
IAS/Park City Mathemati
s Series

Volume 00, 0000

Probabilisti
ally Che
kable Proofs

Madhu Sudan

S
ribe: Venkatesan Guruswami

1



2 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

A
knowledgments

Mostly, I would like to thank Venkatesan Guruswami for s
ribing these notes so

diligently (despite the fa
t that tax laws prevented him from getting the honorarium

that he fully deserved!).

Thanks also to Johan H�astad and Jakob Nordstr�om for pointing out many

errors and typoes.

� Madhu Sudan.



LECTURE 1. INTRODUCTION TO PCPS 3

LECTURE 1

Introdu
tion to PCPs

1. Overview

Resear
h in the 1990's has led to the following striking theorem: There is a format

of writing proofs and a probabilisti
 method of verifying their validity, su
h that

the veri�er needs to reads only 3 bits of the proof (irrespe
tive of the length of the

proof) to obtain probabilisti
 
on�den
e in the 
orre
tness of the proof. Spe
i�
ally,

the veri�er a

epts 
orre
t proofs with probability 1 (Completeness) and given any

purported \proof" of an in
orre
t assertions it a

epts with probability at most

3=4 (Soundness). In fa
t, this probability 
an be made arbitrarily 
lose to 1=2.

Furthermore, the proof in the new format is only polynomially longer than the

original \
lassi
al" proof.

1

In addition to being a surprising result bridging probability and logi
, the above

result also turns out to have appli
ations to proving intra
tability results for �nding

near-optimal solutions to many NP-hard optimization problems. Our goal in these

le
tures will be to provide insight into the 
onstru
tion of these proof systems

and the asso
iated probabilisti
 veri�ers. We will not pursue the appli
ations to

hardness of approximations (i.e., solving optimization problems near-optimally).

The interested reader is referred to the survey arti
le of Arora and Lund [1℄ for

more information on su
h 
onsequen
es. Our spe
i�
 target will be to des
ribe the

main steps that lead to a weaker result (whi
h we 
all the PCP Theorem) that the


omplexity 
lass NP has Probabilisti
ally Che
kable Proofs in whi
h the veri�er uses

logarithmi
 randomness, queries the proof in only O(1) lo
ations, a

epts 
orre
t

proofs with probability 1, and a

epts false proofs with probability bounded away

from 1 (say (1 � �) for some 
onstant � > 0).

2

We will also outline some of the

ingredients that lead to the sharper result des
ribed in the opening senten
e.

In the �rst le
ture, we will formally de�ne a Probabilisti
ally Che
kable Proof

(hen
eforth PCP). We will brie
y dis
uss the history of its de�nition and the main

initial results in this area. We also de�ne the notion of \gap problems" { the

NP-hardness of 
ertain gap problems turns out to be equivalent to the existen
e

of PCPs of the type we seek. Our goal thus leads us to the task of establishing

NP-hardness of some 
onvenient (and yet interesting) gap problem. To this end we

will de�ne a 
onstraint satisfa
tion problem based on polynomials that we 
all PCS

(for Polynomial Constraint Satisfa
tion). We will then state an NP-hardness result

of a gap version of PCS and two algorithmi
 results about polynomials. We will

then show that putting these ingredients together, we will see how we 
an build a

non-trivial (but not our �nal) PCP.

1

The result alluded to here is that of H�astad [20℄. The pi
ky reader may note some minor

dis
repan
ies between result as 
laimed above and the main result of [20℄. Su
h a reader is

dire
ted to the work of Guruswami et al. [19℄ (a derivative of [20℄), whi
h 
ertainly a
hieves all

the 
laimed properties.

2

This result was proven by [3, 2℄. Our presentation of even this result will not be 
omplete

| the reader is referred to the original arti
les for full details. However, we do hope to give a

fairly detailed overview of the steps involved. It may be pointed out that the presentation here is

somewhat di�erent than in the original works.



4 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Looking ahead to future le
tures, in the se
ond le
ture we will show how to

establish the hardness of PCS with a gap; as well as some overview of the algorithmi


results for polynomials. This will 
on
lude the �rst phase of our task | that of

establishing a non-trivial PCP 
onstru
tion. In the third le
ture, we will laun
h

into a se
ond phase of PCP 
onstru
tions. We will see how to 
onstru
t a variety

of PCPs with very di�erent parameters using algebrai
 methods. None of these

PCPs will 
ome 
lose to our spe
i�
 target PCP. However, they give an idea of the

nature of the tools that are available and useful to build PCPs. In the fourth and

�nal le
ture, we will introdu
e a non-algebrai
 tool in the 
onstru
tion of PCPs,

spe
i�
ally a 
omposition theorem for PCPs. We will show how the 
omposition

theorem allows us to use the PCPs 
onstru
ted in the third le
ture (or to 
lose

variants of the same) and 
ompose them with ea
h other to get a new PCP that

has all the desired properties (for our spe
i�
 target).

2. De�nitions and Formal Statement of Results

The 
entral ingredient of a PCP system is the veri�er: a probabilisti
 polynomial

time ma
hine with ora
le a

ess to a proof �. The primary resour
es used by the

veri�er that are of interest to PCP are the amount of randomness used, and the

number of bits of � that are queried by the veri�er (on
e the random 
oins tossed

by the veri�er are �xed). This leads to the notion of an (r; q)-restri
ted veri�er:

For integer valued fun
tions r(�) and q(�), a veri�er is said to be (r; q)-restri
ted if

on every input of length n, it tosses at most r(n) 
oins and queries the proof for at

most q(n) bits.

De�nition 1. For integer valued fun
tions r(�); q(�) de�ned on integers, and fun
-

tions 
(�); s(�) , the 
lass PCP


;s

�

r; q

�


onsists of all languages L for whi
h there

exists a (r; q)-restri
ted veri�er V with the following properties:

� [Completeness℄: x 2 L ) 9 � s.t V

�

(x) a

epts with probability at least


 (over the 
oin tosses of V ).

� [Soundness℄: x =2 L ) 8 � V

�

(x) a

epts with probability < s (over the


oin tosses of V ).

In this notation the PCP Theorem states that there exists a 
onstant q su
h

that

NP = PCP

1;

1

2

�

O(log n); q

�

:

At this point some explanation of the role and interrelationships of the param-

eters may be in order. Note that the de�nition has four parameters: 
; s; r and

q. Of these four, the randomness (r)and query (q) parameters are the ones of pri-

mary interest. Usually, the other two parameters will be of subordinate interest. In

parti
ular, most PCP 
onstru
tions today set 
 = 1. Su
h PCPs are said to have

perfe
t 
ompleteness, so that \
orre
t" proofs are a

epted with probability 1. It

is sometimes useful to have the extra 
exibility of having 
 < 1 as o�ered by the

de�nition. However, we won't 
onstru
t any su
h PCPs in these le
tures. so that

is one less parameter to worry about. The soundness of a PCP, in turn, is related

to the query 
omplexity and the two 
an be traded of against ea
h other. Stan-

dard te
hniques used for ampli
ation of error in probabilisti
 algorithms show how

soundness may be redu
ed by in
reasing the number of queries. On the other hand,

the 
lassi
al redu
tion from SAT to 3SAT 
an be employed to redu
e the queries to



LECTURE 1. INTRODUCTION TO PCPS 5

3, from any 
onstant, while in
reasing the soundness but preserving boundedness

away from one. Thus to simplify our study we may �x the soundness to some �xed

value and then try to minimize the randomness and query 
omplexity. Our 
hoi
e

for this value will be s =

1

2

. When we omit subs
ripts in the notation PCP[r; q℄, it

is implied that 
 = 1 and s =

1

2

. Finally, we remark on a parameter that we seem

to have omitted in the de�nition, namely the size of the proof. While some papers

in the literature study this parameter expli
itly, we don't do so here. Instead we

let this parameter be 
aptured impli
itly by the other parameters. Note that a

(r; q)-restri
ted veri�er 
an make at most 2

r+q

distin
t queries to the proof, and

thus the proof size need not be larger than 2

r+q

. Thus the randomness 
omplexity

and query 
omplexity impli
itly 
apture the size of the proof required by a PCP

veri�er, and we will be satis�ed with studying this rough upper bound.

2.1. Some History of De�nitions

The de�nition of PCP a
tually evolved over a series of surprising developments in

the late 80s and early 90s. The notion of 
he
king proofs in a probabilisti
 sense

(where the veri�
ation pro
ess is allowed to err with small probability) dates ba
k to

the seminal work of Goldwasser, Mi
ali and Ra
ko� [18℄ and Babai [4℄ on Intera
tive

Proofs (IP). In the IP proof system, a probabilisti
 veri�er intera
ts with a prover

who wishes to 
onvin
e the veri�er that some assertion is true. The model of the

intera
tive proofs evolved over time, partly motivated by e�orts to understand the

model better. One su
h model was that of \multi-prover intera
tive proof systems"

(MIP) introdu
ed by Ben-Or, Goldwasser, Kilian and Wigderson [12℄. In this

model, a single veri�er intera
ts with multiple provers to verify a given assertion.

The MIP proof systems in
uen
ed the development of PCPs in two signi�
ant

ways. On the one hand, many te
hni
al results about PCPs go through MIP proof

systems, in essential ways. More important to our 
urrent 
ontext, it led to the

de�nition of the notion of the PCP veri�er (though it was not so named then),

i.e., a probabilisti
 veri�er with a

ess to an ora
le. This notion originated in the

work of Fortnow, Rompel and Sipser [16℄ as part of an e�ort to understand the


omplexity of MIP proof systems.

All the above works did not pla
e any expli
it restri
tions on the resour
es used

by the veri�er, ex
ept the minimal one that it run in (probabilisti
) polynomial time.

Fo
us on the eÆ
ien
y of the veri�
ation pro
ess started with the work of Babai,

Fortnow, Levin and Szegedy [5℄. Their work fo
ussed on the 
omputation time

of the veri�er and the size of the proof. They de�ned the notion of transparent

or holographi
 proofs, whi
h are proofs that 
an be 
he
ked very eÆ
iently (in

polylogarithmi
 time). The resour
es of fo
us in De�nition 1 were highlighted by

the seminal paper of Feige, Goldwasser, Lov�asz, Safra and Szegedy [14℄. Feige et al.

established an astonishing 
onne
tion between probabilisti
 proof systems for NP

and the hardness of approximate solutions to theMax Clique problem. It be
ame

evident from their work that the randomness and query 
omplexity of proof systems

were parameters of 
entral interest to inapproximability. However, their work did

not abstra
t a de�nition of the 
omplexity 
lass PCP. Su
h a de�nition was �nally

abstra
ted in the work of Arora and Safra [3℄. Their work expli
itly de�nes the two

resour
es: randomness and query 
omplexity; and maintains them as parameters

(rather than pla
ing absolute bounds on them), re
e
ting the importan
e of the



6 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

two resour
es and the very distinguishable impa
t that they tend to have on the

veri�
ation 
apabilities of the PCP.

2.2. History of Results

The sequen
e of results 
ulminating in the PCP Theorem is a long one. We will

attempt to give a bird's eye view of this history, presenting some of the landmark

results. We break this history into four phases.

Phase 0. Some properties of PCPs follow immediately from their de�nition.

These properties, typi
ally attributed to folklore, in
lude results su
h as NP =

PCP

�

0; poly(n)

�

. This is the 
ase be
ause, for any language L 2 NP, the veri�er


an deterministi
ally read the entire polynomial size witness of the membership of

x 2 L and then 
hoose to a

ept or reje
t. It is also not hard to see that NP =

PCP

�

logn; poly(n)

�

. In parti
ular, the the 
ontainment PCP

�

logn; poly(n)

�

� NP

is obtained as follows:

Given a PCP veri�er V, tossing r = O(log n) 
oins and querying

(possibly non-adaptively) poly(n) queries, a non-deterministi
 Turing

ma
hine 
an determine if it a

epts with probability 1, by guessing,

for ea
h random string, the sequen
e of queries made and the answers

re
eieved, and then by verifying in polynomial time the following

two 
onditions (1) On ea
h random string verify that the sequen
e

of guessed queries is 
onsistent with V 's a
tions and the responses

re
eived lead to a

eptan
e by V . (2) For every pair of random strings

identi
al queries lead to same response.

Thus a little bit of randomness does not in
rease the power of the PCP veri�ers

in terms of the languages for whi
h they 
an verify membership. However it does

allow them to be signi�
antly more eÆ
ient. (A 
olle
tion of these and other su
h

folklore results about PCPs may be found in [9℄.)

Phase 1. The �rst non-trivial result on PCPs did not talk about the 
lass NP but

rather about the 
lass NEXP. This result, due to Babai, Fortnow, and Lund [6℄,

showed that NEXP = PCP[poly(n); poly(n)℄. Note that the traditional veri�er of

NEXP languages looks at a proof in exponentially many pla
es, while the PCP veri-

�er is only allowed to look at it in polynomially many pla
es. Thus this landmark re-

sult redu
ed the number of queries by a poly-logarithmi
 amount by using the power

of randomness. Subsequently, s
aling this result down to NP, Babai, Fortnow, Levin

and Szegedy [5℄, NP � PCP

�

poly logn; poly logn

�

. The result of [5℄ a
tually got

extremely small blowups, nearly linear, in proof size too, though the impli
it bound

promised by examining the randomness and query 
omplexity is not even polyno-

mially bounded. The next improvement in the parameters was brought about by

Feige et al. who improved the result to NP � PCP

�

logn log logn; logn log logn

�

.

The good news about results in this phase was that they redu
e the number

of queries made by the veri�er by a poly-logarithmi
 amount (from poly(n) to

poly logn), a result that was 
ompletely unexpe
ted at the time. However the bad

news, is that the randomness and query 
omplexities were still super-logarithmi




LECTURE 1. INTRODUCTION TO PCPS 7

and hen
e the above 
ontainment are not equalities and thus these do not give


hara
terizations of NP in terms of (non-trivial) PCP 
lasses.

