
CHAPTER 1

First steps. . .

We’ll introduce the basic idea for analysis of data from marked individuals by means of a simple

example. Suppose you are interested in exploring the costs of reproduction on survival of some species

of your favorite taxa (say, a species of bird). The basic idea is pretty simple: an individual that spends

a greater proportion of available energy on breeding may have less available for other activities which

may be important for survival. In this case, individuals putting more e�ort into breeding (i.e., producing

more o�spring) may have lower survival than individuals putting less e�ort into breeding. On the other

hand, it might be that individuals that are of better ‘quality’ are able to produce more o�spring, such

that there is no relationship between ‘e�ort’ and survival. You decide to reduce the confounding e�ects

of the ‘quality’ hypothesis by doing an experiment. You take a sample of individuals who all produce

the same number of o�spring (the idea being, perhaps, that if they had the same number of o�spring in

a particular breeding attempt, that they are likely to be of similar quality). For some of these individuals,

you increase their ‘e�ort’ by adding some o�spring to the nest (i.e., more mouths to feed, more e�ort

expended feeding them). For others, you reduce e�ort by removing some o�spring from the nest (i.e.,

fewer mouths to feed, less e�ort spent feeding them). Finally, for some individuals, you do not change

the number of o�spring, thus creating a control group.

As described, you’ve set up an ‘experiment’, consisting of a control group (unmanipulated nests),

and 2 treatment groups: one where the number of o�spring has been reduced, and one where the

number of o�spring has been increased. For convenience, call the group where the number of o�spring

was increased the ‘addition’ group, and call the group where the number of o�spring was reduced

the ‘subtraction’ group. Your hypothesis might be that the survival probability of the females in the

‘addition’ group should be lower than the control (since the females with enlarged broods might have

to work harder, potentially at the expense of survival), whereas the survival probability of the females

in the ‘subtraction’ group should be higher than the control group (since the females with reduced

broods might not have to work as hard as the control group, potentially increasing their survival). To

test this hypothesis, you want to estimate the survival of the females in each of the 3 groups. To do this,

you capture and individually mark the adult females at each nest included in each of the treatment

groups (control, additions, subtractions). You release them, and come back at some time in future to

see how many of these marked individuals are ‘alive’ (the word ‘alive’ is written parenthetically for a

reason which will be obvious in a moment).

Suppose you mark 50 individuals in each of the 3 groups. Call this time (t). Then, at some later time

(call it t+1), you go back out in the �eld and encounter alive 30 of the marked individuals from the

‘additions’ treatment, 35 of the marked individuals from the control group, and 30 individuals from

the ‘subtractions’ treatment. The ‘encounter data’ are tabulated at the top of the next page.
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group t t + 1

additions 50 30

control 50 38

subtractions 50 30

Hmm. This seems strange. While you predicted that the 2 treatment groups would di�er from the

controls, you did not predict that the results from the two treatments would be the same. What do these

results indicate? Well, of course, you could resort to the time-honored tradition of trying to concoct

a parsimonious ‘post-hoc adaptationist’ story to try to demonstrate that (in fact) these results ‘made

perfect sense’, according to some ‘new twist to underlying theory’. However, there is another possibility

- namely, that the analysis has not been thoroughly understood, and as such, interpretation of the results

collected so far needs to be approached very cautiously.

1.1. Return ‘rates’

Let’s step back for a moment and think carefully about our experiment - particularly, the analysis of

‘survival’. In our study, we marked a sample of individual females, and simply counted the numbers of

those females that were subsequently seen again on the next sampling occasion. The implicit assump-

tion is that by comparing relative proportions of ‘survivors’ in our samples (perhaps using a simple χ2

test), we will be testing for di�erences in ‘survival probability’. However (and this is the key step), is

this a valid assumption? Our data consist of the number of marked and released individuals that were

encountered again at the second sampling occasion. While it is obvious that in order to be seen on the

second occasion, the marked individual must have survived, is there anything else that must happen?

The answer (perhaps obviously, but in case it isn’t) is ‘yes’ - the number of individuals encountered

on the second sampling occasion is a function of 2 probabilities: the probability of survival, and the

probability that conditional on surviving, that the surviving individual is encountered. While the �rst

of these 2 probabilities is obvious (and is in fact what we’re interested in), the second may not be. This

second probability (which we refer to generically as the ‘encounter probability’) is the probability that

given that the individual is alive and in the sample, that it is in fact encountered (e.g., seen, or ‘visually

encountered’). In other words, simply because an individual is alive and in the sampling area may not

guarantee that it is encountered. So, the proportion of individuals that were encountered alive on the

second sampling occasion (which is often referred to in the literature as ‘return rate’*) is the product

of 2 di�erent probability processes: the probability of surviving and returning to the sampling area

(which we’ll call ‘apparent’ or ‘local’ survival), and the probability of being encountered, conditional

on being alive an in the sample (which we’ll call ‘encounter probability’). So, ‘return rate’ = ‘survival

probability’ × ‘encounter probability’. Let’s let φ (pronounced ‘fee’ or ‘�e’, depending on where you

come from) represent the ‘local survival probability’, and p represent the ‘encounter probability’. Thus,

we would write ‘return rate’ = φp.

So, why do we care? We care because this complicates the interpretation of ‘return rates’ - in our

example, di�erences in ‘return rates’ could re�ect di�erences in the probability of survival, or they

could re�ect di�erences in encounter probability, or both! Similarly, lack of di�erences in ‘return rates’

(as we see when comparing the ‘additions’ and ‘subtractions’ treatment groups in our example) may

not indicate ‘no di�erences in survival’ (as one interpretation) – there may in fact be di�erences

in survival, but corresponding di�erences in encounter probability, such that their products (‘return

* The term ‘return rate’ is something of a misnomer, since it is not a rate, but rather a proportion. However, because the term ‘return
rate’ is in wide use in the literature, we will continue to use it here.

Chapter 1. First steps. . .



1.2. A more robust approach 1 - 3

rate’) are equal. For example, in our example study, the ‘return rate’ for both the ‘additions’ and

‘subtractions’ treatment groups is the same: (30/50) � 0.6. Our initial ‘reaction’ might have been

that these data did not support our hypothesis predicting di�erence in survival between the 2 groups.

However, suppose that in fact the ‘treatment’ (i.e., manipulating the number of o�spring in the nest) not

only in�uenced survival probability (as was our original hypothesis), but also potentially in�uenced

encounter probabilities? For example, suppose the true survival probability of the ‘additions’ group

was φadd � 0.65 (i.e., a 65% chance of surviving from t to t+1), while for the ‘subtractions’ group, the

survival probability is φsub � 0.80 (i.e., an 80% chance of surviving). However, in addition, suppose

that the encounter probability for the ‘additions’ group was padd � 0.923 (i.e., a 92.3% chance that a

marked individual will be encountered, conditional on it being alive and in the sampling area), while

for the ‘subtractions’ group, the encounter probability was psub � 0.75 (we’ll leave it to proponents

of the adaptationist paradigm to come up with a ‘plausible’ explanation for such di�erences). While

there are clear di�erences between the 2 groups, the products of the 2 probabilities are the same:

(0.65 × 0.923) � 0.6, and (0.8 × 0.75) � 0.6. In other words, it is di�cult to compare ‘return rates’, since

di�erences (or lack thereof) could re�ect di�erences or similarities in the 2 underlying probabilities

(survival probability, and encounter probability).

