veri�er to prover

i, �(i; q

i

; �) is the enoding of the response a

i

of prover i to query q

i

. In addition,

for eah random hoie R of the MIP veri�er, �(0; R; �) will be the enoded proof

(for the inner PCP system) of the satis�ability of the iruit C

R

orresponding to

R omputed by the MIP veri�er.

Given aess to the orale �, the veri�er operates as follows:

34 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

� Pik random string R as per the 3-prover MIP veri�er (from last leture)

and generate queries q

1

; q

2

; q

3

to the three provers and a iruit C.

� Let A

i

(�) = �(i; q

i

; �) and B(�) = �(0; R; �).

� Now perform \inner veri�ation" for (the satis�ability of) C with orales

A

1

; A

2

; A

3

; B as below:

{ Run the 16 query PCP veri�er (from last leture) on orale B with

input C (we are testing that B enodes a satisfying assignment to C).

{ Perform onsisteny heks on orale pairs (A

1

; B), (A

2

; B) and (A

3

; B).

One an formalize the disussion of the preeding setions and prove that the above

veri�er (whih we already argued uses poly logn randomness and makes only O(1)

queries { in fat it makes only 25 queries) also has soundness bounded away from

1, and this gives us:

Theorem 5. There exists a > 0 suh that NP � PCP

1;1�

�

poly logn; 25

�

.

Composition as a paradigm: The basi ingredients of omposition abstrated

from the preeding onstrution are the outer and inner veri�ers. The outer veri�er

is an MIP veri�er with a small number of provers p and whose aeptane prediate

is omputed by a small iruit, and whih has very low soundness error. The answer

size of the MIP governs the size of the problem passed on to the inner veri�er.

The inner veri�er has low query omplexity q and must be able to verify the

ommitment to a proof rather than the mere existene of one. The omposed

veri�er starts out by simulating the outer veri�er and after the outer veri�er piks

a iruit C whih omputes its aeptane prediate, the omposed veri�er uses the

inner veri�er on input C. If suitable onditions are met, then one an ompose the

outer and inner veri�er to get a veri�er that ombines the randomness eÆieny of

the outer veri�er with the query eÆieny of the inner veri�er.

Formalism of the notion of outer and inner veri�ers and exatly how they

ompose together an be found in work of Arora and Safra [3℄. Several re�nements

to their \Composition Theorem" an be found in several later works like [2, 9℄.

3. The PCP Theorem

To prove the PCP Theorem we need to redue the randomness of the veri�er from

Theorem 5 to logarithmi from poly-logarithmi. The reason we had poly logn

randomness was that the outer MIP in the above omposition had poly logn answer

and iruit size and the inner veri�er used a quadrati number of random bits (as

a funtion of its input length). Thus in order to redue the overall randomness, we

would like to redue the answer size of the outer MIP.

It turns out that the 3-prover MIP onstrution from the last leture also yields

an inner veri�er whih an be used to show that 8" > 0, 9Æ > 0 suh that

MIP

1;1�"

[p; r; a℄ � MIP

1;1�Æ

[p+ 3; r +O(log a); poly log a℄ :

(Suh a result is shown in [2℄.) Combining with the MIP haraterization NP =

MIP[3; O(log n); poly logn℄ from the previous leture, this gives, upon ompos-

ing the MIP veri�er with itself as the inner veri�er (it is shown in [2℄ how to

modify this veri�er to also funtion as an inner veri�er), the haraterization

NP = MIP[6; O(logn); poly log logn℄. Composing this 6-prover MIP veri�er with

the O(1)-bit, quadrati randomness veri�er from [2℄ whih was disussed in the last

leture, gives a logarithmi randomness, O(1) query omplexity veri�er for NP with

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 35

perfet ompleteness and soundness bounded away from 1, or in other words the

PCP Theorem! We would thus get:

Theorem 6 ([3, 2℄). There exists an " > 0 suh that

NP = PCP

1;1�"

[O(log n); 34℄ :

4. Towards Optimal PCPs

There are a number of respets in whih one an hope to improve Theorem 6.

This has been the fous of a large body of works inluding [15, 11, 9, 20, 21,

19, 28, 27, 26℄. One spei� question, for example, is: What is the minimum

number of queries required to obtain a desired soundness error? The quest for

better (and optimal) PCP onstrutions has also been motivated by appliations

to hardness of approximations where improvements in the underlying PCPs often

translate diretly into improvements in the related inapproximability result that it

gives.

