
Pro Git

Scott Chacon

July 29, 2009

Contents

1 Getting Started 1

1.1 About Version Control . 1

1.1.1 Local Version Control Systems 1

1.1.2 Centralized Version Control Systems 2

1.1.3 Distributed Version Control Systems 3

1.2 A Short History of Git . 4

1.3 Git Basics . 4

1.3.1 Snapshots, Not Differences 4

1.3.2 Nearly Every Operation Is Local 5

1.3.3 Git Has Integrity . 6

1.3.4 Git Generally Only Adds Data 6

1.3.5 The Three States . 6

1.4 Installing Git . 8

1.4.1 Installing from Source . 8

1.4.2 Installing on Linux . 8

1.4.3 Installing on Mac . 9

1.4.4 Installing on Windows . 9

1.5 First-Time Git Setup . 10

1.5.1 Your Identity . 10

1.5.2 Your Editor . 10

1.5.3 Your Diff Tool . 11

1.5.4 Checking Your Settings . 11

1.6 Getting Help . 11

1.7 Summary . 12

2 Git Basics 13

2.1 Getting a Git Repository . 13

2.1.1 Initializing a Repository in an Existing Directory 13

2.1.2 Cloning an Existing Repository 14

2.2 Recording Changes to the Repository 14

2.2.1 Checking the Status of Your Files 15

2.2.2 Tracking New Files . 16

2.2.3 Staging Modified Files . 16

2.2.4 Ignoring Files . 17

2.2.5 Viewing Your Staged and Unstaged Changes 18

2.2.6 Committing Your Changes 20

2.2.7 Skipping the Staging Area 22

i

PRO GIT SCOTT CHACON

2.2.8 Removing Files . 22

2.2.9 Moving Files . 23

2.3 Viewing the Commit History . 24

2.3.1 Limiting Log Output . 27

2.3.2 Using a GUI to Visualize History 29

2.4 Undoing Things . 30

2.4.1 Changing Your Last Commit 30

2.4.2 Unstaging a Staged File . 30

2.4.3 Unmodifying a Modified File 31

2.5 Working with Remotes . 32

2.5.1 Showing Your Remotes . 32

2.5.2 Adding Remote Repositories 33

2.5.3 Fetching and Pulling from Your Remotes 33

2.5.4 Pushing to Your Remotes . 34

2.5.5 Inspecting a Remote . 34

2.5.6 Removing and Renaming Remotes 35

2.6 Tagging . 35

2.6.1 Listing Your Tags . 36

2.6.2 Creating Tags . 36

2.6.3 Annotated Tags . 36

2.6.4 Signed Tags . 37

2.6.5 Lightweight Tags . 38

2.6.6 Verifying Tags . 38

2.6.7 Tagging Later . 39

2.6.8 Sharing Tags . 39

2.7 Tips and Tricks . 40

2.7.1 Auto-Completion . 40

2.7.2 Git Aliases . 41

2.8 Summary . 42

3 Git Branching 43

3.1 What a Branch Is . 43

3.2 Basic Branching and Merging . 48

3.2.1 Basic Branching . 48

3.2.2 Basic Merging . 52

3.2.3 Basic Merge Conflicts . 53

3.3 Branch Management . 55

3.4 Branching Workflows . 56

3.4.1 Long-Running Branches . 56

3.4.2 Topic Branches . 57

3.5 Remote Branches . 58

3.5.1 Pushing . 61

3.5.2 Tracking Branches . 62

3.5.3 Deleting Remote Branches 63

3.6 Rebasing . 63

3.6.1 The Basic Rebase . 64

3.6.2 More Interesting Rebases . 65

3.6.3 The Perils of Rebasing . 68

ii

CHAPTER 0 CONTENTS

3.7 Summary . 70

4 Git on the Server 71

4.1 The Protocols . 71

4.1.1 Local Protocol . 72

4.1.2 The SSH Protocol . 73

4.1.3 The Git Protocol . 73

4.1.4 The HTTP/S Protocol . 74

4.2 Getting Git on a Server . 75

4.2.1 Putting the Bare Repository on a Server 76

4.2.2 Small Setups . 76

4.3 Generating Your SSH Public Key . 77

4.4 Setting Up the Server . 78

4.5 Public Access . 80

4.6 GitWeb . 81

4.7 Gitosis . 82

4.8 Git Daemon . 86

4.9 Hosted Git . 88

4.9.1 GitHub . 88

4.9.2 Setting Up a User Account 88

4.9.3 Creating a New Repository 89

4.9.4 Importing from Subversion 92

4.9.5 Adding Collaborators . 92

4.9.6 Your Project . 93

4.9.7 Forking Projects . 94

4.9.8 GitHub Summary . 94

4.10 Summary . 95

5 Distributed Git 97

5.1 Distributed Workflows . 97

5.1.1 Centralized Workflow . 97

5.1.2 Integration-Manager Workflow 98

5.1.3 Dictator and Lieutenants Workflow 99

5.2 Contributing to a Project . 100

5.2.1 Commit Guidelines . 100

5.2.2 Private Small Team . 102

5.2.3 Private Managed Team . 107

5.2.4 Public Small Project . 111

5.2.5 Public Large Project . 115

5.2.6 Summary . 117

5.3 Maintaining a Project . 117

5.3.1 Working in Topic Branches 117

5.3.2 Applying Patches from E-mail 118

5.3.3 Checking Out Remote Branches 121

5.3.4 Determining What Is Introduced 121

5.3.5 Integrating Contributed Work 123

5.3.6 Tagging Your Releases . 127

5.3.7 Generating a Build Number 128

iii

PRO GIT SCOTT CHACON

5.3.8 Preparing a Release . 129

5.3.9 The Shortlog . 129

5.4 Summary . 129

6 Git Tools 131

6.1 Revision Selection . 131

6.1.1 Single Revisions . 131

6.1.2 Short SHA . 131

6.1.3 A SHORT NOTE ABOUT SHA–1 132

6.1.4 Branch References . 133

6.1.5 RefLog Shortnames . 133

6.1.6 Ancestry References . 134

6.1.7 Commit Ranges . 136

6.2 Interactive Staging . 138

6.2.1 Staging and Unstaging Files 138

6.2.2 Staging Patches . 140

6.3 Stashing . 141

6.3.1 Stashing Your Work . 141

6.3.2 Creating a Branch from a Stash 143

6.4 Rewriting History . 144

6.4.1 Changing the Last Commit 144

6.4.2 Changing Multiple Commit Messages 145

6.4.3 Reordering Commits . 146

6.4.4 Squashing a Commit . 147

6.4.5 Splitting a Commit . 147

6.4.6 The Nuclear Option: filter-branch 148

6.5 Debugging with Git . 149

6.5.1 File Annotation . 150

6.5.2 Binary Search . 151

6.6 Submodules . 152

6.6.1 Starting with Submodules 153

6.6.2 Cloning a Project with Submodules 154

6.6.3 Superprojects . 156

6.6.4 Issues with Submodules . 157

6.7 Subtree Merging . 158

6.8 Summary . 160

7 Customizing Git 161

7.1 Git Configuration . 161

7.1.1 Basic Client Configuration 162

7.1.2 Colors in Git . 164

7.1.3 External Merge and Diff Tools 164

7.1.4 Formatting and Whitespace 167

7.1.5 Server Configuration . 168

7.2 Git Attributes . 169

7.2.1 Binary Files . 169

7.2.2 Keyword Expansion . 172

7.2.3 Exporting Your Repository 174

iv

CHAPTER 0 CONTENTS

7.2.4 Merge Strategies . 175

7.3 Git Hooks . 175

7.3.1 Installing a Hook . 175

7.3.2 Client-Side Hooks . 175

7.3.3 Server-Side Hooks . 177

7.4 An Example Git-Enforced Policy . 178

7.4.1 Server-Side Hook . 178

7.4.2 Client-Side Hooks . 183

7.5 Summary . 186

8 Git and Other Systems 187

8.1 Git and Subversion . 187

8.1.1 git svn . 187

8.1.2 Setting Up . 188

8.1.3 Getting Started . 189

8.1.4 Committing Back to Subversion 190

8.1.5 Pulling in New Changes . 191

8.1.6 Git Branching Issues . 192

8.1.7 Subversion Branching . 193

8.1.8 Switching Active Branches 194

8.1.9 Subversion Commands . 194

8.1.10 Git-Svn Summary . 196

8.2 Migrating to Git . 196

8.2.1 Importing . 196

8.2.2 Subversion . 197

8.2.3 Perforce . 198

8.2.4 A Custom Importer . 200

8.3 Summary . 204

9 Git Internals 205

9.1 Plumbing and Porcelain . 205

9.2 Git Objects . 206

9.2.1 Tree Objects . 208

9.2.2 Commit Objects . 210

9.2.3 Object Storage . 212

9.3 Git References . 214

9.3.1 The HEAD . 215

9.3.2 Tags . 216

9.3.3 Remotes . 216

9.4 Packfiles . 217

9.5 The Refspec . 220

9.5.1 Pushing Refspecs . 221

9.5.2 Deleting References . 221

9.6 Transfer Protocols . 222

9.6.1 The Dumb Protocol . 222

9.6.2 The Smart Protocol . 224

9.7 Maintenance and Data Recovery . 225

9.7.1 Maintenance . 226

v

PRO GIT SCOTT CHACON

9.7.2 Data Recovery . 226

9.7.3 Removing Objects . 228

9.8 Summary . 231

vi

Chapter 1

Getting Started

This chapter will be about getting started with Git. We will begin at the beginning by

explaining some background on version control tools, then move on to how to get Git

running on your system and finally how to get it setup to start working with. At the end

of this chapter you should understand why Git is around, why you should use it and

you should be all setup to do so.

1.1 About Version Control

What is version control, and why should you care? Version control is a system that

records changes to a file or set of files over time so that you can recall specific versions

later. For the examples in this book you will use software source code as the files being

version controlled, though in reality you can do this with nearly any type of file on a

computer.

If you are a graphic or web designer and want to keep every version of an image

or layout (which you would most certainly want to), a Version Control System (VCS)

is a very wise thing to use. It allows you to revert files back to a previous state, revert

the entire project back to a previous state, compare changes over time, see who last

modified something that might be causing a problem, who introduced an issue and

when, and more. Using a VCS also generally means that if you screw things up or lose

files, you can easily recover. In addition, you get all this for very little overhead.

1.1.1 Local Version Control Systems

Many people’s version-control method of choice is to copy files into another directory

(perhaps a time-stamped directory, if they’re clever). This approach is very common

because it is so simple, but it is also incredibly error prone. It is easy to forget which

directory you’re in and accidentally write to the wrong file or copy over files you don’t

mean to.

To deal with this issue, programmers long ago developed local VCSs that had a

simple database that kept all the changes to files under revision control (see Figure

1.1).

One of the more popular VCS tools was a system called rcs, which is still dis-

tributed with many computers today. Even the popular Mac OS X operating system

1

PRO GIT SCOTT CHACON

Figure 1.1: Local version control diagram

includes the rcs command when you install the Developer Tools. This tool basically

works by keeping patch sets (that is, the differences between files) from one change to

another in a special format on disk; it can then re-create what any file looked like at

any point in time by adding up all the patches.

1.1.2 Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with de-

velopers on other systems. To deal with this problem, Centralized Version Control

Systems (CVCSs) were developed. These systems, such as CVS, Subversion, and Per-

force, have a single server that contains all the versioned files, and a number of clients

that check out files from that central place. For many years, this has been the standard

for version control (see Figure 1.2).

Figure 1.2: Centralized version control diagram

2

CHAPTER 1 GETTING STARTED

This setup offers many advantages, especially over local VCSs. For example, ev-

eryone knows to a certain degree what everyone else on the project is doing. Adminis-

trators have fine-grained control over who can do what; and it’s far easier to administer

a CVCS than it is to deal with local databases on every client.

However, this setup also has some serious downsides. The most obvious is the

single point of failure that the centralized server represents. If that server goes down for

an hour, then during that hour nobody can collaborate at all or save versioned changes

to anything they’re working on. If the hard disk the central database is on becomes

corrupted, and proper backups haven’t been kept, you lose absolutely everything—the

entire history of the project except whatever single snapshots people happen to have on

their local machines. Local VCS systems suffer from this same problem—whenever

you have the entire history of the project in a single place, you risk losing everything.

1.1.3 Distributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such

as Git, Mercurial, Bazaar or Darcs), clients don’t just check out the latest snapshot of

the files: they fully mirror the repository. Thus if any server dies, and these systems

were collaborating via it, any of the client repositories can be copied back up to the

server to restore it. Every checkout is really a full backup of all the data (see Figure

1.3).

Figure 1.3: Distributed version control diagram

Furthermore, many of these systems deal pretty well with having several remote

repositories they can work with, so you can collaborate with different groups of people

3

PRO GIT SCOTT CHACON

in different ways simultaneously within the same project. This allows you to set up sev-

eral types of workflows that aren’t possible in centralized systems, such as hierarchical

models.

1.2 A Short History of Git

As with many great things in life, Git began with a bit of creative destruction and fiery

controversy. The Linux kernel is an open source software project of fairly large scope.

For most of the lifetime of the Linux kernel maintenance (19912002), changes to the

software were passed around as patches and archived files. In 2002, the Linux kernel

project began using a proprietary DVCS system called BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel

and the commercial company that developed BitKeeper broke down, and the tool’s

free-of-charge status was revoked. This prompted the Linux development community

(and in particular Linus Torvalds, the creator of Linux) to develop their own tool based

on some of the lessons they learned while using BitKeeper. Some of the goals of the

new system were as follows:

• Speed

• Simple design

• Strong support for non-linear development (thousands of parallel branches)

• Fully distributed

• Able to handle large projects like the Linux kernel efficiently (speed and data

size)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain

these initial qualities. It’s incredibly fast, it’s very efficient with large projects, and it

has an incredible branching system for non-linear development (See Chapter 3).

1.3 Git Basics

So, what is Git in a nutshell? This is an important section to absorb, because if you

understand what Git is and the fundamentals of how it works, then using Git effectively

will probably be much easier for you. As you learn Git, try to clear your mind of the

things you may know about other VCSs, such as Subversion and Perforce; doing so

will help you avoid subtle confusion when using the tool. Git stores and thinks about

information much differently than these other systems, even though the user interface

is fairly similar; understanding those differences will help prevent you from becoming

confused while using it.

1.3.1 Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included)

is the way Git thinks about its data. Conceptually, most other systems store information

as a list of file-based changes. These systems (CVS, Subversion, Perforce, Bazaar, and

4

CHAPTER 1 GETTING STARTED

so on) think of the information they keep as a set of files and the changes made to each

file over time, as illustrated in Figure 1.4.

Figure 1.4: Other systems tend to store data as changes to a base version of each file.

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more

like a set of snapshots of a mini filesystem. Every time you commit, or save the state

of your project in Git, it basically takes a picture of what all your files look like at

that moment and stores a reference to that snapshot. To be efficient, if files have not

changed, Git doesn’t store the file again—just a link to the previous identical file it has

already stored. Git thinks about its data more like Figure 1.5.

Figure 1.5: Git stores data as snapshots of the project over time.

This is an important distinction between Git and nearly all other VCSs. It makes

Git reconsider almost every aspect of version control that most other systems copied

from the previous generation. This makes Git more like a mini filesystem with some

incredibly powerful tools built on top of it, rather than simply a VCS. We’ll explore

some of the benefits you gain by thinking of your data this way when we cover Git

branching in Chapter 3.

1.3.2 Nearly Every Operation Is Local

Most operations in Git only need local files and resources to operate generally no

information is needed from another computer on your network. If you’re used to a

CVCS where most operations have that network latency overhead, this aspect of Git

will make you think that the gods of speed have blessed Git with unworldly powers.

Because you have the entire history of the project right there on your local disk, most

operations seem almost instantaneous.

5

PRO GIT SCOTT CHACON

For example, to browse the history of the project, Git doesn’t need to go out to the

server to get the history and display it for you—it simply reads it directly from your

local database. This means you see the project history almost instantly. If you want to

see the changes introduced between the current version of a file and the file a month

ago, Git can look up the file a month ago and do a local difference calculation, instead

of having to either ask a remote server to do it or pull an older version of the file from

the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If

you get on an airplane or a train and want to do a little work, you can commit happily

until you get to a network connection to upload. If you go home and can’t get your

VPN client working properly, you can still work. In many other systems, doing so is

either impossible or painful. In Perforce, for example, you can’t do much when you

aren’t connected to the server; and in Subversion and CVS, you can edit files, but you

can’t commit changes to your database (because your database is offline). This may

not seem like a huge deal, but you may be surprised what a big difference it can make.

1.3.3 Git Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that

checksum. This means it’s impossible to change the contents of any file or directory

without Git knowing about it. This functionality is built into Git at the lowest levels and

is integral to its philosophy. You can’t lose information in transit or get file corruption

without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA–1 hash. This

is a 40-character string composed of hexadecimal characters (09 and af) and calculated

based on the contents of a file or directory structure in Git. A SHA–1 hash looks

something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so

much. In fact, Git stores everything not by file name but in the Git database addressable

by the hash value of its contents.

1.3.4 Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It

is very difficult to get the system to do anything that is not undoable or to make it

erase data in any way. As in any VCS, you can lose or mess up changes you haven’t

committed yet; but after you commit a snapshot into Git, it is very difficult to lose,

especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger

of severely screwing things up. For a more in-depth look at how Git stores its data and

how you can recover data that seems lost, see “Under the Covers” in Chapter 9.

1.3.5 The Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest

of your learning process to go smoothly. Git has three main states that your files can

6

CHAPTER 1 GETTING STARTED

reside in: committed, modified, and staged. Committed means that the data is safely

stored in your local database. Modified means that you have changed the file but have

not committed it to your database yet. Staged means that you have marked a modified

file in its current version to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the

working directory, and the staging area.

Figure 1.6: Working directory, staging area, and git directory

The Git directory is where Git stores the metadata and object database for your

project. This is the most important part of Git, and it is what is copied when you clone

a repository from another computer.

The working directory is a single checkout of one version of the project. These files

are pulled out of the compressed database in the Git directory and placed on disk for

you to use or modify.

The staging area is a simple file, generally contained in your Git directory, that

stores information about what will go into your next commit. It’s sometimes referred

to as the index, but it’s becoming standard to refer to it as the staging area.

The basic Git workflow goes something like this:

1. You modify files in your working directory.

2. You stage the files, adding snapshots of them to your staging area.

3. You do a commit, which takes the files as they are in the staging area and stores

that snapshot permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed

since it was checked out but has not been staged, it is modified. In Chapter 2, you’ll

learn more about these states and how you can either take advantage of them or skip

the staged part entirely.

7

PRO GIT SCOTT CHACON

1.4 Installing Git

Let’s get into using some Git. First things first—you have to install it. You can get it a

number of ways; the two major ones are to install it from source or to install an existing

package for your platform.

1.4.1 Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most

recent version. Each version of Git tends to include useful UI enhancements, so getting

the latest version is often the best route if you feel comfortable compiling software from

source. It is also the case that many Linux distributions contain very old packages; so

unless you’re on a very up-to-date distro or are using backports, installing from source

may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl,

zlib, openssl, expat, and libiconv. For example, if you’re on a system that has yum

(such as Fedora) or apt-get (such as a Debian based system), you can use one of these

commands to install all of the dependencies:

$ yum install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

$ apt-get install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

When you have all the necessary dependencies, you can go ahead and grab the

latest snapshot from the Git web site:

http://git-scm.com/download

Then, compile and install:

$ tar -zxf git-1.6.0.5.tar.gz

$ cd git-1.6.0.5

$ make prefix=/usr/local all

$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

1.4.2 Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through

the basic package-management tool that comes with your distribution. If you’re on

Fedora, you can use yum:

$ yum install git-core

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git-core

8

CHAPTER 1 GETTING STARTED

1.4.3 Installing on Mac

There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git

installer, which you can download from the Google Code page (see Figure 1.7):

http://code.google.com/p/git-osx-installer

Figure 1.7: Git OS X installer

The other major way is to install Git via MacPorts (http://www.macports.org). If

you have MacPorts installed, install Git via

$ sudo port install git-core +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in

case you ever have to use Git with Subversion repositories (see Chapter 8).

1.4.4 Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier

installation procedures. Simply download the installer exe file from the Google Code

page, and run it:

http://code.google.com/p/msysgit

After it’s installed, you have both a command-line version (including an SSH client

that will come in handy later) and the standard GUI.

9

PRO GIT SCOTT CHACON

1.5 First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize

your Git environment. You should have to do these things only once; they’ll stick

around between upgrades. You can also change them at any time by running through

the commands again.

Git comes with a tool called git config that lets you get and set configuration vari-

ables that control all aspects of how Git looks and operates. These variables can be

stored in three different places:

• /etc/gitconfig file: Contains values for every user on the system and all their

repositories. If you pass the option--system to git config , it reads and writes

from this file specifically.

• /.gitconfig file: Specific to your user. You can make Git read and write to this

file specifically by passing the --global option.

• config file in the git directory (that is, .git/config) of whatever repository you’re

currently using: Specific to that single repository. Each level overrides values in

the previous level, so values in .git/config trump those in /etc/gitconfig .

OnWindows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Documents

and Settings\$USER for most people). It also still looks for /etc/gitconfig, although it’s

relative to the MSys root, which is wherever you decide to install Git on your Windows

system when you run the installer.

1.5.1 Your Identity

The first thing you should do when you install Git is to set your user name and e-mail

address. This is important because every Git commit uses this information, and it’s

immutably baked into the commits you pass around:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then

Git will always use that information for anything you do on that system. If you want to

override this with a different name or e-mail address for specific projects, you can run

the command without the --global option when you’re in that project.

1.5.2 Your Editor

Now that your identity is set up, you can configure the default text editor that will be

used when Git needs you to type in a message. By default, Git uses your system’s

default editor, which is generally Vi or Vim. If you want to use a different text editor,

such as Emacs, you can do the following:

$ git config --global core.editor emacs

10

CHAPTER 1 GETTING STARTED

1.5.3 Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve

merge conflicts. Say you want to use vimdiff:

$ git config --global merge.tool vimdiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and

opendiff as valid merge tools. You can also set up a custom tool; see Chapter 7 for

more information about doing that.

1.5.4 Checking Your Settings

If you want to check your settings, you can use the git config --list command to

list all the settings Git can find at that point:

$ git config --list

user.name=Scott Chacon

user.email=schacon@gmail.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different

files (/etc/gitconfig and /.gitconfig , for example). In this case, Git uses the last

value for each unique key it sees.

You can also check what Git thinks a specific key’s value is by typing git config

key:

$ git config user.name

Scott Chacon

1.6 Getting Help

If you ever need help while using Git, there are three ways to get the manual page

(manpage) help for any of the Git commands:

$ git help <verb>

$ git <verb> --help

$ man git-<verb>

For example, you can get the manpage help for the config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If

the manpages and this book aren’t enough and you need in-person help, you can try the

#git or #github channel on the Freenode IRC server (irc.freenode.net). These channels

are regularly filled with hundreds of people who are all very knowledgeable about Git

and are often willing to help.

11

PRO GIT SCOTT CHACON

1.7 Summary

You should have a basic understanding of what Git is and how it’s different from the

CVCS you may have been using. You should also now have a working version of Git

on your system that’s set up with your personal identity. It’s now time to learn some

Git basics.

12

Chapter 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers

every basic command you need to do the vast majority of the things you’ll eventually

spend your time doing with Git. By the end of the chapter, you should be able to

configure and initialize a repository, begin and stop tracking files, and stage and commit

changes. We’ll also show you how to set up Git to ignore certain files and file patterns,

how to undo mistakes quickly and easily, how to browse the history of your project and

view changes between commits, and how to push and pull from remote repositories.

2.1 Getting a Git Repository

You can get a Git project using two main approaches. The first takes an existing project

or directory and imports it into Git. The second clones an existing Git repository from

another server.

2.1.1 Initializing a Repository in an Existing Directory

If you’re starting to track an existing project in Git, you need to go to the project’s

directory and type

$ git init

This creates a new subdirectory named .git that contains all of your necessary repos-

itory files — a Git repository skeleton. At this point, nothing in your project is tracked

yet. (See Chapter 9 for more information about exactly what files are contained in the

.git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty direc-

tory), you should probably begin tracking those files and do an initial commit. You can

accomplish that with a few git add commands that specify the files you want to track,

followed by a commit:

$ git add *.c

$ git add README

$ git commit m ’initial project version’

We’ll go over what these commands do in just a minute. At this point, you have a

Git repository with tracked files and an initial commit.

13

PRO GIT SCOTT CHACON

2.1.2 Cloning an Existing Repository

If you want to get a copy of an existing Git repository — for example, a project you’d

like to contribute to — the command you need is git clone. If you’re familiar with

other VCS systems such as Subversion, you’ll notice that the command is clone and

not checkout. This is an important distinction — Git receives a copy of nearly all data

that the server has. Every version of every file for the history of the project is pulled

down when you run git clone . In fact, if your server disk gets corrupted, you can

use any of the clones on any client to set the server back to the state it was in when it

was cloned (you may lose some server-side hooks and such, but all the versioned data

would be there—see Chapter 4 for more details).

You clone a repository with git clone [url] . For example, if you want to clone

the Ruby Git library called Grit, you can do so like this:

$ git clone git://github.com/schacon/grit.git

That creates a directory named “grit”, initializes a .git directory inside it, pulls

down all the data for that repository, and checks out a working copy of the latest ver-

sion. If you go into the new grit directory, you’ll see the project files in there, ready

to be worked on or used. If you want to clone the repository into a directory named

something other than grit, you can specify that as the next command-line option:

$ git clone git://github.com/schacon/grit.git mygrit

That command does the same thing as the previous one, but the target directory is

called mygrit.

Git has a number of different transfer protocols you can use. The previous example

uses the git:// protocol, but you may also see http(s):// or user@server:/path.git ,

which uses the SSH transfer protocol. Chapter 4 will introduce all of the available

options the server can set up to access your Git repository and the pros and cons of

each.

2.2 Recording Changes to the Repository

You have a bona fide Git repository and a checkout or working copy of the files for that

project. You need to make some changes and commit snapshots of those changes into

your repository each time the project reaches a state you want to record.

Remember that each file in your working directory can be in one of two states:

tracked or untracked. Tracked files are files that were in the last snapshot; they can

be unmodified, modified, or staged. Untracked files are everything else - any files in

your working directory that were not in your last snapshot and are not in your staging

area. When you first clone a repository, all of your files will be tracked and unmodified

because you just checked them out and haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since

your last commit. You stage these modified files and then commit all your staged

changes, and the cycle repeats. This lifecycle is illustrated in Figure 2.1.

14

CHAPTER 2 GIT BASICS

Figure 2.1: The lifecycle of the status of your files

2.2.1 Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status

command. If you run this command directly after a clone, you should see something

like this:

$ git status

On branch master

nothing to commit (working directory clean)

This means you have a clean working directory—in other words, there are no

tracked and modified files. Git also doesn’t see any untracked files, or they would

be listed here. Finally, the command tells you which branch you’re on. For now, that

is always master, which is the default; you won’t worry about it here. The next chapter

will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file

didn’t exist before, and you run git status , you see your untracked file like so:

$ vim README

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Un-

tracked files” heading in your status output. Untracked basically means that Git sees

a file you didn’t have in the previous snapshot (commit); Git won’t start including it

in your commit snapshots until you explicitly tell it to do so. It does this so you don’t

accidentally begin including generated binary files or other files that you did not mean

to include. You do want to start including README, so let’s start tracking the file.

15

PRO GIT SCOTT CHACON

2.2.2 Tracking New Files

In order to begin tracking a new file, you use the command git add . To begin tracking

the README file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now

tracked and staged:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

You can tell that it’s staged because it’s under the “Changes to be committed” head-

ing. If you commit at this point, the version of the file at the time you ran git add is

what will be in the historical snapshot. You may recall that when you ran git init earlier,

you then ran git add (files) — that was to begin tracking files in your directory. The git

add command takes a path name for either a file or a directory; if it’s a directory, the

command adds all the files in that directory recursively.

2.2.3 Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file

called benchmarks.rb and then run your status command again, you get something

that looks like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

The benchmarks.rb file appears under a section named “Changed but not updated”

— which means that a file that is tracked has been modified in the working directory

but not yet staged. To stage it, you run the git add command (it’s a multipurpose

command— you use it to begin tracking new files, to stage files, and to do other things

like marking merge-conflicted files as resolved). Let’s run git add now to stage the

benchmarks.rb file, and then run git status again:

16

CHAPTER 2 GIT BASICS

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Both files are staged and will go into your next commit. At this point, suppose you

remember one little change that you want to make in benchmarks.rb before you commit

it. You open it again and make that change, and you’re ready to commit. However, let’s

run git status one more time:

$ vim benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

What the heck? Now benchmarks.rb is listed as both staged and unstaged. How is

that possible? It turns out that Git stages a file exactly as it is when you run the git add

command. If you commit now, the version of benchmarks.rb as it was when you last

ran the git add command is how it will go into the commit, not the version of the file as

it looks in your working directory when you run git commit. If you modify a file after

you run git add , you have to run git add again to stage the latest version of the file:

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

2.2.4 Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add or even

show you as being untracked. These are generally automatically generated files such

as log files or files produced by your build system. In such cases, you can create a file

listing patterns to match them named .gitignore. Here is an example .gitignore file:

17

PRO GIT SCOTT CHACON

$ cat .gitignore

*.[oa]

*̃

The first line tells Git to ignore any files ending in .o or .a — object and archive

files that may be the product of building your code. The second line tells Git to ignore

all files that end with a tilde (), which is used by many text editors such as Emacs to

mark temporary files. You may also include a log, tmp, or pid directory; automatically

generated documentation; and so on. Setting up a .gitignore file before you get going is

generally a good idea so you don’t accidentally commit files that you really don’t want

in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

• Blank lines or lines starting with # are ignored.

• Standard glob patterns work.

• You can end patterns with a forward slash (/) to specify a directory.

• You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*)

matches zero or more characters; [abc] matches any character inside the brackets (in

this case a, b, or c); a question mark (?) matches a single character; and brackets en-

closing characters seperated by a hyphen([0-9]) matches any character between them

(in this case 0 through 9) .

Here is another example .gitignore file:

a comment this is ignored

*.a # no .a files

!lib.a # but do track lib.a, even though you’re ignoring .a files above

/TODO # only ignore the root TODO file, not subdir/TODO

build/ # ignore all files in the build/ directory

doc/*.txt # ignore doc/notes.txt, but not doc/server/arch.txt

2.2.5 Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you — you want to know exactly what

you changed, not just which files were changed— you can use the git diff command.

We’ll cover git diff in more detail later; but you’ll probably use it most often to

answer these two questions: What have you changed but not yet staged? And what

have you staged that you are about to commit? Although git status answers those

questions very generally, git diff shows you the exact lines added and removed —

the patch, as it were.

Let’s say you edit and stage the README file again and then edit the bench-

marks.rb file without staging it. If you run your status command, you once again

see something like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

18

CHAPTER 2 GIT BASICS

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

To see what you’ve changed but not yet staged, type git diff with no other argu-

ments:

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..da65585 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

That command compares what is in your working directory with what is in your

staging area. The result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you

can use git diff -cached . (In Git versions 1.6.1 and later, you can also use git diff

-staged , which may be easier to remember.) This command compares your staged

changes to your last commit:

$ git diff --cached

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README2

@@ -0,0 +1,5 @@

+grit

+ by Tom Preston-Werner, Chris Wanstrath

+ http://github.com/mojombo/grit

+

+Grit is a Ruby library for extracting information from a Git repository

It’s important to note that git diff by itself doesn’t show all changes made since

your last commit — only changes that are still unstaged. This can be confusing, be-

cause if you’ve staged all of your changes, git diff will give you no output.

19

PRO GIT SCOTT CHACON

For another example, if you stage the benchmarks.rb file and then edit it, you can

use git diff to see the changes in the file that are staged and the changes that are

unstaged:

$ git add benchmarks.rb

$ echo ’# test line’ >> benchmarks.rb

$ git status

On branch master

#

Changes to be committed:

#

modified: benchmarks.rb

#

Changed but not updated:

#

modified: benchmarks.rb

#

Now you can use git diff to see what is still unstaged

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index e445e28..86b2f7c 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -127,3 +127,4 @@ end

main()

##pp Grit::GitRuby.cache_client.stats

+# test line

and git diff --cached to see what youve staged so far:

$ git diff --cached

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..e445e28 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

2.2.6 Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes.

Remember that anything that is still unstaged — any files you have created or modified

that you haven’t run git add on since you edited them — won’t go into this commit.

20

CHAPTER 2 GIT BASICS

They will stay as modified files on your disk. In this case, the last time you ran git

status , you saw that everything was staged, so you’re ready to commit your changes.

The simplest way to commit is to type git commit :

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s $EDITOR envi-

ronment variable — usually vim or emacs, although you can configure it with whatever

you want using the git config --global core.editor command as you saw in Chap-

ter 1).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

˜

˜

˜

".git/COMMIT_EDITMSG" 10L, 283C

You can see that the default commit message contains the latest output of the git

status command commented out and one empty line on top. You can remove these

comments and type your commit message, or you can leave them there to help you

remember what you’re committing. (For an even more explicit reminder of what you’ve

modified, you can pass the -v option to git commit . Doing so also puts the diff of your

change in the editor so you can see exactly what you did.) When you exit the editor, Git

creates your commit with that commit message (with the comments and diff stripped

out).

Alternatively, you can type your commit message inline with the commit command

by specifying it after a -m flag, like this:

$ git commit -m "Story 182: Fix benchmarks for speed"

[master]: created 463dc4f: "Fix benchmarks for speed"

2 files changed, 3 insertions(+), 0 deletions(-)

create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given

you some output about itself: which branch you committed to (master), what SHA–1

checksum the commit has (463dc4f), how many files were changed, and statistics about

lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging area.

Anything you didn’t stage is still sitting there modified; you can do another commit to

add it to your history. Every time you perform a commit, you’re recording a snapshot

of your project that you can revert to or compare to later.

21

PRO GIT SCOTT CHACON

2.2.7 Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them,

the staging area is sometimes a bit more complex than you need in your workflow. If

you want to skip the staging area, Git provides a simple shortcut. Providing the -a

option to the git commit command makes Git automatically stage every file that is

already tracked before doing the commit, letting you skip the git add part:

$ git status

On branch master

#

Changed but not updated:

#

modified: benchmarks.rb

#

$ git commit -a -m ’added new benchmarks’

[master 83e38c7] added new benchmarks

1 files changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the benchmarks.rb file in this case

before you commit.

2.2.8 Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accu-

rately, remove it from your staging area) and then commit. The git rm command does

that and also removes the file from your working directory so you don’t see it as an

untracked file next time around.

If you simply remove the file from your working directory, it shows up under the

“Changed but not updated” (that is, unstaged) area of your git status output:

$ rm grit.gemspec

$ git status

On branch master

#

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

#

deleted: grit.gemspec

#

Then, if you run git rm , it stages the file’s removal:

$ git rm grit.gemspec

rm ’grit.gemspec’

$ git status

On branch master

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: grit.gemspec

#

22

CHAPTER 2 GIT BASICS

The next time you commit, the file will be gone and no longer tracked. If you

modified the file and added it to the index already, you must force the removal with the

-f option. This is a safety feature to prevent accidental removal of data that hasn’t yet

been recorded in a snapshot and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree

but remove it from your staging area. In other words, you may want to keep the file

on your hard drive but not have Git track it anymore. This is particularly useful if you

forgot to add something to your .gitignore file and accidentally added it, like a large

log file or a bunch of .a compiled files. To do this, use the --cached option:

$ git rm --cached readme.txt

You can pass files, directories, and file-glob patterns to the git rm command. That

means you can do things such as

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its

own filename expansion in addition to your shell’s filename expansion. This command

removes all files that have the .log extension in the log/ directory. Or, you can do

something like this:

$ git rm *̃

This command removes all files that end with .

2.2.9 Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you

rename a file in Git, no metadata is stored in Git that tells it you renamed the file.

However, Git is pretty smart about figuring that out after the fact — we’ll deal with

detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in

Git, you can run something like

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status,

you’ll see that Git considers it a renamed file:

$ git mv README.txt README

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README.txt -> README

#

However, this is equivalent to running something like this:

23

PRO GIT SCOTT CHACON

$ mv README.txt README

$ git rm README.txt

$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file

that way or with the mv command. The only real difference is that mv is one command

instead of three — it’s a convenience function. More important, you can use any tool

you like to rename a file, and address the add/rm later, before you commit.

2.3 Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an

existing commit history, you’ll probably want to look back to see what has happened.

The most basic and powerful tool to do this is the git log command.

These examples use a very simple project called simplegit that I often use for

demonstrations. To get the project, run

git clone git://github.com/schacon/simplegit-progit.git

When you run git log in this project, you should get output that looks something

like this:

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

By default, with no arguments, git log lists the commits made in that repository

in reverse chronological order. That is, the most recent commits show up first. As you

can see, this command lists each commit with its SHA–1 checksum, the author’s name

and e-mail, the date written, and the commit message.

A huge number and variety of options to the git log command are available to

show you exactly what you’re looking for. Here, we’ll show you some of the most-

used options.

One of the more helpful options is -p, which shows the diff introduced in each

commit. You can also use -2, which limits the output to only the last two entries:

24

CHAPTER 2 GIT BASICS

$ git log p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require ’rake/gempackagetask’

spec = Gem::Specification.new do |s|

- s.version = "0.1.0"

+ s.version = "0.1.1"

s.author = "Scott Chacon"

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

end

end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

\ No newline at end of file

This option displays the same information but with a diff directly following each

entry. This is very helpful for code review or to quickly browse what happened during

a series of commits that a collaborator has added. You can also use a series of summa-

rizing options with git log . For example, if you want to see some abbreviated stats

for each commit, you can use the --stat option:

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

Rakefile | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

25

PRO GIT SCOTT CHACON

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

lib/simplegit.rb | 5 -----

1 files changed, 0 insertions(+), 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

README | 6 ++++++

Rakefile | 23 +++++++++++++++++++++++

lib/simplegit.rb | 25 +++++++++++++++++++++++++

3 files changed, 54 insertions(+), 0 deletions(-)

As you can see, the --stat option prints below each commit entry a list of modified

files, how many files were changed, and how many lines in those files were added

and removed. It also puts a summary of the information at the end. Another really

useful option is --pretty . This option changes the log output to formats other than the

default. A few prebuilt options are available for you to use. The oneline option prints

each commit on a single line, which is useful if you’re looking at a lot of commits.

In addition, the short , full , and fuller options show the output in roughly the same

format but with less or more information, respectively:

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the verison number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test code

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

The most interesting option is format , which allows you to specify your own log

output format. This is especially useful when you’re generating output for machine

parsing — because you specify the format explicitly, you know it won’t change with

updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 11 months ago : changed the verison number

085bb3b - Scott Chacon, 11 months ago : removed unnecessary test code

a11bef0 - Scott Chacon, 11 months ago : first commit

Table 2.1 lists some of the more useful options that format takes.

You may be wondering what the difference is between author and committer. The

author is the person who originally wrote the work, whereas the committer is the person

who last applied the work. So, if you send in a patch to a project and one of the core

members applies the patch, both of you get credit — you as the author and the core

member as the committer. We’ll cover this distinction a bit more in Chapter 5.

26

CHAPTER 2 GIT BASICS

Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author e-mail

%ad Author date (format respects the date= option)

%ar Author date, relative

%cn Committer name

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

The oneline and format options are particularly useful with another log option

called --graph . This option adds a nice little ASCII graph showing your branch and

merge history, which we can see our copy of the Grit project repository:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch ’master’ of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch ’defunkt’ into local

Those are only some simple output-formatting options to git log — there are many

more. Table 2.2 lists the options we’ve covered so far and some other common format-

ting options that may be useful, along with how they change the output of the log

command.

2.3.1 Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting op-

tions — that is, options that let you show only a subset of commits. You’ve seen one

such option already — the -2 option, which show only the last two commits. In fact,

you can do -<n> , where n is any integer to show the last n commits. In reality, you’re

unlikely to use that often, because Git by default pipes all output through a pager so

you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful.

For example, this command gets the list of commits made in the last two weeks:

27

PRO GIT SCOTT CHACON

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the

–stat command.

--name-only Show the list of files modified after the commit informa-

tion.

--name-status Show the list of files affected with added/modified/deleted

information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum

instead of all 40.

--relative-date Display the date in a relative format (for example, “2 weeks

ago”) instead of using the full date format.

--graph Display an ASCII graph of the branch and merge history

beside the log output.

--pretty Show commits in an alternate format. Options include one-

line, short, full, fuller, and format (where you specify your

own format).

$ git log --since=2.weeks

This command works with lots of formats— you can specify a specific date (“2008–

01–15”) or a relative date such as “2 years 1 day 3 minutes ago”.

You can also filter the list to commits that match some search criteria. The --author

option allows you to filter on a specific author, and the --grep option lets you search

for keywords in the commit messages. (Note that if you want to specify both author

and grep options, you have to add --all-match or the command will match commits

with either.)

The last really useful option to pass to git log as a filter is a path. If you specify a

directory or file name, you can limit the log output to commits that introduced a change

to those files. This is always the last option and is generally preceded by double dashes

(--) to separate the paths from the options.

In Table 2.3 we’ll list these and a few other common options for your reference.

Option Description

-(n) Show only the last n commits

--since, --after Limit the commits to those made after the specified date.

--until, --before Limit the commits to those made before the specified date.

--author Only show commits in which the author entry matches the

specified string.

--committer Only show commits in which the committer entry matches

the specified string.

For example, if you want to see which commits modifying test files in the Git source

code history were committed by Junio Hamano and were not merges in the month of

October 2008, you can run something like this:

28

CHAPTER 2 GIT BASICS

$ git log --pretty="%h:%s" --author=gitster --since="2008-10-01" \

--before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attribute

acd3b9e - Enhance hold_lock_file_for_{update,append}()

f563754 - demonstrate breakage of detached checkout wi

d1a43f2 - reset --hard/read-tree --reset -u: remove un

51a94af - Fix "checkout --track -b newbranch" on detac

b0ad11e - pull: allow "git pull origin $something:$cur

Of the nearly 20,000 commits in the Git source code history, this command shows

the 6 that match those criteria.

2.3.2 Using a GUI to Visualize History

If you like to use a more graphical tool to visualize your commit history, you may

want to take a look at a Tcl/Tk program called gitk that is distributed with Git. Gitk

is basically a visual git log tool, and it accepts nearly all the filtering options that

git log does. If you type gitk on the command line in your project, you should see

something like Figure 2.2.

Figure 2.2: The gitk history visualizer

You can see the commit history in the top half of the window along with a nice an-

cestry graph. The diff viewer in the bottom half of the window shows you the changes

introduced at any commit you click.

29

PRO GIT SCOTT CHACON

2.4 Undoing Things

At any stage, you may want to undo something. Here, we’ll review a few basic tools for

undoing changes that you’ve made. Be careful, because you can’t always undo some

of these undos. This is one of the few areas in Git where you may lose some work if

you do it wrong.

2.4.1 Changing Your Last Commit

One of the common undos takes place when you commit too early and possibly forget

to add some files, or you mess up your commit message. If you want to try that commit

again, you can run commit with the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If you’ve have

made no changes since your last commit (for instance, you run this command it imme-

diately after your previous commit), then your snapshot will look exactly the same and

all you’ll change is your commit message.

The same commit-message editor fires up, but it already contains the message of

your previous commit. You can edit the message the same as always, but it overwrites

your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a

file you wanted to add to this commit, you can do something like this:

$ git commit -m ’initial commit’

$ git add forgotten_file

$ git commit --amend

All three of these commands end up with a single commit — the second command

replaces the results of the first.

2.4.2 Unstaging a Staged File

The next two sections demonstrate how to wrangle your staging area and working

directory changes. The nice part is that the command you use to determine the state

of those two areas also reminds you how to undo changes to them. For example, let’s

say you’ve changed two files and want to commit them as two separate changes, but

you accidentally type git add * and stage them both. How can you unstage one of the

two? The git status command reminds you:

$ git add .

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

modified: benchmarks.rb

#

30

CHAPTER 2 GIT BASICS

Right below the “Changes to be committed” text, it says use git reset HEAD <file>...

to unstage. So, let’s use that advice to unstage the benchmarks.rb file:

$ git reset HEAD benchmarks.rb

benchmarks.rb: locally modified

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

The command is a bit strange, but it works. The benchmarks.rb file is modified but

once again unstaged.

2.4.3 Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the benchmarks.rb

file? How can you easily unmodify it — revert it back to what it looked like when you

last committed (or initially cloned, or however you got it into your working directory)?

Luckily, git status tells you how to do that, too. In the last example output, the

unstaged area looks like this:

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

It tells you pretty explicitly how to discard the changes you’ve made (at least, the

newer versions of Git, 1.6.1 and later, do this — if you have an older version, we highly

recommend upgrading it to get some of these nicer usability features). Let’s do what it

says:

$ git checkout -- benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

You can see that the changes have been reverted. You should also realize that this is

a dangerous command: any changes you made to that file are gone — you just copied

31

PRO GIT SCOTT CHACON

another file over it. Don’t ever use this command unless you absolutely know that you

don’t want the file. If you just need to get it out of the way, we’ll go over stashing and

branching in the next chapter; these are generally better ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even

commits that were on branches that were deleted or commits that were overwritten

with an --amend commit can be recovered (see Chapter 9 for data recovery). However,

anything you lose that was never committed is likely never to be seen again.

2.5 Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your

remote repositories. Remote repositories are versions of your project that are hosted

on the Internet or network somewhere. You can have several of them, each of which

generally is either read-only or read/write for you. Collaborating with others involves

managing these remote repositories and pushing and pulling data to and from them

when you need to share work. Managing remote repositories includes knowing how

to add remote repositories, remove remotes that are no longer valid, manage various

remote branches and define them as being tracked or not, and more. In this section,

we’ll cover these remote-management skills.

2.5.1 Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command.

It lists the shortnames of each remote handle you’ve specified. If you’ve cloned your

repository, you should at least see origin — that is the default name Git gives to the

server you cloned from:

$ git clone git://github.com/schacon/ticgit.git

Initialized empty Git repository in /private/tmp/ticgit/.git/

remote: Counting objects: 595, done.

remote: Compressing objects: 100% (269/269), done.

remote: Total 595 (delta 255), reused 589 (delta 253)

Receiving objects: 100% (595/595), 73.31 KiB | 1 KiB/s, done.

Resolving deltas: 100% (255/255), done.

$ cd ticgit

$ git remote

origin

You can also specify -v, which shows you the URL that Git has stored for the

shortname to be expanded to:

$ git remote -v

origin git://github.com/schacon/ticgit.git

If you have more than one remote, the command lists them all. For example, my

Grit repository looks something like this.

$ cd grit

$ git remote -v

bakkdoor git://github.com/bakkdoor/grit.git

32

CHAPTER 2 GIT BASICS

cho45 git://github.com/cho45/grit.git

defunkt git://github.com/defunkt/grit.git

koke git://github.com/koke/grit.git

origin git@github.com:mojombo/grit.git

This means we can pull contributions from any of these users pretty easily. But

notice that only the origin remote is an SSH URL, so it’s the only one I can push to

(we’ll cover why this is in Chapter 4).

2.5.2 Adding Remote Repositories

I’ve mentioned and given some demonstrations of adding remote repositories in previ-

ous sections, but here is how to do it explicitly. To add a new remote Git repository as

a shortname you can reference easily, run git remote add [shortname] [url] :

$ git remote

origin

$ git remote add pb git://github.com/paulboone/ticgit.git

$ git remote -v

origin git://github.com/schacon/ticgit.git

pb git://github.com/paulboone/ticgit.git

Now you can use the string pb on the command line in lieu of the whole URL. For

example, if you want to fetch all the information that Paul has but that you don’t yet

have in your repository, you can run git fetch pb:

$ git fetch pb

remote: Counting objects: 58, done.

remote: Compressing objects: 100% (41/41), done.

remote: Total 44 (delta 24), reused 1 (delta 0)

Unpacking objects: 100% (44/44), done.

From git://github.com/paulboone/ticgit

* [new branch] master -> pb/master

* [new branch] ticgit -> pb/ticgit

Paul’s master branch is accessible locally as pb/master — you can merge it into

one of your branches, or you can check out a local branch at that point if you want to

inspect it.

2.5.3 Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run

$ git fetch [remote-name]

The command goes out to that remote project and pulls down all the data from that

remote project that you don’t have yet. After you do this, you should have references

to all the branches from that remote, which you can merge in or inspect at any time.

(We’ll go over what branches are and how to use them in much more detail in Chapter

3.)

If you cloned a repository, the command automatically adds that remote reposi-

tory under the name origin. So, git fetch origin fetches any new work that has been

33

PRO GIT SCOTT CHACON

pushed to that server since you cloned (or last fetched from) it. It’s important to note

that the fetch command pulls the data to your local repository — it doesn’t automati-

cally merge it with any of your work or modify what you’re currently working on. You

have to merge it manually into your work when you’re ready.

If you have a branch set up to track a remote branch (see the next section and Chap-

ter 3 for more information), you can use the git pull command to automatically fetch

and then merge a remote branch into your current branch. This may be an easier or

more comfortable workflow for you; and by default, the git clone command automat-

ically sets up your local master branch to track the remote master branch on the server

you cloned from (assuming the remote has a master branch). Running git pull gener-

ally fetches data from the server you originally cloned from and automatically tries to

merge it into the code you’re currently working on.

2.5.4 Pushing to Your Remotes

When you have your project at a point that you want to share, you have to push it

upstream. The command for this is simple: git push [remote-name] [branch-name] .

If you want to push your master branch to your origin server (again, cloning generally

sets up both of those names for you automatically), then you can run this to push your

work back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write

access and if nobody has pushed in the meantime. If you and someone else clone at

the same time and they push upstream and then you push upstream, your push will

rightly be rejected. You’ll have to pull down their work first and incorporate it into

yours before you’ll be allowed to push. See Chapter 3 for more detailed information

on how to push to remote servers.

2.5.5 Inspecting a Remote

If you want to see more information about a particular remote, you can use the git

remote show [remote-name] command. If you run this command with a particular

shortname, such as origin , you get something like this:

$ git remote show origin

* remote origin

URL: git://github.com/schacon/ticgit.git

Remote branch merged with ’git pull’ while on branch master

master

Tracked remote branches

master

ticgit

It lists the URL for the remote repository as well as the tracking branch information.

The command helpfully tells you that if you’re on the master branch and you run git

pull , it will automatically merge in the master branch on the remote after it fetches all

the remote references. It also lists all the remote references it has pulled down.

That is a simple example you’re likely to encounter. When you’re using Git more

heavily, however, you may see much more information from git remote show :

34

CHAPTER 2 GIT BASICS

$ git remote show origin

* remote origin

URL: git@github.com:defunkt/github.git

Remote branch merged with ’git pull’ while on branch issues

issues

Remote branch merged with ’git pull’ while on branch master

master

New remote branches (next fetch will store in remotes/origin)

caching

Stale tracking branches (use ’git remote prune’)

libwalker

walker2

Tracked remote branches

acl

apiv2

dashboard2

issues

master

postgres

Local branch pushed with ’git push’

master:master

This command shows which branch is automatically pushed when you run git

push on certain branches. It also shows you which remote branches on the server you

don’t yet have, which remote branches you have that have been removed from the

server, and multiple branches that are automatically merged when you run git pull .

2.5.6 Removing and Renaming Remotes

If you want to rename a reference, in newer versions of Git you can run git remote

rename to change a remote’s shortname. For instance, if you want to rename pb to paul ,

you can do so with git remote rename :

$ git remote rename pb paul

$ git remote

origin

paul

It’s worth mentioning that this changes your remote branch names, too. What used

to be referenced at pb/master is now at paul/master .

If you want to remove a reference for some reason — you’ve moved the server

or are no longer using a particular mirror, or perhaps a contributor isn’t contributing

anymore — you can use git remote rm :

$ git remote rm paul

$ git remote

origin

2.6 Tagging

Like most VCSs, Git has the ability to tag specific points in history as being important.

Generally, people use this functionality to mark release points (v1.0, and so on). In this

35

PRO GIT SCOTT CHACON

section, you’ll learn how to list the available tags, how to create new tags, and what the

different types of tags are.

2.6.1 Listing Your Tags

Listing the available tags in Git is straightforward. Just type git tag :

$ git tag

v0.1

v1.3

This command lists the tags in alphabetical order; the order in which they appear

has no real importance.

You can also search for tags with a particular pattern. The Git source repo, for

instance, contains more than 240 tags. If you’re only interested in looking at the 1.4.2

series, you can run this:

$ git tag -l ’v1.4.2.*’

v1.4.2.1

v1.4.2.2

v1.4.2.3

v1.4.2.4

2.6.2 Creating Tags

Git uses two main types of tags: lightweight and annotated. A lightweight tag is very

much like a branch that doesn’t change — it’s just a pointer to a specific commit.

Annotated tags, however, are stored as full objects in the Git database. They’re check-

summed; contain the tagger name, e-mail, and date; have a tagging message; and can

be signed and verified with GNU Privacy Guard (GPG). It’s generally recommended

that you create annotated tags so you can have all this information; but if you want a

temporary tag or for some reason don’t want to keep the other information, lightweight

tags are available too.

2.6.3 Annotated Tags

Creating an annotated tag in Git is simple. The easiest way is to specify -a when you

run the tag command:

$ git tag -a v1.4 -m ’my version 1.4’

$ git tag

v0.1

v1.3

v1.4

The -m specifies a tagging message, which is stored with the tag. If you don’t

specify a message for an annotated tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the git

show command:

36

CHAPTER 2 GIT BASICS

$ git show v1.4

tag v1.4

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 14:45:11 2009 -0800

my version 1.4

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

That shows the tagger information, the date the commit was tagged, and the anno-

tation message before showing the commit information.

2.6.4 Signed Tags

You can also sign your tags with GPG, assuming you have a private key. All you have

to do is use -s instead of -a:

$ git tag -s v1.5 -m ’my signed 1.5 tag’

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gee-mail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you run git show on that tag, you can see your GPG signature attached to it:

$ git show v1.5

tag v1.5

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:22:20 2009 -0800

my signed 1.5 tag

-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1.4.8 (Darwin)

iEYEABECAAYFAkmQurIACgkQON3DxfchxFr5cACeIMN+ZxLKggJQf0QYiQBwgySN

Ki0An2JeAVUCAiJ7Ox6ZEtK+NvZAj82/

=WryJ

-----END PGP SIGNATURE-----

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

A bit later, you’ll learn how to verify signed tags.

37

PRO GIT SCOTT CHACON

2.6.5 Lightweight Tags

Another way to tag commits is with a lightweight tag. This is basically the commit

checksum stored in a file — no other information is kept. To create a lightweight tag,

don’t supply the -a, -s, or -m option:

$ git tag v1.4-lw

$ git tag

v0.1

v1.3

v1.4

v1.4-lw

v1.5

This time, if you run git show on the tag, you don’t see the extra tag information.

The command just shows the commit:

$ git show v1.4-lw

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

2.6.6 Verifying Tags

To verify a signed tag, you use git tag -v [tag-name] . This command uses GPG to

verify the signature. You need the signer’s public key in your keyring for this to work

properly:

$ git tag -v v1.4.2.1

object 883653babd8ee7ea23e6a5c392bb739348b1eb61

type commit

tag v1.4.2.1

tagger Junio C Hamano <junkio@cox.net> 1158138501 -0700

GIT 1.4.2.1

Minor fixes since 1.4.2, including git-mv and git-http with alternates.

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID F3119B9A

gpg: Good signature from "Junio C Hamano <junkio@cox.net>"

gpg: aka "[jpeg image of size 1513]"

Primary key fingerprint: 3565 2A26 2040 E066 C9A7 4A7D C0C6 D9A4 F311 9B9A

If you don’t have the signer’s public key, you get something like this instead:

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID F3119B9A

gpg: Can’t check signature: public key not found

error: could not verify the tag ’v1.4.2.1’

38

CHAPTER 2 GIT BASICS

2.6.7 Tagging Later

You can also tag commits after you’ve moved past them. Suppose your commit history

looks like this:

$ git log --pretty=oneline

15027957951b64cf874c3557a0f3547bd83b3ff6 Merge branch ’experiment’

a6b4c97498bd301d84096da251c98a07c7723e65 beginning write support

0d52aaab4479697da7686c15f77a3d64d9165190 one more thing

6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch ’experiment’

0b7434d86859cc7b8c3d5e1dddfed66ff742fcbc added a commit function

4682c3261057305bdd616e23b64b0857d832627b added a todo file

166ae0c4d3f420721acbb115cc33848dfcc2121a started write support

9fceb02d0ae598e95dc970b74767f19372d61af8 updated rakefile

964f16d36dfccde844893cac5b347e7b3d44abbc commit the todo

8a5cbc430f1a9c3d00faaeffd07798508422908a updated readme

Now, suppose you forgot to tag the project at v1.2, which was at the “updated

rakefile” commit. You can add it after the fact. To tag that commit, you specify the

commit checksum (or part of it) at the end of the command:

$ git tag -a v1.2 9fceb02

You can see that you’ve tagged the commit:

$ git tag

v0.1

v1.2

v1.3

v1.4

v1.4-lw

v1.5

$ git show v1.2

tag v1.2

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:32:16 2009 -0800

version 1.2

commit 9fceb02d0ae598e95dc970b74767f19372d61af8

Author: Magnus Chacon <mchacon@gee-mail.com>

Date: Sun Apr 27 20:43:35 2008 -0700

updated rakefile

...

2.6.8 Sharing Tags

By default, the git push command doesn’t transfer tags to remote servers. You will

have to explicitly push tags to a shared server after you have created them. This process

is just like sharing remote branches you can run git push origin [tagname] .

39

PRO GIT SCOTT CHACON

$ git push origin v1.5

Counting objects: 50, done.

Compressing objects: 100% (38/38), done.

Writing objects: 100% (44/44), 4.56 KiB, done.

Total 44 (delta 18), reused 8 (delta 1)

To git@github.com:schacon/simplegit.git

* [new tag] v1.5 -> v1.5

If you have a lot of tags that you want to push up at once, you can also use the

--tags option to the git push command. This will transfer all of your tags to the

remote server that are not already there.

$ git push origin --tags

Counting objects: 50, done.

Compressing objects: 100% (38/38), done.

Writing objects: 100% (44/44), 4.56 KiB, done.

Total 44 (delta 18), reused 8 (delta 1)

To git@github.com:schacon/simplegit.git

* [new tag] v0.1 -> v0.1

* [new tag] v1.2 -> v1.2

* [new tag] v1.4 -> v1.4

* [new tag] v1.4-lw -> v1.4-lw

* [new tag] v1.5 -> v1.5

Now, when someone else clones or pulls from your repository, they will get all your

tags as well.

2.7 Tips and Tricks

Before we finish this chapter on basic Git, a few little tips and tricks may make your

Git experience a bit simpler, easier, or more familiar. Many people use Git without

using any of these tips, and we won’t refer to them or assume you’ve used them later

in the book; but you should probably know how to do them.

2.7.1 Auto-Completion

If you use the Bash shell, Git comes with a nice auto-completion script you can enable.

Download the Git source code, and look in the contrib/completion directory; there

should be a file called git-completion.bash . Copy this file to your home directory,

and add this to your .bashrc file:

source /̃.git-completion.bash

If you want to set up Git to automatically have Bash shell completion for all users,

copy this script to the /opt/local/etc/bash completion.d directory on Mac systems

or to the /etc/bash completion.d/ directory on Linux systems. This is a directory of

scripts that Bash will automatically load to provide shell completions.

If you’re using Windows with Git Bash, which is the default when installing Git on

Windows with msysGit, auto-completion should be preconfigured.

Press the Tab key when you’re writing a Git command, and it should return a set of

suggestions for you to pick from:

40

CHAPTER 2 GIT BASICS

$ git co<tab><tab>

commit config

In this case, typing git co and then pressing the Tab key twice suggests commit and

config. Adding m<tab> completes git commit automatically.

This also works with options, which is probably more useful. For instance, if you’re

running a git log command and can’t remember one of the options, you can start

typing it and press Tab to see what matches:

$ git log --s<tab>

--shortstat --since= --src-prefix= --stat --summary

That’s a pretty nice trick and may save you some time and documentation reading.

2.7.2 Git Aliases

Git doesn’t infer your command if you type it in partially. If you don’t want to type

the entire text of each of the Git commands, you can easily set up an alias for each

command using git config . Here are a couple of examples you may want to set up:

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status

This means that, for example, instead of typing git commit , you just need to type

git ci . As you go on using Git, you’ll probably use other commands frequently as

well; in this case, don’t hesitate to create new aliases.

This technique can also be very useful in creating commands that you think should

exist. For example, to correct the usability problem you encountered with unstaging a

file, you can add your own unstage alias to Git:

$ git config --global alias.unstage ’reset HEAD --’

This makes the following two commands equivalent:

$ git unstage fileA

$ git reset HEAD fileA

This seems a bit clearer. It’s also common to add a last command, like this:

$ git config --global alias.last ’log -1 HEAD’

This way, you can see the last commit easily:

$ git last

commit 66938dae3329c7aebe598c2246a8e6af90d04646

Author: Josh Goebel <dreamer3@example.com>

Date: Tue Aug 26 19:48:51 2008 +0800

test for current head

Signed-off-by: Scott Chacon <schacon@example.com>

41

PRO GIT SCOTT CHACON

As you can tell, Git simply replaces the new command with whatever you alias it

for. However, maybe you want to run an external command, rather than a Git subcom-

mand. In that case, you start the command with a ! character. This is useful if you

write your own tools that work with a Git repository. We can demonstrate by aliasing

git visual to run gitk :

$ git config --global alias.visual "!gitk"

2.8 Summary

At this point, you can do all the basic local Git operations — creating or cloning a

repository, making changes, staging and committing those changes, and viewing the

history of all the changes the repository has been through. Next, we’ll cover Git’s

killer feature: its branching model.

42

Chapter 3

Git Branching

Nearly every VCS has some form of branching support. Branching means you diverge

from the main line of development and continue to do work without messing with that

main line. In many VCS tools, this is a somewhat expensive process, often requiring

you to create a new copy of your source code directory, which can take a long time for

large projects.

Some people refer to the branching model in Git as its “killer feature,” and it

certainly sets Git apart in the VCS community. Why is it so special? The way Git

branches is incredibly lightweight, making branching operations nearly instantaneous

and switching back and forth between branches generally just as fast. Unlike many

other VCSs, Git encourages a workflow that branches and merges often, even multiple

times in a day. Understanding and mastering this feature gives you a powerful and

unique tool and can literally change the way that you develop.

3.1 What a Branch Is

To really understand the way Git does branching, we need to take a step back and

examine how Git stores its data. As you may remember from Chapter 1, Git doesn’t

store data as a series of changesets or deltas, but instead as a series of snapshots.

When you commit in Git, Git stores a commit object that contains a pointer to the

snapshot of the content you staged, the author and message metadata, and zero or more

pointers to the commit or commits that were the direct parents of this commit: zero

parents for the first commit, one parent for a normal commit, and multiple parents for

a commit that results from a merge of two or more branches.

To visualize this, let’s assume that you have a directory containing three files, and

you stage them all and commit. Staging the files checksums each one (the SHA–1 hash

we mentioned in Chapter 1), stores that version of the file in the Git repository (Git

refers to them as blobs), and adds that checksum to the staging area:

$ git add README test.rb LICENSE2

$ git commit -m ’initial commit of my project’

When you create the commit by running git commit , Git checksums each subdi-

rectory (in this case, just the root project directory) and stores those tree objects in the

43

PRO GIT SCOTT CHACON

Git repository. Git then creates a commit object that has the metadata and a pointer to

the root project tree so it can re-create that snapshot when needed.

Your Git repository now contains five objects: one blob for the contents of each of

your three files, one tree that lists the contents of the directory and specifies which file

names are stored as which blobs, and one commit with the pointer to that root tree and

all the commit metadata. Conceptually, the data in your Git repository looks something

like Figure 3.1.

Figure 3.1: Single commit repository data

If you make some changes and commit again, the next commit stores a pointer to

the commit that came immediately before it. After two more commits, your history

might look something like Figure 3.2.

Figure 3.2: Git object data for multiple commits

A branch in Git is simply a lightweight movable pointer to one of these commits.

The default branch name in Git is master. As you initially make commits, you’re given

a master branch that points to the last commit you made. Every time you commit, it

moves forward automatically.

What happens if you create a new branch? Well, doing so creates a new pointer for

you to move around. Let’s say you create a new branch called testing. You do this with

the git branch command:

$ git branch testing

44

CHAPTER 3 GIT BRANCHING

Figure 3.3: Branch pointing into the commit data’s history

Figure 3.4: Multiple branches pointing into the commit’s data history

This creates a new pointer at the same commit you’re currently on (see Figure 3.4).

How does Git know what branch you’re currently on? It keeps a special pointer

called HEAD. Note that this is a lot different than the concept of HEAD in other VCSs

you may be used to, such as Subversion or CVS. In Git, this is a pointer to the local

branch you’re currently on. In this case, you’re still on master. The git branch command

only created a new branch — it didn’t switch to that branch (see Figure 3.5).

Figure 3.5: HEAD file pointing to the branch you’re on

To switch to an existing branch, you run the git checkout command. Let’s switch

to the new testing branch:

45

PRO GIT SCOTT CHACON

$ git checkout testing

This moves HEAD to point to the testing branch (see Figure 3.6).

Figure 3.6: HEAD points to another branch when you switch branches.

What is the significance of that? Well, let’s do another commit:

$ vim test.rb

$ git commit -a -m ’made a change’

Figure 3.7 illustrates the result.

Figure 3.7: The branch that HEAD points to moves forward with each commit.

This is interesting, because now your testing branch has moved forward, but your

master branch still points to the commit you were on when you ran git checkout to

switch branches. Let’s switch back to the master branch:

$ git checkout master

Figure 3.8 shows the result.

That command did two things. It moved the HEAD pointer back to point to the

master branch, and it reverted the files in your working directory back to the snapshot

that master points to. This also means the changes you make from this point forward

46

CHAPTER 3 GIT BRANCHING

Figure 3.8: HEAD moves to another branch on a checkout.

will diverge from an older version of the project. It essentially rewinds the work you’ve

done in your testing branch temporarily so you can go in a different direction.

Let’s make a few changes and commit again:

$ vim test.rb

$ git commit -a -m ’made other changes’

Now your project history has diverged (see Figure 3.9). You created and switched

to a branch, did some work on it, and then switched back to your main branch and did

other work. Both of those changes are isolated in separate branches: you can switch

back and forth between the branches and merge them together when you’re ready. And

you did all that with simple branch and checkout commands.

Figure 3.9: The branch histories have diverged.

Because a branch in Git is in actuality a simple file that contains the 40 character

SHA–1 checksum of the commit it points to, branches are cheap to create and destroy.

Creating a new branch is as quick and simple as writing 41 bytes to a file (40 characters

and a newline).

47

PRO GIT SCOTT CHACON

This is in sharp contrast to the way most VCS tools branch, which involves copying

all of the project’s files into a second directory. This can take several seconds or even

minutes, depending on the size of the project, whereas in Git the process is always

instantaneous. Also, because we’re recording the parents when we commit, finding a

proper merge base for merging is automatically done for us and is generally very easy

to do. These features help encourage developers to create and use branches often.

Let’s see why you should do so.

3.2 Basic Branching and Merging

Let’s go through a simple example of branching and merging with a workflow that you

might use in the real world. You’ll follow these steps:

1. Do work on a web site.

2. Create a branch for a new story you’re working on.

3. Do some work in that branch.

At this stage, you’ll receive a call that another issue is critical and you need a hotfix.

You’ll do the following:

1. Revert back to your production branch.

2. Create a branch to add the hotfix.

3. After it’s tested, merge the hotfix branch, and push to production.

4. Switch back to your original story and continue working.

3.2.1 Basic Branching

First, let’s say you’re working on your project and have a couple of commits already

(see Figure 3.10).

Figure 3.10: A short and simple commit history

You’ve decided that you’re going to work on issue #53 in whatever issue-tracking

system your company uses. To be clear, Git isn’t tied into any particular issue-tracking

system; but because issue #53 is a focused topic that you want to work on, you’ll create

a new branch in which to work. To create a branch and switch to it at the same time,

you can run the git checkout command with the -b switch:

$ git checkout -b iss53

Switched to a new branch "iss53"

48

CHAPTER 3 GIT BRANCHING

This is shorthand for

$ git branch iss53

$ git checkout iss53

Figure 3.11 illustrates the result.

Figure 3.11: Creating a new branch pointer

You work on your web site and do some commits. Doing so moves the iss53

branch forward, because you have it checked out (that is, your HEAD is pointing to it;

see Figure 3.12):

$ vim index.html

$ git commit -a -m ’added a new footer [issue 53]’

Figure 3.12: The iss53 branch has moved forward with your work.

Now you get the call that there is an issue with the web site, and you need to fix it

immediately. With Git, you don’t have to deploy your fix along with the iss53 changes

you’ve made, and you don’t have to put a lot of effort into reverting those changes

before you can work on applying your fix to what is in production. All you have to do

is switch back to your master branch.

However, before you do that, note that if your working directory or staging area has

uncommitted changes that conflict with the branch you’re checking out, Git won’t let

you switch branches. It’s best to have a clean working state when you switch branches.

There are ways to get around this (namely, stashing and commit amending) that we’ll

cover later. For now, you’ve committed all your changes, so you can switch back to

your master branch:

$ git checkout master

Switched to branch "master"

49

PRO GIT SCOTT CHACON

At this point, your project working directory is exactly the way it was before you

started working on issue #53, and you can concentrate on your hotfix. This is an im-

portant point to remember: Git resets your working directory to look like the snapshot

of the commit that the branch you check out points to. It adds, removes, and modifies

files automatically to make sure your working copy is what the branch looked like on

your last commit to it.

Next, you have a hotfix to make. Let’s create a hotfix branch on which to work until

it’s completed (see Figure 3.13):

$ git checkout -b ’hotfix’

Switched to a new branch "hotfix"

$ vim index.html

$ git commit -a -m ’fixed the broken email address’

[hotfix]: created 3a0874c: "fixed the broken email address"

1 files changed, 0 insertions(+), 1 deletions(-)

Figure 3.13: hotfix branch based back at your master branch point

You can run your tests, make sure the hotfix is what you want, and merge it back

into your master branch to deploy to production. You do this with the git merge com-

mand:

$ git checkout master

$ git merge hotfix

Updating f42c576..3a0874c

Fast forward

README | 1 -

1 files changed, 0 insertions(+), 1 deletions(-)

You’ll notice the phrase “Fast forward” in that merge. Because the commit pointed

to by the branch you merged in was directly upstream of the commit you’re on, Git

moves the pointer forward. To phrase that another way, when you try to merge one

commit with a commit that can be reached by following the first commit’s history, Git

simplifies things by moving the pointer forward because there is no divergent work to

merge together — this is called a “fast forward”.

Your change is now in the snapshot of the commit pointed to by the master branch,

and you can deploy your change (see Figure 3.14).

After that your super-important fix is deployed, you’re ready to switch back to the

work you were doing before you were interrupted. However, first you’ll delete the

50

CHAPTER 3 GIT BRANCHING

Figure 3.14: Your master branch points to the same place as your hotfix branch after

the merge.

hotfix branch, because you no longer need it — the master branch points at the same

place. You can delete it with the -d option to git branch :

$ git branch -d hotfix

Deleted branch hotfix (3a0874c).

Now you can switch back to your work-in-progress branch on issue #53 and con-

tinue working on it (see Figure 3.15):

$ git checkout iss53

Switched to branch "iss53"

$ vim index.html

$ git commit -a -m ’finished the new footer [issue 53]’

[iss53]: created ad82d7a: "finished the new footer [issue 53]"

1 files changed, 1 insertions(+), 0 deletions(-)

Figure 3.15: Your iss53 branch can move forward independently.

It’s worth noting here that the work you did in your hotfix branch is not contained

in the files in your iss53 branch. If you need to pull it in, you can merge your master

branch into your iss53 branch by running git merge master , or you can wait to inte-

grate those changes until you decide to pull the iss53 branch back into master later.

51

PRO GIT SCOTT CHACON

3.2.2 Basic Merging

Suppose you’ve decided that your issue #53 work is complete and ready to be merged

into your master branch. In order to do that, you’ll merge in your iss53 branch, much

like you merged in your hotfix branch earlier. All you have to do is check out the

branch you wish to merge into and then run the git merge command:

$ git checkout master

$ git merge iss53

Merge made by recursive.

README | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

This looks a bit different than the hotfix merge you did earlier. In this case, your

development history has diverged from some older point. Because the commit on the

branch you’re on isn’t a direct ancestor of the branch you’re merging in, Git has to

do some work. In this case, Git does a simple three-way merge, using the two snap-

shots pointed to by the branch tips and the common ancestor of the two. Figure 3.16

highlights the three snapshots that Git uses to do its merge in this case.

Figure 3.16: Git automatically identifies the best common-ancestor merge base for

branch merging.

Instead of just moving the branch pointer forward, Git creates a new snapshot that

results from this three-way merge and automatically creates a new commit that points

to it (see Figure 3.17). This is referred to as a merge commit and is special in that it

has more than one parent.

It’s worth pointing out that Git determines the best common ancestor to use for its

merge base; this is different than CVS or Subversion (before version 1.5), where the

developer doing the merge has to figure out the best merge base for themselves. This

makes merging a heck of a lot easier in Git than in these other systems.

Now that your work is merged in, you have no further need for the iss53 branch.

You can delete it and then manually close the ticket in your ticket-tracking system:

52

CHAPTER 3 GIT BRANCHING

Figure 3.17: Git automatically creates a new commit object that contains the merged

work.

$ git branch -d iss53

3.2.3 Basic Merge Conflicts

Occasionally, this process doesn’t go smoothly. If you changed the same part of the

same file differently in the two branches you’re merging together, Git won’t be able to

merge them cleanly. If your fix for issue #53 modified the same part of a file as the

hotfix , you’ll get a merge conflict that looks something like this:

$ git merge iss53

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

Git hasn’t automatically created a new merge commit. It has paused the process

while you resolve the conflict. If you want to see which files are unmerged at any point

after a merge conflict, you can run git status :

[master*]$ git status

index.html: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

unmerged: index.html

#

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged.

Git adds standard conflict-resolution markers to the files that have conflicts, so you can

open them manually and resolve those conflicts. Your file contains a section that looks

something like this:

<<<<<<< HEAD:index.html

<div id="footer">contact : email.support@github.com</div>

=======

<div id="footer">

please contact us at support@github.com

53

PRO GIT SCOTT CHACON

</div>

>>>>>>> iss53:index.html

This means the version in HEAD (your master branch, because that was what you

had checked out when you ran your merge command) is the top part of that block

(everything above the =======), while the version in your iss53 branch looks like ev-

erything in the bottom part. In order to resolve the conflict, you have to either choose

one side or the other or merge the contents yourself. For instance, you might resolve

this conflict by replacing the entire block with this:

<div id="footer">

please contact us at email.support@github.com

</div>

This resolution has a little of each section, and I’ve fully removed the <<<<<<< ,

======= , and >>>>>>> lines. After you’ve resolved each of these sections in each con-

flicted file, run git add on each file to mark it as resolved. Staging the file marks it as

resolved in Git. If you want to use a graphical tool to resolve these issues, you can run

git mergetool , which fires up an appropriate visual merge tool and walks you through

the conflicts:

$ git mergetool

merge tool candidates: kdiff3 tkdiff xxdiff meld gvimdiff opendiff emerge vimdiff

Merging the files: index.html

Normal merge conflict for ’index.html’:

{local}: modified

{remote}: modified

Hit return to start merge resolution tool (opendiff):

If you want to use a merge tool other than the default (Git chose opendiff for

me in this case because I ran the command on a Mac), you can see all the supported

tools listed at the top after “merge tool candidates”. Type the name of the tool you’d

rather use. In Chapter 7, we’ll discuss how you can change this default value for your

environment.

After you exit the merge tool, Git asks you if the merge was successful. If you tell

the script that it was, it stages the file to mark it as resolved for you.

You can run git status again to verify that all conflicts have been resolved:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

If you’re happy with that, and you verify that everything that had conflicts has been

staged, you can type git commit to finalize the merge commit. The commit message

by default looks something like this:

54

CHAPTER 3 GIT BRANCHING

Merge branch ’iss53’

Conflicts:

index.html

#

It looks like you may be committing a MERGE.

If this is not correct, please remove the file

.git/MERGE_HEAD

and try again.

#

You can modify that message with details about how you resolved the merge if you

think it would be helpful to others looking at this merge in the future — why you did

what you did, if it’s not obvious.

3.3 Branch Management

Now that you’ve created, merged, and deleted some branches, let’s look at some branch-

management tools that will come in handy when you begin using branches all the time.

The git branch command does more than just create and delete branches. If you

run it with no arguments, you get a simple listing of your current branches:

$ git branch

iss53

* master

testing

Notice the * character that prefixes the master branch: it indicates the branch that

you currently have checked out. This means that if you commit at this point, the master

branch will be moved forward with your new work. To see the last commit on each

branch, you can run git branch v :

$ git branch -v

iss53 93b412c fix javascript issue

* master 7a98805 Merge branch ’iss53’

testing 782fd34 add scott to the author list in the readmes

Another useful option to figure out what state your branches are in is to filter this list

to branches that you have or have not yet merged into the branch you’re currently on.

The useful --merged and --no-merged options have been available in Git since version

1.5.6 for this purpose. To see which branches are already merged into the branch you’re

on, you can run git branch merged :

$ git branch --merged

iss53

* master

Because you already merged in iss53 earlier, you see it in your list. Branches on

this list without the * in front of them are generally fine to delete with git branch -d ;

you’ve already incorporated their work into another branch, so you’re not going to lose

anything.

To see all the branches that contain work you haven’t yet merged in, you can run

git branch --no-merged :

55

PRO GIT SCOTT CHACON

$ git branch --no-merged

testing

This shows your other branch. Because it contains work that isn’t merged in yet,

trying to delete it with git branch -d will fail:

$ git branch -d testing

error: The branch ’testing’ is not an ancestor of your current HEAD.

If you are sure you want to delete it, run git branch -D testing . If you really do

want to delete the branch and lose that work, you can force it with -D, as the helpful

message points out.

3.4 Branching Workflows

Now that you have the basics of branching and merging down, what can or should

you do with them? In this section, we’ll cover some common workflows that this

lightweight branching makes possible, so you can decide if you would like to incorpo-

rate it into your own development cycle.

3.4.1 Long-Running Branches

Because Git uses a simple three-way merge, merging from one branch into another

multiple times over a long period is generally easy to do. This means you can have

several branches that are always open and that you use for different stages of your

development cycle; you can merge regularly from some of them into others.

Many Git developers have a workflow that embraces this approach, such as having

only code that is entirely stable in their master branch — possibly only code that has

been or will be released. They have another parallel branch named develop or next that

they work from or use to test stability— it isn’t necessarily always stable, but whenever

it gets to a stable state, it can be merged into master . It’s used to pull in topic branches

(short-lived branches, like your earlier iss53 branch) when they’re ready, to make sure

they pass all the tests and don’t introduce bugs.

In reality, we’re talking about pointers moving up the line of commits you’re mak-

ing. The stable branches are farther down the line in your commit history, and the

bleeding-edge branches are farther up the history (see Figure 3.18).

Figure 3.18: More stable branches are generally farther down the commit history.

It’s generally easier to think about them as work silos, where sets of commits grad-

uate to a more stable silo when they’re fully tested (see Figure 3.19).

You can keep doing this for several levels of stability. Some larger projects also

have a proposed or pu (proposed updates) branch that has integrated branches that may

not be ready to go into the next or master branch. The idea is that your branches are at

various levels of stability; when they reach a more stable level, they’re merged into the

56

CHAPTER 3 GIT BRANCHING

Figure 3.19: It may be helpful to think of your branches as silos.

branch above them. Again, having multiple long-running branches isn’t necessary, but

it’s often helpful, especially when you’re dealing with very large or complex projects.

3.4.2 Topic Branches

Topic branches, however, are useful in projects of any size. A topic branch is a short-

lived branch that you create and use for a single particular feature or related work. This

is something you’ve likely never done with a VCS before because it’s generally too

expensive to create and merge branches. But in Git it’s common to create, work on,

merge, and delete branches several times a day.

You saw this in the last section with the iss53 and hotfix branches you created.

You did a few commits on them and deleted them directly after merging them into your

main branch. This technique allows you to context-switch quickly and completely —

because your work is separated into silos where all the changes in that branch have to

do with that topic, it’s easier to see what has happened during code review and such.

You can keep the changes there for minutes, days, or months, and merge them in when

they’re ready, regardless of the order in which they were created or worked on.

Consider an example of doing some work (on master), branching off for an issue

(iss91), working on it for a bit, branching off the second branch to try another way

of handling the same thing (iss91v2), going back to your master branch and working

there for a while, and then branching off there to do some work that you’re not sure is

a good idea (dumbidea branch). Your commit history will look something like Figure

3.20.

Now, let’s say you decide you like the second solution to your issue best (iss91v2);

and you showed the dumbidea branch to your coworkers, and it turns out to be genius.

You can throw away the original iss91 branch (losing commits C5 and C6) and merge

in the other two. Your history then looks like Figure 3.21.

It’s important to remember when you’re doing all this that these branches are com-

pletely local. When you’re branching and merging, everything is being done only in

your Git repository — no server communication is happening.

57

PRO GIT SCOTT CHACON

Figure 3.20: Your commit history with multiple topic branches

Figure 3.21: Your history after merging in dumbidea and iss91v2

3.5 Remote Branches

Remote branches are references to the state of branches on your remote repositories.

They’re local branches that you can’t move; they’re moved automatically whenever

you do any network communication. Remote branches act as bookmarks to remind

58

CHAPTER 3 GIT BRANCHING

you where the branches on your remote repositories were the last time you connected

to them.

They take the form (remote)/(branch) . For instance, if you wanted to see what the

master branch on your origin remote looked like as of the last time you communicated

with it, you would check the origin/master branch. If you were working on an issue

with a partner and they pushed up an iss53 branch, you might have your own local

iss53 branch; but the branch on the server would point to the commit at origin/iss53 .

This may be a bit confusing, so let’s look at an example. Let’s say you have a Git

server on your network at git.ourcompany.com . If you clone from this, Git automat-

ically names it origin for you, pulls down all its data, creates a pointer to where its

master branch is, and names it origin/master locally; and you can’t move it. Git also

gives you your own master branch starting at the same place as origin’s master branch,

so you have something to work from (see Figure 3.22).

Figure 3.22: A Git clone gives you your own master branch and origin/master pointing

to origin’s master branch.

If you do some work on your local master branch, and, in the meantime, someone

else pushes to git.ourcompany.com and updates its master branch, then your histories

move forward differently. Also, as long as you stay out of contact with your origin

server, your origin/master pointer doesn’t move (see Figure 3.23).

To synchronize your work, you run a git fetch origin command. This command

looks up which server origin is (in this case, it’s git.ourcompany.com), fetches any

data from it that you don’t yet have, and updates your local database, moving your

origin/master pointer to its new, more up-to-date position (see Figure 3.24).

To demonstrate having multiple remote servers and what remote branches for those

remote projects look like, let’s assume you have another internal Git server that is used

only for development by one of your sprint teams. This server is at git.team1.ourcompany.com .

You can add it as a new remote reference to the project you’re currently working on by

59

PRO GIT SCOTT CHACON

Figure 3.23: Working locally and having someone push to your remote server makes

each history move forward differently.

Figure 3.24: The git fetch command updates your remote references.

running the git remote add command as we covered in Chapter 2. Name this remote

teamone , which will be your shortname for that whole URL (see Figure 3.25).

Now, you can run git fetch teamone to fetch everything server has that you don’t

have yet. Because that server is a subset of the data your origin server has right now,

Git fetches no data but sets a remote branch called teamone/master to point to the

commit that teamone has as its master branch (see Figure 3.26).

60

CHAPTER 3 GIT BRANCHING

Figure 3.25: Adding another server as a remote

Figure 3.26: You get a reference to teamone’s master branch position locally.

3.5.1 Pushing

When you want to share a branch with the world, you need to push it up to a remote

that you have write access to. Your local branches aren’t automatically synchronized to

the remotes you write to — you have to explicitly push the branches you want to share.

That way, you can use private branches do work you don’t want to share, and push up

only the topic branches you want to collaborate on.

If you have a branch named serverfix that you want to work on with others, you

can push it up the same way you pushed your first branch. Run git push (remote)

(branch) :

61

PRO GIT SCOTT CHACON

$ git push origin serverfix

Counting objects: 20, done.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (15/15), 1.74 KiB, done.

Total 15 (delta 5), reused 0 (delta 0)

To git@github.com:schacon/simplegit.git

* [new branch] serverfix -> serverfix

This is a bit of a shortcut. Git automatically expands the serverfix branchname

out to refs/heads/serverfix:refs/heads/serverfix , which means, “Take my server-

fix local branch and push it to update the remote’s serverfix branch.” We’ll go over

the refs/heads/ part in detail in Chapter 9, but you can generally leave it off. You

can also do git push origin serverfix:serverfix , which does the same thing — it

says, “Take my serverfix and make it the remote’s serverfix.” You can use this format

to push a local branch into a remote branch that is named differently. If you didn’t

want it to be called serverfix on the remote, you could instead run git push origin

serverfix:awesomebranch to push your local serverfix branch to the awesomebranch

branch on the remote project.

The next time one of your collaborators fetches from the server, they will get

a reference to where the server’s version of serverfix is under the remote branch

origin/serverfix :

$ git fetch origin

remote: Counting objects: 20, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 15 (delta 5), reused 0 (delta 0)

Unpacking objects: 100% (15/15), done.

From git@github.com:schacon/simplegit

* [new branch] serverfix -> origin/serverfix

It’s important to note that when you do a fetch that brings down new remote

branches, you don’t automatically have local, editable copies of them. In other words,

in this case, you don’t have a new serverfix branch— you only have an origin/serverfix

pointer that you can’t modify.

To merge this work into your current working branch, you can run git merge

origin/serverfix . If you want your own serverfix branch that you can work on,

you can base it off your remote branch:

$ git checkout -b serverfix origin/serverfix

Branch serverfix set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "serverfix"

This gives you a local branch that you can work on that starts where origin/serverfix

is.

3.5.2 Tracking Branches

Checking out a local branch from a remote branch automatically creates what is called

a tracking branch. Tracking branches are local branches that have a direct relationship

to a remote branch. If you’re on a tracking branch and type git push, Git automatically

knows which server and branch to push to. Also, running git pull while on one of

62

CHAPTER 3 GIT BRANCHING

these branches fetches all the remote references and then automatically merges in the

corresponding remote branch.

When you clone a repository, it generally automatically creates a master branch that

tracks origin/master . That’s why git push and git pull work out of the box with no

other arguments. However, you can set up other tracking branches if you wish — ones

that don’t track branches on origin and don’t track the master branch. The simple case

is the example you just saw, running git checkout -b [branch] [remotename]/[branch] .

If you have Git version 1.6.2 or later, you can also use the --track shorthand:

$ git checkout --track origin/serverfix

Branch serverfix set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "serverfix"

To set up a local branch with a different name than the remote branch, you can

easily use the first version with a different local branch name:

$ git checkout -b sf origin/serverfix

Branch sf set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "sf"

Now, your local branch sf will automatically push to and pull from origin/serverfix.

3.5.3 Deleting Remote Branches

Suppose you’re done with a remote branch — say, you and your collaborators are fin-

ished with a feature and have merged it into your remote’s master branch (or whatever

branch your stable codeline is in). You can delete a remote branch using the rather ob-

tuse syntax git push [remotename] :[branch] . If you want to delete your serverfix

branch from the server, you run the following:

$ git push origin :serverfix

To git@github.com:schacon/simplegit.git

- [deleted] serverfix

Boom. No more branch on your server. You may want to dog-ear this page, because

you’ll need that command, and you’ll likely forget the syntax. A way to remember this

command is by recalling the git push [remotename] [localbranch]:[remotebranch]

syntax that we went over a bit earlier. If you leave off the [localbranch] portion, then

you’re basically saying, “Take nothing on my side and make it be [remotebranch] .”

3.6 Rebasing

In Git, there are two main ways to integrate changes from one branch into another: the

merge and the rebase . In this section you’ll learn what rebasing is, how to do it, why

it’s a pretty amazing tool, and in what cases you won’t want to use it.

63

PRO GIT SCOTT CHACON

Figure 3.27: Your initial diverged commit history

3.6.1 The Basic Rebase

If you go back to an earlier example from the Merge section (see Figure 3.27), you can

see that you diverged your work and made commits on two different branches.

The easiest way to integrate the branches, as we’ve already covered, is the merge

command. It performs a three-way merge between the two latest branch snapshots (C3

and C4) and the most recent common ancestor of the two (C2), creating a new snapshot

(and commit), as shown in Figure 3.28.

Figure 3.28: Merging a branch to integrate the diverged work history

However, there is another way: you can take the patch of the change that was

introduced in C3 and reapply it on top of C4. In Git, this is called rebasing. With the

rebase command, you can take all the changes that were committed on one branch and

replay them on another one.

In this example, you’d run the following:

$ git checkout experiment

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: added staged command

It works by going to the common ancestor of the two branches (the one you’re on

and the one you’re rebasing onto), getting the diff introduced by each commit of the

branch you’re on, saving those diffs to temporary files, resetting the current branch to

the same commit as the branch you are rebasing onto, and finally applying each change

in turn. Figure 3.29 illustrates this process.

64

CHAPTER 3 GIT BRANCHING

Figure 3.29: Rebasing the change introduced in C3 onto C4

At this point, you can go back to the master branch and do a fast-forward merge

(see Figure 3.30).

Figure 3.30: Fast-forwarding the master branch

Now, the snapshot pointed to by C3 is exactly the same as the one that was pointed

to by C5 in the merge example. There is no difference in the end product of the inte-

gration, but rebasing makes for a cleaner history. If you examine the log of a rebased

branch, it looks like a linear history: it appears that all the work happened in series,

even when it originally happened in parallel.

Often, you’ll do this to make sure your commits apply cleanly on a remote branch

— perhaps in a project to which you’re trying to contribute but that you don’t main-

tain. In this case, you’d do your work in a branch and then rebase your work onto

origin/master when you were ready to submit your patches to the main project. That

way, the maintainer doesn’t have to do any integration work — just a fast-forward or a

clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether it’s

the last of the rebased commits for a rebase or the final merge commit after a merge, is

the same snapshot — it’s only the history that is different. Rebasing replays changes

from one line of work onto another in the order they were introduced, whereas merging

takes the endpoints and merges them together.

3.6.2 More Interesting Rebases

You can also have your rebase replay on something other than the rebase branch. Take

a history like Figure 3.31, for example. You branched a topic branch (server) to add

some server-side functionality to your project, and made a commit. Then, you branched

off that to make the client-side changes (client) and committed a few times. Finally,

you went back to your server branch and did a few more commits.

Suppose you decide that you want to merge your client-side changes into your

mainline for a release, but you want to hold off on the server-side changes until it’s

65

PRO GIT SCOTT CHACON

Figure 3.31: A history with a topic branch off another topic branch

tested further. You can take the changes on client that aren’t on server (C8 and C9) and

replay them on your master branch by using the --onto option of git rebase :

$ git rebase --onto master server client

This basically says, “Check out the client branch, figure out the patches from

the common ancestor of the client and server branches, and then replay them onto

master .” It’s a bit complex; but the result, shown in Figure 3.32, is pretty cool.

Figure 3.32: Rebasing a topic branch off another topic branch

Now you can fast-forward your master branch (see Figure 3.33):

$ git checkout master

$ git merge client

66

CHAPTER 3 GIT BRANCHING

Figure 3.33: Fast-forwarding your master branch to include the client branch changes

Let’s say you decide to pull in your server branch as well. You can rebase the

server branch onto the master branch without having to check it out first by running

git rebase [basebranch] [topicbranch] — which checks out the topic branch (in

this case, server) for you and replays it onto the base branch (master):

$ git rebase master server

This replays your server work on top of your master work, as shown in Figure

3.34.

Figure 3.34: Rebasing your server branch on top of your master branch

Then, you can fast-forward the base branch (master):

$ git checkout master

$ git merge server

You can remove the client and server branches because all the work is integrated

and you don’t need them anymore, leaving your history for this entire process looking

like Figure 3.35:

$ git branch -d client

$ git branch -d server

Figure 3.35: Final commit history

67

PRO GIT SCOTT CHACON

3.6.3 The Perils of Rebasing

Ahh, but the bliss of rebasing isn’t without its drawbacks, which can be summed up in

a single line:

Do not rebase commits that you have pushed to a public repository.

If you follow that guideline, you’ll be fine. If you don’t, people will hate you, and

you’ll be scorned by friends and family.

When you rebase stuff, you’re abandoning existing commits and creating new ones

that are similar but different. If you push commits somewhere and others pull them

down and base work on them, and then you rewrite those commits with git rebase

and push them up again, your collaborators will have to re-merge their work and things

will get messy when you try to pull their work back into yours.

Let’s look at an example of how rebasing work that you’ve made public can cause

problems. Suppose you clone from a central server and then do some work off that.

Your commit history looks like Figure 3.36.

Figure 3.36: Clone a repository, and base some work on it.

Now, someone else does more work that includes a merge, and pushes that work to

the central server. You fetch them and merge the new remote branch into your work,

making your history look something like Figure 3.37.

Next, the person who pushed the merged work decides to go back and rebase their

work instead; they do a git push --force to overwrite the history on the server. You

then fetch from that server, bringing down the new commits.

At this point, you have to merge this work in again, even though you’ve already

done so. Rebasing changes the SHA–1 hashes of these commits so to Git they look

like new commits, when in fact you already have the C4 work in your history (see

Figure 3.39).

You have to merge that work in at some point so you can keep up with the other

developer in the future. After you do that, your commit history will contain both the

C4 and C4’ commits, which have different SHA–1 hashes but introduce the same work

and have the same commit message. If you run a git log when your history looks

like this, you’ll see two commits that have the same author date and message, which

68

CHAPTER 3 GIT BRANCHING

Figure 3.37: Fetch more commits, and merge them into your work.

Figure 3.38: Someone pushes rebased commits, abandoning commits you’ve based

your work on.

will be confusing. Furthermore, if you push this history back up to the server, you’ll

reintroduce all those rebased commits to the central server, which can further confuse

people.

If you treat rebasing as a way to clean up and work with commits before you push

them, and if you only rebase commits that have never been available publicly, then

you’ll be fine. If you rebase commits that have already been pushed publicly, and

people may have based work on those commits, then you may be in for some frustrating

trouble.

69

PRO GIT SCOTT CHACON

Figure 3.39: You merge in the same work again into a new merge commit.

3.7 Summary

We’ve covered basic branching and merging in Git. You should feel comfortable cre-

ating and switching to new branches, switching between branches and merging local

branches together. You should also be able to share your branches by pushing them to

a shared server, working with others on shared branches and rebasing your branches

before they are shared.

70

Chapter 4

Git on the Server

At this point, you should be able to do most of the day-to-day tasks for which you’ll

be using Git. However, in order to do any collaboration in Git, you’ll need to have a

remote Git repository. Although you can technically push changes to and pull changes

from individuals’ repositories, doing so is discouraged because you can fairly easily

confuse what they’re working on if you’re not careful. Furthermore, you want your

collaborators to be able to access the repository even if your computer is offline —

having a more reliable common repository is often useful. Therefore, the preferred

method for collaborating with someone is to set up an intermediate repository that you

both have access to, and push to and pull from that. We’ll refer to this repository as a

“Git server”; but you’ll notice that it generally takes a tiny amount of resources to host

a Git repository, so you’ll rarely need to use an entire server for it.

Running a Git server is simple. First, you choose which protocols you want your

server to communicate with. The first section of this chapter will cover the available

protocols and the pros and cons of each. The next sections will explain some typical

setups using those protocols and how to get your server running with them. Last, we’ll

go over a few hosted options, if you don’t mind hosting your code on someone else’s

server and don’t want to go through the hassle of setting up and maintaining your own

server.

If you have no interest in running your own server, you can skip to the last section

of the chapter to see some options for setting up a hosted account and then move on to

the next chapter, where we discuss the various ins and outs of working in a distributed

source control environment.

A remote repository is generally a bare repository — a Git repository that has no

working directory. Because the repository is only used as a collaboration point, there is

no reason to have a snapshot checked out on disk; it’s just the Git data. In the simplest

terms, a bare repository is the contents of your project’s .git directory and nothing

else.

4.1 The Protocols

Git can use four major network protocols to transfer data: Local, Secure Shell (SSH),

Git, and HTTP. Here we’ll discuss what they are and in what basic circumstances you

would want (or not want) to use them.

71

PRO GIT SCOTT CHACON

It’s important to note that with the exception of the HTTP protocols, all of these

require Git to be installed and working on the server.

4.1.1 Local Protocol

The most basic is the Local protocol, in which the remote repository is in another

directory on disk. This is often used if everyone on your team has access to a shared

filesystem such as an NFS mount, or in the less likely case that everyone logs in to the

same computer. The latter wouldn’t be ideal, because all your code repository instances

would reside on the same computer, making a catastrophic loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from

a local file-based repository. To clone a repository like this or to add one as a remote

to an existing project, use the path to the repository as the URL. For example, to clone

a local repository, you can run something like this:

$ git clone /opt/git/project.git

Or you can do this:

$ git clone file:///opt/git/project.git

Git operates slightly differently if you explicitly specify file:// at the beginning

of the URL. If you just specify the path, Git tries to use hardlinks or directly copy

the files it needs. If you specify file:// , Git fires up the processes that it normally

uses to transfer data over a network which is generally a lot less efficient method of

transferring the data. The main reason to specify the file:// prefix is if you want a

clean copy of the repository with extraneous references or objects left out — generally

after an import from another version-control system or something similar (see Chapter

9 for maintenance tasks). We’ll use the normal path here because doing so is almost

always faster.

To add a local repository to an existing Git project, you can run something like this:

$ git remote add local_proj /opt/git/project.git

Then, you can push to and pull from that remote as though you were doing so over

a network.

The Pros

The pros of file-based repositories are that they’re simple and they use existing

file permissions and network access. If you already have a shared filesystem to which

your whole team has access, setting up a repository is very easy. You stick the bare

repository copy somewhere everyone has shared access to and set the read/write per-

missions as you would for any other shared directory. We’ll discuss how to export a

bare repository copy for this purpose in the next section, “Getting Git on a Server.”

This is also a nice option for quickly grabbing work from someone else’s working

repository. If you and a co-worker are working on the same project and they want

you to check something out, running a command like git pull /home/john/project

is often easier than them pushing to a remote server and you pulling down.

The Cons

The cons of this method are that shared access is generally more difficult to set up

and reach from multiple locations than basic network access. If you want to push from

72

CHAPTER 4 GIT ON THE SERVER

your laptop when you’re at home, you have to mount the remote disk, which can be

difficult and slow compared to network-based access.

It’s also important to mention that this isn’t necessarily the fastest option if you’re

using a shared mount of some kind. A local repository is fast only if you have fast

access to the data. A repository on NFS is often slower than the repository over SSH

on the same server, allowing Git to run off local disks on each system.

4.1.2 The SSH Protocol

Probably the most common transport protocol for Git is SSH. This is because SSH

access to servers is already set up in most places — and if it isn’t, it’s easy to do. SSH

is also the only network-based protocol that you can easily read from and write to. The

other two network protocols (HTTP and Git) are generally read-only, so even if you

have them available for the unwashed masses, you still need SSH for your own write

commands. SSH is also an authenticated network protocol; and because it’s ubiquitous,

it’s generally easy to set up and use.

To clone a Git repository over SSH, you can specify ssh:// URL like this:

$ git clone ssh://user@server:project.git

Or you can not specify a protocol — Git assumes SSH if you aren’t explicit:

$ git clone user@server:project.git

You can also not specify a user, and Git assumes the user you’re currently logged

in as.

The Pros

The pros of using SSH are many. First, you basically have to use it if you want

authenticated write access to your repository over a network. Second, SSH is rela-

tively easy to set up — SSH daemons are commonplace, many network admins have

experience with them, and many OS distributions are set up with them or have tools

to manage them. Next, access over SSH is secure — all data transfer is encrypted and

authenticated. Last, like the Git and Local protocols, SSH is efficient, making the data

as compact as possible before transferring it.

The Cons

The negative aspect of SSH is that you can’t serve anonymous access of your repos-

itory over it. People must have access to your machine over SSH to access it, even in a

read-only capacity, which doesn’t make SSH access conducive to open source projects.

If you’re using it only within your corporate network, SSH may be the only proto-

col you need to deal with. If you want to allow anonymous read-only access to your

projects, you’ll have to set up SSH for you to push over but something else for others

to pull over.

4.1.3 The Git Protocol

Next is the Git protocol. This is a special daemon that comes packaged with Git; it

listens on a dedicated port (9418) that provides a service similar to the SSH protocol,

but with absolutely no authentication. In order for a repository to be served over the Git

protocol, you must create the git-export-daemon-ok file — the daemon won’t serve a

repository without that file in it — but other than that there is no security. Either the

73

PRO GIT SCOTT CHACON

Git repository is available for everyone to clone or it isn’t. This means that there is

generally no pushing over this protocol. You can enable push access; but given the lack

of authentication, if you turn on push access, anyone on the internet who finds your

project’s URL could push to your project. Suffice it to say that this is rare.

The Pros

The Git protocol is the fastest transfer protocol available. If you’re serving a lot

of traffic for a public project or serving a very large project that doesn’t require user

authentication for read access, it’s likely that you’ll want to set up a Git daemon to

serve your project. It uses the same data-transfer mechanism as the SSH protocol but

without the encryption and authentication overhead.

The Cons

The downside of the Git protocol is the lack of authentication. It’s generally un-

desirable for the Git protocol to be the only access to your project. Generally, you’ll

pair it with SSH access for the few developers who have push (write) access and have

everyone else use git:// for read-only access. It’s also probably the most difficult pro-

tocol to set up. It must run its own daemon, which is custom — we’ll look at setting

one up in the “Gitosis” section of this chapter — it requires xinetd configuration or the

like, which isn’t always a walk in the park. It also requires firewall access to port 9418,

which isn’t a standard port that corporate firewalls always allow. Behind big corporate

firewalls, this obscure port is commonly blocked.

4.1.4 The HTTP/S Protocol

Last we have the HTTP protocol. The beauty of the HTTP or HTTPS protocol is the

simplicity of setting it up. Basically, all you have to do is put the bare Git repository

under your HTTP document root and set up a specific post-update hook, and you’re

done (See Chapter 7 for details on Git hooks). At that point, anyone who can access

the web server under which you put the repository can also clone your repository. To

allow read access to your repository over HTTP, do something like this:

$ cd /var/www/htdocs/

$ git clone --bare /path/to/git_project gitproject.git

$ cd gitproject.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

That’s all. The post-update hook that comes with Git by default runs the appro-

priate command (git update-server-info) to make HTTP fetching and cloning work

properly. This command is run when you push to this repository over SSH; then, other

people can clone via something like

$ git clone http://example.com/gitproject.git

In this particular case, we’re using the /var/www/htdocs path that is common for

Apache setups, but you can use any static web server — just put the bare repository

in its path. The Git data is served as basic static files (see Chapter 9 for details about

exactly how it’s served).

It’s possible to make Git push over HTTP as well, although that technique isn’t

as widely used and requires you to set up complex WebDAV requirements. Because

it’s rarely used, we won’t cover it in this book. If you’re interested in using the

74

CHAPTER 4 GIT ON THE SERVER

HTTP-push protocols, you can read about preparing a repository for this purpose at

http://www.kernel.org/pub/software/scm/git/docs/howto/setup-git-server-over-http.txt .

One nice thing about making Git push over HTTP is that you can use any WebDAV

server, without specific Git features; so, you can use this functionality if your web-

hosting provider supports WebDAV for writing updates to your web site.

The Pros

The upside of using the HTTP protocol is that it’s easy to set up. Running the

handful of required commands gives you a simple way to give the world read access to

your Git repository. It takes only a few minutes to do. The HTTP protocol also isn’t

very resource intensive on your server. Because it generally uses a static HTTP server

to serve all the data, a normal Apache server can serve thousands of files per second on

average — it’s difficult to overload even a small server.

You can also serve your repositories read-only over HTTPS, which means you can

encrypt the content transfer; or you can go so far as to make the clients use specific

signed SSL certificates. Generally, if you’re going to these lengths, it’s easier to use

SSH public keys; but it may be a better solution in your specific case to use signed

SSL certificates or other HTTP-based authentication methods for read-only access over

HTTPS.

Another nice thing is that HTTP is such a commonly used protocol that corporate

firewalls are often set up to allow traffic through this port.

The Cons

The downside of serving your repository over HTTP is that it’s relatively inefficient

for the client. It generally takes a lot longer to clone or fetch from the repository, and

you often have a lot more network overhead and transfer volume over HTTP than with

any of the other network protocols. Because it’s not as intelligent about transferring

only the data you need — there is no dynamic work on the part of the server in these

transactions — the HTTP protocol is often referred to as a dumb protocol. For more

information about the differences in efficiency between the HTTP protocol and the

other protocols, see Chapter 9.

4.2 Getting Git on a Server

In order to initially set up any Git server, you have to export an existing repository into

a new bare repository — a repository that doesn’t contain a working directory. This is

generally straightforward to do. In order to clone your repository to create a new bare

repository, you run the clone command with the --bare option. By convention, bare

repository directories end in .git , like so:

$ git clone --bare my_project my_project.git

Initialized empty Git repository in /opt/projects/my_project.git/

The output for this command is a little confusing. Since clone is basically a git

init then a git fetch , we see some output from the git init part, which creates an

empty directory. The actual object transfer gives no output, but it does happen. You

should now have a copy of the Git directory data in your my project.git directory.

This is roughly equivalent to something like

$ cp -Rf my_project/.git my_project.git

75

PRO GIT SCOTT CHACON

There are a couple of minor differences in the configuration file; but for your pur-

pose, this is close to the same thing. It takes the Git repository by itself, without a

working directory, and creates a directory specifically for it alone.

4.2.1 Putting the Bare Repository on a Server

Now that you have a bare copy of your repository, all you need to do is put it on a server

and set up your protocols. Let’s say you’ve set up a server called git.example.com

that you have SSH access to, and you want to store all your Git repositories under

the /opt/git directory. You can set up your new repository by copying your bare

repository over:

$ scp -r my_project.git user@git.example.com:/opt/git

At this point, other users who have SSH access to the same server which has read-

access to the /opt/git directory can clone your repository by running

$ git clone user@git.example.com:/opt/git/my_project.git

If a user SSHs into a server and has write access to the /opt/git/my project.git

directory, they will also automatically have push access. Git will automatically add

group write permissions to a repository properly if you run the git init command

with the --shared option.

$ ssh user@git.example.com

$ cd /opt/git/my_project.git

$ git init --bare --shared

You see how easy it is to take a Git repository, create a bare version, and place it

on a server to which you and your collaborators have SSH access. Now you’re ready

to collaborate on the same project.

It’s important to note that this is literally all you need to do to run a useful Git

server to which several people have access — just add SSH-able accounts on a server,

and stick a bare repository somewhere that all those users have read and write access

to. You’re ready to go — nothing else needed.

In the next few sections, you’ll see how to expand to more sophisticated setups.

This discussion will include not having to create user accounts for each user, adding

public read access to repositories, setting up web UIs, using the Gitosis tool, and more.

However, keep in mind that to collaborate with a couple of people on a private project,

all you need is an SSH server and a bare repository.

4.2.2 Small Setups

If you’re a small outfit or are just trying out Git in your organization and have only

a few developers, things can be simple for you. One of the most complicated aspects

of setting up a Git server is user management. If you want some repositories to be

read-only to certain users and read/write to others, access and permissions can be a bit

difficult to arrange.

SSH Access

If you already have a server to which all your developers have SSH access, it’s

generally easiest to set up your first repository there, because you have to do almost

76

CHAPTER 4 GIT ON THE SERVER

no work (as we covered in the last section). If you want more complex access control

type permissions on your repositories, you can handle them with the normal filesystem

permissions of the operating system your server runs.

If you want to place your repositories on a server that doesn’t have accounts for

everyone on your team whom you want to have write access, then you must set up SSH

access for them. We assume that if you have a server with which to do this, you already

have an SSH server installed, and that’s how you’re accessing the server.

There are a few ways you can give access to everyone on your team. The first is to

set up accounts for everybody, which is straightforward but can be cumbersome. You

may not want to run adduser and set temporary passwords for every user.

A second method is to create a single ‘git’ user on the machine, ask every user

who is to have write access to send you an SSH public key, and add that key to the

/.ssh/authorized keys file of your new ‘git’ user. At that point, everyone will be able

to access that machine via the ‘git’ user. This doesn’t affect the commit data in any

way — the SSH user you connect as doesn’t affect the commits you’ve recorded.

Another way to do it is to have your SSH server authenticate from an LDAP server

or some other centralized authentication source that you may already have set up. As

long as each user can get shell access on the machine, any SSH authentication mecha-

nism you can think of should work.

4.3 Generating Your SSH Public Key

That being said, many Git servers authenticate using SSH public keys. In order to

provide a public key, each user in your system must generate one if they don’t already

have one. This process is similar across all operating systems. First, you should check

to make sure you don’t already have a key. By default, a user’s SSH keys are stored in

that user’s /.ssh directory. You can easily check to see if you have a key already by

going to that directory and listing the contents:

$ cd /̃.ssh

$ ls

authorized_keys2 id_dsa known_hosts

config id_dsa.pub

You’re looking for a pair of files named something and something.pub, where the

something is usually id dsa or id rsa . The .pub file is your public key, and the other

file is your private key. If you don’t have these files (or you don’t even have a .ssh

directory), you can create them by running a program called ssh-keygen , which is

provided with the SSH package on Linux/Mac systems and comes with the MSysGit

package on Windows:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/schacon/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /Users/schacon/.ssh/id_rsa.

Your public key has been saved in /Users/schacon/.ssh/id_rsa.pub.

The key fingerprint is:

43:c5:5b:5f:b1:f1:50:43:ad:20:a6:92:6a:1f:9a:3a schacon@agadorlaptop.local

77

PRO GIT SCOTT CHACON

First it confirms where you want to save the key (.ssh/id rsa), and then it asks

twice for a passphrase, which you can leave empty if you don’t want to type a password

when you use the key.

Now, each user that does this has to send their public key to you or whoever is

administrating the Git server (assuming you’re using an SSH server setup that requires

public keys). All they have to do is copy the contents of the .pub file and e-mail it. The

public keys look something like this:

$ cat /̃.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAklOUpkDHrfHY17SbrmTIpNLTGK9Tjom/BWDSU

GPl+nafzlHDTYW7hdI4yZ5ew18JH4JW9jbhUFrviQzM7xlELEVf4h9lFX5QVkbPppSwg0cda3

Pbv7kOdJ/MTyBlWXFCR+HAo3FXRitBqxiX1nKhXpHAZsMciLq8V6RjsNAQwdsdMFvSlVK/7XA

t3FaoJoAsncM1Q9x5+3V0Ww68/eIFmb1zuUFljQJKprrX88XypNDvjYNby6vw/Pb0rwert/En

mZ+AW4OZPnTPI89ZPmVMLuayrD2cE86Z/il8b+gw3r3+1nKatmIkjn2so1d01QraTlMqVSsbx

NrRFi9wrf+M7Q== schacon@agadorlaptop.local

For a more in-depth tutorial on creating an SSH key on multiple operating systems,

see the GitHub guide on SSH keys at http://github.com/guides/providing-your-ssh-key .

4.4 Setting Up the Server

Let’s walk through setting up SSH access on the server side. In this example, you’ll

use the authorized keys method for authenticating your users. We also assume you’re

running a standard Linux distribution like Ubuntu. First, you create a ‘git’ user and a

.ssh directory for that user.

$ sudo adduser git

$ su git

$ cd

$ mkdir .ssh

Next, you need to add some developer SSH public keys to the authorized keys file

for that user. Let’s assume you’ve received a few keys by e-mail and saved them to

temporary files. Again, the public keys look something like this:

$ cat /tmp/id_rsa.john.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCB007n/ww+ouN4gSLKssMxXnBOvf9LGt4L

ojG6rs6hPB09j9R/T17/x4lhJA0F3FR1rP6kYBRsWj2aThGw6HXLm9/5zytK6Ztg3RPKK+4k

Yjh6541NYsnEAZuXz0jTTyAUfrtU3Z5E003C4oxOj6H0rfIF1kKI9MAQLMdpGW1GYEIgS9Ez

Sdfd8AcCIicTDWbqLAcU4UpkaX8KyGlLwsNuuGztobF8m72ALC/nLF6JLtPofwFBlgc+myiv

O7TCUSBdLQlgMVOFq1I2uPWQOkOWQAHukEOmfjy2jctxSDBQ220ymjaNsHT4kgtZg2AYYgPq

dAv8JggJICUvax2T9va5 gsg-keypair

You just append them to your authorized keys file:

$ cat /tmp/id_rsa.john.pub >> /̃.ssh/authorized_keys

$ cat /tmp/id_rsa.josie.pub >> /̃.ssh/authorized_keys

$ cat /tmp/id_rsa.jessica.pub >> /̃.ssh/authorized_keys

Now, you can set up an empty repository for them by running git init with the

--bare option, which initializes the repository without a working directory:

78

CHAPTER 4 GIT ON THE SERVER

$ cd /opt/git

$ mkdir project.git

$ cd project.git

$ git --bare init

Then, John, Josie, or Jessica can push the first version of their project into that

repository by adding it as a remote and pushing up a branch. Note that someone must

shell onto the machine and create a bare repository every time you want to add a project.

Let’s use gitserver as the hostname of the server on which you’ve set up your ‘git’

user and repository. If you’re running it internally, and you set up DNS for gitserver

to point to that server, then you can use the commands pretty much as is:

on Johns computer

$ cd myproject

$ git init

$ git add .

$ git commit -m ’initial commit’

$ git remote add origin git@gitserver:/opt/git/project.git

$ git push origin master

At this point, the others can clone it down and push changes back up just as easily:

$ git clone git@gitserver:/opt/git/project.git

$ vim README

$ git commit -am ’fix for the README file’

$ git push origin master

With this method, you can quickly get a read/write Git server up and running for a

handful of developers.

As an extra precaution, you can easily restrict the ‘git’ user to only doing Git activ-

ities with a limited shell tool called git-shell that comes with Git. If you set this as

your ‘git’ user’s login shell, then the ‘git’ user can’t have normal shell access to your

server. To use this, specify git-shell instead of bash or csh for your user’s login shell.

To do so, you’ll likely have to edit your /etc/passwd file:

$ sudo vim /etc/passwd

At the bottom, you should find a line that looks something like this:

git:x:1000:1000::/home/git:/bin/sh

Change /bin/sh to /usr/bin/git-shell (or run which git-shell to see where it’s

installed). The line should look something like this:

git:x:1000:1000::/home/git:/usr/bin/git-shell

Now, the ‘git’ user can only use the SSH connection to push and pull Git repos-

itories and can’t shell onto the machine. If you try, you’ll see a login rejection like

this:

$ ssh git@gitserver

fatal: What do you think I am? A shell?

Connection to gitserver closed.

79

PRO GIT SCOTT CHACON

4.5 Public Access

What if you want anonymous read access to your project? Perhaps instead of hosting

an internal private project, you want to host an open source project. Or maybe you

have a bunch of automated build servers or continuous integration servers that change

a lot, and you don’t want to have to generate SSH keys all the time — you just want to

add simple anonymous read access.

Probably the simplest way for smaller setups is to run a static web server with

its document root where your Git repositories are, and then enable that post-update

hook we mentioned in the first section of this chapter. Let’s work from the previous

example. Say you have your repositories in the /opt/git directory, and an Apache

server is running on your machine. Again, you can use any web server for this; but as

an example, we’ll demonstrate some basic Apache configurations that should give you

an idea of what you might need.

First you need to enable the hook:

$ cd project.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

If you’re using a version of Git earlier than 1.6, the mv command isn’t necessary —

Git started naming the hooks examples with the .sample postfix only recently.

What does this post-update hook do? It looks basically like this:

$ cat .git/hooks/post-update

#!/bin/sh

exec git-update-server-info

This means that when you push to the server via SSH, Git will run this command

to update the files needed for HTTP fetching.