1.2. A more robust approach

How do we solve this dilemma? Well, the solution we’re going to focus on here (and essentially for

the next 800 pages or so) is to collect more data, and using these data, separately estimate all of the

probabilities (at least, when possible) underlying the encounters of marked individuals. Suppose for

example, we collected more data for our experiment, on a third sampling occasion (at time t + 2). On

the third occasion, we encounter individuals marked on the �rst occasion. But, perhaps some of those

individuals encountered on the third occasion were not encountered on the second occasion. How

would we be able to use these data? First, we introduce a simple bookkeeping device, to help us keep

track of our ‘encounter’ data (in fact, we will use this bookkeeping system throughout the rest of the

book – discussed in much more detail in Chapter 2). We will ‘keep track’ of our data using what we call

‘encounter histories’. Let a ‘1’ represent an encounter with a marked individual (in this example, we’re

focusing only on ‘live encounters’), and let a ‘0’ indicate that a particular marked individual was not

seen on a particular occasion. Now, recall from our previous discussion that a ‘0’ could indicate that

the individual had in fact died, but it could also indicate that the individual was in fact still alive, but

simply not encountered (the problem we face, as discussed, is how to di�erentiate between the two

possibilities). For our 3 occasion study, where individuals were uniquely marked on the �rst occasion

only, there are 4 possible encounter histories:

encounter history interpretation

111 captured and marked on the �rst occasion, alive and encountered on

the second occasion, alive and encountered on the third occasion

110 captured and marked on the �rst occasion, alive and encountered on

the second occasion, and either (i) dead by the third occasion, or (ii)

alive on the third occasion, but not encountered

101 captured and marked on the �rst occasion, alive and not encountered

on the second occasion, and alive and encountered on the third

occasion
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100 captured and marked on the �rst occasion, and either (i) dead

by the second occasion, (ii) alive on the second occasion, and not

encountered, and alive on the third occasion and not encountered,

(iii) alive on the second occasion, and not encountered, and dead by

the third occasion

You might be puzzled by the verbal explanation of the third encounter history - 101. How do we know

that the individual is alive at the second occasion, if we didn’t see it? Easy - we come to this conclusion

logically, since we saw it alive at the third occasion. And, if it was alive at occasion 3, then it must also

have been alive at occasion 2. But, we didn’t see it on occasion 2, even though we know (logically) that it

was alive. This, in fact, is one of the key pieces of logic – the individual was alive at the second occasion

but not seen. If p is the probability of detecting (encountering) an individual given that it is alive and in

the sample, then (1− p) is the probability of missing it (i.e., not detecting it). And clearly, for encounter

history ‘101’, we ‘missed’ the individual at the second occasion.

All we need to do next is take this basic idea, and formalize it. As written (above), you might see that

each of these encounter histories could occur due to a speci�c sequence of events, each of which has a

corresponding probability. Let φi be the probability of surviving from time (i) to (i+1), and let pi be the

probability of encounter at time (i). Again, if pi is the probability of encounter at time (i), then (1 − pi )

is the probability of not encountering the individual at time (i).

Thus, we can re-write the preceding table as

encounter history probability of encounter history

111 φ1p2φ2p3

110 φ1p2

[

φ2(1 − p3) + (1 − φ2)
]

� φ1p2(1 − φ2p3)

101 φ1

(

1 − p2

)

φ2p3

100
(

1 − φ1

)

+ φ1(1 − p2)(1 − φ2) + φ1(1 − p2)φ2(1 − p3)

� 1 − φ1p2 − φ1(1 − p2)φ2p3

(If you don’t immediately see how to derive the probability expressions corresponding to each

encounter history, not to worry: we will cover the derivations in much more detail in later chapters).

So, for each of our 3 treatment groups, we simply count the number of individuals with a given

encounter history. Then what? Once we have the number of individuals with a given encounter history,

we use these frequencies to estimate the probabilities which give rise to the observed frequency. For

example, suppose for the ‘additions’ group we had N111
� 7 (where N111 is the number of individuals

in our sample with an encounter history of ‘111’), N110
� 2, N101

� 5, and N100
� 36. So, of the 50

individuals marked at occasion 1, only (7 + 2 + 5) � 14 individuals were subsequently encountered

alive (at either sampling occasion 2, sampling occasion 3, or both), while 36 were never seen again.

Suppose for the ‘subtractions’ group we had N111
� 5, N110

� 7, N101
� 2, and N100

� 36. Again, 14 total

individuals encountered alive over the course of the study.

However, even though both treatment groups (additions and subtractions) have the same overall 3-

year return rate (14/50 � 0.28), we see clearly that the frequencies of the various encounter histories
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di�er between the groups. This indicates that there are di�erences among encounter occasions in

survival probability, or encounter probability (or both) between the 2 groups, despite no di�erence

in overall return rate. The challenge, then, is how to estimate the various probabilities (parameters) in

the probability expressions, and how to determine if these parameter estimates are di�erent between

the 2 treatment groups.

An ad hoc way of getting at this question involves comparing ratios of frequencies of di�erent

encounter ratios. For example,

N111

N101 �
φ1p2φ2p3

φ1(1 − p2)φ2p3

�
p2

1 − p2

So, for the ‘additions’ group, (N111/N101
) � (7/5) � 1.4. Thus, p̂(2,add) � 0.583. In contrast, for the

‘subtractions’ group, (N111/N101
) � (5/2) � 2.5. Thus, p̂(2,sub) � 0.714. Once we have estimates of p2, we

can see how we could substitute these values into the various probability expressions to solve for some

of the other parameter (probability) values. However, while this is reasonably straightforward (at least

for this very simple example), what about the question of ‘is this di�erence between the two di�erent p̂2

values meaningful/signi�cant?’. To get at this question, we clearly need something more - in particular

we need to be able to come up with estimates of the uncertainty (variance) in our parameter estimates.

To do this, we need a robust statistical tool.

1.3. Maximum likelihood theory - the basics

Fortunately, we have such a tool at our disposal. Analysis of data from marked individuals involves

making inference concerning the probability structure underlying the sequence of events that we

observe. Maximum likelihood (ML) estimation (courtesy of Sir Ronald Fisher) is the workhorse of

analysis of such data. While it is possible to become fairly pro�cient at analysis of data from marked

individuals without any real formal background in ML theory, in our experience at least a passing

familiarity with the concepts is helpful. The remainder of this (short) introductory chapter is intended

to provide a simple (very) overview of this topic. The standard ‘formal’ reference is the 1992 book by

AWF Edwards (‘Likelihood’, Johns Hopkins University Press). Readers with signi�cant backgrounds in

the theory will want to skip this chapter, and will absolutely refrain from comment as to the necessary

simpli�cations we make.

So here we go. . .the basics of maximum likelihood theory without (much) pain. . .

1.3.1. Why maximum likelihood?

The method of maximum likelihood provides estimators that are both reasonably intuitive (in most

cases) and several have some ‘nice properties’ (at least statistically):

1. The method is very broadly applicable and is simple to apply.

2. Once a maximum-likelihood estimator is derived, the general theory of maximum-likelihood

estimation provides standard errors, statistical tests, and other results useful for statistical

inference. More technically:

(a) maximum-likelihood estimators are consistent.

