
PDF-KungFoo with
Ghostscript & Co.

100 Tips and Tricks for Clever PDF Creation and Handling

Kurt Pfeifle



PDF-KungFoo with Ghostscript & Co.
100 Tips and Tricks for Clever PDF Creation and Handling

Kurt Pfeifle

This book is for sale at http://leanpub.com/pdfkungfoo

This version was published on 2013-09-23

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process.
Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book and build traction once you do.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License

http://leanpub.com/pdfkungfoo
http://leanpub.com
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


Tweet This Book!

Please help Kurt Pfeifle by spreading the word about this book on Twitter!

The suggested hashtag for this book is #pdfkungfoo.

Find out what other people are saying about the book by clicking on this link to search for this hashtag
on Twitter:

https://twitter.com/search/#pdfkungfoo

http://twitter.com
https://twitter.com/search/#pdfkungfoo
https://twitter.com/search/#pdfkungfoo


Contents

Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Changelog (major changes only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

100 Tipps and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Downloading the tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 How can I convert PCL to PDF? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 How can I to convert XPS to PDF? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 How can I unit test a Python function that draws PDF graphics? . . . . . . . . . . . . . . . 10

5 How can I compare 2 PDFs on the commandline? . . . . . . . . . . . . . . . . . . . . . . . . 12

6 How can I remove white margins from PDF pages? . . . . . . . . . . . . . . . . . . . . . . . 20

7 Using Ghostscript to get page size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 How can I extract embedded fonts from a PDF as valid font files? . . . . . . . . . . . . . . 28

9 How can I get Ghostscript to use embedded fonts in PDF? . . . . . . . . . . . . . . . . . . . 32

Scanned Pages and PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

10 How can I make the invisible OCR information on a scanned PDF page visible? . . . . . . 35

Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11 How can I convert a color PDF into grayscale? . . . . . . . . . . . . . . . . . . . . . . . . . 41

Using pdfmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

12 How can I use pdfmark to insert bookmarks into PDF? (CONTENT STILL MISSING) . . . . 45



CONTENTS

Text extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

13 How can I extract text from PDF? (CONTENT STILL MISSING) . . . . . . . . . . . . . . . . 47

Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

14 How to recognize PDF format? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Some Topics in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

15 Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’
or ‘tiffg4’)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Metadata
Title: 100 Tipps and Tricks with Ghostscript &amp; Co.

Rights: Copyright 2013 by <kurt.pfeifle@gmail.com>

Copyright: Copyright 2013 by <kurt.pfeifle@gmail.com>

Coverage: Practical Examples and Commandlines Explained

Creator: <kurt.pfeifle@gmail.com>

Type: PDF, Fonts, Images + Prepress Knowhow

Description: A Prepress Professional's Brain Backup

Version: v0.1.06

Publication date: 2013-08-20

Publisher: Self-Published

Language: en

Author: <kurt.pfeifle@gmail.com>

Affiliation: Kurt Pfeifle IT-Beratung

Affiliation: PDF Association

Affiliation: PDF/A Competence Center

Affiliation: PDF/X Ready Switzerland

Affiliation: ForschungsGesellschaft Druck e.V. (Fogra)

Languages: english

Date: 2013, July 31st

Identifier UUID: urn:uuid:8cc9b6b0-3849-4624-8d19-bf76d5948875



Changelog (major changes only)

Version Date Change Description

v0.1.00 2013-07-07 Initial version (unreleased)
v0.1.01 2013-07-08 Added chapter “How can I convert PCL to PDF?”
v0.1.02 2013-07-09 Added chapter “How can I convert XPS to PDF?”
v0.1.03 2013-07-10 Added a Changelog

Added a Table of Content
v0.1.04 2013-07-10 Added chapter “Why doesn’t Acrobat Distiller embed all fonts fully?”

Added chapter “How can I unittest a Python function that draws PDF graphics?”
v0.1.05 2013-07-11 Added chapter “How can I query Ghostscript default settings?”

Added chapter “How can I compare 2 PDFs on the commandline?”
Added chapter “How can I remove white margins from PDF?”

v0.1.06 2013-07-11 First publicly available version (released); ca. 10% complete
v0.1.07 2013-07-12 Added chapter “How can I extract embedded fonts from a PDF as valid font files?”
v0.1.08 2013-07-13 Added appendix “About the author”
v0.1.09 2013-07-14 Added chapter “How can I add annotations to a PDF?”
v0.1.10 2013-07-15 Added chapter “How can I let Ghostscript determine the number of PDF pages?”
v0.1.11 2013-08-29 Added chapter “How do I make Ghostscript show all fonts it can find on my local system?”
v0.1.12 2013-08-31 Updated chapter “Downloading the tools” to reflect GS 9.09 release
v0.1.13 2013-09-01 Second publicly available version (released); ca. 11% complete
v0.1.14 2013-09-02 Added chapter “How can I convert fonts to outlines in an existing PDF?”
v0.1.15 2013-09-03 Added chapter “Hints for Linux, Windows, Mac OS X and Unix Users”
v0.1.16 2013-09-04 Added chapter “How can I use invisible fonts in a PDF?”
v0.1.17 2013-09-05 Added chapter “How can I make invisible OCR information in scanned PDFs visible?”
v0.1.18 2013-09-06 Added illustrations to newly added chapter
v0.1.19 2013-09-07 Re-wrote chapter “How can I compare 2 PDFs on the commandline?”

Added illustrations and examples to overhauled chapter for readers to reproduce
Third publicly available version (released); ca. 16% complete

v0.1.20 2013-09-08 Added chapter “How can I convert a color PDF into grayscale?”
v0.1.21 2013-09-09 Added illustrations to newly added chapter
v0.1.22 2013-09-10 Added chapter “How can I understand what this funny ‘pdfmark’ stuff is about?”
v0.1.23 2013-09-11 Added chapter “How can I use pdfmark with Ghostscript to change PDF metadata?”
v0.1.24 2013-09-12 Added illustrations to newly added chapter
v0.1.25 2013-09-13 Added chapter “How can I use Ghostscript as a calculator inside the shell?”
v0.1.26 2013-09-14 Added chapter “Do you also use non-FOSS tools for your PDF-related work? If so, which?”

4th publicly available version (released); ca. 21% complete
v0.1.27 2013-09-22 Added chapter “How can I re-order pages in a PDF?”

5th publicly available version (released); ca. 22% complete



Introduction
You do not want to read introductionary blah-blah? Have Ghostscript and other tools already
installed? Want to immediately dive into the thick of PDF KungFoo? Read immediately a
chapter with the real stuff? Then you could click to jump to…

• …the first one how to convert PCL files to PDF. But my recommendation is…
• …the method to make the invisible OCR text visible.

This book is still “work in progress”. It summarizes some of the practical solutions I applied to real-world
problems encountered by my clients.

Most of the book’s chapters deal with Ghostscript commands. But sometimes I also refer to other helper
utilities, which I employ when Ghostscript isn’t the right tool for the job.

Each chapter is intended to be of immediate practical value, and each one can stand on its own, giving the
reader a basic or more advanced “recipe” that can be applied and adapted to his own situation, while at
the same time giving additional background information and highlighting technical concepts in context.

While this book is still work in progress, readers are encouraged to submit their own suggestions and
questions about topics to be included into the final version.

My experience in the prepress world and in the printing industry spans over 2 decades. To date, I’ve used
Ghostscript and other Free Software tools for more than 15 years. Most of the ‘problems’ and practical
tasks I describe here have been posed to me…

• …either from paying customers, whom I helped through consulting, troubleshooting, training or
software development activities,

• …or from emails I received (sometimes from people I have not heard of before or after) asking me
some particular question about a problem,

• …or via some public internet forum, newsgroup or platform where people ask IT- or programming
related questions, most prominently on StackOverflow.com.

Luckily I kept a record of the most interesting and of the most commonly asked things.

What you can read here is a condensed summary from my archives. Sometimes I didn’t write paragraphs
completely from scratch, but copied them straight frommy oldmails. So, if you come across some sentence
in the “Question” or the “Answer” section of the coming chapters which sounds familiar to you: maybe
it’s because you sent me the question before, or because you received the same answer from me years ago.
Over time, I may decide to edit, polish and straighten many of the original, still “raw” pieces in this book.
However, this may also depend on readers’ general feedback.

Be warned though: this document is not necessarily a comprehensive, systematic tutorial! Some of the
snippets explained in different chapters may be duplicates and therefor could be seen as redundant.
However, should you end up reading and working through all chapters of the booklet, you’ll remember
these parts better and you may have gained a rather complete picture of Ghostscript’s capabilities :-)

While I didn’t do a precise count: I’m pretty sure that a newbie Ghostscript user will easily find 100
different pieces of practical Ghostscript usage snippets here, even if the book currently does not (yet)
contain 100 distinct chapters. Experienced users will also be able to find one or the other ‘gem of wisdom’.



Introduction iv

All in all I hope you’ll find my ‘PDF-KungFoo – 100 Tips + Tricks for Ghostscript & Co.’ useful. I intend to
expand and update this document over time. Readers will be entitled to free updates. So I hope, in a year
or two, you will have a document which could rather be named ‘100 Chapters with 1000 Tipps + Tricks
for Ghostscript & Co.’

* – Kurt Pfeifle



100 Tipps and Tricks



1 Downloading the tools
My own preferred work environments ares Linux andMac OS X. However, most of the methods explained
in the following chapters can be applied to Windows too. Readers will benefit most from this book if
they reproduce and play with some the example commandlines given. To do that they should install the
following tools.

1.1 Windows

These are the preferred download sites. They are the ones which are offered by the respective developers
themselves. Do not ever use any other, third-party download links, unless you really know what you do!

• Download Ghostscript¹:
http://downloads.ghostscript.com/public/²
Currently available are installer files for Windows:

– gs909w32.exe³ (for all Windows OS 32bit, but also works on Windows 64 bit)
– gs909w64.exe⁴ (does not work on Windows 32bit – but Ghostscript developers warn anyway:
the 64bit version may even run slower on 64bit than does the 32bit version on 64bit Windows!)

– Keep your eyes open for newer versions appearing in that directory!
• Download GhostPCL⁵:
http://downloads.ghostscript.com/public/binaries/⁶
Currently available are pre-compiled 32-bit binaries for Windows embedded in a *.zip file:

– ghostpcl-9.09-win32.zip⁷
– Keep your eyes open for newer versions appearing in that directory!

• Download GhostXPS⁸:
http://downloads.ghostscript.com/public/binaries/⁹
Currently available are pre-compiled 32-bit binaries for Windows embedded in a *.zip file:

– 32-bit Version: ghostxps-9.09-win32.zip¹⁰
– Keep your eyes open for newer versions appearing in that directory!