Next, you need to add a VirtualHost entry to your Apache configuration with the

document root as the root directory of your Git projects. Here, we’re assuming that you

have wildcard DNS set up to send *.gitserver to whatever box you’re using to run all

this:

<VirtualHost *:80>

ServerName git.gitserver

DocumentRoot /opt/git

<Directory /opt/git/>

Order allow, deny

allow from all

</Directory>

</VirtualHost>

You’ll also need to set the Unix user group of the /opt/git directories to www-data

so your web server can read-access the repositories, because the Apache instance run-

ning the CGI script will (by default) be running as that user:

$ chgrp -R www-data /opt/git

When you restart Apache, you should be able to clone your repositories under that

directory by specifying the URL for your project:

80

CHAPTER 4 GIT ON THE SERVER

$ git clone http://git.gitserver/project.git

This way, you can set up HTTP-based read access to any of your projects for a fair

number of users in a few minutes. Another simple option for public unauthenticated

access is to start a Git daemon, although that requires you to daemonize the process -

we’ll cover this option in the next section, if you prefer that route.

4.6 GitWeb

Now that you have basic read/write and read-only access to your project, you may

want to set up a simple web-based visualizer. Git comes with a CGI script called

GitWeb that is commonly used for this. You can see GitWeb in use at sites like

http://git.kernel.org (see Figure 4.1).

Figure 4.1: The GitWeb web-based user interface

If you want to check out what GitWeb would look like for your project, Git comes

with a command to fire up a temporary instance if you have a lightweight server on

your system like lighttpd or webrick . On Linux machines, lighttpd is often installed,

so you may be able to get it to run by typing git instaweb in your project directory. If

you’re running a Mac, Leopard comes preinstalled with Ruby, so webrick may be your

best bet. To start instaweb with a non-lighttpd handler, you can run it with the --httpd

option.

$ git instaweb --httpd=webrick

[2009-02-21 10:02:21] INFO WEBrick 1.3.1

[2009-02-21 10:02:21] INFO ruby 1.8.6 (2008-03-03) [universal-darwin9.0]

81

PRO GIT SCOTT CHACON

That starts up an HTTPD server on port 1234 and then automatically starts a web

browser that opens on that page. It’s pretty easy on your part. When you’re done and

want to shut down the server, you can run the same command with the --stop option:

$ git instaweb --httpd=webrick --stop

If you want to run the web interface on a server all the time for your team or for an

open source project you’re hosting, you’ll need to set up the CGI script to be served by

your normal web server. Some Linux distributions have a gitweb package that you may

be able to install via apt or yum , so you may want to try that first. We’ll walk though

installing GitWeb manually very quickly. First, you need to get the Git source code,

which GitWeb comes with, and generate the custom CGI script:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/

$ make GITWEB_PROJECTROOT="/opt/git" \

prefix=/usr gitweb/gitweb.cgi

$ sudo cp -Rf gitweb /var/www/

Notice that you have to tell the command where to find your Git repositories with

the GITWEB PROJECTROOT variable. Now, you need to make Apache use CGI for that

script, for which you can add a VirtualHost:

<VirtualHost *:80>

ServerName gitserver

DocumentRoot /var/www/gitweb

<Directory /var/www/gitweb>

Options ExecCGI +FollowSymLinks +SymLinksIfOwnerMatch

AllowOverride All

order allow,deny

Allow from all

AddHandler cgi-script cgi

DirectoryIndex gitweb.cgi

</Directory>

</VirtualHost>

Again, GitWeb can be served with any CGI capable web server; if you prefer to

use something else, it shouldn’t be difficult to set up. At this point, you should be

able to visit http://gitserver/ to view your repositories online, and you can use

http://git.gitserver to clone and fetch your repositories over HTTP.

4.7 Gitosis

Keeping all users’ public keys in the authorized keys file for access works well only

for a while. When you have hundreds of users, it’s much more of a pain to manage that

process. You have to shell onto the server each time, and there is no access control —

everyone in the file has read and write access to every project.

At this point, you may want to turn to a widely used software project called Gitosis.

Gitosis is basically a set of scripts that help you manage the authorized keys file as

well as implement some simple access controls. The really interesting part is that the

UI for this tool for adding people and determining access isn’t a web interface but a

82

CHAPTER 4 GIT ON THE SERVER

special Git repository. You set up the information in that project; and when you push

it, Gitosis reconfigures the server based on that, which is cool.

Installing Gitosis isn’t the simplest task ever, but it’s not too difficult. It’s easiest to

use a Linux server for it — these examples use a stock Ubuntu 8.10 server.

Gitosis requires some Python tools, so first you have to install the Python setuptools

package, which Ubuntu provides as python-setuptools:

$ apt-get install python-setuptools

Next, you clone and install Gitosis from the project’s main site:

$ git clone git://eagain.net/gitosis.git

$ cd gitosis

$ sudo python setup.py install

That installs a couple of executables that Gitosis will use. Next, Gitosis wants to

put its repositories under /home/git , which is fine. But you have already set up your

repositories in /opt/git , so instead of reconfiguring everything, you create a symlink:

$ ln -s /opt/git /home/git/repositories

Gitosis is going to manage your keys for you, so you need to remove the current

file, re-add the keys later, and let Gitosis control the authorized keys file automatically.

For now, move the authorized keys file out of the way:

$ mv /home/git/.ssh/authorized_keys /home/git/.ssh/ak.bak

Next you need to turn your shell back on for the ‘git’ user, if you changed it to the

git-shell command. People still won’t be able to log in, but Gitosis will control that

for you. So, let’s change this line in your /etc/passwd file

git:x:1000:1000::/home/git:/usr/bin/git-shell

back to this:

git:x:1000:1000::/home/git:/bin/sh

Now it’s time to initialize Gitosis. You do this by running the gitosis-init com-

mand with your personal public key. If your public key isn’t on the server, you’ll have

to copy it there:

$ sudo -H -u git gitosis-init < /tmp/id_dsa.pub

Initialized empty Git repository in /opt/git/gitosis-admin.git/

Reinitialized existing Git repository in /opt/git/gitosis-admin.git/

This lets the user with that key modify the main Git repository that controls the

Gitosis setup. Next, you have to manually set the execute bit on the post-update script

for your new control repository.

$ sudo chmod 755 /opt/git/gitosis-admin.git/hooks/post-update

You’re ready to roll. If you’re set up correctly, you can try to SSH into your server

as the user for which you added the public key to initialize Gitosis. You should see

something like this:

83

PRO GIT SCOTT CHACON

$ ssh git@gitserver

PTY allocation request failed on channel 0

fatal: unrecognized command ’gitosis-serve schacon@quaternion’

Connection to gitserver closed.

That means Gitosis recognized you but shut you out because you’re not trying to

do any Git commands. So, let’s do an actual Git command — you’ll clone the Gitosis

control repository:

on your local computer

$ git clone git@gitserver:gitosis-admin.git

Now you have a directory named gitosis-admin , which has two major parts:

$ cd gitosis-admin

$ find .

./gitosis.conf

./keydir

./keydir/scott.pub

The gitosis.conf file is the control file you use to specify users, repositories, and

permissions. The keydir directory is where you store the public keys of all the users

who have any sort of access to your repositories — one file per user. The name of the

file in keydir (in the previous example, scott.pub) will be different for you — Gitosis

takes that name from the description at the end of the public key that was imported

with the gitosis-init script.

If you look at the gitosis.conf file, it should only specify information about the

gitosis-admin project that you just cloned:

$ cat gitosis.conf

[gitosis]

[group gitosis-admin]

writable = gitosis-admin

members = scott

It shows you that the ‘scott’ user — the user with whose public key you initialized

Gitosis — is the only one who has access to the gitosis-admin project.

Now, let’s add a new project for you. You’ll add a new section called mobile where

you’ll list the developers on your mobile team and projects that those developers need

access to. Because ‘scott’ is the only user in the system right now, you’ll add him as

the only member, and you’ll create a new project called iphone project to start on:

[group mobile]

writable = iphone_project

members = scott

Whenever you make changes to the gitosis-admin project, you have to commit the

changes and push them back up to the server in order for them to take effect:

$ git commit -am ’add iphone_project and mobile group’

[master]: created 8962da8: "changed name"

1 files changed, 4 insertions(+), 0 deletions(-)

84

CHAPTER 4 GIT ON THE SERVER

$ git push

Counting objects: 5, done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 272 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

To git@gitserver:/opt/git/gitosis-admin.git

fb27aec..8962da8 master -> master

You can make your first push to the new iphone project project by adding your

server as a remote to your local version of the project and pushing. You no longer have

to manually create a bare repository for new projects on the server — Gitosis creates

them automatically when it sees the first push:

$ git remote add origin git@gitserver:iphone_project.git

$ git push origin master

Initialized empty Git repository in /opt/git/iphone_project.git/

Counting objects: 3, done.

Writing objects: 100% (3/3), 230 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

To git@gitserver:iphone_project.git

* [new branch] master -> master

Notice that you don’t need to specify the path (in fact, doing so won’t work), just a

colon and then the name of the project — Gitosis finds it for you.

You want to work on this project with your friends, so you’ll have to re-add their

public keys. But instead of appending them manually to the /.ssh/authorized keys

file on your server, you’ll add them, one key per file, into the keydir directory. How

you name the keys determines how you refer to the users in the gitosis.conf file. Let’s

re-add the public keys for John, Josie, and Jessica:

$ cp /tmp/id_rsa.john.pub keydir/john.pub

$ cp /tmp/id_rsa.josie.pub keydir/josie.pub

$ cp /tmp/id_rsa.jessica.pub keydir/jessica.pub

Now you can add them all to your ‘mobile’ team so they have read and write access

to iphone project :

[group mobile]

writable = iphone_project

members = scott john josie jessica

After you commit and push that change, all four users will be able to read from and

write to that project.

Gitosis has simple access controls as well. If you want John to have only read

access to this project, you can do this instead:

[group mobile]

writable = iphone_project

members = scott josie jessica

[group mobile_ro]

readable = iphone_project

members = john

85

PRO GIT SCOTT CHACON

Now John can clone the project and get updates, but Gitosis won’t allow him to

push back up to the project. You can create as many of these groups as you want, each

containing different users and projects. You can also specify another group as one of

the members, to inherit all of its members automatically.

If you have any issues, it may be useful to add loglevel=DEBUG under the [gitosis]

section. If you’ve lost push access by pushing a messed-up configuration, you can

manually fix the file on the server under /home/git/.gitosis.conf — the file from

which Gitosis reads its info. A push to the project takes the gitosis.conf file you just

pushed up and sticks it there. If you edit that file manually, it remains like that until the

next successful push to the gitosis-admin project.

4.8 Git Daemon

For public, unauthenticated read access to your projects, you’ll want to move past the

HTTP protocol and start using the Git protocol. The main reason is speed. The Git

protocol is far more efficient and thus faster than the HTTP protocol, so using it will

save your users time.

Again, this is for unauthenticated read-only access. If you’re running this on a

server outside your firewall, it should only be used for projects that are publicly visible

to the world. If the server you’re running it on is inside your firewall, you might use

it for projects that a large number of people or computers (continuous integration or

build servers) have read-only access to, when you don’t want to have to add an SSH

key for each.

In any case, the Git protocol is relatively easy to set up. Basically, you need to run

this command in a daemonized manner:

git daemon --reuseaddr --base-path=/opt/git/ /opt/git/

--reuseaddr allows the server to restart without waiting for old connections to time

out, the --base-path option allows people to clone projects without specifying the

entire path, and the path at the end tells the Git daemon where to look for repositories

to export. If you’re running a firewall, you’ll also need to punch a hole in it at port

9418 on the box you’re setting this up on.

You can daemonize this process a number of ways, depending on the operating

system you’re running. On an Ubuntu machine, you use an Upstart script. So, in the

following file

/etc/event.d/local-git-daemon

you put this script:

start on startup

stop on shutdown

exec /usr/bin/git daemon \

--user=git --group=git \

--reuseaddr \

--base-path=/opt/git/ \

/opt/git/

respawn

86

CHAPTER 4 GIT ON THE SERVER

For security reasons, it is strongly encouraged to have this daemon run as a user

with read-only permissions to the repositories you can easily do this by creating a new

user ‘git-ro’ and running the daemon as them. For the sake of simplicity we’ll simply

run it as the same ‘git’ user that Gitosis is running as.

When you restart your machine, your Git daemon will start automatically and

respawn if it goes down. To get it running without having to reboot, you can run

this:

initctl start local-git-daemon

On other systems, you may want to use xinetd , a script in your sysvinit system, or

something else— as long as you get that command daemonized and watched somehow.

Next, you have to tell your Gitosis server which repositories to allow unauthen-

ticated Git server-based access to. If you add a section for each repository, you can

specify the ones from which you want your Git daemon to allow reading. If you want

to allow Git protocol access for your iphone project, you add this to the end of the

gitosis.conf file:

[repo iphone_project]

daemon = yes

When that is committed and pushed up, your running daemon should start serving

requests for the project to anyone who has access to port 9418 on your server.

If you decide not to use Gitosis, but you want to set up a Git daemon, you’ll have

to run this on each project you want the Git daemon to serve:

$ cd /path/to/project.git

$ touch git-daemon-export-ok

The presence of that file tells Git that it’s OK to serve this project without authen-

tication.

Gitosis can also control which projects GitWeb shows. First, you need to add some-

thing like the following to the /etc/gitweb.conf file:

$projects_list = "/home/git/gitosis/projects.list";

$projectroot = "/home/git/repositories";

$export_ok = "git-daemon-export-ok";

@git_base_url_list = (’git://gitserver’);

You can control which projects GitWeb lets users browse by adding or removing

a gitweb setting in the Gitosis configuration file. For instance, if you want the iphone

project to show up on GitWeb, you make the repo setting look like this:

[repo iphone_project]

daemon = yes

gitweb = yes

Now, if you commit and push the project, GitWeb will automatically start showing

your iphone project.

87

PRO GIT SCOTT CHACON

4.9 Hosted Git

If you don’t want to go through all of the work involved in setting up your own Git

server, you have several options for hosting your Git projects on an external dedicated

hosting site. Doing so offers a number of advantages: a hosting site is generally quick

to set up and easy to start projects on, and no server maintenance or monitoring is

involved. Even if you set up and run your own server internally, you may still want to

use a public hosting site for your open source code — it’s generally easier for the open

source community to find and help you with.

These days, you have a huge number of hosting options to choose from, each

with different advantages and disadvantages. To see an up-to-date list, check out the

GitHosting page on the main Git wiki:

http://git.or.cz/gitwiki/GitHosting

Because we can’t cover all of them, and because I happen to work at one of them,

we’ll use this section to walk through setting up an account and creating a new project

at GitHub. This will give you an idea of what is involved.

GitHub is by far the largest open source Git hosting site and it’s also one of the

very few that offers both public and private hosting options so you can keep your open

source and private commercial code in the same place. In fact, we used GitHub to

privately collaborate on this book.

4.9.1 GitHub

GitHub is slightly different than most code-hosting sites in the way that it namespaces

projects. Instead of being primarily based on the project, GitHub is user centric. That

means when I host my grit project on GitHub, you won’t find it at github.com/grit

but instead at github.com/schacon/grit . There is no canonical version of any project,

which allows a project to move from one user to another seamlessly if the first author

abandons the project.

GitHub is also a commercial company that charges for accounts that maintain pri-

vate repositories, but anyone can quickly get a free account to host as many open source

projects as they want. We’ll quickly go over how that is done.

4.9.2 Setting Up a User Account

The first thing you need to do is set up a free user account. If you visit the Pricing and

Signup page at http://github.com/plans and click the “Sign Up” button on the Free

account (see figure 4–2), you’re taken to the signup page.

Here you must choose a username that isn’t yet taken in the system and enter an

e-mail address that will be associated with the account and a password (see Figure 4.3).

If you have it available, this is a good time to add your public SSH key as well. We

covered how to generate a new key earlier, in the “Simple Setups” section. Take the

contents of the public key of that pair, and paste it into the SSH Public Key text box.

Clicking the “explain ssh keys” link takes you to detailed instructions on how to do so

on all major operating systems. Clicking the “I agree, sign me up” button takes you to

your new user dashboard (see Figure 4.4).

Next you can create a new repository.

88

CHAPTER 4 GIT ON THE SERVER

Figure 4.2: The GitHub plan page

Figure 4.3: The GitHub user signup form

4.9.3 Creating a New Repository

Start by clicking the “create a new one” link next to Your Repositories on the user

dashboard. You’re taken to the Create a New Repository form (see Figure 4.5).

All you really have to do is provide a project name, but you can also add a descrip-

tion. When that is done, click the “Create Repository” button. Now you have a new

repository on GitHub (see Figure 4.6).

Since you have no code there yet, GitHub will show you instructions for how create

a brand-new project, push an existing Git project up, or import a project from a public

Subversion repository (see Figure 4.7).

89

PRO GIT SCOTT CHACON

Figure 4.4: The GitHub user dashboard

Figure 4.5: Creating a new repository on GitHub

Figure 4.6: GitHub project header information

These instructions are similar to what we’ve already gone over. To initialize a

project if it isn’t already a Git project, you use

$ git init

$ git add .

$ git commit -m ’initial commit’

When you have a Git repository locally, add GitHub as a remote and push up your

master branch:

90

CHAPTER 4 GIT ON THE SERVER

Figure 4.7: Instructions for a new repository

$ git remote add origin git@github.com:testinguser/iphone_project.git

$ git push origin master

Now your project is hosted on GitHub, and you can give the URL to anyone you

want to share your project with. In this case, it’s http://github.com/testinguser/iphone project .

You can also see from the header on each of your project’s pages that you have two Git

URLs (see Figure 4.8).

Figure 4.8: Project header with a public URL and a private URL

The Public Clone URL is a public, read-only Git URL over which anyone can clone

the project. Feel free to give out that URL and post it on your web site or what have

you.

The Your Clone URL is a read/write SSH-based URL that you can read or write

over only if you connect with the SSH private key associated with the public key you

uploaded for your user. When other users visit this project page, they won’t see that

URL—only the public one.

91

PRO GIT SCOTT CHACON

4.9.4 Importing from Subversion

If you have an existing public Subversion project that you want to import into Git,

GitHub can often do that for you. At the bottom of the instructions page is a link to a

Subversion import. If you click it, you see a form with information about the import

process and a text box where you can paste in the URL of your public Subversion

project (see Figure 4.9).

Figure 4.9: Subversion importing interface

If your project is very large, nonstandard, or private, this process probably won’t

work for you. In Chapter 7, you’ll learn how to do more complicated manual project

imports.

4.9.5 Adding Collaborators

Let’s add the rest of the team. If John, Josie, and Jessica all sign up for accounts on

GitHub, and you want to give them push access to your repository, you can add them

to your project as collaborators. Doing so will allow pushes from their public keys to

work.

Click the “edit” button in the project header or the Admin tab at the top of the

project to reach the Admin page of your GitHub project (see Figure 4.10).

To give another user write access to your project, click the “Add another collabora-

tor” link. A new text box appears, into which you can type a username. As you type,

a helper pops up, showing you possible username matches. When you find the correct

user, click the Add button to add that user as a collaborator on your project (see Figure

4.11).

When you’re finished adding collaborators, you should see a list of them in the

Repository Collaborators box (see Figure 4.12).

If you need to revoke access to individuals, you can click the “revoke” link, and

their push access will be removed. For future projects, you can also copy collaborator

groups by copying the permissions of an existing project.

92

CHAPTER 4 GIT ON THE SERVER

Figure 4.10: GitHub administration page

Figure 4.11: Adding a collaborator to your project

Figure 4.12: A list of collaborators on your project

4.9.6 Your Project

After you push your project up or have it imported from Subversion, you have a main

project page that looks something like Figure 4.13.

When people visit your project, they see this page. It contains tabs to different

aspects of your projects. The Commits tab shows a list of commits in reverse chrono-

logical order, similar to the output of the git log command. The Network tab shows

all the people who have forked your project and contributed back. The Downloads

93

PRO GIT SCOTT CHACON

Figure 4.13: A GitHub main project page

tab allows you to upload project binaries and link to tarballs and zipped versions of

any tagged points in your project. The Wiki tab provides a wiki where you can write

documentation or other information about your project. The Graphs tab has some con-

tribution visualizations and statistics about your project. The main Source tab that

you land on shows your project’s main directory listing and automatically renders the

README file below it if you have one. This tab also shows a box with the latest

commit information.

4.9.7 Forking Projects

If you want to contribute to an existing project to which you don’t have push access,

GitHub encourages forking the project. When you land on a project page that looks

interesting and you want to hack on it a bit, you can click the “fork” button in the

project header to have GitHub copy that project to your user so you can push to it.

This way, projects don’t have to worry about adding users as collaborators to give

them push access. People can fork a project and push to it, and the main project main-

tainer can pull in those changes by adding them as remotes and merging in their work.

To fork a project, visit the project page (in this case, mojombo/chronic) and click

the “fork” button in the header (see Figure 4.14).

After a few seconds, you’re taken to your new project page, which indicates that

this project is a fork of another one (see Figure 4.15).

4.9.8 GitHub Summary

That’s all we’ll cover about GitHub, but it’s important to note how quickly you can do

all this. You can create an account, add a new project, and push to it in a matter of

94

CHAPTER 4 GIT ON THE SERVER

Figure 4.14: Get a writable copy of any repository by clicking the “fork” button.

Figure 4.15: Your fork of a project

minutes. If your project is open source, you also get a huge community of developers

who now have visibility into your project and may well fork it and help contribute to

it. At the very least, this may be a way to get up and running with Git and try it out

quickly.

4.10 Summary

You have several options to get a remote Git repository up and running so that you can

collaborate with others or share your work.

Running your own server gives you a lot of control and allows you to run the server

within your own firewall, but such a server generally requires a fair amount of your

time to set up and maintain. If you place your data on a hosted server, it’s easy to set

up and maintain; however, you have to be able to keep your code on someone else’s

servers, and some organizations don’t allow that.

It should be fairly straightforward to determine which solution or combination of

solutions is appropriate for you and your organization.

95

PRO GIT SCOTT CHACON

96

Chapter 5

Distributed Git

Now that you have a remote Git repository set up as a point for all the developers to

share their code, and you’re familiar with basic Git commands in a local workflow,

you’ll look at how to utilize some of the distributed workflows that Git affords you.

In this chapter, you’ll see how to work with Git in a distributed environment as a

contributor and an integrator. That is, you’ll learn how to contribute code successfully

to a project and make it as easy on you and the project maintainer as possible, and also

how to maintain a project successfully with a number of developers contributing.

5.1 Distributed Workflows

Unlike Centralized Version Control Systems (CVCSs), the distributed nature of Git

allows you to be far more flexible in how developers collaborate on projects. In cen-

tralized systems, every developer is a node working more or less equally on a central

hub. In Git, however, every developer is potentially both a node and a hub — that is,

every developer can both contribute code to other repositories and maintain a public

repository on which others can base their work and which they can contribute to. This

opens a vast range of workflow possibilities for your project and/or your team, so I’ll

cover a few common paradigms that take advantage of this flexibility. I’ll go over the

strengths and possible weaknesses of each design; you can choose a single one to use,

or you can mix and match features from each.

5.1.1 Centralized Workflow

In centralized systems, there is generally a single collaboration model—the centralized

workflow. One central hub, or repository, can accept code, and everyone synchronizes

their work to it. A number of developers are nodes — consumers of that hub — and

synchronize to that one place (see Figure 5.1).

This means that if two developers clone from the hub and both make changes, the

first developer to push their changes back up can do so with no problems. The second

developer must merge in the first one’s work before pushing changes up, so as not to

overwrite the first developer’s changes. This concept is true in Git as it is in Subversion

(or any CVCS), and this model works perfectly in Git.

97

PRO GIT SCOTT CHACON

Figure 5.1: Centralized workflow

If you have a small team or are already comfortable with a centralized workflow in

your company or team, you can easily continue using that workflow with Git. Simply

set up a single repository, and give everyone on your team push access; Git won’t let

users overwrite each other. If one developer clones, makes changes, and then tries to

push their changes while another developer has pushed in the meantime, the server will

reject that developer’s changes. They will be told that they’re trying to push non-fast-

forward changes and that they won’t be able to do so until they fetch and merge. This

workflow is attractive to a lot of people because it’s a paradigm that many are familiar

and comfortable with.

5.1.2 Integration-Manager Workflow

Because Git allows you to have multiple remote repositories, it’s possible to have a

workflow where each developer has write access to their own public repository and

read access to everyone else’s. This scenario often includes a canonical repository that

represents the “official” project. To contribute to that project, you create your own

public clone of the project and push your changes to it. Then, you can send a request to

the maintainer of the main project to pull in your changes. They can add your repository

as a remote, test your changes locally, merge them into their branch, and push back to

their repository. The process works as follow (see Figure 5.2):

1. The project maintainer pushes to their public repository.

2. A contributor clones that repository and makes changes.

3. The contributor pushes to their own public copy.

4. The contributor sends the maintainer an e-mail asking them to pull changes.

5. The maintainer adds the contributor’s repo as a remote and merges locally.

6. The maintainer pushes merged changes to the main repository.

This is a very common workflow with sites like GitHub, where it’s easy to fork a

project and push your changes into your fork for everyone to see. One of the main

advantages of this approach is that you can continue to work, and the maintainer of the

main repository can pull in your changes at any time. Contributors don’t have to wait

for the project to incorporate their changes — each party can work at their own pace.

98

CHAPTER 5 DISTRIBUTED GIT

Figure 5.2: Integration-manager workflow

5.1.3 Dictator and Lieutenants Workflow

This is a variant of a multiple-repository workflow. It’s generally used by huge projects

with hundreds of collaborators; one famous example is the Linux kernel. Various in-

tegration managers are in charge of certain parts of the repository; they’re called lieu-

tenants. All the lieutenants have one integration manager known as the benevolent

dictator. The benevolent dictator’s repository serves as the reference repository from

which all the collaborators need to pull. The process works like this (see Figure 5.3):

1. Regular developers work on their topic branch and rebase their work on top of

master. The master branch is that of the dictator.

2. Lieutenants merge the developers’ topic branches into their master branch.

3. The dictator merges the lieutenants’ master branches into the dictator’s master

branch.

4. The dictator pushes their master to the reference repository so the other develop-

ers can rebase on it.

Figure 5.3: Benevolent dictator workflow

This kind of workflow isn’t common but can be useful in very big projects or in highly

hierarchical environments, because as it allows the project leader (the dictator) to del-

99

PRO GIT SCOTT CHACON

egate much of the work and collect large subsets of code at multiple points before

integrating them.

These are some commonly used workflows that are possible with a distributed sys-

tem like Git, but you can see that many variations are possible to suit your particular

real-world workflow. Now that you can (I hope) determine which workflow combina-

tion may work for you, I’ll cover some more specific examples of how to accomplish

the main roles that make up the different flows.

5.2 Contributing to a Project

You know what the different workflows are, and you should have a pretty good grasp

of fundamental Git usage. In this section, you’ll learn about a few common patterns

for contributing to a project.

The main difficulty with describing this process is that there are a huge number

of variations on how it’s done. Because Git is very flexible, people can and do work

together many ways, and it’s problematic to describe how you should contribute to a

project — every project is a bit different. Some of the variables involved are active

contributor size, chosen workflow, your commit access, and possibly the external con-

tribution method.

The first variable is active contributor size. How many users are actively contribut-

ing code to this project, and how often? In many instances, you’ll have two or three

developers with a few commits a day, or possibly less for somewhat dormant projects.

For really large companies or projects, the number of developers could be in the thou-

sands, with dozens or even hundreds of patches coming in each day. This is important

because with more and more developers, you run into more issues with making sure

your code applies cleanly or can be easily merged. Changes you submit may be ren-

dered obsolete or severely broken by work that is merged in while you were working

or while your changes were waiting to be approved or applied. How can you keep your

code consistently up to date and your patches valid?

The next variable is the workflow in use for the project. Is it centralized, with

each developer having equal write access to the main codeline? Does the project have

a maintainer or integration manager who checks all the patches? Are all the patches

peer-reviewed and approved? Are you involved in that process? Is a lieutenant system

in place, and do you have to submit your work to them first?

The next issue is your commit access. The workflow required in order to contribute

to a project is much different if you have write access to the project than if you don’t.

If you don’t have write access, how does the project prefer to accept contributed work?

Does it even have a policy? How much work are you contributing at a time? How often

do you contribute?

All these questions can affect how you contribute effectively to a project and what

workflows are preferred or available to you. I’ll cover aspects of each of these in a series

of use cases, moving from simple to more complex; you should be able to construct the

specific workflows you need in practice from these examples.

5.2.1 Commit Guidelines

Before you start looking at the specific use cases, here’s a quick note about commit

messages. Having a good guideline for creating commits and sticking to it makes work-

100

CHAPTER 5 DISTRIBUTED GIT

ing with Git and collaborating with others a lot easier. The Git project provides a doc-

ument that lays out a number of good tips for creating commits from which to submit

patches— you can read it in the Git source code in the Documentation/SubmittingPatches

file.

First, you don’t want to submit any whitespace errors. Git provides an easy way to

check for this — before you commit, run git diff --check , which identifies possible

whitespace errors and lists them for you. Here is an example, where I’ve replaced a red

terminal color with Xs:

$ git diff --check

lib/simplegit.rb:5: trailing whitespace.

+ @git_dir = File.expand_path(git_dir)XX

lib/simplegit.rb:7: trailing whitespace.

+ XXXXXXXXXXX

lib/simplegit.rb:26: trailing whitespace.

+ def command(git_cmd)XXXX

If you run that command before committing, you can tell if you’re about to commit

whitespace issues that may annoy other developers.

Next, try to make each commit a logically separate changeset. If you can, try to

make your changes digestible — don’t code for a whole weekend on five different

issues and then submit them all as one massive commit on Monday. Even if you don’t

commit during the weekend, use the staging area on Monday to split your work into at

least one commit per issue, with a useful message per commit. If some of the changes

modify the same file, try to use git add --patch to partially stage files (covered in

detail in Chapter 6). The project snapshot at the tip of the branch is identical whether

you do one commit or five, as long as all the changes are added at some point, so try to

make things easier on your fellow developers when they have to review your changes.

This approach also makes it easier to pull out or revert one of the changesets if you

need to later. Chapter 6 describes a number of useful Git tricks for rewriting history

and interactively staging files— use these tools to help craft a clean and understandable

history.

The last thing to keep in mind is the commit message. Getting in the habit of

creating quality commit messages makes using and collaborating with Git a lot easier.

As a general rule, your messages should start with a single line that’s no more than

about 50 characters and that describes the changeset concisely, followed by a blank line,

followed by a more detailed explanation. The Git project requires that the more detailed

explanation include your motivation for the change and contrast its implementation

with previous behavior — this is a good guideline to follow. It’s also a good idea to use

the imperative present tense in these messages. In other words, use commands. Instead

of “I added tests for” or “Adding tests for,” use “Add tests for.” Here is a template

originally written by Tim Pope at tpope.net:

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72

characters or so. In some contexts, the first line is treated as the

subject of an email and the rest of the text as the body. The blank

line separating the summary from the body is critical (unless you omit

the body entirely); tools like rebase can get confused if you run the

101

PRO GIT SCOTT CHACON

two together.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded by a

single space, with blank lines in between, but conventions vary here

If all your commit messages look like this, things will be a lot easier for you and

the developers you work with. The Git project has well-formatted commit messages

— I encourage you to run git log --no-merges there to see what a nicely formatted

project-commit history looks like.

In the following examples, and throughout most of this book, for the sake of brevity

I don’t format messages nicely like this; instead, I use the -m option to git commit . Do

as I say, not as I do.

5.2.2 Private Small Team

The simplest setup you’re likely to encounter is a private project with one or two other

developers. By private, I mean closed source — not read-accessible to the outside

world. You and the other developers all have push access to the repository.

In this environment, you can follow a workflow similar to what you might do when

using Subversion or another centralized system. You still get the advantages of things

like offline committing and vastly simpler branching and merging, but the workflow

can be very similar; the main difference is that merges happen client-side rather than

on the server at commit time. Let’s see what it might look like when two developers

start to work together with a shared repository. The first developer, John, clones the

repository, makes a change, and commits locally. (I’m replacing the protocol messages

with ... in these examples to shorten them somewhat.)

John’s Machine

$ git clone john@githost:simplegit.git

Initialized empty Git repository in /home/john/simplegit/.git/

...

$ cd simplegit/

$ vim lib/simplegit.rb

$ git commit -am ’removed invalid default value’

[master 738ee87] removed invalid default value

1 files changed, 1 insertions(+), 1 deletions(-)

The second developer, Jessica, does the same thing — clones the repository and

commits a change:

Jessica’s Machine

$ git clone jessica@githost:simplegit.git

Initialized empty Git repository in /home/jessica/simplegit/.git/

...

$ cd simplegit/

$ vim TODO

$ git commit -am ’add reset task’

102

CHAPTER 5 DISTRIBUTED GIT

[master fbff5bc] add reset task

1 files changed, 1 insertions(+), 0 deletions(-)

Now, Jessica pushes her work up to the server:

Jessica’s Machine

$ git push origin master

...

To jessica@githost:simplegit.git

1edee6b..fbff5bc master -> master

John tries to push his change up, too:

John’s Machine

$ git push origin master

To john@githost:simplegit.git

! [rejected] master -> master (non-fast forward)

error: failed to push some refs to ’john@githost:simplegit.git’

John isn’t allowed to push because Jessica has pushed in the meantime. This is

especially important to understand if you’re used to Subversion, because you’ll notice

that the two developers didn’t edit the same file. Although Subversion automatically

does such a merge on the server if different files are edited, in Git you must merge the

commits locally. John has to fetch Jessica’s changes and merge them in before he will

be allowed to push:

$ git fetch origin

...

From john@githost:simplegit

+ 049d078...fbff5bc master -> origin/master

At this point, John’s local repository looks something like Figure 5.4.

Figure 5.4: John’s initial repository

John has a reference to the changes Jessica pushed up, but he has to merge them

into his own work before he is allowed to push:

103

PRO GIT SCOTT CHACON

$ git merge origin/master

Merge made by recursive.

TODO | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

The merge goes smoothly — John’s commit history now looks like Figure 5.5.

Figure 5.5: John’s repository after merging origin/master

Now, John can test his code to make sure it still works properly, and then he can

push his new merged work up to the server:

$ git push origin master

...

To john@githost:simplegit.git

fbff5bc..72bbc59 master -> master

Finally, John’s commit history looks like Figure 5.6.

Figure 5.6: John’s history after pushing to the origin server

In the meantime, Jessica has been working on a topic branch. She’s created a topic

branch called issue54 and done three commits on that branch. She hasn’t fetched

John’s changes yet, so her commit history looks like Figure 5.7.

Jessica wants to sync up with John, so she fetches:

Jessica’s Machine

$ git fetch origin

104

CHAPTER 5 DISTRIBUTED GIT

Figure 5.7: Jessica’s initial commit history

...

From jessica@githost:simplegit

fbff5bc..72bbc59 master -> origin/master

That pulls down the work John has pushed up in the meantime. Jessica’s history

now looks like Figure 5.8.

Figure 5.8: Jessica’s history after fetching John’s changes

Jessica thinks her topic branch is ready, but she wants to know what she has to

merge her work into so that she can push. She runs git log to find out:

$ git log --no-merges origin/master îssue54

commit 738ee872852dfaa9d6634e0dea7a324040193016

Author: John Smith <jsmith@example.com>

Date: Fri May 29 16:01:27 2009 -0700

removed invalid default value

Now, Jessica can merge her topic work into her master branch, merge John’s work

(origin/master) into her master branch, and then push back to the server again. First,

she switches back to her master branch to integrate all this work:

$ git checkout master

Switched to branch "master"

Your branch is behind ’origin/master’ by 2 commits, and can be fast-forwarded.

She can merge either origin/master or issue54 first — they’re both upstream, so

the order doesn’t matter. The end snapshot should be identical no matter which order

she chooses; only the history will be slightly different. She chooses to merge in issue54

first:

105

PRO GIT SCOTT CHACON

$ git merge issue54

Updating fbff5bc..4af4298

Fast forward

README | 1 +

lib/simplegit.rb | 6 +++++-

2 files changed, 6 insertions(+), 1 deletions(-)

No problems occur; as you can see it, was a simple fast-forward. Now Jessica

merges in John’s work (origin/master):

$ git merge origin/master

Auto-merging lib/simplegit.rb

Merge made by recursive.

lib/simplegit.rb | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

Everything merges cleanly, and Jessica’s history looks like Figure 5.9.

Figure 5.9: Jessica’s history after merging John’s changes

Now origin/master is reachable from Jessica’s master branch, so she should be

able to successfully push (assuming John hasn’t pushed again in the meantime):

$ git push origin master

...

To jessica@githost:simplegit.git

72bbc59..8059c15 master -> master

Each developer has committed a few times and merged each other’s work success-

fully; see Figure 5.10.

Figure 5.10: Jessica’s history after pushing all changes back to the server

That is one of the simplest workflows. You work for a while, generally in a topic

branch, and merge into your master branch when it’s ready to be integrated. When

106

CHAPTER 5 DISTRIBUTED GIT

you want to share that work, you merge it into your own master branch, then fetch and

merge origin/master if it has changed, and finally push to the master branch on the

server. The general sequence is something like that shown in Figure 5.11.

Figure 5.11: General sequence of events for a simple multiple-developer Git workflow

5.2.3 Private Managed Team

In this next scenario, you’ll look at contributor roles in a larger private group. You’ll

learn how to work in an environment where small groups collaborate on features and

then those team-based contributions are integrated by another party.

Let’s say that John and Jessica are working together on one feature, while Jes-

sica and Josie are working on a second. In this case, the company is using a type of

integration-manager workflow where the work of the individual groups is integrated

107

PRO GIT SCOTT CHACON

only by certain engineers, and the master branch of the main repo can be updated only

by those engineers. In this scenario, all work is done in team-based branches and pulled

together by the integrators later.

Let’s follow Jessica’s workflow as she works on her two features, collaborating in

parallel with two different developers in this environment. Assuming she already has

her repository cloned, she decides to work on featureA first. She creates a new branch

for the feature and does some work on it there:

Jessica’s Machine

$ git checkout -b featureA

Switched to a new branch "featureA"

$ vim lib/simplegit.rb

$ git commit -am ’add limit to log function’

[featureA 3300904] add limit to log function

1 files changed, 1 insertions(+), 1 deletions(-)

At this point, she needs to share her work with John, so she pushes her featureA

branch commits up to the server. Jessica doesn’t have push access to the master branch

— only the integrators do— so she has to push to another branch in order to collaborate

with John:

$ git push origin featureA

...

To jessica@githost:simplegit.git

* [new branch] featureA -> featureA

Jessica e-mails John to tell him that she’s pushed some work into a branch named

featureA and he can look at it now. While she waits for feedback from John, Jessica

decides to start working on featureB with Josie. To begin, she starts a new feature

branch, basing it off the server’s master branch:

Jessica’s Machine

$ git fetch origin

$ git checkout -b featureB origin/master

Switched to a new branch "featureB"

Now, Jessica makes a couple of commits on the featureB branch:

$ vim lib/simplegit.rb

$ git commit -am ’made the ls-tree function recursive’

[featureB e5b0fdc] made the ls-tree function recursive

1 files changed, 1 insertions(+), 1 deletions(-)

$ vim lib/simplegit.rb

$ git commit -am ’add ls-files’

[featureB 8512791] add ls-files

1 files changed, 5 insertions(+), 0 deletions(-)

Jessica’s repository looks like Figure 5.12.

She’s ready to push up her work, but gets an e-mail from Josie that a branch with

some initial work on it was already pushed to the server as featureBee . Jessica first

needs to merge those changes in with her own before she can push to the server. She

can then fetch Josie’s changes down with git fetch :

108

CHAPTER 5 DISTRIBUTED GIT

Figure 5.12: Jessica’s initial commit history

$ git fetch origin

...

From jessica@githost:simplegit

* [new branch] featureBee -> origin/featureBee

Jessica can now merge this into the work she did with git merge :

$ git merge origin/featureBee

Auto-merging lib/simplegit.rb

Merge made by recursive.

lib/simplegit.rb | 4 ++++

1 files changed, 4 insertions(+), 0 deletions(-)

There is a bit of a problem — she needs to push the merged work in her featureB

branch to the featureBee branch on the server. She can do so by specifying the local

branch followed by a colon (:) followed by the remote branch to the git push com-

mand:

$ git push origin featureB:featureBee

...

To jessica@githost:simplegit.git

fba9af8..cd685d1 featureB -> featureBee

This is called a refspec. See Chapter 9 for a more detailed discussion of Git refspecs

and different things you can do with them.

Next, John e-mails Jessica to say he’s pushed some changes to the featureA branch

and ask her to verify them. She runs a git fetch to pull down those changes:

$ git fetch origin

...

From jessica@githost:simplegit

3300904..aad881d featureA -> origin/featureA

Then, she can see what has been changed with git log :

109

PRO GIT SCOTT CHACON

$ git log origin/featureA f̂eatureA

commit aad881d154acdaeb2b6b18ea0e827ed8a6d671e6

Author: John Smith <jsmith@example.com>

Date: Fri May 29 19:57:33 2009 -0700

changed log output to 30 from 25

Finally, she merges John’s work into her own featureA branch:

$ git checkout featureA

Switched to branch "featureA"

$ git merge origin/featureA

Updating 3300904..aad881d

Fast forward

lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

Jessica wants to tweak something, so she commits again and then pushes this back

up to the server:

$ git commit -am ’small tweak’

[featureA ed774b3] small tweak

1 files changed, 1 insertions(+), 1 deletions(-)

$ git push origin featureA

...

To jessica@githost:simplegit.git

3300904..ed774b3 featureA -> featureA

Jessica’s commit history now looks something like Figure 5.13.

Figure 5.13: Jessica’s history after committing on a feature branch

Jessica, Josie, and John inform the integrators that the featureA and featureBee

branches on the server are ready for integration into the mainline. After they integrate

these branches into the mainline, a fetch will bring down the new merge commits,

making the commit history look like Figure 5.14.

Many groups switch to Git because of this ability to have multiple teams working in

parallel, merging the different lines of work late in the process. The ability of smaller

110

CHAPTER 5 DISTRIBUTED GIT

Figure 5.14: Jessica’s history after merging both her topic branches

subgroups of a team to collaborate via remote branches without necessarily having

to involve or impede the entire team is a huge benefit of Git. The sequence for the

workflow you saw here is something like Figure 5.15.

5.2.4 Public Small Project

Contributing to public projects is a bit different. Because you don’t have the permis-

sions to directly update branches on the project, you have to get the work to the main-

tainers some other way. This first example describes contributing via forking on Git

hosts that support easy forking. The repo.or.cz and GitHub hosting sites both support

this, and many project maintainers expect this style of contribution. The next section

deals with projects that prefer to accept contributed patches via e-mail.

First, you’ll probably want to clone the main repository, create a topic branch for

the patch or patch series you’re planning to contribute, and do your work there. The

sequence looks basically like this:

$ git clone (url)

$ cd project

$ git checkout -b featureA

$ (work)

$ git commit

$ (work)

$ git commit

You may want to use rebase -i to squash your work down to a single commit, or

rearrange the work in the commits to make the patch easier for the maintainer to review

— see Chapter 6 for more information about interactive rebasing.

When your branch work is finished and you’re ready to contribute it back to the

maintainers, go to the original project page and click the “Fork” button, creating your

own writable fork of the project. You then need to add in this new repository URL as a

second remote, in this case named myfork :

$ git remote add myfork (url)

You need to push your work up to it. It’s easiest to push the remote branch you’re

working on up to your repository, rather than merging into your master branch and

111

PRO GIT SCOTT CHACON

Figure 5.15: Basic sequence of this managed-team workflow

pushing that up. The reason is that if the work isn’t accepted or is cherry picked, you

don’t have to rewind your master branch. If the maintainers merge, rebase, or cherry-

pick your work, you’ll eventually get it back via pulling from their repository anyhow:

$ git push myfork featureA

When your work has been pushed up to your fork, you need to notify the maintainer.

This is often called a pull request, and you can either generate it via the website —

GitHub has a “pull request” button that automatically messages the maintainer — or

run the git request-pull command and e-mail the output to the project maintainer

manually.

The request-pull command takes the base branch into which you want your topic

branch pulled and the Git repository URL you want them to pull from, and outputs a

summary of all the changes you’re asking to be pulled in. For instance, if Jessica wants

112

CHAPTER 5 DISTRIBUTED GIT

to send John a pull request, and she’s done two commits on the topic branch she just

pushed up, she can run this:

$ git request-pull origin/master myfork

The following changes since commit 1edee6b1d61823a2de3b09c160d7080b8d1b3a40:

John Smith (1):

added a new function

are available in the git repository at:

git://githost/simplegit.git featureA

Jessica Smith (2):

add limit to log function

change log output to 30 from 25

lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

The output can be sent to the maintainer—it tells themwhere the work was branched

from, summarizes the commits, and tells where to pull this work from.

On a project for which you’re not the maintainer, it’s generally easier to have a

branch like master always track origin/master and to do your work in topic branches

that you can easily discard if they’re rejected. Having work themes isolated into topic

branches also makes it easier for you to rebase your work if the tip of the main reposi-

tory has moved in the meantime and your commits no longer apply cleanly. For exam-

ple, if you want to submit a second topic of work to the project, don’t continue working

on the topic branch you just pushed up — start over from the main repository’s master

branch:

$ git checkout -b featureB origin/master

$ (work)

$ git commit

$ git push myfork featureB

$ (email maintainer)

$ git fetch origin

Now, each of your topics is contained within a silo — similar to a patch queue —

that you can rewrite, rebase, and modify without the topics interfering or interdepend-

ing on each other as in Figure 5.16.

Let’s say the project maintainer has pulled in a bunch of other patches and tried

your first branch, but it no longer cleanly merges. In this case, you can try to rebase

that branch on top of origin/master , resolve the conflicts for the maintainer, and then

resubmit your changes:

$ git checkout featureA

$ git rebase origin/master

$ git push f myfork featureA

This rewrites your history to now look like Figure 5.17.

Because you rebased the branch, you have to specify the f to your push command

in order to be able to replace the featureA branch on the server with a commit that isn’t

113

PRO GIT SCOTT CHACON

Figure 5.16: Initial commit history with featureB work

Figure 5.17: Commit history after featureA work

a descendant of it. An alternative would be to push this new work to a different branch

on the server (perhaps called featureAv2).

Let’s look at one more possible scenario: the maintainer has looked at work in your

second branch and likes the concept but would like you to change an implementation

detail. You’ll also take this opportunity to move the work to be based off the project’s

current master branch. You start a new branch based off the current origin/master

branch, squash the featureB changes there, resolve any conflicts, make the implemen-

tation change, and then push that up as a new branch:

$ git checkout -b featureBv2 origin/master

$ git merge --no-commit --squash featureB

$ (change implementation)

$ git commit

$ git push myfork featureBv2

The --squash option takes all the work on the merged branch and squashes it into

one non-merge commit on top of the branch you’re on. The --no-commit option tells

Git not to automatically record a commit. This allows you to introduce all the changes

from another branch and then make more changes before recording the new commit.

Now you can send the maintainer a message that you’ve made the requested changes

and they can find those changes in your featureBv2 branch (see Figure 5.18).

114

CHAPTER 5 DISTRIBUTED GIT

Figure 5.18: Commit history after featureBv2 work

5.2.5 Public Large Project

Many larger projects have established procedures for accepting patches — you’ll need

to check the specific rules for each project, because they will differ. However, many

larger public projects accept patches via a developer mailing list, so I’ll go over an

example of that now.

The workflow is similar to the previous use case — you create topic branches for

each patch series you work on. The difference is how you submit them to the project.

Instead of forking the project and pushing to your own writable version, you generate

e-mail versions of each commit series and e-mail them to the developer mailing list:

$ git checkout -b topicA

$ (work)

$ git commit

$ (work)

$ git commit

Now you have two commits that you want to send to the mailing list. You use git

format-patch to generate the mbox-formatted files that you can e-mail to the list — it

turns each commit into an e-mail message with the first line of the commit message as

the subject and the rest of the message plus the patch that the commit introduces as the

body. The nice thing about this is that applying a patch from an e-mail generated with

format-patch preserves all the commit information properly, as you’ll see more of in

the next section when you apply these commits:

$ git format-patch -M origin/master

0001-add-limit-to-log-function.patch

0002-changed-log-output-to-30-from-25.patch

The format-patch command prints out the names of the patch files it creates. The

-M switch tells Git to look for renames. The files end up looking like this:

$ cat 0001-add-limit-to-log-function.patch

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

115

PRO GIT SCOTT CHACON

lib/simplegit.rb | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index 76f47bc..f9815f1 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -14,7 +14,7 @@ class SimpleGit

end

def log(treeish = ’master’)

- command("git log #{treeish}")

+ command("git log -n 20 #{treeish}")

end

def ls_tree(treeish = ’master’)

--

1.6.2.rc1.20.g8c5b.dirty

You can also edit these patch files to add more information for the e-mail list that

you don’t want to show up in the commit message. If you add text between the -- line

and the beginning of the patch (the lib/simplegit.rb line), then developers can read

it; but applying the patch excludes it.

To e-mail this to a mailing list, you can either paste the file into your e-mail pro-

gram or send it via a command-line program. Pasting the text often causes formatting

issues, especially with “smarter” clients that don’t preserve newlines and other whites-

pace appropriately. Luckily, Git provides a tool to help you send properly format-

ted patches via IMAP, which may be easier for you. I’ll demonstrate how to send

a patch via Gmail, which happens to be the e-mail agent I use; you can read de-

tailed instructions for a number of mail programs at the end of the aforementioned

Documentation/SubmittingPatches file in the Git source code.

First, you need to set up the imap section in your /.gitconfig file. You can set

each value separately with a series of git config commands, or you can add them

manually; but in the end, your config file should look something like this:

[imap]

folder = "[Gmail]/Drafts"

host = imaps://imap.gmail.com

user = user@gmail.com

pass = p4ssw0rd

port = 993

sslverify = false

If your IMAP server doesn’t use SSL, the last two lines probably aren’t necessary,

and the host value will be imap:// instead of imaps:// . When that is set up, you can

use git send-email to place the patch series in the Drafts folder of the specified IMAP

server:

$ git send-email *.patch

0001-added-limit-to-log-function.patch

116

CHAPTER 5 DISTRIBUTED GIT

0002-changed-log-output-to-30-from-25.patch

Who should the emails appear to be from? [Jessica Smith <jessica@example.com>]

Emails will be sent from: Jessica Smith <jessica@example.com>

Who should the emails be sent to? jessica@example.com

Message-ID to be used as In-Reply-To for the first email? y

Then, Git spits out a bunch of log information looking something like this for each

patch you’re sending:

(mbox) Adding cc: Jessica Smith <jessica@example.com> from

\line ’From: Jessica Smith <jessica@example.com>’

OK. Log says:

Sendmail: /usr/sbin/sendmail -i jessica@example.com

From: Jessica Smith <jessica@example.com>

To: jessica@example.com

Subject: [PATCH 1/2] added limit to log function

Date: Sat, 30 May 2009 13:29:15 -0700

Message-Id: <1243715356-61726-1-git-send-email-jessica@example.com>

X-Mailer: git-send-email 1.6.2.rc1.20.g8c5b.dirty

In-Reply-To: <y>

References: <y>

Result: OK

At this point, you should be able to go to your Drafts folder, change the To field

to the mailing list you’re sending the patch to, possibly CC the maintainer or person

responsible for that section, and send it off.

5.2.6 Summary

This section has covered a number of common workflows for dealing with several very

different types of Git projects you’re likely to encounter and introduced a couple of

new tools to help you manage this process. Next, you’ll see how to work the other side

of the coin: maintaining a Git project. You’ll learn how to be a benevolent dictator or

integration manager.

5.3 Maintaining a Project

In addition to knowing how to effectively contribute to a project, you’ll likely need to

know how to maintain one. This can consist of accepting and applying patches gener-

ated via format-patch and e-mailed to you, or integrating changes in remote branches

for repositories you’ve added as remotes to your project. Whether you maintain a

canonical repository or want to help by verifying or approving patches, you need to

know how to accept work in a way that is clearest for other contributors and sustain-

able by you over the long run.

5.3.1 Working in Topic Branches

When you’re thinking of integrating new work, it’s generally a good idea to try it out in

a topic branch — a temporary branch specifically made to try out that new work. This

117

PRO GIT SCOTT CHACON

way, it’s easy to tweak a patch individually and leave it if it’s not working until you

have time to come back to it. If you create a simple branch name based on the theme of

the work you’re going to try, such as ruby client or something similarly descriptive,

you can easily remember it if you have to abandon it for a while and come back later.

The maintainer of the Git project tends to namespace these branches as well — such as

sc/ruby client , where sc is short for the person who contributed the work. As you’ll

remember, you can create the branch based off your master branch like this:

$ git branch sc/ruby_client master

Or, if you want to also switch to it immediately, you can use the checkout -b

option:

$ git checkout -b sc/ruby_client master

Now you’re ready to add your contributed work into this topic branch and determine

if you want to merge it into your longer-term branches.

5.3.2 Applying Patches from E-mail

If you receive a patch over e-mail that you need to integrate into your project, you need

to apply the patch in your topic branch to evaluate it. There are two ways to apply an

e-mailed patch: with git apply or with git am .

Applying a Patch with apply

If you received the patch from someone who generated it with the git diff or a

Unix diff command, you can apply it with the git apply command. Assuming you

saved the patch at /tmp/patch-ruby-client.patch , you can apply the patch like this:

$ git apply /tmp/patch-ruby-client.patch

This modifies the files in your working directory. It’s almost identical to running a

patch -p1 command to apply the patch, although it’s more paranoid and accepts fewer

fuzzy matches then patch. It also handles file adds, deletes, and renames if they’re

described in the git diff format, which patch won’t do. Finally, git apply is an

“apply all or abort all” model where either everything is applied or nothing is, whereas

patch can partially apply patchfiles, leaving your working directory in a weird state.

git apply is over all much more paranoid than patch . It won’t create a commit for you

— after running it, you must stage and commit the changes introduced manually.

You can also use git apply to see if a patch applies cleanly before you try actually

applying it — you can run git apply --check with the patch:

$ git apply --check 0001-seeing-if-this-helps-the-gem.patch

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

If there is no output, then the patch should apply cleanly. This command also exits

with a non-zero status if the check fails, so you can use it in scripts if you want.

Applying a Patch with am

If the contributor is a Git user and was good enough to use the format-patch com-

mand to generate their patch, then your job is easier because the patch contains author

information and a commit message for you. If you can, encourage your contributors to

118

CHAPTER 5 DISTRIBUTED GIT

use format-patch instead of diff to generate patches for you. You should only have to

use git apply for legacy patches and things like that.

To apply a patch generated by format-patch , you use git am . Technically, git am

is built to read an mbox file, which is a simple, plain-text format for storing one or

more e-mail messages in one text file. It looks something like this:

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

This is the beginning of the output of the format-patch command that you saw in the

previous section. This is also a valid mbox e-mail format. If someone has e-mailed you

the patch properly using git send-email, and you download that into an mbox format,

then you can point git am to that mbox file, and it will start applying all the patches it

sees. If you run a mail client that can save several e-mails out in mbox format, you can

save entire patch series into a file and then use git am to apply them one at a time.

However, if someone uploaded a patch file generated via format-patch to a tick-

eting system or something similar, you can save the file locally and then pass that file

saved on your disk to git am to apply it:

$ git am 0001-limit-log-function.patch

Applying: add limit to log function

You can see that it applied cleanly and automatically created the new commit for

you. The author information is taken from the e-mail’s From and Date headers, and the

message of the commit is taken from the Subject and body (before the patch) of the

e-mail. For example, if this patch was applied from the mbox example I just showed,

the commit generated would look something like this:

$ git log --pretty=fuller -1

commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Author: Jessica Smith <jessica@example.com>

AuthorDate: Sun Apr 6 10:17:23 2008 -0700

Commit: Scott Chacon <schacon@gmail.com>

CommitDate: Thu Apr 9 09:19:06 2009 -0700

add limit to log function

Limit log functionality to the first 20

The Commit information indicates the person who applied the patch and the time it

was applied. The Author information is the individual who originally created the patch

and when it was originally created.

But it’s possible that the patch won’t apply cleanly. Perhaps your main branch has

diverged too far from the branch the patch was built from, or the patch depends on

another patch you haven’t applied yet. In that case, the git am process will fail and ask

you what you want to do:

119

PRO GIT SCOTT CHACON

$ git am 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Patch failed at 0001.

When you have resolved this problem run "git am --resolved".

If you would prefer to skip this patch, instead run "git am --skip".

To restore the original branch and stop patching run "git am --abort".

This command puts conflict markers in any files it has issues with, much like a

conflicted merge or rebase operation. You solve this issue much the same way — edit

the file to resolve the conflict, stage the new file, and then run git am --resolved to

continue to the next patch:

$ (fix the file)

$ git add ticgit.gemspec

$ git am --resolved

Applying: seeing if this helps the gem

If you want Git to try a bit more intelligently to resolve the conflict, you can pass

a -3 option to it, which makes Git attempt a three-way merge. This option isn’t on

by default because it doesn’t work if the commit the patch says it was based on isn’t

in your repository. If you do have that commit — if the patch was based on a public

commit — then the -3 option is generally much smarter about applying a conflicting

patch:

$ git am -3 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

No changes -- Patch already applied.

In this case, I was trying to apply a patch I had already applied. Without the -3

option, it looks like a conflict.

If you’re applying a number of patches from an mbox, you can also run the am

command in interactive mode, which stops at each patch it finds and asks if you want

to apply it:

$ git am -3 -i mbox

Commit Body is:

seeing if this helps the gem

Apply? [y]es/[n]o/[e]dit/[v]iew patch/[a]ccept all

This is nice if you have a number of patches saved, because you can view the patch

first if you don’t remember what it is, or not apply the patch if you’ve already done so.

When all the patches for your topic are applied and committed into your branch,

you can choose whether and how to integrate them into a longer-running branch.

120

CHAPTER 5 DISTRIBUTED GIT

5.3.3 Checking Out Remote Branches

If your contribution came from a Git user who set up their own repository, pushed a

number of changes into it, and then sent you the URL to the repository and the name

of the remote branch the changes are in, you can add them as a remote and do merges

locally.

For instance, if Jessica sends you an e-mail saying that she has a great new feature

in the ruby-client branch of her repository, you can test it by adding the remote and

checking out that branch locally:

$ git remote add jessica git://github.com/jessica/myproject.git

$ git fetch jessica

$ git checkout -b rubyclient jessica/ruby-client

If she e-mails you again later with another branch containing another great feature,

you can fetch and check out because you already have the remote setup.

This is most useful if you’re working with a person consistently. If someone only

has a single patch to contribute once in a while, then accepting it over e-mail may be

less time consuming than requiring everyone to run their own server and having to

continually add and remove remotes to get a few patches. You’re also unlikely to want

to have hundreds of remotes, each for someone who contributes only a patch or two.

However, scripts and hosted services may make this easier — it depends largely on

how you develop and how your contributors develop.

The other advantage of this approach is that you get the history of the commits as

well. Although you may have legitimate merge issues, you know where in your history

their work is based; a proper three-way merge is the default rather than having to supply

a -3 and hope the patch was generated off a public commit to which you have access.

If you aren’t working with a person consistently but still want to pull from them in

this way, you can provide the URL of the remote repository to the git pull command.

This does a one-time pull and doesn’t save the URL as a remote reference:

$ git pull git://github.com/onetimeguy/project.git

From git://github.com/onetimeguy/project

* branch HEAD -> FETCH_HEAD

Merge made by recursive.

5.3.4 Determining What Is Introduced

Now you have a topic branch that contains contributed work. At this point, you can

determine what you’d like to do with it. This section revisits a couple of commands so

you can see how you can use them to review exactly what you’ll be introducing if you

merge this into your main branch.

It’s often helpful to get a review of all the commits that are in this branch but that

aren’t in your master branch. You can exclude commits in the master branch by adding

the --not option before the branch name. For example, if your contributor sends you

two patches and you create a branch called contrib and applied those patches there,

you can run this:

$ git log contrib --not master

commit 5b6235bd297351589efc4d73316f0a68d484f118

Author: Scott Chacon <schacon@gmail.com>

121

PRO GIT SCOTT CHACON

Date: Fri Oct 24 09:53:59 2008 -0700

seeing if this helps the gem

commit 7482e0d16d04bea79d0dba8988cc78df655f16a0

Author: Scott Chacon <schacon@gmail.com>

Date: Mon Oct 22 19:38:36 2008 -0700

updated the gemspec to hopefully work better

To see what changes each commit introduces, remember that you can pass the -p

option to git log and it will append the diff introduced to each commit.

To see a full diff of what would happen if you were to merge this topic branch with

another branch, you may have to use a weird trick to get the correct results. You may

think to run this:

$ git diff master

This command gives you a diff, but it may be misleading. If your master branch has

moved forward since you created the topic branch from it, then you’ll get seemingly

strange results. This happens because Git directly compares the snapshots of the last

commit of the topic branch you’re on and the snapshot of the last commit on the master

branch. For example, if you’ve added a line in a file on the master branch, a direct

comparison of the snapshots will look like the topic branch is going to remove that

line.

If master is a direct ancestor of your topic branch, this isn’t a problem; but if the

two histories have diverged, the diff will look like you’re adding all the new stuff in

your topic branch and removing everything unique to the master branch.

What you really want to see are the changes added to the topic branch — the work

you’ll introduce if you merge this branch with master. You do that by having Git

compare the last commit on your topic branch with the first common ancestor it has

with the master branch.

Technically, you can do that by explicitly figuring out the common ancestor and

then running your diff on it:

$ git merge-base contrib master

36c7dba2c95e6bbb78dfa822519ecfec6e1ca649

$ git diff 36c7db

However, that isn’t convenient, so Git provides another shorthand for doing the

same thing: the triple-dot syntax. In the context of the diff command, you can put

three periods after another branch to do a diff between the last commit of the branch

you’re on and its common ancestor with another branch:

$ git diff master...contrib

This command shows you only the work your current topic branch has introduced

since its common ancestor with master. That is a very useful syntax to remember.

122

CHAPTER 5 DISTRIBUTED GIT

5.3.5 Integrating Contributed Work

When all the work in your topic branch is ready to be integrated into a more mainline

branch, the question is how to do it. Furthermore, what overall workflow do you want

to use to maintain your project? You have a number of choices, so I’ll cover a few of

them.

Merging Workflows

One simple workflow merges your work into your master branch. In this scenario,

you have a master branch that contains basically stable code. When you have work in

a topic branch that you’ve done or that someone has contributed and you’ve verified,

you merge it into your master branch, delete the topic branch, and then continue the

process. If we have a repository with work in two branches named ruby client and

php client that looks like Figure 5.19 and merge ruby client first and then php client

next, then your history will end up looking like Figure 5.20.

Figure 5.19: History with several topic branches

That is probably the simplest workflow, but it’s problematic if you’re dealing with

larger repositories or projects.

If you have more developers or a larger project, you’ll probably want to use at least

a two-phase merge cycle. In this scenario, you have two long-running branches, master

and develop , in which you determine that master is updated only when a very stable

release is cut and all new code is integrated into the develop branch. You regularly

push both of these branches to the public repository. Each time you have a new topic

branch to merge in (Figure 5.21), you merge it into develop (Figure 5.22); then, when

you tag a release, you fast-forward master to wherever the now-stable develop branch

is (Figure 5.23).

123

PRO GIT SCOTT CHACON

Figure 5.20: After a topic branch merge

Figure 5.21: Before a topic branch merge

This way, when people clone your project’s repository, they can either check out

master to build the latest stable version and keep up to date on that easily, or they

can check out develop, which is the more cutting-edge stuff. You can also continue

this concept, having an integrate branch where all the work is merged together. Then,

when the codebase on that branch is stable and passes tests, you merge it into a develop

branch; and when that has proven itself stable for a while, you fast-forward your master

branch.

Large-Merging Workflows

The Git project has four long-running branches: master , next , and pu (proposed

updates) for new work, and maint for maintenance backports. When new work is intro-

duced by contributors, it’s collected into topic branches in the maintainer’s repository

in a manner similar to what I’ve described (see Figure 5.24). At this point, the topics

are evaluated to determine whether they’re safe and ready for consumption or whether

they need more work. If they’re safe, they’re merged into next , and that branch is

124

CHAPTER 5 DISTRIBUTED GIT

Figure 5.22: After a topic branch merge

Figure 5.23: After a topic branch release

pushed up so everyone can try the topics integrated together.

Figure 5.24: Managing a complex series of parallel contributed topic branches

If the topics still need work, they’re merged into pu instead. When it’s determined

125

PRO GIT SCOTT CHACON

that they’re totally stable, the topics are re-merged into master and are then rebuilt

from the topics that were in next but didn’t yet graduate to master . This means master

almost always moves forward, next is rebased occasionally, and pu is rebased even

more often (see Figure 5.25).

Figure 5.25: Merging contributed topic branches into long-term integration branches

When a topic branch has finally been merged into master , it’s removed from the

repository. The Git project also has a maint branch that is forked off from the last

release to provide backported patches in case a maintenance release is required. Thus,

when you clone the Git repository, you have four branches that you can check out to

evaluate the project in different stages of development, depending on how cutting edge

you want to be or how you want to contribute; and the maintainer has a structured

workflow to help them vet new contributions.

Rebasing and Cherry Picking Workflows

Other maintainers prefer to rebase or cherry-pick contributed work on top of their

master branch, rather than merging it in, to keep a mostly linear history. When you

have work in a topic branch and have determined that you want to integrate it, you

move to that branch and run the rebase command to rebuild the changes on top of your

current master (or develop , and so on) branch. If that works well, you can fast-forward

your master branch, and you’ll end up with a linear project history.

The other way to move introduced work from one branch to another is to cherry-

pick it. A cherry-pick in Git is like a rebase for a single commit. It takes the patch

that was introduced in a commit and tries to reapply it on the branch you’re currently

on. This is useful if you have a number of commits on a topic branch and you want

to integrate only one of them, or if you only have one commit on a topic branch and

you’d prefer to cherry-pick it rather than run rebase. For example, suppose you have a

project that looks like Figure 5.26.

If you want to pull commit e43a6 into your master branch, you can run

$ git cherry-pick e43a6fd3e94888d76779ad79fb568ed180e5fcdf

Finished one cherry-pick.

[master]: created a0a41a9: "More friendly message when locking the index fails."

3 files changed, 17 insertions(+), 3 deletions(-)

This pulls the same change introduced in e43a6 , but you get a new commit SHA–1

value, because the date applied is different. Now your history looks like Figure 5.27.

Now you can remove your topic branch and drop the commits you didn’t want to

pull in.

126

CHAPTER 5 DISTRIBUTED GIT

Figure 5.26: Example history before a cherry pick

Figure 5.27: History after cherry-picking a commit on a topic branch

5.3.6 Tagging Your Releases

When you’ve decided to cut a release, you’ll probably want to drop a tag so you can re-

create that release at any point going forward. You can create a new tag as I discussed

in Chapter 2. If you decide to sign the tag as the maintainer, the tagging may look

something like this:

$ git tag -s v1.5 -m ’my signed 1.5 tag’

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gmail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you do sign your tags, you may have the problem of distributing the public PGP

key used to sign your tags. The maintainer of the Git project has solved this issue by

including their public key as a blob in the repository and then adding a tag that points

directly to that content. To do this, you can figure out which key you want by running

gpg --list-keys :

$ gpg --list-keys

/Users/schacon/.gnupg/pubring.gpg

127

PRO GIT SCOTT CHACON

pub 1024D/F721C45A 2009-02-09 [expires: 2010-02-09]

uid Scott Chacon <schacon@gmail.com>

sub 2048g/45D02282 2009-02-09 [expires: 2010-02-09]

Then, you can directly import the key into the Git database by exporting it and

piping that through git hash-object , which writes a new blob with those contents into

Git and gives you back the SHA–1 of the blob:

$ gpg -a --export F721C45A | git hash-object -w --stdin

659ef797d181633c87ec71ac3f9ba29fe5775b92

Now that you have the contents of your key in Git, you can create a tag that points

directly to it by specifying the new SHA–1 value that the hash-object command gave

you:

$ git tag -a maintainer-pgp-pub 659ef797d181633c87ec71ac3f9ba29fe5775b92

If you run git push --tags , the maintainer-pgp-pub tag will be shared with ev-

eryone. If anyone wants to verify a tag, they can directly import your PGP key by

pulling the blob directly out of the database and importing it into GPG:

$ git show maintainer-pgp-pub | gpg --import

They can use that key to verify all your signed tags. Also, if you include instructions

in the tag message, running git show <tag> will let you give the end user more specific

instructions about tag verification.

5.3.7 Generating a Build Number

Because Git doesn’t have monotonically increasing numbers like ‘v123’ or the equiv-

alent to go with each commit, if you want to have a human-readable name to go with

a commit, you can run git describe on that commit. Git gives you the name of the

nearest tag with the number of commits on top of that tag and a partial SHA–1 value

of the commit you’re describing:

$ git describe master

v1.6.2-rc1-20-g8c5b85c

This way, you can export a snapshot or build and name it something understandable

to people. In fact, if you build Git from source code cloned from the Git repository, git

--version gives you something that looks like this. If you’re describing a commit that

you have directly tagged, it gives you the tag name.

The git describe command favors annotated tags (tags created with the -a or -s

flag), so release tags should be created this way if you’re using git describe , to ensure

the commit is named properly when described. You can also use this string as the target

of a checkout or show command, although it relies on the abbreviated SHA–1 value at

the end, so it may not be valid forever. For instance, the Linux kernel recently jumped

from 8 to 10 characters to ensure SHA–1 object uniqueness, so older git describe

output names were invalidated.

128

CHAPTER 5 DISTRIBUTED GIT

5.3.8 Preparing a Release

Now you want to release a build. One of the things you’ll want to do is create an

archive of the latest snapshot of your code for those poor souls who don’t use Git. The

command to do this is git archive :

$ git archive master --prefix=’project/’ | gzip > ‘git describe master‘.tar.gz

$ ls *.tar.gz

v1.6.2-rc1-20-g8c5b85c.tar.gz

If someone opens that tarball, they get the latest snapshot of your project under

a project directory. You can also create a zip archive in much the same way, but by

passing the --format=zip option to git archive :

$ git archive master --prefix=’project/’ --format=zip > ‘git describe master‘.zip

You now have a nice tarball and a zip archive of your project release that you can

upload to your website or e-mail to people.

5.3.9 The Shortlog

It’s time to e-mail your mailing list of people who want to know what’s happening in

your project. A nice way of quickly getting a sort of changelog of what has been added

to your project since your last release or e-mail is to use the git shortlog command.

It summarizes all the commits in the range you give it; for example, the following

gives you a summary of all the commits since your last release, if your last release was

named v1.0.1:

$ git shortlog --no-merges master --not v1.0.1

Chris Wanstrath (8):

Add support for annotated tags to Grit::Tag

Add packed-refs annotated tag support.

Add Grit::Commit#to_patch

Update version and History.txt

Remove stray ‘puts‘

Make ls_tree ignore nils

Tom Preston-Werner (4):

fix dates in history

dynamic version method

Version bump to 1.0.2

Regenerated gemspec for version 1.0.2

You get a clean summary of all the commits since v1.0.1, grouped by author, that

you can e-mail to your list.

5.4 Summary

You should feel fairly comfortable contributing to a project in Git as well as main-

taining your own project or integrating other users’ contributions. Congratulations on

being an effective Git developer! In the next chapter, you’ll learn more powerful tools

and tips for dealing with complex situations, which will truly make you a Git master.

129

PRO GIT SCOTT CHACON

130

Chapter 6

Git Tools

By now, you’ve learned most of the day-to-day commands and workflows that you

need to manage or maintain a Git repository for your source code control. You’ve

accomplished the basic tasks of tracking and committing files, and you’ve harnessed

the power of the staging area and lightweight topic branching and merging.

Now you’ll explore a number of very powerful things that Git can do that you may

not necessarily use on a day-to-day basis but that you may need at some point.

6.1 Revision Selection

Git allows you to specify specific commits or a range of commits in several ways. They

aren’t necessarily obvious but are helpful to know.

6.1.1 Single Revisions

You can obviously refer to a commit by the SHA–1 hash that it’s given, but there

are more human-friendly ways to refer to commits as well. This section outlines the

various ways you can refer to a single commit.

6.1.2 Short SHA

Git is smart enough to figure out what commit you meant to type if you provide the

first few characters, as long as your partial SHA–1 is at least four characters long and

unambiguous— that is, only one object in the current repository begins with that partial

SHA–1.

For example, to see a specific commit, suppose you run a git log command and

identify the commit where you added certain functionality:

$ git log

commit 734713bc047d87bf7eac9674765ae793478c50d3

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

131

PRO GIT SCOTT CHACON

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

added some blame and merge stuff

In this case, choose 1c002dd.... If you git show that commit, the following com-

mands are equivalent (assuming the shorter versions are unambiguous):

$ git show 1c002dd4b536e7479fe34593e72e6c6c1819e53b

$ git show 1c002dd4b536e7479f

$ git show 1c002d

Git can figure out a short, unique abbreviation for your SHA–1 values. If you pass

--abbrev-commit to the git log command, the output will use shorter values but keep

them unique; it defaults to using seven characters but makes them longer if necessary

to keep the SHA–1 unambiguous:

$ git log --abbrev-commit --pretty=oneline

ca82a6d changed the verison number

085bb3b removed unnecessary test code

a11bef0 first commit

Generally, eight to ten characters are more than enough to be unique within a

project. One of the largest Git projects, the Linux kernel, is beginning to need 12

characters out of the possible 40 to stay unique.

6.1.3 A SHORT NOTE ABOUT SHA–1

A lot of people become concerned at some point that they will, by random happen-

stance, have two objects in their repository that hash to the same SHA–1 value. What

then?

If you do happen to commit an object that hashes to the same SHA–1 value as a

previous object in your repository, GIt will see the previous object already in your Git

database and assume it was already written. If you try to check out that object again at

some point, you’ll always get the data of the first object.

However, you should be aware of how ridiculously unlikely this scenario is. The

SHA–1 digest is 20 bytes or 160 bits. The number of randomly hashed objects needed

to ensure a 50% probability of a single collision is about 280 (the formula for deter-

mining collision probability is p = n(n−1)
2

×
1

2160
. 280 is 1.2×1024 or 1 million billion

billion. That’s 1,200 times the number of grains of sand on the earth.

Here’s an example to give you an idea of what it would take to get a SHA–1 colli-

sion. If all 6.5 billion humans on Earth were programming, and every second, each one

was producing code that was the equivalent of the entire Linux kernel history (1 million

132

CHAPTER 6 GIT TOOLS

Git objects) and pushing it into one enormous Git repository, it would take 5 years until

that repository contained enough objects to have a 50% probability of a single SHA–1

object collision. A higher probability exists that every member of your programming

team will be attacked and killed by wolves in unrelated incidents on the same night.

6.1.4 Branch References

The most straightforward way to specify a commit requires that it have a branch refer-

ence pointed at it. Then, you can use a branch name in any Git command that expects

a commit object or SHA–1 value. For instance, if you want to show the last commit

object on a branch, the following commands are equivalent, assuming that the topic1

branch points to ca82a6d :

$ git show ca82a6dff817ec66f44342007202690a93763949

$ git show topic1

If you want to see which specific SHA a branch points to, or if you want to see what

any of these examples boils down to in terms of SHAs, you can use a Git plumbing tool

called rev-parse . You can see Chapter 9 for more information about plumbing tools;

basically, rev-parse exists for lower-level operations and isn’t designed to be used in

day-to-day operations. However, it can be helpful sometimes when you need to see

what’s really going on. Here you can run rev-parse on your branch.

$ git rev-parse topic1

ca82a6dff817ec66f44342007202690a93763949

6.1.5 RefLog Shortnames

One of the things Git does in the background while you’re working away is keep a

reflog — a log of where your HEAD and branch references have been for the last few

months.

You can see your reflog by using git reflog :

$ git reflog

734713b... HEAD@{0}: commit: fixed refs handling, added gc auto, updated

d921970... HEAD@{1}: merge phedders/rdocs: Merge made by recursive.

1c002dd... HEAD@{2}: commit: added some blame and merge stuff

1c36188... HEAD@{3}: rebase -i (squash): updating HEAD

95df984... HEAD@{4}: commit: # This is a combination of two commits.

1c36188... HEAD@{5}: rebase -i (squash): updating HEAD

7e05da5... HEAD@{6}: rebase -i (pick): updating HEAD

Every time your branch tip is updated for any reason, Git stores that information

for you in this temporary history. And you can specify older commits with this data, as

well. If you want to see the fifth prior value of the HEAD of your repository, you can

use the @n reference that you see in the reflog output:

$ git show HEAD@{5}

You can also use this syntax to see where a branch was some specific amount of

time ago. For instance, to see where your master branch was yesterday, you can type

133

PRO GIT SCOTT CHACON

$ git show master@{yesterday}

That shows you where the branch tip was yesterday. This technique only works for

data that’s still in your reflog, so you can’t use it to look for commits older than a few

months.

To see reflog information formatted like the git log output, you can run git log

-g:

$ git log -g master

commit 734713bc047d87bf7eac9674765ae793478c50d3

Reflog: master@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: commit: fixed refs handling, added gc auto, updated

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Reflog: master@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: merge phedders/rdocs: Merge made by recursive.

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

It’s important to note that the reflog information is strictly local — it’s a log of

what you’ve done in your repository. The references won’t be the same on someone

else’s copy of the repository; and right after you initially clone a repository, you’ll have

an empty reflog, as no activity has occurred yet in your repository. Running git show

HEAD@2.months.ago will work only if you cloned the project at least two months ago

— if you cloned it five minutes ago, you’ll get no results.

6.1.6 Ancestry References

The other main way to specify a commit is via its ancestry. If you place a ˆ at the end

of a reference, Git resolves it to mean the parent of that commit. Suppose you look at

the history of your project:

$ git log --pretty=format:’%h %s’ --graph

* 734713b fixed refs handling, added gc auto, updated tests

* d921970 Merge commit ’phedders/rdocs’

|\

| * 35cfb2b Some rdoc changes

* | 1c002dd added some blame and merge stuff

|/

* 1c36188 ignore *.gem

* 9b29157 add open3_detach to gemspec file list

Then, you can see the previous commit by specifying HEAD̂ , which means “the

parent of HEAD”:

134

CHAPTER 6 GIT TOOLS

$ git show HEAD̂

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

You can also specify a number after the ˆ— for example, d921970̂ 2 means “the

second parent of d921970.” This syntax is only useful for merge commits, which have

more than one parent. The first parent is the branch you were on when you merged,

and the second is the commit on the branch that you merged in:

$ git show d921970̂

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

added some blame and merge stuff

$ git show d921970̂ 2

commit 35cfb2b795a55793d7cc56a6cc2060b4bb732548

Author: Paul Hedderly <paul+git@mjr.org>

Date: Wed Dec 10 22:22:03 2008 +0000

Some rdoc changes

The other main ancestry specification is the . This also refers to the first parent, so

HEAD and HEAD̂ are equivalent. The difference becomes apparent when you specify a

number. HEAD 2 means “the first parent of the first parent,” or “the grandparent” — it

traverses the first parents the number of times you specify. For example, in the history

listed earlier, HEAD 3 would be

$ git show HEAD̃ 3

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

ignore *.gem

This can also be written HEAD̂ ˆ̂ , which again is the first parent of the first parent

of the first parent:

$ git show HEAD̂ ˆ̂

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

ignore *.gem

You can also combine these syntaxes — you can get the second parent of the pre-

vious reference (assuming it was a merge commit) by using HEAD 3̂ 2 , and so on.

135

PRO GIT SCOTT CHACON

6.1.7 Commit Ranges

Now that you can specify individual commits, let’s see how to specify ranges of com-

mits. This is particularly useful for managing your branches — if you have a lot of

branches, you can use range specifications to answer questions such as, “What work is

on this branch that I haven’t yet merged into my main branch?”

Double Dot

The most common range specification is the double-dot syntax. This basically

asks Git to resolve a range of commits that are reachable from one commit but aren’t

reachable from another. For example, say you have a commit history that looks like

Figure 6.1.

Figure 6.1: Example history for range selection

You want to see what is in your experiment branch that hasn’t yet been merged into

your master branch. You can ask Git to show you a log of just those commits with

master..experiment — that means “all commits reachable by experiment that aren’t

reachable by master.” For the sake of brevity and clarity in these examples, I’ll use the

letters of the commit objects from the diagram in place of the actual log output in the

order that they would display:

$ git log master..experiemnt

D

C

If, on the other hand, you want to see the opposite — all commits in master that

aren’t in experiment — you can reverse the branch names. experiment..master shows

you everything in master not reachable from experiment :

$ git log experiment..master

F

E

This is useful if you want to keep the experiment branch up to date and preview

what you’re about to merge in. Another very frequent use of this syntax is to see what

you’re about to push to a remote:

$ git log origin/master..HEAD

This command shows you any commits in your current branch that aren’t in the

master branch on your origin remote. If you run a git push and your current branch

is tracking origin/master , the commits listed by git log origin/master..HEAD are

the commits that will be transferred to the server. You can also leave off one side of

the syntax to have Git assume HEAD. For example, you can get the same results as in

the previous example by typing git log origin/master.. —Git substitutes HEAD if

one side is missing.

136

CHAPTER 6 GIT TOOLS

Multiple Points

The double-dot syntax is useful as a shorthand; but perhaps you want to specify

more than two branches to indicate your revision, such as seeing what commits are in

any of several branches that aren’t in the branch you’re currently on. Git allows you to

do this by using either the ˆ character or --not before any reference from which you

don’t want to see reachable commits. Thus these three commands are equivalent:

$ git log refA..refB

$ git log r̂efA refB

$ git log refB --not refA

This is nice because with this syntax you can specify more than two references in

your query, which you cannot do with the double-dot syntax. For insance, if you want

to see all commits that are reachable from refA or refB but not from refC , you can type

one of these:

$ git log refA refB r̂efC

$ git log refA refB --not refC

This makes for a very powerful revision query system that should help you figure

out what is in your branches.

Triple Dot

The last major range-selection syntax is the triple-dot syntax, which specifies all

the commits that are reachable by either of two references but not by both of them.

Look back at the example commit history in Figure 6.1. If you want to see what is in

master or experiment but not any common references, you can run

$ git log master...experiment

F

E

D

C

Again, this gives you normal log output but shows you only the commit information

for those four commits, appearing in the traditional commit date ordering.

A common switch to use with the log command in this case is --left-right , which

shows you which side of the range each commit is in. This helps make the data more

useful:

$ git log --left-right master...experiment

< F

< E

> D

> C

With these tools, you can much more easily let Git know what commit or commits

you want to inspect.

137

PRO GIT SCOTT CHACON

6.2 Interactive Staging

Git comes with a couple of scripts that make some command-line tasks easier. Here,

you’ll look at a few interactive commands that can help you easily craft your commits

to include only certain combinations and parts of files. These tools are very helpful

if you modify a bunch of files and then decide that you want those changes to be in

several focused commits rather than one big messy commit. This way, you can make

sure your commits are logically separate changesets and can be easily reviewed by the

developers working with you. If you run git add with the -i or --interactive option,

Git goes into an interactive shell mode, displaying something like this:

$ git add -i

staged unstaged path

1: unchanged +0/-1 TODO

2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now>

You can see that this command shows you a much different view of your staging

area — basically the same information you get with git status but a bit more succinct

and informative. It lists the changes you’ve staged on the left and unstaged changes on

the right.

After this comes a Commands section. Here you can do a number of things, in-

cluding staging files, unstaging files, staging parts of files, adding untracked files, and

seeing diffs of what has been staged.

6.2.1 Staging and Unstaging Files

If you type 2 or u at the What now> prompt, the script prompts you for which files you

want to stage:

What now> 2

staged unstaged path

1: unchanged +0/-1 TODO

2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

Update>>

To stage the TODO and index.html files, you can type the numbers:

Update>> 1,2

staged unstaged path

* 1: unchanged +0/-1 TODO

* 2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

Update>>

138

CHAPTER 6 GIT TOOLS

The * next to each file means the file is selected to be staged. If you press Enter

after typing nothing at the Update>> prompt, Git takes anything selected and stages it

for you:

Update>>

updated 2 paths

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

staged unstaged path

1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Now you can see that the TODO and index.html files are staged and the simplegit.rb

file is still unstaged. If you want to unstage the TODO file at this point, you use the 3

or r (for revert) option:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 3

staged unstaged path

1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Revert>> 1

staged unstaged path

* 1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Revert>> [enter]

reverted one path

Looking at your Git status again, you can see that you’ve unstaged the TODO file:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

staged unstaged path

1: unchanged +0/-1 TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

To see the diff of what you’ve staged, you can use the 6 or d (for diff) command.

It shows you a list of your staged files, and you can select the ones for which you

would like to see the staged diff. This is much like specifying git diff --cached on

the command line:

139

PRO GIT SCOTT CHACON

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 6

staged unstaged path

1: +1/-1 nothing index.html

Review diff>> 1

diff --git a/index.html b/index.html

index 4d07108..4335f49 100644

--- a/index.html

+++ b/index.html

@@ -16,7 +16,7 @@ Date Finder

<p id="out">...</p>

-<div id="footer">contact : support@github.com</div>

+<div id="footer">contact : email.support@github.com</div>

<script type="text/javascript">

With these basic commands, you can use the interactive add mode to deal with your

staging area a little more easily.

6.2.2 Staging Patches

It’s also possible for Git to stage certain parts of files and not the rest. For example, if

you make two changes to your simplegit.rb file and want to stage one of them and not

the other, doing so is very easy in Git. From the interactive prompt, type 5 or p (for

patch). Git will ask you which files you would like to partially stage; then, for each

section of the selected files, it will display hunks of the file diff and ask if you would

like to stage them, one by one:

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index dd5ecc4..57399e0 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -22,7 +22,7 @@ class SimpleGit

end

def log(treeish = ’master’)

- command("git log -n 25 #{treeish}")

+ command("git log -n 30 #{treeish}")

end

def blame(path)

Stage this hunk [y,n,a,d,/,j,J,g,e,?]?

You have a lot of options at this point. Typing ? shows a list of what you can do:

Stage this hunk [y,n,a,d,/,j,J,g,e,?]? ?

y - stage this hunk

n - do not stage this hunk

140

CHAPTER 6 GIT TOOLS

a - stage this and all the remaining hunks in the file

d - do not stage this hunk nor any of the remaining hunks in the file

g - select a hunk to go to

/ - search for a hunk matching the given regex

j - leave this hunk undecided, see next undecided hunk

J - leave this hunk undecided, see next hunk

k - leave this hunk undecided, see previous undecided hunk

K - leave this hunk undecided, see previous hunk

s - split the current hunk into smaller hunks

e - manually edit the current hunk

? - print help

Generally, you’ll type y or n if you want to stage each hunk, but staging all of them

in certain files or skipping a hunk decision until later can be helpful too. If you stage

one part of the file and leave another part unstaged, your status output will look like

this:

What now> 1

staged unstaged path

1: unchanged +0/-1 TODO

2: +1/-1 nothing index.html

3: +1/-1 +4/-0 lib/simplegit.rb

The status of the simplegit.rb file is interesting. It shows you that a couple of lines

are staged and a couple are unstaged. You’ve partially staged this file. At this point,

you can exit the interactive adding script and run git commit to commit the partially

staged files.

Finally, you don’t need to be in interactive add mode to do the partial-file staging—

you can start the same script by using git add -p or git add --patch on the command

line.

6.3 Stashing

Often, when you’ve been working on part of your project, things are in a messy state

and you want to switch branches for a bit to work on something else. The problem is,

you don’t want to do a commit of half-done work just so you can get back to this point

later. The answer to this issue is the git stash command.

Stashing takes the dirty state of your working directory — that is, your modified

tracked files and staged changes — and saves it on a stack of unfinished changes that

you can reapply at any time.

6.3.1 Stashing Your Work

To demonstrate, you’ll go into your project and start working on a couple of files and

possibly stage one of the changes. If you run git status , you can see your dirty state:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

141

PRO GIT SCOTT CHACON

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

Now you want to switch branches, but you don’t want to commit what you’ve been

working on yet; so you’ll stash the changes. To push a new stash onto your stack, run

git stash :

$ git stash

Saved working directory and index state \

"WIP on master: 049d078 added the index file"

HEAD is now at 049d078 added the index file

(To restore them type "git stash apply")

Your working directory is clean:

$ git status

On branch master

nothing to commit (working directory clean)

At this point, you can easily switch branches and do work elsewhere; your changes

are stored on your stack. To see which stashes you’ve stored, you can use git stash

list :

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051... Revert "added file_size"

stash@{2}: WIP on master: 21d80a5... added number to log

In this case, two stashes were done previously, so you have access to three different

stashed works. You can reapply the one you just stashed by using the command shown

in the help output of the original stash command: git stash apply . If you want to

apply one of the older stashes, you can specify it by naming it, like this: git stash

apply stash@2 . If you don’t specify a stash, Git assumes the most recent stash and

tries to apply it:

$ git stash apply

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: index.html

modified: lib/simplegit.rb

#

You can see that Git re-modifies the files you uncommitted when you saved the

stash. In this case, you had a clean working directory when you tried to apply the

stash, and you tried to apply it on the same branch you saved it from; but having a clean

142

CHAPTER 6 GIT TOOLS

working directory and applying it on the same branch aren’t necessary to successfully

apply a stash. You can save a stash on one branch, switch to another branch later, and

try to reapply the changes. You can also have modified and uncommitted files in your

working directory when you apply a stash — Git gives you merge conflicts if anything

no longer applies cleanly.

The changes to your files were reapplied, but the file you staged before wasn’t

restaged. To do that, you must run the git stash apply command with a --index

option to tell the command to try to reapply the staged changes. If you had run that

instead, you’d have gotten back to your original position:

$ git stash apply --index

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

The apply option only tries to apply the stashed work — you continue to have it on

your stack. To remove it, you can run git stash drop with the name of the stash to

remove:

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051... Revert "added file_size"

stash@{2}: WIP on master: 21d80a5... added number to log

$ git stash drop stash@{0}

Dropped stash@{0} (364e91f3f268f0900bc3ee613f9f733e82aaed43)

You can also run git stash pop to apply the stash and then immediately drop it

from your stack.

6.3.2 Creating a Branch from a Stash

If you stash some work, leave it there for a while, and continue on the branch from

which you stashed the work, you may have a problem reapplying the work. If the

apply tries to modify a file that you’ve since modified, you’ll get a merge conflict and

will have to try to resolve it. If you want an easier way to test the stashed changes

again, you can run git stash branch , which creates a new branch for you, checks out

the commit you were on when you stashed your work, reapplies your work there, and

then drops the stash if it applies successfully:

$ git stash branch testchanges

Switched to a new branch "testchanges"

On branch testchanges

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

143

PRO GIT SCOTT CHACON

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

Dropped refs/stash@{0} (f0dfc4d5dc332d1cee34a634182e168c4efc3359)

This is a nice shortcut to recover stashed work easily and work on it in a new

branch.

6.4 Rewriting History

Many times, when working with Git, you may want to revise your commit history for

some reason. One of the great things about Git is that it allows you to make decisions

at the last possible moment. You can decide what files go into which commits right

before you commit with the staging area, you can decide that you didn’t mean to be

working on something yet with the stash command, and you can rewrite commits that

already happened so they look like they happened in a different way. This can involve

changing the order of the commits, changing messages or modifying files in a commit,

squashing together or splitting apart commits, or removing commits entirely — all

before you share your work with others.

In this section, you’ll cover how to accomplish these very useful tasks so that you

can make your commit history look the way you want before you share it with others.

6.4.1 Changing the Last Commit

Changing your last commit is probably the most common rewriting of history that

you’ll do. You’ll often want to do two basic things to your last commit: change the

commit message, or change the snapshot you just recorded by adding, changing and

removing files.

If you only want to modify your last commit message, it’s very simple:

$ git commit --amend

That drops you into your text editor, which has your last commit message in it,

ready for you to modify the message. When you save and close the editor, the editor

writes a new commit containing that message and makes it your new last commit.

If you’ve committed and then you want to change the snapshot you committed by

adding or changing files, possibly because you forgot to add a newly created file when

you originally committed, the process works basically the same way. You stage the

changes you want by editing a file and running git add on it or git rm to a tracked file,

and the subsequent git commit --amend takes your current staging area and makes it

the snapshot for the new commit.

You need to be careful with this technique because amending changes the SHA–1

of the commit. It’s like a very small rebase — don’t amend your last commit if you’ve

already pushed it.

144

CHAPTER 6 GIT TOOLS

6.4.2 Changing Multiple Commit Messages

To modify a commit that is farther back in your history, you must move to more com-

plex tools. Git doesn’t have a modify-history tool, but you can use the rebase tool to

rebase a series of commits onto the HEAD they were originally based on instead of

moving them to another one. With the interactive rebase tool, you can then stop after

each commit you want to modify and change the message, add files, or do whatever

you wish. You can run rebase interactively by adding the -i option to git rebase . You

must indicate how far back you want to rewrite commits by telling the command which

commit to rebase onto.

For example, if you want to change the last three commit messages, or any of the

commit messages in that group, you supply as an argument to git rebase -i the parent

of the last commit you want to edit, which is HEAD 2̂ or HEAD 3 . It may be easier to

remember the 3 because you’re trying to edit the last three commits; but keep in mind

that you’re actually designating four commits ago, the parent of the last commit you

want to edit:

$ git rebase -i HEAD̃ 3

Remember again that this is a rebasing command — every commit included in the

range HEAD 3..HEAD will be rewritten, whether you change the message or not. Don’t

include any commit you’ve already pushed to a central server — doing so will confuse

other developers by providing an alternate version of the same change.

Running this command gives you a list of commits in your text editor that looks

something like this:

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Rebase 710f0f8..a5f4a0d onto 710f0f8

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

It’s important to note that these commits are listed in the opposite order than you

normally see them using the log command. If you run a log , you see something like

this:

$ git log --pretty=format:"%h %s HEAD̃ 3..HEAD"

a5f4a0d added cat-file

310154e updated README formatting and added blame

f7f3f6d changed my name a bit

Notice the reverse order. The interactive rebase gives you a script that it’s going to

run. It will start at the commit you specify on the command line (HEAD 3) and replay

145

PRO GIT SCOTT CHACON

the changes introduced in each of these commits from top to bottom. It lists the oldest

at the top, rather than the newest, because that’s the first one it will replay.

You need to edit the script so that it stops at the commit you want to edit. To do so,

change the word pick to the word edit for each of the commits you want the script to

stop after. For example, to modify only the third commit message, you change the file

to look like this:

edit f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

When you save and exit the editor, Git rewinds you back to the last commit in that

list and drops you on the command line with the following message:

$ git rebase -i HEAD̃ 3

Stopped at 7482e0d... updated the gemspec to hopefully work better

You can amend the commit now, with

git commit --amend

Once youre satisfied with your changes, run

git rebase --continue

These instructions tell you exactly what to do. Type

$ git commit --amend

Change the commit message, and exit the editor. Then, run

$ git rebase --continue

This command will apply the other two commits automatically, and then you’re

done. If you change pick to edit on more lines, you can repeat these steps for each

commit you change to edit. Each time, Git will stop, let you amend the commit, and

continue when you’re finished.

6.4.3 Reordering Commits

You can also use interactive rebases to reorder or remove commits entirely. If you want

to remove the “added cat-file” commit and change the order in which the other two

commits are introduced, you can change the rebase script from this

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

to this:

pick 310154e updated README formatting and added blame

pick f7f3f6d changed my name a bit

When you save and exit the editor, Git rewinds your branch to the parent of these

commits, applies 310154e and then f7f3f6d , and then stops. You effectively change the

order of those commits and remove the “added cat-file” commit completely.

146

CHAPTER 6 GIT TOOLS

6.4.4 Squashing a Commit

It’s also possible to take a series of commits and squash them down into a single commit

with the interactive rebasing tool. The script puts helpful instructions in the rebase

message:

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

If, instead of “pick” or “edit”, you specify “squash”, Git applies both that change

and the change directly before it and makes you merge the commit messages together.

So, if you want to make a single commit from these three commits, you make the script

look like this:

pick f7f3f6d changed my name a bit

squash 310154e updated README formatting and added blame

squash a5f4a0d added cat-file

When you save and exit the editor, Git applies all three changes and then puts you

back into the editor to merge the three commit messages:

This is a combination of 3 commits.

The first commit’s message is:

changed my name a bit

This is the 2nd commit message:

updated README formatting and added blame

This is the 3rd commit message:

added cat-file

When you save that, you have a single commit that introduces the changes of all

three previous commits.

6.4.5 Splitting a Commit

Splitting a commit undoes a commit and then partially stages and commits as many

times as commits you want to end up with. For example, suppose you want to split the

middle commit of your three commits. Instead of “updated README formatting and

added blame”, you want to split it into two commits: “updated README formatting”

for the first, and “added blame” for the second. You can do that in the rebase -i script

by changing the instruction on the commit you want to split to “edit”:

147

PRO GIT SCOTT CHACON

pick f7f3f6d changed my name a bit

edit 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Then, when the script drops you to the command line, you reset that commit, take

the changes that have been reset, and create multiple commits out of them. When

you save and exit the editor, Git rewinds to the parent of the first commit in your list,

applies the first commit (f7f3f6d), applies the second (310154e), and drops you to the

console. There, you can do a mixed reset of that commit with git reset HEAD̂ , which

effectively undoes that commit and leaves the modified files unstaged. Now you can

stage and commit files until you have several commits, and run git rebase --continue

when you’re done:

$ git reset HEAD̂

$ git add README

$ git commit -m ’updated README formatting’

$ git add lib/simplegit.rb

$ git commit -m ’added blame’

$ git rebase --continue

Git applies the last commit (a5f4a0d) in the script, and your history looks like this:

$ git log -4 --pretty=format:"%h %s"

1c002dd added cat-file

9b29157 added blame

35cfb2b updated README formatting

f3cc40e changed my name a bit

Once again, this changes the SHAs of all the commits in your list, so make sure no

commit shows up in that list that you’ve already pushed to a shared repository.

6.4.6 The Nuclear Option: filter-branch

There is another history-rewriting option that you can use if you need to rewrite a larger

number of commits in some scriptable way — for instance, changing your e-mail ad-

dress globally or removing a file from every commit. The command is filter-branch ,

and it can rewrite huge swaths of your history, so you probably shouldn’t use it un-

less your project isn’t yet public and other people haven’t based work off the commits

you’re about to rewrite. However, it can be very useful. You’ll learn a few of the

common uses so you can get an idea of some of the things it’s capable of.

Removing a File from Every Commit

This occurs fairly commonly. Someone accidentally commits a huge binary file

with a thoughtless git add . , and you want to remove it everywhere. Perhaps you

accidentally committed a file that contained a password, and you want to make your

project open source. filter-branch is the tool you probably want to use to scrub your

entire history. To remove a file named passwords.txt from your entire history, you can

use the --tree-filter option to filter-branch :

$ git filter-branch --tree-filter ’rm -f passwords.txt’ HEAD

Rewrite 6b9b3cf04e7c5686a9cb838c3f36a8cb6a0fc2bd (21/21)

Ref ’refs/heads/master’ was rewritten

148

CHAPTER 6 GIT TOOLS

The --tree-filter option runs the specified command after each checkout of the

project and then recommits the results. In this case, you remove a file called pass-

words.txt from every snapshot, whether it exists or not. If you want to remove all acci-

dentally committed editor backup files, you can run something like git filter-branch

--tree-filter ’rm -f * ’ HEAD .

You’ll be able to watch Git rewriting trees and commits and then move the branch

pointer at the end. It’s generally a good idea to do this in a testing branch and then

hard-reset your master branch after you’ve determined the outcome is what you really

want. To run filter-branch on all your branches, you can pass --all to the command.

Making a Subdirectory the New Root

Suppose you’ve done an import from another source control system and have sub-

directories that make no sense (trunk, tags, and so on). If you want to make the trunk

subdirectory be the new project root for every commit, filter-branch can help you do

that, too:

$ git filter-branch --subdirectory-filter trunk HEAD

Rewrite 856f0bf61e41a27326cdae8f09fe708d679f596f (12/12)

Ref ’refs/heads/master’ was rewritten

Now your new project root is what was in the trunk subdirectory each time. Git

will also automatically remove commits that did not affect the subdirectory.

Changing E-Mail Addresses Globally

Another common case is that you forgot to run git config to set your name and

e-mail address before you started working, or perhaps you want to open-source a

project at work and change all your work e-mail addresses to your personal address.

In any case, you can change e-mail addresses in multiple commits in a batch with

filter-branch as well. You need to be careful to change only the e-mail addresses that

are yours, so you use --commit-filter :

$ git filter-branch --commit-filter ’

if ["$GIT_AUTHOR_EMAIL" = "schacon@localhost"];

then

GIT_AUTHOR_NAME="Scott Chacon";

GIT_AUTHOR_EMAIL="schacon@example.com";

git commit-tree "$@";

else

git commit-tree "$@";

fi’ HEAD

This goes through and rewrites every commit to have your new address. Because

commits contain the SHA–1 values of their parents, this command changes every com-

mit SHA in your history, not just those that have the matching e-mail address.

6.5 Debugging with Git

Git also provides a couple of tools to help you debug issues in your projects. Because

Git is designed to work with nearly any type of project, these tools are pretty generic,

but they can often help you hunt for a bug or culprit when things go wrong.

149

PRO GIT SCOTT CHACON

6.5.1 File Annotation

If you track down a bug in your code and want to know when it was introduced and

why, file annotation is often your best tool. It shows you what commit was the last to

modify each line of any file. So, if you see that a method in your code is buggy, you can

annotate the file with git blame to see when each line of the method was last edited

and by whom. This example uses the -L option to limit the output to lines 12 through

22:

$ git blame -L 12,22 simplegit.rb

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 12) def show(tree = ’master’)

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 13) command("git show #{tree}")

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 14) end

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 15)

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 16) def log(tree = ’master’)

79eaf55d (Scott Chacon 2008-04-06 10:15:08 -0700 17) command("git log #{tree}")

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 18) end

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 19)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 20) def blame(path)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 21) command("git blame #{path}")

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 22) end

Notice that the first field is the partial SHA–1 of the commit that last modified

that line. The next two fields are values extracted from that commit—the author name

and the authored date of that commit — so you can easily see who modified that line

and when. After that come the line number and the content of the file. Also note

the 4̂832fe2 commit lines, which designate that those lines were in this file’s original

commit. That commit is when this file was first added to this project, and those lines

have been unchanged since. This is a tad confusing, because now you’ve seen at least

three different ways that Git uses the ˆ to modify a commit SHA, but that is what it

means here.

Another cool thing about Git is that it doesn’t track file renames explicitly. It

records the snapshots and then tries to figure out what was renamed implicitly, after

the fact. One of the interesting features of this is that you can ask it to figure out

all sorts of code movement as well. If you pass -C to git blame , Git analyzes the

file you’re annotating and tries to figure out where snippets of code within it origi-

nally came from if they were copied from elsewhere. Recently, I was refactoring a file

named GITServerHandler.m into multiple files, one of which was GITPackUpload.m . By

blaming GITPackUpload.m with the -C option, I could see where sections of the code

originally came from:

$ git blame -C -L 141,153 GITPackUpload.m

f344f58d GITServerHandler.m (Scott 2009-01-04 141)

f344f58d GITServerHandler.m (Scott 2009-01-04 142) - (void) gatherObjectShasFromC

f344f58d GITServerHandler.m (Scott 2009-01-04 143) {

70befddd GITServerHandler.m (Scott 2009-03-22 144) //NSLog(@"GATHER COMMI

ad11ac80 GITPackUpload.m (Scott 2009-03-24 145)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 146) NSString *parentSha;

ad11ac80 GITPackUpload.m (Scott 2009-03-24 147) GITCommit *commit = [g

ad11ac80 GITPackUpload.m (Scott 2009-03-24 148)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 149) //NSLog(@"GATHER COMMI

150

CHAPTER 6 GIT TOOLS

ad11ac80 GITPackUpload.m (Scott 2009-03-24 150)

56ef2caf GITServerHandler.m (Scott 2009-01-05 151) if(commit) {

56ef2caf GITServerHandler.m (Scott 2009-01-05 152) [refDict setOb

56ef2caf GITServerHandler.m (Scott 2009-01-05 153)

This is really useful. Normally, you get as the original commit the commit where

you copied the code over, because that is the first time you touched those lines in this

file. Git tells you the original commit where you wrote those lines, even if it was in

another file.

6.5.2 Binary Search

Annotating a file helps if you know where the issue is to begin with. If you don’t

know what is breaking, and there have been dozens or hundreds of commits since the

last state where you know the code worked, you’ll likely turn to git bisect for help.

The bisect command does a binary search through your commit history to help you

identify as quickly as possible which commit introduced an issue.

Let’s say you just pushed out a release of your code to a production environment,

you’re getting bug reports about something that wasn’t happening in your development

environment, and you can’t imagine why the code is doing that. You go back to your

code, and it turns out you can reproduce the issue, but you can’t figure out what is

going wrong. You can bisect the code to find out. First you run git bisect start to

get things going, and then you use git bisect bad to tell the system that the current

commit you’re on is broken. Then, you must tell bisect when the last known good state

was, using git bisect good [good commit] :

$ git bisect start

$ git bisect bad

$ git bisect good v1.0

Bisecting: 6 revisions left to test after this

[ecb6e1bc347ccecc5f9350d878ce677feb13d3b2] error handling on repo

Git figured out that about 12 commits came between the commit you marked as the

last good commit (v1.0) and the current bad version, and it checked out the middle one

for you. At this point, you can run your test to see if the issue exists as of this commit.

If it does, then it was introduced sometime before this middle commit; if it doesn’t,

then the problem was introduced sometime after the middle commit. It turns out there

is no issue here, and you tell Git that by typing git bisect good and continue your

journey:

$ git bisect good

Bisecting: 3 revisions left to test after this

[b047b02ea83310a70fd603dc8cd7a6cd13d15c04] secure this thing

Now you’re on another commit, halfway between the one you just tested and your

bad commit. You run your test again and find that this commit is broken, so you tell

Git that with git bisect bad :

$ git bisect bad

Bisecting: 1 revisions left to test after this

[f71ce38690acf49c1f3c9bea38e09d82a5ce6014] drop exceptions table

151

PRO GIT SCOTT CHACON

This commit is fine, and nowGit has all the information it needs to determine where

the issue was introduced. It tells you the SHA–1 of the first bad commit and show some

of the commit information and which files were modified in that commit so you can

figure out what happened that may have introduced this bug:

$ git bisect good

b047b02ea83310a70fd603dc8cd7a6cd13d15c04 is first bad commit

commit b047b02ea83310a70fd603dc8cd7a6cd13d15c04

Author: PJ Hyett <pjhyett@example.com>

Date: Tue Jan 27 14:48:32 2009 -0800

secure this thing

:040000 040000 40ee3e7821b895e52c1695092db9bdc4c61d1730

f24d3c6ebcfc639b1a3814550e62d60b8e68a8e4 M config

When you’re finished, you should run git bisect reset to reset your HEAD to

where you were before you started, or you’ll end up in a weird state:

$ git bisect reset

This is a powerful tool that can help you check hundreds of commits for an intro-

duced bug in minutes. In fact, if you have a script that will exit 0 if the project is good

or non–0 if the project is bad, you can fully automate git bisect . First, you again tell

it the scope of the bisect by providing the known bad and good commits. You can do

this by listing them with the bisect start command if you want, listing the known

bad commit first and the known good commit second:

$ git bisect start HEAD v1.0

$ git bisect run test-error.sh

Doing so automatically runs test-error.sh on each checked-out commit until Git

finds the first broken commit. You can also run something like make or make tests or

whatever you have that runs automated tests for you.

6.6 Submodules

It often happens that while working on one project, you need to use another project

from within it. Perhaps it’s a library that a third party developed or that you’re devel-

oping separately and using in multiple parent projects. A common issue arises in these

scenarios: you want to be able to treat the two projects as separate yet still be able to

use one from within the other.

Here’s an example. Suppose you’re developing a web site and creating Atom feeds.

Instead of writing your own Atom-generating code, you decide to use a library. You’re

likely to have to either include this code from a shared library like a CPAN install

or Ruby gem, or copy the source code into your own project tree. The issue with

including the library is that it’s difficult to customize the library in any way and often

more difficult to deploy it, because you need to make sure every client has that library

available. The issue with vendoring the code into your own project is that any custom

changes you make are difficult to merge when upstream changes become available.

152

CHAPTER 6 GIT TOOLS

Git addresses this issue using submodules. Submodules allow you to keep a Git

repository as a subdirectory of another Git repository. This lets you clone another

repository into your project and keep your commits separate.

6.6.1 Starting with Submodules

Suppose you want to add the Rack library (a Ruby web server gateway interface) to

your project, possibly maintain your own changes to it, but continue to merge in up-

stream changes. The first thing you should do is clone the external repository into your

subdirectory. You add external projects as submodules with the git submodule add

command:

$ git submodule add git://github.com/chneukirchen/rack.git rack

Initialized empty Git repository in /opt/subtest/rack/.git/

remote: Counting objects: 3181, done.

remote: Compressing objects: 100% (1534/1534), done.

remote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Receiving objects: 100% (3181/3181), 675.42 KiB | 422 KiB/s, done.

Resolving deltas: 100% (1951/1951), done.

Now you have the Rack project under a subdirectory named rack within your

project. You can go into that subdirectory, make changes, add your own writable re-

mote repository to push your changes into, fetch and merge from the original reposi-

tory, and more. If you run git status right after you add the submodule, you see two

things:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: .gitmodules

new file: rack

#

First you notice the .gitmodules file. This is a configuration file that stores the

mapping between the project’s URL and the local subdirectory you’ve pulled it into:

$ cat .gitmodules

[submodule "rack"]

path = rack

url = git://github.com/chneukirchen/rack.git

If you have multiple submodules, you’ll have multiple entries in this file. It’s impor-

tant to note that this file is version-controlled with your other files, like your .gitignore

file. It’s pushed and pulled with the rest of your project. This is how other people who

clone this project know where to get the submodule projects from.

The other listing in the git status output is the rack entry. If you run git diff on

that, you see something interesting:

$ git diff --cached rack

diff --git a/rack b/rack

153

PRO GIT SCOTT CHACON

new file mode 160000

index 0000000..08d709f

--- /dev/null

+++ b/rack

@@ -0,0 +1 @@

+Subproject commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

Although rack is a subdirectory in your working directory, Git sees it as a sub-

module and doesn’t track its contents when you’re not in that directory. Instead, Git

records it as a particular commit from that repository. When you make changes and

commit in that subdirectory, the superproject notices that the HEAD there has changed

and records the exact commit you’re currently working off of; that way, when others

clone this project, they can re-create the environment exactly.

This is an important point with submodules: you record them as the exact commit

they’re at. You can’t record a submodule at master or some other symbolic reference.

When you commit, you see something like this:

$ git commit -m ’first commit with submodule rack’

[master 0550271] first commit with submodule rack

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 rack

Notice the 160000 mode for the rack entry. That is a special mode in Git that basi-

cally means you’re recording a commit as a directory entry rather than a subdirectory

or a file.

You can treat the rack directory as a separate project and then update your super-

project from time to time with a pointer to the latest commit in that subproject. All the

Git commands work independently in the two directories:

$ git log -1

commit 0550271328a0038865aad6331e620cd7238601bb

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Apr 9 09:03:56 2009 -0700

first commit with submodule rack

$ cd rack/

$ git log -1

commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

Author: Christian Neukirchen <chneukirchen@gmail.com>

Date: Wed Mar 25 14:49:04 2009 +0100

Document version change

6.6.2 Cloning a Project with Submodules

Here you’ll clone a project with a submodule in it. When you receive such a project,

you get the directories that contain submodules, but none of the files yet:

$ git clone git://github.com/schacon/myproject.git

Initialized empty Git repository in /opt/myproject/.git/

remote: Counting objects: 6, done.

154

CHAPTER 6 GIT TOOLS

remote: Compressing objects: 100% (4/4), done.

remote: Total 6 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (6/6), done.

$ cd myproject

$ ls -l

total 8

-rw-r--r-- 1 schacon admin 3 Apr 9 09:11 README

drwxr-xr-x 2 schacon admin 68 Apr 9 09:11 rack

$ ls rack/

$

The rack directory is there, but empty. Youmust run two commands: git submodule

init to initialize your local configuration file, and git submodule update to fetch all

the data from that project and check out the appropriate commit listed in your super-

project:

$ git submodule init

Submodule ’rack’ (git://github.com/chneukirchen/rack.git) registered for path ’rack’

$ git submodule update

Initialized empty Git repository in /opt/myproject/rack/.git/

remote: Counting objects: 3181, done.

remote: Compressing objects: 100% (1534/1534), done.

remote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Receiving objects: 100% (3181/3181), 675.42 KiB | 173 KiB/s, done.

Resolving deltas: 100% (1951/1951), done.

Submodule path ’rack’: checked out ’08d709f78b8c5b0fbeb7821e37fa53e69afcf433’

Now your rack subdirectory is at the exact state it was in when you committed

earlier. If another developer makes changes to the rack code and commits, and you pull

that reference down and merge it in, you get something a bit odd:

$ git merge origin/master

Updating 0550271..85a3eee

Fast forward

rack | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

[master*]$ git status

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: rack

#

You merged in what is basically a change to the pointer for your submodule; but

it doesn’t update the code in the submodule directory, so it looks like you have a dirty

state in your working directory:

$ git diff

diff --git a/rack b/rack

index 6c5e70b..08d709f 160000

--- a/rack

155

PRO GIT SCOTT CHACON

+++ b/rack

@@ -1 +1 @@

-Subproject commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

+Subproject commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

This is the case because the pointer you have for the submodule isn’t what is ac-

tually in the submodule directory. To fix this, you must run git submodule update

again:

$ git submodule update

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 1), reused 2 (delta 0)

Unpacking objects: 100% (3/3), done.

From git@github.com:schacon/rack

08d709f..6c5e70b master -> origin/master

Submodule path ’rack’: checked out ’6c5e70b984a60b3cecd395edd5b48a7575bf58e0’

You have to do this every time you pull down a submodule change in the main

project. It’s strange, but it works.

One common problem happens when a developer makes a change locally in a sub-

module but doesn’t push it to a public server. Then, they commit a pointer to that

non-public state and push up the superproject. When other developers try to run git

submodule update , the submodule system can’t find the commit that is referenced, be-

cause it exists only on the first developer’s system. If that happens, you see an error

like this:

$ git submodule update

fatal: reference isnt a tree: 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Unable to checkout ’6c5e70b984a60b3cecd395edd5ba7575bf58e0’ in submodule path ’rack’

You have to see who last changed the submodule:

$ git log -1 rack

commit 85a3eee996800fcfa91e2119372dd4172bf76678

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Apr 9 09:19:14 2009 -0700

added a submodule reference I will never make public. hahahahaha!

Then, you e-mail that guy and yell at him.

6.6.3 Superprojects

Sometimes, developers want to get a combination of a large project’s subdirectories,

depending on what team they’re on. This is common if you’re coming from CVS or

Subversion, where you’ve defined a module or collection of subdirectories, and you

want to keep this type of workflow.

A good way to do this in Git is to make each of the subfolders a separate Git repos-

itory and then create superproject Git repositories that contain multiple submodules.

A benefit of this approach is that you can more specifically define the relationships

between the projects with tags and branches in the superprojects.

156

CHAPTER 6 GIT TOOLS

6.6.4 Issues with Submodules

Using submodules isn’t without hiccups, however. First, you must be relatively careful

when working in the submodule directory. When you run git submodule update , it

checks out the specific version of the project, but not within a branch. This is called

having a detached head — it means the HEAD file points directly to a commit, not to

a symbolic reference. The issue is that you generally don’t want to work in a detached

head environment, because it’s easy to lose changes. If you do an initial submodule

update , commit in that submodule directory without creating a branch to work in, and

then run git submodule update again from the superproject without committing in the

meantime, Git will overwrite your changes without telling you. Technically you won’t

lose the work, but you won’t have a branch pointing to it, so it will be somewhat

difficult to retrieive.

To avoid this issue, create a branch when you work in a submodule directory with

git checkout -b work or something equivalent. When you do the submodule update a

second time, it will still revert your work, but at least you have a pointer to get back to.