(b) they are asymptotically unbiased (although they may be biased in �nite samples).

(c) they are asymptotically e�cient - no asymptotically unbiased estimator has a smaller
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asymptotic variance.

(d) they are asymptotically normally distributed - this is particularly useful since it

provides the basis for a number of statistic ‘tests’ based on the normal distribution

(discussed in more detail in Chapter 4).

(e) if there is a su�cient statistic for a parameter, then the maximum likelihood estima-

tor of the parameter is a function of a su�cient statistic.*

3. A disadvantage of the maximum likelihood method is that it frequently requires strong

assumptions about the structure of the data.

1.3.2. Simple estimation example - the binomial coefficient

We will introduce the basic idea behind maximum likelihood (ML) estimation using a simple, and

(hopefully) familiar example: a binomial model with data from a �ip of a coin. Much of the analysis

of data from marked individuals involves ML estimation of the probabilities de�ning the occurrence

of one or more events. Probability events encountered in such analyses often involve binomial or

multinomial distributions. As you might appreciate, there is a simple, logical connection between

binomial probabilities, and analysis of data from marked individuals, since many of the fundamental

parameters we are interested in are ‘binary’ (having 2 possible states). For example, survival probability

(live or die), detection probability (seen or not seen), and so on. Like a coin toss (head or tail), the

estimation methods used in the analysis of data from marked individuals are deeply rooted in basic

binomial theory. Thus, a brief review of this subject is in order.

To understand binomial probabilities, you need to �rst understand binomial coe�cients. Binomial

coe�cients are commonly used to calculate the number of ways (combinations) a sample size of n can

be taken without replacement from a population of N individuals.

(

N

n

)

�
N!

n!(N − n)!
(1.1)

This is read as ‘the number of ways (combination) a sample size of n can be taken (without replace-

ment) from a population of size N’. Think of N as the number of organisms in a de�ned population, and

let n be the sample size, for example. Recall that the ‘!’ symbol means factorial (e.g., 5! � 5×4×3×2×1 �

120). A quick example – how many ways can a sample of size 2 (i.e., n � 2) be taken from a population

of size 4 (i.e., N � 4)? Just to con�rm we’re getting the right answer, let’s �rst derive the answer by ‘brute

force’. Let the individuals in the sample all have unique marks: call them individuals A, B, C and D,

respectively. So, given that we sample 2 at a time, without replacement, the possible combinations we

could draw from the ‘population’ are:

AB AC AD BC BD CD

BA CA DA CB DB DC

So, 6 total di�erent combinations are possibly selected (6, not 12 – the pair in each column are

equivalent; e.g., AB and BA are treated as equivalent).

* Su�ciency is the property possessed by a statistic, with respect to a parameter, when no other statistic which can be calculated
from the same sample provides any additional information as to the value of the parameter. For example, the arithmetic mean
is su�cient for the mean (µ) of a normal distribution with known variance. Once the sample mean is known, no further
information about µ can be obtained from the sample itself.
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So, does this match with
(4
2

)

?

(

4

2

)

�
4!

2!(4 − 2)!
�

24

2(2)
�

24

4
� 6

Nice when things work out, eh? OK, to continue - we use the binomial coe�cient to calculate the

binomial probability. For example, what is the probability of 5 heads in 20 tosses of a fair coin. Each

individual coin �ip is called a Bernoulli trial, and if the coin is fair, then the probability of getting a head

is p � 0.5, while the probability of getting a tail is (1 − p) � 0.5 (commonly denoted as q). So, given a

fair coin, and p � q � 0.5, then the probability of y heads in N �ips of the coin is:

f
(

y �� N, p
)

�

(

N

y

)

p y
(1 − p)

(N−y) (1.2)

The left-hand side of the equation is read as ‘the probability of observing y events given that we do

the experiment – toss the coin N times, and given that the probability of a head in any given experiment

(i.e., toss of the coin) is p’. Given that N � 20, and p � 0.5, then the probability of getting exactly 5 heads

in 20 tosses of the coin is:

f
(

5 �� 20, p
)

�

(

20

5

)

p5
(1 − p)

(20−5)

First, we calculate
(20

5

)

� 15,504 (note: 20! is a huge number). If p � 0.5, then f (5 | 20, 0.5) � (15,504×

0.03125×0.000030517578125) � 0.0148. So, there is a 1.48% chance of having 5 heads out of 20 coin �ips,

if p � 0.5.

Now, in this example, we are assuming that we know both the number of times that we toss the coin,

and (critically) the probability of a head in a single toss of the coin. However, if we are studying the

survival of some organism, for example, what information on the left side of the probability equation

(above) would we know? Well, hopefully we know the number of individuals marked (N). Would we

know the survival probability (in the above, the survival probability would correspond to p - later, we’ll

call it S)? No! Clearly, this is what we’re trying to estimate.

So, given the number of marked individuals (N) at the start of the study and the number of individu-

als that survive (y), how can we estimate the survival probability p? Easy enough, actually - we simply

work ‘backwards’ (more or less). We �nd the value of p that maximizes the likelihood (L) that we would

observe the data we did.* So, for example, what would the value of p have to be to give us the observed

data?

Formally, we write this as:

L
(

p �� N, y
)

�

(

N

y

)

p y
(1 − p)

(N−y) (1.3)

We notice that the right-hand side of eqn. (1.3) is identical to what it was before in eqn. (1.2) - but the

left hand side is di�erent in a subtle, but critical way. We read the left-hand side now as ‘the likelihood

L of survival probability p given that N individuals were released and that y survived’. Now, suppose

N � 20, and that we see 5 individuals survive (i.e., y � 5). What would p have to be to maximize the

chances of this occurring? We’ll try a ‘brute force’ approach �rst, simply seeing what happens if we

* The word ‘likelihood’ is often used synonymously for ‘probability’ but in statistical usage, they are not equivalent. One may
ask ‘If I were to �ip a fair coin 10 times, what is the probability of it landing heads-up every time?’ or ‘Given that I have �ipped
a coin 10 times and it has landed heads-up 10 times, what is the likelihood that the coin is fair?’ but it would be improper to
switch ‘likelihood’ and ‘probability’ in the two sentences.
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set p � 0, 0.1, 0.2, . . . , and so on. Look at the following plot of the binomial probability calculated for

di�erent values of p:
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As you see, the probability of ‘observing 5 survivals out of 20 individuals’ rises to a maximum when

p is 0.25. In other words, if p, which is unknown, were 0.25, then this would correspond to the maximal

probability of observing the data of 5 survivors out of 20 released individuals. This graph shows that

some values of the unknown parameter p are ‘relatively unlikely’ (i.e., those with low likelihoods), given

the data observed. The value of the parameter p at which this graph is at a maximum is the most likely

value of p (the probability of a head), given the data. In other words, the chances of actually observing

11 heads and 5 tails are maximal when p is at the maximum point of the curve, and the chances are less

when you move away from this point.

