
Lecture 2: ARMA Models∗

1 ARMA Process

As we have remarked, dependence is very common in time series observations. To model this time
series dependence, we start with univariate ARMA models. To motivate the model, basically we
can track two lines of thinking. First, for a series xt, we can model that the level of its current
observations depends on the level of its lagged observations. For example, if we observe a high
GDP realization this quarter, we would expect that the GDP in the next few quarters are good
as well. This way of thinking can be represented by an AR model. The AR(1) (autoregressive of
order one) can be written as:

xt = φxt−1 + εt

where εt ∼ WN(0, σ2
ε ) and we keep this assumption through this lecture. Similarly, AR(p) (au-

toregressive of order p) can be written as:

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + εt.

In a second way of thinking, we can model that the observations of a random variable at time
t are not only affected by the shock at time t, but also the shocks that have taken place before
time t. For example, if we observe a negative shock to the economy, say, a catastrophic earthquake,
then we would expect that this negative effect affects the economy not only for the time it takes
place, but also for the near future. This kind of thinking can be represented by an MA model. The
MA(1) (moving average of order one) and MA(q) (moving average of order q) can be written as

xt = εt + θεt−1

and
xt = εt + θ1εt−1 + . . .+ θqεt−q.

If we combine these two models, we get a general ARMA(p, q) model,

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + εt + θ1εt−1 + . . .+ θqεt−q.

ARMA model provides one of the basic tools in time series modeling. In the next few sections,
we will discuss how to draw inferences using a univariate ARMA model.

∗Copyright 2002-2006 by Ling Hu.
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2 Lag Operators

Lag operators enable us to present an ARMA in a much concise way. Applying lag operator
(denoted L) once, we move the index back one time unit; and applying it k times, we move the
index back k units.

Lxt = xt−1

L2xt = xt−2

...
Lkxt = xt−k

The lag operator is distributive over the addition operator, i.e.

L(xt + yt) = xt−1 + yt−1

Using lag operators, we can rewrite the ARMA models as:

AR(1) : (1− φL)xt = εt

AR(p) : (1− φ1L− φ2L
2 − . . .− φpL

p)xt = εt

MA(1) : xt = (1 + θL)εt
MA(q) : xt = (1 + θ1L+ θ2L

2 + . . .+ θqL
q)εt

Let φ0 = 1, θ0 = 1 and define log polynomials

φ(L) = 1− φ1L− φ2L
2 − . . .− φpL

p

θ(L) = 1 + θ1L+ θ2L
2 + . . .+ θpL

q

With lag polynomials, we can rewrite an ARMA process in a more compact way:

AR : φ(L)xt = εt

MA : xt = θ(L)εt
ARMA : φ(L)xt = θ(L)εt

3 Invertibility

Given a time series probability model, usually we can find multiple ways to represent it. Which
representation to choose depends on our problem. For example, to study the impulse-response
functions (section 4), MA representations maybe more convenient; while to estimate an ARMA
model, AR representations maybe more convenient as usually xt is observable while εt is not.
However, not all ARMA processes can be inverted. In this section, we will consider under what
conditions can we invert an AR model to an MA model and invert an MA model to an AR model. It
turns out that invertibility, which means that the process can be inverted, is an important property
of the model.

If we let 1 denotes the identity operator, i.e., 1yt = yt, then the inversion operator (1− φL)−1

is defined to be the operator so that

(1− φL)−1(1− φL) = 1
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For the AR(1) process, if we premulitply (1− φL)−1 to both sides of the equation, we get

xt = (1− φL)−1εt

Is there any explicit way to rewrite (1− φL)−1? Yes, and the answer just turns out to be θ(L)
with θk = φk for |φ| < 1. To show this,

(1− φL)θ(L)
= (1− φL)(1 + θ1L+ θ2L

2 + . . .)
= (1− φL)(1 + φL+ φ2L2 + . . .)
= 1− φL+ φL− φ2L2 + φ2L2 − φ3L3 + . . .