3

Phase 2. The �rst exa
t 
hara
terization of NP 
ame in the work of Arora and

Safra [3℄ who showed that NP = PCP

�

O(log n); o(logn)

�

. This work also intro-

du
ed the powerful idea of re
ursive 
omposition of proofs whi
h played a 
riti
al

role in their and all subsequent improvements to PCP 
onstru
tions. The PCP The-

orem itself (i.e., NP = PCP

�

O(log n); O(1)

�

) was proved by Arora, Lund, Motwani,

Sudan and Szegedy [2℄.

4

As in the results of Phase 1, the results of Phase 2 were startling surprises.

The query 
omplexity is independent of the proof size! And both parameters 
an

be redu
ed to fun
tions whi
h were within 
onstant fa
tors away from the smallest

amount 
on
eivable.

5

However these were not yet the ultimate possible PCP results.

Spe
i�
ally, they were not tight in either the randomness 
omplexity (or equivalently

the proof size) or the query 
omplexity.

Phase 3. Examination of the (non-asymptoti
) tightness of the parameters of

the PCP theorem was initiated by Bellare, Goldwasser, Lund and Russell [10℄.

Several intermediate results improved the 
onstants in the parameters [15, 11,

9℄. Eventually near-tight results whi
h optimize both these parameters (but not

simultaneously!) were shown. Spe
i�
ally:

� Polish
huk and Spielman [23℄ showed that Sat 2 PCP

�

(1 + ") logn;O(1)

�

for every " > 0.

� It is a folklore result that the number of queries required in the PCPTheorem

is at least 3. H�astad [20℄ proved the tight result that for every " > 0, NP =

PCP

1�";

1

2

�

O(log n); 3

�

. (Note that this result does not have perfe
t 
om-

pleteness: a later result in [19℄ shows that NP = PCP

1;

1

2

+"

�

O(log n); 3

�

.)

The result of H�astad, on
e again, was a startling development. A folklore result

shows that any PCP for an NP-
omplete language must use q � 3 to attain perfe
t


ompleteness. It was also believed that su
h a PCP 
ould not have soundness s �

1

2

(though this was not proven till mu
h later). Work prior to H�astad's however were

far from show that any s > 1=2 
ould be a
hieved with q = 3. In fa
t, if any-

thing, the belief in days just prior to H�astad's works tended to the 
onje
ture that

PCP

1;s

[O(log n); 3℄ may be 
ontained in P for some s > 1=2. These beliefs were

bolstered by the strong algorithmi
 te
hniques, based on \semide�nite program-

ming", introdu
ed in the work of Goemans and Williamson [17℄. H�astad's results

thus brought about (yet another) unexpe
ted settlement of these 
onje
tures. Sub-

sequently, Karlo� and Zwi
k [22℄ used semide�nite programming methods to show

the optimality of H�astad's results by showing that PCP

1;1=2

[O(log n); 3℄ = P. Our

le
tures will unfortunately not be able to go into this phase of developments in the


onstru
tions of PCPs; however, we will attempt to provide pointers to this in the


on
luding le
ture.

3

A
tually a 
areful analysis of the proto
ol in [5℄ shows that the randomness 
an be made log-

arithmi
; a fa
t that is related to the fa
t that the proof size 
an be made n

1+"

for arbitrarily

small " > 0.

4

More formally, by a statement like NP = PCP[O(logn); O(1)℄, we mean the following: 9


q

su
h

that 8L 2 NP, 9


r

su
h that L 2 PCP[


r

� log n; 


q

℄.

5

That 
(1) queries are required is 
lear, and a result in [3℄ shows that if NP �

PCP[o(log n); o(log n)℄ then NP = P.



8 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

3. Broad Skeleton of the proof

We now move towards the proof of the PCP theorem. The proof that we present

will roughly follow the histori
al path to the proof. We will start by proving

a statement similar in spirit to the prin
ipal results of Phase 1. Namely, we

will �rst prove (modulo some te
hni
al theorems that we will only state) NP =

PCP

�

O(log n); poly logn

�

. Two fundamental te
hniques that will be used in its

proof are Arithmetization and Low-degree testing. This will o

upy the �rst two

le
tures. We will then take some digressions. The �rst one will take us into MIPs

and show how the poly logn queries in the above PCP 
an be \aggregated" so that

the veri�er needs to read only O(1) lo
ations of the proof (and re
eive poly logn size

answers from ea
h lo
ation). This will be very useful for us in the �nal step(s) when

we will apply proof 
omposition to redu
e the number of queries down to O(1). As

a se
ond digression we will show a new PCP veri�er for NP that makes only O(1)

queries (thus is very good from this perspe
tive) but uses poly(n) randomness (and

hen
e results in exponential sized proofs). Finally, in the �nal le
ture, we will sket
h

how to prove the PCP Theorem itself by applying the idea of proof 
omposition to

the MIP system and this veri�er, and show NP = PCP[O(log n); O(1)℄.

4. Gap Problems and Polynomial Constraint Satisfa
tion

4.1. Constraint Satisfa
tion Problems

Constraint satisfa
tion problems are a spe
ial 
ategory of optimization problems

that arise naturally in the study of PCP. An instan
e of the problem 
onsists

of a 
olle
tion of 
onstraints on some variables that take values from some set

[B℄ = f1; : : : ; Bg. The goal is to �nd an assignment to the variables that maximizes

the number of satis�ed 
onstraints. More formally, an instan
e of Max w-CSP(B)


onsists of n B-ary variables V = fx

1

; : : : ; x

n

g and t w-ary 
onstraints C

1

; : : : ; C

t

de�ned on subsets of V of size w. The goal is to �nd an assignment a

1

; : : : ; a

n

2 B

to the variables V that maximizes the number of satis�ed 
onstraints. A well-known

example of a 
onstraint satisfa
tion problem is Max 3-SAT where w = 3, B = 2

and the 
onstraints are of the form (`

i

1

_ `

i

2

_ `

i

3

) where ea
h `

i

j

is either x

i

j

or

�x

i

j

.)

As mentioned earlier the Constraints Satisfa
tion Problems (hen
eforth, CSPs)

arise naturally in the study of PCP. Informally, PCP[r; q℄ \
orresponds" to Max

w-CSP(2) with appropriate relation between the parameters. Roughly, the bits of

the proof 
orrespond to the variables (whi
h is why B = 2). Ea
h 
ondition 
he
ked

by the veri�er 
orresponds to a 
onstraint (thus the number of 
onstraints is t = 2

r

,

assuming the veri�er is non-adaptive in its queries). The number of queries q equals

the \width" w of the CSP. Finally, the a

eptan
e probability of the veri�er on a

proof equals the fra
tion of satis�ed 
onstraints in the asso
iated assignment to

the variables. Thus 
omputing (or even approximating) the maximum number of

satis�able 
onstraints amounts to answering the question: Is the veri�er's a

ep-

tan
e probability greater than the 
ompleteness, or not? To formally, study the


orresponden
e one needs to work with the notion of gapped problems.



LECTURE 1. INTRODUCTION TO PCPS 9

4.2. Gap problems

When dealing with hardness of approximations, it is useful to formulate optimiza-

tion problems as de
ision problems with \gaps" asso
iated with them. Gap prob-

lems fall into the more general 
lass of \promise" problems whose instan
es are

partitioned into disjoint YES, NO and Don't Care sets. The 
omputational ques-

tion asso
iated with su
h a problem is that of de
iding whether a given instan
e

is a YES or a NO instan
e under the promise that the given instan
e is either a

YES instan
e or a NO instan
e. (In parti
ular, any answer on an instan
e from the

Don't 
are set is a

eptable.) For CSPs, the asso
iated gap problem, 
alled Gap

w-CSP


;s

(B) where s � 
, is the following:

YES instan
es: 9 assignment that satis�es at least 
 fra
tion of the 
onstraints.

NO instan
e: No assignment satis�es s fra
tion of the 
onstraints.

The 
orresponden
e between PCP and CSP sket
hed above implies the follow-

ing whi
h we leave as an (instru
tive) exer
ise:

Lemma 1 (Exer
ise). NP = PCP

1;1�"

�

O(log n); 3

�

if and only if Gap 3-CSP

1;1�"

(2)

is NP-hard.

(In proving the above, assume that NP-hardness is shown via a many-one

redu
tion from a standard NP-
omplete problem su
h as SAT.)

4.3. Polynomial Constraint Satisfa
tion

From the previous se
tion, to 
onstru
t PCPs we need to prove NP-hardness of


ertain gap problems. But then this is only a restatement of the question, and to

prove NP-hardness of a gap problem, we need a CSP whose 
onstraints are \robust"

in the sense that either all of them 
an be satis�ed or at most a small fra
tion of

them 
an be satis�ed. Low-degree polynomials (over �elds) have su
h a robustness

property: if they are zero at \many" pla
es, then are in fa
t zero everywhere. We

now de�ne a CSP 
alled Polynomial Constraint Satisfa
tion (hen
eforth referred to

as PCS).

Consider a Max w-CSP(B) problem where B = F is a �nite �eld and the

number of variables n = jFj

m

for some integerm. Thus assignments to the variables


an be viewed as fun
tions f : F

m

! F. The PCS problem is obtained by restri
ting

the assignments f to be some polynomial of (total) degree at most d over F. The

formal de�nition, formulated as a gap problem follows:

Polynomial Constraint Satis�ability Gap PCS

1;"

(t;m;w; s; d; q):

Instan
e: Integer valued fun
tions m;w; s; d; q; Finite �eld F with jFj = q(t);

Constraints

~

C

1

;

~

C

2

; : : : ;

~

C

t

with ea
h

~

C

j

=

�

C

j

; hx

(j)

1

; : : : ; x

(j)

w(t)

i 2 F

m(t)

�

where ea
h C

j

: F

w(t)

! f0; 1g is a w(t)-ary 
onstraint over F that 
an be


omputed by a size s(t) algebrai
 
ir
uit).

YES instan
es: 9 a degree d(t) polynomial p : F

m(t)

! F su
h that for all

j 2 f1; 2; : : : ; tg, C

j

�

p(x

(j)

1

); : : : ; p(x

(j)

w(t)

)

�

= 0.

NO instan
es: 8 degree d(t) polynomials p : F

m(t)

! F, the number of j 2

f1; 2; : : : ; tg su
h that C

j

�

p(x

(j)

1

); : : : ; p(x

(j)

w(t)

)

�

= 0 is less than "t.

For notational 
onvenien
e we will often omit the parameter t and refer tom(t); w(t),

s(t); d(t); q(t) as simply m;w; d; q.



10 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

4.4. Hardness of Gap-PCS

The following Lemma (whi
h will be proved in the next Le
ture) shows that a Gap

version of the PCS problem is NP-hard and thus forms the stepping stone for our

PCP 
onstru
tions.

Lemma 2. For all 
onstants " > 0, Gap-PCS

1;"

(m;w; s; d; q) is NP-hard, for

w; s; d; q = poly log t and m = O

�

log t

log log t

�

.

First note all the good things whi
h the above Lemma gives us. To begin

with, we have a gap! Also by the 
hoi
e of parameters in the NP-hardness, we

have jFj

m

= poly(t) and thus the table of values of f is a reasonable proof to

ask the prover to provide. Also the veri�er 
an just pi
k a random one of the t


onstraints (whi
h takes only log t randomness), reading the 
orresponding w =

poly log t lo
ations from the table for f and verify that the 
onstraint is satis�ed in

time poly(s(t)) = poly log t. Thus by Lemma 1 we seem to have our �rst non-trivial

PCP 
hara
terization (namely NP � PCP[O(log); poly log℄). There is a 
aveat,

however; namely the gap (and hen
e the soundness of the PCP) is guaranteed only

when f is restri
ted to a degree d polynomial, and there is no guarantee that the

prover will oblige by 
onforming to this restri
tion. Thus we need an eÆ
ient way

to enfor
e this low-degree restri
tion on f whi
h is given by low-degree tests.

5. Low-degree Testing

Ideally, we would like a low-degree test to have the following spe
i�
ation:

Given: d 2 Z

+

; and ora
le f : F

m

! F

Task: Verify that f is a degree � d polynomial in time poly(m; d); i.e.,

Completeness: If deg(f) � d then a

ept with probability 1.

Soundness: If deg(f) > d then reje
t with high probability.

The above, however, is not possible, sin
e, for every a 2 F

m

, one 
an have an f

whi
h disagrees with a degree d polynomial at a 2 F

m

and agrees with p everywhere

else, and thus will pass any test that only queries f at poly(m; d) pla
es with high

probability. We thus need to relax the soundness 
ondition.

De�nition 2. Fun
tions f; g : F

m

! F are said to be Æ-
lose if Pr

x

�

f(x) 6= g(x)

�

�

Æ when x is drawn uniformly at random from F

m

.

Low-degree Test (revised de�nition):

Given: Æ > 0, d 2 Z

+

; and ora
le f : F

m

! F

Task: Verify that f is 
lose to a degree � d polynomial; i.e.,

Completeness: If deg(f) � d then a

ept with probability 1.

Soundness: Reje
t with high probability if f is not Æ-
lose to any

degree � d polynomial.

The following result from [2℄ building upon the previous analyses in Rubinfeld and

Sudan [25℄ and Arora and Safra [3℄, shows that very eÆ
ient low-degree testers

do indeed exist. The proof of this result is 
ompli
ated and we will not delve into

it here. We will des
ribe the testing algorithm fully in the se
ond le
ture. The

interested reader 
an �nd all details of the proof in [2℄ and the referen
es 
ited

therein.



LECTURE 1. INTRODUCTION TO PCPS 11

Lemma 3 ([2℄). There exists a Æ

0

> 0 su
h that for every Æ < Æ

0

there exists a

probabilisti
 solution to the low-degree test that has running time poly(m; d;

1

Æ

) and

that tosses O(m log jFj) random 
oins.

6. Self-
orre
tion of polynomials

For the 
hoi
e of parameters in the hardness result of Lemma 2, it follows that the

low-degree test of Lemma 3 uses O(log t) randomness and makes poly log t queries

to the ora
le f . However the gap between the 
ompleteness and the soundness of

the low-degree test still leaves us with a problemati
 situation: What to do if the

prover provides as proof, a fun
tion that is Æ-
lose to a degree d polynomial, whi
h

satis�es most 
onstraints? In this 
ase, we get around the problem by testing if

the degree d polynomial g that is Æ-
lose to the ora
le f satis�es most 
onstraints.