While graphs are useful for getting a ‘look’ at the likelihood, we prefer a more elegant way to estimate

the parameter. If you remember any of your basic calculus at all, you might recall that what we want

to do is �nd the maximum point of the likelihood function. Recall that for any function y � f (x),

we can �nd the maximum in�ection point over a given domain by setting the �rst derivative dy/dx

to zero and solving. This is exactly what we want to do here, except that we have one preliminary

step - we ‘could’ take the derivative of the likelihood function as written, but it is simpler to convert

everything to logarithms �rst. The main reason to do this is because it simpli�es the analytical side of

things considerably. The log-transformed likelihood, now referred to as a ‘log-likelihood’, is denoted as

lnL
(

q | data
)

.

Recall that our expression is

f
(

p �� N, y
)

�

(

N

y

)

p y
(1 − p)

(N−y)

The binomial coe�cient in this equation is a constant (i.e., does not depend on the unknown param-
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eter p), and so we can ignore it, and express this equation in log terms as:

L
(

p �� data
)

� p y
(1 − p)

(N−y)
→ lnL

(

p �� data
)

� y ln(p) + (N − y) ln(1 − p)

Note that we’ve written the left-hand side in a sort of short-hand notation - ‘the likelihood L of the

parameter p, given the data’ (which in this case consist of 5 survivors out of 20 individuals). So, now

the equation we’re interested in is:

lnL
(

p �� data
)

� y ln(p) + (N − y) ln(1 − p)

So, all you need to do is di�erentiate this equation with respect to the unknown parameter p, set

equal to zero, and solve.

∂
[

lnL
(

p �� data
) ]

∂p
�

y

p
−

(N − y)

(1 − p)
� 0

So, solving for p, we get:

p̂ �
y

N

Thus, the value of parameter p which maximizes the likelihood of observing y � 5 given N � 20

(i.e., p̂, the maximum likelihood estimate for p) is the same as our intuitive estimate: simply, y/N . Now,

your intuition probably told you that the ‘only’ way you could estimate p from these data was to simply

divide the number of survivors by the total number of animals. But we’re sure you’re relieved to learn

that 5/20 � 0.25 is also the MLE for the parameter p.

begin sidebar

closed and non-closed MLE

In the preceding example, we considered the MLE for the binomial likelihood. In that case, we could

‘use algebra’ to ‘solve’ for the parameter of interest (p̂). When it is possible to derive an ‘analytical

solution’ for a parameter (or set of parameters for likelihoods where there are more than one parame-

ter), then we refer to the solution as a solution in ‘closed form’. Put another way, there is a closed form

solution for the MLE for the binomial likelihood.

However, not all likelihoods have closed form solutions. Meaning, the MLE cannot be derived

‘analytically’ (generally, by taking the derivative of the likelihood and solving at the maximum, as

we did in the binomial example). MLE’s that cannot be expressed in closed form need to be solved

numerically. Here is a simple example of a likelihood that cannot be put in closed form. Suppose we

are interested in estimating the abundance of some population. We might intuitively understand that

unless we are sure that we are encountering the entire population in our sample, then the number we

encounter (the ‘count’ statistic; i.e., the number of individuals in our sample) is a fraction of the total

population. If p is the probability of encountering any one individual in a population, and if n is the

number we encounter (i.e., the number of individuals in our sample from the larger population), then

we might intuitively understand that our canonical estimator for the size of the larger population is

simply (n/p). For example, if there is a 50% chance of encountering an individual in a sample, and

we encounter 25 individuals, then our estimate of the population size is N̂ � (25/0.5) � 50. (Note: we

cover abundance estimation in detail in Chapter 14.)

Now, suppose you are faced with the following situation. You are sampling from a population for

which you’d like to derive an estimate of abundance. We assume the population is ‘closed’ (no entries

or exits while the population is being sampled). You go out on a number of sampling ‘occasions’, and

capture a sample of individuals in the population. You uniquely mark each individual, and release

it back into the population. At the end of the sampling, you record the total number of individuals
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1.3.2. Simple estimation example - the binomial coefficient 1 - 10

encountered at least once – call this Mt+1. Now, if the canonical estimator for abundance is N̂ � (n/p),

then p̂ � (n/N ). In other words, if we knew the size of the population N then we could derive a

simple estimate of the encounter probability p by dividing the number encountered in the sample n

into the size of the population. Remember, p is the probability of encountering an individual. Thus,

the probability of ‘missing’ an individual (i.e., not encountering it) is simple (1 − p) � 1 − (n/N ).

So, over t samples, we can write

(

1 −
n1

N

) (

1 −
n2

N

)

. . .
(

1 −
nt

N

)

�
(

1 − p1

) (

1 − p2

)

. . .
(

1 − pt

)

where pi is the encounter probability at time i, and ni is the number of individuals caught at time i.

If you think about it for a moment, you’ll see that the product on right-hand side is the overall

probability that an individual is not caught – not even once – over the course of the study (i.e., over t

total samples). Remember from above that we de�ned Mt+1 as the number of individuals caught at

least once. So, we can write

(

1 −
Mt+1

N

)

�

(

1 −
n1

N

) (

1 −
n2

N

) (

1 −
n3

N

)

· · ·

(

1 −
nt

N

)

In other words, the LHS and RHS both equal the probability of never being caught – not even once.

Now, if you had estimates ofpi for each sampling occasion i, then you could write

(

1 −
Mt+1

N

)

�
(

1 − p1
) (

1 − p2
)

. . .
(

1 − pt
)

Mt+1

N
� 1 −

(

1 − p1
) (

1 − p2
)

. . .
(

1 − pt
)

N̂ �
Mt+1

1 −
(

1 − p1

) (

1 − p2

)

. . .
(

1 − pt

)

So, the expression is rewritten in terms of N – analytical solution – closed form, right? Not quite.

Note that we said if you had estimates of pi . In fact, you don’t. All you have is the count statistic (i.e.,

the number of individuals captured on each sampling occasion, ni). So, in fact, ‘all we have’ are the

count data (i.e., Mt+1 , n1 , n2 . . . nt ), which (from above) we relate algebraically in the following:

(

1 −
Mt+1

N

)

�

(

1 −
n1

N

) (

1 −
n2

N

) (

1 −
n3

N

)

· · ·

(

1 −
nt

N

)

It is not possible to ‘solve’ this equation so that only the parameter N appears on the LHS, while all

the other terms (representing data – i.e., Mt+1 , n1 , n2 . . . nt) appear on the RHS. Thus, the estimator

for N cannot be expressed in closed form.

However, the expression does have a solution – but it is a solution we must derive numerically, rather

than analytically. In other words, we must use numerical, iterative methods to �nd the value of N that

‘solves’ this equation. That value of N is the MLE, and would be denoted as N̂ .

Consider the following data:

n1 � 30, n2 � 15, n3 � 22, n4 � nt � 45, and Mt+1 � 79

Thus, one wants the value of N that ‘solves’ the equation

(

1 −
79

N

)

�

(

1 −
30

N

) (

1 −
15

N

) (

1 −
22

N

) (

1 −
45

N

)

One could try to solve this equation by ‘trial and error’. That is, one could plug in a guess for

population size and see if the LHS = RHS (not very likely unless you can guess very well). Thinking

about the problem a bit, one realizes that, logically, N ≥ Mt+1 (i.e., the size of the population N must

be at least as large as the number of unique individuals caught at least once, M + t + 1). So, at least, one
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1.3.2. Simple estimation example - the binomial coefficient 1 - 11

has a lower bound (in this case, 79 if we restrict the parameter space to integers). If the �rst guess for N

does not satisfy the equation, one could try another guess and see if that either (1) satis�es the equation

or (2) is closer than the �rst guess. The log-likelihood functions for many (but not all) problems are

unimodal (for the exponential family); thus, you can usually make a new guess in the right direction.