• Download XPDF-Utils¹¹ (CLI tools: pdffonts, pdfinfo, pdfimages, pdftotext, pdftops…)
http://www.foolabs.com/xpdf/download.html¹²
Current file version:

¹http://www.ghostscript.com/download/gsdnld.html
²http://downloads.ghostscript.com/public/
³http://downloads.ghostscript.com/public/gs909w32.exe
⁴http://downloads.ghostscript.com/public/gs909w64.exe
⁵http://www.ghostscript.com/download/gpcldnld.html
⁶http://downloads.ghostscript.com/public/binaries/
⁷http://downloads.ghostscript.com/public/binaries/ghostpcl-9.09-win32.zip
⁸http://www.ghostscript.com/download/gxpsdnld.html
⁹http://downloads.ghostscript.com/public/binaries/
¹⁰http://downloads.ghostscript.com/public/binaries/ghostxps-9.09-win32.zip
¹¹http://www.foolabs.com/xpdf/about.html
¹²http://www.foolabs.com/xpdf/download.html

http://www.ghostscript.com/download/gsdnld.html
http://downloads.ghostscript.com/public/
http://downloads.ghostscript.com/public/gs909w32.exe
http://downloads.ghostscript.com/public/gs909w64.exe
http://www.ghostscript.com/download/gpcldnld.html
http://downloads.ghostscript.com/public/binaries/
http://downloads.ghostscript.com/public/binaries/ghostpcl-9.09-win32.zip
http://www.ghostscript.com/download/gxpsdnld.html
http://downloads.ghostscript.com/public/binaries/
http://downloads.ghostscript.com/public/binaries/ghostxps-9.09-win32.zip
http://www.foolabs.com/xpdf/about.html
http://www.foolabs.com/xpdf/download.html
http://www.ghostscript.com/download/gsdnld.html
http://downloads.ghostscript.com/public/
http://downloads.ghostscript.com/public/gs909w32.exe
http://downloads.ghostscript.com/public/gs909w64.exe
http://www.ghostscript.com/download/gpcldnld.html
http://downloads.ghostscript.com/public/binaries/
http://downloads.ghostscript.com/public/binaries/ghostpcl-9.09-win32.zip
http://www.ghostscript.com/download/gxpsdnld.html
http://downloads.ghostscript.com/public/binaries/
http://downloads.ghostscript.com/public/binaries/ghostxps-9.09-win32.zip
http://www.foolabs.com/xpdf/about.html
http://www.foolabs.com/xpdf/download.html


Downloading the tools 3

– xpdfbin-win-3.03.zip¹³
The .zip contains pre-compiled binaries for Windows. It’s not an installer: just unpack
anywhere you want, modify the %PATH% variable to find the binaries and start them from
an CMD window.
You may want to additionally add one or more of the *‘Language Support Packages’.

– Keep your eyes open for newer versions appearing in that directory!
• Download qpdf¹⁴:
32-bit Version: http://sourceforge.net/projects/qpdf/files/qpdf/5.0.0/qpdf-5.0.0-bin-mingw32.zip¹⁵
64-bit Version: http://sourceforge.net/projects/qpdf/files/qpdf/5.0.0/qpdf-5.0.0-bin-mingw64.zip¹⁶

• Download pdftk¹⁷:
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/pdftk_server-2.02-win-setup.exe¹⁸

• Download ImageMagick¹⁹:
http://www.imagemagick.org/download/binaries/²⁰ (make sure to select the correct and most
current download for your system)

AWarning Note about Downloading from Sourceforge
Sourceforge.net used to be a resource that was very useful for the Open Source commu-
nity. However, in recent years the site has become more and more overloaded with ads.
Some of the more recent stories on the Internet even suggest that the site may be poisoned
with links that lead you to third party ‘drive-by’ malware download sites.

Unfortunately, some of the tools advertised in this eBook (such as qpdf) still do host their
source code or their Windows binaries on this platform. I’m hoping the developers of
these tools will find some other hosting soon…

:-(

1.2 Mac OS X

My recommendation is to use the ‘MacPorts’ framework for installing additional software packages:

• http://www.macports.org/install.php²¹

After you have got MacPorts in place, open a Terminal.app window and start installing the packages by
typing:

sudo port -p install ghostscript poppler ImageMagick coreutils qpdf pdftk

Be aware that this may take a while. Ghostscript depends on additional packages for its functionality,
like libpng, jpeg, tiff, zlib and more. The same applies for the other tools. The port command downloads,
compiles and installs all these dependencies automatically, so this may take quite a while…

¹³ftp://ftp.foolabs.com/pub/xpdf/xpdfbin-win-3.03.zip
¹⁴http://qpdf.sf.net/
¹⁵http://sourceforge.net/projects/qpdf/files/qpdf/5.0.0/qpdf-5.0.0-bin-mingw32.zip/download
¹⁶http://sourceforge.net/projects/qpdf/files/qpdf/5.0.0/qpdf-5.0.0-bin-mingw64.zip/download
¹⁷http://www.pdflabs.com/tools/pdftk-server/
¹⁸http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/pdftk_server-2.02-win-setup.exe
¹⁹http://www.imagemagick.org/
²⁰http://www.imagemagick.org/download/binaries/
²¹http://www.macports.org/install.php

ftp://ftp.foolabs.com/pub/xpdf/xpdfbin-win-3.03.zip
http://qpdf.sf.net/
http://sourceforge.net/projects/qpdf/files/qpdf/5.0.0/qpdf-5.0.0-bin-mingw32.zip/download
http://sourceforge.net/projects/qpdf/files/qpdf/5.0.0/qpdf-5.0.0-bin-mingw64.zip/download
http://www.pdflabs.com/tools/pdftk-server/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/pdftk_server-2.02-win-setup.exe
http://www.imagemagick.org/
http://www.imagemagick.org/download/binaries/
http://www.macports.org/install.php
ftp://ftp.foolabs.com/pub/xpdf/xpdfbin-win-3.03.zip
http://qpdf.sf.net/
http://sourceforge.net/projects/qpdf/files/qpdf/5.0.0/qpdf-5.0.0-bin-mingw32.zip/download
http://sourceforge.net/projects/qpdf/files/qpdf/5.0.0/qpdf-5.0.0-bin-mingw64.zip/download
http://www.pdflabs.com/tools/pdftk-server/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/pdftk_server-2.02-win-setup.exe
http://www.imagemagick.org/
http://www.imagemagick.org/download/binaries/
http://www.macports.org/install.php


Downloading the tools 4

1.3 Linux

Debian, Ubuntu, …

You can run this command in a terminal window:

sudo apt-get install ghostscript poppler-utils ImageMagick coreutils qpdf

Or you use the package manager of your choice to find and install the packages…

RedHat, Fedora

Command in a terminal window:

sudo yum install ghostscript poppler-utils ImageMagick coreutils qpdf

Slackware

Command in a terminal window:

TODO

1.4 Documentation

TODO



2 How can I convert PCL to PDF?

..

Is it possible to use Ghostscript for converting PCL print files to PDF format? If so, how?

2.1 Answer

No, it’s not possible with Ghostscript itself…

But yes!, it’s very well possible with another cool piece of workhorse software from the same barn: its
name ist GhostPCL.

Ghostscript developers in recent years integrated their sister productsGhostXPS,GhostPCL andGhostSVG
into their main Ghostscript source code tree¹, which switched from Subversion to Git some time ago. The
complete family of products is now calledGhostPDL. So all of these additional functionalities (load, render
and convert XPS, PCL and SVG) are now available from there.

Previously, though GhostPCL was available as a source code tarball, it was hardly to be found on the ‘net.
The major Linux distributions (Debian, Ubuntu, Redhat, Fedora, OpenSUSE,…) don’t provide packages
for their users either. On MacPorts it is missing too.

Thismeans you have to build the programs yourself from the sources. You could even compile the so-called
language switching binary, pspcl6. This binary, in theory, can consume PCL, PDF and PostScript and
convert this input to a host of other formats. Just run make ls-product in the top level Ghostscript source
directory in order to build it. The resulting binary will end up in the ./language-switch/obj/ subdirectory.
Run make ls-install in order to install it.

WARNING:While it worked for me whenever I needed it, Ghostscript developers recommend
to stop using the language switching binary (since it’s ‘almost non-supported’ as they say, and
it will possibly go away in the future).

Instead they recommend to use the explicit binaries:

• pcl6 or pcl6.exe for PCL input,
• gsvg or gsvg.exe for SVG input (also ‘almost non-supported’ but it may work better
than the language switching binary pspcl6) and

• gxps or gxps.exe for XPS input (support status unclear to me).

So for ‘converting PCL code to PDF format’ as the request reads, you could use the pcl6 command
line utility, the PCL consuming sister product to Ghostscript’s gs (Linux, Unix, Mac OS X) and
gswin32c.exe/gswin64c.exe (Windows) which are PostScript and PDF input consumers.

¹http://git.ghostscript.com/?p=ghostpdl.git;a=summary

http://git.ghostscript.com/?p=ghostpdl.git;a=summary
http://git.ghostscript.com/?p=ghostpdl.git;a=summary


How can I convert PCL to PDF? 6

Sample commandline (Windows):

..

pcl6.exe ^

-o output.pdf ^

-sDEVICE=pdfwrite ^

[...more parameters as required (optional)...] ^

-f input.pcl

Sample Commandline (Linux, Unix, Mac OS X):

..

pcl6 \

-o output.pdf \

-sDEVICE=pdfwrite \

[...more parameters as required (optional)...] \

-f input.pcl

Explanation

-o output.pdf

The -o parameter determines the location of the output. In this case it will be the file output.pdf
in the current directory (since we did not specify any path prefix for the filename). At the same
time, using -o saves us from typing -dBATCH -dNOPAUSE -dSAFER, because -o implicitly does also
set these parameters.

-sDEVICE=pdfwrite

This parameter determines which kind of output to generate. In our current case it will be
PDF. If you wanted to produce a multipage grayscale TIFF with CCITT compression, you would
change that to -sDEVICE=tiffg4 (don’t forget to modify the output file name accordingly too: -o
output.tif).

-f input.pcl

This parameter determines which file to read as input. In this case it is the file input.pcl in the
current directory.

Update: The Ghostscript website now at least for Windows users offers pre-compiled 32-bit binaries for
GhostPCL and GhostXPS.

• http://downloads.ghostscript.com/public/binaries/ghostpcl-9.07-win32.zip²
• http://downloads.ghostscript.com/public/binaries/ghostxps-9.07-win32.zip³

²http://downloads.ghostscript.com/public/binaries/ghostpcl-9.07-win32.zip
³http://downloads.ghostscript.com/public/binaries/ghostxps-9.07-win32.zip

http://downloads.ghostscript.com/public/binaries/ghostpcl-9.07-win32.zip
http://downloads.ghostscript.com/public/binaries/ghostxps-9.07-win32.zip
http://downloads.ghostscript.com/public/binaries/ghostpcl-9.07-win32.zip
http://downloads.ghostscript.com/public/binaries/ghostxps-9.07-win32.zip


How can I convert PCL to PDF? 7

See also the hints in *[’How can I convert XPS to PDF?’](#convert-xps-to-pdf)*.

TODO! Hint about the GhostPCL licensing. Esp. important: hint about the URW fonts which are not GPL
(they require commercial licensing for commercial use).



3 How can I to convert XPS to PDF?

..

How can I convert XPS to PDF? Is this possible with Ghostscript?

3.1 Answer

Ghostscript developers in recent years have integrated a sister product named GhostXPS into their main
Ghostscript source code tree¹, which is based on Git now. (They have also included two other products,
named GhostPCL and GhostSVG.) The complete family of products is now called GhostPDL. So all of
these additional functionalities (load, render and convert XPS, PCL and SVG) are now available from one
location.

Unfortunately, none of the major Linux distributions (Debian, Ubuntu, Redhat, Fedora, OpenSUSE,…) do
currently provide packages for their users. On MacPorts GhostXPS is missing too, as are GhostPCL and
GhostSVG.

This means you have to build the programs yourself from the sources – unless you are a Windows user. In
this case you are lucky: there is a *.zip container on the Ghostscript website, which contains a pre-compiled
Win32 binary (which also runs on Windows 64 bit!):

• http://downloads.ghostscript.com/public/binaries/ghostxps-9.07-win32.zip²

While you’re at it and build the code yourself, you could even build a so-called language switching binary.
The Makefile has targets prepared for that. This binary can consume PCL, PDF and PostScript. It converts
these input formats to a host of other file types. Just run make ls-product && make ls-install in the
top level Ghostscript source directory in order to get it installed.

WARNING:While it worked for me whenever I needed it, Ghostscript developers recommend
to stop using the language switching binary (since it’s ‘almost non-supported’ as they say, and
it will possibly go away in the future).

Instead they recommend to use the explicit binaries, also supported as build targets in the
Makefile:

• pcl6 or pcl6.exe for PCL input,
• gsvg or gsvg.exe for SVG input (also ‘almost non-supported’) and
• gxps or gxps.exe for XPS input (support status unclear to me).