= 1− lim
k→∞

φkLk

= 1 for |φ| < 1

We can also verify this result by recursive substitution,

xt = φxt−1 + εt

= φ2xt−2 + εt + φεt−1

...
= φkxt−k + εt + φεt−1 + . . .+ φk−1εt−k+1

= φkxt−k +
k−1∑
j=0

φjεt−j

With |φ| < 1, we have that limk→∞ φkxt−k = 0, so again, we get the moving average representation
with MA coefficient equal to φk. So the condition that |φ| < 1 enables us to invert an AR(1)
process to an MA(∞) process,

AR(1) : (1− φL)xt = εt

MA(∞) : xt = θ(L)εt with θk = φk

We have got some nice results in inverting an AR(1) process to a MA(∞) process. Then, how
to invert a general AR(p) process? We need to factorize a lag polynomial and then make use of the
result that (1− φL)−1 = θ(L). For example, let p = 2, we have

(1− φ1L− φ2L
2)xt = εt (1)

To factorize this polynomial, we need to find roots λ1 and λ2 such that

(1− φ1L− φ2L
2) = (1− λ1L)(1− λ2L)

Given that both |λ1| < 1 and |λ2| < 1 (or when they are complex number, they lie within the
unit circle. Keep this in mind as I may not mention this again in the remaining of the lecture), we
could write

(1− λ1L)−1 = θ1(L)
(1− λ2L)−1 = θ2(L)
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and so to invert (1), we have

xt = (1− λ1L)−1(1− λ2L)−1εt

= θ1(L)θ2(L)εt

Solving θ1(L)θ2(L) is straightforward,

θ1(L)θ2(L) = (1 + λ1L+ λ2
1L

2 + . . .)(1 + λ2L+ λ2
2L

2 + . . .)
= 1 + (λ1 + λ2)L+ (λ2

1 + λ1λ2 + λ2
2)L

2 + . . .

=
∞∑

k=0

(
k∑

j=0

λj
1λ

k−j
2 )Lk

= ψ(L), say,

with ψk =
∑k

j=0 λ
j
1λ

k−j
2 . Similarly, we can also invert the general AR(p) process given that all

roots λi has less than one absolute value. An alternative way to represent this MA process (to
express ψ) is to make use of partial fractions. Let c1, c2 be two constants, and their values are
determined by

1
(1− λ1L)(1− λ2L)

=
c1

1− λ1L
+

c2
1− λ2L

=
c1(1− λ2L) + c2(1− λ1L)

(1− λ1L)(1− λ2L)

We must have

1 = c1(1− λ2L) + c2(1− λ1L)
= (c1 + c2)− (c1λ2 + c2λ1)L

which gives
c1 + c2 = 1 and c1λ2 + c2λ1 = 0.

Solving these two equations we get

c1 =
λ1

λ1 − λ2
, c2 =

λ2

λ2 − λ1
.

Then we can express xt as

xt = [(1− λ1L)(1− λ2L)]−1εt

= c1(1− λ1L)−1εt + c2(1− λ2L)−1εt

= c1

∞∑
k=0

λk
1εt−k + c2

∞∑
k=0

λk
2εt−k

=
∞∑

k=0

ψkεt−k

where ψk = c1λ
k
1 + c2λ

k
2.
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Similarly, an MA process,
xt = θ(L)εt,

is invertible if θ(L)−1 exists. An MA(1) process is invertible if |θ| < 1, and an MA(q) process is
invertible if all roots of

1 + θ1z + θ2z
2 + . . . θqz

q = 0

lie outside of the unit circle. Note that for any invertible MA process, we can find a noninvertible
MA process which is the same as the invertible process up to the second moment. The converse is
also true. We will give an example in section 5.

Finally, given an invertible ARMA(p, q) process,

φ(L)xt = θ(L)εt
xt = φ−1(L)θ(L)εt
xt = ψ(L)εt

then what is the series ψk? Note that since

φ−1(L)θ(L)εt = ψ(L)εt,

we have θ(L) = φ(L)ψ(L). So the elements of ψ can be computed recursively by equating the
coefficients of Lk.