One could keep making guesses until a value of N (an integer) allows the LHS = RHS, and take

this value as the MLE, N̂ . Clearly, the ‘trial-and-error’ method will unravel if there is more than 1 or 2

parameters. Likewise, plotting the log-likelihood function is useful only when 1 or 2 parameters are

involved. We will quickly be dealing with cases where there are 30-40 parameters, thus we must rely

on e�cient computer routines for �nding the maximum point in the multidimensional cases. Clever

search algorithms have been devised for the 1-dimensional case. Computers are great at such routine

computations and the MLE in this case can be found very quickly. Many (if not most) of the estimators

we will work with cannot be put in closed form, and we will rely on computer software – namely,

program MARK – to compute MLEs numerically.

end sidebar

Why go to all this trouble to derive an estimate for p? Well the maximum likelihood approach also

has other uses - speci�cally, the ability to estimate the sampling variance. For example, suppose you

have some data from which you have estimated that p̂ � 0.6875. Is this ‘signi�cantly di�erent’ (by some

criterion) from, say, 0.5? Of course, to address this question, you need to consider the sampling variance

of the estimate, since this is a measure of the uncertainty we have about our estimate. How would you

do this? Of course, you might try the ‘brute force’ approach and simply repeat your ‘experiment’ a

large number of times. Each time, derive the estimate of p, and then calculate a mean and variance of

the parameter. While this works, there is a more elegant approach - again using ML theory and a bit

more calculus (fairly straightforward stu�).

Conceptually, the sampling variance is related directly to the curvature of the likelihood at its max-

imum. Why? Consider the following: let’s say we release 16 animals, and observe 11 survivors. What

would the MLE estimate of p be? Well, we now know it is (y/N) � (11/16) � 0.6875. What if we had

released 80 animals, instead of 16? Suppose we did this experiment, and observed 55 survivors (i.e., the

expected values assuming p � 0.6875). What would the likelihood look like in this case? Well, clearly,

the maximum of the likelihood in both ‘experiments’ should occur at precisely the same point: 0.6875.

But what about the ‘shape’ of the curve. In the following, we plot the likelihoods for both experiments

(N � 16 and N � 80 respectively).
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MLEN � 16, y � 11

N � 80, y � 55

The graph shows clearly that the larger sample size (N � 80) results in a ‘narrower’ function around
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1.3.2. Simple estimation example - the binomial coefficient 1 - 12

the ML parameter estimate p̂ � 0.6875. If the sampling variance is related to the degree of curvature

of the likelihood at its maximum, then we would anticipate the sampling variance of the parameter in

these 2 experiments to be quite di�erent, given the apparent di�erences in the likelihood functions.

What is the basis for stating that ‘variance is related to curvature’? Think of it this way - values at

a given distance from the MLE are relatively ‘unlikely’ - the degree to which they are unlikely is a

function of how rapidly the curve drops away from the maximum as you move away from the MLE

(i.e., the ‘steepness’ of the curve on either side of the MLE).

How do we address this question of ‘curvature’ analytically? Well, again we can use calculus. We use

the �rst derivative of the likelihood function to �nd the point on the curve where the rate of change was

0 (i.e., the maximum point on the function). This �rst derivative of the likelihood is known as Fisher’s

score function.

We can then use the derivative of the score function with respect to the parameter(s) (i.e., the second

derivative of the likelihood function, which is known as the Hessian), evaluated at the estimated value

of the parameter (p, in this case), to ‘tell us something about the curvature’ at this point. In fact, more

than just the curvature, Fisher showed that the negative inverse of the second partial derivative of the

log-likelihood function (i.e., the negative inverse of the Hessian), evaluated at the MLE, is the MLE of

the variance of the parameter. This negative inverse of the Hessian, evaluated at the MLE, is known as

the information function, or matrix. For our example, our estimate of the variance of p is

v̂ar(p̂) �

[
−

(

∂
2 lnL

(

p �� data
)

∂p2

)]−1

p�p̂

So, we �rst �nd the second derivative of the log-likelihood (i.e., the Hessian):

∂
2
L

∂p2 � −
y

p2 −
N − y

(1 − p)
2

We evaluate this second derivative at the MLE, by substituting y � pN (since p̂ � y/N). This gives

∂
2
L

∂p2

�����y�pN

� −
Np

p2 −
N (1 − p)

(1 − p)
2

� −
N

p(1 − p)

The variance of p is then estimated as the negative inverse of this expression (i.e., the information

function, or matrix), such that:

v̂ar(p̂) �
p(1 − p)

N

Some of you may recognize this as the often-used estimator of the variance of a binomial proportion

- it is in all the ‘stats books’. But now you can sleep more easily knowing how it was derived!

So, how do the sampling variances of our 2 experiments compare? Clearly, since p and (1-p) are the

same in both cases (i.e., same ML estimate for p̂), the only di�erence is in the denominator, N. Since

N � 80 is obviously larger than N � 16, we know immediately that the sampling variance of the larger

sample will be smaller (0.0027) than the sampling variance of the smaller sample (0.0134).
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1.3.3. Multinomials: a simple extension

A binomial probability involves 2 possible states (e.g., live or dead). What if there are more than 2

states? In this case, we use multinomial probabilities. As with our discussion of the binomial probability

(above), we start by looking at the multinomial coe�cient – the multinomial equivalent of the binomial

coe�cient. The multinomial is extremely useful in understanding the models we’ll discuss in this book.

The multinomial coe�cient is nearly always introduced by way of a die tossing example. So, we’ll stick

with tradition and discuss this classic example here. You’ll recall that a die has 6 sides - therefore 6

possible outcomes if your roll a die once. The multinomial coe�cient corresponding to the ‘die’ example

is
(

N

n1 n2 n3 n4 n5 n6

)

�
N!

n1!n2!n3!n4!n5!n6!
�

N!
∏k

i�1 ni !

Note the use of the product operator ‘
∏

’ in the denominator. In a multinomial context, we assume

that individual trials are independent, and that outcomes are mutually exclusive and all inclusive.

Consider the ‘classic’ die example. Assume we throw the die 60 times (N � 60), and a record is kept

of the number of times a 1, 2, 3, 4, 5 or 6 is observed. The outcomes of these 60 independent trials are

shown below.

face number notation

1 13 y1

2 10 y2

3 8 y3

4 10 y4

5 12 y5

6 7 y6

Each trial has a mutually exclusive outcome (1 or 2 or 3 or 4 or 5 or 6). Note that there is a type of

dependency in the cell counts in that once n and y1, y2, y3, y4 and y5 are known, then y6 can be obtained

by subtraction, because the total (N) is known. Of course, the dependency applies to any count, not just

y6. This same dependency is also seen in the binomial case - if you know the total number of coin tosses,

and the total number of heads observed, then you know the number of tails, by subtraction.