But how 
an we get our hands an ora
le for g? It turns out we 
an implement

su
h an ora
le, probabilisti
ally, using the ora
le for f . The self-
orre
tion problem

formalizes the task at hand; and the subsequent lemma shows how eÆ
iently this

problem 
an be solved.

Self-
orre
tion of Multivariate polynomials:

Given: Æ > 0; d 2 Z

+

; x 2 F

m

; ora
le f : F

m

! F su
h that f is Æ-
lose to

some degree d polynomial p. (We assume Æ <

d

2jFj

so that a polynomial p

that is Æ-
lose to f , if one exists, is unique.)

Task: Compute p(x).

The following result from [7℄ shows the existen
e of randomized self-
orre
tors for

multivariate polynomials.

Lemma 4. There exists a randomized algorithm that solves the self-
orre
tion prob-

lem that runs in time poly(m; d;

1

Æ

) and tosses O(m log jFj) random 
oins, and

outputs the right answer (for every x) with probability at least (1 � ") provided

Æ < minf

d

2jFj

;

"

d+1

g.

The proof of the above lemma is not diÆ
ult and will be presented in the next

le
ture. For now we just assume this lemma for a fa
t and move towards the PCP

that gives us the result of Phase 1.

7. Obtaining a non-trivial PCP

Armed with Lemmas 2, 3 and 4 we 
an now give our �rst PCP veri�er that works

as follows. Let L 2 NP. Given x purportedly in L, the veri�er 
omputes (in

polynomial time) an instan
e � of Gap-PCS as guaranteed in the NP-hardness

result of Lemma 2. The prover supplies an ora
le for an assignment f : F

m

! F

(plus other auxiliary information whi
h may be used by the low-degree test). The

veri�
ation pro
ess pro
eeds as follows:

1. Run the Low-degree test from Lemma 3 on f . Reje
t if the test reje
ts.

2. Pi
k a random 
onstraint C of � and verify that Self-
orre
t(f) satis�es C

(where the algorithm Self-
orre
t is obtained from Lemma 4). Reje
t if not.

3. A

ept otherwise.

From the statements of Lemmas 2, 3 and 4, it follows that the above veri�er

queries poly log jxj bits in the proof, tosses O(log jxj) random 
oins, has perfe
t


ompleteness 
 = 1 and soundness s�

1

2

. We thus have our �rst step:



12 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Theorem 1. NP = PCP

�

O(log n); poly logn

�

.

The agenda for the next le
ture is to give further details on the proofs of Lemmas 2-

4 on the NP-hardness of Gap-PCS.



LECTURE 2

NP-Hardness of PCS

In this le
ture we will set out and prove the NP-hardness of Gap-PCS (Lemma 2

from previous le
ture) and present a self-
orre
tor for multivariate polynomials

(Lemma 4 from previous le
ture) and there by 
omplete Phase I of the proof; i.e.,

establish NP = PCP[O(log n); poly logn℄. (For the other result, Lemma 3, on low-

degree tests, we will only present a test and and take its analysis on faith.)

1. Multivariate polynomials

All of our lemmas seem to involve polynomials, while our original goal of 
onstru
t-

ing PCPs (seemingly) had nothing to do with polynomials. Before, plunging into

the proofs of the lemmas, it may be worth our while to see why polynomials arise

naturally in this 
ontext.

We �rst note a robustness property that proofs in the PCP format seem to

have. Spe
i�
ally, if we take a valid proof (a

epted with probability 1) in the

3-query PCP of, say H�astad, the proof has the property that when 1% of the bits

are 
ipped at random then its a

eptan
e probability is still at least 97%. Thus

PCP proofs are spe
ial in that they retain the power to 
onvin
e a veri�er even

when a reasonably large fra
tion of their bits are 
ipped, 
ompletely at random.

A natural question to ask is: How does the proof develop this resilien
e to error?

Turns out that a previous 
ontext in whi
h similar resilien
e to error was explored

was in the 
ontext of information transmission over noisy 
hannels. This resear
h

led to the development of error-
orre
ting 
odes. Informally, an error-
orre
ting


ode 
onsists of an en
oding fun
tion that maps a small string (message) into a

large one (
odeword) su
h that 
ipping a few bits of the 
odeword, still allows for

re
overy of the message. Our strategy to endow the PCP proofs with redundan
y

will exploit the theory dire
tly. We will simply en
ode traditional proofs using well-

known error-
orre
ting en
odings and this will bring about the ne
essary resilien
e.

However an arbitrary error-
orre
ting 
ode will not suÆ
e for our purposes. We will

use a spe
ial 
onstru
tion of error-
orre
ting 
odes: those obtained by employing

(multivariate) polynomials over �nite �elds.

Polynomials (over a �eld) are known to have ex
ellent error-
orre
tion proper-

ties (in addition to their ni
e algebrai
 stru
ture). As an example, 
onsider the fol-

lowing en
oding of a string a

1

; : : : ; a

n

2 f0; 1g

n

. Pi
k a �nite �eld F of size about n

2

13



14 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

and let f be a polynomial of degree less than n su
h that f(1) = a

1

; � � � ; f(n) = a

n

1

.

Note that su
h a polynomial does indeed exist, and 
an be found be interpolation.

Then hf(x)i

x2F

is a redundant en
oding of a

1

; : : : ; a

n

in the following sense: Given

the value of f at any subset of F of size n, we 
an interpolate to �nd f and thus

the 
oeÆ
ients a

1

; : : : ; a

n

. The original string 
an be re
onstru
ted even if

jF�nj

2

of the symbols in its en
oding are in error.

Codes based on univariate polynomials gives robustness against a huge fra
tion

of errors and is extremely eÆ
ient in this sense. For our purposes the primary

disadvantage of these 
odes is that to en
ode an n-bit string, it needs degree 
(n).

In parti
ular, this implies that any version of the Low-degree test would need to

query the value of any fun
tion f at 
(n) pla
es at the very least, before being able

to 
on
lude that the given fun
tion is not a degree n polynomial.

To get better low-degree tests, one needs to �nd fun
tions whose algebrai


degree is somehow smaller than the number of degrees of freedom that the fun
tion

exhibits. Bivariate polynomials already exhibit better tradeo�s. For example we

may pi
k a �eld F of 
ardinality � n and pi
k a polynomial f in two variables

x and y of degree at most

p

n in ea
h su
h that the value of f at the points

f(i; j)j0 � i �

p

ng 
orrespond to the values a

1

; : : : ; a

n

2 f0; 1g. (Again, one needs

to verify that su
h an f exists, and 
an be found. This task is left to the reader as

an exer
ise.) Now the sequen
e hf(x; y)i

x;y2F

forms another redundant en
oding of

the string a

1

; : : : ; a

n

.

We 
an now generalize this idea further to m-variate polynomials over a large

enough �eld F as follows: Pi
k a subset H � F of size n

1=m

so that the information

a

1

; : : : ; a

n


an be viewed as a fun
tion a : H

m

! f0; 1g. In this 
ase, it 
an be shown

(again left as an exer
ise to the reader) that there exists an m-variate polynomial

f of degree less than jH j in ea
h variable su
h that f(x) = a(x) for ea
h x 2 H

m

.

Now en
ode a by hf(x)i

x2F

m

. This 
onstru
tion will be invoked often in the sequel,

and it will be useful to give it a name | we 
all f the low-degree extension of a.

The redundan
y of this en
oding follows by the following lemma, referred to in the


omputer s
ien
e literature as the S
hwartz-Zippel lemma.

Lemma 5. For every integer m, d, �eld F and �nite subset S � F, if P : F

m

! F is

a non-zero polynomial of total degree at most d, then the probability that P (x) = 0,

when x is 
hosen uniformly at random from S

m

, is at most d=jSj.

The lemma is easy to prove by indu
tion on the number of variables and we

skip the proof.

For our appli
ation to PCS, we will pi
km(n) = O(

logn

log logn

) and jH j = poly logn.

Thus the degree of the low-degree extension of a is poly logn (whi
h is good) and

we 
an work with a �eld F of size poly logn and still have jFj

m

= poly(n) so that

the size of en
oding is polynomial in n.

1

Note that we are abusing notation by using integers to represent elements of the �nite �eld. We

do so only for notational 
onvenien
e.



LECTURE 2. NP-HARDNESS OF PCS 15

2. Hardness of Gap-PCS

2.1. Arithmetizing 3-SAT

We will establish the NP-hardness of Gap-PCS by redu
ing from 3-SAT. We begin

by des
ribing the powerful idea of arithmetizing 3-SAT whi
h is at the heart of the

redu
tion.

An instan
e � of 3-SAT 
onsists of n variables and t 
lauses C

1

; : : : ; C

t

where

ea
h 
lause C

j

is of the form

�

x

i

1

= b

1

or x

i

2

= b

2

or x

i

3

= b

3

�

where ea
h b

j

2

f0; 1g. We �nd it 
onvenient to view � as an indi
ator fun
tion � : f1; 2; : : : ; ng

3

�

f0; 1g

3

! f0; 1g where �(i

1

; i

2

; i

3

; b

1

; b

2

; b

3

) = 1 exa
tly if the 
lause

�

x

i

1

=

b

1

or x

i

2

= b

2

or x

i

3

= b

3

�

is present in the instan
e �.

To arithmetize �, we begin by pi
king h;m where h = poly logn and m =

O(log n= log logn) su
h that h

m

= n. Now, set H = f1; 2; : : : ; hg and identify

f1; : : : ; ng with H

m

in some 
anoni
al way. Extending f0; 1g to H , the instan
e �


an be viewed as a fun
tion � : H

`

! f0; 1g where ` = 3m+ 3 (we set �(� � � ) = 0

if the arguments do not make sense).

In this language, 3-SAT 
an be restated as follows: we want an \assignment"

a : H

m

! f0; 1g su
h that 8i

1

; i

2

; i

3

2 H

m

and 8b

1

; b

2

; b

3

2 H ,

�(i

1

; i

2

; i

3

; b

1

; b

2

; b

3

) = 0 or a(i

1

) = b

1

or a(i

2

) = b

2

or a(i

3

) = b

3

:

Let F be a �eld that 
ontains H and let

^

� and A be low-degree extensions of �

and a respe
tively. Now the \proof" of satis�ability is an m-variate polynomial (of

degree h in ea
h variable) A : F

m

! F and the goal of the veri�er is to 
he
k that

for all z = hi

1

; i

2

; i

3

; b

1

; b

2

; b

3

i 2 H

`

,

^

�(z) � (A(i

1

)� b

1

) � (A(i

2

)� b

2

) � (A(i

3

)� b

3

) = 0 :(1)

It is easy to see that su
h an m-variate polynomial A exists i� � is satis�able.

Thus if we 
onsider the instan
e of the PCS problem, 
onsisting of t = jH j

`


on-

straints of the form (1) for every z 2 H

`

, we obtain an instan
e of the PCS problem

for whi
h it is NP-hard to de
ide if all 
onstraints are satis�able or not. Thus we

have the NP-hardness of a PCS problem. However, there is no gap in the number

of 
onstraints (1) that 
an be satis�ed.

2.2. Making Constraints Robust

We now show how to make the 
onstraints above robust, i.e., transform them

into a di�erent 
olle
tion in whi
h either all of them 
an be satis�ed, or few 
an

be satis�ed. To this end we de�ne an `-variate polynomial

~

P

0

as follows: 8z =

hi

1

; i

2

; i

3

; b

1

; b

2

; b

3

i,

~

P

0

(z)

def

=

^

�(z) � (A(i

1

)� b

1

) � (A(i

2

)� b

2

) � (A(i

3

)� b

3

) :(2)

Sin
e

^

� and A have degree at most jH j in ea
h variable,

~

P

0

(z) is an `-variate

polynomial of degree at most 2jH j in ea
h variable and thus has (total) degree at

most 2`jH j. Let us assume that the prover gives not only the polynomial A, but

also a polynomial P

0

(of degree at most 2`jH j) that is supposedly

~

P

0

. The goal of

the veri�er is now to 
he
k the 
onstraints

1. (C0): 8z 2 F

`

P

0

(z) =

~

P

0

(z) (note that the veri�er 
an eÆ
iently 
ompute

^

�(z) and thus also

~

P

0

(z) on
e it is given the assignment polynomial A).

2. (C0

0

) 8z 2 H

`

P

0

(z) = 0.



16 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Sin
e both P

0

and

~

P

0

are low-degree polynomials (they have degree at most

2`jH j), the 
onstraints (C0) are robust (either all of them are satis�ed or a small

fra
tion (at most

2`jHj

jFj

: see lemma below) of them are satis�ed.

Lemma 6. If P

0

,

~

P

0

are degree d polynomials that violate (C0) for some z, then

they violate (C0) for at least

�

1�

d

jFj

�

fra
tion of the z's.

Proof: Follows from the S
hwartz-Zippel Lemma applied to P

0

�

~

P

0

sin
e a degree

d polynomial is zero on at most

d

jFj

fra
tion of the domain.

The 
onstraints (C0

0

) are not robust, sin
e it is possible for a degree 2`jH j

polynomial to be zero on all but one point of H

`

. Our idea would be to in
rease the

size of the domain on whi
h we would like the polynomial to be zero. Spe
i�
ally we

will de�ne a sequen
e of (low-degree) polynomials P

1

; P

2

; : : : ; P

`

su
h that P

1

= 0

over F � H

`�1

i� P

0

= 0 over H

`

, and similarly for 1 < i � `, P

i

= 0 over

F

i

�H

`�i

i� P

i�1

= 0 over F

i�1

�H

`�i+1

. Hen
e P

`

will be identi
ally zero on

F

`

i� P

0

(z) = 0 8z 2 H

`

. Ea
h of these 
onstraints (and in parti
ular P

`

(z) = 0

8z 2 F

`

are all robust 
onstraints and this will give us the desired \gap" in the

PCS instan
e.