Example 1 For a ARMA(1, 1) process, we have

1 + θL = (1− φL)(ψ0 + ψ1L+ ψ2L
2 + . . .)

= ψ0 + (ψ1 − φψ0)L+ (ψ2 − φψ1)L2 + . . .

Matching coefficients on Lk, we get

1 = ψ0

θ = ψ1 − φψ0

0 = ψj − φψj−1 for j ≥ 2

Solving those equation, we can easily get

ψ0 = 1
ψ1 = φ+ θ

ψj = φj−1(φ+ θ) for j ≥ 2

4 Impulse-Response Functions

Given an ARMA model, φ(L)xt = θ(L)εt, it is natural to ask: what is the effect on xt given a unit
shock at time s (for s < t)?
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4.1 MA process

For an MA(1) process,
xt = εt + θεt−1

the effects of ε on x are:
ε : 0 1 0 0 0
x : 0 1 θ 0 0

For a MA(q) process,
xt = εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q,

the effects on ε on x are:
ε : 0 1 0 0 . . . 0 0
x : 0 1 θ1 θ2 . . . θq 0

The left figure in Figure 1 plots the impulse-response function of an MA(3) process. Similarly,
we can write down the effects for an MA(∞) process. As you can see, we can get impulse-response
function immediately from an MA process.

4.2 AR process

For a AR(1) process xt = φxt−1 + εt with |φ| < 1, we can invert it to a MA process and the effects
of ε on x are:

ε : 0 1 0 0 . . .
x : 0 1 φ φ2 . . .

As can be seen from above, the impulse-response dynamics is quite clear from a MA representation.
For example, let t > s > 0, given one unit increase in εs, the effect on xt would be φt−s, if there
are no other shocks. If there are shocks that take place at time other than s and has nonzero effect
on xt, then we can add these effects, since this is a linear model.

The dynamics is a bit complicated for higher order AR process. But applying our old trick
of inverting them to a MA process, then the following analysis will be straightforward. Take an
AR(2) process as example.

Example 2

xt = 0.6xt−1 + 0.2xt−2 + εt

or
(1− 0.6L− 0.2L2)xt = εt

We first solve the polynomial:
y2 + 3y − 5 = 0

and get two roots1 y1 = 1.2926 and y2 = −4.1925. Recall that λ1 = 1/y1 = 0.84 and λ2 = 1/y2 =
−0.24. So we can factorize the lag polynomial to be:

(1− 0.6L− 0.2L2)xt = (1− 0.84L)(1 + 0.24L)xt

xt = (1− 0.84L)−1(1 + 0.24L)−1εt

= ψ(L)εt

1Recall that the roots for polynomial ay2 + by + c = 0 is
−b±
√

b2−4ac

2a
.
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where ψk =
∑k

j=0 λ
j
1λ

k−j
2 . In this example, the series of ψ is {1, 0.6, 0.5616, 0.4579, 0.3880, . . .}. So

the effects of ε on x can be described as:

ε : 0 1 0 0 0 . . .
x : 0 1 0.6 0.5616 0.4579 . . .

The right figure in Figure 1 plots this impulse-response function. So after we invert an AR(p)
process to an MA process, given t > s > 0, the effect of one unit increase in εs on xt is just ψt−s.

