
 AMD Confidential—Advance Information

 Advanced Micro Devices

AMD Platform Security
Processor BIOS Architectural

Design Guide

 Publication # 54267 Revision: 1.00
 Issue Date: January 2014

© 2014 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies,
omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied
warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or
use of AMD hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's
Standard Terms and Conditions of Sale.
Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Microsoft and Windows, are registered trademarks of Microsoft Corporation.

PCIe is a registered trademark of PCI-Special Interest Group (PCI-SIG).

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other
limited pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.
Reverse engineering or disassembly is prohibited.
USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE
FACTO VIDEO AND/OR AUDIO STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL
NECESSARY LICENSES UNDER APPLICABLE PATENTS. SUCH LICENSES MAY BE ACQUIRED FROM
VARIOUS THIRD PARTIES INCLUDING, BUT NOT LIMITED TO, IN THE MPEG PATENT PORTFOLIO,
WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE
400E, GREENWOOD VILLAGE, COLORADO 80111.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Contents 3

Contents
Revision History ... 8

Chapter 1 Introduction .. 12

1.1 Scope of This Document .. 12

1.1.1 PSP Overview .. 12

1.1.2 Key Features of the PSP .. 12

Chapter 2 Overview of Feature Implementation .. 13

2.1 Hardware Validated Boot .. 13

2.1.1 Integrated TPM Functions ... 14

2.1.2 Cryptographic Acceleration Support ... 15

Chapter 3 PSP Components .. 16

3.1 On-chip PSP Boot ROM .. 16

3.2 Off-chip PSP Boot Loader ... 16

3.3 Off-chip PSP Secure OS .. 17

Chapter 4 Overview of BIOS Support for PSP ... 19

4.1 SPI Flash Region Layout ... 19

4.1.1 PSP Directory Table .. 19

4.1.2 Crisis Recovery Path with PSP Enabled .. 23

4.2 Signing of BIOS Component- OEM Signing Key, PEI Volume 28

4.3 BIOS Build Process ... 29

4.3.1 Hardware validated Boot BIOS development bypass mechanism (Mullins Only) . 31

4.4 Runtime Execution Flow ... 32

4.4.1 5.4.1 Pre x86 Initialization ... 32

4.4.2 BIOS Boot x86 Initialization ... 33

4.4.3 BIOS Runtime Functionality ... 34

Chapter 5 BIOS S3-Resume Path Handling .. 36

5.1 BIOS S3 Transition Flow on ACPI Aware OS .. 36

5.2 BIOS S3 Resume ... 36

5.2.1 Custom Resume Path ... 37

5.2.2 Separate Firmware Volume for Resume Code .. 37

5.2.3 SMM Resume .. 37

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

4 Contents

5.2.4 Modified Conventional Resume .. 38

Chapter 6 TPM Software Interface ... 39

6.1 TPM 2.0 Command/Response Buffer Interface .. 39

6.2 AMD Implementation of TPM 2.0 Interface .. 40

Chapter 7 BIOS PSP Mailbox interaction .. 42

7.1 BIOS to PSP Mailbox Commands .. 45

7.1.1 MboxBiosCmdDramInfo (MboxCmd = 0x01) ... 46

7.1.2 MboxBiosCmdSmmInfo (MboxCmd = 0x02) .. 46

7.1.3 MboxBiosCmdSxInfo (MboxCmd = 0x03) .. 47

7.1.4 MboxBiosCmdRsmInfo (MboxCmd = 0x04) ... 47

7.1.5 MboxBiosCmdPspQuery (MboxCmd = 0x05) .. 48

7.1.6 MboxBiosCmdBootDone (MboxCmd = 0x06)... 48

7.1.7 MboxBiosCmdClearS3Sts (MboxCmd = 0x07) ... 49

7.1.8 MboxBiosS3DataInfo (MboxCmd = 0x08) .. 49

7.1.9 MBOX_S3DATA_BUFFER;MboxBiosCmdNop (MboxCmd = 0x09) 49

7.2 PSP to BIOS Mailbox Commands .. 49

7.2.1 MboxPspCmdSpiGetAttrib (MboxCmd = 0x081) .. 50

7.2.2 MboxPspCmdSpiSetAttrib (MboxCmd = 0x082) ... 51

7.2.3 MboxPspCmdSpiGetBlockSize (MboxCmd = 0x083) ... 51

7.2.4 MboxPspCmdSpiReadFV (MboxCmd = 0x084) .. 51

7.2.5 MboxPspCmdSpiWriteFV (MboxCmd = 0x085) ... 52

7.2.6 MboxPspCmdSpiEraseFV (MboxCmd = 0x086) ... 52

Chapter 8 Platform BIOS Requirements for PSP Implementation 53

Chapter 9 Standards ... 57

9.1 UEFI 2.3.1c Chapter 27 Secure Boot .. 57

9.2 Microsoft® Trusted Execution Environment UEFI Protocol .. 57

9.3 Microsoft®Trusted Execution Environment ACPI Profile .. 57

9.4 AMD PSP 1.0 Software Architecture Design Document ... 57

Appendix A PSP Directory Structure ... 58

Appendix B PSP –BIOS Mailbox .. 60

Appendix C PSP S5 Boot Flow .. 67

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Contents 5

Appendix D PSP S3/Resume... 69

D.1 PSP S3 Resume Flow .. 70

Appendix E Key format .. 71

E.1 Public Part of the AMD Signing RSA-2048 bit Key ... 71

E.2 Certified Public Part of the Leaf/Intermediate RSA-2048 or RSA 4096-bit Key 72

Appendix F BuildPspDirectory Tool ... 74

F.1 PSP Directory Configure File Format ... 74

F.2 Command Line Parameters .. 74

F.2.1 Build Directory Table (bd) ... 74

F.2.2 Build PSP BIOS Image (bb) .. 75

F.2.3 Dump PSP Directory Information (dp) .. 75

Appendix G PSP FW FW_STATUS .. 76

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

6 List of Figures

List of Figures
Figure 1. Hardware Validated Boot Overview .. 13

Figure 2. PSP Directory Table .. 20

Figure 3. Crisis Recovery Flow With PSP .. 27

Figure 4. Final SPI Image ... 30

Figure 5. TPM2 Command/Response Buffer Interface... 40

Figure 6. BIOS-PSP Mailbox Interface ... 42

Figure 7. BIOS-PSP Mailbox Command Execution Sequence ... 43

Figure 8. Hardware Validated Boot Flow – S5 Boot .. 68

Figure 9. Hardware Validated Boot Flow – S3 Suspend .. 69

Figure 10. Hardware Validated Boot Flow – S3 Resume ... 70

Figure 11. Root RSA Public Key Token Format .. 71

Figure 12. RSA Public Key Token Format ... 72

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 List of Tables 7

List of Tables
Table 1. Definitions, Acronyms and Abbreviations .. 9

Table 2. Embedded Firmware Signature Target Locations ... 20

Table 3. PSP Directory Table Header Structure .. 21

Table 4. PSP Directory Table Entry Fields .. 21

Table 5. PSP Directory Entry Type Encodings .. 21

Table 6. PSP Soft Fuse Chain 1 ... 22

Table 7. PSP Soft Fuse Chain Bit Assignment .. 22

Table 8. PSP Entry SPI ROM Property Assignment ... 24

Table 9. Control Area Layout .. 39

Table 10. BIOS-PSP Mailbox Status Register Bit Fields .. 44

Table 11. BIOS-to-PSP Mailbox Commands .. 44

Table 12. PSP-to-BIOS Mailbox Commands .. 45

Table 13. RSA Key Format Fields ... 73

Table 14. PSP BootLoader Error Codes .. 76

Table 15. PSP BootLoader Progress Codes ... 77

Table 16. Progress Codes during Secure OS Initialization .. 79

Table 17. Progress Codes during S3 Cycle .. 79

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

8 Revision History

Revision History

Date Revision Description
January 2014 1.00 Initial NDA release.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Definitions 9

Definitions
Table 1. Definitions, Acronyms and Abbreviations

Term Definition Comments
AES Advanced Encryption Standard
AGESA AMD Generic Encapsulated Software

Architecture
AMD software stack to initialize Si

AP Application Processor Secondary core in a multi-core cluster
CCP Cryptographic Co-Processor
CRTM Core Root of Trust for Measurement
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DXE Driver Execution Environment Driver Execution Environment phase, that

run after memory has been initialized
ECC Elliptic Curve Cryptography
EFI Extensible Firmware Interface
FFS Firmware File System A binary storage format that is well suited

to firmware volumes. The abstracted model
of the FFS is a flat file system

fTPM Firmware TPM same as iTPM
FV Firmware Volume A FV is a simple Flash File System that

starts with a header and contains files that
are named by a GUID. The file system is
flat and does not support directories. Each
file is made up of a series of sections that
support encapsulation.

FW Firmware
HOB Hand-Off Block A structure used to pass information from

one boot phase to another (i.e., from the PEI
phase to the DXE phase)

HMAC keyed-hash message authentication code In cryptography, a keyed-hash message
authentication code (HMAC) is a specific
construction for calculating a message
authentication code (MAC) involving a
cryptographic hash function in combination
with a secret cryptographic key

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

10 Definitions

Table 1. Definitions, Acronyms and Abbreviations (Continued)

Term Definition Comments
HSM Hardware Security Module A hardware security module (HSM) is a

physical computing device that safeguards
and manages digital keys for strong
authentication and provides
cryptoprocessing without revealing keying
material

IBV Independent BIOS Vendor
iTPM Integrated TPM Firmware TPM
ML Mullins Code name used for the AMD Family 16h

Models 30h-3Fh Processor, otherwise
known as the AMD FT3b processor or the
AMD FP4 processor.

MTM Mobile Trusted Module A firmware version of a TPM
OEM Original Equipment Manufacturer
OS Operating System
PEI Pre-EFI Initialization Set of drivers usually designed to initialize

memory and the CPU so that DXE phase
can run.

PKCS Public Key Cryptography Standards
PSP Platform Security Processor
RNG Random Number Generator
ROM Read Only Memory
RoT Root of Trust
RSA Rivest-Shamire-Adleman encrypton

algorithm

RTM Root of trust for measurement
SEC Security Phase Initial starting point for boot process, first

code executed after hardware reset.
Responsible for 1) Establishing root trust in
the software space; 2) Initializing
architecture specific configuration to
establish memory space for the C code
stack.

SHA Secure Hash Algorithm

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 11

Table 1. Definitions, Acronyms and Abbreviations (Continued)

Term Definition Comments
SMM System Management Mode An operating mode in which all normal

execution (including the operating system)
is suspended, and special separate software
(usually firmware or a hardware-assisted
debugger) is executed in high-privilege
mode.

SPI Serial Peripheral Interface Bus. Also referred to as the Non-volatile ROM
chip on this Bus

SRAM Static Random Access Memory
TCG Trusted Computing Group A standards organization
TEE Trusted Execution Environment TrustZone is one example of a technology

that establishes a TEE
TPM Trusted Platform Module A hardware root of trust
 AMD Signing Key A 2048 bit RSA key pair generated by

AMD. The private key is used to sign the
public portion of OEM signing key.

 OEM Signing Key An asymmetric key pair generated by
OEMs. The private key is used to sign the
RTM volume of BIOS. The public portion
of signed OEM key is stored in the SPI
BIOS image

 PSP Directory A simple directory at certain SPI location
that lists various firmware images and
respective location in the SPI space

 BIOS RTM Volume BIOS firmware Volume that is root of trust
of x86 BIOS execution. The code in this
volume is executed at x86reset. Based on
OEM implementation this can be SEC
volume or combined SEC-PEI volume. PSP
firmware authenticates BIOS RTM volume
before releasing the x86 core.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

12 Introduction Chapter 1

Chapter 1 Introduction

1.1 Scope of This Document
This document’s primary focus is to cover BIOS requirements and to suggest implementation
guidelines. This document does not cover the details of the Platform Security Processor (PSP)
firmware and PSP functionality. This document covers only the services and interfaces that BIOS
provides to PSP firmware. The document also assumes that the platform BIOS will run on x86
CPU core under an ACPI-aware operating system and that BIOS uses SPI ROM storage.

1.1.1 PSP Overview

The PSP is an integrated hardware security subsystem that runs independently from the main cores
of the platform. It provides various security features as listed in the following subsections. PSP
executes its own firmware and shares the SPI flash storage that BIOS uses.

1.1.2 Key Features of the PSP

1.1.2.1 Hardware Validated Boot

 The PSP validates the signature of the initial BIOS Boot code prior to starting BIOS boot.
PSP is the Core Root of Trust for Measurement (CRTM) and the x86 cores are only released
from reset if the BIOS image is authentic.

 Only validated BIOS is allowed to boot.
 The initial block of BIOS code is responsible for subsequently validating the signatures of all

other BIOS code blocks loaded from the system read only memory (ROM).

1.1.2.2 Integrated Trusted Platform Module (TPM) Functions

Implements the TPM 2.0 functions required (for some categories of systems) by Microsoft®
Windows® 8.

1.1.2.3 Cryptographic Acceleration Support

Provides hardware acceleration of cryptographic algorithms for PSP FW and x86 software. Also
provides true random number generator (RNG) support.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 2 Overview of Feature Implementation 13

Chapter 2 Overview of Feature
Implementation

2.1 Hardware Validated Boot
Hardware Validated Boot is an AMD specific form of secure boot, which roots the trust to
hardware in an immutable PSP on-chip ROM firmware and validates the integrity of the system
ROM firmware (BIOS).

Figure 1 shows the scope of hardware validated boot as it relates to the UEFI secure boot.

Figure 1. Hardware Validated Boot Overview

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

14 Overview of Feature Implementation Chapter 2

The idea behind AMD Hardware Validated Boot is to build a trusted boot environment even
before starting the x86 cores. In the Hardware Validated Boot mode, the PSP subsystem is the
core root of trust for measurement.

During cold boot and under Hardware Validated Boot, the PSP runs its own firmware; all of the
x86 cores are held in the reset state while PSP firmware performs basic initialization and
authenticates the x86 reset code (i.e., the first block of BIOS). PSP firmware searches for this
fraction of the BIOS image in the SPI flash area and validates its signature. After validating the
BIOS signature, the PSP firmware configures the necessary hardware registers to release the x86
cores. The x86 cores, upon reset, start execution of the BIOS code authenticated by PSP firmware.
The BIOS maintains this trust chain by first authenticating all firmware components before
passing control to these firmware components. UEFI Specification 2.3.1, Chapter 27, provides
further guideline for BIOS expected behavior. This document does not discuss those details and
the BIOS writers are expected to follow those guidelines in addition to the ones listed later in this
document.

On resume from sleep, PSP firmware restores the memory controller, validates resume vector and
releases the x86 cores. Once released, the x86 cores fetch code straight from Dynamic Random
Access Memory (DRAM) based on boot time BIOS configuration. Chapter 5, BIOS S3-Resume
Path Handling, on page 36 covers details regarding the BIOS-PSP information exchange to make
this execution flow possible.

2.1.1 Integrated TPM Functions

The PSP software solution-stack offers firmware based TPM 2.0 services based on Microsoft
whitepaper – “Trusted execution environment ACPI profile”. BIOS writers are expected to follow
the guidelines and provide BIOS support as outlined in the Microsoft whitepaper. BIOS must wait
for memory to be available before sending firmware trusted platform module (fTPM) command to
PSP.

The PSP subsystem does not have its own storage space to save the TPM data. Instead, it relies on
BIOS to provide the storage services to PSP firmware. The PSP firmware uses BIOS system
management mode (SMM) mailbox services to save PSP data in SPI space. The PSP firmware
encrypts the data block and uses BIOS runtime SMM handler services to store or update this data
to SPI flash storage. The BIOS is expected to (a) reserve part of SPI flash region for PSP data
storage, (b) provide services to PSP firmware to store and update PSP data to this SPI region, and
(c) protect this region of SPI flash from writing by unauthorized code (using the chipset-provided
flash locking mechanisms and Secure Flash Update). PSP firmware is expected to manage any
updated TPM data within its own local memory until BIOS makes those storage services available
to PSP firmware; in other words, the BIOS storage services are not expected to be available during
early boot and resume path and PSP firmware is expected to not rely on BIOS storage services
during that time. Separately, BIOS can use the firmware TPM services for BIOS measurements as
outlined in TCG specifications. In this usage model, the BIOS replaces the discrete-TPM
PEI/DXE driver with a firmware-based-TPM PEI/DXE driver; and BIOS exposes the TPM

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 2 Overview of Feature Implementation 15

protocol defined in “TCG EFI protocol” specification. Also BIOS is expected to use the TPM2.0
command-set to communicate with integrated Trusted Platform Module (iTPM).