As a motivation for de�ning these polynomials, let us �rst look at an analogous

transformation for univariate polynomials. Let fh

1

; h

2

; : : : ; h

jHj

g be an enumeration

of the elements of H . Given a univariate polynomial p 2 F[X ℄, de�ne a polynomial

q by:

q(y) =

jHj

X

j=1

p(h

j

)y

j

:

Clearly, if p(h) = 0 for all h 2 H , the q � 0. Conversely, if p

jH

6� 0, then q is some

non-zero polynomial of degree at most jH j and so is non-zero on at least jF n H j

points. Thus q is identi
ally zero on F i� p is identi
ally zero on H .

In the multivariate 
ase, we will apply the above transformation, on
e in ea
h

variable. Starting with a polynomial P

0

in formal variables (x

1

; x

2

; : : : ; x

`

), we will

obtain a sequen
e of polynomials

P

1

(y

1

; x

2

; : : : ; x

`

)

P

2

(y

1

; y

2

; x

3

; : : : ; x

`

)

.

.

.

P

i

(y

1

; y

2

; : : : ; y

i

; x

i+1

; : : : ; x

`

)

.

.

.

P

`

(y

1

:y

2

; : : : ; y

`

)

where ea
h transition from an x-variable to a y-variable follows the s
heme des
ribed

above for univariate polynomials, namely, for 1 � i � `, de�ne

P

i

(y

1

; : : : ; y

i

; x

i+1

; : : : ; x

`

) =

jHj

X

j=1

P

i�1

(y

1

; : : : ; y

i�1

; h

j

; x

i+1

; : : : ; x

`

)y

j

i

:(3)

Note that if P

i�1

has degree d

i�1

, then the degree d

i

of P

i

is at most d

i�1

+ jH j.

Sin
e P

0

has degree at most 2`jH j, the degree of ea
h P

i

for i 2 f0; 1; : : : ; `g is


learly at most 3`jH j. By the same reasoning as in the univariate 
ase, we have

P

i

jF

i

�H

`�i � 0() P

i�1

jF

i�1

�H

`�i+1 � 0 :



LECTURE 2. NP-HARDNESS OF PCS 17

(By our de�nitions, we have

P

`

(y

1

; : : : ; y

`

) =

X

1�i

1

;i

2

;:::;i

`

�jHj

P

0

(h

i

1

; : : : ; h

i

l

)y

i

1

1

� � � y

i

`

`

:

and this is another way of verifying that P

`

� 0 on F

`

i� P

0

is identi
ally zero on

H

`

.)

2.3. The Gap-PCS instan
e

We are now ready to des
ribe the 
onstraints of our Gap-PCS instan
e. Given a

3-SAT instan
e �, 
onsider the following (polynomial) 
onstraint satisfa
tion prob-

lem: The required \solution" 
onsists of polynomials A;P

0

; P

1

; : : : ; P

`

where A is

an m-variate polynomial of degree at most mjH j and P

0

; : : : ; P

`

are `-variate poly-

nomials of degree at most 3`jH j. The \
onstraints" pla
ed on the polynomials are

the following.

For all z = (z

1

; : : : ; z

`

) 2 F

`

:

(C0): P

0

(z) =

~

P

0

(z) where

~

P

0

(z) is de�ned based on � and A : F

m

! F as in

Equation (2).

For i = 1; 2; : : : ; `,

(Ci): P

i

(z

1

; : : : ; z

i

; z

i+1

; : : : ; z

`

) =

P

jHj

j=1

P

i�1

(z

1

; : : : ; z

i�1

; h

j

; z

i+1

; : : : ; z

`

)z

j

i

(the 
ondition from Equation (3) at the point z).

(C(`+ 1)): P

`

(z) = 0.

By the \robustness" of all these 
onstraints (see Lemma 6 above), we have the

following:

Lemma 7. If P

0

; : : : ; P

`

and

~

P

0

are polynomials of degree at most d, then for ea
h

set of jFj

`


onstraints (Ci), 0 � i � `+1, either all of them are satis�ed or at most

a fra
tion (d+ jH j)=jFj of them are satis�ed.

Proof: Follows from Lemma 6 sin
e all polynomials involved in the 
onstraints

have degree at most d+ jH j.

Bundling polynomials into a single polynomial. Note that in a PCS instan
e

the \solution" asked for is a single low-degree polynomial, where as in the above

we have several polynomials (A;P

0

; : : : ; P

`

) involved in the 
onstraints. There is a

simple tri
k to handle to this: we just require that all the polynomials be \bundled

together" and presented as a single degree D = (3`jH j + ` + 1) polynomial Q :

F

`+1

! F su
h that for 0 � i � `, Q(i; � � � ) = P

i

(� � � ) and Q(`+ 1; hz

1

; : : : ; z

`

i) =

A(z

1

; : : : ; z

m

). The existen
e of su
h a polynomial is guaranteed by the following

Lemma:

Lemma 8. Given polynomials q

0

; : : : ; q

t

: F

`

! F over a �nite �eld F with jFj > t,

ea
h of (total) degree at most �, there exists a degree �+t polynomial Q : F

`+1

! F

su
h that for i = 0; 1; : : : ; t and all z 2 F

`

, Q(i; z) = q

i

(z).

Proof: For ea
h i 2 f0; 1; : : : ; tg, there is a unique univariate polynomial Æ

i

of

degree t su
h that

Æ

i

(v) =

�

1 if v = i

0 if 0 � v � t but v 6= i.



18 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Now de�ne the polynomial Q as

Q(v; z) =

t

X

i=0

Æ

i

(v)q

i

(z) :

Clearly Q(i; � � � ) � q

i

(� � � ) for ea
h i 2 f0; 1; : : : ; tg.

Suppose su
h a polynomial Q is given (as a solution to the PCS instan
e 
on-

stru
ted from �). We wish to des
ribe the 
onstraints of the PCS instan
e. First

we make expli
it the de�nition of a polynomial P

0

0

from Q that will serve the role of

~

P

0

from de�nition (2). For z = hz

1

; : : : ; z

`

i 2 F

`

where ` = 3m+3, P

0

(z) is de�ned

as:

P

0

0

(z)

def

=

^

�(z) �

�

Q(`+ 1; hz

1

; : : : ; z

m

; 0; : : : ; 0i)� z

3m+1

�

�

�

Q(`+ 1; hz

m+1

; : : : ; z

2m

; 0; : : : ; 0i)� z

3m+2

�

(4)

�

�

Q(`+ 1; hz

2m+1

; : : : ; z

3m

; 0; : : : ; 0i)� z

3m+3

�

Note that P

0

0

has total degree at most 10`jH j+ 3`+ 3 < 11`jH j.

Summarizing the redu
tion from SAT to PCS. We are now ready to sum-

marize the redu
tion T

3SAT!PCS

whi
h maps instan
es of 3SAT to PCS: Given an

instan
e � of 3SAT, the redu
ing algorithm sets m =

logn

log logn

and sets h = n

1=m

,

and ` = 3m+ 3. It then pi
ks a �eld F of suÆ
iently large size, say q � h

3

. (The


hoi
e of 3 in the exponent is somewhat arbitrary. We will need q � mh and q � h

3

suÆ
es for our purpose.) It then 
omputes the fun
tion

^

� : F

`

! F, and using this,

it generates t = jFj

`


onstraints (C)(z), one for every z 2 F

`

. The 
onstraint for z

is:

(C)(z) =

`+1

^

i=0

(Ci)(z)

where (Ci) are the 
onstraints des
ribed earlier in this se
tion. The main ex
eption

is that these 
onstraints are de�ned over a single polynomial Q : F

`+1

! F, and

thus every o

uren
e of P

i

(�), 0 � i � ` + 1 is repla
ed with Q(i; �). Similarly

instead of the polynomial

~

P

0

one uses the polynomial P

0

0

de�ned in Equation (4).

All polynomials involved in 
onstraints (C)(z) have degree at most 11`jH j, and

hen
e we get by Lemma 6 that, for any degree D polynomial Q, either all the


onstraints (C)(z) are satis�ed or at most a fra
tion 11`jH j=jFj of the 
onstraints

are satis�ed. By 
hoi
e of jFj this fra
tion is a o(1) fun
tion and thus is smaller

than �, for any � > 0, for suÆ
iently large n.

2.4. The hardness result

From the dis
ussion in the pre
eding paragraph, we 
an now 
on
lude:

Lemma 9. For every � > 0, the redu
tion T

3SAT!PCS

maps an instan
e � to an

instan
e of PCS with m = O(log n= log logn) and w; d; q = poly logn su
h that the

following 
onditions are satis�ed:

Completeness: If � is satis�able, then there exists a polynomial Q of degree

at most d that satis�es all the 
onstraints.

Soundness: If there exists a polynomial Q of degree at most D that satis�es

more than an �-fra
tion of the 
onstraints, then � is satis�able.



LECTURE 2. NP-HARDNESS OF PCS 19

Proof: The 
ompleteness is 
lear sin
e we 
an just take Q to be the polynomial

su
h that Q(` + 1; �) = A, Q(0; �) �

~

P

0

(�) (where

~

P

0

is de�ned in Equation (2))

and Q(i; �) = P

i

(�) (where P

i

is de�ned as in Equation (3)) for 1 � i � `. For the

soundness, we know by the dis
ussion at the end of the previous subse
tion, that if

more than an �-fra
tion of the 
onstraints are satis�ed, then in fa
t all of them are

satis�ed. This in turn implies that

~

P

0

(�) = Q(0; �) is identi
ally zero on H

`

, whi
h

implies that the assignment A

def

= Q(`+ 1; �) satis�es �.

Note that by the 
hoi
e of the parameters, we have m = O(log n= log logn) and

w; d; q = poly logn as required. Finally, for ea
h z 2 F

l

, the 
onstraint (C)(z) 
an

be 
he
ked in polylogarithmi
 time. We have thus proved the �rst of the lemmas

from last le
ture that we set out to prove:

Lemma 2: For all 
onstants " > 0, Gap-PCS

1;"

(m;w; s; d; q) is NP-hard, for

w; s; d; q = poly log t and m = O

�

log t

log log t

�

.

3. Low-degree Testing

Re
all the following Lemma from the previous le
ture:

Lemma 3: There exists a Æ

0

> 0 su
h that for every Æ < Æ

0

there exists a proba-

bilisti
 solution to the low-degree test that has running time poly(m; d;

1

Æ

) and that

tosses O(m log jFj) random 
oins.

We will not be able to prove the above lemma, but we will present the testing

algorithm whi
h has the properties 
laimed in the lemma. The idea behind the test

is the following: For x; y 2 F

m

, de�ne f

x;y

(t) = f(x + ty) (i.e., f

x;y

is f restri
ted

to the \line" passing through x with slope y). If f is a degree d polynomial, then

for every x; y 2 F

m

, f

x;y

is a (univariate) polynomial of degree d, and in fa
t the


onverse also holds. This suggests the following test:

Pi
k random x; y and verify that f

x;y

is a degree d polynomial.

We in fa
t 
onsider the following weaker test Low-Deg-Test:

� Pi
k x; y 2 F

m

and t 2 F at random.

� Ask prover for (the at most (d+ 1)) 
oeÆ
ients of the \polynomial" f

x;y

� Verify that f

x;y

(t) = f(x+ ty).

The following theorem [25, 3, 2℄ shows that the above test indeed satis�es the


onditions of Lemma 3.

Theorem 2. Consider the test Low-Deg-Test spe
i�ed above.

1. Easy part: If f is a degree d polynomial, then there exist responses f

x;y

su
h

that Low-Deg-Test always a

epts.

2. Hard part: There exists a 
onstant Æ

0

> 0 su
h that for all m; d; F, if f is any

fun
tion su
h that there exist responses f

x;y

that make Low-Deg-test reje
t

with probability Æ � Æ

0

, then f is 2Æ-
lose to some degree d polynomial.

4. Self-
orre
tion

We now move to the third and �nal 
omponent we need to 
omplete our �rst PCP


hara
terization (NP = PCP[O(log n); poly logn℄), namely self-
orre
tion. Re
all

the problem de�nition:



20 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Given: Æ > 0; d 2 Z

+

; x 2 F

m

; ora
le f : F

m

! F su
h that f is Æ-
lose to

some degree d polynomial p. (We assume Æ <

d

2jFj

so that a polynomial p

that is Æ-
lose to f , if one exists, is unique.)

Task: Compute p(x).

We will prove:

Lemma 4: There exists a randomized algorithm that solves the self-
orre
tion

problem that runs in time poly(m; d; log

1

�

) and tosses O(m log jFj) random 
oins,

and outputs the right answer (for every x) with probability at least (1� ") provided

Æ <

d

2jFj

.

Proof: Consider the following self-
orre
tion pro
edure. Given x 2 F

m

and ora
le

for f whi
h is Æ-
lose to a polynomial p, 
ompute p(x) as follows:

1. Pi
k y 2 F

m

at random.

2. Query f(x + y), f(x + 2y); � � � ; f(x + (d + 1)y) and let b

1

; : : : ; b

d+1

be the

responses.

3. Find, by interpolation, a degree d (univariate) polynomial h su
h that h(i) =

b

i

for 1 � i � d+ 1.

4. Output h(0) as the value of p(x).

Note that the algorithm tosses O(m log jFj) random 
oins, probes f in d+1 pla
es

and runs in time polynomial in m; d. It remains to prove the 
orre
tness of

the pro
edure. If f is a degree d polynomial, then the output is 
learly 
or-

re
t. But f is only Æ-
lose to a degree d polynomial p. However, for every

i, 1 � i � d + 1, x + iy is a random point in F

m

(we are ignoring the pos-

sibility that y = 0 here, but this happens with negligible probability). Thus,

Pr

y

[f(x + iy) 6= p(x + iy)℄ � Æ by the de�nition of Æ-
loseness. Hen
e, by the

union bound, Pr

y

[9i; f(x + iy) 6= p(x + iy)℄ � (d + 1)Æ whi
h is at most " sin
e

Æ < "=(d+ 1). Thus, with probability at least (1� "), b

1

; : : : ; b

d+1

are the \right"

values of p(x + y); : : : ; p(x + (d + 1)y) and thus the interpolation step 
orre
tly


omputes p(x).