The multinomial distribution is useful in a large number of applications in ecology. Its probability

function for k � 6 is

P
(

yi | n, pi

)

�

(

n

yi

)

p
y1

1
p

y2

2 p
y3

3 p
y4

4
p

y5

5 p
y6

6

Again, as was the case with the binomial probability, the multinomial coe�cient does not involve

any of the unknown parameters, and is conveniently ignored for many estimation issues.

This is a good thing, since in the simple die tossing example the multinomial coe�cient is

(

n

yi

)

�
60!

13!10!8!10!12!7!

which is an absurdly big number - beyond the capacity of your simple hand calculator to calculate. So,

it is helpful that we can ignore it for all intents and purposes.

Some simple examples - suppose you role a ‘fair’ die 6 times (i.e., 6 trials), First, assume (y1, y2, y3,

y4, y5, y6) is a multinomial random variable with parameters p1 � p2 � . . . p6 � 0.1667 and N � 6 What
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is the probability that each face is seen exactly once? This is written simply as:

P
(

1, 1, 1, 1, 1, 1 �� 6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6
)

�
6!

1!1!1!1!1!1!

(

1

6

)6

�
5

324
� 0.0154

What is the probability that exactly four 1’s occur, and two 2’s occur in 6 tosses? In this case,

L
(

4, 2, 0, 0, 0, 0 �� 6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6
)

�
6!

4!2!0!0!0!0!

(

1

6

)4 (

1

6

)2

�
5

15,552
≪ 0.0154

As noted in our discussion of the binomial probability theorem, we are generally faced with the

reverse problem – we do not know the parameters, but rather we want to estimate the parameters from

the data. As we saw, these issues are the domain of the likelihood and log-likelihood functions. The

key to this estimation issue is the multinomial distribution, and, particularly, the likelihood and log-

likelihood functions

L
(

q �� data
)

or L
(

pi
�� ni , yi

)

which we read as ‘the likelihood of the parameters, given the data’ – the left-hand expression is the

more general one, where the symbol q indicates one or more parameters. The right-hand expression

speci�es the parameters of interest.

At �rst, the likelihood function looks pretty messy, but it is only a slightly di�erent view of the

probability function. Just as we saw from the binomial probability function, the multinomial function

assumes N is given. The probability function further assumes that the parameters are given, while the

likelihood function assumes the data are given. The likelihood function for the multinomial distribution

is

L
(

pi
�� ni , yi

)

�

(

N

yi

)

p
y1

1
p

y2

2 p
y3

3 p
y4

4
p

y5

5 p
y6

6

Since the �rst term - the multinomial coe�cient - is a constant, and since it doesn’t involve any

parameters, we ignore it. Next, because probabilities must sum to 1 (i.e., {sum of pi over all i} = 1),

there are only 5 ‘free’ parameters, since the 6th one is de�ned by the other 5 (the ‘dependency’ issue we

mentioned earlier), and the total, N. We will use the symbol K to denote the total number of estimable

parameters in a model. Here, K � 5.

The likelihood function for K � 5, for example, is

L
(

pi
�� N, yi

)

�

(

N

yi

)

p
y1

1
p

y2

2 p
y3

3 p
y4

4
p

y5

5

(

1 −

5
∑

i�1

pi

)

(

N−
∑5

i�1 pi

)

So, just as we saw for the binomial example, we use a maximization routine (either analytical or

numerical, depending on whether or not the likelihood can be expressed in closed form) to �nd the

values of p1 , p2 , p3 , p4 and p5 that maximize the likelihood of the data that we observe. Remember - all

we are doing is �nding the values of the parameters which maximize the likelihood of observing the

data that we see. Nothing more than that - at least conceptually.
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1.4. Application to mark-recapture

Let’s look at an example relevant to the task at hand (no more dice, or �ipping coins.). Let’s pretend

we do a three year mark-recapture study, with 55 total marked individuals from a single cohort.* Once

each year, we go out and look to see if we can ‘see’ (encounter) any of the 55 individuals we marked

alive and in our sample. For now, we’ll assume that we only encounter ‘live’ individuals.

The following represents the basic ‘structure’ of our sampling protocol.

1 2 3

p2 p3

φ1 φ2

In this diagram, each of the sampling events (referred to as ‘sampling occasions’) is indicated by a

shaded grey circle. Our ‘experiment’ has three sampling occasions, numbered 1 → 3, respectively. In

this diagram, time is moving forward going from left to right (i.e., sampling occasion 2 occurs one time

step after sampling occasion 1, and so forth). Connecting the sampling occasions we have an arrow –

the direction of the arrow indicates the direction of time - again, moving left to right, forward in time.

We’ve also added two variables (symbols) to the diagram: φ and p. What do these represent?

For this example, these represent the two primary parameters which we believe (assume) govern the

encounter process: φi (the probability of surviving from occasion i to i+1), and pi (the probability that if

alive and in the sample at time i, that the individual will be encountered). So, as shown on the diagram,

φ1 is the probability that an animal encountered and released alive at sampling occasion 1 will survive

the interval from occasion 1→ occasion 2, and so on. Similarly, p2 is the probability that conditional

on the individual being alive and in the sample, that it will be encountered at occasion 2, and so on.

Why no p1? Simple – p1 is the probability of encountering a marked individual in the population, and

none are marked prior to occasion 1 (which is when we start our study). In addition, the probability of

encountering any individual (marked or otherwise) could only be calculated if we knew the size of the

population, which we don’t (this becomes an important consideration we will address in later chapters

where we make use of estimated abundance). The important thing to remember here is the probability

of being encountered at a particular sampling occasion is governed by two parameters: φ and p.

Now, as discussed earlier, if we encounter the animal, we record it in our data as ‘1’. If we don’t

encounter the animal, it’s a ‘0’. So, based on a 3 year study, an animal with an encounter history of ‘111’

was ‘seen in the �rst year (the marking year), seen again in the second year, and also seen in the third

year’. Compare this with an animal with an encounter history of ‘101’. This animal was ‘seen in the

�rst year, when it was marked, not seen in the second year, but seen again in the third year’. For a 3

occasion study, where the occasion refers to the sampling occasion, with a single release cohort, there

are 4 possible encounter histories:

encounter history

111

101

110

100

* In statistics and demography, a cohort is a group of ‘subjects’ de�ned by experiencing a common event (typically birth) over a
particular time span. In the present context, a cohort represents a group of individuals captured, marked, and released alive
at the same point in time. These individuals would be part of the same release cohort.
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Now, the key question we have to address, and (in simplest terms) the basis for analysis of data

from marked individuals, is ‘what is the probability of observing a particular encounter history?’. The

probability of a particular encounter history is determined by a set of parameters - for this study, we

know (or assume) that the parameters governing the probability of a given encounter history are φ and

p. Based on the diagram on the previous page, we can write a probability expression corresponding to

each of these possible encounter histories:

encounter history probability

111 φ1p2φ2p3

110 φ1p2(1 − φ2p3)

101 φ1

(

1 − p2

)

φ2p3

100 1 − φ1p2 − φ1(1 − p2)φ2p3

For example, take encounter history ‘101’. The individual is marked and released on occasion 1 (the

�rst 1 in the history), is not encountered on the second occasion,but is encountered on the third occasion.