2.1.2 Cryptographic Acceleration Support

The PSP solution-stack also offers hardware based cryptographic acceleration services such as
support for SHA, AES, RSA, ECC, etc. BIOS makes use of PSP cryptographic acceleration for its
own purposes such as validating the digital signature of other BIOS components, OS boot loader
etc.

The CCP also provides a true RNG function, which may optionally be used to seed UEFI entropy.
The mechanism for seeding UEFI entropy is described by Microsoft in the document entitled,
“UEFI Entropy-gathering Protocol”.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

16 PSP Components Chapter 3

Chapter 3 PSP Components

PSP components are described in the following subsections.

3.1 On-chip PSP Boot ROM
PSP Boot ROM is an immutable part of the SOC and it embeds in it a SHA-256 hash of the public
part of the AMD signing key, which forms the hardware core root of trust for the Hardware
Validated Boot process. PSP microcontroller (A5) starts executing the On-chip Boot ROM code,
in secure mode. It loads the off-chip PSP firmware into PSP static random access memory
(SRAM) and after authenticating the PSP off-chip firmware it passes control to it.

3.2 Off-chip PSP Boot Loader
When PSP on-chip Boot ROM transfers control to PSP off-chip Boot Loader, it communicates the
pre-loaded PSP Directory table address in PSP SRAM, in mailbox area at a pre-defined address
within PSP SRAM.

Once the PSP Boot Loader starts execution, it first determines if the system is booting from S5 or
resuming from S3/S0i3 state by reading the sleep type and resume flag from FCH.

PSP Boot Loader performs the following sequence of operations as part of the S5 boot:

1. Locates and Loads the Off-chip SMU FW into PSP SRAM; and verifies its signature using
the AMD Signing RSA Public Key. If the signature verification passes, Loads the verified
Off-chip SMU FW image into SMU SRAM and notifies the SMU Boot ROM code to
transfer control to the SRAM FW.

2. Locates and Loads the BIOS Signing RSA Public Key token into PSP SRAM; and validates
its signature using the AMD Signing RSA Public Key.

a. If the signature validation fails then it writes an error code to the TDR register and enters
an infinite loop.

b. If the signature validation passes, then proceeds to step 3.
3. Locates and Loads the BIOS RTM FW and signature block, into PSP SRAM; and validates

its signature using the BIOS Signing RSA Public Key. The BIOS RTM FW signature is
computed over the BIOS RTM FW code concatenated with PSP Directory Table.

a. If the signature validation fails then it writes an error code to the TDR register and enters
an infinite loop.

b. If the signature validation passes, then proceeds to step 4.
4. Initializes the BIOS-PSP mailbox interface
5. Releases the CPU BSP core to begin execution. At this point the CPU microcode starts

executing the BIOS RTM code from a fixed CPU reset vector 0xFFFF_FFF0.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 3 PSP Components 17

PSP Boot Loader performs the following sequence of operations as part of the S3/S0i3 resume:

1. Locates and Loads the S3 Restore Buffer generated by the platform BIOS and saved to SPI-
ROM by the PSP Secure OS during S5 boot sequence into PSP SRAM; and validates its
HMAC using the HMAC key.

a. If the HMAC validation fails then it writes an error code to the TDR register and enters an
infinite loop.

b. If the HMAC validation passes, then proceeds to step 2.
2. Processes the S3 restore buffer and restore pre self-refresh data to the memory interface,

reprograms memory interface, executes the programming sequence to take the DRAM out
of self-refresh and writes the S3 restore post self-refresh data to the memory interface.

3. Releases the CPU BSP core to resume execution. At this point the CPU BSP core starts
executing the BIOS Resume code located in SMM memory and pointed to by CPU S3-
resume vector.

4. Determines if the system is resuming from S3 or S0i3 state
5. Derives the PSP SRAM Content Encryption Key
6. Decrypts the PSP SRAM content (saved during S3/S0i3-suspend) from DRAM into PSP

SRAM
7. Validates the HMAC of the loaded data using the HMAC key
a. If the HMAC validation fails then it writes an error code to the TDR register and enters an

infinite loop.
b. If the HMAC validation passes, then it transfers control to the restored PSP Secure OS

resume entry point.

3.3 Off-chip PSP Secure OS
When off-chip PSP Boot Loader transfers control to PSP Secure Operating System (OS), it
communicates certain state information such as the Sleep (Sx) state, fTPM state and S3 Restore
Buffer in a mailbox area at a pre-defined address with in PSP SRAM.

Once the PSP Secure OS starts execution, it first determines if the system is booting from S5 or
resuming from S3/S0i3 state by reading the Sx state variable in the SRAM mailbox address.

PSP Secure OS performs the following sequence of operations as part of the S5 boot :

1. Performs the necessary initialization of OS internal structures and instantiates the TPM 2.0
compliant fTPM as a trusted application

2. Sets-up CPU-PSP interface registers’ access control policy and interrupt mechanism
3. Re-initializes BIOS-PSP mailbox interface
4. Waits for BIOS SMM environment to be set up and BIOS to notify the SMM space

reserved for PSP and parameters needed for PSP to generate SMI

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

18 PSP Components Chapter 3

5. Generates an HMAC over the S3 Restore Buffer content in SRAM using an HMAC key and
stores S3 Restore Buffer contents appended with the HMAC to SPI-ROM by placing the
payload in SMM space and generating an SMI interrupt to BIOS

6. Enters steady-state idling and waiting for commands from host interfaces
In steady state, when the system begins to enter S3/S0i3-state, as shown in Figure 3, on page 27
and Figure 4, on page 30, PSP Secure OS is notified. Upon receiving this notification, PSP Secure
OS prepares to enter the S3/S0i3 state.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 19

Chapter 4 Overview of BIOS Support for
PSP

4.1 SPI Flash Region Layout
The SPI flash storage is shared by both x86 BIOS binary and PSP firmware; i.e., BIOS code and
data as well as PSP firmware code and data coexist in the same storage space. PSP firmware (on-
chip and off-chip) parses the SPI flash for various components in order to locate, authenticate and
execute PSP binaries. A PSP directory table is needed to aid PSP firmware in finding various
components in the SPI storage. This PSP directory is a simple table of various entries. Each of
these entries provides information about various firmware components in the SPI flash area such
as their type, size and location. The PSP directory can be anywhere in the SPI storage.

4.1.1 PSP Directory Table

Figure 2 on page 20 describes the layout of the PSP Directory Table in SPI-ROM and how it is
used to locate various PSP related public key tokens, firmware images and corresponding
signatures.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

20 Overview of BIOS Support for PSP Chapter 4

8MB SPI ROM

BIOS PEI Volume

BIOS DXE Volume

Reserved X86 Reset Vector
FFFF_FFF0

AMD_PUBLIC_KEY

FFFF_FFFF

FF80_0000

PSP Directory

PSP_FW_BOOT_LOADER
(Signature Appended)

PSP_FW_SMU
(Signature Appended)

PSP Directory Entry

4B Type
4B Size
4B Location or Value

PSP Directory Header

4B PSPCookie == $PSP
4B Checksum
4B Total Entries
4B Reserved

PSP Directory Header

Entry Type=
AMD_PUBLIC_KEY

Entry Type=
PSP_FW_BOOT_LOADER

Entry Type=
PSP_FW_RECOVERY_BL

Entry Type=
OEM_BIOS_PUBLIC_KEY

Entry Type=
OEM_BIOS_FW_PEI

Entry Type=
OEM_BIOS_FW_PEI_SIG

Entry Type=
PSP_FW_SECURE_OS

Entry Type=
SMU_FW

PSP_FW_TRUSTED_OS
(Signature Appended)

FFxx_0004

FFxx_0000

PSP On-chip Boot ROM reads a 4-byte value at 0xFFxx_0000
looking for a unique signature identifier 0x55AA55AA. Once found,
reads the following 4-bytes and adds offset 0x10 to get the address
of PSP Directory Table.
“xx” depends on the ROM size as defined in Table 5.

These entries are not shown in the
SPI-ROM Layout, but are stored and
located similar to other entries that are
shown.

+0x10

55AA55AA

Entry Type=
PSP_NV_DATA

Entry Type=
AMD_SEC_DBG_PUBLIC_KEY

Entry Type=
OEM_PSP_FW_PUBLIC_KEY

Figure 2. PSP Directory Table

Table 2 describes the Embedded Firmware Signature (0x55AA55AA) locations for different ROM
sizes:

Table 2. Embedded Firmware Signature Target Locations
ROM Size Address PSP Boot ROM checks (i.e. 0xFFxx_0000)

512 KB 0xFFFA_0000
1 MB 0xFFF2_0000
2 MB 0xFFE2_0000
4 MB 0xFFC2_0000
8 MB 0xFF82_0000
16 MB 0xFF02_0000

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 21

PSP Boot ROM does not have ROM size information and as such it sequentially reads all of the
listed address from 0xFFFA_000 to 0xFF02_0000 until it finds the signature 0x55AA55AA.

Table 3 describes the fields of PSP Directory Table header structure:

Table 3. PSP Directory Table Header Structure
Field Name Offset

(Hex)
Size (in Bytes) Description/Purpose

PSP Cookie 0x00 4 PSP cookie “$PSP” to recognize the
header

Checksum 0x04 4 32 bit CRC value of the header items
below this field and the including all
entries. Fletcher’s checksum algorithm is
used for CRC calculation.

Total Entries 0x08 4 Number of PSP Directory Table Entries in
the table

Reserved 0x12 4 Reserved – Set to zero

Table 4 describes the fields of PSP Directory Table Entry structure:

Table 4. PSP Directory Table Entry Fields
Field Name Offset

(Hex)
Size (in Bytes) Description/Purpose

Type 0x00 4 Type of PSP entry
Size 0x04 4 Size of the PSP entry in bytes
Union of { Location
or Value }

0x08 8 Depending on the Entry Type
Location: Address/Offset of SPI-ROM
location where the data for the
corresponding PSP Entry is located
OR
Value: 64-bit value for the PSP Entry

Table 5. PSP Directory Entry Type Encodings

PSP Entry Type Description/Purpose
0x00 AMD public Key
0x01 PSP Boot Loader firmware
0x02 PSP Secure OS firmware
0x03 PSP Recovery Boot Loader
0x04 PSP Non Volatile data
0x05 (OEM) BIOS public key signed with AMD key
0x06 BIOS RTM Volume

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

22 Overview of BIOS Support for PSP Chapter 4

Table 5. PSP Directory Entry Type Encodings (Continued)

PSP Entry Type Description/Purpose
0x07 BIOS RTM volume Signature using OEM private

key
0x08 SMU offchip firmware
0x09 AMD Secure Debug Key
0x0A (OEM) PSP Secure OS public key signed with

AMD key
0x0B PSP Soft Fuse Chain

(VALUE = 0, Secure part can't be unlocked, Value
= 1, Secure part can be unlocked)

0x0C PSP boot-loaded trustlet binaries
0x0D Trustlet public key signed with AMD key
0x0E-0x5E Reserved for AMD use
0x5F Software Configuration Settings Data Block
0x60-0x7F Reserved for AMD use
0x80-0xFF Reserved for OEM use

Note: The First four entries of PspDirectory MUST be in the following order:

First entry- AMD Public Key (Type 0x00)

Second entry- PSP Boot Loader firmware (Type 0x01)

Third entry- SMU Firmware (Type 0x08)

Fourth entry- PSP Recovery Firmware (Type 0x03)

When PSPType Enum is of type Soft Fuse Chain (i.e. type 0x0B) the Size tag is set to 8-bytes and
the next 64bit field Location/Value is used to represent the soft fuse value itself.

The following table defines the PSP Soft Fuse Chain 1:

Table 6. PSP Soft Fuse Chain 1
Bit Number Purpose

0 PSP Secure Debug Control Flag
1- Enabled , 0 – Disabled

1..63 Reserved for AMD Use

Table 7. PSP Soft Fuse Chain Bit Assignment
Bit Index Description/Purpose

0 PSP Secure Debug Control Flag (0-Disabled, 1-Enabled)
1..63 Reserved

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 23

4.1.2 Crisis Recovery Path with PSP Enabled

BIOS already has an existing, mature recovery scheme in case of a flash update failure during a
non-secure boot sequence (PSP disabled). The primary focus here is to handle the case where PSP
is enabled. The off-chip PSP boot loader will run prior to releasing the X86 cores, and the PSP
secure OS/Trustlet will run in parallel with X86 codes.

The recommendation is to separate the PSP SPI ROM into 2 categories, accompanied by BIOS
and PSP FW changes.

Recommended SPI ROM Organization:

1. Fixed/Protected Region
The contents in this region are unchanged and not updatable during flash update, it is
protected by the IBV or OEM flash tool.

2. Updateable Region
This area can be updated by new releases containing bug fixes, enhancements, and new
feature enablement code.

If the following data areas in the SPI flash are corrupted, the result will be permanent boot failure,
and the recovery mechanism will fail – ROMSIG (Embedded Firmware Signature), PSP Directory
Table Header, PSP Directory Table Entries. Details for each of these items follow:

 ROMSIG should not be changed during flash update as the damage will result in the PSP on-
chip FW not being able to locate the PSP Directory header, and the whole system will hang
with the X86 cores held in reset.

 The PSP Directory Table Header should not be changed during flash update as the
corruption will lead to a checksum failure and the PSP OROM will stall the system.

 The items pointed to by some of the PSP entries region should preserve a maximum size for
further Update.

 Directory Table Entries may be updated, and others should remain fixed. Table 8 on page 24
shows the type for each entry. Target items marked as “Fixed” should be kept in the
protected region that is not updated during flash update, as this is the base of the PSP
recovery mechanism, and the corruption of those binaries will lead unexpected behavior

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

24 Overview of BIOS Support for PSP Chapter 4

Table 8. PSP Entry SPI ROM Property Assignment
Type ID (Hex) Name SPI ROM property

00 AMD public Key Fixed
01 PSP Boot Loader firmware Updateable
02 PSP Secure OS firmware Updateable
03 PSP Recovery Boot Loader Fixed
04 PSP Non Volatile data Fixed
05 (OEM) BIOS public key signed with

AMD key
Fixed

06 BIOS RTM Volume Fixed
07 BIOS RTM volume signature using OEM

private key
Fixed

08 SMU offchip firmware Updateable
09 AMD Secure Debug Key Fixed
0A (OEM) PSP Secure OS public key signed

with AMD key
Fixed

0C PSP boot-loaded trustlet binaries Updateable
0D Trustlet public key signed with AMD key Fixed
5F Software Configuration Settings Data

Block
Updateable

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 25

8MB SPI ROM
FFFF_FFF0FFFF_FFFF

FF80_0000

PSP Directory

PSP Directory Entry

4B Type
4B Size
4B Location or Value

PSP Directory Header

4B PSPCookie == $PSP
4B Checksum
4B Total Entries
4B Reserved

PSP Directory Header

Entry Type=
AMD_PUBLIC_KEY

Entry Type=
PSP_FW_BOOT_LOADER

Entry Type=
PSP_FW_RECOVERY_BL

Entry Type=
OEM_BIOS_PUBLIC_KEY

Entry Type=
OEM_BIOS_FW_PEI

Entry Type=
OEM_BIOS_FW_PEI_SIG

Entry Type=
PSP_FW_SECURE_OS

Entry Type=
SMU_FW

FFxx_0004

FFxx_0000

PSP On-chip Boot ROM reads a 4-byte value at 0xFFxx_0000
looking for a unique signature identifier 0x55AA55AA. Once found,
reads the following 4-bytes and adds offset 0x10 to get the address
of PSP Directory Table.
“xx” depends on the ROM size as defined in Table 5.

+0x10

Entry Type=
PSP_NV_DATA

Entry Type=
AMD_SEC_DBG_PUBLIC_KEY

Entry Type=
OEM_PSP_FW_PUBLIC_KEY

ROM SIG

55AA55AA

Fixed PSP Entrie

Updateable PSP Entries

AMD_PUBLIC_KEY (0x0)
PSP_FW_RECOVERY_BL (0x3)
OEM_BIOS_PUBLIC_KEY (0x5)
RTM Signature (0x7)
SEC_DBG_PUBLIC_KEY (0x9)
Trustlet_PUBLIC_KEY (0xD)

PSP_FW_BOOT_LOADER (0x1)
PSP_FW_SECURE_OS (0x2)
SMU_FW (0x8)
Trustlet binary (0xC)

Fixed & Protect Region

Updateable Region

BIOS DXE Volume

X86 Reset Vector

BIOS PEI Volume (RTM)

Reserved

PSP_NV_DATA (0x4)

Figure 3 Overall SPI ROM layout (Recovery Supported Design)
The crisis-recovery flow for a non-secure system must be updated accordingly for a system with
PSP enabled. (See also the “PSP Components” section, which covers details beyond crisis
recovery.)