We can see that given a linear process, AR or ARMA, if we could represent them as a MA
process, we will find impulse-response dynamics immediately. In fact, MA representation is the
same thing as the impulse-response function.
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Figure 1: The impulse-response functions of an MA(3) process (θ1 = 0.6, θ2 = −0.5, θ3 = 0.4) and
an AR(2) process (φ1 = 0.6, φ2 = 0.2), with unit shock at time zero

5 Autocovariance Functions and Stationarity of ARMA models

5.1 MA(1)

xt = εt + θεt−1,

where εt ∼WN(0, σ2
ε ). It is easy to calculate the first two moments of xt:

E(xt) = E(εt + θεt−1) = 0
E(x2

t ) = (1 + θ2)σ2
ε

and

γx(t, t+ h) = E[(εt + θεt−1)(εt+h + θεt+h−1)]

=
{
θσ2

ε for h = 1
0 for h > 1
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So, for a MA(1) process, we have a fixed mean and a covariance function which does not depend
on time t: γ(0) = (1 + θ2)σ2

ε , γ(1) = θσ2
ε , and γ(h) = 0 for h > 1. So we know MA(1) is stationary

given any finite value of θ.
The autocorrelation can be computed as ρx(h) = γx(h)/γx(0), so

ρx(0) = 1, ρx(1) =
θ

1 + θ2
, ρx(h) = 0 for h > 1

We have proposed in the section on invertability that for an invertible (noninvertible) MA
process, there always exists a noninvertible (invertible) process which is the same as the original
process up to the second moment. We use the following MA(1) process as an example.

Example 3 The process

xt = εt + θεt−1, εt ∼WN(0, σ2) |θ| > 1

is noninvertible. Consider an invertible MA process defined as

x̃t = ε̃t + 1/θε̃t−1, ε̃t ∼WN(0, θ2σ2)

.
Then we can compute that E(xt) = E(x̃t) = 0, E(x2

t ) = E(x̃2
t ) = (1 + θ2)σ2, γx(1) = γx̃(1) =

θσ2, and γx(h) = γx̃(h) = 0 for h > 1. Therefore, these two processes are equivalent up to the
second moments. To be more concrete, we plug in some numbers.

Let θ = 2, and we know that the process

xt = εt + 2εt−1, εt ∼WN(0, 1)

is noninvertible. Consider the invertible process

x̃t = ε̃t + (1/2)ε̃t−1, ε̃t ∼WN(0, 4)

.
Note that E(xt) = E(x̃t) = 0, E(x2

t ) = E(x̃t)2 = 5, γx(1) = γx̃(1) = 2, and γx(h) = γx̃(h) = 0
for h > 1.

Although these two representations, noninvertible MA and invertible MA, could generate the
same process up to the second moment, we prefer the invertible presentations in practice because if
we can invert an MA process to an AR process, we can find the value of εt (non-observable) based
on all past values of x (observable). If a process is noninvertible, then, in order to find the value of
εt, we have to know all future values of x.

5.2 MA(q)

xt = θ(L)εt =
q∑

k=0

(θkL
k)εt
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The first two moments are:

E(xt) = 0

E(x2
t ) =

q∑
k=0

θ2
kσ

2
ε

and

γx(h) =
{ ∑q−h

k=0 θkθk+hσ
2
ε for h = 1, 2, . . . , q

0 for h > q

Again, a MA(q) is stationary for any finite values of θ1, . . . , θq.

5.3 MA(∞)

xt = θ(L)εt =
∞∑

k=0

(θkL
k)εt

Before we compute moments and discuss the stationarity of xt, we should first make sure that
{xt} converges.

Proposition 1 If {εt} is a sequence of white noise with σ2
ε < ∞, and if

∑∞
k=0 θ

2
k < ∞, then the

series

xt = θ(L)εt =
∞∑

k=0

θkεt−k

converges in mean square.

Proof (See Appendix 3.A. in Hamilton): Recall the Cauchy criterion: a sequence {yn} converges in
mean square if and only if ‖yn − ym‖ → 0 as n,m→∞. In this problem, for n > m > 0, we want
to show that

E

[
n∑

k=1

θkεt−k −
m∑

k=1

θkεt−k

]2

=
∑

m≤k≤n

θ2
kσ

2
ε

=

[
n∑

k=0

θ2
k −

m∑
k=0

θ2
k

]
σ2

ε

→ 0 as m,n→∞

The result holds since {θk} is square summable. It is often more convenient to work with a
slightly stronger condition – absolutely summability:

∞∑
k=0

|θk| <∞.