¹http://git.ghostscript.com/?p=ghostpdl.git;a=summary
²http://downloads.ghostscript.com/public/binaries/ghostxps-9.07-win32.zip

http://git.ghostscript.com/?p=ghostpdl.git;a=summary
http://downloads.ghostscript.com/public/binaries/ghostxps-9.07-win32.zip
http://git.ghostscript.com/?p=ghostpdl.git;a=summary
http://downloads.ghostscript.com/public/binaries/ghostxps-9.07-win32.zip


How can I to convert XPS to PDF? 9

Sample commandline (Windows):

..

gxps.exe ^

-o output.pdf ^

-sDEVICE=pdfwrite ^

[...more parameters as required (optional)...] ^

-f input.xps

Sample commandline (Linux, Unix, Mac OS X):

..

gxps \

-o output.pdf \

-sDEVICE=pdfwrite \

[...more parameters as required (optional)...] \

-f input.xps

Explanation

-o output.pdf

The -o parameter determines the location of the output. In this case it will be the file output.pdf
in the current directory (since we did not specify any path prefix for the filename). At the same
time, using -o saves us from typing -dBATCH -dNOPAUSE -dSAFER, because -o implicitly does also
set these parameters.

-sDEVICE=pdfwrite

This parameter determines which kind of output to generate. In our current case that’s PDF. If you
wanted to produce a PostScript level 2 file, you would change that to -sDEVICE=ps2write (don’t
forget to modify the output file name accordingly too: -o output.ps).

-f input.pcl

This parameter determines which file to read as input. In this case it is the file input.pcl in the
current directory.

See also the hints in *[’How can I convert PCL to PDF?’](#convert-pcl-to-pdf.html)*.

TODO! Hint about the GhostPCL licensing. Esp. important: hint about the URW fonts which are not GPL
(they require commercial licensing for commercial use).



4 How can I unit test a Python function that draws
PDF graphics?

..

I’m writing a CAD application that outputs PDF files using the Cairo graphics library. A lot of the unit
testing does not require actually generating the PDF files, such as computing the expected bounding
boxes of the objects. However, I want to make sure that the generated PDF files “look” correct after I
change the code.

Is there an automated way to do this? How can I automate as much as possible? Do I need to visually
inspect each generated PDF? How can I solve this problem without pulling my hair out?

4.1 Answer

I’m doing the same thing using a shell script on Linux that wraps

1. ImageMagick’s compare command
2. the pdftk utility
3. Ghostscript (optionally)

(It would be rather easy to port this to a .bat Batch file for DOS/Windows.)

I have a few reference PDFs created by my application which are “known good”. Newly generated PDFs
after code changes are compared to these reference PDFs. The comparison is done pixel by pixel and is
saved as a new PDF. In this PDF, all unchanged pixels are painted in white, while all differing pixels are
painted in red.

Thismethod utilizes three different building blocks: pdftk, compare (part of ImageMagick) andGhostscript.

pdftk

Use this command to split multipage PDF files into multiple singlepage PDFs:

..

pdftk reference.pdf burst output somewhere/reference_page_%03d.pdf

pdftk comparison.pdf burst output somewhere/comparison_page_%03d.pdf



How can I unit test a Python function that draws PDF graphics? 11

compare

Use this command to create a “diff” PDF page for each of the pages:

..

compare \

-verbose \

-debug coder -log "%u %m:%l %e" \

somewhere/reference_page_001.pdf \

somewhere/comparison_page_001.pdf \

-compose src \

somewhereelse/reference_diff_page_001.pdf

Ghostscript

Because of automatically inserted meta data (such as the current date+time), PDF output is not working
well for MD5hash-based file comparisons.

If you want to automatically discover all cases which consist of purely white pages, you could also convert
to a meta-data free bitmap format using the bmp256 output device. You can do that for the original PDFs
(reference and comparison), or for the diff-PDF pages:

..

gs \

-o reference_diff_page_001.bmp \

-r72 \

-g595x842 \

-sDEVICE=bmp256 \

reference_diff_page_001.pdf

md5sum reference_diff_page_001.bmp

If the MD5sum is what you expect for an all-white page of 595x842 PostScript points, then your unit test
passed.



5 How can I compare 2 PDFs on the commandline?

..

I’m looking for a Linux command line tool to compare two PDF files and save the diffs to a PDF
outfile. The tool should create diff-PDFs in a batch-process. The PDF files are construction plans,
so pure text-compare doesn’t work.

Something like:

<tool> file1.pdf file2.pdf -o diff-out.pdf

Most of the tools I found convert the PDFs to images and compare them, but only with a GUI.

Any other solution is also welcome.

5.1 Answer

What you want can be achieved with using ImageMagick¹’s compare command. And this will work on all
important operating system platforms: Windows, Mac OS X, Linux and various Unix variations.

The basic command is very simple:

..

compare file1.pdf file2.pdf delta1.pdf

First, please note: this only works well for PDFs which use the same page/media size.

The comparison is done pixel by pixel between the two input PDFs. In order to get the pixels, the pages
are rendered to raster images first, by default using a resolution of 72 ppi (pixels per inch). The resulting
file is an image showing the “diff” like this:

• Each pixel that is identical on each input file becomes white.
• Each pixel that is different between the two input files is painted in red.
• The ‘source’ file (the first one named in the command) will, for context, be used to provide a gray-
scale background to the diff output.

The above command outputs a PDF file, delta.pdf. Should you prefer a PNG image or a JPEG image
instead of a PDF, simply change the suffix of the ‘delta’ filename:

¹http://www.imagemagick.org/

http://www.imagemagick.org/
http://www.imagemagick.org/


How can I compare 2 PDFs on the commandline? 13

..

compare file1.pdf file2.pdf delta2.png

compare file1.pdf file2.pdf delta3.jpeg

In some cases the default resolution of 72 ppi used to render the PDF pages may be insufficient to uncover
subtle differences. Or, on the contrary, it may over-emphasize differenceswhich are triggered by extremely
minimal shifts of individual characters or lines of text caused by some computational rounding of real
numbers.

So, if you want to increase the resolution, add the -density NNN parameter to the commandline. To get
720 ppi images, use this:

..

compare -density 720 file1.pdf file2.pdf delta4.pdf

Note, increasing the density/resolution of the output files also increases processing time and
output file formats accordingly. A 10-fold increase in density leads to a 100-fold increase in the
number of total pixels that need to be compared and processed.

All of the above examples do only work for 1-page PDF files. For multi-page PDFs you need to add a [N]
notation to the file name, where N is the zero-based page number (page 1 is noted as [0], page 2 as [1],
page 3 as [2], and so forth). The following compares page 4 of file1.pdf with page 18 of file2.pdf:

..

compare file1.pdf[3] file2.pdf[17] delta5.pdf

If you do not want the gray-scale background created from the source file, use a modified command:

..

compare file1.pdf file2.pdf -compose src delta1.pdf

This modification changes the output to purly red/white: all pixels which are identical between the two
base files are red, identical pixels are white.

In case you do not like the red and white default colors to visualize the pixel differences, you can add the
following commandline parameters:

• -highlight-color blue (change default color for pixel differences from ‘red’ to ‘blue’)



How can I compare 2 PDFs on the commandline? 14

• -lowlight-color yellow (change default color for identical pixels from ‘white’ to ‘yellow’)

or any other color combination you desire. Allowed names for colors include #RRGGBB values for RGB
shades.

Note, ImageMagick’s compare command does not process the PDF input files directly. compare
originally was designed to process raster images only. You can easily test this by replacing the
PDFs in above commands with some image files – just make sure that the files are ‘similar
enough’ to give sensible results, and also ensure, that the compared images do have the same
dimensions in width and height.

To process PDFs, ImageMagick needs to resort to Ghostscript as its ‘delegate’ program for
processing PDF input. Ghostscript gets called behind the curtains by compare in order to create
the raster files which then compare does its magic on.

To see the exact commandline parameters that ImageMagick uses for Ghostscript call, just add
a -verbose parameter to the compare commands. The output on the terminal/console will be
much more verbose and reveal what you want to know.

Examples

I’m using this very same method for example to discover minimal page display differences when font
substitution in PDF processing comes into play.

It can easily be the case, that there is no visible difference between two PDFs, though they are extremely
different in MD5 hashes, file sizes or internal PDF code structure. In this case the delta1.pdf output PDF
page from the above command would become all-white. You could automatically discover this condition,
so you only have to visually investigate the non-white PDFs by deleting the all-white ones automatically.

To give you a more visual impression about the way this comparison works, I’ve constructed a few
different input files. I used Ghostscript to do this. (The exact commands I used are documented at the
end of this chapter.)

Example 1

The following image shows two PDF pages side by side. Most people will notice from a quick look the
differences between these two pages:

Two PDF pages which do differ – differences can be spotted by looking twice…

Now use the following commands to create a few different visualization of the ‘deltas’:



How can I compare 2 PDFs on the commandline? 15

..

compare file1.pdf file2.pdf delta1.png # default resolution, 72 ppi

compare file1.pdf file2.pdf -compose src delta2.png # default resolution, 72 ppi

compare -density 720 file1.pdf file2.pdf delta3.png # resolution of 720 ppi

compare -density 720 file1.pdf file2.pdf -compose src delta4.png # 720 ppi

The resulting ‘delta’ images are shown in the following picture.

Four different visualizations of differences. The top two use a 72 ppi resolution, the bottom two a 720 ppi resolution. The
2nd and the 4th do not show a grayscale context background, but only white and red pixels.

As you can easily see, the 72 ppi-based comparison of the two input PDFs shows a clearly visible
‘pixelization’ of the results (top two images). Zoom in to see this in more detail. The 720 ppi version
appears to come out much more smoothly. However, for this specific case 72 ppi would be ‘good enough’
to discover that in the two PDFs there was used a ‘0’ (number zero) instead of an ‘O’ (capital letter ‘o’) at
two different spots.

Example 2

The following image shows two other PDF pages side by side. Hardly anybody will be able to spot the
differences between these, but some people will:



How can I compare 2 PDFs on the commandline? 16

Two PDF pages which do differ – differences can only be be spotted by looking very closely.

Now use the following commands to create a few different visualization of the ‘deltas’:

..

compare file3.pdf file4.pdf delta5.pdf

compare file3.pdf file4.pdf -compose src delta6.pdf

compare -density 720 file3.pdf file4.pdf delta7.pdf

compare -density 720 file3.pdf file4.pdf -compose src delta8.pdf

The resulting differences are shown in the following picture.

Four different ways to visualize the differences between the last two input files. Again a 72 ppi resolution for the top two
and a 720 ppi resolution for the bottom ones. The 1st and the 3rd do show a grayscale context background, the others do
not. Please zoom in to spot the finer pixel differences between the different resolutions…

Again, the 72 ppi-based comparison of the two input PDFs shows a clearly visible ‘pixelization’ of the
results (top two images). The 720 ppi version does show the differences much more clearly: it is just that
the text is shifted slightly to the left and to the top in the case of the second input. If you zoom in enough
into the 720 ppi versions, you can even count the number of pixels: the shift for each single character of



How can I compare 2 PDFs on the commandline? 17

the text is constistenlty 5 pixels to the right and 5 pixels to the top. The 72 ppi version cannot bring out
this subtle difference so clearly: at this resolution the shift is only 1/2 pixel to the right and 1/2 pixel to
the top. This means that for some characters there is no shift occuring at all, and other characters move
by a full pixel in either direction. This becomes clearly visible in the fact that some characters do not look
changed at all while others clearly do.

Example 3

The following image shows two other PDF documents. Can you spot the difference?

Two PDF documents which do differ. Try to spot the difference!

Creating visualizations in red/white pixels will give the following results.



How can I compare 2 PDFs on the commandline? 18

Four different ways to visualize the differences between the last two input files. Again a 72 ppi resolution for the top two
and a 720 ppi resolution for the bottom ones. The 1st and the 3rd do show a grayscale context background, the others do
not…

If you have access to the original delta files and zoom in on no. 3 you can clearly see that the second
document contains a changed prize: going up by 2.000 $US by change the original ‘6’ to an ‘8’.