Now, because of this encounter on the third occasion, we know that the individual was in fact alive on

the second occasion, but simply not encountered. So, we know the individual survived from occasion

1→ 2 (with probability φ1), was not encountered at occasion 2 (with probability 1 − p2), and survived

to occasion 3 (with probability φ2) where it was encountered (with probability p3). So, the probability

of observing encounter history ‘101’ would be φ1(1 − p2)φ2p3.

Here are our ‘data’ - which consist of the observed frequencies of the 55 marked individuals with

each of the 4 possible encounter histories:

encounter history frequency

111 7

110 13

101 6

100 29

So, of the 55 individual marked and released alive in the release cohort, 7 were encountered on both

sampling occasion 2 and sampling occasion 3, 13 were encountered on sampling occasion 2, but were

not seen on sampling occasion 3, and so on.

The estimation problem, then, is to derive estimates of the parameters pi andφi which maximizes the

likelihood of observing the frequency of individuals with each of these 4 di�erent encounter histories.

Remember, the encounter histories are the data - we want to use the data to estimate the parameter

values. What parameters? Again, recall also that the probability of a given encounter history is governed

(in this case) by two parameters: φ, and p.

OK, so we’ve been playing with multinomials (above), and you might have suspected that these

encounter data must be related to multinomial probabilities, and likelihoods. Good guess! The basic

idea is to realize that the statistical likelihood of an actual encounter data set (as is tabulated above) is

merely the product of the probabilities of the possible capture histories over those actually observed.

As noted by Lebreton et al. (1992), because animals with the same encounter history have the same

probability expression, then the number of individuals observed with each encounter history appears
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as an exponent of the corresponding probability in the likelihood. Thus, we write

L �(φ1p2φ2p3)
N(111) × [φ1p2(1 − φ2p3)]N(110) × [φ1(1 − p2)φ2p3]N(101)

× [1 − φ1p2 − φ1(1 − p2)φ2p3]N(100)

where N(i jk) is the observed frequency of individuals with encounter history i jk.

As with the binomial, we take the log transform of the likelihood expression, and after substituting

the frequencies of each history, we get:

lnL(φ1 , p2, φ2 , p3) �7 ln(φ1p2φ2p3) + 13 ln[φ1p2(1 − φ2p3)] + 6 ln[φ1(1 − p2)φ2p3]

+ 29 ln[1 − φ1p2 − φ1(1 − p2)φ2p3]

All that remains is to derive the estimates of the parameters φi and pi that maximize this likelihood.

Let’s go through a worked example, using the encounter history data tabulated on the preceding

page. To this point, we have assumed that these encounter histories are governed by ‘time-speci�c’

variation in φ and p. In other words, we would write the probability statement for encounter history

‘111’ as φ1p2φ2p3.

These time-speci�c parameters are indicated in the following diagram:

1 2 3

p2 p3

φ1 φ2

Again, the subscripting indicates a di�erent survival and recapture probability for each interval or

sampling occasion.

However, what if instead we assume that the survival and recapture probabilities do not vary over

time? In other words, φ1 � φ2 � φ, and p2 � p3 � p. In this case, our diagram would now look like

1 2 3

p p

φ φ

What would the probability statements be for the respective encounter histories?

In fact, in this case deriving them is very straightforward – we simply drop the subscripts from the

parameters in the probability expressions:

encounter history probability

111 φpφp

110 φp(1 − φp)

101 φ
(

1 − p
)

φp

100 1 − φp − φ(1 − p)φp
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So, what would the likelihood look like? Well, given the frequencies, the likelihood would be:

L � (φpφp)
N111

[φp(1 − φp)]N110

[φ(1 − p)φp]N101

[1 − φp − φ(1 − p)φ]N100

Thus,

lnL(φ, p) � 7 ln(φpφp) + 13 ln[φp(1 − φp)] + 6 ln[φ(1 − p)φp] + 29 ln[1 − φp − φ(1 − p)φp]

Again, we can use numerical methods to solve for the values of φ and p which maximize the likelihood

of the observed frequencies of each encounter history. The likelihood pro�le for these data is plotted as

a 2-dimensional contour plot, shown below:

We see that the maximum of the likelihood occurs at p � 0.542 and φ � 0.665 (where the 2 dark black

lines cross in the �gure).

For this example, we used a numerical approach to �nd the MLE. In fact, for this example where φ

and p are constant over time, the probability expressions are de�ned entirely by these two parameters,

and we could (if we really had to) write the likelihood as two closed-form equations in φ and p, and

derive estimates for φ and p analytically. All we need to do is (1) take the partial derivatives of the

likelihood with respect to each of the parameters (φ, p) in turn (∂L/∂φ, ∂L/∂p), (2) set each partial

derivative to 0, and (3) solve the resulting set of simultaneous equations.

Solving simultaneous equations is something that most symbolic math software programs (e.g.,

MAPLE, Mathematica, GAUSS, Maxima) does extremely well. For this problem, the MLE are esti-

mated analytically as φ̂ � 0.665 and p̂ � 0.542 (just as we saw earlier using the numerical approach).

However, recall that many of the likelihoods we’ll be working with cannot be evaluated in closed form,
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so we will rely in numerical methods. Program MARK evaluates all likelihoods (and functions of

likelihoods) numerically.

What is the actual value of the likelihood at this point? On the log scale, ln(L) is maximized at -

65.041. For comparison, the maximized ln(L) for the model where both φ and p were allowed to vary

with time is -65.035. Now, these likelihoods aren’t very far apart - only in the second and third decimal

places. Further, the two models (with constant φ and p, and with time varying φ and p) di�er by only

1 estimable parameter (we’ll talk a lot more about estimable parameters in coming lectures). So, a χ2

test would have only 1 df. The di�erence in the ln(L) is 0.006 (actually, the test is based on 2 ln(L),

so the di�erence is actually 0.012). This di�erence is not signi�cant (in the familiar sense of ‘statistical

signi�cance’) at P ≫ 0.5. So, the question we now face is, which model do we pick? This takes us to

one of the main themes of this book – model selection. But, this is a glimpse of where we’re headed.

1.5. Variance estimation for > 1 parameter

Earlier, we considered the derivation of the MLE and the variance for a simple situation involving only

a single parameter. If in fact we have more than one parameter, the same idea we’ve just described for

one parameter still works, but there is one important di�erence: a multi-parameter likelihood surface

will have more than one second partial derivative. In fact, what we end up with a matrix of second

partial derivatives, called the Hessian.

Consider for example, the log-likelihood of the simple mark-recapture data set we just analyzed in

the preceding section:

lnL(φ, p) � 7 ln(φpφp) + 13 ln[φp(1 − φp)] + 6 ln[φ(1 − p)φp] + 29 ln[1 − φp − φ(1 − p)φp]

Thus, the Hessian H (i.e., the matrix of second partial derivatives of the likelihood L with respect to φ

and p) would be

H �
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We’ll leave it as an exercise for you to derive the second partial derivatives corresponding to each of

the elements of the Hessian. It isn’t di�cult, just somewhat cumbersome. For example,

∂
2
L

∂φ2 � −
26

φ2 −
26p

φ(1 − φp)
−

13[p(1 − φp) − φp2]
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29[−p − 2φ(1 − p)p]2
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Pretty ugly (and this for a simple model with only 2 parameters - φ and p - both of which are held

constant over time in this example). Good thing MARK handles all this messy stu� for you.
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Next, we evaluate the Hessian at the MLE for φ and p (i.e., we substitute the MLE values for our

parameters - φ̂ � 0.6648 and p̂ � 0.5415 - into the Hessian), which yields the information matrix I

I �

[
−203.06775 −136.83886

−136.83886 −147.43934

]

The negative inverse of the information matrix (−I−1) is the variance-covariancematrix for parameters

φ and p

−I−1
� −

[
−203.06775 −136.83886

−136.83886 −147.43934

]−1

�

[
0.0131 −0.0122

−0.0122 0.0181

]

Note that the variances are found along the diagonal of the matrix, while the o�-diagonal elements are

the covariances.