We will only give an overview of what is involved in obtaining optimal PCPs

and not give any tehnial details or prove any of the laims. There are two main

ingredients in obtaining optimal PCP onstrutions. The �rst one is improved

onstrutions of MIPs, spei�ally those with very few provers, preferably 2 provers,

with extremely low soundness error and at the same time having small answer sizes

and logarithmi randomness. The seond ingredient(s) are \optimal" inner veri�ers

that are tuned to simplifying veri�ers for 2-prover proof systems.

We will now elaborate a little on onstrutions of 2-prover proof systems. The

starting point for suh a onstrution is the PCP theorem (Theorem 6) itself: NP �

PCP

1;1�"

[O(log n); 34℄. One an onvert suh a PCP veri�er into a veri�er for a

2-prover proof system using a tehnique in [16℄ as follows:

� Pik a random string R and generate queries q

1

; : : : ; q

34

(as the PCP veri�er

would do). Send all queries to Prover 1.

� Pik a random index i 2 f1; : : : ; 34g and send query q

i

to Prover 2.

� Aept i� answers of Prover 1 make the PCP veri�er aept, and the answer

of Prover 1 on query q

i

is onsistent with the response of Prover 2.

It is lear that the above veri�er has logarithmi randomness and reeives O(1)

size answers. It also learly has perfet ompleteness sine the original PCP had

perfet ompleteness. It is not diÆult to show that the soundness is bounded

away from 1, and thus this gives us a MIP with 2-provers as a starting point. But

the soundness is very lose to 1 and we would like to improve the soundness while

keeping the answer size and randomness small.

The natural approah to reduing the error is repeating the veri�er's ation

several times with independent random tosses, but doing this sequentially would

inrease the number of rounds of interation between the veri�er and the provers.

The approah instead is to repeat the veri�ation many times in parallel (with

independent oin tosses), but, unlike the sequential repetition ase, it is now no

longer obvious that the soundness error goes down exponentially with the number

of repetitions.

An important result of Raz [24℄, alled the Parallel Repetition Theorem shows

that this is indeed the ase (the result holds for all 2-prover systems where the

veri�er is \anonial" in the sense that its aeptane ondition is a hek that a

ertain projetion of the answer of Prover 1 equals the answer of Prover 2). The

36 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

proof of this result is ompliated, but for our purposes it suÆes to understand

that it implies the following error redution fat for MIPs: For every " > 0 and

integer a, there exists an "

0

> 0 suh that for all k � 2, a anonial veri�er for a

2-prover MIP with randomness r and whih reeives answers of size a and 1 from

the two provers and has soundness (1� "), an be onverted into one with answer

size at most ka, randomness at most kr, and soundness error (1� "

0

)

k

. Informally,

the transformation is

MIP

1;1�"

[2; r; a℄ �! MIP

1;(1�"

0

)

k [2; kr; ka℄ :

The above enables us to onstrut 2-prover MIPs for NP with very low sound-

ness error and onstant answer sizes. We do not elaborate on the inner veri�ers,

but to obtain improved PCPs one takes suh a 2-prover MIP and omposes it with

a suitable inner veri�er. For the optimal onstrutions, it turns out that one uses

inner veri�ers whih take the enoding of the answers of the 2 provers of the outer

MIP by a ode alled the Long Code (�rst de�ned in [9℄) and then verify , using

extremely query-eÆient proedures, that these are indeed \lose to" enodings of

valid answers that would make the veri�er of the outer MIP aept. It turns out

that using some mahinery from Disrete Fourier Analysis, suh Long Code based

inner veri�ers an often be analyzed optimally, and this approah was pioneered by

H�astad in a series of striking results [20, 21℄. We do not elaborate on this further,

but just mention that one suh tight result from [20℄ is the following, whih shows

that just 3 queries are enough to obtain a soundness error lose to 1=2 (it is known

that one annot do better [29℄).

Theorem 7 ([20℄). For any " > 0, we have NP = PCP

1�";1=2

[O(log n); 3℄.

5. Roadmap to the Optimal PCP

Before winding up, we give a quik high-level reap of the road to a omplete proof

of the optimal PCP onstrution from Theorem 7 above. The main steps are the

following:

1. 3-prover MIP veri�er for NP (NP = MIP

1;1�

[3; O(log n); poly logn℄) [2℄

2. Compose the above veri�er with itself (using the paradigm of omposition

from [3℄) to get

NP = MIP

1;1�

0

[6; O(logn); poly log logn℄ [2℄.