This 
ompletes the proof of the PCP 
hara
terization NP = PCP[O(log n); poly logn℄.

(Re
all that the easier dire
tion of the 
ontainment was already shown in Se
-

tion 2.2.) This 
ompletes Phase 1 of our goals.



LECTURE 3

A 
ouple of digressions

We now move on Phase 2 of the proof of the PCP Theorem. We will approa
h

this phase somewhat tangentially. In this le
ture, we will show two results, that will

essentially be digressions for now, and then linked to Phase 2 in the �nal le
ture.

The �rst result will be an \MIP" 
hara
terization of NP. We will show how the

PCP veri�er of Phase 1 
an be modi�ed into an MIP veri�er that \aggregates" the

poly logn queries of the PCP veri�er into a 
onstant number of queries that it will

send to multiple (mutually non-intera
ting) provers that respond with poly logn

bits ea
h. While the advantage of this modi�
ation will be un
lear for now, we

will exploit this MIP veri�er in the �nal le
ture. The se
ond result will give a

highly query-eÆ
ient PCP veri�er for NP: spe
i�
ally we will prove that NP =

PCP[poly(n); O(1)℄. Note that this veri�er just makes a 
onstant number of queries

(as is our �nal goal), however that the randomness used by the veri�er is very large.

Part I: Multiprover Intera
tive Proofs (MIP)

The informal question behind the de�nition of MIP is the following: What


an a probabilisti
 veri�er intera
ting with p non-
ommuni
ating provers verify, if

allowed to ask one question to ea
h prover? More formally, we have the following

de�nition:

De�nition 3. For an integer p and integer valued fun
tions r; a : Z

+

! Z

+

, a

(p; r; a)-restri
ted MIP veri�er is a probabilisti
 veri�er that tosses r(n) 
oins, asks

one question to ea
h of p provers and re
eives a(n)-bit answers, on inputs of length

n.

We 
an now de�ne MIP 
lasses similar to PCP 
lasses.

De�nition 4. For an integer p and integer valued fun
tions r; a : Z

+

! Z

+

, a

language L is said to be in MIP


;s

[p; r; a℄ if there is a (p; r; a)-restri
ted MIP veri�er

that 
he
ks x 2 L with 
ompleteness 
 and soundness s.

A p-prover MIP is also 
alled a p-prover 1-round proto
ol, sin
e there is only

one round of veri�er-prover intera
tion. A few 
omments on the MIP model. MIP

seems to be a natural model within the 
ontext of intera
tive proofs. It is more

restri
tive than PCP as MIP


;s

[p; r; a℄ � PCP


;s

[r; pa℄ (sin
e the responses of the

21



22 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

p provers 
an be written down as one big proof, and the veri�er will query pa(n)

bits from this proof), and thus good MIP 
onstru
tions suÆ
e to 
onstru
t good

PCPs. We will now do the opposite and show how to 
overt a PCP into a MIP

(with some loss in parameters), and this will be a 
entral intermediate step in our

goal of proving the PCP Theorem.

1. A 3-prover MIP for NP

We will 
onstru
t a 3-prover MIP from the PCP[O(log n); poly logn℄ veri�er of

Phase 1. To do this, let us �rst re
all how the veri�er worked (at a high level).

The veri�er is based on a hard instan
e of PCS with a \gap". It expe
ts as proof

a low-degree polynomial expressed as a table of values f : F

m

! F, and a \lines

ora
le" f

lines

that it uses for performing a low-degree test. Given a

ess to ora
les

for f and f

lines

, the veri�er worked in two steps:

1. Perform a low-degree test on f .

2. Pi
k a random 
onstraint of the PCS instan
e and 
he
k it is satis�ed by

the self-
orre
ted version of the ora
le f .

The �rst step above is already stru
tured as a 2-prover 1-round proto
ol: The

veri�er asks one prover for the value of f at a point and a se
ond prover for the


oeÆ
ients of the polynomial f

x;y

for a line `

x;y

= fx + ty : t 2 Fg for some

x; y 2 F

m

. The se
ond step, however, queries the table f in many pla
es, and we

somehow need a way to \aggregate" these queries into one \big" query.

1.1. Parallelization: Re
onstru
tion via 
urves

Suppose we need to query f : F

m

! F at w pla
es x

1

; : : : ; x

w

. In this se
tion we will

show how to �nd the value of f at all these points 
orre
tly, with high probability,

using only a 
onstant number of queries to two provers. This solution will work

using the \algebrai
" and \randomness" properties of \
urves" in m-dimensional

spa
e (where all terms in quotes will be explained later). Using su
h 
urves, our

strategy 
an be des
ribed at a high-level as follows: We will pi
k a random 
urve

C through x

1

; : : : ; x

w

and ask a third prover for a des
ription of the fun
tion f on

the entire 
urve C. Denote this restri
tion by f j

C

. If the prover responds honestly

with f

jC

we are in good shape, while if it responds with a wrong polynomial h,

then we will show that a random point we will have f(C(t)) 6= h(t) and we will be

able to dete
t this.

We now de�ne what we mean by a \random 
urve" in F

m

. A 
urve is simply a

fun
tion C : F ! F

m

. Note that this 
urve 
an be 
onsidered to be a 
olle
tion of

m fun
tions C

i

: F ! F, where C(t) = hC

1

(t); : : : ; C

m

(t)i. We 
an now de�ne the

degree of a 
urve: The degree of C is simply the maximum of the degrees of the

fun
tions C

i

; i.e., deg(C) = max

i

deg(C

i

).

Curves of low-degree turn out to be useful for this se
tion, and the following

proposition asserts that 
urves of reasonably small degree do exist passing through

any small set of points. (The proof is omitted, but 
an be easily seen to be a


onsequen
e of the interpolation theorem for univariate polynomials.)

Proposition 1. For any set of (w

1

) points x

0

; x

1

; : : : ; x

w

2 F

m

, there exists a

unique degree w 
urve C with C(j) = x

j

for j = 0; 1; : : : ; w.



LECTURE 3. A COUPLE OF DIGRESSIONS 23

A \random 
urve" through x

1

; : : : ; x

w

is de�ned to the 
urve from the above

proposition for a random value of x

0

2 F

m

. The reason we label su
h a 
urve to be

random, is that most points on this 
urve (all ex
ept the ones that are expli
itly

determined) are randomly distributed (though not independently so) over F

m

. This

is 
laimed in the next proposition.

Proposition 2. For every x

1

; : : : ; x

w

2 F

m

, if x

0

2 F

m

is pi
ked at random and

C is the unique degree w 
urve su
h that C(j) = x

j

for 0 � j � w, then for any

t =2 f1; : : : ; wg, C(t) is a random point in F

m

.

Re
all that our intention is to ask a (third) prover for a des
ription of the

fun
tion f j

C

for some 
urve C. How does the prover des
ribe this fun
tion f j

C

?

Turns out that for low degree polynomial fun
tions, their restri
tion to a low-degree

durve is still a low-degree polynomials. This is asserted in the next lemma.

Lemma 10. If P : F

m

! F is a degree d polynomial and C : F ! F

m

is a degree

w 
urve, then P

jC

(de�ned by P

jC

(t) = P (C(t))) is a univariate polynomial over F

of degree wd.

Proof. Follows by susbstituting for ea
h variable x

i

o

uring in the polynomial P ,

the polynomial C

i

(t).

1.2. The 3-prover MIP

We are now ready to present the promised 3-prover MIP for NP in full detail.

Input: An instan
e of Gap-PCS

1;"

(t;m;w; s; d; q)

Provers: There will be 3 provers �

1

, �

2

, �

3

. We will also refer to the �

i

's as

proofs or ora
les: the \proof" 
orresponding to a prover simply 
onsists of all the

responses of that prover to the various questions it might be asked. The proof �

1

will 
omprise of the values of the purported \polynomial" P that is a solution to

the Gap-PCS instan
e. �

2

will be the \lines ora
le" used to perform the low-degree

test, and �

3

will be the \
urves ora
le" used to perform the parallelization step.

The veri�er operates as follows:

� [Random Choi
es:℄

1. Pi
k a 
onstraint C

j

of the Gap-PCS instan
e at random.

2. Pi
k a random 
urve C through the w points x

1

; : : : ; x

w

2 F

m

that C

j

depends on. (Do this by pi
king a random x

0

2 F

m

and determining

the unique degree w 
urve C su
h that C(j) = x

j

for j = 0; 1; : : : ; w.)

3. Pi
k a random point x on C by pi
king a random t

0

2 F �f0; : : : ; wg

and setting x = C(t

0

).

4. Pi
k a random line ` through x (i.e., pi
k y 2 F

m

at random and

random t

00

2 F and set ` = fx+ (r � t

00

)y : r 2 Fg).

� [Queries:℄

1. Queries �

1

for the value P (x); let response be a 2 F.

2. Queries �

2

for the polynomial P

j`

x;y

; let g be the (degree d univariate)

polynomial obtained as response.

3. Queries �

3

for the degree wd polynomial P

jC

; let h be the response.

� [A
tion (A

ept/Reje
t):℄

{ Reje
t unless g(t

00

) = h(t

0

) = a.

{ Reje
t if hh(1); h(2); : : : ; h(w)i 2 F

w

does not satisfy the 
onstraint

C

j

.



24 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

{ A

ept otherwise.

1.3. Analysis

Presenting the analysis of the above (3-prover) MIP in full rigor with proper 
hoi
e

of the several parameters involved will take too long; we therefore only sket
h the

main ideas in the analysis. The reader is referred to [2℄ for a rigorous proof.

Completeness: It is 
lear that if the Gap-PCS instan
e is satis�able, say by a

low-degree polynomial P

0

, then �

1

= P

0

and �

2

, �

3

de�ned as the restri
tions

of P

0

to lines and degree w 
urves respe
tively, will always satisfy the tests of the

veri�er. We thus have perfe
t 
ompleteness 
 = 1.

Soundness: Suppose we have a NO instan
e of Gap-PCS as input to the MIP

veri�er, i.e., any degree d m-variate polynomial P satis�es at most an " fra
tion

of the t 
onstraints. Let

~

P be the response of �

1

; if

~

P is not Æ-
lose to a degree

d polynomial, then by the Lemma on low-degree testing from last le
ture, we will

have g(t

00

) 6= a (re
all that a

def

=

~

P (x)) with probability at least Æ=2, and thus the

veri�er will reje
t with probability at least Æ=2.

Now suppose

~

P is Æ-
lose to a (unique) degree d polynomial P . Sin
e we have

a NO instan
e of Gap-PCS, with probability at least (1 � "), the veri�er pi
ks a


onstraint C

j

that is not satis�ed by P . Now two 
ases arise:

� If h = P

jC

, then hh(1); : : : ; h(w)i = hP (x

1

); : : : ; P (x

m

)i and thus does not

satisfy the 
onstraint C

j

, and the veri�er reje
ts in this 
ase.

� If h 6= P

jC

, then sin
e both h; P

jC

are degree wd polynomials, h(t

0

) 6=

P (x) with probability at least

�

1�

wd

jFj�w�1

�

by the S
hwartz-Zippel Lemma

(sin
e t

0

is a random element of F � f0; : : : ; wg). Also P;

~

P are Æ-
lose, so

P (x) =

~

P (x) with probability at least (1�Æ). Thus with probability at least

(1� Æ�wd=(jFj �w � 1)), we will have h(t

0

) 6= a and the veri�er will reje
t.

From the pre
eding dis
ussion, there is a 
onstant 
 > 0, su
h that the veri�er

reje
ts NO instan
es of Gap-PCS with probability at least 
, and this gives our

desired MIP 
hara
terization:

Theorem 3 ([2℄). There exists 
 > 0 su
h that

NP � MIP

1;1�


�

3; O(log n); poly logn

�

:

Part II: A Query-eÆ
ient PCP Veri�er

We now turn to giving a highly query-eÆ
ient PCP veri�er for NP. The veri�er

will only read O(1) bits from the proof. On the down side, it will use polynomial

randomness, and redu
ing the randomness to logarithmi
 while retaining the query


omplexity at O(1) will be the subje
t of the next le
ture.

2. NP � PCP[poly; O(1)℄

2.1. Quadrati
 Polynomials

Just as in the 
ase of Gap-PCS, we will �rst show (sket
h) the NP-hardness of an

algebrai
 problem, namely \Satis�ability of quadrati
 polynomials" QP-SAT whi
h

tests if a set of multivariate degree two polynomials (over F

2

), say P

1

; : : : ; P

t

, have



LECTURE 3. A COUPLE OF DIGRESSIONS 25

a 
ommon zero. This problem will form the basis of our new PCP veri�er. We �rst

formally de�ne the QP-SAT problem:

QP-SAT (Satis�ability for Quadrati
 Polynomials)

Instan
e: t quadrati
 (degree 2) polynomials P

1

; : : : ; P

t

on n variables x

1

; : : : ; x

n

over F

2

.

Question: Do these polynomials have a 
ommon zero? I.e., is there an assignment

a = (a

1

; : : : ; a

n

) to x

1

; : : : ; x

n

su
h that P

j

(a) = 0 for j = 1; 2; : : : ; t.

Lemma 11. QP-SAT is NP-
omplete.

Proof: The problem is 
learly in NP sin
e, for Yes instan
es, we 
an guess

(a

1

; : : : ; a

n

) and then verify that it is indeed a 
ommon zero. To prove NP-hardness,

we redu
e from Cir
uit Sat. An instan
e of Cir
uit Sat 
onsists of a Boolean


ir
uit C 
omprising of Not gates and And, Xor gates of fan-in two, and the

goal is to de
ide if C has a satisfying input. It is well-known that Cir
uit Sat is

NP-
omplete.

To redu
e Cir
uit Sat to QP-SAT, we introdu
e one variable x

i

for ea
h

input and for ea
h gate of the 
ir
uit. We pla
e a 
onstraint for ea
h gate of the


ir
uit whi
h enfor
es that the output of that gate is 
onsistent with its inputs and

the operation of the gate. For example, for an And gate with asso
iated variable

x

j

that re
eives its inputs from the gates asso
iated with variables x

i

1

and x

i

2

, we

would pla
e the 
onstraint x

j

� x

i

1

x

i

2

= 0. Similar 
onstraints are pla
e for Xor

and Not gates. We also pla
e a 
onstraint 
orresponding to the output gate whi
h

for
es it to equal 1 (so C is satis�ed). Note that these 
onstraints 
he
k for the

existen
e of a 
ommon zero of 
ertain degree 2 polynomial, and it is easy to see

that a 
ommon zero exists for these polynomials if and only if C was satis�able.