9



It is easy to show that absolutely summable implies square summable. A MA(∞) process with
absolutely summable coefficients is stationary with moments:

E(xt) = 0

E(x2
t ) =

∞∑
k=0

θ2
kσ

2
ε

γx(h) =
∞∑

k=0

θkθk+hσ
2
ε

5.4 AR(1)

(1− φL)xt = εt (2)

Recall that an AR(1) process with |φ| < 1 can be inverted to an MA(∞) process

xt = θ(L)εt with θk = φk.

With |φ| < 1, it is easy to check that the absolute summability holds:

∞∑
k=0

|θk| =
∞∑

k=0

|φk| <∞.

Using the results for MA(∞), the moments for xt in (2) can be computed:

E(xt) = 0

E(x2
t ) =

∞∑
k=0

φ2kσ2
ε

= σ2
ε /(1− φ2)

γx(h) =
∞∑

k=0

φ2k+hσ2
ε

= φhσ2
ε /(1− φ2)

So, an AR(1) process with |φ| < 1 is stationary.

5.5 AR(p)

Recall that an AR(p) process

(1− φ1L− φ2L
2 − . . .− φpL

p)xt = εt

can be inverted to an MA process xt = θ(L)εt if all λi in

(1− φ1L− φ2L
2 − . . .− φpL

p) = (1− λ1L)(1− λ2L) . . . (1− λpL) (3)

have less than one absolute value. It also turns out that with |λi| < 1, the absolute summability∑∞
k=0 |ψk| < ∞ is also satisfied. (The proof can be found on page 770 of Hamilton and the proof

uses the result that ψk = c1λ
k
1 + c2λ

k
2.)
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When we solve the polynomial in:

(L− y1)(L− y2) . . . (L− yp) = 0 (4)

the requirement that |λi| < 1 is equivalent to that all roots in (4) lie outside of the unit circle, i.e.,
|yi| > 1 for all i.

First calculate the expectation for xt, E(xt) = 0. To compute the second moments, one method
is to invert it into a MA process and using the formula of autocovariance function for MA(∞).
This method requires finding the moving average coefficients ψ, and an alternative method which
is known as Yule-Walker method maybe more convenient in finding the autocovariance functions.
To illustrate this method, take an AR(2) process as an example:

xt = φ1xt−1 + φ2xt−2 + εt

Multiply xt, xt−1, xt−2, . . . to both sides of the equation, take expectation and and then divide
by γ(0), we get the following equations:

1 = φ1ρ(1) + φ2ρ(2) + σ2
ε /γ(0)

ρ(1) = φ1 + φ2ρ(1)
ρ(2) = φ1ρ(1) + φ2

ρ(k) = φ1ρ(k − 1) + φ2ρ(k − 2) for k ≥ 3

ρ(1) can be first solved from the second equation: ρ(1) = φ1/(1− φ2), ρ(2) can then be solved
from the third equation. ρ(k) can be solved recursively using ρ(1) and ρ(2) and finally, γ(0) can
be solved from the first equation. Using γ(0) and ρ(k), γ(k) can computed using γ(k) = ρ(k)γ(0).
Figure 2 plots this autocorrelation for k = 0, . . . , 50 and the parameters are set to be φ1 = 0.5 and
φ2 = 0.3. As is clear from the graph, the autocorrelation is very close to zero when k > 40.
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Figure 2: Plot of the autocorrelation of AR(2) process, with φ1 = 0.5 and φ2 = 0.3
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5.6 ARMA(p, q)

Given an invertible ARMA(p, q) process, we have shown that

φ(L)xt = θ(L)εt,

invert φ(L) we obtain
xt = φ(L)−1θ(L)εt = ψ(L)εt.

Therefore, an ARMA(p, q) process is stationary as long as φ(L) is invertible. In other words,
the stationarity of the ARMA process only depends on the autoregressive parameters, and not on
the moving average parameters (assuming that all parameters are finite).