Update

For those of you who want to reproduce the commands shown above, you’d also need access to the
same source files I used. That’s easy: I used Ghostscript to create these example input PDFs. Here are the



How can I compare 2 PDFs on the commandline? 19

commands for this:

..

gs \

-o file1.pdf \

-sDEVICE=pdfwrite \

-g5950x1100 \

-c "/Courier findfont 72 scalefont setfont \

30 30 moveto (HELL0, WORLD\!) show \

showpage"

gs \

-o file1.pdf \

-sDEVICE=pdfwrite \

-g5950x1100 \

-c "/Courier findfont 72 scalefont setfont \

30 30 moveto (HELLO, W0RLD\!) show \

showpage"

gs \

-o file1.pdf \

-sDEVICE=pdfwrite \

-g5950x1100 \

-c "/Courier findfont 72 scalefont setfont \

30 30 moveto (Hi, Universe\!) show \

showpage"

gs \

-o file1.pdf \

-sDEVICE=pdfwrite \

-g5950x1100 \

-c "/Courier findfont 72 scalefont setfont \

30.5 30.5 moveto (Hi, Universe\!) show \

show showpage"



6 How can I remove white margins from PDF
pages?

..

I would like to know a way to remove white margins from a PDF file. Just like Adobe Acrobat X Pro
does. I understand it will not work with every PDF file.

I would guess that the way to do it, is by getting the text margins, then cropping out of that margins.

PyPdf is preferred.

iText finds text margins based on this code:

public void addMarginRectangle(String src, String dest)

throws IOException, DocumentException {

PdfReader reader = new PdfReader(src);

PdfReaderContentParser parser = new PdfReaderContentParser(reader);

PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(RESULT));

TextMarginFinder finder;

for (int i = 1; i <= reader.getNumberOfPages(); i++) {

finder = parser.processContent(i, new TextMarginFinder());

PdfContentByte cb = stamper.getOverContent(i);

cb.rectangle(finder.getLlx(), finder.getLly(),

finder.getWidth(), finder.getHeight());

cb.stroke();

}

stamper.close();

}

6.1 Answer

I’m not too familiar with PyPDF, but I know Ghostscript will be able to do this for you. Here are links to
some other answers on similar questions:

1. Convert PDF 2 sides per page to 1 side per page¹ (SuperUser.com)
2. Freeware to split a pdf’s pages down the middle?² (SuperUser.com)
3. Cropping a PDF using Ghostscript 9.01³ (StackOverflow.com)

The third answer is probably what made you say ‘I understand it will not work with every PDF file’. It
uses the pdfmark command to try and set the /CropBox into the PDF page objects.

¹http://superuser.com/a/189109/40894
²http://superuser.com/a/235401/40894
³http://stackoverflow.com/a/6184547/359307

http://superuser.com/a/189109/40894
http://superuser.com/a/235401/40894
http://stackoverflow.com/a/6184547/359307
http://superuser.com/a/189109/40894
http://superuser.com/a/235401/40894
http://stackoverflow.com/a/6184547/359307


How can I remove white margins from PDF pages? 21

The method of the first two answers will most likely succeed where the third one fails. This method uses
a PostScript command snippet of <</PageOffset [NNN MMM]>> setpagedevice to shift and place the PDF
pages on a (smaller) media size defined by the -gNNNNxMMMM parameter (which defines device width and
height in pixels).

If you understand the concept behind the first two answers, you’ll easily be able to adapt the method used
there to crop margins on all 4 edges of a PDF page:

An example command to crop a letter sized PDF (8.5x11in == 612x792pt) by half an inch (==36pt) on each
of the 4 edges (command is for Windows):

..

gswin32c.exe ^

-o cropped.pdf ^

-sDEVICE=pdfwrite ^

-g5400x7200 ^

-c "<</PageOffset [-36 -36]>> setpagedevice" ^

-f input.pdf

The resulting page size will be 7.5x10in (== 540x720pt). To do the same on Linux or Mac, use:

..

gs \

-o cropped.pdf \

-sDEVICE=pdfwrite \

-g5400x7200 \

-c "<</PageOffset [-36 -36]>> setpagedevice" \

-f input.pdf

Update: How to determine ‘margins’ with Ghostscript

A comment asked for ‘automatic’ determination of the white margins. You can use Ghostscript’s too for
this. Its bbox device can determine the area covered by the (virtual) ink on each page (and hence, indirectly
the whitespace for each edge of the canvas).

Here is the command:

..

gs \

-q -dBATCH -dNOPAUSE \

-sDEVICE=bbox \

input.pdf



How can I remove white margins from PDF pages? 22

Output (example):

..

%%BoundingBox: 57 29 562 764

%%HiResBoundingBox: 57.265030 29.347046 560.245045 763.649977

%%BoundingBox: 57 28 562 667

%%HiResBoundingBox: 57.265030 28.347046 560.245045 666.295011

The bbox device renders each PDF page in memory (without writing any output to disk) and then prints
the BoundingBox and HiResBoundingBox info to stderr. You may modify this command like that to
make the results more easy to parse:

..

gs \

-q -dBATCH -dNOPAUSE \

-sDEVICE=bbox \

input.pdf \

2>&1 \

| grep -v HiResBoundingBox

Output (example):

..

%%BoundingBox: 57 29 562 764

%%BoundingBox: 57 28 561 667

This would tell you…

• …that the lower left corner of the content rectangle of Page 1 is at coordinates [57 29] with the
upper right corner is at [562 741]

• …that the lower left corner of the content rectangle of Page 2 is at coordinates [57 28] with the
upper right corner is at [561 667]

This means:

• Page 1 uses a whitespace of 57pt on the left edge (72pt == 1in == 25,4mm).
• Page 1 uses a whitespace of 29pt on the bottom edge.
• Page 2 uses a whitespace of 57pt on the left edge.
• Page 2 uses a whitespace of 28pt on the bottom edge.



How can I remove white margins from PDF pages? 23

As you can see from this simple example already, the whitespace is not exactly the same for each page.
Depending on your needs (you likely want the same size for each page of a multi-page PDF, no?), you
have to work out what are the minimum margins for each edge across all pages of the document.

Now what about the right and top edge whitespace? To calculate that, you need to know the original page
size for each page. The most simple way to determine this: the pdfinfo utility. Example command for a 5
page PDF:

..

pdfinfo \

-f 1 \

-l 5 \

input.pdf \

| grep "Page "

Output (example):

..

Page 1 size: 612 x 792 pts (letter)

Page 2 size: 612 x 792 pts (letter)

Page 3 size: 595 x 842 pts (A4)

Page 4 size: 842 x 1191 pts (A3)

Page 5 size: 612 x 792 pts (letter)

This will help you determine the required canvas size and the required (maximum) white margins of the
top and right edges of each of your new PDF pages.

These calculations can all be scripted too, of course.

But if your PDFs are all of a uniq page size, or if they are 1-page documents, it all is much easier to get
done…



7 Using Ghostscript to get page size

..

Is it possible to get the page size (from e.g. a PDF document page) using Ghostscript?

I have seen the bbox device, but it returns the bounding box (it differs per page), not the TrimBox (or
CropBox) of the PDF pages. ( See Prepressure website for info about page boxes.) Any other possibility?

http://www.prepressure.com/pdf/basics/page_boxes

7.1 Answer 1

Unfortunately it doesn’t seem quite easy to get the (possibly different) page sizes (or *Boxes for that matter)
inside a PDF with the help of Ghostscript.

But since you asked for other possibilities as well: a rather reliable way to determine the media sizes for
each page (and even each one of the embedded {Trim,Media,Crop,Bleed}Boxes) is the commandline tool
pdfinfo.exe. This utility is part of the XPDF tools from http://www.foolabs.com/xpdf/download.html¹.
You can run the tool with the -box parameter and tell it with -f 3 to start at page 3 and with -l 8 to stop
processing at page 8.

Example output

..

C:\downloads>pdfinfo -box -f 1 -l 3 _IXUS_850IS_ADVCUG_EN.pdf

Creator: FrameMaker 6.0

Producer: Acrobat Distiller 5.0.5 (Windows)

CreationDate: 08/17/06 16:43:06

ModDate: 08/22/06 12:20:24

Tagged: no

Pages: 146

Encrypted: no

Page 1 size: 419.535 x 297.644 pts

Page 2 size: 297.646 x 419.524 pts

Page 3 size: 297.646 x 419.524 pts

Page 1 MediaBox: 0.00 0.00 595.00 842.00

Page 1 CropBox: 87.25 430.36 506.79 728.00

Page 1 BleedBox: 87.25 430.36 506.79 728.00

Page 1 TrimBox: 87.25 430.36 506.79 728.00

Page 1 ArtBox: 87.25 430.36 506.79 728.00

Page 2 MediaBox: 0.00 0.00 595.00 842.00

Page 2 CropBox: 148.17 210.76 445.81 630.28

Page 2 BleedBox: 148.17 210.76 445.81 630.28

Page 2 TrimBox: 148.17 210.76 445.81 630.28

¹http://www.foolabs.com/xpdf/download.html

http://www.prepressure.com/pdf/basics/page_boxes
http://www.prepressure.com/pdf/basics/page_boxes
http://www.foolabs.com/xpdf/download.html
http://www.foolabs.com/xpdf/download.html


Using Ghostscript to get page size 25

..

Page 2 ArtBox: 148.17 210.76 445.81 630.28

Page 3 MediaBox: 0.00 0.00 595.00 842.00

Page 3 CropBox: 148.17 210.76 445.81 630.28

Page 3 BleedBox: 148.17 210.76 445.81 630.28

Page 3 TrimBox: 148.17 210.76 445.81 630.28

Page 3 ArtBox: 148.17 210.76 445.81 630.28

File size: 6888764 bytes

Optimized: yes

PDF version: 1.4

7.2 Answer 2

Meanwhile I found a different method. This one uses Ghostscript only (just as you required). No need for
additional third party utilities.

This method uses a little helper program, written in PostScript, shipping with the source code of
Ghostscript. Look in the toolbin subdir for the pdf_info.ps file.

The included comments say you should run it like this in order to list fonts used, media sizes used

..

gswin32c -dNODISPLAY ^

-q ^

-sFile=____.pdf ^

[-dDumpMediaSizes] ^

[-dDumpFontsUsed [-dShowEmbeddedFonts]] ^

toolbin/pdf_info.ps

I did run it on a local example file, with commandline parameters that ask for the media sizes only (not
the fonts used). Here is the result:

..

C:\> gswin32c ^

-dNODISPLAY ^

-q ^

-sFile=c:\downloads\_IXUS_850IS_ADVCUG_EN.pdf ^

-dDumpMediaSizes ^

C:/gs8.71/lib/pdf_info.ps

c:\downloads\_IXUS_850IS_ADVCUG_EN.pdf has 146 pages.

Creator: FrameMaker 6.0

Producer: Acrobat Distiller 5.0.5 (Windows)

CreationDate: D:20060817164306Z

ModDate: D:20060822122024+02'00'



Using Ghostscript to get page size 26

..

Page 1 MediaBox: [ 595 842 ] CropBox: [ 419.535 297.644 ]

Page 2 MediaBox: [ 595 842 ] CropBox: [ 297.646 419.524 ]

Page 3 MediaBox: [ 595 842 ] CropBox: [ 297.646 419.524 ]

Page 4 MediaBox: [ 595 842 ] CropBox: [ 297.646 419.524 ]

[....]



Fonts



8 How can I extract embedded fonts from a PDF as
valid font files?

..

I’m aware of the pdftk.exe utility that can indicate which fonts are used by a PDF, and whether they
are embedded or not.

Now the problem: given I had PDF files with embedded fonts – how can I extract those fonts in a way
that they are re-usable as regular font files? Are there (preferably free) tools which can do that? Also:
can this be done programmatically with, say, iText?

You have several options. All these methods work on Linux as well as onWindows or Mac OS X. However,
be aware that most PDFs do not include to full, complete fontface when they have a font embedded.Mostly
they include just the subset of glyphs used in the document.