 When the system reset signal is de-asserted, the X86 cores will be held in reset, and the PSP
on-chip boot ROM will start execution. After loading and authenticating the AMD Public
key, the PSP on-chip boot ROM will load and validate the PSP off-chip boot loader.

 If verification fails, the recovery process is initiated and the PSP recovery off-chip boot
loader will be loaded instead. The Recovery PSP Boot Loader verifies the BIOS PEI (not
updatable), set a status bit to indicate recovery process required and releases x86.

 If verification succeeds, the PSP off-chip boot loader will authenticate the SMU FW. If
SMU FW authentication fails, PSP off-chip Boot Loader, skips loading SMU FW, verifies
the BIOS PEI (not updatable), set a status bit to indicate recovery process is required and
releases x86. Given that the BIOS RTM and RTM signature are in the fixed region and not

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

26 Overview of BIOS Support for PSP Chapter 4

updated during flash update, it is assumed that the authentication of BIOS RTM will always
be successful in normal as well as recovery boot paths.

 The PSP off-chip Recovery boot loader does not load the SMU FW.
 Considering that the SMU firmware may not loaded in the recovery path, BIOS boot code

must check whether the SMU firmware is loaded before issuing any messages to the SMU.
In other words, the BIOS modules that are executed during the recovery path (including:
AGESA PEI module, Platform PEI module, Recovery module, VBIOS) should not depend
on the services provided by SMU FW.

 The PSP BIOS PEI module sends the DRAM ready message to the PSP FW once DRAM
has been initialized. PSP FW will return the recovery status bit along with other status bits
indications. The PSP PEI module publishes this information through PPI/HOB. The
platform BIOS recovery path should locate and check this PPI/HOB to retrieve PSP FW
integrity status along with DXE FV integrity. If the PPI/HOB shows problems with the
status of either of these items, the BIOS should run in the recovery path.

 The secure flash mechanism should be followed in the recovery path as well as the normal
BIOS update path. This means the new BIOS image must be authenticated before the update
and the fixed SPI region as mentioned above must remain protected

Figure 3 on page 27 illustrates the details of the crisis recovery flow with PSP; zoom in to make it
more legible.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 27

AMD Hardware Validated Boot Flow w/PSP – S5 Boot (A)

CPU (x86)PSP

P
h

as
e

Reset De-asserted

BIOS DXE Core

Verify Loads DXE Drivers including DXE iTPM Driver

DXE iTPM driver sets up the static ACPI table for
iTPM MMIO interface and reserves 8K of DRAM for

iTPM Command/Response Buffers

Builds SMM Environment, Loads SMM Drivers and
reserves SMM space

Notify physical base address of SMM space
reserved for PSP

Continue BIOS UEFI Boot

Fail

Yes

BIOS Recovery Core

Load & Verify FD from external storage Device

Turn on Display

Recover SPI-ROM

Reset

BIOS PEI Mirror in ROM (Optional)

Configure FCH (SB) and other chipset registers and
Detect S5 boot vs S3 Resume

Initialize/Train DRAM

S5 Boot

Notify DRAM Ready to PSP

BNo

CPU microcode

CPU Init - Stalled

Fetch BIOS reset vector and start BIOS
execution

BIOS RTM

Verify PEI

BIOS Main PEI Code in ROM

Configure FCH (SB) and other chipset registers and
Detect S5 boot vs S3 Resume

Initialize/Train DRAM

S5 Boot

Notify DRAM Ready to PSP

BNo

Load & Verify DXE Core

PSP Image Corruption OR
Recovery Flag

No

Off-chip PSP Boot Loader

PSP Boot ROM

Load & Verify AMD Signing Key from
SPI-ROM

Configure FCH (SB) and other chipset
registers and Detect S5 boot vs S3

Resume

S5 Boot

Load & Verify BIOS RTM from SPI-ROM

Clear WaitSecureInit Bit

B No

Load & Verify OEM Signing Key from
SPI-ROM

Load & Verify PSP Off-chip Boot Loader
from SPI-ROM

Off-chip PSP Recovery Boot Loader

Clear WaitSecureInit Bit &
Set Recovery Flag

Yes

Load & Verify PSP Off-Chip Secure OS
from SPI-ROM

Yes

Pooling MemRdy Cmd

Fixed Entry

Updateable Entry

Off-chip PSP Secure OS (w/ fTPM)

Secure OS Initialization & Initialize
BIOS-PSP Mailbox interface

PSP Secure OS and fTPM TA enters
Steady State

Enable DRAM use as required

Instantiate fTPM TA
Process TPM commands (over DRAM

absent interface)

Fail

UNB Register

C2P MemRdy
mailbox

C2P Mailbox Status

Yes

Fail

Load & Verify DXE Core

PSP Image Corruption OR
Recovery Flag

No

Load & Verify SMU FW from SPI-ROM
and copy to SMU SRAM

Load & Verify BIOS RTM from SPI-ROM

Load & Verify OEM Signing Key from
SPI-ROM

Figure 3. Crisis Recovery Flow With PSP

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

28 Overview of BIOS Support for PSP Chapter 4

4.2 Signing of BIOS Component- OEM Signing Key, PEI
Volume

The OEM must sign the BIOS RTM volume using the private portion of secure RSA key. This
key that is used to sign the BIOS RTM volume is referred here as OEM signing key. OEM keeps
the private portion of the OEM signing key in secure place (HSM, etc.) and submits the public
portion of OEM key to AMD. AMD will perform one time signing of public portion of OEM
signing key. This process enables PSP firmware to authenticate OEM public key.

On secure PSP parts, the PSP firmware authenticates the BIOS image in two steps before releasing
x86 core. PSP firmware first parses PSP directory to locate the signed OEM public key and
authenticates the OEM public key that was signed with AMD signing key. Next, after the public
portion of OEM signing key is authenticated, the PSP firmware uses the OEM public key to
further authenticate the BIOS RTM volume that was signed by OEM secure private key. PSP
encrypts the hash with the OEM public key and then compares the resulting hash with the hash in
the signature.

 If the signature matches, the BIOS is considered trusted and x86 cores are released.

 One note about the signed BIOS RTM volume- The signed BIOS blob is generated by first
concatenating BIOS RTM volume with PSP directory blob and signing this combined blob using
private portion of OEM key. Integrity of both PSP directory and RTM volume integrity can now
be checked together when PSP firmware authenticates this blob. Note, this combined blob must be
signed with the BIOS Signing RSA Private Key using the RSASSA-PSS signing scheme used as
signature scheme with SHA-256 used as the hashing algorithm for both message and mask
generation. The resulting signature data is stored in the PSP directory entry as the entry type
0x07. The size of the signature data will be 256-byte for 2048-bits key or 512-byte for 4K
key.4096-bits key.

This two-step authentication removes unnecessary dependence on AMD signing server or build
processes where BIOS is built on regular basis by IBV/OEM. AMD signing server will sign the
public portion of OEM signing key once at the beginning of project and is separate from the BIOS
build process; during the normal BIOS build process the private portion of OEM signing key will
be used to sign BIOS RTM volume as part of OEM build process without any AMD signing
server involvement. The BIOS image includes the AMD public key as well as signed public OEM
signing key in the PSP image that was generated at the beginning of the project. This allows the
OEM to use internal signing processes without external dependency.

After the PSP firmware releases x86 core for execution, the BIOS is expected to maintain the
chain of trust to authenticate next set of bios code before executing it. It is left to OEM/IBV to
choose appropriate BIOS implementation to insure the trust chain. At x86 core release the RTM
volume has been authenticated by PSP firmware. BIOS RTM volume must authenticate the next
volume before handling of the control. If only the SEC code is the BIOS RTM volume, then SEC
code must authenticate PEI volume before handling off control to PEI core. If BIOS RTM volume

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 29

is entire PEI volume it must authenticate DXE volume. The DXE IPL code in BIOS PEI volume
needs to further authenticate DXE volume before handing off control to DXE code.

There are various possible methods to authenticate each of BIOS drivers in DXE volume. In one
possible method the DXE IPL driver in PEI volume validates the entire DXE volume before
handing off control to DXE core. In such implementation the DXE volume can be signed and the
static public key used for signing of DXE volume can be saved in PEI volume itself. This digital
signature of DXE volume signature can be saved anywhere in SPI space with some provisions for
DXE IPL driver to locate this key during cold boot. During cold boot the DXE IPL code in PEI
volume will use this public key and validate DXE volume against the digital certificate of DXE
volume saved in the SPI space and if the digital certificate is authentic the DXE IPL handoff
control to DXE code.

Another option may be simply to save the SHA1/2 digest of DXE volume in PEI volume and
during cold boot compare the DXE volume against the digest in PEI volume. If the digest matches
the DXE volume is considered trusted. To implement such process the BIOS build process can
compute the DXE digest and append the digest after PEI volume. The OEM signing key will sign
the concatenated blob of PEI volume + DXE digest + PSP directory and this signature will be
reflected in PSP directory for BIOS RTM entry. In this implementation PSP firmware will
authenticate PEI volume as well as DXE digest. Later during cold boot DXE IPL driver can use
this digest to authenticate DXE volume as well. Any tampering of DXE digest in SPI area can be
detected by PSP since DXE digest is part of signed BIOS RTM.

AMD will provide the signed OEM public key and AMD public key. The format of AMD signing
key and OEM signing key is shown in Appendix E on page 71.

4.3 BIOS Build Process
The SPI image includes BIOS components as well as PSP components. In the below process BIOS
PEI volume is considered BIOS RTM volume.

To support hardware validated boot the BIOS PEI FV needs to be signed and PSP directory needs
to be present to provide information regarding various signed entities. Figure 4 on page 30
summarizes the above discussion to illustrate how various entities listed above can be combined to
build the final SPI image.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

30 Overview of BIOS Support for PSP Chapter 4

Figure 4. Final SPI Image

 As shown above, the first step is generation of the digital signature of public portion of OEM
signing key. This may happen just once before the start of project. The OEM/IBV submits
the public key portion of their OEM signing key to AMD. AMD signs this key using the
AMD RSA key and passes back it to IBV/OEM. The AMD public key and the signed OEM
public key should be part of final BIOS SPI image. Next, the BIOS source code is compiled
and various BIOS components (PEI Volume, DXE volume, NVRAM storage, EC binary,
etc.) are built as usual.

 As part of build process, DXE volume hash is generated and this hash is saved within BIOS
PEI volume. This is required as part of hardware validated boot sequence for PEI kernel
code to authenticate DXE volume before passing control to DXE core and extend the trust
chain.

 The PSP directory is built next. PSP directory table points to location of various firmware
entities. The PSP directory holds the location information of following entries-

 AMD Public Key
 PSP firmware i.e., Boot loader, Secure OS, PSP Recovery OS
 AMD SMU firmware

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 31

 PSP NVRAM data
 OEM Signing Key signed with AMD signature
 BIOS PEI Volume signature (signed Private portion of OEM signing key)
 BIOS PEI Volume

 BIOS binaries, PSP directory and various firmware binaries are combined to build the SPI
BIOS image.

 Finally, the OEM signing server builds the signed BIOS RTM signature based on blob of
BIOS PEI volume concatenated with PSP Directory , and generates the digital signature of
this using private portion of OEM signing key. The SPI location for signed BIOS RTM code
is finally updated with this signature blob.

After the above steps the final SPI BIOS image will be ready.

4.3.1 Hardware validated Boot BIOS development bypass mechanism
(Mullins Only)

Some IBVs have neither key management nor signing infrastructure. They have no way to
securely generate and handle the OEM Signing Key. Thus, they have no way to sign their BIOS
for the continuation of the secure boot mechanism. During bring-up and product development, the
IBVs rev BIOS versions very quickly. Manually signing the BIOS block for them works initially
but quickly becomes a drain on key AMD resources. Automating the signing of the BIOS block
requires resources to create and support the signing portal. Automated checking of the submitted
block is infeasible which means that AMD could inadvertently sign malicious BIOS blocks.
Instead of either of these solutions, a specifically crafted and AMD private key signed data blob
will be created to terminate the Hardware validated boot chain. This blob can only be used during
development by IBVs and OEM. The blob mechanism will be removed in production release,
AMD does not authorize the use of BLOB-based HVB for field use with production platforms..

The blob interception point is in the PSP secure off-chip bootloader. The PSP bootloader checks
whether the entity pointed to by the BiosRtmFirmware entry (Entry Type6) of the PSP Directory
is at the reset vector. If not, the PSP firmware considers it a blob and does not concatenate the PSP
Directory table to the entity for signature validation. The blob is validated against the RTM.

This means that the PSP directory is not validated in this boot flow since it is not concatenated
with the blob before the blob is signed. Since we are purposefully placing the token in a location
that does not match the reset vector and thereby breaking the secure boot chain, this does not have
additional negative security impact.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

32 Overview of BIOS Support for PSP Chapter 4

4.4 Runtime Execution Flow
The high level description of execution flow is listed below.

4.4.1 5.4.1 Pre x86 Initialization

At power on reset the following execution flow takes place. The Pre x86 code Init sequence
defines the sequence of events by PSP firmware before the x86 core is released from reset. Details
on this flow are defined in PSP Software Architecture design document.

1. Under Hardware Validated Boot mode, the x86 cores are held in reset during the system
Power-On sequence while the PSP begins executing code.

2. The PSP runs its on-chip firmware at reset; this code is an immutable part of the Silicon.
3. The PSP on-chip firmware scans for the PSP off-chip code in the SPI space. PSP on-chip

firmware first scans SPI space for Firmware Location signature (0x55AA55AA); this
signature is scanned at specific SPI locations as defined in FCH porting guide. Offset 0x10
of this structure points to location of PSP directory.

4. The PSP on-chip firmware scans the PSP directory to find the AMD public key, the PSP
firmware and the PSP data in the SPI ROM; PSP on-chip code next loads these binaries into
PSP’s secure memory. After authenticating these binaries the PSP on-chip firmware passes
control to the PSP off-chip firmware.

5. The PSP off-chip firmware uses the PSP Directory to find the signed OEM key, the BIOS
RTM signature, and the BIOS RTM code.

6. PSP off-chip firmware authenticates the BIOS in a three-step process
 PSP on-chip code authenticates the AMD public key by comparing this digest of the key

value against the value saved in immutable ROM.
 PSP off-chip code authenticates the OEM public key by using AMD public key.
 After the signature of the OEM public key is validated, PSP firmware uses the OEM public

key to authenticate BIOS PEI (RTM) Volume and PSP directory (signed RTM blob build
with PEI volume concatenated with PSP Directory).

7. After authenticating the BIOS PEI volume, the PSP firmware writes to a hardware register
to release the x86 cores.

8. PSP boot loader continues to load PSP secure OS from SPI to secure SRAM in parallel to
x86 BIOS code execution. X86 BIOS must ensure the SPI region decode range remain
valid. If the SPI decode range is changed by BIOS SEC or other code than it will also affect
the PSP subsystem that is attempting to read from SPI space.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 33

4.4.2 BIOS Boot x86 Initialization

After the x86 cores are released from reset, the BIOS boot phase starts and performs the following
steps:

1. The CPU fetches the BIOS reset vector from SPI flash ROM at memory address
0xFFFFFFF0 and BIOS SEC execution starts.

2. The BIOS SEC code loads and executes rest of PEI driver in PEI (RTM)volume that has
already been authenticated by PSP firmware.

3. If the platform wishes to use a TPM, the platform may use firmware TPM services offered
by PSP or it may use discrete TPM, but not both; the correct BIOS TPM drivers need to be
present to perform necessary TPM operation. PSP firmware offers TPM 2.0 support as
outlined in Microsoft specification. BIOS must wait for memory to be available before
sending any command to PSP.

4. Once memory is initialized the BIOS sends mailbox command “MboxBiosCmdDramInfo”
to PSP to inform availability of memory. PSP firmware can now use memory for its own
use.

5. At the end of PEI stage the PEI kernel must authenticate DXE volume before handing off
control to DXE IPL. As part of the build process, the digest of DXE volume is saved within
PEI volume. PEI core computes the digest of DXE volume and compares it against saved
digest in PEI volume. If the digest matches, the DXE IPL is considered trusted and PEI
kernel code continues to load the DXE driver.