The expectation of this process E(xt) = 0. To find the autocovariance function, first we can
invert it to MA process and find the MA coefficients ψ(L) = φ(L)−1θ(L). We have shown an
example of finding ψ in ARMA(1, 1) process, where we have

(1− φL)xt = (1 + θL)εt

xt = ψ(L)εt =
∞∑

j=0

ψjεt−j

where ψ0 = 1 and ψj = φj−1(φ+ θ) for j ≥ 1. Now, using the autocovariance functions for MA(∞)
process we have

γx(0) =
∞∑

k=0

ψ2
kσ

2
ε

=

(
1 +

∞∑
k=1

φ2(k−1)(φ+ θ)2
)
σ2

ε

=
(

1 +
(φ+ θ)2

1− φ2

)
σ2

ε

If we plug in some numbers, say, φ = 0.5 and θ = 0.5, so the original process is xt = 0.5xt−1 + εt +
0.5εt−1, then γx(0) = (7/3)σ2

ε . For h ≥ 1,

γx(h) =
∞∑

k=0

ψkψk+hσ
2
ε

=

(
φh−1(φ+ θ) + φh−2(φ+ θ)2

∞∑
k=1

φ2k

)
σ2

ε

= φh−1(φ+ θ)
(

1 +
(φ+ θ)φ
1− φ2

)
σ2

ε

Plug in φ = θ = 0.5 we have for h ≥ 1,

γx(h) =
5 · 21−h

3
σ2

ε .
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An alternative to compute the autocovariance function is to multiply each side of φ(L)xt =
θ(L)εt with xt, xt−1, . . . and take expectations. In our ARMA(1, 1) example, this gives

γx(0)− φγx(1) = [1 + θ(θ + φ)]σ2
ε

γx(1)− φγx(0) = θσ2
ε

γx(2)− φγx(1) = 0
...

γx(h)− φγx(h− 1) = 0 for h > 2

where we use that xt = ψ(L)εt in taking expectation on the right side, for instance, E(xtεt) =
E((εt + ψ1εt−1 + . . .)εt) = σ2

ε . Plug in θ = φ = 0.5 and solving those equations, we have γx(0) =
(7/3)σ2

ε , γx(1) = (5/3)σ2
ε , and γx(h) = γx(h − 1)/2 for h ≥ 2. This is the same results as we got

using the first method.
Summary: A MA process is stationary if and only if the coefficients {θk} are square summable
(absolute summable), i.e.,

∑∞
k=0 θ

2
k < ∞ or

∑∞
k=0 |θk| < ∞. Therefore, MA with finite number of

MA coefficients are always stationary. Note that stationarity does not require MA to be invertible.
An AR process is stationary if it is invertible, i.e. |λi| < 1 or |yi| > 1, as defined in (3) and (4)

respectively. An ARMA(p, q) process is stationary if its autoregressive lag polynomial is invertible.

5.7 Autocovariance generating function of stationary ARMA process

For covariance stationary process, we see that autocovariance function is very useful in describing
the process. One way to summarize absolutely summable autocovariance functions (

∑∞
h=−∞ |γ(h)| <

∞) is to use the autocovariance-generating function:

gx(z) =
∞∑

h=−∞
γ(h)zh.

where z could be a complex number.
For white noise, the autocovriance-generating function (AGF) is just a constant, i.e, for ε ∼

WN(0, σ2
ε ), gε(z) = σ2

ε .
For MA(1) process,

xt = (1 + θL)εt, ε ∼WN(0, σ2
ε ),

we can compute that

gx(z) = σ2
ε [θz

−1 + (1 + θ2) + θz] = σ2
ε (1 + θz)(1 + θz−1).