8.1 Method 1: Using pdftops

One of the most frequently used methods to do this on *nix systems consists of the following steps:

1. Convert the PDF to PostScript, for example by using XPDF’s pdftops¹ (on Windows: pdftops.exe
helper program.

2. Now fonts will be embedded in .pfa (PostScript) format + you can extract them using a text editor.
3. You may need to convert the .pfa (ASCII) to a .pfb (binary) file using the t1utils and pfa2pfb.
4. In PDFs there are never .pfm or .afm files (font metric files) embedded (because PDF viewer have

internal knowledge about these). Without these, font files are hardly usable in a visually pleasing
way.

8.2 Method 2: Using fontforge

Another method is to use the Free font editor FontForge²:

1. Use the “Open Font” dialogbox used when opening files.
2. Then select “Extract from PDF” in the filter section of dialog.
3. Select the PDF file with the font to be extracted.

¹http://www.foolabs.com/xpdf/download.html
²http://fontforge.sourceforge.net/

http://www.foolabs.com/xpdf/download.html
http://fontforge.sourceforge.net/
http://www.foolabs.com/xpdf/download.html
http://fontforge.sourceforge.net/


How can I extract embedded fonts from a PDF as valid font files? 29

4. A “Pick a font” dialogbox opens – select here which font to open.

Check the FontForge manual. You may need to follow a few specific steps which are not necessarily
straightforward in order to save the extracted font data as a file which is re-usable.

8.3 Method 3: Using mupdf

Next, MuPDF³. This application comes with a utility called pdfextract (on Windows: pdfextract.exe)
which can extract fonts and images from PDFs. (In case you don’t know about MuPDF, which still is
relatively unknown and new: “MuPDF is a Free lightweight PDF viewer and toolkit written in portable C.”,
written by Artifex Software developers, the same company that gave us Ghostscript.)

Note: pdfextract.exe is a command-line program. To use it, do the following:

..

c:\> pdfextract.exe c:\path\to\filename.pdf # (on Windows)

$> pdfextract /path/tofilename.pdf # (on Linux, Unix, Mac OS X)

This command will dump all of the extractable files from the pdf file referenced into the current directory.
Generally you will see a variety of files: images as well as fonts. These include PNG, TTF, CFF, CID, etc.
The image names will be like img-0412.png if the PDF object number of the image was 412. The fontnames
will be like FGETYK+LinLibertineI-0966.ttf, if the font’s PDF object number was 966.

CFF (Compact Font Format) files are a recognized format that can be converted to other formats via a
variety of converters for use on different operating systems.

Again: be aware that most of these font files may have only a subset of characters and may not represent
the complete typeface.

Update: (Jul 2013) Recent versions of mupdf have seen an internal reshuffling and renaming of their
binaries, not just once, but several times. The main utility used to be a ‘swiss knife’-alike binary called
mubusy (name inspired by busybox?), which more recently was renamed to mutool. These support the
sub-commands info, clean, extract, poster and show. Unfortunatey, the official documentation for these
tools isn’t up to date (yet). If you’re on a Mac using ‘MacPorts’: then the utility was renamed in order to
avoid name clashes with other utilities using identical names, and you may need to use mupdfextract.

To achieve the (roughly) equivalent results with mutool as its previous tool pdfextract did, just run
mubusy extract ....*

So to extract fonts and images, you may need to run one of the following commandlines.

On Windows:

³http://mupdf.com/

http://mupdf.com/
http://mupdf.com/


How can I extract embedded fonts from a PDF as valid font files? 30

..

c:\> mutool.exe extract filename.pdf

On Linux, Unix, Mac OS X:

..

$> mutool extract filename.pdf

8.4 Method 4: Using gs (Ghostscript)

Finally, Ghostscript⁴ can also extract fonts directly from PDFs. However, it needs the help of a special
utility program named extractFonts.ps⁵, written in PostScript language, which is available from the
Ghostscript source code repository⁶.

Now use it, you need to run both, this file extractFonts.ps and your PDF file. Ghostscript will then
use the instructions from the PostScript program to extract the fonts from the PDF. It looks like this on
Windows (yes, Ghostscript understands the ‘forward slash’, /, as a path separator also on Windows!):

..

gswin32c.exe ^

-q -dNODISPLAY ^

c:/path/to/extractFonts.ps ^

-c "(c:/path/to/your/PDFFile.pdf) extractFonts quit"

or on Linux, Unix or Mac OS X:

..

gs \

-q -dNODISPLAY \

/path/to/extractFonts.ps \

-c "(/path/to/your/PDFFile.pdf) extractFonts quit"

I’ve tested the Ghostscript method a few years ago. At the time it did extract *.ttf (TrueType) just fine. I
don’t know if other font types will also be extracted at all, and if so, in a re-usable way. I don’t know if
the utility does block extracting of fonts which are marked as protected.

⁴http://www.ghostscript.com/releases/
⁵http://git.ghostscript.com/?p=ghostpdl.git;a=blob_plain;f=gs/toolbin/extractFonts.ps
⁶http://git.ghostscript.com/?p=ghostpdl.git;a=tree;f=gs

http://www.ghostscript.com/releases/
http://git.ghostscript.com/?p=ghostpdl.git;a=blob_plain;f=gs/toolbin/extractFonts.ps
http://git.ghostscript.com/?p=ghostpdl.git;a=tree;f=gs
http://www.ghostscript.com/releases/
http://git.ghostscript.com/?p=ghostpdl.git;a=blob_plain;f=gs/toolbin/extractFonts.ps
http://git.ghostscript.com/?p=ghostpdl.git;a=tree;f=gs


How can I extract embedded fonts from a PDF as valid font files? 31

8.5 Caveats:

• In any case you need to follow the license that applies to the font. Some font licences do
not allow free use and/or distribution. Pirating fonts is like pirating any software or other
copyrighted material.

• Most PDFs which are in the wild out there do not embed the full font anyway, but only
subsets. Extracting a subset of a font is only useful in a very limited scope, if at all.

Please do also read the following about Pros and (more) Cons regarding font extraction efforts:

• http://typophile.com/node/34377



9 How can I get Ghostscript to use embedded fonts
in PDF?

..

Here is the command I use:

gs \

-o output.pdf \

-dCompatibilityLevel=1.4 \

-dPDFSETTINGS=/screen \

-sDEVICE=pdfwrite \

-sOutputFile=output.pdf \

input.pdf

I am using (trying anyway) to use Ghostscript to reduce my PDF file size. The command above
looks like it works, it reduces file size greatly, but then several of the fields are garbled. As for as
I can track it down, it’s doing font substitution. IE, the same text = same garbled text.

The fonts are embedded in the PDF when it gets to me. Additionally, I have tried to add all the
fonts to the Fontmap.

Any ideas, Ideally I would like it to use the embedded fonts without me having to update the gs
system fonts/edit fontmap, etc. I’m using Ubuntu 9.10 and the Fonts embedded are windows fonts,
Arial/TimesNewRoman.

9.1 Answer

Embedding fonts retrospectivly which were not embedded in the original PDF does increase the file size,
not decrease it.

However, there may still be a chance to reduce the overall file size by reducing the resolution of embedded
images… depends on your preferences and needs.

You can try with variations of the following commandline. It will embed all fonts (even the “Base 14”
ones), but embed required glyphs only (a “subset” of the original font), and also compress the fonts:

..

gs \

-o output.pdf \

-dCompatibilityLevel=1.4 \

-dPDFSETTINGS=/screen \

-dCompressFonts=true \

-dSubsetFonts=true \

-sDEVICE=pdfwrite \



How can I get Ghostscript to use embedded fonts in PDF? 33

..

-c ".setpdfwrite <</NeverEmbed [ ]>> setdistillerparams" \

-f input.pdf

You will have noticed that I did use the -o output.pdf convention instead of -sOutputFile=output.pdf.
I also didn’t include -dBATCH -dNOPAUSE in my command. The reason is that both methods are equivalent,
since -o ... silently also sets -dBATCH -dNOPAUSE:

‘Traditional’ Ghostscript option:

..

-sOutputfile=output.pdf -dBATCH -dNOPAUSE

‘Modern’ Ghostscript options

..

-o output.pdf

However, the modern shortcut way of writing the command does not work for older Ghostscript versions.

If you look into reducing the file size of PDFs only and have now particularly compelling reason to set
-dPDFSETTINGS=/screen, then the chapter “How can I convert a color PDF into grayscale?” may also be
something to consider.



Scanned Pages and PDF



10 How can I make the invisible OCR information
on a scanned PDF page visible?

..

I have a PDF which is the result of scanned pages. It contains lots of numbers.

In our organization’s workflow, we usually scan incoming mail delivered by the postal service,
archive them and then scrap the original papers.

Having read some recent news about PDFs resulting from scans made with a certain brand of
scanners mangling numbers badly, I want to check if this can happen with OCR too.

My knowledge about OCR of scanned pages is rather limited. My only info about it is that it uses
some hidden layer to store the text. How can I un-hide this hidden layer?

10.1 Answer

No, OCR information about scanned pages is not stored in a hidden layer. Layers in a PDF are quite a
different concept.

But OCR-ed text nevertheless is ‘hidden’ – but hidden alongside the same layer as the rest of the page
content.

I suggest you read the chapter of this book named “How can I use invisible fonts in a PDF?” first. It gives
you a short theoretical background of “invisible text” regarding PDF.

The OCR text in your PDF uses Text Rendering Mode 3 (‘Neither fill nor stroke glyph shapes’). In order
to make this text visible, you have to change this text rendering mode to one of the other modes:

• 0 Tr (fill text)
• 1 Tr (stroke text)
• 2 Tr (fill, then stroke text)
• 4 Tr (fill text and add to path for clipping)
• 5 Tr (stroke text and add to path for clipping)

My favorite mode for this job would be 1 Tr. It will just draw the outline shape of the glyphs without
filling them. I recommend to do this using a very thin red line. This way you will be able to see the exact
positioning of the text relative to the scanned image when you zoom in to the page.

Unfortunately I do not know of any commandline tool that can achieve this. You’ll have to dive into the
PDF source code and manipulate it with a text editor.

Fortunately this is much more easy than it sounds at first. We will use three steps for this:

1. Expand the original PDF source code of the OCR/scanned PDF using qpdf¹.

¹http://qpdf.sf.net/

http://qpdf.sf.net/
http://qpdf.sf.net/


How can I make the invisible OCR information on a scanned PDF page visible? 36

2. Open the expanded PDF source code in a simple text editor and manipulate it.
3. ‘Repair’ the PDF source code (which has become ‘corrupted’ through our editing) and copress it

again.

Step 1: Expand the original PDF

Looking at the scanned PDF page may show a view like the one in the following image.

Screenshot showing the original scanned/OCR-ed PDF page opened in Acrobat.

If you’ve read other chapters of this book already, you may be familiar with qpdf. It can expand PDF
source code and transform it into a mode that makes it more easy to process for human brains (if these
brains have acquired some PDF knowhow beforehand, or if they are guided with the help of a book like
this one). Here is the command to use:

..

qpdf --qdf --object-streams=disable original-scan.pdf qdf---original-scan.pdf

This created a new PDF file named qdf---original-scan.pdf which can easily be opened and manipu-
lated by a text editor.

Note, in case your original PDF had binary data sections (such as images, fonts or color profiles),
these will not be expanded and will still be contained in binary form in your expanded PDF. It
is only the other components which were expanded. So your text editor should be able to not
get a hangover from these binary parts and save your edited version without damaging these.



How can I make the invisible OCR information on a scanned PDF page visible? 37

Step 2: Open the expanded PDF with a text editor

Now open the new PDF file in your favorite text editor. Search for all spots where you find the text string
3 Tr. It could look like this:

..

[....]

/F16 7.500 Tf

3 Tr

1.180 Tc

[....]

Modify these text strings and replace them by the following: 1 0 0 RG 0.1 w 1 Tr. The resulting PDF
code could then look like this:

..

[....]

/F16 7.500 Tf

1 0 0 RG 0.1 w 1 Tr

1.180 Tc

[....]