6. At this point the BIOS boot process moves to the DXE phase.
7. The DXE core authenticates various DXE driver modules, such as Option ROMs, third

party DXE drivers, etc. that are not part of the SPI flash (i.e. not part of DXE volume). The
authentication steps follow secure boot flow as outlined in UEFI specification.

8. If the BIOS is using integrated TPM, then the iTPM drivers are loaded to perform
measurements of other DXE components. The iTPM DXE driver allocates necessary
memory space for TPM request/response buffer and builds the TPM2 Static ACPI table as
outlined in the Microsoft whitepaper on “Trusted Execution Environment ACPI Profile”. In
addition it extends necessary protocol outlined in TCG specification to aid BIOS to perform
measurement and other TPM use. A platform should only include discrete or integrated
TPM and not both. The only exception is AMD reference board where both kind of TPM
are present on board for validation purposes only. In such validation boards BIOS need to
support both kind of TPM driver and provide setup option (default to internal TPM) for test
user to select discrete vs. internal TPM device for test.

9. Next the SMM environment is built and SMM drivers are loaded. The SMM drivers are
needed to handle PSP firmware storage request. PspP2Cmbox SMM driver: This driver
handles SMI requests coming from PSP firmware and also provides information to PSP FW
of how to trigger specific SMI to BIOS. The Fake SMI has been selected as the SMI source.
Currently all the P2C mailbox commands are only used for providing the SPI ROM access
to PSP FW. Once the SMM driver handler receives the request from PSP FW, it will call

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

34 Overview of BIOS Support for PSP Chapter 4

IBV/OEM customized storage library in the backend. Interface of the customized storage
library is same as EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.
a. The customized storage library operates on SPI space for PSP NVRAM and enables

write/erase operation on that space. It also ensures NVRAM region is appropriately
locked against unauthorized update on this SPI space. Note, this library is required to
work in SMM mode, and should not depend on any boot available services.

b. The PspP2Cmbox SMM driver will perform the following steps:
1. The driver allocates transfer buffer in SMRAM for PSP to pass the parameter.

2. The driver sends a mailbox command “MBoxBiosCmdSmmInfo” to the PSP
firmware and informs the space reserved for PSP communicating as well as other
relevant information for PSP to trigger SMI at runtime.

3. When PSP firmware triggers SMI for BIOS services, the callback handler checks the
integrity of data that PSP firmware writes into SMM buffer and uses
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL liked library to service PSP
NVRAM access request.

10. Now PSP firmware can call the BIOS services to store TPM data.
11. A new PSP DXE/SMM driver is loaded to handle the resume path. This driver prepares the

BIOS resume code (discussed in Chapter 5, BIOS S3-Resume Path Handling, on page 36)
in memory and sends a mailbox command to inform the PSP firmware about the location of
the BIOS S3 resume vector. In addition it registers to service the SlpxSx SMM trap. (See
Chapter 5 on page 36 for more details on S3 resume path).

12. The IBV Storage code needs to lock the PSP and other critical regions of the SPI flash. The
SPI region must be locked before running any Option ROMs or other non-System ROM
code and only trusted SMM code should be able to unlock and update this region.

13. PSP DXE driver will register a callback on ReadyToBoot event to perform the tasks right
before handling control to OS boot loader. The details steps of the callback are:

a. Initialize the RDRAND instruction related register
b. Save the SMM resume vector and Core context to specific MSR (Note, should be only

called once during boot)
c. Send MboxBiosCmdBootDone C2P mailbox command to PSP FW

14. The remaining DXE drivers are loaded and finally OS boot loader is loaded and after proper
authentication BIOS hands off control to the OS boot loader.

4.4.3 BIOS Runtime Functionality

The high-level execution flow during runtime is listed below.

1. After BIOS hands off control to the OS boot loader, the OS boot loader loads the operating
system (e.g. Windows 8).

2. The OS takes control and loads rest of the OS drivers.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 4 Overview of BIOS Support for PSP 35

3. The OS references the iTPM ACPI table and loads iTPM OS driver to offer TPM support.
4. The OS uses the TPM software stack and sends TPM commands that are handled by PSP

firmware. The PSP firmware services any OS requests for TPM commands.
5. If the PSP firmware needs to perform a write to SPI storage, it performs the following

additional steps:
a. PSP firmware copies necessary data as well as command parameters into SMM space

reserved for PSP-BIOS communication.
b. PSP firmware triggers SMI for BIOS to service the request. BIOS SMM entry code

invokes all registered SMM handlers. In this case, the P2CMbox SMM Handler gets
control and checks if the PSP firmware generated the SMM.

c. The P2CMbox SMM callback handler locates and invokes the
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL liked library to write the data
into SPI.

d. Finally, the P2CMbox SMM driver reports the appropriate status to the PSP firmware
and resumes out of SMM mode.

6. The PSP firmware returns the appropriate status and data values to the operating system.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

36 BIOS S3-Resume Path Handling Chapter 5

Chapter 5 BIOS S3-Resume Path Handling

5.1 BIOS S3 Transition Flow on ACPI Aware OS
BIOS implements the following support for S3 transitions:

1. During the cold boot path, the BIOS sets up an SMM trap on the Sleep transition.
2. When the OS transitions to the S3 path, it writes the SLP_TYP to the PmControl IO register

to transition the platform to the S3 state.
3. This action generates an SMM trap and the BIOS SMM handler gets control.
4. The BIOS SMM routine sends mailbox command “MBoxBiosCmdSxInfo” to the PSP

firmware and this mailbox command informs PSP about the final Sx sleep state the system
will transition to.

5. BIOS then waits for the PSP to finish the pre-S3 transition items.
6. Once the PSP acknowledges mailbox command completion, the BIOS finally writes the

SLP_TYPE value to the PmControl IO register to transition the system to the sleep state.

5.2 BIOS S3 Resume
Under secure mode the PSP firmware restores the memory during resume. Hence, the DRAM is
already available when the x86 cores come out of reset on resume.

The availability of DRAM provides an opportunity to optimize the BIOS resume path. For
example, there is no need to perform Cache as RAM initialization. Also, a new CPU MSR is
added and any write to this MSR results in CPU context (MSR, microcode, etc.) being
automatically saved in protected fenced memory. During resume from sleep transition, the CPU
core automatically restores to this CPU context saved in fenced memory; and x86 cores
immediately execute from the resume vector that was passed as part of write to MSR during cold
boot. The availability of DRAM and properly restored CPU context at x86 reset time provide an
opportunity to improve BIOS resume time.

The existing UEFI BIOS currently does not comprehend this kind of S3 resume. Conventionally,
BIOS PEI driver is expected to run from ROM code and perform memory restore. Historically, the
reset addresses for x86 cold boot and S3-resume were the same (i.e. 0xFFFFFFF0). Hence, during
the resume path the BIOS code executed the same PEI driver in SPI space that it would execute
during cold boot. In this case the BIOS resume vector can be the DRAM location and the resume
path can be optimized to make use of this fact.

Various possible ways to provide the DRAM resume path are listed in the following sections.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 5 BIOS S3-Resume Path Handling 37

5.2.1 Custom Resume Path

One of the quickest ways to resume is to build very specialized resume code in memory that is
targeted to perform Si restore and initialization. The BIOS code during boot copies this custom
resume code to memory and informs the PSP of the location of this code. The BIOS code marks
this region reserved so that OS will leave this region intact. During the resume path the PSP
firmware releases x86 core and control is transferred to this custom binary. This custom binary can
replay the hardware restore sequence and perform additional initialization. After initialization,
control is handed off to the ACPI OS.

Even though this option may provide the quickest resume path, maintainability may be an issue
for some BIOS designs. The BIOS PEI volume holds the code to perform Si restore. In the
existing UEFI BIOS design, the resume handling is distributed across various PEI drivers;
consolidating all these resume components that are spread across various drivers into just one
custom binary may be difficult to manage or port, considering PSP may not be enabled in some
cases (requiring the traditional resume path).

5.2.2 Separate Firmware Volume for Resume Code

The second option is to have separate firmware volumes specific to the resume path. This
firmware volume will contain the resume-specific drivers. The drivers in the volume are aware of
DRAM availability to make better use of the environment. The BIOS during cold boot will load
these volumes into the memory and perform any necessary address adjustment and data structure
initialization. The BIOS will copy this resume firmware volume into memory and mark this region
reserved. During the cold boot path, the MSR’s are setup such that the S3 resume vector will run
code from this volume.

During the resume path, the x86 cores reset to directly run code from this volume in memory; this
firmware volume is resume specific and should provide a quick resume path.

5.2.3 SMM Resume

The most secure option is to resume directly to SMM space and perform restore operations from
SMM. This path will have following advantages:

 The SMM code is protected from the OS space and this mechanism will keep the resume
code away from prying eyes and protect it from alteration.

 Unlike PEI code that requires some data structure initialization (HOB, etc.), the SMM code
is prepared during boot and can be immediately used on resume. This should save some time
that would otherwise be spent on PEI kernel initialization.

 The SMM implementation based on “UEFI PI SMM Core interface” specification provides a
richer UEFI environment (including 64-bit mode) compared to PEI drivers in terms of PI
protocol and driver interaction.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

38 BIOS S3-Resume Path Handling Chapter 5

To enable such resume path the BIOS SMM driver, during cold boot, will write to this new MSR
while x86 is running in SMM mode; CPU context snapshot will be automatically saved in fenced
memory. During resume from S3 the CPU will restore context from fenced memory and reset in
SMM mode and run the resume vector in SMM memory that was passed as part of MSR write
during cold boot. The SMM resume vector will perform basic initialization and call other
registered SMM-driver callback handlers to perform respective Si restore. Once the restore
operation is complete the SMM driver will update the SMM save state such that resume (rsm) will
cause x86 core to run a piece of BIOS code that will be copied outside memory at a reserved
location; this BIOS code will finally jump to OS resume vector per ACPI FACS WakeVector.

This implementation will also require substantial changes in existing BIOS code to move the
resume specific code from PEI driver to SMM drivers.

5.2.4 Modified Conventional Resume

Another simpler option is to perform a conventional resume with some improvements. In this
path, the x86 resume from sleep path will begin the x86 core executing code from DRAM and
then jump to ROM code to continue conventional resume. During the cold boot the S3 reset vector
code is copied, via write to new MSR, at OS visible memory or protected SMM space. In one such
implementation the BIOS SMM function perform special MSR write to save CPU context and
resume vector in SMM space as explained before. Just like above case the BIOS SMM code will
write to the MSR so that on resume from S3 when PSP firmware restores DRAM and x86
microcode restores CPU context from memory the x86 core will jump to SMM code on X86 reset.
This SMM function will update the SMM save area of each core and resume out of SMM to jump
to alternate BIOS ROM entry point in PEI Core code. The SMM save state that will be updated by
SMM resume driver includes information regarding location of PEI GDT table, RIP and RSP for
the code outside SMM; e.g., the GDT location in SMM save area is patched to point to GDT table
in ROM; in addition stack pointer (RSP) location in SMM save area will be set to use BIOS
reserved memory locations as stack and finally the RIP in SMM state is patched to jump to
alternate PEI entry point in PEI volume. The SMM code may further authenticate PEI volume, if
OEM desires; after the basic setup the SMM code will resume (RSM) out of SMM mode and the
control will be transferred to alternate entry point of PEI core. The alternate PEI code will then use
DRAM and not cache (as RAM) for stack and continue with regular resume path and later handoff
control to OS. Other enhancements can be added in the PEI kernel code on resume path.

On AMD reference boards; this approach will be used for initial validation.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 6 TPM Software Interface 39

Chapter 6 TPM Software Interface

The PSP software solution-stack offers firmware based TPM 2.0 services based on Microsoft
whitepaper – “Trusted execution environment ACPI profile”.

The TPM software interface is being defined by the TCG’s PC client work group and will be
ratified as part of TCG PC Client Specific Platform TPM Specification; the current draft TPM
software interface section of this specification is referred to as the Command/Response Buffer
Interface and is defined in the TPM Command/Response Buffer Interface w/Locality Support,
Version 0.56, DRAFT, 01-09-2013. This specification is undergoing review and is expected to be
ratified as a TCG standard defining the TPM 2.0 interface.

6.1 TPM 2.0 Command/Response Buffer Interface
This interface defines a control area structure as shown in Table 9. The physical address of this
control area is specified in a TPM 2 ACPI table set up by the BIOS.

The command/response buffers used in this interface are allocated in DRAM by BIOS once the
memory is available.

Table 9. Control Area Layout
Field Byte

Length
Offset Description

Miscellaneous 4 00h Used for Power Transition
Status 4 04h SET by the TPM to indicate an error condition or that it

is in idle state
Cancel 4 08h SET by software to abort command processing
Start 4 0Ch SET by software to indicate that a command is available

for processing.
Interrupt Control 8 10h Reserved. (Must be zero.)
Command Size 4 18h Size of the Command buffer
Command
Address

8 1Ch This field contains the physical address of the command
buffer.

Response Size 4 24h Size of the Response Buffer
Response Address 8 28h This field contains the physical address of the response

buffer.

This interface is described under section 1.2 of TPM Command/Response Buffer Interface
w/Locality Support, Version 0.56, DRAFT, 01-09-2013 in greater details including how these
fields are controlled in submitting commands and receiving responses, canceling the commands

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

40 TPM Software Interface Chapter 6

with comprehensive state and sequence diagrams. As such, those details are not repeated here and
specification should be consulted for implementation.

6.2 AMD Implementation of TPM 2.0 Interface
TPM interface definition structure as defined in the TPM Command/Response Buffer Interface
w/Locality Support, Version 0.56, DRAFT, 01-09-2013 that includes the interface identifier,
control area and control area extension are mapped to a set of CPU-PSP MMIO message registers,
as shown in Figure 5.

C2PMSG_0

C2PMSG_31

C2PMSG_9

C2PMSG_8

C2PMSG_10

Registers reserved for
TPM2 Interface

CPU-PSP Message Registers

C2PMSG_1

C2PMSG_2

C2PMSG_3

C2PMSG_4

C2PMSG_5

C2PMSG_6

C2PMSG_11

4B Micellaneous

4B Status

4B Cancel

4B Start

4B Interrupt Control_Lo

4B Command Size

4B Command Address_Lo

4B Response Size

4B Response Address_Lo

C2PMSG_7

TPM2 Control Area

4B Command Address_Hi

4B Response Address_Hi

8B Interrupt Control_Hi

C2PMSG_12

C2PMSG_13

C2PMSG_14

C2PMSG_14

C2PMSG_15

4B Remaining Bytes

4B Clear

4B Interface Identifier_Hi

4B Interface Identifier_Lo

TPM2 Control Area
Extension

Interface Identifier

4B Cmd/Rsp HW Buffer

Figure 5. TPM2 Command/Response Buffer Interface

The TPM interface identification structure as defined in the TPM Command/Response Buffer
Interface w/Locality Support, Version 0.56, DRAFT, 01-09-2013, which is common to both TPM
1.2 and TPM 2.0 is expected to be located at a well-known fixed physical address. However, in
AMD’s Mullins implementation of TPM 2.0, it is not possible for this structure to be placed at a
fixed address as these fields are mapped to CPU-PSP mailbox registers as shown in Figure 5.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 6 TPM Software Interface 41

Therefore, the BIOS iTPM driver that initializes and uses this interface is required to be aware of
the AMD specific implementation on where this structure is placed.

Once, BIOS has completed DRAM training it initializes the Command/Response Buffer interface
by:

 Building the TPM2 static ACPI table, and set the start method to 2. (Uses the ACPI Start
method.)

 Reserving TPM 2.0 command/response buffers in DRAM,
 Updating the ACPI control area with the physical address of the command/response buffers.
 Implement TPM ACPI Start Method reside in the _DSM.

Note: TPM 2.0 interface and TPM 2.0 commands are only supported once the DRAM becomes

available.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

42 BIOS PSP Mailbox interaction Chapter 7

Chapter 7 BIOS PSP Mailbox interaction

The BIOS-to-PSP and PSP-to-BIOS communication interfaces are implemented as mailboxes
mapped to a set of MMIO CPU-PSP registers and to a portion of SMM memory area reserved for
PSP by BIOS respectively, as shown in Figure 6:

C2PMSG_0

C2PMSG_31

C2PMSG_29

C2PMSG_28

C2PMSG_30

Registers
reserved for
BIOS-to-PSP
Mailbox
Interface

4B Command

Mailbox I/F

4B Status

4B CmdRspBufAddr_Hi

4B CmdRspBufAddr_Lo

CPU-PSP Message Registers

BIOS-to-PSP

SMM area reserved
for PSP-to-BIOS
Mailbox Interface

SMM Base

PSPSMMDataRegion
4B Command

4B Status

Variable Size
Command/
Response Buffer

PSP-to-BIOS

SMM area reserved for PSP (4K)

Figure 6. BIOS-PSP Mailbox Interface

The mailbox interface consists of 4-byte status and command fields; and a command/response
buffer.