Switching branches with submodules in them can also be tricky. If you create a

new branch, add a submodule there, and then switch back to a branch without that

submodule, you still have the submodule directory as an untracked directory:

$ git checkout -b rack

Switched to a new branch "rack"

$ git submodule add git@github.com:schacon/rack.git rack

Initialized empty Git repository in /opt/myproj/rack/.git/

...

Receiving objects: 100% (3184/3184), 677.42 KiB | 34 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

$ git commit -am ’added rack submodule’

[rack cc49a69] added rack submodule

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 rack

$ git checkout master

Switched to branch "master"

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

rack/

You have to either move it out of the way or remove it, in which case you have to

clone it again when you switch back—and you may lose local changes or branches that

you didn’t push up.

The last main caveat that many people run into involves switching from subdirecto-

ries to submodules. If you’ve been tracking files in your project and you want to move

them out into a submodule, you must be careful or Git will get angry at you. Assume

that you have the rack files in a subdirectory of your project, and you want to switch it

to a submodule. If you delete the subdirectory and then run submodule add , Git yells

at you:

$ rm -Rf rack/

157

PRO GIT SCOTT CHACON

$ git submodule add git@github.com:schacon/rack.git rack

’rack’ already exists in the index

You have to unstage the rack directory first. Then you can add the submodule:

$ git rm -r rack

$ git submodule add git@github.com:schacon/rack.git rack

Initialized empty Git repository in /opt/testsub/rack/.git/

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 88 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

Now suppose you did that in a branch. If you try to switch back to a branch where

those files are still in the actual tree rather than a submodule — you get this error:

$ git checkout master

error: Untracked working tree file ’rack/AUTHORS’ would be overwritten by merge.

You have to move the rack submodule directory out of the way before you can

switch to a branch that doesn’t have it:

$ mv rack /tmp/

$ git checkout master

Switched to branch "master"

$ ls

README rack

Then, when you switch back, you get an empty rack directory. You can either run

git submodule update to reclone, or you can move your /tmp/rack directory back into

the empty directory.

6.7 Subtree Merging

Now that you’ve seen the difficulties of the submodule system, let’s look at an alternate

way to solve the same problem. When Git merges, it looks at what it has to merge to-

gether and then chooses an appropriate merging strategy to use. If you’re merging two

branches, Git uses a recursive strategy. If you’re merging more than two branches, Git

picks the octopus strategy. These strategies are automatically chosen for you because

the recursive strategy can handle complex three-way merge situations — for example,

more than one common ancestor — but it can only handle merging two branches. The

octopus merge can handle multiple branches but is more cautious to avoid difficult

conflicts, so it’s chosen as the default strategy if you’re trying to merge more than two

branches.

However, there are other strategies you can choose as well. One of them is the

subtree merge, and you can use it to deal with the subproject issue. Here you’ll see

how to do the same rack embedding as in the last section, but using subtree merges

instead.

The idea of the subtree merge is that you have two projects, and one of the projects

maps to a subdirectory of the other one and vice versa. When you specify a subtree

158

CHAPTER 6 GIT TOOLS

merge, Git is smart enough to figure out that one is a subtree of the other and merge

appropriately — it’s pretty amazing.

You first add the Rack application to your project. You add the Rack project as a

remote reference in your own project and then check it out into its own branch:

$ git remote add rack_remote git@github.com:schacon/rack.git

$ git fetch rack_remote

warning: no common commits

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 4 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

From git@github.com:schacon/rack

* [new branch] build -> rack_remote/build

* [new branch] master -> rack_remote/master

* [new branch] rack-0.4 -> rack_remote/rack-0.4

* [new branch] rack-0.9 -> rack_remote/rack-0.9

$ git checkout -b rack_branch rack_remote/master

Branch rack_branch set up to track remote branch refs/remotes/rack_remote/master.

Switched to a new branch "rack_branch"

Now you have the root of the Rack project in your rack branch branch and your

own project in the master branch. If you check out one and then the other, you can see

that they have different project roots:

$ ls

AUTHORS KNOWN-ISSUES Rakefile contrib lib

COPYING README bin example test

$ git checkout master

Switched to branch "master"

$ ls

README

You want to pull the Rack project into your master project as a subdirectory. You

can do that in Git with git read-tree . You’ll learn more about read-tree and its

friends in Chapter 9, but for now know that it reads the root tree of one branch into

your current staging area and working directory. You just switched back to your master

branch, and you pull the rack branch into the rack subdirectory of your master branch

of your main project:

$ git read-tree --prefix=rack/ -u rack_branch

When you commit, it looks like you have all the Rack files under that subdirectory

— as though you copied them in from a tarball. What gets interesting is that you can

fairly easily merge changes from one of the branches to the other. So, if the Rack

project updates, you can pull in upstream changes by switching to that branch and

pulling:

$ git checkout rack_branch

$ git pull

159

PRO GIT SCOTT CHACON

Then, you can merge those changes back into your master branch. You can use git

merge -s subtree and it will work fine; but Git will also merge the histories together,

which you probably don’t want. To pull in the changes and prepopulate the commit

message, use the --squash and --no-commit options as well as the -s subtree strategy

option:

$ git checkout master

$ git merge --squash -s subtree --no-commit rack_branch

Squash commit -- not updating HEAD

Automatic merge went well; stopped before committing as requested

All the changes from your Rack project are merged in and ready to be committed

locally. You can also do the opposite — make changes in the rack subdirectory of your

master branch and then merge them into your rack branch branch later to submit them

to the maintainers or push them upstream.

To get a diff between what you have in your rack subdirectory and the code in your

rack branch branch — to see if you need to merge them — you can’t use the normal

diff command. Instead, you must run git diff-tree with the branch you want to

compare to:

$ git diff-tree -p rack_branch

Or, to compare what is in your rack subdirectory with what the master branch on

the server was the last time you fetched, you can run

$ git diff-tree -p rack_remote/master

6.8 Summary

You’ve seen a number of advanced tools that allow you to manipulate your commits

and staging area more precisely. When you notice issues, you should be able to easily

figure out what commit introduced them, when, and by whom. If you want to use

subprojects in your project, you’ve learned a few ways to accommodate those needs.

At this point, you should be able to do most of the things in Git that you’ll need on the

command line day to day and feel comfortable doing so.

160

Chapter 7

Customizing Git

So far, I’ve covered the basics of how Git works and how to use it, and I’ve introduced

a number of tools that Git provides to help you use it easily and efficiently. In this

chapter, I’ll go through some operations that you can use to make Git operate in a

more customized fashion by introducing several important configuration settings and

the hooks system. With these tools, it’s easy to get Git to work exactly the way you,

your company, or your group needs it to.

7.1 Git Configuration

As you briefly saw in the Chapter 1, you can specify Git configuration settings with the

git config command. One of the first things you did was set up your name and e-mail

address:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Now you’ll learn a few of the more interesting options that you can set in this

manner to customize your Git usage.

You saw some simple Git configuration details in the first chapter, but I’ll go over

them again quickly here. Git uses a series of configuration files to determine non-

default behavior that you may want. The first place Git looks for these values is in an

/etc/gitconfig file, which contains values for every user on the system and all of their

repositories. If you pass the option --system to git config , it reads and writes from

this file specifically.

The next place Git looks is the /.gitconfig file, which is specific to each user.

You can make Git read and write to this file by passing the --global option.

Finally, Git looks for configuration values in the config file in the Git directory

(.git/config) of whatever repository you’re currently using. These values are specific

to that single repository. Each level overwrites values in the previous level, so values

in .git/config trump those in /etc/sysconfig , for instance. You can also set these

values by manually editing the file and inserting the correct syntax, but it’s generally

easier to run the git config command.

161

PRO GIT SCOTT CHACON

7.1.1 Basic Client Configuration

The configuration options recognized by Git fall into two categories: client side and

server side. The majority of the options are client side—configuring your personal

working preferences. Although tons of options are available, I’ll only cover the few

that either are commonly used or can significantly affect your workflow. Many options

are useful only in edge cases that I won’t go over here. If you want to see a list of all

the options your version of Git recognizes, you can run

$ git config --help

The manual page for git config lists all the available options in quite a bit of

detail.

core.editor

By default, Git uses whatever you’ve set as your default text editor or else falls

back to the Vi editor to create and edit your commit and tag messages. To change that

default to something else, you can use the core.editor setting:

$ git config --global core.editor emacs

Now, no matter what is set as your default shell editor variable, Git will fire up

Emacs to edit messages.

commit.template

If you set this to the path of a file on your system, Git will use that file as the

default message when you commit. For instance, suppose you create a template file at

$HOME/.gitmessage.txt that looks like this:

subject line

what happened

[ticket: X]

To tell Git to use it as the default message that appears in your editor when you run

git commit , set the commit.template configuration value:

$ git config --global commit.template $HOME/.gitmessage.txt

$ git commit

Then, your editor will open to something like this for your placeholder commit

message when you commit:

subject line

what happened

[ticket: X]

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

162

CHAPTER 7 CUSTOMIZING GIT

modified: lib/test.rb

#

˜

˜

".git/COMMIT_EDITMSG" 14L, 297C

If you have a commit-message policy in place, then putting a template for that

policy on your system and configuring Git to use it by default can help increase the

chance of that policy being followed regularly.

core.pager

The core.pager setting determines what pager is used when Git pages output such

as log and diff . You can set it to more or to your favorite pager (by default, it’s less),

or you can turn it off by setting it to a blank string:

$ git config --global core.pager ’’

If you run that, Git will page the entire output of all commands, no matter how long

they are.

user.signingkey

If you’re making signed annotated tags (as discussed in Chapter 2), setting your

GPG signing key as a configuration setting makes things easier. Set your key ID like

so:

$ git config --global user.signingkey <gpg-key-id>

Now, you can sign tags without having to specify your key every time with the git

tag command:

$ git tag -s <tag-name>

core.excludesfile

You can put patterns in your project’s .gitignore file to have Git not see them as

untracked files or try to stage them when you run git add on them, as discussed in

Chapter 2. However, if you want another file outside of your project to hold those val-

ues or have extra values, you can tell Git where that file is with the core.excludesfile

setting. Simply set it to the path of a file that has content similar to what a .gitignore

file would have.

help.autocorrect

This option is available only in Git 1.6.1 and later. If you mistype a command in

Git 1.6, it shows you something like this:

$ git com

git: ’com’ is not a git-command. See ’git --help’.

Did you mean this?

commit

If you set help.autocorrect to 1, Git will automatically run the command if it has

only one match under this scenario.

163

PRO GIT SCOTT CHACON

7.1.2 Colors in Git

Git can color its output to your terminal, which can help you visually parse the out-

put quickly and easily. A number of options can help you set the coloring to your

preference.

color.ui

Git automatically colors most of its output if you ask it to. You can get very specific

about what you want colored and how; but to turn on all the default terminal coloring,

set color.ui to true:

$ git config --global color.ui true

When that value is set, Git colors its output if the output goes to a terminal. Other

possible settings are false, which never colors the output, and always, which sets colors

all the time, even if you’re redirecting Git commands to a file or piping them to another

command. This setting was added in Git version 1.5.5; if you have an older version,

you’ll have to specify all the color settings individually.

You’ll rarely want color.ui = always . In most scenarios, if you want color codes

in your redirected output, you can instead pass a --color flag to the Git command to

force it to use color codes. The color.ui = true setting is almost always what you’ll

want to use.

color.*

If you want to be more specific about which commands are colored and how, or

you have an older version, Git provides verb-specific coloring settings. Each of these

can be set to true , false , or always :

color.branch

color.diff

color.interactive

color.status

In addition, each of these has subsettings you can use to set specific colors for

parts of the output, if you want to override each color. For example, to set the meta

information in your diff output to blue foreground, black background, and bold text,

you can run

$ git config --global color.diff.meta ‘‘blue black bold’’

You can set the color to any of the following values: normal, black, red, green,

yellow, blue, magenta, cyan, or white. If you want an attribute like bold in the previous

example, you can choose from bold, dim, ul, blink, and reverse.

See the git config manpage for all the subsettings you can configure, if you want

to do that.

7.1.3 External Merge and Diff Tools

Although Git has an internal implementation of diff, which is what you’ve been using,

you can set up an external tool instead. You can also set up a graphical merge conflic-

tresolution tool instead of having to resolve conflicts manually. I’ll demonstrate setting

up the Perforce Visual Merge Tool (P4Merge) to do your diffs and merge resolutions,

because it’s a nice graphical tool and it’s free.

164

CHAPTER 7 CUSTOMIZING GIT

If you want to try this out, P4Merge works on all major platforms, so you should

be able to do so. I’ll use path names in the examples that work on Mac and Linux

systems; for Windows, you’ll have to change /usr/local/bin to an executable path in

your environment.

You can download P4Merge here:

http://www.perforce.com/perforce/downloads/component.html

To begin, you’ll set up external wrapper scripts to run your commands. I’ll use the

Mac path for the executable; in other systems, it will be where your p4merge binary is

installed. Set up a merge wrapper script named extMerge that calls your binary with all

the arguments provided:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/p4merge.app/Contents/MacOS/p4merge $*

The diff wrapper checks to make sure seven arguments are provided and passes two

of them to your merge script. By default, Git passes the following arguments to the diff

program:

path old-file old-hex old-mode new-file new-hex new-mode

Because you only want the old-file and new-file arguments, you use the wrapper

script to pass the ones you need.

$ cat /usr/local/bin/extDiff

#!/bin/sh

[$# -eq 7] && /usr/local/bin/extMerge "$2" "$5"

You also need to make sure these tools are executable:

$ sudo chmod +x /usr/local/bin/extMerge

$ sudo chmod +x /usr/local/bin/extDiff

Now you can set up your config file to use your custom merge resolution and diff

tools. This takes a number of custom settings: merge.tool to tell Git what strategy to

use, mergetool.*.cmd to specify how to run the command, mergetool.trustExitCode

to tell Git if the exit code of that program indicates a successful merge resolution or

not, and diff.external to tell Git what command to run for diffs. So, you can either

run four config commands

$ git config --global merge.tool extMerge

$ git config --global mergetool.extMerge.cmd \

’extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"’

$ git config --global mergetool.trustExitCode false

$ git config --global diff.external extDiff

or you can edit your /.gitconfig file to add these lines:

165

PRO GIT SCOTT CHACON

[merge]

tool = extMerge

[mergetool "extMerge"]

cmd = extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"

trustExitCode = false

[diff]

external = extDiff

After all this is set, if you run diff commands such as this:

$ git diff 32d1776b1̂ 32d1776b1

Instead of getting the diff output on the command line, Git fires up P4Merge, which

looks something like Figure 7.1.

Figure 7.1: P4Merge

If you try to merge two branches and subsequently have merge conflicts, you can

run the command git mergetool ; it starts P4Merge to let you resolve the conflicts

through that GUI tool.

The nice thing about this wrapper setup is that you can change your diff and merge

tools easily. For example, to change your extDiff and extMerge tools to run the KDiff3

tool instead, all you have to do is edit your extMerge file:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/kdiff3.app/Contents/MacOS/kdiff3 $*

Now, Git will use the KDiff3 tool for diff viewing and merge conflict resolution.

166

CHAPTER 7 CUSTOMIZING GIT

Git comes preset to use a number of other merge-resolution tools without your hav-

ing to set up the cmd configuration. You can set your merge tool to kdiff3, opendiff,

tkdiff, meld, xxdiff, emerge, vimdiff, or gvimdiff. If you’re not interested in using KD-

iff3 for diff but rather want to use it just for merge resolution, and the kdiff3 command

is in your path, then you can run

$ git config --global merge.tool kdiff3

If you run this instead of setting up the extMerge and extDiff files, Git will use

KDiff3 for merge resolution and the normal Git diff tool for diffs.

7.1.4 Formatting and Whitespace

Formatting and whitespace issues are some of the more frustrating and subtle problems

that many developers encounter when collaborating, especially cross-platform. It’s

very easy for patches or other collaborated work to introduce subtle whitespace changes

because editors silently introduce them or Windows programmers add carriage returns

at the end of lines they touch in cross-platform projects. Git has a few configuration

options to help with these issues.

core.autocrlf

If you’re programming on Windows or using another system but working with peo-

ple who are programming on Windows, you’ll probably run into line-ending issues at

some point. This is because Windows uses both a carriage-return character and a line-

feed character for newlines in its files, whereas Mac and Linux systems use only the

linefeed character. This is a subtle but incredibly annoying fact of cross-platform work.

Git can handle this by auto-converting CRLF line endings into LF when you com-

mit, and vice versa when it checks out code onto your filesystem. You can turn on this

functionality with the core.autocrlf setting. If you’re on a Windows machine, set it

to true — this converts LF endings into CRLF when you check out code:

$ git config --global core.autocrlf true

If you’re on a Linux or Mac system that uses LF line endings, then you don’t want

Git to automatically convert them when you check out files; however, if a file with

CRLF endings accidentally gets introduced, then you may want Git to fix it. You can

tell Git to convert CRLF to LF on commit but not the other way around by setting

core.autocrlf to input:

$ git config --global core.autocrlf input

This setup should leave you with CRLF endings in Windows checkouts but LF

endings on Mac and Linux systems and in the repository.

If you’re a Windows programmer doing a Windows-only project, then you can turn

off this functionality, recording the carriage returns in the repository by setting the

config value to false :

$ git config --global core.autocrlf false

core.whitespace

167

PRO GIT SCOTT CHACON

Git comes preset to detect and fix some whitespace issues. It can look for four

primary whitespace issues — two are enabled by default and can be turned off, and

two aren’t enabled by default but can be activated.

The two that are turned on by default are trailing-space , which looks for spaces

at the end of a line, and space-before-tab , which looks for spaces before tabs at the

beginning of a line.

The two that are disabled by default but can be turned on are indent-with-non-tab ,

which looks for lines that begin with eight or more spaces instead of tabs, and cr-at-eol ,

which tells Git that carriage returns at the end of lines are OK.

You can tell Git which of these you want enabled by setting core.whitespace to

the values you want on or off, separated by commas. You can disable settings by either

leaving them out of the setting string or prepending a - in front of the value. For

example, if you want all but cr-at-eol to be set, you can do this:

$ git config --global core.whitespace \

trailing-space,space-before-tab,indent-with-non-tab

Git will detect these issues when you run a git diff command and try to color

them so you can possibly fix them before you commit. It will also use these values to

help you when you apply patches with git apply . When you’re applying patches, you

can ask Git to warn you if it’s applying patches with the specified whitespace issues:

$ git apply --whitespace=warn <patch>

Or you can have Git try to automatically fix the issue before applying the patch:

$ git apply --whitespace=fix <patch>

These options apply to the git rebase option as well. If you’ve committed whites-

pace issues but haven’t yet pushed upstream, you can run a rebase with the --whitespace=fix

option to have Git automatically fix whitespace issues as it’s rewriting the patches.

7.1.5 Server Configuration

Not nearly as many configuration options are available for the server side of Git, but

there are a few interesting ones you may want to take note of.

receive.fsckObjects

By default, Git doesn’t check for consistency all the objects it receives during a

push. Although Git can check to make sure each object still matches its SHA–1 check-

sum and points to valid objects, it doesn’t do that by default on every push. This is a

relatively expensive operation and may add a lot of time to each push, depending on

the size of the repository or the push. If you want Git to check object consistency on

every push, you can force it to do so by setting receive.fsckObjects to true:

$ git config --system receive.fsckObjects true

Now, Git will check the integrity of your repository before each push is accepted to

make sure faulty clients aren’t introducing corrupt data.

receive.denyNonFastForwards

If you rebase commits that you’ve already pushed and then try to push again, or

otherwise try to push a commit to a remote branch that doesn’t contain the commit that

168

CHAPTER 7 CUSTOMIZING GIT

the remote branch currently points to, you’ll be denied. This is generally good policy;

but in the case of the rebase, you may determine that you know what you’re doing and

can force-update the remote branch with a -f flag to your push command.

To disable the ability to force-update remote branches to non-fast-forward refer-

ences, set receive.denyNonFastForwards :

$ git config --system receive.denyNonFastForwards true

The other way you can do this is via server-side receive hooks, which I’ll cover in

a bit. That approach lets you do more complex things like deny non-fast-forwards to a

certain subset of users.

receive.denyDeletes

One of the workarounds to the denyNonFastForwards policy is for the user to delete

the branch and then push it back up with the new reference. In newer versions of Git

(beginning with version 1.6.1), you can set receive.denyDeletes to true:

$ git config --system receive.denyDeletes true

This denies branch and tag deletion over a push across the board — no user can do

it. To remove remote branches, you must remove the ref files from the server manually.

There are also more interesting ways to do this on a per-user basis via ACLs, as you’ll

learn at the end of this chapter.

7.2 Git Attributes

Some of these settings can also be specified for a path, so that Git applies those settings

only for a subdirectory or subset of files. These path-specific settings are called Git

attributes and are set either in a .gitattribute file in one of your directories (normally

the root of your project) or in the .git/info/attributes file if you don’t want the

attributes file committed with your project.

Using attributes, you can do things like specify separate merge strategies for in-

dividual files or directories in your project, tell Git how to diff non-text files, or have

Git filter content before you check it into or out of Git. In this section, you’ll learn

about some of the attributes you can set on your paths in your Git project and see a few

examples of using this feature in practice.

7.2.1 Binary Files

One cool trick for which you can use Git attributes is telling Git which files are binary

(in cases it otherwise may not be able to figure out) and giving Git special instructions

about how to handle those files. For instance, some text files may be machine generated

and not diffable, whereas some binary files can be diffed — you’ll see how to tell Git

which is which.

Identifying Binary Files

Some files look like text files but for all intents and purposes are to be treated as bi-

nary data. For instance, Xcode projects on the Mac contain a file that ends in .pbxproj ,

which is basically a JSON (plain text javascript data format) dataset written out to

disk by the IDE that records your build settings and so on. Although it’s technically a

text file, because it’s all ASCII, you don’t want to treat it as such because it’s really a

169

PRO GIT SCOTT CHACON

lightweight database— you can’t merge the contents if two people changed it, and diffs

generally aren’t helpful. The file is meant to be consumed by a machine. In essence,

you want to treat it like a binary file.

To tell Git to treat all pbxproj files as binary data, add the following line to your

.gitattributes file:

*.pbxproj -crlf -diff

Now, Git won’t try to convert or fix CRLF issues; nor will it try to compute or print

a diff for changes in this file when you run git show or git diff on your project. In the

1.6 series of Git, you can also use a macro that is provided that means -crlf -diff :

*.pbxproj binary

Diffing Binary Files

In the 1.6 series of Git, you can use the Git attributes functionality to effectively

diff binary files. You do this by telling Git how to convert your binary data to a text

format that can be compared via the normal diff.

Because this is a pretty cool and not widely known feature, I’ll go over a few

examples. First, you’ll use this technique to solve one of the most annoying problems

known to humanity: version-controlling Word documents. Everyone knows that Word

is the most horrific editor around; but, oddly, everyone uses it. If you want to version-

control Word documents, you can stick them in a Git repository and commit every once

in a while; but what good does that do? If you run git diff normally, you only see

something like this:

$ git diff

diff --git a/chapter1.doc b/chapter1.doc

index 88839c4..4afcb7c 100644

Binary files a/chapter1.doc and b/chapter1.doc differ

You can’t directly compare two versions unless you check them out and scan them

manually, right? It turns out you can do this fairly well using Git attributes. Put the

following line in your .gitattributes file:

*.doc diff=word

This tells Git that any file that matches this pattern (.doc) should use the “word”

filter when you try to view a diff that contains changes. What is the “word” filter? You

have to set it up. Here you’ll configure Git to use the strings program to convert Word

documents into readable text files, which it will then diff properly:

$ git config diff.word.textconv strings

Now Git knows that if it tries to do a diff between two snapshots, and any of the

files end in .doc , it should run those files through the “word” filter, which is defined

as the strings program. This effectively makes nice text-based versions of your Word

files before attempting to diff them.

Here’s an example. I put Chapter 1 of this book into Git, added some text to a

paragraph, and saved the document. Then, I ran git diff to see what changed:

170

CHAPTER 7 CUSTOMIZING GIT

$ git diff

diff --git a/chapter1.doc b/chapter1.doc

index c1c8a0a..b93c9e4 100644

--- a/chapter1.doc

+++ b/chapter1.doc

@@ -8,7 +8,8 @@ re going to cover Version Control Systems (VCS) and Git basics

re going to cover how to get it and set it up for the first time if you don

t already have it on your system.

In Chapter Two we will go over basic Git usage - how to use Git for the 80%

-s going on, modify stuff and contribute changes. If the book spontaneously

+s going on, modify stuff and contribute changes. If the book spontaneously

+Let’s see if this works.

Git successfully and succinctly tells me that I added the string “Let’s see if this

works”, which is correct. It’s not perfect — it adds a bunch of random stuff at the end

— but it certainly works. If you can find or write a Word-to-plain-text converter that

works well enough, that solution will likely be incredibly effective. However, strings

is available on most Mac and Linux systems, so it may be a good first try to do this

with many binary formats.

Another interesting problem you can solve this way involves diffing image files.

One way to do this is to run JPEG files through a filter that extracts their EXIF infor-

mation — metadata that is recorded with most image formats. If you download and

install the exiftool program, you can use it to convert your images into text about the

metadata, so at least the diff will show you a textual representation of any changes that

happened:

$ echo ’*.png diff=exif’ >> .gitattributes

$ git config diff.exif.textconv exiftool

If you replace an image in your project and run git diff , you see something like

this:

diff --git a/image.png b/image.png

index 88839c4..4afcb7c 100644

--- a/image.png

+++ b/image.png

@@ -1,12 +1,12 @@

ExifTool Version Number : 7.74

-File Size : 70 kB

-File Modification Date/Time : 2009:04:21 07:02:45-07:00

+File Size : 94 kB

+File Modification Date/Time : 2009:04:21 07:02:43-07:00

File Type : PNG

MIME Type : image/png

-Image Width : 1058

-Image Height : 889

+Image Width : 1056

+Image Height : 827

Bit Depth : 8

Color Type : RGB with Alpha

You can easily see that the file size and image dimensions have both changed.

171

PRO GIT SCOTT CHACON

7.2.2 Keyword Expansion

SVN- or CVS-style keyword expansion is often requested by developers used to those

systems. The main problem with this in Git is that you can’t modify a file with in-

formation about the commit after you’ve committed, because Git checksums the file

first. However, you can inject text into a file when it’s checked out and remove it again

before it’s added to a commit. Git attributes offers you two ways to do this.

First, you can inject the SHA–1 checksum of a blob into an Id field in the file

automatically. If you set this attribute on a file or set of files, then the next time you

check out that branch, Git will replace that field with the SHA–1 of the blob. It’s

important to notice that it isn’t the SHA of the commit, but of the blob itself:

$ echo ’*.txt ident’ >> .gitattributes

$ echo ’Id’ > test.txt

The next time you check out this file, Git injects the SHA of the blob:

$ rm text.txt

$ git checkout -- text.txt

$ cat test.txt

$Id: 42812b7653c7b88933f8a9d6cad0ca16714b9bb3 $

However, that result is of limited use. If you’ve used keyword substitution in CVS

or Subversion, you can include a datestamp — the SHA isn’t all that helpful, because

it’s fairly random and you can’t tell if one SHA is older or newer than another.

It turns out that you can write your own filters for doing substitutions in files on

commit/checkout. These are the “clean” and “smudge” filters. In the .gitattributes

file, you can set a filter for particular paths and then set up scripts that will process files

just before they’re committed (“clean”, see Figure 7.2) and just before they’re checked

out (“smudge”, see Figure 7.3). These filters can be set to do all sorts of fun things.

Figure 7.2: The “smudge” filter is run on checkout.

The original commit message for this functionality gives a simple example of run-

ning all your C source code through the indent program before committing. You can

set it up by setting the filter attribute in your .gitattributes file to filter *.c files with

the “indent” filter:

*.c filter=indent

172

CHAPTER 7 CUSTOMIZING GIT

Figure 7.3: The “clean” filter is run when files are staged.

Then, tell Git what the “indent”” filter does on smudge and clean:

$ git config --global filter.indent.clean indent

$ git config --global filter.indent.smudge cat

In this case, when you commit files that match *.c , Git will run them through the

indent program before it commits them and then run them through the cat program

before it checks them back out onto disk. The cat program is basically a no-op: it spits

out the same data that it gets in. This combination effectively filters all C source code

files through indent before committing.

Another interesting example gets $Date$ keyword expansion, RCS style. To do this

properly, you need a small script that takes a filename, figures out the last commit date

for this project, and inserts the date into the file. Here is a small Ruby script that does

that:

#! /usr/bin/env ruby

data = STDIN.read

last_date = ‘git log --pretty=format:"%ad" -1‘

puts data.gsub(’$Date$’, ’$Date: ’ + last_date.to_s + ’$’)

All the script does is get the latest commit date from the git log command, stick

that into any $Date$ strings it sees in stdin, and print the results — it should be sim-

ple to do in whatever language you’re most comfortable in. You can name this file

expand date and put it in your path. Now, you need to set up a filter in Git (call it

dater) and tell it to use your expand date filter to smudge the files on checkout. You’ll

use a Perl expression to clean that up on commit:

$ git config filter.dater.smudge expand_date

$ git config filter.dater.clean ’perl -pe "s/\\\$Date[̂ \\\$]*\\\$/\\\$Date\\\$/"’

This Perl snippet strips out anything it sees in a $Date$ string, to get back to where

you started. Now that your filter is ready, you can test it by setting up a file with your

$Date$ keyword and then setting up a Git attribute for that file that engages the new

filter:

$ echo ’# $Date$’ > date_test.txt

$ echo ’date*.txt filter=dater’ >> .gitattributes

173

PRO GIT SCOTT CHACON

If you commit those changes and check out the file again, you see the keyword

properly substituted:

$ git add date_test.txt .gitattributes

$ git commit -m "Testing date expansion in Git"

$ rm date_test.txt

$ git checkout date_test.txt

$ cat date_test.txt

$Date: Tue Apr 21 07:26:52 2009 -0700$

You can see how powerful this technique can be for customized applications. You

have to be careful, though, because the .gitattributes file is committed and passed

around with the project but the driver (in this case, dater) isn’t; so, it won’t work

everywhere. When you design these filters, they should be able to fail gracefully and

have the project still work properly.

7.2.3 Exporting Your Repository

Git attribute data also allows you to do some interesting things when exporting an

archive of your project.

export-ignore

You can tell Git not to export certain files or directories when generating an archive.

If there is a subdirectory or file that you don’t want to include in your archive file

but that you do want checked into your project, you can determine those files via the

export-ignore attribute.

For example, say you have some test files in a test/ subdirectory, and it doesn’t

make sense to include them in the tarball export of your project. You can add the

following line to your Git attributes file:

test/ export-ignore

Now, when you run git archive to create a tarball of your project, that directory

won’t be included in the archive.

export-subst

Another thing you can do for your archives is some simple keyword substitution.

Git lets you put the string $Format:$ in any file with any of the --pretty=format for-

matting shortcodes, many of which you saw in Chapter 2. For instance, if you want to

include a file named LAST COMMIT in your project, and the last commit date was auto-

matically injected into it when git archive ran, you can set up the file like this:

$ echo ’Last commit date: $Format:%cd$’ > LAST_COMMIT

$ echo "LAST_COMMIT export-subst" >> .gitattributes

$ git add LAST_COMMIT .gitattributes

$ git commit -am ’adding LAST_COMMIT file for archives’

When you run git archive , the contents of that file when people open the archive

file will look like this:

$ cat LAST_COMMIT

Last commit date: $Format:Tue Apr 21 08:38:48 2009 -0700$

174

CHAPTER 7 CUSTOMIZING GIT

7.2.4 Merge Strategies

You can also use Git attributes to tell Git to use different merge strategies for specific

files in your project. One very useful option is to tell Git to not try to merge specific

files when they have conflicts, but rather to use your side of the merge over someone

else’s.

This is helpful if a branch in your project has diverged or is specialized, but you

want to be able to merge changes back in from it, and you want to ignore certain

files. Say you have a database settings file called database.xml that is different in two

branches, and you want to merge in your other branch without messing up the database

file. You can set up an attribute like this:

database.xml merge=ours

If you merge in the other branch, instead of having merge conflicts with the database.xml

file, you see something like this:

$ git merge topic

Auto-merging database.xml

Merge made by recursive.

In this case, database.xml stays at whatever version you originally had.

7.3 Git Hooks

Like many other Version Control Systems, Git has a way to fire off custom scripts

when certain important actions occur. There are two groups of these hooks: client side

and server side. The client-side hooks are for client operations such as committing and

merging. The server-side hooks are for Git server operations such as receiving pushed

commits. You can use these hooks for all sorts of reasons, and you’ll learn about a few

of them here.

7.3.1 Installing a Hook

The hooks are all stored in the hooks subdirectory of the Git directory. In most projects,

that’s .git/hooks . By default, Git populates this directory with a bunch of example

scripts, many of which are useful by themselves; but they also document the input

values of each script. All the examples are written as shell scripts, with some Perl

thrown in, but any properly named executable scripts will work fine — you can write

them in Ruby or Python or what have you. For post–1.6 versions of Git, these example

hook files end with .sample; you’ll need to rename them. For pre–1.6 versions of Git,

the example files are named properly but are not executable.

To enable a hook script, put a file in the hooks subdirectory of your Git directory

that is named appropriately and is executable. From that point forward, it should be

called. I’ll cover most of the major hook filenames here.

7.3.2 Client-Side Hooks

There are a lot of client-side hooks. This section splits them into committing-workflow

hooks, e-mailworkflow scripts, and the rest of the client-side scripts.

175

PRO GIT SCOTT CHACON

Committing-Workflow Hooks

The first four hooks have to do with the committing process. The pre-commit hook

is run first, before you even type in a commit message. It’s used to inspect the snapshot

that’s about to be committed, to see if you’ve forgotten something, to make sure tests

run, or to examine whatever you need to inspect in the code. Exiting non-zero from

this hook aborts the commit, although you can bypass it with git commit --no-verify .

You can do things like check for code style (run lint or something equivalent), check

for trailing whitespace (the default hook does exactly that), or check for appropriate

documentation on new methods.

The prepare-commit-msg hook is run before the commit message editor is fired up

but after the default message is created. It lets you edit the default message before

the commit author sees it. This hook takes a few options: the path to the file that

holds the commit message so far, the type of commit, and the commit SHA–1 if this is

an amended commit. This hook generally isn’t useful for normal commits; rather, it’s

good for commits where the default message is auto-generated, such as templated com-

mit messages, merge commits, squashed commits, and amended commits. You may

use it in conjunction with a commit template to programmatically insert information.

The commit-msg hook takes one parameter, which again is the path to a temporary

file that contains the current commit message. If this script exits non-zero, Git aborts

the commit process, so you can use it to validate your project state or commit message

before allowing a commit to go through. In the last section of this chapter, I’ll demon-

strate using this hook to check that your commit message is conformant to a required

pattern.

After the entire commit process is completed, the post-commit hook runs. It doesn’t

take any parameters, but you can easily get the last commit by running git log -1

HEAD . Generally, this script is used for notification or something similar.

The committing-workflow client-side scripts can be used in just about any work-

flow. They’re often used to enforce certain policies, although it’s important to note that

these scripts aren’t transferred during a clone. You can enforce policy on the server

side to reject pushes of commits that don’t conform to some policy, but it’s entirely

up to the developer to use these scripts on the client side. So, these are scripts to help

developers, and they must be set up and maintained by them, although they can be

overridden or modified by them at any time.

E-mail Workflow Hooks

You can set up three client-side hooks for an e-mailbased workflow. They’re all in-

voked by the git am command, so if you aren’t using that command in your workflow,

you can safely skip to the next section. If you’re taking patches over e-mail prepared

by git format-patch , then some of these may be helpful to you.

The first hook that is run is applypatch-msg . It takes a single argument: the name of

the temporary file that contains the proposed commit message. Git aborts the patch if

this script exits non-zero. You can use this to make sure a commit message is properly

formatted or to normalize the message by having the script edit it in place.

The next hook to run when applying patches via git am is pre-applypatch . It

takes no arguments and is run after the patch is applied, so you can use it to inspect

the snapshot before making the commit. You can run tests or otherwise inspect the

working tree with this script. If something is missing or the tests don’t pass, exiting

non-zero also aborts the git am script without committing the patch.

The last hook to run during a git am operation is post-applypatch . You can use

176

CHAPTER 7 CUSTOMIZING GIT

it to notify a group or the author of the patch you pulled in that you’ve done so. You

can’t stop the patching process with this script.

Other Client Hooks

The pre-rebase hook runs before you rebase anything and can halt the process by

exiting non-zero. You can use this hook to disallow rebasing any commits that have

already been pushed. The example pre-rebase hook that Git installs does this, although

it assumes that next is the name of the branch you publish. You’ll likely need to change

that to whatever your stable, published branch is.

After you run a successful git checkout , the post-checkout hook runs; you can

use it to set up your working directory properly for your project environment. This

may mean moving in large binary files that you don’t want source controlled, auto-

generating documentation, or something along those lines.

Finally, the post-merge hook runs after a successful merge command. You can use

it to restore data in the working tree that Git can’t track, such as permissions data. This

hook can likewise validate the presence of files external to Git control that you may

want copied in when the working tree changes.

7.3.3 Server-Side Hooks

In addition to the client-side hooks, you can use a couple of important server-side hooks

as a system administrator to enforce nearly any kind of policy for your project. These

scripts run before and after pushes to the server. The pre hooks can exit non-zero at

any time to reject the push as well as print an error message back to the client; you can

set up a push policy that’s as complex as you wish.

pre-receive and post-receive

The first script to run when handling a push from a client is pre-receive . It takes

a list of references that are being pushed from stdin; if it exits non-zero, none of them

are accepted. You can use this hook to do things like make sure none of the updated

references are non-fast-forwards; or to check that the user doing the pushing has create,

delete, or push access or access to push updates to all the files they’re modifying with

the push.

The post-receive hook runs after the entire process is completed and can be used

to update other services or notify users. It takes the same stdin data as the pre-receive

hook. Examples include e-mailing a list, notifying a continuous integration server, or

updating a ticket-tracking system — you can even parse the commit messages to see

if any tickets need to be opened, modified, or closed. This script can’t stop the push

process, but the client doesn’t disconnect until it has completed; so, be careful when

you try to do anything that may take a long time.

update

The update script is very similar to the pre-receive script, except that it’s run

once for each branch the pusher is trying to update. If the pusher is trying to push to

multiple branches, pre-receive runs only once, whereas update runs once per branch

they’re pushing to. Instead of reading from stdin, this script takes three arguments: the

name of the reference (branch), the SHA–1 that reference pointed to before the push,

and the SHA–1 the user is trying to push. If the update script exits non-zero, only that

reference is rejected; other references can still be updated.

177

PRO GIT SCOTT CHACON

7.4 An Example Git-Enforced Policy

In this section, you’ll use what you’ve learned to establish a Git workflow that checks

for a custom commit message format, enforces fast-forward-only pushes, and allows

only certain users to modify certain subdirectories in a project. You’ll build client

scripts that help the developer know if their push will be rejected and server scripts that

actually enforce the policies.

I used Ruby to write these, both because it’s my preferred scripting language and

because I feel it’s the most pseudocode-looking of the scripting languages; thus you

should be able to roughly follow the code even if you don’t use Ruby. However, any

language will work fine. All the sample hook scripts distributed with Git are in ei-

ther Perl or Bash scripting, so you can also see plenty of examples of hooks in those

languages by looking at the samples.

7.4.1 Server-Side Hook

All the server-side work will go into the update file in your hooks directory. The update

file runs once per branch being pushed and takes the reference being pushed to, the

old revision where that branch was, and the new revision being pushed. You also have

access to the user doing the pushing if the push is being run over SSH. If you’ve allowed

everyone to connect with a single user (like “git”) via public-key authentication, you

may have to give that user a shell wrapper that determines which user is connecting

based on the public key, and set an environment variable specifying that user. Here I

assume the connecting user is in the $USER environment variable, so your update script

begins by gathering all the information you need:

#!/usr/bin/env ruby

$refname = ARGV[0]

$oldrev = ARGV[1]

$newrev = ARGV[2]

$user = ENV[’USER’]

puts "Enforcing Policies... \n(#{$refname}) (#{$oldrev[0,6]}) (#{$newrev[0,6]})"

Yes, I’m using global variables. Don’t judge me— it’s easier to demonstrate in this

manner.

Enforcing a Specific Commit-Message Format

Your first challenge is to enforce that each commit message must adhere to a partic-

ular format. Just to have a target, assume that each message has to include a string that

looks like “ref: 1234” because you want each commit to link to a work item in your

ticketing system. You must look at each commit being pushed up, see if that string is in

the commit message, and, if the string is absent from any of the commits, exit non-zero

so the push is rejected.

You can get a list of the SHA–1 values of all the commits that are being pushed by

taking the $newrev and $oldrev values and passing them to a Git plumbing command

called git rev-list . This is basically the git log command, but by default it prints

out only the SHA–1 values and no other information. So, to get a list of all the commit

SHAs introduced between one commit SHA and another, you can run something like

this:

178

CHAPTER 7 CUSTOMIZING GIT

$ git rev-list 538c33..d14fc7

d14fc7c847ab946ec39590d87783c69b031bdfb7

9f585da4401b0a3999e84113824d15245c13f0be

234071a1be950e2a8d078e6141f5cd20c1e61ad3

dfa04c9ef3d5197182f13fb5b9b1fb7717d2222a

17716ec0f1ff5c77eff40b7fe912f9f6cfd0e475

You can take that output, loop through each of those commit SHAs, grab the mes-

sage for it, and test that message against a regular expression that looks for a pattern.

You have to figure out how to get the commit message from each of these commits

to test. To get the raw commit data, you can use another plumbing command called

git cat-file . I’ll go over all these plumbing commands in detail in Chapter 9; but for

now, here’s what that command gives you:

$ git cat-file commit ca82a6

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the verison number

A simple way to get the commit message from a commit when you have the SHA–1

value is to go to the first blank line and take everything after that. You can do so with

the sed command on Unix systems:

$ git cat-file commit ca82a6 | sed ’1,/̂ $/d’

changed the verison number

You can use that incantation to grab the commit message from each commit that is

trying to be pushed and exit if you see anything that doesn’t match. To exit the script

and reject the push, exit non-zero. The whole method looks like this:

$regex = /\[ref: (\d+)\]/

enforced custom commit message format

def check_message_format

missed_revs = ‘git rev-list #{$oldrev}..#{$newrev}‘.split("\n")

missed_revs.each do |rev|

message = ‘git cat-file commit #{rev} | sed ’1,/̂ $/d’‘

if !$regex.match(message)

puts "[POLICY] Your message is not formatted correctly"

exit 1

end

end

end

check_message_format

Putting that in your update script will reject updates that contain commits that have

messages that don’t adhere to your rule.

Enforcing a User-Based ACL System

Suppose you want to add a mechanism that uses an access control list (ACL) that

specifies which users are allowed to push changes to which parts of your projects.

179

PRO GIT SCOTT CHACON

Some people have full access, and others only have access to push changes to certain

subdirectories or specific files. To enforce this, you’ll write those rules to a file named

acl that lives in your bare Git repository on the server. You’ll have the update hook

look at those rules, see what files are being introduced for all the commits being pushed,

and determine whether the user doing the push has access to update all those files.

The first thing you’ll do is write your ACL. Here you’ll use a format very much

like the CVS ACL mechanism: it uses a series of lines, where the first field is avail or

unavail , the next field is a comma-delimited list of the users to which the rule applies,

and the last field is the path to which the rule applies (blank meaning open access). All

of these fields are delimited by a pipe (|) character.

In this case, you have a couple of administrators, some documentation writers with

access to the doc directory, and one developer who only has access to the lib and tests

directories, and your ACL file looks like this:

avail|nickh,pjhyett,defunkt,tpw

avail|usinclair,cdickens,ebronte|doc

avail|schacon|lib

avail|schacon|tests

You begin by reading this data into a structure that you can use. In this case, to

keep the example simple, you’ll only enforce the avail directives. Here is a method

that gives you an associative array where the key is the user name and the value is an

array of paths to which the user has write access:

def get_acl_access_data(acl_file)

read in ACL data

acl_file = File.read(acl_file).split("\n").reject { |line| line == ’’ }

access = {}

acl_file.each do |line|

avail, users, path = line.split(’|’)

next unless avail == ’avail’

users.split(’,’).each do |user|

access[user] ||= []

access[user] << path

end

end

access

end

On the ACL file you looked at earlier, this get acl access data method returns a

data structure that looks like this:

{"defunkt"=>[nil],

"tpw"=>[nil],

"nickh"=>[nil],

"pjhyett"=>[nil],

"schacon"=>["lib", "tests"],

"cdickens"=>["doc"],

"usinclair"=>["doc"],

"ebronte"=>["doc"]}

180

CHAPTER 7 CUSTOMIZING GIT

Now that you have the permissions sorted out, you need to determine what paths

the commits being pushed have modified, so you can make sure the user who’s pushing

has access to all of them.

You can pretty easily see what files have been modified in a single commit with the

--name-only option to the git log command (mentioned briefly in Chapter 2):

$ git log -1 --name-only --pretty=format:’’ 9f585d

README

lib/test.rb

If you use the ACL structure returned from the get acl access data method and

check it against the listed files in each of the commits, you can determine whether the

user has access to push all of their commits:

only allows certain users to modify certain subdirectories in a project

def check_directory_perms

access = get_acl_access_data(’acl’)

see if anyone is trying to push something they can’t

new_commits = ‘git rev-list #{$oldrev}..#{$newrev}‘.split("\n")

new_commits.each do |rev|

files_modified = ‘git log -1 --name-only --pretty=format:’’ #{rev}‘.split("\n")

files_modified.each do |path|

next if path.size == 0

has_file_access = false

access[$user].each do |access_path|

if !access_path # user has access to everything

|| (path.index(access_path) == 0) # access to this path

has_file_access = true

end

end

if !has_file_access

puts "[POLICY] You do not have access to push to #{path}"

exit 1

end

end

end

end

check_directory_perms

Most of that should be easy to follow. You get a list of new commits being pushed

to your server with git rev-list . Then, for each of those, you find which files are

modified and make sure the user who’s pushing has access to all the paths being mod-

ified. One Rubyism that may not be clear is path.index(access path) == 0 , which is

true if path begins with access path — this ensures that access path is not just in one

of the allowed paths, but an allowed path begins with each accessed path.

Now your users can’t push any commits with badly formed messages or with mod-

ified files outside of their designated paths.

Enforcing Fast-Forward-Only Pushes

181

PRO GIT SCOTT CHACON

The only thing left is to enforce fast-forward-only pushes. In Git versions 1.6 or

newer, you can set the receive.denyDeletes and receive.denyNonFastForwards set-

tings. But enforcing this with a hook will work in older versions of Git, and you can

modify it to do so only for certain users or whatever else you come up with later.

The logic for checking this is to see if any commits are reachable from the older

revision that aren’t reachable from the newer one. If there are none, then it was a

fast-forward push; otherwise, you deny it:

enforces fast-forward only pushes

def check_fast_forward

missed_refs = ‘git rev-list #{$newrev}..#{$oldrev}‘

missed_ref_count = missed_refs.split("\n").size

if missed_ref_count > 0

puts "[POLICY] Cannot push a non fast-forward reference"

exit 1

end

end

check_fast_forward

Everything is set up. If you run chmod u+x .git/hooks/update , which is the file

you into which you should have put all this code, and then try to push a non-fast-

forwarded reference, you get something like this:

$ git push -f origin master

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 323 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

Enforcing Policies...

(refs/heads/master) (8338c5) (c5b616)

[POLICY] Cannot push a non-fast-forward reference

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

To git@gitserver:project.git

! [remote rejected] master -> master (hook declined)

error: failed to push some refs to ’git@gitserver:project.git’

There are a couple of interesting things here. First, you see this where the hook

starts running.

Enforcing Policies...

(refs/heads/master) (fb8c72) (c56860)

Notice that you printed that out to stdout at the very beginning of your update script.

It’s important to note that anything your script prints to stdout will be transferred to the

client.

The next thing you’ll notice is the error message.

[POLICY] Cannot push a non fast-forward reference

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

182

CHAPTER 7 CUSTOMIZING GIT

The first line was printed out by you, the other two were Git telling you that the

update script exited non-zero and that is what is declining your push. Lastly, you have

this:

To git@gitserver:project.git

! [remote rejected] master -> master (hook declined)

error: failed to push some refs to ’git@gitserver:project.git’

You’ll see a remote rejected message for each reference that your hook declined,

and it tells you that it was declined specifically because of a hook failure.

Furthermore, if the ref marker isn’t there in any of your commits, you’ll see the

error message you’re printing out for that.

[POLICY] Your message is not formatted correctly

Or if someone tries to edit a file they don’t have access to and push a commit

containing it, they will see something similar. For instance, if a documentation author

tries to push a commit modifying something in the lib directory, they see

[POLICY] You do not have access to push to lib/test.rb

That’s all. From now on, as long as that update script is there and executable, your

repository will never be rewound and will never have a commit message without your

pattern in it, and your users will be sandboxed.

7.4.2 Client-Side Hooks

The downside to this approach is the whining that will inevitably result when your

users’ commit pushes are rejected. Having their carefully crafted work rejected at the

last minute can be extremely frustrating and confusing; and furthermore, they will have

to edit their history to correct it, which isn’t always for the faint of heart.

The answer to this dilemma is to provide some client-side hooks that users can use

to notify them when they’re doing something that the server is likely to reject. That

way, they can correct any problems before committing and before those issues become

more difficult to fix. Because hooks aren’t transferred with a clone of a project, you

must distribute these scripts some other way and then have your users copy them to their

.git/hooks directory and make them executable. You can distribute these hooks within

the project or in a separate project, but there is no way to set them up automatically.

To begin, you should check your commit message just before each commit is

recorded, so you know the server won’t reject your changes due to badly formatted

commit messages. To do this, you can add the commit-msg hook. If you have it read the

message from the file passed as the first argument and compare that to the pattern, you

can force Git to abort the commit if there is no match:

#!/usr/bin/env ruby

message_file = ARGV[0]

message = File.read(message_file)

$regex = /\[ref: (\d+)\]/

if !$regex.match(message)

183

PRO GIT SCOTT CHACON

puts "[POLICY] Your message is not formatted correctly"

exit 1

end

If that script is in place (in .git/hooks/commit-msg) and executable, and you com-

mit with a message that isn’t properly formatted, you see this:

$ git commit -am ’test’

[POLICY] Your message is not formatted correctly

No commit was completed in that instance. However, if your message contains the

proper pattern, Git allows you to commit:

$ git commit -am ’test [ref: 132]’

[master e05c914] test [ref: 132]

1 files changed, 1 insertions(+), 0 deletions(-)

Next, you want to make sure you aren’t modifying files that are outside your ACL

scope. If your project’s .git directory contains a copy of the ACL file you used previ-

ously, then the following pre-commit script will enforce those constraints for you:

#!/usr/bin/env ruby

$user = ENV[’USER’]

[insert acl_access_data method from above]

only allows certain users to modify certain subdirectories in a project

def check_directory_perms

access = get_acl_access_data(’.git/acl’)

files_modified = ‘git diff-index --cached --name-only HEAD‘.split("\n")

files_modified.each do |path|

next if path.size == 0

has_file_access = false

access[$user].each do |access_path|

if !access_path || (path.index(access_path) == 0)

has_file_access = true

end

if !has_file_access

puts "[POLICY] You do not have access to push to #{path}"

exit 1

end

end

end

check_directory_perms

This is roughly the same script as the server-side part, but with two important dif-

ferences. First, the ACL file is in a different place, because this script runs from your

working directory, not from your Git directory. You have to change the path to the ACL

file from this

184

CHAPTER 7 CUSTOMIZING GIT

access = get_acl_access_data(’acl’)

to this:

access = get_acl_access_data(’.git/acl’)

The other important difference is the way you get a listing of the files that have

been changed. Because the server-side method looks at the log of commits, and, at

this point, the commit hasn’t been recorded yet, you must get your file listing from the

staging area instead. Instead of

files_modified = ‘git log -1 --name-only --pretty=format:’’ #{ref}‘

you have to use

files_modified = ‘git diff-index --cached --name-only HEAD‘

But those are the only two differences — otherwise, the script works the same way.

One caveat is that it expects you to be running locally as the same user you push as to

the remote machine. If that is different, you must set the $user variable manually.

The last thing you have to do is check that you’re not trying to push non-fast-

forwarded references, but that is a bit less common. To get a reference that isn’t a

fast-forward, you either have to rebase past a commit you’ve already pushed up or try

pushing a different local branch up to the same remote branch.

Because the server will tell you that you can’t push a non-fast-forward anyway,

and the hook prevents forced pushes, the only accidental thing you can try to catch is

rebasing commits that have already been pushed.

Here is an example pre-rebase script that checks for that. It gets a list of all the

commits you’re about to rewrite and checks whether they exist in any of your remote

references. If it sees one that is reachable from one of your remote references, it aborts

the rebase:

#!/usr/bin/env ruby

base_branch = ARGV[0]

if ARGV[1]

topic_branch = ARGV[1]

else

topic_branch = "HEAD"

end

target_shas = ‘git rev-list #{base_branch}..#{topic_branch}‘.split("\n")

remote_refs = ‘git branch -r‘.split("\n").map { |r| r.strip }

target_shas.each do |sha|

remote_refs.each do |remote_ref|

shas_pushed = ‘git rev-list #̂{sha}̂ @ refs/remotes/#{remote_ref}‘

if shas_pushed.split(‘‘\n’’).include?(sha)

puts "[POLICY] Commit #{sha} has already been pushed to #{remote_ref}"

exit 1

end

end

end

185

PRO GIT SCOTT CHACON

This script uses a syntax that wasn’t covered in the Revision Selection section of

Chapter 6. You get a list of commits that have already been pushed up by running this:

git rev-list #̂{sha}̂ @ refs/remotes/#{remote_ref}

The SHÂ @ syntax resolves to all the parents of that commit. You’re looking for any

commit that is reachable from the last commit on the remote and that isn’t reachable

from any parent of any of the SHAs you’re trying to push up — meaning it’s a fast-

forward.

The main drawback to this approach is that it can be very slow and is often unnec-

essary — if you don’t try to force the push with -f, the server will warn you and not

accept the push. However, it’s an interesting exercise and can in theory help you avoid

a rebase that you might later have to go back and fix.

7.5 Summary

You’ve covered most of the major ways that you can customize your Git client and

server to best fit your workflow and projects. You’ve learned about all sorts of con-

figuration settings, file-based attributes, and event hooks, and you’ve built an example

policy-enforcing server. You should now be able to make Git fit nearly any workflow

you can dream up.

186

Chapter 8

Git and Other Systems

The world isn’t perfect. Usually, you can’t immediately switch every project you come

in contact with to Git. Sometimes you’re stuck on a project using another VCS, and

many times that system is Subversion. You’ll spend the first part of this chapter learning

about git svn , the bidirectional Subversion gateway tool in Git.

At some point, you may want to convert your existing project to Git. The second

part of this chapter covers how to migrate your project into Git: first from Subversion,

then from Perforce, and finally via a custom import script for a nonstandard importing

case.

8.1 Git and Subversion

Currently, the majority of open source development projects and a large number of

corporate projects use Subversion to manage their source code. It’s the most popular

open source VCS and has been around for nearly a decade. It’s also very similar in

many ways to CVS, which was the big boy of the source-control world before that.

One of Git’s great features is a bidirectional bridge to Subversion called git svn .

This tool allows you to use Git as a valid client to a Subversion server, so you can

use all the local features of Git and then push to a Subversion server as if you were

using Subversion locally. This means you can do local branching and merging, use

the staging area, use rebasing and cherry-picking, and so on, while your collaborators

continue to work in their dark and ancient ways. It’s a good way to sneak Git into the

corporate environment and help your fellow developers become more efficient while

you lobby to get the infrastructure changed to support Git fully. The Subversion bridge

is the gateway drug to the DVCS world.

8.1.1 git svn

The base command in Git for all the Subversion bridging commands is git svn . You

preface everything with that. It takes quite a few commands, so you’ll learn about the

common ones while going through a few small workflows.

It’s important to note that when you’re using git svn , you’re interacting with Sub-

version, which is a system that is far less sophisticated than Git. Although you can

187

PRO GIT SCOTT CHACON

easily do local branching and merging, it’s generally best to keep your history as lin-

ear as possible by rebasing your work and avoiding doing things like simultaneously

interacting with a Git remote repository.

Don’t rewrite your history and try to push again, and don’t push to a parallel Git

repository to collaborate with fellow Git developers at the same time. Subversion can

have only a single linear history, and confusing it is very easy. If you’re working with

a team, and some are using SVN and others are using Git, make sure everyone is using

the SVN server to collaborate — doing so will make your life easier.

8.1.2 Setting Up

To demonstrate this functionality, you need a typical SVN repository that you have

write access to. If you want to copy these examples, you’ll have to make a writeable

copy of my test repository. In order to do that easily, you can use a tool called svnsync

that comes with more recent versions of Subversion — it should be distributed with at

least 1.4. For these tests, I created a new Subversion repository on Google code that

was a partial copy of the protobuf project, which is a tool that encodes structured data

for network transmission.

To follow along, you first need to create a new local Subversion repository:

$ mkdir /tmp/test-svn

$ svnadmin create /tmp/test-svn

Then, enable all users to change revprops — the easy way is to add a pre-revprop-

change script that always exits 0:

$ cat /tmp/test-svn/hooks/pre-revprop-change

#!/bin/sh

exit 0;

$ chmod +x /tmp/test-svn/hooks/pre-revprop-change

You can now sync this project to your local machine by calling svnsync init with

the to and from repositories.

$ svnsync init file:///tmp/test-svn http://progit-example.googlecode.com/svn/

This sets up the properties to run the sync. You can then clone the code by running

$ svnsync sync file:///tmp/test-svn

Committed revision 1.

Copied properties for revision 1.

Committed revision 2.

Copied properties for revision 2.

Committed revision 3.

...

Although this operation may take only a few minutes, if you try to copy the original

repository to another remote repository instead of a local one, the process will take

nearly an hour, even though there are fewer than 100 commits. Subversion has to clone

one revision at a time and then push it back into another repository — it’s ridiculously

inefficient, but it’s the only easy way to do this.

188

CHAPTER 8 GIT AND OTHER SYSTEMS

8.1.3 Getting Started

Now that you have a Subversion repository to which you have write access, you can

go through a typical workflow. You’ll start with the git svn clone command, which

imports an entire Subversion repository into a local Git repository. Remember that

if you’re importing from a real hosted Subversion repository, you should replace the

file:///tmp/test-svn here with the URL of your Subversion repository:

$ git svn clone file:///tmp/test-svn -T trunk -b branches -t tags

Initialized empty Git repository in /Users/schacon/projects/testsvnsync/svn/.git/

r1 = b4e387bc68740b5af56c2a5faf4003ae42bd135c (trunk)

A m4/acx_pthread.m4

A m4/stl_hash.m4

...

r75 = d1957f3b307922124eec6314e15bcda59e3d9610 (trunk)

Found possible branch point: file:///tmp/test-svn/trunk => \

file:///tmp/test-svn /branches/my-calc-branch, 75

Found branch parent: (my-calc-branch) d1957f3b307922124eec6314e15bcda59e3d9610

Following parent with do_switch

Successfully followed parent

r76 = 8624824ecc0badd73f40ea2f01fce51894189b01 (my-calc-branch)

Checked out HEAD:

file:///tmp/test-svn/branches/my-calc-branch r76

This runs the equivalent of two commands — git svn init followed by git svn

fetch — on the URL you provide. This can take a while. The test project has only

about 75 commits and the codebase isn’t that big, so it takes just a few minutes. How-

ever, Git has to check out each version, one at a time, and commit it individually. For

a project with hundreds or thousands of commits, this can literally take hours or even

days to finish.

The -T trunk -b branches -t tags part tells Git that this Subversion repository

follows the basic branching and tagging conventions. If you name your trunk, branches,

or tags differently, you can change these options. Because this is so common, you can

replace this entire part with -s, which means standard layout and implies all those

options. The following command is equivalent:

$ git svn clone file:///tmp/test-svn -s

At this point, you should have a valid Git repository that has imported your branches

and tags:

$ git branch -a

* master

my-calc-branch

tags/2.0.2

tags/release-2.0.1

tags/release-2.0.2

tags/release-2.0.2rc1

trunk

It’s important to note how this tool namespaces your remote references differently.

When you’re cloning a normal Git repository, you get all the branches on that remote

189

PRO GIT SCOTT CHACON

server available locally as something like origin/[branch] - namespaced by the name

of the remote. However, git svn assumes that you won’t have multiple remotes and

saves all its references to points on the remote server with no namespacing. You can

use the Git plumbing command show-ref to look at all your full reference names:

$ git show-ref

1cbd4904d9982f386d87f88fce1c24ad7c0f0471 refs/heads/master

aee1ecc26318164f355a883f5d99cff0c852d3c4 refs/remotes/my-calc-branch

03d09b0e2aad427e34a6d50ff147128e76c0e0f5 refs/remotes/tags/2.0.2

50d02cc0adc9da4319eeba0900430ba219b9c376 refs/remotes/tags/release-2.0.1

4caaa711a50c77879a91b8b90380060f672745cb refs/remotes/tags/release-2.0.2

1c4cb508144c513ff1214c3488abe66dcb92916f refs/remotes/tags/release-2.0.2rc1

1cbd4904d9982f386d87f88fce1c24ad7c0f0471 refs/remotes/trunk

A normal Git repository looks more like this:

$ git show-ref

83e38c7a0af325a9722f2fdc56b10188806d83a1 refs/heads/master

3e15e38c198baac84223acfc6224bb8b99ff2281 refs/remotes/gitserver/master

0a30dd3b0c795b80212ae723640d4e5d48cabdff refs/remotes/origin/master

25812380387fdd55f916652be4881c6f11600d6f refs/remotes/origin/testing

You have two remote servers: one named gitserver with a master branch; and

another named origin with two branches, master and testing .

Notice how in the example of remote references imported from git svn , tags are

added as remote branches, not as real Git tags. Your Subversion import looks like it

has a remote named tags with branches under it.

8.1.4 Committing Back to Subversion

Now that you have a working repository, you can do some work on the project and

push your commits back upstream, using Git effectively as a SVN client. If you edit

one of the files and commit it, you have a commit that exists in Git locally that doesn’t

exist on the Subversion server:

$ git commit -am ’Adding git-svn instructions to the README’

[master 97031e5] Adding git-svn instructions to the README

1 files changed, 1 insertions(+), 1 deletions(-)

Next, you need to push your change upstream. Notice how this changes the way

you work with Subversion — you can do several commits offline and then push them

all at once to the Subversion server. To push to a Subversion server, you run the git

svn dcommit command:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M README.txt

Committed r79

M README.txt

r79 = 938b1a547c2cc92033b74d32030e86468294a5c8 (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

190

CHAPTER 8 GIT AND OTHER SYSTEMS

This takes all the commits you’ve made on top of the Subversion server code, does

a Subversion commit for each, and then rewrites your local Git commit to include a

unique identifier. This is important because it means that all the SHA–1 checksums for

your commits change. Partly for this reason, working with Git-based remote versions

of your projects concurrently with a Subversion server isn’t a good idea. If you look at

the last commit, you can see the new git-svn-id that was added:

$ git log -1

commit 938b1a547c2cc92033b74d32030e86468294a5c8

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sat May 2 22:06:44 2009 +0000

Adding git-svn instructions to the README

git-svn-id: file:///tmp/test-svn/trunk@79 4c93b258-373f-11de-be05-5f7a86268029

Notice that the SHA checksum that originally started with 97031e5 when you com-

mitted now begins with 938b1a5 . If you want to push to both a Git server and a Sub-

version server, you have to push (dcommit) to the Subversion server first, because that

action changes your commit data.

8.1.5 Pulling in New Changes

If you’re working with other developers, then at some point one of you will push, and

then the other one will try to push a change that conflicts. That change will be rejected

until you merge in their work. In git svn , it looks like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

Merge conflict during commit: Your file or directory ’README.txt’ is probably \

out-of-date: resource out of date; try updating at /Users/schacon/libexec/git-\

core/git-svn line 482

To resolve this situation, you can run git svn rebase , which pulls down any changes

on the server that you don’t have yet and rebases any work you have on top of what is

on the server:

$ git svn rebase

M README.txt

r80 = ff829ab914e8775c7c025d741beb3d523ee30bc4 (trunk)

First, rewinding head to replay your work on top of it...

Applying: first user change

Now, all your work is on top of what is on the Subversion server, so you can suc-

cessfully dcommit :

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M README.txt

Committed r81

M README.txt

r81 = 456cbe6337abe49154db70106d1836bc1332deed (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

191

PRO GIT SCOTT CHACON

It’s important to remember that unlike Git, which requires you to merge upstream

work you don’t yet have locally before you can push, git svn makes you do that only

if the changes conflict. If someone else pushes a change to one file and then you push

a change to another file, your dcommit will work fine:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M configure.ac

Committed r84

M autogen.sh

r83 = 8aa54a74d452f82eee10076ab2584c1fc424853b (trunk)

M configure.ac

r84 = cdbac939211ccb18aa744e581e46563af5d962d0 (trunk)

W: d2f23b80f67aaaa1f6f5aaef48fce3263ac71a92 and refs/remotes/trunk differ, \

using rebase:

:100755 100755 efa5a59965fbbb5b2b0a12890f1b351bb5493c18 \

015e4c98c482f0fa71e4d5434338014530b37fa6 M autogen.sh

First, rewinding head to replay your work on top of it...

Nothing to do.

This is important to remember, because the outcome is a project state that didn’t

exist on either of your computers when you pushed. If the changes are incompatible but

don’t conflict, you may get issues that are difficult to diagnose. This is different than

using a Git server — in Git, you can fully test the state on your client system before

publishing it, whereas in SVN, you can’t ever be certain that the states immediately

before commit and after commit are identical.

You should also run this command to pull in changes from the Subversion server,

even if you’re not ready to commit yourself. You can run git svn fetch to grab the

new data, but git svn rebase does the fetch and then updates your local commits.

$ git svn rebase

M generate_descriptor_proto.sh

r82 = bd16df9173e424c6f52c337ab6efa7f7643282f1 (trunk)

First, rewinding head to replay your work on top of it...

Fast-forwarded master to refs/remotes/trunk.

Running git svn rebase every once in a while makes sure your code is always up

to date. You need to be sure your working directory is clean when you run this, though.

If you have local changes, you must either stash your work or temporarily commit it

before running git svn rebase — otherwise, the command will stop if it sees that the

rebase will result in a merge conflict.

8.1.6 Git Branching Issues

When you’ve become comfortable with a Git workflow, you’ll likely create topic branches,

do work on them, and then merge them in. If you’re pushing to a Subversion server

via git svn, you may want to rebase your work onto a single branch each time instead

of merging branches together. The reason to prefer rebasing is that Subversion has a

linear history and doesn’t deal with merges like Git does, so git svn follows only the

first parent when converting the snapshots into Subversion commits.

192

CHAPTER 8 GIT AND OTHER SYSTEMS

Suppose your history looks like the following: you created an experiment branch,

did two commits, and then merged them back into master . When you dcommit , you see

output like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M CHANGES.txt

Committed r85

M CHANGES.txt

r85 = 4bfebeec434d156c36f2bcd18f4e3d97dc3269a2 (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

COPYING.txt: locally modified

INSTALL.txt: locally modified

M COPYING.txt

M INSTALL.txt

Committed r86

M INSTALL.txt

M COPYING.txt

r86 = 2647f6b86ccfcaad4ec58c520e369ec81f7c283c (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

Running dcommit on a branch with merged history works fine, except that when

you look at your Git project history, it hasn’t rewritten either of the commits you made

on the experiment branch — instead, all those changes appear in the SVN version of

the single merge commit.

When someone else clones that work, all they see is the merge commit with all the

work squashed into it; they don’t see the commit data about where it came from or

when it was committed.

8.1.7 Subversion Branching

Branching in Subversion isn’t the same as branching in Git; if you can avoid using

it much, that’s probably best. However, you can create and commit to branches in

Subversion using git svn.

Creating a New SVN Branch

To create a new branch in Subversion, you run git svn branch [branchname] :

$ git svn branch opera

Copying file:///tmp/test-svn/trunk at r87 to file:///tmp/test-svn/branches/opera...

Found possible branch point: file:///tmp/test-svn/trunk => \

file:///tmp/test-svn/branches/opera, 87

Found branch parent: (opera) 1f6bfe471083cbca06ac8d4176f7ad4de0d62e5f

Following parent with do_switch

Successfully followed parent

r89 = 9b6fe0b90c5c9adf9165f700897518dbc54a7cbf (opera)

This does the equivalent of the svn copy trunk branches/opera command in Sub-

version and operates on the Subversion server. It’s important to note that it doesn’t

check you out into that branch; if you commit at this point, that commit will go to

trunk on the server, not opera .

193

PRO GIT SCOTT CHACON

8.1.8 Switching Active Branches

Git figures out what branch your dcommits go to by looking for the tip of any of your

Subversion branches in your history — you should have only one, and it should be the

last one with a git-svn-id in your current branch history.

If you want to work on more than one branch simultaneously, you can set up local

branches to dcommit to specific Subversion branches by starting them at the imported

Subversion commit for that branch. If you want an opera branch that you can work on

separately, you can run

$ git branch opera remotes/opera

Now, if you want to merge your opera branch into trunk (your master branch),

you can do so with a normal git merge . But you need to provide a descriptive commit

message (via -m), or the merge will say “Merge branch opera” instead of something

useful.

Remember that although you’re using git merge to do this operation, and the merge

likely will be much easier than it would be in Subversion (because Git will automati-

cally detect the appropriate merge base for you), this isn’t a normal Git merge commit.

You have to push this data back to a Subversion server that can’t handle a commit that

tracks more than one parent; so, after you push it up, it will look like a single commit

that squashed in all the work of another branch under a single commit. After you merge

one branch into another, you can’t easily go back and continue working on that branch,

as you normally can in Git. The dcommit command that you run erases any informa-

tion that says what branch was merged in, so subsequent merge-base calculations will

be wrong — the dcommit makes your git merge result look like you ran git merge

--squash . Unfortunately, there’s no good way to avoid this situation — Subversion

can’t store this information, so you’ll always be crippled by its limitations while you’re

using it as your server. To avoid issues, you should delete the local branch (in this case,

opera) after you merge it into trunk.

8.1.9 Subversion Commands

The git svn toolset provides a number of commands to help ease the transition to Git

by providing some functionality that’s similar to what you had in Subversion. Here are

a few commands that give you what Subversion used to.

SVN Style History

If you’re used to Subversion and want to see your history in SVN output style, you

can run git svn log to view your commit history in SVN formatting:

$ git svn log

--

r87 | schacon | 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009) | 2 lines

autogen change

--

r86 | schacon | 2009-05-02 16:00:21 -0700 (Sat, 02 May 2009) | 2 lines

Merge branch ’experiment’

194

CHAPTER 8 GIT AND OTHER SYSTEMS

--

r85 | schacon | 2009-05-02 16:00:09 -0700 (Sat, 02 May 2009) | 2 lines

updated the changelog

You should know two important things about git svn log . First, it works offline,

unlike the real svn log command, which asks the Subversion server for the data. Sec-

ond, it only shows you commits that have been committed up to the Subversion server.

Local Git commits that you haven’t dcommited don’t show up; neither do commits

that people have made to the Subversion server in the meantime. It’s more like the last

known state of the commits on the Subversion server.

SVN Annotation

Much as the git svn log command simulates the svn log command offline, you

can get the equivalent of svn annotate by running git svn blame [FILE] . The output

looks like this:

$ git svn blame README.txt

2 temporal Protocol Buffers - Google’s data interchange format

2 temporal Copyright 2008 Google Inc.

2 temporal http://code.google.com/apis/protocolbuffers/

2 temporal

22 temporal C++ Installation - Unix

22 temporal =======================

2 temporal

79 schacon Committing in git-svn.

78 schacon

2 temporal To build and install the C++ Protocol Buffer runtime and the Protocol

2 temporal Buffer compiler (protoc) execute the following:

2 temporal

Again, it doesn’t show commits that you did locally in Git or that have been pushed

to Subversion in the meantime.

SVN Server Information

You can also get the same sort of information that svn info gives you by running

git svn info :

$ git svn info

Path: .

URL: https://schacon-test.googlecode.com/svn/trunk

Repository Root: https://schacon-test.googlecode.com/svn

Repository UUID: 4c93b258-373f-11de-be05-5f7a86268029

Revision: 87

Node Kind: directory

Schedule: normal

Last Changed Author: schacon

Last Changed Rev: 87

Last Changed Date: 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009)

This is like blame and log in that it runs offline and is up to date only as of the last

time you communicated with the Subversion server.

Ignoring What Subversion Ignores

195

PRO GIT SCOTT CHACON

If you clone a Subversion repository that has svn:ignore properties set anywhere,

you’ll likely want to set corresponding .gitignore files so you don’t accidentally com-

mit files that you shouldn’t. git svn has two commands to help with this issue. The

first is git svn create-ignore , which automatically creates corresponding .gitignore

files for you so your next commit can include them.

The second command is git svn show-ignore , which prints to stdout the lines you

need to put in a .gitignore file so you can redirect the output into your project exclude

file:

$ git svn show-ignore > .git/info/exclude

That way, you don’t litter the project with .gitignore files. This is a good op-

tion if you’re the only Git user on a Subversion team, and your teammates don’t want

.gitignore files in the project.

8.1.10 Git-Svn Summary

The git svn tools are useful if you’re stuck with a Subversion server for now or are

otherwise in a development environment that necessitates running a Subversion server.

You should consider it crippled Git, however, or you’ll hit issues in translation that

may confuse you and your collaborators. To stay out of trouble, try to follow these

guidelines:

• Keep a linear Git history that doesn’t contain merge commits made by git merge .

Rebase any work you do outside of your mainline branch back onto it; don’t

merge it in.

• Don’t set up and collaborate on a separate Git server. Possibly have one to speed

up clones for new developers, but don’t push anything to it that doesn’t have a

git-svn-id entry. You may even want to add a pre-receive hook that checks

each commit message for a git-svn-id and rejects pushes that contain commits

without it.

If you follow those guidelines, working with a Subversion server can be more bearable.

However, if it’s possible to move to a real Git server, doing so can gain your team a lot

more.

8.2 Migrating to Git

If you have an existing codebase in another VCS but you’ve decided to start using

Git, you must migrate your project one way or another. This section goes over some

importers that are included with Git for common systems and then demonstrates how

to develop your own custom importer.

8.2.1 Importing

You’ll learn how to import data from two of the bigger professionally used SCM sys-

tems — Subversion and Perforce — both because they make up the majority of users

I hear of who are currently switching, and because high-quality tools for both systems

are distributed with Git.

196

CHAPTER 8 GIT AND OTHER SYSTEMS

8.2.2 Subversion

If you read the previous section about using git svn , you can easily use those instruc-

tions to git svn clone a repository; then, stop using the Subversion server, push to a

new Git server, and start using that. If you want the history, you can accomplish that as

quickly as you can pull the data out of the Subversion server (which may take a while).

However, the import isn’t perfect; and because it will take so long, you may as well

do it right. The first problem is the author information. In Subversion, each person

committing has a user on the system who is recorded in the commit information. The

examples in the previous section show schacon in some places, such as the blame output

and the git svn log . If you want to map this to better Git author data, you need a

mapping from the Subversion users to the Git authors. Create a file called users.txt

that has this mapping in a format like this:

schacon = Scott Chacon <schacon@geemail.com>

selse = Someo Nelse <selse@geemail.com>

To get a list of the author names that SVN uses, you can run this:

$ svn log --xml | grep author | sort -u | perl -pe ’s/.>(.?)<./$1 = /’

That gives you the log output in XML format— you can look for the authors, create

a unique list, and then strip out the XML. (Obviously this only works on a machine with

grep , sort , and perl installed.) Then, redirect that output into your users.txt file so you

can add the equivalent Git user data next to each entry.

You can provide this file to git svn to help it map the author data more accurately.

You can also tell git svn not to include the metadata that Subversion normally imports,

by passing --no-metadata to the clone or init command. This makes your import

command look like this:

$ git-svn clone http://my-project.googlecode.com/svn/ \

--authors-file=users.txt --no-metadata -s my_project

Now you should have a nicer Subversion import in your my project directory. In-

stead of commits that look like this

commit 37efa680e8473b615de980fa935944215428a35a

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

git-svn-id: https://my-project.googlecode.com/svn/trunk@94 4c93b258-373f-11de-

be05-5f7a86268029

they look like this:

commit 03a8785f44c8ea5cdb0e8834b7c8e6c469be2ff2

Author: Scott Chacon <schacon@geemail.com>

Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

197

PRO GIT SCOTT CHACON

Not only does the Author field look a lot better, but the git-svn-id is no longer

there, either.

You need to do a bit of post-import cleanup. For one thing, you should clean up

the weird references that git svn set up. First you’ll move the tags so they’re actual

tags rather than strange remote branches, and then you’ll move the rest of the branches

so they’re local.

To move the tags to be proper Git tags, run

$ cp -Rf .git/refs/remotes/tags/* .git/refs/tags/

$ rm -Rf .git/refs/remotes/tags

This takes the references that were remote branches that started with tag/ and

makes them real (lightweight) tags.

Next, move the rest of the references under refs/remotes to be local branches:

$ cp -Rf .git/refs/remotes/* .git/refs/heads/

$ rm -Rf .git/refs/remotes

Now all the old branches are real Git branches and all the old tags are real Git tags.

The last thing to do is add your new Git server as a remote and push to it. Because you

want all your branches and tags to go up, you can run this:

$ git push origin --all

All your branches and tags should be on your new Git server in a nice, clean import.

8.2.3 Perforce

The next system you’ll look at importing from is Perforce. A Perforce importer is

also distributed with Git, but only in the contrib section of the source code — it isn’t

available by default like git svn . To run it, you must get the Git source code, which

you can download from git.kernel.org:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/contrib/fast-import

In this fast-import directory, you should find an executable Python script named

git-p4 . You must have Python and the p4 tool installed on your machine for this import

to work. For example, you’ll import the Jam project from the Perforce Public Depot.

To set up your client, you must export the P4PORT environment variable to point to

the Perforce depot:

$ export P4PORT=public.perforce.com:1666

Run the git-p4 clone command to import the Jam project from the Perforce server,

supplying the depot and project path and the path into which you want to import the

project:

$ git-p4 clone //public/jam/src@all /opt/p4import

Importing from //public/jam/src@all into /opt/p4import

Reinitialized existing Git repository in /opt/p4import/.git/

Import destination: refs/remotes/p4/master

Importing revision 4409 (100%)

198

CHAPTER 8 GIT AND OTHER SYSTEMS

If you go to the /opt/p4import directory and run git log , you can see your im-

ported work:

$ git log -2

commit 1fd4ec126171790efd2db83548b85b1bbbc07dc2

Author: Perforce staff <support@perforce.com>

Date: Thu Aug 19 10:18:45 2004 -0800

Drop ’rc3’ moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into

the main part of the document. Built new tar/zip balls.

Only 16 months later.

[git-p4: depot-paths = "//public/jam/src/": change = 4409]

commit ca8870db541a23ed867f38847eda65bf4363371d

Author: Richard Geiger <rmg@perforce.com>

Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

[git-p4: depot-paths = "//public/jam/src/": change = 3108]

You can see the git-p4 identifier in each commit. It’s fine to keep that identifier

there, in case you need to reference the Perforce change number later. However, if

you’d like to remove the identifier, now is the time to do so — before you start doing

work on the new repository. You can use git filter-branch to remove the identifier

strings en masse:

$ git filter-branch --msg-filter ’

sed -e "/̂ \[git-p4:/d"

’

Rewrite 1fd4ec126171790efd2db83548b85b1bbbc07dc2 (123/123)

Ref ’refs/heads/master’ was rewritten

If you run git log , you can see that all the SHA–1 checksums for the commits

have changed, but the git-p4 strings are no longer in the commit messages:

$ git log -2

commit 10a16d60cffca14d454a15c6164378f4082bc5b0

Author: Perforce staff <support@perforce.com>

Date: Thu Aug 19 10:18:45 2004 -0800

Drop ’rc3’ moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into

the main part of the document. Built new tar/zip balls.

Only 16 months later.

commit 2b6c6db311dd76c34c66ec1c40a49405e6b527b2

Author: Richard Geiger <rmg@perforce.com>

Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

Your import is ready to push up to your new Git server.

199

PRO GIT SCOTT CHACON

8.2.4 A Custom Importer

If your system isn’t Subversion or Perforce, you should look for an importer online

— quality importers are available for CVS, Clear Case, Visual Source Safe, even a

directory of archives. If none of these tools works for you, you have a rarer tool, or you

otherwise need a more custom importing process, you should use git fast-import .

This command reads simple instructions from stdin to write specific Git data. It’s

much easier to create Git objects this way than to run the raw Git commands or try to

write the raw objects (see Chapter 9 for more information). This way, you can write an

import script that reads the necessary information out of the system you’re importing

from and prints straightforward instructions to stdout. You can then run this program

and pipe its output through git fast-import .

To quickly demonstrate, you’ll write a simple importer. Suppose you work in

current, you back up your project by occasionally copying the directory into a time-

stamped back YYYY MM DD backup directory, and you want to import this into Git. Your

directory structure looks like this:

$ ls /opt/import_from

back_2009_01_02

back_2009_01_04

back_2009_01_14

back_2009_02_03

current

In order to import a Git directory, you need to review how Git stores its data. As

you may remember, Git is fundamentally a linked list of commit objects that point to a

snapshot of content. All you have to do is tell fast-import what the content snapshots

are, what commit data points to them, and the order they go in. Your strategy will be

to go through the snapshots one at a time and create commits with the contents of each

directory, linking each commit back to the previous one.

As you did in the “An Example Git Enforced Policy” section of Chapter 7, we’ll

write this in Ruby, because it’s what I generally work with and it tends to be easy to

read. You can write this example pretty easily in anything you’re familiar with — it

just needs to print the appropriate information to stdout.

To begin, you’ll change into the target directory and identify every subdirectory,

each of which is a snapshot that you want to import as a commit. You’ll change into

each subdirectory and print the commands necessary to export it. Your basic main loop

looks like this:

last_mark = nil

loop through the directories

Dir.chdir(ARGV[0]) do

Dir.glob("*").each do |dir|

next if File.file?(dir)

move into the target directory

Dir.chdir(dir) do

last_mark = print_export(dir, last_mark)

end

end

end

200

CHAPTER 8 GIT AND OTHER SYSTEMS

You run print export inside each directory, which takes the manifest and mark of

the previous snapshot and returns the manifest and mark of this one; that way, you

can link them properly. “Mark” is the fast-import term for an identifier you give to a

commit; as you create commits, you give each one a mark that you can use to link to it

from other commits. So, the first thing to do in your print export method is generate

a mark from the directory name:

mark = convert_dir_to_mark(dir)

You’ll do this by creating an array of directories and using the index value as the

mark, because a mark must be an integer. Your method looks like this:

$marks = []

def convert_dir_to_mark(dir)

if !$marks.include?(dir)

$marks << dir

end

($marks.index(dir) + 1).to_s

end

Now that you have an integer representation of your commit, you need a date for

the commit metadata. Because the date is expressed in the name of the directory, you’ll

parse it out. The next line in your print export file is

date = convert_dir_to_date(dir)

where convert dir to date is defined as

def convert_dir_to_date(dir)

if dir == ’current’

return Time.now().to_i

else

dir = dir.gsub(’back_’, ’’)

(year, month, day) = dir.split(’_’)

return Time.local(year, month, day).to_i

end

end

That returns an integer value for the date of each directory. The last piece of meta-

information you need for each commit is the committer data, which you hardcode in a

global variable:

$author = ’Scott Chacon <schacon@example.com>’

Now you’re ready to begin printing out the commit data for your importer. The

initial information states that you’re defining a commit object and what branch it’s

on, followed by the mark you’ve generated, the committer information and commit

message, and then the previous commit, if any. The code looks like this:

print the import information

puts ’commit refs/heads/master’

puts ’mark :’ + mark

puts "committer #{$author} #{date} -0700"

export_data(’imported from ’ + dir)

puts ’from :’ + last_mark if last_mark

201

PRO GIT SCOTT CHACON

You hardcode the time zone (–0700) because doing so is easy. If you’re importing

from another system, you must specify the time zone as an offset. The commit message

must be expressed in a special format:

data (size)\n(contents)

The format consists of the word data, the size of the data to be read, a newline, and

finally the data. Because you need to use the same format to specify the file contents

later, you create a helper method, export data :

def export_data(string)

print "data #{string.size}\n#{string}"

end

All that’s left is to specify the file contents for each snapshot. This is easy, because

you have each one in a directory — you can print out the deleteall command fol-

lowed by the contents of each file in the directory. Git will then record each snapshot

appropriately:

puts ’deleteall’

Dir.glob("**/*").each do |file|

next if !File.file?(file)

inline_data(file)

end

Note: Because many systems think of their revisions as changes from one commit

to another, fast-import can also take commands with each commit to specify which

files have been added, removed, or modified and what the new contents are. You could

calculate the differences between snapshots and provide only this data, but doing so is

more complex — you may as well give Git all the data and let it figure it out. If this

is better suited to your data, check the fast-import man page for details about how to

provide your data in this manner.

The format for listing the new file contents or specifying a modified file with the

new contents is as follows:

M 644 inline path/to/file

data (size)

(file contents)

Here, 644 is the mode (if you have executable files, you need to detect and specify

755 instead), and inline says you’ll list the contents immediately after this line. Your

inline data method looks like this:

def inline_data(file, code = ’M’, mode = ’644’)

content = File.read(file)

puts "#{code} #{mode} inline #{file}"

export_data(content)

end

You reuse the export data method you defined earlier, because it’s the same as the

way you specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the

next iteration:

202

CHAPTER 8 GIT AND OTHER SYSTEMS

return mark

That’s it. If you run this script, you’ll get content that looks something like this:

$ ruby import.rb /opt/import_from

commit refs/heads/master

mark :1

committer Scott Chacon <schacon@geemail.com> 1230883200 -0700

data 29

imported from back_2009_01_02deleteall

M 644 inline file.rb

data 12

version two

commit refs/heads/master

mark :2

committer Scott Chacon <schacon@geemail.com> 1231056000 -0700

data 29

imported from back_2009_01_04from :1

deleteall

M 644 inline file.rb

data 14

version three

M 644 inline new.rb

data 16

new version one

(...)

To run the importer, pipe this output through git fast-import while in the Git

directory you want to import into. You can create a new directory and then run git

init in it for a starting point, and then run your script:

$ git init

Initialized empty Git repository in /opt/import_to/.git/

$ ruby import.rb /opt/import_from | git fast-import

git-fast-import statistics:

Alloc’d objects: 5000

Total objects: 18 (1 duplicates)

blobs : 7 (1 duplicates 0 deltas)

trees : 6 (0 duplicates 1 deltas)

commits: 5 (0 duplicates 0 deltas)

tags : 0 (0 duplicates 0 deltas)

Total branches: 1 (1 loads)

marks: 1024 (5 unique)

atoms: 3

Memory total: 2255 KiB

pools: 2098 KiB

objects: 156 KiB

pack_report: getpagesize() = 4096

pack_report: core.packedGitWindowSize = 33554432

pack_report: core.packedGitLimit = 268435456

pack_report: pack_used_ctr = 9

203

PRO GIT SCOTT CHACON

pack_report: pack_mmap_calls = 5

pack_report: pack_open_windows = 1 / 1

pack_report: pack_mapped = 1356 / 1356

As you can see, when it completes successfully, it gives you a bunch of statistics

about what it accomplished. In this case, you imported 18 objects total for 5 commits

into 1 branch. Now, you can run git log to see your new history:

$ git log -2

commit 10bfe7d22ce15ee25b60a824c8982157ca593d41

Author: Scott Chacon <schacon@example.com>

Date: Sun May 3 12:57:39 2009 -0700

imported from current

commit 7e519590de754d079dd73b44d695a42c9d2df452

Author: Scott Chacon <schacon@example.com>

Date: Tue Feb 3 01:00:00 2009 -0700

imported from back_2009_02_03

There you go — a nice, clean Git repository. It’s important to note that nothing is

checked out — you don’t have any files in your working directory at first. To get them,

you must reset your branch to where master is now:

$ ls

$ git reset --hard master

HEAD is now at 10bfe7d imported from current

$ ls

file.rb lib

You can do a lot more with the fast-import tool — handle different modes, binary

data, multiple branches and merging, tags, progress indicators, and more. A number of

examples of more complex scenarios are available in the contrib/fast-import direc-

tory of the Git source code; one of the better ones is the git-p4 script I just covered.

8.3 Summary

You should feel comfortable using Git with Subversion or importing nearly any existing

repository into a new Git one without losing data. The next chapter will cover the raw

internals of Git so you can craft every single byte, if need be.

204

Chapter 9

Git Internals

You may have skipped to this chapter from a previous chapter, or you may have gotten

here after reading the rest of the book — in either case, this is where you’ll go over the

inner workings and implementation of Git. I found that learning this information was

fundamentally important to understanding how useful and powerful Git is, but others

have argued to me that it can be confusing and unnecessarily complex for beginners.

Thus, I’ve made this discussion the last chapter in the book so you could read it early

or later in your learning process. I leave it up to you to decide.

Now that you’re here, let’s get started. First, if it isn’t yet clear, Git is fundamentally

a content-addressable filesystem with a VCS user interface written on top of it. You’ll

learn more about what this means in a bit.

In the early days of Git (mostly pre 1.5), the user interface was much more complex

because it emphasized this filesystem rather than a polished VCS. In the last few years,

the UI has been refined until it’s as clean and easy to use as any system out there; but

often, the stereotype lingers about the early Git UI that was complex and difficult to

learn.

The content-addressable filesystem layer is amazingly cool, so I’ll cover that first

in this chapter; then, you’ll learn about the transport mechanisms and the repository

maintenance tasks that you may eventually have to deal with.

9.1 Plumbing and Porcelain

This book covers how to use Git with 30 or so verbs such as checkout , branch , remote ,

and so on. But because Git was initially a toolkit for a VCS rather than a full user-

friendly VCS, it has a bunch of verbs that do low-level work and were designed to be

chained together UNIX style or called from scripts. These commands are generally

referred to as “plumbing” commands, and the more user-friendly commands are called

“porcelain” commands.

The book’s first eight chapters deal almost exclusively with porcelain commands.

But in this chapter, you’ll be dealing mostly with the lower-level plumbing commands,

because they give you access to the inner workings of Git and help demonstrate how

and why Git does what it does. These commands aren’t meant to be used manually on

the command line, but rather to be used as building blocks for new tools and custom

scripts.

205

PRO GIT SCOTT CHACON

When you run git init in a new or existing directory, Git creates the .git direc-

tory, which is where almost everything that Git stores and manipulates is located. If

you want to back up or clone your repository, copying this single directory elsewhere

gives you nearly everything you need. This entire chapter basically deals with the stuff

in this directory. Here’s what it looks like:

$ ls

HEAD

branches/

config

description

hooks/

index

info/

objects/

refs/

You may see some other files in there, but this is a fresh git init repository —

it’s what you see by default. The branches directory isn’t used by newer Git versions,

and the description file is only used by the GitWeb program, so don’t worry about

those. The config file contains your project-specific configuration options, and the

info directory keeps a global exclude file for ignored patterns that you don’t want to

track in a .gitignore file. The hooks directory contains your client- or server-side hook

scripts, which are discussed in detail in Chapter 6.

This leaves four important entries: the HEAD and index files and the objects and

refs directories. These are the core parts of Git. The objects directory stores all the

content for your database, the refs directory stores pointers into commit objects in that

data (branches), the HEAD file points to the branch you currently have checked out, and

the index file is where Git stores your staging area information. You’ll now look at

each of these sections in detail to see how Git operates.

9.2 Git Objects

Git is a content-addressable filesystem. Great. What does that mean? It means that

at the core of Git is a simple key-value data store. You can insert any kind of content

into it, and it will give you back a key that you can use to retrieve the content again

at any time. To demonstrate, you can use the plumbing command hash-object , which

takes some data, stores it in your .git directory, and gives you back the key the data is

stored as. First, you initialize a new Git repository and verify that there is nothing in

the objects directory:

$ mkdir test

$ cd test

$ git init

Initialized empty Git repository in /tmp/test/.git/

$ find .git/objects

.git/objects

.git/objects/info

.git/objects/pack

$ find .git/objects -type f

$

206

CHAPTER 9 GIT INTERNALS

Git has initialized the objects directory and created pack and info subdirectories

in it, but there are no regular files. Now, store some text in your Git database:

$ echo ’test content’ | git hash-object -w --stdin

d670460b4b4aece5915caf5c68d12f560a9fe3e4

The -w tells hash-object to store the object; otherwise, the command simply tells

you what the key would be. --stdin tells the command to read the content from stdin;

if you don’t specify this, hash-object expects the path to a file. The output from the

command is a 40-character checksum hash. This is the SHA–1 hash — a checksum of

the content you’re storing plus a header, which you’ll learn about in a bit. Now you can

see how Git has stored your data:

$ find .git/objects -type f

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

You can see a file in the objects directory. This is how Git stores the content

initially — as a single file per piece of content, named with the SHA–1 checksum of

the content and its header. The subdirectory is named with the first 2 characters of the

SHA, and the filename is the remaining 38 characters.

You can pull the content back out of Git with the cat-file command. This com-

mand is sort of a Swiss army knife for inspecting Git objects. Passing -p to it instructs

the cat-file command to figure out the type of content and display it nicely for you:

$ git cat-file -p d670460b4b4aece5915caf5c68d12f560a9fe3e4

test content

Now, you can add content to Git and pull it back out again. You can also do this

with content in files. For example, you can do some simple version control on a file.

First, create a new file and save its contents in your database:

$ echo ’version 1’ > test.txt

$ git hash-object -w test.txt

83baae61804e65cc73a7201a7252750c76066a30

Then, write some new content to the file, and save it again:

$ echo ’version 2’ > test.txt

$ git hash-object -w test.txt

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

Your database contains the two new versions of the file as well as the first content

you stored there:

$ find .git/objects -type f

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

Now you can revert the file back to the first version

$ git cat-file -p 83baae61804e65cc73a7201a7252750c76066a30 > test.txt

$ cat test.txt

version 1

207

PRO GIT SCOTT CHACON

or the second version:

$ git cat-file -p 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a > test.txt

$ cat test.txt

version 2

But remembering the SHA–1 key for each version of your file isn’t practical; plus,

you aren’t storing the filename in your system — just the content. This object type is

called a blob. You can have Git tell you the object type of any object in Git, given its

SHA–1 key, with cat-file -t :

$ git cat-file -t 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

blob

9.2.1 Tree Objects

The next type you’ll look at is the tree object, which solves the problem of storing the

filename and also allows you to store a group of files together. Git stores content in

a manner similar to a UNIX filesystem, but a bit simplified. All the content is stored

as tree and blob objects, with trees corresponding to UNIX directory entries and blobs

corresponding more or less to inodes or file contents. A single tree object contains one

or more tree entries, each of which contains an SHA–1 pointer to a blob or subtree

with its associated mode, type, and filename. For example, the most recent tree in the

simplegit project may look something like this:

$ git cat-file -p master̂ {tree}

100644 blob a906cb2a4a904a152e80877d4088654daad0c859 README

100644 blob 8f94139338f9404f26296befa88755fc2598c289 Rakefile

040000 tree 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0 lib

The master̂ tree syntax specifies the tree object that is pointed to by the last com-

mit on your master branch. Notice that the lib subdirectory isn’t a blob but a pointer

to another tree:

$ git cat-file -p 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0

100644 blob 47c6340d6459e05787f644c2447d2595f5d3a54b simplegit.rb

Conceptually, the data that Git is storing is something like Figure 9.1.

You can create your own tree. Git normally creates a tree by taking the state of

your staging area or index and writing a tree object from it. So, to create a tree ob-

ject, you first have to set up an index by staging some files. To create an index with a

single entry — the first version of your text.txt file — you can use the plumbing com-

mand update-index . You use this command to artificially add the earlier version of the

test.txt file to a new staging area. You must pass it the --add option because the file

doesn’t yet exist in your staging area (you don’t even have a staging area set up yet)

and --cacheinfo because the file you’re adding isn’t in your directory but is in your

database. Then, you specify the mode, SHA–1, and filename:

$ git update-index --add --cacheinfo 100644 \

83baae61804e65cc73a7201a7252750c76066a30 test.txt

208

CHAPTER 9 GIT INTERNALS

Figure 9.1: Simple version of the Git data model

In this case, you’re specifying a mode of 100644 , which means it’s a normal file.

Other options are 100755 , which means it’s an executable file; and 120000 , which spec-

ifies a symbolic link. The mode is taken from normal UNIX modes but is much less

flexible — these three modes are the only ones that are valid for files (blobs) in Git

(although other modes are used for directories and submodules).

Now, you can use the write-tree command to write the staging area out to a tree

object. No -w option is needed— calling write-tree automatically creates a tree object

from the state of the index if that tree doesn’t yet exist:

$ git write-tree

d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git cat-file -p d8329fc1cc938780ffdd9f94e0d364e0ea74f579

100644 blob 83baae61804e65cc73a7201a7252750c76066a30 test.txt

You can also verify that this is a tree object:

$ git cat-file -t d8329fc1cc938780ffdd9f94e0d364e0ea74f579

tree

You’ll now create a new tree with the second version of test.txt and a new file as

well:

$ echo ’new file’ > new.txt

$ git update-index test.txt

$ git update-index --add new.txt

Your staging area now has the new version of test.txt as well as the new file new.txt.

Write out that tree (recording the state of the staging area or index to a tree object) and

see what it looks like:

$ git write-tree

0155eb4229851634a0f03eb265b69f5a2d56f341

$ git cat-file -p 0155eb4229851634a0f03eb265b69f5a2d56f341

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

209

PRO GIT SCOTT CHACON

Notice that this tree has both file entries and also that the test.txt SHA is the “version

2” SHA from earlier (1f7a7a). Just for fun, you’ll add the first tree as a subdirectory

into this one. You can read trees into your staging area by calling read-tree . In this

case, you can read an existing tree into your staging area as a subtree by using the

--prefix option to read-tree :

$ git read-tree --prefix=bak d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git write-tree

3c4e9cd789d88d8d89c1073707c3585e41b0e614

$ git cat-file -p 3c4e9cd789d88d8d89c1073707c3585e41b0e614

040000 tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579 bak

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

If you created a working directory from the new tree you just wrote, you would get

the two files in the top level of the working directory and a subdirectory named bak that

contained the first version of the test.txt file. You can think of the data that Git contains

for these structures as being like Figure 9.2.

Figure 9.2: The content structure of your current Git data

9.2.2 Commit Objects

You have three trees that specify the different snapshots of your project that you want to

track, but the earlier problem remains: you must remember all three SHA–1 values in

order to recall the snapshots. You also don’t have any information about who saved the

snapshots, when they were saved, or why they were saved. This is the basic information

that the commit object stores for you.

To create a commit object, you call commit-tree and specify a single tree SHA–1

and which commit objects, if any, directly preceded it. Start with the first tree you

wrote:

$ echo ’first commit’ | git commit-tree d8329f

fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Now you can look at your new commit object with cat-file :

210

CHAPTER 9 GIT INTERNALS

$ git cat-file -p fdf4fc3

tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579

author Scott Chacon <schacon@gmail.com> 1243040974 -0700

committer Scott Chacon <schacon@gmail.com> 1243040974 -0700

first commit

The format for a commit object is simple: it specifies the top-level tree for the

snapshot of the project at that point; the author/committer information pulled from

your user.name and user.email configuration settings, with the current timestamp; a

blank line, and then the commit message.

Next, you’ll write the other two commit objects, each referencing the commit that

came directly before it:

$ echo ’second commit’ | git commit-tree 0155eb -p fdf4fc3

cac0cab538b970a37ea1e769cbbde608743bc96d

$ echo ’third commit’ | git commit-tree 3c4e9c -p cac0cab

1a410efbd13591db07496601ebc7a059dd55cfe9

Each of the three commit objects points to one of the three snapshot trees you

created. Oddly enough, you have a real Git history now that you can view with the git

log command, if you run it on the last commit SHA–1:

$ git log --stat 1a410e

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:15:24 2009 -0700

third commit

bak/test.txt | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

commit cac0cab538b970a37ea1e769cbbde608743bc96d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:14:29 2009 -0700

second commit

new.txt | 1 +

test.txt | 2 +-

2 files changed, 2 insertions(+), 1 deletions(-)

commit fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:09:34 2009 -0700

first commit

test.txt | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

211

PRO GIT SCOTT CHACON

Amazing. You’ve just done the low-level operations to build up a Git history with-

out using any of the front ends. This is essentially what Git does when you run the

git add and git commit commands — it stores blobs for the files that have changed,

updates the index, writes out trees, and writes commit objects that reference the top-

level trees and the commits that came immediately before them. These three main Git

objects — the blob, the tree, and the commit — are initially stored as separate files in

your .git/objects directory. Here are all the objects in the example directory now,

commented with what they store:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # ’test content’

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

If you follow all the internal pointers, you get an object graph something like Figure

9.3.

Figure 9.3: All the objects in your Git directory

9.2.3 Object Storage

I mentioned earlier that a header is stored with the content. Let’s take a minute to look

at how Git stores its objects. You’ll see how to store a blob object — in this case, the

string “what is up, doc?” — interactively in the Ruby scripting language. You can start

up interactive Ruby mode with the irb command:

$ irb

>> content = "what is up, doc?"

=> "what is up, doc?"

212

CHAPTER 9 GIT INTERNALS

Git constructs a header that starts with the type of the object, in this case a blob.

Then, it adds a space followed by the size of the content and finally a null byte:

>> header = "blob #{content.length}\0"

=> "blob 16\000"

Git concatenates the header and the original content and then calculates the SHA–

1 checksum of that new content. You can calculate the SHA–1 value of a string in

Ruby by including the SHA1 digest library with the require command and then calling

Digest::SHA1.hexdigest() with the string:

>> store = header + content

=> "blob 16\000what is up, doc?"

>> require ’digest/sha1’

=> true

>> sha1 = Digest::SHA1.hexdigest(store)

=> "bd9dbf5aae1a3862dd1526723246b20206e5fc37"

Git compresses the new content with zlib, which you can do in Ruby with the zlib

library. First, you need to require the library and then run Zlib::Deflate.deflate()

on the content:

>> require ’zlib’

=> true

>> zlib_content = Zlib::Deflate.deflate(store)

=> "x\234K\312\311OR04c(\317H,Q\310,V(-\320QH\311O\266\a\000_\034\a\235"

Finally, you’ll write your zlib-deflated content to an object on disk. You’ll deter-

mine the path of the object you want to write out (the first two characters of the SHA–1

value being the subdirectory name, and the last 38 characters being the filename within

that directory). In Ruby, you can use the FileUtils.mkdir p() function to create the

subdirectory if it doesn’t exist. Then, open the file with File.open() and write out the

previously zlib-compressed content to the file with a write() call on the resulting file

handle:

>> path = ’.git/objects/’ + sha1[0,2] + ’/’ + sha1[2,38]

=> ".git/objects/bd/9dbf5aae1a3862dd1526723246b20206e5fc37"

>> require ’fileutils’

=> true

>> FileUtils.mkdir_p(File.dirname(path))

=> ".git/objects/bd"

>> File.open(path, ’w’) { |f| f.write zlib_content }

=> 32

That’s it — you’ve created a valid Git blob object. All Git objects are stored the

same way, just with different types — instead of the string blob, the header will be-

gin with commit or tree. Also, although the blob content can be nearly anything, the

commit and tree content are very specifically formatted.

213

PRO GIT SCOTT CHACON

9.3 Git References

You can run something like git log 1a410e to look through your whole history, but

you still have to remember that 1a410e is the last commit in order to walk that history

to find all those objects. You need a file in which you can store the SHA–1 value under

a simple name so you can use that pointer rather than the raw SHA–1 value.

In Git, these are called “references” or “refs”; you can find the files that contain the

SHA–1 values in the .git/refs directory. In the current project, this directory contains

no files, but it does contain a simple structure:

$ find .git/refs

.git/refs

.git/refs/heads

.git/refs/tags

$ find .git/refs -type f

$

To create a new reference that will help you remember where your latest commit

is, you can technically do something as simple as this:

$ echo "1a410efbd13591db07496601ebc7a059dd55cfe9" > .git/refs/heads/master

Now, you can use the head reference you just created instead of the SHA–1 value

in your Git commands:

$ git log --pretty=oneline master

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You aren’t encouraged to directly edit the reference files. Git provides a safer com-

mand to do this if you want to update a reference called update-ref :

$ git update-ref refs/heads/master 1a410efbd13591db07496601ebc7a059dd55cfe9

That’s basically what a branch in Git is: a simple pointer or reference to the head

of a line of work. To create a branch back at the second commit, you can do this:

$ git update-ref refs/heads/test cac0ca

Your branch will contain only work from that commit down:

$ git log --pretty=oneline test

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, your Git database conceptually looks something like Figure 9.4.

When you run commands like git branch (branchname) , Git basically runs that

update-ref command to add the SHA–1 of the last commit of the branch you’re on

into whatever new reference you want to create.

214

CHAPTER 9 GIT INTERNALS

Figure 9.4: Git directory objects with branch head references included

9.3.1 The HEAD

The question now is, when you run git branch (branchname) , how does Git know the

SHA–1 of the last commit? The answer is the HEAD file. The HEAD file is a symbolic

reference to the branch you’re currently on. By symbolic reference, I mean that unlike

a normal reference, it doesn’t generally contain a SHA–1 value but rather a pointer to

another reference. If you look at the file, you’ll normally see something like this:

$ cat .git/HEAD

ref: refs/heads/master

If you run git checkout test , Git updates the file to look like this:

$ cat .git/HEAD

ref: refs/heads/test

When you run git commit , it creates the commit object, specifying the parent of

that commit object to be whatever SHA–1 value the reference in HEAD points to.

You can also manually edit this file, but again a safer command exists to do so:

symbolic-ref . You can read the value of your HEAD via this command:

$ git symbolic-ref HEAD

refs/heads/master

You can also set the value of HEAD:

$ git symbolic-ref HEAD refs/heads/test

$ cat .git/HEAD

ref: refs/heads/test

You can’t set a symbolic reference outside of the refs style:

$ git symbolic-ref HEAD test

fatal: Refusing to point HEAD outside of refs/

215

PRO GIT SCOTT CHACON

9.3.2 Tags

You’ve just gone over Git’s three main object types, but there is a fourth. The tag

object is very much like a commit object — it contains a tagger, a date, a message, and

a pointer. The main difference is that a tag object points to a commit rather than a tree.

It’s like a branch reference, but it never moves — it always points to the same commit

but gives it a friendlier name.

As discussed in Chapter 2, there are two types of tags: annotated and lightweight.

You can make a lightweight tag by running something like this:

$ git update-ref refs/tags/v1.0 cac0cab538b970a37ea1e769cbbde608743bc96d

That is all a lightweight tag is — a branch that never moves. An annotated tag is

more complex, however. If you create an annotated tag, Git creates a tag object and

then writes a reference to point to it rather than directly to the commit. You can see this

by creating an annotated tag (-a specifies that it’s an annotated tag):

$ git tag -a v1.1 1a410efbd13591db07496601ebc7a059dd55cfe9 m ’test tag’

Here’s the object SHA–1 value it created:

$ cat .git/refs/tags/v1.1

9585191f37f7b0fb9444f35a9bf50de191beadc2

Now, run the cat-file command on that SHA–1 value:

$ git cat-file -p 9585191f37f7b0fb9444f35a9bf50de191beadc2

object 1a410efbd13591db07496601ebc7a059dd55cfe9

type commit

tag v1.1

tagger Scott Chacon <schacon@gmail.com> Sat May 23 16:48:58 2009 -0700

test tag

Notice that the object entry points to the commit SHA–1 value that you tagged.

Also notice that it doesn’t need to point to a commit; you can tag any Git object. In the

Git source code, for example, the maintainer has added their GPG public key as a blob

object and then tagged it. You can view the public key by running

$ git cat-file blob junio-gpg-pub

in the Git source code. The Linux kernel also has a non-commit-pointing tag object

— the first tag created points to the initial tree of the import of the source code.

9.3.3 Remotes

The third type of reference that you’ll see is a remote reference. If you add a remote

and push to it, Git stores the value you last pushed to that remote for each branch in

the refs/remotes directory. For instance, you can add a remote called origin and push

your master branch to it:

216

CHAPTER 9 GIT INTERNALS

$ git remote add origin git@github.com:schacon/simplegit-progit.git

$ git push origin master

Counting objects: 11, done.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (7/7), 716 bytes, done.

Total 7 (delta 2), reused 4 (delta 1)

To git@github.com:schacon/simplegit-progit.git

a11bef0..ca82a6d master -> master

Then, you can see what the master branch on the origin remote was the last time

you communicated with the server, by checking the refs/remotes/origin/master file:

$ cat .git/refs/remotes/origin/master

ca82a6dff817ec66f44342007202690a93763949

Remote references differ from branches (refs/heads references) mainly in that they

can’t be checked out. Git moves them around as bookmarks to the last known state of

where those branches were on those servers.

9.4 Packfiles

Let’s go back to the objects database for your test Git repository. At this point, you

have 11 objects — 4 blobs, 3 trees, 3 commits, and 1 tag:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/95/85191f37f7b0fb9444f35a9bf50de191beadc2 # tag

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # ’test content’

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

Git compresses the contents of these files with zlib, and you’re not storing much,

so all these files collectively take up only 925 bytes. You’ll add some larger content to

the repository to demonstrate an interesting feature of Git. Add the repo.rb file from

the Grit library you worked with earlier — this is about a 12K source code file:

$ curl http://github.com/mojombo/grit/raw/master/lib/grit/repo.rb > repo.rb

$ git add repo.rb

$ git commit -m ’added repo.rb’

[master 484a592] added repo.rb

3 files changed, 459 insertions(+), 2 deletions(-)

delete mode 100644 bak/test.txt

create mode 100644 repo.rb

rewrite test.txt (100%)

If you look at the resulting tree, you can see the SHA–1 value your repo.rb file got

for the blob object:

217

PRO GIT SCOTT CHACON

$ git cat-file -p master̂ {tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

You can then use git cat-file to see how big that object is:

$ git cat-file -s 9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e

12898

Now, modify that file a little, and see what happens:

$ echo ’# testing’ >> repo.rb

$ git commit -am ’modified repo a bit’

[master ab1afef] modified repo a bit

1 files changed, 1 insertions(+), 0 deletions(-)

Check the tree created by that commit, and you see something interesting:

$ git cat-file -p master̂ {tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 05408d195263d853f09dca71d55116663690c27c repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

The blob is now a different blob, which means that although you added only a

single line to the end of a 400-line file, Git stored that new content as a completely new

object:

$ git cat-file -s 05408d195263d853f09dca71d55116663690c27c

12908

You have two nearly identical 12K objects on your disk. Wouldn’t it be nice if Git

could store one of them in full but then the second object only as the delta between it

and the first?

It turns out that it can. The initial format in which Git saves objects on disk is called

a loose object format. However, occasionally Git packs up several of these objects into

a single binary file called a packfile in order to save space and be more efficient. Git

does this if you have too many loose objects around, if you run the git gc command

manually, or if you push to a remote server. To see what happens, you can manually

ask Git to pack up the objects by calling the git gc command:

$ git gc

Counting objects: 17, done.

Delta compression using 2 threads.

Compressing objects: 100% (13/13), done.

Writing objects: 100% (17/17), done.

Total 17 (delta 1), reused 10 (delta 0)

If you look in your objects directory, you’ll find that most of your objects are gone,

and a new pair of files has appeared:

218

CHAPTER 9 GIT INTERNALS

$ find .git/objects -type f

.git/objects/71/08f7ecb345ee9d0084193f147cdad4d2998293

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

.git/objects/info/packs

.git/objects/pack/pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.idx

.git/objects/pack/pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.pack

The objects that remain are the blobs that aren’t pointed to by any commit — in this

case, the “what is up, doc?” example and the “test content” example blobs you created

earlier. Because you never added them to any commits, they’re considered dangling

and aren’t packed up in your new packfile.

The other files are your new packfile and an index. The packfile is a single file

containing the contents of all the objects that were removed from your filesystem. The

index is a file that contains offsets into that packfile so you can quickly seek to a specific

object. What is cool is that although the objects on disk before you ran the gc were

collectively about 12K in size, the new packfile is only 6K. You’ve halved your disk

usage by packing your objects.

How does Git do this? When Git packs objects, it looks for files that are named and

sized similarly, and stores just the deltas from one version of the file to the next. You

can look into the packfile and see what Git did to save space. The git verify-pack

plumbing command allows you to see what was packed up:

$ git verify-pack -v pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.idx

0155eb4229851634a0f03eb265b69f5a2d56f341 tree 71 76 5400

05408d195263d853f09dca71d55116663690c27c blob 12908 3478 874

09f01cea547666f58d6a8d809583841a7c6f0130 tree 106 107 5086

1a410efbd13591db07496601ebc7a059dd55cfe9 commit 225 151 322

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a blob 10 19 5381

3c4e9cd789d88d8d89c1073707c3585e41b0e614 tree 101 105 5211

484a59275031909e19aadb7c92262719cfcdf19a commit 226 153 169

83baae61804e65cc73a7201a7252750c76066a30 blob 10 19 5362

9585191f37f7b0fb9444f35a9bf50de191beadc2 tag 136 127 5476

9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e blob 7 18 5193 1

05408d195263d853f09dca71d55116663690c27c \

ab1afef80fac8e34258ff41fc1b867c702daa24b commit 232 157 12

cac0cab538b970a37ea1e769cbbde608743bc96d commit 226 154 473

d8329fc1cc938780ffdd9f94e0d364e0ea74f579 tree 36 46 5316

e3f094f522629ae358806b17daf78246c27c007b blob 1486 734 4352

f8f51d7d8a1760462eca26eebafde32087499533 tree 106 107 749

fa49b077972391ad58037050f2a75f74e3671e92 blob 9 18 856

fdf4fc3344e67ab068f836878b6c4951e3b15f3d commit 177 122 627

chain length = 1: 1 object

pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.pack: ok

Here, the 9bc1d blob, which if you remember was the first version of your repo.rb

file, is referencing the 05408 blob, which was the second version of the file. The third

column in the output is the size of the object in the pack, so you can see that 05408

takes up 12K of the file but that 9bc1d only takes up 7 bytes. What is also interesting

is that the second version of the file is the one that is stored intact, whereas the original

version is stored as a delta — this is because you’re most likely to need faster access to

the most recent version of the file.

219

PRO GIT SCOTT CHACON

The really nice thing about this is that it can be repacked at any time. Git will

occasionally repack your database automatically, always trying to save more space.

You can also manually repack at any time by running git gc by hand.

9.5 The Refspec

Throughout this book, you’ve used simple mappings from remote branches to local

references; but they can be more complex. Suppose you add a remote like this:

$ git remote add origin git@github.com:schacon/simplegit-progit.git

It adds a section to your .git/config file, specifying the name of the remote

(origin), the URL of the remote repository, and the refspec for fetching:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/*:refs/remotes/origin/*

The format of the refspec is an optional +, followed by <src>:<dst> , where <src>

is the pattern for references on the remote side and <dst> is where those references will

be written locally. The + tells Git to update the reference even if it isn’t a fast-forward.

In the default case that is automatically written by a git remote add command,

Git fetches all the references under refs/heads/ on the server and writes them to

refs/remotes/origin/ locally. So, if there is a master branch on the server, you can

access the log of that branch locally via

$ git log origin/master

$ git log remotes/origin/master

$ git log refs/remotes/origin/master

They’re all equivalent, because Git expands each of them to refs/remotes/origin/master .

If you want Git instead to pull down only the master branch each time, and not

every other branch on the remote server, you can change the fetch line to

fetch = +refs/heads/master:refs/remotes/origin/master

This is just the default refspec for git fetch for that remote. If you want to do

something one time, you can specify the refspec on the command line, too. To pull the

master branch on the remote down to origin/mymaster locally, you can run

$ git fetch origin master:refs/remotes/origin/mymaster

You can also specify multiple refspecs. On the command line, you can pull down

several branches like so:

$ git fetch origin master:refs/remotes/origin/mymaster \

topic:refs/remotes/origin/topic

From git@github.com:schacon/simplegit

! [rejected] master -> origin/mymaster (non fast forward)

* [new branch] topic -> origin/topic

220

CHAPTER 9 GIT INTERNALS

In this case, the master branch pull was rejected because it wasn’t a fast-forward

reference. You can override that by specifying the + in front of the refspec.