This modification will have the following effects:

• 1 Tr : this switches the text rendering mode to ‘Stroke text’.
• 0.1 w : this sets the stroking line for the text rendering mode to a very thin one, 0.1 points only.
• RG : this sets the RGB color mode for stroking operations.
• 1 0 0 RG : this sets the color to ‘red’ for RGB colors.

Now save this modified PDF under a new name like qdf---edited-scan.pdf.

Step 3: ‘Repair’ the modified PDF and compress it again

Our editing manipulations will very likely have ‘corrupted’ the PDF. Because we inserted some 15
additional characters (*1 0 0 RG 0.1 w *), the PDF’s cross reference table (which holds a list of all object
addresses based as byte offsets from the files start) will no longer be correct. You can use qpdf to check
for this problem:

..

qpdf --check qdf---edited-scan.pdf

The output will be similar to this:



How can I make the invisible OCR information on a scanned PDF page visible? 38

..

WARNING: qdf---edited-scan.pdf: file is damaged

WARNING: qdf---edited-scan.pdf (file position 717011): xref not found

WARNING: qdf---edited-scan.pdf: Attempting to reconstruct cross-reference table

checking qdf---edited-scan.pdf

PDF Version: 1.3

File is not encrypted

File is not linearized

Fortunately, many PDF viewers will not have major problems with this – they’ll automatically (and often
silently) calculate a new xref section for the PDF and use that instead of the one embedded in the file.
You can try to open the file as is with your PDF viewer and see if it does or does not cause a problem.

But to play it save and make sure that each and every viewer will open the manipulated PDF without
choking, we will use qpdf again in order to fix this problem:

..

qpdf qdf---edited-scan.pdf ocr-made-visible-in-scan.pdf

If you look at the resulting file, ocr-made-visible-in-scan.pdf, you should see something like this now:

Screenshot showing the manipulated scanned/OCR-ed PDF page opened in Acrobat. The hidden OCR text is now made
visible as thin red outlines. Zooming in to the image will reveal more details.



How can I make the invisible OCR information on a scanned PDF page visible? 39

Zooming into the manipulated scanned/OCR-ed PDF page at 800% in Acrobat.

Nice, isn’t it? You’ve just earned your yellow belt in PDF-KungFoo mastership. ;-)



Colors



11 How can I convert a color PDF into grayscale?

..

I have a bunch of PDF documents with lots of color images inside. I want to get them printed and
want to make sure that no color is used. So I thought converting them to all-grayscale PDFs would
be a good idea. Also I want to offer these documents for download – so conversion to grayscale
seems to be a way to reduce the filesize. Is this correct?

How can I achieve this with Ghostscript?

11.1 Answer

Yes, it is correct that grayscale instead of color images inside PDFs in general do reduce the filesize. I will
show this with a small example.

A command to do that is the following:

..

gs \

-o gray.pdf \

-sDEVICE=pdfwrite \

-sColorConversionStrategy=Gray \

-sProcessColorModel=DeviceGray \

color.pdf

As long as the image’s resolution remains unchanged, a color-to-gray conversion should significantly
reduce the size:

• RGB images use 3 color channels (red, green, blue)
• CMYK images use 4 color channels (cyan, magenta, yellow)
• Gray images use only one color channel

Assuming the same level of color depth for each image type, this means that ratios for the raw amount of
uncompressed image data withequally-dimensioned images 1:3:4 for gray:rgb:cmyk images.

Of course, in the real life images are compressed. Depending on their actual contents, different compres-
sion algorithms will change this ratios – but for a first approximation they are an important consideration
to make.

The picture below¹ shows the original input file, color.pdf, vs. the resulting grayscale output, gray.pdf.

¹For details about the original color image see chapter “Acknowlegements”



How can I convert a color PDF into grayscale? 42

Left: original color PDF – Right: grayscale PDF converted with Ghostcript. (Color image used in the PDF is by Craig
ONeal (“minds-eye”), licensed under Creative Commons ‘BY-SA 2.0’.)

Comparing the file sizes of these two files shows this:

• color.pdf : 2,6 MByte
• gray.pdf : 172 kBbyte

So in this specific case the conversion reduced the file size to roughly 6% of the original.

Note, not every single color-to-gray conversion will show the same amount of file size
reduction. The reduction ratio very much depends on the amount of color images used in the
original PDF vs. the amount of text or other elements.

To further analyse what has happened to the image during conversion, we can use pdfimages and pdfinfo
like this:

..

pdfimages -list color.pdf

page num type width height color comp bpc enc interp object ID

---------------------------------------------------------------------

1 0 image 1280 825 rgb 3 8 image no 4 0

pdfimages -list gray.pdf

page num type width height color comp bpc enc interp object ID

---------------------------------------------------------------------

1 0 image 1280 825 gray 1 8 jpeg no 10 0

pdfinfo color.pdf | grep "Page size:"

Page size: 595 x 510 pts



How can I convert a color PDF into grayscale? 43

The image in the PDF uses the RGB color space. Since the width of the page is 595 PostScript points (where
72 pt == 1 inch), and the width of the image (borderless on the page) is 1280 pixels, the resolution of the
image as embedded in the PDF page can easily be calculated. In the current case that resolution for both,
color.pdf and gray.pdf is 152 ppi (pixels per inch).

Assuming the original color image had been of a higher resolution. With 300 ppi (4 times the number
of pixels than at 150 ppi) the PDF size could easily have exceeded 10 MByte. With 600 ppi (16 times the
number of pixels than at 150 ppi) it could have exceeded 40 MByte.

Converting these high-resolution color images to grayscale would also significantly reduce the file size.
But when doing this conversion, you could at the same time downsample all high resolution images to,
say, 150 ppi. Here is how you’d achieve this:

..

gs \

-o 150ppi-gray.pdf \

-sDEVICE=pdfwrite \

-sColorConversionStrategy=Gray \

-sProcessColorModel=DeviceGray \

-dDownsampleMonoImages=true \

-dMonoImageResolution=150 \

-dMonoImageDownsampleType=/Bicubic \

-dMonoImageFilter=/CCITTFaxEncode \

-dMonoImageDownsampleThreshold=1.0 \

-dDownsampleGrayImages=true \

-dGrayImageResolution=150 \

-dGrayImageDownsampleType=/Bicubic \

-dGrayImageFilter=/DCTEncode \

-dGrayImageDownsampleThreshold=1.0 \

-dDownsampleColorImages=true \

-dColorImageResolution=150 \

-dColorImageDownsampleType=/Bicubic \

-dColorImageFilter=/DCTEncode \

-dColorImageDownsampleThreshold=1.0 \

600ppi-color.pdf

As you can see from the various command line parameters, you could differentiate between color,
grayscale as well as mono images and give different parameters for each type. Above I used the same
ones for each.

Three parameters which deserve special mention here are the {Mono,Gray,Color}DownsampleThreshold
ones. Their default value is 1.5. This means that downsampling will only happen, if the original’s image
resolution is 1.5 times as high or higher than the target image’s resolution. If you have an image of 250
ppi embedded in a PDF page its resolution will remain unchanged for a 150 ppi target. Images will only
be downsampled if they are at 225 ppi or above. Setting the {Mono,Gray,Color}DownsampleThresholds to
1.0 enforces the downsampling of each and every image that has a higher resolution than the target.



Using pdfmarks



12 How can I use pdfmark to insert bookmarks
into PDF? (CONTENT STILL MISSING)



Text extraction



13 How can I extract text from PDF? (CONTENT
STILL MISSING)



Miscellaneous



14 How to recognize PDF format?

..

Given a stream of bytes, how can I tell if this stream contains a PDF document or something else?

I am using .NET and C# but it does not matter.

14.1 Answer

It all depends of how well/reliable you want the detection working.

Here my selection of most important bits+pieces from the 756 page long official definition, straight from
the horse’s mouth (PDF 32000:1-2008¹):

A basic conforming PDF file shall be constructed of following four elements (see Figure 2):

• A one-line header identifying the version of the PDF specification to which the file
conforms

• A body containing the objects that make up the document contained in the file
• A cross-reference table containing information about the indirect objects in the file
• A trailer giving the location of the cross-reference table and of certain special objects
within the body of the file
[….]

The first line of a PDF file shall be a header consisting of the 5 characters %PDF– followed by
a version number of the form 1.N, where N is a digit between 0 and 7. A conforming reader
shall accept files with any of the following headers:*
%PDF-1.0
%PDF-1.1
%PDF-1.2
%PDF-1.3
%PDF-1.4
%PDF-1.5
%PDF-1.6
%PDF-1.7
[…]

If a PDF file contains binary data, as most do (see 7.2, “Lexical Conventions”), the header
line shall be immediately followed by a comment line containing at least four binary
characters—that is, characters whose codes are 128 or greater. This ensures proper behaviour
of file transfer applications that inspect data near the beginning of a file to determine whether
to treat the file’s contents as text or as binary.

¹http://www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page46

http://www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page46
http://www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf#page46


How to recognize PDF format? 50

Trailer
[….] The last line of the file shall contain only the end-of-file marker, %%EOF. The two
preceding lines shall contain, one per line and in order, the keyword startxref and the byte
offset in the decoded stream from the beginning of the file to the beginning of the xref keyword
in the last cross-reference section.

Summary

Two of the most important things to remember:

(a) The first ‘header line’

%PDF-1.X

[where X in 0..7] must appear on a line of its own be followed by a newline. This line must appear within
the first 4096 Bytes, not necessarily on the very first line. The preceding lines may contain non-PDF
content, but printer job languange commands (PJL) or comments.

(b) The very next line must be four binary bytes if the PDF contains binary data.

Just parsing for ‘%PDF-1.’, relying on this and not looking for anything else, has bitten a lot of people
already….



Some Topics in Depth



15 Can I query the default settings Ghostscript uses
for an output device (such as ‘pdfwrite’ or
‘tiffg4’)?

..

In this answer to ‘Ghostscript command line parameters to convert EPS to PDF’; it is stated that
the default resolution for the pdfwrite device of Ghostscript is 720x720, which I initially found
unbelievable!

Is there a way to list the default options of a Ghostscript device?

http://stackoverflow.com/a/3461186/277826

15.1 Answer

Since Ghostscript is a full-blown PostScript interpreter, you can also send PostScript snippets to it which
do not cause the drawing of page elements, but which query it for its internal state.

If you want to know what the default settings of the Display are, when you ask it via gs some.pdf to just
display a PDF on screen, you could try this:

Sample command line (Linux, Unix, Mac OS X):

..

gs \

-c "currentpagedevice {exch ==only ( ) print == } forall"

On Windows this becomes:

..

gswin32c.exe ^

-c "currentpagedevice {exch ==only ( ) print == } forall"

The result is a list of /SomeName somevalue pairs which describe the settings used for rendering pages to
the current screen.

http://stackoverflow.com/a/3461186/277826
http://stackoverflow.com/a/3461186/277826


Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 53

This is so because usually the display is the default device for Ghostscript to send its output to. Now you
may notice that you’ll see an empty Ghostscript window pop up, which you’ll have to close…. Ah, how
about adding some options to avoid the popup window?

..

gs \

-o /dev/null \

-dNODISPLAY \

-c "currentpagedevice {exch ==only ( ) print == } forall"

Or, on Windows:

..

gswin32c.exe ^

-o nul ^

-dNODISPLAY ^

-c "currentpagedevice {exch ==only ( ) print == } forall"

But this will change the query return values, because you (unintentionally) changed the output device
settings:

..

gs -c "currentpagedevice {exch ==only ( ) print == } forall" | grep Resolution

Result:

..

HWResolution [86.5426483 86.5426483]

/.MarginsHWResolution [1152.0 1152.0]

Compare this to

..

gs \

-o /dev/null \

-dNODISPLAY \

-c "currentpagedevice {exch ==only ( ) print == } forall" \

| grep Resolution



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 54

Result:

..