In the case of BIOS-to-PSP mailbox the CmdRspBufAddr_Lo and CmdRspBufAddr_Hi fields are
set to the bits 0:31 and bits 32:63 of a 64-bit physical address of the command/response buffer in
DRAM.

In the case of PSP-to-BIOS mailbox the command/response buffer starts at offset 0x08 from the
PSPSMMDataRegion.

The command field is a 32-bit value initialized to zero by the target. The host submitting the
command first writes the command data into the command buffer and then writes the 32-bit
command identifier to this field to indicate a new command has been placed in the command
buffer. It then waits for the command field to be cleared by the target.

The target processing the command clears this field when it has completed processing the
command.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 7 BIOS PSP Mailbox interaction 43

The status field consists of bit-fields indicating the status of the interface as well as the last-
processed command. The target sets the status bits immediately before clearing the command
field.

The host, after writing to the command field, waits for the target to clear the command field and
when the command field is cleared reads the status bits and response data from the
command/response buffer.

Figure 7 shows the command execution sequence over this mailbox interface.

Host Target

Poll on
MailboxInitialized ==1 &&
Command == 0

Write command buffer

Write command field

Process Command

Write response buffer

Set status field bits
Clear command field

Poll on Command == 0

Read Status

Read Response buffer

Figure 7. BIOS-PSP Mailbox Command Execution Sequence

PSP FW, in its role as a target on the BIOS-to-PSP communication interface, can enable interrupts
to be generated on BIOS writes to the command register.

PSP FW, in its role as a host on the PSP-to-BIOS communication interface uses the System
Management Interrupt (SMI) mechanism to generate interrupt to BIOS. PSP FW generates the
SMI interrupt by writing a pre-defined value either to an IO or Memory address. The value to be
written and the type of address are communicated to PSP FW by BIOS through BIOS-to-PSP
communication interface.

Table 8 defines the bit-fields of the status field:

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

44 BIOS PSP Mailbox interaction Chapter 7

Table 10. BIOS-PSP Mailbox Status Register Bit Fields
Field Name Bit

Index
Description/Purpose

MboxInitialized 0 Set by the target to indicate the mailbox interface state.
0 – Interface is not initialized.
1 – Interface is initialized.

Error 1 Set by the target to indicate error condition of the last processed
command.
0 – No Error

Terminated 2 Set by the target to indicate the last command is terminated.
Halt 3 Set by the target to indicate unrecoverable error at the interface.
Recovery
required

4 Set by the target to indicate some PSP entry point by PSP directory has
been corrupted.

Reserved 31:5 Reserved and set zero.

Table 11 defines the set of BIOS-to-PSP commands currently defined:

Table 11. BIOS-to-PSP Mailbox Commands
Command Value Description/Purpose

MboxBiosCmdDramInfo 0x01 Notification that DRAM is trained and ready for use.
MboxBiosCmdSmmInfo 0x02 Provides details on SMM memory area reserved for PSP. It includes

the physical addresses of SMM Base and PSP SMM data region and
the length of PSP SMM data region.

MboxBiosCmdSxInfo 0x03 Notification that the platform is entering S3-suspend state.
MboxBiosCmdRsmInfo 0x04 Information on BIOS Resume Module stored in SMM memory

which includes the BIOS resume vector and size of the resume
code.

MboxBiosCmdPspQuery 0x05 Command to get the list of capabilities supported by PSP FW. This
is used to communicate if iTPM is supported or not in PSP FW.

MboxBiosCmdBootDone 0x06 Notification that BIOS has completed BIOS POST.
MboxBiosCmdClearS3Sts 0x07 Inform PSP clear S3ExitReset
MboxBiosS3DataInfo 0x08 Bios will send this command to inform PSP to save the blob, which

needed to restore memory during resume from S3
MboxBiosCmdNop 0x09 Notification that BIOS has completed PSP-to-BIOS command

submitted via PSP-to-BIOS mailbox interface.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 7 BIOS PSP Mailbox interaction 45

Table 12 defines the set of PSP-to-BIOS commands currently defined:

Table 12. PSP-to-BIOS Mailbox Commands
Command Value Description/Purpose

MboxPspCmdSpiGetAttrib 0x81 Get SPI-ROM attributes such as the size and polarity
MboxPspCmdSpiSetAttrib 0x82 Set SPI-ROM attributes
MboxPspCmdGetBlockSize 0x83 Get SPI-ROM block size
MboxPspCmdReadFV 0x84 Read PSP NVRAM firmware volume
MboxPspCmdWriteFV 0x85 Write SP NVRAM firmware volume
MboxPspCmdEraseFV 0x86 Erase PSP NVRAM firmware volume

The PSP-to-BIOS mailbox commands are used by PSP FW in managing the SPI-ROM area
reserved for PSP to be used as non-volatile RAM (NVRAM) storage. PSP FW uses the firmware
volume block2 protocol defined by the UEFI Platform Initialization Specification [4] to manage
the NVRAM storage as a firmware volume.

The BIOS-PSP mailbox related data structures can be found under section 12.2 as part of
Appendix A on page 60.

7.1 BIOS to PSP Mailbox Commands
To send mailbox command to PSP, the BIOS builds the command/response buffer in system
memory and updates the 64 bit MMIO CmdRspBufAddr pointer to point to this
command/response buffer in the memory. BIOS then writes the mailbox command, as listed
below, in the MMIO command register and waits for the command register to return to zero (as
controlled by PSP firmware). Once the command is processed, BIOS reads the status of the
mailbox operation from the mailbox status register as well as the status value in the
command/response buffer.

The generic format of the command/response buffer is below

typedef struct {

 UINT32 TotalSize;

 UINT32 Status;

} MBOX_BUFFER_HEADER;

typedef struct {

 MBOX_BUFFER_HEADER Header;

 COMMAND_SPECIFIC_BUFFER Buffer;

} MBOX_COMMAND_RESPONSE_BUFFER;

Each command/response buffer starts with a standard mailbox buffer header. The field TotalSize
is set to the size of command/response buffer. The field Status is updated by PSP firmware to

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

46 BIOS PSP Mailbox interaction Chapter 7

reflect the status of the command that is being handled by PSP firmware. The standard mailbox
buffer header is followed by a command-specific buffer that is different per each mailbox
command.

7.1.1 MboxBiosCmdDramInfo (MboxCmd = 0x01)

BIOS sends this command to PSP after memory is configured by BIOS. After this mailbox
command, the PSP will use the protected fenced DRAM memory that is not accessible to X86
cores.

No additional parameters are needed for this command. CmdRspBufAddr points to a standard
mailbox buffer.

7.1.2 MboxBiosCmdSmmInfo (MboxCmd = 0x02)

After the SMM environment is ready the PSP SMM driver sends this mailbox command to PSP
firmware. The PSP firmware will use information supplied via this command to later trigger
SMM, and request BIOS services for the PSP NVRAM region in SPI space. The
command/response buffer is of structure type MBOX_SMM_BUFFER as defined below:

typedef struct {

 UINT64 Address;

 UINT32 AddressType;

 UINT32 ValueWidth;

 UINT32 ValueAndMask;

 UINT32 ValueOrMask;

} SMM_TRIGGER_INFO;

typedef struct {

 UINT64 SmmBase;

 UINT64 SmmLength;

 UINT64 PsPSmmDataRegion;

 UINT64 PspSmmDataLength;

 SMM_TRIGGER_INFO SmmTrigInfo;

} SMM_REQ_BUFFER;

The command/response buffer structure starts with a standard mailbox header.

SmmBase- This field provides the location of SMM base.

SmmLength- This field provides the length of SMM space.

PspSmmDataRegion- The PSP SMM driver allocates SMM space for PSP use and this field
provides the location of SMM space that is carved out for PSP use.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 7 BIOS PSP Mailbox interaction 47

PspSmmDataLength- This field provides the length of the PSP region in SMM space. PSP
firmware must not access SMM space beyond this allotted space.

SMM_TRIGGER_INFO provides information on how the PSP firmware can trigger an SMI.
There are various ways to trigger SMI- write to MMIO, IO or PCI config space. This structure
provides the following information:

Address- The Physical address where PSP needs to write to trigger SMI
AddressType- The type to access to trigger SMI; IO (0), MMIO (1) or PCI (2)
ValueWidth- Write length- Byte (0) , Word (1) , Dword (2), Qword (3) on Address
ValueAndMask- AndMask

ValueOrMask- OrMask

To trigger an SMI, the PSP firmware first reads from the Address location as defined by
AddressType and performs an “AND” operation based on ValueAndMask followed by an “OR”
operation based on ValueOrMask and writes it back to the Address location.

7.1.3 MboxBiosCmdSxInfo (MboxCmd = 0x03)

The BIOS SMM driver sends this command right before the system transitions to sleep state. PSP
firmware performs any last minute save operations just prior to S3 transition when BIOS sends
this command to PSP.

The command/response buffer has the following structure. It starts with the standard mailbox
buffer header, followed by the SleepType field that informs the PSP of the sleep state the system
is about to transition to.

typedef struct {

 MBOX_BUFFER_HEADER Header;

 UINT8 SleepType;

 } MBOX_SX_BUFFER;

7.1.4 MboxBiosCmdRsmInfo (MboxCmd = 0x04)

BIOS send this command to PSP if the platform design requires PSP to authenticate the BIOS
resume code before releasing the x86 core. The BIOS informs PSP of the location and length of
BIOS resume code in memory. In response to this command, PSP firmware calculates the digest
of this memory region. During resume, PSP firmware accesses memory and calculates the digest
of resume code; it compares this digest against the boot time calculated digest to ensure the BIOS
Resume code has not been tampered. PSP releases the x86 core if the calculated digest remains
unchanged. If the digest is changed, PSP will not release x86 core.

The command/response buffer has the following structure. It starts with the standard mailbox
buffer header followed by ResumeVectorAddress and ResumeVectorLength:

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

48 BIOS PSP Mailbox interaction Chapter 7

typedef struct {

 MBOX_BUFFER_HEADER Header;

 UINT64 ResumeVectorAddress;

 UINT64 ResumeVectorLength;

 } MBOX_RSM_BUFFER;

ResumeVectorAddress- Location of BIOS resume vector in memory

ResumeVectorLength- Length of BIOS resume vector in memory

7.1.5 MboxBiosCmdPspQuery (MboxCmd = 0x05)

BIOS sends this command to PSP to find the capabilities offered by PSP. In response to this
command, PSP firmware updates the Capability field in the command/response buffer as shown
below:

typedef struct {

 UINT32 Capabilities;

 } CAPS_REQ_BUFFER;

// Bitmap defining capabilities

#define PSP_CAP_TPM (1 << 0)

typedef struct {

 MBOX_BUFFER_HEADER Header;

 UINT32 Capability;

 } MBOX_CAPS_BUFFER

The command/response buffer starts with a standard mailbox buffer followed by a Capability field
that is updated by PSP firmware. Each bit in the Capability field represents a feature supported by
PSP. If PSP supports firmware TPM then Bit0 of Capability field will be set after PSP firmware
process the command.

7.1.6 MboxBiosCmdBootDone (MboxCmd = 0x06)

BIOS sends this command to PSP before handing off control to the OS. This mailbox command is
an indication to PSP firmware to no longer handle any more BIOS mailbox commands other than
commands coming from SMM space. After this command is sent, PSP will only handle a mailbox
command if the command buffer is within SMM region.

No additional parameters are needed for this command. CmdRspBufAddr points to the mailbox
buffer.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 7 BIOS PSP Mailbox interaction 49

7.1.7 MboxBiosCmdClearS3Sts (MboxCmd = 0x07)
BIOS sends this command to PSP after last AP resume from sleep. This command inform PSP that
all the cores are successfully resumed out of S3 state

No additional parameters are needed for this command. CmdRspBufAddr points to the mailbox
buffer.

7.1.8 MboxBiosS3DataInfo (MboxCmd = 0x08)
BIOS sends this command to PSP after building the necessary memory controller restore data
block that is used by PSP firmware to restore the memory controller during resume path. BIOS
sends this data block as part of this mailbox command parameter.. PSP FW needs save this blob to
a temporary buffer, and save to SPI ROM after the PSP to BIOS mailbox interface has been
established. The PSP to BIOS mailbox interface is built via MboxBiosCmdSmmInfo (MboxCmd
= 0x02).

Additional parameters associate with this command are like below:

typedef struct {

 UINT64 S3RestoreBufferBase; ///< Address of the blob

 UINT64 S3RestoreBufferSize; ///< Size of the blob

} S3DATA_REQ_BUFFER;

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 S3DATA_REQ_BUFFER Req; ///< Req

} MBOX_S3DATA_BUFFER;

7.1.9 MBOX_S3DATA_BUFFER;MboxBiosCmdNop (MboxCmd = 0x09)
This is the NOP (No Operation) command. BIOS send this command to generate an interrupt to
the PSP after servicing PSP to BIOS mailbox requests.

7.2 PSP to BIOS Mailbox Commands
To request BIOS services the PSP firmware builds mailbox commands in SMM space and
generates an SMI. PSP firmware uses information per the BIOS mailbox command
MboxBiosCmdSmmInfo and uses the PSP SMM area and SMM trigger mechanism to trigger
BIOS services. The structure of the BIOS mailbox interface is defined below:

typedef struct {

 VOLATILE MBOX_COMMAND MboxCmd;

 VOLATILE MBOX_STATUS MboxSts;

 MBOX_BUFFER_HEADER Buffer;

 } BIOS_MBOX;

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

50 BIOS PSP Mailbox interaction Chapter 7

PSP_MBOX location is offset 0 of SMM region- PSPSMMDataRegion that BIOS SMM driver
has allocated for PSP communication. During cold boot path BIOS SMM driver allocates this
region and informs PSP firmware about this region through MboxBiosCmdSmmInfo mailbox
command. PSP firmware must never use SMM space beyond the allocated SMM space. When
BIOS SMM code is ready to serve PSP SMM requests it sets the
MBOX_STATUS_INITIALIZED bit in MboxSts register. The Buffer location is updated by PSP
firmware with the command specific request buffer. PSP firmware next sets MboxCmd with a
specific mailbox command that PSP needs BIOS to service. After the BIOS_MBOX structure is
setup by PSP firmware it triggers an SMI to the x86 core. The BIOS SMM driver parses the
structure and invokes the appropriate routine to service the PSP request. After the completion of
the request the BIOS SMM driver updates the MboxSts register to reflect completion status and
clears the MboxCmd location to indicate completion of the PSP command. BIOS finally sends the
MboxBiosCmdNop to trigger an interrupt to PSP firmware and return out of SMM mode.

The structure of command/response buffer at offset 8 of BIOS_MAILBOX will change based on
PSP command. The generic format of command/response buffer is similar to the BIOS to PSP
command and is listed below:

typedef struct {

 UINT32 TotalSize;

 UINT32 Status;

} MBOX_BUFFER_HEADER;

typedef struct {

 MBOX_BUFFER_HEADER Header;

 COMMAND_SPECIFIC_BUFFER Buffer;

} MBOX_COMMAND_RESPONSE_BUFFER;

Each command/response buffer starts with a standard mailbox buffer header. The field TotalSize
is set to size of command/response buffer. After the PSP command is serviced the field Status is
updated by the BIOS SMM driver to reflect the status of the command requested by PSP
firmware. The standard mailbox buffer header is followed by a command specific buffer that is
different per each mailbox command.

PSP firmware should never attempt to write/erase SPI space beyond PSP NVRAM region. BIOS
SMM code must reject any such access.

7.2.1 MboxPspCmdSpiGetAttrib (MboxCmd = 0x081)
PSP firmware sends this command to find the attributes of the SPI part. PSP firmware send this
command to request EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes()
service on PSP NVRAM region in SPI space. In response to this command BIOS updates the
Capability field in the Attribute field in the command-specific buffer structure listed below:

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 7 BIOS PSP Mailbox interaction 51

typedef struct {

 UINT64 Attribute;

 } SPI_ATTRIB_REQUEST;

The possible attribute values are defined in the UEFI specification for enum type
EFI_FVB_ATTRIBUTES_2.

7.2.2 MboxPspCmdSpiSetAttrib (MboxCmd = 0x082)
At this time this is an unsupported command. PSP firmware sends this command to request
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes() service on PSP NVRAM
region in SPI space.