You can also specify multiple refspecs for fetching in your configuration file. If

you want to always fetch the master and experiment branches, add two lines:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/experiment:refs/remotes/origin/experiment

You can’t use partial globs in the pattern, so this would be invalid:

fetch = +refs/heads/qa*:refs/remotes/origin/qa*

However, you can use namespacing to accomplish something like that. If you have

a QA team that pushes a series of branches, and you want to get the master branch and

any of the QA team’s branches but nothing else, you can use a config section like this:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/qa/*:refs/remotes/origin/qa/*

If you have a complex workflow process that has a QA team pushing branches, de-

velopers pushing branches, and integration teams pushing and collaborating on remote

branches, you can namespace them easily this way.

9.5.1 Pushing Refspecs

It’s nice that you can fetch namespaced references that way, but how does the QA team

get their branches into a qa/ namespace in the first place? You accomplish that by using

refspecs to push.

If the QA team wants to push their master branch to qa/master on the remote

server, they can run

$ git push origin master:refs/heads/qa/master

If they want Git to do that automatically each time they run git push origin , they

can add a push value to their config file:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/*:refs/remotes/origin/*

push = refs/heads/master:refs/heads/qa/master

Again, this will cause a git push origin to push the local master branch to the

remote qa/master branch by default.

9.5.2 Deleting References

You can also use the refspec to delete references from the remote server by running

something like this:

$ git push origin :topic

Because the refspec is <src>:<dst> , by leaving off the <src> part, this basically

says to make the topic branch on the remote nothing, which deletes it.

221

PRO GIT SCOTT CHACON

9.6 Transfer Protocols

Git can transfer data between two repositories in two major ways: over HTTP and via

the so-called smart protocols used in the file:// , ssh:// , and git:// transports. This

section will quickly cover how these two main protocols operate.

9.6.1 The Dumb Protocol

Git transport over HTTP is often referred to as the dumb protocol because it requires

no Git-specific code on the server side during the transport process. The fetch process

is a series of GET requests, where the client can assume the layout of the Git repository

on the server. Let’s follow the http-fetch process for the simplegit library:

$ git clone http://github.com/schacon/simplegit-progit.git

The first thing this command does is pull down the info/refs file. This file is

written by the update-server-info command, which is why you need to enable that as

a post-receive hook in order for the HTTP transport to work properly:

=> GET info/refs

ca82a6dff817ec66f44342007202690a93763949 refs/heads/master

Now you have a list of the remote references and SHAs. Next, you look for what

the HEAD reference is so you know what to check out when you’re finished:

=> GET HEAD

ref: refs/heads/master

You need to check out the master branch when you’ve completed the process. At

this point, you’re ready to start the walking process. Because your starting point is the

ca82a6 commit object you saw in the info/refs file, you start by fetching that:

=> GET objects/ca/82a6dff817ec66f44342007202690a93763949

(179 bytes of binary data)

You get an object back — that object is in loose format on the server, and you

fetched it over a static HTTP GET request. You can zlib-uncompress it, strip off the

header, and look at the commit content:

$ git cat-file -p ca82a6dff817ec66f44342007202690a93763949

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the verison number

Next, you have two more objects to retrieve — cfda3b , which is the tree of content

that the commit we just retrieved points to; and 085bb3 , which is the parent commit:

=> GET objects/08/5bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

(179 bytes of data)

222

CHAPTER 9 GIT INTERNALS

That gives you your next commit object. Grab the tree object:

=> GET objects/cf/da3bf379e4f8dba8717dee55aab78aef7f4daf

(404 - Not Found)

Oops — it looks like that tree object isn’t in loose format on the server, so you get

a 404 response back. There are a couple of reasons for this — the object could be in

an alternate repository, or it could be in a packfile in this repository. Git checks for any

listed alternates first:

=> GET objects/info/http-alternates

(empty file)

If this comes back with a list of alternate URLs, Git checks for loose files and

packfiles there — this is a nice mechanism for projects that are forks of one another

to share objects on disk. However, because no alternates are listed in this case, your

object must be in a packfile. To see what packfiles are available on this server, you need

to get the objects/info/packs file, which contains a listing of them (also generated by

update-server-info):

=> GET objects/info/packs

P pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

There is only one packfile on the server, so your object is obviously in there, but

you’ll check the index file to make sure. This is also useful if you have multiple pack-

files on the server, so you can see which packfile contains the object you need:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.idx

(4k of binary data)

Now that you have the packfile index, you can see if your object is in it — because

the index lists the SHAs of the objects contained in the packfile and the offsets to those

objects. Your object is there, so go ahead and get the whole packfile:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

(13k of binary data)

You have your tree object, so you continue walking your commits. They’re all also

within the packfile you just downloaded, so you don’t have to do any more requests to

your server. Git checks out a working copy of the master branch that was pointed to

by the HEAD reference you downloaded at the beginning.

The entire output of this process looks like this:

$ git clone http://github.com/schacon/simplegit-progit.git

Initialized empty Git repository in /private/tmp/simplegit-progit/.git/

got ca82a6dff817ec66f44342007202690a93763949

walk ca82a6dff817ec66f44342007202690a93763949

got 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Getting alternates list for http://github.com/schacon/simplegit-progit.git

Getting pack list for http://github.com/schacon/simplegit-progit.git

Getting index for pack 816a9b2334da9953e530f27bcac22082a9f5b835

Getting pack 816a9b2334da9953e530f27bcac22082a9f5b835

which contains cfda3bf379e4f8dba8717dee55aab78aef7f4daf

walk 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

walk a11bef06a3f659402fe7563abf99ad00de2209e6

223

PRO GIT SCOTT CHACON

9.6.2 The Smart Protocol

The HTTP method is simple but a bit inefficient. Using smart protocols is a more

common method of transferring data. These protocols have a process on the remote

end that is intelligent about Git — it can read local data and figure out what the client

has or needs and generate custom data for it. There are two sets of processes for

transferring data: a pair for uploading data and a pair for downloading data.

Uploading Data

To upload data to a remote process, Git uses the send-pack and receive-pack pro-

cesses. The send-pack process runs on the client and connects to a receive-pack pro-

cess on the remote side.

For example, say you run git push origin master in your project, and origin is

defined as a URL that uses the SSH protocol. Git fires up the send-pack process, which

initiates a connection over SSH to your server. It tries to run a command on the remote

server via an SSH call that looks something like this:

$ ssh -x git@github.com "git-receive-pack ’schacon/simplegit-progit.git’"

005bca82a6dff817ec66f4437202690a93763949 refs/heads/master report-status delete-refs

003e085bb3bcb608e1e84b2432f8ecbe6306e7e7 refs/heads/topic

0000

The git-receive-pack command immediately responds with one line for each ref-

erence it currently has — in this case, just the master branch and its SHA. The first line

also has a list of the server’s capabilities (here, report-status and delete-refs).

Each line starts with a 4-byte hex value specifying how long the rest of the line is.

Your first line starts with 005b, which is 91 in hex, meaning that 91 bytes remain on

that line. The next line starts with 003e, which is 62, so you read the remaining 62

bytes. The next line is 0000, meaning the server is done with its references listing.

Now that it knows the server’s state, your send-pack process determines what com-

mits it has that the server doesn’t. For each reference that this push will update, the

send-pack process tells the receive-pack process that information. For instance, if

you’re updating the master branch and adding an experiment branch, the send-pack

response may look something like this:

0085ca82a6dff817ec66f44342007202690a93763949 15027957951b64cf874c3557a0f3547bd83b3ff6 refs/heads/master

006700 cdfdb42577e2506715f8cfeacdbabc092bf63e8d refs/heads/experiment

0000

The SHA–1 value of all ’0’s means that nothing was there before — because you’re

adding the experiment reference. If you were deleting a reference, you would see the

opposite: all ’0’s on the right side.

Git sends a line for each reference you’re updating with the old SHA, the new SHA,

and the reference that is being updated. The first line also has the client’s capabilities.

Next, the client uploads a packfile of all the objects the server doesn’t have yet. Finally,

the server responds with a success (or failure) indication:

000Aunpack ok

Downloading Data

When you download data, the fetch-pack and upload-pack processes are involved.

The client initiates a fetch-pack process that connects to an upload-pack process on

the remote side to negotiate what data will be transferred down.

224

CHAPTER 9 GIT INTERNALS

There are different ways to initiate the upload-pack process on the remote reposi-

tory. You can run via SSH in the same manner as the receive-pack process. You can

also initiate the process via the Git daemon, which listens on a server on port 9418

by default. The fetch-pack process sends data that looks like this to the daemon after

connecting:

003fgit-upload-pack schacon/simplegit-progit.git\0host=myserver.com\0

It starts with the 4 bytes specifying how much data is following, then the command

to run followed by a null byte, and then the server’s hostname followed by a final null

byte. The Git daemon checks that the command can be run and that the repository

exists and has public permissions. If everything is cool, it fires up the upload-pack

process and hands off the request to it.

If you’re doing the fetch over SSH, fetch-pack instead runs something like this:

$ ssh -x git@github.com "git-upload-pack ’schacon/simplegit-progit.git’"

In either case, after fetch-pack connects, upload-pack sends back something like

this:

0088ca82a6dff817ec66f44342007202690a93763949 HEAD\0multi_ack thin-pack \

side-band side-band-64k ofs-delta shallow no-progress include-tag

003fca82a6dff817ec66f44342007202690a93763949 refs/heads/master

003e085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 refs/heads/topic

0000

This is very similar to what receive-pack responds with, but the capabilities are

different. In addition, it sends back the HEAD reference so the client knows what to

check out if this is a clone.

At this point, the fetch-pack process looks at what objects it has and responds with

the objects that it needs by sending “want” and then the SHA it wants. It sends all the

objects it already has with “have” and then the SHA. At the end of this list, it writes

“done” to initiate the upload-pack process to begin sending the packfile of the data it

needs:

0054want ca82a6dff817ec66f44342007202690a93763949 ofs-delta

0032have 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

0000

0009done

That is a very basic case of the transfer protocols. In more complex cases, the

client supports multi ack or side-band capabilities; but this example shows you the

basic back and forth used by the smart protocol processes.

9.7 Maintenance and Data Recovery

Occasionally, you may have to do some cleanup — make a repository more compact,

clean up an imported repository, or recover lost work. This section will cover some of

these scenarios.

225

PRO GIT SCOTT CHACON

9.7.1 Maintenance

Occasionally, Git automatically runs a command called “auto gc”. Most of the time,

this command does nothing. However, if there are too many loose objects (objects not

in a packfile) or too many packfiles, Git launches a full-fledged git gc command. The

gc stands for garbage collect, and the command does a number of things: it gathers up

all the loose objects and places them in packfiles, it consolidates packfiles into one big

packfile, and it removes objects that aren’t reachable from any commit and are a few

months old.

You can run auto gc manually as follows:

$ git gc --auto

Again, this generally does nothing. You must have around 7,000 loose objects or

more than 50 packfiles for Git to fire up a real gc command. You can modify these

limits with the gc.auto and gc.autopacklimit config settings, respectively.

The other thing gc will do is pack up your references into a single file. Suppose

your repository contains the following branches and tags:

$ find .git/refs -type f

.git/refs/heads/experiment

.git/refs/heads/master

.git/refs/tags/v1.0

.git/refs/tags/v1.1

If you run git gc , you’ll no longer have these files in the refs directory. Git will

move them for the sake of efficiency into a file named .git/packed-refs that looks

like this:

$ cat .git/packed-refs

pack-refs with: peeled

cac0cab538b970a37ea1e769cbbde608743bc96d refs/heads/experiment

ab1afef80fac8e34258ff41fc1b867c702daa24b refs/heads/master

cac0cab538b970a37ea1e769cbbde608743bc96d refs/tags/v1.0

9585191f37f7b0fb9444f35a9bf50de191beadc2 refs/tags/v1.1

1̂a410efbd13591db07496601ebc7a059dd55cfe9

If you update a reference, Git doesn’t edit this file but instead writes a new file to

refs/heads . To get the appropriate SHA for a given reference, Git checks for that refer-

ence in the refs directory and then checks the packed-refs file as a fallback. However,

if you can’t find a reference in the refs directory, it’s probably in your packed-refs

file.

Notice the last line of the file, which begins with a .̂ This means the tag directly

above is an annotated tag and that line is the commit that the annotated tag points to.

9.7.2 Data Recovery

At some point in your Git journey, you may accidentally lose a commit. Generally, this

happens because you force-delete a branch that had work on it, and it turns out you

wanted the branch after all; or you hard-reset a branch, thus abandoning commits that

you wanted something from. Assuming this happens, how can you get your commits

back?

226

CHAPTER 9 GIT INTERNALS

Here’s an example that hard-resets the master branch in your test repository to

an older commit and then recovers the lost commits. First, let’s review where your

repository is at this point:

$ git log --pretty=oneline

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, move the master branch back to the middle commit:

$ git reset --hard 1a410efbd13591db07496601ebc7a059dd55cfe9

HEAD is now at 1a410ef third commit

$ git log --pretty=oneline

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You’ve effectively lost the top two commits — you have no branch from which

those commits are reachable. You need to find the latest commit SHA and then add

a branch that points to it. The trick is finding that latest commit SHA — it’s not like

you’ve memorized it, right?

Often, the quickest way is to use a tool called git reflog . As you’re working,

Git silently records what your HEAD is every time you change it. Each time you

commit or change branches, the reflog is updated. The reflog is also updated by the git

update-ref command, which is another reason to use it instead of just writing the SHA

value to your ref files, as we covered in the “Git References” section of this chapter

earlier. You can see where you’ve been at any time by running git reflog :

$ git reflog

1a410ef HEAD@{0}: 1a410efbd13591db07496601ebc7a059dd55cfe9: updating HEAD

ab1afef HEAD@{1}: ab1afef80fac8e34258ff41fc1b867c702daa24b: updating HEAD

Here we can see the two commits that we have had checked out, however there is

not much information here. To see the same information in a much more useful way,

we can run git log -g , which will give you a normal log output for your reflog.

$ git log -g

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Reflog: HEAD@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:22:37 2009 -0700

third commit

commit ab1afef80fac8e34258ff41fc1b867c702daa24b

Reflog: HEAD@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

227

PRO GIT SCOTT CHACON

Date: Fri May 22 18:15:24 2009 -0700

modified repo a bit

It looks like the bottom commit is the one you lost, so you can recover it by

creating a new branch at that commit. For example, you can start a branch named

recover-branch at that commit (ab1afef):

$ git branch recover-branch ab1afef

$ git log --pretty=oneline recover-branch

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Cool — now you have a branch named recover-branch that is where your master

branch used to be, making the first two commits reachable again. Next, suppose your

loss was for some reason not in the reflog — you can simulate that by removing

recover-branch and deleting the reflog. Now the first two commits aren’t reachable

by anything:

$ git branch D recover-branch

$ rm -Rf .git/logs/

Because the reflog data is kept in the .git/logs/ directory, you effectively have no

reflog. How can you recover that commit at this point? One way is to use the git fsck

utility, which checks your database for integrity. If you run it with the --full option,

it shows you all objects that aren’t pointed to by another object:

$ git fsck --full

dangling blob d670460b4b4aece5915caf5c68d12f560a9fe3e4

dangling commit ab1afef80fac8e34258ff41fc1b867c702daa24b

dangling tree aea790b9a58f6cf6f2804eeac9f0abbe9631e4c9

dangling blob 7108f7ecb345ee9d0084193f147cdad4d2998293

In this case, you can see your missing commit after the dangling commit. You can

recover it the same way, by adding a branch that points to that SHA.

9.7.3 Removing Objects

There are a lot of great things about Git, but one feature that can cause issues is the fact

that a git clone downloads the entire history of the project, including every version

of every file. This is fine if the whole thing is source code, because Git is highly

optimized to compress that data efficiently. However, if someone at any point in the

history of your project added a single huge file, every clone for all time will be forced

to download that large file, even if it was removed from the project in the very next

commit. Because it’s reachable from the history, it will always be there.

This can be a huge problem when you’re converting Subversion or Perforce repos-

itories into Git. Because you don’t download the whole history in those systems, this

type of addition carries few consequences. If you did an import from another system

228

CHAPTER 9 GIT INTERNALS

or otherwise find that your repository is much larger than it should be, here is how you

can find and remove large objects.

Be warned: this technique is destructive to your commit history. It rewrites every

commit object downstream from the earliest tree you have to modify to remove a large

file reference. If you do this immediately after an import, before anyone has started to

base work on the commit, you’re fine — otherwise, you have to notify all contributors

that they must rebase their work onto your new commits.

To demonstrate, you’ll add a large file into your test repository, remove it in the

next commit, find it, and remove it permanently from the repository. First, add a large

object to your history:

$ curl http://kernel.org/pub/software/scm/git/git-1.6.3.1.tar.bz2 > git.tbz2

$ git add git.tbz2

$ git commit -am ’added git tarball’

[master 6df7640] added git tarball

1 files changed, 0 insertions(+), 0 deletions(-)

create mode 100644 git.tbz2

Oops — you didn’t want to add a huge tarball to your project. Better get rid of it:

$ git rm git.tbz2

rm ’git.tbz2’

$ git commit -m ’oops - removed large tarball’

[master da3f30d] oops - removed large tarball

1 files changed, 0 insertions(+), 0 deletions(-)

delete mode 100644 git.tbz2

Now, gc your database and see how much space you’re using:

$ git gc

Counting objects: 21, done.

Delta compression using 2 threads.

Compressing objects: 100% (16/16), done.

Writing objects: 100% (21/21), done.

Total 21 (delta 3), reused 15 (delta 1)

You can run the count-objects command to quickly see how much space you’re

using:

$ git count-objects -v

count: 4

size: 16

in-pack: 21

packs: 1

size-pack: 2016

prune-packable: 0

garbage: 0

The size-pack entry is the size of your packfiles in kilobytes, so you’re using 2MB.

Before the last commit, you were using closer to 2K — clearly, removing the file from

the previous commit didn’t remove it from your history. Every time anyone clones this

repository, they will have to clone all 2MB just to get this tiny project, because you

accidentally added a big file. Let’s get rid of it.

229

PRO GIT SCOTT CHACON

First you have to find it. In this case, you already know what file it is. But suppose

you didn’t; how would you identify what file or files were taking up so much space?

If you run git gc , all the objects are in a packfile; you can identify the big objects by

running another plumbing command called git verify-pack and sorting on the third

field in the output, which is file size. You can also pipe it through the tail command

because you’re only interested in the last few largest files:

$ git verify-pack -v .git/objects/pack/pack-3f8c0...bb.idx | sort -k 3 -n | tail -3

e3f094f522629ae358806b17daf78246c27c007b blob 1486 734 4667

05408d195263d853f09dca71d55116663690c27c blob 12908 3478 1189

7a9eb2fba2b1811321254ac360970fc169ba2330 blob 2056716 2056872 5401

The big object is at the bottom: 2MB. To find out what file it is, you’ll use the

rev-list command, which you used briefly in Chapter 7. If you pass --objects to

rev-list , it lists all the commit SHAs and also the blob SHAs with the file paths

associated with them. You can use this to find your blob’s name:

$ git rev-list --objects --all | grep 7a9eb2fb

7a9eb2fba2b1811321254ac360970fc169ba2330 git.tbz2

Now, you need to remove this file from all trees in your past. You can easily see

what commits modified this file:

$ git log --pretty=oneline -- git.tbz2

da3f30d019005479c99eb4c3406225613985a1db oops - removed large tarball

6df764092f3e7c8f5f94cbe08ee5cf42e92a0289 added git tarball

You must rewrite all the commits downstream from 6df76 to fully remove this file

from your Git history. To do so, you use filter-branch , which you used in Chapter 6:

$ git filter-branch --index-filter \

’git rm --cached --ignore-unmatch git.tbz2’ -- 6df7640̂ ..

Rewrite 6df764092f3e7c8f5f94cbe08ee5cf42e92a0289 (1/2)rm ’git.tbz2’

Rewrite da3f30d019005479c99eb4c3406225613985a1db (2/2)

Ref ’refs/heads/master’ was rewritten

The --index-filter option is similar to the --tree-filter option used in Chapter

6, except that instead of passing a command that modifies files checked out on disk,

you’re modifying your staging area or index each time. Rather than remove a specific

file with something like rm file , you have to remove it with git rm --cached — you

must remove it from the index, not from disk. The reason to do it this way is speed

— because Git doesn’t have to check out each revision to disk before running your

filter, the process can be much, much faster. You can accomplish the same task with

--tree-filter if you want. The --ignore-unmatch option to git rm tells it not to error

out if the pattern you’re trying to remove isn’t there. Finally, you ask filter-branch to

rewrite your history only from the 6df7640 commit up, because you know that is where

this problem started. Otherwise, it will start from the beginning and will unnecessarily

take longer.

Your history no longer contains a reference to that file. However, your reflog and a

new set of refs that Git added when you did the filter-branch under .git/refs/original

still do, so you have to remove them and then repack the database. You need to get rid

of anything that has a pointer to those old commits before you repack:

230

CHAPTER 9 GIT INTERNALS

$ rm -Rf .git/refs/original

$ rm -Rf .git/logs/

$ git gc

Counting objects: 19, done.

Delta compression using 2 threads.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (19/19), done.

Total 19 (delta 3), reused 16 (delta 1)

Let’s see how much space you saved.

$ git count-objects -v

count: 8

size: 2040

in-pack: 19

packs: 1

size-pack: 7

prune-packable: 0

garbage: 0

The packed repository size is down to 7K, which is much better than 2MB. You can

see from the size value that the big object is still in your loose objects, so it’s not gone;

but it won’t be transferred on a push or subsequent clone, which is what is important.

If you really wanted to, you could remove the object completely by running git prune

--expire .

9.8 Summary

You should have a pretty good understanding of what Git does in the background and,

to some degree, how it’s implemented. This chapter has covered a number of plumbing

commands— commands that are lower level and simpler than the porcelain commands

you’ve learned about in the rest of the book. Understanding how Git works at a lower

level should make it easier to understand why it’s doing what it’s doing and also to

write your own tools and helping scripts to make your specific workflow work for you.

Git as a content-addressable filesystem is a very powerful tool that you can easily

use as more than just a VCS. I hope you can use your newfound knowledge of Git

internals to implement your own cool application of this technology and feel more

comfortable using Git in more advanced ways.

231

PRO GIT SCOTT CHACON

For example, to browse the history of the project, Git doesn’t need to go out to the

server to get the history and display it for you—it simply reads it directly from your

local database. This means you see the project history almost instantly. If you want to

see the changes introduced between the current version of a file and the file a month

ago, Git can look up the file a month ago and do a local difference calculation, instead

of having to either ask a remote server to do it or pull an older version of the file from

the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If

you get on an airplane or a train and want to do a little work, you can commit happily

until you get to a network connection to upload. If you go home and can’t get your

VPN client working properly, you can still work. In many other systems, doing so is

either impossible or painful. In Perforce, for example, you can’t do much when you

aren’t connected to the server; and in Subversion and CVS, you can edit files, but you

can’t commit changes to your database (because your database is offline). This may

not seem like a huge deal, but you may be surprised what a big difference it can make.

1.3.3 Git Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that

checksum. This means it’s impossible to change the contents of any file or directory

without Git knowing about it. This functionality is built into Git at the lowest levels and

is integral to its philosophy. You can’t lose information in transit or get file corruption

without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA–1 hash. This

is a 40-character string composed of hexadecimal characters (09 and af) and calculated

based on the contents of a file or directory structure in Git. A SHA–1 hash looks

something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so

much. In fact, Git stores everything not by file name but in the Git database addressable

by the hash value of its contents.

1.3.4 Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It

is very difficult to get the system to do anything that is not undoable or to make it

erase data in any way. As in any VCS, you can lose or mess up changes you haven’t

committed yet; but after you commit a snapshot into Git, it is very difficult to lose,

especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger

of severely screwing things up. For a more in-depth look at how Git stores its data and

how you can recover data that seems lost, see “Under the Covers” in Chapter 9.

1.3.5 The Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest

of your learning process to go smoothly. Git has three main states that your files can

6

CHAPTER 1 GETTING STARTED

reside in: committed, modified, and staged. Committed means that the data is safely

stored in your local database. Modified means that you have changed the file but have

not committed it to your database yet. Staged means that you have marked a modified

file in its current version to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the

working directory, and the staging area.

Figure 1.6: Working directory, staging area, and git directory

The Git directory is where Git stores the metadata and object database for your

project. This is the most important part of Git, and it is what is copied when you clone

a repository from another computer.

The working directory is a single checkout of one version of the project. These files

are pulled out of the compressed database in the Git directory and placed on disk for

you to use or modify.

The staging area is a simple file, generally contained in your Git directory, that

stores information about what will go into your next commit. It’s sometimes referred

to as the index, but it’s becoming standard to refer to it as the staging area.

The basic Git workflow goes something like this:

1. You modify files in your working directory.

2. You stage the files, adding snapshots of them to your staging area.

3. You do a commit, which takes the files as they are in the staging area and stores

that snapshot permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed

since it was checked out but has not been staged, it is modified. In Chapter 2, you’ll

learn more about these states and how you can either take advantage of them or skip

the staged part entirely.

7

PRO GIT SCOTT CHACON

1.4 Installing Git

Let’s get into using some Git. First things first—you have to install it. You can get it a

number of ways; the two major ones are to install it from source or to install an existing

package for your platform.

1.4.1 Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most

recent version. Each version of Git tends to include useful UI enhancements, so getting

the latest version is often the best route if you feel comfortable compiling software from

source. It is also the case that many Linux distributions contain very old packages; so

unless you’re on a very up-to-date distro or are using backports, installing from source

may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl,

zlib, openssl, expat, and libiconv. For example, if you’re on a system that has yum

(such as Fedora) or apt-get (such as a Debian based system), you can use one of these

commands to install all of the dependencies:

$ yum install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

$ apt-get install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

When you have all the necessary dependencies, you can go ahead and grab the

latest snapshot from the Git web site:

http://git-scm.com/download

Then, compile and install:

$ tar -zxf git-1.6.0.5.tar.gz

$ cd git-1.6.0.5

$ make prefix=/usr/local all

$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

1.4.2 Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through

the basic package-management tool that comes with your distribution. If you’re on

Fedora, you can use yum:

$ yum install git-core

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git-core

8

CHAPTER 1 GETTING STARTED

1.4.3 Installing on Mac

There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git

installer, which you can download from the Google Code page (see Figure 1.7):

http://code.google.com/p/git-osx-installer

Figure 1.7: Git OS X installer

The other major way is to install Git via MacPorts (http://www.macports.org). If

you have MacPorts installed, install Git via

$ sudo port install git-core +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in

case you ever have to use Git with Subversion repositories (see Chapter 8).

1.4.4 Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier

installation procedures. Simply download the installer exe file from the Google Code

page, and run it:

http://code.google.com/p/msysgit

After it’s installed, you have both a command-line version (including an SSH client

that will come in handy later) and the standard GUI.

9

PRO GIT SCOTT CHACON

1.5 First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize

your Git environment. You should have to do these things only once; they’ll stick

around between upgrades. You can also change them at any time by running through

the commands again.

Git comes with a tool called git config that lets you get and set configuration vari-

ables that control all aspects of how Git looks and operates. These variables can be

stored in three different places:

• /etc/gitconfig file: Contains values for every user on the system and all their

repositories. If you pass the option--system to git config , it reads and writes

from this file specifically.

• /.gitconfig file: Specific to your user. You can make Git read and write to this

file specifically by passing the --global option.

• config file in the git directory (that is, .git/config) of whatever repository you’re

currently using: Specific to that single repository. Each level overrides values in

the previous level, so values in .git/config trump those in /etc/gitconfig .

OnWindows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Documents

and Settings\$USER for most people). It also still looks for /etc/gitconfig, although it’s

relative to the MSys root, which is wherever you decide to install Git on your Windows

system when you run the installer.

1.5.1 Your Identity

The first thing you should do when you install Git is to set your user name and e-mail

address. This is important because every Git commit uses this information, and it’s

immutably baked into the commits you pass around:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then

Git will always use that information for anything you do on that system. If you want to

override this with a different name or e-mail address for specific projects, you can run

the command without the --global option when you’re in that project.

1.5.2 Your Editor

Now that your identity is set up, you can configure the default text editor that will be

used when Git needs you to type in a message. By default, Git uses your system’s

default editor, which is generally Vi or Vim. If you want to use a different text editor,

such as Emacs, you can do the following:

$ git config --global core.editor emacs

10

CHAPTER 1 GETTING STARTED

1.5.3 Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve

merge conflicts. Say you want to use vimdiff:

$ git config --global merge.tool vimdiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and

opendiff as valid merge tools. You can also set up a custom tool; see Chapter 7 for

more information about doing that.

1.5.4 Checking Your Settings

If you want to check your settings, you can use the git config --list command to

list all the settings Git can find at that point:

$ git config --list

user.name=Scott Chacon

user.email=schacon@gmail.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different

files (/etc/gitconfig and /.gitconfig , for example). In this case, Git uses the last

value for each unique key it sees.

You can also check what Git thinks a specific key’s value is by typing git config

key:

$ git config user.name

Scott Chacon

1.6 Getting Help

If you ever need help while using Git, there are three ways to get the manual page

(manpage) help for any of the Git commands:

$ git help <verb>

$ git <verb> --help

$ man git-<verb>

For example, you can get the manpage help for the config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If

the manpages and this book aren’t enough and you need in-person help, you can try the

#git or #github channel on the Freenode IRC server (irc.freenode.net). These channels

are regularly filled with hundreds of people who are all very knowledgeable about Git

and are often willing to help.

11

PRO GIT SCOTT CHACON

1.7 Summary

You should have a basic understanding of what Git is and how it’s different from the

CVCS you may have been using. You should also now have a working version of Git

on your system that’s set up with your personal identity. It’s now time to learn some

Git basics.

12

Chapter 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers

every basic command you need to do the vast majority of the things you’ll eventually

spend your time doing with Git. By the end of the chapter, you should be able to

configure and initialize a repository, begin and stop tracking files, and stage and commit

changes. We’ll also show you how to set up Git to ignore certain files and file patterns,

how to undo mistakes quickly and easily, how to browse the history of your project and

view changes between commits, and how to push and pull from remote repositories.

2.1 Getting a Git Repository

You can get a Git project using two main approaches. The first takes an existing project

or directory and imports it into Git. The second clones an existing Git repository from

another server.

2.1.1 Initializing a Repository in an Existing Directory

If you’re starting to track an existing project in Git, you need to go to the project’s

directory and type

$ git init

This creates a new subdirectory named .git that contains all of your necessary repos-

itory files — a Git repository skeleton. At this point, nothing in your project is tracked

yet. (See Chapter 9 for more information about exactly what files are contained in the

.git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty direc-

tory), you should probably begin tracking those files and do an initial commit. You can

accomplish that with a few git add commands that specify the files you want to track,

followed by a commit:

$ git add *.c

$ git add README

$ git commit m ’initial project version’

We’ll go over what these commands do in just a minute. At this point, you have a

Git repository with tracked files and an initial commit.

13

PRO GIT SCOTT CHACON

2.1.2 Cloning an Existing Repository

If you want to get a copy of an existing Git repository — for example, a project you’d

like to contribute to — the command you need is git clone. If you’re familiar with

other VCS systems such as Subversion, you’ll notice that the command is clone and

not checkout. This is an important distinction — Git receives a copy of nearly all data

that the server has. Every version of every file for the history of the project is pulled

down when you run git clone . In fact, if your server disk gets corrupted, you can

use any of the clones on any client to set the server back to the state it was in when it

was cloned (you may lose some server-side hooks and such, but all the versioned data

would be there—see Chapter 4 for more details).

You clone a repository with git clone [url] . For example, if you want to clone

the Ruby Git library called Grit, you can do so like this:

$ git clone git://github.com/schacon/grit.git

That creates a directory named “grit”, initializes a .git directory inside it, pulls

down all the data for that repository, and checks out a working copy of the latest ver-

sion. If you go into the new grit directory, you’ll see the project files in there, ready

to be worked on or used. If you want to clone the repository into a directory named

something other than grit, you can specify that as the next command-line option:

$ git clone git://github.com/schacon/grit.git mygrit

That command does the same thing as the previous one, but the target directory is

called mygrit.

Git has a number of different transfer protocols you can use. The previous example

uses the git:// protocol, but you may also see http(s):// or user@server:/path.git ,

which uses the SSH transfer protocol. Chapter 4 will introduce all of the available

options the server can set up to access your Git repository and the pros and cons of

each.

2.2 Recording Changes to the Repository

You have a bona fide Git repository and a checkout or working copy of the files for that

project. You need to make some changes and commit snapshots of those changes into

your repository each time the project reaches a state you want to record.

Remember that each file in your working directory can be in one of two states:

tracked or untracked. Tracked files are files that were in the last snapshot; they can

be unmodified, modified, or staged. Untracked files are everything else - any files in

your working directory that were not in your last snapshot and are not in your staging

area. When you first clone a repository, all of your files will be tracked and unmodified

because you just checked them out and haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since

your last commit. You stage these modified files and then commit all your staged

changes, and the cycle repeats. This lifecycle is illustrated in Figure 2.1.

14

CHAPTER 2 GIT BASICS

Figure 2.1: The lifecycle of the status of your files

2.2.1 Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status

command. If you run this command directly after a clone, you should see something

like this:

$ git status

On branch master

nothing to commit (working directory clean)

This means you have a clean working directory—in other words, there are no

tracked and modified files. Git also doesn’t see any untracked files, or they would

be listed here. Finally, the command tells you which branch you’re on. For now, that

is always master, which is the default; you won’t worry about it here. The next chapter

will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file

didn’t exist before, and you run git status , you see your untracked file like so:

$ vim README

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Un-

tracked files” heading in your status output. Untracked basically means that Git sees

a file you didn’t have in the previous snapshot (commit); Git won’t start including it

in your commit snapshots until you explicitly tell it to do so. It does this so you don’t

accidentally begin including generated binary files or other files that you did not mean

to include. You do want to start including README, so let’s start tracking the file.

15

PRO GIT SCOTT CHACON

2.2.2 Tracking New Files

In order to begin tracking a new file, you use the command git add . To begin tracking

the README file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now

tracked and staged:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

You can tell that it’s staged because it’s under the “Changes to be committed” head-

ing. If you commit at this point, the version of the file at the time you ran git add is

what will be in the historical snapshot. You may recall that when you ran git init earlier,

you then ran git add (files) — that was to begin tracking files in your directory. The git

add command takes a path name for either a file or a directory; if it’s a directory, the

command adds all the files in that directory recursively.

2.2.3 Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file

called benchmarks.rb and then run your status command again, you get something

that looks like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

The benchmarks.rb file appears under a section named “Changed but not updated”

— which means that a file that is tracked has been modified in the working directory

but not yet staged. To stage it, you run the git add command (it’s a multipurpose

command— you use it to begin tracking new files, to stage files, and to do other things

like marking merge-conflicted files as resolved). Let’s run git add now to stage the

benchmarks.rb file, and then run git status again:

16

CHAPTER 2 GIT BASICS

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Both files are staged and will go into your next commit. At this point, suppose you

remember one little change that you want to make in benchmarks.rb before you commit

it. You open it again and make that change, and you’re ready to commit. However, let’s

run git status one more time:

$ vim benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

What the heck? Now benchmarks.rb is listed as both staged and unstaged. How is

that possible? It turns out that Git stages a file exactly as it is when you run the git add

command. If you commit now, the version of benchmarks.rb as it was when you last

ran the git add command is how it will go into the commit, not the version of the file as

it looks in your working directory when you run git commit. If you modify a file after

you run git add , you have to run git add again to stage the latest version of the file:

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

2.2.4 Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add or even

show you as being untracked. These are generally automatically generated files such

as log files or files produced by your build system. In such cases, you can create a file

listing patterns to match them named .gitignore. Here is an example .gitignore file:

17

PRO GIT SCOTT CHACON

$ cat .gitignore

*.[oa]

*̃

The first line tells Git to ignore any files ending in .o or .a — object and archive

files that may be the product of building your code. The second line tells Git to ignore

all files that end with a tilde (), which is used by many text editors such as Emacs to

mark temporary files. You may also include a log, tmp, or pid directory; automatically

generated documentation; and so on. Setting up a .gitignore file before you get going is

generally a good idea so you don’t accidentally commit files that you really don’t want

in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

• Blank lines or lines starting with # are ignored.

• Standard glob patterns work.

• You can end patterns with a forward slash (/) to specify a directory.

• You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*)

matches zero or more characters; [abc] matches any character inside the brackets (in

this case a, b, or c); a question mark (?) matches a single character; and brackets en-

closing characters seperated by a hyphen([0-9]) matches any character between them

(in this case 0 through 9) .

Here is another example .gitignore file:

a comment this is ignored

*.a # no .a files

!lib.a # but do track lib.a, even though you’re ignoring .a files above

/TODO # only ignore the root TODO file, not subdir/TODO

build/ # ignore all files in the build/ directory

doc/*.txt # ignore doc/notes.txt, but not doc/server/arch.txt

2.2.5 Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you — you want to know exactly what

you changed, not just which files were changed— you can use the git diff command.

We’ll cover git diff in more detail later; but you’ll probably use it most often to

answer these two questions: What have you changed but not yet staged? And what

have you staged that you are about to commit? Although git status answers those

questions very generally, git diff shows you the exact lines added and removed —

the patch, as it were.

Let’s say you edit and stage the README file again and then edit the bench-

marks.rb file without staging it. If you run your status command, you once again

see something like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

18

CHAPTER 2 GIT BASICS

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

To see what you’ve changed but not yet staged, type git diff with no other argu-

ments:

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..da65585 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

That command compares what is in your working directory with what is in your

staging area. The result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you

can use git diff -cached . (In Git versions 1.6.1 and later, you can also use git diff

-staged , which may be easier to remember.) This command compares your staged

changes to your last commit:

$ git diff --cached

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README2

@@ -0,0 +1,5 @@

+grit

+ by Tom Preston-Werner, Chris Wanstrath

+ http://github.com/mojombo/grit

+

+Grit is a Ruby library for extracting information from a Git repository

It’s important to note that git diff by itself doesn’t show all changes made since

your last commit — only changes that are still unstaged. This can be confusing, be-

cause if you’ve staged all of your changes, git diff will give you no output.

19

PRO GIT SCOTT CHACON

For another example, if you stage the benchmarks.rb file and then edit it, you can

use git diff to see the changes in the file that are staged and the changes that are

unstaged:

$ git add benchmarks.rb

$ echo ’# test line’ >> benchmarks.rb

$ git status

On branch master

#

Changes to be committed:

#

modified: benchmarks.rb

#

Changed but not updated:

#

modified: benchmarks.rb

#

Now you can use git diff to see what is still unstaged

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index e445e28..86b2f7c 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -127,3 +127,4 @@ end

main()

##pp Grit::GitRuby.cache_client.stats

+# test line

and git diff --cached to see what youve staged so far:

$ git diff --cached

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..e445e28 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

2.2.6 Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes.

Remember that anything that is still unstaged — any files you have created or modified

that you haven’t run git add on since you edited them — won’t go into this commit.

20

CHAPTER 2 GIT BASICS

They will stay as modified files on your disk. In this case, the last time you ran git

status , you saw that everything was staged, so you’re ready to commit your changes.

The simplest way to commit is to type git commit :

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s $EDITOR envi-

ronment variable — usually vim or emacs, although you can configure it with whatever

you want using the git config --global core.editor command as you saw in Chap-

ter 1).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

˜

˜

˜

".git/COMMIT_EDITMSG" 10L, 283C

You can see that the default commit message contains the latest output of the git

status command commented out and one empty line on top. You can remove these

comments and type your commit message, or you can leave them there to help you

remember what you’re committing. (For an even more explicit reminder of what you’ve

modified, you can pass the -v option to git commit . Doing so also puts the diff of your

change in the editor so you can see exactly what you did.) When you exit the editor, Git

creates your commit with that commit message (with the comments and diff stripped

out).

Alternatively, you can type your commit message inline with the commit command

by specifying it after a -m flag, like this:

$ git commit -m "Story 182: Fix benchmarks for speed"

[master]: created 463dc4f: "Fix benchmarks for speed"

2 files changed, 3 insertions(+), 0 deletions(-)

create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given

you some output about itself: which branch you committed to (master), what SHA–1

checksum the commit has (463dc4f), how many files were changed, and statistics about

lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging area.

Anything you didn’t stage is still sitting there modified; you can do another commit to

add it to your history. Every time you perform a commit, you’re recording a snapshot

of your project that you can revert to or compare to later.

21

PRO GIT SCOTT CHACON

2.2.7 Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them,

the staging area is sometimes a bit more complex than you need in your workflow. If

you want to skip the staging area, Git provides a simple shortcut. Providing the -a

option to the git commit command makes Git automatically stage every file that is

already tracked before doing the commit, letting you skip the git add part:

$ git status

On branch master

#

Changed but not updated:

#

modified: benchmarks.rb

#

$ git commit -a -m ’added new benchmarks’

[master 83e38c7] added new benchmarks

1 files changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the benchmarks.rb file in this case

before you commit.

2.2.8 Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accu-

rately, remove it from your staging area) and then commit. The git rm command does

that and also removes the file from your working directory so you don’t see it as an

untracked file next time around.

If you simply remove the file from your working directory, it shows up under the

“Changed but not updated” (that is, unstaged) area of your git status output:

$ rm grit.gemspec

$ git status

On branch master

#

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

#

deleted: grit.gemspec

#

Then, if you run git rm , it stages the file’s removal:

$ git rm grit.gemspec

rm ’grit.gemspec’

$ git status

On branch master

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: grit.gemspec

#

22

CHAPTER 2 GIT BASICS

The next time you commit, the file will be gone and no longer tracked. If you

modified the file and added it to the index already, you must force the removal with the

-f option. This is a safety feature to prevent accidental removal of data that hasn’t yet

been recorded in a snapshot and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree

but remove it from your staging area. In other words, you may want to keep the file

on your hard drive but not have Git track it anymore. This is particularly useful if you

forgot to add something to your .gitignore file and accidentally added it, like a large

log file or a bunch of .a compiled files. To do this, use the --cached option:

$ git rm --cached readme.txt

You can pass files, directories, and file-glob patterns to the git rm command. That

means you can do things such as

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its

own filename expansion in addition to your shell’s filename expansion. This command

removes all files that have the .log extension in the log/ directory. Or, you can do

something like this:

$ git rm *̃

This command removes all files that end with .

2.2.9 Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you

rename a file in Git, no metadata is stored in Git that tells it you renamed the file.

However, Git is pretty smart about figuring that out after the fact — we’ll deal with

detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in

Git, you can run something like

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status,

you’ll see that Git considers it a renamed file:

$ git mv README.txt README

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README.txt -> README

#

However, this is equivalent to running something like this:

23

PRO GIT SCOTT CHACON

$ mv README.txt README

$ git rm README.txt

$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file

that way or with the mv command. The only real difference is that mv is one command

instead of three — it’s a convenience function. More important, you can use any tool

you like to rename a file, and address the add/rm later, before you commit.

2.3 Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an

existing commit history, you’ll probably want to look back to see what has happened.

The most basic and powerful tool to do this is the git log command.

These examples use a very simple project called simplegit that I often use for

demonstrations. To get the project, run

git clone git://github.com/schacon/simplegit-progit.git

When you run git log in this project, you should get output that looks something

like this:

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

By default, with no arguments, git log lists the commits made in that repository

in reverse chronological order. That is, the most recent commits show up first. As you

can see, this command lists each commit with its SHA–1 checksum, the author’s name

and e-mail, the date written, and the commit message.

A huge number and variety of options to the git log command are available to

show you exactly what you’re looking for. Here, we’ll show you some of the most-

used options.

One of the more helpful options is -p, which shows the diff introduced in each

commit. You can also use -2, which limits the output to only the last two entries:

24

CHAPTER 2 GIT BASICS

$ git log p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require ’rake/gempackagetask’

spec = Gem::Specification.new do |s|

- s.version = "0.1.0"

+ s.version = "0.1.1"

s.author = "Scott Chacon"

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

end

end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

\ No newline at end of file

This option displays the same information but with a diff directly following each

entry. This is very helpful for code review or to quickly browse what happened during

a series of commits that a collaborator has added. You can also use a series of summa-

rizing options with git log . For example, if you want to see some abbreviated stats

for each commit, you can use the --stat option:

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

Rakefile | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

25

PRO GIT SCOTT CHACON

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

lib/simplegit.rb | 5 -----

1 files changed, 0 insertions(+), 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

README | 6 ++++++

Rakefile | 23 +++++++++++++++++++++++

lib/simplegit.rb | 25 +++++++++++++++++++++++++

3 files changed, 54 insertions(+), 0 deletions(-)

As you can see, the --stat option prints below each commit entry a list of modified

files, how many files were changed, and how many lines in those files were added

and removed. It also puts a summary of the information at the end. Another really

useful option is --pretty . This option changes the log output to formats other than the

default. A few prebuilt options are available for you to use. The oneline option prints

each commit on a single line, which is useful if you’re looking at a lot of commits.

In addition, the short , full , and fuller options show the output in roughly the same

format but with less or more information, respectively:

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the verison number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test code

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

The most interesting option is format , which allows you to specify your own log

output format. This is especially useful when you’re generating output for machine

parsing — because you specify the format explicitly, you know it won’t change with

updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 11 months ago : changed the verison number

085bb3b - Scott Chacon, 11 months ago : removed unnecessary test code

a11bef0 - Scott Chacon, 11 months ago : first commit

Table 2.1 lists some of the more useful options that format takes.

You may be wondering what the difference is between author and committer. The

author is the person who originally wrote the work, whereas the committer is the person

who last applied the work. So, if you send in a patch to a project and one of the core

members applies the patch, both of you get credit — you as the author and the core

member as the committer. We’ll cover this distinction a bit more in Chapter 5.

26

CHAPTER 2 GIT BASICS

Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author e-mail

%ad Author date (format respects the date= option)

%ar Author date, relative

%cn Committer name

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

The oneline and format options are particularly useful with another log option

called --graph . This option adds a nice little ASCII graph showing your branch and

merge history, which we can see our copy of the Grit project repository:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch ’master’ of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch ’defunkt’ into local

Those are only some simple output-formatting options to git log — there are many

more. Table 2.2 lists the options we’ve covered so far and some other common format-

ting options that may be useful, along with how they change the output of the log

command.

2.3.1 Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting op-

tions — that is, options that let you show only a subset of commits. You’ve seen one

such option already — the -2 option, which show only the last two commits. In fact,

you can do -<n> , where n is any integer to show the last n commits. In reality, you’re

unlikely to use that often, because Git by default pipes all output through a pager so

you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful.

For example, this command gets the list of commits made in the last two weeks:

27

PRO GIT SCOTT CHACON

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the

–stat command.

--name-only Show the list of files modified after the commit informa-

tion.

--name-status Show the list of files affected with added/modified/deleted

information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum

instead of all 40.

--relative-date Display the date in a relative format (for example, “2 weeks

ago”) instead of using the full date format.

--graph Display an ASCII graph of the branch and merge history

beside the log output.

--pretty Show commits in an alternate format. Options include one-

line, short, full, fuller, and format (where you specify your

own format).

$ git log --since=2.weeks

This command works with lots of formats— you can specify a specific date (“2008–

01–15”) or a relative date such as “2 years 1 day 3 minutes ago”.

You can also filter the list to commits that match some search criteria. The --author

option allows you to filter on a specific author, and the --grep option lets you search

for keywords in the commit messages. (Note that if you want to specify both author

and grep options, you have to add --all-match or the command will match commits

with either.)

The last really useful option to pass to git log as a filter is a path. If you specify a

directory or file name, you can limit the log output to commits that introduced a change

to those files. This is always the last option and is generally preceded by double dashes

(--) to separate the paths from the options.

In Table 2.3 we’ll list these and a few other common options for your reference.

Option Description

-(n) Show only the last n commits

--since, --after Limit the commits to those made after the specified date.

--until, --before Limit the commits to those made before the specified date.

--author Only show commits in which the author entry matches the

specified string.

--committer Only show commits in which the committer entry matches

the specified string.

For example, if you want to see which commits modifying test files in the Git source

code history were committed by Junio Hamano and were not merges in the month of

October 2008, you can run something like this:

28

CHAPTER 2 GIT BASICS

$ git log --pretty="%h:%s" --author=gitster --since="2008-10-01" \

--before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attribute

acd3b9e - Enhance hold_lock_file_for_{update,append}()

f563754 - demonstrate breakage of detached checkout wi

d1a43f2 - reset --hard/read-tree --reset -u: remove un

51a94af - Fix "checkout --track -b newbranch" on detac

b0ad11e - pull: allow "git pull origin $something:$cur

Of the nearly 20,000 commits in the Git source code history, this command shows

the 6 that match those criteria.

2.3.2 Using a GUI to Visualize History

If you like to use a more graphical tool to visualize your commit history, you may

want to take a look at a Tcl/Tk program called gitk that is distributed with Git. Gitk

is basically a visual git log tool, and it accepts nearly all the filtering options that

git log does. If you type gitk on the command line in your project, you should see

something like Figure 2.2.

Figure 2.2: The gitk history visualizer

You can see the commit history in the top half of the window along with a nice an-

cestry graph. The diff viewer in the bottom half of the window shows you the changes

introduced at any commit you click.

29

PRO GIT SCOTT CHACON

2.4 Undoing Things

At any stage, you may want to undo something. Here, we’ll review a few basic tools for

undoing changes that you’ve made. Be careful, because you can’t always undo some

of these undos. This is one of the few areas in Git where you may lose some work if

you do it wrong.

2.4.1 Changing Your Last Commit

One of the common undos takes place when you commit too early and possibly forget

to add some files, or you mess up your commit message. If you want to try that commit

again, you can run commit with the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If you’ve have

made no changes since your last commit (for instance, you run this command it imme-

diately after your previous commit), then your snapshot will look exactly the same and

all you’ll change is your commit message.

The same commit-message editor fires up, but it already contains the message of

your previous commit. You can edit the message the same as always, but it overwrites

your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a

file you wanted to add to this commit, you can do something like this:

$ git commit -m ’initial commit’

$ git add forgotten_file

$ git commit --amend

All three of these commands end up with a single commit — the second command

replaces the results of the first.

2.4.2 Unstaging a Staged File

The next two sections demonstrate how to wrangle your staging area and working

directory changes. The nice part is that the command you use to determine the state

of those two areas also reminds you how to undo changes to them. For example, let’s

say you’ve changed two files and want to commit them as two separate changes, but

you accidentally type git add * and stage them both. How can you unstage one of the

two? The git status command reminds you:

$ git add .

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

modified: benchmarks.rb

#

30

CHAPTER 2 GIT BASICS

Right below the “Changes to be committed” text, it says use git reset HEAD <file>...

to unstage. So, let’s use that advice to unstage the benchmarks.rb file:

$ git reset HEAD benchmarks.rb

benchmarks.rb: locally modified

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

The command is a bit strange, but it works. The benchmarks.rb file is modified but

once again unstaged.

2.4.3 Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the benchmarks.rb

file? How can you easily unmodify it — revert it back to what it looked like when you

last committed (or initially cloned, or however you got it into your working directory)?

Luckily, git status tells you how to do that, too. In the last example output, the

unstaged area looks like this:

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

It tells you pretty explicitly how to discard the changes you’ve made (at least, the

newer versions of Git, 1.6.1 and later, do this — if you have an older version, we highly

recommend upgrading it to get some of these nicer usability features). Let’s do what it

says:

$ git checkout -- benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

You can see that the changes have been reverted. You should also realize that this is

a dangerous command: any changes you made to that file are gone — you just copied

31

PRO GIT SCOTT CHACON

another file over it. Don’t ever use this command unless you absolutely know that you

don’t want the file. If you just need to get it out of the way, we’ll go over stashing and

branching in the next chapter; these are generally better ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even

commits that were on branches that were deleted or commits that were overwritten

with an --amend commit can be recovered (see Chapter 9 for data recovery). However,

anything you lose that was never committed is likely never to be seen again.

2.5 Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your

remote repositories. Remote repositories are versions of your project that are hosted

on the Internet or network somewhere. You can have several of them, each of which

generally is either read-only or read/write for you. Collaborating with others involves

managing these remote repositories and pushing and pulling data to and from them

when you need to share work. Managing remote repositories includes knowing how

to add remote repositories, remove remotes that are no longer valid, manage various

remote branches and define them as being tracked or not, and more. In this section,

we’ll cover these remote-management skills.

2.5.1 Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command.

It lists the shortnames of each remote handle you’ve specified. If you’ve cloned your

repository, you should at least see origin — that is the default name Git gives to the

server you cloned from:

$ git clone git://github.com/schacon/ticgit.git

Initialized empty Git repository in /private/tmp/ticgit/.git/

remote: Counting objects: 595, done.

remote: Compressing objects: 100% (269/269), done.

remote: Total 595 (delta 255), reused 589 (delta 253)

Receiving objects: 100% (595/595), 73.31 KiB | 1 KiB/s, done.

Resolving deltas: 100% (255/255), done.

$ cd ticgit

$ git remote

origin

You can also specify -v, which shows you the URL that Git has stored for the

shortname to be expanded to:

$ git remote -v

origin git://github.com/schacon/ticgit.git

If you have more than one remote, the command lists them all. For example, my

Grit repository looks something like this.

$ cd grit

$ git remote -v

bakkdoor git://github.com/bakkdoor/grit.git

32

CHAPTER 2 GIT BASICS

cho45 git://github.com/cho45/grit.git

defunkt git://github.com/defunkt/grit.git

koke git://github.com/koke/grit.git

origin git@github.com:mojombo/grit.git

This means we can pull contributions from any of these users pretty easily. But

notice that only the origin remote is an SSH URL, so it’s the only one I can push to

(we’ll cover why this is in Chapter 4).

2.5.2 Adding Remote Repositories

I’ve mentioned and given some demonstrations of adding remote repositories in previ-

ous sections, but here is how to do it explicitly. To add a new remote Git repository as

a shortname you can reference easily, run git remote add [shortname] [url] :

$ git remote

origin

$ git remote add pb git://github.com/paulboone/ticgit.git

$ git remote -v

origin git://github.com/schacon/ticgit.git

pb git://github.com/paulboone/ticgit.git

Now you can use the string pb on the command line in lieu of the whole URL. For

example, if you want to fetch all the information that Paul has but that you don’t yet

have in your repository, you can run git fetch pb:

$ git fetch pb

remote: Counting objects: 58, done.

remote: Compressing objects: 100% (41/41), done.

remote: Total 44 (delta 24), reused 1 (delta 0)

Unpacking objects: 100% (44/44), done.

From git://github.com/paulboone/ticgit

* [new branch] master -> pb/master

* [new branch] ticgit -> pb/ticgit

Paul’s master branch is accessible locally as pb/master — you can merge it into

one of your branches, or you can check out a local branch at that point if you want to

inspect it.

2.5.3 Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run

$ git fetch [remote-name]

The command goes out to that remote project and pulls down all the data from that

remote project that you don’t have yet. After you do this, you should have references

to all the branches from that remote, which you can merge in or inspect at any time.

(We’ll go over what branches are and how to use them in much more detail in Chapter

3.)

If you cloned a repository, the command automatically adds that remote reposi-

tory under the name origin. So, git fetch origin fetches any new work that has been

33

PRO GIT SCOTT CHACON

pushed to that server since you cloned (or last fetched from) it. It’s important to note

that the fetch command pulls the data to your local repository — it doesn’t automati-

cally merge it with any of your work or modify what you’re currently working on. You

have to merge it manually into your work when you’re ready.

If you have a branch set up to track a remote branch (see the next section and Chap-

ter 3 for more information), you can use the git pull command to automatically fetch

and then merge a remote branch into your current branch. This may be an easier or

more comfortable workflow for you; and by default, the git clone command automat-

ically sets up your local master branch to track the remote master branch on the server

you cloned from (assuming the remote has a master branch). Running git pull gener-

ally fetches data from the server you originally cloned from and automatically tries to

merge it into the code you’re currently working on.

2.5.4 Pushing to Your Remotes

When you have your project at a point that you want to share, you have to push it

upstream. The command for this is simple: git push [remote-name] [branch-name] .

If you want to push your master branch to your origin server (again, cloning generally

sets up both of those names for you automatically), then you can run this to push your

work back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write

access and if nobody has pushed in the meantime. If you and someone else clone at

the same time and they push upstream and then you push upstream, your push will

rightly be rejected. You’ll have to pull down their work first and incorporate it into

yours before you’ll be allowed to push. See Chapter 3 for more detailed information

on how to push to remote servers.

2.5.5 Inspecting a Remote

If you want to see more information about a particular remote, you can use the git

remote show [remote-name] command. If you run this command with a particular

shortname, such as origin , you get something like this:

$ git remote show origin

* remote origin

URL: git://github.com/schacon/ticgit.git

Remote branch merged with ’git pull’ while on branch master

master

Tracked remote branches

master

ticgit

It lists the URL for the remote repository as well as the tracking branch information.

The command helpfully tells you that if you’re on the master branch and you run git

pull , it will automatically merge in the master branch on the remote after it fetches all

the remote references. It also lists all the remote references it has pulled down.

That is a simple example you’re likely to encounter. When you’re using Git more

heavily, however, you may see much more information from git remote show :

34

CHAPTER 2 GIT BASICS

$ git remote show origin

* remote origin

URL: git@github.com:defunkt/github.git

Remote branch merged with ’git pull’ while on branch issues

issues

Remote branch merged with ’git pull’ while on branch master

master

New remote branches (next fetch will store in remotes/origin)

caching

Stale tracking branches (use ’git remote prune’)

libwalker

walker2

Tracked remote branches

acl

apiv2

dashboard2

issues

master

postgres

Local branch pushed with ’git push’

master:master

This command shows which branch is automatically pushed when you run git

push on certain branches. It also shows you which remote branches on the server you

don’t yet have, which remote branches you have that have been removed from the

server, and multiple branches that are automatically merged when you run git pull .

2.5.6 Removing and Renaming Remotes

If you want to rename a reference, in newer versions of Git you can run git remote

rename to change a remote’s shortname. For instance, if you want to rename pb to paul ,

you can do so with git remote rename :

$ git remote rename pb paul

$ git remote

origin

paul

It’s worth mentioning that this changes your remote branch names, too. What used

to be referenced at pb/master is now at paul/master .

If you want to remove a reference for some reason — you’ve moved the server

or are no longer using a particular mirror, or perhaps a contributor isn’t contributing

anymore — you can use git remote rm :

$ git remote rm paul

$ git remote

origin

2.6 Tagging

Like most VCSs, Git has the ability to tag specific points in history as being important.

Generally, people use this functionality to mark release points (v1.0, and so on). In this

35

PRO GIT SCOTT CHACON

section, you’ll learn how to list the available tags, how to create new tags, and what the

different types of tags are.

2.6.1 Listing Your Tags

Listing the available tags in Git is straightforward. Just type git tag :

$ git tag

v0.1

v1.3

This command lists the tags in alphabetical order; the order in which they appear

has no real importance.

You can also search for tags with a particular pattern. The Git source repo, for

instance, contains more than 240 tags. If you’re only interested in looking at the 1.4.2

series, you can run this:

$ git tag -l ’v1.4.2.*’

v1.4.2.1

v1.4.2.2

v1.4.2.3

v1.4.2.4

2.6.2 Creating Tags

Git uses two main types of tags: lightweight and annotated. A lightweight tag is very

much like a branch that doesn’t change — it’s just a pointer to a specific commit.

Annotated tags, however, are stored as full objects in the Git database. They’re check-

summed; contain the tagger name, e-mail, and date; have a tagging message; and can

be signed and verified with GNU Privacy Guard (GPG). It’s generally recommended

that you create annotated tags so you can have all this information; but if you want a

temporary tag or for some reason don’t want to keep the other information, lightweight

tags are available too.

2.6.3 Annotated Tags

Creating an annotated tag in Git is simple. The easiest way is to specify -a when you

run the tag command:

$ git tag -a v1.4 -m ’my version 1.4’

$ git tag

v0.1

v1.3

v1.4

The -m specifies a tagging message, which is stored with the tag. If you don’t

specify a message for an annotated tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the git

show command:

36

CHAPTER 2 GIT BASICS

$ git show v1.4

tag v1.4

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 14:45:11 2009 -0800

my version 1.4

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

That shows the tagger information, the date the commit was tagged, and the anno-

tation message before showing the commit information.

2.6.4 Signed Tags

You can also sign your tags with GPG, assuming you have a private key. All you have

to do is use -s instead of -a:

$ git tag -s v1.5 -m ’my signed 1.5 tag’

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gee-mail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you run git show on that tag, you can see your GPG signature attached to it:

$ git show v1.5

tag v1.5

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:22:20 2009 -0800

my signed 1.5 tag

-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1.4.8 (Darwin)

iEYEABECAAYFAkmQurIACgkQON3DxfchxFr5cACeIMN+ZxLKggJQf0QYiQBwgySN

Ki0An2JeAVUCAiJ7Ox6ZEtK+NvZAj82/

=WryJ

-----END PGP SIGNATURE-----

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

A bit later, you’ll learn how to verify signed tags.

37

PRO GIT SCOTT CHACON

2.6.5 Lightweight Tags

Another way to tag commits is with a lightweight tag. This is basically the commit

checksum stored in a file — no other information is kept. To create a lightweight tag,

don’t supply the -a, -s, or -m option:

$ git tag v1.4-lw

$ git tag

v0.1

v1.3

v1.4

v1.4-lw

v1.5

This time, if you run git show on the tag, you don’t see the extra tag information.

The command just shows the commit:

$ git show v1.4-lw

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

2.6.6 Verifying Tags

To verify a signed tag, you use git tag -v [tag-name] . This command uses GPG to

verify the signature. You need the signer’s public key in your keyring for this to work

properly:

$ git tag -v v1.4.2.1

object 883653babd8ee7ea23e6a5c392bb739348b1eb61

type commit

tag v1.4.2.1

tagger Junio C Hamano <junkio@cox.net> 1158138501 -0700

GIT 1.4.2.1

Minor fixes since 1.4.2, including git-mv and git-http with alternates.

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID F3119B9A

gpg: Good signature from "Junio C Hamano <junkio@cox.net>"

gpg: aka "[jpeg image of size 1513]"

Primary key fingerprint: 3565 2A26 2040 E066 C9A7 4A7D C0C6 D9A4 F311 9B9A

If you don’t have the signer’s public key, you get something like this instead:

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID F3119B9A

gpg: Can’t check signature: public key not found

error: could not verify the tag ’v1.4.2.1’

38

CHAPTER 2 GIT BASICS

2.6.7 Tagging Later

You can also tag commits after you’ve moved past them. Suppose your commit history

looks like this:

$ git log --pretty=oneline

15027957951b64cf874c3557a0f3547bd83b3ff6 Merge branch ’experiment’

a6b4c97498bd301d84096da251c98a07c7723e65 beginning write support

0d52aaab4479697da7686c15f77a3d64d9165190 one more thing

6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch ’experiment’

0b7434d86859cc7b8c3d5e1dddfed66ff742fcbc added a commit function

4682c3261057305bdd616e23b64b0857d832627b added a todo file

166ae0c4d3f420721acbb115cc33848dfcc2121a started write support

9fceb02d0ae598e95dc970b74767f19372d61af8 updated rakefile

964f16d36dfccde844893cac5b347e7b3d44abbc commit the todo

8a5cbc430f1a9c3d00faaeffd07798508422908a updated readme

Now, suppose you forgot to tag the project at v1.2, which was at the “updated

rakefile” commit. You can add it after the fact. To tag that commit, you specify the

commit checksum (or part of it) at the end of the command:

$ git tag -a v1.2 9fceb02

You can see that you’ve tagged the commit:

$ git tag

v0.1

v1.2

v1.3

v1.4

v1.4-lw

v1.5

$ git show v1.2

tag v1.2

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:32:16 2009 -0800

version 1.2

commit 9fceb02d0ae598e95dc970b74767f19372d61af8

Author: Magnus Chacon <mchacon@gee-mail.com>

Date: Sun Apr 27 20:43:35 2008 -0700

updated rakefile

...

2.6.8 Sharing Tags

By default, the git push command doesn’t transfer tags to remote servers. You will

have to explicitly push tags to a shared server after you have created them. This process

is just like sharing remote branches you can run git push origin [tagname] .

39

PRO GIT SCOTT CHACON

$ git push origin v1.5

Counting objects: 50, done.

Compressing objects: 100% (38/38), done.

Writing objects: 100% (44/44), 4.56 KiB, done.

Total 44 (delta 18), reused 8 (delta 1)

To git@github.com:schacon/simplegit.git

* [new tag] v1.5 -> v1.5

If you have a lot of tags that you want to push up at once, you can also use the

--tags option to the git push command. This will transfer all of your tags to the

remote server that are not already there.

$ git push origin --tags

Counting objects: 50, done.

Compressing objects: 100% (38/38), done.

Writing objects: 100% (44/44), 4.56 KiB, done.

Total 44 (delta 18), reused 8 (delta 1)

To git@github.com:schacon/simplegit.git

* [new tag] v0.1 -> v0.1

* [new tag] v1.2 -> v1.2

* [new tag] v1.4 -> v1.4

* [new tag] v1.4-lw -> v1.4-lw

* [new tag] v1.5 -> v1.5

Now, when someone else clones or pulls from your repository, they will get all your

tags as well.

2.7 Tips and Tricks

Before we finish this chapter on basic Git, a few little tips and tricks may make your

Git experience a bit simpler, easier, or more familiar. Many people use Git without

using any of these tips, and we won’t refer to them or assume you’ve used them later

in the book; but you should probably know how to do them.

2.7.1 Auto-Completion

If you use the Bash shell, Git comes with a nice auto-completion script you can enable.

Download the Git source code, and look in the contrib/completion directory; there

should be a file called git-completion.bash . Copy this file to your home directory,

and add this to your .bashrc file:

source /̃.git-completion.bash

If you want to set up Git to automatically have Bash shell completion for all users,

copy this script to the /opt/local/etc/bash completion.d directory on Mac systems

or to the /etc/bash completion.d/ directory on Linux systems. This is a directory of

scripts that Bash will automatically load to provide shell completions.

If you’re using Windows with Git Bash, which is the default when installing Git on

Windows with msysGit, auto-completion should be preconfigured.

Press the Tab key when you’re writing a Git command, and it should return a set of

suggestions for you to pick from:

40

CHAPTER 2 GIT BASICS

$ git co<tab><tab>

commit config

In this case, typing git co and then pressing the Tab key twice suggests commit and

config. Adding m<tab> completes git commit automatically.

This also works with options, which is probably more useful. For instance, if you’re

running a git log command and can’t remember one of the options, you can start

typing it and press Tab to see what matches:

$ git log --s<tab>

--shortstat --since= --src-prefix= --stat --summary

That’s a pretty nice trick and may save you some time and documentation reading.

2.7.2 Git Aliases

Git doesn’t infer your command if you type it in partially. If you don’t want to type

the entire text of each of the Git commands, you can easily set up an alias for each

command using git config . Here are a couple of examples you may want to set up:

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status

This means that, for example, instead of typing git commit , you just need to type

git ci . As you go on using Git, you’ll probably use other commands frequently as

well; in this case, don’t hesitate to create new aliases.

This technique can also be very useful in creating commands that you think should

exist. For example, to correct the usability problem you encountered with unstaging a

file, you can add your own unstage alias to Git:

$ git config --global alias.unstage ’reset HEAD --’

This makes the following two commands equivalent:

$ git unstage fileA

$ git reset HEAD fileA

This seems a bit clearer. It’s also common to add a last command, like this:

$ git config --global alias.last ’log -1 HEAD’

This way, you can see the last commit easily:

$ git last

commit 66938dae3329c7aebe598c2246a8e6af90d04646

Author: Josh Goebel <dreamer3@example.com>

Date: Tue Aug 26 19:48:51 2008 +0800

test for current head

Signed-off-by: Scott Chacon <schacon@example.com>

41

PRO GIT SCOTT CHACON

As you can tell, Git simply replaces the new command with whatever you alias it

for. However, maybe you want to run an external command, rather than a Git subcom-

mand. In that case, you start the command with a ! character. This is useful if you

write your own tools that work with a Git repository. We can demonstrate by aliasing

git visual to run gitk :

$ git config --global alias.visual "!gitk"

2.8 Summary

At this point, you can do all the basic local Git operations — creating or cloning a

repository, making changes, staging and committing those changes, and viewing the

history of all the changes the repository has been through. Next, we’ll cover Git’s

killer feature: its branching model.

42

Chapter 3

Git Branching

Nearly every VCS has some form of branching support. Branching means you diverge

from the main line of development and continue to do work without messing with that

main line. In many VCS tools, this is a somewhat expensive process, often requiring

you to create a new copy of your source code directory, which can take a long time for

large projects.

Some people refer to the branching model in Git as its “killer feature,” and it

certainly sets Git apart in the VCS community. Why is it so special? The way Git

branches is incredibly lightweight, making branching operations nearly instantaneous

and switching back and forth between branches generally just as fast. Unlike many

other VCSs, Git encourages a workflow that branches and merges often, even multiple

times in a day. Understanding and mastering this feature gives you a powerful and

unique tool and can literally change the way that you develop.

3.1 What a Branch Is

To really understand the way Git does branching, we need to take a step back and

examine how Git stores its data. As you may remember from Chapter 1, Git doesn’t

store data as a series of changesets or deltas, but instead as a series of snapshots.

When you commit in Git, Git stores a commit object that contains a pointer to the

snapshot of the content you staged, the author and message metadata, and zero or more

pointers to the commit or commits that were the direct parents of this commit: zero

parents for the first commit, one parent for a normal commit, and multiple parents for

a commit that results from a merge of two or more branches.

To visualize this, let’s assume that you have a directory containing three files, and

you stage them all and commit. Staging the files checksums each one (the SHA–1 hash

we mentioned in Chapter 1), stores that version of the file in the Git repository (Git

refers to them as blobs), and adds that checksum to the staging area:

$ git add README test.rb LICENSE2

$ git commit -m ’initial commit of my project’

When you create the commit by running git commit , Git checksums each subdi-

rectory (in this case, just the root project directory) and stores those tree objects in the

43

PRO GIT SCOTT CHACON

Git repository. Git then creates a commit object that has the metadata and a pointer to

the root project tree so it can re-create that snapshot when needed.

Your Git repository now contains five objects: one blob for the contents of each of

your three files, one tree that lists the contents of the directory and specifies which file

names are stored as which blobs, and one commit with the pointer to that root tree and

all the commit metadata. Conceptually, the data in your Git repository looks something

like Figure 3.1.

Figure 3.1: Single commit repository data

If you make some changes and commit again, the next commit stores a pointer to

the commit that came immediately before it. After two more commits, your history

might look something like Figure 3.2.

Figure 3.2: Git object data for multiple commits

A branch in Git is simply a lightweight movable pointer to one of these commits.

The default branch name in Git is master. As you initially make commits, you’re given

a master branch that points to the last commit you made. Every time you commit, it

moves forward automatically.

What happens if you create a new branch? Well, doing so creates a new pointer for

you to move around. Let’s say you create a new branch called testing. You do this with

the git branch command:

$ git branch testing

44

CHAPTER 3 GIT BRANCHING

Figure 3.3: Branch pointing into the commit data’s history

Figure 3.4: Multiple branches pointing into the commit’s data history

This creates a new pointer at the same commit you’re currently on (see Figure 3.4).

How does Git know what branch you’re currently on? It keeps a special pointer

called HEAD. Note that this is a lot different than the concept of HEAD in other VCSs

you may be used to, such as Subversion or CVS. In Git, this is a pointer to the local

branch you’re currently on. In this case, you’re still on master. The git branch command

only created a new branch — it didn’t switch to that branch (see Figure 3.5).

Figure 3.5: HEAD file pointing to the branch you’re on

To switch to an existing branch, you run the git checkout command. Let’s switch

to the new testing branch:

45

PRO GIT SCOTT CHACON

$ git checkout testing

This moves HEAD to point to the testing branch (see Figure 3.6).

Figure 3.6: HEAD points to another branch when you switch branches.

What is the significance of that? Well, let’s do another commit:

$ vim test.rb

$ git commit -a -m ’made a change’

Figure 3.7 illustrates the result.

Figure 3.7: The branch that HEAD points to moves forward with each commit.

This is interesting, because now your testing branch has moved forward, but your

master branch still points to the commit you were on when you ran git checkout to

switch branches. Let’s switch back to the master branch:

$ git checkout master

Figure 3.8 shows the result.

That command did two things. It moved the HEAD pointer back to point to the

master branch, and it reverted the files in your working directory back to the snapshot

that master points to. This also means the changes you make from this point forward

46

CHAPTER 3 GIT BRANCHING

Figure 3.8: HEAD moves to another branch on a checkout.

will diverge from an older version of the project. It essentially rewinds the work you’ve

done in your testing branch temporarily so you can go in a different direction.

Let’s make a few changes and commit again:

$ vim test.rb

$ git commit -a -m ’made other changes’

Now your project history has diverged (see Figure 3.9). You created and switched

to a branch, did some work on it, and then switched back to your main branch and did

other work. Both of those changes are isolated in separate branches: you can switch

back and forth between the branches and merge them together when you’re ready. And

you did all that with simple branch and checkout commands.

Figure 3.9: The branch histories have diverged.

Because a branch in Git is in actuality a simple file that contains the 40 character

SHA–1 checksum of the commit it points to, branches are cheap to create and destroy.

Creating a new branch is as quick and simple as writing 41 bytes to a file (40 characters

and a newline).

47

PRO GIT SCOTT CHACON

This is in sharp contrast to the way most VCS tools branch, which involves copying

all of the project’s files into a second directory. This can take several seconds or even

minutes, depending on the size of the project, whereas in Git the process is always

instantaneous. Also, because we’re recording the parents when we commit, finding a

proper merge base for merging is automatically done for us and is generally very easy

to do. These features help encourage developers to create and use branches often.

Let’s see why you should do so.

3.2 Basic Branching and Merging

Let’s go through a simple example of branching and merging with a workflow that you

might use in the real world. You’ll follow these steps:

1. Do work on a web site.

2. Create a branch for a new story you’re working on.

3. Do some work in that branch.

At this stage, you’ll receive a call that another issue is critical and you need a hotfix.

You’ll do the following:

1. Revert back to your production branch.

2. Create a branch to add the hotfix.

3. After it’s tested, merge the hotfix branch, and push to production.

4. Switch back to your original story and continue working.

3.2.1 Basic Branching

First, let’s say you’re working on your project and have a couple of commits already

(see Figure 3.10).

Figure 3.10: A short and simple commit history

You’ve decided that you’re going to work on issue #53 in whatever issue-tracking

system your company uses. To be clear, Git isn’t tied into any particular issue-tracking

system; but because issue #53 is a focused topic that you want to work on, you’ll create

a new branch in which to work. To create a branch and switch to it at the same time,

you can run the git checkout command with the -b switch:

$ git checkout -b iss53

Switched to a new branch "iss53"

48

CHAPTER 3 GIT BRANCHING

This is shorthand for

$ git branch iss53

$ git checkout iss53

Figure 3.11 illustrates the result.

Figure 3.11: Creating a new branch pointer

You work on your web site and do some commits. Doing so moves the iss53

branch forward, because you have it checked out (that is, your HEAD is pointing to it;

see Figure 3.12):

$ vim index.html

$ git commit -a -m ’added a new footer [issue 53]’

Figure 3.12: The iss53 branch has moved forward with your work.

Now you get the call that there is an issue with the web site, and you need to fix it

immediately. With Git, you don’t have to deploy your fix along with the iss53 changes

you’ve made, and you don’t have to put a lot of effort into reverting those changes

before you can work on applying your fix to what is in production. All you have to do

is switch back to your master branch.

However, before you do that, note that if your working directory or staging area has

uncommitted changes that conflict with the branch you’re checking out, Git won’t let

you switch branches. It’s best to have a clean working state when you switch branches.

There are ways to get around this (namely, stashing and commit amending) that we’ll

cover later. For now, you’ve committed all your changes, so you can switch back to

your master branch:

$ git checkout master

Switched to branch "master"

49

PRO GIT SCOTT CHACON

At this point, your project working directory is exactly the way it was before you

started working on issue #53, and you can concentrate on your hotfix. This is an im-

portant point to remember: Git resets your working directory to look like the snapshot

of the commit that the branch you check out points to. It adds, removes, and modifies

files automatically to make sure your working copy is what the branch looked like on

your last commit to it.

Next, you have a hotfix to make. Let’s create a hotfix branch on which to work until

it’s completed (see Figure 3.13):

$ git checkout -b ’hotfix’

Switched to a new branch "hotfix"

$ vim index.html

$ git commit -a -m ’fixed the broken email address’

[hotfix]: created 3a0874c: "fixed the broken email address"

1 files changed, 0 insertions(+), 1 deletions(-)

Figure 3.13: hotfix branch based back at your master branch point

You can run your tests, make sure the hotfix is what you want, and merge it back

into your master branch to deploy to production. You do this with the git merge com-

mand:

$ git checkout master

$ git merge hotfix

Updating f42c576..3a0874c

Fast forward

README | 1 -

1 files changed, 0 insertions(+), 1 deletions(-)

You’ll notice the phrase “Fast forward” in that merge. Because the commit pointed

to by the branch you merged in was directly upstream of the commit you’re on, Git

moves the pointer forward. To phrase that another way, when you try to merge one

commit with a commit that can be reached by following the first commit’s history, Git

simplifies things by moving the pointer forward because there is no divergent work to

merge together — this is called a “fast forward”.

Your change is now in the snapshot of the commit pointed to by the master branch,

and you can deploy your change (see Figure 3.14).

After that your super-important fix is deployed, you’re ready to switch back to the

work you were doing before you were interrupted. However, first you’ll delete the

50

CHAPTER 3 GIT BRANCHING

Figure 3.14: Your master branch points to the same place as your hotfix branch after

the merge.

hotfix branch, because you no longer need it — the master branch points at the same

place. You can delete it with the -d option to git branch :

$ git branch -d hotfix

Deleted branch hotfix (3a0874c).

Now you can switch back to your work-in-progress branch on issue #53 and con-

tinue working on it (see Figure 3.15):

$ git checkout iss53

Switched to branch "iss53"

$ vim index.html

$ git commit -a -m ’finished the new footer [issue 53]’

[iss53]: created ad82d7a: "finished the new footer [issue 53]"

1 files changed, 1 insertions(+), 0 deletions(-)

Figure 3.15: Your iss53 branch can move forward independently.

It’s worth noting here that the work you did in your hotfix branch is not contained

in the files in your iss53 branch. If you need to pull it in, you can merge your master

branch into your iss53 branch by running git merge master , or you can wait to inte-

grate those changes until you decide to pull the iss53 branch back into master later.

51

PRO GIT SCOTT CHACON

3.2.2 Basic Merging

Suppose you’ve decided that your issue #53 work is complete and ready to be merged

into your master branch. In order to do that, you’ll merge in your iss53 branch, much

like you merged in your hotfix branch earlier. All you have to do is check out the

branch you wish to merge into and then run the git merge command:

$ git checkout master

$ git merge iss53

Merge made by recursive.

README | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

This looks a bit different than the hotfix merge you did earlier. In this case, your

development history has diverged from some older point. Because the commit on the

branch you’re on isn’t a direct ancestor of the branch you’re merging in, Git has to

do some work. In this case, Git does a simple three-way merge, using the two snap-

shots pointed to by the branch tips and the common ancestor of the two. Figure 3.16

highlights the three snapshots that Git uses to do its merge in this case.

Figure 3.16: Git automatically identifies the best common-ancestor merge base for

branch merging.

Instead of just moving the branch pointer forward, Git creates a new snapshot that

results from this three-way merge and automatically creates a new commit that points

to it (see Figure 3.17). This is referred to as a merge commit and is special in that it

has more than one parent.

It’s worth pointing out that Git determines the best common ancestor to use for its

merge base; this is different than CVS or Subversion (before version 1.5), where the

developer doing the merge has to figure out the best merge base for themselves. This

makes merging a heck of a lot easier in Git than in these other systems.

Now that your work is merged in, you have no further need for the iss53 branch.

You can delete it and then manually close the ticket in your ticket-tracking system:

52

CHAPTER 3 GIT BRANCHING

Figure 3.17: Git automatically creates a new commit object that contains the merged

work.

$ git branch -d iss53

3.2.3 Basic Merge Conflicts

Occasionally, this process doesn’t go smoothly. If you changed the same part of the

same file differently in the two branches you’re merging together, Git won’t be able to

merge them cleanly. If your fix for issue #53 modified the same part of a file as the

hotfix , you’ll get a merge conflict that looks something like this:

$ git merge iss53

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

Git hasn’t automatically created a new merge commit. It has paused the process

while you resolve the conflict. If you want to see which files are unmerged at any point

after a merge conflict, you can run git status :

[master*]$ git status

index.html: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

unmerged: index.html

#

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged.

Git adds standard conflict-resolution markers to the files that have conflicts, so you can

open them manually and resolve those conflicts. Your file contains a section that looks

something like this:

<<<<<<< HEAD:index.html

<div id="footer">contact : email.support@github.com</div>

=======

<div id="footer">

please contact us at support@github.com

53

PRO GIT SCOTT CHACON

</div>

>>>>>>> iss53:index.html

This means the version in HEAD (your master branch, because that was what you

had checked out when you ran your merge command) is the top part of that block

(everything above the =======), while the version in your iss53 branch looks like ev-

erything in the bottom part. In order to resolve the conflict, you have to either choose

one side or the other or merge the contents yourself. For instance, you might resolve

this conflict by replacing the entire block with this:

<div id="footer">

please contact us at email.support@github.com

</div>

This resolution has a little of each section, and I’ve fully removed the <<<<<<< ,

======= , and >>>>>>> lines. After you’ve resolved each of these sections in each con-

flicted file, run git add on each file to mark it as resolved. Staging the file marks it as

resolved in Git. If you want to use a graphical tool to resolve these issues, you can run

git mergetool , which fires up an appropriate visual merge tool and walks you through

the conflicts:

$ git mergetool

merge tool candidates: kdiff3 tkdiff xxdiff meld gvimdiff opendiff emerge vimdiff

Merging the files: index.html

Normal merge conflict for ’index.html’:

{local}: modified

{remote}: modified

Hit return to start merge resolution tool (opendiff):

If you want to use a merge tool other than the default (Git chose opendiff for

me in this case because I ran the command on a Mac), you can see all the supported

tools listed at the top after “merge tool candidates”. Type the name of the tool you’d

rather use. In Chapter 7, we’ll discuss how you can change this default value for your

environment.

After you exit the merge tool, Git asks you if the merge was successful. If you tell

the script that it was, it stages the file to mark it as resolved for you.

You can run git status again to verify that all conflicts have been resolved:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

If you’re happy with that, and you verify that everything that had conflicts has been

staged, you can type git commit to finalize the merge commit. The commit message

by default looks something like this:

54

CHAPTER 3 GIT BRANCHING

Merge branch ’iss53’

Conflicts:

index.html

#

It looks like you may be committing a MERGE.

If this is not correct, please remove the file

.git/MERGE_HEAD

and try again.

#

You can modify that message with details about how you resolved the merge if you

think it would be helpful to others looking at this merge in the future — why you did

what you did, if it’s not obvious.

3.3 Branch Management

Now that you’ve created, merged, and deleted some branches, let’s look at some branch-

management tools that will come in handy when you begin using branches all the time.

The git branch command does more than just create and delete branches. If you

run it with no arguments, you get a simple listing of your current branches:

$ git branch

iss53

* master

testing

Notice the * character that prefixes the master branch: it indicates the branch that

you currently have checked out. This means that if you commit at this point, the master

branch will be moved forward with your new work. To see the last commit on each

branch, you can run git branch v :

$ git branch -v

iss53 93b412c fix javascript issue

* master 7a98805 Merge branch ’iss53’

testing 782fd34 add scott to the author list in the readmes

Another useful option to figure out what state your branches are in is to filter this list

to branches that you have or have not yet merged into the branch you’re currently on.

The useful --merged and --no-merged options have been available in Git since version

1.5.6 for this purpose. To see which branches are already merged into the branch you’re

on, you can run git branch merged :

$ git branch --merged

iss53

* master

Because you already merged in iss53 earlier, you see it in your list. Branches on

this list without the * in front of them are generally fine to delete with git branch -d ;

you’ve already incorporated their work into another branch, so you’re not going to lose

anything.

To see all the branches that contain work you haven’t yet merged in, you can run

git branch --no-merged :

55

PRO GIT SCOTT CHACON

$ git branch --no-merged

testing

This shows your other branch. Because it contains work that isn’t merged in yet,

trying to delete it with git branch -d will fail:

$ git branch -d testing

error: The branch ’testing’ is not an ancestor of your current HEAD.

If you are sure you want to delete it, run git branch -D testing . If you really do

want to delete the branch and lose that work, you can force it with -D, as the helpful

message points out.

3.4 Branching Workflows

Now that you have the basics of branching and merging down, what can or should

you do with them? In this section, we’ll cover some common workflows that this

lightweight branching makes possible, so you can decide if you would like to incorpo-

rate it into your own development cycle.

3.4.1 Long-Running Branches

Because Git uses a simple three-way merge, merging from one branch into another

multiple times over a long period is generally easy to do. This means you can have

several branches that are always open and that you use for different stages of your

development cycle; you can merge regularly from some of them into others.

Many Git developers have a workflow that embraces this approach, such as having

only code that is entirely stable in their master branch — possibly only code that has

been or will be released. They have another parallel branch named develop or next that

they work from or use to test stability— it isn’t necessarily always stable, but whenever

it gets to a stable state, it can be merged into master . It’s used to pull in topic branches

(short-lived branches, like your earlier iss53 branch) when they’re ready, to make sure

they pass all the tests and don’t introduce bugs.

In reality, we’re talking about pointers moving up the line of commits you’re mak-

ing. The stable branches are farther down the line in your commit history, and the

bleeding-edge branches are farther up the history (see Figure 3.18).

Figure 3.18: More stable branches are generally farther down the commit history.

It’s generally easier to think about them as work silos, where sets of commits grad-

uate to a more stable silo when they’re fully tested (see Figure 3.19).

You can keep doing this for several levels of stability. Some larger projects also

have a proposed or pu (proposed updates) branch that has integrated branches that may

not be ready to go into the next or master branch. The idea is that your branches are at

various levels of stability; when they reach a more stable level, they’re merged into the

56

CHAPTER 3 GIT BRANCHING

Figure 3.19: It may be helpful to think of your branches as silos.

branch above them. Again, having multiple long-running branches isn’t necessary, but

it’s often helpful, especially when you’re dealing with very large or complex projects.

3.4.2 Topic Branches

Topic branches, however, are useful in projects of any size. A topic branch is a short-

lived branch that you create and use for a single particular feature or related work. This

is something you’ve likely never done with a VCS before because it’s generally too

expensive to create and merge branches. But in Git it’s common to create, work on,

merge, and delete branches several times a day.

You saw this in the last section with the iss53 and hotfix branches you created.

You did a few commits on them and deleted them directly after merging them into your

main branch. This technique allows you to context-switch quickly and completely —

because your work is separated into silos where all the changes in that branch have to

do with that topic, it’s easier to see what has happened during code review and such.

You can keep the changes there for minutes, days, or months, and merge them in when

they’re ready, regardless of the order in which they were created or worked on.

Consider an example of doing some work (on master), branching off for an issue

(iss91), working on it for a bit, branching off the second branch to try another way

of handling the same thing (iss91v2), going back to your master branch and working

there for a while, and then branching off there to do some work that you’re not sure is

a good idea (dumbidea branch). Your commit history will look something like Figure

3.20.

Now, let’s say you decide you like the second solution to your issue best (iss91v2);

and you showed the dumbidea branch to your coworkers, and it turns out to be genius.

You can throw away the original iss91 branch (losing commits C5 and C6) and merge

in the other two. Your history then looks like Figure 3.21.

It’s important to remember when you’re doing all this that these branches are com-

pletely local. When you’re branching and merging, everything is being done only in

your Git repository — no server communication is happening.

57

PRO GIT SCOTT CHACON

Figure 3.20: Your commit history with multiple topic branches

Figure 3.21: Your history after merging in dumbidea and iss91v2

3.5 Remote Branches

Remote branches are references to the state of branches on your remote repositories.

They’re local branches that you can’t move; they’re moved automatically whenever

you do any network communication. Remote branches act as bookmarks to remind

58

CHAPTER 3 GIT BRANCHING

you where the branches on your remote repositories were the last time you connected

to them.

They take the form (remote)/(branch) . For instance, if you wanted to see what the

master branch on your origin remote looked like as of the last time you communicated

with it, you would check the origin/master branch. If you were working on an issue

with a partner and they pushed up an iss53 branch, you might have your own local

iss53 branch; but the branch on the server would point to the commit at origin/iss53 .

This may be a bit confusing, so let’s look at an example. Let’s say you have a Git

server on your network at git.ourcompany.com . If you clone from this, Git automat-

ically names it origin for you, pulls down all its data, creates a pointer to where its

master branch is, and names it origin/master locally; and you can’t move it. Git also

gives you your own master branch starting at the same place as origin’s master branch,

so you have something to work from (see Figure 3.22).

Figure 3.22: A Git clone gives you your own master branch and origin/master pointing

to origin’s master branch.

If you do some work on your local master branch, and, in the meantime, someone

else pushes to git.ourcompany.com and updates its master branch, then your histories

move forward differently. Also, as long as you stay out of contact with your origin

server, your origin/master pointer doesn’t move (see Figure 3.23).

To synchronize your work, you run a git fetch origin command. This command

looks up which server origin is (in this case, it’s git.ourcompany.com), fetches any

data from it that you don’t yet have, and updates your local database, moving your

origin/master pointer to its new, more up-to-date position (see Figure 3.24).

To demonstrate having multiple remote servers and what remote branches for those

remote projects look like, let’s assume you have another internal Git server that is used

only for development by one of your sprint teams. This server is at git.team1.ourcompany.com .

You can add it as a new remote reference to the project you’re currently working on by

59

PRO GIT SCOTT CHACON

Figure 3.23: Working locally and having someone push to your remote server makes

each history move forward differently.

Figure 3.24: The git fetch command updates your remote references.

running the git remote add command as we covered in Chapter 2. Name this remote

teamone , which will be your shortname for that whole URL (see Figure 3.25).

Now, you can run git fetch teamone to fetch everything server has that you don’t

have yet. Because that server is a subset of the data your origin server has right now,

Git fetches no data but sets a remote branch called teamone/master to point to the

commit that teamone has as its master branch (see Figure 3.26).

60

CHAPTER 3 GIT BRANCHING

Figure 3.25: Adding another server as a remote

Figure 3.26: You get a reference to teamone’s master branch position locally.

3.5.1 Pushing

When you want to share a branch with the world, you need to push it up to a remote

that you have write access to. Your local branches aren’t automatically synchronized to

the remotes you write to — you have to explicitly push the branches you want to share.

That way, you can use private branches do work you don’t want to share, and push up

only the topic branches you want to collaborate on.

If you have a branch named serverfix that you want to work on with others, you

can push it up the same way you pushed your first branch. Run git push (remote)

(branch) :

61

PRO GIT SCOTT CHACON

$ git push origin serverfix

Counting objects: 20, done.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (15/15), 1.74 KiB, done.

Total 15 (delta 5), reused 0 (delta 0)

To git@github.com:schacon/simplegit.git

* [new branch] serverfix -> serverfix

This is a bit of a shortcut. Git automatically expands the serverfix branchname

out to refs/heads/serverfix:refs/heads/serverfix , which means, “Take my server-

fix local branch and push it to update the remote’s serverfix branch.” We’ll go over

the refs/heads/ part in detail in Chapter 9, but you can generally leave it off. You

can also do git push origin serverfix:serverfix , which does the same thing — it

says, “Take my serverfix and make it the remote’s serverfix.” You can use this format

to push a local branch into a remote branch that is named differently. If you didn’t

want it to be called serverfix on the remote, you could instead run git push origin

serverfix:awesomebranch to push your local serverfix branch to the awesomebranch

branch on the remote project.

The next time one of your collaborators fetches from the server, they will get

a reference to where the server’s version of serverfix is under the remote branch

origin/serverfix :

$ git fetch origin

remote: Counting objects: 20, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 15 (delta 5), reused 0 (delta 0)

Unpacking objects: 100% (15/15), done.

From git@github.com:schacon/simplegit

* [new branch] serverfix -> origin/serverfix

It’s important to note that when you do a fetch that brings down new remote

branches, you don’t automatically have local, editable copies of them. In other words,

in this case, you don’t have a new serverfix branch— you only have an origin/serverfix

pointer that you can’t modify.

To merge this work into your current working branch, you can run git merge

origin/serverfix . If you want your own serverfix branch that you can work on,

you can base it off your remote branch:

$ git checkout -b serverfix origin/serverfix

Branch serverfix set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "serverfix"

This gives you a local branch that you can work on that starts where origin/serverfix

is.

3.5.2 Tracking Branches

Checking out a local branch from a remote branch automatically creates what is called

a tracking branch. Tracking branches are local branches that have a direct relationship

to a remote branch. If you’re on a tracking branch and type git push, Git automatically

knows which server and branch to push to. Also, running git pull while on one of

62

CHAPTER 3 GIT BRANCHING

these branches fetches all the remote references and then automatically merges in the

corresponding remote branch.

When you clone a repository, it generally automatically creates a master branch that

tracks origin/master . That’s why git push and git pull work out of the box with no

other arguments. However, you can set up other tracking branches if you wish — ones

that don’t track branches on origin and don’t track the master branch. The simple case

is the example you just saw, running git checkout -b [branch] [remotename]/[branch] .

If you have Git version 1.6.2 or later, you can also use the --track shorthand:

$ git checkout --track origin/serverfix

Branch serverfix set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "serverfix"

To set up a local branch with a different name than the remote branch, you can

easily use the first version with a different local branch name:

$ git checkout -b sf origin/serverfix

Branch sf set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "sf"

Now, your local branch sf will automatically push to and pull from origin/serverfix.

3.5.3 Deleting Remote Branches

Suppose you’re done with a remote branch — say, you and your collaborators are fin-

ished with a feature and have merged it into your remote’s master branch (or whatever

branch your stable codeline is in). You can delete a remote branch using the rather ob-

tuse syntax git push [remotename] :[branch] . If you want to delete your serverfix

branch from the server, you run the following:

$ git push origin :serverfix

To git@github.com:schacon/simplegit.git

- [deleted] serverfix

Boom. No more branch on your server. You may want to dog-ear this page, because

you’ll need that command, and you’ll likely forget the syntax. A way to remember this

command is by recalling the git push [remotename] [localbranch]:[remotebranch]

syntax that we went over a bit earlier. If you leave off the [localbranch] portion, then

you’re basically saying, “Take nothing on my side and make it be [remotebranch] .”

3.6 Rebasing

In Git, there are two main ways to integrate changes from one branch into another: the

merge and the rebase . In this section you’ll learn what rebasing is, how to do it, why

it’s a pretty amazing tool, and in what cases you won’t want to use it.

63

PRO GIT SCOTT CHACON

Figure 3.27: Your initial diverged commit history

3.6.1 The Basic Rebase

If you go back to an earlier example from the Merge section (see Figure 3.27), you can

see that you diverged your work and made commits on two different branches.

The easiest way to integrate the branches, as we’ve already covered, is the merge

command. It performs a three-way merge between the two latest branch snapshots (C3

and C4) and the most recent common ancestor of the two (C2), creating a new snapshot

(and commit), as shown in Figure 3.28.

Figure 3.28: Merging a branch to integrate the diverged work history

However, there is another way: you can take the patch of the change that was

introduced in C3 and reapply it on top of C4. In Git, this is called rebasing. With the

rebase command, you can take all the changes that were committed on one branch and

replay them on another one.

In this example, you’d run the following:

$ git checkout experiment

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: added staged command

It works by going to the common ancestor of the two branches (the one you’re on

and the one you’re rebasing onto), getting the diff introduced by each commit of the

branch you’re on, saving those diffs to temporary files, resetting the current branch to

the same commit as the branch you are rebasing onto, and finally applying each change

in turn. Figure 3.29 illustrates this process.

64

CHAPTER 3 GIT BRANCHING

Figure 3.29: Rebasing the change introduced in C3 onto C4

At this point, you can go back to the master branch and do a fast-forward merge

(see Figure 3.30).

Figure 3.30: Fast-forwarding the master branch

Now, the snapshot pointed to by C3 is exactly the same as the one that was pointed

to by C5 in the merge example. There is no difference in the end product of the inte-

gration, but rebasing makes for a cleaner history. If you examine the log of a rebased

branch, it looks like a linear history: it appears that all the work happened in series,

even when it originally happened in parallel.

Often, you’ll do this to make sure your commits apply cleanly on a remote branch

— perhaps in a project to which you’re trying to contribute but that you don’t main-

tain. In this case, you’d do your work in a branch and then rebase your work onto

origin/master when you were ready to submit your patches to the main project. That

way, the maintainer doesn’t have to do any integration work — just a fast-forward or a

clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether it’s

the last of the rebased commits for a rebase or the final merge commit after a merge, is

the same snapshot — it’s only the history that is different. Rebasing replays changes

from one line of work onto another in the order they were introduced, whereas merging

takes the endpoints and merges them together.

3.6.2 More Interesting Rebases

You can also have your rebase replay on something other than the rebase branch. Take

a history like Figure 3.31, for example. You branched a topic branch (server) to add

some server-side functionality to your project, and made a commit. Then, you branched

off that to make the client-side changes (client) and committed a few times. Finally,

you went back to your server branch and did a few more commits.

Suppose you decide that you want to merge your client-side changes into your

mainline for a release, but you want to hold off on the server-side changes until it’s

65

PRO GIT SCOTT CHACON

Figure 3.31: A history with a topic branch off another topic branch

tested further. You can take the changes on client that aren’t on server (C8 and C9) and

replay them on your master branch by using the --onto option of git rebase :

$ git rebase --onto master server client

This basically says, “Check out the client branch, figure out the patches from

the common ancestor of the client and server branches, and then replay them onto

master .” It’s a bit complex; but the result, shown in Figure 3.32, is pretty cool.

Figure 3.32: Rebasing a topic branch off another topic branch

Now you can fast-forward your master branch (see Figure 3.33):

$ git checkout master

$ git merge client

66

CHAPTER 3 GIT BRANCHING

Figure 3.33: Fast-forwarding your master branch to include the client branch changes

Let’s say you decide to pull in your server branch as well. You can rebase the

server branch onto the master branch without having to check it out first by running

git rebase [basebranch] [topicbranch] — which checks out the topic branch (in

this case, server) for you and replays it onto the base branch (master):

$ git rebase master server

This replays your server work on top of your master work, as shown in Figure

3.34.

Figure 3.34: Rebasing your server branch on top of your master branch

Then, you can fast-forward the base branch (master):

$ git checkout master

$ git merge server

You can remove the client and server branches because all the work is integrated

and you don’t need them anymore, leaving your history for this entire process looking

like Figure 3.35:

$ git branch -d client

$ git branch -d server

Figure 3.35: Final commit history

67

PRO GIT SCOTT CHACON

3.6.3 The Perils of Rebasing

Ahh, but the bliss of rebasing isn’t without its drawbacks, which can be summed up in

a single line:

Do not rebase commits that you have pushed to a public repository.

If you follow that guideline, you’ll be fine. If you don’t, people will hate you, and

you’ll be scorned by friends and family.

When you rebase stuff, you’re abandoning existing commits and creating new ones

that are similar but different. If you push commits somewhere and others pull them

down and base work on them, and then you rewrite those commits with git rebase

and push them up again, your collaborators will have to re-merge their work and things

will get messy when you try to pull their work back into yours.

Let’s look at an example of how rebasing work that you’ve made public can cause

problems. Suppose you clone from a central server and then do some work off that.

Your commit history looks like Figure 3.36.

Figure 3.36: Clone a repository, and base some work on it.

Now, someone else does more work that includes a merge, and pushes that work to

the central server. You fetch them and merge the new remote branch into your work,

making your history look something like Figure 3.37.

Next, the person who pushed the merged work decides to go back and rebase their

work instead; they do a git push --force to overwrite the history on the server. You

then fetch from that server, bringing down the new commits.

At this point, you have to merge this work in again, even though you’ve already

done so. Rebasing changes the SHA–1 hashes of these commits so to Git they look

like new commits, when in fact you already have the C4 work in your history (see

Figure 3.39).

You have to merge that work in at some point so you can keep up with the other

developer in the future. After you do that, your commit history will contain both the

C4 and C4’ commits, which have different SHA–1 hashes but introduce the same work

and have the same commit message. If you run a git log when your history looks

like this, you’ll see two commits that have the same author date and message, which

68

CHAPTER 3 GIT BRANCHING

Figure 3.37: Fetch more commits, and merge them into your work.

Figure 3.38: Someone pushes rebased commits, abandoning commits you’ve based

your work on.

will be confusing. Furthermore, if you push this history back up to the server, you’ll

reintroduce all those rebased commits to the central server, which can further confuse

people.

If you treat rebasing as a way to clean up and work with commits before you push

them, and if you only rebase commits that have never been available publicly, then

you’ll be fine. If you rebase commits that have already been pushed publicly, and

people may have based work on those commits, then you may be in for some frustrating

trouble.

69

PRO GIT SCOTT CHACON

Figure 3.39: You merge in the same work again into a new merge commit.

3.7 Summary

We’ve covered basic branching and merging in Git. You should feel comfortable cre-

ating and switching to new branches, switching between branches and merging local

branches together. You should also be able to share your branches by pushing them to

a shared server, working with others on shared branches and rebasing your branches

before they are shared.

70

Chapter 4

Git on the Server

At this point, you should be able to do most of the day-to-day tasks for which you’ll

be using Git. However, in order to do any collaboration in Git, you’ll need to have a

remote Git repository. Although you can technically push changes to and pull changes

from individuals’ repositories, doing so is discouraged because you can fairly easily

confuse what they’re working on if you’re not careful. Furthermore, you want your

collaborators to be able to access the repository even if your computer is offline —

having a more reliable common repository is often useful. Therefore, the preferred

method for collaborating with someone is to set up an intermediate repository that you

both have access to, and push to and pull from that. We’ll refer to this repository as a

“Git server”; but you’ll notice that it generally takes a tiny amount of resources to host

a Git repository, so you’ll rarely need to use an entire server for it.

Running a Git server is simple. First, you choose which protocols you want your

server to communicate with. The first section of this chapter will cover the available

protocols and the pros and cons of each. The next sections will explain some typical

setups using those protocols and how to get your server running with them. Last, we’ll

go over a few hosted options, if you don’t mind hosting your code on someone else’s

server and don’t want to go through the hassle of setting up and maintaining your own

server.

If you have no interest in running your own server, you can skip to the last section

of the chapter to see some options for setting up a hosted account and then move on to

the next chapter, where we discuss the various ins and outs of working in a distributed

source control environment.

A remote repository is generally a bare repository — a Git repository that has no

working directory. Because the repository is only used as a collaboration point, there is

no reason to have a snapshot checked out on disk; it’s just the Git data. In the simplest

terms, a bare repository is the contents of your project’s .git directory and nothing

else.

4.1 The Protocols

Git can use four major network protocols to transfer data: Local, Secure Shell (SSH),

Git, and HTTP. Here we’ll discuss what they are and in what basic circumstances you

would want (or not want) to use them.

71

PRO GIT SCOTT CHACON

It’s important to note that with the exception of the HTTP protocols, all of these

require Git to be installed and working on the server.

4.1.1 Local Protocol

The most basic is the Local protocol, in which the remote repository is in another

directory on disk. This is often used if everyone on your team has access to a shared

filesystem such as an NFS mount, or in the less likely case that everyone logs in to the

same computer. The latter wouldn’t be ideal, because all your code repository instances

would reside on the same computer, making a catastrophic loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from

a local file-based repository. To clone a repository like this or to add one as a remote

to an existing project, use the path to the repository as the URL. For example, to clone

a local repository, you can run something like this:

$ git clone /opt/git/project.git

Or you can do this:

$ git clone file:///opt/git/project.git

Git operates slightly differently if you explicitly specify file:// at the beginning

of the URL. If you just specify the path, Git tries to use hardlinks or directly copy

the files it needs. If you specify file:// , Git fires up the processes that it normally

uses to transfer data over a network which is generally a lot less efficient method of

transferring the data. The main reason to specify the file:// prefix is if you want a

clean copy of the repository with extraneous references or objects left out — generally

after an import from another version-control system or something similar (see Chapter

9 for maintenance tasks). We’ll use the normal path here because doing so is almost

always faster.

To add a local repository to an existing Git project, you can run something like this:

$ git remote add local_proj /opt/git/project.git

Then, you can push to and pull from that remote as though you were doing so over

a network.

The Pros

The pros of file-based repositories are that they’re simple and they use existing

file permissions and network access. If you already have a shared filesystem to which

your whole team has access, setting up a repository is very easy. You stick the bare

repository copy somewhere everyone has shared access to and set the read/write per-

missions as you would for any other shared directory. We’ll discuss how to export a

bare repository copy for this purpose in the next section, “Getting Git on a Server.”

This is also a nice option for quickly grabbing work from someone else’s working

repository. If you and a co-worker are working on the same project and they want

you to check something out, running a command like git pull /home/john/project

is often easier than them pushing to a remote server and you pulling down.

The Cons

The cons of this method are that shared access is generally more difficult to set up

and reach from multiple locations than basic network access. If you want to push from

72

CHAPTER 4 GIT ON THE SERVER

your laptop when you’re at home, you have to mount the remote disk, which can be

difficult and slow compared to network-based access.

It’s also important to mention that this isn’t necessarily the fastest option if you’re

using a shared mount of some kind. A local repository is fast only if you have fast

access to the data. A repository on NFS is often slower than the repository over SSH

on the same server, allowing Git to run off local disks on each system.

4.1.2 The SSH Protocol

Probably the most common transport protocol for Git is SSH. This is because SSH

access to servers is already set up in most places — and if it isn’t, it’s easy to do. SSH

is also the only network-based protocol that you can easily read from and write to. The

other two network protocols (HTTP and Git) are generally read-only, so even if you

have them available for the unwashed masses, you still need SSH for your own write

commands. SSH is also an authenticated network protocol; and because it’s ubiquitous,

it’s generally easy to set up and use.

To clone a Git repository over SSH, you can specify ssh:// URL like this:

$ git clone ssh://user@server:project.git

Or you can not specify a protocol — Git assumes SSH if you aren’t explicit:

$ git clone user@server:project.git

You can also not specify a user, and Git assumes the user you’re currently logged

in as.

The Pros

The pros of using SSH are many. First, you basically have to use it if you want

authenticated write access to your repository over a network. Second, SSH is rela-

tively easy to set up — SSH daemons are commonplace, many network admins have

experience with them, and many OS distributions are set up with them or have tools

to manage them. Next, access over SSH is secure — all data transfer is encrypted and

authenticated. Last, like the Git and Local protocols, SSH is efficient, making the data

as compact as possible before transferring it.

The Cons

The negative aspect of SSH is that you can’t serve anonymous access of your repos-

itory over it. People must have access to your machine over SSH to access it, even in a

read-only capacity, which doesn’t make SSH access conducive to open source projects.

If you’re using it only within your corporate network, SSH may be the only proto-

col you need to deal with. If you want to allow anonymous read-only access to your

projects, you’ll have to set up SSH for you to push over but something else for others

to pull over.

4.1.3 The Git Protocol

Next is the Git protocol. This is a special daemon that comes packaged with Git; it

listens on a dedicated port (9418) that provides a service similar to the SSH protocol,

but with absolutely no authentication. In order for a repository to be served over the Git

protocol, you must create the git-export-daemon-ok file — the daemon won’t serve a

repository without that file in it — but other than that there is no security. Either the

73

PRO GIT SCOTT CHACON

Git repository is available for everyone to clone or it isn’t. This means that there is

generally no pushing over this protocol. You can enable push access; but given the lack

of authentication, if you turn on push access, anyone on the internet who finds your

project’s URL could push to your project. Suffice it to say that this is rare.

The Pros

The Git protocol is the fastest transfer protocol available. If you’re serving a lot

of traffic for a public project or serving a very large project that doesn’t require user

authentication for read access, it’s likely that you’ll want to set up a Git daemon to

serve your project. It uses the same data-transfer mechanism as the SSH protocol but

without the encryption and authentication overhead.

The Cons

The downside of the Git protocol is the lack of authentication. It’s generally un-

desirable for the Git protocol to be the only access to your project. Generally, you’ll

pair it with SSH access for the few developers who have push (write) access and have

everyone else use git:// for read-only access. It’s also probably the most difficult pro-

tocol to set up. It must run its own daemon, which is custom — we’ll look at setting

one up in the “Gitosis” section of this chapter — it requires xinetd configuration or the

like, which isn’t always a walk in the park. It also requires firewall access to port 9418,

which isn’t a standard port that corporate firewalls always allow. Behind big corporate

firewalls, this obscure port is commonly blocked.

4.1.4 The HTTP/S Protocol

Last we have the HTTP protocol. The beauty of the HTTP or HTTPS protocol is the

simplicity of setting it up. Basically, all you have to do is put the bare Git repository

under your HTTP document root and set up a specific post-update hook, and you’re

done (See Chapter 7 for details on Git hooks). At that point, anyone who can access

the web server under which you put the repository can also clone your repository. To

allow read access to your repository over HTTP, do something like this:

$ cd /var/www/htdocs/

$ git clone --bare /path/to/git_project gitproject.git

$ cd gitproject.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

That’s all. The post-update hook that comes with Git by default runs the appro-

priate command (git update-server-info) to make HTTP fetching and cloning work

properly. This command is run when you push to this repository over SSH; then, other

people can clone via something like

$ git clone http://example.com/gitproject.git

In this particular case, we’re using the /var/www/htdocs path that is common for

Apache setups, but you can use any static web server — just put the bare repository

in its path. The Git data is served as basic static files (see Chapter 9 for details about

exactly how it’s served).

It’s possible to make Git push over HTTP as well, although that technique isn’t

as widely used and requires you to set up complex WebDAV requirements. Because

it’s rarely used, we won’t cover it in this book. If you’re interested in using the

74

CHAPTER 4 GIT ON THE SERVER

HTTP-push protocols, you can read about preparing a repository for this purpose at

http://www.kernel.org/pub/software/scm/git/docs/howto/setup-git-server-over-http.txt .

One nice thing about making Git push over HTTP is that you can use any WebDAV

server, without specific Git features; so, you can use this functionality if your web-

hosting provider supports WebDAV for writing updates to your web site.

The Pros

The upside of using the HTTP protocol is that it’s easy to set up. Running the

handful of required commands gives you a simple way to give the world read access to

your Git repository. It takes only a few minutes to do. The HTTP protocol also isn’t

very resource intensive on your server. Because it generally uses a static HTTP server

to serve all the data, a normal Apache server can serve thousands of files per second on

average — it’s difficult to overload even a small server.

You can also serve your repositories read-only over HTTPS, which means you can

encrypt the content transfer; or you can go so far as to make the clients use specific

signed SSL certificates. Generally, if you’re going to these lengths, it’s easier to use

SSH public keys; but it may be a better solution in your specific case to use signed

SSL certificates or other HTTP-based authentication methods for read-only access over

HTTPS.

Another nice thing is that HTTP is such a commonly used protocol that corporate

firewalls are often set up to allow traffic through this port.

The Cons

The downside of serving your repository over HTTP is that it’s relatively inefficient

for the client. It generally takes a lot longer to clone or fetch from the repository, and

you often have a lot more network overhead and transfer volume over HTTP than with

any of the other network protocols. Because it’s not as intelligent about transferring

only the data you need — there is no dynamic work on the part of the server in these

transactions — the HTTP protocol is often referred to as a dumb protocol. For more

information about the differences in efficiency between the HTTP protocol and the

other protocols, see Chapter 9.

4.2 Getting Git on a Server

In order to initially set up any Git server, you have to export an existing repository into

a new bare repository — a repository that doesn’t contain a working directory. This is

generally straightforward to do. In order to clone your repository to create a new bare

repository, you run the clone command with the --bare option. By convention, bare

repository directories end in .git , like so:

$ git clone --bare my_project my_project.git

Initialized empty Git repository in /opt/projects/my_project.git/

The output for this command is a little confusing. Since clone is basically a git

init then a git fetch , we see some output from the git init part, which creates an

empty directory. The actual object transfer gives no output, but it does happen. You

should now have a copy of the Git directory data in your my project.git directory.

This is roughly equivalent to something like

$ cp -Rf my_project/.git my_project.git

75

PRO GIT SCOTT CHACON

There are a couple of minor differences in the configuration file; but for your pur-

pose, this is close to the same thing. It takes the Git repository by itself, without a

working directory, and creates a directory specifically for it alone.

4.2.1 Putting the Bare Repository on a Server

Now that you have a bare copy of your repository, all you need to do is put it on a server

and set up your protocols. Let’s say you’ve set up a server called git.example.com

that you have SSH access to, and you want to store all your Git repositories under

the /opt/git directory. You can set up your new repository by copying your bare

repository over:

$ scp -r my_project.git user@git.example.com:/opt/git

At this point, other users who have SSH access to the same server which has read-

access to the /opt/git directory can clone your repository by running

$ git clone user@git.example.com:/opt/git/my_project.git

If a user SSHs into a server and has write access to the /opt/git/my project.git

directory, they will also automatically have push access. Git will automatically add

group write permissions to a repository properly if you run the git init command

with the --shared option.

$ ssh user@git.example.com

$ cd /opt/git/my_project.git

$ git init --bare --shared

You see how easy it is to take a Git repository, create a bare version, and place it

on a server to which you and your collaborators have SSH access. Now you’re ready

to collaborate on the same project.

It’s important to note that this is literally all you need to do to run a useful Git

server to which several people have access — just add SSH-able accounts on a server,

and stick a bare repository somewhere that all those users have read and write access

to. You’re ready to go — nothing else needed.

In the next few sections, you’ll see how to expand to more sophisticated setups.

This discussion will include not having to create user accounts for each user, adding

public read access to repositories, setting up web UIs, using the Gitosis tool, and more.

However, keep in mind that to collaborate with a couple of people on a private project,

all you need is an SSH server and a bare repository.

4.2.2 Small Setups

If you’re a small outfit or are just trying out Git in your organization and have only

a few developers, things can be simple for you. One of the most complicated aspects

of setting up a Git server is user management. If you want some repositories to be

read-only to certain users and read/write to others, access and permissions can be a bit

difficult to arrange.

SSH Access

If you already have a server to which all your developers have SSH access, it’s

generally easiest to set up your first repository there, because you have to do almost

76

CHAPTER 4 GIT ON THE SERVER

no work (as we covered in the last section). If you want more complex access control

type permissions on your repositories, you can handle them with the normal filesystem

permissions of the operating system your server runs.

If you want to place your repositories on a server that doesn’t have accounts for

everyone on your team whom you want to have write access, then you must set up SSH

access for them. We assume that if you have a server with which to do this, you already

have an SSH server installed, and that’s how you’re accessing the server.

There are a few ways you can give access to everyone on your team. The first is to

set up accounts for everybody, which is straightforward but can be cumbersome. You

may not want to run adduser and set temporary passwords for every user.

A second method is to create a single ‘git’ user on the machine, ask every user

who is to have write access to send you an SSH public key, and add that key to the

/.ssh/authorized keys file of your new ‘git’ user. At that point, everyone will be able

to access that machine via the ‘git’ user. This doesn’t affect the commit data in any

way — the SSH user you connect as doesn’t affect the commits you’ve recorded.

Another way to do it is to have your SSH server authenticate from an LDAP server

or some other centralized authentication source that you may already have set up. As

long as each user can get shell access on the machine, any SSH authentication mecha-

nism you can think of should work.