/HWResolution [72.0 72.0]

/.MarginsHWResolution [72.0 72.0]

So, please avoid this trap. I successfully fell into it a few years ago, and didn’t even notice it for quite a
long time…

Now assuming you want to query for the default settings of the PDF writing device, run this one:

..

gs \

-o /dev/null \

-sDEVICE=pdfwrite \

-c "currentpagedevice {exch ==only ( ) print == } forall" \

| tee ghostscript-pdfwrite-default-pagedevice-settings.txt

You’ll now have all settings for the pdfwrite device in a *.txt file. and you may repeat that with some
other interesting Ghostscript devices and then compare them for all their detailled differences:

..

for _dev in \

pswrite ps2write pdfwrite \

tiffg3 tiffg4 tiff12nc tiff24nc tiff32nc tiff48nc tiffsep \

jpeg jpeggray jpegcmyk \

png16 png16m png256 png48 pngalpha pnggray pngmono; \

do \

gs \

-o /dev/null \

-sDEVICE=${_dev} \

-c "currentpagedevice {exch ==only ( ) print == } forall" \

| sort \

| tee ghostscript-${_dev}-default-pagedevice-settings.txt; \

done

It’s rather interesting to compare the settings for, say, the pswrite and ps2write devices like this (and also
discover parameters which are available for the one, but not the other device). One method that gives you
a quick overview is to apply the commandline tool sdiff to the two text files:

..

sdiff -sbB ghostscript-ps{2,}write-default-pagedevice-settings.txt



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 55

On my Mac OS X system, this yields the following result (left column: ps2write, right column: pswrite
output):

..

/AllowIncrementalCFF false <

/AllowPSRepeatFunctions true <

/AutoFilterColorImages true | /AutoFilterColorImages false

/AutoFilterGrayImages true | /AutoFilterGrayImages false

/AutoPositionEPSFiles true <

/CalCMYKProfile (None) | /CalCMYKProfile ()

/CalGrayProfile (None) | /CalGrayProfile ()

/CalRGBProfile (None) | /CalRGBProfile ()

/CannotEmbedFontPolicy /Error | /CannotEmbedFontPolicy /Warning

/CenterPages false <

/ColorImageDownsampleType /Bicubic | /ColorImageDownsampleType /Subsample

/ColorImageResolution 600 | /ColorImageResolution 150

/CompatibilityLevel 1.2 <

/CompressEntireFile false <

/CompressFonts true <

/CoreDistVersion 5000 <

/CreateJobTicket false <

/DSCEncodingToUnicode [] <

/DetectDuplicateImages true <

/DoNumCopies false <

/DocumentTimeSeq 0 <

/DocumentUUID () <

/DownsampleColorImages true | /DownsampleColorImages false

/DownsampleGrayImages true | /DownsampleGrayImages false

/DownsampleMonoImages true | /DownsampleMonoImages false

/EmitDSCWarnings false <

/EncryptionR 0 <

/FirstObjectNumber 1 <

/FitPages false <

/GrayImageDownsampleType /Bicubic | /GrayImageDownsampleType /Subsample

/GrayImageResolution 600 | /GrayImageResolution 150

/HaveCIDSystem false <

/HaveTransparency true <

/HaveTrueTypes true <

/HighLevelDevice true <

/ImageMemory 524288 | /ImageMemory 500000

/InstanceUUID () <

/IsDistiller true <

/KeyLength 0 <

> /LanguageLevel 2.0

/MaxClipPathSize 12000 <

/MaxInlineImageSize -1 <

/MaxShadingBitmapSize 256000 <

/MaxViewerMemorySize -1 <

/MonoImageDownsampleThreshold 1.5 | /MonoImageDownsampleThreshold 2.0

/MonoImageDownsampleType /Bicubic | /MonoImageDownsampleType /Subsample

/MonoImageResolution 1200 | /MonoImageResolution 300

/Name (ps2write) | /Name (pswrite)

/NoEncrypt () <



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 56

..

/OffOptimizations 0 <

/Optimize true <

/OutputDevice /ps2write | /OutputDevice /pswrite

/OwnerPassword () <

/PDFA false <

/PDFACompatibilityPolicy 0 <

/PDFEndPage -1 <

/PDFStartPage 1 <

/PDFX false <

/PDFXBleedBoxToTrimBoxOffset [0.0 0.0 0.0 0.0]<

/PDFXSetBleedBoxToMediaBox true <

/PDFXTrimBoxToMediaBoxOffset [0.0 0.0 0.0 0.0]<

/ParseDSCComments true <

/ParseDSCCommentsForDocInfo true <

/PatternImagemask false <

/Permissions -4 <

/PreserveCopyPage true <

/PreserveDeviceN true <

/PreserveEPSInfo true <

/PreserveHalftoneInfo true | /PreserveHalftoneInfo false

/PreserveOPIComments true | /PreserveOPIComments false

/PreserveOverprintSettings true | /PreserveOverprintSettings false

/PreserveSMask false <

/PreserveSeparation true <

/PreserveTrMode false <

/PrintStatistics false <

/ProduceDSC true <

/ReAssignCharacters true <

/ReEncodeCharacters true <

/RotatePages false <

/SetPageSize false <

/UCRandBGInfo /Preserve | /UCRandBGInfo /Remove

/UsePrologue false <

/UserPassword () <

/WantsToUnicode false <

/sRGBProfile (None) | /sRGBProfile ()

How to interpret this output?

• Lines with param key entries on both halves indicate: there is the same key available for both output
devices, but each one uses a different default value.

• Lines with an entry for one half only indicate: this parameter key is unknown to the other output
device.

One example is the /GrayImageResolution key: ps2write has this set to 600 by default whereas pswrite
uses 150. Another example is /LanguageLevel: ps2write has set it to 2.0, while pswrite doesn’t know
about this setting. (It produces PostScript language level 1 only). The third example is /CompressFonts:
ps2write will compress fonts by default. (You could override this, by specifying a different behavior on
the commandline and force uncompressed fonts in the PostScript output.) pswrite does not support this
setting at all.



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 57

15.2 Update

As you may imagine this is also a great way to compaare different Ghostscript versions, and track how
default settings may have changed for different devices in recent releases. This is especially interesting if
you want to find out about all the newly implemented color profile and ICC support which is now present
in Ghostscript.

Also, to avoid the return of just -dict- for certain key values, use the === instead of == macro. === acts
like == but also prints the content of dictionaries.

So here is the example output for the pdfwrite device. Remember, Ghostscript’s pdfwrite device is meant
to provide mostly the same functionality as Adobe Acrobat Distiller (with the additional feature that it
does not only accept PostScript as input, but also PDFs, so you can sort of redistill existing PDF files in
order to repair, improve or otherwise manipulate them). Therefore, Ghostscript’s pdfdevice honors most
of the setdistillerparams operator which the original Distiller also supports. This is the command to
use:

..

gs \

-o /dev/null \

-sDEVICE=pdfwrite \

-c "currentpagedevice {exch ==only ( ) print === } forall" \

| sort

On my system, this produces the following output. I include it here in full, because this book will also
serve as my personal lookup reference for certain info – in this is one I do need quite frequently:

..

/%MediaDestination 0

/%MediaSource 0

/.AlwaysEmbed []

/.HWMargins [0.0 0.0 0.0 0.0]

/.IgnoreNumCopies false

/.LockSafetyParams false

/.MarginsHWResolution [720.0 720.0]

/.MediaSize [612.0 792.0]

/.NeverEmbed [ \

/Courier /Courier-Bold /Courier-Oblique /Courier-BoldOblique \

/Helvetica /Helvetica-Bold /Helvetica-Oblique /Helvetica-BoldOblique \

/Times-Roman \

/Times-Bold /Times-Italic /Times-BoldItalic \

/Symbol /ZapfDingbats \

]

/ASCII85EncodePages false

/AllowIncrementalCFF false

/AllowPSRepeatFunctions false

/AlwaysEmbed []



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 58

..

/AntiAliasColorImages false [*]

/AntiAliasGrayImages false [*]

/AntiAliasMonoImages false [*]

/AutoFilterColorImages true

/AutoFilterGrayImages true

/AutoPositionEPSFiles true

/AutoRotatePages /PageByPage

/BeginPage {--.callbeginpage--}

/Binding /Left [*]

/BitsPerPixel 24

/BlueValues 256

/CalCMYKProfile (None) [*]

/CalGrayProfile (None) [*]

/CalRGBProfile (None) [*]

/CannotEmbedFontPolicy /Warning [*]

/CenterPages false

/ColorACSImageDict << /Blend 1 /VSamples [2 1 1 2] /QFactor 0.9 /HSamples [2 1 1 2] >>

/ColorConversionStrategy /LeaveColorUnchanged

/ColorImageDepth -1

/ColorImageDict << /Blend 1 /VSamples [2 1 1 2] /QFactor 0.9 /HSamples [2 1 1 2] >>

/ColorImageDownsampleThreshold 1.5

/ColorImageDownsampleType /Subsample

/ColorImageFilter /DCTEncode

/ColorImageResolution 150

/ColorValues 16777216

/Colors 3

/CompatibilityLevel 1.4

/CompressEntireFile false

/CompressFonts true

/CompressPages true

/ConvertCMYKImagesToRGB false

/ConvertImagesToIndexed true

/CoreDistVersion 5000

/CreateJobTicket false [*]

/DSCEncodingToUnicode []

/DefaultRenderingIntent /Default

/DetectBlends true [*]

/DetectDuplicateImages true

/DeviceGrayToK true

/DeviceLinkProfile ()

/DoNumCopies false

/DoThumbnails false [*]

/DocumentTimeSeq 0

/DocumentUUID ()

/DownsampleColorImages false

/DownsampleGrayImages false

/DownsampleMonoImages false

/EmbedAllFonts true

/EmitDSCWarnings false [*]

/EncodeColorImages true

/EncodeGrayImages true

/EncodeMonoImages true

/EncryptionR 0

/EndPage {--.callendpage--} [*]



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 59

..

/FirstObjectNumber 1

/FitPages false

/ForOPDFRead false

/GraphicICCProfile ()

/GraphicIntent 0

/GraphicsAlphaBits 1

/GrayACSImageDict << /Blend 1 /VSamples [2 1 1 2] /QFactor 0.9 /HSamples [2 1 1 2] >>

/GrayImageDepth -1

/GrayImageDict << /Blend 1 /VSamples [2 1 1 2] /QFactor 0.9 /HSamples [2 1 1 2] >>

/GrayImageDownsampleThreshold 1.5

/GrayImageDownsampleType /Subsample

/GrayImageFilter /DCTEncode

/GrayImageResolution 150

/GrayValues 256

/GreenValues 256

/HWResolution [720.0 720.0]

/HWSize [6120 7920]

/HaveCIDSystem false

/HaveTransparency true

/HaveTrueTypes true

/HighLevelDevice true

/ImageICCProfile ()

/ImageIntent 0

/ImageMemory 524288 [*]

/ImagingBBox null

/InputAttributes << \

0 << /PageSize [612.0 792.0] >> \

1 << /PageSize [ 792 1224] >> \

2 << /PageSize [ 612 792] >> \

3 << /PageSize [ 792 1224] >> \

4 << /PageSize [1224 1585] >> \

5 << /PageSize [1585 2448] >> \

6 << /PageSize [2448 3168] >> \

7 << /PageSize [2016 2880] >> \

8 << /PageSize [2384 3370] >> \

9 << /PageSize [1684 2384] >> \

10 << /PageSize [ 73 105] >> \

11 << /PageSize [1191 1684] >> \

12 << /PageSize [ 842 1191] >> \

13 << /PageSize [ 595 842] >> \

14 << /PageSize [ 595 842] >> \

15 << /PageSize [ 420 595] >> \

16 << /PageSize [ 297 420] >> \

17 << /PageSize [ 210 297] >> \

18 << /PageSize [ 148 210] >> \

19 << /PageSize [ 105 148] >> \

20 << /PageSize [ 648 864] >> \

21 << /PageSize [ 864 1296] >> \

22 << /PageSize [1296 1728] >> \

23 << /PageSize [1728 2592] >> \

24 << /PageSize [2592 3456] >> \

25 << /PageSize [2835 4008] >> \

26 << /PageSize [2004 2835] >> \

27 << /PageSize [1417 2004] >> \



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 60

..