7.2.3 MboxPspCmdSpiGetBlockSize (MboxCmd = 0x083)
PSP firmware sends this command to request
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize() service on PSP NVRAM
region in SPI space. PSP firmware requires this information to detect the size of each block in PSP
NVRAM region.

typedef struct {

 UINT64 Lba;

 UINT64 BlockSize;

 UINT64 NumberOfBlocks;

} SPI_INFO_REQ;

This structure maps to EFI_FVB_GET_BLOCK_SIZE structure in the UEFI specification.

Note: The difference from UEFI definition point of view is SPI_INFO_REQ are absolute

addresses instead of pointers defined in EFI_FVB_GET_BLOCK_SIZE structure.

BIOS returns the Lba as (zero), BlockSize and total blocks of PSP NVRAM region.

7.2.4 MboxPspCmdSpiReadFV (MboxCmd = 0x084)
PSP firmware sends this command to request
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read() service on PSP NVRAM region in
SPI space.

PSP firmware may use this command to read its data from PSP NVRAM space. Generally PSP
firmware will directly perform the SPI read and not use this command. The command-specific
structure for this command is below
typedef struct {

 UINT64 Lba;

 UINT64 Offset;

 UINT64 NumByte;

 UINT8 Buffer[1];

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

52 BIOS PSP Mailbox interaction Chapter 7

} SPI_RW_REQ;

Lba is the logical block address in NVRAM that PSP firmware requests to read. Offset is the
specific location within the Lba block. NumByte field reflects the number of bytes PSP firmware
needs to read. BIOS SMM code is expected to read the requested NVRAM offset and update the
SMM space starting at offset Buffer.

7.2.5 MboxPspCmdSpiWriteFV (MboxCmd = 0x085)

PSP firmware sends this command to request
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write() service on PSP NVRAM region in
SPI space. PSP firmware may use this command to write to PSP NVRAM space. To protect the
PSP NVRAM region BIOS SMM code is expected to lock this region unless PSP made this write
request. The structure for this command is the same as above SPI_RW_REQ. In this command,
BIOS reads the SMM location starting at Buffer offset of the structure and writes this buffer
content to the appropriate SPI location.

7.2.6 MboxPspCmdSpiEraseFV (MboxCmd = 0x086)

PSP firmware sends this command to request
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Erase() service on PSP NVRAM region in
SPI space.

BIOS SMM driver erases the SPI space in response to this command. The request buffer for this
command specific structure is defined below:

typedef struct {

 UINT64 Lba

 UINT64 NumberOfBlocks;

} SPI_ERASE_REQ;

In response to this command, BIOS erases the SPI space per Lba & NumberofBlocks as
defined in the structure.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 8 Platform BIOS Requirements for PSP Implementation 53

Chapter 8 Platform BIOS Requirements for
PSP Implementation

The below BIOS requirement applies when platform BIOS supports Hardware validated boot and
PSP firmware TPM feature of Mullins PSP

 Platform BIOS MUST reserve 1MB of space in SPI storage for PSP components. This
includes PSP firmware, PSP NVRAM data and various keys in the PSP Directory
[IBV|OEM]

 Platform BIOS must include PSP Directory
For more information about the tool used to build PSP Directory please refer to Appendix A,
PSP Directory Structure, on page 58.

 AGESA PI package must include all PSP and SMU binaries
 Platform BIOS must include PSP directory. All PSP appropriate entries defined in Table

5,PSP Directory Entry Type Encodings, on page 21 must be included in PSP
Directory.[IBV|OEM]

 Public portion of OEM signing key MUST be signed by AMD and both OEM signed key
and AMD public key MUST be present in SPI image and also locatable via PSP directory.
[IBV|OEM]

 Platform BIOS MUST set up PSP code and data pages in SPI space such that the PSP code
and data page can be independently erased/updated without affecting the rest of the BIOS
components in SPI space.[IBV|OEM]

 BIOS MUST support single binary that supports both secure/non-secure boot and resume
environment.[IBV|OEM]

 BIOS MUST include necessary support to ensure the trust chain is maintained from x86
BIOS reset to OS handoff. [IBV|OEM]

 IBV|OEM MUST sign the BIOS RTM code (PEI Volume or SEC volume) using private
key based on RSASSA-PSS signing scheme. The private portion of IBV|OEM signing key
MUST be protected per IBV|OEM process choice. If IBV|OEM private keys are
compromised the overall hardware validated boot feature can be completely compromised
across all systems. [IBV|OEM]

 Platform BIOS MUST build PSP Directory that provide location information of
BIOS_RTM location, signed BIOS RTM location and signed BIOS public key in PSP
directory.[IBV|OEM]

 If BIOS RTM volume has only SEC code then it MUST authenticate the PEI volume
before handing off control to PEI core.[IBV|OEM]

 BIOS PEI volume must authenticate DXE and other firmware volume during cold boot and
resume before executing BIOS drivers from these volumes to protect the integrity of trust
chain. [IBV|OEM]

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

54 Platform BIOS Requirements for PSP Implementation Chapter 8

 Platform BIOS must authenticate external software component such as external Option
Rom and OS Boot loader as defined in secure boot section of UEFI specification.

 Platform BIOS MUST send PSP mailbox commands as outlined in the PSP-BIOS mailbox
section. [AGESA/OEM|IBV]

 AGESA PSP/iTPM PEI, DXE and SMM driver MUST send the all BIOS-PSP mailbox
command to PSP at appropriate point during boot. Similarly AGESA PSP/iTPM driver
should handle PSP-BIOS mailbox command at runtime[AGESA]

 Platform BIOS code MUST ensure these AGESA drivers are appropriately loaded and
protected.[IBV|OEM]

 PSP MMIO region MUST be always accessible for BIOS-PSP mailbox communication.
[AGESA/IBV|OEM]

 Platform BIOS MUST provide an SMM interface to allow PSP data to be saved in SPI
space. This includes the support EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
liked library interface as defined in section 10.3.2 in SMM space that will be used to update
PSP NVRAM data.[IBV|OEM]

 Platform BIOS MUST ensures this interface is inaccessible outside SMM. Also the PSP
region of SPI MUST remain write protected outside this interface use such that NVRAM
cannot be tempered [IBV|OEM]

 AGESA P2Cmbox SMM driver MUST use this library interface in SMM space to locate
the storage protocol [AGESA]

 BIOS MUST reserve 4K SMM memory for BIOS-PSP runtime communication.[AGESA]
 AGESA PspP2Cmbox SMM driver MUST reserve region for BIOS-PSP communication

[AGESA]
 Platform BIOS must provide SMM kernel services to allow SMM memory allocation with

in SMM space.[IBV|OEM]
 Platform BIOS MUST ensure the SMM environment is protected
 SMM region MUST be locked before exiting the BIOS boot environment. The SMM code

must remain protected such that non-authenticated code cannot access SMM data or code
area. Some additional note, the SMM lock need be done after PspDxe driver save CPU
core context through the specific MSR, if SMM region need to access during the SMM
resume path. [IBV|OEM]

 Platform BIOS MUST ensure the SMI source used by PSP is configured properly for SMM
to be non-blocking during runtime.[AGESA]

 AGESA PSP driver MUST install appropriate SMM handle to service SMI events
(FakeSts0/Software SMI) from PSP firmware. AGESA PSP driver must also provide this
information to PSP firmware via mailbox interface.

 Platform BIOS MUST ensure the same SMI mechanism is not used by other SMM
component. Platform BIOS must also ensure the chipset registers remain configured to
trigger SMI at run time. [IBV|OEM]

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 8 Platform BIOS Requirements for PSP Implementation 55

 BIOS MUST adequately reserve system memory during boot to appropriately set up
stack/heap for DRAM ready x86 SMM resume path on a secure PSP part.[AGESA/
IBV|OEM]

 AMD AGESA SMM driver MUST reserve the SMM location [AGESA]
 Platform driver MUST produce AMD_PSP_PLATFORM_PROTOCOL instance that

AMD AGESA SMM driver can use to reserve SMM space.[IBV|OEM]
 If platform BIOS build a separate resume volume as outlined in section 5.2, on page 36 the

platform BIOS must reserve this memory region to protect against any OS use. Also during
resume platform BIOS MUST ensure this resume volume in DRAM has not been
tempered.[IBV|OEM]

 BIOS MUST support Windows 8 Secure Boot requirements as specified in Microsoft’s
certification requirements.[IBV|OEM]

 BIOS MUST support Windows 8 firmware TPM interfaces as specified in Microsoft’s
whitepaper “Trusted execution environment ACPI profile”. This includes reserving part of
system memory that will be used by PSP firmware as a TPM Command and Response
Buffer.[IBV|OEM]

 BIOS MUST send fTPM command after memory is available.
 BIOS MUST protect the PSP code and data area in the SPI space. This area must be write-

protected via SMM or physical lock so that only BIOS SMM code can update this
region.[IBV|OEM]

 BIOS flash utility MUST ensure PSP firmware is properly updated and also the SPI region
for PSP firmware is properly protected during regular boot.[IBV|OEM]

 During flash update platform BIOS must ensure the integrity of contents of PSP Directory
as well as various binaries referenced by PSP directory. PSP firmware searches for PSP
Directory in multiple locations as defined in Section 4.1.1, on page 19. BIOS vendor MAY
use these other location as backup location. PSP firmware looks for PSP directory in the
order as defined in Table 1

 BIOS must support UEFI TPM protocol for TPM devices. For ex. “TCG EFI Protocol
Specification” for onboard discrete TPM1.2 device and EFI_TREE_PROTOCOL [9] for
TPM2.0 devices.[IBV|OEM]

 When a platform BIOS (such as Larne reference board) supports both discrete and firmware
TPM for development and validation purposes ONLY, the platform BIOS MUST support
both kind of TPM stack (i.e., TPM1.2/TPM2.0 as well as dTPM/fTPM) in the BIOS ROM
image. During cold boot the platform BIOS MUST load appropriate TPM driver stack based
on user configuration (such as BIOS setup option) option. On AMD reference validation
board, the default TPM selection MUST be internal firmware TPM use.[IBV|OEM]

 Platform BIOS MAY use PSP entry type 0x80-0xFF for OEM or IBV specific proprietary
use. PSP Entry Type from 0x00 to 0x7F is reserved for AMD use.

 Platform BIOS MAY use PSP Hardware Cryptographic accelerator to improve the boot time
associated with cryptography operation such as AES, SHA, RSA, ECC, RNG.[AGESA/
IBV|OEM]

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

56 Platform BIOS Requirements for PSP Implementation Chapter 8

 AMD AGESA MAY provide the library for the base CCP operation mentioned above
[AGESA]

 IBV|OEM CCP library MAY use the AMD AGESA CCP library to make use of PSP CCP.
 IBV BIOS MUST ensure SPI decode range in FCH controller remain properly programmed

for PSP firmware to access other PSP component from SPI space.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Chapter 9 Standards 57

Chapter 9 Standards

The PSP and software components must comply with many standards including the following:

9.1 UEFI 2.3.1c Chapter 27 Secure Boot
Affected component(s): System BIOS

http://www.uefi.org/specs/

9.2 Microsoft® Trusted Execution Environment UEFI
Protocol

Affected component(s): System BIOS, Firmware TPM, PSP OS

http://msdn.microsoft.com/en-us/library/windows/hardware/jj923068.aspx

9.3 Microsoft®Trusted Execution Environment ACPI
Profile

Affected component(s): System BIOS, Firmware TPM, PSP OS

http://msdn.microsoft.com/en-us/library/windows/hardware/jj923067.aspx

9.4 AMD PSP 1.0 Software Architecture Design
Document

Affected component(s): System BIOS, Firmware TPM, PSP OS

http://www.uefi.org/specs/
http://msdn.microsoft.com/en-us/library/windows/hardware/jj923068.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj923067.aspx

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

58 PSP Directory Structure Appendix A

Appendix A PSP Directory Structure
typedef struct {

 UINT32 PspCookie; // "$PSP"

 UINT32 Checksum; // 32 bit CRC of header items below and the entire

table

 UINT32 TotalEntries; // Number of PSP Entries

} PSP_DIRECTORY_HEADER;

enum _PSP_DIRECTORY_ENTRY_TYPE {

 AMD_PUBLIC_KEY = 0, // PSP entry pointer to AMD public

key

 PSP_FW_BOOT_LOADER = 1, // PSP Entry points to PSP boot

loader in SPI space

 PSP_FW_TRUSTED_OS = 2, // PSP Entry points to PSP Firmware

region in SPI space

 PSP_FW_RECOVERY_BOOT_LOADER = 3, // PSP recovery boot loader

 PSP_NV_DATA = 4, // PSP entry points to PSP data

region in SPI space

 BIOS_PUBLIC_KEY = 5, // PSP entry points to BIOS public

key stored in SPI space

 BIOS_RTM_FIRMWARE = 6, // PSP entry points to BIOS RTM

code (PEI volume) in SPI space

 BIOS_RTM_SIGNATURE = 7, // PSP entry points to signed BIOS

RTM hash stored in SPI space

 SMU_OFFCHIP_FW = 8, // PSP entry points to SMU off-chip

firmware

 PSP_AMD_SECURE_DEBUG_KEY = 9, // AMD Secure Debug key

 PSP_SECURE_OS_SIGNING_KEY = 10, // PSP Secure OS OEM signing key

 AMD_SOFT_FUSE_CHAIN_01 = 11, // PSP entry pointer to 64bit PSP

Soft Fuse Chain

 PSP_BOOT_TIME_TRUSTLETS = 12, // PSP entry points to boot-loaded

trustlet binaries

 PSP_BOOT_TIME_TRUSTLETS_KEY = 13, // PSP entry points to key of the

boot-loaded trustlet binaries

};

typedef UINT32 PSP_DIRECTORY_ENTRY_TYPE;

typedef struct

{

 PSP_DIRECTORY_ENTRY_TYPE Type; // Type of PSP entry; 32 bit long

 PSP_UINT32 Size; // Size of PSP Entry in bytes

 union

 {

 PSP_UINT64 Location; // Address of PSP Entry in SPI-ROM space

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix A PSP Directory Structure 59

 PSP_UINT64 Value; // Value of certain PSP Entry in SPI-ROM

space;

 }Content;// Location/Value union type

} PSP_DIRECTORY_ENTRY;

typedef struct {

 PSP_DIRECTORY_HEADER Header;

 PSP_DIRECTORY_ENTRY PspEntry[1]; // Array of PSP entries each pointing

to a binary in SPI flash

 // The actual size of this array

comes from the

 // header

(PSP_DIRECTORY.Header.TotalEntries)

} PSP_DIRECTORY;

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

60 PSP –BIOS Mailbox Appendix B

Appendix B PSP –BIOS Mailbox
//==

// Define Mailbox Command

//==

// Mbox command list. Only one command can be send till target processes it; the only exception
is Abort command that BIOS may send in case of timeout etc.