3. An O(1) query, O(n

2

) randomness veri�er for NP from [2℄ (NP � PCP

1;1�"

[O(n

2

); O(1)℄).

4. Compose the veri�er from Step 2 with the veri�er from the previous step

to get NP � PCP

1;1�"

0

[O(log n); O(1)℄. At this stage we have the PCP

Theorem [3, 2℄.

5. Obtain a 2-prover MIP for NP from the above PCP veri�er (as in [16℄)

and then apply Raz's Parallel Repetition Theorem [24℄ to prove that for all

Æ > 0, NP � MIP

1;Æ

[2;

Æ

logn; a

Æ

℄ where

Æ

and a

Æ

are onstants depending

only on Æ.

6. Compose the veri�er from above 2-prover proof system with a 3-query inner

veri�er from [20℄ to get (one) optimal PCP Theorem: NP = PCP

1�";1=2

[O(log n); 3℄

for every " > 0.

Note that the main omissions from the above path in our disussion has been

the Parallel Repetition Theorem and a desription and analysis of H�astad's optimal

inner veri�er.

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 37

The proof of the PCP Theorem is thus quite ompliated and puts together

several ingredients. It is an important open question whether any portions (or all)

of the proof an be simpli�ed. A good starting point in approahing this question

would be to �rst look at simpler onstrutions of what are alled loally hekable

odes. These are odes with polynomially small rate suh that given a string one

an determine if it is a odeword or is suÆiently far o� from any odeword by just

looking at the symbols in O(1) positions of the string. Suh odes are implied by

the PCP Theorem and the only onstrution we know of suh odes goes via the

PCP Theorem. An alternative, simpler onstrution of suh odes might enable a

shot at simpler proofs of the PCP Theorem, and would also be extremely interesting

and important in its own right.

BIBLIOGRAPHY

1. Sanjeev Arora and Carsten Lund. Hardness of approximations. In Approxima-

tion Algorithms for NP-hard Problems, D. Hohbaum (Ed.), PWS Publishing,

1996.

2. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario

Szegedy. Proof veri�ation and hardness of approximation problems. Journal of

the ACM, 45(3):501{555, 1998. Preliminary version in Proeedings of FOCS'92.

3. Sanjeev Arora and Shmuel Safra. Probabilisti heking of proofs: A new har-

aterization of NP. Journal of the ACM, 45(1):70{122, 1998. Preliminary ver-

sion in Proeedings of FOCS'92.

4. L�aszl�o Babai. Trading group theory for randomness. In Proeedings of the Sev-

enteenth Annual ACM Symposium on Theory of Computing, pages 421-429,

Providene, Rhode Island, 6-8 May 1985.

5. L�aszl�o Babai, Lane Fortnow, Leonid Levin, and Mario Szegedy. Cheking

omputations in polylogarithmi time. In Proeedings of the Twenty Third

Annual ACM Symposium on Theory of Computing, pages 21-31, New Orleans,

Louisiana, 6-8 May 1991.

6. L�aszl�o Babai, Lane Fortnow, and Carsten Lund. Non-deterministi exponen-

tial time has two-prover interative protools. Computational Complexity, 1:3{

40, 1991. Preliminary version in Proeedings of FOCS'90.

7. Donald Beaver and Joan Feigenbaum. Hiding instanes in multiorale queries.

Pro. of the 7th Annual Symposium on Theoretial Aspets of Computer Si-

ene, LNCS Vol. 415, Springer-Verlag, 1990.

8. Mihir Bellare, Don Coppersmith, Johan H�astad, Maros Kiwi and Madhu

Sudan. Linearity testing over harateristi two. IEEE Transations on Infor-

mation Theory, 42(6), pp. 1781-1795, 1996.

9. Mihir Bellare, Oded Goldreih, and Madhu Sudan. Free bits, PCP's and

non-approximability { towards tight results. SIAM Journal on Computing,

27(3):804{915, 1998. Preliminary version in Proeedings of FOCS'95.

10. Mihir Bellare, Sha� Goldwasser, Carsten Lund, and Alexander Russell. EÆ-

ient probabilistially hekable proofs and appliations to approximation. In

Proeedings of the Twenty-Fifth Annual ACM Symposium on the Theory of

Computing, pages 294-304, San Diego, California, 16-18 May 1993.