4.3 Generating Your SSH Public Key

That being said, many Git servers authenticate using SSH public keys. In order to

provide a public key, each user in your system must generate one if they don’t already

have one. This process is similar across all operating systems. First, you should check

to make sure you don’t already have a key. By default, a user’s SSH keys are stored in

that user’s /.ssh directory. You can easily check to see if you have a key already by

going to that directory and listing the contents:

$ cd /̃.ssh

$ ls

authorized_keys2 id_dsa known_hosts

config id_dsa.pub

You’re looking for a pair of files named something and something.pub, where the

something is usually id dsa or id rsa . The .pub file is your public key, and the other

file is your private key. If you don’t have these files (or you don’t even have a .ssh

directory), you can create them by running a program called ssh-keygen , which is

provided with the SSH package on Linux/Mac systems and comes with the MSysGit

package on Windows:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/schacon/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /Users/schacon/.ssh/id_rsa.

Your public key has been saved in /Users/schacon/.ssh/id_rsa.pub.

The key fingerprint is:

43:c5:5b:5f:b1:f1:50:43:ad:20:a6:92:6a:1f:9a:3a schacon@agadorlaptop.local

77

PRO GIT SCOTT CHACON

First it confirms where you want to save the key (.ssh/id rsa), and then it asks

twice for a passphrase, which you can leave empty if you don’t want to type a password

when you use the key.

Now, each user that does this has to send their public key to you or whoever is

administrating the Git server (assuming you’re using an SSH server setup that requires

public keys). All they have to do is copy the contents of the .pub file and e-mail it. The

public keys look something like this:

$ cat /̃.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAklOUpkDHrfHY17SbrmTIpNLTGK9Tjom/BWDSU

GPl+nafzlHDTYW7hdI4yZ5ew18JH4JW9jbhUFrviQzM7xlELEVf4h9lFX5QVkbPppSwg0cda3

Pbv7kOdJ/MTyBlWXFCR+HAo3FXRitBqxiX1nKhXpHAZsMciLq8V6RjsNAQwdsdMFvSlVK/7XA

t3FaoJoAsncM1Q9x5+3V0Ww68/eIFmb1zuUFljQJKprrX88XypNDvjYNby6vw/Pb0rwert/En

mZ+AW4OZPnTPI89ZPmVMLuayrD2cE86Z/il8b+gw3r3+1nKatmIkjn2so1d01QraTlMqVSsbx

NrRFi9wrf+M7Q== schacon@agadorlaptop.local

For a more in-depth tutorial on creating an SSH key on multiple operating systems,

see the GitHub guide on SSH keys at http://github.com/guides/providing-your-ssh-key .

4.4 Setting Up the Server

Let’s walk through setting up SSH access on the server side. In this example, you’ll

use the authorized keys method for authenticating your users. We also assume you’re

running a standard Linux distribution like Ubuntu. First, you create a ‘git’ user and a

.ssh directory for that user.

$ sudo adduser git

$ su git

$ cd

$ mkdir .ssh

Next, you need to add some developer SSH public keys to the authorized keys file

for that user. Let’s assume you’ve received a few keys by e-mail and saved them to

temporary files. Again, the public keys look something like this:

$ cat /tmp/id_rsa.john.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCB007n/ww+ouN4gSLKssMxXnBOvf9LGt4L

ojG6rs6hPB09j9R/T17/x4lhJA0F3FR1rP6kYBRsWj2aThGw6HXLm9/5zytK6Ztg3RPKK+4k

Yjh6541NYsnEAZuXz0jTTyAUfrtU3Z5E003C4oxOj6H0rfIF1kKI9MAQLMdpGW1GYEIgS9Ez

Sdfd8AcCIicTDWbqLAcU4UpkaX8KyGlLwsNuuGztobF8m72ALC/nLF6JLtPofwFBlgc+myiv

O7TCUSBdLQlgMVOFq1I2uPWQOkOWQAHukEOmfjy2jctxSDBQ220ymjaNsHT4kgtZg2AYYgPq

dAv8JggJICUvax2T9va5 gsg-keypair

You just append them to your authorized keys file:

$ cat /tmp/id_rsa.john.pub >> /̃.ssh/authorized_keys

$ cat /tmp/id_rsa.josie.pub >> /̃.ssh/authorized_keys

$ cat /tmp/id_rsa.jessica.pub >> /̃.ssh/authorized_keys

Now, you can set up an empty repository for them by running git init with the

--bare option, which initializes the repository without a working directory:

78

CHAPTER 4 GIT ON THE SERVER

$ cd /opt/git

$ mkdir project.git

$ cd project.git

$ git --bare init

Then, John, Josie, or Jessica can push the first version of their project into that

repository by adding it as a remote and pushing up a branch. Note that someone must

shell onto the machine and create a bare repository every time you want to add a project.

Let’s use gitserver as the hostname of the server on which you’ve set up your ‘git’

user and repository. If you’re running it internally, and you set up DNS for gitserver

to point to that server, then you can use the commands pretty much as is:

on Johns computer

$ cd myproject

$ git init

$ git add .

$ git commit -m ’initial commit’

$ git remote add origin git@gitserver:/opt/git/project.git

$ git push origin master

At this point, the others can clone it down and push changes back up just as easily:

$ git clone git@gitserver:/opt/git/project.git

$ vim README

$ git commit -am ’fix for the README file’

$ git push origin master

With this method, you can quickly get a read/write Git server up and running for a

handful of developers.

As an extra precaution, you can easily restrict the ‘git’ user to only doing Git activ-

ities with a limited shell tool called git-shell that comes with Git. If you set this as

your ‘git’ user’s login shell, then the ‘git’ user can’t have normal shell access to your

server. To use this, specify git-shell instead of bash or csh for your user’s login shell.

To do so, you’ll likely have to edit your /etc/passwd file:

$ sudo vim /etc/passwd

At the bottom, you should find a line that looks something like this:

git:x:1000:1000::/home/git:/bin/sh

Change /bin/sh to /usr/bin/git-shell (or run which git-shell to see where it’s

installed). The line should look something like this:

git:x:1000:1000::/home/git:/usr/bin/git-shell

Now, the ‘git’ user can only use the SSH connection to push and pull Git repos-

itories and can’t shell onto the machine. If you try, you’ll see a login rejection like

this:

$ ssh git@gitserver

fatal: What do you think I am? A shell?

Connection to gitserver closed.

79

PRO GIT SCOTT CHACON

4.5 Public Access

What if you want anonymous read access to your project? Perhaps instead of hosting

an internal private project, you want to host an open source project. Or maybe you

have a bunch of automated build servers or continuous integration servers that change

a lot, and you don’t want to have to generate SSH keys all the time — you just want to

add simple anonymous read access.

Probably the simplest way for smaller setups is to run a static web server with

its document root where your Git repositories are, and then enable that post-update

hook we mentioned in the first section of this chapter. Let’s work from the previous

example. Say you have your repositories in the /opt/git directory, and an Apache

server is running on your machine. Again, you can use any web server for this; but as

an example, we’ll demonstrate some basic Apache configurations that should give you

an idea of what you might need.

First you need to enable the hook:

$ cd project.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

If you’re using a version of Git earlier than 1.6, the mv command isn’t necessary —

Git started naming the hooks examples with the .sample postfix only recently.

What does this post-update hook do? It looks basically like this:

$ cat .git/hooks/post-update

#!/bin/sh

exec git-update-server-info

This means that when you push to the server via SSH, Git will run this command

to update the files needed for HTTP fetching.

Next, you need to add a VirtualHost entry to your Apache configuration with the

document root as the root directory of your Git projects. Here, we’re assuming that you

have wildcard DNS set up to send *.gitserver to whatever box you’re using to run all

this:

<VirtualHost *:80>

ServerName git.gitserver

DocumentRoot /opt/git

<Directory /opt/git/>

Order allow, deny

allow from all

</Directory>

</VirtualHost>

You’ll also need to set the Unix user group of the /opt/git directories to www-data

so your web server can read-access the repositories, because the Apache instance run-

ning the CGI script will (by default) be running as that user:

$ chgrp -R www-data /opt/git

When you restart Apache, you should be able to clone your repositories under that

directory by specifying the URL for your project:

80

CHAPTER 4 GIT ON THE SERVER

$ git clone http://git.gitserver/project.git

This way, you can set up HTTP-based read access to any of your projects for a fair

number of users in a few minutes. Another simple option for public unauthenticated

access is to start a Git daemon, although that requires you to daemonize the process -

we’ll cover this option in the next section, if you prefer that route.

4.6 GitWeb

Now that you have basic read/write and read-only access to your project, you may

want to set up a simple web-based visualizer. Git comes with a CGI script called

GitWeb that is commonly used for this. You can see GitWeb in use at sites like

http://git.kernel.org (see Figure 4.1).

Figure 4.1: The GitWeb web-based user interface

If you want to check out what GitWeb would look like for your project, Git comes

with a command to fire up a temporary instance if you have a lightweight server on

your system like lighttpd or webrick . On Linux machines, lighttpd is often installed,

so you may be able to get it to run by typing git instaweb in your project directory. If

you’re running a Mac, Leopard comes preinstalled with Ruby, so webrick may be your

best bet. To start instaweb with a non-lighttpd handler, you can run it with the --httpd

option.

$ git instaweb --httpd=webrick

[2009-02-21 10:02:21] INFO WEBrick 1.3.1

[2009-02-21 10:02:21] INFO ruby 1.8.6 (2008-03-03) [universal-darwin9.0]

81

PRO GIT SCOTT CHACON

That starts up an HTTPD server on port 1234 and then automatically starts a web

browser that opens on that page. It’s pretty easy on your part. When you’re done and

want to shut down the server, you can run the same command with the --stop option:

$ git instaweb --httpd=webrick --stop

If you want to run the web interface on a server all the time for your team or for an

open source project you’re hosting, you’ll need to set up the CGI script to be served by

your normal web server. Some Linux distributions have a gitweb package that you may

be able to install via apt or yum , so you may want to try that first. We’ll walk though

installing GitWeb manually very quickly. First, you need to get the Git source code,

which GitWeb comes with, and generate the custom CGI script:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/

$ make GITWEB_PROJECTROOT="/opt/git" \

prefix=/usr gitweb/gitweb.cgi

$ sudo cp -Rf gitweb /var/www/

Notice that you have to tell the command where to find your Git repositories with

the GITWEB PROJECTROOT variable. Now, you need to make Apache use CGI for that

script, for which you can add a VirtualHost:

<VirtualHost *:80>

ServerName gitserver

DocumentRoot /var/www/gitweb

<Directory /var/www/gitweb>

Options ExecCGI +FollowSymLinks +SymLinksIfOwnerMatch

AllowOverride All

order allow,deny

Allow from all

AddHandler cgi-script cgi

DirectoryIndex gitweb.cgi

</Directory>

</VirtualHost>

Again, GitWeb can be served with any CGI capable web server; if you prefer to

use something else, it shouldn’t be difficult to set up. At this point, you should be

able to visit http://gitserver/ to view your repositories online, and you can use

http://git.gitserver to clone and fetch your repositories over HTTP.

4.7 Gitosis

Keeping all users’ public keys in the authorized keys file for access works well only

for a while. When you have hundreds of users, it’s much more of a pain to manage that

process. You have to shell onto the server each time, and there is no access control —

everyone in the file has read and write access to every project.

At this point, you may want to turn to a widely used software project called Gitosis.

Gitosis is basically a set of scripts that help you manage the authorized keys file as

well as implement some simple access controls. The really interesting part is that the

UI for this tool for adding people and determining access isn’t a web interface but a

82

CHAPTER 4 GIT ON THE SERVER

special Git repository. You set up the information in that project; and when you push

it, Gitosis reconfigures the server based on that, which is cool.

Installing Gitosis isn’t the simplest task ever, but it’s not too difficult. It’s easiest to

use a Linux server for it — these examples use a stock Ubuntu 8.10 server.

Gitosis requires some Python tools, so first you have to install the Python setuptools

package, which Ubuntu provides as python-setuptools:

$ apt-get install python-setuptools

Next, you clone and install Gitosis from the project’s main site:

$ git clone git://eagain.net/gitosis.git

$ cd gitosis

$ sudo python setup.py install

That installs a couple of executables that Gitosis will use. Next, Gitosis wants to

put its repositories under /home/git , which is fine. But you have already set up your

repositories in /opt/git , so instead of reconfiguring everything, you create a symlink:

$ ln -s /opt/git /home/git/repositories

Gitosis is going to manage your keys for you, so you need to remove the current

file, re-add the keys later, and let Gitosis control the authorized keys file automatically.

For now, move the authorized keys file out of the way:

$ mv /home/git/.ssh/authorized_keys /home/git/.ssh/ak.bak

Next you need to turn your shell back on for the ‘git’ user, if you changed it to the

git-shell command. People still won’t be able to log in, but Gitosis will control that

for you. So, let’s change this line in your /etc/passwd file

git:x:1000:1000::/home/git:/usr/bin/git-shell

back to this:

git:x:1000:1000::/home/git:/bin/sh

Now it’s time to initialize Gitosis. You do this by running the gitosis-init com-

mand with your personal public key. If your public key isn’t on the server, you’ll have

to copy it there:

$ sudo -H -u git gitosis-init < /tmp/id_dsa.pub

Initialized empty Git repository in /opt/git/gitosis-admin.git/

Reinitialized existing Git repository in /opt/git/gitosis-admin.git/

This lets the user with that key modify the main Git repository that controls the

Gitosis setup. Next, you have to manually set the execute bit on the post-update script

for your new control repository.

$ sudo chmod 755 /opt/git/gitosis-admin.git/hooks/post-update

You’re ready to roll. If you’re set up correctly, you can try to SSH into your server

as the user for which you added the public key to initialize Gitosis. You should see

something like this:

83

PRO GIT SCOTT CHACON

$ ssh git@gitserver

PTY allocation request failed on channel 0

fatal: unrecognized command ’gitosis-serve schacon@quaternion’

Connection to gitserver closed.

That means Gitosis recognized you but shut you out because you’re not trying to

do any Git commands. So, let’s do an actual Git command — you’ll clone the Gitosis

control repository:

on your local computer

$ git clone git@gitserver:gitosis-admin.git

Now you have a directory named gitosis-admin , which has two major parts:

$ cd gitosis-admin

$ find .

./gitosis.conf

./keydir

./keydir/scott.pub

The gitosis.conf file is the control file you use to specify users, repositories, and

permissions. The keydir directory is where you store the public keys of all the users

who have any sort of access to your repositories — one file per user. The name of the

file in keydir (in the previous example, scott.pub) will be different for you — Gitosis

takes that name from the description at the end of the public key that was imported

with the gitosis-init script.

If you look at the gitosis.conf file, it should only specify information about the

gitosis-admin project that you just cloned:

$ cat gitosis.conf

[gitosis]

[group gitosis-admin]

writable = gitosis-admin

members = scott

It shows you that the ‘scott’ user — the user with whose public key you initialized

Gitosis — is the only one who has access to the gitosis-admin project.

Now, let’s add a new project for you. You’ll add a new section called mobile where

you’ll list the developers on your mobile team and projects that those developers need

access to. Because ‘scott’ is the only user in the system right now, you’ll add him as

the only member, and you’ll create a new project called iphone project to start on:

[group mobile]

writable = iphone_project

members = scott

Whenever you make changes to the gitosis-admin project, you have to commit the

changes and push them back up to the server in order for them to take effect:

$ git commit -am ’add iphone_project and mobile group’

[master]: created 8962da8: "changed name"

1 files changed, 4 insertions(+), 0 deletions(-)

84

CHAPTER 4 GIT ON THE SERVER

$ git push

Counting objects: 5, done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 272 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

To git@gitserver:/opt/git/gitosis-admin.git

fb27aec..8962da8 master -> master

You can make your first push to the new iphone project project by adding your

server as a remote to your local version of the project and pushing. You no longer have

to manually create a bare repository for new projects on the server — Gitosis creates

them automatically when it sees the first push:

$ git remote add origin git@gitserver:iphone_project.git

$ git push origin master

Initialized empty Git repository in /opt/git/iphone_project.git/

Counting objects: 3, done.

Writing objects: 100% (3/3), 230 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

To git@gitserver:iphone_project.git

* [new branch] master -> master

Notice that you don’t need to specify the path (in fact, doing so won’t work), just a

colon and then the name of the project — Gitosis finds it for you.

You want to work on this project with your friends, so you’ll have to re-add their

public keys. But instead of appending them manually to the /.ssh/authorized keys

file on your server, you’ll add them, one key per file, into the keydir directory. How

you name the keys determines how you refer to the users in the gitosis.conf file. Let’s

re-add the public keys for John, Josie, and Jessica:

$ cp /tmp/id_rsa.john.pub keydir/john.pub

$ cp /tmp/id_rsa.josie.pub keydir/josie.pub

$ cp /tmp/id_rsa.jessica.pub keydir/jessica.pub

Now you can add them all to your ‘mobile’ team so they have read and write access

to iphone project :

[group mobile]

writable = iphone_project

members = scott john josie jessica

After you commit and push that change, all four users will be able to read from and

write to that project.

Gitosis has simple access controls as well. If you want John to have only read

access to this project, you can do this instead:

[group mobile]

writable = iphone_project

members = scott josie jessica

[group mobile_ro]

readable = iphone_project

members = john

85

PRO GIT SCOTT CHACON

Now John can clone the project and get updates, but Gitosis won’t allow him to

push back up to the project. You can create as many of these groups as you want, each

containing different users and projects. You can also specify another group as one of

the members, to inherit all of its members automatically.

If you have any issues, it may be useful to add loglevel=DEBUG under the [gitosis]

section. If you’ve lost push access by pushing a messed-up configuration, you can

manually fix the file on the server under /home/git/.gitosis.conf — the file from

which Gitosis reads its info. A push to the project takes the gitosis.conf file you just

pushed up and sticks it there. If you edit that file manually, it remains like that until the

next successful push to the gitosis-admin project.

4.8 Git Daemon

For public, unauthenticated read access to your projects, you’ll want to move past the

HTTP protocol and start using the Git protocol. The main reason is speed. The Git

protocol is far more efficient and thus faster than the HTTP protocol, so using it will

save your users time.

Again, this is for unauthenticated read-only access. If you’re running this on a

server outside your firewall, it should only be used for projects that are publicly visible

to the world. If the server you’re running it on is inside your firewall, you might use

it for projects that a large number of people or computers (continuous integration or

build servers) have read-only access to, when you don’t want to have to add an SSH

key for each.

In any case, the Git protocol is relatively easy to set up. Basically, you need to run

this command in a daemonized manner:

git daemon --reuseaddr --base-path=/opt/git/ /opt/git/

--reuseaddr allows the server to restart without waiting for old connections to time

out, the --base-path option allows people to clone projects without specifying the

entire path, and the path at the end tells the Git daemon where to look for repositories

to export. If you’re running a firewall, you’ll also need to punch a hole in it at port

9418 on the box you’re setting this up on.

You can daemonize this process a number of ways, depending on the operating

system you’re running. On an Ubuntu machine, you use an Upstart script. So, in the

following file

/etc/event.d/local-git-daemon

you put this script:

start on startup

stop on shutdown

exec /usr/bin/git daemon \

--user=git --group=git \

--reuseaddr \

--base-path=/opt/git/ \

/opt/git/

respawn

86

CHAPTER 4 GIT ON THE SERVER

For security reasons, it is strongly encouraged to have this daemon run as a user

with read-only permissions to the repositories you can easily do this by creating a new

user ‘git-ro’ and running the daemon as them. For the sake of simplicity we’ll simply

run it as the same ‘git’ user that Gitosis is running as.

When you restart your machine, your Git daemon will start automatically and

respawn if it goes down. To get it running without having to reboot, you can run

this:

initctl start local-git-daemon

On other systems, you may want to use xinetd , a script in your sysvinit system, or

something else— as long as you get that command daemonized and watched somehow.

Next, you have to tell your Gitosis server which repositories to allow unauthen-

ticated Git server-based access to. If you add a section for each repository, you can

specify the ones from which you want your Git daemon to allow reading. If you want

to allow Git protocol access for your iphone project, you add this to the end of the

gitosis.conf file:

[repo iphone_project]

daemon = yes

When that is committed and pushed up, your running daemon should start serving

requests for the project to anyone who has access to port 9418 on your server.

If you decide not to use Gitosis, but you want to set up a Git daemon, you’ll have

to run this on each project you want the Git daemon to serve:

$ cd /path/to/project.git

$ touch git-daemon-export-ok

The presence of that file tells Git that it’s OK to serve this project without authen-

tication.

Gitosis can also control which projects GitWeb shows. First, you need to add some-

thing like the following to the /etc/gitweb.conf file:

$projects_list = "/home/git/gitosis/projects.list";

$projectroot = "/home/git/repositories";

$export_ok = "git-daemon-export-ok";

@git_base_url_list = (’git://gitserver’);

You can control which projects GitWeb lets users browse by adding or removing

a gitweb setting in the Gitosis configuration file. For instance, if you want the iphone

project to show up on GitWeb, you make the repo setting look like this:

[repo iphone_project]

daemon = yes

gitweb = yes

Now, if you commit and push the project, GitWeb will automatically start showing

your iphone project.

87

PRO GIT SCOTT CHACON

4.9 Hosted Git

If you don’t want to go through all of the work involved in setting up your own Git

server, you have several options for hosting your Git projects on an external dedicated

hosting site. Doing so offers a number of advantages: a hosting site is generally quick

to set up and easy to start projects on, and no server maintenance or monitoring is

involved. Even if you set up and run your own server internally, you may still want to

use a public hosting site for your open source code — it’s generally easier for the open

source community to find and help you with.

These days, you have a huge number of hosting options to choose from, each

with different advantages and disadvantages. To see an up-to-date list, check out the

GitHosting page on the main Git wiki:

http://git.or.cz/gitwiki/GitHosting

Because we can’t cover all of them, and because I happen to work at one of them,

we’ll use this section to walk through setting up an account and creating a new project

at GitHub. This will give you an idea of what is involved.

GitHub is by far the largest open source Git hosting site and it’s also one of the

very few that offers both public and private hosting options so you can keep your open

source and private commercial code in the same place. In fact, we used GitHub to

privately collaborate on this book.

4.9.1 GitHub

GitHub is slightly different than most code-hosting sites in the way that it namespaces

projects. Instead of being primarily based on the project, GitHub is user centric. That

means when I host my grit project on GitHub, you won’t find it at github.com/grit

but instead at github.com/schacon/grit . There is no canonical version of any project,

which allows a project to move from one user to another seamlessly if the first author

abandons the project.

GitHub is also a commercial company that charges for accounts that maintain pri-

vate repositories, but anyone can quickly get a free account to host as many open source

projects as they want. We’ll quickly go over how that is done.

4.9.2 Setting Up a User Account

The first thing you need to do is set up a free user account. If you visit the Pricing and

Signup page at http://github.com/plans and click the “Sign Up” button on the Free

account (see figure 4–2), you’re taken to the signup page.

Here you must choose a username that isn’t yet taken in the system and enter an

e-mail address that will be associated with the account and a password (see Figure 4.3).

If you have it available, this is a good time to add your public SSH key as well. We

covered how to generate a new key earlier, in the “Simple Setups” section. Take the

contents of the public key of that pair, and paste it into the SSH Public Key text box.

Clicking the “explain ssh keys” link takes you to detailed instructions on how to do so

on all major operating systems. Clicking the “I agree, sign me up” button takes you to

your new user dashboard (see Figure 4.4).

Next you can create a new repository.

88

CHAPTER 4 GIT ON THE SERVER

Figure 4.2: The GitHub plan page

Figure 4.3: The GitHub user signup form

4.9.3 Creating a New Repository

Start by clicking the “create a new one” link next to Your Repositories on the user

dashboard. You’re taken to the Create a New Repository form (see Figure 4.5).

All you really have to do is provide a project name, but you can also add a descrip-

tion. When that is done, click the “Create Repository” button. Now you have a new

repository on GitHub (see Figure 4.6).

Since you have no code there yet, GitHub will show you instructions for how create

a brand-new project, push an existing Git project up, or import a project from a public

Subversion repository (see Figure 4.7).

89

PRO GIT SCOTT CHACON

Figure 4.4: The GitHub user dashboard

Figure 4.5: Creating a new repository on GitHub

Figure 4.6: GitHub project header information

These instructions are similar to what we’ve already gone over. To initialize a

project if it isn’t already a Git project, you use

$ git init

$ git add .

$ git commit -m ’initial commit’

When you have a Git repository locally, add GitHub as a remote and push up your

master branch:

90

CHAPTER 4 GIT ON THE SERVER

Figure 4.7: Instructions for a new repository

$ git remote add origin git@github.com:testinguser/iphone_project.git

$ git push origin master

Now your project is hosted on GitHub, and you can give the URL to anyone you

want to share your project with. In this case, it’s http://github.com/testinguser/iphone project .

You can also see from the header on each of your project’s pages that you have two Git

URLs (see Figure 4.8).

Figure 4.8: Project header with a public URL and a private URL

The Public Clone URL is a public, read-only Git URL over which anyone can clone

the project. Feel free to give out that URL and post it on your web site or what have

you.

The Your Clone URL is a read/write SSH-based URL that you can read or write

over only if you connect with the SSH private key associated with the public key you

uploaded for your user. When other users visit this project page, they won’t see that

URL—only the public one.

91

PRO GIT SCOTT CHACON

4.9.4 Importing from Subversion

If you have an existing public Subversion project that you want to import into Git,

GitHub can often do that for you. At the bottom of the instructions page is a link to a

Subversion import. If you click it, you see a form with information about the import

process and a text box where you can paste in the URL of your public Subversion

project (see Figure 4.9).

Figure 4.9: Subversion importing interface

If your project is very large, nonstandard, or private, this process probably won’t

work for you. In Chapter 7, you’ll learn how to do more complicated manual project

imports.

4.9.5 Adding Collaborators

Let’s add the rest of the team. If John, Josie, and Jessica all sign up for accounts on

GitHub, and you want to give them push access to your repository, you can add them

to your project as collaborators. Doing so will allow pushes from their public keys to

work.

Click the “edit” button in the project header or the Admin tab at the top of the

project to reach the Admin page of your GitHub project (see Figure 4.10).

To give another user write access to your project, click the “Add another collabora-

tor” link. A new text box appears, into which you can type a username. As you type,

a helper pops up, showing you possible username matches. When you find the correct

user, click the Add button to add that user as a collaborator on your project (see Figure

4.11).

When you’re finished adding collaborators, you should see a list of them in the

Repository Collaborators box (see Figure 4.12).

If you need to revoke access to individuals, you can click the “revoke” link, and

their push access will be removed. For future projects, you can also copy collaborator

groups by copying the permissions of an existing project.

92

CHAPTER 4 GIT ON THE SERVER

Figure 4.10: GitHub administration page

Figure 4.11: Adding a collaborator to your project

Figure 4.12: A list of collaborators on your project

4.9.6 Your Project

After you push your project up or have it imported from Subversion, you have a main

project page that looks something like Figure 4.13.

When people visit your project, they see this page. It contains tabs to different

aspects of your projects. The Commits tab shows a list of commits in reverse chrono-

logical order, similar to the output of the git log command. The Network tab shows

all the people who have forked your project and contributed back. The Downloads

93

PRO GIT SCOTT CHACON

Figure 4.13: A GitHub main project page

tab allows you to upload project binaries and link to tarballs and zipped versions of

any tagged points in your project. The Wiki tab provides a wiki where you can write

documentation or other information about your project. The Graphs tab has some con-

tribution visualizations and statistics about your project. The main Source tab that

you land on shows your project’s main directory listing and automatically renders the

README file below it if you have one. This tab also shows a box with the latest

commit information.

4.9.7 Forking Projects

If you want to contribute to an existing project to which you don’t have push access,

GitHub encourages forking the project. When you land on a project page that looks

interesting and you want to hack on it a bit, you can click the “fork” button in the

project header to have GitHub copy that project to your user so you can push to it.

This way, projects don’t have to worry about adding users as collaborators to give

them push access. People can fork a project and push to it, and the main project main-

tainer can pull in those changes by adding them as remotes and merging in their work.

To fork a project, visit the project page (in this case, mojombo/chronic) and click

the “fork” button in the header (see Figure 4.14).

After a few seconds, you’re taken to your new project page, which indicates that

this project is a fork of another one (see Figure 4.15).

4.9.8 GitHub Summary

That’s all we’ll cover about GitHub, but it’s important to note how quickly you can do

all this. You can create an account, add a new project, and push to it in a matter of

94

CHAPTER 4 GIT ON THE SERVER

Figure 4.14: Get a writable copy of any repository by clicking the “fork” button.

Figure 4.15: Your fork of a project

minutes. If your project is open source, you also get a huge community of developers

who now have visibility into your project and may well fork it and help contribute to

it. At the very least, this may be a way to get up and running with Git and try it out

quickly.

4.10 Summary

You have several options to get a remote Git repository up and running so that you can

collaborate with others or share your work.

Running your own server gives you a lot of control and allows you to run the server

within your own firewall, but such a server generally requires a fair amount of your

time to set up and maintain. If you place your data on a hosted server, it’s easy to set

up and maintain; however, you have to be able to keep your code on someone else’s

servers, and some organizations don’t allow that.

It should be fairly straightforward to determine which solution or combination of

solutions is appropriate for you and your organization.

95

PRO GIT SCOTT CHACON

96

Chapter 5

Distributed Git

Now that you have a remote Git repository set up as a point for all the developers to

share their code, and you’re familiar with basic Git commands in a local workflow,

you’ll look at how to utilize some of the distributed workflows that Git affords you.

In this chapter, you’ll see how to work with Git in a distributed environment as a

contributor and an integrator. That is, you’ll learn how to contribute code successfully

to a project and make it as easy on you and the project maintainer as possible, and also

how to maintain a project successfully with a number of developers contributing.

5.1 Distributed Workflows

Unlike Centralized Version Control Systems (CVCSs), the distributed nature of Git

allows you to be far more flexible in how developers collaborate on projects. In cen-

tralized systems, every developer is a node working more or less equally on a central

hub. In Git, however, every developer is potentially both a node and a hub — that is,

every developer can both contribute code to other repositories and maintain a public

repository on which others can base their work and which they can contribute to. This

opens a vast range of workflow possibilities for your project and/or your team, so I’ll

cover a few common paradigms that take advantage of this flexibility. I’ll go over the

strengths and possible weaknesses of each design; you can choose a single one to use,

or you can mix and match features from each.

5.1.1 Centralized Workflow

In centralized systems, there is generally a single collaboration model—the centralized

workflow. One central hub, or repository, can accept code, and everyone synchronizes

their work to it. A number of developers are nodes — consumers of that hub — and

synchronize to that one place (see Figure 5.1).

This means that if two developers clone from the hub and both make changes, the

first developer to push their changes back up can do so with no problems. The second

developer must merge in the first one’s work before pushing changes up, so as not to

overwrite the first developer’s changes. This concept is true in Git as it is in Subversion

(or any CVCS), and this model works perfectly in Git.

97

PRO GIT SCOTT CHACON

Figure 5.1: Centralized workflow

If you have a small team or are already comfortable with a centralized workflow in

your company or team, you can easily continue using that workflow with Git. Simply

set up a single repository, and give everyone on your team push access; Git won’t let

users overwrite each other. If one developer clones, makes changes, and then tries to

push their changes while another developer has pushed in the meantime, the server will

reject that developer’s changes. They will be told that they’re trying to push non-fast-

forward changes and that they won’t be able to do so until they fetch and merge. This

workflow is attractive to a lot of people because it’s a paradigm that many are familiar

and comfortable with.

5.1.2 Integration-Manager Workflow

Because Git allows you to have multiple remote repositories, it’s possible to have a

workflow where each developer has write access to their own public repository and

read access to everyone else’s. This scenario often includes a canonical repository that

represents the “official” project. To contribute to that project, you create your own

public clone of the project and push your changes to it. Then, you can send a request to

the maintainer of the main project to pull in your changes. They can add your repository

as a remote, test your changes locally, merge them into their branch, and push back to

their repository. The process works as follow (see Figure 5.2):

1. The project maintainer pushes to their public repository.

2. A contributor clones that repository and makes changes.

3. The contributor pushes to their own public copy.

4. The contributor sends the maintainer an e-mail asking them to pull changes.

5. The maintainer adds the contributor’s repo as a remote and merges locally.

6. The maintainer pushes merged changes to the main repository.

This is a very common workflow with sites like GitHub, where it’s easy to fork a

project and push your changes into your fork for everyone to see. One of the main

advantages of this approach is that you can continue to work, and the maintainer of the

main repository can pull in your changes at any time. Contributors don’t have to wait

for the project to incorporate their changes — each party can work at their own pace.

98

CHAPTER 5 DISTRIBUTED GIT

Figure 5.2: Integration-manager workflow

5.1.3 Dictator and Lieutenants Workflow

This is a variant of a multiple-repository workflow. It’s generally used by huge projects

with hundreds of collaborators; one famous example is the Linux kernel. Various in-

tegration managers are in charge of certain parts of the repository; they’re called lieu-

tenants. All the lieutenants have one integration manager known as the benevolent

dictator. The benevolent dictator’s repository serves as the reference repository from

which all the collaborators need to pull. The process works like this (see Figure 5.3):

1. Regular developers work on their topic branch and rebase their work on top of

master. The master branch is that of the dictator.

2. Lieutenants merge the developers’ topic branches into their master branch.

3. The dictator merges the lieutenants’ master branches into the dictator’s master

branch.

4. The dictator pushes their master to the reference repository so the other develop-

ers can rebase on it.

Figure 5.3: Benevolent dictator workflow

This kind of workflow isn’t common but can be useful in very big projects or in highly

hierarchical environments, because as it allows the project leader (the dictator) to del-

99

PRO GIT SCOTT CHACON

egate much of the work and collect large subsets of code at multiple points before

integrating them.

These are some commonly used workflows that are possible with a distributed sys-

tem like Git, but you can see that many variations are possible to suit your particular

real-world workflow. Now that you can (I hope) determine which workflow combina-

tion may work for you, I’ll cover some more specific examples of how to accomplish

the main roles that make up the different flows.

5.2 Contributing to a Project

You know what the different workflows are, and you should have a pretty good grasp

of fundamental Git usage. In this section, you’ll learn about a few common patterns

for contributing to a project.

The main difficulty with describing this process is that there are a huge number

of variations on how it’s done. Because Git is very flexible, people can and do work

together many ways, and it’s problematic to describe how you should contribute to a

project — every project is a bit different. Some of the variables involved are active

contributor size, chosen workflow, your commit access, and possibly the external con-

tribution method.

The first variable is active contributor size. How many users are actively contribut-

ing code to this project, and how often? In many instances, you’ll have two or three

developers with a few commits a day, or possibly less for somewhat dormant projects.

For really large companies or projects, the number of developers could be in the thou-

sands, with dozens or even hundreds of patches coming in each day. This is important

because with more and more developers, you run into more issues with making sure

your code applies cleanly or can be easily merged. Changes you submit may be ren-

dered obsolete or severely broken by work that is merged in while you were working

or while your changes were waiting to be approved or applied. How can you keep your

code consistently up to date and your patches valid?

The next variable is the workflow in use for the project. Is it centralized, with

each developer having equal write access to the main codeline? Does the project have

a maintainer or integration manager who checks all the patches? Are all the patches

peer-reviewed and approved? Are you involved in that process? Is a lieutenant system

in place, and do you have to submit your work to them first?

The next issue is your commit access. The workflow required in order to contribute

to a project is much different if you have write access to the project than if you don’t.

If you don’t have write access, how does the project prefer to accept contributed work?

Does it even have a policy? How much work are you contributing at a time? How often

do you contribute?

All these questions can affect how you contribute effectively to a project and what

workflows are preferred or available to you. I’ll cover aspects of each of these in a series

of use cases, moving from simple to more complex; you should be able to construct the

specific workflows you need in practice from these examples.

5.2.1 Commit Guidelines

Before you start looking at the specific use cases, here’s a quick note about commit

messages. Having a good guideline for creating commits and sticking to it makes work-

100

CHAPTER 5 DISTRIBUTED GIT

ing with Git and collaborating with others a lot easier. The Git project provides a doc-

ument that lays out a number of good tips for creating commits from which to submit

patches— you can read it in the Git source code in the Documentation/SubmittingPatches

file.

First, you don’t want to submit any whitespace errors. Git provides an easy way to

check for this — before you commit, run git diff --check , which identifies possible

whitespace errors and lists them for you. Here is an example, where I’ve replaced a red

terminal color with Xs:

$ git diff --check

lib/simplegit.rb:5: trailing whitespace.

+ @git_dir = File.expand_path(git_dir)XX

lib/simplegit.rb:7: trailing whitespace.

+ XXXXXXXXXXX

lib/simplegit.rb:26: trailing whitespace.

+ def command(git_cmd)XXXX

If you run that command before committing, you can tell if you’re about to commit

whitespace issues that may annoy other developers.

Next, try to make each commit a logically separate changeset. If you can, try to

make your changes digestible — don’t code for a whole weekend on five different

issues and then submit them all as one massive commit on Monday. Even if you don’t

commit during the weekend, use the staging area on Monday to split your work into at

least one commit per issue, with a useful message per commit. If some of the changes

modify the same file, try to use git add --patch to partially stage files (covered in

detail in Chapter 6). The project snapshot at the tip of the branch is identical whether

you do one commit or five, as long as all the changes are added at some point, so try to

make things easier on your fellow developers when they have to review your changes.

This approach also makes it easier to pull out or revert one of the changesets if you

need to later. Chapter 6 describes a number of useful Git tricks for rewriting history

and interactively staging files— use these tools to help craft a clean and understandable

history.

The last thing to keep in mind is the commit message. Getting in the habit of

creating quality commit messages makes using and collaborating with Git a lot easier.

As a general rule, your messages should start with a single line that’s no more than

about 50 characters and that describes the changeset concisely, followed by a blank line,

followed by a more detailed explanation. The Git project requires that the more detailed

explanation include your motivation for the change and contrast its implementation

with previous behavior — this is a good guideline to follow. It’s also a good idea to use

the imperative present tense in these messages. In other words, use commands. Instead

of “I added tests for” or “Adding tests for,” use “Add tests for.” Here is a template

originally written by Tim Pope at tpope.net:

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72

characters or so. In some contexts, the first line is treated as the

subject of an email and the rest of the text as the body. The blank

line separating the summary from the body is critical (unless you omit

the body entirely); tools like rebase can get confused if you run the

101

PRO GIT SCOTT CHACON

two together.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded by a

single space, with blank lines in between, but conventions vary here

If all your commit messages look like this, things will be a lot easier for you and

the developers you work with. The Git project has well-formatted commit messages

— I encourage you to run git log --no-merges there to see what a nicely formatted

project-commit history looks like.

In the following examples, and throughout most of this book, for the sake of brevity

I don’t format messages nicely like this; instead, I use the -m option to git commit . Do

as I say, not as I do.

5.2.2 Private Small Team

The simplest setup you’re likely to encounter is a private project with one or two other

developers. By private, I mean closed source — not read-accessible to the outside

world. You and the other developers all have push access to the repository.

In this environment, you can follow a workflow similar to what you might do when

using Subversion or another centralized system. You still get the advantages of things

like offline committing and vastly simpler branching and merging, but the workflow

can be very similar; the main difference is that merges happen client-side rather than

on the server at commit time. Let’s see what it might look like when two developers

start to work together with a shared repository. The first developer, John, clones the

repository, makes a change, and commits locally. (I’m replacing the protocol messages

with ... in these examples to shorten them somewhat.)

John’s Machine

$ git clone john@githost:simplegit.git

Initialized empty Git repository in /home/john/simplegit/.git/

...

$ cd simplegit/

$ vim lib/simplegit.rb

$ git commit -am ’removed invalid default value’

[master 738ee87] removed invalid default value

1 files changed, 1 insertions(+), 1 deletions(-)

The second developer, Jessica, does the same thing — clones the repository and

commits a change:

Jessica’s Machine

$ git clone jessica@githost:simplegit.git

Initialized empty Git repository in /home/jessica/simplegit/.git/

...

$ cd simplegit/

$ vim TODO

$ git commit -am ’add reset task’

102

CHAPTER 5 DISTRIBUTED GIT

[master fbff5bc] add reset task

1 files changed, 1 insertions(+), 0 deletions(-)

Now, Jessica pushes her work up to the server:

Jessica’s Machine

$ git push origin master

...

To jessica@githost:simplegit.git

1edee6b..fbff5bc master -> master

John tries to push his change up, too:

John’s Machine

$ git push origin master

To john@githost:simplegit.git

! [rejected] master -> master (non-fast forward)

error: failed to push some refs to ’john@githost:simplegit.git’

John isn’t allowed to push because Jessica has pushed in the meantime. This is

especially important to understand if you’re used to Subversion, because you’ll notice

that the two developers didn’t edit the same file. Although Subversion automatically

does such a merge on the server if different files are edited, in Git you must merge the

commits locally. John has to fetch Jessica’s changes and merge them in before he will

be allowed to push:

$ git fetch origin

...

From john@githost:simplegit

+ 049d078...fbff5bc master -> origin/master

At this point, John’s local repository looks something like Figure 5.4.

Figure 5.4: John’s initial repository

John has a reference to the changes Jessica pushed up, but he has to merge them

into his own work before he is allowed to push:

103

PRO GIT SCOTT CHACON

$ git merge origin/master

Merge made by recursive.

TODO | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

The merge goes smoothly — John’s commit history now looks like Figure 5.5.

Figure 5.5: John’s repository after merging origin/master

Now, John can test his code to make sure it still works properly, and then he can

push his new merged work up to the server:

$ git push origin master

...

To john@githost:simplegit.git

fbff5bc..72bbc59 master -> master

Finally, John’s commit history looks like Figure 5.6.

Figure 5.6: John’s history after pushing to the origin server

In the meantime, Jessica has been working on a topic branch. She’s created a topic

branch called issue54 and done three commits on that branch. She hasn’t fetched

John’s changes yet, so her commit history looks like Figure 5.7.

Jessica wants to sync up with John, so she fetches:

Jessica’s Machine

$ git fetch origin

104

CHAPTER 5 DISTRIBUTED GIT

Figure 5.7: Jessica’s initial commit history

...

From jessica@githost:simplegit

fbff5bc..72bbc59 master -> origin/master

That pulls down the work John has pushed up in the meantime. Jessica’s history

now looks like Figure 5.8.

Figure 5.8: Jessica’s history after fetching John’s changes

Jessica thinks her topic branch is ready, but she wants to know what she has to

merge her work into so that she can push. She runs git log to find out:

$ git log --no-merges origin/master îssue54

commit 738ee872852dfaa9d6634e0dea7a324040193016

Author: John Smith <jsmith@example.com>

Date: Fri May 29 16:01:27 2009 -0700

removed invalid default value

Now, Jessica can merge her topic work into her master branch, merge John’s work

(origin/master) into her master branch, and then push back to the server again. First,

she switches back to her master branch to integrate all this work:

$ git checkout master

Switched to branch "master"

Your branch is behind ’origin/master’ by 2 commits, and can be fast-forwarded.

She can merge either origin/master or issue54 first — they’re both upstream, so

the order doesn’t matter. The end snapshot should be identical no matter which order

she chooses; only the history will be slightly different. She chooses to merge in issue54

first:

105

PRO GIT SCOTT CHACON

$ git merge issue54

Updating fbff5bc..4af4298

Fast forward

README | 1 +

lib/simplegit.rb | 6 +++++-

2 files changed, 6 insertions(+), 1 deletions(-)

No problems occur; as you can see it, was a simple fast-forward. Now Jessica

merges in John’s work (origin/master):

$ git merge origin/master

Auto-merging lib/simplegit.rb

Merge made by recursive.

lib/simplegit.rb | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

Everything merges cleanly, and Jessica’s history looks like Figure 5.9.

Figure 5.9: Jessica’s history after merging John’s changes

Now origin/master is reachable from Jessica’s master branch, so she should be

able to successfully push (assuming John hasn’t pushed again in the meantime):

$ git push origin master

...

To jessica@githost:simplegit.git

72bbc59..8059c15 master -> master

Each developer has committed a few times and merged each other’s work success-

fully; see Figure 5.10.

Figure 5.10: Jessica’s history after pushing all changes back to the server

That is one of the simplest workflows. You work for a while, generally in a topic

branch, and merge into your master branch when it’s ready to be integrated. When

106

CHAPTER 5 DISTRIBUTED GIT

you want to share that work, you merge it into your own master branch, then fetch and

merge origin/master if it has changed, and finally push to the master branch on the

server. The general sequence is something like that shown in Figure 5.11.

Figure 5.11: General sequence of events for a simple multiple-developer Git workflow

5.2.3 Private Managed Team

In this next scenario, you’ll look at contributor roles in a larger private group. You’ll

learn how to work in an environment where small groups collaborate on features and

then those team-based contributions are integrated by another party.

Let’s say that John and Jessica are working together on one feature, while Jes-

sica and Josie are working on a second. In this case, the company is using a type of

integration-manager workflow where the work of the individual groups is integrated

107

PRO GIT SCOTT CHACON

only by certain engineers, and the master branch of the main repo can be updated only

by those engineers. In this scenario, all work is done in team-based branches and pulled

together by the integrators later.

Let’s follow Jessica’s workflow as she works on her two features, collaborating in

parallel with two different developers in this environment. Assuming she already has

her repository cloned, she decides to work on featureA first. She creates a new branch

for the feature and does some work on it there:

Jessica’s Machine

$ git checkout -b featureA

Switched to a new branch "featureA"

$ vim lib/simplegit.rb

$ git commit -am ’add limit to log function’

[featureA 3300904] add limit to log function

1 files changed, 1 insertions(+), 1 deletions(-)

At this point, she needs to share her work with John, so she pushes her featureA

branch commits up to the server. Jessica doesn’t have push access to the master branch

— only the integrators do— so she has to push to another branch in order to collaborate

with John:

$ git push origin featureA

...

To jessica@githost:simplegit.git

* [new branch] featureA -> featureA

Jessica e-mails John to tell him that she’s pushed some work into a branch named

featureA and he can look at it now. While she waits for feedback from John, Jessica

decides to start working on featureB with Josie. To begin, she starts a new feature

branch, basing it off the server’s master branch:

Jessica’s Machine

$ git fetch origin

$ git checkout -b featureB origin/master

Switched to a new branch "featureB"

Now, Jessica makes a couple of commits on the featureB branch:

$ vim lib/simplegit.rb

$ git commit -am ’made the ls-tree function recursive’

[featureB e5b0fdc] made the ls-tree function recursive

1 files changed, 1 insertions(+), 1 deletions(-)

$ vim lib/simplegit.rb

$ git commit -am ’add ls-files’

[featureB 8512791] add ls-files

1 files changed, 5 insertions(+), 0 deletions(-)

Jessica’s repository looks like Figure 5.12.

She’s ready to push up her work, but gets an e-mail from Josie that a branch with

some initial work on it was already pushed to the server as featureBee . Jessica first

needs to merge those changes in with her own before she can push to the server. She

can then fetch Josie’s changes down with git fetch :

108

CHAPTER 5 DISTRIBUTED GIT

Figure 5.12: Jessica’s initial commit history

$ git fetch origin

...

From jessica@githost:simplegit

* [new branch] featureBee -> origin/featureBee

Jessica can now merge this into the work she did with git merge :

$ git merge origin/featureBee

Auto-merging lib/simplegit.rb

Merge made by recursive.

lib/simplegit.rb | 4 ++++

1 files changed, 4 insertions(+), 0 deletions(-)

There is a bit of a problem — she needs to push the merged work in her featureB

branch to the featureBee branch on the server. She can do so by specifying the local

branch followed by a colon (:) followed by the remote branch to the git push com-

mand:

$ git push origin featureB:featureBee

...

To jessica@githost:simplegit.git

fba9af8..cd685d1 featureB -> featureBee

This is called a refspec. See Chapter 9 for a more detailed discussion of Git refspecs

and different things you can do with them.

Next, John e-mails Jessica to say he’s pushed some changes to the featureA branch

and ask her to verify them. She runs a git fetch to pull down those changes:

$ git fetch origin

...

From jessica@githost:simplegit

3300904..aad881d featureA -> origin/featureA

Then, she can see what has been changed with git log :

109

PRO GIT SCOTT CHACON

$ git log origin/featureA f̂eatureA

commit aad881d154acdaeb2b6b18ea0e827ed8a6d671e6

Author: John Smith <jsmith@example.com>

Date: Fri May 29 19:57:33 2009 -0700

changed log output to 30 from 25

Finally, she merges John’s work into her own featureA branch:

$ git checkout featureA

Switched to branch "featureA"

$ git merge origin/featureA

Updating 3300904..aad881d

Fast forward

lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

Jessica wants to tweak something, so she commits again and then pushes this back

up to the server:

$ git commit -am ’small tweak’

[featureA ed774b3] small tweak

1 files changed, 1 insertions(+), 1 deletions(-)

$ git push origin featureA

...

To jessica@githost:simplegit.git

3300904..ed774b3 featureA -> featureA

Jessica’s commit history now looks something like Figure 5.13.

Figure 5.13: Jessica’s history after committing on a feature branch

Jessica, Josie, and John inform the integrators that the featureA and featureBee

branches on the server are ready for integration into the mainline. After they integrate

these branches into the mainline, a fetch will bring down the new merge commits,

making the commit history look like Figure 5.14.

Many groups switch to Git because of this ability to have multiple teams working in

parallel, merging the different lines of work late in the process. The ability of smaller

110

CHAPTER 5 DISTRIBUTED GIT

Figure 5.14: Jessica’s history after merging both her topic branches

subgroups of a team to collaborate via remote branches without necessarily having

to involve or impede the entire team is a huge benefit of Git. The sequence for the

workflow you saw here is something like Figure 5.15.

5.2.4 Public Small Project

Contributing to public projects is a bit different. Because you don’t have the permis-

sions to directly update branches on the project, you have to get the work to the main-

tainers some other way. This first example describes contributing via forking on Git

hosts that support easy forking. The repo.or.cz and GitHub hosting sites both support

this, and many project maintainers expect this style of contribution. The next section

deals with projects that prefer to accept contributed patches via e-mail.

First, you’ll probably want to clone the main repository, create a topic branch for

the patch or patch series you’re planning to contribute, and do your work there. The

sequence looks basically like this:

$ git clone (url)

$ cd project

$ git checkout -b featureA

$ (work)

$ git commit

$ (work)

$ git commit

You may want to use rebase -i to squash your work down to a single commit, or

rearrange the work in the commits to make the patch easier for the maintainer to review

— see Chapter 6 for more information about interactive rebasing.

When your branch work is finished and you’re ready to contribute it back to the

maintainers, go to the original project page and click the “Fork” button, creating your

own writable fork of the project. You then need to add in this new repository URL as a

second remote, in this case named myfork :

$ git remote add myfork (url)

You need to push your work up to it. It’s easiest to push the remote branch you’re

working on up to your repository, rather than merging into your master branch and

111

PRO GIT SCOTT CHACON

Figure 5.15: Basic sequence of this managed-team workflow

pushing that up. The reason is that if the work isn’t accepted or is cherry picked, you

don’t have to rewind your master branch. If the maintainers merge, rebase, or cherry-

pick your work, you’ll eventually get it back via pulling from their repository anyhow:

$ git push myfork featureA

When your work has been pushed up to your fork, you need to notify the maintainer.

This is often called a pull request, and you can either generate it via the website —

GitHub has a “pull request” button that automatically messages the maintainer — or

run the git request-pull command and e-mail the output to the project maintainer

manually.

The request-pull command takes the base branch into which you want your topic

branch pulled and the Git repository URL you want them to pull from, and outputs a

summary of all the changes you’re asking to be pulled in. For instance, if Jessica wants

112

CHAPTER 5 DISTRIBUTED GIT

to send John a pull request, and she’s done two commits on the topic branch she just

pushed up, she can run this:

$ git request-pull origin/master myfork

The following changes since commit 1edee6b1d61823a2de3b09c160d7080b8d1b3a40:

John Smith (1):

added a new function

are available in the git repository at:

git://githost/simplegit.git featureA

Jessica Smith (2):

add limit to log function

change log output to 30 from 25

lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

The output can be sent to the maintainer—it tells themwhere the work was branched

from, summarizes the commits, and tells where to pull this work from.

On a project for which you’re not the maintainer, it’s generally easier to have a

branch like master always track origin/master and to do your work in topic branches

that you can easily discard if they’re rejected. Having work themes isolated into topic

branches also makes it easier for you to rebase your work if the tip of the main reposi-

tory has moved in the meantime and your commits no longer apply cleanly. For exam-

ple, if you want to submit a second topic of work to the project, don’t continue working

on the topic branch you just pushed up — start over from the main repository’s master

branch:

$ git checkout -b featureB origin/master

$ (work)

$ git commit

$ git push myfork featureB

$ (email maintainer)

$ git fetch origin

Now, each of your topics is contained within a silo — similar to a patch queue —

that you can rewrite, rebase, and modify without the topics interfering or interdepend-

ing on each other as in Figure 5.16.

Let’s say the project maintainer has pulled in a bunch of other patches and tried

your first branch, but it no longer cleanly merges. In this case, you can try to rebase

that branch on top of origin/master , resolve the conflicts for the maintainer, and then

resubmit your changes:

$ git checkout featureA

$ git rebase origin/master

$ git push f myfork featureA

This rewrites your history to now look like Figure 5.17.

Because you rebased the branch, you have to specify the f to your push command

in order to be able to replace the featureA branch on the server with a commit that isn’t

113

PRO GIT SCOTT CHACON

Figure 5.16: Initial commit history with featureB work

Figure 5.17: Commit history after featureA work

a descendant of it. An alternative would be to push this new work to a different branch

on the server (perhaps called featureAv2).

Let’s look at one more possible scenario: the maintainer has looked at work in your

second branch and likes the concept but would like you to change an implementation

detail. You’ll also take this opportunity to move the work to be based off the project’s

current master branch. You start a new branch based off the current origin/master

branch, squash the featureB changes there, resolve any conflicts, make the implemen-

tation change, and then push that up as a new branch:

$ git checkout -b featureBv2 origin/master

$ git merge --no-commit --squash featureB

$ (change implementation)

$ git commit

$ git push myfork featureBv2

The --squash option takes all the work on the merged branch and squashes it into

one non-merge commit on top of the branch you’re on. The --no-commit option tells

Git not to automatically record a commit. This allows you to introduce all the changes

from another branch and then make more changes before recording the new commit.

Now you can send the maintainer a message that you’ve made the requested changes

and they can find those changes in your featureBv2 branch (see Figure 5.18).

114

CHAPTER 5 DISTRIBUTED GIT

Figure 5.18: Commit history after featureBv2 work

5.2.5 Public Large Project

Many larger projects have established procedures for accepting patches — you’ll need

to check the specific rules for each project, because they will differ. However, many

larger public projects accept patches via a developer mailing list, so I’ll go over an

example of that now.

The workflow is similar to the previous use case — you create topic branches for

each patch series you work on. The difference is how you submit them to the project.

Instead of forking the project and pushing to your own writable version, you generate

e-mail versions of each commit series and e-mail them to the developer mailing list:

$ git checkout -b topicA

$ (work)

$ git commit

$ (work)

$ git commit

Now you have two commits that you want to send to the mailing list. You use git

format-patch to generate the mbox-formatted files that you can e-mail to the list — it

turns each commit into an e-mail message with the first line of the commit message as

the subject and the rest of the message plus the patch that the commit introduces as the

body. The nice thing about this is that applying a patch from an e-mail generated with

format-patch preserves all the commit information properly, as you’ll see more of in

the next section when you apply these commits:

$ git format-patch -M origin/master

0001-add-limit-to-log-function.patch

0002-changed-log-output-to-30-from-25.patch

The format-patch command prints out the names of the patch files it creates. The

-M switch tells Git to look for renames. The files end up looking like this:

$ cat 0001-add-limit-to-log-function.patch

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

115

PRO GIT SCOTT CHACON

lib/simplegit.rb | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index 76f47bc..f9815f1 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -14,7 +14,7 @@ class SimpleGit

end

def log(treeish = ’master’)

- command("git log #{treeish}")

+ command("git log -n 20 #{treeish}")

end

def ls_tree(treeish = ’master’)

--

1.6.2.rc1.20.g8c5b.dirty

You can also edit these patch files to add more information for the e-mail list that

you don’t want to show up in the commit message. If you add text between the -- line

and the beginning of the patch (the lib/simplegit.rb line), then developers can read

it; but applying the patch excludes it.

To e-mail this to a mailing list, you can either paste the file into your e-mail pro-

gram or send it via a command-line program. Pasting the text often causes formatting

issues, especially with “smarter” clients that don’t preserve newlines and other whites-

pace appropriately. Luckily, Git provides a tool to help you send properly format-

ted patches via IMAP, which may be easier for you. I’ll demonstrate how to send

a patch via Gmail, which happens to be the e-mail agent I use; you can read de-

tailed instructions for a number of mail programs at the end of the aforementioned

Documentation/SubmittingPatches file in the Git source code.

First, you need to set up the imap section in your /.gitconfig file. You can set

each value separately with a series of git config commands, or you can add them

manually; but in the end, your config file should look something like this:

[imap]

folder = "[Gmail]/Drafts"

host = imaps://imap.gmail.com

user = user@gmail.com

pass = p4ssw0rd

port = 993

sslverify = false

If your IMAP server doesn’t use SSL, the last two lines probably aren’t necessary,

and the host value will be imap:// instead of imaps:// . When that is set up, you can

use git send-email to place the patch series in the Drafts folder of the specified IMAP

server:

$ git send-email *.patch

0001-added-limit-to-log-function.patch

116

CHAPTER 5 DISTRIBUTED GIT

0002-changed-log-output-to-30-from-25.patch

Who should the emails appear to be from? [Jessica Smith <jessica@example.com>]

Emails will be sent from: Jessica Smith <jessica@example.com>

Who should the emails be sent to? jessica@example.com

Message-ID to be used as In-Reply-To for the first email? y

Then, Git spits out a bunch of log information looking something like this for each

patch you’re sending:

(mbox) Adding cc: Jessica Smith <jessica@example.com> from

\line ’From: Jessica Smith <jessica@example.com>’

OK. Log says:

Sendmail: /usr/sbin/sendmail -i jessica@example.com

From: Jessica Smith <jessica@example.com>

To: jessica@example.com

Subject: [PATCH 1/2] added limit to log function

Date: Sat, 30 May 2009 13:29:15 -0700

Message-Id: <1243715356-61726-1-git-send-email-jessica@example.com>

X-Mailer: git-send-email 1.6.2.rc1.20.g8c5b.dirty

In-Reply-To: <y>

References: <y>

Result: OK

At this point, you should be able to go to your Drafts folder, change the To field

to the mailing list you’re sending the patch to, possibly CC the maintainer or person

responsible for that section, and send it off.

5.2.6 Summary

This section has covered a number of common workflows for dealing with several very

different types of Git projects you’re likely to encounter and introduced a couple of

new tools to help you manage this process. Next, you’ll see how to work the other side

of the coin: maintaining a Git project. You’ll learn how to be a benevolent dictator or

integration manager.

5.3 Maintaining a Project

In addition to knowing how to effectively contribute to a project, you’ll likely need to

know how to maintain one. This can consist of accepting and applying patches gener-

ated via format-patch and e-mailed to you, or integrating changes in remote branches

for repositories you’ve added as remotes to your project. Whether you maintain a

canonical repository or want to help by verifying or approving patches, you need to

know how to accept work in a way that is clearest for other contributors and sustain-

able by you over the long run.

5.3.1 Working in Topic Branches

When you’re thinking of integrating new work, it’s generally a good idea to try it out in

a topic branch — a temporary branch specifically made to try out that new work. This

117

PRO GIT SCOTT CHACON

way, it’s easy to tweak a patch individually and leave it if it’s not working until you

have time to come back to it. If you create a simple branch name based on the theme of

the work you’re going to try, such as ruby client or something similarly descriptive,

you can easily remember it if you have to abandon it for a while and come back later.

The maintainer of the Git project tends to namespace these branches as well — such as

sc/ruby client , where sc is short for the person who contributed the work. As you’ll

remember, you can create the branch based off your master branch like this:

$ git branch sc/ruby_client master

Or, if you want to also switch to it immediately, you can use the checkout -b

option:

$ git checkout -b sc/ruby_client master

Now you’re ready to add your contributed work into this topic branch and determine

if you want to merge it into your longer-term branches.

5.3.2 Applying Patches from E-mail

If you receive a patch over e-mail that you need to integrate into your project, you need

to apply the patch in your topic branch to evaluate it. There are two ways to apply an

e-mailed patch: with git apply or with git am .

Applying a Patch with apply

If you received the patch from someone who generated it with the git diff or a

Unix diff command, you can apply it with the git apply command. Assuming you

saved the patch at /tmp/patch-ruby-client.patch , you can apply the patch like this:

$ git apply /tmp/patch-ruby-client.patch

This modifies the files in your working directory. It’s almost identical to running a

patch -p1 command to apply the patch, although it’s more paranoid and accepts fewer

fuzzy matches then patch. It also handles file adds, deletes, and renames if they’re

described in the git diff format, which patch won’t do. Finally, git apply is an

“apply all or abort all” model where either everything is applied or nothing is, whereas

patch can partially apply patchfiles, leaving your working directory in a weird state.

git apply is over all much more paranoid than patch . It won’t create a commit for you

— after running it, you must stage and commit the changes introduced manually.

You can also use git apply to see if a patch applies cleanly before you try actually

applying it — you can run git apply --check with the patch:

$ git apply --check 0001-seeing-if-this-helps-the-gem.patch

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

If there is no output, then the patch should apply cleanly. This command also exits

with a non-zero status if the check fails, so you can use it in scripts if you want.

Applying a Patch with am

If the contributor is a Git user and was good enough to use the format-patch com-

mand to generate their patch, then your job is easier because the patch contains author

information and a commit message for you. If you can, encourage your contributors to

118

CHAPTER 5 DISTRIBUTED GIT

use format-patch instead of diff to generate patches for you. You should only have to

use git apply for legacy patches and things like that.

To apply a patch generated by format-patch , you use git am . Technically, git am

is built to read an mbox file, which is a simple, plain-text format for storing one or

more e-mail messages in one text file. It looks something like this:

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

This is the beginning of the output of the format-patch command that you saw in the

previous section. This is also a valid mbox e-mail format. If someone has e-mailed you

the patch properly using git send-email, and you download that into an mbox format,

then you can point git am to that mbox file, and it will start applying all the patches it

sees. If you run a mail client that can save several e-mails out in mbox format, you can

save entire patch series into a file and then use git am to apply them one at a time.

However, if someone uploaded a patch file generated via format-patch to a tick-

eting system or something similar, you can save the file locally and then pass that file

saved on your disk to git am to apply it:

$ git am 0001-limit-log-function.patch

Applying: add limit to log function

You can see that it applied cleanly and automatically created the new commit for

you. The author information is taken from the e-mail’s From and Date headers, and the

message of the commit is taken from the Subject and body (before the patch) of the

e-mail. For example, if this patch was applied from the mbox example I just showed,

the commit generated would look something like this:

$ git log --pretty=fuller -1

commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Author: Jessica Smith <jessica@example.com>

AuthorDate: Sun Apr 6 10:17:23 2008 -0700

Commit: Scott Chacon <schacon@gmail.com>

CommitDate: Thu Apr 9 09:19:06 2009 -0700

add limit to log function

Limit log functionality to the first 20

The Commit information indicates the person who applied the patch and the time it

was applied. The Author information is the individual who originally created the patch

and when it was originally created.

But it’s possible that the patch won’t apply cleanly. Perhaps your main branch has

diverged too far from the branch the patch was built from, or the patch depends on

another patch you haven’t applied yet. In that case, the git am process will fail and ask

you what you want to do:

119

PRO GIT SCOTT CHACON

$ git am 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Patch failed at 0001.

When you have resolved this problem run "git am --resolved".

If you would prefer to skip this patch, instead run "git am --skip".

To restore the original branch and stop patching run "git am --abort".

This command puts conflict markers in any files it has issues with, much like a

conflicted merge or rebase operation. You solve this issue much the same way — edit

the file to resolve the conflict, stage the new file, and then run git am --resolved to

continue to the next patch:

$ (fix the file)

$ git add ticgit.gemspec

$ git am --resolved

Applying: seeing if this helps the gem

If you want Git to try a bit more intelligently to resolve the conflict, you can pass

a -3 option to it, which makes Git attempt a three-way merge. This option isn’t on

by default because it doesn’t work if the commit the patch says it was based on isn’t

in your repository. If you do have that commit — if the patch was based on a public

commit — then the -3 option is generally much smarter about applying a conflicting

patch:

$ git am -3 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

No changes -- Patch already applied.

In this case, I was trying to apply a patch I had already applied. Without the -3

option, it looks like a conflict.

If you’re applying a number of patches from an mbox, you can also run the am

command in interactive mode, which stops at each patch it finds and asks if you want

to apply it:

$ git am -3 -i mbox

Commit Body is:

seeing if this helps the gem

Apply? [y]es/[n]o/[e]dit/[v]iew patch/[a]ccept all

This is nice if you have a number of patches saved, because you can view the patch

first if you don’t remember what it is, or not apply the patch if you’ve already done so.

When all the patches for your topic are applied and committed into your branch,

you can choose whether and how to integrate them into a longer-running branch.

120

CHAPTER 5 DISTRIBUTED GIT

5.3.3 Checking Out Remote Branches

If your contribution came from a Git user who set up their own repository, pushed a

number of changes into it, and then sent you the URL to the repository and the name

of the remote branch the changes are in, you can add them as a remote and do merges

locally.

For instance, if Jessica sends you an e-mail saying that she has a great new feature

in the ruby-client branch of her repository, you can test it by adding the remote and

checking out that branch locally:

$ git remote add jessica git://github.com/jessica/myproject.git

$ git fetch jessica

$ git checkout -b rubyclient jessica/ruby-client

If she e-mails you again later with another branch containing another great feature,

you can fetch and check out because you already have the remote setup.

This is most useful if you’re working with a person consistently. If someone only

has a single patch to contribute once in a while, then accepting it over e-mail may be

less time consuming than requiring everyone to run their own server and having to

continually add and remove remotes to get a few patches. You’re also unlikely to want

to have hundreds of remotes, each for someone who contributes only a patch or two.

However, scripts and hosted services may make this easier — it depends largely on

how you develop and how your contributors develop.

The other advantage of this approach is that you get the history of the commits as

well. Although you may have legitimate merge issues, you know where in your history

their work is based; a proper three-way merge is the default rather than having to supply

a -3 and hope the patch was generated off a public commit to which you have access.

If you aren’t working with a person consistently but still want to pull from them in

this way, you can provide the URL of the remote repository to the git pull command.

This does a one-time pull and doesn’t save the URL as a remote reference:

$ git pull git://github.com/onetimeguy/project.git

From git://github.com/onetimeguy/project

* branch HEAD -> FETCH_HEAD

Merge made by recursive.

5.3.4 Determining What Is Introduced

Now you have a topic branch that contains contributed work. At this point, you can

determine what you’d like to do with it. This section revisits a couple of commands so

you can see how you can use them to review exactly what you’ll be introducing if you

merge this into your main branch.

It’s often helpful to get a review of all the commits that are in this branch but that

aren’t in your master branch. You can exclude commits in the master branch by adding

the --not option before the branch name. For example, if your contributor sends you

two patches and you create a branch called contrib and applied those patches there,

you can run this:

$ git log contrib --not master

commit 5b6235bd297351589efc4d73316f0a68d484f118

Author: Scott Chacon <schacon@gmail.com>

121

PRO GIT SCOTT CHACON

Date: Fri Oct 24 09:53:59 2008 -0700

seeing if this helps the gem

commit 7482e0d16d04bea79d0dba8988cc78df655f16a0

Author: Scott Chacon <schacon@gmail.com>

Date: Mon Oct 22 19:38:36 2008 -0700

updated the gemspec to hopefully work better

To see what changes each commit introduces, remember that you can pass the -p

option to git log and it will append the diff introduced to each commit.

To see a full diff of what would happen if you were to merge this topic branch with

another branch, you may have to use a weird trick to get the correct results. You may

think to run this:

$ git diff master

This command gives you a diff, but it may be misleading. If your master branch has

moved forward since you created the topic branch from it, then you’ll get seemingly

strange results. This happens because Git directly compares the snapshots of the last

commit of the topic branch you’re on and the snapshot of the last commit on the master

branch. For example, if you’ve added a line in a file on the master branch, a direct

comparison of the snapshots will look like the topic branch is going to remove that

line.

If master is a direct ancestor of your topic branch, this isn’t a problem; but if the

two histories have diverged, the diff will look like you’re adding all the new stuff in

your topic branch and removing everything unique to the master branch.

What you really want to see are the changes added to the topic branch — the work

you’ll introduce if you merge this branch with master. You do that by having Git

compare the last commit on your topic branch with the first common ancestor it has

with the master branch.

Technically, you can do that by explicitly figuring out the common ancestor and

then running your diff on it:

$ git merge-base contrib master

36c7dba2c95e6bbb78dfa822519ecfec6e1ca649

$ git diff 36c7db

However, that isn’t convenient, so Git provides another shorthand for doing the

same thing: the triple-dot syntax. In the context of the diff command, you can put

three periods after another branch to do a diff between the last commit of the branch

you’re on and its common ancestor with another branch:

$ git diff master...contrib

This command shows you only the work your current topic branch has introduced

since its common ancestor with master. That is a very useful syntax to remember.

122

CHAPTER 5 DISTRIBUTED GIT

5.3.5 Integrating Contributed Work

When all the work in your topic branch is ready to be integrated into a more mainline

branch, the question is how to do it. Furthermore, what overall workflow do you want

to use to maintain your project? You have a number of choices, so I’ll cover a few of

them.

Merging Workflows

One simple workflow merges your work into your master branch. In this scenario,

you have a master branch that contains basically stable code. When you have work in

a topic branch that you’ve done or that someone has contributed and you’ve verified,

you merge it into your master branch, delete the topic branch, and then continue the

process. If we have a repository with work in two branches named ruby client and

php client that looks like Figure 5.19 and merge ruby client first and then php client

next, then your history will end up looking like Figure 5.20.

Figure 5.19: History with several topic branches

That is probably the simplest workflow, but it’s problematic if you’re dealing with

larger repositories or projects.

If you have more developers or a larger project, you’ll probably want to use at least

a two-phase merge cycle. In this scenario, you have two long-running branches, master

and develop , in which you determine that master is updated only when a very stable

release is cut and all new code is integrated into the develop branch. You regularly

push both of these branches to the public repository. Each time you have a new topic

branch to merge in (Figure 5.21), you merge it into develop (Figure 5.22); then, when

you tag a release, you fast-forward master to wherever the now-stable develop branch

is (Figure 5.23).

123

PRO GIT SCOTT CHACON

Figure 5.20: After a topic branch merge

Figure 5.21: Before a topic branch merge

This way, when people clone your project’s repository, they can either check out

master to build the latest stable version and keep up to date on that easily, or they

can check out develop, which is the more cutting-edge stuff. You can also continue

this concept, having an integrate branch where all the work is merged together. Then,

when the codebase on that branch is stable and passes tests, you merge it into a develop

branch; and when that has proven itself stable for a while, you fast-forward your master

branch.

Large-Merging Workflows

The Git project has four long-running branches: master , next , and pu (proposed

updates) for new work, and maint for maintenance backports. When new work is intro-

duced by contributors, it’s collected into topic branches in the maintainer’s repository

in a manner similar to what I’ve described (see Figure 5.24). At this point, the topics

are evaluated to determine whether they’re safe and ready for consumption or whether

they need more work. If they’re safe, they’re merged into next , and that branch is

124

CHAPTER 5 DISTRIBUTED GIT

Figure 5.22: After a topic branch merge

Figure 5.23: After a topic branch release

pushed up so everyone can try the topics integrated together.

Figure 5.24: Managing a complex series of parallel contributed topic branches

If the topics still need work, they’re merged into pu instead. When it’s determined

125

PRO GIT SCOTT CHACON

that they’re totally stable, the topics are re-merged into master and are then rebuilt

from the topics that were in next but didn’t yet graduate to master . This means master

almost always moves forward, next is rebased occasionally, and pu is rebased even

more often (see Figure 5.25).

Figure 5.25: Merging contributed topic branches into long-term integration branches

When a topic branch has finally been merged into master , it’s removed from the

repository. The Git project also has a maint branch that is forked off from the last

release to provide backported patches in case a maintenance release is required. Thus,

when you clone the Git repository, you have four branches that you can check out to

evaluate the project in different stages of development, depending on how cutting edge

you want to be or how you want to contribute; and the maintainer has a structured

workflow to help them vet new contributions.

Rebasing and Cherry Picking Workflows

Other maintainers prefer to rebase or cherry-pick contributed work on top of their

master branch, rather than merging it in, to keep a mostly linear history. When you

have work in a topic branch and have determined that you want to integrate it, you

move to that branch and run the rebase command to rebuild the changes on top of your

current master (or develop , and so on) branch. If that works well, you can fast-forward

your master branch, and you’ll end up with a linear project history.

The other way to move introduced work from one branch to another is to cherry-

pick it. A cherry-pick in Git is like a rebase for a single commit. It takes the patch

that was introduced in a commit and tries to reapply it on the branch you’re currently

on. This is useful if you have a number of commits on a topic branch and you want

to integrate only one of them, or if you only have one commit on a topic branch and

you’d prefer to cherry-pick it rather than run rebase. For example, suppose you have a

project that looks like Figure 5.26.

If you want to pull commit e43a6 into your master branch, you can run

$ git cherry-pick e43a6fd3e94888d76779ad79fb568ed180e5fcdf

Finished one cherry-pick.

[master]: created a0a41a9: "More friendly message when locking the index fails."

3 files changed, 17 insertions(+), 3 deletions(-)

This pulls the same change introduced in e43a6 , but you get a new commit SHA–1

value, because the date applied is different. Now your history looks like Figure 5.27.

Now you can remove your topic branch and drop the commits you didn’t want to

pull in.

126

CHAPTER 5 DISTRIBUTED GIT

Figure 5.26: Example history before a cherry pick

Figure 5.27: History after cherry-picking a commit on a topic branch

5.3.6 Tagging Your Releases

When you’ve decided to cut a release, you’ll probably want to drop a tag so you can re-

create that release at any point going forward. You can create a new tag as I discussed

in Chapter 2. If you decide to sign the tag as the maintainer, the tagging may look

something like this:

$ git tag -s v1.5 -m ’my signed 1.5 tag’

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gmail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you do sign your tags, you may have the problem of distributing the public PGP

key used to sign your tags. The maintainer of the Git project has solved this issue by

including their public key as a blob in the repository and then adding a tag that points

directly to that content. To do this, you can figure out which key you want by running

gpg --list-keys :

$ gpg --list-keys

/Users/schacon/.gnupg/pubring.gpg

127

PRO GIT SCOTT CHACON

pub 1024D/F721C45A 2009-02-09 [expires: 2010-02-09]

uid Scott Chacon <schacon@gmail.com>

sub 2048g/45D02282 2009-02-09 [expires: 2010-02-09]

Then, you can directly import the key into the Git database by exporting it and

piping that through git hash-object , which writes a new blob with those contents into

Git and gives you back the SHA–1 of the blob:

$ gpg -a --export F721C45A | git hash-object -w --stdin

659ef797d181633c87ec71ac3f9ba29fe5775b92

Now that you have the contents of your key in Git, you can create a tag that points

directly to it by specifying the new SHA–1 value that the hash-object command gave

you:

$ git tag -a maintainer-pgp-pub 659ef797d181633c87ec71ac3f9ba29fe5775b92

If you run git push --tags , the maintainer-pgp-pub tag will be shared with ev-

eryone. If anyone wants to verify a tag, they can directly import your PGP key by

pulling the blob directly out of the database and importing it into GPG:

$ git show maintainer-pgp-pub | gpg --import

They can use that key to verify all your signed tags. Also, if you include instructions

in the tag message, running git show <tag> will let you give the end user more specific

instructions about tag verification.

5.3.7 Generating a Build Number

Because Git doesn’t have monotonically increasing numbers like ‘v123’ or the equiv-

alent to go with each commit, if you want to have a human-readable name to go with

a commit, you can run git describe on that commit. Git gives you the name of the

nearest tag with the number of commits on top of that tag and a partial SHA–1 value

of the commit you’re describing:

$ git describe master

v1.6.2-rc1-20-g8c5b85c

This way, you can export a snapshot or build and name it something understandable

to people. In fact, if you build Git from source code cloned from the Git repository, git

--version gives you something that looks like this. If you’re describing a commit that

you have directly tagged, it gives you the tag name.

The git describe command favors annotated tags (tags created with the -a or -s

flag), so release tags should be created this way if you’re using git describe , to ensure

the commit is named properly when described. You can also use this string as the target

of a checkout or show command, although it relies on the abbreviated SHA–1 value at

the end, so it may not be valid forever. For instance, the Linux kernel recently jumped

from 8 to 10 characters to ensure SHA–1 object uniqueness, so older git describe

output names were invalidated.

128

CHAPTER 5 DISTRIBUTED GIT

5.3.8 Preparing a Release

Now you want to release a build. One of the things you’ll want to do is create an

archive of the latest snapshot of your code for those poor souls who don’t use Git. The

command to do this is git archive :

$ git archive master --prefix=’project/’ | gzip > ‘git describe master‘.tar.gz

$ ls *.tar.gz

v1.6.2-rc1-20-g8c5b85c.tar.gz

If someone opens that tarball, they get the latest snapshot of your project under

a project directory. You can also create a zip archive in much the same way, but by

passing the --format=zip option to git archive :

$ git archive master --prefix=’project/’ --format=zip > ‘git describe master‘.zip

You now have a nice tarball and a zip archive of your project release that you can

upload to your website or e-mail to people.

5.3.9 The Shortlog

It’s time to e-mail your mailing list of people who want to know what’s happening in

your project. A nice way of quickly getting a sort of changelog of what has been added

to your project since your last release or e-mail is to use the git shortlog command.

It summarizes all the commits in the range you give it; for example, the following

gives you a summary of all the commits since your last release, if your last release was

named v1.0.1:

$ git shortlog --no-merges master --not v1.0.1

Chris Wanstrath (8):

Add support for annotated tags to Grit::Tag

Add packed-refs annotated tag support.

Add Grit::Commit#to_patch

Update version and History.txt

Remove stray ‘puts‘

Make ls_tree ignore nils

Tom Preston-Werner (4):

fix dates in history

dynamic version method

Version bump to 1.0.2

Regenerated gemspec for version 1.0.2

You get a clean summary of all the commits since v1.0.1, grouped by author, that

you can e-mail to your list.

5.4 Summary

You should feel fairly comfortable contributing to a project in Git as well as main-

taining your own project or integrating other users’ contributions. Congratulations on

being an effective Git developer! In the next chapter, you’ll learn more powerful tools

and tips for dealing with complex situations, which will truly make you a Git master.

129

PRO GIT SCOTT CHACON

130

Chapter 6

Git Tools

By now, you’ve learned most of the day-to-day commands and workflows that you

need to manage or maintain a Git repository for your source code control. You’ve

accomplished the basic tasks of tracking and committing files, and you’ve harnessed

the power of the staging area and lightweight topic branching and merging.

Now you’ll explore a number of very powerful things that Git can do that you may

not necessarily use on a day-to-day basis but that you may need at some point.

6.1 Revision Selection

Git allows you to specify specific commits or a range of commits in several ways. They

aren’t necessarily obvious but are helpful to know.

6.1.1 Single Revisions

You can obviously refer to a commit by the SHA–1 hash that it’s given, but there

are more human-friendly ways to refer to commits as well. This section outlines the

various ways you can refer to a single commit.

6.1.2 Short SHA

Git is smart enough to figure out what commit you meant to type if you provide the

first few characters, as long as your partial SHA–1 is at least four characters long and

unambiguous— that is, only one object in the current repository begins with that partial

SHA–1.

For example, to see a specific commit, suppose you run a git log command and

identify the commit where you added certain functionality:

$ git log

commit 734713bc047d87bf7eac9674765ae793478c50d3

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

131

PRO GIT SCOTT CHACON

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

added some blame and merge stuff

In this case, choose 1c002dd.... If you git show that commit, the following com-

mands are equivalent (assuming the shorter versions are unambiguous):

$ git show 1c002dd4b536e7479fe34593e72e6c6c1819e53b

$ git show 1c002dd4b536e7479f

$ git show 1c002d

Git can figure out a short, unique abbreviation for your SHA–1 values. If you pass

--abbrev-commit to the git log command, the output will use shorter values but keep

them unique; it defaults to using seven characters but makes them longer if necessary

to keep the SHA–1 unambiguous:

$ git log --abbrev-commit --pretty=oneline

ca82a6d changed the verison number

085bb3b removed unnecessary test code

a11bef0 first commit

Generally, eight to ten characters are more than enough to be unique within a

project. One of the largest Git projects, the Linux kernel, is beginning to need 12

characters out of the possible 40 to stay unique.

6.1.3 A SHORT NOTE ABOUT SHA–1

A lot of people become concerned at some point that they will, by random happen-

stance, have two objects in their repository that hash to the same SHA–1 value. What

then?

If you do happen to commit an object that hashes to the same SHA–1 value as a

previous object in your repository, GIt will see the previous object already in your Git

database and assume it was already written. If you try to check out that object again at

some point, you’ll always get the data of the first object.

However, you should be aware of how ridiculously unlikely this scenario is. The

SHA–1 digest is 20 bytes or 160 bits. The number of randomly hashed objects needed

to ensure a 50% probability of a single collision is about 280 (the formula for deter-

mining collision probability is p = n(n−1)
2

×
1

2160
. 280 is 1.2×1024 or 1 million billion

billion. That’s 1,200 times the number of grains of sand on the earth.

Here’s an example to give you an idea of what it would take to get a SHA–1 colli-

sion. If all 6.5 billion humans on Earth were programming, and every second, each one

was producing code that was the equivalent of the entire Linux kernel history (1 million

132

CHAPTER 6 GIT TOOLS

Git objects) and pushing it into one enormous Git repository, it would take 5 years until

that repository contained enough objects to have a 50% probability of a single SHA–1

object collision. A higher probability exists that every member of your programming

team will be attacked and killed by wolves in unrelated incidents on the same night.

6.1.4 Branch References

The most straightforward way to specify a commit requires that it have a branch refer-

ence pointed at it. Then, you can use a branch name in any Git command that expects

a commit object or SHA–1 value. For instance, if you want to show the last commit

object on a branch, the following commands are equivalent, assuming that the topic1

branch points to ca82a6d :

$ git show ca82a6dff817ec66f44342007202690a93763949

$ git show topic1

If you want to see which specific SHA a branch points to, or if you want to see what

any of these examples boils down to in terms of SHAs, you can use a Git plumbing tool

called rev-parse . You can see Chapter 9 for more information about plumbing tools;

basically, rev-parse exists for lower-level operations and isn’t designed to be used in

day-to-day operations. However, it can be helpful sometimes when you need to see

what’s really going on. Here you can run rev-parse on your branch.

$ git rev-parse topic1

ca82a6dff817ec66f44342007202690a93763949

6.1.5 RefLog Shortnames

One of the things Git does in the background while you’re working away is keep a

reflog — a log of where your HEAD and branch references have been for the last few

months.

You can see your reflog by using git reflog :

$ git reflog

734713b... HEAD@{0}: commit: fixed refs handling, added gc auto, updated

d921970... HEAD@{1}: merge phedders/rdocs: Merge made by recursive.

1c002dd... HEAD@{2}: commit: added some blame and merge stuff

1c36188... HEAD@{3}: rebase -i (squash): updating HEAD

95df984... HEAD@{4}: commit: # This is a combination of two commits.

1c36188... HEAD@{5}: rebase -i (squash): updating HEAD

7e05da5... HEAD@{6}: rebase -i (pick): updating HEAD

Every time your branch tip is updated for any reason, Git stores that information

for you in this temporary history. And you can specify older commits with this data, as

well. If you want to see the fifth prior value of the HEAD of your repository, you can

use the @n reference that you see in the reflog output:

$ git show HEAD@{5}

You can also use this syntax to see where a branch was some specific amount of

time ago. For instance, to see where your master branch was yesterday, you can type

133

PRO GIT SCOTT CHACON

$ git show master@{yesterday}

That shows you where the branch tip was yesterday. This technique only works for

data that’s still in your reflog, so you can’t use it to look for commits older than a few

months.

To see reflog information formatted like the git log output, you can run git log

-g:

$ git log -g master

commit 734713bc047d87bf7eac9674765ae793478c50d3

Reflog: master@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: commit: fixed refs handling, added gc auto, updated

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Reflog: master@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: merge phedders/rdocs: Merge made by recursive.

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

It’s important to note that the reflog information is strictly local — it’s a log of

what you’ve done in your repository. The references won’t be the same on someone

else’s copy of the repository; and right after you initially clone a repository, you’ll have

an empty reflog, as no activity has occurred yet in your repository. Running git show

HEAD@2.months.ago will work only if you cloned the project at least two months ago

— if you cloned it five minutes ago, you’ll get no results.

6.1.6 Ancestry References

The other main way to specify a commit is via its ancestry. If you place a ˆ at the end

of a reference, Git resolves it to mean the parent of that commit. Suppose you look at

the history of your project:

$ git log --pretty=format:’%h %s’ --graph

* 734713b fixed refs handling, added gc auto, updated tests

* d921970 Merge commit ’phedders/rdocs’

|\

| * 35cfb2b Some rdoc changes

* | 1c002dd added some blame and merge stuff

|/

* 1c36188 ignore *.gem

* 9b29157 add open3_detach to gemspec file list

Then, you can see the previous commit by specifying HEAD̂ , which means “the

parent of HEAD”:

134

CHAPTER 6 GIT TOOLS

$ git show HEAD̂

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

You can also specify a number after the ˆ— for example, d921970̂ 2 means “the

second parent of d921970.” This syntax is only useful for merge commits, which have

more than one parent. The first parent is the branch you were on when you merged,

and the second is the commit on the branch that you merged in:

$ git show d921970̂

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

added some blame and merge stuff

$ git show d921970̂ 2

commit 35cfb2b795a55793d7cc56a6cc2060b4bb732548

Author: Paul Hedderly <paul+git@mjr.org>

Date: Wed Dec 10 22:22:03 2008 +0000

Some rdoc changes

The other main ancestry specification is the . This also refers to the first parent, so

HEAD and HEAD̂ are equivalent. The difference becomes apparent when you specify a

number. HEAD 2 means “the first parent of the first parent,” or “the grandparent” — it

traverses the first parents the number of times you specify. For example, in the history

listed earlier, HEAD 3 would be

$ git show HEAD̃ 3

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

ignore *.gem

This can also be written HEAD̂ ˆ̂ , which again is the first parent of the first parent

of the first parent:

$ git show HEAD̂ ˆ̂

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

ignore *.gem

You can also combine these syntaxes — you can get the second parent of the pre-

vious reference (assuming it was a merge commit) by using HEAD 3̂ 2 , and so on.

135

PRO GIT SCOTT CHACON

6.1.7 Commit Ranges

Now that you can specify individual commits, let’s see how to specify ranges of com-

mits. This is particularly useful for managing your branches — if you have a lot of

branches, you can use range specifications to answer questions such as, “What work is

on this branch that I haven’t yet merged into my main branch?”

Double Dot

The most common range specification is the double-dot syntax. This basically

asks Git to resolve a range of commits that are reachable from one commit but aren’t

reachable from another. For example, say you have a commit history that looks like

Figure 6.1.

Figure 6.1: Example history for range selection

You want to see what is in your experiment branch that hasn’t yet been merged into

your master branch. You can ask Git to show you a log of just those commits with

master..experiment — that means “all commits reachable by experiment that aren’t

reachable by master.” For the sake of brevity and clarity in these examples, I’ll use the

letters of the commit objects from the diagram in place of the actual log output in the

order that they would display:

$ git log master..experiemnt

D

C

If, on the other hand, you want to see the opposite — all commits in master that

aren’t in experiment — you can reverse the branch names. experiment..master shows

you everything in master not reachable from experiment :

$ git log experiment..master

F

E

This is useful if you want to keep the experiment branch up to date and preview

what you’re about to merge in. Another very frequent use of this syntax is to see what

you’re about to push to a remote:

$ git log origin/master..HEAD

This command shows you any commits in your current branch that aren’t in the

master branch on your origin remote. If you run a git push and your current branch

is tracking origin/master , the commits listed by git log origin/master..HEAD are

the commits that will be transferred to the server. You can also leave off one side of

the syntax to have Git assume HEAD. For example, you can get the same results as in

the previous example by typing git log origin/master.. —Git substitutes HEAD if

one side is missing.

136

CHAPTER 6 GIT TOOLS

Multiple Points

The double-dot syntax is useful as a shorthand; but perhaps you want to specify

more than two branches to indicate your revision, such as seeing what commits are in

any of several branches that aren’t in the branch you’re currently on. Git allows you to

do this by using either the ˆ character or --not before any reference from which you

don’t want to see reachable commits. Thus these three commands are equivalent:

$ git log refA..refB

$ git log r̂efA refB

$ git log refB --not refA

This is nice because with this syntax you can specify more than two references in

your query, which you cannot do with the double-dot syntax. For insance, if you want

to see all commits that are reachable from refA or refB but not from refC , you can type

one of these:

$ git log refA refB r̂efC

$ git log refA refB --not refC

This makes for a very powerful revision query system that should help you figure

out what is in your branches.

Triple Dot

The last major range-selection syntax is the triple-dot syntax, which specifies all

the commits that are reachable by either of two references but not by both of them.

Look back at the example commit history in Figure 6.1. If you want to see what is in

master or experiment but not any common references, you can run

$ git log master...experiment

F

E

D

C

Again, this gives you normal log output but shows you only the commit information

for those four commits, appearing in the traditional commit date ordering.

A common switch to use with the log command in this case is --left-right , which

shows you which side of the range each commit is in. This helps make the data more

useful:

$ git log --left-right master...experiment

< F

< E

> D

> C

With these tools, you can much more easily let Git know what commit or commits

you want to inspect.

137

PRO GIT SCOTT CHACON

6.2 Interactive Staging

Git comes with a couple of scripts that make some command-line tasks easier. Here,

you’ll look at a few interactive commands that can help you easily craft your commits

to include only certain combinations and parts of files. These tools are very helpful

if you modify a bunch of files and then decide that you want those changes to be in

several focused commits rather than one big messy commit. This way, you can make

sure your commits are logically separate changesets and can be easily reviewed by the

developers working with you. If you run git add with the -i or --interactive option,

Git goes into an interactive shell mode, displaying something like this:

$ git add -i

staged unstaged path

1: unchanged +0/-1 TODO

2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now>

You can see that this command shows you a much different view of your staging

area — basically the same information you get with git status but a bit more succinct

and informative. It lists the changes you’ve staged on the left and unstaged changes on

the right.

After this comes a Commands section. Here you can do a number of things, in-

cluding staging files, unstaging files, staging parts of files, adding untracked files, and

seeing diffs of what has been staged.

6.2.1 Staging and Unstaging Files

If you type 2 or u at the What now> prompt, the script prompts you for which files you

want to stage:

What now> 2

staged unstaged path

1: unchanged +0/-1 TODO

2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

Update>>

To stage the TODO and index.html files, you can type the numbers:

Update>> 1,2

staged unstaged path

* 1: unchanged +0/-1 TODO

* 2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

Update>>

138

CHAPTER 6 GIT TOOLS

The * next to each file means the file is selected to be staged. If you press Enter

after typing nothing at the Update>> prompt, Git takes anything selected and stages it

for you:

Update>>

updated 2 paths

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

staged unstaged path

1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Now you can see that the TODO and index.html files are staged and the simplegit.rb

file is still unstaged. If you want to unstage the TODO file at this point, you use the 3

or r (for revert) option:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 3

staged unstaged path

1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Revert>> 1

staged unstaged path

* 1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Revert>> [enter]

reverted one path

Looking at your Git status again, you can see that you’ve unstaged the TODO file:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

staged unstaged path

1: unchanged +0/-1 TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

To see the diff of what you’ve staged, you can use the 6 or d (for diff) command.

It shows you a list of your staged files, and you can select the ones for which you

would like to see the staged diff. This is much like specifying git diff --cached on

the command line:

139

PRO GIT SCOTT CHACON

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 6

staged unstaged path

1: +1/-1 nothing index.html

Review diff>> 1

diff --git a/index.html b/index.html

index 4d07108..4335f49 100644

--- a/index.html

+++ b/index.html

@@ -16,7 +16,7 @@ Date Finder

<p id="out">...</p>

-<div id="footer">contact : support@github.com</div>

+<div id="footer">contact : email.support@github.com</div>

<script type="text/javascript">

With these basic commands, you can use the interactive add mode to deal with your

staging area a little more easily.

6.2.2 Staging Patches

It’s also possible for Git to stage certain parts of files and not the rest. For example, if

you make two changes to your simplegit.rb file and want to stage one of them and not

the other, doing so is very easy in Git. From the interactive prompt, type 5 or p (for

patch). Git will ask you which files you would like to partially stage; then, for each

section of the selected files, it will display hunks of the file diff and ask if you would

like to stage them, one by one:

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index dd5ecc4..57399e0 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -22,7 +22,7 @@ class SimpleGit

end

def log(treeish = ’master’)

- command("git log -n 25 #{treeish}")

+ command("git log -n 30 #{treeish}")

end

def blame(path)

Stage this hunk [y,n,a,d,/,j,J,g,e,?]?

You have a lot of options at this point. Typing ? shows a list of what you can do:

Stage this hunk [y,n,a,d,/,j,J,g,e,?]? ?

y - stage this hunk

n - do not stage this hunk

140

CHAPTER 6 GIT TOOLS

a - stage this and all the remaining hunks in the file

d - do not stage this hunk nor any of the remaining hunks in the file

g - select a hunk to go to

/ - search for a hunk matching the given regex

j - leave this hunk undecided, see next undecided hunk

J - leave this hunk undecided, see next hunk

k - leave this hunk undecided, see previous undecided hunk

K - leave this hunk undecided, see previous hunk

s - split the current hunk into smaller hunks

e - manually edit the current hunk

? - print help

Generally, you’ll type y or n if you want to stage each hunk, but staging all of them

in certain files or skipping a hunk decision until later can be helpful too. If you stage

one part of the file and leave another part unstaged, your status output will look like

this:

What now> 1

staged unstaged path

1: unchanged +0/-1 TODO

2: +1/-1 nothing index.html

3: +1/-1 +4/-0 lib/simplegit.rb

The status of the simplegit.rb file is interesting. It shows you that a couple of lines

are staged and a couple are unstaged. You’ve partially staged this file. At this point,

you can exit the interactive adding script and run git commit to commit the partially

staged files.

Finally, you don’t need to be in interactive add mode to do the partial-file staging—

you can start the same script by using git add -p or git add --patch on the command

line.

6.3 Stashing

Often, when you’ve been working on part of your project, things are in a messy state

and you want to switch branches for a bit to work on something else. The problem is,

you don’t want to do a commit of half-done work just so you can get back to this point

later. The answer to this issue is the git stash command.

Stashing takes the dirty state of your working directory — that is, your modified

tracked files and staged changes — and saves it on a stack of unfinished changes that

you can reapply at any time.

6.3.1 Stashing Your Work

To demonstrate, you’ll go into your project and start working on a couple of files and

possibly stage one of the changes. If you run git status , you can see your dirty state:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

141

PRO GIT SCOTT CHACON

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

Now you want to switch branches, but you don’t want to commit what you’ve been

working on yet; so you’ll stash the changes. To push a new stash onto your stack, run

git stash :

$ git stash

Saved working directory and index state \

"WIP on master: 049d078 added the index file"

HEAD is now at 049d078 added the index file

(To restore them type "git stash apply")

Your working directory is clean:

$ git status

On branch master

nothing to commit (working directory clean)

At this point, you can easily switch branches and do work elsewhere; your changes

are stored on your stack. To see which stashes you’ve stored, you can use git stash

list :

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051... Revert "added file_size"

stash@{2}: WIP on master: 21d80a5... added number to log

In this case, two stashes were done previously, so you have access to three different

stashed works. You can reapply the one you just stashed by using the command shown

in the help output of the original stash command: git stash apply . If you want to

apply one of the older stashes, you can specify it by naming it, like this: git stash

apply stash@2 . If you don’t specify a stash, Git assumes the most recent stash and

tries to apply it:

$ git stash apply

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: index.html

modified: lib/simplegit.rb

#

You can see that Git re-modifies the files you uncommitted when you saved the

stash. In this case, you had a clean working directory when you tried to apply the

stash, and you tried to apply it on the same branch you saved it from; but having a clean

142

CHAPTER 6 GIT TOOLS

working directory and applying it on the same branch aren’t necessary to successfully

apply a stash. You can save a stash on one branch, switch to another branch later, and

try to reapply the changes. You can also have modified and uncommitted files in your

working directory when you apply a stash — Git gives you merge conflicts if anything

no longer applies cleanly.

The changes to your files were reapplied, but the file you staged before wasn’t

restaged. To do that, you must run the git stash apply command with a --index

option to tell the command to try to reapply the staged changes. If you had run that

instead, you’d have gotten back to your original position:

$ git stash apply --index

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

The apply option only tries to apply the stashed work — you continue to have it on

your stack. To remove it, you can run git stash drop with the name of the stash to

remove:

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051... Revert "added file_size"

stash@{2}: WIP on master: 21d80a5... added number to log

$ git stash drop stash@{0}

Dropped stash@{0} (364e91f3f268f0900bc3ee613f9f733e82aaed43)

You can also run git stash pop to apply the stash and then immediately drop it

from your stack.

6.3.2 Creating a Branch from a Stash

If you stash some work, leave it there for a while, and continue on the branch from

which you stashed the work, you may have a problem reapplying the work. If the

apply tries to modify a file that you’ve since modified, you’ll get a merge conflict and

will have to try to resolve it. If you want an easier way to test the stashed changes

again, you can run git stash branch , which creates a new branch for you, checks out

the commit you were on when you stashed your work, reapplies your work there, and

then drops the stash if it applies successfully:

$ git stash branch testchanges

Switched to a new branch "testchanges"

On branch testchanges

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

143

PRO GIT SCOTT CHACON

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

Dropped refs/stash@{0} (f0dfc4d5dc332d1cee34a634182e168c4efc3359)

This is a nice shortcut to recover stashed work easily and work on it in a new

branch.

6.4 Rewriting History

Many times, when working with Git, you may want to revise your commit history for

some reason. One of the great things about Git is that it allows you to make decisions

at the last possible moment. You can decide what files go into which commits right

before you commit with the staging area, you can decide that you didn’t mean to be

working on something yet with the stash command, and you can rewrite commits that

already happened so they look like they happened in a different way. This can involve

changing the order of the commits, changing messages or modifying files in a commit,

squashing together or splitting apart commits, or removing commits entirely — all

before you share your work with others.

In this section, you’ll cover how to accomplish these very useful tasks so that you

can make your commit history look the way you want before you share it with others.

6.4.1 Changing the Last Commit

Changing your last commit is probably the most common rewriting of history that

you’ll do. You’ll often want to do two basic things to your last commit: change the

commit message, or change the snapshot you just recorded by adding, changing and

removing files.

If you only want to modify your last commit message, it’s very simple:

$ git commit --amend

That drops you into your text editor, which has your last commit message in it,

ready for you to modify the message. When you save and close the editor, the editor

writes a new commit containing that message and makes it your new last commit.

If you’ve committed and then you want to change the snapshot you committed by

adding or changing files, possibly because you forgot to add a newly created file when

you originally committed, the process works basically the same way. You stage the

changes you want by editing a file and running git add on it or git rm to a tracked file,

and the subsequent git commit --amend takes your current staging area and makes it

the snapshot for the new commit.

You need to be careful with this technique because amending changes the SHA–1

of the commit. It’s like a very small rebase — don’t amend your last commit if you’ve

already pushed it.

144

CHAPTER 6 GIT TOOLS

6.4.2 Changing Multiple Commit Messages

To modify a commit that is farther back in your history, you must move to more com-

plex tools. Git doesn’t have a modify-history tool, but you can use the rebase tool to

rebase a series of commits onto the HEAD they were originally based on instead of

moving them to another one. With the interactive rebase tool, you can then stop after

each commit you want to modify and change the message, add files, or do whatever

you wish. You can run rebase interactively by adding the -i option to git rebase . You

must indicate how far back you want to rewrite commits by telling the command which

commit to rebase onto.

For example, if you want to change the last three commit messages, or any of the

commit messages in that group, you supply as an argument to git rebase -i the parent

of the last commit you want to edit, which is HEAD 2̂ or HEAD 3 . It may be easier to

remember the 3 because you’re trying to edit the last three commits; but keep in mind

that you’re actually designating four commits ago, the parent of the last commit you

want to edit:

$ git rebase -i HEAD̃ 3

Remember again that this is a rebasing command — every commit included in the

range HEAD 3..HEAD will be rewritten, whether you change the message or not. Don’t

include any commit you’ve already pushed to a central server — doing so will confuse

other developers by providing an alternate version of the same change.

Running this command gives you a list of commits in your text editor that looks

something like this:

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Rebase 710f0f8..a5f4a0d onto 710f0f8

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

It’s important to note that these commits are listed in the opposite order than you

normally see them using the log command. If you run a log , you see something like

this:

$ git log --pretty=format:"%h %s HEAD̃ 3..HEAD"

a5f4a0d added cat-file

310154e updated README formatting and added blame

f7f3f6d changed my name a bit

Notice the reverse order. The interactive rebase gives you a script that it’s going to

run. It will start at the commit you specify on the command line (HEAD 3) and replay

145

PRO GIT SCOTT CHACON

the changes introduced in each of these commits from top to bottom. It lists the oldest

at the top, rather than the newest, because that’s the first one it will replay.

You need to edit the script so that it stops at the commit you want to edit. To do so,

change the word pick to the word edit for each of the commits you want the script to

stop after. For example, to modify only the third commit message, you change the file

to look like this:

edit f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

When you save and exit the editor, Git rewinds you back to the last commit in that

list and drops you on the command line with the following message:

$ git rebase -i HEAD̃ 3

Stopped at 7482e0d... updated the gemspec to hopefully work better

You can amend the commit now, with

git commit --amend

Once youre satisfied with your changes, run

git rebase --continue

These instructions tell you exactly what to do. Type

$ git commit --amend

Change the commit message, and exit the editor. Then, run

$ git rebase --continue

This command will apply the other two commits automatically, and then you’re

done. If you change pick to edit on more lines, you can repeat these steps for each

commit you change to edit. Each time, Git will stop, let you amend the commit, and

continue when you’re finished.

6.4.3 Reordering Commits

You can also use interactive rebases to reorder or remove commits entirely. If you want

to remove the “added cat-file” commit and change the order in which the other two

commits are introduced, you can change the rebase script from this

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

to this:

pick 310154e updated README formatting and added blame

pick f7f3f6d changed my name a bit

When you save and exit the editor, Git rewinds your branch to the parent of these

commits, applies 310154e and then f7f3f6d , and then stops. You effectively change the

order of those commits and remove the “added cat-file” commit completely.

146

CHAPTER 6 GIT TOOLS

6.4.4 Squashing a Commit

It’s also possible to take a series of commits and squash them down into a single commit

with the interactive rebasing tool. The script puts helpful instructions in the rebase

message:

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

If, instead of “pick” or “edit”, you specify “squash”, Git applies both that change

and the change directly before it and makes you merge the commit messages together.

So, if you want to make a single commit from these three commits, you make the script

look like this:

pick f7f3f6d changed my name a bit

squash 310154e updated README formatting and added blame

squash a5f4a0d added cat-file

When you save and exit the editor, Git applies all three changes and then puts you

back into the editor to merge the three commit messages:

This is a combination of 3 commits.

The first commit’s message is:

changed my name a bit

This is the 2nd commit message:

updated README formatting and added blame

This is the 3rd commit message:

added cat-file

When you save that, you have a single commit that introduces the changes of all

three previous commits.

6.4.5 Splitting a Commit

Splitting a commit undoes a commit and then partially stages and commits as many

times as commits you want to end up with. For example, suppose you want to split the

middle commit of your three commits. Instead of “updated README formatting and

added blame”, you want to split it into two commits: “updated README formatting”

for the first, and “added blame” for the second. You can do that in the rebase -i script

by changing the instruction on the commit you want to split to “edit”:

147

PRO GIT SCOTT CHACON

pick f7f3f6d changed my name a bit

edit 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Then, when the script drops you to the command line, you reset that commit, take

the changes that have been reset, and create multiple commits out of them. When

you save and exit the editor, Git rewinds to the parent of the first commit in your list,

applies the first commit (f7f3f6d), applies the second (310154e), and drops you to the

console. There, you can do a mixed reset of that commit with git reset HEAD̂ , which

effectively undoes that commit and leaves the modified files unstaged. Now you can

stage and commit files until you have several commits, and run git rebase --continue

when you’re done:

$ git reset HEAD̂

$ git add README

$ git commit -m ’updated README formatting’

$ git add lib/simplegit.rb

$ git commit -m ’added blame’

$ git rebase --continue

Git applies the last commit (a5f4a0d) in the script, and your history looks like this:

$ git log -4 --pretty=format:"%h %s"

1c002dd added cat-file

9b29157 added blame

35cfb2b updated README formatting

f3cc40e changed my name a bit

Once again, this changes the SHAs of all the commits in your list, so make sure no

commit shows up in that list that you’ve already pushed to a shared repository.

6.4.6 The Nuclear Option: filter-branch

There is another history-rewriting option that you can use if you need to rewrite a larger

number of commits in some scriptable way — for instance, changing your e-mail ad-

dress globally or removing a file from every commit. The command is filter-branch ,

and it can rewrite huge swaths of your history, so you probably shouldn’t use it un-

less your project isn’t yet public and other people haven’t based work off the commits

you’re about to rewrite. However, it can be very useful. You’ll learn a few of the

common uses so you can get an idea of some of the things it’s capable of.

Removing a File from Every Commit

This occurs fairly commonly. Someone accidentally commits a huge binary file

with a thoughtless git add . , and you want to remove it everywhere. Perhaps you

accidentally committed a file that contained a password, and you want to make your

project open source. filter-branch is the tool you probably want to use to scrub your

entire history. To remove a file named passwords.txt from your entire history, you can

use the --tree-filter option to filter-branch :

$ git filter-branch --tree-filter ’rm -f passwords.txt’ HEAD

Rewrite 6b9b3cf04e7c5686a9cb838c3f36a8cb6a0fc2bd (21/21)

Ref ’refs/heads/master’ was rewritten

148

CHAPTER 6 GIT TOOLS

The --tree-filter option runs the specified command after each checkout of the

project and then recommits the results. In this case, you remove a file called pass-

words.txt from every snapshot, whether it exists or not. If you want to remove all acci-

dentally committed editor backup files, you can run something like git filter-branch

--tree-filter ’rm -f * ’ HEAD .

You’ll be able to watch Git rewriting trees and commits and then move the branch

pointer at the end. It’s generally a good idea to do this in a testing branch and then

hard-reset your master branch after you’ve determined the outcome is what you really

want. To run filter-branch on all your branches, you can pass --all to the command.

Making a Subdirectory the New Root

Suppose you’ve done an import from another source control system and have sub-

directories that make no sense (trunk, tags, and so on). If you want to make the trunk

subdirectory be the new project root for every commit, filter-branch can help you do

that, too:

$ git filter-branch --subdirectory-filter trunk HEAD

Rewrite 856f0bf61e41a27326cdae8f09fe708d679f596f (12/12)

Ref ’refs/heads/master’ was rewritten

Now your new project root is what was in the trunk subdirectory each time. Git

will also automatically remove commits that did not affect the subdirectory.

Changing E-Mail Addresses Globally

Another common case is that you forgot to run git config to set your name and

e-mail address before you started working, or perhaps you want to open-source a

project at work and change all your work e-mail addresses to your personal address.

In any case, you can change e-mail addresses in multiple commits in a batch with

filter-branch as well. You need to be careful to change only the e-mail addresses that

are yours, so you use --commit-filter :

$ git filter-branch --commit-filter ’

if ["$GIT_AUTHOR_EMAIL" = "schacon@localhost"];

then

GIT_AUTHOR_NAME="Scott Chacon";

GIT_AUTHOR_EMAIL="schacon@example.com";

git commit-tree "$@";

else

git commit-tree "$@";

fi’ HEAD

This goes through and rewrites every commit to have your new address. Because

commits contain the SHA–1 values of their parents, this command changes every com-

mit SHA in your history, not just those that have the matching e-mail address.

6.5 Debugging with Git

Git also provides a couple of tools to help you debug issues in your projects. Because

Git is designed to work with nearly any type of project, these tools are pretty generic,

but they can often help you hunt for a bug or culprit when things go wrong.

149

PRO GIT SCOTT CHACON

6.5.1 File Annotation

If you track down a bug in your code and want to know when it was introduced and

why, file annotation is often your best tool. It shows you what commit was the last to

modify each line of any file. So, if you see that a method in your code is buggy, you can

annotate the file with git blame to see when each line of the method was last edited

and by whom. This example uses the -L option to limit the output to lines 12 through

22:

$ git blame -L 12,22 simplegit.rb

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 12) def show(tree = ’master’)

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 13) command("git show #{tree}")

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 14) end

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 15)

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 16) def log(tree = ’master’)

79eaf55d (Scott Chacon 2008-04-06 10:15:08 -0700 17) command("git log #{tree}")

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 18) end

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 19)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 20) def blame(path)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 21) command("git blame #{path}")

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 22) end

Notice that the first field is the partial SHA–1 of the commit that last modified

that line. The next two fields are values extracted from that commit—the author name

and the authored date of that commit — so you can easily see who modified that line

and when. After that come the line number and the content of the file. Also note

the 4̂832fe2 commit lines, which designate that those lines were in this file’s original

commit. That commit is when this file was first added to this project, and those lines

have been unchanged since. This is a tad confusing, because now you’ve seen at least

three different ways that Git uses the ˆ to modify a commit SHA, but that is what it

means here.

Another cool thing about Git is that it doesn’t track file renames explicitly. It

records the snapshots and then tries to figure out what was renamed implicitly, after

the fact. One of the interesting features of this is that you can ask it to figure out

all sorts of code movement as well. If you pass -C to git blame , Git analyzes the

file you’re annotating and tries to figure out where snippets of code within it origi-

nally came from if they were copied from elsewhere. Recently, I was refactoring a file

named GITServerHandler.m into multiple files, one of which was GITPackUpload.m . By

blaming GITPackUpload.m with the -C option, I could see where sections of the code

originally came from:

$ git blame -C -L 141,153 GITPackUpload.m

f344f58d GITServerHandler.m (Scott 2009-01-04 141)

f344f58d GITServerHandler.m (Scott 2009-01-04 142) - (void) gatherObjectShasFromC

f344f58d GITServerHandler.m (Scott 2009-01-04 143) {

70befddd GITServerHandler.m (Scott 2009-03-22 144) //NSLog(@"GATHER COMMI

ad11ac80 GITPackUpload.m (Scott 2009-03-24 145)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 146) NSString *parentSha;

ad11ac80 GITPackUpload.m (Scott 2009-03-24 147) GITCommit *commit = [g

ad11ac80 GITPackUpload.m (Scott 2009-03-24 148)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 149) //NSLog(@"GATHER COMMI

150

CHAPTER 6 GIT TOOLS

ad11ac80 GITPackUpload.m (Scott 2009-03-24 150)

56ef2caf GITServerHandler.m (Scott 2009-01-05 151) if(commit) {

56ef2caf GITServerHandler.m (Scott 2009-01-05 152) [refDict setOb

56ef2caf GITServerHandler.m (Scott 2009-01-05 153)

This is really useful. Normally, you get as the original commit the commit where

you copied the code over, because that is the first time you touched those lines in this

file. Git tells you the original commit where you wrote those lines, even if it was in

another file.

6.5.2 Binary Search

Annotating a file helps if you know where the issue is to begin with. If you don’t

know what is breaking, and there have been dozens or hundreds of commits since the

last state where you know the code worked, you’ll likely turn to git bisect for help.

The bisect command does a binary search through your commit history to help you

identify as quickly as possible which commit introduced an issue.

Let’s say you just pushed out a release of your code to a production environment,

you’re getting bug reports about something that wasn’t happening in your development

environment, and you can’t imagine why the code is doing that. You go back to your

code, and it turns out you can reproduce the issue, but you can’t figure out what is

going wrong. You can bisect the code to find out. First you run git bisect start to

get things going, and then you use git bisect bad to tell the system that the current

commit you’re on is broken. Then, you must tell bisect when the last known good state

was, using git bisect good [good commit] :

$ git bisect start

$ git bisect bad

$ git bisect good v1.0

Bisecting: 6 revisions left to test after this

[ecb6e1bc347ccecc5f9350d878ce677feb13d3b2] error handling on repo

Git figured out that about 12 commits came between the commit you marked as the

last good commit (v1.0) and the current bad version, and it checked out the middle one

for you. At this point, you can run your test to see if the issue exists as of this commit.

If it does, then it was introduced sometime before this middle commit; if it doesn’t,

then the problem was introduced sometime after the middle commit. It turns out there

is no issue here, and you tell Git that by typing git bisect good and continue your

journey:

$ git bisect good

Bisecting: 3 revisions left to test after this

[b047b02ea83310a70fd603dc8cd7a6cd13d15c04] secure this thing

Now you’re on another commit, halfway between the one you just tested and your

bad commit. You run your test again and find that this commit is broken, so you tell

Git that with git bisect bad :

$ git bisect bad

Bisecting: 1 revisions left to test after this

[f71ce38690acf49c1f3c9bea38e09d82a5ce6014] drop exceptions table

151

PRO GIT SCOTT CHACON

This commit is fine, and nowGit has all the information it needs to determine where

the issue was introduced. It tells you the SHA–1 of the first bad commit and show some

of the commit information and which files were modified in that commit so you can

figure out what happened that may have introduced this bug:

$ git bisect good

b047b02ea83310a70fd603dc8cd7a6cd13d15c04 is first bad commit

commit b047b02ea83310a70fd603dc8cd7a6cd13d15c04

Author: PJ Hyett <pjhyett@example.com>

Date: Tue Jan 27 14:48:32 2009 -0800

secure this thing

:040000 040000 40ee3e7821b895e52c1695092db9bdc4c61d1730

f24d3c6ebcfc639b1a3814550e62d60b8e68a8e4 M config

When you’re finished, you should run git bisect reset to reset your HEAD to

where you were before you started, or you’ll end up in a weird state:

$ git bisect reset

This is a powerful tool that can help you check hundreds of commits for an intro-

duced bug in minutes. In fact, if you have a script that will exit 0 if the project is good

or non–0 if the project is bad, you can fully automate git bisect . First, you again tell

it the scope of the bisect by providing the known bad and good commits. You can do

this by listing them with the bisect start command if you want, listing the known

bad commit first and the known good commit second:

$ git bisect start HEAD v1.0

$ git bisect run test-error.sh

Doing so automatically runs test-error.sh on each checked-out commit until Git

finds the first broken commit. You can also run something like make or make tests or

whatever you have that runs automated tests for you.

6.6 Submodules

It often happens that while working on one project, you need to use another project

from within it. Perhaps it’s a library that a third party developed or that you’re devel-

oping separately and using in multiple parent projects. A common issue arises in these

scenarios: you want to be able to treat the two projects as separate yet still be able to

use one from within the other.

Here’s an example. Suppose you’re developing a web site and creating Atom feeds.

Instead of writing your own Atom-generating code, you decide to use a library. You’re

likely to have to either include this code from a shared library like a CPAN install

or Ruby gem, or copy the source code into your own project tree. The issue with

including the library is that it’s difficult to customize the library in any way and often

more difficult to deploy it, because you need to make sure every client has that library

available. The issue with vendoring the code into your own project is that any custom

changes you make are difficult to merge when upstream changes become available.

152

CHAPTER 6 GIT TOOLS

Git addresses this issue using submodules. Submodules allow you to keep a Git

repository as a subdirectory of another Git repository. This lets you clone another

repository into your project and keep your commits separate.

6.6.1 Starting with Submodules

Suppose you want to add the Rack library (a Ruby web server gateway interface) to

your project, possibly maintain your own changes to it, but continue to merge in up-

stream changes. The first thing you should do is clone the external repository into your

subdirectory. You add external projects as submodules with the git submodule add

command:

$ git submodule add git://github.com/chneukirchen/rack.git rack

Initialized empty Git repository in /opt/subtest/rack/.git/

remote: Counting objects: 3181, done.

remote: Compressing objects: 100% (1534/1534), done.

remote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Receiving objects: 100% (3181/3181), 675.42 KiB | 422 KiB/s, done.

Resolving deltas: 100% (1951/1951), done.