For a MA(q) process,
xt = (1 + θ1L+ . . .+ θqL

q)εt,

we know that γx(h) =
∑q−h

k=0 θkθk+hσ
2
ε for h = 1, . . . , q and γx(h) = 0 for h > q. we have

gx(z) =
∞∑

h=−∞
γ(h)zh

13



= σ2
ε

(
q∑

k=0

θ2
k +

q∑
h=1

q−h∑
k=0

(θkθk−hz
−h + θkθk+hz

h)

)

= σ2
ε

(
q∑

k=0

θkz
k

)(
q∑

k=0

θkz
−k

)

For a MA(∞) process xt = θ(L)εt where
∑∞

k=0 |θk| <∞, we can naturally let q be replaced by
∞ in the AGF for MA(q) to get AGF for MA(∞),

gx(z) = σ2
ε

( ∞∑
k=0

θkz
k

)( ∞∑
k=0

θkz
−k

)
= σ2

ε θ(z)θ(z
−1).

Next, for a stationary AR or ARMA process, we can invert them to a MA process. For instance,
an AR(1) process, (1− φL)xt = εt, invert it to

xt =
1

1− φL
εt,

and its AGF is

gx(z) =
σ2

ε

(1− φz)(1− φz−1)
,

which equal to

σ2
ε

( ∞∑
k=0

θkz
k

)( ∞∑
k=0

θkz
−k

)
= σ2θ(z)θ(z−1),

where θk = φk. In general, the AGF for an ARMA(p, q) process is

gx(z) =
σ2

ε (1 + θ1z + . . .+ θqz
q)(1 + θ1z

−1 + . . .+ θqz
−q)

(1− φ1z − . . .− φpzp)(1− φ1z−1 − . . .− φpz−p)

= σ2
ε

θ(z)θ(z−1)
φ(z)φ(z−1)

6 Simulated ARMA process

In this section, we plot a few simulated ARMA processes. In the simulations, the errors are Gaussian
white noise i.i.d.N(0, 1). As a comparison, we first plot a Gaussian white noise (or AR(1) with
φ = 0) in Figure 3. Then, we plot AR(1) with φ = 0.4 and φ = 0.9 in Figure 4 and Figure 5. As
you can see, the white noise process is very choppy and patternless. When φ = 0.4, it becomes a
bit smoother, and when φ = 0.9, the departures from the mean (zero) is very prolonged. Figure 6
plots an AR(2) process and the coefficients are set to numbers as in our example in this lecture.
Finally, Figure 7 plots a MA(3) process. Compare this MA(3) process with the white noise, we
could see an increase of volatilities (the volatility of the white noise is 1 and the volatility of the
MA(3) process is 1.77).
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Figure 3: A Gaussian white noise time series
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Figure 4: A simulated AR(1) process, with φ = 0.4
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Figure 5: A simulated AR(1) process, with φ = 0.9
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Figure 6: A simulated AR(2) process, with φ1 = 0.6, φ2 = 0.2
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Figure 7: A simulated MA(3) process, with θ1 = 0.6, θ2 = −0.5, and θ3 = 0.4

7 Forecastings of ARMA Models

7.1 Principles of forecasting

If we are interested in forecasting a random variable yt+h based on the observations of x up to time
t (denoted by X) we can have different candidates, denoted by g(X). If our criterion in picking the
best forecast is to minimize the mean squared error (MSE), then the best forecast is the conditional
expectation, g(X) = EX(yt+h). The proof can be found on page 73 in Hamilton. In our following
discussion, we assume that the data generating process is known (so parameters are known), so we
can compute the conditional moments.

7.2 AR models

Let’s start from an AR(1) process:
xt = φxt−1 + εt

where we continue to assume that εt is a white noise with mean zero and variance σ2
ε , then we can

compute

Et(xt+1) = Et(φxt + εt+1) = φxt

Et(xt+2) = Et(φ2xt + φεt+1 + εt+2) = φ2xt

. . . = . . .

Et(xt+k) = Et(φkxt + φk−1εt+1 + . . .+ εt+k) = φkxt

and the variance

Vart(xt+1) = Vart(φxt + εt+1) = σ2
ε

Vart(xt+2) = Vart(φ2xt + φεt+1 + εt+2) = (1 + φ2)σ2
ε

. . . = . . .