This 
ompletes the proof.

2.2. Intuition for the Veri�er

Given an instan
e of QP-SAT the veri�er must 
he
k that all there exists a su
h

that P

j

(a) = 0 for all j = 1; 2; : : : ; n. For now, pretend there were only one

polynomial P (we will see how the many polynomials 
ase redu
es to this situation

later). Sin
e P is a degree two polynomial, it is of the form:

P (x

1

; : : : ; x

n

) = s

0

+

n

X

i=1

s

i

x

i

+

X

1�i;j�n




ij

x

i

x

j

:(5)

where s

0

; s

1

; : : : ; s

n

and the 


ij

's are all elements of F

2

. We would like to 
he
k

that P (a

1

; : : : ; a

n

) = 0; sin
e we want to read very few bits from the proof, just

asking the prover to provide a

1

; : : : ; a

n

will not work for us. Instead we will ask the

prover to write down an appropriate en
oding of a

1

; : : : ; a

n

. Considering the form

of P , en
oding a

1

; : : : ; a

n

using the Hadamard 
ode and the Quadrati
 fun
tions


ode will be useful, and we turn to the des
ription of these 
odes next.

2.3. Hadamard and Quadrati
 Fun
tions Code

The Hadamard Code: The Hadamard 
ode is the most redundant linear 
ode

and 
onsists of the evaluations of all linear fun
tions at the message that is being

en
oded. More formally, given a string (a

1

; : : : ; a

n

) 2 F

n

2

, de�ne A : F

n

2

! F

2

as

A(x)

def

=

P

n

i=1

a

i

x

i

. The Hadamard en
oding of a is simply hA(x)i

x2F

n

2

. Note that



26 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

a message of length n is en
oded into 2

n

bits under the Hadamard 
ode. It is easy

to prove that the Hadamard en
odings of distin
t strings di�er in exa
tly half the

bits.

Given the Hadamard en
oding A of (a

1

; : : : ; a

n

), we 
an 
ompute the lin-

ear fun
tion

P

n

i=1

s

i

a

i

by just one query into A, sin
e

P

n

i=1

s

i

a

i

= A(s) for

s = (s

1

; : : : ; s

n

) 2 F

n

2

. Sin
e we are interested in evaluating some degree two

polynomial P at (a

1

; : : : ; a

n

), we will need a more redundant en
oding that also

in
ludes values of quadrati
 fun
tions, and thus one uses the Quadrati
 fun
tions


ode.

The Quadrati
 Fun
tions Code: Given a

1

; a

2

; : : : ; a

n

, the quadrati
 fun
tions


ode (hen
eforth, QF-
ode), en
odes it by the 2

n

2

long string hQ(a)i

Q

where Q

ranges over all homogeneous degree 2 polynomials over F

2

. Note that su
h a poly-

nomial is spe
i�ed by n

2

�eld elements Q

ij

, where Q(x) =

P

i;j

Q

ij

x

i

x

j

. We

denote by B the QF-en
oding of a

1

; : : : ; a

n

, and B de�nes a map F

n

2

2

! F

2

by

B(Q) = B(Q

11

; : : : ; Q

nn

) =

P

i;j

Q

ij

a

i

a

j

.

2.4. The \Proof"

The QP-SAT veri�er will expe
t as proof the Hadamard and QF-en
odings of a


ommon zero a = (a

1

; : : : ; a

n

) of the quadrati
 polynomials P

1

; : : : ; P

t

in the QP-

SAT instan
e. Note that for any degree 2 polynomial P as in Equation (5), the

veri�er 
an 
he
k P (a) = 0 by reading A(s) and B(
) from the A and B tables,

thereby just making two queries. Of 
ourse, we have no guarantee that the proofs

will be legal Hadamard and QF-en
odings of a, and therefore as in multivariate

polynomials 
ase, we need a Testing pro
edure (
alled \Linearity Testing" in the

literature) and Self-
orre
ting pro
edure for the Hadamard and QF-
odes.

2.5. Self-
orre
ting the Hadamard and QF-
odes

We �rst deal with self-
orre
tion sin
e, as in the low-degree polynomial 
ase, this

is mu
h easier than testing. We will present a self-
orre
tion algorithm for the

Hadamard 
ode, and the extension to the QF-
ode is 
ompletely straightforward.

Note that Hadamard 
ode is simply the en
oding using multi-linear polynomial


ode, and the reader 
an verify that the algorithm below is in fa
t the same as the

one for self-
orre
ting multivariate polynomials spe
ialized to the multi-linear 
ase.

First let us formalize the self-
orre
tion question for the Hadamard 
ode.

Self-Corr(A; x):

Given: x 2 F

n

2

and an ora
le A : F

n

2

! F

2

whi
h is Æ-
lose to a linear fun
tion

~

A

(for some Æ < 1=4 so that there is a unique Æ-
lose linear fun
tion

~

A to A).

Task: Compute

~

A(x).

Lemma 12. There is a self-
orre
tion pro
edure that uses O(n) random bits, makes

two queries and whi
h, for every x 2 F

n

2

, returns the 
orre
t value of

~

A(x) with

probability at least (1� 2Æ).

Proof: Consider the following self-
orre
tion pro
edure. Given x 2 F

n

2

and ora
le

for A whi
h is Æ-
lose to a linear fun
tion

~

A, 
ompute

~

A(x) as follows:

1. Pi
k y 2 F

n

2

at random.

2. Output A(x + y)�A(y).



LECTURE 3. A COUPLE OF DIGRESSIONS 27

To prove the 
laim of the Lemma, note that sin
e y and x+y are random points

in F

n

2

, we have Pr

y

[A(y) 6=

~

A(y)℄ � Æ and Pr

y

[A(x + y) 6=

~

A(x+ y)℄ � Æ. Thus with

probability at least (1� 2Æ), we will have A(y) =

~

A(y) and A(x + y) =

~

A(x + y),

and by linearity of

~

A, this implies we output

~

A(x).

2.6. Linearity Testing

A fun
tion f : F

m

2

! F

2

is 
alled linear if f(x+ y) = f(x) + f(y) for all x; y 2 F

m

2

.

This is equivalent to < f(x) >

x2F

m

2

being a Hadamard 
odeword. The veri�er for

QP-SAT we wish to 
onstru
t, needs to 
he
k linearity of both the A and B tables

it is presented as proof, and thus Linearity Testing is a 
ru
ial 
omponent in this


onstru
tion. It is also a very natural 
ombinatorial problem in its own right.

Formally, the spe
i�
ation of the linearity testing problem is the following:

Given: Æ > 0; ora
le f : F

m

2

! F

2

.

Task: Test if f is Æ-
lose to a linear fun
tion

~

f .

The following asserts the existen
e of a good Linearity test:

Lemma 13. There is a Linearity Test whi
h uses O(m) random bits, makes just

3 queries into f , and has the following properties:

(i) It a

epts with probability 1 if f is linear.

(ii) It a

epts with probability at most (1� Æ) if f is not Æ-
lose to linear.

Proof: The test itself is quite simple:

1. Pi
k x; y 2 F

m

2

at random

2. A

ept i� f(x) = f(x+ y)� f(y).

It is 
lear that the test makes only 3 queries into f and that it always a

epts if f is

a linear fun
tion. The soundness 
laim (ii) above is, however, not straightforward to

prove, and was �rst proved (with a weaker dependen
e of the a

eptan
e probability

on the 
loseness to linearity) by Blum, Luby and Rubinfeld [13℄ in their seminal

paper. The result in the form 
laimed was shown by Bellare, Coppersmith, H�astad,

Kiwi and Sudan [8℄.

2.7. Testing \Consisten
y"

From the pre
eding two subse
tions, we are equipped to test that the tables A;B

whi
h are purportedly the Hadamard and QF-en
odings of some (a

1

; : : : ; a

n

) (whi
h

ought to be a 
ommon zero of the QP-SAT instan
e we are testing for satis�ability)

are 
lose to linear fun
tions and to self-
orre
t them. Now, suppose we have linear

fun
tions

~

A : F

n

2

! F

2

and

~

B : F

n

2

2

! F

2

that are Æ-
lose to A and B respe
tively.

Sin
e

~

A is linear, there exists a = (a

1

; : : : ; a

n

) su
h that

~

A = �

a

, i.e.

~

A(x) =

P

n

i=1

a

i

x

i

for all x 2 F

n

2

. Similarly there exists b = (b

11

; : : : ; b

nn

) su
h that

~

B = �

b

,

i.e.

~

B(q) =

P

i;j

b

ij

q

ij

for all q 2 F

n

2

2

. But we would like

~

B to be the QF-en
oding

of a, and thus we need to 
he
k \
onsisten
y", namely that b

ij

= a

i

a

j

for all

1 � i; j � n.

Lemma 14. Given ora
le a

ess to A : F

n

2

! F and B : F

n

2

2

! F

2

whi
h are Æ-


lose to �

a

; �

b

respe
tively for some a 2 F

n

2

and b 2 F

n

2

2

, there is a probabilisti
 test

that uses O(n

2

) random bits, makes 6 queries and satis�es the following properties:

(i) If A = �

a

, B = �

b

and b

ij

= a

i

a

j

for all i; j, then the test always a

epts.



28 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

(ii) If there exist i; j su
h that b

ij

6= a

i

a

j

, then the test reje
ts with probability

at least (

1

4

� 6Æ).

Proof: The test does the following:

1. Pi
k x; y 2 F

n

2

at random; Let q 2 F

n

2

2

su
h that q

ij

= x

i

y

j

for 1 � i; j � n.

2. A

ept i� Self-Corr(A; x)� Self-Corr(A; y) = Self-Corr(B; q).

(In the above Self-Corr(A; x) stands for the element returned by 
alling the self-


orre
tion pro
edure from Lemma 12.) Clearly the above only uses O(n

2

) random

bits. Sin
e the self-
orre
tion pro
edure makes 2 queries, the above test makes a

total of 6 queries. Also the 
ompleteness 
ondition (i) is 
learly met.

Now 
onsider the soundness Case (ii). De�ne n � n matri
es M

1

;M

2

over F

2

as: fM

1

g

ij

= a

i

a

j

and fM

2

g

ij

= b

ij

. By hypothesis, there exist i; j su
h that

a

i

a

j

6= b

ij

, so we have M

1

6= M

2

. Sin
e A is Æ-
lose to �

a

and B is Æ-
lose to �

b

,

by Lemma 12, with probability (1 � 6Æ), the test in Step (2) above 
he
ks that

�

a

(x) � �

a

(y) = �

b

(q), or in other words

P

i;j

a

i

a

j

x

i

y

j

=

P

i;j

b

ij

x

i

y

j

whi
h is the

same as x

T

M

1

y = x

T

M

2

y. Sin
e M

1

6=M

2

, this happens with probability at most

3=4 for a random 
hoi
e of x; y 2 F

n

2

(this is easy to show). The overall probability

of a

eptan
e is thus at most 3=4 + 6Æ, as 
laimed.

2.8. Putting Everything Together

To give the veri�er in the �nal form, we need one more tri
k. To verify satis�ability

of the QP-SAT instan
e, we need to 
he
k P

j

(a) for every j = 1; 2; : : : ; t. For

eÆ
ient 
he
king, we need to \aggregate" these into a single 
onstraint. This is

done as follows:

1. Pi
k r = (r

1

; : : : ; r

t

) 2 F

t

2

at random.

2. Repla
e the 
onstraints P

j

(a) = 0 for all j = 1; : : : ; t by the single 
onstraint

P

r

(a) = 0 where

P

r

def

=

t

X

j=1

r

j

P

j

:(6)

The key fa
t about P

r

is 
aptured by the following easy lemma.

Lemma 15. (i) If P

j

(a) = 0 for all j, then P

r

(a) = 0.

(ii) If there exists j su
h that P

j

(a) 6= 0, then P

r

(a) 6= 0 with probability (exa
tly)

1=2.

The Veri�er: We (�nally!) present the veri�er with all 
omponents put together:

Input: An instan
e (n; P

1

; : : : ; P

t

) of QP-SAT.

Goal: Verify that the polynomials P

j

have a 
ommon zero a 2 F

n

2

.

Expe
ted Proof: Tables A : F

n

2

! F

2

and B : F

n

2

2

! F

2

whi
h are supposedly the

Hadamard and QF en
odings of a 
ommon zero a 2 F

n

2

of the P

j

's.

The veri�
ation pro
edure operates as follows:

1. Perform a Linearity Test on A, B (Lemma 13). Reje
t it the test fails.

2. Perform the \Consisten
y 
he
k" (Lemma 14) on A, B. Reje
t if the 
he
k

fails.

(We have now veri�ed with good 
on�den
e that A;B are Æ-
lose to �

a

, �

b

respe
tively where b

ij

= a

i

a

j

for all i; j.)



LECTURE 3. A COUPLE OF DIGRESSIONS 29

3. Pi
k r 2 F

t

2

at random and 
ompute the (
oeÆ
ients of the) polynomial

P

r

=

P

j

r

j

P

j

. Let

P

r

(x

1

; : : : ; x

n

) = s

0

+

n

X

i=1

s

i

x

i

+

X

1�i;j�n




ij

x

i

x

j

:

Let s = (s

1

; : : : ; s

n

) and 
 = (


11

; : : : ; 


nn

).

4. A

ept i� s

0

+ Self-Corr(A; s) + Self-Corr(B; 
) = 0. (This 
orresponds to


he
king that P

r

(a) = 0.)