Now you have the Rack project under a subdirectory named rack within your

project. You can go into that subdirectory, make changes, add your own writable re-

mote repository to push your changes into, fetch and merge from the original reposi-

tory, and more. If you run git status right after you add the submodule, you see two

things:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: .gitmodules

new file: rack

#

First you notice the .gitmodules file. This is a configuration file that stores the

mapping between the project’s URL and the local subdirectory you’ve pulled it into:

$ cat .gitmodules

[submodule "rack"]

path = rack

url = git://github.com/chneukirchen/rack.git

If you have multiple submodules, you’ll have multiple entries in this file. It’s impor-

tant to note that this file is version-controlled with your other files, like your .gitignore

file. It’s pushed and pulled with the rest of your project. This is how other people who

clone this project know where to get the submodule projects from.

The other listing in the git status output is the rack entry. If you run git diff on

that, you see something interesting:

$ git diff --cached rack

diff --git a/rack b/rack

153

PRO GIT SCOTT CHACON

new file mode 160000

index 0000000..08d709f

--- /dev/null

+++ b/rack

@@ -0,0 +1 @@

+Subproject commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

Although rack is a subdirectory in your working directory, Git sees it as a sub-

module and doesn’t track its contents when you’re not in that directory. Instead, Git

records it as a particular commit from that repository. When you make changes and

commit in that subdirectory, the superproject notices that the HEAD there has changed

and records the exact commit you’re currently working off of; that way, when others

clone this project, they can re-create the environment exactly.

This is an important point with submodules: you record them as the exact commit

they’re at. You can’t record a submodule at master or some other symbolic reference.

When you commit, you see something like this:

$ git commit -m ’first commit with submodule rack’

[master 0550271] first commit with submodule rack

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 rack

Notice the 160000 mode for the rack entry. That is a special mode in Git that basi-

cally means you’re recording a commit as a directory entry rather than a subdirectory

or a file.

You can treat the rack directory as a separate project and then update your super-

project from time to time with a pointer to the latest commit in that subproject. All the

Git commands work independently in the two directories:

$ git log -1

commit 0550271328a0038865aad6331e620cd7238601bb

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Apr 9 09:03:56 2009 -0700

first commit with submodule rack

$ cd rack/

$ git log -1

commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

Author: Christian Neukirchen <chneukirchen@gmail.com>

Date: Wed Mar 25 14:49:04 2009 +0100

Document version change

6.6.2 Cloning a Project with Submodules

Here you’ll clone a project with a submodule in it. When you receive such a project,

you get the directories that contain submodules, but none of the files yet:

$ git clone git://github.com/schacon/myproject.git

Initialized empty Git repository in /opt/myproject/.git/

remote: Counting objects: 6, done.

154

CHAPTER 6 GIT TOOLS

remote: Compressing objects: 100% (4/4), done.

remote: Total 6 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (6/6), done.

$ cd myproject

$ ls -l

total 8

-rw-r--r-- 1 schacon admin 3 Apr 9 09:11 README

drwxr-xr-x 2 schacon admin 68 Apr 9 09:11 rack

$ ls rack/

$

The rack directory is there, but empty. Youmust run two commands: git submodule

init to initialize your local configuration file, and git submodule update to fetch all

the data from that project and check out the appropriate commit listed in your super-

project:

$ git submodule init

Submodule ’rack’ (git://github.com/chneukirchen/rack.git) registered for path ’rack’

$ git submodule update

Initialized empty Git repository in /opt/myproject/rack/.git/

remote: Counting objects: 3181, done.

remote: Compressing objects: 100% (1534/1534), done.

remote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Receiving objects: 100% (3181/3181), 675.42 KiB | 173 KiB/s, done.

Resolving deltas: 100% (1951/1951), done.

Submodule path ’rack’: checked out ’08d709f78b8c5b0fbeb7821e37fa53e69afcf433’

Now your rack subdirectory is at the exact state it was in when you committed

earlier. If another developer makes changes to the rack code and commits, and you pull

that reference down and merge it in, you get something a bit odd:

$ git merge origin/master

Updating 0550271..85a3eee

Fast forward

rack | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

[master*]$ git status

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: rack

#

You merged in what is basically a change to the pointer for your submodule; but

it doesn’t update the code in the submodule directory, so it looks like you have a dirty

state in your working directory:

$ git diff

diff --git a/rack b/rack

index 6c5e70b..08d709f 160000

--- a/rack

155

PRO GIT SCOTT CHACON

+++ b/rack

@@ -1 +1 @@

-Subproject commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

+Subproject commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

This is the case because the pointer you have for the submodule isn’t what is ac-

tually in the submodule directory. To fix this, you must run git submodule update

again:

$ git submodule update

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 1), reused 2 (delta 0)

Unpacking objects: 100% (3/3), done.

From git@github.com:schacon/rack

08d709f..6c5e70b master -> origin/master

Submodule path ’rack’: checked out ’6c5e70b984a60b3cecd395edd5b48a7575bf58e0’

You have to do this every time you pull down a submodule change in the main

project. It’s strange, but it works.

One common problem happens when a developer makes a change locally in a sub-

module but doesn’t push it to a public server. Then, they commit a pointer to that

non-public state and push up the superproject. When other developers try to run git

submodule update , the submodule system can’t find the commit that is referenced, be-

cause it exists only on the first developer’s system. If that happens, you see an error

like this:

$ git submodule update

fatal: reference isnt a tree: 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Unable to checkout ’6c5e70b984a60b3cecd395edd5ba7575bf58e0’ in submodule path ’rack’

You have to see who last changed the submodule:

$ git log -1 rack

commit 85a3eee996800fcfa91e2119372dd4172bf76678

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Apr 9 09:19:14 2009 -0700

added a submodule reference I will never make public. hahahahaha!

Then, you e-mail that guy and yell at him.

6.6.3 Superprojects

Sometimes, developers want to get a combination of a large project’s subdirectories,

depending on what team they’re on. This is common if you’re coming from CVS or

Subversion, where you’ve defined a module or collection of subdirectories, and you

want to keep this type of workflow.

A good way to do this in Git is to make each of the subfolders a separate Git repos-

itory and then create superproject Git repositories that contain multiple submodules.

A benefit of this approach is that you can more specifically define the relationships

between the projects with tags and branches in the superprojects.

156

CHAPTER 6 GIT TOOLS

6.6.4 Issues with Submodules

Using submodules isn’t without hiccups, however. First, you must be relatively careful

when working in the submodule directory. When you run git submodule update , it

checks out the specific version of the project, but not within a branch. This is called

having a detached head — it means the HEAD file points directly to a commit, not to

a symbolic reference. The issue is that you generally don’t want to work in a detached

head environment, because it’s easy to lose changes. If you do an initial submodule

update , commit in that submodule directory without creating a branch to work in, and

then run git submodule update again from the superproject without committing in the

meantime, Git will overwrite your changes without telling you. Technically you won’t

lose the work, but you won’t have a branch pointing to it, so it will be somewhat

difficult to retrieive.

To avoid this issue, create a branch when you work in a submodule directory with

git checkout -b work or something equivalent. When you do the submodule update a

second time, it will still revert your work, but at least you have a pointer to get back to.

Switching branches with submodules in them can also be tricky. If you create a

new branch, add a submodule there, and then switch back to a branch without that

submodule, you still have the submodule directory as an untracked directory:

$ git checkout -b rack

Switched to a new branch "rack"

$ git submodule add git@github.com:schacon/rack.git rack

Initialized empty Git repository in /opt/myproj/rack/.git/

...

Receiving objects: 100% (3184/3184), 677.42 KiB | 34 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

$ git commit -am ’added rack submodule’

[rack cc49a69] added rack submodule

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 rack

$ git checkout master

Switched to branch "master"

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

rack/

You have to either move it out of the way or remove it, in which case you have to

clone it again when you switch back—and you may lose local changes or branches that

you didn’t push up.

The last main caveat that many people run into involves switching from subdirecto-

ries to submodules. If you’ve been tracking files in your project and you want to move

them out into a submodule, you must be careful or Git will get angry at you. Assume

that you have the rack files in a subdirectory of your project, and you want to switch it

to a submodule. If you delete the subdirectory and then run submodule add , Git yells

at you:

$ rm -Rf rack/

157

PRO GIT SCOTT CHACON

$ git submodule add git@github.com:schacon/rack.git rack

’rack’ already exists in the index

You have to unstage the rack directory first. Then you can add the submodule:

$ git rm -r rack

$ git submodule add git@github.com:schacon/rack.git rack

Initialized empty Git repository in /opt/testsub/rack/.git/

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 88 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

Now suppose you did that in a branch. If you try to switch back to a branch where

those files are still in the actual tree rather than a submodule — you get this error:

$ git checkout master

error: Untracked working tree file ’rack/AUTHORS’ would be overwritten by merge.

You have to move the rack submodule directory out of the way before you can

switch to a branch that doesn’t have it:

$ mv rack /tmp/

$ git checkout master

Switched to branch "master"

$ ls

README rack

Then, when you switch back, you get an empty rack directory. You can either run

git submodule update to reclone, or you can move your /tmp/rack directory back into

the empty directory.

6.7 Subtree Merging

Now that you’ve seen the difficulties of the submodule system, let’s look at an alternate

way to solve the same problem. When Git merges, it looks at what it has to merge to-

gether and then chooses an appropriate merging strategy to use. If you’re merging two

branches, Git uses a recursive strategy. If you’re merging more than two branches, Git

picks the octopus strategy. These strategies are automatically chosen for you because

the recursive strategy can handle complex three-way merge situations — for example,

more than one common ancestor — but it can only handle merging two branches. The

octopus merge can handle multiple branches but is more cautious to avoid difficult

conflicts, so it’s chosen as the default strategy if you’re trying to merge more than two

branches.

However, there are other strategies you can choose as well. One of them is the

subtree merge, and you can use it to deal with the subproject issue. Here you’ll see

how to do the same rack embedding as in the last section, but using subtree merges

instead.

The idea of the subtree merge is that you have two projects, and one of the projects

maps to a subdirectory of the other one and vice versa. When you specify a subtree

158

CHAPTER 6 GIT TOOLS

merge, Git is smart enough to figure out that one is a subtree of the other and merge

appropriately — it’s pretty amazing.

You first add the Rack application to your project. You add the Rack project as a

remote reference in your own project and then check it out into its own branch:

$ git remote add rack_remote git@github.com:schacon/rack.git

$ git fetch rack_remote

warning: no common commits

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 4 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

From git@github.com:schacon/rack

* [new branch] build -> rack_remote/build

* [new branch] master -> rack_remote/master

* [new branch] rack-0.4 -> rack_remote/rack-0.4

* [new branch] rack-0.9 -> rack_remote/rack-0.9

$ git checkout -b rack_branch rack_remote/master

Branch rack_branch set up to track remote branch refs/remotes/rack_remote/master.

Switched to a new branch "rack_branch"

Now you have the root of the Rack project in your rack branch branch and your

own project in the master branch. If you check out one and then the other, you can see

that they have different project roots:

$ ls

AUTHORS KNOWN-ISSUES Rakefile contrib lib

COPYING README bin example test

$ git checkout master

Switched to branch "master"

$ ls

README

You want to pull the Rack project into your master project as a subdirectory. You

can do that in Git with git read-tree . You’ll learn more about read-tree and its

friends in Chapter 9, but for now know that it reads the root tree of one branch into

your current staging area and working directory. You just switched back to your master

branch, and you pull the rack branch into the rack subdirectory of your master branch

of your main project:

$ git read-tree --prefix=rack/ -u rack_branch

When you commit, it looks like you have all the Rack files under that subdirectory

— as though you copied them in from a tarball. What gets interesting is that you can

fairly easily merge changes from one of the branches to the other. So, if the Rack

project updates, you can pull in upstream changes by switching to that branch and

pulling:

$ git checkout rack_branch

$ git pull

159

PRO GIT SCOTT CHACON

Then, you can merge those changes back into your master branch. You can use git

merge -s subtree and it will work fine; but Git will also merge the histories together,

which you probably don’t want. To pull in the changes and prepopulate the commit

message, use the --squash and --no-commit options as well as the -s subtree strategy

option:

$ git checkout master

$ git merge --squash -s subtree --no-commit rack_branch

Squash commit -- not updating HEAD

Automatic merge went well; stopped before committing as requested

All the changes from your Rack project are merged in and ready to be committed

locally. You can also do the opposite — make changes in the rack subdirectory of your

master branch and then merge them into your rack branch branch later to submit them

to the maintainers or push them upstream.

To get a diff between what you have in your rack subdirectory and the code in your

rack branch branch — to see if you need to merge them — you can’t use the normal

diff command. Instead, you must run git diff-tree with the branch you want to

compare to:

$ git diff-tree -p rack_branch

Or, to compare what is in your rack subdirectory with what the master branch on

the server was the last time you fetched, you can run

$ git diff-tree -p rack_remote/master

6.8 Summary

You’ve seen a number of advanced tools that allow you to manipulate your commits

and staging area more precisely. When you notice issues, you should be able to easily

figure out what commit introduced them, when, and by whom. If you want to use

subprojects in your project, you’ve learned a few ways to accommodate those needs.

At this point, you should be able to do most of the things in Git that you’ll need on the

command line day to day and feel comfortable doing so.

160

Chapter 7

Customizing Git

So far, I’ve covered the basics of how Git works and how to use it, and I’ve introduced

a number of tools that Git provides to help you use it easily and efficiently. In this

chapter, I’ll go through some operations that you can use to make Git operate in a

more customized fashion by introducing several important configuration settings and

the hooks system. With these tools, it’s easy to get Git to work exactly the way you,

your company, or your group needs it to.

7.1 Git Configuration

As you briefly saw in the Chapter 1, you can specify Git configuration settings with the

git config command. One of the first things you did was set up your name and e-mail

address:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Now you’ll learn a few of the more interesting options that you can set in this

manner to customize your Git usage.

You saw some simple Git configuration details in the first chapter, but I’ll go over

them again quickly here. Git uses a series of configuration files to determine non-

default behavior that you may want. The first place Git looks for these values is in an

/etc/gitconfig file, which contains values for every user on the system and all of their

repositories. If you pass the option --system to git config , it reads and writes from

this file specifically.

The next place Git looks is the /.gitconfig file, which is specific to each user.

You can make Git read and write to this file by passing the --global option.

Finally, Git looks for configuration values in the config file in the Git directory

(.git/config) of whatever repository you’re currently using. These values are specific

to that single repository. Each level overwrites values in the previous level, so values

in .git/config trump those in /etc/sysconfig , for instance. You can also set these

values by manually editing the file and inserting the correct syntax, but it’s generally

easier to run the git config command.

161

PRO GIT SCOTT CHACON

7.1.1 Basic Client Configuration

The configuration options recognized by Git fall into two categories: client side and

server side. The majority of the options are client side—configuring your personal

working preferences. Although tons of options are available, I’ll only cover the few

that either are commonly used or can significantly affect your workflow. Many options

are useful only in edge cases that I won’t go over here. If you want to see a list of all

the options your version of Git recognizes, you can run

$ git config --help

The manual page for git config lists all the available options in quite a bit of

detail.

core.editor

By default, Git uses whatever you’ve set as your default text editor or else falls

back to the Vi editor to create and edit your commit and tag messages. To change that

default to something else, you can use the core.editor setting:

$ git config --global core.editor emacs

Now, no matter what is set as your default shell editor variable, Git will fire up

Emacs to edit messages.

commit.template

If you set this to the path of a file on your system, Git will use that file as the

default message when you commit. For instance, suppose you create a template file at

$HOME/.gitmessage.txt that looks like this:

subject line

what happened

[ticket: X]

To tell Git to use it as the default message that appears in your editor when you run

git commit , set the commit.template configuration value:

$ git config --global commit.template $HOME/.gitmessage.txt

$ git commit

Then, your editor will open to something like this for your placeholder commit

message when you commit:

subject line

what happened

[ticket: X]

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

162

CHAPTER 7 CUSTOMIZING GIT

modified: lib/test.rb

#

˜

˜

".git/COMMIT_EDITMSG" 14L, 297C

If you have a commit-message policy in place, then putting a template for that

policy on your system and configuring Git to use it by default can help increase the

chance of that policy being followed regularly.

core.pager

The core.pager setting determines what pager is used when Git pages output such

as log and diff . You can set it to more or to your favorite pager (by default, it’s less),

or you can turn it off by setting it to a blank string:

$ git config --global core.pager ’’

If you run that, Git will page the entire output of all commands, no matter how long

they are.

user.signingkey

If you’re making signed annotated tags (as discussed in Chapter 2), setting your

GPG signing key as a configuration setting makes things easier. Set your key ID like

so:

$ git config --global user.signingkey <gpg-key-id>

Now, you can sign tags without having to specify your key every time with the git

tag command:

$ git tag -s <tag-name>

core.excludesfile

You can put patterns in your project’s .gitignore file to have Git not see them as

untracked files or try to stage them when you run git add on them, as discussed in

Chapter 2. However, if you want another file outside of your project to hold those val-

ues or have extra values, you can tell Git where that file is with the core.excludesfile

setting. Simply set it to the path of a file that has content similar to what a .gitignore

file would have.

help.autocorrect

This option is available only in Git 1.6.1 and later. If you mistype a command in

Git 1.6, it shows you something like this:

$ git com

git: ’com’ is not a git-command. See ’git --help’.

Did you mean this?

commit

If you set help.autocorrect to 1, Git will automatically run the command if it has

only one match under this scenario.

163

PRO GIT SCOTT CHACON

7.1.2 Colors in Git

Git can color its output to your terminal, which can help you visually parse the out-

put quickly and easily. A number of options can help you set the coloring to your

preference.

color.ui

Git automatically colors most of its output if you ask it to. You can get very specific

about what you want colored and how; but to turn on all the default terminal coloring,

set color.ui to true:

$ git config --global color.ui true

When that value is set, Git colors its output if the output goes to a terminal. Other

possible settings are false, which never colors the output, and always, which sets colors

all the time, even if you’re redirecting Git commands to a file or piping them to another

command. This setting was added in Git version 1.5.5; if you have an older version,

you’ll have to specify all the color settings individually.

You’ll rarely want color.ui = always . In most scenarios, if you want color codes

in your redirected output, you can instead pass a --color flag to the Git command to

force it to use color codes. The color.ui = true setting is almost always what you’ll

want to use.

color.*

If you want to be more specific about which commands are colored and how, or

you have an older version, Git provides verb-specific coloring settings. Each of these

can be set to true , false , or always :

color.branch

color.diff

color.interactive

color.status

In addition, each of these has subsettings you can use to set specific colors for

parts of the output, if you want to override each color. For example, to set the meta

information in your diff output to blue foreground, black background, and bold text,

you can run

$ git config --global color.diff.meta ‘‘blue black bold’’

You can set the color to any of the following values: normal, black, red, green,

yellow, blue, magenta, cyan, or white. If you want an attribute like bold in the previous

example, you can choose from bold, dim, ul, blink, and reverse.

See the git config manpage for all the subsettings you can configure, if you want

to do that.

7.1.3 External Merge and Diff Tools

Although Git has an internal implementation of diff, which is what you’ve been using,

you can set up an external tool instead. You can also set up a graphical merge conflic-

tresolution tool instead of having to resolve conflicts manually. I’ll demonstrate setting

up the Perforce Visual Merge Tool (P4Merge) to do your diffs and merge resolutions,

because it’s a nice graphical tool and it’s free.

164

CHAPTER 7 CUSTOMIZING GIT

If you want to try this out, P4Merge works on all major platforms, so you should

be able to do so. I’ll use path names in the examples that work on Mac and Linux

systems; for Windows, you’ll have to change /usr/local/bin to an executable path in

your environment.

You can download P4Merge here:

http://www.perforce.com/perforce/downloads/component.html

To begin, you’ll set up external wrapper scripts to run your commands. I’ll use the

Mac path for the executable; in other systems, it will be where your p4merge binary is

installed. Set up a merge wrapper script named extMerge that calls your binary with all

the arguments provided:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/p4merge.app/Contents/MacOS/p4merge $*

The diff wrapper checks to make sure seven arguments are provided and passes two

of them to your merge script. By default, Git passes the following arguments to the diff

program:

path old-file old-hex old-mode new-file new-hex new-mode

Because you only want the old-file and new-file arguments, you use the wrapper

script to pass the ones you need.

$ cat /usr/local/bin/extDiff

#!/bin/sh

[$# -eq 7] && /usr/local/bin/extMerge "$2" "$5"

You also need to make sure these tools are executable:

$ sudo chmod +x /usr/local/bin/extMerge

$ sudo chmod +x /usr/local/bin/extDiff

Now you can set up your config file to use your custom merge resolution and diff

tools. This takes a number of custom settings: merge.tool to tell Git what strategy to

use, mergetool.*.cmd to specify how to run the command, mergetool.trustExitCode

to tell Git if the exit code of that program indicates a successful merge resolution or

not, and diff.external to tell Git what command to run for diffs. So, you can either

run four config commands

$ git config --global merge.tool extMerge

$ git config --global mergetool.extMerge.cmd \

’extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"’

$ git config --global mergetool.trustExitCode false

$ git config --global diff.external extDiff

or you can edit your /.gitconfig file to add these lines:

165

PRO GIT SCOTT CHACON

[merge]

tool = extMerge

[mergetool "extMerge"]

cmd = extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"

trustExitCode = false

[diff]

external = extDiff

After all this is set, if you run diff commands such as this:

$ git diff 32d1776b1̂ 32d1776b1

Instead of getting the diff output on the command line, Git fires up P4Merge, which

looks something like Figure 7.1.

Figure 7.1: P4Merge

If you try to merge two branches and subsequently have merge conflicts, you can

run the command git mergetool ; it starts P4Merge to let you resolve the conflicts

through that GUI tool.

The nice thing about this wrapper setup is that you can change your diff and merge

tools easily. For example, to change your extDiff and extMerge tools to run the KDiff3

tool instead, all you have to do is edit your extMerge file:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/kdiff3.app/Contents/MacOS/kdiff3 $*

Now, Git will use the KDiff3 tool for diff viewing and merge conflict resolution.

166

CHAPTER 7 CUSTOMIZING GIT

Git comes preset to use a number of other merge-resolution tools without your hav-

ing to set up the cmd configuration. You can set your merge tool to kdiff3, opendiff,

tkdiff, meld, xxdiff, emerge, vimdiff, or gvimdiff. If you’re not interested in using KD-

iff3 for diff but rather want to use it just for merge resolution, and the kdiff3 command

is in your path, then you can run

$ git config --global merge.tool kdiff3

If you run this instead of setting up the extMerge and extDiff files, Git will use

KDiff3 for merge resolution and the normal Git diff tool for diffs.

7.1.4 Formatting and Whitespace

Formatting and whitespace issues are some of the more frustrating and subtle problems

that many developers encounter when collaborating, especially cross-platform. It’s

very easy for patches or other collaborated work to introduce subtle whitespace changes

because editors silently introduce them or Windows programmers add carriage returns

at the end of lines they touch in cross-platform projects. Git has a few configuration

options to help with these issues.

core.autocrlf

If you’re programming on Windows or using another system but working with peo-

ple who are programming on Windows, you’ll probably run into line-ending issues at

some point. This is because Windows uses both a carriage-return character and a line-

feed character for newlines in its files, whereas Mac and Linux systems use only the

linefeed character. This is a subtle but incredibly annoying fact of cross-platform work.

Git can handle this by auto-converting CRLF line endings into LF when you com-

mit, and vice versa when it checks out code onto your filesystem. You can turn on this

functionality with the core.autocrlf setting. If you’re on a Windows machine, set it

to true — this converts LF endings into CRLF when you check out code:

$ git config --global core.autocrlf true

If you’re on a Linux or Mac system that uses LF line endings, then you don’t want

Git to automatically convert them when you check out files; however, if a file with

CRLF endings accidentally gets introduced, then you may want Git to fix it. You can

tell Git to convert CRLF to LF on commit but not the other way around by setting

core.autocrlf to input:

$ git config --global core.autocrlf input

This setup should leave you with CRLF endings in Windows checkouts but LF

endings on Mac and Linux systems and in the repository.

If you’re a Windows programmer doing a Windows-only project, then you can turn

off this functionality, recording the carriage returns in the repository by setting the

config value to false :

$ git config --global core.autocrlf false

core.whitespace

167

PRO GIT SCOTT CHACON

Git comes preset to detect and fix some whitespace issues. It can look for four

primary whitespace issues — two are enabled by default and can be turned off, and

two aren’t enabled by default but can be activated.

The two that are turned on by default are trailing-space , which looks for spaces

at the end of a line, and space-before-tab , which looks for spaces before tabs at the

beginning of a line.

The two that are disabled by default but can be turned on are indent-with-non-tab ,

which looks for lines that begin with eight or more spaces instead of tabs, and cr-at-eol ,

which tells Git that carriage returns at the end of lines are OK.

You can tell Git which of these you want enabled by setting core.whitespace to

the values you want on or off, separated by commas. You can disable settings by either

leaving them out of the setting string or prepending a - in front of the value. For

example, if you want all but cr-at-eol to be set, you can do this:

$ git config --global core.whitespace \

trailing-space,space-before-tab,indent-with-non-tab

Git will detect these issues when you run a git diff command and try to color

them so you can possibly fix them before you commit. It will also use these values to

help you when you apply patches with git apply . When you’re applying patches, you

can ask Git to warn you if it’s applying patches with the specified whitespace issues:

$ git apply --whitespace=warn <patch>

Or you can have Git try to automatically fix the issue before applying the patch:

$ git apply --whitespace=fix <patch>

These options apply to the git rebase option as well. If you’ve committed whites-

pace issues but haven’t yet pushed upstream, you can run a rebase with the --whitespace=fix

option to have Git automatically fix whitespace issues as it’s rewriting the patches.

7.1.5 Server Configuration

Not nearly as many configuration options are available for the server side of Git, but

there are a few interesting ones you may want to take note of.

receive.fsckObjects

By default, Git doesn’t check for consistency all the objects it receives during a

push. Although Git can check to make sure each object still matches its SHA–1 check-

sum and points to valid objects, it doesn’t do that by default on every push. This is a

relatively expensive operation and may add a lot of time to each push, depending on

the size of the repository or the push. If you want Git to check object consistency on

every push, you can force it to do so by setting receive.fsckObjects to true:

$ git config --system receive.fsckObjects true

Now, Git will check the integrity of your repository before each push is accepted to

make sure faulty clients aren’t introducing corrupt data.

receive.denyNonFastForwards

If you rebase commits that you’ve already pushed and then try to push again, or

otherwise try to push a commit to a remote branch that doesn’t contain the commit that

168

CHAPTER 7 CUSTOMIZING GIT

the remote branch currently points to, you’ll be denied. This is generally good policy;

but in the case of the rebase, you may determine that you know what you’re doing and

can force-update the remote branch with a -f flag to your push command.

To disable the ability to force-update remote branches to non-fast-forward refer-

ences, set receive.denyNonFastForwards :

$ git config --system receive.denyNonFastForwards true

The other way you can do this is via server-side receive hooks, which I’ll cover in

a bit. That approach lets you do more complex things like deny non-fast-forwards to a

certain subset of users.

receive.denyDeletes

One of the workarounds to the denyNonFastForwards policy is for the user to delete

the branch and then push it back up with the new reference. In newer versions of Git

(beginning with version 1.6.1), you can set receive.denyDeletes to true:

$ git config --system receive.denyDeletes true

This denies branch and tag deletion over a push across the board — no user can do

it. To remove remote branches, you must remove the ref files from the server manually.

There are also more interesting ways to do this on a per-user basis via ACLs, as you’ll

learn at the end of this chapter.

7.2 Git Attributes

Some of these settings can also be specified for a path, so that Git applies those settings

only for a subdirectory or subset of files. These path-specific settings are called Git

attributes and are set either in a .gitattribute file in one of your directories (normally

the root of your project) or in the .git/info/attributes file if you don’t want the

attributes file committed with your project.

Using attributes, you can do things like specify separate merge strategies for in-

dividual files or directories in your project, tell Git how to diff non-text files, or have

Git filter content before you check it into or out of Git. In this section, you’ll learn

about some of the attributes you can set on your paths in your Git project and see a few

examples of using this feature in practice.

7.2.1 Binary Files

One cool trick for which you can use Git attributes is telling Git which files are binary

(in cases it otherwise may not be able to figure out) and giving Git special instructions

about how to handle those files. For instance, some text files may be machine generated

and not diffable, whereas some binary files can be diffed — you’ll see how to tell Git

which is which.

Identifying Binary Files

Some files look like text files but for all intents and purposes are to be treated as bi-

nary data. For instance, Xcode projects on the Mac contain a file that ends in .pbxproj ,

which is basically a JSON (plain text javascript data format) dataset written out to

disk by the IDE that records your build settings and so on. Although it’s technically a

text file, because it’s all ASCII, you don’t want to treat it as such because it’s really a

169

PRO GIT SCOTT CHACON

lightweight database— you can’t merge the contents if two people changed it, and diffs

generally aren’t helpful. The file is meant to be consumed by a machine. In essence,

you want to treat it like a binary file.

To tell Git to treat all pbxproj files as binary data, add the following line to your

.gitattributes file:

*.pbxproj -crlf -diff

Now, Git won’t try to convert or fix CRLF issues; nor will it try to compute or print

a diff for changes in this file when you run git show or git diff on your project. In the

1.6 series of Git, you can also use a macro that is provided that means -crlf -diff :

*.pbxproj binary

Diffing Binary Files

In the 1.6 series of Git, you can use the Git attributes functionality to effectively

diff binary files. You do this by telling Git how to convert your binary data to a text

format that can be compared via the normal diff.

Because this is a pretty cool and not widely known feature, I’ll go over a few

examples. First, you’ll use this technique to solve one of the most annoying problems

known to humanity: version-controlling Word documents. Everyone knows that Word

is the most horrific editor around; but, oddly, everyone uses it. If you want to version-

control Word documents, you can stick them in a Git repository and commit every once

in a while; but what good does that do? If you run git diff normally, you only see

something like this:

$ git diff

diff --git a/chapter1.doc b/chapter1.doc

index 88839c4..4afcb7c 100644

Binary files a/chapter1.doc and b/chapter1.doc differ

You can’t directly compare two versions unless you check them out and scan them

manually, right? It turns out you can do this fairly well using Git attributes. Put the

following line in your .gitattributes file:

*.doc diff=word

This tells Git that any file that matches this pattern (.doc) should use the “word”

filter when you try to view a diff that contains changes. What is the “word” filter? You

have to set it up. Here you’ll configure Git to use the strings program to convert Word

documents into readable text files, which it will then diff properly:

$ git config diff.word.textconv strings

Now Git knows that if it tries to do a diff between two snapshots, and any of the

files end in .doc , it should run those files through the “word” filter, which is defined

as the strings program. This effectively makes nice text-based versions of your Word

files before attempting to diff them.

Here’s an example. I put Chapter 1 of this book into Git, added some text to a

paragraph, and saved the document. Then, I ran git diff to see what changed:

170

CHAPTER 7 CUSTOMIZING GIT

$ git diff

diff --git a/chapter1.doc b/chapter1.doc

index c1c8a0a..b93c9e4 100644

--- a/chapter1.doc

+++ b/chapter1.doc

@@ -8,7 +8,8 @@ re going to cover Version Control Systems (VCS) and Git basics

re going to cover how to get it and set it up for the first time if you don

t already have it on your system.

In Chapter Two we will go over basic Git usage - how to use Git for the 80%

-s going on, modify stuff and contribute changes. If the book spontaneously

+s going on, modify stuff and contribute changes. If the book spontaneously

+Let’s see if this works.

Git successfully and succinctly tells me that I added the string “Let’s see if this

works”, which is correct. It’s not perfect — it adds a bunch of random stuff at the end

— but it certainly works. If you can find or write a Word-to-plain-text converter that

works well enough, that solution will likely be incredibly effective. However, strings

is available on most Mac and Linux systems, so it may be a good first try to do this

with many binary formats.

Another interesting problem you can solve this way involves diffing image files.

One way to do this is to run JPEG files through a filter that extracts their EXIF infor-

mation — metadata that is recorded with most image formats. If you download and

install the exiftool program, you can use it to convert your images into text about the

metadata, so at least the diff will show you a textual representation of any changes that

happened:

$ echo ’*.png diff=exif’ >> .gitattributes

$ git config diff.exif.textconv exiftool

If you replace an image in your project and run git diff , you see something like

this:

diff --git a/image.png b/image.png

index 88839c4..4afcb7c 100644

--- a/image.png

+++ b/image.png

@@ -1,12 +1,12 @@

ExifTool Version Number : 7.74

-File Size : 70 kB

-File Modification Date/Time : 2009:04:21 07:02:45-07:00

+File Size : 94 kB

+File Modification Date/Time : 2009:04:21 07:02:43-07:00

File Type : PNG

MIME Type : image/png

-Image Width : 1058

-Image Height : 889

+Image Width : 1056

+Image Height : 827

Bit Depth : 8

Color Type : RGB with Alpha

You can easily see that the file size and image dimensions have both changed.

171

PRO GIT SCOTT CHACON

7.2.2 Keyword Expansion

SVN- or CVS-style keyword expansion is often requested by developers used to those

systems. The main problem with this in Git is that you can’t modify a file with in-

formation about the commit after you’ve committed, because Git checksums the file

first. However, you can inject text into a file when it’s checked out and remove it again

before it’s added to a commit. Git attributes offers you two ways to do this.

First, you can inject the SHA–1 checksum of a blob into an Id field in the file

automatically. If you set this attribute on a file or set of files, then the next time you

check out that branch, Git will replace that field with the SHA–1 of the blob. It’s

important to notice that it isn’t the SHA of the commit, but of the blob itself:

$ echo ’*.txt ident’ >> .gitattributes

$ echo ’Id’ > test.txt

The next time you check out this file, Git injects the SHA of the blob:

$ rm text.txt

$ git checkout -- text.txt

$ cat test.txt

$Id: 42812b7653c7b88933f8a9d6cad0ca16714b9bb3 $

However, that result is of limited use. If you’ve used keyword substitution in CVS

or Subversion, you can include a datestamp — the SHA isn’t all that helpful, because

it’s fairly random and you can’t tell if one SHA is older or newer than another.

It turns out that you can write your own filters for doing substitutions in files on

commit/checkout. These are the “clean” and “smudge” filters. In the .gitattributes

file, you can set a filter for particular paths and then set up scripts that will process files

just before they’re committed (“clean”, see Figure 7.2) and just before they’re checked

out (“smudge”, see Figure 7.3). These filters can be set to do all sorts of fun things.

Figure 7.2: The “smudge” filter is run on checkout.

The original commit message for this functionality gives a simple example of run-

ning all your C source code through the indent program before committing. You can

set it up by setting the filter attribute in your .gitattributes file to filter *.c files with

the “indent” filter:

*.c filter=indent

172

CHAPTER 7 CUSTOMIZING GIT

Figure 7.3: The “clean” filter is run when files are staged.

Then, tell Git what the “indent”” filter does on smudge and clean:

$ git config --global filter.indent.clean indent

$ git config --global filter.indent.smudge cat

In this case, when you commit files that match *.c , Git will run them through the

indent program before it commits them and then run them through the cat program

before it checks them back out onto disk. The cat program is basically a no-op: it spits

out the same data that it gets in. This combination effectively filters all C source code

files through indent before committing.

Another interesting example gets $Date$ keyword expansion, RCS style. To do this

properly, you need a small script that takes a filename, figures out the last commit date

for this project, and inserts the date into the file. Here is a small Ruby script that does

that:

#! /usr/bin/env ruby

data = STDIN.read

last_date = ‘git log --pretty=format:"%ad" -1‘

puts data.gsub(’$Date$’, ’$Date: ’ + last_date.to_s + ’$’)

All the script does is get the latest commit date from the git log command, stick

that into any $Date$ strings it sees in stdin, and print the results — it should be sim-

ple to do in whatever language you’re most comfortable in. You can name this file

expand date and put it in your path. Now, you need to set up a filter in Git (call it

dater) and tell it to use your expand date filter to smudge the files on checkout. You’ll

use a Perl expression to clean that up on commit:

$ git config filter.dater.smudge expand_date

$ git config filter.dater.clean ’perl -pe "s/\\\$Date[̂ \\\$]*\\\$/\\\$Date\\\$/"’

This Perl snippet strips out anything it sees in a $Date$ string, to get back to where

you started. Now that your filter is ready, you can test it by setting up a file with your

$Date$ keyword and then setting up a Git attribute for that file that engages the new

filter:

$ echo ’# $Date$’ > date_test.txt

$ echo ’date*.txt filter=dater’ >> .gitattributes

173

PRO GIT SCOTT CHACON

If you commit those changes and check out the file again, you see the keyword

properly substituted:

$ git add date_test.txt .gitattributes

$ git commit -m "Testing date expansion in Git"

$ rm date_test.txt

$ git checkout date_test.txt

$ cat date_test.txt

$Date: Tue Apr 21 07:26:52 2009 -0700$

You can see how powerful this technique can be for customized applications. You

have to be careful, though, because the .gitattributes file is committed and passed

around with the project but the driver (in this case, dater) isn’t; so, it won’t work

everywhere. When you design these filters, they should be able to fail gracefully and

have the project still work properly.

7.2.3 Exporting Your Repository

Git attribute data also allows you to do some interesting things when exporting an

archive of your project.

export-ignore

You can tell Git not to export certain files or directories when generating an archive.

If there is a subdirectory or file that you don’t want to include in your archive file

but that you do want checked into your project, you can determine those files via the

export-ignore attribute.

For example, say you have some test files in a test/ subdirectory, and it doesn’t

make sense to include them in the tarball export of your project. You can add the

following line to your Git attributes file:

test/ export-ignore

Now, when you run git archive to create a tarball of your project, that directory

won’t be included in the archive.

export-subst

Another thing you can do for your archives is some simple keyword substitution.

Git lets you put the string $Format:$ in any file with any of the --pretty=format for-

matting shortcodes, many of which you saw in Chapter 2. For instance, if you want to

include a file named LAST COMMIT in your project, and the last commit date was auto-

matically injected into it when git archive ran, you can set up the file like this:

$ echo ’Last commit date: $Format:%cd$’ > LAST_COMMIT

$ echo "LAST_COMMIT export-subst" >> .gitattributes

$ git add LAST_COMMIT .gitattributes

$ git commit -am ’adding LAST_COMMIT file for archives’

When you run git archive , the contents of that file when people open the archive

file will look like this:

$ cat LAST_COMMIT

Last commit date: $Format:Tue Apr 21 08:38:48 2009 -0700$

174

CHAPTER 7 CUSTOMIZING GIT

7.2.4 Merge Strategies

You can also use Git attributes to tell Git to use different merge strategies for specific

files in your project. One very useful option is to tell Git to not try to merge specific

files when they have conflicts, but rather to use your side of the merge over someone

else’s.

This is helpful if a branch in your project has diverged or is specialized, but you

want to be able to merge changes back in from it, and you want to ignore certain

files. Say you have a database settings file called database.xml that is different in two

branches, and you want to merge in your other branch without messing up the database

file. You can set up an attribute like this:

database.xml merge=ours

If you merge in the other branch, instead of having merge conflicts with the database.xml

file, you see something like this:

$ git merge topic

Auto-merging database.xml

Merge made by recursive.

In this case, database.xml stays at whatever version you originally had.

7.3 Git Hooks

Like many other Version Control Systems, Git has a way to fire off custom scripts

when certain important actions occur. There are two groups of these hooks: client side

and server side. The client-side hooks are for client operations such as committing and

merging. The server-side hooks are for Git server operations such as receiving pushed

commits. You can use these hooks for all sorts of reasons, and you’ll learn about a few

of them here.

7.3.1 Installing a Hook

The hooks are all stored in the hooks subdirectory of the Git directory. In most projects,

that’s .git/hooks . By default, Git populates this directory with a bunch of example

scripts, many of which are useful by themselves; but they also document the input

values of each script. All the examples are written as shell scripts, with some Perl

thrown in, but any properly named executable scripts will work fine — you can write

them in Ruby or Python or what have you. For post–1.6 versions of Git, these example

hook files end with .sample; you’ll need to rename them. For pre–1.6 versions of Git,

the example files are named properly but are not executable.

To enable a hook script, put a file in the hooks subdirectory of your Git directory

that is named appropriately and is executable. From that point forward, it should be

called. I’ll cover most of the major hook filenames here.

7.3.2 Client-Side Hooks

There are a lot of client-side hooks. This section splits them into committing-workflow

hooks, e-mailworkflow scripts, and the rest of the client-side scripts.

175

PRO GIT SCOTT CHACON

Committing-Workflow Hooks

The first four hooks have to do with the committing process. The pre-commit hook

is run first, before you even type in a commit message. It’s used to inspect the snapshot

that’s about to be committed, to see if you’ve forgotten something, to make sure tests

run, or to examine whatever you need to inspect in the code. Exiting non-zero from

this hook aborts the commit, although you can bypass it with git commit --no-verify .

You can do things like check for code style (run lint or something equivalent), check

for trailing whitespace (the default hook does exactly that), or check for appropriate

documentation on new methods.

The prepare-commit-msg hook is run before the commit message editor is fired up

but after the default message is created. It lets you edit the default message before

the commit author sees it. This hook takes a few options: the path to the file that

holds the commit message so far, the type of commit, and the commit SHA–1 if this is

an amended commit. This hook generally isn’t useful for normal commits; rather, it’s

good for commits where the default message is auto-generated, such as templated com-

mit messages, merge commits, squashed commits, and amended commits. You may

use it in conjunction with a commit template to programmatically insert information.

The commit-msg hook takes one parameter, which again is the path to a temporary

file that contains the current commit message. If this script exits non-zero, Git aborts

the commit process, so you can use it to validate your project state or commit message

before allowing a commit to go through. In the last section of this chapter, I’ll demon-

strate using this hook to check that your commit message is conformant to a required

pattern.

After the entire commit process is completed, the post-commit hook runs. It doesn’t

take any parameters, but you can easily get the last commit by running git log -1

HEAD . Generally, this script is used for notification or something similar.

The committing-workflow client-side scripts can be used in just about any work-

flow. They’re often used to enforce certain policies, although it’s important to note that

these scripts aren’t transferred during a clone. You can enforce policy on the server

side to reject pushes of commits that don’t conform to some policy, but it’s entirely

up to the developer to use these scripts on the client side. So, these are scripts to help

developers, and they must be set up and maintained by them, although they can be

overridden or modified by them at any time.

E-mail Workflow Hooks

You can set up three client-side hooks for an e-mailbased workflow. They’re all in-

voked by the git am command, so if you aren’t using that command in your workflow,

you can safely skip to the next section. If you’re taking patches over e-mail prepared

by git format-patch , then some of these may be helpful to you.

The first hook that is run is applypatch-msg . It takes a single argument: the name of

the temporary file that contains the proposed commit message. Git aborts the patch if

this script exits non-zero. You can use this to make sure a commit message is properly

formatted or to normalize the message by having the script edit it in place.

The next hook to run when applying patches via git am is pre-applypatch . It

takes no arguments and is run after the patch is applied, so you can use it to inspect

the snapshot before making the commit. You can run tests or otherwise inspect the

working tree with this script. If something is missing or the tests don’t pass, exiting

non-zero also aborts the git am script without committing the patch.

The last hook to run during a git am operation is post-applypatch . You can use

176

CHAPTER 7 CUSTOMIZING GIT

it to notify a group or the author of the patch you pulled in that you’ve done so. You

can’t stop the patching process with this script.

Other Client Hooks

The pre-rebase hook runs before you rebase anything and can halt the process by

exiting non-zero. You can use this hook to disallow rebasing any commits that have

already been pushed. The example pre-rebase hook that Git installs does this, although

it assumes that next is the name of the branch you publish. You’ll likely need to change

that to whatever your stable, published branch is.

After you run a successful git checkout , the post-checkout hook runs; you can

use it to set up your working directory properly for your project environment. This

may mean moving in large binary files that you don’t want source controlled, auto-

generating documentation, or something along those lines.

Finally, the post-merge hook runs after a successful merge command. You can use

it to restore data in the working tree that Git can’t track, such as permissions data. This

hook can likewise validate the presence of files external to Git control that you may

want copied in when the working tree changes.

7.3.3 Server-Side Hooks

In addition to the client-side hooks, you can use a couple of important server-side hooks

as a system administrator to enforce nearly any kind of policy for your project. These

scripts run before and after pushes to the server. The pre hooks can exit non-zero at

any time to reject the push as well as print an error message back to the client; you can

set up a push policy that’s as complex as you wish.

pre-receive and post-receive

The first script to run when handling a push from a client is pre-receive . It takes

a list of references that are being pushed from stdin; if it exits non-zero, none of them

are accepted. You can use this hook to do things like make sure none of the updated

references are non-fast-forwards; or to check that the user doing the pushing has create,

delete, or push access or access to push updates to all the files they’re modifying with

the push.

The post-receive hook runs after the entire process is completed and can be used

to update other services or notify users. It takes the same stdin data as the pre-receive

hook. Examples include e-mailing a list, notifying a continuous integration server, or

updating a ticket-tracking system — you can even parse the commit messages to see

if any tickets need to be opened, modified, or closed. This script can’t stop the push

process, but the client doesn’t disconnect until it has completed; so, be careful when

you try to do anything that may take a long time.

update

The update script is very similar to the pre-receive script, except that it’s run

once for each branch the pusher is trying to update. If the pusher is trying to push to

multiple branches, pre-receive runs only once, whereas update runs once per branch

they’re pushing to. Instead of reading from stdin, this script takes three arguments: the

name of the reference (branch), the SHA–1 that reference pointed to before the push,

and the SHA–1 the user is trying to push. If the update script exits non-zero, only that

reference is rejected; other references can still be updated.

177

PRO GIT SCOTT CHACON

7.4 An Example Git-Enforced Policy

In this section, you’ll use what you’ve learned to establish a Git workflow that checks

for a custom commit message format, enforces fast-forward-only pushes, and allows

only certain users to modify certain subdirectories in a project. You’ll build client

scripts that help the developer know if their push will be rejected and server scripts that

actually enforce the policies.

I used Ruby to write these, both because it’s my preferred scripting language and

because I feel it’s the most pseudocode-looking of the scripting languages; thus you

should be able to roughly follow the code even if you don’t use Ruby. However, any

language will work fine. All the sample hook scripts distributed with Git are in ei-

ther Perl or Bash scripting, so you can also see plenty of examples of hooks in those

languages by looking at the samples.

7.4.1 Server-Side Hook

All the server-side work will go into the update file in your hooks directory. The update

file runs once per branch being pushed and takes the reference being pushed to, the

old revision where that branch was, and the new revision being pushed. You also have

access to the user doing the pushing if the push is being run over SSH. If you’ve allowed

everyone to connect with a single user (like “git”) via public-key authentication, you

may have to give that user a shell wrapper that determines which user is connecting

based on the public key, and set an environment variable specifying that user. Here I

assume the connecting user is in the $USER environment variable, so your update script

begins by gathering all the information you need:

#!/usr/bin/env ruby

$refname = ARGV[0]

$oldrev = ARGV[1]

$newrev = ARGV[2]

$user = ENV[’USER’]

puts "Enforcing Policies... \n(#{$refname}) (#{$oldrev[0,6]}) (#{$newrev[0,6]})"

Yes, I’m using global variables. Don’t judge me— it’s easier to demonstrate in this

manner.

Enforcing a Specific Commit-Message Format

Your first challenge is to enforce that each commit message must adhere to a partic-

ular format. Just to have a target, assume that each message has to include a string that

looks like “ref: 1234” because you want each commit to link to a work item in your

ticketing system. You must look at each commit being pushed up, see if that string is in

the commit message, and, if the string is absent from any of the commits, exit non-zero

so the push is rejected.

You can get a list of the SHA–1 values of all the commits that are being pushed by

taking the $newrev and $oldrev values and passing them to a Git plumbing command

called git rev-list . This is basically the git log command, but by default it prints

out only the SHA–1 values and no other information. So, to get a list of all the commit

SHAs introduced between one commit SHA and another, you can run something like

this:

178

CHAPTER 7 CUSTOMIZING GIT

$ git rev-list 538c33..d14fc7

d14fc7c847ab946ec39590d87783c69b031bdfb7

9f585da4401b0a3999e84113824d15245c13f0be

234071a1be950e2a8d078e6141f5cd20c1e61ad3

dfa04c9ef3d5197182f13fb5b9b1fb7717d2222a

17716ec0f1ff5c77eff40b7fe912f9f6cfd0e475

You can take that output, loop through each of those commit SHAs, grab the mes-

sage for it, and test that message against a regular expression that looks for a pattern.

You have to figure out how to get the commit message from each of these commits

to test. To get the raw commit data, you can use another plumbing command called

git cat-file . I’ll go over all these plumbing commands in detail in Chapter 9; but for

now, here’s what that command gives you:

$ git cat-file commit ca82a6

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the verison number

A simple way to get the commit message from a commit when you have the SHA–1

value is to go to the first blank line and take everything after that. You can do so with

the sed command on Unix systems:

$ git cat-file commit ca82a6 | sed ’1,/̂ $/d’

changed the verison number

You can use that incantation to grab the commit message from each commit that is

trying to be pushed and exit if you see anything that doesn’t match. To exit the script

and reject the push, exit non-zero. The whole method looks like this:

$regex = /\[ref: (\d+)\]/

enforced custom commit message format

def check_message_format

missed_revs = ‘git rev-list #{$oldrev}..#{$newrev}‘.split("\n")

missed_revs.each do |rev|

message = ‘git cat-file commit #{rev} | sed ’1,/̂ $/d’‘

if !$regex.match(message)

puts "[POLICY] Your message is not formatted correctly"

exit 1

end

end

end

check_message_format

Putting that in your update script will reject updates that contain commits that have

messages that don’t adhere to your rule.

Enforcing a User-Based ACL System

Suppose you want to add a mechanism that uses an access control list (ACL) that

specifies which users are allowed to push changes to which parts of your projects.

179

PRO GIT SCOTT CHACON

Some people have full access, and others only have access to push changes to certain

subdirectories or specific files. To enforce this, you’ll write those rules to a file named

acl that lives in your bare Git repository on the server. You’ll have the update hook

look at those rules, see what files are being introduced for all the commits being pushed,

and determine whether the user doing the push has access to update all those files.

The first thing you’ll do is write your ACL. Here you’ll use a format very much

like the CVS ACL mechanism: it uses a series of lines, where the first field is avail or

unavail , the next field is a comma-delimited list of the users to which the rule applies,

and the last field is the path to which the rule applies (blank meaning open access). All

of these fields are delimited by a pipe (|) character.

In this case, you have a couple of administrators, some documentation writers with

access to the doc directory, and one developer who only has access to the lib and tests

directories, and your ACL file looks like this:

avail|nickh,pjhyett,defunkt,tpw

avail|usinclair,cdickens,ebronte|doc

avail|schacon|lib

avail|schacon|tests

You begin by reading this data into a structure that you can use. In this case, to

keep the example simple, you’ll only enforce the avail directives. Here is a method

that gives you an associative array where the key is the user name and the value is an

array of paths to which the user has write access:

def get_acl_access_data(acl_file)

read in ACL data

acl_file = File.read(acl_file).split("\n").reject { |line| line == ’’ }

access = {}

acl_file.each do |line|

avail, users, path = line.split(’|’)

next unless avail == ’avail’

users.split(’,’).each do |user|

access[user] ||= []

access[user] << path

end

end

access

end

On the ACL file you looked at earlier, this get acl access data method returns a

data structure that looks like this:

{"defunkt"=>[nil],

"tpw"=>[nil],

"nickh"=>[nil],

"pjhyett"=>[nil],

"schacon"=>["lib", "tests"],

"cdickens"=>["doc"],

"usinclair"=>["doc"],

"ebronte"=>["doc"]}

180

CHAPTER 7 CUSTOMIZING GIT

Now that you have the permissions sorted out, you need to determine what paths

the commits being pushed have modified, so you can make sure the user who’s pushing

has access to all of them.

You can pretty easily see what files have been modified in a single commit with the

--name-only option to the git log command (mentioned briefly in Chapter 2):

$ git log -1 --name-only --pretty=format:’’ 9f585d

README

lib/test.rb

If you use the ACL structure returned from the get acl access data method and

check it against the listed files in each of the commits, you can determine whether the

user has access to push all of their commits:

only allows certain users to modify certain subdirectories in a project

def check_directory_perms

access = get_acl_access_data(’acl’)

see if anyone is trying to push something they can’t

new_commits = ‘git rev-list #{$oldrev}..#{$newrev}‘.split("\n")

new_commits.each do |rev|

files_modified = ‘git log -1 --name-only --pretty=format:’’ #{rev}‘.split("\n")

files_modified.each do |path|

next if path.size == 0

has_file_access = false

access[$user].each do |access_path|

if !access_path # user has access to everything

|| (path.index(access_path) == 0) # access to this path

has_file_access = true

end

end

if !has_file_access

puts "[POLICY] You do not have access to push to #{path}"

exit 1

end

end

end

end

check_directory_perms

Most of that should be easy to follow. You get a list of new commits being pushed

to your server with git rev-list . Then, for each of those, you find which files are

modified and make sure the user who’s pushing has access to all the paths being mod-

ified. One Rubyism that may not be clear is path.index(access path) == 0 , which is

true if path begins with access path — this ensures that access path is not just in one

of the allowed paths, but an allowed path begins with each accessed path.

Now your users can’t push any commits with badly formed messages or with mod-

ified files outside of their designated paths.

Enforcing Fast-Forward-Only Pushes

181

PRO GIT SCOTT CHACON

The only thing left is to enforce fast-forward-only pushes. In Git versions 1.6 or

newer, you can set the receive.denyDeletes and receive.denyNonFastForwards set-

tings. But enforcing this with a hook will work in older versions of Git, and you can

modify it to do so only for certain users or whatever else you come up with later.

The logic for checking this is to see if any commits are reachable from the older

revision that aren’t reachable from the newer one. If there are none, then it was a

fast-forward push; otherwise, you deny it:

enforces fast-forward only pushes

def check_fast_forward

missed_refs = ‘git rev-list #{$newrev}..#{$oldrev}‘

missed_ref_count = missed_refs.split("\n").size

if missed_ref_count > 0

puts "[POLICY] Cannot push a non fast-forward reference"

exit 1

end

end

check_fast_forward

Everything is set up. If you run chmod u+x .git/hooks/update , which is the file

you into which you should have put all this code, and then try to push a non-fast-

forwarded reference, you get something like this:

$ git push -f origin master

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 323 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

Enforcing Policies...

(refs/heads/master) (8338c5) (c5b616)

[POLICY] Cannot push a non-fast-forward reference

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

To git@gitserver:project.git

! [remote rejected] master -> master (hook declined)

error: failed to push some refs to ’git@gitserver:project.git’

There are a couple of interesting things here. First, you see this where the hook

starts running.

Enforcing Policies...

(refs/heads/master) (fb8c72) (c56860)

Notice that you printed that out to stdout at the very beginning of your update script.

It’s important to note that anything your script prints to stdout will be transferred to the

client.

The next thing you’ll notice is the error message.

[POLICY] Cannot push a non fast-forward reference

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

182

CHAPTER 7 CUSTOMIZING GIT

The first line was printed out by you, the other two were Git telling you that the

update script exited non-zero and that is what is declining your push. Lastly, you have

this:

To git@gitserver:project.git

! [remote rejected] master -> master (hook declined)

error: failed to push some refs to ’git@gitserver:project.git’

You’ll see a remote rejected message for each reference that your hook declined,

and it tells you that it was declined specifically because of a hook failure.

Furthermore, if the ref marker isn’t there in any of your commits, you’ll see the

error message you’re printing out for that.

[POLICY] Your message is not formatted correctly

Or if someone tries to edit a file they don’t have access to and push a commit

containing it, they will see something similar. For instance, if a documentation author

tries to push a commit modifying something in the lib directory, they see

[POLICY] You do not have access to push to lib/test.rb

That’s all. From now on, as long as that update script is there and executable, your

repository will never be rewound and will never have a commit message without your

pattern in it, and your users will be sandboxed.

7.4.2 Client-Side Hooks

The downside to this approach is the whining that will inevitably result when your

users’ commit pushes are rejected. Having their carefully crafted work rejected at the

last minute can be extremely frustrating and confusing; and furthermore, they will have

to edit their history to correct it, which isn’t always for the faint of heart.

The answer to this dilemma is to provide some client-side hooks that users can use

to notify them when they’re doing something that the server is likely to reject. That

way, they can correct any problems before committing and before those issues become

more difficult to fix. Because hooks aren’t transferred with a clone of a project, you

must distribute these scripts some other way and then have your users copy them to their

.git/hooks directory and make them executable. You can distribute these hooks within

the project or in a separate project, but there is no way to set them up automatically.

To begin, you should check your commit message just before each commit is

recorded, so you know the server won’t reject your changes due to badly formatted

commit messages. To do this, you can add the commit-msg hook. If you have it read the

message from the file passed as the first argument and compare that to the pattern, you

can force Git to abort the commit if there is no match:

#!/usr/bin/env ruby

message_file = ARGV[0]

message = File.read(message_file)

$regex = /\[ref: (\d+)\]/

if !$regex.match(message)

183

PRO GIT SCOTT CHACON

puts "[POLICY] Your message is not formatted correctly"

exit 1

end

If that script is in place (in .git/hooks/commit-msg) and executable, and you com-

mit with a message that isn’t properly formatted, you see this:

$ git commit -am ’test’

[POLICY] Your message is not formatted correctly

No commit was completed in that instance. However, if your message contains the

proper pattern, Git allows you to commit:

$ git commit -am ’test [ref: 132]’

[master e05c914] test [ref: 132]

1 files changed, 1 insertions(+), 0 deletions(-)

Next, you want to make sure you aren’t modifying files that are outside your ACL

scope. If your project’s .git directory contains a copy of the ACL file you used previ-

ously, then the following pre-commit script will enforce those constraints for you:

#!/usr/bin/env ruby

$user = ENV[’USER’]

[insert acl_access_data method from above]

only allows certain users to modify certain subdirectories in a project

def check_directory_perms

access = get_acl_access_data(’.git/acl’)

files_modified = ‘git diff-index --cached --name-only HEAD‘.split("\n")

files_modified.each do |path|

next if path.size == 0

has_file_access = false

access[$user].each do |access_path|

if !access_path || (path.index(access_path) == 0)

has_file_access = true

end

if !has_file_access

puts "[POLICY] You do not have access to push to #{path}"

exit 1

end

end

end

check_directory_perms

This is roughly the same script as the server-side part, but with two important dif-

ferences. First, the ACL file is in a different place, because this script runs from your

working directory, not from your Git directory. You have to change the path to the ACL

file from this

184

CHAPTER 7 CUSTOMIZING GIT

access = get_acl_access_data(’acl’)

to this:

access = get_acl_access_data(’.git/acl’)

The other important difference is the way you get a listing of the files that have

been changed. Because the server-side method looks at the log of commits, and, at

this point, the commit hasn’t been recorded yet, you must get your file listing from the

staging area instead. Instead of

files_modified = ‘git log -1 --name-only --pretty=format:’’ #{ref}‘

you have to use

files_modified = ‘git diff-index --cached --name-only HEAD‘

But those are the only two differences — otherwise, the script works the same way.

One caveat is that it expects you to be running locally as the same user you push as to

the remote machine. If that is different, you must set the $user variable manually.

The last thing you have to do is check that you’re not trying to push non-fast-

forwarded references, but that is a bit less common. To get a reference that isn’t a

fast-forward, you either have to rebase past a commit you’ve already pushed up or try

pushing a different local branch up to the same remote branch.

Because the server will tell you that you can’t push a non-fast-forward anyway,

and the hook prevents forced pushes, the only accidental thing you can try to catch is

rebasing commits that have already been pushed.

Here is an example pre-rebase script that checks for that. It gets a list of all the

commits you’re about to rewrite and checks whether they exist in any of your remote

references. If it sees one that is reachable from one of your remote references, it aborts

the rebase:

#!/usr/bin/env ruby

base_branch = ARGV[0]

if ARGV[1]

topic_branch = ARGV[1]

else

topic_branch = "HEAD"

end

target_shas = ‘git rev-list #{base_branch}..#{topic_branch}‘.split("\n")

remote_refs = ‘git branch -r‘.split("\n").map { |r| r.strip }

target_shas.each do |sha|

remote_refs.each do |remote_ref|

shas_pushed = ‘git rev-list #̂{sha}̂ @ refs/remotes/#{remote_ref}‘

if shas_pushed.split(‘‘\n’’).include?(sha)

puts "[POLICY] Commit #{sha} has already been pushed to #{remote_ref}"

exit 1

end

end

end

185

PRO GIT SCOTT CHACON

This script uses a syntax that wasn’t covered in the Revision Selection section of

Chapter 6. You get a list of commits that have already been pushed up by running this:

git rev-list #̂{sha}̂ @ refs/remotes/#{remote_ref}

The SHÂ @ syntax resolves to all the parents of that commit. You’re looking for any

commit that is reachable from the last commit on the remote and that isn’t reachable

from any parent of any of the SHAs you’re trying to push up — meaning it’s a fast-

forward.

The main drawback to this approach is that it can be very slow and is often unnec-

essary — if you don’t try to force the push with -f, the server will warn you and not

accept the push. However, it’s an interesting exercise and can in theory help you avoid

a rebase that you might later have to go back and fix.

7.5 Summary

You’ve covered most of the major ways that you can customize your Git client and

server to best fit your workflow and projects. You’ve learned about all sorts of con-

figuration settings, file-based attributes, and event hooks, and you’ve built an example

policy-enforcing server. You should now be able to make Git fit nearly any workflow

you can dream up.

186

Chapter 8

Git and Other Systems

The world isn’t perfect. Usually, you can’t immediately switch every project you come

in contact with to Git. Sometimes you’re stuck on a project using another VCS, and

many times that system is Subversion. You’ll spend the first part of this chapter learning

about git svn , the bidirectional Subversion gateway tool in Git.

At some point, you may want to convert your existing project to Git. The second

part of this chapter covers how to migrate your project into Git: first from Subversion,

then from Perforce, and finally via a custom import script for a nonstandard importing

case.

8.1 Git and Subversion

Currently, the majority of open source development projects and a large number of

corporate projects use Subversion to manage their source code. It’s the most popular

open source VCS and has been around for nearly a decade. It’s also very similar in

many ways to CVS, which was the big boy of the source-control world before that.

One of Git’s great features is a bidirectional bridge to Subversion called git svn .

This tool allows you to use Git as a valid client to a Subversion server, so you can

use all the local features of Git and then push to a Subversion server as if you were

using Subversion locally. This means you can do local branching and merging, use

the staging area, use rebasing and cherry-picking, and so on, while your collaborators

continue to work in their dark and ancient ways. It’s a good way to sneak Git into the

corporate environment and help your fellow developers become more efficient while

you lobby to get the infrastructure changed to support Git fully. The Subversion bridge

is the gateway drug to the DVCS world.

8.1.1 git svn

The base command in Git for all the Subversion bridging commands is git svn . You

preface everything with that. It takes quite a few commands, so you’ll learn about the

common ones while going through a few small workflows.

It’s important to note that when you’re using git svn , you’re interacting with Sub-

version, which is a system that is far less sophisticated than Git. Although you can

187

PRO GIT SCOTT CHACON

easily do local branching and merging, it’s generally best to keep your history as lin-

ear as possible by rebasing your work and avoiding doing things like simultaneously

interacting with a Git remote repository.

Don’t rewrite your history and try to push again, and don’t push to a parallel Git

repository to collaborate with fellow Git developers at the same time. Subversion can

have only a single linear history, and confusing it is very easy. If you’re working with

a team, and some are using SVN and others are using Git, make sure everyone is using

the SVN server to collaborate — doing so will make your life easier.

8.1.2 Setting Up

To demonstrate this functionality, you need a typical SVN repository that you have

write access to. If you want to copy these examples, you’ll have to make a writeable

copy of my test repository. In order to do that easily, you can use a tool called svnsync

that comes with more recent versions of Subversion — it should be distributed with at

least 1.4. For these tests, I created a new Subversion repository on Google code that

was a partial copy of the protobuf project, which is a tool that encodes structured data

for network transmission.

To follow along, you first need to create a new local Subversion repository:

$ mkdir /tmp/test-svn

$ svnadmin create /tmp/test-svn

Then, enable all users to change revprops — the easy way is to add a pre-revprop-

change script that always exits 0:

$ cat /tmp/test-svn/hooks/pre-revprop-change

#!/bin/sh

exit 0;

$ chmod +x /tmp/test-svn/hooks/pre-revprop-change

You can now sync this project to your local machine by calling svnsync init with

the to and from repositories.

$ svnsync init file:///tmp/test-svn http://progit-example.googlecode.com/svn/

This sets up the properties to run the sync. You can then clone the code by running

$ svnsync sync file:///tmp/test-svn

Committed revision 1.

Copied properties for revision 1.

Committed revision 2.

Copied properties for revision 2.

Committed revision 3.

...

Although this operation may take only a few minutes, if you try to copy the original

repository to another remote repository instead of a local one, the process will take

nearly an hour, even though there are fewer than 100 commits. Subversion has to clone

one revision at a time and then push it back into another repository — it’s ridiculously

inefficient, but it’s the only easy way to do this.

188

CHAPTER 8 GIT AND OTHER SYSTEMS

8.1.3 Getting Started

Now that you have a Subversion repository to which you have write access, you can

go through a typical workflow. You’ll start with the git svn clone command, which

imports an entire Subversion repository into a local Git repository. Remember that

if you’re importing from a real hosted Subversion repository, you should replace the

file:///tmp/test-svn here with the URL of your Subversion repository:

$ git svn clone file:///tmp/test-svn -T trunk -b branches -t tags

Initialized empty Git repository in /Users/schacon/projects/testsvnsync/svn/.git/

r1 = b4e387bc68740b5af56c2a5faf4003ae42bd135c (trunk)

A m4/acx_pthread.m4

A m4/stl_hash.m4

...

r75 = d1957f3b307922124eec6314e15bcda59e3d9610 (trunk)

Found possible branch point: file:///tmp/test-svn/trunk => \

file:///tmp/test-svn /branches/my-calc-branch, 75

Found branch parent: (my-calc-branch) d1957f3b307922124eec6314e15bcda59e3d9610

Following parent with do_switch

Successfully followed parent

r76 = 8624824ecc0badd73f40ea2f01fce51894189b01 (my-calc-branch)

Checked out HEAD:

file:///tmp/test-svn/branches/my-calc-branch r76

This runs the equivalent of two commands — git svn init followed by git svn

fetch — on the URL you provide. This can take a while. The test project has only

about 75 commits and the codebase isn’t that big, so it takes just a few minutes. How-

ever, Git has to check out each version, one at a time, and commit it individually. For

a project with hundreds or thousands of commits, this can literally take hours or even

days to finish.

The -T trunk -b branches -t tags part tells Git that this Subversion repository

follows the basic branching and tagging conventions. If you name your trunk, branches,

or tags differently, you can change these options. Because this is so common, you can

replace this entire part with -s, which means standard layout and implies all those

options. The following command is equivalent:

$ git svn clone file:///tmp/test-svn -s

At this point, you should have a valid Git repository that has imported your branches

and tags:

$ git branch -a

* master

my-calc-branch

tags/2.0.2

tags/release-2.0.1

tags/release-2.0.2

tags/release-2.0.2rc1

trunk

It’s important to note how this tool namespaces your remote references differently.

When you’re cloning a normal Git repository, you get all the branches on that remote

189

PRO GIT SCOTT CHACON

server available locally as something like origin/[branch] - namespaced by the name

of the remote. However, git svn assumes that you won’t have multiple remotes and

saves all its references to points on the remote server with no namespacing. You can

use the Git plumbing command show-ref to look at all your full reference names:

$ git show-ref

1cbd4904d9982f386d87f88fce1c24ad7c0f0471 refs/heads/master

aee1ecc26318164f355a883f5d99cff0c852d3c4 refs/remotes/my-calc-branch

03d09b0e2aad427e34a6d50ff147128e76c0e0f5 refs/remotes/tags/2.0.2

50d02cc0adc9da4319eeba0900430ba219b9c376 refs/remotes/tags/release-2.0.1

4caaa711a50c77879a91b8b90380060f672745cb refs/remotes/tags/release-2.0.2

1c4cb508144c513ff1214c3488abe66dcb92916f refs/remotes/tags/release-2.0.2rc1

1cbd4904d9982f386d87f88fce1c24ad7c0f0471 refs/remotes/trunk

A normal Git repository looks more like this:

$ git show-ref

83e38c7a0af325a9722f2fdc56b10188806d83a1 refs/heads/master

3e15e38c198baac84223acfc6224bb8b99ff2281 refs/remotes/gitserver/master

0a30dd3b0c795b80212ae723640d4e5d48cabdff refs/remotes/origin/master

25812380387fdd55f916652be4881c6f11600d6f refs/remotes/origin/testing

You have two remote servers: one named gitserver with a master branch; and

another named origin with two branches, master and testing .

Notice how in the example of remote references imported from git svn , tags are

added as remote branches, not as real Git tags. Your Subversion import looks like it

has a remote named tags with branches under it.

8.1.4 Committing Back to Subversion

Now that you have a working repository, you can do some work on the project and

push your commits back upstream, using Git effectively as a SVN client. If you edit

one of the files and commit it, you have a commit that exists in Git locally that doesn’t

exist on the Subversion server:

$ git commit -am ’Adding git-svn instructions to the README’

[master 97031e5] Adding git-svn instructions to the README

1 files changed, 1 insertions(+), 1 deletions(-)

Next, you need to push your change upstream. Notice how this changes the way

you work with Subversion — you can do several commits offline and then push them

all at once to the Subversion server. To push to a Subversion server, you run the git

svn dcommit command:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M README.txt

Committed r79

M README.txt

r79 = 938b1a547c2cc92033b74d32030e86468294a5c8 (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

190

CHAPTER 8 GIT AND OTHER SYSTEMS

This takes all the commits you’ve made on top of the Subversion server code, does

a Subversion commit for each, and then rewrites your local Git commit to include a

unique identifier. This is important because it means that all the SHA–1 checksums for

your commits change. Partly for this reason, working with Git-based remote versions

of your projects concurrently with a Subversion server isn’t a good idea. If you look at

the last commit, you can see the new git-svn-id that was added:

$ git log -1

commit 938b1a547c2cc92033b74d32030e86468294a5c8

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sat May 2 22:06:44 2009 +0000

Adding git-svn instructions to the README

git-svn-id: file:///tmp/test-svn/trunk@79 4c93b258-373f-11de-be05-5f7a86268029

Notice that the SHA checksum that originally started with 97031e5 when you com-

mitted now begins with 938b1a5 . If you want to push to both a Git server and a Sub-

version server, you have to push (dcommit) to the Subversion server first, because that

action changes your commit data.

8.1.5 Pulling in New Changes

If you’re working with other developers, then at some point one of you will push, and

then the other one will try to push a change that conflicts. That change will be rejected

until you merge in their work. In git svn , it looks like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

Merge conflict during commit: Your file or directory ’README.txt’ is probably \

out-of-date: resource out of date; try updating at /Users/schacon/libexec/git-\

core/git-svn line 482

To resolve this situation, you can run git svn rebase , which pulls down any changes

on the server that you don’t have yet and rebases any work you have on top of what is

on the server:

$ git svn rebase

M README.txt

r80 = ff829ab914e8775c7c025d741beb3d523ee30bc4 (trunk)

First, rewinding head to replay your work on top of it...

Applying: first user change

Now, all your work is on top of what is on the Subversion server, so you can suc-

cessfully dcommit :

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M README.txt

Committed r81

M README.txt

r81 = 456cbe6337abe49154db70106d1836bc1332deed (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

191

PRO GIT SCOTT CHACON

It’s important to remember that unlike Git, which requires you to merge upstream

work you don’t yet have locally before you can push, git svn makes you do that only

if the changes conflict. If someone else pushes a change to one file and then you push

a change to another file, your dcommit will work fine:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M configure.ac

Committed r84

M autogen.sh

r83 = 8aa54a74d452f82eee10076ab2584c1fc424853b (trunk)

M configure.ac

r84 = cdbac939211ccb18aa744e581e46563af5d962d0 (trunk)

W: d2f23b80f67aaaa1f6f5aaef48fce3263ac71a92 and refs/remotes/trunk differ, \

using rebase:

:100755 100755 efa5a59965fbbb5b2b0a12890f1b351bb5493c18 \

015e4c98c482f0fa71e4d5434338014530b37fa6 M autogen.sh

First, rewinding head to replay your work on top of it...

Nothing to do.

This is important to remember, because the outcome is a project state that didn’t

exist on either of your computers when you pushed. If the changes are incompatible but

don’t conflict, you may get issues that are difficult to diagnose. This is different than

using a Git server — in Git, you can fully test the state on your client system before

publishing it, whereas in SVN, you can’t ever be certain that the states immediately

before commit and after commit are identical.

You should also run this command to pull in changes from the Subversion server,

even if you’re not ready to commit yourself. You can run git svn fetch to grab the

new data, but git svn rebase does the fetch and then updates your local commits.

$ git svn rebase

M generate_descriptor_proto.sh

r82 = bd16df9173e424c6f52c337ab6efa7f7643282f1 (trunk)

First, rewinding head to replay your work on top of it...

Fast-forwarded master to refs/remotes/trunk.

Running git svn rebase every once in a while makes sure your code is always up

to date. You need to be sure your working directory is clean when you run this, though.

If you have local changes, you must either stash your work or temporarily commit it

before running git svn rebase — otherwise, the command will stop if it sees that the

rebase will result in a merge conflict.

8.1.6 Git Branching Issues

When you’ve become comfortable with a Git workflow, you’ll likely create topic branches,

do work on them, and then merge them in. If you’re pushing to a Subversion server

via git svn, you may want to rebase your work onto a single branch each time instead

of merging branches together. The reason to prefer rebasing is that Subversion has a

linear history and doesn’t deal with merges like Git does, so git svn follows only the

first parent when converting the snapshots into Subversion commits.

192

CHAPTER 8 GIT AND OTHER SYSTEMS

Suppose your history looks like the following: you created an experiment branch,

did two commits, and then merged them back into master . When you dcommit , you see

output like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M CHANGES.txt

Committed r85

M CHANGES.txt

r85 = 4bfebeec434d156c36f2bcd18f4e3d97dc3269a2 (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

COPYING.txt: locally modified

INSTALL.txt: locally modified

M COPYING.txt

M INSTALL.txt

Committed r86

M INSTALL.txt

M COPYING.txt

r86 = 2647f6b86ccfcaad4ec58c520e369ec81f7c283c (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

Running dcommit on a branch with merged history works fine, except that when

you look at your Git project history, it hasn’t rewritten either of the commits you made

on the experiment branch — instead, all those changes appear in the SVN version of

the single merge commit.

When someone else clones that work, all they see is the merge commit with all the

work squashed into it; they don’t see the commit data about where it came from or

when it was committed.

8.1.7 Subversion Branching

Branching in Subversion isn’t the same as branching in Git; if you can avoid using

it much, that’s probably best. However, you can create and commit to branches in

Subversion using git svn.

Creating a New SVN Branch

To create a new branch in Subversion, you run git svn branch [branchname] :

$ git svn branch opera

Copying file:///tmp/test-svn/trunk at r87 to file:///tmp/test-svn/branches/opera...

Found possible branch point: file:///tmp/test-svn/trunk => \

file:///tmp/test-svn/branches/opera, 87

Found branch parent: (opera) 1f6bfe471083cbca06ac8d4176f7ad4de0d62e5f

Following parent with do_switch

Successfully followed parent

r89 = 9b6fe0b90c5c9adf9165f700897518dbc54a7cbf (opera)

This does the equivalent of the svn copy trunk branches/opera command in Sub-

version and operates on the Subversion server. It’s important to note that it doesn’t

check you out into that branch; if you commit at this point, that commit will go to

trunk on the server, not opera .

193

PRO GIT SCOTT CHACON

8.1.8 Switching Active Branches

Git figures out what branch your dcommits go to by looking for the tip of any of your

Subversion branches in your history — you should have only one, and it should be the

last one with a git-svn-id in your current branch history.

If you want to work on more than one branch simultaneously, you can set up local

branches to dcommit to specific Subversion branches by starting them at the imported

Subversion commit for that branch. If you want an opera branch that you can work on

separately, you can run

$ git branch opera remotes/opera

Now, if you want to merge your opera branch into trunk (your master branch),

you can do so with a normal git merge . But you need to provide a descriptive commit

message (via -m), or the merge will say “Merge branch opera” instead of something

useful.

Remember that although you’re using git merge to do this operation, and the merge

likely will be much easier than it would be in Subversion (because Git will automati-

cally detect the appropriate merge base for you), this isn’t a normal Git merge commit.

You have to push this data back to a Subversion server that can’t handle a commit that

tracks more than one parent; so, after you push it up, it will look like a single commit

that squashed in all the work of another branch under a single commit. After you merge

one branch into another, you can’t easily go back and continue working on that branch,

as you normally can in Git. The dcommit command that you run erases any informa-

tion that says what branch was merged in, so subsequent merge-base calculations will

be wrong — the dcommit makes your git merge result look like you ran git merge

--squash . Unfortunately, there’s no good way to avoid this situation — Subversion

can’t store this information, so you’ll always be crippled by its limitations while you’re

using it as your server. To avoid issues, you should delete the local branch (in this case,

opera) after you merge it into trunk.

8.1.9 Subversion Commands

The git svn toolset provides a number of commands to help ease the transition to Git

by providing some functionality that’s similar to what you had in Subversion. Here are

a few commands that give you what Subversion used to.

SVN Style History

If you’re used to Subversion and want to see your history in SVN output style, you

can run git svn log to view your commit history in SVN formatting:

$ git svn log

--

r87 | schacon | 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009) | 2 lines

autogen change

--

r86 | schacon | 2009-05-02 16:00:21 -0700 (Sat, 02 May 2009) | 2 lines

Merge branch ’experiment’

194

CHAPTER 8 GIT AND OTHER SYSTEMS

--

r85 | schacon | 2009-05-02 16:00:09 -0700 (Sat, 02 May 2009) | 2 lines

updated the changelog

You should know two important things about git svn log . First, it works offline,

unlike the real svn log command, which asks the Subversion server for the data. Sec-

ond, it only shows you commits that have been committed up to the Subversion server.

Local Git commits that you haven’t dcommited don’t show up; neither do commits

that people have made to the Subversion server in the meantime. It’s more like the last

known state of the commits on the Subversion server.

SVN Annotation

Much as the git svn log command simulates the svn log command offline, you

can get the equivalent of svn annotate by running git svn blame [FILE] . The output

looks like this:

$ git svn blame README.txt

2 temporal Protocol Buffers - Google’s data interchange format

2 temporal Copyright 2008 Google Inc.

2 temporal http://code.google.com/apis/protocolbuffers/

2 temporal

22 temporal C++ Installation - Unix

22 temporal =======================

2 temporal

79 schacon Committing in git-svn.

78 schacon

2 temporal To build and install the C++ Protocol Buffer runtime and the Protocol

2 temporal Buffer compiler (protoc) execute the following:

2 temporal

Again, it doesn’t show commits that you did locally in Git or that have been pushed

to Subversion in the meantime.

SVN Server Information

You can also get the same sort of information that svn info gives you by running

git svn info :

$ git svn info

Path: .

URL: https://schacon-test.googlecode.com/svn/trunk

Repository Root: https://schacon-test.googlecode.com/svn

Repository UUID: 4c93b258-373f-11de-be05-5f7a86268029

Revision: 87

Node Kind: directory

Schedule: normal

Last Changed Author: schacon

Last Changed Rev: 87

Last Changed Date: 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009)

This is like blame and log in that it runs offline and is up to date only as of the last

time you communicated with the Subversion server.

Ignoring What Subversion Ignores

195

PRO GIT SCOTT CHACON

If you clone a Subversion repository that has svn:ignore properties set anywhere,

you’ll likely want to set corresponding .gitignore files so you don’t accidentally com-

mit files that you shouldn’t. git svn has two commands to help with this issue. The

first is git svn create-ignore , which automatically creates corresponding .gitignore

files for you so your next commit can include them.

The second command is git svn show-ignore , which prints to stdout the lines you

need to put in a .gitignore file so you can redirect the output into your project exclude

file:

$ git svn show-ignore > .git/info/exclude

That way, you don’t litter the project with .gitignore files. This is a good op-

tion if you’re the only Git user on a Subversion team, and your teammates don’t want

.gitignore files in the project.

8.1.10 Git-Svn Summary

The git svn tools are useful if you’re stuck with a Subversion server for now or are

otherwise in a development environment that necessitates running a Subversion server.

You should consider it crippled Git, however, or you’ll hit issues in translation that

may confuse you and your collaborators. To stay out of trouble, try to follow these

guidelines:

• Keep a linear Git history that doesn’t contain merge commits made by git merge .

Rebase any work you do outside of your mainline branch back onto it; don’t

merge it in.

• Don’t set up and collaborate on a separate Git server. Possibly have one to speed

up clones for new developers, but don’t push anything to it that doesn’t have a

git-svn-id entry. You may even want to add a pre-receive hook that checks

each commit message for a git-svn-id and rejects pushes that contain commits

without it.

If you follow those guidelines, working with a Subversion server can be more bearable.

However, if it’s possible to move to a real Git server, doing so can gain your team a lot

more.

8.2 Migrating to Git

If you have an existing codebase in another VCS but you’ve decided to start using

Git, you must migrate your project one way or another. This section goes over some

importers that are included with Git for common systems and then demonstrates how

to develop your own custom importer.

8.2.1 Importing

You’ll learn how to import data from two of the bigger professionally used SCM sys-

tems — Subversion and Perforce — both because they make up the majority of users

I hear of who are currently switching, and because high-quality tools for both systems

are distributed with Git.

196

CHAPTER 8 GIT AND OTHER SYSTEMS

8.2.2 Subversion

If you read the previous section about using git svn , you can easily use those instruc-

tions to git svn clone a repository; then, stop using the Subversion server, push to a

new Git server, and start using that. If you want the history, you can accomplish that as

quickly as you can pull the data out of the Subversion server (which may take a while).

However, the import isn’t perfect; and because it will take so long, you may as well

do it right. The first problem is the author information. In Subversion, each person

committing has a user on the system who is recorded in the commit information. The

examples in the previous section show schacon in some places, such as the blame output

and the git svn log . If you want to map this to better Git author data, you need a

mapping from the Subversion users to the Git authors. Create a file called users.txt

that has this mapping in a format like this:

schacon = Scott Chacon <schacon@geemail.com>

selse = Someo Nelse <selse@geemail.com>

To get a list of the author names that SVN uses, you can run this:

$ svn log --xml | grep author | sort -u | perl -pe ’s/.>(.?)<./$1 = /’

That gives you the log output in XML format— you can look for the authors, create

a unique list, and then strip out the XML. (Obviously this only works on a machine with

grep , sort , and perl installed.) Then, redirect that output into your users.txt file so you

can add the equivalent Git user data next to each entry.

You can provide this file to git svn to help it map the author data more accurately.

You can also tell git svn not to include the metadata that Subversion normally imports,

by passing --no-metadata to the clone or init command. This makes your import

command look like this:

$ git-svn clone http://my-project.googlecode.com/svn/ \

--authors-file=users.txt --no-metadata -s my_project

Now you should have a nicer Subversion import in your my project directory. In-

stead of commits that look like this

commit 37efa680e8473b615de980fa935944215428a35a

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

git-svn-id: https://my-project.googlecode.com/svn/trunk@94 4c93b258-373f-11de-

be05-5f7a86268029

they look like this:

commit 03a8785f44c8ea5cdb0e8834b7c8e6c469be2ff2

Author: Scott Chacon <schacon@geemail.com>

Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

197

PRO GIT SCOTT CHACON

Not only does the Author field look a lot better, but the git-svn-id is no longer

there, either.

You need to do a bit of post-import cleanup. For one thing, you should clean up

the weird references that git svn set up. First you’ll move the tags so they’re actual

tags rather than strange remote branches, and then you’ll move the rest of the branches

so they’re local.

To move the tags to be proper Git tags, run

$ cp -Rf .git/refs/remotes/tags/* .git/refs/tags/

$ rm -Rf .git/refs/remotes/tags

This takes the references that were remote branches that started with tag/ and

makes them real (lightweight) tags.

Next, move the rest of the references under refs/remotes to be local branches:

$ cp -Rf .git/refs/remotes/* .git/refs/heads/

$ rm -Rf .git/refs/remotes

Now all the old branches are real Git branches and all the old tags are real Git tags.

The last thing to do is add your new Git server as a remote and push to it. Because you

want all your branches and tags to go up, you can run this:

$ git push origin --all

All your branches and tags should be on your new Git server in a nice, clean import.

8.2.3 Perforce

The next system you’ll look at importing from is Perforce. A Perforce importer is

also distributed with Git, but only in the contrib section of the source code — it isn’t

available by default like git svn . To run it, you must get the Git source code, which

you can download from git.kernel.org:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/contrib/fast-import

In this fast-import directory, you should find an executable Python script named

git-p4 . You must have Python and the p4 tool installed on your machine for this import

to work. For example, you’ll import the Jam project from the Perforce Public Depot.

To set up your client, you must export the P4PORT environment variable to point to

the Perforce depot:

$ export P4PORT=public.perforce.com:1666

Run the git-p4 clone command to import the Jam project from the Perforce server,

supplying the depot and project path and the path into which you want to import the

project:

$ git-p4 clone //public/jam/src@all /opt/p4import

Importing from //public/jam/src@all into /opt/p4import

Reinitialized existing Git repository in /opt/p4import/.git/

Import destination: refs/remotes/p4/master

Importing revision 4409 (100%)

198

CHAPTER 8 GIT AND OTHER SYSTEMS

If you go to the /opt/p4import directory and run git log , you can see your im-

ported work:

$ git log -2

commit 1fd4ec126171790efd2db83548b85b1bbbc07dc2

Author: Perforce staff <support@perforce.com>

Date: Thu Aug 19 10:18:45 2004 -0800

Drop ’rc3’ moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into

the main part of the document. Built new tar/zip balls.

Only 16 months later.

[git-p4: depot-paths = "//public/jam/src/": change = 4409]

commit ca8870db541a23ed867f38847eda65bf4363371d

Author: Richard Geiger <rmg@perforce.com>

Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

[git-p4: depot-paths = "//public/jam/src/": change = 3108]

You can see the git-p4 identifier in each commit. It’s fine to keep that identifier

there, in case you need to reference the Perforce change number later. However, if

you’d like to remove the identifier, now is the time to do so — before you start doing

work on the new repository. You can use git filter-branch to remove the identifier

strings en masse:

$ git filter-branch --msg-filter ’

sed -e "/̂ \[git-p4:/d"

’

Rewrite 1fd4ec126171790efd2db83548b85b1bbbc07dc2 (123/123)

Ref ’refs/heads/master’ was rewritten

If you run git log , you can see that all the SHA–1 checksums for the commits

have changed, but the git-p4 strings are no longer in the commit messages:

$ git log -2

commit 10a16d60cffca14d454a15c6164378f4082bc5b0

Author: Perforce staff <support@perforce.com>

Date: Thu Aug 19 10:18:45 2004 -0800

Drop ’rc3’ moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into

the main part of the document. Built new tar/zip balls.

Only 16 months later.

commit 2b6c6db311dd76c34c66ec1c40a49405e6b527b2

Author: Richard Geiger <rmg@perforce.com>

Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

Your import is ready to push up to your new Git server.

199

PRO GIT SCOTT CHACON

8.2.4 A Custom Importer

If your system isn’t Subversion or Perforce, you should look for an importer online

— quality importers are available for CVS, Clear Case, Visual Source Safe, even a

directory of archives. If none of these tools works for you, you have a rarer tool, or you

otherwise need a more custom importing process, you should use git fast-import .

This command reads simple instructions from stdin to write specific Git data. It’s

much easier to create Git objects this way than to run the raw Git commands or try to

write the raw objects (see Chapter 9 for more information). This way, you can write an

import script that reads the necessary information out of the system you’re importing

from and prints straightforward instructions to stdout. You can then run this program

and pipe its output through git fast-import .

To quickly demonstrate, you’ll write a simple importer. Suppose you work in

current, you back up your project by occasionally copying the directory into a time-

stamped back YYYY MM DD backup directory, and you want to import this into Git. Your

directory structure looks like this:

$ ls /opt/import_from

back_2009_01_02

back_2009_01_04

back_2009_01_14

back_2009_02_03

current

In order to import a Git directory, you need to review how Git stores its data. As

you may remember, Git is fundamentally a linked list of commit objects that point to a

snapshot of content. All you have to do is tell fast-import what the content snapshots

are, what commit data points to them, and the order they go in. Your strategy will be

to go through the snapshots one at a time and create commits with the contents of each

directory, linking each commit back to the previous one.

As you did in the “An Example Git Enforced Policy” section of Chapter 7, we’ll

write this in Ruby, because it’s what I generally work with and it tends to be easy to

read. You can write this example pretty easily in anything you’re familiar with — it

just needs to print the appropriate information to stdout.

To begin, you’ll change into the target directory and identify every subdirectory,

each of which is a snapshot that you want to import as a commit. You’ll change into

each subdirectory and print the commands necessary to export it. Your basic main loop

looks like this:

last_mark = nil

loop through the directories

Dir.chdir(ARGV[0]) do

Dir.glob("*").each do |dir|

next if File.file?(dir)

move into the target directory

Dir.chdir(dir) do

last_mark = print_export(dir, last_mark)

end

end

end

200

CHAPTER 8 GIT AND OTHER SYSTEMS

You run print export inside each directory, which takes the manifest and mark of

the previous snapshot and returns the manifest and mark of this one; that way, you

can link them properly. “Mark” is the fast-import term for an identifier you give to a

commit; as you create commits, you give each one a mark that you can use to link to it

from other commits. So, the first thing to do in your print export method is generate

a mark from the directory name:

mark = convert_dir_to_mark(dir)

You’ll do this by creating an array of directories and using the index value as the

mark, because a mark must be an integer. Your method looks like this:

$marks = []

def convert_dir_to_mark(dir)

if !$marks.include?(dir)

$marks << dir

end

($marks.index(dir) + 1).to_s

end

Now that you have an integer representation of your commit, you need a date for

the commit metadata. Because the date is expressed in the name of the directory, you’ll

parse it out. The next line in your print export file is

date = convert_dir_to_date(dir)

where convert dir to date is defined as

def convert_dir_to_date(dir)

if dir == ’current’

return Time.now().to_i

else

dir = dir.gsub(’back_’, ’’)

(year, month, day) = dir.split(’_’)

return Time.local(year, month, day).to_i

end

end

That returns an integer value for the date of each directory. The last piece of meta-

information you need for each commit is the committer data, which you hardcode in a

global variable:

$author = ’Scott Chacon <schacon@example.com>’

Now you’re ready to begin printing out the commit data for your importer. The

initial information states that you’re defining a commit object and what branch it’s

on, followed by the mark you’ve generated, the committer information and commit

message, and then the previous commit, if any. The code looks like this:

print the import information

puts ’commit refs/heads/master’

puts ’mark :’ + mark

puts "committer #{$author} #{date} -0700"

export_data(’imported from ’ + dir)

puts ’from :’ + last_mark if last_mark

201

PRO GIT SCOTT CHACON

You hardcode the time zone (–0700) because doing so is easy. If you’re importing

from another system, you must specify the time zone as an offset. The commit message

must be expressed in a special format:

data (size)\n(contents)

The format consists of the word data, the size of the data to be read, a newline, and

finally the data. Because you need to use the same format to specify the file contents

later, you create a helper method, export data :

def export_data(string)

print "data #{string.size}\n#{string}"

end

All that’s left is to specify the file contents for each snapshot. This is easy, because

you have each one in a directory — you can print out the deleteall command fol-

lowed by the contents of each file in the directory. Git will then record each snapshot

appropriately:

puts ’deleteall’

Dir.glob("**/*").each do |file|

next if !File.file?(file)

inline_data(file)

end

Note: Because many systems think of their revisions as changes from one commit

to another, fast-import can also take commands with each commit to specify which

files have been added, removed, or modified and what the new contents are. You could

calculate the differences between snapshots and provide only this data, but doing so is

more complex — you may as well give Git all the data and let it figure it out. If this

is better suited to your data, check the fast-import man page for details about how to

provide your data in this manner.

The format for listing the new file contents or specifying a modified file with the

new contents is as follows:

M 644 inline path/to/file

data (size)

(file contents)

Here, 644 is the mode (if you have executable files, you need to detect and specify

755 instead), and inline says you’ll list the contents immediately after this line. Your

inline data method looks like this:

def inline_data(file, code = ’M’, mode = ’644’)

content = File.read(file)

puts "#{code} #{mode} inline #{file}"

export_data(content)

end

You reuse the export data method you defined earlier, because it’s the same as the

way you specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the

next iteration:

202

CHAPTER 8 GIT AND OTHER SYSTEMS

return mark

That’s it. If you run this script, you’ll get content that looks something like this:

$ ruby import.rb /opt/import_from

commit refs/heads/master

mark :1

committer Scott Chacon <schacon@geemail.com> 1230883200 -0700

data 29

imported from back_2009_01_02deleteall

M 644 inline file.rb

data 12

version two

commit refs/heads/master

mark :2

committer Scott Chacon <schacon@geemail.com> 1231056000 -0700

data 29

imported from back_2009_01_04from :1

deleteall

M 644 inline file.rb

data 14

version three

M 644 inline new.rb

data 16

new version one

(...)

To run the importer, pipe this output through git fast-import while in the Git

directory you want to import into. You can create a new directory and then run git

init in it for a starting point, and then run your script:

$ git init

Initialized empty Git repository in /opt/import_to/.git/

$ ruby import.rb /opt/import_from | git fast-import

git-fast-import statistics:

Alloc’d objects: 5000

Total objects: 18 (1 duplicates)

blobs : 7 (1 duplicates 0 deltas)

trees : 6 (0 duplicates 1 deltas)

commits: 5 (0 duplicates 0 deltas)

tags : 0 (0 duplicates 0 deltas)

Total branches: 1 (1 loads)

marks: 1024 (5 unique)

atoms: 3

Memory total: 2255 KiB

pools: 2098 KiB

objects: 156 KiB

pack_report: getpagesize() = 4096

pack_report: core.packedGitWindowSize = 33554432

pack_report: core.packedGitLimit = 268435456

pack_report: pack_used_ctr = 9

203

PRO GIT SCOTT CHACON

pack_report: pack_mmap_calls = 5

pack_report: pack_open_windows = 1 / 1

pack_report: pack_mapped = 1356 / 1356

As you can see, when it completes successfully, it gives you a bunch of statistics

about what it accomplished. In this case, you imported 18 objects total for 5 commits

into 1 branch. Now, you can run git log to see your new history:

$ git log -2

commit 10bfe7d22ce15ee25b60a824c8982157ca593d41

Author: Scott Chacon <schacon@example.com>

Date: Sun May 3 12:57:39 2009 -0700

imported from current

commit 7e519590de754d079dd73b44d695a42c9d2df452

Author: Scott Chacon <schacon@example.com>

Date: Tue Feb 3 01:00:00 2009 -0700

imported from back_2009_02_03

There you go — a nice, clean Git repository. It’s important to note that nothing is

checked out — you don’t have any files in your working directory at first. To get them,

you must reset your branch to where master is now:

$ ls

$ git reset --hard master

HEAD is now at 10bfe7d imported from current

$ ls

file.rb lib

You can do a lot more with the fast-import tool — handle different modes, binary

data, multiple branches and merging, tags, progress indicators, and more. A number of

examples of more complex scenarios are available in the contrib/fast-import direc-

tory of the Git source code; one of the better ones is the git-p4 script I just covered.

8.3 Summary

You should feel comfortable using Git with Subversion or importing nearly any existing

repository into a new Git one without losing data. The next chapter will cover the raw

internals of Git so you can craft every single byte, if need be.

204

Chapter 9

Git Internals

You may have skipped to this chapter from a previous chapter, or you may have gotten

here after reading the rest of the book — in either case, this is where you’ll go over the

inner workings and implementation of Git. I found that learning this information was

fundamentally important to understanding how useful and powerful Git is, but others

have argued to me that it can be confusing and unnecessarily complex for beginners.

Thus, I’ve made this discussion the last chapter in the book so you could read it early

or later in your learning process. I leave it up to you to decide.

Now that you’re here, let’s get started. First, if it isn’t yet clear, Git is fundamentally

a content-addressable filesystem with a VCS user interface written on top of it. You’ll

learn more about what this means in a bit.

In the early days of Git (mostly pre 1.5), the user interface was much more complex

because it emphasized this filesystem rather than a polished VCS. In the last few years,

the UI has been refined until it’s as clean and easy to use as any system out there; but

often, the stereotype lingers about the early Git UI that was complex and difficult to

learn.

The content-addressable filesystem layer is amazingly cool, so I’ll cover that first

in this chapter; then, you’ll learn about the transport mechanisms and the repository

maintenance tasks that you may eventually have to deal with.

9.1 Plumbing and Porcelain

This book covers how to use Git with 30 or so verbs such as checkout , branch , remote ,

and so on. But because Git was initially a toolkit for a VCS rather than a full user-

friendly VCS, it has a bunch of verbs that do low-level work and were designed to be

chained together UNIX style or called from scripts. These commands are generally

referred to as “plumbing” commands, and the more user-friendly commands are called

“porcelain” commands.

The book’s first eight chapters deal almost exclusively with porcelain commands.

But in this chapter, you’ll be dealing mostly with the lower-level plumbing commands,

because they give you access to the inner workings of Git and help demonstrate how

and why Git does what it does. These commands aren’t meant to be used manually on

the command line, but rather to be used as building blocks for new tools and custom

scripts.

205

PRO GIT SCOTT CHACON

When you run git init in a new or existing directory, Git creates the .git direc-

tory, which is where almost everything that Git stores and manipulates is located. If

you want to back up or clone your repository, copying this single directory elsewhere

gives you nearly everything you need. This entire chapter basically deals with the stuff

in this directory. Here’s what it looks like:

$ ls

HEAD

branches/

config

description

hooks/

index

info/

objects/

refs/

You may see some other files in there, but this is a fresh git init repository —

it’s what you see by default. The branches directory isn’t used by newer Git versions,

and the description file is only used by the GitWeb program, so don’t worry about

those. The config file contains your project-specific configuration options, and the

info directory keeps a global exclude file for ignored patterns that you don’t want to

track in a .gitignore file. The hooks directory contains your client- or server-side hook

scripts, which are discussed in detail in Chapter 6.

This leaves four important entries: the HEAD and index files and the objects and

refs directories. These are the core parts of Git. The objects directory stores all the

content for your database, the refs directory stores pointers into commit objects in that

data (branches), the HEAD file points to the branch you currently have checked out, and

the index file is where Git stores your staging area information. You’ll now look at

each of these sections in detail to see how Git operates.

9.2 Git Objects

Git is a content-addressable filesystem. Great. What does that mean? It means that

at the core of Git is a simple key-value data store. You can insert any kind of content

into it, and it will give you back a key that you can use to retrieve the content again

at any time. To demonstrate, you can use the plumbing command hash-object , which

takes some data, stores it in your .git directory, and gives you back the key the data is

stored as. First, you initialize a new Git repository and verify that there is nothing in

the objects directory:

$ mkdir test

$ cd test

$ git init

Initialized empty Git repository in /tmp/test/.git/

$ find .git/objects

.git/objects

.git/objects/info

.git/objects/pack

$ find .git/objects -type f

$

206

CHAPTER 9 GIT INTERNALS

Git has initialized the objects directory and created pack and info subdirectories

in it, but there are no regular files. Now, store some text in your Git database:

$ echo ’test content’ | git hash-object -w --stdin

d670460b4b4aece5915caf5c68d12f560a9fe3e4

The -w tells hash-object to store the object; otherwise, the command simply tells

you what the key would be. --stdin tells the command to read the content from stdin;

if you don’t specify this, hash-object expects the path to a file. The output from the

command is a 40-character checksum hash. This is the SHA–1 hash — a checksum of

the content you’re storing plus a header, which you’ll learn about in a bit. Now you can

see how Git has stored your data:

$ find .git/objects -type f

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

You can see a file in the objects directory. This is how Git stores the content

initially — as a single file per piece of content, named with the SHA–1 checksum of

the content and its header. The subdirectory is named with the first 2 characters of the

SHA, and the filename is the remaining 38 characters.

You can pull the content back out of Git with the cat-file command. This com-

mand is sort of a Swiss army knife for inspecting Git objects. Passing -p to it instructs

the cat-file command to figure out the type of content and display it nicely for you:

$ git cat-file -p d670460b4b4aece5915caf5c68d12f560a9fe3e4

test content

Now, you can add content to Git and pull it back out again. You can also do this

with content in files. For example, you can do some simple version control on a file.

First, create a new file and save its contents in your database:

$ echo ’version 1’ > test.txt

$ git hash-object -w test.txt

83baae61804e65cc73a7201a7252750c76066a30

Then, write some new content to the file, and save it again:

$ echo ’version 2’ > test.txt

$ git hash-object -w test.txt

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

Your database contains the two new versions of the file as well as the first content

you stored there:

$ find .git/objects -type f

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

Now you can revert the file back to the first version

$ git cat-file -p 83baae61804e65cc73a7201a7252750c76066a30 > test.txt

$ cat test.txt

version 1

207

PRO GIT SCOTT CHACON

or the second version:

$ git cat-file -p 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a > test.txt

$ cat test.txt

version 2

But remembering the SHA–1 key for each version of your file isn’t practical; plus,

you aren’t storing the filename in your system — just the content. This object type is

called a blob. You can have Git tell you the object type of any object in Git, given its

SHA–1 key, with cat-file -t :

$ git cat-file -t 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

blob

9.2.1 Tree Objects

The next type you’ll look at is the tree object, which solves the problem of storing the

filename and also allows you to store a group of files together. Git stores content in

a manner similar to a UNIX filesystem, but a bit simplified. All the content is stored

as tree and blob objects, with trees corresponding to UNIX directory entries and blobs

corresponding more or less to inodes or file contents. A single tree object contains one

or more tree entries, each of which contains an SHA–1 pointer to a blob or subtree

with its associated mode, type, and filename. For example, the most recent tree in the

simplegit project may look something like this:

$ git cat-file -p master̂ {tree}

100644 blob a906cb2a4a904a152e80877d4088654daad0c859 README

100644 blob 8f94139338f9404f26296befa88755fc2598c289 Rakefile

040000 tree 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0 lib

The master̂ tree syntax specifies the tree object that is pointed to by the last com-

mit on your master branch. Notice that the lib subdirectory isn’t a blob but a pointer

to another tree:

$ git cat-file -p 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0

100644 blob 47c6340d6459e05787f644c2447d2595f5d3a54b simplegit.rb

Conceptually, the data that Git is storing is something like Figure 9.1.

You can create your own tree. Git normally creates a tree by taking the state of

your staging area or index and writing a tree object from it. So, to create a tree ob-

ject, you first have to set up an index by staging some files. To create an index with a

single entry — the first version of your text.txt file — you can use the plumbing com-

mand update-index . You use this command to artificially add the earlier version of the

test.txt file to a new staging area. You must pass it the --add option because the file

doesn’t yet exist in your staging area (you don’t even have a staging area set up yet)

and --cacheinfo because the file you’re adding isn’t in your directory but is in your

database. Then, you specify the mode, SHA–1, and filename:

$ git update-index --add --cacheinfo 100644 \

83baae61804e65cc73a7201a7252750c76066a30 test.txt

208

CHAPTER 9 GIT INTERNALS

Figure 9.1: Simple version of the Git data model

In this case, you’re specifying a mode of 100644 , which means it’s a normal file.

Other options are 100755 , which means it’s an executable file; and 120000 , which spec-

ifies a symbolic link. The mode is taken from normal UNIX modes but is much less

flexible — these three modes are the only ones that are valid for files (blobs) in Git

(although other modes are used for directories and submodules).

Now, you can use the write-tree command to write the staging area out to a tree

object. No -w option is needed— calling write-tree automatically creates a tree object

from the state of the index if that tree doesn’t yet exist:

$ git write-tree

d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git cat-file -p d8329fc1cc938780ffdd9f94e0d364e0ea74f579

100644 blob 83baae61804e65cc73a7201a7252750c76066a30 test.txt

You can also verify that this is a tree object:

$ git cat-file -t d8329fc1cc938780ffdd9f94e0d364e0ea74f579

tree

You’ll now create a new tree with the second version of test.txt and a new file as

well:

$ echo ’new file’ > new.txt

$ git update-index test.txt

$ git update-index --add new.txt

Your staging area now has the new version of test.txt as well as the new file new.txt.

Write out that tree (recording the state of the staging area or index to a tree object) and

see what it looks like:

$ git write-tree

0155eb4229851634a0f03eb265b69f5a2d56f341

$ git cat-file -p 0155eb4229851634a0f03eb265b69f5a2d56f341

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

209

PRO GIT SCOTT CHACON

Notice that this tree has both file entries and also that the test.txt SHA is the “version

2” SHA from earlier (1f7a7a). Just for fun, you’ll add the first tree as a subdirectory

into this one. You can read trees into your staging area by calling read-tree . In this

case, you can read an existing tree into your staging area as a subtree by using the

--prefix option to read-tree :

$ git read-tree --prefix=bak d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git write-tree

3c4e9cd789d88d8d89c1073707c3585e41b0e614

$ git cat-file -p 3c4e9cd789d88d8d89c1073707c3585e41b0e614

040000 tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579 bak

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

If you created a working directory from the new tree you just wrote, you would get

the two files in the top level of the working directory and a subdirectory named bak that

contained the first version of the test.txt file. You can think of the data that Git contains

for these structures as being like Figure 9.2.

Figure 9.2: The content structure of your current Git data

9.2.2 Commit Objects

You have three trees that specify the different snapshots of your project that you want to

track, but the earlier problem remains: you must remember all three SHA–1 values in

order to recall the snapshots. You also don’t have any information about who saved the

snapshots, when they were saved, or why they were saved. This is the basic information

that the commit object stores for you.

To create a commit object, you call commit-tree and specify a single tree SHA–1

and which commit objects, if any, directly preceded it. Start with the first tree you

wrote:

$ echo ’first commit’ | git commit-tree d8329f

fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Now you can look at your new commit object with cat-file :

210

CHAPTER 9 GIT INTERNALS

$ git cat-file -p fdf4fc3

tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579

author Scott Chacon <schacon@gmail.com> 1243040974 -0700

committer Scott Chacon <schacon@gmail.com> 1243040974 -0700

first commit

The format for a commit object is simple: it specifies the top-level tree for the

snapshot of the project at that point; the author/committer information pulled from

your user.name and user.email configuration settings, with the current timestamp; a

blank line, and then the commit message.

Next, you’ll write the other two commit objects, each referencing the commit that

came directly before it:

$ echo ’second commit’ | git commit-tree 0155eb -p fdf4fc3

cac0cab538b970a37ea1e769cbbde608743bc96d

$ echo ’third commit’ | git commit-tree 3c4e9c -p cac0cab

1a410efbd13591db07496601ebc7a059dd55cfe9

Each of the three commit objects points to one of the three snapshot trees you

created. Oddly enough, you have a real Git history now that you can view with the git

log command, if you run it on the last commit SHA–1:

$ git log --stat 1a410e

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:15:24 2009 -0700

third commit

bak/test.txt | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

commit cac0cab538b970a37ea1e769cbbde608743bc96d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:14:29 2009 -0700

second commit

new.txt | 1 +

test.txt | 2 +-

2 files changed, 2 insertions(+), 1 deletions(-)

commit fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:09:34 2009 -0700

first commit

test.txt | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

211

PRO GIT SCOTT CHACON

Amazing. You’ve just done the low-level operations to build up a Git history with-

out using any of the front ends. This is essentially what Git does when you run the

git add and git commit commands — it stores blobs for the files that have changed,

updates the index, writes out trees, and writes commit objects that reference the top-

level trees and the commits that came immediately before them. These three main Git

objects — the blob, the tree, and the commit — are initially stored as separate files in

your .git/objects directory. Here are all the objects in the example directory now,

commented with what they store:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # ’test content’

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

If you follow all the internal pointers, you get an object graph something like Figure

9.3.

Figure 9.3: All the objects in your Git directory

9.2.3 Object Storage

I mentioned earlier that a header is stored with the content. Let’s take a minute to look

at how Git stores its objects. You’ll see how to store a blob object — in this case, the

string “what is up, doc?” — interactively in the Ruby scripting language. You can start

up interactive Ruby mode with the irb command:

$ irb

>> content = "what is up, doc?"

=> "what is up, doc?"

212

CHAPTER 9 GIT INTERNALS

Git constructs a header that starts with the type of the object, in this case a blob.

Then, it adds a space followed by the size of the content and finally a null byte:

>> header = "blob #{content.length}\0"

=> "blob 16\000"

Git concatenates the header and the original content and then calculates the SHA–

1 checksum of that new content. You can calculate the SHA–1 value of a string in

Ruby by including the SHA1 digest library with the require command and then calling

Digest::SHA1.hexdigest() with the string:

>> store = header + content

=> "blob 16\000what is up, doc?"

>> require ’digest/sha1’

=> true

>> sha1 = Digest::SHA1.hexdigest(store)

=> "bd9dbf5aae1a3862dd1526723246b20206e5fc37"

Git compresses the new content with zlib, which you can do in Ruby with the zlib

library. First, you need to require the library and then run Zlib::Deflate.deflate()

on the content:

>> require ’zlib’

=> true

>> zlib_content = Zlib::Deflate.deflate(store)

=> "x\234K\312\311OR04c(\317H,Q\310,V(-\320QH\311O\266\a\000_\034\a\235"

Finally, you’ll write your zlib-deflated content to an object on disk. You’ll deter-

mine the path of the object you want to write out (the first two characters of the SHA–1

value being the subdirectory name, and the last 38 characters being the filename within

that directory). In Ruby, you can use the FileUtils.mkdir p() function to create the

subdirectory if it doesn’t exist. Then, open the file with File.open() and write out the

previously zlib-compressed content to the file with a write() call on the resulting file

handle:

>> path = ’.git/objects/’ + sha1[0,2] + ’/’ + sha1[2,38]

=> ".git/objects/bd/9dbf5aae1a3862dd1526723246b20206e5fc37"

>> require ’fileutils’

=> true

>> FileUtils.mkdir_p(File.dirname(path))

=> ".git/objects/bd"

>> File.open(path, ’w’) { |f| f.write zlib_content }

=> 32

That’s it — you’ve created a valid Git blob object. All Git objects are stored the

same way, just with different types — instead of the string blob, the header will be-

gin with commit or tree. Also, although the blob content can be nearly anything, the

commit and tree content are very specifically formatted.

213

PRO GIT SCOTT CHACON

9.3 Git References

You can run something like git log 1a410e to look through your whole history, but

you still have to remember that 1a410e is the last commit in order to walk that history

to find all those objects. You need a file in which you can store the SHA–1 value under

a simple name so you can use that pointer rather than the raw SHA–1 value.

In Git, these are called “references” or “refs”; you can find the files that contain the

SHA–1 values in the .git/refs directory. In the current project, this directory contains

no files, but it does contain a simple structure:

$ find .git/refs

.git/refs

.git/refs/heads

.git/refs/tags

$ find .git/refs -type f

$

To create a new reference that will help you remember where your latest commit

is, you can technically do something as simple as this:

$ echo "1a410efbd13591db07496601ebc7a059dd55cfe9" > .git/refs/heads/master

Now, you can use the head reference you just created instead of the SHA–1 value

in your Git commands:

$ git log --pretty=oneline master

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You aren’t encouraged to directly edit the reference files. Git provides a safer com-

mand to do this if you want to update a reference called update-ref :

$ git update-ref refs/heads/master 1a410efbd13591db07496601ebc7a059dd55cfe9

That’s basically what a branch in Git is: a simple pointer or reference to the head

of a line of work. To create a branch back at the second commit, you can do this:

$ git update-ref refs/heads/test cac0ca

Your branch will contain only work from that commit down:

$ git log --pretty=oneline test

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, your Git database conceptually looks something like Figure 9.4.

When you run commands like git branch (branchname) , Git basically runs that

update-ref command to add the SHA–1 of the last commit of the branch you’re on

into whatever new reference you want to create.

214

CHAPTER 9 GIT INTERNALS

Figure 9.4: Git directory objects with branch head references included

9.3.1 The HEAD

The question now is, when you run git branch (branchname) , how does Git know the

SHA–1 of the last commit? The answer is the HEAD file. The HEAD file is a symbolic

reference to the branch you’re currently on. By symbolic reference, I mean that unlike

a normal reference, it doesn’t generally contain a SHA–1 value but rather a pointer to

another reference. If you look at the file, you’ll normally see something like this:

$ cat .git/HEAD

ref: refs/heads/master

If you run git checkout test , Git updates the file to look like this:

$ cat .git/HEAD

ref: refs/heads/test

When you run git commit , it creates the commit object, specifying the parent of

that commit object to be whatever SHA–1 value the reference in HEAD points to.

You can also manually edit this file, but again a safer command exists to do so:

symbolic-ref . You can read the value of your HEAD via this command:

$ git symbolic-ref HEAD

refs/heads/master

You can also set the value of HEAD:

$ git symbolic-ref HEAD refs/heads/test

$ cat .git/HEAD

ref: refs/heads/test

You can’t set a symbolic reference outside of the refs style:

$ git symbolic-ref HEAD test

fatal: Refusing to point HEAD outside of refs/

215

PRO GIT SCOTT CHACON

9.3.2 Tags

You’ve just gone over Git’s three main object types, but there is a fourth. The tag

object is very much like a commit object — it contains a tagger, a date, a message, and

a pointer. The main difference is that a tag object points to a commit rather than a tree.

It’s like a branch reference, but it never moves — it always points to the same commit

but gives it a friendlier name.

As discussed in Chapter 2, there are two types of tags: annotated and lightweight.

You can make a lightweight tag by running something like this:

$ git update-ref refs/tags/v1.0 cac0cab538b970a37ea1e769cbbde608743bc96d

That is all a lightweight tag is — a branch that never moves. An annotated tag is

more complex, however. If you create an annotated tag, Git creates a tag object and

then writes a reference to point to it rather than directly to the commit. You can see this

by creating an annotated tag (-a specifies that it’s an annotated tag):

$ git tag -a v1.1 1a410efbd13591db07496601ebc7a059dd55cfe9 m ’test tag’

Here’s the object SHA–1 value it created:

$ cat .git/refs/tags/v1.1

9585191f37f7b0fb9444f35a9bf50de191beadc2

Now, run the cat-file command on that SHA–1 value:

$ git cat-file -p 9585191f37f7b0fb9444f35a9bf50de191beadc2

object 1a410efbd13591db07496601ebc7a059dd55cfe9

type commit

tag v1.1

tagger Scott Chacon <schacon@gmail.com> Sat May 23 16:48:58 2009 -0700

test tag

Notice that the object entry points to the commit SHA–1 value that you tagged.

Also notice that it doesn’t need to point to a commit; you can tag any Git object. In the

Git source code, for example, the maintainer has added their GPG public key as a blob

object and then tagged it. You can view the public key by running

$ git cat-file blob junio-gpg-pub

in the Git source code. The Linux kernel also has a non-commit-pointing tag object

— the first tag created points to the initial tree of the import of the source code.

9.3.3 Remotes

The third type of reference that you’ll see is a remote reference. If you add a remote

and push to it, Git stores the value you last pushed to that remote for each branch in

the refs/remotes directory. For instance, you can add a remote called origin and push

your master branch to it:

216

CHAPTER 9 GIT INTERNALS

$ git remote add origin git@github.com:schacon/simplegit-progit.git

$ git push origin master

Counting objects: 11, done.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (7/7), 716 bytes, done.

Total 7 (delta 2), reused 4 (delta 1)

To git@github.com:schacon/simplegit-progit.git

a11bef0..ca82a6d master -> master

Then, you can see what the master branch on the origin remote was the last time

you communicated with the server, by checking the refs/remotes/origin/master file:

$ cat .git/refs/remotes/origin/master

ca82a6dff817ec66f44342007202690a93763949

Remote references differ from branches (refs/heads references) mainly in that they

can’t be checked out. Git moves them around as bookmarks to the last known state of

where those branches were on those servers.