Vart(xt+k) = Vart(φkxt + φk−1εt+1 + . . .+ εt+k) =
k−1∑
j=0

φ2jσ2
ε
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Note that as k →∞,
Et(xt+k) → 0

which is the unconditional expectation of xt, and

Vart(xt+k) → σ2
ε /(1− φ2)

which is the unconditional variance of xt.
Similarly, for an AR(p) process, we can forecast recursively.

7.3 MA Models

For a MA(1) process,
xt = εt + θεt−1,

if we know εt, then

Et(xt+1) = Et(εt+1 + θεt) = θεt

Et(xt+2) = Et(εt+2 + θεt+1) = 0
. . . = . . .

Et(xt+k) = Et(εt+k + θεt+k−1) = 0

and

Vart(xt+1) = Vart(εt+1 + θεt) = σ2
ε

Vart(xt+2) = Vart(εt+2 + θεt+1) = (1 + θ2)σ2
ε

. . . = . . .

Vart(xt+k) = Vart(εt+k + θεt+k−1) = (1 + θ2)σ2
ε

It is easy to see that for an MA(1) process, the conditional expectation for two step ahead and
higher is the same as unconditional expectation, so is the variance. Next, for a MA(q) model,

xt = εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q =
q∑

j=0

θjεt−j ,

if we know εt, εt−1, . . . , εt−q, then

Et(xt+1) = Et(
q∑

j=0

θjεt+1−j) =
q∑

j=1

θjεt+1−j

Et(xt+2) = Et(
q∑

j=0

θjεt+2−j) =
q∑

j=2

θjεt+2−j

. . . = . . .

Et(xt+k) = Et(
q∑

j=0

θjεt+k−j) =
q∑

j=k

θjεt+k−j for k ≤ q

Et(xt+k) = Et(
q∑

j=0

θjεt+k−j) = 0 for k > q
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and

Vart(xt+1) = Vart(
q∑

j=0

θjεt+1−j) = σ2
ε

Vart(xt+2) = Vart(
q∑

j=0

θjεt+2−j) = 1 + θ2
1σ

2
ε

. . . = . . .

Vart(xt+k) = Vart(
q∑

j=0

θjεt+k−j) =
k∑

j=0

θ2
jσ

2
ε ∀ k > 0

We could see that for an MA(q) process, the conditional expectation and variance of forecast for
q + 1 and higher is the same as unconditional expectations and variance.

8 Wold Decomposition

So far we have focused on ARMA models, which are linear time series models. Is there any relation-
ship between a general covariance stationary process (maybe nonlinear) to linear representations?
The answer is given by the Wold decomposition theorem:

Proposition 2 (Wold Decomposition) Any zero-mean covariance stationary process xt can be rep-
resented in the form

xt =
∞∑

j=0

ψjεt−j + Vt

where

(i) ψ0 = 1 and
∑∞

j=0 ψ
2
j <∞

(ii) εt ∼WN(0, σ2
ε )

(iii) E(εtVs) = 0 ∀ s, t > 0

(iv) εt is the error in forecasting xt on the basis of a linear function of lagged x:

εt = xt − E(xt|xt−1, xt−2, . . .)

(v) Vt is a deterministic process and it can be predicted from a linear function of lagged x.

Remarks: Wold decomposition says that any covariance stationary process has a linear repre-
sentation: a linear deterministic component (Vt) and a linear indeterministic components (εt). If
Vt = 0, then the process is said to be purely-non-deterministic, and the process can be represented
as a MA(∞) process. Basically, εt is the error from the projection of xt on lagged x, therefore it is
uniquely determined and it is orthogonal to lagged x and lagged ε. Since this error ε is the residual
from the projections, it may not be the true errors in the DGP of xt. Also note that the error term
(ε) is a white noise process, and does not need to be iid.

Readings:
Hamilton Ch. 1-4
Brockwell and Davis Ch. 3
Hayashi Ch 6.1, 6.2
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