Note that the above veri�er used O(t + n

2

) = O(n

2

) random bits (from the

proof of Lemma 11, we 
an assume t � n

2

{ in fa
t t = O(n) { for the hard instan
e

of QP-SAT). The veri�er also makes only 16 queries in all (6 in Step 1, 6 in Step

2, and 4 in Step 4 above). From the NP-hardness of QP-SAT (Lemma 11) and

Lemmas 15, 13, 12 and 14, we 
an show that the veri�er has 
ompleteness 1 and

soundness at most (1 � ") for some " > 0 (we leave it to the reader to �ll in the

details, or see [2℄). We thus get:

Theorem 4 ([2℄). There exists " > 0 su
h that

NP � PCP

1;1�"

�

O(n

2

); 16

�

:





LECTURE 4

Proof Composition and the PCP Theorem

1. Where are we?

Re
all from the last le
ture that we now have the following two proof systems for

NP. The �rst is a 3-prover MIP for NP whose veri�er uses O(log n) randomness,

re
eives answers of poly logn bits from ea
h of the 3 provers, and de
ides to a

ept

or reje
t based on the verdi
t of a 
ir
uit of size poly logn on the (
on
atenation

of the) re
eived answers. The se
ond is a PCP for NP whose veri�er makes only

16 queries into the proof and uses O(n

2

) randomness. From the high level, the

former proof system has small randomness, but large query 
omplexity; while the

latter has small query 
omplexity, but large randomness. In 
ontrast, our goal is

to have small randomness and small query 
omplexity, and it seems neither the

PCPs obtained so far give us what we want. In this le
ture we des
ribe a method

of 
omposing proofs together that magi
ally puts the two PCPs together to get

(
lose) to our goal. Spe
i�
ally 
omposition takes an \outer PCP" with small

randomness and an \inner PCP" with small query 
omplexity and 
ombines them

to get a \
omposed PCP" with small randomness and small query 
omplexity.

Composition also maintains some basi
 properties on 
ompleteness and soundness,

and in parti
ular it preserves perfe
t 
ompleteness and the property of soundness

being bounded away from 1.

In this le
ture, we �rst illustrate 
omposition with an example. This example

already builds a PCP with mu
h better parameters than we know of. But 
ompo-

sition 
an take us further. We des
ribe from a high-level how 
omposition applies

to a fairly general 
lass of PCPs, and assert that the PCPs we have seen so far are

amenable to 
omposition. Modulo this assertion, we then obtain a proof of the PCP

theorem. In fa
t, the 
omposition theorem even takes us further | to the optimal

PCP theorem, and we list some of the steps that yield this stronger 
on
lusion.

2. Composing the Veri�ers

2.1. A �rst attempt

Composition is based on the following simple observation. Suppose we have a

power PCP (
all it the inner veri�er) that knows how to verify that 
ir
uits are

satis�able. Maybe we 
an use this PCP to make the veri�
ation step of another

31



32 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

PCP (
alled the outer veri�er) easier. Note that the outer veri�er typi
ally behaves

as follows: It tosses some random 
oins and based on these it devises a strategy on

how to 
he
k the proof. In parti
ular it generates some queries, and then prepares a

Boolean predi
ate that will determine if a 
olle
tion of responses to the queries are

a

eptable or not. Typi
ally this Boolean predi
ate is des
ribed by a small 
ir
uit

C. The outer veri�er then sends the queries to some provers, and then obtains

responses to these queries. It then plugs in these responses into the 
ir
uit C, to

determine whether to a

ept or not. The 
omposition paradigm is motivated by

the intuition that it should be possible to use the inner veri�er to verify that C is

satis�ed by these responses. However the exa
t des
ription of this paradigm involves

some surprisingly subtle issues and we motivate this by des
ribing an attempt to


ompose the two PCP veri�ers of the previous le
ture together.

1. Start with the veri�
ation pro
edure of the 3-prover MIP.

2. Prepare queries q

1

; q

2

; q

3

and a small 
ir
uit C that determines the a
-


ept/reje
t de
ision of the veri�er.

3. Send the queries to the provers, but now instead of just re
eiving the re-

sponses a

1

; a

2

; a

3

from the three provers (whi
h would 
ause the query 
om-

plexity to be poly logn), ask the prover to write down a proof that (a

1

; a

2

; a

3

)

is a satisfying assignment to the 
ir
uit C using the en
oding standard of

the 16 query PCP veri�er. (Here we are using the fa
t that Cir
uit Sat is

in NP and thus there exists a PCP for the fa
t that a

1

; a

2

; a

3

satis�es C.)

Note that above applies a PCP re
ursively to the task of 
he
king that a

1

; a

2

; a

3

is a satisfying assignment to C, and thus the above is also referred to in the literature

as \re
ursive proof 
he
king" or \re
ursive 
omposition of proofs". The idea of proof


omposition originated in the work of Arora and Safra [3℄ and has been a 
ru
ial


omponent in all PCP 
onstru
tions that followed.

Analyzing the above Composition: The above 
omposed veri�er makes only

16 queries and uses O(log n) randomness for the initial veri�
ation pro
ess in Steps

1 and 2 (
alled \outer" veri�
ation) and another O((poly logn)

2

) = poly logn ran-

domness when it simulates the se
ond veri�er in Step 3 (
alled \inner" veri�
ation),

for a total of poly logn randomness. Thus it at least has better quantitative pa-

rameters than both of the veri�ers we started with! The veri�er, however, does

not inherit the soundness of the two original veri�ers. The reason is that we are

asking the prover for a proof that there exists an input (a

1

; a

2

; a

3

) that satis�es

C, whi
h is not the same as asking the prover to prove that a given triple a

1

, a

2

,

and a

3


ombine together to satisfy C. In parti
ular, when the query q

1

is asked

in a di�erent 
ontext, we do not 
he
k to verify that the answer to q

1

in the other


ontext is the same as the answer in the 
urrent 
ontext. Thus the prover 
an

\
heat" by using a satisfying assignment for C that has nothing to do with the

3 answers that would have been given by the MIP prover. (To 
onsider a simple

but illustrative example, 
onsider a single prover veri�er for 3SAT, who just pi
ks

a random 
lause in a given formula, whose satis�ability is to be veri�ed, and then

asks a prover for the value of the literals in the 
lause. Clearly the prover would

have no problem 
onvin
ing the veri�er that this 
lause 
an be satis�ed, and so the

veri�er a

epts with probability 1, independent of the satis�ability of the formula.

The 
omposition method des
ribed above is fun
tioning analogous to this veri�er

and hen
e does not have a hope to testing anything.)



LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 33

To �x the bug above, somehow we need to make sure that the various answers

given by the prover for the various tests are all \
onsistent" (i.e. the di�erent


lauses referring to the same variable use the same assignment to that variable)

and would hen
e \glue together" to give a single global assignment that satis�es all

(or most of) the 
lauses.

In a nutshell, we need to ensure 
onsisten
y between the answers 
ommitted

to by the prover in response to various di�erent 
ir
uit tests C, so that we 
an

argue that if the 
omposed veri�er a

epts with large probability then one 
an �x

responses for the three provers in the \outer" MIP that will 
ause the MIP veri�er

to a

ept with large probability. Together with the soundness of the MIP, this will

imply the soundness of the 
omposed veri�er.

2.2. A modi�ed 
omposition s
heme

We now dis
uss at an intuitive level the way to �x this problem in the 
omposed

veri�er. The idea is to for
e the prover to 
ommit to responses to individual queries

(e.g. q

1

) by writing down an appropriate (e.g. the Hadamard) en
oding of the

answers. We will view su
h an en
oding as a table (denoted �

q

1

) that we wish

to probe minimally, but something that already 
ommits to the answer to query

q

1

. In addition to providing su
h a table for every query that the 3-prover MIP


an possible ask, the prover for the 
omposed veri�er is also asked to write down

proofs � that (a

1

; a

2

; a

3

) satis�es C (for various 
hoi
es of q

1

; q

2

; q

3

; C made by the

MIP veri�er in the �rst stage of the 
omposed veri�
ation). The veri�er will now


he
k that C(a

1

; a

2

; a

3

) a

epts by making queries to the 
orresponding proof � of

the inner (16-query) PCP, and in addition will perform 
onsisten
y 
he
ks between

the various 
omponents of � and the proofs �

q

1

;�

q

2

;�

q

3

. More spe
i�
ally, for

the veri�ers we have, we 
an require �

q

1

to be the Hadamard en
oding A

1

of

the response a

1

, and re
all from the last le
ture that the proof � for the \inner"

PCP in
ludes the Hadamard en
oding, say B, of a

1

Æ a

2

Æ a

3

(here Æ denotes the


on
atenation operation). The 
onsisten
y 
he
k between � and �

q

1

will now 
he
k

that A

1

(x) = Self-Corr(B(xÆ0

b

)) for a random x of length ja

1

j (here b is the suitable

number of zeroes padded at the end of x). Note that the query 
omplexity of this


omposed veri�er will be 16 plus the 3 queries made in ea
h of the three 
onsisten
y


he
ks, for a total of 25 queries.

We have been very informal in our des
ription of proof 
omposition, and the

interested reader 
an �nd the formal details in [3, 2℄. We now give a semi-formal

summary of the 
omposed veri�er for easy referen
e.

Composed PCP veri�er for NP:

Stru
ture of expe
ted proof: The veri�er has ora
le a

ess to a proof � whi
h is

expe
ted to have the en
odings of all the answers of the 3 provers of the MIP (as

per some suitable error-
orre
ting 
ode) for the various possible queries of the MIP

veri�er. More spe
i�
ally, for 1 � i � 3 and query q

i

of the MIP veri�er to prover

i, �(i; q

i

; �) is the en
oding of the response a

i

of prover i to query q

i

. In addition,

for ea
h random 
hoi
e R of the MIP veri�er, �(0; R; �) will be the en
oded proof

(for the inner PCP system) of the satis�ability of the 
ir
uit C

R


orresponding to

R 
omputed by the MIP veri�er.

Given a

ess to the ora
le �, the veri�er operates as follows:



34 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

� Pi
k random string R as per the 3-prover MIP veri�er (from last le
ture)

and generate queries q

1

; q

2

; q

3

to the three provers and a 
ir
uit C.

� Let A

i

(�) = �(i; q

i

; �) and B(�) = �(0; R; �).

� Now perform \inner veri�
ation" for (the satis�ability of) C with ora
les

A

1

; A

2

; A

3

; B as below:

{ Run the 16 query PCP veri�er (from last le
ture) on ora
le B with

input C (we are testing that B en
odes a satisfying assignment to C).

{ Perform 
onsisten
y 
he
ks on ora
le pairs (A

1

; B), (A

2

; B) and (A

3

; B).

One 
an formalize the dis
ussion of the pre
eding se
tions and prove that the above

veri�er (whi
h we already argued uses poly logn randomness and makes only O(1)

queries { in fa
t it makes only 25 queries) also has soundness bounded away from

1, and this gives us:

Theorem 5. There exists a 
 > 0 su
h that NP � PCP

1;1�


�

poly logn; 25

�

.

Composition as a paradigm: The basi
 ingredients of 
omposition abstra
ted

from the pre
eding 
onstru
tion are the outer and inner veri�ers. The outer veri�er

is an MIP veri�er with a small number of provers p and whose a

eptan
e predi
ate

is 
omputed by a small 
ir
uit, and whi
h has very low soundness error. The answer

size of the MIP governs the size of the problem passed on to the inner veri�er.

The inner veri�er has low query 
omplexity q and must be able to verify the


ommitment to a proof rather than the mere existen
e of one. The 
omposed

veri�er starts out by simulating the outer veri�er and after the outer veri�er pi
ks

a 
ir
uit C whi
h 
omputes its a

eptan
e predi
ate, the 
omposed veri�er uses the

inner veri�er on input C. If suitable 
onditions are met, then one 
an 
ompose the

outer and inner veri�er to get a veri�er that 
ombines the randomness eÆ
ien
y of

the outer veri�er with the query eÆ
ien
y of the inner veri�er.

Formalism of the notion of outer and inner veri�ers and exa
tly how they


ompose together 
an be found in work of Arora and Safra [3℄. Several re�nements

to their \Composition Theorem" 
an be found in several later works like [2, 9℄.

3. The PCP Theorem

To prove the PCP Theorem we need to redu
e the randomness of the veri�er from

Theorem 5 to logarithmi
 from poly-logarithmi
. The reason we had poly logn

randomness was that the outer MIP in the above 
omposition had poly logn answer

and 
ir
uit size and the inner veri�er used a quadrati
 number of random bits (as

a fun
tion of its input length). Thus in order to redu
e the overall randomness, we

would like to redu
e the answer size of the outer MIP.

It turns out that the 3-prover MIP 
onstru
tion from the last le
ture also yields

an inner veri�er whi
h 
an be used to show that 8" > 0, 9Æ > 0 su
h that

MIP

1;1�"

[p; r; a℄ � MIP

1;1�Æ

[p+ 3; r +O(log a); poly log a℄ :

(Su
h a result is shown in [2℄.) Combining with the MIP 
hara
terization NP =

MIP[3; O(log n); poly logn℄ from the previous le
ture, this gives, upon 
ompos-

ing the MIP veri�er with itself as the inner veri�er (it is shown in [2℄ how to

modify this veri�er to also fun
tion as an inner veri�er), the 
hara
terization

NP = MIP[6; O(logn); poly log logn℄. Composing this 6-prover MIP veri�er with

the O(1)-bit, quadrati
 randomness veri�er from [2℄ whi
h was dis
ussed in the last

le
ture, gives a logarithmi
 randomness, O(1) query 
omplexity veri�er for NP with



LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 35

perfe
t 
ompleteness and soundness bounded away from 1, or in other words the

PCP Theorem! We would thus get:

Theorem 6 ([3, 2℄). There exists an " > 0 su
h that

NP = PCP

1;1�"

[O(log n); 34℄ :

4. Towards Optimal PCPs

There are a number of respe
ts in whi
h one 
an hope to improve Theorem 6.

This has been the fo
us of a large body of works in
luding [15, 11, 9, 20, 21,

19, 28, 27, 26℄. One spe
i�
 question, for example, is: What is the minimum

number of queries required to obtain a desired soundness error? The quest for

better (and optimal) PCP 
onstru
tions has also been motivated by appli
ations

to hardness of approximations where improvements in the underlying PCPs often

translate dire
tly into improvements in the related inapproximability result that it

gives.