9.4 Packfiles

Let’s go back to the objects database for your test Git repository. At this point, you

have 11 objects — 4 blobs, 3 trees, 3 commits, and 1 tag:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/95/85191f37f7b0fb9444f35a9bf50de191beadc2 # tag

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # ’test content’

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

Git compresses the contents of these files with zlib, and you’re not storing much,

so all these files collectively take up only 925 bytes. You’ll add some larger content to

the repository to demonstrate an interesting feature of Git. Add the repo.rb file from

the Grit library you worked with earlier — this is about a 12K source code file:

$ curl http://github.com/mojombo/grit/raw/master/lib/grit/repo.rb > repo.rb

$ git add repo.rb

$ git commit -m ’added repo.rb’

[master 484a592] added repo.rb

3 files changed, 459 insertions(+), 2 deletions(-)

delete mode 100644 bak/test.txt

create mode 100644 repo.rb

rewrite test.txt (100%)

If you look at the resulting tree, you can see the SHA–1 value your repo.rb file got

for the blob object:

217

PRO GIT SCOTT CHACON

$ git cat-file -p master̂ {tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

You can then use git cat-file to see how big that object is:

$ git cat-file -s 9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e

12898

Now, modify that file a little, and see what happens:

$ echo ’# testing’ >> repo.rb

$ git commit -am ’modified repo a bit’

[master ab1afef] modified repo a bit

1 files changed, 1 insertions(+), 0 deletions(-)

Check the tree created by that commit, and you see something interesting:

$ git cat-file -p master̂ {tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 05408d195263d853f09dca71d55116663690c27c repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

The blob is now a different blob, which means that although you added only a

single line to the end of a 400-line file, Git stored that new content as a completely new

object:

$ git cat-file -s 05408d195263d853f09dca71d55116663690c27c

12908

You have two nearly identical 12K objects on your disk. Wouldn’t it be nice if Git

could store one of them in full but then the second object only as the delta between it

and the first?

It turns out that it can. The initial format in which Git saves objects on disk is called

a loose object format. However, occasionally Git packs up several of these objects into

a single binary file called a packfile in order to save space and be more efficient. Git

does this if you have too many loose objects around, if you run the git gc command

manually, or if you push to a remote server. To see what happens, you can manually

ask Git to pack up the objects by calling the git gc command:

$ git gc

Counting objects: 17, done.

Delta compression using 2 threads.

Compressing objects: 100% (13/13), done.

Writing objects: 100% (17/17), done.

Total 17 (delta 1), reused 10 (delta 0)

If you look in your objects directory, you’ll find that most of your objects are gone,

and a new pair of files has appeared:

218

CHAPTER 9 GIT INTERNALS

$ find .git/objects -type f

.git/objects/71/08f7ecb345ee9d0084193f147cdad4d2998293

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

.git/objects/info/packs

.git/objects/pack/pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.idx

.git/objects/pack/pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.pack

The objects that remain are the blobs that aren’t pointed to by any commit — in this

case, the “what is up, doc?” example and the “test content” example blobs you created

earlier. Because you never added them to any commits, they’re considered dangling

and aren’t packed up in your new packfile.

The other files are your new packfile and an index. The packfile is a single file

containing the contents of all the objects that were removed from your filesystem. The

index is a file that contains offsets into that packfile so you can quickly seek to a specific

object. What is cool is that although the objects on disk before you ran the gc were

collectively about 12K in size, the new packfile is only 6K. You’ve halved your disk

usage by packing your objects.

How does Git do this? When Git packs objects, it looks for files that are named and

sized similarly, and stores just the deltas from one version of the file to the next. You

can look into the packfile and see what Git did to save space. The git verify-pack

plumbing command allows you to see what was packed up:

$ git verify-pack -v pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.idx

0155eb4229851634a0f03eb265b69f5a2d56f341 tree 71 76 5400

05408d195263d853f09dca71d55116663690c27c blob 12908 3478 874

09f01cea547666f58d6a8d809583841a7c6f0130 tree 106 107 5086

1a410efbd13591db07496601ebc7a059dd55cfe9 commit 225 151 322

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a blob 10 19 5381

3c4e9cd789d88d8d89c1073707c3585e41b0e614 tree 101 105 5211

484a59275031909e19aadb7c92262719cfcdf19a commit 226 153 169

83baae61804e65cc73a7201a7252750c76066a30 blob 10 19 5362

9585191f37f7b0fb9444f35a9bf50de191beadc2 tag 136 127 5476

9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e blob 7 18 5193 1

05408d195263d853f09dca71d55116663690c27c \

ab1afef80fac8e34258ff41fc1b867c702daa24b commit 232 157 12

cac0cab538b970a37ea1e769cbbde608743bc96d commit 226 154 473

d8329fc1cc938780ffdd9f94e0d364e0ea74f579 tree 36 46 5316

e3f094f522629ae358806b17daf78246c27c007b blob 1486 734 4352

f8f51d7d8a1760462eca26eebafde32087499533 tree 106 107 749

fa49b077972391ad58037050f2a75f74e3671e92 blob 9 18 856

fdf4fc3344e67ab068f836878b6c4951e3b15f3d commit 177 122 627

chain length = 1: 1 object

pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.pack: ok

Here, the 9bc1d blob, which if you remember was the first version of your repo.rb

file, is referencing the 05408 blob, which was the second version of the file. The third

column in the output is the size of the object in the pack, so you can see that 05408

takes up 12K of the file but that 9bc1d only takes up 7 bytes. What is also interesting

is that the second version of the file is the one that is stored intact, whereas the original

version is stored as a delta — this is because you’re most likely to need faster access to

the most recent version of the file.

219

PRO GIT SCOTT CHACON

The really nice thing about this is that it can be repacked at any time. Git will

occasionally repack your database automatically, always trying to save more space.

You can also manually repack at any time by running git gc by hand.

9.5 The Refspec

Throughout this book, you’ve used simple mappings from remote branches to local

references; but they can be more complex. Suppose you add a remote like this:

$ git remote add origin git@github.com:schacon/simplegit-progit.git

It adds a section to your .git/config file, specifying the name of the remote

(origin), the URL of the remote repository, and the refspec for fetching:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/*:refs/remotes/origin/*

The format of the refspec is an optional +, followed by <src>:<dst> , where <src>

is the pattern for references on the remote side and <dst> is where those references will

be written locally. The + tells Git to update the reference even if it isn’t a fast-forward.

In the default case that is automatically written by a git remote add command,

Git fetches all the references under refs/heads/ on the server and writes them to

refs/remotes/origin/ locally. So, if there is a master branch on the server, you can

access the log of that branch locally via

$ git log origin/master

$ git log remotes/origin/master

$ git log refs/remotes/origin/master

They’re all equivalent, because Git expands each of them to refs/remotes/origin/master .

If you want Git instead to pull down only the master branch each time, and not

every other branch on the remote server, you can change the fetch line to

fetch = +refs/heads/master:refs/remotes/origin/master

This is just the default refspec for git fetch for that remote. If you want to do

something one time, you can specify the refspec on the command line, too. To pull the

master branch on the remote down to origin/mymaster locally, you can run

$ git fetch origin master:refs/remotes/origin/mymaster

You can also specify multiple refspecs. On the command line, you can pull down

several branches like so:

$ git fetch origin master:refs/remotes/origin/mymaster \

topic:refs/remotes/origin/topic

From git@github.com:schacon/simplegit

! [rejected] master -> origin/mymaster (non fast forward)

* [new branch] topic -> origin/topic

220

CHAPTER 9 GIT INTERNALS

In this case, the master branch pull was rejected because it wasn’t a fast-forward

reference. You can override that by specifying the + in front of the refspec.

You can also specify multiple refspecs for fetching in your configuration file. If

you want to always fetch the master and experiment branches, add two lines:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/experiment:refs/remotes/origin/experiment

You can’t use partial globs in the pattern, so this would be invalid:

fetch = +refs/heads/qa*:refs/remotes/origin/qa*

However, you can use namespacing to accomplish something like that. If you have

a QA team that pushes a series of branches, and you want to get the master branch and

any of the QA team’s branches but nothing else, you can use a config section like this:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/qa/*:refs/remotes/origin/qa/*

If you have a complex workflow process that has a QA team pushing branches, de-

velopers pushing branches, and integration teams pushing and collaborating on remote

branches, you can namespace them easily this way.

9.5.1 Pushing Refspecs

It’s nice that you can fetch namespaced references that way, but how does the QA team

get their branches into a qa/ namespace in the first place? You accomplish that by using

refspecs to push.

If the QA team wants to push their master branch to qa/master on the remote

server, they can run

$ git push origin master:refs/heads/qa/master

If they want Git to do that automatically each time they run git push origin , they

can add a push value to their config file:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/*:refs/remotes/origin/*

push = refs/heads/master:refs/heads/qa/master

Again, this will cause a git push origin to push the local master branch to the

remote qa/master branch by default.

9.5.2 Deleting References

You can also use the refspec to delete references from the remote server by running

something like this:

$ git push origin :topic

Because the refspec is <src>:<dst> , by leaving off the <src> part, this basically

says to make the topic branch on the remote nothing, which deletes it.

221

PRO GIT SCOTT CHACON

9.6 Transfer Protocols

Git can transfer data between two repositories in two major ways: over HTTP and via

the so-called smart protocols used in the file:// , ssh:// , and git:// transports. This

section will quickly cover how these two main protocols operate.

9.6.1 The Dumb Protocol

Git transport over HTTP is often referred to as the dumb protocol because it requires

no Git-specific code on the server side during the transport process. The fetch process

is a series of GET requests, where the client can assume the layout of the Git repository

on the server. Let’s follow the http-fetch process for the simplegit library:

$ git clone http://github.com/schacon/simplegit-progit.git

The first thing this command does is pull down the info/refs file. This file is

written by the update-server-info command, which is why you need to enable that as

a post-receive hook in order for the HTTP transport to work properly:

=> GET info/refs

ca82a6dff817ec66f44342007202690a93763949 refs/heads/master

Now you have a list of the remote references and SHAs. Next, you look for what

the HEAD reference is so you know what to check out when you’re finished:

=> GET HEAD

ref: refs/heads/master

You need to check out the master branch when you’ve completed the process. At

this point, you’re ready to start the walking process. Because your starting point is the

ca82a6 commit object you saw in the info/refs file, you start by fetching that:

=> GET objects/ca/82a6dff817ec66f44342007202690a93763949

(179 bytes of binary data)

You get an object back — that object is in loose format on the server, and you

fetched it over a static HTTP GET request. You can zlib-uncompress it, strip off the

header, and look at the commit content:

$ git cat-file -p ca82a6dff817ec66f44342007202690a93763949

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the verison number

Next, you have two more objects to retrieve — cfda3b , which is the tree of content

that the commit we just retrieved points to; and 085bb3 , which is the parent commit:

=> GET objects/08/5bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

(179 bytes of data)

222

CHAPTER 9 GIT INTERNALS

That gives you your next commit object. Grab the tree object:

=> GET objects/cf/da3bf379e4f8dba8717dee55aab78aef7f4daf

(404 - Not Found)

Oops — it looks like that tree object isn’t in loose format on the server, so you get

a 404 response back. There are a couple of reasons for this — the object could be in

an alternate repository, or it could be in a packfile in this repository. Git checks for any

listed alternates first:

=> GET objects/info/http-alternates

(empty file)

If this comes back with a list of alternate URLs, Git checks for loose files and

packfiles there — this is a nice mechanism for projects that are forks of one another

to share objects on disk. However, because no alternates are listed in this case, your

object must be in a packfile. To see what packfiles are available on this server, you need

to get the objects/info/packs file, which contains a listing of them (also generated by

update-server-info):

=> GET objects/info/packs

P pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

There is only one packfile on the server, so your object is obviously in there, but

you’ll check the index file to make sure. This is also useful if you have multiple pack-

files on the server, so you can see which packfile contains the object you need:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.idx

(4k of binary data)

Now that you have the packfile index, you can see if your object is in it — because

the index lists the SHAs of the objects contained in the packfile and the offsets to those

objects. Your object is there, so go ahead and get the whole packfile:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

(13k of binary data)

You have your tree object, so you continue walking your commits. They’re all also

within the packfile you just downloaded, so you don’t have to do any more requests to

your server. Git checks out a working copy of the master branch that was pointed to

by the HEAD reference you downloaded at the beginning.

The entire output of this process looks like this:

$ git clone http://github.com/schacon/simplegit-progit.git

Initialized empty Git repository in /private/tmp/simplegit-progit/.git/

got ca82a6dff817ec66f44342007202690a93763949

walk ca82a6dff817ec66f44342007202690a93763949

got 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Getting alternates list for http://github.com/schacon/simplegit-progit.git

Getting pack list for http://github.com/schacon/simplegit-progit.git

Getting index for pack 816a9b2334da9953e530f27bcac22082a9f5b835

Getting pack 816a9b2334da9953e530f27bcac22082a9f5b835

which contains cfda3bf379e4f8dba8717dee55aab78aef7f4daf

walk 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

walk a11bef06a3f659402fe7563abf99ad00de2209e6

223

PRO GIT SCOTT CHACON

9.6.2 The Smart Protocol

The HTTP method is simple but a bit inefficient. Using smart protocols is a more

common method of transferring data. These protocols have a process on the remote

end that is intelligent about Git — it can read local data and figure out what the client

has or needs and generate custom data for it. There are two sets of processes for

transferring data: a pair for uploading data and a pair for downloading data.

Uploading Data

To upload data to a remote process, Git uses the send-pack and receive-pack pro-

cesses. The send-pack process runs on the client and connects to a receive-pack pro-

cess on the remote side.

For example, say you run git push origin master in your project, and origin is

defined as a URL that uses the SSH protocol. Git fires up the send-pack process, which

initiates a connection over SSH to your server. It tries to run a command on the remote

server via an SSH call that looks something like this:

$ ssh -x git@github.com "git-receive-pack ’schacon/simplegit-progit.git’"

005bca82a6dff817ec66f4437202690a93763949 refs/heads/master report-status delete-refs

003e085bb3bcb608e1e84b2432f8ecbe6306e7e7 refs/heads/topic

0000

The git-receive-pack command immediately responds with one line for each ref-

erence it currently has — in this case, just the master branch and its SHA. The first line

also has a list of the server’s capabilities (here, report-status and delete-refs).

Each line starts with a 4-byte hex value specifying how long the rest of the line is.

Your first line starts with 005b, which is 91 in hex, meaning that 91 bytes remain on

that line. The next line starts with 003e, which is 62, so you read the remaining 62

bytes. The next line is 0000, meaning the server is done with its references listing.

Now that it knows the server’s state, your send-pack process determines what com-

mits it has that the server doesn’t. For each reference that this push will update, the

send-pack process tells the receive-pack process that information. For instance, if

you’re updating the master branch and adding an experiment branch, the send-pack

response may look something like this:

0085ca82a6dff817ec66f44342007202690a93763949 15027957951b64cf874c3557a0f3547bd83b3ff6 refs/heads/master

006700 cdfdb42577e2506715f8cfeacdbabc092bf63e8d refs/heads/experiment

0000

The SHA–1 value of all ’0’s means that nothing was there before — because you’re

adding the experiment reference. If you were deleting a reference, you would see the

opposite: all ’0’s on the right side.

Git sends a line for each reference you’re updating with the old SHA, the new SHA,

and the reference that is being updated. The first line also has the client’s capabilities.

Next, the client uploads a packfile of all the objects the server doesn’t have yet. Finally,

the server responds with a success (or failure) indication:

000Aunpack ok

Downloading Data

When you download data, the fetch-pack and upload-pack processes are involved.

The client initiates a fetch-pack process that connects to an upload-pack process on

the remote side to negotiate what data will be transferred down.

224

CHAPTER 9 GIT INTERNALS

There are different ways to initiate the upload-pack process on the remote reposi-

tory. You can run via SSH in the same manner as the receive-pack process. You can

also initiate the process via the Git daemon, which listens on a server on port 9418

by default. The fetch-pack process sends data that looks like this to the daemon after

connecting:

003fgit-upload-pack schacon/simplegit-progit.git\0host=myserver.com\0

It starts with the 4 bytes specifying how much data is following, then the command

to run followed by a null byte, and then the server’s hostname followed by a final null

byte. The Git daemon checks that the command can be run and that the repository

exists and has public permissions. If everything is cool, it fires up the upload-pack

process and hands off the request to it.

If you’re doing the fetch over SSH, fetch-pack instead runs something like this:

$ ssh -x git@github.com "git-upload-pack ’schacon/simplegit-progit.git’"

In either case, after fetch-pack connects, upload-pack sends back something like

this:

0088ca82a6dff817ec66f44342007202690a93763949 HEAD\0multi_ack thin-pack \

side-band side-band-64k ofs-delta shallow no-progress include-tag

003fca82a6dff817ec66f44342007202690a93763949 refs/heads/master

003e085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 refs/heads/topic

0000

This is very similar to what receive-pack responds with, but the capabilities are

different. In addition, it sends back the HEAD reference so the client knows what to

check out if this is a clone.

At this point, the fetch-pack process looks at what objects it has and responds with

the objects that it needs by sending “want” and then the SHA it wants. It sends all the

objects it already has with “have” and then the SHA. At the end of this list, it writes

“done” to initiate the upload-pack process to begin sending the packfile of the data it

needs:

0054want ca82a6dff817ec66f44342007202690a93763949 ofs-delta

0032have 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

0000

0009done

That is a very basic case of the transfer protocols. In more complex cases, the

client supports multi ack or side-band capabilities; but this example shows you the

basic back and forth used by the smart protocol processes.

9.7 Maintenance and Data Recovery

Occasionally, you may have to do some cleanup — make a repository more compact,

clean up an imported repository, or recover lost work. This section will cover some of

these scenarios.

225

PRO GIT SCOTT CHACON

9.7.1 Maintenance

Occasionally, Git automatically runs a command called “auto gc”. Most of the time,

this command does nothing. However, if there are too many loose objects (objects not

in a packfile) or too many packfiles, Git launches a full-fledged git gc command. The

gc stands for garbage collect, and the command does a number of things: it gathers up

all the loose objects and places them in packfiles, it consolidates packfiles into one big

packfile, and it removes objects that aren’t reachable from any commit and are a few

months old.

You can run auto gc manually as follows:

$ git gc --auto

Again, this generally does nothing. You must have around 7,000 loose objects or

more than 50 packfiles for Git to fire up a real gc command. You can modify these

limits with the gc.auto and gc.autopacklimit config settings, respectively.

The other thing gc will do is pack up your references into a single file. Suppose

your repository contains the following branches and tags:

$ find .git/refs -type f

.git/refs/heads/experiment

.git/refs/heads/master

.git/refs/tags/v1.0

.git/refs/tags/v1.1

If you run git gc , you’ll no longer have these files in the refs directory. Git will

move them for the sake of efficiency into a file named .git/packed-refs that looks

like this:

$ cat .git/packed-refs

pack-refs with: peeled

cac0cab538b970a37ea1e769cbbde608743bc96d refs/heads/experiment

ab1afef80fac8e34258ff41fc1b867c702daa24b refs/heads/master

cac0cab538b970a37ea1e769cbbde608743bc96d refs/tags/v1.0

9585191f37f7b0fb9444f35a9bf50de191beadc2 refs/tags/v1.1

1̂a410efbd13591db07496601ebc7a059dd55cfe9

If you update a reference, Git doesn’t edit this file but instead writes a new file to

refs/heads . To get the appropriate SHA for a given reference, Git checks for that refer-

ence in the refs directory and then checks the packed-refs file as a fallback. However,

if you can’t find a reference in the refs directory, it’s probably in your packed-refs

file.

Notice the last line of the file, which begins with a .̂ This means the tag directly

above is an annotated tag and that line is the commit that the annotated tag points to.

9.7.2 Data Recovery

At some point in your Git journey, you may accidentally lose a commit. Generally, this

happens because you force-delete a branch that had work on it, and it turns out you

wanted the branch after all; or you hard-reset a branch, thus abandoning commits that

you wanted something from. Assuming this happens, how can you get your commits

back?

226

CHAPTER 9 GIT INTERNALS

Here’s an example that hard-resets the master branch in your test repository to

an older commit and then recovers the lost commits. First, let’s review where your

repository is at this point:

$ git log --pretty=oneline

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, move the master branch back to the middle commit:

$ git reset --hard 1a410efbd13591db07496601ebc7a059dd55cfe9

HEAD is now at 1a410ef third commit

$ git log --pretty=oneline

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You’ve effectively lost the top two commits — you have no branch from which

those commits are reachable. You need to find the latest commit SHA and then add

a branch that points to it. The trick is finding that latest commit SHA — it’s not like

you’ve memorized it, right?

Often, the quickest way is to use a tool called git reflog . As you’re working,

Git silently records what your HEAD is every time you change it. Each time you

commit or change branches, the reflog is updated. The reflog is also updated by the git

update-ref command, which is another reason to use it instead of just writing the SHA

value to your ref files, as we covered in the “Git References” section of this chapter

earlier. You can see where you’ve been at any time by running git reflog :

$ git reflog

1a410ef HEAD@{0}: 1a410efbd13591db07496601ebc7a059dd55cfe9: updating HEAD

ab1afef HEAD@{1}: ab1afef80fac8e34258ff41fc1b867c702daa24b: updating HEAD

Here we can see the two commits that we have had checked out, however there is

not much information here. To see the same information in a much more useful way,

we can run git log -g , which will give you a normal log output for your reflog.

$ git log -g

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Reflog: HEAD@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:22:37 2009 -0700

third commit

commit ab1afef80fac8e34258ff41fc1b867c702daa24b

Reflog: HEAD@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

227

PRO GIT SCOTT CHACON

Date: Fri May 22 18:15:24 2009 -0700

modified repo a bit

It looks like the bottom commit is the one you lost, so you can recover it by

creating a new branch at that commit. For example, you can start a branch named

recover-branch at that commit (ab1afef):

$ git branch recover-branch ab1afef

$ git log --pretty=oneline recover-branch

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Cool — now you have a branch named recover-branch that is where your master

branch used to be, making the first two commits reachable again. Next, suppose your

loss was for some reason not in the reflog — you can simulate that by removing

recover-branch and deleting the reflog. Now the first two commits aren’t reachable

by anything:

$ git branch D recover-branch

$ rm -Rf .git/logs/

Because the reflog data is kept in the .git/logs/ directory, you effectively have no

reflog. How can you recover that commit at this point? One way is to use the git fsck

utility, which checks your database for integrity. If you run it with the --full option,

it shows you all objects that aren’t pointed to by another object:

$ git fsck --full

dangling blob d670460b4b4aece5915caf5c68d12f560a9fe3e4

dangling commit ab1afef80fac8e34258ff41fc1b867c702daa24b

dangling tree aea790b9a58f6cf6f2804eeac9f0abbe9631e4c9

dangling blob 7108f7ecb345ee9d0084193f147cdad4d2998293

In this case, you can see your missing commit after the dangling commit. You can

recover it the same way, by adding a branch that points to that SHA.

9.7.3 Removing Objects

There are a lot of great things about Git, but one feature that can cause issues is the fact

that a git clone downloads the entire history of the project, including every version

of every file. This is fine if the whole thing is source code, because Git is highly

optimized to compress that data efficiently. However, if someone at any point in the

history of your project added a single huge file, every clone for all time will be forced

to download that large file, even if it was removed from the project in the very next

commit. Because it’s reachable from the history, it will always be there.

This can be a huge problem when you’re converting Subversion or Perforce repos-

itories into Git. Because you don’t download the whole history in those systems, this

type of addition carries few consequences. If you did an import from another system

228

CHAPTER 9 GIT INTERNALS

or otherwise find that your repository is much larger than it should be, here is how you

can find and remove large objects.

Be warned: this technique is destructive to your commit history. It rewrites every

commit object downstream from the earliest tree you have to modify to remove a large

file reference. If you do this immediately after an import, before anyone has started to

base work on the commit, you’re fine — otherwise, you have to notify all contributors

that they must rebase their work onto your new commits.

To demonstrate, you’ll add a large file into your test repository, remove it in the

next commit, find it, and remove it permanently from the repository. First, add a large

object to your history:

$ curl http://kernel.org/pub/software/scm/git/git-1.6.3.1.tar.bz2 > git.tbz2

$ git add git.tbz2

$ git commit -am ’added git tarball’

[master 6df7640] added git tarball

1 files changed, 0 insertions(+), 0 deletions(-)

create mode 100644 git.tbz2

Oops — you didn’t want to add a huge tarball to your project. Better get rid of it:

$ git rm git.tbz2

rm ’git.tbz2’

$ git commit -m ’oops - removed large tarball’

[master da3f30d] oops - removed large tarball

1 files changed, 0 insertions(+), 0 deletions(-)

delete mode 100644 git.tbz2

Now, gc your database and see how much space you’re using:

$ git gc

Counting objects: 21, done.

Delta compression using 2 threads.

Compressing objects: 100% (16/16), done.

Writing objects: 100% (21/21), done.

Total 21 (delta 3), reused 15 (delta 1)

You can run the count-objects command to quickly see how much space you’re

using:

$ git count-objects -v

count: 4

size: 16

in-pack: 21

packs: 1

size-pack: 2016

prune-packable: 0

garbage: 0

The size-pack entry is the size of your packfiles in kilobytes, so you’re using 2MB.

Before the last commit, you were using closer to 2K — clearly, removing the file from

the previous commit didn’t remove it from your history. Every time anyone clones this

repository, they will have to clone all 2MB just to get this tiny project, because you

accidentally added a big file. Let’s get rid of it.

229

PRO GIT SCOTT CHACON

First you have to find it. In this case, you already know what file it is. But suppose

you didn’t; how would you identify what file or files were taking up so much space?

If you run git gc , all the objects are in a packfile; you can identify the big objects by

running another plumbing command called git verify-pack and sorting on the third

field in the output, which is file size. You can also pipe it through the tail command

because you’re only interested in the last few largest files:

$ git verify-pack -v .git/objects/pack/pack-3f8c0...bb.idx | sort -k 3 -n | tail -3

e3f094f522629ae358806b17daf78246c27c007b blob 1486 734 4667

05408d195263d853f09dca71d55116663690c27c blob 12908 3478 1189

7a9eb2fba2b1811321254ac360970fc169ba2330 blob 2056716 2056872 5401

The big object is at the bottom: 2MB. To find out what file it is, you’ll use the

rev-list command, which you used briefly in Chapter 7. If you pass --objects to

rev-list , it lists all the commit SHAs and also the blob SHAs with the file paths

associated with them. You can use this to find your blob’s name:

$ git rev-list --objects --all | grep 7a9eb2fb

7a9eb2fba2b1811321254ac360970fc169ba2330 git.tbz2

Now, you need to remove this file from all trees in your past. You can easily see

what commits modified this file:

$ git log --pretty=oneline -- git.tbz2

da3f30d019005479c99eb4c3406225613985a1db oops - removed large tarball

6df764092f3e7c8f5f94cbe08ee5cf42e92a0289 added git tarball

You must rewrite all the commits downstream from 6df76 to fully remove this file

from your Git history. To do so, you use filter-branch , which you used in Chapter 6:

$ git filter-branch --index-filter \

’git rm --cached --ignore-unmatch git.tbz2’ -- 6df7640̂ ..

Rewrite 6df764092f3e7c8f5f94cbe08ee5cf42e92a0289 (1/2)rm ’git.tbz2’

Rewrite da3f30d019005479c99eb4c3406225613985a1db (2/2)

Ref ’refs/heads/master’ was rewritten

The --index-filter option is similar to the --tree-filter option used in Chapter

6, except that instead of passing a command that modifies files checked out on disk,

you’re modifying your staging area or index each time. Rather than remove a specific

file with something like rm file , you have to remove it with git rm --cached — you

must remove it from the index, not from disk. The reason to do it this way is speed

— because Git doesn’t have to check out each revision to disk before running your

filter, the process can be much, much faster. You can accomplish the same task with

--tree-filter if you want. The --ignore-unmatch option to git rm tells it not to error

out if the pattern you’re trying to remove isn’t there. Finally, you ask filter-branch to

rewrite your history only from the 6df7640 commit up, because you know that is where

this problem started. Otherwise, it will start from the beginning and will unnecessarily

take longer.

Your history no longer contains a reference to that file. However, your reflog and a

new set of refs that Git added when you did the filter-branch under .git/refs/original

still do, so you have to remove them and then repack the database. You need to get rid

of anything that has a pointer to those old commits before you repack:

230

CHAPTER 9 GIT INTERNALS

$ rm -Rf .git/refs/original

$ rm -Rf .git/logs/

$ git gc

Counting objects: 19, done.

Delta compression using 2 threads.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (19/19), done.

Total 19 (delta 3), reused 16 (delta 1)

Let’s see how much space you saved.

$ git count-objects -v

count: 8

size: 2040

in-pack: 19

packs: 1

size-pack: 7

prune-packable: 0

garbage: 0

The packed repository size is down to 7K, which is much better than 2MB. You can

see from the size value that the big object is still in your loose objects, so it’s not gone;

but it won’t be transferred on a push or subsequent clone, which is what is important.

If you really wanted to, you could remove the object completely by running git prune

--expire .

9.8 Summary

You should have a pretty good understanding of what Git does in the background and,

to some degree, how it’s implemented. This chapter has covered a number of plumbing

commands— commands that are lower level and simpler than the porcelain commands

you’ve learned about in the rest of the book. Understanding how Git works at a lower

level should make it easier to understand why it’s doing what it’s doing and also to

write your own tools and helping scripts to make your specific workflow work for you.

Git as a content-addressable filesystem is a very powerful tool that you can easily

use as more than just a VCS. I hope you can use your newfound knowledge of Git

internals to implement your own cool application of this technology and feel more

comfortable using Git in more advanced ways.

231

PRO GIT SCOTT CHACON

For example, to browse the history of the project, Git doesn’t need to go out to the

server to get the history and display it for you—it simply reads it directly from your

local database. This means you see the project history almost instantly. If you want to

see the changes introduced between the current version of a file and the file a month

ago, Git can look up the file a month ago and do a local difference calculation, instead

of having to either ask a remote server to do it or pull an older version of the file from

the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If

you get on an airplane or a train and want to do a little work, you can commit happily

until you get to a network connection to upload. If you go home and can’t get your

VPN client working properly, you can still work. In many other systems, doing so is

either impossible or painful. In Perforce, for example, you can’t do much when you

aren’t connected to the server; and in Subversion and CVS, you can edit files, but you

can’t commit changes to your database (because your database is offline). This may

not seem like a huge deal, but you may be surprised what a big difference it can make.

1.3.3 Git Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that

checksum. This means it’s impossible to change the contents of any file or directory

without Git knowing about it. This functionality is built into Git at the lowest levels and

is integral to its philosophy. You can’t lose information in transit or get file corruption

without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA–1 hash. This

is a 40-character string composed of hexadecimal characters (09 and af) and calculated

based on the contents of a file or directory structure in Git. A SHA–1 hash looks

something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so

much. In fact, Git stores everything not by file name but in the Git database addressable

by the hash value of its contents.

1.3.4 Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It

is very difficult to get the system to do anything that is not undoable or to make it

erase data in any way. As in any VCS, you can lose or mess up changes you haven’t

committed yet; but after you commit a snapshot into Git, it is very difficult to lose,

especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger

of severely screwing things up. For a more in-depth look at how Git stores its data and

how you can recover data that seems lost, see “Under the Covers” in Chapter 9.

1.3.5 The Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest

of your learning process to go smoothly. Git has three main states that your files can

6

CHAPTER 1 GETTING STARTED

reside in: committed, modified, and staged. Committed means that the data is safely

stored in your local database. Modified means that you have changed the file but have

not committed it to your database yet. Staged means that you have marked a modified

file in its current version to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the

working directory, and the staging area.

Figure 1.6: Working directory, staging area, and git directory

The Git directory is where Git stores the metadata and object database for your

project. This is the most important part of Git, and it is what is copied when you clone

a repository from another computer.

The working directory is a single checkout of one version of the project. These files

are pulled out of the compressed database in the Git directory and placed on disk for

you to use or modify.

The staging area is a simple file, generally contained in your Git directory, that

stores information about what will go into your next commit. It’s sometimes referred

to as the index, but it’s becoming standard to refer to it as the staging area.

The basic Git workflow goes something like this:

1. You modify files in your working directory.

2. You stage the files, adding snapshots of them to your staging area.

3. You do a commit, which takes the files as they are in the staging area and stores

that snapshot permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed

since it was checked out but has not been staged, it is modified. In Chapter 2, you’ll

learn more about these states and how you can either take advantage of them or skip

the staged part entirely.

7

PRO GIT SCOTT CHACON

1.4 Installing Git

Let’s get into using some Git. First things first—you have to install it. You can get it a

number of ways; the two major ones are to install it from source or to install an existing

package for your platform.

1.4.1 Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most

recent version. Each version of Git tends to include useful UI enhancements, so getting

the latest version is often the best route if you feel comfortable compiling software from

source. It is also the case that many Linux distributions contain very old packages; so

unless you’re on a very up-to-date distro or are using backports, installing from source

may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl,

zlib, openssl, expat, and libiconv. For example, if you’re on a system that has yum

(such as Fedora) or apt-get (such as a Debian based system), you can use one of these

commands to install all of the dependencies:

$ yum install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

$ apt-get install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

When you have all the necessary dependencies, you can go ahead and grab the

latest snapshot from the Git web site:

http://git-scm.com/download

Then, compile and install:

$ tar -zxf git-1.6.0.5.tar.gz

$ cd git-1.6.0.5

$ make prefix=/usr/local all

$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

1.4.2 Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through

the basic package-management tool that comes with your distribution. If you’re on

Fedora, you can use yum:

$ yum install git-core

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git-core

8

CHAPTER 1 GETTING STARTED

1.4.3 Installing on Mac

There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git

installer, which you can download from the Google Code page (see Figure 1.7):

http://code.google.com/p/git-osx-installer

Figure 1.7: Git OS X installer

The other major way is to install Git via MacPorts (http://www.macports.org). If

you have MacPorts installed, install Git via

$ sudo port install git-core +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in

case you ever have to use Git with Subversion repositories (see Chapter 8).

1.4.4 Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier

installation procedures. Simply download the installer exe file from the Google Code

page, and run it:

http://code.google.com/p/msysgit

After it’s installed, you have both a command-line version (including an SSH client

that will come in handy later) and the standard GUI.

9

PRO GIT SCOTT CHACON

1.5 First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize

your Git environment. You should have to do these things only once; they’ll stick

around between upgrades. You can also change them at any time by running through

the commands again.

Git comes with a tool called git config that lets you get and set configuration vari-

ables that control all aspects of how Git looks and operates. These variables can be

stored in three different places:

• /etc/gitconfig file: Contains values for every user on the system and all their

repositories. If you pass the option--system to git config , it reads and writes

from this file specifically.

• /.gitconfig file: Specific to your user. You can make Git read and write to this

file specifically by passing the --global option.

• config file in the git directory (that is, .git/config) of whatever repository you’re

currently using: Specific to that single repository. Each level overrides values in

the previous level, so values in .git/config trump those in /etc/gitconfig .

OnWindows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Documents

and Settings\$USER for most people). It also still looks for /etc/gitconfig, although it’s

relative to the MSys root, which is wherever you decide to install Git on your Windows

system when you run the installer.

1.5.1 Your Identity

The first thing you should do when you install Git is to set your user name and e-mail

address. This is important because every Git commit uses this information, and it’s

immutably baked into the commits you pass around:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then

Git will always use that information for anything you do on that system. If you want to

override this with a different name or e-mail address for specific projects, you can run

the command without the --global option when you’re in that project.

1.5.2 Your Editor

Now that your identity is set up, you can configure the default text editor that will be

used when Git needs you to type in a message. By default, Git uses your system’s

default editor, which is generally Vi or Vim. If you want to use a different text editor,

such as Emacs, you can do the following:

$ git config --global core.editor emacs

10

CHAPTER 1 GETTING STARTED

1.5.3 Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve

merge conflicts. Say you want to use vimdiff:

$ git config --global merge.tool vimdiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and

opendiff as valid merge tools. You can also set up a custom tool; see Chapter 7 for

more information about doing that.

1.5.4 Checking Your Settings

If you want to check your settings, you can use the git config --list command to

list all the settings Git can find at that point:

$ git config --list

user.name=Scott Chacon

user.email=schacon@gmail.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different

files (/etc/gitconfig and /.gitconfig , for example). In this case, Git uses the last

value for each unique key it sees.

You can also check what Git thinks a specific key’s value is by typing git config

key:

$ git config user.name

Scott Chacon

1.6 Getting Help

If you ever need help while using Git, there are three ways to get the manual page

(manpage) help for any of the Git commands:

$ git help <verb>

$ git <verb> --help

$ man git-<verb>

For example, you can get the manpage help for the config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If

the manpages and this book aren’t enough and you need in-person help, you can try the

#git or #github channel on the Freenode IRC server (irc.freenode.net). These channels

are regularly filled with hundreds of people who are all very knowledgeable about Git

and are often willing to help.

11

PRO GIT SCOTT CHACON

1.7 Summary

You should have a basic understanding of what Git is and how it’s different from the

CVCS you may have been using. You should also now have a working version of Git

on your system that’s set up with your personal identity. It’s now time to learn some

Git basics.

12

Chapter 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers

every basic command you need to do the vast majority of the things you’ll eventually

spend your time doing with Git. By the end of the chapter, you should be able to

configure and initialize a repository, begin and stop tracking files, and stage and commit

changes. We’ll also show you how to set up Git to ignore certain files and file patterns,

how to undo mistakes quickly and easily, how to browse the history of your project and

view changes between commits, and how to push and pull from remote repositories.

2.1 Getting a Git Repository

You can get a Git project using two main approaches. The first takes an existing project

or directory and imports it into Git. The second clones an existing Git repository from

another server.

2.1.1 Initializing a Repository in an Existing Directory

If you’re starting to track an existing project in Git, you need to go to the project’s

directory and type

$ git init

This creates a new subdirectory named .git that contains all of your necessary repos-

itory files — a Git repository skeleton. At this point, nothing in your project is tracked

yet. (See Chapter 9 for more information about exactly what files are contained in the

.git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty direc-

tory), you should probably begin tracking those files and do an initial commit. You can

accomplish that with a few git add commands that specify the files you want to track,

followed by a commit:

$ git add *.c

$ git add README

$ git commit m ’initial project version’

We’ll go over what these commands do in just a minute. At this point, you have a

Git repository with tracked files and an initial commit.

13

PRO GIT SCOTT CHACON

2.1.2 Cloning an Existing Repository

If you want to get a copy of an existing Git repository — for example, a project you’d

like to contribute to — the command you need is git clone. If you’re familiar with

other VCS systems such as Subversion, you’ll notice that the command is clone and

not checkout. This is an important distinction — Git receives a copy of nearly all data

that the server has. Every version of every file for the history of the project is pulled

down when you run git clone . In fact, if your server disk gets corrupted, you can

use any of the clones on any client to set the server back to the state it was in when it

was cloned (you may lose some server-side hooks and such, but all the versioned data

would be there—see Chapter 4 for more details).

You clone a repository with git clone [url] . For example, if you want to clone

the Ruby Git library called Grit, you can do so like this:

$ git clone git://github.com/schacon/grit.git

That creates a directory named “grit”, initializes a .git directory inside it, pulls

down all the data for that repository, and checks out a working copy of the latest ver-

sion. If you go into the new grit directory, you’ll see the project files in there, ready

to be worked on or used. If you want to clone the repository into a directory named

something other than grit, you can specify that as the next command-line option:

$ git clone git://github.com/schacon/grit.git mygrit

That command does the same thing as the previous one, but the target directory is

called mygrit.

Git has a number of different transfer protocols you can use. The previous example

uses the git:// protocol, but you may also see http(s):// or user@server:/path.git ,

which uses the SSH transfer protocol. Chapter 4 will introduce all of the available

options the server can set up to access your Git repository and the pros and cons of

each.

2.2 Recording Changes to the Repository

You have a bona fide Git repository and a checkout or working copy of the files for that

project. You need to make some changes and commit snapshots of those changes into

your repository each time the project reaches a state you want to record.

Remember that each file in your working directory can be in one of two states:

tracked or untracked. Tracked files are files that were in the last snapshot; they can

be unmodified, modified, or staged. Untracked files are everything else - any files in

your working directory that were not in your last snapshot and are not in your staging

area. When you first clone a repository, all of your files will be tracked and unmodified

because you just checked them out and haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since

your last commit. You stage these modified files and then commit all your staged

changes, and the cycle repeats. This lifecycle is illustrated in Figure 2.1.

14

CHAPTER 2 GIT BASICS

Figure 2.1: The lifecycle of the status of your files

2.2.1 Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status

command. If you run this command directly after a clone, you should see something

like this:

$ git status

On branch master

nothing to commit (working directory clean)

This means you have a clean working directory—in other words, there are no

tracked and modified files. Git also doesn’t see any untracked files, or they would

be listed here. Finally, the command tells you which branch you’re on. For now, that

is always master, which is the default; you won’t worry about it here. The next chapter

will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file

didn’t exist before, and you run git status , you see your untracked file like so:

$ vim README

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Un-

tracked files” heading in your status output. Untracked basically means that Git sees

a file you didn’t have in the previous snapshot (commit); Git won’t start including it

in your commit snapshots until you explicitly tell it to do so. It does this so you don’t

accidentally begin including generated binary files or other files that you did not mean

to include. You do want to start including README, so let’s start tracking the file.

15

PRO GIT SCOTT CHACON

2.2.2 Tracking New Files

In order to begin tracking a new file, you use the command git add . To begin tracking

the README file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now

tracked and staged:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

You can tell that it’s staged because it’s under the “Changes to be committed” head-

ing. If you commit at this point, the version of the file at the time you ran git add is

what will be in the historical snapshot. You may recall that when you ran git init earlier,

you then ran git add (files) — that was to begin tracking files in your directory. The git

add command takes a path name for either a file or a directory; if it’s a directory, the

command adds all the files in that directory recursively.

2.2.3 Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file

called benchmarks.rb and then run your status command again, you get something

that looks like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

The benchmarks.rb file appears under a section named “Changed but not updated”

— which means that a file that is tracked has been modified in the working directory

but not yet staged. To stage it, you run the git add command (it’s a multipurpose

command— you use it to begin tracking new files, to stage files, and to do other things

like marking merge-conflicted files as resolved). Let’s run git add now to stage the

benchmarks.rb file, and then run git status again:

16

CHAPTER 2 GIT BASICS

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Both files are staged and will go into your next commit. At this point, suppose you

remember one little change that you want to make in benchmarks.rb before you commit

it. You open it again and make that change, and you’re ready to commit. However, let’s

run git status one more time:

$ vim benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

What the heck? Now benchmarks.rb is listed as both staged and unstaged. How is

that possible? It turns out that Git stages a file exactly as it is when you run the git add

command. If you commit now, the version of benchmarks.rb as it was when you last

ran the git add command is how it will go into the commit, not the version of the file as

it looks in your working directory when you run git commit. If you modify a file after

you run git add , you have to run git add again to stage the latest version of the file:

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

2.2.4 Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add or even

show you as being untracked. These are generally automatically generated files such

as log files or files produced by your build system. In such cases, you can create a file

listing patterns to match them named .gitignore. Here is an example .gitignore file:

17

PRO GIT SCOTT CHACON

$ cat .gitignore

*.[oa]

*̃

The first line tells Git to ignore any files ending in .o or .a — object and archive

files that may be the product of building your code. The second line tells Git to ignore

all files that end with a tilde (), which is used by many text editors such as Emacs to

mark temporary files. You may also include a log, tmp, or pid directory; automatically

generated documentation; and so on. Setting up a .gitignore file before you get going is

generally a good idea so you don’t accidentally commit files that you really don’t want

in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

• Blank lines or lines starting with # are ignored.

• Standard glob patterns work.

• You can end patterns with a forward slash (/) to specify a directory.

• You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*)

matches zero or more characters; [abc] matches any character inside the brackets (in

this case a, b, or c); a question mark (?) matches a single character; and brackets en-

closing characters seperated by a hyphen([0-9]) matches any character between them

(in this case 0 through 9) .

Here is another example .gitignore file:

a comment this is ignored

*.a # no .a files

!lib.a # but do track lib.a, even though you’re ignoring .a files above

/TODO # only ignore the root TODO file, not subdir/TODO

build/ # ignore all files in the build/ directory

doc/*.txt # ignore doc/notes.txt, but not doc/server/arch.txt

2.2.5 Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you — you want to know exactly what

you changed, not just which files were changed— you can use the git diff command.

We’ll cover git diff in more detail later; but you’ll probably use it most often to

answer these two questions: What have you changed but not yet staged? And what

have you staged that you are about to commit? Although git status answers those

questions very generally, git diff shows you the exact lines added and removed —

the patch, as it were.

Let’s say you edit and stage the README file again and then edit the bench-

marks.rb file without staging it. If you run your status command, you once again

see something like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

18

CHAPTER 2 GIT BASICS

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

To see what you’ve changed but not yet staged, type git diff with no other argu-

ments:

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..da65585 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

That command compares what is in your working directory with what is in your

staging area. The result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you

can use git diff -cached . (In Git versions 1.6.1 and later, you can also use git diff

-staged , which may be easier to remember.) This command compares your staged

changes to your last commit:

$ git diff --cached

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README2

@@ -0,0 +1,5 @@

+grit

+ by Tom Preston-Werner, Chris Wanstrath

+ http://github.com/mojombo/grit

+

+Grit is a Ruby library for extracting information from a Git repository

It’s important to note that git diff by itself doesn’t show all changes made since

your last commit — only changes that are still unstaged. This can be confusing, be-

cause if you’ve staged all of your changes, git diff will give you no output.

19

PRO GIT SCOTT CHACON

For another example, if you stage the benchmarks.rb file and then edit it, you can

use git diff to see the changes in the file that are staged and the changes that are

unstaged:

$ git add benchmarks.rb

$ echo ’# test line’ >> benchmarks.rb

$ git status

On branch master

#

Changes to be committed:

#

modified: benchmarks.rb

#

Changed but not updated:

#

modified: benchmarks.rb

#

Now you can use git diff to see what is still unstaged

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index e445e28..86b2f7c 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -127,3 +127,4 @@ end

main()

##pp Grit::GitRuby.cache_client.stats

+# test line

and git diff --cached to see what youve staged so far:

$ git diff --cached

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..e445e28 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

2.2.6 Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes.

Remember that anything that is still unstaged — any files you have created or modified

that you haven’t run git add on since you edited them — won’t go into this commit.

20

CHAPTER 2 GIT BASICS

They will stay as modified files on your disk. In this case, the last time you ran git

status , you saw that everything was staged, so you’re ready to commit your changes.

The simplest way to commit is to type git commit :

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s $EDITOR envi-

ronment variable — usually vim or emacs, although you can configure it with whatever

you want using the git config --global core.editor command as you saw in Chap-

ter 1).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

˜

˜

˜

".git/COMMIT_EDITMSG" 10L, 283C

You can see that the default commit message contains the latest output of the git

status command commented out and one empty line on top. You can remove these

comments and type your commit message, or you can leave them there to help you

remember what you’re committing. (For an even more explicit reminder of what you’ve

modified, you can pass the -v option to git commit . Doing so also puts the diff of your

change in the editor so you can see exactly what you did.) When you exit the editor, Git

creates your commit with that commit message (with the comments and diff stripped

out).

Alternatively, you can type your commit message inline with the commit command

by specifying it after a -m flag, like this:

$ git commit -m "Story 182: Fix benchmarks for speed"

[master]: created 463dc4f: "Fix benchmarks for speed"

2 files changed, 3 insertions(+), 0 deletions(-)

create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given

you some output about itself: which branch you committed to (master), what SHA–1

checksum the commit has (463dc4f), how many files were changed, and statistics about

lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging area.

Anything you didn’t stage is still sitting there modified; you can do another commit to

add it to your history. Every time you perform a commit, you’re recording a snapshot

of your project that you can revert to or compare to later.

21

PRO GIT SCOTT CHACON

2.2.7 Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them,

the staging area is sometimes a bit more complex than you need in your workflow. If

you want to skip the staging area, Git provides a simple shortcut. Providing the -a

option to the git commit command makes Git automatically stage every file that is

already tracked before doing the commit, letting you skip the git add part:

$ git status

On branch master

#

Changed but not updated:

#

modified: benchmarks.rb

#

$ git commit -a -m ’added new benchmarks’

[master 83e38c7] added new benchmarks

1 files changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the benchmarks.rb file in this case

before you commit.

2.2.8 Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accu-

rately, remove it from your staging area) and then commit. The git rm command does

that and also removes the file from your working directory so you don’t see it as an

untracked file next time around.

If you simply remove the file from your working directory, it shows up under the

“Changed but not updated” (that is, unstaged) area of your git status output:

$ rm grit.gemspec

$ git status

On branch master

#

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

#

deleted: grit.gemspec

#

Then, if you run git rm , it stages the file’s removal:

$ git rm grit.gemspec

rm ’grit.gemspec’

$ git status

On branch master

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: grit.gemspec

#

22

CHAPTER 2 GIT BASICS

The next time you commit, the file will be gone and no longer tracked. If you

modified the file and added it to the index already, you must force the removal with the

-f option. This is a safety feature to prevent accidental removal of data that hasn’t yet

been recorded in a snapshot and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree

but remove it from your staging area. In other words, you may want to keep the file

on your hard drive but not have Git track it anymore. This is particularly useful if you

forgot to add something to your .gitignore file and accidentally added it, like a large

log file or a bunch of .a compiled files. To do this, use the --cached option:

$ git rm --cached readme.txt

You can pass files, directories, and file-glob patterns to the git rm command. That

means you can do things such as

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its

own filename expansion in addition to your shell’s filename expansion. This command

removes all files that have the .log extension in the log/ directory. Or, you can do

something like this:

$ git rm *̃

This command removes all files that end with .

2.2.9 Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you

rename a file in Git, no metadata is stored in Git that tells it you renamed the file.

However, Git is pretty smart about figuring that out after the fact — we’ll deal with

detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in

Git, you can run something like

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status,

you’ll see that Git considers it a renamed file:

$ git mv README.txt README

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README.txt -> README

#

However, this is equivalent to running something like this:

23

PRO GIT SCOTT CHACON

$ mv README.txt README

$ git rm README.txt

$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file

that way or with the mv command. The only real difference is that mv is one command

instead of three — it’s a convenience function. More important, you can use any tool

you like to rename a file, and address the add/rm later, before you commit.

2.3 Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an

existing commit history, you’ll probably want to look back to see what has happened.

The most basic and powerful tool to do this is the git log command.

These examples use a very simple project called simplegit that I often use for

demonstrations. To get the project, run

git clone git://github.com/schacon/simplegit-progit.git

When you run git log in this project, you should get output that looks something

like this:

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

By default, with no arguments, git log lists the commits made in that repository

in reverse chronological order. That is, the most recent commits show up first. As you

can see, this command lists each commit with its SHA–1 checksum, the author’s name

and e-mail, the date written, and the commit message.

A huge number and variety of options to the git log command are available to

show you exactly what you’re looking for. Here, we’ll show you some of the most-

used options.

One of the more helpful options is -p, which shows the diff introduced in each

commit. You can also use -2, which limits the output to only the last two entries:

24

CHAPTER 2 GIT BASICS

$ git log p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require ’rake/gempackagetask’

spec = Gem::Specification.new do |s|

- s.version = "0.1.0"

+ s.version = "0.1.1"

s.author = "Scott Chacon"

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

end

end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

\ No newline at end of file

This option displays the same information but with a diff directly following each

entry. This is very helpful for code review or to quickly browse what happened during

a series of commits that a collaborator has added. You can also use a series of summa-

rizing options with git log . For example, if you want to see some abbreviated stats

for each commit, you can use the --stat option:

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

Rakefile | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

25

PRO GIT SCOTT CHACON

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

lib/simplegit.rb | 5 -----

1 files changed, 0 insertions(+), 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

README | 6 ++++++

Rakefile | 23 +++++++++++++++++++++++

lib/simplegit.rb | 25 +++++++++++++++++++++++++

3 files changed, 54 insertions(+), 0 deletions(-)

As you can see, the --stat option prints below each commit entry a list of modified

files, how many files were changed, and how many lines in those files were added

and removed. It also puts a summary of the information at the end. Another really

useful option is --pretty . This option changes the log output to formats other than the

default. A few prebuilt options are available for you to use. The oneline option prints

each commit on a single line, which is useful if you’re looking at a lot of commits.

In addition, the short , full , and fuller options show the output in roughly the same

format but with less or more information, respectively:

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the verison number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test code

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

The most interesting option is format , which allows you to specify your own log

output format. This is especially useful when you’re generating output for machine

parsing — because you specify the format explicitly, you know it won’t change with

updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 11 months ago : changed the verison number

085bb3b - Scott Chacon, 11 months ago : removed unnecessary test code

a11bef0 - Scott Chacon, 11 months ago : first commit

Table 2.1 lists some of the more useful options that format takes.

You may be wondering what the difference is between author and committer. The

author is the person who originally wrote the work, whereas the committer is the person

who last applied the work. So, if you send in a patch to a project and one of the core

members applies the patch, both of you get credit — you as the author and the core

member as the committer. We’ll cover this distinction a bit more in Chapter 5.

26

CHAPTER 2 GIT BASICS

Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author e-mail

%ad Author date (format respects the date= option)

%ar Author date, relative

%cn Committer name

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

The oneline and format options are particularly useful with another log option

called --graph . This option adds a nice little ASCII graph showing your branch and

merge history, which we can see our copy of the Grit project repository:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch ’master’ of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch ’defunkt’ into local

Those are only some simple output-formatting options to git log — there are many

more. Table 2.2 lists the options we’ve covered so far and some other common format-

ting options that may be useful, along with how they change the output of the log

command.

2.3.1 Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting op-

tions — that is, options that let you show only a subset of commits. You’ve seen one

such option already — the -2 option, which show only the last two commits. In fact,

you can do -<n> , where n is any integer to show the last n commits. In reality, you’re

unlikely to use that often, because Git by default pipes all output through a pager so

you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful.

For example, this command gets the list of commits made in the last two weeks:

27

PRO GIT SCOTT CHACON

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the

–stat command.

--name-only Show the list of files modified after the commit informa-

tion.

--name-status Show the list of files affected with added/modified/deleted

information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum

instead of all 40.

--relative-date Display the date in a relative format (for example, “2 weeks

ago”) instead of using the full date format.

--graph Display an ASCII graph of the branch and merge history

beside the log output.

--pretty Show commits in an alternate format. Options include one-

line, short, full, fuller, and format (where you specify your

own format).

$ git log --since=2.weeks

This command works with lots of formats— you can specify a specific date (“2008–

01–15”) or a relative date such as “2 years 1 day 3 minutes ago”.

You can also filter the list to commits that match some search criteria. The --author

option allows you to filter on a specific author, and the --grep option lets you search

for keywords in the commit messages. (Note that if you want to specify both author

and grep options, you have to add --all-match or the command will match commits

with either.)

The last really useful option to pass to git log as a filter is a path. If you specify a

directory or file name, you can limit the log output to commits that introduced a change

to those files. This is always the last option and is generally preceded by double dashes

(--) to separate the paths from the options.

In Table 2.3 we’ll list these and a few other common options for your reference.

Option Description

-(n) Show only the last n commits

--since, --after Limit the commits to those made after the specified date.

--until, --before Limit the commits to those made before the specified date.

--author Only show commits in which the author entry matches the

specified string.

--committer Only show commits in which the committer entry matches

the specified string.

For example, if you want to see which commits modifying test files in the Git source

code history were committed by Junio Hamano and were not merges in the month of

October 2008, you can run something like this:

28

CHAPTER 2 GIT BASICS

$ git log --pretty="%h:%s" --author=gitster --since="2008-10-01" \

--before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attribute

acd3b9e - Enhance hold_lock_file_for_{update,append}()

f563754 - demonstrate breakage of detached checkout wi

d1a43f2 - reset --hard/read-tree --reset -u: remove un

51a94af - Fix "checkout --track -b newbranch" on detac

b0ad11e - pull: allow "git pull origin $something:$cur

Of the nearly 20,000 commits in the Git source code history, this command shows

the 6 that match those criteria.

2.3.2 Using a GUI to Visualize History

If you like to use a more graphical tool to visualize your commit history, you may

want to take a look at a Tcl/Tk program called gitk that is distributed with Git. Gitk

is basically a visual git log tool, and it accepts nearly all the filtering options that

git log does. If you type gitk on the command line in your project, you should see

something like Figure 2.2.

Figure 2.2: The gitk history visualizer

You can see the commit history in the top half of the window along with a nice an-

cestry graph. The diff viewer in the bottom half of the window shows you the changes

introduced at any commit you click.

29

PRO GIT SCOTT CHACON

2.4 Undoing Things

At any stage, you may want to undo something. Here, we’ll review a few basic tools for

undoing changes that you’ve made. Be careful, because you can’t always undo some

of these undos. This is one of the few areas in Git where you may lose some work if

you do it wrong.

2.4.1 Changing Your Last Commit

One of the common undos takes place when you commit too early and possibly forget

to add some files, or you mess up your commit message. If you want to try that commit

again, you can run commit with the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If you’ve have

made no changes since your last commit (for instance, you run this command it imme-

diately after your previous commit), then your snapshot will look exactly the same and

all you’ll change is your commit message.

The same commit-message editor fires up, but it already contains the message of

your previous commit. You can edit the message the same as always, but it overwrites

your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a

file you wanted to add to this commit, you can do something like this:

$ git commit -m ’initial commit’

$ git add forgotten_file

$ git commit --amend

All three of these commands end up with a single commit — the second command

replaces the results of the first.

2.4.2 Unstaging a Staged File

The next two sections demonstrate how to wrangle your staging area and working

directory changes. The nice part is that the command you use to determine the state

of those two areas also reminds you how to undo changes to them. For example, let’s

say you’ve changed two files and want to commit them as two separate changes, but

you accidentally type git add * and stage them both. How can you unstage one of the

two? The git status command reminds you:

$ git add .

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

modified: benchmarks.rb

#

30

CHAPTER 2 GIT BASICS

Right below the “Changes to be committed” text, it says use git reset HEAD <file>...

to unstage. So, let’s use that advice to unstage the benchmarks.rb file:

$ git reset HEAD benchmarks.rb

benchmarks.rb: locally modified

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

The command is a bit strange, but it works. The benchmarks.rb file is modified but

once again unstaged.

2.4.3 Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the benchmarks.rb

file? How can you easily unmodify it — revert it back to what it looked like when you

last committed (or initially cloned, or however you got it into your working directory)?

Luckily, git status tells you how to do that, too. In the last example output, the

unstaged area looks like this:

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

It tells you pretty explicitly how to discard the changes you’ve made (at least, the

newer versions of Git, 1.6.1 and later, do this — if you have an older version, we highly

recommend upgrading it to get some of these nicer usability features). Let’s do what it

says:

$ git checkout -- benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

You can see that the changes have been reverted. You should also realize that this is

a dangerous command: any changes you made to that file are gone — you just copied

31

PRO GIT SCOTT CHACON

another file over it. Don’t ever use this command unless you absolutely know that you

don’t want the file. If you just need to get it out of the way, we’ll go over stashing and

branching in the next chapter; these are generally better ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even

commits that were on branches that were deleted or commits that were overwritten

with an --amend commit can be recovered (see Chapter 9 for data recovery). However,

anything you lose that was never committed is likely never to be seen again.

2.5 Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your

remote repositories. Remote repositories are versions of your project that are hosted

on the Internet or network somewhere. You can have several of them, each of which

generally is either read-only or read/write for you. Collaborating with others involves

managing these remote repositories and pushing and pulling data to and from them

when you need to share work. Managing remote repositories includes knowing how

to add remote repositories, remove remotes that are no longer valid, manage various

remote branches and define them as being tracked or not, and more. In this section,

we’ll cover these remote-management skills.

2.5.1 Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command.

It lists the shortnames of each remote handle you’ve specified. If you’ve cloned your

repository, you should at least see origin — that is the default name Git gives to the

server you cloned from:

$ git clone git://github.com/schacon/ticgit.git

Initialized empty Git repository in /private/tmp/ticgit/.git/

remote: Counting objects: 595, done.

remote: Compressing objects: 100% (269/269), done.

remote: Total 595 (delta 255), reused 589 (delta 253)

Receiving objects: 100% (595/595), 73.31 KiB | 1 KiB/s, done.

Resolving deltas: 100% (255/255), done.

$ cd ticgit

$ git remote

origin

You can also specify -v, which shows you the URL that Git has stored for the

shortname to be expanded to:

$ git remote -v

origin git://github.com/schacon/ticgit.git

If you have more than one remote, the command lists them all. For example, my

Grit repository looks something like this.

$ cd grit

$ git remote -v

bakkdoor git://github.com/bakkdoor/grit.git

32

CHAPTER 2 GIT BASICS

cho45 git://github.com/cho45/grit.git

defunkt git://github.com/defunkt/grit.git

koke git://github.com/koke/grit.git

origin git@github.com:mojombo/grit.git

This means we can pull contributions from any of these users pretty easily. But

notice that only the origin remote is an SSH URL, so it’s the only one I can push to

(we’ll cover why this is in Chapter 4).

2.5.2 Adding Remote Repositories

I’ve mentioned and given some demonstrations of adding remote repositories in previ-

ous sections, but here is how to do it explicitly. To add a new remote Git repository as

a shortname you can reference easily, run git remote add [shortname] [url] :

$ git remote

origin

$ git remote add pb git://github.com/paulboone/ticgit.git

$ git remote -v

origin git://github.com/schacon/ticgit.git

pb git://github.com/paulboone/ticgit.git

Now you can use the string pb on the command line in lieu of the whole URL. For

example, if you want to fetch all the information that Paul has but that you don’t yet

have in your repository, you can run git fetch pb:

$ git fetch pb

remote: Counting objects: 58, done.

remote: Compressing objects: 100% (41/41), done.

remote: Total 44 (delta 24), reused 1 (delta 0)

Unpacking objects: 100% (44/44), done.

From git://github.com/paulboone/ticgit

* [new branch] master -> pb/master

* [new branch] ticgit -> pb/ticgit

Paul’s master branch is accessible locally as pb/master — you can merge it into

one of your branches, or you can check out a local branch at that point if you want to

inspect it.

2.5.3 Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run

$ git fetch [remote-name]

The command goes out to that remote project and pulls down all the data from that

remote project that you don’t have yet. After you do this, you should have references

to all the branches from that remote, which you can merge in or inspect at any time.

(We’ll go over what branches are and how to use them in much more detail in Chapter

3.)

If you cloned a repository, the command automatically adds that remote reposi-

tory under the name origin. So, git fetch origin fetches any new work that has been

33

Pro Git

Scott Chacon

July 29, 2009

Contents

1 Getting Started 1

1.1 About Version Control . 1

1.1.1 Local Version Control Systems 1

1.1.2 Centralized Version Control Systems 2

1.1.3 Distributed Version Control Systems 3

1.2 A Short History of Git . 4

1.3 Git Basics . 4

1.3.1 Snapshots, Not Differences 4

1.3.2 Nearly Every Operation Is Local 5

1.3.3 Git Has Integrity . 6

1.3.4 Git Generally Only Adds Data 6

1.3.5 The Three States . 6

1.4 Installing Git . 8

1.4.1 Installing from Source . 8

1.4.2 Installing on Linux . 8

1.4.3 Installing on Mac . 9

1.4.4 Installing on Windows . 9

1.5 First-Time Git Setup . 10

1.5.1 Your Identity . 10

1.5.2 Your Editor . 10

1.5.3 Your Diff Tool . 11

1.5.4 Checking Your Settings . 11

1.6 Getting Help . 11

1.7 Summary . 12

2 Git Basics 13

2.1 Getting a Git Repository . 13

2.1.1 Initializing a Repository in an Existing Directory 13

2.1.2 Cloning an Existing Repository 14

2.2 Recording Changes to the Repository 14

2.2.1 Checking the Status of Your Files 15

2.2.2 Tracking New Files . 16

2.2.3 Staging Modified Files . 16

2.2.4 Ignoring Files . 17

2.2.5 Viewing Your Staged and Unstaged Changes 18

2.2.6 Committing Your Changes 20

2.2.7 Skipping the Staging Area 22

i

PRO GIT SCOTT CHACON

2.2.8 Removing Files . 22

2.2.9 Moving Files . 23

2.3 Viewing the Commit History . 24

2.3.1 Limiting Log Output . 27

2.3.2 Using a GUI to Visualize History 29

2.4 Undoing Things . 30

2.4.1 Changing Your Last Commit 30

2.4.2 Unstaging a Staged File . 30

2.4.3 Unmodifying a Modified File 31

2.5 Working with Remotes . 32

2.5.1 Showing Your Remotes . 32

2.5.2 Adding Remote Repositories 33

2.5.3 Fetching and Pulling from Your Remotes 33

2.5.4 Pushing to Your Remotes . 34

2.5.5 Inspecting a Remote . 34

2.5.6 Removing and Renaming Remotes 35

2.6 Tagging . 35

2.6.1 Listing Your Tags . 36

2.6.2 Creating Tags . 36

2.6.3 Annotated Tags . 36

2.6.4 Signed Tags . 37

2.6.5 Lightweight Tags . 38

2.6.6 Verifying Tags . 38

2.6.7 Tagging Later . 39

2.6.8 Sharing Tags . 39

2.7 Tips and Tricks . 40

2.7.1 Auto-Completion . 40

2.7.2 Git Aliases . 41

2.8 Summary . 42

3 Git Branching 43

3.1 What a Branch Is . 43

3.2 Basic Branching and Merging . 48

3.2.1 Basic Branching . 48

3.2.2 Basic Merging . 52

3.2.3 Basic Merge Conflicts . 53

3.3 Branch Management . 55

3.4 Branching Workflows . 56

3.4.1 Long-Running Branches . 56

3.4.2 Topic Branches . 57

3.5 Remote Branches . 58

3.5.1 Pushing . 61

3.5.2 Tracking Branches . 62

3.5.3 Deleting Remote Branches 63

3.6 Rebasing . 63

3.6.1 The Basic Rebase . 64

3.6.2 More Interesting Rebases . 65

3.6.3 The Perils of Rebasing . 68

ii

CHAPTER 0 CONTENTS

3.7 Summary . 70

4 Git on the Server 71

4.1 The Protocols . 71

4.1.1 Local Protocol . 72

4.1.2 The SSH Protocol . 73

4.1.3 The Git Protocol . 73

4.1.4 The HTTP/S Protocol . 74

4.2 Getting Git on a Server . 75

4.2.1 Putting the Bare Repository on a Server 76

4.2.2 Small Setups . 76

4.3 Generating Your SSH Public Key . 77

4.4 Setting Up the Server . 78

4.5 Public Access . 80

4.6 GitWeb . 81

4.7 Gitosis . 82

4.8 Git Daemon . 86

4.9 Hosted Git . 88

4.9.1 GitHub . 88

4.9.2 Setting Up a User Account 88

4.9.3 Creating a New Repository 89

4.9.4 Importing from Subversion 92

4.9.5 Adding Collaborators . 92

4.9.6 Your Project . 93

4.9.7 Forking Projects . 94

4.9.8 GitHub Summary . 94

4.10 Summary . 95

5 Distributed Git 97

5.1 Distributed Workflows . 97

5.1.1 Centralized Workflow . 97

5.1.2 Integration-Manager Workflow 98

5.1.3 Dictator and Lieutenants Workflow 99

5.2 Contributing to a Project . 100

5.2.1 Commit Guidelines . 100

5.2.2 Private Small Team . 102

5.2.3 Private Managed Team . 107

5.2.4 Public Small Project . 111

5.2.5 Public Large Project . 115

5.2.6 Summary . 117

5.3 Maintaining a Project . 117

5.3.1 Working in Topic Branches 117

5.3.2 Applying Patches from E-mail 118

5.3.3 Checking Out Remote Branches 121

5.3.4 Determining What Is Introduced 121

5.3.5 Integrating Contributed Work 123

5.3.6 Tagging Your Releases . 127

5.3.7 Generating a Build Number 128

iii

PRO GIT SCOTT CHACON

5.3.8 Preparing a Release . 129

5.3.9 The Shortlog . 129

5.4 Summary . 129

6 Git Tools 131

6.1 Revision Selection . 131

6.1.1 Single Revisions . 131

6.1.2 Short SHA . 131

6.1.3 A SHORT NOTE ABOUT SHA–1 132

6.1.4 Branch References . 133

6.1.5 RefLog Shortnames . 133

6.1.6 Ancestry References . 134

6.1.7 Commit Ranges . 136

6.2 Interactive Staging . 138

6.2.1 Staging and Unstaging Files 138

6.2.2 Staging Patches . 140

6.3 Stashing . 141

6.3.1 Stashing Your Work . 141

6.3.2 Creating a Branch from a Stash 143

6.4 Rewriting History . 144

6.4.1 Changing the Last Commit 144

6.4.2 Changing Multiple Commit Messages 145

6.4.3 Reordering Commits . 146

6.4.4 Squashing a Commit . 147

6.4.5 Splitting a Commit . 147

6.4.6 The Nuclear Option: filter-branch 148

6.5 Debugging with Git . 149

6.5.1 File Annotation . 150

6.5.2 Binary Search . 151

6.6 Submodules . 152

6.6.1 Starting with Submodules 153

6.6.2 Cloning a Project with Submodules 154

6.6.3 Superprojects . 156

6.6.4 Issues with Submodules . 157

6.7 Subtree Merging . 158

6.8 Summary . 160

7 Customizing Git 161

7.1 Git Configuration . 161

7.1.1 Basic Client Configuration 162

7.1.2 Colors in Git . 164

7.1.3 External Merge and Diff Tools 164

7.1.4 Formatting and Whitespace 167

7.1.5 Server Configuration . 168

7.2 Git Attributes . 169

7.2.1 Binary Files . 169

7.2.2 Keyword Expansion . 172

7.2.3 Exporting Your Repository 174

iv

CHAPTER 0 CONTENTS

7.2.4 Merge Strategies . 175

7.3 Git Hooks . 175

7.3.1 Installing a Hook . 175

7.3.2 Client-Side Hooks . 175

7.3.3 Server-Side Hooks . 177

7.4 An Example Git-Enforced Policy . 178

7.4.1 Server-Side Hook . 178

7.4.2 Client-Side Hooks . 183

7.5 Summary . 186

8 Git and Other Systems 187

8.1 Git and Subversion . 187

8.1.1 git svn . 187

8.1.2 Setting Up . 188

8.1.3 Getting Started . 189

8.1.4 Committing Back to Subversion 190

8.1.5 Pulling in New Changes . 191

8.1.6 Git Branching Issues . 192

8.1.7 Subversion Branching . 193

8.1.8 Switching Active Branches 194

8.1.9 Subversion Commands . 194

8.1.10 Git-Svn Summary . 196

8.2 Migrating to Git . 196

8.2.1 Importing . 196

8.2.2 Subversion . 197

8.2.3 Perforce . 198

8.2.4 A Custom Importer . 200

8.3 Summary . 204

9 Git Internals 205

9.1 Plumbing and Porcelain . 205

9.2 Git Objects . 206

9.2.1 Tree Objects . 208

9.2.2 Commit Objects . 210

9.2.3 Object Storage . 212

9.3 Git References . 214

9.3.1 The HEAD . 215

9.3.2 Tags . 216

9.3.3 Remotes . 216

9.4 Packfiles . 217

9.5 The Refspec . 220

9.5.1 Pushing Refspecs . 221

9.5.2 Deleting References . 221

9.6 Transfer Protocols . 222

9.6.1 The Dumb Protocol . 222

9.6.2 The Smart Protocol . 224

9.7 Maintenance and Data Recovery . 225

9.7.1 Maintenance . 226

v

PRO GIT SCOTT CHACON

9.7.2 Data Recovery . 226

9.7.3 Removing Objects . 228

9.8 Summary . 231

vi

Chapter 1

Getting Started

This chapter will be about getting started with Git. We will begin at the beginning by

explaining some background on version control tools, then move on to how to get Git

running on your system and finally how to get it setup to start working with. At the end

of this chapter you should understand why Git is around, why you should use it and

you should be all setup to do so.

1.1 About Version Control

What is version control, and why should you care? Version control is a system that

records changes to a file or set of files over time so that you can recall specific versions

later. For the examples in this book you will use software source code as the files being

version controlled, though in reality you can do this with nearly any type of file on a

computer.

If you are a graphic or web designer and want to keep every version of an image

or layout (which you would most certainly want to), a Version Control System (VCS)

is a very wise thing to use. It allows you to revert files back to a previous state, revert

the entire project back to a previous state, compare changes over time, see who last

modified something that might be causing a problem, who introduced an issue and

when, and more. Using a VCS also generally means that if you screw things up or lose

files, you can easily recover. In addition, you get all this for very little overhead.

1.1.1 Local Version Control Systems

Many people’s version-control method of choice is to copy files into another directory

(perhaps a time-stamped directory, if they’re clever). This approach is very common

because it is so simple, but it is also incredibly error prone. It is easy to forget which

directory you’re in and accidentally write to the wrong file or copy over files you don’t

mean to.

To deal with this issue, programmers long ago developed local VCSs that had a

simple database that kept all the changes to files under revision control (see Figure

1.1).

One of the more popular VCS tools was a system called rcs, which is still dis-

tributed with many computers today. Even the popular Mac OS X operating system

1

PRO GIT SCOTT CHACON

Figure 1.1: Local version control diagram

includes the rcs command when you install the Developer Tools. This tool basically

works by keeping patch sets (that is, the differences between files) from one change to

another in a special format on disk; it can then re-create what any file looked like at

any point in time by adding up all the patches.

1.1.2 Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with de-

velopers on other systems. To deal with this problem, Centralized Version Control

Systems (CVCSs) were developed. These systems, such as CVS, Subversion, and Per-

force, have a single server that contains all the versioned files, and a number of clients

that check out files from that central place. For many years, this has been the standard

for version control (see Figure 1.2).

Figure 1.2: Centralized version control diagram

2

CHAPTER 1 GETTING STARTED

This setup offers many advantages, especially over local VCSs. For example, ev-

eryone knows to a certain degree what everyone else on the project is doing. Adminis-

trators have fine-grained control over who can do what; and it’s far easier to administer

a CVCS than it is to deal with local databases on every client.

However, this setup also has some serious downsides. The most obvious is the

single point of failure that the centralized server represents. If that server goes down for

an hour, then during that hour nobody can collaborate at all or save versioned changes

to anything they’re working on. If the hard disk the central database is on becomes

corrupted, and proper backups haven’t been kept, you lose absolutely everything—the

entire history of the project except whatever single snapshots people happen to have on

their local machines. Local VCS systems suffer from this same problem—whenever

you have the entire history of the project in a single place, you risk losing everything.

1.1.3 Distributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such

as Git, Mercurial, Bazaar or Darcs), clients don’t just check out the latest snapshot of

the files: they fully mirror the repository. Thus if any server dies, and these systems

were collaborating via it, any of the client repositories can be copied back up to the

server to restore it. Every checkout is really a full backup of all the data (see Figure

1.3).

Figure 1.3: Distributed version control diagram

Furthermore, many of these systems deal pretty well with having several remote

repositories they can work with, so you can collaborate with different groups of people

3

PRO GIT SCOTT CHACON

in different ways simultaneously within the same project. This allows you to set up sev-

eral types of workflows that aren’t possible in centralized systems, such as hierarchical

models.

1.2 A Short History of Git

As with many great things in life, Git began with a bit of creative destruction and fiery

controversy. The Linux kernel is an open source software project of fairly large scope.

For most of the lifetime of the Linux kernel maintenance (19912002), changes to the

software were passed around as patches and archived files. In 2002, the Linux kernel

project began using a proprietary DVCS system called BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel

and the commercial company that developed BitKeeper broke down, and the tool’s

free-of-charge status was revoked. This prompted the Linux development community

(and in particular Linus Torvalds, the creator of Linux) to develop their own tool based

on some of the lessons they learned while using BitKeeper. Some of the goals of the

new system were as follows:

• Speed

• Simple design

• Strong support for non-linear development (thousands of parallel branches)

• Fully distributed

• Able to handle large projects like the Linux kernel efficiently (speed and data

size)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain

these initial qualities. It’s incredibly fast, it’s very efficient with large projects, and it

has an incredible branching system for non-linear development (See Chapter 3).

1.3 Git Basics

So, what is Git in a nutshell? This is an important section to absorb, because if you

understand what Git is and the fundamentals of how it works, then using Git effectively

will probably be much easier for you. As you learn Git, try to clear your mind of the

things you may know about other VCSs, such as Subversion and Perforce; doing so

will help you avoid subtle confusion when using the tool. Git stores and thinks about

information much differently than these other systems, even though the user interface

is fairly similar; understanding those differences will help prevent you from becoming

confused while using it.

1.3.1 Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included)

is the way Git thinks about its data. Conceptually, most other systems store information

as a list of file-based changes. These systems (CVS, Subversion, Perforce, Bazaar, and

4

CHAPTER 1 GETTING STARTED

so on) think of the information they keep as a set of files and the changes made to each

file over time, as illustrated in Figure 1.4.

Figure 1.4: Other systems tend to store data as changes to a base version of each file.

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more

like a set of snapshots of a mini filesystem. Every time you commit, or save the state

of your project in Git, it basically takes a picture of what all your files look like at

that moment and stores a reference to that snapshot. To be efficient, if files have not

changed, Git doesn’t store the file again—just a link to the previous identical file it has

already stored. Git thinks about its data more like Figure 1.5.

Figure 1.5: Git stores data as snapshots of the project over time.

This is an important distinction between Git and nearly all other VCSs. It makes

Git reconsider almost every aspect of version control that most other systems copied

from the previous generation. This makes Git more like a mini filesystem with some

incredibly powerful tools built on top of it, rather than simply a VCS. We’ll explore

some of the benefits you gain by thinking of your data this way when we cover Git

branching in Chapter 3.

1.3.2 Nearly Every Operation Is Local

Most operations in Git only need local files and resources to operate generally no

information is needed from another computer on your network. If you’re used to a

CVCS where most operations have that network latency overhead, this aspect of Git

will make you think that the gods of speed have blessed Git with unworldly powers.

Because you have the entire history of the project right there on your local disk, most

operations seem almost instantaneous.

5

PRO GIT SCOTT CHACON

For example, to browse the history of the project, Git doesn’t need to go out to the

server to get the history and display it for you—it simply reads it directly from your

local database. This means you see the project history almost instantly. If you want to

see the changes introduced between the current version of a file and the file a month

ago, Git can look up the file a month ago and do a local difference calculation, instead

of having to either ask a remote server to do it or pull an older version of the file from

the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If

you get on an airplane or a train and want to do a little work, you can commit happily

until you get to a network connection to upload. If you go home and can’t get your

VPN client working properly, you can still work. In many other systems, doing so is

either impossible or painful. In Perforce, for example, you can’t do much when you

aren’t connected to the server; and in Subversion and CVS, you can edit files, but you

can’t commit changes to your database (because your database is offline). This may

not seem like a huge deal, but you may be surprised what a big difference it can make.

1.3.3 Git Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that

checksum. This means it’s impossible to change the contents of any file or directory

without Git knowing about it. This functionality is built into Git at the lowest levels and

is integral to its philosophy. You can’t lose information in transit or get file corruption

without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA–1 hash. This

is a 40-character string composed of hexadecimal characters (09 and af) and calculated

based on the contents of a file or directory structure in Git. A SHA–1 hash looks

something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so

much. In fact, Git stores everything not by file name but in the Git database addressable

by the hash value of its contents.

1.3.4 Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It

is very difficult to get the system to do anything that is not undoable or to make it

erase data in any way. As in any VCS, you can lose or mess up changes you haven’t

committed yet; but after you commit a snapshot into Git, it is very difficult to lose,

especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger

of severely screwing things up. For a more in-depth look at how Git stores its data and

how you can recover data that seems lost, see “Under the Covers” in Chapter 9.

1.3.5 The Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest

of your learning process to go smoothly. Git has three main states that your files can

6

CHAPTER 1 GETTING STARTED

reside in: committed, modified, and staged. Committed means that the data is safely

stored in your local database. Modified means that you have changed the file but have

not committed it to your database yet. Staged means that you have marked a modified

file in its current version to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the

working directory, and the staging area.

Figure 1.6: Working directory, staging area, and git directory

The Git directory is where Git stores the metadata and object database for your

project. This is the most important part of Git, and it is what is copied when you clone

a repository from another computer.

The working directory is a single checkout of one version of the project. These files

are pulled out of the compressed database in the Git directory and placed on disk for

you to use or modify.

The staging area is a simple file, generally contained in your Git directory, that

stores information about what will go into your next commit. It’s sometimes referred

to as the index, but it’s becoming standard to refer to it as the staging area.

The basic Git workflow goes something like this:

1. You modify files in your working directory.

2. You stage the files, adding snapshots of them to your staging area.

3. You do a commit, which takes the files as they are in the staging area and stores

that snapshot permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed

since it was checked out but has not been staged, it is modified. In Chapter 2, you’ll

learn more about these states and how you can either take advantage of them or skip

the staged part entirely.

7

PRO GIT SCOTT CHACON

1.4 Installing Git

Let’s get into using some Git. First things first—you have to install it. You can get it a

number of ways; the two major ones are to install it from source or to install an existing

package for your platform.

1.4.1 Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most

recent version. Each version of Git tends to include useful UI enhancements, so getting

the latest version is often the best route if you feel comfortable compiling software from

source. It is also the case that many Linux distributions contain very old packages; so

unless you’re on a very up-to-date distro or are using backports, installing from source

may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl,

zlib, openssl, expat, and libiconv. For example, if you’re on a system that has yum

(such as Fedora) or apt-get (such as a Debian based system), you can use one of these

commands to install all of the dependencies:

$ yum install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

$ apt-get install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

When you have all the necessary dependencies, you can go ahead and grab the

latest snapshot from the Git web site:

http://git-scm.com/download

Then, compile and install:

$ tar -zxf git-1.6.0.5.tar.gz

$ cd git-1.6.0.5

$ make prefix=/usr/local all

$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

1.4.2 Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through

the basic package-management tool that comes with your distribution. If you’re on

Fedora, you can use yum:

$ yum install git-core

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git-core

8

CHAPTER 1 GETTING STARTED

1.4.3 Installing on Mac

There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git

installer, which you can download from the Google Code page (see Figure 1.7):

http://code.google.com/p/git-osx-installer

Figure 1.7: Git OS X installer

The other major way is to install Git via MacPorts (http://www.macports.org). If

you have MacPorts installed, install Git via

$ sudo port install git-core +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in

case you ever have to use Git with Subversion repositories (see Chapter 8).

1.4.4 Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier

installation procedures. Simply download the installer exe file from the Google Code

page, and run it:

http://code.google.com/p/msysgit

After it’s installed, you have both a command-line version (including an SSH client

that will come in handy later) and the standard GUI.

9

PRO GIT SCOTT CHACON

1.5 First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize

your Git environment. You should have to do these things only once; they’ll stick

around between upgrades. You can also change them at any time by running through

the commands again.

Git comes with a tool called git config that lets you get and set configuration vari-

ables that control all aspects of how Git looks and operates. These variables can be

stored in three different places:

• /etc/gitconfig file: Contains values for every user on the system and all their

repositories. If you pass the option--system to git config , it reads and writes

from this file specifically.

• /.gitconfig file: Specific to your user. You can make Git read and write to this

file specifically by passing the --global option.

• config file in the git directory (that is, .git/config) of whatever repository you’re

currently using: Specific to that single repository. Each level overrides values in

the previous level, so values in .git/config trump those in /etc/gitconfig .

OnWindows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Documents

and Settings\$USER for most people). It also still looks for /etc/gitconfig, although it’s

relative to the MSys root, which is wherever you decide to install Git on your Windows

system when you run the installer.

1.5.1 Your Identity

The first thing you should do when you install Git is to set your user name and e-mail

address. This is important because every Git commit uses this information, and it’s

immutably baked into the commits you pass around:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then

Git will always use that information for anything you do on that system. If you want to

override this with a different name or e-mail address for specific projects, you can run

the command without the --global option when you’re in that project.

1.5.2 Your Editor

Now that your identity is set up, you can configure the default text editor that will be

used when Git needs you to type in a message. By default, Git uses your system’s

default editor, which is generally Vi or Vim. If you want to use a different text editor,

such as Emacs, you can do the following:

$ git config --global core.editor emacs

10

CHAPTER 1 GETTING STARTED

1.5.3 Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve

merge conflicts. Say you want to use vimdiff:

$ git config --global merge.tool vimdiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and

opendiff as valid merge tools. You can also set up a custom tool; see Chapter 7 for

more information about doing that.

1.5.4 Checking Your Settings

If you want to check your settings, you can use the git config --list command to

list all the settings Git can find at that point:

$ git config --list

user.name=Scott Chacon

user.email=schacon@gmail.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different

files (/etc/gitconfig and /.gitconfig , for example). In this case, Git uses the last

value for each unique key it sees.

You can also check what Git thinks a specific key’s value is by typing git config

key:

$ git config user.name

Scott Chacon

1.6 Getting Help

If you ever need help while using Git, there are three ways to get the manual page

(manpage) help for any of the Git commands:

$ git help <verb>

$ git <verb> --help

$ man git-<verb>

For example, you can get the manpage help for the config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If

the manpages and this book aren’t enough and you need in-person help, you can try the

#git or #github channel on the Freenode IRC server (irc.freenode.net). These channels

are regularly filled with hundreds of people who are all very knowledgeable about Git

and are often willing to help.

11

PRO GIT SCOTT CHACON

1.7 Summary

You should have a basic understanding of what Git is and how it’s different from the

CVCS you may have been using. You should also now have a working version of Git

on your system that’s set up with your personal identity. It’s now time to learn some

Git basics.

12

Chapter 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers

every basic command you need to do the vast majority of the things you’ll eventually

spend your time doing with Git. By the end of the chapter, you should be able to

configure and initialize a repository, begin and stop tracking files, and stage and commit

changes. We’ll also show you how to set up Git to ignore certain files and file patterns,

how to undo mistakes quickly and easily, how to browse the history of your project and

view changes between commits, and how to push and pull from remote repositories.

2.1 Getting a Git Repository

You can get a Git project using two main approaches. The first takes an existing project

or directory and imports it into Git. The second clones an existing Git repository from

another server.

2.1.1 Initializing a Repository in an Existing Directory

If you’re starting to track an existing project in Git, you need to go to the project’s

directory and type

$ git init

This creates a new subdirectory named .git that contains all of your necessary repos-

itory files — a Git repository skeleton. At this point, nothing in your project is tracked

yet. (See Chapter 9 for more information about exactly what files are contained in the

.git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty direc-

tory), you should probably begin tracking those files and do an initial commit. You can

accomplish that with a few git add commands that specify the files you want to track,

followed by a commit:

$ git add *.c

$ git add README

$ git commit m ’initial project version’

We’ll go over what these commands do in just a minute. At this point, you have a

Git repository with tracked files and an initial commit.

13

PRO GIT SCOTT CHACON

2.1.2 Cloning an Existing Repository

If you want to get a copy of an existing Git repository — for example, a project you’d

like to contribute to — the command you need is git clone. If you’re familiar with

other VCS systems such as Subversion, you’ll notice that the command is clone and

not checkout. This is an important distinction — Git receives a copy of nearly all data

that the server has. Every version of every file for the history of the project is pulled

down when you run git clone . In fact, if your server disk gets corrupted, you can

use any of the clones on any client to set the server back to the state it was in when it

was cloned (you may lose some server-side hooks and such, but all the versioned data

would be there—see Chapter 4 for more details).

You clone a repository with git clone [url] . For example, if you want to clone

the Ruby Git library called Grit, you can do so like this:

$ git clone git://github.com/schacon/grit.git

That creates a directory named “grit”, initializes a .git directory inside it, pulls

down all the data for that repository, and checks out a working copy of the latest ver-

sion. If you go into the new grit directory, you’ll see the project files in there, ready

to be worked on or used. If you want to clone the repository into a directory named

something other than grit, you can specify that as the next command-line option:

$ git clone git://github.com/schacon/grit.git mygrit

That command does the same thing as the previous one, but the target directory is

called mygrit.

Git has a number of different transfer protocols you can use. The previous example

uses the git:// protocol, but you may also see http(s):// or user@server:/path.git ,

which uses the SSH transfer protocol. Chapter 4 will introduce all of the available

options the server can set up to access your Git repository and the pros and cons of

each.

2.2 Recording Changes to the Repository

You have a bona fide Git repository and a checkout or working copy of the files for that

project. You need to make some changes and commit snapshots of those changes into

your repository each time the project reaches a state you want to record.

Remember that each file in your working directory can be in one of two states:

tracked or untracked. Tracked files are files that were in the last snapshot; they can

be unmodified, modified, or staged. Untracked files are everything else - any files in

your working directory that were not in your last snapshot and are not in your staging

area. When you first clone a repository, all of your files will be tracked and unmodified

because you just checked them out and haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since

your last commit. You stage these modified files and then commit all your staged

changes, and the cycle repeats. This lifecycle is illustrated in Figure 2.1.

14

CHAPTER 2 GIT BASICS

Figure 2.1: The lifecycle of the status of your files

2.2.1 Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status

command. If you run this command directly after a clone, you should see something

like this:

$ git status

On branch master

nothing to commit (working directory clean)

This means you have a clean working directory—in other words, there are no

tracked and modified files. Git also doesn’t see any untracked files, or they would

be listed here. Finally, the command tells you which branch you’re on. For now, that

is always master, which is the default; you won’t worry about it here. The next chapter

will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file

didn’t exist before, and you run git status , you see your untracked file like so:

$ vim README

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Un-

tracked files” heading in your status output. Untracked basically means that Git sees

a file you didn’t have in the previous snapshot (commit); Git won’t start including it

in your commit snapshots until you explicitly tell it to do so. It does this so you don’t

accidentally begin including generated binary files or other files that you did not mean

to include. You do want to start including README, so let’s start tracking the file.

15

PRO GIT SCOTT CHACON

2.2.2 Tracking New Files

In order to begin tracking a new file, you use the command git add . To begin tracking

the README file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now

tracked and staged:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

You can tell that it’s staged because it’s under the “Changes to be committed” head-

ing. If you commit at this point, the version of the file at the time you ran git add is

what will be in the historical snapshot. You may recall that when you ran git init earlier,

you then ran git add (files) — that was to begin tracking files in your directory. The git

add command takes a path name for either a file or a directory; if it’s a directory, the

command adds all the files in that directory recursively.

2.2.3 Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file

called benchmarks.rb and then run your status command again, you get something

that looks like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

The benchmarks.rb file appears under a section named “Changed but not updated”

— which means that a file that is tracked has been modified in the working directory

but not yet staged. To stage it, you run the git add command (it’s a multipurpose

command— you use it to begin tracking new files, to stage files, and to do other things

like marking merge-conflicted files as resolved). Let’s run git add now to stage the

benchmarks.rb file, and then run git status again:

16

CHAPTER 2 GIT BASICS

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Both files are staged and will go into your next commit. At this point, suppose you

remember one little change that you want to make in benchmarks.rb before you commit

it. You open it again and make that change, and you’re ready to commit. However, let’s

run git status one more time:

$ vim benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

What the heck? Now benchmarks.rb is listed as both staged and unstaged. How is

that possible? It turns out that Git stages a file exactly as it is when you run the git add

command. If you commit now, the version of benchmarks.rb as it was when you last

ran the git add command is how it will go into the commit, not the version of the file as

it looks in your working directory when you run git commit. If you modify a file after

you run git add , you have to run git add again to stage the latest version of the file:

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

2.2.4 Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add or even

show you as being untracked. These are generally automatically generated files such

as log files or files produced by your build system. In such cases, you can create a file

listing patterns to match them named .gitignore. Here is an example .gitignore file:

17

PRO GIT SCOTT CHACON

$ cat .gitignore

*.[oa]

*̃

The first line tells Git to ignore any files ending in .o or .a — object and archive

files that may be the product of building your code. The second line tells Git to ignore

all files that end with a tilde (), which is used by many text editors such as Emacs to

mark temporary files. You may also include a log, tmp, or pid directory; automatically

generated documentation; and so on. Setting up a .gitignore file before you get going is

generally a good idea so you don’t accidentally commit files that you really don’t want

in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

• Blank lines or lines starting with # are ignored.

• Standard glob patterns work.

• You can end patterns with a forward slash (/) to specify a directory.

• You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*)

matches zero or more characters; [abc] matches any character inside the brackets (in

this case a, b, or c); a question mark (?) matches a single character; and brackets en-

closing characters seperated by a hyphen([0-9]) matches any character between them

(in this case 0 through 9) .

Here is another example .gitignore file:

a comment this is ignored

*.a # no .a files

!lib.a # but do track lib.a, even though you’re ignoring .a files above

/TODO # only ignore the root TODO file, not subdir/TODO

build/ # ignore all files in the build/ directory

doc/*.txt # ignore doc/notes.txt, but not doc/server/arch.txt

2.2.5 Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you — you want to know exactly what

you changed, not just which files were changed— you can use the git diff command.

We’ll cover git diff in more detail later; but you’ll probably use it most often to

answer these two questions: What have you changed but not yet staged? And what

have you staged that you are about to commit? Although git status answers those

questions very generally, git diff shows you the exact lines added and removed —

the patch, as it were.

Let’s say you edit and stage the README file again and then edit the bench-

marks.rb file without staging it. If you run your status command, you once again

see something like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

18

CHAPTER 2 GIT BASICS

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

To see what you’ve changed but not yet staged, type git diff with no other argu-

ments:

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..da65585 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

That command compares what is in your working directory with what is in your

staging area. The result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you

can use git diff -cached . (In Git versions 1.6.1 and later, you can also use git diff

-staged , which may be easier to remember.) This command compares your staged

changes to your last commit:

$ git diff --cached

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README2

@@ -0,0 +1,5 @@

+grit

+ by Tom Preston-Werner, Chris Wanstrath

+ http://github.com/mojombo/grit

+

+Grit is a Ruby library for extracting information from a Git repository

It’s important to note that git diff by itself doesn’t show all changes made since

your last commit — only changes that are still unstaged. This can be confusing, be-

cause if you’ve staged all of your changes, git diff will give you no output.

19

PRO GIT SCOTT CHACON

For another example, if you stage the benchmarks.rb file and then edit it, you can

use git diff to see the changes in the file that are staged and the changes that are

unstaged:

$ git add benchmarks.rb

$ echo ’# test line’ >> benchmarks.rb

$ git status

On branch master

#

Changes to be committed:

#

modified: benchmarks.rb

#

Changed but not updated:

#

modified: benchmarks.rb

#

Now you can use git diff to see what is still unstaged

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index e445e28..86b2f7c 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -127,3 +127,4 @@ end

main()

##pp Grit::GitRuby.cache_client.stats

+# test line

and git diff --cached to see what youve staged so far:

$ git diff --cached

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..e445e28 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

2.2.6 Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes.

Remember that anything that is still unstaged — any files you have created or modified

that you haven’t run git add on since you edited them — won’t go into this commit.

20

CHAPTER 2 GIT BASICS

They will stay as modified files on your disk. In this case, the last time you ran git

status , you saw that everything was staged, so you’re ready to commit your changes.

The simplest way to commit is to type git commit :

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s $EDITOR envi-

ronment variable — usually vim or emacs, although you can configure it with whatever

you want using the git config --global core.editor command as you saw in Chap-

ter 1).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

˜

˜

˜

".git/COMMIT_EDITMSG" 10L, 283C

You can see that the default commit message contains the latest output of the git

status command commented out and one empty line on top. You can remove these

comments and type your commit message, or you can leave them there to help you

remember what you’re committing. (For an even more explicit reminder of what you’ve

modified, you can pass the -v option to git commit . Doing so also puts the diff of your

change in the editor so you can see exactly what you did.) When you exit the editor, Git

creates your commit with that commit message (with the comments and diff stripped

out).

Alternatively, you can type your commit message inline with the commit command

by specifying it after a -m flag, like this:

$ git commit -m "Story 182: Fix benchmarks for speed"

[master]: created 463dc4f: "Fix benchmarks for speed"

2 files changed, 3 insertions(+), 0 deletions(-)

create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given

you some output about itself: which branch you committed to (master), what SHA–1

checksum the commit has (463dc4f), how many files were changed, and statistics about

lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging area.

Anything you didn’t stage is still sitting there modified; you can do another commit to

add it to your history. Every time you perform a commit, you’re recording a snapshot

of your project that you can revert to or compare to later.

21

PRO GIT SCOTT CHACON

2.2.7 Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them,

the staging area is sometimes a bit more complex than you need in your workflow. If

you want to skip the staging area, Git provides a simple shortcut. Providing the -a

option to the git commit command makes Git automatically stage every file that is

already tracked before doing the commit, letting you skip the git add part:

$ git status

On branch master

#

Changed but not updated:

#

modified: benchmarks.rb

#

$ git commit -a -m ’added new benchmarks’

[master 83e38c7] added new benchmarks

1 files changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the benchmarks.rb file in this case

before you commit.

2.2.8 Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accu-

rately, remove it from your staging area) and then commit. The git rm command does

that and also removes the file from your working directory so you don’t see it as an

untracked file next time around.

If you simply remove the file from your working directory, it shows up under the

“Changed but not updated” (that is, unstaged) area of your git status output:

$ rm grit.gemspec

$ git status

On branch master

#

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

#

deleted: grit.gemspec

#

Then, if you run git rm , it stages the file’s removal:

$ git rm grit.gemspec

rm ’grit.gemspec’

$ git status

On branch master

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: grit.gemspec

#

22

CHAPTER 2 GIT BASICS

The next time you commit, the file will be gone and no longer tracked. If you

modified the file and added it to the index already, you must force the removal with the

-f option. This is a safety feature to prevent accidental removal of data that hasn’t yet

been recorded in a snapshot and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree

but remove it from your staging area. In other words, you may want to keep the file

on your hard drive but not have Git track it anymore. This is particularly useful if you

forgot to add something to your .gitignore file and accidentally added it, like a large

log file or a bunch of .a compiled files. To do this, use the --cached option:

$ git rm --cached readme.txt

You can pass files, directories, and file-glob patterns to the git rm command. That

means you can do things such as

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its

own filename expansion in addition to your shell’s filename expansion. This command

removes all files that have the .log extension in the log/ directory. Or, you can do

something like this:

$ git rm *̃

This command removes all files that end with .

2.2.9 Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you

rename a file in Git, no metadata is stored in Git that tells it you renamed the file.

However, Git is pretty smart about figuring that out after the fact — we’ll deal with

detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in

Git, you can run something like

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status,

you’ll see that Git considers it a renamed file:

$ git mv README.txt README

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README.txt -> README

#

However, this is equivalent to running something like this:

23

PRO GIT SCOTT CHACON

$ mv README.txt README

$ git rm README.txt

$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file

that way or with the mv command. The only real difference is that mv is one command

instead of three — it’s a convenience function. More important, you can use any tool

you like to rename a file, and address the add/rm later, before you commit.

2.3 Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an

existing commit history, you’ll probably want to look back to see what has happened.

The most basic and powerful tool to do this is the git log command.

These examples use a very simple project called simplegit that I often use for

demonstrations. To get the project, run

git clone git://github.com/schacon/simplegit-progit.git

When you run git log in this project, you should get output that looks something

like this:

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

By default, with no arguments, git log lists the commits made in that repository

in reverse chronological order. That is, the most recent commits show up first. As you

can see, this command lists each commit with its SHA–1 checksum, the author’s name

and e-mail, the date written, and the commit message.

A huge number and variety of options to the git log command are available to

show you exactly what you’re looking for. Here, we’ll show you some of the most-

used options.

One of the more helpful options is -p, which shows the diff introduced in each

commit. You can also use -2, which limits the output to only the last two entries:

24

CHAPTER 2 GIT BASICS

$ git log p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require ’rake/gempackagetask’

spec = Gem::Specification.new do |s|

- s.version = "0.1.0"

+ s.version = "0.1.1"

s.author = "Scott Chacon"

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

end

end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

\ No newline at end of file

This option displays the same information but with a diff directly following each

entry. This is very helpful for code review or to quickly browse what happened during

a series of commits that a collaborator has added. You can also use a series of summa-

rizing options with git log . For example, if you want to see some abbreviated stats

for each commit, you can use the --stat option:

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

Rakefile | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

25

PRO GIT SCOTT CHACON

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

lib/simplegit.rb | 5 -----

1 files changed, 0 insertions(+), 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

README | 6 ++++++

Rakefile | 23 +++++++++++++++++++++++

lib/simplegit.rb | 25 +++++++++++++++++++++++++

3 files changed, 54 insertions(+), 0 deletions(-)

As you can see, the --stat option prints below each commit entry a list of modified

files, how many files were changed, and how many lines in those files were added

and removed. It also puts a summary of the information at the end. Another really

useful option is --pretty . This option changes the log output to formats other than the

default. A few prebuilt options are available for you to use. The oneline option prints

each commit on a single line, which is useful if you’re looking at a lot of commits.

In addition, the short , full , and fuller options show the output in roughly the same

format but with less or more information, respectively:

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the verison number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test code

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

The most interesting option is format , which allows you to specify your own log

output format. This is especially useful when you’re generating output for machine

parsing — because you specify the format explicitly, you know it won’t change with

updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 11 months ago : changed the verison number

085bb3b - Scott Chacon, 11 months ago : removed unnecessary test code

a11bef0 - Scott Chacon, 11 months ago : first commit

Table 2.1 lists some of the more useful options that format takes.

You may be wondering what the difference is between author and committer. The

author is the person who originally wrote the work, whereas the committer is the person

who last applied the work. So, if you send in a patch to a project and one of the core

members applies the patch, both of you get credit — you as the author and the core

member as the committer. We’ll cover this distinction a bit more in Chapter 5.

26

CHAPTER 2 GIT BASICS

Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author e-mail

%ad Author date (format respects the date= option)

%ar Author date, relative

%cn Committer name

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

The oneline and format options are particularly useful with another log option

called --graph . This option adds a nice little ASCII graph showing your branch and

merge history, which we can see our copy of the Grit project repository:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch ’master’ of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch ’defunkt’ into local

Those are only some simple output-formatting options to git log — there are many

more. Table 2.2 lists the options we’ve covered so far and some other common format-

ting options that may be useful, along with how they change the output of the log

command.

2.3.1 Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting op-

tions — that is, options that let you show only a subset of commits. You’ve seen one

such option already — the -2 option, which show only the last two commits. In fact,

you can do -<n> , where n is any integer to show the last n commits. In reality, you’re

unlikely to use that often, because Git by default pipes all output through a pager so

you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful.

For example, this command gets the list of commits made in the last two weeks:

27

PRO GIT SCOTT CHACON

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the

–stat command.

--name-only Show the list of files modified after the commit informa-

tion.

--name-status Show the list of files affected with added/modified/deleted

information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum

instead of all 40.

--relative-date Display the date in a relative format (for example, “2 weeks

ago”) instead of using the full date format.

--graph Display an ASCII graph of the branch and merge history

beside the log output.

--pretty Show commits in an alternate format. Options include one-

line, short, full, fuller, and format (where you specify your

own format).

$ git log --since=2.weeks

This command works with lots of formats— you can specify a specific date (“2008–

01–15”) or a relative date such as “2 years 1 day 3 minutes ago”.

You can also filter the list to commits that match some search criteria. The --author

option allows you to filter on a specific author, and the --grep option lets you search

for keywords in the commit messages. (Note that if you want to specify both author

and grep options, you have to add --all-match or the command will match commits

with either.)

The last really useful option to pass to git log as a filter is a path. If you specify a

directory or file name, you can limit the log output to commits that introduced a change

to those files. This is always the last option and is generally preceded by double dashes

(--) to separate the paths from the options.

In Table 2.3 we’ll list these and a few other common options for your reference.

Option Description

-(n) Show only the last n commits

--since, --after Limit the commits to those made after the specified date.

--until, --before Limit the commits to those made before the specified date.

--author Only show commits in which the author entry matches the

specified string.

--committer Only show commits in which the committer entry matches

the specified string.

For example, if you want to see which commits modifying test files in the Git source

code history were committed by Junio Hamano and were not merges in the month of

October 2008, you can run something like this:

28

CHAPTER 2 GIT BASICS

$ git log --pretty="%h:%s" --author=gitster --since="2008-10-01" \

--before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attribute

acd3b9e - Enhance hold_lock_file_for_{update,append}()

f563754 - demonstrate breakage of detached checkout wi

d1a43f2 - reset --hard/read-tree --reset -u: remove un

51a94af - Fix "checkout --track -b newbranch" on detac

b0ad11e - pull: allow "git pull origin $something:$cur

Of the nearly 20,000 commits in the Git source code history, this command shows

the 6 that match those criteria.

2.3.2 Using a GUI to Visualize History

If you like to use a more graphical tool to visualize your commit history, you may

want to take a look at a Tcl/Tk program called gitk that is distributed with Git. Gitk

is basically a visual git log tool, and it accepts nearly all the filtering options that

git log does. If you type gitk on the command line in your project, you should see

something like Figure 2.2.

Figure 2.2: The gitk history visualizer

You can see the commit history in the top half of the window along with a nice an-

cestry graph. The diff viewer in the bottom half of the window shows you the changes

introduced at any commit you click.

29

PRO GIT SCOTT CHACON

2.4 Undoing Things

At any stage, you may want to undo something. Here, we’ll review a few basic tools for

undoing changes that you’ve made. Be careful, because you can’t always undo some

of these undos. This is one of the few areas in Git where you may lose some work if

you do it wrong.

2.4.1 Changing Your Last Commit

One of the common undos takes place when you commit too early and possibly forget

to add some files, or you mess up your commit message. If you want to try that commit

again, you can run commit with the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If you’ve have

made no changes since your last commit (for instance, you run this command it imme-

diately after your previous commit), then your snapshot will look exactly the same and

all you’ll change is your commit message.

The same commit-message editor fires up, but it already contains the message of

your previous commit. You can edit the message the same as always, but it overwrites

your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a

file you wanted to add to this commit, you can do something like this:

$ git commit -m ’initial commit’

$ git add forgotten_file

$ git commit --amend

All three of these commands end up with a single commit — the second command

replaces the results of the first.

2.4.2 Unstaging a Staged File

The next two sections demonstrate how to wrangle your staging area and working

directory changes. The nice part is that the command you use to determine the state

of those two areas also reminds you how to undo changes to them. For example, let’s

say you’ve changed two files and want to commit them as two separate changes, but

you accidentally type git add * and stage them both. How can you unstage one of the

two? The git status command reminds you:

$ git add .

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

modified: benchmarks.rb

#

30

CHAPTER 2 GIT BASICS

Right below the “Changes to be committed” text, it says use git reset HEAD <file>...

to unstage. So, let’s use that advice to unstage the benchmarks.rb file:

$ git reset HEAD benchmarks.rb

benchmarks.rb: locally modified

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

The command is a bit strange, but it works. The benchmarks.rb file is modified but

once again unstaged.

2.4.3 Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the benchmarks.rb

file? How can you easily unmodify it — revert it back to what it looked like when you

last committed (or initially cloned, or however you got it into your working directory)?

Luckily, git status tells you how to do that, too. In the last example output, the

unstaged area looks like this:

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

It tells you pretty explicitly how to discard the changes you’ve made (at least, the

newer versions of Git, 1.6.1 and later, do this — if you have an older version, we highly

recommend upgrading it to get some of these nicer usability features). Let’s do what it

says:

$ git checkout -- benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

You can see that the changes have been reverted. You should also realize that this is

a dangerous command: any changes you made to that file are gone — you just copied

31

PRO GIT SCOTT CHACON

another file over it. Don’t ever use this command unless you absolutely know that you

don’t want the file. If you just need to get it out of the way, we’ll go over stashing and

branching in the next chapter; these are generally better ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even

commits that were on branches that were deleted or commits that were overwritten

with an --amend commit can be recovered (see Chapter 9 for data recovery). However,

anything you lose that was never committed is likely never to be seen again.

2.5 Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your

remote repositories. Remote repositories are versions of your project that are hosted

on the Internet or network somewhere. You can have several of them, each of which

generally is either read-only or read/write for you. Collaborating with others involves

managing these remote repositories and pushing and pulling data to and from them

when you need to share work. Managing remote repositories includes knowing how

to add remote repositories, remove remotes that are no longer valid, manage various

remote branches and define them as being tracked or not, and more. In this section,

we’ll cover these remote-management skills.

2.5.1 Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command.

It lists the shortnames of each remote handle you’ve specified. If you’ve cloned your

repository, you should at least see origin — that is the default name Git gives to the

server you cloned from:

$ git clone git://github.com/schacon/ticgit.git

Initialized empty Git repository in /private/tmp/ticgit/.git/

remote: Counting objects: 595, done.

remote: Compressing objects: 100% (269/269), done.

remote: Total 595 (delta 255), reused 589 (delta 253)

Receiving objects: 100% (595/595), 73.31 KiB | 1 KiB/s, done.

Resolving deltas: 100% (255/255), done.

$ cd ticgit

$ git remote

origin

You can also specify -v, which shows you the URL that Git has stored for the

shortname to be expanded to:

$ git remote -v

origin git://github.com/schacon/ticgit.git

If you have more than one remote, the command lists them all. For example, my

Grit repository looks something like this.

$ cd grit

$ git remote -v

bakkdoor git://github.com/bakkdoor/grit.git

32

CHAPTER 2 GIT BASICS

cho45 git://github.com/cho45/grit.git

defunkt git://github.com/defunkt/grit.git

koke git://github.com/koke/grit.git

origin git@github.com:mojombo/grit.git

This means we can pull contributions from any of these users pretty easily. But

notice that only the origin remote is an SSH URL, so it’s the only one I can push to

(we’ll cover why this is in Chapter 4).

2.5.2 Adding Remote Repositories

I’ve mentioned and given some demonstrations of adding remote repositories in previ-

ous sections, but here is how to do it explicitly. To add a new remote Git repository as

a shortname you can reference easily, run git remote add [shortname] [url] :

$ git remote

origin

$ git remote add pb git://github.com/paulboone/ticgit.git

$ git remote -v

origin git://github.com/schacon/ticgit.git

pb git://github.com/paulboone/ticgit.git

Now you can use the string pb on the command line in lieu of the whole URL. For

example, if you want to fetch all the information that Paul has but that you don’t yet

have in your repository, you can run git fetch pb:

$ git fetch pb

remote: Counting objects: 58, done.

remote: Compressing objects: 100% (41/41), done.

remote: Total 44 (delta 24), reused 1 (delta 0)

Unpacking objects: 100% (44/44), done.

From git://github.com/paulboone/ticgit

* [new branch] master -> pb/master

* [new branch] ticgit -> pb/ticgit

Paul’s master branch is accessible locally as pb/master — you can merge it into

one of your branches, or you can check out a local branch at that point if you want to

inspect it.

2.5.3 Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run

$ git fetch [remote-name]

The command goes out to that remote project and pulls down all the data from that

remote project that you don’t have yet. After you do this, you should have references

to all the branches from that remote, which you can merge in or inspect at any time.

(We’ll go over what branches are and how to use them in much more detail in Chapter

3.)

If you cloned a repository, the command automatically adds that remote reposi-

tory under the name origin. So, git fetch origin fetches any new work that has been

33

PRO GIT SCOTT CHACON

pushed to that server since you cloned (or last fetched from) it. It’s important to note

that the fetch command pulls the data to your local repository — it doesn’t automati-

cally merge it with any of your work or modify what you’re currently working on. You

have to merge it manually into your work when you’re ready.

If you have a branch set up to track a remote branch (see the next section and Chap-

ter 3 for more information), you can use the git pull command to automatically fetch

and then merge a remote branch into your current branch. This may be an easier or

more comfortable workflow for you; and by default, the git clone command automat-

ically sets up your local master branch to track the remote master branch on the server

you cloned from (assuming the remote has a master branch). Running git pull gener-

ally fetches data from the server you originally cloned from and automatically tries to

merge it into the code you’re currently working on.

2.5.4 Pushing to Your Remotes

When you have your project at a point that you want to share, you have to push it

upstream. The command for this is simple: git push [remote-name] [branch-name] .

If you want to push your master branch to your origin server (again, cloning generally

sets up both of those names for you automatically), then you can run this to push your

work back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write

access and if nobody has pushed in the meantime. If you and someone else clone at

the same time and they push upstream and then you push upstream, your push will

rightly be rejected. You’ll have to pull down their work first and incorporate it into

yours before you’ll be allowed to push. See Chapter 3 for more detailed information

on how to push to remote servers.

2.5.5 Inspecting a Remote

If you want to see more information about a particular remote, you can use the git

remote show [remote-name] command. If you run this command with a particular

shortname, such as origin , you get something like this:

$ git remote show origin

* remote origin

URL: git://github.com/schacon/ticgit.git

Remote branch merged with ’git pull’ while on branch master

master

Tracked remote branches

master

ticgit

It lists the URL for the remote repository as well as the tracking branch information.

The command helpfully tells you that if you’re on the master branch and you run git

pull , it will automatically merge in the master branch on the remote after it fetches all

the remote references. It also lists all the remote references it has pulled down.

That is a simple example you’re likely to encounter. When you’re using Git more

heavily, however, you may see much more information from git remote show :

34

CHAPTER 2 GIT BASICS

$ git remote show origin

* remote origin

URL: git@github.com:defunkt/github.git

Remote branch merged with ’git pull’ while on branch issues

issues

Remote branch merged with ’git pull’ while on branch master

master

New remote branches (next fetch will store in remotes/origin)

caching

Stale tracking branches (use ’git remote prune’)

libwalker

walker2

Tracked remote branches

acl

apiv2

dashboard2

issues

master

postgres

Local branch pushed with ’git push’

master:master

This command shows which branch is automatically pushed when you run git

push on certain branches. It also shows you which remote branches on the server you

don’t yet have, which remote branches you have that have been removed from the

server, and multiple branches that are automatically merged when you run git pull .

2.5.6 Removing and Renaming Remotes

If you want to rename a reference, in newer versions of Git you can run git remote

rename to change a remote’s shortname. For instance, if you want to rename pb to paul ,

you can do so with git remote rename :

$ git remote rename pb paul

$ git remote

origin

paul

It’s worth mentioning that this changes your remote branch names, too. What used

to be referenced at pb/master is now at paul/master .

If you want to remove a reference for some reason — you’ve moved the server

or are no longer using a particular mirror, or perhaps a contributor isn’t contributing

anymore — you can use git remote rm :

$ git remote rm paul

$ git remote

origin

2.6 Tagging

Like most VCSs, Git has the ability to tag specific points in history as being important.

Generally, people use this functionality to mark release points (v1.0, and so on). In this

35

PRO GIT SCOTT CHACON

section, you’ll learn how to list the available tags, how to create new tags, and what the

different types of tags are.

2.6.1 Listing Your Tags

Listing the available tags in Git is straightforward. Just type git tag :

$ git tag

v0.1

v1.3

This command lists the tags in alphabetical order; the order in which they appear

has no real importance.

You can also search for tags with a particular pattern. The Git source repo, for

instance, contains more than 240 tags. If you’re only interested in looking at the 1.4.2

series, you can run this:

$ git tag -l ’v1.4.2.*’

v1.4.2.1

v1.4.2.2

v1.4.2.3

v1.4.2.4

2.6.2 Creating Tags

Git uses two main types of tags: lightweight and annotated. A lightweight tag is very

much like a branch that doesn’t change — it’s just a pointer to a specific commit.

Annotated tags, however, are stored as full objects in the Git database. They’re check-

summed; contain the tagger name, e-mail, and date; have a tagging message; and can

be signed and verified with GNU Privacy Guard (GPG). It’s generally recommended

that you create annotated tags so you can have all this information; but if you want a

temporary tag or for some reason don’t want to keep the other information, lightweight

tags are available too.

2.6.3 Annotated Tags

Creating an annotated tag in Git is simple. The easiest way is to specify -a when you

run the tag command:

$ git tag -a v1.4 -m ’my version 1.4’

$ git tag

v0.1

v1.3

v1.4

The -m specifies a tagging message, which is stored with the tag. If you don’t

specify a message for an annotated tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the git

show command:

36

CHAPTER 2 GIT BASICS

$ git show v1.4

tag v1.4

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 14:45:11 2009 -0800

my version 1.4

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

That shows the tagger information, the date the commit was tagged, and the anno-

tation message before showing the commit information.

2.6.4 Signed Tags

You can also sign your tags with GPG, assuming you have a private key. All you have

to do is use -s instead of -a:

$ git tag -s v1.5 -m ’my signed 1.5 tag’

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gee-mail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you run git show on that tag, you can see your GPG signature attached to it:

$ git show v1.5

tag v1.5

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:22:20 2009 -0800

my signed 1.5 tag

-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1.4.8 (Darwin)

iEYEABECAAYFAkmQurIACgkQON3DxfchxFr5cACeIMN+ZxLKggJQf0QYiQBwgySN

Ki0An2JeAVUCAiJ7Ox6ZEtK+NvZAj82/

=WryJ

-----END PGP SIGNATURE-----

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

A bit later, you’ll learn how to verify signed tags.