11. Mihir Bellare and Madhu Sudan. Improved non-approximability results. In

Proeedings of the Twenty-Sixth Annual ACM Symposium on the Theory of

39

40 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Computing, pages 184-193, Montreal, Quebe, Canada, 23-25 May 1994.

12. Mihael Ben-Or, Sha� Goldwasser, Joe Kilian, and Avi Wigderson. Multi-

prover interative proofs: How to remove intratability assumptions. In Pro-

eedings of the Twentieth Annual ACM Symposium on Theory of Computing,

pages 113-131, Chiago, Illinois, 2-4 May 1988.

13. Manuel Blum, Mihael Luby and Ronitt Rubinfeld. Self-testing/orreting

with appliations to numerial problems. Journal of Computer and System

Sienes, 47:549{595, 1993.

14. Uriel Feige, Sha� Goldwasser, L�aszl�o Lov�asz, Shmuel Safra and Mario Szegedy.

Interative proofs and the hardness of approximating liques. Journal of the

ACM, 43(2):268{292, 1996. Preliminary version in Proeedings of FOCS'91.

15. Uriel Feige and Joe Kilian. Two prover protools { low error at a�ordable

rates (preliminary version). In Proeedings of the Twenty-Sixth Annual ACM

Symposium on the Theory of Computing, pages 172-183, Montreal, Quebe,

Canada, 23-25 May 1994.

16. Lane Fortnow, John Rompel, and Mihael Sipser. On the power of multiprover

interative protools. Theoretial Computer Siene, 134:545{557, 1994.

17. Mihel X. Goemans and David P. Williamson. Improved approximation algo-

rithms for maximum ut and satis�ability problems using semide�nite pro-

gramming. Journal of the ACM, 42(6):1115-1145, November 1995.

18. Sha� Goldwasser, Silvio Miali and Charles Rako�. The knowledge omplexity

of interative proofs. SIAM Journal on Computing, 18:186{208, 1989.

19. Venkatesan Guruswami, Daniel Lewin, Madhu Sudan and Lua Trevisan. A

tight haraterization of NP with 3-query PCPs. Proeedings of the 39th IEEE

Symposium on Foundations of Computer Siene, 1998.

20. Johan H�astad. Some optimal inapproximability results. Tehnial Report

TR97-037, Eletroni Colloquium on Computational Complexity, 1997. Pre-

liminary version in Proeedings of STOC'97.

21. Johan H�astad. Clique is hard to approximate within n

1��

. ECCC Tehni-

al Report TR97-038. (Preliminary versions in Proeedings of FOCS '96 and

STOC'96).

22. Howard Karlo� and Uri Zwik. A 7/8-approximation algorithm for MAX

3SAT? In 38th Annual Symposium on Foundations of Computer Siene, pages

406-415, Miami Beah, Florida, 20-22 Otober 1997.

23. Alexander Polishhuk and Daniel Spielman. Nearly-linear size holographi

proofs. In Proeedings of the Twenty-Sixth Annual ACM Symposium on the

Theory of Computing, pages 194-203, Montral, Qube, Canada, 23-25 May

1994.

24. Ran Raz. A parallel repetition theorem. SIAM Journal on Computing,

27(3):763{803, 1998. Preliminary version in Proeedings of STOC'95.

25. Ronitt Rubinfeld and Madhu Sudan. Robust haraterizations of polynomials

with appliations to program testing. SIAM Journal on Computing, 25(2):252{

271, 1996.

26. Alex Samorodnitsky and Lua Trevisan. A PCP haraterization of NP with

optimal amortized query omplexity. In Proeedings of the 32nd Annual ACM

Symposium on Theory of Computing, pages 191{199, Portland, Oregon, 21-23

May, 2000.

191{199.

BIBLIOGRAPHY 41

27. Madhu Sudan and Lua Trevisan. Probabilistially hekable proofs with low

amortized query omplexity. In Proeedings of the 39th Annual Symposium

on Foundations of Computer Siene, pages 18{27, Palo Alto, California, 8-11

November, 1998.

28. Lua Trevisan. Reyling queries in PCPs and in linearity tests. In Proeedings

of the 30th Annual ACM Symposium on Theory of Computing, pages 299{308,

Dallas, Texas, 23-26 May, 1998.

29. Uri Zwik. Approximation algorithms for onstraint satisfation problems in-

volving at most three variables per onstraint. In Proeedings of the 9th ACM-

SIAM Symposium on Disrete Algorithms, 1998.