In general, for an arbitrary parameter θ, the variance of θi is given as the elements of the negative

inverse of the information matrix corresponding to

∂
2 lnL

∂θi∂θi

while the covariance of θi with θj is given as the elements of the negative inverse of the information

matrix corresponding to

∂
2 lnL

∂θi∂θj

Obviously, the variance-covariance matrix is the basis for deriving measures of the precision of our

estimates. But, as we’ll see in later chapters, the variance-covariance matrix is used for much more -

including estimating the number of estimable parameters in the model. While MARK handles all this

for you, it’s important to have a least a feel for what MARK is doing ‘behind the scenes’, and why. This

will help with interpreting MARK output, and will help you �gure out what might on occasion be

causing problems. We will cover these and a few other related details in later chapters.

1.6. More than ‘estimation’ - ML and statistical testing

In the preceding, we focussed on the maximization of the likelihood as a means of deriving estimates

of parameters and the sampling variance of those parameters. However, the other primary use of

likelihood methods is for comparing the �ts of di�erent models.

We know that L(θ̂) is the value of the likelihood function evaluated at the MLE θ̂, whereas L(θ) is

the likelihood for the true (but unknown) parameter θ. Since the MLE maximizes the likelihood for a

given sample, then the value of the likelihood at the true parameter value θ is generally smaller than

the MLE θ̂ (unless by chance θ̂ and θ happen to coincide).

This, combined with other properties of ML estimators noted earlier lead directly to several classic

and general procedures for testing the statistical hypothesis that Ho : θ � θ0. Here we brie�y describe

three of the more commonly used tests.

Fisher’s Score Test

The ‘score’ is the slope of the log-likelihood at a particular value of θ. In other words, S(θ) �

∂ lnL(θ)/∂θ. At the MLE, the score (slope) is 0 (by de�nition of a maximum).
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Recall from earlier in this chapter that

v̂ar(θ̂) �

[
−

(

∂
2 lnL(θ | data)

∂θ2

)]−1

θ�θ̂

The term inside the inner parentheses is known as Fisher information

I(θ) � −
∂

2 lnL(θ)

∂θ2

It can be shown that the score statistic

S0 �
S

(

θ0

)

√

I
(

θ0

)

is asymptotically distributed as N (0, 1) under H0.

Wald test

The Wald test relies on the asymptotic normality of the MLE θ̂. Given the normality of the MLE, we

can calculate the test statistic

Z0 �
θ̂ − θ0

√

v̂ar
(

θ̂
)

which is asymptotically distributed as N (0, 1) under the null Ho .

Likelihood ratio test

It is known that

2
[
lnL(θ̂) − lnL(θ0)

]

follows an asymptotic χ2 distribution with one degree of freedom.

The basic relationship among these tests is shown in the following diagram:
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In general, these three tests are asymptotically equivalent, although in some applications, the score

test has the practical advantage of not requiring the computation of the MLE at θ̂ (since S0 depends

only on the null value θ0, which is speci�ed in H0). We consider one of these tests (the likelihood ratio

test) in much more detail in Chapter 4.

1.7. Technical aside: a bit more on variances

As we discussed earlier, the classic MLE approach to variance calculation (for purposes of creating a

SE and so forth) is to use the negative inverse of the 2nd derivative of the MLE evaluated at the MLE.

However, the problem with this approach is that, in general, it leads to derivation of symmetrical 95%

CI, and in many cases – especially for parameters that are bounded [0, 1] – this makes no sense. A simple

example will show what we mean. Suppose we release 30 animals, and �nd 1 survivor. We know from

last time that the MLE for the survival probability is (1/30) � 0.03333. We also know from earlier in

this chapter that the classical estimator for the variance, based on the 2nd derivative, is

v̂ar(p̂) �
p(1 − p)

N
�

0.0333(1 − 0.0333)

30
� 0.0010741

So, based on this, the 95% CI using classical approaches would be ±1.96(SE), where the SE (standard

error) is estimated as the square-root of the variance. Thus, given v̂ar � 0.001074, the 95% CI would be

±1.96(0.03277), or [0.098,−0.031]. OK, so what’s wrong with this? Well, clearly, we don’t expect a 95%

CI to ever allow values < 0 (or > 1) for a parameter that is logically bounded to fall between 0 and 1

(like φ or p). So, there must be a problem, right? Well, somewhat. Fortunately, however, there is a better

way, using something called the pro�le likelihood approach, which makes more explicit use of the shape

of the likelihood. We’ll go into the pro�le likelihood in further detail in later chapters, but to brie�y

introduce the concepts - consider the following diagram, which shows the maximum part of the log

likelihood for φ, given N � 30, y � 23 (i.e., 23/30 survive).

Pro�le likelihood con�dence intervals are based on the log-likelihood function. For a single parame-

ter, likelihood theory shows that the 2 points 1.92 units down from the maximum of the log likelihood

function provide a 95% con�dence interval when there is no extra-binomial variation (i.e., c � 1; see

Chapter 5). The value 1.92 is half of the χ2
1 � 3.84. Thus, the same con�dence interval can be computed
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with the deviance by adding 3.84 to the minimum of the deviance function, where the deviance is the

log-likelihood multiplied by -2 minus the -2 log likelihood value of the saturated model (more and these

concepts in later chapters).

Put another way, we use the critical value of 1.92 to derive the pro�le - you take the value of the log

likelihood at the maximum (for this example, the maximum occurs at −16.30), add 1.92 to it (yielding

−18.22; note we keep the negative sign here), and look to see where the −18.22 line intersects with the

pro�le of the log likelihood function. In this case, we see that the intersection occurs at approximately

0.6 and 0.9. The MLE is (23/30) � 0.767, so clearly, the pro�le 95% CI is not symmetrical around this

MLE value. But, it is bounded on the interval [0, 1]. The pro�le likelihood is the preferred approach to

deriving 95% CI. The biggest limit to using it is computational – it simply takes more work to derive a

pro�le likelihood (and corresponding CI). Fortunately, MARK does all the work for us.

1.8. Summary

That’s it for Chapter 1! Nothing about MARK, but some important background. Beginning with Chapter

2, we’ll consider formatting of our data (the ‘encounter histories’ we introduced brie�y in this chapter).

After that, the real details of using program MARK. Our suggestion at this stage is to (i) leave your own

data alone - you need to master the basics �rst. This means working through at least chapters 3→ 8, in

sequence, using the example data sets. Chapter 9 and higher refer to speci�c data types - one of more

may be of particular interest to you. Then, when you’re ready (i.e., have a good understanding of the

basic concepts), (ii) get your data in shape - this is covered in Chapter 2.
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