We will only give an overview of what is involved in obtaining optimal PCPs

and not give any te
hni
al details or prove any of the 
laims. There are two main

ingredients in obtaining optimal PCP 
onstru
tions. The �rst one is improved


onstru
tions of MIPs, spe
i�
ally those with very few provers, preferably 2 provers,

with extremely low soundness error and at the same time having small answer sizes

and logarithmi
 randomness. The se
ond ingredient(s) are \optimal" inner veri�ers

that are tuned to simplifying veri�ers for 2-prover proof systems.

We will now elaborate a little on 
onstru
tions of 2-prover proof systems. The

starting point for su
h a 
onstru
tion is the PCP theorem (Theorem 6) itself: NP �

PCP

1;1�"

[O(log n); 34℄. One 
an 
onvert su
h a PCP veri�er into a veri�er for a

2-prover proof system using a te
hnique in [16℄ as follows:

� Pi
k a random string R and generate queries q

1

; : : : ; q

34

(as the PCP veri�er

would do). Send all queries to Prover 1.

� Pi
k a random index i 2 f1; : : : ; 34g and send query q

i

to Prover 2.

� A

ept i� answers of Prover 1 make the PCP veri�er a

ept, and the answer

of Prover 1 on query q

i

is 
onsistent with the response of Prover 2.

It is 
lear that the above veri�er has logarithmi
 randomness and re
eives O(1)

size answers. It also 
learly has perfe
t 
ompleteness sin
e the original PCP had

perfe
t 
ompleteness. It is not diÆ
ult to show that the soundness is bounded

away from 1, and thus this gives us a MIP with 2-provers as a starting point. But

the soundness is very 
lose to 1 and we would like to improve the soundness while

keeping the answer size and randomness small.

The natural approa
h to redu
ing the error is repeating the veri�er's a
tion

several times with independent random tosses, but doing this sequentially would

in
rease the number of rounds of intera
tion between the veri�er and the provers.

The approa
h instead is to repeat the veri�
ation many times in parallel (with

independent 
oin tosses), but, unlike the sequential repetition 
ase, it is now no

longer obvious that the soundness error goes down exponentially with the number

of repetitions.

An important result of Raz [24℄, 
alled the Parallel Repetition Theorem shows

that this is indeed the 
ase (the result holds for all 2-prover systems where the

veri�er is \
anoni
al" in the sense that its a

eptan
e 
ondition is a 
he
k that a


ertain proje
tion of the answer of Prover 1 equals the answer of Prover 2). The



36 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

proof of this result is 
ompli
ated, but for our purposes it suÆ
es to understand

that it implies the following error redu
tion fa
t for MIPs: For every " > 0 and

integer a, there exists an "

0

> 0 su
h that for all k � 2, a 
anoni
al veri�er for a

2-prover MIP with randomness r and whi
h re
eives answers of size a and 1 from

the two provers and has soundness (1� "), 
an be 
onverted into one with answer

size at most ka, randomness at most kr, and soundness error (1� "

0

)

k

. Informally,

the transformation is

MIP

1;1�"

[2; r; a℄ �! MIP

1;(1�"

0

)

k [2; kr; ka℄ :

The above enables us to 
onstru
t 2-prover MIPs for NP with very low sound-

ness error and 
onstant answer sizes. We do not elaborate on the inner veri�ers,

but to obtain improved PCPs one takes su
h a 2-prover MIP and 
omposes it with

a suitable inner veri�er. For the optimal 
onstru
tions, it turns out that one uses

inner veri�ers whi
h take the en
oding of the answers of the 2 provers of the outer

MIP by a 
ode 
alled the Long Code (�rst de�ned in [9℄) and then verify , using

extremely query-eÆ
ient pro
edures, that these are indeed \
lose to" en
odings of

valid answers that would make the veri�er of the outer MIP a

ept. It turns out

that using some ma
hinery from Dis
rete Fourier Analysis, su
h Long Code based

inner veri�ers 
an often be analyzed optimally, and this approa
h was pioneered by

H�astad in a series of striking results [20, 21℄. We do not elaborate on this further,

but just mention that one su
h tight result from [20℄ is the following, whi
h shows

that just 3 queries are enough to obtain a soundness error 
lose to 1=2 (it is known

that one 
annot do better [29℄).

Theorem 7 ([20℄). For any " > 0, we have NP = PCP

1�";1=2

[O(log n); 3℄.

5. Roadmap to the Optimal PCP

Before winding up, we give a qui
k high-level re
ap of the road to a 
omplete proof

of the optimal PCP 
onstru
tion from Theorem 7 above. The main steps are the

following:

1. 3-prover MIP veri�er for NP (NP = MIP

1;1�


[3; O(log n); poly logn℄) [2℄

2. Compose the above veri�er with itself (using the paradigm of 
omposition

from [3℄) to get

NP = MIP

1;1�


0

[6; O(logn); poly log logn℄ [2℄.

3. An O(1) query, O(n

2

) randomness veri�er for NP from [2℄ (NP � PCP

1;1�"

[O(n

2

); O(1)℄).

4. Compose the veri�er from Step 2 with the veri�er from the previous step

to get NP � PCP

1;1�"

0

[O(log n); O(1)℄. At this stage we have the PCP

Theorem [3, 2℄.

5. Obtain a 2-prover MIP for NP from the above PCP veri�er (as in [16℄)

and then apply Raz's Parallel Repetition Theorem [24℄ to prove that for all

Æ > 0, NP � MIP

1;Æ

[2; 


Æ

logn; a

Æ

℄ where 


Æ

and a

Æ

are 
onstants depending

only on Æ.

6. Compose the veri�er from above 2-prover proof system with a 3-query inner

veri�er from [20℄ to get (one) optimal PCP Theorem: NP = PCP

1�";1=2

[O(log n); 3℄

for every " > 0.

Note that the main omissions from the above path in our dis
ussion has been

the Parallel Repetition Theorem and a des
ription and analysis of H�astad's optimal

inner veri�er.



LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 37

The proof of the PCP Theorem is thus quite 
ompli
ated and puts together

several ingredients. It is an important open question whether any portions (or all)

of the proof 
an be simpli�ed. A good starting point in approa
hing this question

would be to �rst look at simpler 
onstru
tions of what are 
alled lo
ally 
he
kable


odes. These are 
odes with polynomially small rate su
h that given a string one


an determine if it is a 
odeword or is suÆ
iently far o� from any 
odeword by just

looking at the symbols in O(1) positions of the string. Su
h 
odes are implied by

the PCP Theorem and the only 
onstru
tion we know of su
h 
odes goes via the

PCP Theorem. An alternative, simpler 
onstru
tion of su
h 
odes might enable a

shot at simpler proofs of the PCP Theorem, and would also be extremely interesting

and important in its own right.





BIBLIOGRAPHY

1. Sanjeev Arora and Carsten Lund. Hardness of approximations. In Approxima-

tion Algorithms for NP-hard Problems, D. Ho
hbaum (Ed.), PWS Publishing,

1996.

2. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario

Szegedy. Proof veri�
ation and hardness of approximation problems. Journal of

the ACM, 45(3):501{555, 1998. Preliminary version in Pro
eedings of FOCS'92.

3. Sanjeev Arora and Shmuel Safra. Probabilisti
 
he
king of proofs: A new 
har-

a
terization of NP. Journal of the ACM, 45(1):70{122, 1998. Preliminary ver-

sion in Pro
eedings of FOCS'92.

4. L�aszl�o Babai. Trading group theory for randomness. In Pro
eedings of the Sev-

enteenth Annual ACM Symposium on Theory of Computing, pages 421-429,

Providen
e, Rhode Island, 6-8 May 1985.

5. L�aszl�o Babai, Lan
e Fortnow, Leonid Levin, and Mario Szegedy. Che
king


omputations in polylogarithmi
 time. In Pro
eedings of the Twenty Third

Annual ACM Symposium on Theory of Computing, pages 21-31, New Orleans,

Louisiana, 6-8 May 1991.

6. L�aszl�o Babai, Lan
e Fortnow, and Carsten Lund. Non-deterministi
 exponen-

tial time has two-prover intera
tive proto
ols. Computational Complexity, 1:3{

40, 1991. Preliminary version in Pro
eedings of FOCS'90.

7. Donald Beaver and Joan Feigenbaum. Hiding instan
es in multiora
le queries.

Pro
. of the 7th Annual Symposium on Theoreti
al Aspe
ts of Computer S
i-

en
e, LNCS Vol. 415, Springer-Verlag, 1990.

8. Mihir Bellare, Don Coppersmith, Johan H�astad, Mar
os Kiwi and Madhu

Sudan. Linearity testing over 
hara
teristi
 two. IEEE Transa
tions on Infor-

mation Theory, 42(6), pp. 1781-1795, 1996.

9. Mihir Bellare, Oded Goldrei
h, and Madhu Sudan. Free bits, PCP's and

non-approximability { towards tight results. SIAM Journal on Computing,

27(3):804{915, 1998. Preliminary version in Pro
eedings of FOCS'95.

10. Mihir Bellare, Sha� Goldwasser, Carsten Lund, and Alexander Russell. EÆ-


ient probabilisti
ally 
he
kable proofs and appli
ations to approximation. In

Pro
eedings of the Twenty-Fifth Annual ACM Symposium on the Theory of

Computing, pages 294-304, San Diego, California, 16-18 May 1993.

11. Mihir Bellare and Madhu Sudan. Improved non-approximability results. In

Pro
eedings of the Twenty-Sixth Annual ACM Symposium on the Theory of

39



40 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Computing, pages 184-193, Montreal, Quebe
, Canada, 23-25 May 1994.

12. Mi
hael Ben-Or, Sha� Goldwasser, Joe Kilian, and Avi Wigderson. Multi-

prover intera
tive proofs: How to remove intra
tability assumptions. In Pro-


eedings of the Twentieth Annual ACM Symposium on Theory of Computing,

pages 113-131, Chi
ago, Illinois, 2-4 May 1988.

13. Manuel Blum, Mi
hael Luby and Ronitt Rubinfeld. Self-testing/
orre
ting

with appli
ations to numeri
al problems. Journal of Computer and System

S
ien
es, 47:549{595, 1993.

14. Uriel Feige, Sha� Goldwasser, L�aszl�o Lov�asz, Shmuel Safra and Mario Szegedy.

Intera
tive proofs and the hardness of approximating 
liques. Journal of the

ACM, 43(2):268{292, 1996. Preliminary version in Pro
eedings of FOCS'91.

15. Uriel Feige and Joe Kilian. Two prover proto
ols { low error at a�ordable

rates (preliminary version). In Pro
eedings of the Twenty-Sixth Annual ACM

Symposium on the Theory of Computing, pages 172-183, Montreal, Quebe
,

Canada, 23-25 May 1994.

16. Lan
e Fortnow, John Rompel, and Mi
hael Sipser. On the power of multiprover

intera
tive proto
ols. Theoreti
al Computer S
ien
e, 134:545{557, 1994.

17. Mi
hel X. Goemans and David P. Williamson. Improved approximation algo-

rithms for maximum 
ut and satis�ability problems using semide�nite pro-

gramming. Journal of the ACM, 42(6):1115-1145, November 1995.

18. Sha� Goldwasser, Silvio Mi
ali and Charles Ra
ko�. The knowledge 
omplexity

of intera
tive proofs. SIAM Journal on Computing, 18:186{208, 1989.

19. Venkatesan Guruswami, Daniel Lewin, Madhu Sudan and Lu
a Trevisan. A

tight 
hara
terization of NP with 3-query PCPs. Pro
eedings of the 39th IEEE

Symposium on Foundations of Computer S
ien
e, 1998.

20. Johan H�astad. Some optimal inapproximability results. Te
hni
al Report

TR97-037, Ele
troni
 Colloquium on Computational Complexity, 1997. Pre-

liminary version in Pro
eedings of STOC'97.

21. Johan H�astad. Clique is hard to approximate within n

1��

. ECCC Te
hni-


al Report TR97-038. (Preliminary versions in Pro
eedings of FOCS '96 and

STOC'96).

22. Howard Karlo� and Uri Zwi
k. A 7/8-approximation algorithm for MAX

3SAT? In 38th Annual Symposium on Foundations of Computer S
ien
e, pages

406-415, Miami Bea
h, Florida, 20-22 O
tober 1997.

23. Alexander Polish
huk and Daniel Spielman. Nearly-linear size holographi


proofs. In Pro
eedings of the Twenty-Sixth Annual ACM Symposium on the

Theory of Computing, pages 194-203, Montral, Qube
, Canada, 23-25 May

1994.

24. Ran Raz. A parallel repetition theorem. SIAM Journal on Computing,

27(3):763{803, 1998. Preliminary version in Pro
eedings of STOC'95.

25. Ronitt Rubinfeld and Madhu Sudan. Robust 
hara
terizations of polynomials

with appli
ations to program testing. SIAM Journal on Computing, 25(2):252{

271, 1996.

26. Alex Samorodnitsky and Lu
a Trevisan. A PCP 
hara
terization of NP with

optimal amortized query 
omplexity. In Pro
eedings of the 32nd Annual ACM

Symposium on Theory of Computing, pages 191{199, Portland, Oregon, 21-23

May, 2000.

191{199.



BIBLIOGRAPHY 41

27. Madhu Sudan and Lu
a Trevisan. Probabilisti
ally 
he
kable proofs with low

amortized query 
omplexity. In Pro
eedings of the 39th Annual Symposium

on Foundations of Computer S
ien
e, pages 18{27, Palo Alto, California, 8-11

November, 1998.

28. Lu
a Trevisan. Re
y
ling queries in PCPs and in linearity tests. In Pro
eedings

of the 30th Annual ACM Symposium on Theory of Computing, pages 299{308,

Dallas, Texas, 23-26 May, 1998.

29. Uri Zwi
k. Approximation algorithms for 
onstraint satisfa
tion problems in-

volving at most three variables per 
onstraint. In Pro
eedings of the 9th ACM-

SIAM Symposium on Dis
rete Algorithms, 1998.