///

typedef enum {

 MboxCmdRsvd = 0x00, ///< Unused

 MboxBiosCmdDramInfo = 0x01, ///< Bios -> PSP: Memory DRAM information

(ie. PspBuffer address etc)

 MboxBiosCmdSmmInfo = 0x02, ///< Bios -> PSP: Bios will provide SMM

inf - SmmBase,

 ///

PspSmmDataRegion,PspSmmDataRegionLength, SoftSmiValue, SoftSmiPort

 MboxBiosCmdSxInfo = 0x03, ///< Bios -> PSP: Sx transition info (S3,

S5)

 MboxBiosCmdRsmInfo = 0x04, ///< Bios -> PSP: Resume transition info

(Vector, Size of resume code)

 MboxBiosCmdPspQuery = 0x05, ///< Bios -> PSP: Bios Find supported

feature

 MboxBiosCmdBootDone = 0x06, ///< Bios -> PSP: Bios is done with BIOS

POST

 MboxBiosCmdClearS3Sts = 0x07, ///< Bios -> PSP: Inform PSP clear

S3ExitReset

 MboxBiosS3DataInfo = 0x08, ///< Bios -> PSP: Bios will send
this command to inform PSP to save the data needed to restore memory during resume from S3

 MboxBiosCmdNop = 0x09, ///< Bios -> PSP: Bios will send
this NOP command to indicate to PSP that is is done servicing PSP SMM request

 MboxPspCmdSpiGetAttrib = 0x81, ///< PSP -> BIOS: Get location of PSP

NVRam region

 MboxPspCmdSpiSetAttrib = 0x82, ///< PSP -> BIOS: Get location of PSP

NVRam region

 MboxPspCmdSpiGetBlockSize = 0x83, ///< PSP -> BIOS: Get Block size info

 MboxPspCmdSpiReadFV = 0x84, ///< PSP -> BIOS: Read PSP NVRAM firmware

volume

 MboxPspCmdSpiWriteFV = 0x85, ///< PSP -> BIOS: Write PSP NVRAM

firmware volume

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix B PSP –BIOS Mailbox 61

 MboxPspCmdSpiEraseFV = 0x86, ///< PSP -> BIOS: Erase PSP NVRAM

firmware volume

 MboxCmdAbort = 0xfe, ///< Abort the last command (BIOS to PSP

in case of timeout etc)

} MBOX_COMMAND;

//==

//

// Define Mailbox Status field

//

//==

//

/// MBox Status MMIO space

///

typedef struct {

 UINT32 MboxInitialized:1; ///< Target will set this to 1 to indicate it is

initialized (for ex. PSP/TPM ready)

 UINT32 Error:1; ///< Target in adddtion to Done bit will also set

this bit to indicate success/error on last command

 UINT32 Terminated:1; ///< Target will set this bit if it aborted the

command due to abort request

 UINT32 Halt:1; ///< Target will set this error if there is

critical error that require reset etc

} MBOX_STATUS;

//

// Above defined as bitmap

#define MBOX_STATUS_INITIALIZED 0x00000001ul ///< Mailbox Status:

Initialized

#define MBOX_STATUS_ERROR 0x00000002ul ///< Mailbox Status:

Error

#define MBOX_STATUS_ABORT 0x00000004ul ///< Mailbox Status:

Abort

#define MBOX_STATUS_HALT 0x00000008ul ///< Mailbox Status: Halt

///

/// Each MMIO Block will have Command, Status and Buffer pointer entries.

/// The 8 dword wide MMIO mailbox will be part of PSP-CPU MMIO space

///

typedef struct {

 VOLATILE MBOX_COMMAND MboxCmd; ///< Mbox Command 32 bit wide

 VOLATILE MBOX_STATUS MboxSts; ///< Mbox status 32 bit wide

 MBOX_BUFFER *Buffer; ///< 64 bit Ponter to memory with

additional parameter.

} PSP_MBOX;

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

62 PSP –BIOS Mailbox Appendix B

///

/// structure in DRAM for additional parameter

///

typedef struct {

 UINT32 TotalSize; ///< Total Size of MBOX_BUFFER

(including this field)

 UINT32 Status; ///< Status value if any:e

 //UINT8 ReqBuffer[x]; ///< X byte long Request buffer for

additional parameter.

} MBOX_BUFFER_HEADER;

//==

//

// Below defines Request buffer for various commands. This structure is based

on Command

//

//==

///

/// structure of ReqBuffer for MboxBiosS3DataInfo mailbox command

///

typedef struct {

 UINT64 S3RestoreBufferBase; ///< PSP reserve memory near TOM

 UINT64 S3RestoreBufferSize; ///< Size of PSP memory

} S3DATA_REQ_BUFFER;

/// MBOX buffer for S3Info data to bring memory out of self refresh info

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 S3DATA_REQ_BUFFER Req; ///< Req

} MBOX_S3DATA_BUFFER;

/// Define structure of SMM_TRIGGER_INFO

typedef struct {

 UINT64 Address; ///< Memory or IO address (Memory

will be qword, IO will be word)

 UINT32 AddressType; ///< SMM trigger typr - Perform

write to IO/Memory

 UINT32 ValueWidth; ///< Width of value to write (byte

write, word write,..)

 UINT32 ValueAndMask; ///< AND mask of value after

reading from the address

 UINT32 ValueOrMask; ///< OR Mask of value to write to

this address.

} SMM_TRIGGER_INFO;

///

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix B PSP –BIOS Mailbox 63

/// structure of ReqBuffer for MboxBiosCmdSmmInfo mailbox command

///

typedef struct {

 UINT64 SMMBase; ///< SMM TSeg Base

 UINT64 SMMLength; ///< Length of SMM area

 UINT64 PSPSmmDataRegion; ///< PSP region base in Smm space

 UINT64 PspSmmDataLength; ///< Psp region length in smm space

 SMM_TRIGGER_INFO SmmTrigInfo; ///< Information to generate SMM

} SMM_REQ_BUFFER;

/// MBOX buffer for SMM info

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 SMM_REQ_BUFFER Req; ///< Reques buffer

} MBOX_SMM_BUFFER;

///

/// structure of ReqBuffer for MboxBiosCmdSxInfo mailbox command

///

typedef struct {

 UINT8 SleepType; ///< Inform which sleep state the

system is going to

} SX_REQ_BUFFER;

/// MBOX buffer for Sx info

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 SX_REQ_BUFFER Req; ///< Request buffer

} MBOX_SX_BUFFER;

///

/// structure of ReqBuffer for MboxBiosCmdRsmInfo mailbox command

///

typedef struct {

 UINT64 ResumeVecorAddress; ///< Address of BIOS resume vector

 UINT64 ResumeVecorLength; ///< Length of BIOS resume vector

} RSM_REQ_BUFFER;

/// MBOX buffer for RSM info

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 RSM_REQ_BUFFER Req; ///< Req

} MBOX_RSM_BUFFER;

/// CAPS_REQ_BUFFER structure

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

64 PSP –BIOS Mailbox Appendix B

typedef struct {

 UINT32 Capabilities; ///< PSP Writes capabilities into

this field when it returns.

} CAPS_REQ_BUFFER;

// Bitmap defining capabilities

#define PSP_CAP_TPM (1 << 0)

/// MBOX buffer for Capabilities Query

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 CAPS_REQ_BUFFER Req; ///< Req

} MBOX_CAPS_BUFFER;

/// MBOX buffer for Exit BIOS info

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

} MBOX_DEFAULT_BUFFER;

//

// Define Malbox buffer comming from PSP->BIOS

//

///

/// structure of ReqBuffer for MboxPspCmdSpiGetAddress/MboxPspCmdSpiGetAddress

mailbox command

///

typedef struct {

 UINT64 Attribute; ///< Inform attribute of SPI part

} SPI_ATTRIB_REQ;

/// MBOX buffer for Spi Get/Set attribute info

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 SPI_ATTRIB_REQ Req; ///< Req

} MBOX_SPI_ATTRIB_BUFFER;

///

/// structure of ReqBuffer for MboxPspCmdSpiGetBlockSize mailbox command

///

typedef struct {

 UINT64 Lba; ///< starting LBA

 UINT64 BlockSize; ///< Block size of each Lba

 UINT64 NumberOfBlocks; ///< Total number of blocks

} SPI_INFO_REQ;

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix B PSP –BIOS Mailbox 65

/// MBOX buffer for Spi read block attribute

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 SPI_INFO_REQ Req; ///< Req

} MBOX_SPI_INFO_BUFFER;

///

/// structure of ReqBuffer for MboxPspCmdSpiRead/Write mailbox command

///

typedef struct {

 UINT64 Lba; ///< starting LBA

 UINT64 Offset; ///< Offset in LBA

 UINT64 NumByte; ///< Total byte to read

 UINT8 Buffer[1]; ///< Buffer to read the data

} SPI_RW_REQ;

/// MBOX buffer for Spi read block attribute

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 SPI_RW_REQ Req; ///< Req

} MBOX_SPI_RW_BUFFER;

///

/// structure of ReqBuffer for MboxPspCmdSpiErase mailbox command

///

typedef struct {

 UINT64 Lba; ///< starting LBA

 UINT64 NumberOfBlocks; ///< Total number of blocks

} SPI_ERASE_REQ;

/// MBOX buffer for Spi read block attribute

typedef struct {

 MBOX_BUFFER_HEADER Header; ///< Header

 SPI_ERASE_REQ Req; ///< Req

} MBOX_SPI_ERASE_BUFFER;

/// Union of various structure

typedef union _MBOX_BUFFER {

 MBOX_DEFAULT_BUFFER Dflt; ///< Default

 MBOX_S3DATA_BUFFER S3DataInfo; ///< S3DataInfo

 MBOX_SMM_BUFFER Smm; ///< Smm

 MBOX_SX_BUFFER Sx; ///< Sx

 MBOX_RSM_BUFFER Rsm; ///< Rsm

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

66 PSP –BIOS Mailbox Appendix B

 MBOX_CAPS_BUFFER Cap; ///< Cap

 MBOX_SPI_ATTRIB_BUFFER SpiAttrib; ///< SpiAttrib

 MBOX_SPI_INFO_BUFFER SpiInfo; ///< SpiInfo

 MBOX_SPI_RW_BUFFER SpiRw; ///< SpiRw

 MBOX_SPI_ERASE_BUFFER SpiErase; ///< SpiErase

} MBOX_BUFFER;

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix C PSP S5 Boot Flow 67

Appendix C PSP S5 Boot Flow
When SoC is powered-up and reset is de-asserted SMU On-chip Boot ROM code starts executing
and early fuse loading takes place. At this point both PSP microcontroller (A5) and Host CPU
(x86) are both in reset. Subsequently host x86 BSP core and PSP (A5) resets are both de-asserted.

Figure 8 on page 68 shows flow of operations that takes place starting from this stage during the
S5 boot.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

68 PSP S5 Boot Flow Appendix C

AMD Hardware Validated Boot Flow w/PSP – S5 Boot (A)

CPU (x86)PSP

P
h

as
e

BIOS DXE Core

CPU microcode

BIOS PEI Code in ROM

Off-chip PSP Secure OS (w/ fTPM)

Off-chip PSP Boot Loader

PSP Boot ROM

Reset De-asserted

Load & Verify AMD Signing Key from SPI-
ROM

Load & Verify PSP Off-chip Boot Loader
from SPI-ROM

Configure FCH (SB) and other chipset
registers and Detect S5 boot vs S3

Resume

CPU Init - Stalled

Configure FCH (SB) and other chipset registers and
Detect S5 boot vs S3 Resume

Initialize/Train DRAM and Create S3 Restore Data Buffer
in DRAM

S5 Boot

Notify DRAM Ready to PSP
(and physical address of S3 Restore Data in DRAM

Loads PEI iTPM Driver

Initialize & Instantiate fTPM TA

PSP Secure OS and fTPM TA enters Steady
State

Verify Loads DXE Drivers including DXE iTPM Driver

S5 Boot

Load & Verify SMU FW from SPI-ROM and
copy to SMU SRAM

Load & Verify BIOS PEI Segment from SPI-
ROM

Clear WaitSecureInit Bit

UNB Register

Load & Verify PSP Off-Chip Secure OS
from SPI-ROM

Yes

B No
BNo

Wait for DRAM Ready and Process
minimal TPM commands

Mail Box Register

Fetch BIOS reset vector and start BIOS
execution

Verifies/Measures BIOS DXE Core Module

DXE iTPM driver sets up the static ACPI table for iTPM
MMIO interface and reserves 8K of DRAM for iTPM

Command/Response Buffers

Builds SMM Environment, Loads SMM Drivers and
reserves SMM space

Notify physical base address of SMM space reserved
for PSP

Continue BIOS UEFI Boot

Initialize BIOS-PSP Mailbox interface

Load & Verify OEM Signing Key from SPI-
ROM

Figure 8. Hardware Validated Boot Flow – S5 Boot

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix D PSP S3/Resume 69

Appendix D PSP S3/Resume
Figure 9 shows the S3 suspend flow:

Yes

BIOS Runtime – SMM Handler Installed on S5 boot
to trap write PM_CNT register (SMM Mode)

SMM handler traps write to PM_CNT

Notifies PSP of S3-Enter

Off-chip PSP Secure OS (w/fTPM)

Notify all Truslets and Secure Drivers
to save state

Save internal state of OS, fTPM TA,
TEE TA into SRAM

Host OS ACPI Driver

When all devices are idle,
executes the ACPI code to send

SLP_S3 command (write PM_CNT
register in FCH)

Mailbox

Encrypt & Sign (HMAC) the PSP SRAM
contents and save it to DRAM

reserved for PSP at a fixed physical
address

Wait for PSP SecureOS Swd to be idle

Sign (HMAC) the SMU SRAM contents
and save it to DRAM reserved for PSP

at a fixed physical address

Wait for PSP to ACK

Send ACK to enter S3-state to BIOS

Complete write to PM_CNT register

FCH

Saves all FCH structures
Asserts CPURST#, PCIRST#

System in S3 State

Figure 9. Hardware Validated Boot Flow – S3 Suspend

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

70 PSP S3/Resume Appendix D

D.1 PSP S3 Resume Flow
Figure 10 shows the S3 resume flow:

AMD Hardware Validated Boot Flow w/PSP – S3 Resume (B)

CPU (x86)PSP

Ph
as

e

BIOS PEI Code in ROM

CPU microcode

Fetch BIOS reset vector and start BIOS resume code
execution from DRAM

BIOS Resume Code in DRAM

Off-chip PSP Secure OS (w/ fTPM)

Off-chip PSP Boot Loader

PSP Boot ROM

Reset De-asserted

Load & Verify AMD Signing Key from SPI-
ROM

Load & Verify PSP Off-chip Boot Loader
from SPI-ROM

Configure FCH (SB) and other chipset
registers and Detect S5 boot vs S3/S0i3

Resume

CPU Init - Stalled

BIOS Resume Code Initialization & TBD

Restore & Re-instantiate fTPM TA

PSP Secure OS and fTPM TA enters Steady
State

Jump to to BIOS PEIM code in ROM

S3/S0i3 Resume

Load & Verify S3 Restore Vector Data
from SPI-ROM and use that to restore

DRAM Access

Clear WaitSecureInit Bit

Load, Decrypt & Verify PSP SRAM Content
DRAM

UNB Register

Load & Verify SMU SRAM contents from
DRAM

Yes

A No

BIOS S3-Resume Path (IBV/OEM defined)

S3-Resume

Yes

C No

OS S3-Resume Continues

Figure 10. Hardware Validated Boot Flow – S3 Resume

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix E Key format 71

Appendix E Key format
AMD will provide the following keys to OEM/IBV.

E.1 Public Part of the AMD Signing RSA-2048 bit Key
File: Agesa\Firmwares\ML\AmdPubKey.bin

Figure 11 describes the layout of the Root AMD Signing RSA-2048 bit Public Key (Root) stored
in SPI-ROM.

 32 B SHA-256 Hash Included in the PSP BootROM

SHA-256 Hash

 64 + 2*N B RSA Public Key Token

 16 B This Key ID

 04 B Modulus Size (== 2048-bits)

 N B Modulus (N= 256 B or 512 B depending Modulus Size)

 16 B Certifying Key ID (== This Key ID if Root Key)

 04 B Version ID

 N B Public Exponent

 04 B Key Usage Flag (== 0 for Root AMD Signing Key)

 04 B Public Exponent Size

 16 B Reserved

Figure 11. Root RSA Public Key Token Format

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

72 Key format Appendix E

E.2 Certified Public Part of the Leaf/Intermediate RSA-
2048 or RSA 4096-bit Key

File: Agesa\Firmwares\ML\RtmPubSigned.key (Note: Only used by AMD customer reference

board)

Figure 12 describes the layout of a leaf/intermediate RSA Public Key with sizes up to 4096-bit
stored in SPI-ROM. The public part of the OEM BIOS signing RSA key will be stored in this
format.

64 + 3*N B Signed RSA Public Key Token

 N B Signature of the RSA Public Key using Certifying Private Key
(N= 256 B or 512 B depending Modulus Size)

RSASSA-PSS-SIGN
w/
KCertifyingPrivKey

 16 B This Key ID

 04 B Modulus Size

 N B Modulus (N= 256 B or 512 B depending Modulus Size)

 16 B Certifying Key ID (== This Key ID if Root Key)

 04 B Version ID

 N B Public Exponent

 04 B Key Usage Flag

 64 + 2*N B RSA Public Key Token

 04 B Public Exponent Size

 16 B Reserved

Figure 12. RSA Public Key Token Format

RSASSA-PSS signing scheme is used as signature scheme with SHA-256 used as the hashing
algorithm for both message and mask generation.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix E Key format 73

Table 13 describes the fields of RSA Public Key Token structure:

Table 13. RSA Key Format Fields
Field Name Offset

(Hex)
Size (in Bytes) Description/Purpose

Version ID 0x00 4 Version for key format structure
This Key ID 0x04 16 A universally unique key identifier
Certifying Key ID 0x14 16 A universally unique key identifier

corresponds to the certifying key
Key Usage Flag 0x24 4 Signing Key Usage Flag

0 – Key authorized to sign AMD developed
PSP Boot Loader and AMD developed PSP
FW components and SMU FW.
1 – Key authorized to sign BIOS
2 – Key authorized to PSP FW (both AMD
developed and OEM developed)

Reserved 0x24 16 Reserved – Set to zero
Public Exponent Size 0x38 4 Public Exponent Size (will be set to 256-bits)
Modulus Size 0x3C 4 Modulus size in bits
Public Exponent 0x40 N = 256 or 512

depending on
public exponent
size

Public Exponent
For AMD Signing Public Key we may choose
an exponent of size of 32-bytes and store that
as sign-extended to 256-bit value and set the
exponent size accordingly.