28 << /PageSize [1001 1417] >> \

29 << /PageSize [ 709 1001] >> \

30 << /PageSize [ 499 709] >> \

31 << /PageSize [ 354 499] >> \

32 << /PageSize [2599 3677] >> \

33 << /PageSize [1837 2599] >> \

34 << /PageSize [1298 1837] >> \

35 << /PageSize [ 918 1298] >> \

36 << /PageSize [ 649 918] >> \

37 << /PageSize [ 459 649] >> \

38 << /PageSize [ 323 459] >> \

39 << /PageSize [ 612 936] >> \

40 << /PageSize [ 612 936] >> \

41 << /PageSize [ 283 420] >> \

42 << /PageSize [ 396 612] >> \

43 << /PageSize [2835 4008] >> \

44 << /PageSize [2004 2835] >> \

45 << /PageSize [1417 2004] >> \

46 << /PageSize [1001 1417] >> \

47 << /PageSize [ 709 1001] >> \

48 << /PageSize [ 499 709] >> \

49 << /PageSize [ 354 499] >> \

50 << /PageSize [2920 4127] >> \

51 << /PageSize [2064 2920] >> \

52 << /PageSize [1460 2064] >> \

53 << /PageSize [1032 1460] >> \

54 << /PageSize [ 729 1032] >> \

55 << /PageSize [ 516 729] >> \

56 << /PageSize [ 363 516] >> \

57 << /PageSize [1224 792] >> \

58 << /PageSize [ 612 1008] >> \

59 << /PageSize [ 612 792] >> \

60 << /PageSize [ 612 792] >> \

61 << /PageSize [ 612 792] >> \

62 << /PageSize [ 595 792] >> \

63 << /PageSize [ 792 1224] >> \

64 << /PageSize [0 0 524287 524287] >> \

>>

/Install {--.callinstall--}

/InstanceUUID ()

/IsDistiller true

/KeyLength 0

/LZWEncodePages false

/Margins [0.0 0.0]

/MaxClipPathSize 12000

/MaxInlineImageSize 4000

/MaxPatternBitmap 0

/MaxSeparations 3

/MaxShadingBitmapSize 256000

/MaxSubsetPct 100

/MaxViewerMemorySize -1

/MonoImageDepth -1

/MonoImageDict << /K -1 >>

/MonoImageDownsampleThreshold 1.5



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 61

..

/MonoImageDownsampleType /Subsample

/MonoImageFilter /CCITTFaxEncode

/MonoImageResolution 300

/Name (pdfwrite)

/NeverEmbed [ \

/Courier /Courier-Bold /Courier-Oblique /Courier-BoldOblique \

/Helvetica /Helvetica-Bold /Helvetica-Oblique /Helvetica-BoldOblique \

/Times-Roman /Times-Bold /Times-Italic /Times-BoldItalic \

/Symbol /ZapfDingbats \

]

/NoEncrypt ()

/NoT3CCITT false

/NumCopies null

/OPM 1

/OffOptimizations 0

/Optimize false [*]

/OutputAttributes << 0 << >> >>

/OutputDevice /pdfwrite

/OutputFile (/dev/null)

/OutputICCProfile (default_rgb.icc)

/OwnerPassword ()

/PDFA 0

/PDFACompatibilityPolicy 0

/PDFEndPage -1

/PDFStartPage 1

/PDFX false

/PDFXBleedBoxToTrimBoxOffset [0.0 0.0 0.0 0.0]

/PDFXSetBleedBoxToMediaBox true

/PDFXTrimBoxToMediaBoxOffset [0.0 0.0 0.0 0.0]

/PageCount 0

/PageDeviceName null

/PageOffset [0 0]

/PageSize [612.0 792.0]

/ParseDSCComments true

/ParseDSCCommentsForDocInfo true

/PatternImagemask false

/Permissions -4

/Policies << \

/PolicyReport \

{--dup-- /.LockSafetyParams --known-- \

{/setpagedevice --.systemvar-- /invalidaccess signalerror} \

--if-- --pop-- \

} \

/PageSize 0 \

/PolicyNotFound 1 \

>>

/PreserveCopyPage true [*]

/PreserveDeviceN true

/PreserveEPSInfo true [*]

/PreserveHalftoneInfo false [*]

/PreserveOPIComments true [*]

/PreserveOverprintSettings true

/PreserveSMask true

/PreserveSeparation true



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 62

..

/PreserveTrMode true

/PrintStatistics false

/ProcessColorModel /DeviceRGB

/ProduceDSC true

/ProofProfile ()

/ReAssignCharacters true

/ReEncodeCharacters true

/RedValues 256

/RenderIntent 0

/RotatePages false

/SeparationColorNames []

/Separations false

/SetPageSize false

/SubsetFonts true

/TextAlphaBits 1

/TextICCProfile ()

/TextIntent 0

/TransferFunctionInfo /Preserve

/UCRandBGInfo /Preserve

/UseCIEColor false

/UseFastColor false

/UseFlateCompression true

/UsePrologue false [*]

/UserPassword ()

/WantsToUnicode true

/sRGBProfile (None) [*]

[*] Notes about the above lists:

According to the official Ghostscript documentation, the following settings (which are
supported by Adobe Acrobat Distiller) currently on Ghostscript can be set and queried, but
setting them does have no effect:

..

/AntiAliasColorImages

/AntiAliasGrayImages

/AntiAliasMonoImages

/AutoPositionEPSFiles

/Binding

/CalCMYKProfile

/CalGrayProfile

/CalRGBKProfile

/CannotEmbedFontPolicy

/ConvertImagesToIndexed

/CreateJobTicket

/DetectBlends

/DoThumbnails

/EmitDSCWarnings

/EndPage

/ImageMemory



Can I query the default settings Ghostscript uses for an output device (such as ‘pdfwrite’ or ‘tiffg4’)? 63

..

/LockDistillerParams

/Optimize

/PreserveCopyPage

/PreserveEPSInfo

/PreserveHalftoneInfo

/PreserveOPIComments

/sRGBProfile

/StartPage

/UsePrologue

You may also want to read the chapter explaining the purpose of Ghostscript dictionaries.



Appendix



About the Author

Kurt has been coined The Walking PDF Debugger by several of his regular clients. They are right. Many
of his problem solving skills in the last 10 years involved troubleshooting PDF processing systems in the
Printing and Prepress Industry.

Kurt is a professional with more than 20 years of experience in the industry. After working for nearly 3
decades with the same employer (who in the process had 4 different names due to company mergers) he
decided to freelance.

When working with customers, he prefers to use Free and Open Source Software whereever it works best.
He is a commandline addict. As operating systems he prefers unix-oid types like Linux, Mac OS X and
Solaris, but he is just as familiar with Windows and its cmd.exe too. These preferences were not pre-
determined from the start: up until 1998 he used Windows 95 exclusively. His first tentative adventures
with Linux started in that very year. In 1999, still very much a newbie with Open Source, he became one
the first users and beta testers of a new printing subsystem called CUPS (Common Unix Printing System).
In the following years, CUPS very fast became the pre-dominant printing interface in the Linux and Unix
world and has meanwhile been adopted and even acquired by Apple for Mac OS X.

Kurt’s “career” as an author of technical documentation started when he helped users with technical
questions about printing in different internet forums and contributed written documentation to various
FOSS projects, such as Samba, Linuxprinting.org and KDE.

He currently is the all-time top scorer on StackOverflow.com when it comes to some of his favorite topics:

• His answers tagged as “[pdf]¹” – Score, current²
• His answers tagged as “[ghostscript]³” – Score, current⁴
• His answers tagged as “[imagemagick]⁵” – Score, current⁶

Kurt is available for contract work:

• Kurt’s LinkedIn Profile⁷
• Kurt’s Xing Profile⁸

¹http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bpdf%5d
²http://stackoverflow.com/tags/pdf/topusers
³http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bghostscript%5d
⁴http://stackoverflow.com/tags/ghostscript/topusers
⁵http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bimagematick%5d
⁶http://stackoverflow.com/tags/imagemagick/topusers
⁷https://de.linkedin.com/pub/kurt-pfeifle/0/95/2a2
⁸https://www.xing.com/profile/Kurt_Pfeifle

http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bpdf%5d
http://stackoverflow.com/tags/pdf/topusers
http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bghostscript%5d
http://stackoverflow.com/tags/ghostscript/topusers
http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bimagematick%5d
http://stackoverflow.com/tags/imagemagick/topusers
https://de.linkedin.com/pub/kurt-pfeifle/0/95/2a2
https://www.xing.com/profile/Kurt_Pfeifle
http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bpdf%5d
http://stackoverflow.com/tags/pdf/topusers
http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bghostscript%5d
http://stackoverflow.com/tags/ghostscript/topusers
http://stackoverflow.com/search?tab=votes&q=user%3a359307%20%5bimagematick%5d
http://stackoverflow.com/tags/imagemagick/topusers
https://de.linkedin.com/pub/kurt-pfeifle/0/95/2a2
https://www.xing.com/profile/Kurt_Pfeifle


Acknowledgements

This book would not exist without my customers. They were the ones who confronted me with problems,
tasks and jobs that made me think of possible solutions and made me research stuff.

Also, it would not exist without the wonderful StackExchange⁹ and Stackoverflow¹⁰ platforms which
draws together users and programmers, experts and interested people who ask questions, share solutions
and discuss ideas.

Contributors

A number of people have sent me suggestions and corrections. I like to thank them all:

• Markus Wolf
• Adrian Pfeifle
• … (your name could be here if you notified me of anything you want to be improved, added or
corrected in future releases of this book!)

Images

This eBook uses some images which were not created by myself. Here is a list:

• Chapter “How can I convert a color PDF into grayscale?”: The picture used in the demo PDF
document for this chapter was made by Craig ONeal (“minds-eye”) who hosts some of his work
at Flickr¹¹. This picture is licensed under “Creative Commons Atrributions 2.0 Generic” (attention!,
not all of Craig’s pictures use this license!). I downloaded it fromWikimedia.org¹² – See also here¹³.

⁹http://www.stackexchange.com/
¹⁰http://www.stackoverflow.com/
¹¹http://www.flickr.com/photos/craigoneal/
¹²http://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/HDR_Savannah.jpg/1280px-HDR_Savannah.jpg
¹³http://commons.wikimedia.org/wiki/File:HDR_Savannah.jpg

http://www.stackexchange.com/
http://www.stackoverflow.com/
http://www.flickr.com/photos/craigoneal/
http://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/HDR_Savannah.jpg/1280px-HDR_Savannah.jpg
http://commons.wikimedia.org/wiki/File:HDR_Savannah.jpg
http://www.stackexchange.com/
http://www.stackoverflow.com/
http://www.flickr.com/photos/craigoneal/
http://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/HDR_Savannah.jpg/1280px-HDR_Savannah.jpg
http://commons.wikimedia.org/wiki/File:HDR_Savannah.jpg

	Table of Contents
	Metadata
	Changelog (major changes only)
	Introduction
	100 Tipps and Tricks
	Downloading the tools
	How can I convert PCL to PDF?
	How can I to convert XPS to PDF?
	How can I unit test a Python function that draws PDF graphics?
	How can I compare 2 PDFs on the commandline?
	How can I remove white margins from PDF pages?
	Using Ghostscript to get page size

	Fonts
	How can I extract embedded fonts from a PDF as valid font files?
	How can I get Ghostscript to use embedded fonts in PDF?

	Scanned Pages and PDF
	How can I make the invisible OCR information on a scanned PDF page visible?

	Colors
	How can I convert a color PDF into grayscale?

	Using pdfmarks
	How can I use pdfmark to insert bookmarks into PDF? (CONTENT STILL MISSING)

	Text extraction
	How can I extract text from PDF? (CONTENT STILL MISSING)

	Miscellaneous
	How to recognize PDF format?

	Some Topics in Depth
	Can I query the default settings Ghostscript uses for an output device (such as `pdfwrite' or `tiffg4')?

	Appendix
	About the Author
	Acknowledgements