Modulus 0x80 N = 256 or 512
depending on
modulus size

Modulus value zero extended to size of N*8
bits

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

74 BuildPspDirectory Tool Appendix F

Appendix F BuildPspDirectory Tool
F.1 PSP Directory Configure File Format
Line for declare BIOS related, start with BIOS_IMAGE

INPUT_FILE: Specify the input BIOS file’s name

PSP_FV_BASE: FV base reserved for hold PSP images

PSP_FV_SIZE: FV size reserved for hold PSP images

RTM_SIZE: RTM (Root Trust Module) file’s size

Line for declare PSP directory entry, start with PSP_ENTRY

 or

TYPE: PSP directory entry type (Table 4 – PSP Directory Entry Type Encodings)

FILE: The PSP image file

VALUE: Value to be filled for some specific entry

F.2 Command Line Parameters
BuildPspDirectory tool support 3 functions: Build Directory table, Build PSP images, Dump Psp
directory which specify as “bd”, “bb”, ‘dp’ in the command line. It only allowed executing one
function at once; different function has its own defined parameters. Type “-h” following by can
get the detail help for each specific function.

F.2.1 Build Directory Table (bd)

This command is used to build PSP Directory header which following the definition in 5.1.1 . Two
positional parameters are required: 1) configuration file (Format defined in 12.6.1); 2) Output Psp
Directory binary name.

 “BuildPspDirectory.exe bd pspdirectory.cfg pspdir.bin” will build psp directory table binary
named pspdir.bin, while the PSP directory entry information is get from the input configure file
(pspdirectory.cfg).

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix F BuildPspDirectory Tool 75

Also to reduce the latency of detect specific PSP entries, and following the restriction of PSP
entry’s order, this function will optimize the order automatically regardless the order you written
in the Psp Directory configure file as below:

Type 0 -> Type 1 -> Type 8 -> Type 3 -> Type 5 -> Type 6 -> Type 7 -> Type 2 -> Type 4 ->
Others

F.2.2 Build PSP BIOS Image (bb)

This command is used to embed the images specified by input configuration file to the reserved
PSP FV region. Two positional parameters are required: 1) configuration file (Format defined in
12.6.1); 2) Output BIOS image name after embedding.

“BuildPspDirectory.exe bb pspdirectory.cfg bios.fd” will embed images which specified in the
configure file (pspdirectory.cfg) to the output BIOS image file bios.fd

F.2.3 Dump PSP Directory Information (dp)

This command is used to dump PSP directory information of a given BIOS image. Only one
positional parameter is required: The input BIOS image, while below optional parameters can
support dump the bios image in different manners: 1) –x Output the information in XML format;
2) –b output PSP binaries embedded; 3) –d output PSP configure file which file name is align with
output of command ‘-b’

“BuildPspDirectory.exe dp bios.fd –b -d” will output the PSP binaries embedded in the PSP FV
also the ‘Pspdirectory.cfg’ associated. The function can be used with ‘bd’ and ‘bb’ to achieve
replaces PSP binary at binary level.

“BuildPspDirectory.exe dp bios.fd –x” will output the PSP information in XML format.

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

76 PSP FW FW_STATUS Appendix G

Appendix G PSP FW FW_STATUS
Below are the status codes definition, which PSP FW write to both IO Port 80h (Low 8bit), and
FW_STATUS register (Full 32btis)

BootLoader Error Codes and Progress Codes in FW_STATUS is with prefix 0x100.

Table 14. PSP BootLoader Error Codes

Error Codes in FW_STATUS Value Description

BL_ERROR_INVALID_BOOTMODE 0x01 consult with AMD FCH/PSP team
BL_ERROR_INVALID_APERCONFIG 0x02 consult with AMD PSP FW team
BL_ERROR_SMUFW

0x03
Preclusion check if SMU FW
content/signature is corrupted or correctly
placed in BIOS

BL_ERROR_OEMSIGNING
0x04

Preclusion check if OEM signing key
content/signature is corrupted or correctly
placed in BIOS

BL_ERROR_BIOS_PEI
0x05

Preclusion check if BIOS PEI volume or
PSP directory table content/signature is
corrupted or correctly placed in BIOS

BL_ERROR_SECUREOS
0x06

Preclusion check if PSP SecureOS
content/signature is corrupted or correctly
placed in BIOS

BL_ERROR_LOAD_SMUFW
0x07

Can not locate SMU FW in PSP directory
table, preclusion check the PSP directory
table.

BL_ERROR_LOAD_OEMSIGNING
0x08

Can not locate OEM SINGING KEY in
PSP directory table, preclusion check the
PSP directory table.

BL_ERROR_LOAD_BIOS_PEI
0x09

Can not locate BIOS PEI in PSP directory
table, preclusion check the PSP directory
table.

BL_ERROR_LOAD_TRUSLETKEY
0x0a

Can not locate Truslet key in PSP directory
table, preclusion check the PSP directory
table.

BL_ERROR_LOAD_SECUREOS
0x0b

Can not locate SECURE OS in PSP
directory table, preclusion check the PSP
directory table.

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix G PSP FW FW_STATUS 77

Table 14. PSP BootLoader Error Codes (Continued)

Error Codes in FW_STATUS Value Description

BL_ERROR_INVALID_PSP_DIRENTRY 0x0c invalid PSP directory entry, preclusion
check the PSP directory table.

BL_ERROR_RELEASE_BSPCORE_FAIL 0x0d Fail to release the BSP Core/x86 - consult
with AMD PSP FW team

BL_ERROR_RETURNED_FROM_OS
0x0e

Control is not returned from secure OS,
abnormal status - consult with AMD PSP
FW team

BL_ERROR_LOAD_RESTOREVEC_FAIL 0x0f Preclusion check if SPI-ROM S3 datablob
content/signature is corrupted in SPI-ROM

BL_ERROR_RESTORE_SECUREBOOT_REG 0x10 Only available for A0, consult with AMD
FCH/PSP team

BL_ERROR_S0I3_STEPS_FAIL 0x11 consult with AMD FCH/PSP team

Table 15. PSP BootLoader Progress Codes
Progress Codes in FW_STATUS Value Description

BL_SUCCESS_C_MAIN 0x40 Entered Boot Loader
BL_SUCCESS_CONFIG_FCHSB 0x41 configured FCH/SB
BL_SUCCESS_BOOTMODE_S4S5 0x42 entered S4/S5 bootmode
BL_SUCCESS_COLD_CRYPTO_POINTER 0x43 passed function pointers from Boot Rom
BL_SUCCESS_COLD_LOAD_SMUFW 0x44 loaded SMU FW
BL_SUCCESS_COLD_VERIFY_SMUFW 0x45 verified SMU FW
BL_SUCCESS_COLD_LOAD_OEM_KEY 0x46 loaded OEM Signing Key
BL_SUCCESS_COLD_VERIFY_OEM_KEY 0x47 verified OEM Signing Key
BL_SUCCESS_COLD_LOAD_BIOS_PEI 0x48 loaded BIOS PEI segment
BL_SUCCESS_COLD_VERIFY_BIOS_PSPDIR 0x49 verified BIOS PEI segment and PSP

directory table
BL_SUCCESS_COLD_RELEASE_BSPCORE 0x4a released BSPCORE
BL_SUCCESS_COLD_LOAD_TRUSTLETKEY 0x4b loaded Truslet Key
BL_SUCCESS_COLD_VERIFY_TRUSTLETKEY 0x4c verified Truslet Key and hash the Truslet

Key
BL_SUCCESS_COLD_LOAD_SECURE_OS 0x4d loaded secure OS
BL_SUCCESS_COLD_VERIFY_SECURE_OS 0x4e verified secure OS

 AMD Confidential—Advance Information

AMD Platform Security Processor BIOS
Architectural Design Guide

54267 Rev. 1.00 January 2014

78 PSP FW FW_STATUS Appendix G

Table 15. PSP BootLoader Progress Codes (Continued)

Progress Codes in FW_STATUS Value Description
BL_SUCCESS_COLD_MB_BL_SECURE_OS 0x4f set up Bootloader-to-SecureOS mailbox
BL_SUCCESS_COLD_TRANSFER_SECURE_OS 0x50 Bootloader transfer control to secure OS
BL_SUCCESS_BOOTMODE_S3S0I3 0x51 entered S3/S0i3 bootmode - Warm Boot
BL_SUCCESS_WARM_CRYPTO_POINTER 0x52 passed function pointers - Warm Boot
BL_SUCCESS_WARM_LOAD_RESTORE 0x53 loaded DRAM restore data - Warm

Boot
BL_SUCCESS_WARM_VERIFY_RESTORE 0x54 verified DRAM restore data - Warm

Boot
BL_SUCCESS_WARM_AGESA_RESTORE 0x55 restored DRAM access - Warm Boot
BL_SUCCESS_WARM_SETS3EXIT_BIT 0x56 set the S3 Exit Bit
BL_SUCCESS_WARM_RELEASE_BSPCORE 0x57 released BSPCORE - Warm Boot
BL_SUCCESS_WARM_S0I3_STEP_DONE 0x58 executed S0i3 steps on resume - Warm

Boot
BL_SUCCESS_WARM_LOAD_SECURE_OS 0x59 unused
BL_SUCCESS_WARM_VERIFY_SECURE_OS 0x5a verified secure OS - Warm Boot
BL_SUCCESS_WARM_MB_BL_SECURE_OS 0x5b set up Bootloader-to-SecureOS mailbox

- Warm Boot
BL_SUCCESS_WARM_MB_SRAMHMAC_PASS 0x5c successfully verified the signature of

SRAM - Warm Boot
BL_SUCCESS_WARM_MB_TRANSFER2OS 0x5d successfully transferred control to

Secure OS - Warm Boot
BL_ERROR_WARM_MB_SRAMHMAC_FAIL 0x5e failed validation of SRAM signature -

Warm Boot

After the PSP Boot Loader passes control to Secure OS FW, the format of the FW_STATUS
register is following:

 xx_xx_xxxx

 | | |

 | | |_ error code

 | |

 | |_ Secure OS progress code

 |

 |_ 0x80|<last executed BIOS command>

AMD Confidential—Advance Information
54267 Rev. 1.00 January 2014 AMD Platform Security Processor BIOS

Architectural Design Guide

 Appendix G PSP FW FW_STATUS 79

Example: 0x84070000 means that Secure OS successfully finished initialization sequence and the
last BIOS command the OS received was 0x4 (MBOX_C2P_RSM_INFO) from BIOS.

Table 16. Progress Codes during Secure OS Initialization

Secure OS
Progress Value

Description

0x01 Entered Secure OS

0x02 Successfully initialized access to CC6 buffers (if stuck at previous code, check CC6
configuration)

0x03 Next step in OS init process (contact PSP FW team)
0x04 Initialized internal data structures and mailbox buffers
0x05 Initialized Swd part of the OS and started notification handler thread

0x06 Loaded and initialized System Trustlets (if stuck at previous code, check Trustlet binary
in SPI ROM)

0x07 Finished Secure OS initialization, entered steady state

Progress codes during S3 cycle. There could be other progress codes, for troubleshooting contact
PSP FW team

Table 17. Progress Codes during S3 Cycle

Secure OS
Progress Value

Description

0x20 Secure OS Entered S3 suspend
0x21 Secure OS entered idle state before suspend
0x22 Secure OS resumed to the Nwd part
0x23 Secure OS finished S3 resume

	AMD Platform Security Processor BIOS Architectural Design Guide
	Contents
	List of Figures
	List of Tables
	Revision History
	Definitions
	Chapter 1 Introduction
	1.1 Scope of This Document
	1.1.1 PSP Overview
	1.1.2 Key Features of the PSP
	1.1.2.1 Hardware Validated Boot
	1.1.2.2 Integrated Trusted Platform Module (TPM) Functions
	1.1.2.3 Cryptographic Acceleration Support

	Chapter 2 Overview of Feature Implementation
	2.1 Hardware Validated Boot
	2.1.1 Integrated TPM Functions
	2.1.2 Cryptographic Acceleration Support

	Chapter 3 PSP Components
	3.1 On-chip PSP Boot ROM
	3.2 Off-chip PSP Boot Loader
	3.3 Off-chip PSP Secure OS

	Chapter 4 Overview of BIOS Support for PSP
	4.1 SPI Flash Region Layout
	4.1.1 PSP Directory Table
	4.1.2 Crisis Recovery Path with PSP Enabled

	4.2 Signing of BIOS Component- OEM Signing Key, PEI Volume
	4.3 BIOS Build Process
	4.3.1 Hardware validated Boot BIOS development bypass mechanism (Mullins Only)

	4.4 Runtime Execution Flow
	4.4.1 5.4.1 Pre x86 Initialization
	4.4.2 BIOS Boot x86 Initialization
	4.4.3 BIOS Runtime Functionality

	Chapter 5 BIOS S3-Resume Path Handling
	5.1 BIOS S3 Transition Flow on ACPI Aware OS
	5.2 BIOS S3 Resume
	5.2.1 Custom Resume Path
	5.2.2 Separate Firmware Volume for Resume Code
	5.2.3 SMM Resume
	5.2.4 Modified Conventional Resume

	Chapter 6 TPM Software Interface
	6.1 TPM 2.0 Command/Response Buffer Interface
	6.2 AMD Implementation of TPM 2.0 Interface

	Chapter 7 BIOS PSP Mailbox interaction
	7.1 BIOS to PSP Mailbox Commands
	7.1.1 MboxBiosCmdDramInfo (MboxCmd = 0x01)
	7.1.2 MboxBiosCmdSmmInfo (MboxCmd = 0x02)
	7.1.3 MboxBiosCmdSxInfo (MboxCmd = 0x03)
	7.1.4 MboxBiosCmdRsmInfo (MboxCmd = 0x04)
	7.1.5 MboxBiosCmdPspQuery (MboxCmd = 0x05)
	7.1.6 MboxBiosCmdBootDone (MboxCmd = 0x06)
	7.1.7 MboxBiosCmdClearS3Sts (MboxCmd = 0x07)
	7.1.8 MboxBiosS3DataInfo (MboxCmd = 0x08)
	7.1.9 MBOX_S3DATA_BUFFER;MboxBiosCmdNop (MboxCmd = 0x09)

	7.2 PSP to BIOS Mailbox Commands
	7.2.1 MboxPspCmdSpiGetAttrib (MboxCmd = 0x081)
	7.2.2 MboxPspCmdSpiSetAttrib (MboxCmd = 0x082)
	7.2.3 MboxPspCmdSpiGetBlockSize (MboxCmd = 0x083)
	7.2.4 MboxPspCmdSpiReadFV (MboxCmd = 0x084)
	7.2.5 MboxPspCmdSpiWriteFV (MboxCmd = 0x085)
	7.2.6 MboxPspCmdSpiEraseFV (MboxCmd = 0x086)

	Chapter 8 Platform BIOS Requirements for PSP Implementation
	Chapter 9 Standards
	9.1 UEFI 2.3.1c Chapter 27 Secure Boot
	9.2 Microsoft® Trusted Execution Environment UEFI Protocol
	9.3 Microsoft®Trusted Execution Environment ACPI Profile
	9.4 AMD PSP 1.0 Software Architecture Design Document

	Appendix A PSP Directory Structure
	Appendix B PSP –BIOS Mailbox
	Appendix C PSP S5 Boot Flow
	Appendix D PSP S3/Resume
	D.1 PSP S3 Resume Flow

	Appendix E Key format
	E.1 Public Part of the AMD Signing RSA-2048 bit Key
	E.2 Certified Public Part of the Leaf/Intermediate RSA-2048 or RSA 4096-bit Key

	Appendix F BuildPspDirectory Tool
	F.1 PSP Directory Configure File Format
	F.2 Command Line Parameters
	F.2.1 Build Directory Table (bd)
	F.2.2 Build PSP BIOS Image (bb)
	F.2.3 Dump PSP Directory Information (dp)

	Appendix G PSP FW FW_STATUS