37

PRO GIT SCOTT CHACON

2.6.5 Lightweight Tags

Another way to tag commits is with a lightweight tag. This is basically the commit

checksum stored in a file — no other information is kept. To create a lightweight tag,

don’t supply the -a, -s, or -m option:

$ git tag v1.4-lw

$ git tag

v0.1

v1.3

v1.4

v1.4-lw

v1.5

This time, if you run git show on the tag, you don’t see the extra tag information.

The command just shows the commit:

$ git show v1.4-lw

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

2.6.6 Verifying Tags

To verify a signed tag, you use git tag -v [tag-name] . This command uses GPG to

verify the signature. You need the signer’s public key in your keyring for this to work

properly:

$ git tag -v v1.4.2.1

object 883653babd8ee7ea23e6a5c392bb739348b1eb61

type commit

tag v1.4.2.1

tagger Junio C Hamano <junkio@cox.net> 1158138501 -0700

GIT 1.4.2.1

Minor fixes since 1.4.2, including git-mv and git-http with alternates.

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID F3119B9A

gpg: Good signature from "Junio C Hamano <junkio@cox.net>"

gpg: aka "[jpeg image of size 1513]"

Primary key fingerprint: 3565 2A26 2040 E066 C9A7 4A7D C0C6 D9A4 F311 9B9A

If you don’t have the signer’s public key, you get something like this instead:

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID F3119B9A

gpg: Can’t check signature: public key not found

error: could not verify the tag ’v1.4.2.1’

38

CHAPTER 2 GIT BASICS

2.6.7 Tagging Later

You can also tag commits after you’ve moved past them. Suppose your commit history

looks like this:

$ git log --pretty=oneline

15027957951b64cf874c3557a0f3547bd83b3ff6 Merge branch ’experiment’

a6b4c97498bd301d84096da251c98a07c7723e65 beginning write support

0d52aaab4479697da7686c15f77a3d64d9165190 one more thing

6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch ’experiment’

0b7434d86859cc7b8c3d5e1dddfed66ff742fcbc added a commit function

4682c3261057305bdd616e23b64b0857d832627b added a todo file

166ae0c4d3f420721acbb115cc33848dfcc2121a started write support

9fceb02d0ae598e95dc970b74767f19372d61af8 updated rakefile

964f16d36dfccde844893cac5b347e7b3d44abbc commit the todo

8a5cbc430f1a9c3d00faaeffd07798508422908a updated readme

Now, suppose you forgot to tag the project at v1.2, which was at the “updated

rakefile” commit. You can add it after the fact. To tag that commit, you specify the

commit checksum (or part of it) at the end of the command:

$ git tag -a v1.2 9fceb02

You can see that you’ve tagged the commit:

$ git tag

v0.1

v1.2

v1.3

v1.4

v1.4-lw

v1.5

$ git show v1.2

tag v1.2

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:32:16 2009 -0800

version 1.2

commit 9fceb02d0ae598e95dc970b74767f19372d61af8

Author: Magnus Chacon <mchacon@gee-mail.com>

Date: Sun Apr 27 20:43:35 2008 -0700

updated rakefile

...

2.6.8 Sharing Tags

By default, the git push command doesn’t transfer tags to remote servers. You will

have to explicitly push tags to a shared server after you have created them. This process

is just like sharing remote branches you can run git push origin [tagname] .

39

PRO GIT SCOTT CHACON

$ git push origin v1.5

Counting objects: 50, done.

Compressing objects: 100% (38/38), done.

Writing objects: 100% (44/44), 4.56 KiB, done.

Total 44 (delta 18), reused 8 (delta 1)

To git@github.com:schacon/simplegit.git

* [new tag] v1.5 -> v1.5

If you have a lot of tags that you want to push up at once, you can also use the

--tags option to the git push command. This will transfer all of your tags to the

remote server that are not already there.

$ git push origin --tags

Counting objects: 50, done.

Compressing objects: 100% (38/38), done.

Writing objects: 100% (44/44), 4.56 KiB, done.

Total 44 (delta 18), reused 8 (delta 1)

To git@github.com:schacon/simplegit.git

* [new tag] v0.1 -> v0.1

* [new tag] v1.2 -> v1.2

* [new tag] v1.4 -> v1.4

* [new tag] v1.4-lw -> v1.4-lw

* [new tag] v1.5 -> v1.5

Now, when someone else clones or pulls from your repository, they will get all your

tags as well.

2.7 Tips and Tricks

Before we finish this chapter on basic Git, a few little tips and tricks may make your

Git experience a bit simpler, easier, or more familiar. Many people use Git without

using any of these tips, and we won’t refer to them or assume you’ve used them later

in the book; but you should probably know how to do them.

2.7.1 Auto-Completion

If you use the Bash shell, Git comes with a nice auto-completion script you can enable.

Download the Git source code, and look in the contrib/completion directory; there

should be a file called git-completion.bash . Copy this file to your home directory,

and add this to your .bashrc file:

source /̃.git-completion.bash

If you want to set up Git to automatically have Bash shell completion for all users,

copy this script to the /opt/local/etc/bash completion.d directory on Mac systems

or to the /etc/bash completion.d/ directory on Linux systems. This is a directory of

scripts that Bash will automatically load to provide shell completions.

If you’re using Windows with Git Bash, which is the default when installing Git on

Windows with msysGit, auto-completion should be preconfigured.

Press the Tab key when you’re writing a Git command, and it should return a set of

suggestions for you to pick from:

40

CHAPTER 2 GIT BASICS

$ git co<tab><tab>

commit config

In this case, typing git co and then pressing the Tab key twice suggests commit and

config. Adding m<tab> completes git commit automatically.

This also works with options, which is probably more useful. For instance, if you’re

running a git log command and can’t remember one of the options, you can start

typing it and press Tab to see what matches:

$ git log --s<tab>

--shortstat --since= --src-prefix= --stat --summary

That’s a pretty nice trick and may save you some time and documentation reading.

2.7.2 Git Aliases

Git doesn’t infer your command if you type it in partially. If you don’t want to type

the entire text of each of the Git commands, you can easily set up an alias for each

command using git config . Here are a couple of examples you may want to set up:

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status

This means that, for example, instead of typing git commit , you just need to type

git ci . As you go on using Git, you’ll probably use other commands frequently as

well; in this case, don’t hesitate to create new aliases.

This technique can also be very useful in creating commands that you think should

exist. For example, to correct the usability problem you encountered with unstaging a

file, you can add your own unstage alias to Git:

$ git config --global alias.unstage ’reset HEAD --’

This makes the following two commands equivalent:

$ git unstage fileA

$ git reset HEAD fileA

This seems a bit clearer. It’s also common to add a last command, like this:

$ git config --global alias.last ’log -1 HEAD’

This way, you can see the last commit easily:

$ git last

commit 66938dae3329c7aebe598c2246a8e6af90d04646

Author: Josh Goebel <dreamer3@example.com>

Date: Tue Aug 26 19:48:51 2008 +0800

test for current head

Signed-off-by: Scott Chacon <schacon@example.com>

41

PRO GIT SCOTT CHACON

As you can tell, Git simply replaces the new command with whatever you alias it

for. However, maybe you want to run an external command, rather than a Git subcom-

mand. In that case, you start the command with a ! character. This is useful if you

write your own tools that work with a Git repository. We can demonstrate by aliasing

git visual to run gitk :

$ git config --global alias.visual "!gitk"

2.8 Summary

At this point, you can do all the basic local Git operations — creating or cloning a

repository, making changes, staging and committing those changes, and viewing the

history of all the changes the repository has been through. Next, we’ll cover Git’s

killer feature: its branching model.

42

Chapter 3

Git Branching

Nearly every VCS has some form of branching support. Branching means you diverge

from the main line of development and continue to do work without messing with that

main line. In many VCS tools, this is a somewhat expensive process, often requiring

you to create a new copy of your source code directory, which can take a long time for

large projects.

Some people refer to the branching model in Git as its “killer feature,” and it

certainly sets Git apart in the VCS community. Why is it so special? The way Git

branches is incredibly lightweight, making branching operations nearly instantaneous

and switching back and forth between branches generally just as fast. Unlike many

other VCSs, Git encourages a workflow that branches and merges often, even multiple

times in a day. Understanding and mastering this feature gives you a powerful and

unique tool and can literally change the way that you develop.

3.1 What a Branch Is

To really understand the way Git does branching, we need to take a step back and

examine how Git stores its data. As you may remember from Chapter 1, Git doesn’t

store data as a series of changesets or deltas, but instead as a series of snapshots.

When you commit in Git, Git stores a commit object that contains a pointer to the

snapshot of the content you staged, the author and message metadata, and zero or more

pointers to the commit or commits that were the direct parents of this commit: zero

parents for the first commit, one parent for a normal commit, and multiple parents for

a commit that results from a merge of two or more branches.

To visualize this, let’s assume that you have a directory containing three files, and

you stage them all and commit. Staging the files checksums each one (the SHA–1 hash

we mentioned in Chapter 1), stores that version of the file in the Git repository (Git

refers to them as blobs), and adds that checksum to the staging area:

$ git add README test.rb LICENSE2

$ git commit -m ’initial commit of my project’

When you create the commit by running git commit , Git checksums each subdi-

rectory (in this case, just the root project directory) and stores those tree objects in the

43

PRO GIT SCOTT CHACON

Git repository. Git then creates a commit object that has the metadata and a pointer to

the root project tree so it can re-create that snapshot when needed.

Your Git repository now contains five objects: one blob for the contents of each of

your three files, one tree that lists the contents of the directory and specifies which file

names are stored as which blobs, and one commit with the pointer to that root tree and

all the commit metadata. Conceptually, the data in your Git repository looks something

like Figure 3.1.

Figure 3.1: Single commit repository data

If you make some changes and commit again, the next commit stores a pointer to

the commit that came immediately before it. After two more commits, your history

might look something like Figure 3.2.

Figure 3.2: Git object data for multiple commits

A branch in Git is simply a lightweight movable pointer to one of these commits.

The default branch name in Git is master. As you initially make commits, you’re given

a master branch that points to the last commit you made. Every time you commit, it

moves forward automatically.

What happens if you create a new branch? Well, doing so creates a new pointer for

you to move around. Let’s say you create a new branch called testing. You do this with

the git branch command:

$ git branch testing

44

CHAPTER 3 GIT BRANCHING

Figure 3.3: Branch pointing into the commit data’s history

Figure 3.4: Multiple branches pointing into the commit’s data history

This creates a new pointer at the same commit you’re currently on (see Figure 3.4).

How does Git know what branch you’re currently on? It keeps a special pointer

called HEAD. Note that this is a lot different than the concept of HEAD in other VCSs

you may be used to, such as Subversion or CVS. In Git, this is a pointer to the local

branch you’re currently on. In this case, you’re still on master. The git branch command

only created a new branch — it didn’t switch to that branch (see Figure 3.5).

Figure 3.5: HEAD file pointing to the branch you’re on

To switch to an existing branch, you run the git checkout command. Let’s switch

to the new testing branch:

45

PRO GIT SCOTT CHACON

$ git checkout testing

This moves HEAD to point to the testing branch (see Figure 3.6).

Figure 3.6: HEAD points to another branch when you switch branches.

What is the significance of that? Well, let’s do another commit:

$ vim test.rb

$ git commit -a -m ’made a change’

Figure 3.7 illustrates the result.

Figure 3.7: The branch that HEAD points to moves forward with each commit.

This is interesting, because now your testing branch has moved forward, but your

master branch still points to the commit you were on when you ran git checkout to

switch branches. Let’s switch back to the master branch:

$ git checkout master

Figure 3.8 shows the result.

That command did two things. It moved the HEAD pointer back to point to the

master branch, and it reverted the files in your working directory back to the snapshot

that master points to. This also means the changes you make from this point forward

46

CHAPTER 3 GIT BRANCHING

Figure 3.8: HEAD moves to another branch on a checkout.

will diverge from an older version of the project. It essentially rewinds the work you’ve

done in your testing branch temporarily so you can go in a different direction.

Let’s make a few changes and commit again:

$ vim test.rb

$ git commit -a -m ’made other changes’

Now your project history has diverged (see Figure 3.9). You created and switched

to a branch, did some work on it, and then switched back to your main branch and did

other work. Both of those changes are isolated in separate branches: you can switch

back and forth between the branches and merge them together when you’re ready. And

you did all that with simple branch and checkout commands.

Figure 3.9: The branch histories have diverged.

Because a branch in Git is in actuality a simple file that contains the 40 character

SHA–1 checksum of the commit it points to, branches are cheap to create and destroy.

Creating a new branch is as quick and simple as writing 41 bytes to a file (40 characters

and a newline).

47

PRO GIT SCOTT CHACON

This is in sharp contrast to the way most VCS tools branch, which involves copying

all of the project’s files into a second directory. This can take several seconds or even

minutes, depending on the size of the project, whereas in Git the process is always

instantaneous. Also, because we’re recording the parents when we commit, finding a

proper merge base for merging is automatically done for us and is generally very easy

to do. These features help encourage developers to create and use branches often.

Let’s see why you should do so.

3.2 Basic Branching and Merging

Let’s go through a simple example of branching and merging with a workflow that you

might use in the real world. You’ll follow these steps:

1. Do work on a web site.

2. Create a branch for a new story you’re working on.

3. Do some work in that branch.

At this stage, you’ll receive a call that another issue is critical and you need a hotfix.

You’ll do the following:

1. Revert back to your production branch.

2. Create a branch to add the hotfix.

3. After it’s tested, merge the hotfix branch, and push to production.

4. Switch back to your original story and continue working.

3.2.1 Basic Branching

First, let’s say you’re working on your project and have a couple of commits already

(see Figure 3.10).

Figure 3.10: A short and simple commit history

You’ve decided that you’re going to work on issue #53 in whatever issue-tracking

system your company uses. To be clear, Git isn’t tied into any particular issue-tracking

system; but because issue #53 is a focused topic that you want to work on, you’ll create

a new branch in which to work. To create a branch and switch to it at the same time,

you can run the git checkout command with the -b switch:

$ git checkout -b iss53

Switched to a new branch "iss53"

48

CHAPTER 3 GIT BRANCHING

This is shorthand for

$ git branch iss53

$ git checkout iss53

Figure 3.11 illustrates the result.

Figure 3.11: Creating a new branch pointer

You work on your web site and do some commits. Doing so moves the iss53

branch forward, because you have it checked out (that is, your HEAD is pointing to it;

see Figure 3.12):

$ vim index.html

$ git commit -a -m ’added a new footer [issue 53]’

Figure 3.12: The iss53 branch has moved forward with your work.

Now you get the call that there is an issue with the web site, and you need to fix it

immediately. With Git, you don’t have to deploy your fix along with the iss53 changes

you’ve made, and you don’t have to put a lot of effort into reverting those changes

before you can work on applying your fix to what is in production. All you have to do

is switch back to your master branch.

However, before you do that, note that if your working directory or staging area has

uncommitted changes that conflict with the branch you’re checking out, Git won’t let

you switch branches. It’s best to have a clean working state when you switch branches.

There are ways to get around this (namely, stashing and commit amending) that we’ll

cover later. For now, you’ve committed all your changes, so you can switch back to

your master branch:

$ git checkout master

Switched to branch "master"

49

PRO GIT SCOTT CHACON

At this point, your project working directory is exactly the way it was before you

started working on issue #53, and you can concentrate on your hotfix. This is an im-

portant point to remember: Git resets your working directory to look like the snapshot

of the commit that the branch you check out points to. It adds, removes, and modifies

files automatically to make sure your working copy is what the branch looked like on

your last commit to it.

Next, you have a hotfix to make. Let’s create a hotfix branch on which to work until

it’s completed (see Figure 3.13):

$ git checkout -b ’hotfix’

Switched to a new branch "hotfix"

$ vim index.html

$ git commit -a -m ’fixed the broken email address’

[hotfix]: created 3a0874c: "fixed the broken email address"

1 files changed, 0 insertions(+), 1 deletions(-)

Figure 3.13: hotfix branch based back at your master branch point

You can run your tests, make sure the hotfix is what you want, and merge it back

into your master branch to deploy to production. You do this with the git merge com-

mand:

$ git checkout master

$ git merge hotfix

Updating f42c576..3a0874c

Fast forward

README | 1 -

1 files changed, 0 insertions(+), 1 deletions(-)

You’ll notice the phrase “Fast forward” in that merge. Because the commit pointed

to by the branch you merged in was directly upstream of the commit you’re on, Git

moves the pointer forward. To phrase that another way, when you try to merge one

commit with a commit that can be reached by following the first commit’s history, Git

simplifies things by moving the pointer forward because there is no divergent work to

merge together — this is called a “fast forward”.

Your change is now in the snapshot of the commit pointed to by the master branch,

and you can deploy your change (see Figure 3.14).

After that your super-important fix is deployed, you’re ready to switch back to the

work you were doing before you were interrupted. However, first you’ll delete the

50

CHAPTER 3 GIT BRANCHING

Figure 3.14: Your master branch points to the same place as your hotfix branch after

the merge.

hotfix branch, because you no longer need it — the master branch points at the same

place. You can delete it with the -d option to git branch :

$ git branch -d hotfix

Deleted branch hotfix (3a0874c).

Now you can switch back to your work-in-progress branch on issue #53 and con-

tinue working on it (see Figure 3.15):

$ git checkout iss53

Switched to branch "iss53"

$ vim index.html

$ git commit -a -m ’finished the new footer [issue 53]’

[iss53]: created ad82d7a: "finished the new footer [issue 53]"

1 files changed, 1 insertions(+), 0 deletions(-)

Figure 3.15: Your iss53 branch can move forward independently.

It’s worth noting here that the work you did in your hotfix branch is not contained

in the files in your iss53 branch. If you need to pull it in, you can merge your master

branch into your iss53 branch by running git merge master , or you can wait to inte-

grate those changes until you decide to pull the iss53 branch back into master later.

51

PRO GIT SCOTT CHACON

3.2.2 Basic Merging

Suppose you’ve decided that your issue #53 work is complete and ready to be merged

into your master branch. In order to do that, you’ll merge in your iss53 branch, much

like you merged in your hotfix branch earlier. All you have to do is check out the

branch you wish to merge into and then run the git merge command:

$ git checkout master

$ git merge iss53

Merge made by recursive.

README | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

This looks a bit different than the hotfix merge you did earlier. In this case, your

development history has diverged from some older point. Because the commit on the

branch you’re on isn’t a direct ancestor of the branch you’re merging in, Git has to

do some work. In this case, Git does a simple three-way merge, using the two snap-

shots pointed to by the branch tips and the common ancestor of the two. Figure 3.16

highlights the three snapshots that Git uses to do its merge in this case.

Figure 3.16: Git automatically identifies the best common-ancestor merge base for

branch merging.

Instead of just moving the branch pointer forward, Git creates a new snapshot that

results from this three-way merge and automatically creates a new commit that points

to it (see Figure 3.17). This is referred to as a merge commit and is special in that it

has more than one parent.

It’s worth pointing out that Git determines the best common ancestor to use for its

merge base; this is different than CVS or Subversion (before version 1.5), where the

developer doing the merge has to figure out the best merge base for themselves. This

makes merging a heck of a lot easier in Git than in these other systems.

Now that your work is merged in, you have no further need for the iss53 branch.

You can delete it and then manually close the ticket in your ticket-tracking system:

52

CHAPTER 3 GIT BRANCHING

Figure 3.17: Git automatically creates a new commit object that contains the merged

work.

$ git branch -d iss53

3.2.3 Basic Merge Conflicts

Occasionally, this process doesn’t go smoothly. If you changed the same part of the

same file differently in the two branches you’re merging together, Git won’t be able to

merge them cleanly. If your fix for issue #53 modified the same part of a file as the

hotfix , you’ll get a merge conflict that looks something like this:

$ git merge iss53

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

Git hasn’t automatically created a new merge commit. It has paused the process

while you resolve the conflict. If you want to see which files are unmerged at any point

after a merge conflict, you can run git status :

[master*]$ git status

index.html: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

unmerged: index.html

#

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged.

Git adds standard conflict-resolution markers to the files that have conflicts, so you can

open them manually and resolve those conflicts. Your file contains a section that looks

something like this:

<<<<<<< HEAD:index.html

<div id="footer">contact : email.support@github.com</div>

=======

<div id="footer">

please contact us at support@github.com

53

PRO GIT SCOTT CHACON

</div>

>>>>>>> iss53:index.html

This means the version in HEAD (your master branch, because that was what you

had checked out when you ran your merge command) is the top part of that block

(everything above the =======), while the version in your iss53 branch looks like ev-

erything in the bottom part. In order to resolve the conflict, you have to either choose

one side or the other or merge the contents yourself. For instance, you might resolve

this conflict by replacing the entire block with this:

<div id="footer">

please contact us at email.support@github.com

</div>

This resolution has a little of each section, and I’ve fully removed the <<<<<<< ,

======= , and >>>>>>> lines. After you’ve resolved each of these sections in each con-

flicted file, run git add on each file to mark it as resolved. Staging the file marks it as

resolved in Git. If you want to use a graphical tool to resolve these issues, you can run

git mergetool , which fires up an appropriate visual merge tool and walks you through

the conflicts:

$ git mergetool

merge tool candidates: kdiff3 tkdiff xxdiff meld gvimdiff opendiff emerge vimdiff

Merging the files: index.html

Normal merge conflict for ’index.html’:

{local}: modified

{remote}: modified

Hit return to start merge resolution tool (opendiff):

If you want to use a merge tool other than the default (Git chose opendiff for

me in this case because I ran the command on a Mac), you can see all the supported

tools listed at the top after “merge tool candidates”. Type the name of the tool you’d

rather use. In Chapter 7, we’ll discuss how you can change this default value for your

environment.

After you exit the merge tool, Git asks you if the merge was successful. If you tell

the script that it was, it stages the file to mark it as resolved for you.

You can run git status again to verify that all conflicts have been resolved:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

If you’re happy with that, and you verify that everything that had conflicts has been

staged, you can type git commit to finalize the merge commit. The commit message

by default looks something like this:

54

CHAPTER 3 GIT BRANCHING

Merge branch ’iss53’

Conflicts:

index.html

#

It looks like you may be committing a MERGE.

If this is not correct, please remove the file

.git/MERGE_HEAD

and try again.

#

You can modify that message with details about how you resolved the merge if you

think it would be helpful to others looking at this merge in the future — why you did

what you did, if it’s not obvious.

3.3 Branch Management

Now that you’ve created, merged, and deleted some branches, let’s look at some branch-

management tools that will come in handy when you begin using branches all the time.

The git branch command does more than just create and delete branches. If you

run it with no arguments, you get a simple listing of your current branches:

$ git branch

iss53

* master

testing

Notice the * character that prefixes the master branch: it indicates the branch that

you currently have checked out. This means that if you commit at this point, the master

branch will be moved forward with your new work. To see the last commit on each

branch, you can run git branch v :

$ git branch -v

iss53 93b412c fix javascript issue

* master 7a98805 Merge branch ’iss53’

testing 782fd34 add scott to the author list in the readmes

Another useful option to figure out what state your branches are in is to filter this list

to branches that you have or have not yet merged into the branch you’re currently on.

The useful --merged and --no-merged options have been available in Git since version

1.5.6 for this purpose. To see which branches are already merged into the branch you’re

on, you can run git branch merged :

$ git branch --merged

iss53

* master

Because you already merged in iss53 earlier, you see it in your list. Branches on

this list without the * in front of them are generally fine to delete with git branch -d ;

you’ve already incorporated their work into another branch, so you’re not going to lose

anything.

To see all the branches that contain work you haven’t yet merged in, you can run

git branch --no-merged :

55

PRO GIT SCOTT CHACON

$ git branch --no-merged

testing

This shows your other branch. Because it contains work that isn’t merged in yet,

trying to delete it with git branch -d will fail:

$ git branch -d testing

error: The branch ’testing’ is not an ancestor of your current HEAD.

If you are sure you want to delete it, run git branch -D testing . If you really do

want to delete the branch and lose that work, you can force it with -D, as the helpful

message points out.

3.4 Branching Workflows

Now that you have the basics of branching and merging down, what can or should

you do with them? In this section, we’ll cover some common workflows that this

lightweight branching makes possible, so you can decide if you would like to incorpo-

rate it into your own development cycle.

3.4.1 Long-Running Branches

Because Git uses a simple three-way merge, merging from one branch into another

multiple times over a long period is generally easy to do. This means you can have

several branches that are always open and that you use for different stages of your

development cycle; you can merge regularly from some of them into others.

Many Git developers have a workflow that embraces this approach, such as having

only code that is entirely stable in their master branch — possibly only code that has

been or will be released. They have another parallel branch named develop or next that

they work from or use to test stability— it isn’t necessarily always stable, but whenever

it gets to a stable state, it can be merged into master . It’s used to pull in topic branches

(short-lived branches, like your earlier iss53 branch) when they’re ready, to make sure

they pass all the tests and don’t introduce bugs.

In reality, we’re talking about pointers moving up the line of commits you’re mak-

ing. The stable branches are farther down the line in your commit history, and the

bleeding-edge branches are farther up the history (see Figure 3.18).

Figure 3.18: More stable branches are generally farther down the commit history.

It’s generally easier to think about them as work silos, where sets of commits grad-

uate to a more stable silo when they’re fully tested (see Figure 3.19).

You can keep doing this for several levels of stability. Some larger projects also

have a proposed or pu (proposed updates) branch that has integrated branches that may

not be ready to go into the next or master branch. The idea is that your branches are at

various levels of stability; when they reach a more stable level, they’re merged into the

56

CHAPTER 3 GIT BRANCHING

Figure 3.19: It may be helpful to think of your branches as silos.

branch above them. Again, having multiple long-running branches isn’t necessary, but

it’s often helpful, especially when you’re dealing with very large or complex projects.

3.4.2 Topic Branches

Topic branches, however, are useful in projects of any size. A topic branch is a short-

lived branch that you create and use for a single particular feature or related work. This

is something you’ve likely never done with a VCS before because it’s generally too

expensive to create and merge branches. But in Git it’s common to create, work on,

merge, and delete branches several times a day.

You saw this in the last section with the iss53 and hotfix branches you created.

You did a few commits on them and deleted them directly after merging them into your

main branch. This technique allows you to context-switch quickly and completely —

because your work is separated into silos where all the changes in that branch have to

do with that topic, it’s easier to see what has happened during code review and such.

You can keep the changes there for minutes, days, or months, and merge them in when

they’re ready, regardless of the order in which they were created or worked on.

Consider an example of doing some work (on master), branching off for an issue

(iss91), working on it for a bit, branching off the second branch to try another way

of handling the same thing (iss91v2), going back to your master branch and working

there for a while, and then branching off there to do some work that you’re not sure is

a good idea (dumbidea branch). Your commit history will look something like Figure

3.20.

Now, let’s say you decide you like the second solution to your issue best (iss91v2);

and you showed the dumbidea branch to your coworkers, and it turns out to be genius.

You can throw away the original iss91 branch (losing commits C5 and C6) and merge

in the other two. Your history then looks like Figure 3.21.

It’s important to remember when you’re doing all this that these branches are com-

pletely local. When you’re branching and merging, everything is being done only in

your Git repository — no server communication is happening.

57

PRO GIT SCOTT CHACON

Figure 3.20: Your commit history with multiple topic branches

Figure 3.21: Your history after merging in dumbidea and iss91v2

3.5 Remote Branches

Remote branches are references to the state of branches on your remote repositories.

They’re local branches that you can’t move; they’re moved automatically whenever

you do any network communication. Remote branches act as bookmarks to remind

58

CHAPTER 3 GIT BRANCHING

you where the branches on your remote repositories were the last time you connected

to them.

They take the form (remote)/(branch) . For instance, if you wanted to see what the

master branch on your origin remote looked like as of the last time you communicated

with it, you would check the origin/master branch. If you were working on an issue

with a partner and they pushed up an iss53 branch, you might have your own local

iss53 branch; but the branch on the server would point to the commit at origin/iss53 .

This may be a bit confusing, so let’s look at an example. Let’s say you have a Git

server on your network at git.ourcompany.com . If you clone from this, Git automat-

ically names it origin for you, pulls down all its data, creates a pointer to where its

master branch is, and names it origin/master locally; and you can’t move it. Git also

gives you your own master branch starting at the same place as origin’s master branch,

so you have something to work from (see Figure 3.22).

Figure 3.22: A Git clone gives you your own master branch and origin/master pointing

to origin’s master branch.

If you do some work on your local master branch, and, in the meantime, someone

else pushes to git.ourcompany.com and updates its master branch, then your histories

move forward differently. Also, as long as you stay out of contact with your origin

server, your origin/master pointer doesn’t move (see Figure 3.23).

To synchronize your work, you run a git fetch origin command. This command

looks up which server origin is (in this case, it’s git.ourcompany.com), fetches any

data from it that you don’t yet have, and updates your local database, moving your

origin/master pointer to its new, more up-to-date position (see Figure 3.24).

To demonstrate having multiple remote servers and what remote branches for those

remote projects look like, let’s assume you have another internal Git server that is used

only for development by one of your sprint teams. This server is at git.team1.ourcompany.com .

You can add it as a new remote reference to the project you’re currently working on by

59

PRO GIT SCOTT CHACON

Figure 3.23: Working locally and having someone push to your remote server makes

each history move forward differently.

Figure 3.24: The git fetch command updates your remote references.

running the git remote add command as we covered in Chapter 2. Name this remote

teamone , which will be your shortname for that whole URL (see Figure 3.25).

Now, you can run git fetch teamone to fetch everything server has that you don’t

have yet. Because that server is a subset of the data your origin server has right now,

Git fetches no data but sets a remote branch called teamone/master to point to the

commit that teamone has as its master branch (see Figure 3.26).

60

CHAPTER 3 GIT BRANCHING

Figure 3.25: Adding another server as a remote

Figure 3.26: You get a reference to teamone’s master branch position locally.

3.5.1 Pushing

When you want to share a branch with the world, you need to push it up to a remote

that you have write access to. Your local branches aren’t automatically synchronized to

the remotes you write to — you have to explicitly push the branches you want to share.

That way, you can use private branches do work you don’t want to share, and push up

only the topic branches you want to collaborate on.

If you have a branch named serverfix that you want to work on with others, you

can push it up the same way you pushed your first branch. Run git push (remote)

(branch) :

61

PRO GIT SCOTT CHACON

$ git push origin serverfix

Counting objects: 20, done.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (15/15), 1.74 KiB, done.

Total 15 (delta 5), reused 0 (delta 0)

To git@github.com:schacon/simplegit.git

* [new branch] serverfix -> serverfix

This is a bit of a shortcut. Git automatically expands the serverfix branchname

out to refs/heads/serverfix:refs/heads/serverfix , which means, “Take my server-

fix local branch and push it to update the remote’s serverfix branch.” We’ll go over

the refs/heads/ part in detail in Chapter 9, but you can generally leave it off. You

can also do git push origin serverfix:serverfix , which does the same thing — it

says, “Take my serverfix and make it the remote’s serverfix.” You can use this format

to push a local branch into a remote branch that is named differently. If you didn’t

want it to be called serverfix on the remote, you could instead run git push origin

serverfix:awesomebranch to push your local serverfix branch to the awesomebranch

branch on the remote project.

The next time one of your collaborators fetches from the server, they will get

a reference to where the server’s version of serverfix is under the remote branch

origin/serverfix :

$ git fetch origin

remote: Counting objects: 20, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 15 (delta 5), reused 0 (delta 0)

Unpacking objects: 100% (15/15), done.

From git@github.com:schacon/simplegit

* [new branch] serverfix -> origin/serverfix

It’s important to note that when you do a fetch that brings down new remote

branches, you don’t automatically have local, editable copies of them. In other words,

in this case, you don’t have a new serverfix branch— you only have an origin/serverfix

pointer that you can’t modify.

To merge this work into your current working branch, you can run git merge

origin/serverfix . If you want your own serverfix branch that you can work on,

you can base it off your remote branch:

$ git checkout -b serverfix origin/serverfix

Branch serverfix set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "serverfix"

This gives you a local branch that you can work on that starts where origin/serverfix

is.

3.5.2 Tracking Branches

Checking out a local branch from a remote branch automatically creates what is called

a tracking branch. Tracking branches are local branches that have a direct relationship

to a remote branch. If you’re on a tracking branch and type git push, Git automatically

knows which server and branch to push to. Also, running git pull while on one of

62

CHAPTER 3 GIT BRANCHING

these branches fetches all the remote references and then automatically merges in the

corresponding remote branch.

When you clone a repository, it generally automatically creates a master branch that

tracks origin/master . That’s why git push and git pull work out of the box with no

other arguments. However, you can set up other tracking branches if you wish — ones

that don’t track branches on origin and don’t track the master branch. The simple case

is the example you just saw, running git checkout -b [branch] [remotename]/[branch] .

If you have Git version 1.6.2 or later, you can also use the --track shorthand:

$ git checkout --track origin/serverfix

Branch serverfix set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "serverfix"

To set up a local branch with a different name than the remote branch, you can

easily use the first version with a different local branch name:

$ git checkout -b sf origin/serverfix

Branch sf set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "sf"

Now, your local branch sf will automatically push to and pull from origin/serverfix.

3.5.3 Deleting Remote Branches

Suppose you’re done with a remote branch — say, you and your collaborators are fin-

ished with a feature and have merged it into your remote’s master branch (or whatever

branch your stable codeline is in). You can delete a remote branch using the rather ob-

tuse syntax git push [remotename] :[branch] . If you want to delete your serverfix

branch from the server, you run the following:

$ git push origin :serverfix

To git@github.com:schacon/simplegit.git

- [deleted] serverfix

Boom. No more branch on your server. You may want to dog-ear this page, because

you’ll need that command, and you’ll likely forget the syntax. A way to remember this

command is by recalling the git push [remotename] [localbranch]:[remotebranch]

syntax that we went over a bit earlier. If you leave off the [localbranch] portion, then

you’re basically saying, “Take nothing on my side and make it be [remotebranch] .”

3.6 Rebasing

In Git, there are two main ways to integrate changes from one branch into another: the

merge and the rebase . In this section you’ll learn what rebasing is, how to do it, why

it’s a pretty amazing tool, and in what cases you won’t want to use it.

63

PRO GIT SCOTT CHACON

Figure 3.27: Your initial diverged commit history

3.6.1 The Basic Rebase

If you go back to an earlier example from the Merge section (see Figure 3.27), you can

see that you diverged your work and made commits on two different branches.

The easiest way to integrate the branches, as we’ve already covered, is the merge

command. It performs a three-way merge between the two latest branch snapshots (C3

and C4) and the most recent common ancestor of the two (C2), creating a new snapshot

(and commit), as shown in Figure 3.28.

Figure 3.28: Merging a branch to integrate the diverged work history

However, there is another way: you can take the patch of the change that was

introduced in C3 and reapply it on top of C4. In Git, this is called rebasing. With the

rebase command, you can take all the changes that were committed on one branch and

replay them on another one.

In this example, you’d run the following:

$ git checkout experiment

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: added staged command

It works by going to the common ancestor of the two branches (the one you’re on

and the one you’re rebasing onto), getting the diff introduced by each commit of the

branch you’re on, saving those diffs to temporary files, resetting the current branch to

the same commit as the branch you are rebasing onto, and finally applying each change

in turn. Figure 3.29 illustrates this process.

64

CHAPTER 3 GIT BRANCHING

Figure 3.29: Rebasing the change introduced in C3 onto C4

At this point, you can go back to the master branch and do a fast-forward merge

(see Figure 3.30).

Figure 3.30: Fast-forwarding the master branch

Now, the snapshot pointed to by C3 is exactly the same as the one that was pointed

to by C5 in the merge example. There is no difference in the end product of the inte-

gration, but rebasing makes for a cleaner history. If you examine the log of a rebased

branch, it looks like a linear history: it appears that all the work happened in series,

even when it originally happened in parallel.

Often, you’ll do this to make sure your commits apply cleanly on a remote branch

— perhaps in a project to which you’re trying to contribute but that you don’t main-

tain. In this case, you’d do your work in a branch and then rebase your work onto

origin/master when you were ready to submit your patches to the main project. That

way, the maintainer doesn’t have to do any integration work — just a fast-forward or a

clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether it’s

the last of the rebased commits for a rebase or the final merge commit after a merge, is

the same snapshot — it’s only the history that is different. Rebasing replays changes

from one line of work onto another in the order they were introduced, whereas merging

takes the endpoints and merges them together.

3.6.2 More Interesting Rebases

You can also have your rebase replay on something other than the rebase branch. Take

a history like Figure 3.31, for example. You branched a topic branch (server) to add

some server-side functionality to your project, and made a commit. Then, you branched

off that to make the client-side changes (client) and committed a few times. Finally,

you went back to your server branch and did a few more commits.

Suppose you decide that you want to merge your client-side changes into your

mainline for a release, but you want to hold off on the server-side changes until it’s

65

PRO GIT SCOTT CHACON

Figure 3.31: A history with a topic branch off another topic branch

tested further. You can take the changes on client that aren’t on server (C8 and C9) and

replay them on your master branch by using the --onto option of git rebase :

$ git rebase --onto master server client

This basically says, “Check out the client branch, figure out the patches from

the common ancestor of the client and server branches, and then replay them onto

master .” It’s a bit complex; but the result, shown in Figure 3.32, is pretty cool.

Figure 3.32: Rebasing a topic branch off another topic branch

Now you can fast-forward your master branch (see Figure 3.33):

$ git checkout master

$ git merge client

66

CHAPTER 3 GIT BRANCHING

Figure 3.33: Fast-forwarding your master branch to include the client branch changes

Let’s say you decide to pull in your server branch as well. You can rebase the

server branch onto the master branch without having to check it out first by running

git rebase [basebranch] [topicbranch] — which checks out the topic branch (in

this case, server) for you and replays it onto the base branch (master):

$ git rebase master server

This replays your server work on top of your master work, as shown in Figure

3.34.

Figure 3.34: Rebasing your server branch on top of your master branch

Then, you can fast-forward the base branch (master):

$ git checkout master

$ git merge server

You can remove the client and server branches because all the work is integrated

and you don’t need them anymore, leaving your history for this entire process looking

like Figure 3.35:

$ git branch -d client

$ git branch -d server

Figure 3.35: Final commit history

67

PRO GIT SCOTT CHACON

3.6.3 The Perils of Rebasing

Ahh, but the bliss of rebasing isn’t without its drawbacks, which can be summed up in

a single line:

Do not rebase commits that you have pushed to a public repository.

If you follow that guideline, you’ll be fine. If you don’t, people will hate you, and

you’ll be scorned by friends and family.

When you rebase stuff, you’re abandoning existing commits and creating new ones

that are similar but different. If you push commits somewhere and others pull them

down and base work on them, and then you rewrite those commits with git rebase

and push them up again, your collaborators will have to re-merge their work and things

will get messy when you try to pull their work back into yours.

Let’s look at an example of how rebasing work that you’ve made public can cause

problems. Suppose you clone from a central server and then do some work off that.

Your commit history looks like Figure 3.36.

Figure 3.36: Clone a repository, and base some work on it.

Now, someone else does more work that includes a merge, and pushes that work to

the central server. You fetch them and merge the new remote branch into your work,

making your history look something like Figure 3.37.

Next, the person who pushed the merged work decides to go back and rebase their

work instead; they do a git push --force to overwrite the history on the server. You

then fetch from that server, bringing down the new commits.

At this point, you have to merge this work in again, even though you’ve already

done so. Rebasing changes the SHA–1 hashes of these commits so to Git they look

like new commits, when in fact you already have the C4 work in your history (see

Figure 3.39).

You have to merge that work in at some point so you can keep up with the other

developer in the future. After you do that, your commit history will contain both the

C4 and C4’ commits, which have different SHA–1 hashes but introduce the same work

and have the same commit message. If you run a git log when your history looks

like this, you’ll see two commits that have the same author date and message, which

68

CHAPTER 3 GIT BRANCHING

Figure 3.37: Fetch more commits, and merge them into your work.

Figure 3.38: Someone pushes rebased commits, abandoning commits you’ve based

your work on.

will be confusing. Furthermore, if you push this history back up to the server, you’ll

reintroduce all those rebased commits to the central server, which can further confuse

people.

If you treat rebasing as a way to clean up and work with commits before you push

them, and if you only rebase commits that have never been available publicly, then

you’ll be fine. If you rebase commits that have already been pushed publicly, and

people may have based work on those commits, then you may be in for some frustrating

trouble.

69

PRO GIT SCOTT CHACON

Figure 3.39: You merge in the same work again into a new merge commit.

3.7 Summary

We’ve covered basic branching and merging in Git. You should feel comfortable cre-

ating and switching to new branches, switching between branches and merging local

branches together. You should also be able to share your branches by pushing them to

a shared server, working with others on shared branches and rebasing your branches

before they are shared.

70

Chapter 4

Git on the Server

At this point, you should be able to do most of the day-to-day tasks for which you’ll

be using Git. However, in order to do any collaboration in Git, you’ll need to have a

remote Git repository. Although you can technically push changes to and pull changes

from individuals’ repositories, doing so is discouraged because you can fairly easily

confuse what they’re working on if you’re not careful. Furthermore, you want your

collaborators to be able to access the repository even if your computer is offline —

having a more reliable common repository is often useful. Therefore, the preferred

method for collaborating with someone is to set up an intermediate repository that you

both have access to, and push to and pull from that. We’ll refer to this repository as a

“Git server”; but you’ll notice that it generally takes a tiny amount of resources to host

a Git repository, so you’ll rarely need to use an entire server for it.

Running a Git server is simple. First, you choose which protocols you want your

server to communicate with. The first section of this chapter will cover the available

protocols and the pros and cons of each. The next sections will explain some typical

setups using those protocols and how to get your server running with them. Last, we’ll

go over a few hosted options, if you don’t mind hosting your code on someone else’s

server and don’t want to go through the hassle of setting up and maintaining your own

server.

If you have no interest in running your own server, you can skip to the last section

of the chapter to see some options for setting up a hosted account and then move on to

the next chapter, where we discuss the various ins and outs of working in a distributed

source control environment.

A remote repository is generally a bare repository — a Git repository that has no

working directory. Because the repository is only used as a collaboration point, there is

no reason to have a snapshot checked out on disk; it’s just the Git data. In the simplest

terms, a bare repository is the contents of your project’s .git directory and nothing

else.

4.1 The Protocols

Git can use four major network protocols to transfer data: Local, Secure Shell (SSH),

Git, and HTTP. Here we’ll discuss what they are and in what basic circumstances you

would want (or not want) to use them.

71

PRO GIT SCOTT CHACON

It’s important to note that with the exception of the HTTP protocols, all of these

require Git to be installed and working on the server.

4.1.1 Local Protocol

The most basic is the Local protocol, in which the remote repository is in another

directory on disk. This is often used if everyone on your team has access to a shared

filesystem such as an NFS mount, or in the less likely case that everyone logs in to the

same computer. The latter wouldn’t be ideal, because all your code repository instances

would reside on the same computer, making a catastrophic loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from

a local file-based repository. To clone a repository like this or to add one as a remote

to an existing project, use the path to the repository as the URL. For example, to clone

a local repository, you can run something like this:

$ git clone /opt/git/project.git

Or you can do this:

$ git clone file:///opt/git/project.git

Git operates slightly differently if you explicitly specify file:// at the beginning

of the URL. If you just specify the path, Git tries to use hardlinks or directly copy

the files it needs. If you specify file:// , Git fires up the processes that it normally

uses to transfer data over a network which is generally a lot less efficient method of

transferring the data. The main reason to specify the file:// prefix is if you want a

clean copy of the repository with extraneous references or objects left out — generally

after an import from another version-control system or something similar (see Chapter

9 for maintenance tasks). We’ll use the normal path here because doing so is almost

always faster.

To add a local repository to an existing Git project, you can run something like this:

$ git remote add local_proj /opt/git/project.git

Then, you can push to and pull from that remote as though you were doing so over

a network.

The Pros

The pros of file-based repositories are that they’re simple and they use existing

file permissions and network access. If you already have a shared filesystem to which

your whole team has access, setting up a repository is very easy. You stick the bare

repository copy somewhere everyone has shared access to and set the read/write per-

missions as you would for any other shared directory. We’ll discuss how to export a

bare repository copy for this purpose in the next section, “Getting Git on a Server.”

This is also a nice option for quickly grabbing work from someone else’s working

repository. If you and a co-worker are working on the same project and they want

you to check something out, running a command like git pull /home/john/project

is often easier than them pushing to a remote server and you pulling down.

The Cons

The cons of this method are that shared access is generally more difficult to set up

and reach from multiple locations than basic network access. If you want to push from

72

CHAPTER 4 GIT ON THE SERVER

your laptop when you’re at home, you have to mount the remote disk, which can be

difficult and slow compared to network-based access.

It’s also important to mention that this isn’t necessarily the fastest option if you’re

using a shared mount of some kind. A local repository is fast only if you have fast

access to the data. A repository on NFS is often slower than the repository over SSH

on the same server, allowing Git to run off local disks on each system.

4.1.2 The SSH Protocol

Probably the most common transport protocol for Git is SSH. This is because SSH

access to servers is already set up in most places — and if it isn’t, it’s easy to do. SSH

is also the only network-based protocol that you can easily read from and write to. The

other two network protocols (HTTP and Git) are generally read-only, so even if you

have them available for the unwashed masses, you still need SSH for your own write

commands. SSH is also an authenticated network protocol; and because it’s ubiquitous,

it’s generally easy to set up and use.

To clone a Git repository over SSH, you can specify ssh:// URL like this:

$ git clone ssh://user@server:project.git

Or you can not specify a protocol — Git assumes SSH if you aren’t explicit:

$ git clone user@server:project.git

You can also not specify a user, and Git assumes the user you’re currently logged

in as.

The Pros

The pros of using SSH are many. First, you basically have to use it if you want

authenticated write access to your repository over a network. Second, SSH is rela-

tively easy to set up — SSH daemons are commonplace, many network admins have

experience with them, and many OS distributions are set up with them or have tools

to manage them. Next, access over SSH is secure — all data transfer is encrypted and

authenticated. Last, like the Git and Local protocols, SSH is efficient, making the data

as compact as possible before transferring it.

The Cons

The negative aspect of SSH is that you can’t serve anonymous access of your repos-

itory over it. People must have access to your machine over SSH to access it, even in a

read-only capacity, which doesn’t make SSH access conducive to open source projects.

If you’re using it only within your corporate network, SSH may be the only proto-

col you need to deal with. If you want to allow anonymous read-only access to your

projects, you’ll have to set up SSH for you to push over but something else for others

to pull over.

4.1.3 The Git Protocol

Next is the Git protocol. This is a special daemon that comes packaged with Git; it

listens on a dedicated port (9418) that provides a service similar to the SSH protocol,

but with absolutely no authentication. In order for a repository to be served over the Git

protocol, you must create the git-export-daemon-ok file — the daemon won’t serve a

repository without that file in it — but other than that there is no security. Either the

73

PRO GIT SCOTT CHACON

Git repository is available for everyone to clone or it isn’t. This means that there is

generally no pushing over this protocol. You can enable push access; but given the lack

of authentication, if you turn on push access, anyone on the internet who finds your

project’s URL could push to your project. Suffice it to say that this is rare.

The Pros

The Git protocol is the fastest transfer protocol available. If you’re serving a lot

of traffic for a public project or serving a very large project that doesn’t require user

authentication for read access, it’s likely that you’ll want to set up a Git daemon to

serve your project. It uses the same data-transfer mechanism as the SSH protocol but

without the encryption and authentication overhead.

The Cons

The downside of the Git protocol is the lack of authentication. It’s generally un-

desirable for the Git protocol to be the only access to your project. Generally, you’ll

pair it with SSH access for the few developers who have push (write) access and have

everyone else use git:// for read-only access. It’s also probably the most difficult pro-

tocol to set up. It must run its own daemon, which is custom — we’ll look at setting

one up in the “Gitosis” section of this chapter — it requires xinetd configuration or the

like, which isn’t always a walk in the park. It also requires firewall access to port 9418,

which isn’t a standard port that corporate firewalls always allow. Behind big corporate

firewalls, this obscure port is commonly blocked.

4.1.4 The HTTP/S Protocol

Last we have the HTTP protocol. The beauty of the HTTP or HTTPS protocol is the

simplicity of setting it up. Basically, all you have to do is put the bare Git repository

under your HTTP document root and set up a specific post-update hook, and you’re

done (See Chapter 7 for details on Git hooks). At that point, anyone who can access

the web server under which you put the repository can also clone your repository. To

allow read access to your repository over HTTP, do something like this:

$ cd /var/www/htdocs/

$ git clone --bare /path/to/git_project gitproject.git

$ cd gitproject.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

That’s all. The post-update hook that comes with Git by default runs the appro-

priate command (git update-server-info) to make HTTP fetching and cloning work

properly. This command is run when you push to this repository over SSH; then, other

people can clone via something like

$ git clone http://example.com/gitproject.git

In this particular case, we’re using the /var/www/htdocs path that is common for

Apache setups, but you can use any static web server — just put the bare repository

in its path. The Git data is served as basic static files (see Chapter 9 for details about

exactly how it’s served).

It’s possible to make Git push over HTTP as well, although that technique isn’t

as widely used and requires you to set up complex WebDAV requirements. Because

it’s rarely used, we won’t cover it in this book. If you’re interested in using the

74

CHAPTER 4 GIT ON THE SERVER

HTTP-push protocols, you can read about preparing a repository for this purpose at

http://www.kernel.org/pub/software/scm/git/docs/howto/setup-git-server-over-http.txt .

One nice thing about making Git push over HTTP is that you can use any WebDAV

server, without specific Git features; so, you can use this functionality if your web-

hosting provider supports WebDAV for writing updates to your web site.

The Pros

The upside of using the HTTP protocol is that it’s easy to set up. Running the

handful of required commands gives you a simple way to give the world read access to

your Git repository. It takes only a few minutes to do. The HTTP protocol also isn’t

very resource intensive on your server. Because it generally uses a static HTTP server

to serve all the data, a normal Apache server can serve thousands of files per second on

average — it’s difficult to overload even a small server.

You can also serve your repositories read-only over HTTPS, which means you can

encrypt the content transfer; or you can go so far as to make the clients use specific

signed SSL certificates. Generally, if you’re going to these lengths, it’s easier to use

SSH public keys; but it may be a better solution in your specific case to use signed

SSL certificates or other HTTP-based authentication methods for read-only access over

HTTPS.

Another nice thing is that HTTP is such a commonly used protocol that corporate

firewalls are often set up to allow traffic through this port.

The Cons

The downside of serving your repository over HTTP is that it’s relatively inefficient

for the client. It generally takes a lot longer to clone or fetch from the repository, and

you often have a lot more network overhead and transfer volume over HTTP than with

any of the other network protocols. Because it’s not as intelligent about transferring

only the data you need — there is no dynamic work on the part of the server in these

transactions — the HTTP protocol is often referred to as a dumb protocol. For more

information about the differences in efficiency between the HTTP protocol and the

other protocols, see Chapter 9.

4.2 Getting Git on a Server

In order to initially set up any Git server, you have to export an existing repository into

a new bare repository — a repository that doesn’t contain a working directory. This is

generally straightforward to do. In order to clone your repository to create a new bare

repository, you run the clone command with the --bare option. By convention, bare

repository directories end in .git , like so:

$ git clone --bare my_project my_project.git

Initialized empty Git repository in /opt/projects/my_project.git/

The output for this command is a little confusing. Since clone is basically a git

init then a git fetch , we see some output from the git init part, which creates an

empty directory. The actual object transfer gives no output, but it does happen. You

should now have a copy of the Git directory data in your my project.git directory.

This is roughly equivalent to something like

$ cp -Rf my_project/.git my_project.git

75

PRO GIT SCOTT CHACON

There are a couple of minor differences in the configuration file; but for your pur-

pose, this is close to the same thing. It takes the Git repository by itself, without a

working directory, and creates a directory specifically for it alone.

4.2.1 Putting the Bare Repository on a Server

Now that you have a bare copy of your repository, all you need to do is put it on a server

and set up your protocols. Let’s say you’ve set up a server called git.example.com

that you have SSH access to, and you want to store all your Git repositories under

the /opt/git directory. You can set up your new repository by copying your bare

repository over:

$ scp -r my_project.git user@git.example.com:/opt/git

At this point, other users who have SSH access to the same server which has read-

access to the /opt/git directory can clone your repository by running

$ git clone user@git.example.com:/opt/git/my_project.git

If a user SSHs into a server and has write access to the /opt/git/my project.git

directory, they will also automatically have push access. Git will automatically add

group write permissions to a repository properly if you run the git init command

with the --shared option.

$ ssh user@git.example.com

$ cd /opt/git/my_project.git

$ git init --bare --shared

You see how easy it is to take a Git repository, create a bare version, and place it

on a server to which you and your collaborators have SSH access. Now you’re ready

to collaborate on the same project.

It’s important to note that this is literally all you need to do to run a useful Git

server to which several people have access — just add SSH-able accounts on a server,

and stick a bare repository somewhere that all those users have read and write access

to. You’re ready to go — nothing else needed.

In the next few sections, you’ll see how to expand to more sophisticated setups.

This discussion will include not having to create user accounts for each user, adding

public read access to repositories, setting up web UIs, using the Gitosis tool, and more.

However, keep in mind that to collaborate with a couple of people on a private project,

all you need is an SSH server and a bare repository.

4.2.2 Small Setups

If you’re a small outfit or are just trying out Git in your organization and have only

a few developers, things can be simple for you. One of the most complicated aspects

of setting up a Git server is user management. If you want some repositories to be

read-only to certain users and read/write to others, access and permissions can be a bit

difficult to arrange.

SSH Access

If you already have a server to which all your developers have SSH access, it’s

generally easiest to set up your first repository there, because you have to do almost

76

CHAPTER 4 GIT ON THE SERVER

no work (as we covered in the last section). If you want more complex access control

type permissions on your repositories, you can handle them with the normal filesystem

permissions of the operating system your server runs.

If you want to place your repositories on a server that doesn’t have accounts for

everyone on your team whom you want to have write access, then you must set up SSH

access for them. We assume that if you have a server with which to do this, you already

have an SSH server installed, and that’s how you’re accessing the server.

There are a few ways you can give access to everyone on your team. The first is to

set up accounts for everybody, which is straightforward but can be cumbersome. You

may not want to run adduser and set temporary passwords for every user.

A second method is to create a single ‘git’ user on the machine, ask every user

who is to have write access to send you an SSH public key, and add that key to the

/.ssh/authorized keys file of your new ‘git’ user. At that point, everyone will be able

to access that machine via the ‘git’ user. This doesn’t affect the commit data in any

way — the SSH user you connect as doesn’t affect the commits you’ve recorded.

Another way to do it is to have your SSH server authenticate from an LDAP server

or some other centralized authentication source that you may already have set up. As

long as each user can get shell access on the machine, any SSH authentication mecha-

nism you can think of should work.

4.3 Generating Your SSH Public Key

That being said, many Git servers authenticate using SSH public keys. In order to

provide a public key, each user in your system must generate one if they don’t already

have one. This process is similar across all operating systems. First, you should check

to make sure you don’t already have a key. By default, a user’s SSH keys are stored in

that user’s /.ssh directory. You can easily check to see if you have a key already by

going to that directory and listing the contents:

$ cd /̃.ssh

$ ls

authorized_keys2 id_dsa known_hosts

config id_dsa.pub

You’re looking for a pair of files named something and something.pub, where the

something is usually id dsa or id rsa . The .pub file is your public key, and the other

file is your private key. If you don’t have these files (or you don’t even have a .ssh

directory), you can create them by running a program called ssh-keygen , which is

provided with the SSH package on Linux/Mac systems and comes with the MSysGit

package on Windows:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/schacon/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /Users/schacon/.ssh/id_rsa.

Your public key has been saved in /Users/schacon/.ssh/id_rsa.pub.

The key fingerprint is:

43:c5:5b:5f:b1:f1:50:43:ad:20:a6:92:6a:1f:9a:3a schacon@agadorlaptop.local

77

PRO GIT SCOTT CHACON

First it confirms where you want to save the key (.ssh/id rsa), and then it asks

twice for a passphrase, which you can leave empty if you don’t want to type a password

when you use the key.

Now, each user that does this has to send their public key to you or whoever is

administrating the Git server (assuming you’re using an SSH server setup that requires

public keys). All they have to do is copy the contents of the .pub file and e-mail it. The

public keys look something like this:

$ cat /̃.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAklOUpkDHrfHY17SbrmTIpNLTGK9Tjom/BWDSU

GPl+nafzlHDTYW7hdI4yZ5ew18JH4JW9jbhUFrviQzM7xlELEVf4h9lFX5QVkbPppSwg0cda3

Pbv7kOdJ/MTyBlWXFCR+HAo3FXRitBqxiX1nKhXpHAZsMciLq8V6RjsNAQwdsdMFvSlVK/7XA

t3FaoJoAsncM1Q9x5+3V0Ww68/eIFmb1zuUFljQJKprrX88XypNDvjYNby6vw/Pb0rwert/En

mZ+AW4OZPnTPI89ZPmVMLuayrD2cE86Z/il8b+gw3r3+1nKatmIkjn2so1d01QraTlMqVSsbx

NrRFi9wrf+M7Q== schacon@agadorlaptop.local

For a more in-depth tutorial on creating an SSH key on multiple operating systems,

see the GitHub guide on SSH keys at http://github.com/guides/providing-your-ssh-key .

4.4 Setting Up the Server

Let’s walk through setting up SSH access on the server side. In this example, you’ll

use the authorized keys method for authenticating your users. We also assume you’re

running a standard Linux distribution like Ubuntu. First, you create a ‘git’ user and a

.ssh directory for that user.

$ sudo adduser git

$ su git

$ cd

$ mkdir .ssh

Next, you need to add some developer SSH public keys to the authorized keys file

for that user. Let’s assume you’ve received a few keys by e-mail and saved them to

temporary files. Again, the public keys look something like this:

$ cat /tmp/id_rsa.john.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCB007n/ww+ouN4gSLKssMxXnBOvf9LGt4L

ojG6rs6hPB09j9R/T17/x4lhJA0F3FR1rP6kYBRsWj2aThGw6HXLm9/5zytK6Ztg3RPKK+4k

Yjh6541NYsnEAZuXz0jTTyAUfrtU3Z5E003C4oxOj6H0rfIF1kKI9MAQLMdpGW1GYEIgS9Ez

Sdfd8AcCIicTDWbqLAcU4UpkaX8KyGlLwsNuuGztobF8m72ALC/nLF6JLtPofwFBlgc+myiv

O7TCUSBdLQlgMVOFq1I2uPWQOkOWQAHukEOmfjy2jctxSDBQ220ymjaNsHT4kgtZg2AYYgPq

dAv8JggJICUvax2T9va5 gsg-keypair

You just append them to your authorized keys file:

$ cat /tmp/id_rsa.john.pub >> /̃.ssh/authorized_keys

$ cat /tmp/id_rsa.josie.pub >> /̃.ssh/authorized_keys

$ cat /tmp/id_rsa.jessica.pub >> /̃.ssh/authorized_keys

Now, you can set up an empty repository for them by running git init with the

--bare option, which initializes the repository without a working directory:

78

CHAPTER 4 GIT ON THE SERVER

$ cd /opt/git

$ mkdir project.git

$ cd project.git

$ git --bare init

Then, John, Josie, or Jessica can push the first version of their project into that

repository by adding it as a remote and pushing up a branch. Note that someone must

shell onto the machine and create a bare repository every time you want to add a project.

Let’s use gitserver as the hostname of the server on which you’ve set up your ‘git’

user and repository. If you’re running it internally, and you set up DNS for gitserver

to point to that server, then you can use the commands pretty much as is:

on Johns computer

$ cd myproject

$ git init

$ git add .

$ git commit -m ’initial commit’

$ git remote add origin git@gitserver:/opt/git/project.git

$ git push origin master

At this point, the others can clone it down and push changes back up just as easily:

$ git clone git@gitserver:/opt/git/project.git

$ vim README

$ git commit -am ’fix for the README file’

$ git push origin master

With this method, you can quickly get a read/write Git server up and running for a

handful of developers.

As an extra precaution, you can easily restrict the ‘git’ user to only doing Git activ-

ities with a limited shell tool called git-shell that comes with Git. If you set this as

your ‘git’ user’s login shell, then the ‘git’ user can’t have normal shell access to your

server. To use this, specify git-shell instead of bash or csh for your user’s login shell.

To do so, you’ll likely have to edit your /etc/passwd file:

$ sudo vim /etc/passwd

At the bottom, you should find a line that looks something like this:

git:x:1000:1000::/home/git:/bin/sh

Change /bin/sh to /usr/bin/git-shell (or run which git-shell to see where it’s

installed). The line should look something like this:

git:x:1000:1000::/home/git:/usr/bin/git-shell

Now, the ‘git’ user can only use the SSH connection to push and pull Git repos-

itories and can’t shell onto the machine. If you try, you’ll see a login rejection like

this:

$ ssh git@gitserver

fatal: What do you think I am? A shell?

Connection to gitserver closed.

79

PRO GIT SCOTT CHACON

4.5 Public Access

What if you want anonymous read access to your project? Perhaps instead of hosting

an internal private project, you want to host an open source project. Or maybe you

have a bunch of automated build servers or continuous integration servers that change

a lot, and you don’t want to have to generate SSH keys all the time — you just want to

add simple anonymous read access.

Probably the simplest way for smaller setups is to run a static web server with

its document root where your Git repositories are, and then enable that post-update

hook we mentioned in the first section of this chapter. Let’s work from the previous

example. Say you have your repositories in the /opt/git directory, and an Apache

server is running on your machine. Again, you can use any web server for this; but as

an example, we’ll demonstrate some basic Apache configurations that should give you

an idea of what you might need.

First you need to enable the hook:

$ cd project.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

If you’re using a version of Git earlier than 1.6, the mv command isn’t necessary —

Git started naming the hooks examples with the .sample postfix only recently.

What does this post-update hook do? It looks basically like this:

$ cat .git/hooks/post-update

#!/bin/sh

exec git-update-server-info

This means that when you push to the server via SSH, Git will run this command

to update the files needed for HTTP fetching.

Next, you need to add a VirtualHost entry to your Apache configuration with the

document root as the root directory of your Git projects. Here, we’re assuming that you

have wildcard DNS set up to send *.gitserver to whatever box you’re using to run all

this:

<VirtualHost *:80>

ServerName git.gitserver

DocumentRoot /opt/git

<Directory /opt/git/>

Order allow, deny

allow from all

</Directory>

</VirtualHost>

You’ll also need to set the Unix user group of the /opt/git directories to www-data

so your web server can read-access the repositories, because the Apache instance run-

ning the CGI script will (by default) be running as that user:

$ chgrp -R www-data /opt/git

When you restart Apache, you should be able to clone your repositories under that

directory by specifying the URL for your project:

80

CHAPTER 4 GIT ON THE SERVER

$ git clone http://git.gitserver/project.git

This way, you can set up HTTP-based read access to any of your projects for a fair

number of users in a few minutes. Another simple option for public unauthenticated

access is to start a Git daemon, although that requires you to daemonize the process -

we’ll cover this option in the next section, if you prefer that route.

4.6 GitWeb

Now that you have basic read/write and read-only access to your project, you may

want to set up a simple web-based visualizer. Git comes with a CGI script called

GitWeb that is commonly used for this. You can see GitWeb in use at sites like

http://git.kernel.org (see Figure 4.1).

Figure 4.1: The GitWeb web-based user interface

If you want to check out what GitWeb would look like for your project, Git comes

with a command to fire up a temporary instance if you have a lightweight server on

your system like lighttpd or webrick . On Linux machines, lighttpd is often installed,

so you may be able to get it to run by typing git instaweb in your project directory. If

you’re running a Mac, Leopard comes preinstalled with Ruby, so webrick may be your

best bet. To start instaweb with a non-lighttpd handler, you can run it with the --httpd

option.

$ git instaweb --httpd=webrick

[2009-02-21 10:02:21] INFO WEBrick 1.3.1

[2009-02-21 10:02:21] INFO ruby 1.8.6 (2008-03-03) [universal-darwin9.0]

81

PRO GIT SCOTT CHACON

That starts up an HTTPD server on port 1234 and then automatically starts a web

browser that opens on that page. It’s pretty easy on your part. When you’re done and

want to shut down the server, you can run the same command with the --stop option:

$ git instaweb --httpd=webrick --stop

If you want to run the web interface on a server all the time for your team or for an

open source project you’re hosting, you’ll need to set up the CGI script to be served by

your normal web server. Some Linux distributions have a gitweb package that you may

be able to install via apt or yum , so you may want to try that first. We’ll walk though

installing GitWeb manually very quickly. First, you need to get the Git source code,

which GitWeb comes with, and generate the custom CGI script:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/

$ make GITWEB_PROJECTROOT="/opt/git" \

prefix=/usr gitweb/gitweb.cgi

$ sudo cp -Rf gitweb /var/www/

Notice that you have to tell the command where to find your Git repositories with

the GITWEB PROJECTROOT variable. Now, you need to make Apache use CGI for that

script, for which you can add a VirtualHost:

<VirtualHost *:80>

ServerName gitserver

DocumentRoot /var/www/gitweb

<Directory /var/www/gitweb>

Options ExecCGI +FollowSymLinks +SymLinksIfOwnerMatch

AllowOverride All

order allow,deny

Allow from all

AddHandler cgi-script cgi

DirectoryIndex gitweb.cgi

</Directory>

</VirtualHost>

Again, GitWeb can be served with any CGI capable web server; if you prefer to

use something else, it shouldn’t be difficult to set up. At this point, you should be

able to visit http://gitserver/ to view your repositories online, and you can use

http://git.gitserver to clone and fetch your repositories over HTTP.

4.7 Gitosis

Keeping all users’ public keys in the authorized keys file for access works well only

for a while. When you have hundreds of users, it’s much more of a pain to manage that

process. You have to shell onto the server each time, and there is no access control —

everyone in the file has read and write access to every project.

At this point, you may want to turn to a widely used software project called Gitosis.

Gitosis is basically a set of scripts that help you manage the authorized keys file as

well as implement some simple access controls. The really interesting part is that the

UI for this tool for adding people and determining access isn’t a web interface but a

82

CHAPTER 4 GIT ON THE SERVER

special Git repository. You set up the information in that project; and when you push

it, Gitosis reconfigures the server based on that, which is cool.

Installing Gitosis isn’t the simplest task ever, but it’s not too difficult. It’s easiest to

use a Linux server for it — these examples use a stock Ubuntu 8.10 server.

Gitosis requires some Python tools, so first you have to install the Python setuptools

package, which Ubuntu provides as python-setuptools:

$ apt-get install python-setuptools

Next, you clone and install Gitosis from the project’s main site:

$ git clone git://eagain.net/gitosis.git

$ cd gitosis

$ sudo python setup.py install

That installs a couple of executables that Gitosis will use. Next, Gitosis wants to

put its repositories under /home/git , which is fine. But you have already set up your

repositories in /opt/git , so instead of reconfiguring everything, you create a symlink:

$ ln -s /opt/git /home/git/repositories

Gitosis is going to manage your keys for you, so you need to remove the current

file, re-add the keys later, and let Gitosis control the authorized keys file automatically.

For now, move the authorized keys file out of the way:

$ mv /home/git/.ssh/authorized_keys /home/git/.ssh/ak.bak

Next you need to turn your shell back on for the ‘git’ user, if you changed it to the

git-shell command. People still won’t be able to log in, but Gitosis will control that

for you. So, let’s change this line in your /etc/passwd file

git:x:1000:1000::/home/git:/usr/bin/git-shell

back to this:

git:x:1000:1000::/home/git:/bin/sh

Now it’s time to initialize Gitosis. You do this by running the gitosis-init com-

mand with your personal public key. If your public key isn’t on the server, you’ll have

to copy it there:

$ sudo -H -u git gitosis-init < /tmp/id_dsa.pub

Initialized empty Git repository in /opt/git/gitosis-admin.git/

Reinitialized existing Git repository in /opt/git/gitosis-admin.git/

This lets the user with that key modify the main Git repository that controls the

Gitosis setup. Next, you have to manually set the execute bit on the post-update script

for your new control repository.

$ sudo chmod 755 /opt/git/gitosis-admin.git/hooks/post-update

You’re ready to roll. If you’re set up correctly, you can try to SSH into your server

as the user for which you added the public key to initialize Gitosis. You should see

something like this:

83

PRO GIT SCOTT CHACON

$ ssh git@gitserver

PTY allocation request failed on channel 0

fatal: unrecognized command ’gitosis-serve schacon@quaternion’

Connection to gitserver closed.

That means Gitosis recognized you but shut you out because you’re not trying to

do any Git commands. So, let’s do an actual Git command — you’ll clone the Gitosis

control repository:

on your local computer

$ git clone git@gitserver:gitosis-admin.git

Now you have a directory named gitosis-admin , which has two major parts:

$ cd gitosis-admin

$ find .

./gitosis.conf

./keydir

./keydir/scott.pub

The gitosis.conf file is the control file you use to specify users, repositories, and

permissions. The keydir directory is where you store the public keys of all the users

who have any sort of access to your repositories — one file per user. The name of the

file in keydir (in the previous example, scott.pub) will be different for you — Gitosis

takes that name from the description at the end of the public key that was imported

with the gitosis-init script.

If you look at the gitosis.conf file, it should only specify information about the

gitosis-admin project that you just cloned:

$ cat gitosis.conf

[gitosis]

[group gitosis-admin]

writable = gitosis-admin

members = scott

It shows you that the ‘scott’ user — the user with whose public key you initialized

Gitosis — is the only one who has access to the gitosis-admin project.

Now, let’s add a new project for you. You’ll add a new section called mobile where

you’ll list the developers on your mobile team and projects that those developers need

access to. Because ‘scott’ is the only user in the system right now, you’ll add him as

the only member, and you’ll create a new project called iphone project to start on:

[group mobile]

writable = iphone_project

members = scott

Whenever you make changes to the gitosis-admin project, you have to commit the

changes and push them back up to the server in order for them to take effect:

$ git commit -am ’add iphone_project and mobile group’

[master]: created 8962da8: "changed name"

1 files changed, 4 insertions(+), 0 deletions(-)

84

CHAPTER 4 GIT ON THE SERVER

$ git push

Counting objects: 5, done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 272 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

To git@gitserver:/opt/git/gitosis-admin.git

fb27aec..8962da8 master -> master

You can make your first push to the new iphone project project by adding your

server as a remote to your local version of the project and pushing. You no longer have

to manually create a bare repository for new projects on the server — Gitosis creates

them automatically when it sees the first push:

$ git remote add origin git@gitserver:iphone_project.git

$ git push origin master

Initialized empty Git repository in /opt/git/iphone_project.git/

Counting objects: 3, done.

Writing objects: 100% (3/3), 230 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

To git@gitserver:iphone_project.git

* [new branch] master -> master

Notice that you don’t need to specify the path (in fact, doing so won’t work), just a

colon and then the name of the project — Gitosis finds it for you.

You want to work on this project with your friends, so you’ll have to re-add their

public keys. But instead of appending them manually to the /.ssh/authorized keys

file on your server, you’ll add them, one key per file, into the keydir directory. How

you name the keys determines how you refer to the users in the gitosis.conf file. Let’s

re-add the public keys for John, Josie, and Jessica:

$ cp /tmp/id_rsa.john.pub keydir/john.pub

$ cp /tmp/id_rsa.josie.pub keydir/josie.pub

$ cp /tmp/id_rsa.jessica.pub keydir/jessica.pub

Now you can add them all to your ‘mobile’ team so they have read and write access

to iphone project :

[group mobile]

writable = iphone_project

members = scott john josie jessica

After you commit and push that change, all four users will be able to read from and

write to that project.

Gitosis has simple access controls as well. If you want John to have only read

access to this project, you can do this instead:

[group mobile]

writable = iphone_project

members = scott josie jessica

[group mobile_ro]

readable = iphone_project

members = john

85

PRO GIT SCOTT CHACON

Now John can clone the project and get updates, but Gitosis won’t allow him to

push back up to the project. You can create as many of these groups as you want, each

containing different users and projects. You can also specify another group as one of

the members, to inherit all of its members automatically.

If you have any issues, it may be useful to add loglevel=DEBUG under the [gitosis]

section. If you’ve lost push access by pushing a messed-up configuration, you can

manually fix the file on the server under /home/git/.gitosis.conf — the file from

which Gitosis reads its info. A push to the project takes the gitosis.conf file you just

pushed up and sticks it there. If you edit that file manually, it remains like that until the

next successful push to the gitosis-admin project.

4.8 Git Daemon

For public, unauthenticated read access to your projects, you’ll want to move past the

HTTP protocol and start using the Git protocol. The main reason is speed. The Git

protocol is far more efficient and thus faster than the HTTP protocol, so using it will

save your users time.

Again, this is for unauthenticated read-only access. If you’re running this on a

server outside your firewall, it should only be used for projects that are publicly visible

to the world. If the server you’re running it on is inside your firewall, you might use

it for projects that a large number of people or computers (continuous integration or

build servers) have read-only access to, when you don’t want to have to add an SSH

key for each.

In any case, the Git protocol is relatively easy to set up. Basically, you need to run

this command in a daemonized manner:

git daemon --reuseaddr --base-path=/opt/git/ /opt/git/

--reuseaddr allows the server to restart without waiting for old connections to time

out, the --base-path option allows people to clone projects without specifying the

entire path, and the path at the end tells the Git daemon where to look for repositories

to export. If you’re running a firewall, you’ll also need to punch a hole in it at port

9418 on the box you’re setting this up on.

You can daemonize this process a number of ways, depending on the operating

system you’re running. On an Ubuntu machine, you use an Upstart script. So, in the

following file

/etc/event.d/local-git-daemon

you put this script:

start on startup

stop on shutdown

exec /usr/bin/git daemon \

--user=git --group=git \

--reuseaddr \

--base-path=/opt/git/ \

/opt/git/

respawn

86

CHAPTER 4 GIT ON THE SERVER

For security reasons, it is strongly encouraged to have this daemon run as a user

with read-only permissions to the repositories you can easily do this by creating a new

user ‘git-ro’ and running the daemon as them. For the sake of simplicity we’ll simply

run it as the same ‘git’ user that Gitosis is running as.

When you restart your machine, your Git daemon will start automatically and

respawn if it goes down. To get it running without having to reboot, you can run

this:

initctl start local-git-daemon

On other systems, you may want to use xinetd , a script in your sysvinit system, or

something else— as long as you get that command daemonized and watched somehow.

Next, you have to tell your Gitosis server which repositories to allow unauthen-

ticated Git server-based access to. If you add a section for each repository, you can

specify the ones from which you want your Git daemon to allow reading. If you want

to allow Git protocol access for your iphone project, you add this to the end of the

gitosis.conf file:

[repo iphone_project]

daemon = yes

When that is committed and pushed up, your running daemon should start serving

requests for the project to anyone who has access to port 9418 on your server.

If you decide not to use Gitosis, but you want to set up a Git daemon, you’ll have

to run this on each project you want the Git daemon to serve:

$ cd /path/to/project.git

$ touch git-daemon-export-ok

The presence of that file tells Git that it’s OK to serve this project without authen-

tication.

Gitosis can also control which projects GitWeb shows. First, you need to add some-

thing like the following to the /etc/gitweb.conf file:

$projects_list = "/home/git/gitosis/projects.list";

$projectroot = "/home/git/repositories";

$export_ok = "git-daemon-export-ok";

@git_base_url_list = (’git://gitserver’);

You can control which projects GitWeb lets users browse by adding or removing

a gitweb setting in the Gitosis configuration file. For instance, if you want the iphone

project to show up on GitWeb, you make the repo setting look like this:

[repo iphone_project]

daemon = yes

gitweb = yes

Now, if you commit and push the project, GitWeb will automatically start showing

your iphone project.

87

PRO GIT SCOTT CHACON

4.9 Hosted Git

If you don’t want to go through all of the work involved in setting up your own Git

server, you have several options for hosting your Git projects on an external dedicated

hosting site. Doing so offers a number of advantages: a hosting site is generally quick

to set up and easy to start projects on, and no server maintenance or monitoring is

involved. Even if you set up and run your own server internally, you may still want to

use a public hosting site for your open source code — it’s generally easier for the open

source community to find and help you with.

These days, you have a huge number of hosting options to choose from, each

with different advantages and disadvantages. To see an up-to-date list, check out the

GitHosting page on the main Git wiki:

http://git.or.cz/gitwiki/GitHosting

Because we can’t cover all of them, and because I happen to work at one of them,

we’ll use this section to walk through setting up an account and creating a new project

at GitHub. This will give you an idea of what is involved.

GitHub is by far the largest open source Git hosting site and it’s also one of the

very few that offers both public and private hosting options so you can keep your open

source and private commercial code in the same place. In fact, we used GitHub to

privately collaborate on this book.

4.9.1 GitHub

GitHub is slightly different than most code-hosting sites in the way that it namespaces

projects. Instead of being primarily based on the project, GitHub is user centric. That

means when I host my grit project on GitHub, you won’t find it at github.com/grit

but instead at github.com/schacon/grit . There is no canonical version of any project,

which allows a project to move from one user to another seamlessly if the first author

abandons the project.

GitHub is also a commercial company that charges for accounts that maintain pri-

vate repositories, but anyone can quickly get a free account to host as many open source

projects as they want. We’ll quickly go over how that is done.

4.9.2 Setting Up a User Account

The first thing you need to do is set up a free user account. If you visit the Pricing and

Signup page at http://github.com/plans and click the “Sign Up” button on the Free

account (see figure 4–2), you’re taken to the signup page.

Here you must choose a username that isn’t yet taken in the system and enter an

e-mail address that will be associated with the account and a password (see Figure 4.3).

If you have it available, this is a good time to add your public SSH key as well. We

covered how to generate a new key earlier, in the “Simple Setups” section. Take the

contents of the public key of that pair, and paste it into the SSH Public Key text box.

Clicking the “explain ssh keys” link takes you to detailed instructions on how to do so

on all major operating systems. Clicking the “I agree, sign me up” button takes you to

your new user dashboard (see Figure 4.4).

Next you can create a new repository.

88

CHAPTER 4 GIT ON THE SERVER

Figure 4.2: The GitHub plan page

Figure 4.3: The GitHub user signup form

4.9.3 Creating a New Repository

Start by clicking the “create a new one” link next to Your Repositories on the user

dashboard. You’re taken to the Create a New Repository form (see Figure 4.5).

All you really have to do is provide a project name, but you can also add a descrip-

tion. When that is done, click the “Create Repository” button. Now you have a new

repository on GitHub (see Figure 4.6).

Since you have no code there yet, GitHub will show you instructions for how create

a brand-new project, push an existing Git project up, or import a project from a public

Subversion repository (see Figure 4.7).

89

PRO GIT SCOTT CHACON

Figure 4.4: The GitHub user dashboard

Figure 4.5: Creating a new repository on GitHub

Figure 4.6: GitHub project header information

These instructions are similar to what we’ve already gone over. To initialize a

project if it isn’t already a Git project, you use

$ git init

$ git add .

$ git commit -m ’initial commit’

When you have a Git repository locally, add GitHub as a remote and push up your

master branch:

90

CHAPTER 4 GIT ON THE SERVER

Figure 4.7: Instructions for a new repository

$ git remote add origin git@github.com:testinguser/iphone_project.git

$ git push origin master

Now your project is hosted on GitHub, and you can give the URL to anyone you

want to share your project with. In this case, it’s http://github.com/testinguser/iphone project .

You can also see from the header on each of your project’s pages that you have two Git

URLs (see Figure 4.8).

Figure 4.8: Project header with a public URL and a private URL

The Public Clone URL is a public, read-only Git URL over which anyone can clone

the project. Feel free to give out that URL and post it on your web site or what have

you.

The Your Clone URL is a read/write SSH-based URL that you can read or write

over only if you connect with the SSH private key associated with the public key you

uploaded for your user. When other users visit this project page, they won’t see that

URL—only the public one.

91

PRO GIT SCOTT CHACON

4.9.4 Importing from Subversion

If you have an existing public Subversion project that you want to import into Git,

GitHub can often do that for you. At the bottom of the instructions page is a link to a

Subversion import. If you click it, you see a form with information about the import

process and a text box where you can paste in the URL of your public Subversion

project (see Figure 4.9).

Figure 4.9: Subversion importing interface

If your project is very large, nonstandard, or private, this process probably won’t

work for you. In Chapter 7, you’ll learn how to do more complicated manual project

imports.

4.9.5 Adding Collaborators

Let’s add the rest of the team. If John, Josie, and Jessica all sign up for accounts on

GitHub, and you want to give them push access to your repository, you can add them

to your project as collaborators. Doing so will allow pushes from their public keys to

work.

Click the “edit” button in the project header or the Admin tab at the top of the

project to reach the Admin page of your GitHub project (see Figure 4.10).

To give another user write access to your project, click the “Add another collabora-

tor” link. A new text box appears, into which you can type a username. As you type,

a helper pops up, showing you possible username matches. When you find the correct

user, click the Add button to add that user as a collaborator on your project (see Figure

4.11).

When you’re finished adding collaborators, you should see a list of them in the

Repository Collaborators box (see Figure 4.12).

If you need to revoke access to individuals, you can click the “revoke” link, and

their push access will be removed. For future projects, you can also copy collaborator

groups by copying the permissions of an existing project.

92

CHAPTER 4 GIT ON THE SERVER

Figure 4.10: GitHub administration page

Figure 4.11: Adding a collaborator to your project

Figure 4.12: A list of collaborators on your project

4.9.6 Your Project

After you push your project up or have it imported from Subversion, you have a main

project page that looks something like Figure 4.13.

When people visit your project, they see this page. It contains tabs to different

aspects of your projects. The Commits tab shows a list of commits in reverse chrono-

logical order, similar to the output of the git log command. The Network tab shows

all the people who have forked your project and contributed back. The Downloads

93

PRO GIT SCOTT CHACON

Figure 4.13: A GitHub main project page

tab allows you to upload project binaries and link to tarballs and zipped versions of

any tagged points in your project. The Wiki tab provides a wiki where you can write

documentation or other information about your project. The Graphs tab has some con-

tribution visualizations and statistics about your project. The main Source tab that

you land on shows your project’s main directory listing and automatically renders the

README file below it if you have one. This tab also shows a box with the latest

commit information.

4.9.7 Forking Projects

If you want to contribute to an existing project to which you don’t have push access,

GitHub encourages forking the project. When you land on a project page that looks

interesting and you want to hack on it a bit, you can click the “fork” button in the

project header to have GitHub copy that project to your user so you can push to it.

This way, projects don’t have to worry about adding users as collaborators to give

them push access. People can fork a project and push to it, and the main project main-

tainer can pull in those changes by adding them as remotes and merging in their work.

To fork a project, visit the project page (in this case, mojombo/chronic) and click

the “fork” button in the header (see Figure 4.14).

After a few seconds, you’re taken to your new project page, which indicates that

this project is a fork of another one (see Figure 4.15).

4.9.8 GitHub Summary

That’s all we’ll cover about GitHub, but it’s important to note how quickly you can do

all this. You can create an account, add a new project, and push to it in a matter of

94

CHAPTER 4 GIT ON THE SERVER

Figure 4.14: Get a writable copy of any repository by clicking the “fork” button.

Figure 4.15: Your fork of a project

minutes. If your project is open source, you also get a huge community of developers

who now have visibility into your project and may well fork it and help contribute to

it. At the very least, this may be a way to get up and running with Git and try it out

quickly.

4.10 Summary

You have several options to get a remote Git repository up and running so that you can

collaborate with others or share your work.

Running your own server gives you a lot of control and allows you to run the server

within your own firewall, but such a server generally requires a fair amount of your

time to set up and maintain. If you place your data on a hosted server, it’s easy to set

up and maintain; however, you have to be able to keep your code on someone else’s

servers, and some organizations don’t allow that.

It should be fairly straightforward to determine which solution or combination of

solutions is appropriate for you and your organization.

95

PRO GIT SCOTT CHACON

96

Chapter 5

Distributed Git

Now that you have a remote Git repository set up as a point for all the developers to

share their code, and you’re familiar with basic Git commands in a local workflow,

you’ll look at how to utilize some of the distributed workflows that Git affords you.

In this chapter, you’ll see how to work with Git in a distributed environment as a

contributor and an integrator. That is, you’ll learn how to contribute code successfully

to a project and make it as easy on you and the project maintainer as possible, and also

how to maintain a project successfully with a number of developers contributing.

5.1 Distributed Workflows

Unlike Centralized Version Control Systems (CVCSs), the distributed nature of Git

allows you to be far more flexible in how developers collaborate on projects. In cen-

tralized systems, every developer is a node working more or less equally on a central

hub. In Git, however, every developer is potentially both a node and a hub — that is,

every developer can both contribute code to other repositories and maintain a public

repository on which others can base their work and which they can contribute to. This

opens a vast range of workflow possibilities for your project and/or your team, so I’ll

cover a few common paradigms that take advantage of this flexibility. I’ll go over the

strengths and possible weaknesses of each design; you can choose a single one to use,

or you can mix and match features from each.

5.1.1 Centralized Workflow

In centralized systems, there is generally a single collaboration model—the centralized

workflow. One central hub, or repository, can accept code, and everyone synchronizes

their work to it. A number of developers are nodes — consumers of that hub — and

synchronize to that one place (see Figure 5.1).

This means that if two developers clone from the hub and both make changes, the

first developer to push their changes back up can do so with no problems. The second

developer must merge in the first one’s work before pushing changes up, so as not to

overwrite the first developer’s changes. This concept is true in Git as it is in Subversion

(or any CVCS), and this model works perfectly in Git.

97

PRO GIT SCOTT CHACON

Figure 5.1: Centralized workflow

If you have a small team or are already comfortable with a centralized workflow in

your company or team, you can easily continue using that workflow with Git. Simply

set up a single repository, and give everyone on your team push access; Git won’t let

users overwrite each other. If one developer clones, makes changes, and then tries to

push their changes while another developer has pushed in the meantime, the server will

reject that developer’s changes. They will be told that they’re trying to push non-fast-

forward changes and that they won’t be able to do so until they fetch and merge. This

workflow is attractive to a lot of people because it’s a paradigm that many are familiar

and comfortable with.

5.1.2 Integration-Manager Workflow

Because Git allows you to have multiple remote repositories, it’s possible to have a

workflow where each developer has write access to their own public repository and

read access to everyone else’s. This scenario often includes a canonical repository that

represents the “official” project. To contribute to that project, you create your own

public clone of the project and push your changes to it. Then, you can send a request to

the maintainer of the main project to pull in your changes. They can add your repository

as a remote, test your changes locally, merge them into their branch, and push back to

their repository. The process works as follow (see Figure 5.2):

1. The project maintainer pushes to their public repository.

2. A contributor clones that repository and makes changes.

3. The contributor pushes to their own public copy.

4. The contributor sends the maintainer an e-mail asking them to pull changes.

5. The maintainer adds the contributor’s repo as a remote and merges locally.

6. The maintainer pushes merged changes to the main repository.

This is a very common workflow with sites like GitHub, where it’s easy to fork a

project and push your changes into your fork for everyone to see. One of the main

advantages of this approach is that you can continue to work, and the maintainer of the

main repository can pull in your changes at any time. Contributors don’t have to wait

for the project to incorporate their changes — each party can work at their own pace.

98

CHAPTER 5 DISTRIBUTED GIT

Figure 5.2: Integration-manager workflow

5.1.3 Dictator and Lieutenants Workflow

This is a variant of a multiple-repository workflow. It’s generally used by huge projects

with hundreds of collaborators; one famous example is the Linux kernel. Various in-

tegration managers are in charge of certain parts of the repository; they’re called lieu-

tenants. All the lieutenants have one integration manager known as the benevolent

dictator. The benevolent dictator’s repository serves as the reference repository from

which all the collaborators need to pull. The process works like this (see Figure 5.3):

1. Regular developers work on their topic branch and rebase their work on top of

master. The master branch is that of the dictator.

2. Lieutenants merge the developers’ topic branches into their master branch.

3. The dictator merges the lieutenants’ master branches into the dictator’s master

branch.

4. The dictator pushes their master to the reference repository so the other develop-

ers can rebase on it.

Figure 5.3: Benevolent dictator workflow

This kind of workflow isn’t common but can be useful in very big projects or in highly

hierarchical environments, because as it allows the project leader (the dictator) to del-

99

PRO GIT SCOTT CHACON

egate much of the work and collect large subsets of code at multiple points before

integrating them.

These are some commonly used workflows that are possible with a distributed sys-

tem like Git, but you can see that many variations are possible to suit your particular

real-world workflow. Now that you can (I hope) determine which workflow combina-

tion may work for you, I’ll cover some more specific examples of how to accomplish

the main roles that make up the different flows.

5.2 Contributing to a Project

You know what the different workflows are, and you should have a pretty good grasp

of fundamental Git usage. In this section, you’ll learn about a few common patterns

for contributing to a project.

The main difficulty with describing this process is that there are a huge number

of variations on how it’s done. Because Git is very flexible, people can and do work

together many ways, and it’s problematic to describe how you should contribute to a

project — every project is a bit different. Some of the variables involved are active

contributor size, chosen workflow, your commit access, and possibly the external con-

tribution method.

The first variable is active contributor size. How many users are actively contribut-

ing code to this project, and how often? In many instances, you’ll have two or three

developers with a few commits a day, or possibly less for somewhat dormant projects.

For really large companies or projects, the number of developers could be in the thou-

sands, with dozens or even hundreds of patches coming in each day. This is important

because with more and more developers, you run into more issues with making sure

your code applies cleanly or can be easily merged. Changes you submit may be ren-

dered obsolete or severely broken by work that is merged in while you were working

or while your changes were waiting to be approved or applied. How can you keep your

code consistently up to date and your patches valid?

The next variable is the workflow in use for the project. Is it centralized, with

each developer having equal write access to the main codeline? Does the project have

a maintainer or integration manager who checks all the patches? Are all the patches

peer-reviewed and approved? Are you involved in that process? Is a lieutenant system

in place, and do you have to submit your work to them first?

The next issue is your commit access. The workflow required in order to contribute

to a project is much different if you have write access to the project than if you don’t.

If you don’t have write access, how does the project prefer to accept contributed work?

Does it even have a policy? How much work are you contributing at a time? How often

do you contribute?

All these questions can affect how you contribute effectively to a project and what

workflows are preferred or available to you. I’ll cover aspects of each of these in a series

of use cases, moving from simple to more complex; you should be able to construct the

specific workflows you need in practice from these examples.

5.2.1 Commit Guidelines

Before you start looking at the specific use cases, here’s a quick note about commit

messages. Having a good guideline for creating commits and sticking to it makes work-

100

CHAPTER 5 DISTRIBUTED GIT

ing with Git and collaborating with others a lot easier. The Git project provides a doc-

ument that lays out a number of good tips for creating commits from which to submit

patches— you can read it in the Git source code in the Documentation/SubmittingPatches

file.

First, you don’t want to submit any whitespace errors. Git provides an easy way to

check for this — before you commit, run git diff --check , which identifies possible

whitespace errors and lists them for you. Here is an example, where I’ve replaced a red

terminal color with Xs:

$ git diff --check

lib/simplegit.rb:5: trailing whitespace.

+ @git_dir = File.expand_path(git_dir)XX

lib/simplegit.rb:7: trailing whitespace.

+ XXXXXXXXXXX

lib/simplegit.rb:26: trailing whitespace.

+ def command(git_cmd)XXXX

If you run that command before committing, you can tell if you’re about to commit

whitespace issues that may annoy other developers.

Next, try to make each commit a logically separate changeset. If you can, try to

make your changes digestible — don’t code for a whole weekend on five different

issues and then submit them all as one massive commit on Monday. Even if you don’t

commit during the weekend, use the staging area on Monday to split your work into at

least one commit per issue, with a useful message per commit. If some of the changes

modify the same file, try to use git add --patch to partially stage files (covered in

detail in Chapter 6). The project snapshot at the tip of the branch is identical whether

you do one commit or five, as long as all the changes are added at some point, so try to

make things easier on your fellow developers when they have to review your changes.

This approach also makes it easier to pull out or revert one of the changesets if you

need to later. Chapter 6 describes a number of useful Git tricks for rewriting history

and interactively staging files— use these tools to help craft a clean and understandable

history.

The last thing to keep in mind is the commit message. Getting in the habit of

creating quality commit messages makes using and collaborating with Git a lot easier.

As a general rule, your messages should start with a single line that’s no more than

about 50 characters and that describes the changeset concisely, followed by a blank line,

followed by a more detailed explanation. The Git project requires that the more detailed

explanation include your motivation for the change and contrast its implementation

with previous behavior — this is a good guideline to follow. It’s also a good idea to use

the imperative present tense in these messages. In other words, use commands. Instead

of “I added tests for” or “Adding tests for,” use “Add tests for.” Here is a template

originally written by Tim Pope at tpope.net:

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72

characters or so. In some contexts, the first line is treated as the

subject of an email and the rest of the text as the body. The blank

line separating the summary from the body is critical (unless you omit

the body entirely); tools like rebase can get confused if you run the

101

PRO GIT SCOTT CHACON

two together.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded by a

single space, with blank lines in between, but conventions vary here

If all your commit messages look like this, things will be a lot easier for you and

the developers you work with. The Git project has well-formatted commit messages

— I encourage you to run git log --no-merges there to see what a nicely formatted

project-commit history looks like.

In the following examples, and throughout most of this book, for the sake of brevity

I don’t format messages nicely like this; instead, I use the -m option to git commit . Do

as I say, not as I do.

5.2.2 Private Small Team

The simplest setup you’re likely to encounter is a private project with one or two other

developers. By private, I mean closed source — not read-accessible to the outside

world. You and the other developers all have push access to the repository.

In this environment, you can follow a workflow similar to what you might do when

using Subversion or another centralized system. You still get the advantages of things

like offline committing and vastly simpler branching and merging, but the workflow

can be very similar; the main difference is that merges happen client-side rather than

on the server at commit time. Let’s see what it might look like when two developers

start to work together with a shared repository. The first developer, John, clones the

repository, makes a change, and commits locally. (I’m replacing the protocol messages

with ... in these examples to shorten them somewhat.)

John’s Machine

$ git clone john@githost:simplegit.git

Initialized empty Git repository in /home/john/simplegit/.git/

...

$ cd simplegit/

$ vim lib/simplegit.rb

$ git commit -am ’removed invalid default value’

[master 738ee87] removed invalid default value

1 files changed, 1 insertions(+), 1 deletions(-)

The second developer, Jessica, does the same thing — clones the repository and

commits a change:

Jessica’s Machine

$ git clone jessica@githost:simplegit.git

Initialized empty Git repository in /home/jessica/simplegit/.git/

...

$ cd simplegit/

$ vim TODO

$ git commit -am ’add reset task’

102

CHAPTER 5 DISTRIBUTED GIT

[master fbff5bc] add reset task

1 files changed, 1 insertions(+), 0 deletions(-)

Now, Jessica pushes her work up to the server:

Jessica’s Machine

$ git push origin master

...

To jessica@githost:simplegit.git

1edee6b..fbff5bc master -> master

John tries to push his change up, too:

John’s Machine

$ git push origin master

To john@githost:simplegit.git

! [rejected] master -> master (non-fast forward)

error: failed to push some refs to ’john@githost:simplegit.git’

John isn’t allowed to push because Jessica has pushed in the meantime. This is

especially important to understand if you’re used to Subversion, because you’ll notice

that the two developers didn’t edit the same file. Although Subversion automatically

does such a merge on the server if different files are edited, in Git you must merge the

commits locally. John has to fetch Jessica’s changes and merge them in before he will

be allowed to push:

$ git fetch origin

...

From john@githost:simplegit

+ 049d078...fbff5bc master -> origin/master

At this point, John’s local repository looks something like Figure 5.4.

Figure 5.4: John’s initial repository

John has a reference to the changes Jessica pushed up, but he has to merge them

into his own work before he is allowed to push:

103

PRO GIT SCOTT CHACON

$ git merge origin/master

Merge made by recursive.

TODO | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

The merge goes smoothly — John’s commit history now looks like Figure 5.5.

Figure 5.5: John’s repository after merging origin/master

Now, John can test his code to make sure it still works properly, and then he can

push his new merged work up to the server:

$ git push origin master

...

To john@githost:simplegit.git

fbff5bc..72bbc59 master -> master

Finally, John’s commit history looks like Figure 5.6.

Figure 5.6: John’s history after pushing to the origin server

In the meantime, Jessica has been working on a topic branch. She’s created a topic

branch called issue54 and done three commits on that branch. She hasn’t fetched

John’s changes yet, so her commit history looks like Figure 5.7.

Jessica wants to sync up with John, so she fetches:

Jessica’s Machine

$ git fetch origin

104

CHAPTER 5 DISTRIBUTED GIT

Figure 5.7: Jessica’s initial commit history

...

From jessica@githost:simplegit

fbff5bc..72bbc59 master -> origin/master

That pulls down the work John has pushed up in the meantime. Jessica’s history

now looks like Figure 5.8.

Figure 5.8: Jessica’s history after fetching John’s changes

Jessica thinks her topic branch is ready, but she wants to know what she has to

merge her work into so that she can push. She runs git log to find out:

$ git log --no-merges origin/master îssue54

commit 738ee872852dfaa9d6634e0dea7a324040193016

Author: John Smith <jsmith@example.com>

Date: Fri May 29 16:01:27 2009 -0700

removed invalid default value

Now, Jessica can merge her topic work into her master branch, merge John’s work

(origin/master) into her master branch, and then push back to the server again. First,

she switches back to her master branch to integrate all this work:

$ git checkout master

Switched to branch "master"

Your branch is behind ’origin/master’ by 2 commits, and can be fast-forwarded.

She can merge either origin/master or issue54 first — they’re both upstream, so

the order doesn’t matter. The end snapshot should be identical no matter which order

she chooses; only the history will be slightly different. She chooses to merge in issue54

first:

105

PRO GIT SCOTT CHACON

$ git merge issue54

Updating fbff5bc..4af4298

Fast forward

README | 1 +

lib/simplegit.rb | 6 +++++-

2 files changed, 6 insertions(+), 1 deletions(-)

No problems occur; as you can see it, was a simple fast-forward. Now Jessica

merges in John’s work (origin/master):

$ git merge origin/master

Auto-merging lib/simplegit.rb

Merge made by recursive.

lib/simplegit.rb | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

Everything merges cleanly, and Jessica’s history looks like Figure 5.9.

Figure 5.9: Jessica’s history after merging John’s changes

Now origin/master is reachable from Jessica’s master branch, so she should be

able to successfully push (assuming John hasn’t pushed again in the meantime):

$ git push origin master

...

To jessica@githost:simplegit.git

72bbc59..8059c15 master -> master

Each developer has committed a few times and merged each other’s work success-

fully; see Figure 5.10.

Figure 5.10: Jessica’s history after pushing all changes back to the server

That is one of the simplest workflows. You work for a while, generally in a topic

branch, and merge into your master branch when it’s ready to be integrated. When

106

CHAPTER 5 DISTRIBUTED GIT

you want to share that work, you merge it into your own master branch, then fetch and

merge origin/master if it has changed, and finally push to the master branch on the

server. The general sequence is something like that shown in Figure 5.11.

Figure 5.11: General sequence of events for a simple multiple-developer Git workflow

5.2.3 Private Managed Team

In this next scenario, you’ll look at contributor roles in a larger private group. You’ll

learn how to work in an environment where small groups collaborate on features and

then those team-based contributions are integrated by another party.

Let’s say that John and Jessica are working together on one feature, while Jes-

sica and Josie are working on a second. In this case, the company is using a type of

integration-manager workflow where the work of the individual groups is integrated

107

PRO GIT SCOTT CHACON

only by certain engineers, and the master branch of the main repo can be updated only

by those engineers. In this scenario, all work is done in team-based branches and pulled

together by the integrators later.

Let’s follow Jessica’s workflow as she works on her two features, collaborating in

parallel with two different developers in this environment. Assuming she already has

her repository cloned, she decides to work on featureA first. She creates a new branch

for the feature and does some work on it there:

Jessica’s Machine

$ git checkout -b featureA

Switched to a new branch "featureA"

$ vim lib/simplegit.rb

$ git commit -am ’add limit to log function’

[featureA 3300904] add limit to log function

1 files changed, 1 insertions(+), 1 deletions(-)

At this point, she needs to share her work with John, so she pushes her featureA

branch commits up to the server. Jessica doesn’t have push access to the master branch

— only the integrators do— so she has to push to another branch in order to collaborate

with John:

$ git push origin featureA

...

To jessica@githost:simplegit.git

* [new branch] featureA -> featureA

Jessica e-mails John to tell him that she’s pushed some work into a branch named

featureA and he can look at it now. While she waits for feedback from John, Jessica

decides to start working on featureB with Josie. To begin, she starts a new feature

branch, basing it off the server’s master branch:

Jessica’s Machine

$ git fetch origin

$ git checkout -b featureB origin/master

Switched to a new branch "featureB"

Now, Jessica makes a couple of commits on the featureB branch:

$ vim lib/simplegit.rb

$ git commit -am ’made the ls-tree function recursive’

[featureB e5b0fdc] made the ls-tree function recursive

1 files changed, 1 insertions(+), 1 deletions(-)

$ vim lib/simplegit.rb

$ git commit -am ’add ls-files’

[featureB 8512791] add ls-files

1 files changed, 5 insertions(+), 0 deletions(-)

Jessica’s repository looks like Figure 5.12.

She’s ready to push up her work, but gets an e-mail from Josie that a branch with

some initial work on it was already pushed to the server as featureBee . Jessica first

needs to merge those changes in with her own before she can push to the server. She

can then fetch Josie’s changes down with git fetch :

108

CHAPTER 5 DISTRIBUTED GIT

Figure 5.12: Jessica’s initial commit history

$ git fetch origin

...

From jessica@githost:simplegit

* [new branch] featureBee -> origin/featureBee

Jessica can now merge this into the work she did with git merge :

$ git merge origin/featureBee

Auto-merging lib/simplegit.rb

Merge made by recursive.

lib/simplegit.rb | 4 ++++

1 files changed, 4 insertions(+), 0 deletions(-)

There is a bit of a problem — she needs to push the merged work in her featureB

branch to the featureBee branch on the server. She can do so by specifying the local

branch followed by a colon (:) followed by the remote branch to the git push com-

mand:

$ git push origin featureB:featureBee

...

To jessica@githost:simplegit.git

fba9af8..cd685d1 featureB -> featureBee

This is called a refspec. See Chapter 9 for a more detailed discussion of Git refspecs

and different things you can do with them.

Next, John e-mails Jessica to say he’s pushed some changes to the featureA branch

and ask her to verify them. She runs a git fetch to pull down those changes:

$ git fetch origin

...

From jessica@githost:simplegit

3300904..aad881d featureA -> origin/featureA

Then, she can see what has been changed with git log :

109

PRO GIT SCOTT CHACON

$ git log origin/featureA f̂eatureA

commit aad881d154acdaeb2b6b18ea0e827ed8a6d671e6

Author: John Smith <jsmith@example.com>

Date: Fri May 29 19:57:33 2009 -0700

changed log output to 30 from 25

Finally, she merges John’s work into her own featureA branch:

$ git checkout featureA

Switched to branch "featureA"

$ git merge origin/featureA

Updating 3300904..aad881d

Fast forward

lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

Jessica wants to tweak something, so she commits again and then pushes this back

up to the server:

$ git commit -am ’small tweak’

[featureA ed774b3] small tweak

1 files changed, 1 insertions(+), 1 deletions(-)

$ git push origin featureA

...

To jessica@githost:simplegit.git

3300904..ed774b3 featureA -> featureA

Jessica’s commit history now looks something like Figure 5.13.

Figure 5.13: Jessica’s history after committing on a feature branch

Jessica, Josie, and John inform the integrators that the featureA and featureBee

branches on the server are ready for integration into the mainline. After they integrate

these branches into the mainline, a fetch will bring down the new merge commits,

making the commit history look like Figure 5.14.

Many groups switch to Git because of this ability to have multiple teams working in

parallel, merging the different lines of work late in the process. The ability of smaller

110

CHAPTER 5 DISTRIBUTED GIT

Figure 5.14: Jessica’s history after merging both her topic branches

subgroups of a team to collaborate via remote branches without necessarily having

to involve or impede the entire team is a huge benefit of Git. The sequence for the

workflow you saw here is something like Figure 5.15.

5.2.4 Public Small Project

Contributing to public projects is a bit different. Because you don’t have the permis-

sions to directly update branches on the project, you have to get the work to the main-

tainers some other way. This first example describes contributing via forking on Git

hosts that support easy forking. The repo.or.cz and GitHub hosting sites both support

this, and many project maintainers expect this style of contribution. The next section

deals with projects that prefer to accept contributed patches via e-mail.

First, you’ll probably want to clone the main repository, create a topic branch for

the patch or patch series you’re planning to contribute, and do your work there. The

sequence looks basically like this:

$ git clone (url)

$ cd project

$ git checkout -b featureA

$ (work)

$ git commit

$ (work)

$ git commit

You may want to use rebase -i to squash your work down to a single commit, or

rearrange the work in the commits to make the patch easier for the maintainer to review

— see Chapter 6 for more information about interactive rebasing.

When your branch work is finished and you’re ready to contribute it back to the

maintainers, go to the original project page and click the “Fork” button, creating your

own writable fork of the project. You then need to add in this new repository URL as a

second remote, in this case named myfork :

$ git remote add myfork (url)

You need to push your work up to it. It’s easiest to push the remote branch you’re

working on up to your repository, rather than merging into your master branch and

111

PRO GIT SCOTT CHACON

Figure 5.15: Basic sequence of this managed-team workflow

pushing that up. The reason is that if the work isn’t accepted or is cherry picked, you

don’t have to rewind your master branch. If the maintainers merge, rebase, or cherry-

pick your work, you’ll eventually get it back via pulling from their repository anyhow:

$ git push myfork featureA

When your work has been pushed up to your fork, you need to notify the maintainer.

This is often called a pull request, and you can either generate it via the website —

GitHub has a “pull request” button that automatically messages the maintainer — or

run the git request-pull command and e-mail the output to the project maintainer

manually.

The request-pull command takes the base branch into which you want your topic

branch pulled and the Git repository URL you want them to pull from, and outputs a

summary of all the changes you’re asking to be pulled in. For instance, if Jessica wants

112

CHAPTER 5 DISTRIBUTED GIT

to send John a pull request, and she’s done two commits on the topic branch she just

pushed up, she can run this:

$ git request-pull origin/master myfork

The following changes since commit 1edee6b1d61823a2de3b09c160d7080b8d1b3a40:

John Smith (1):

added a new function

are available in the git repository at:

git://githost/simplegit.git featureA

Jessica Smith (2):

add limit to log function

change log output to 30 from 25

lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

The output can be sent to the maintainer—it tells themwhere the work was branched

from, summarizes the commits, and tells where to pull this work from.

On a project for which you’re not the maintainer, it’s generally easier to have a

branch like master always track origin/master and to do your work in topic branches

that you can easily discard if they’re rejected. Having work themes isolated into topic

branches also makes it easier for you to rebase your work if the tip of the main reposi-

tory has moved in the meantime and your commits no longer apply cleanly. For exam-

ple, if you want to submit a second topic of work to the project, don’t continue working

on the topic branch you just pushed up — start over from the main repository’s master

branch:

$ git checkout -b featureB origin/master

$ (work)

$ git commit

$ git push myfork featureB

$ (email maintainer)

$ git fetch origin

Now, each of your topics is contained within a silo — similar to a patch queue —

that you can rewrite, rebase, and modify without the topics interfering or interdepend-

ing on each other as in Figure 5.16.

Let’s say the project maintainer has pulled in a bunch of other patches and tried

your first branch, but it no longer cleanly merges. In this case, you can try to rebase

that branch on top of origin/master , resolve the conflicts for the maintainer, and then

resubmit your changes:

$ git checkout featureA

$ git rebase origin/master

$ git push f myfork featureA

This rewrites your history to now look like Figure 5.17.

Because you rebased the branch, you have to specify the f to your push command

in order to be able to replace the featureA branch on the server with a commit that isn’t

113

PRO GIT SCOTT CHACON

Figure 5.16: Initial commit history with featureB work

Figure 5.17: Commit history after featureA work

a descendant of it. An alternative would be to push this new work to a different branch

on the server (perhaps called featureAv2).

Let’s look at one more possible scenario: the maintainer has looked at work in your

second branch and likes the concept but would like you to change an implementation

detail. You’ll also take this opportunity to move the work to be based off the project’s

current master branch. You start a new branch based off the current origin/master

branch, squash the featureB changes there, resolve any conflicts, make the implemen-

tation change, and then push that up as a new branch:

$ git checkout -b featureBv2 origin/master

$ git merge --no-commit --squash featureB

$ (change implementation)

$ git commit

$ git push myfork featureBv2

The --squash option takes all the work on the merged branch and squashes it into

one non-merge commit on top of the branch you’re on. The --no-commit option tells

Git not to automatically record a commit. This allows you to introduce all the changes

from another branch and then make more changes before recording the new commit.

Now you can send the maintainer a message that you’ve made the requested changes

and they can find those changes in your featureBv2 branch (see Figure 5.18).

114

CHAPTER 5 DISTRIBUTED GIT

Figure 5.18: Commit history after featureBv2 work

5.2.5 Public Large Project

Many larger projects have established procedures for accepting patches — you’ll need

to check the specific rules for each project, because they will differ. However, many

larger public projects accept patches via a developer mailing list, so I’ll go over an

example of that now.

The workflow is similar to the previous use case — you create topic branches for

each patch series you work on. The difference is how you submit them to the project.

Instead of forking the project and pushing to your own writable version, you generate

e-mail versions of each commit series and e-mail them to the developer mailing list:

$ git checkout -b topicA

$ (work)

$ git commit

$ (work)

$ git commit

Now you have two commits that you want to send to the mailing list. You use git

format-patch to generate the mbox-formatted files that you can e-mail to the list — it

turns each commit into an e-mail message with the first line of the commit message as

the subject and the rest of the message plus the patch that the commit introduces as the

body. The nice thing about this is that applying a patch from an e-mail generated with

format-patch preserves all the commit information properly, as you’ll see more of in

the next section when you apply these commits:

$ git format-patch -M origin/master

0001-add-limit-to-log-function.patch

0002-changed-log-output-to-30-from-25.patch

The format-patch command prints out the names of the patch files it creates. The

-M switch tells Git to look for renames. The files end up looking like this:

$ cat 0001-add-limit-to-log-function.patch

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

115

PRO GIT SCOTT CHACON

lib/simplegit.rb | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index 76f47bc..f9815f1 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -14,7 +14,7 @@ class SimpleGit

end

def log(treeish = ’master’)

- command("git log #{treeish}")

+ command("git log -n 20 #{treeish}")

end

def ls_tree(treeish = ’master’)

--

1.6.2.rc1.20.g8c5b.dirty

You can also edit these patch files to add more information for the e-mail list that

you don’t want to show up in the commit message. If you add text between the -- line

and the beginning of the patch (the lib/simplegit.rb line), then developers can read

it; but applying the patch excludes it.

To e-mail this to a mailing list, you can either paste the file into your e-mail pro-

gram or send it via a command-line program. Pasting the text often causes formatting

issues, especially with “smarter” clients that don’t preserve newlines and other whites-

pace appropriately. Luckily, Git provides a tool to help you send properly format-

ted patches via IMAP, which may be easier for you. I’ll demonstrate how to send

a patch via Gmail, which happens to be the e-mail agent I use; you can read de-

tailed instructions for a number of mail programs at the end of the aforementioned

Documentation/SubmittingPatches file in the Git source code.

First, you need to set up the imap section in your /.gitconfig file. You can set

each value separately with a series of git config commands, or you can add them

manually; but in the end, your config file should look something like this:

[imap]

folder = "[Gmail]/Drafts"

host = imaps://imap.gmail.com

user = user@gmail.com

pass = p4ssw0rd

port = 993

sslverify = false

If your IMAP server doesn’t use SSL, the last two lines probably aren’t necessary,

and the host value will be imap:// instead of imaps:// . When that is set up, you can

use git send-email to place the patch series in the Drafts folder of the specified IMAP

server:

$ git send-email *.patch

0001-added-limit-to-log-function.patch

116

CHAPTER 5 DISTRIBUTED GIT

0002-changed-log-output-to-30-from-25.patch

Who should the emails appear to be from? [Jessica Smith <jessica@example.com>]

Emails will be sent from: Jessica Smith <jessica@example.com>

Who should the emails be sent to? jessica@example.com

Message-ID to be used as In-Reply-To for the first email? y

Then, Git spits out a bunch of log information looking something like this for each

patch you’re sending:

(mbox) Adding cc: Jessica Smith <jessica@example.com> from

\line ’From: Jessica Smith <jessica@example.com>’

OK. Log says:

Sendmail: /usr/sbin/sendmail -i jessica@example.com

From: Jessica Smith <jessica@example.com>

To: jessica@example.com

Subject: [PATCH 1/2] added limit to log function

Date: Sat, 30 May 2009 13:29:15 -0700

Message-Id: <1243715356-61726-1-git-send-email-jessica@example.com>

X-Mailer: git-send-email 1.6.2.rc1.20.g8c5b.dirty

In-Reply-To: <y>

References: <y>

Result: OK

At this point, you should be able to go to your Drafts folder, change the To field

to the mailing list you’re sending the patch to, possibly CC the maintainer or person

responsible for that section, and send it off.

5.2.6 Summary

This section has covered a number of common workflows for dealing with several very

different types of Git projects you’re likely to encounter and introduced a couple of

new tools to help you manage this process. Next, you’ll see how to work the other side

of the coin: maintaining a Git project. You’ll learn how to be a benevolent dictator or

integration manager.

5.3 Maintaining a Project

In addition to knowing how to effectively contribute to a project, you’ll likely need to

know how to maintain one. This can consist of accepting and applying patches gener-

ated via format-patch and e-mailed to you, or integrating changes in remote branches

for repositories you’ve added as remotes to your project. Whether you maintain a

canonical repository or want to help by verifying or approving patches, you need to

know how to accept work in a way that is clearest for other contributors and sustain-

able by you over the long run.

5.3.1 Working in Topic Branches

When you’re thinking of integrating new work, it’s generally a good idea to try it out in

a topic branch — a temporary branch specifically made to try out that new work. This

117

PRO GIT SCOTT CHACON

way, it’s easy to tweak a patch individually and leave it if it’s not working until you

have time to come back to it. If you create a simple branch name based on the theme of

the work you’re going to try, such as ruby client or something similarly descriptive,

you can easily remember it if you have to abandon it for a while and come back later.

The maintainer of the Git project tends to namespace these branches as well — such as

sc/ruby client , where sc is short for the person who contributed the work. As you’ll

remember, you can create the branch based off your master branch like this:

$ git branch sc/ruby_client master

Or, if you want to also switch to it immediately, you can use the checkout -b

option:

$ git checkout -b sc/ruby_client master

Now you’re ready to add your contributed work into this topic branch and determine

if you want to merge it into your longer-term branches.

5.3.2 Applying Patches from E-mail

If you receive a patch over e-mail that you need to integrate into your project, you need

to apply the patch in your topic branch to evaluate it. There are two ways to apply an

e-mailed patch: with git apply or with git am .

Applying a Patch with apply

If you received the patch from someone who generated it with the git diff or a

Unix diff command, you can apply it with the git apply command. Assuming you

saved the patch at /tmp/patch-ruby-client.patch , you can apply the patch like this:

$ git apply /tmp/patch-ruby-client.patch

This modifies the files in your working directory. It’s almost identical to running a

patch -p1 command to apply the patch, although it’s more paranoid and accepts fewer

fuzzy matches then patch. It also handles file adds, deletes, and renames if they’re

described in the git diff format, which patch won’t do. Finally, git apply is an

“apply all or abort all” model where either everything is applied or nothing is, whereas

patch can partially apply patchfiles, leaving your working directory in a weird state.

git apply is over all much more paranoid than patch . It won’t create a commit for you

— after running it, you must stage and commit the changes introduced manually.

You can also use git apply to see if a patch applies cleanly before you try actually

applying it — you can run git apply --check with the patch:

$ git apply --check 0001-seeing-if-this-helps-the-gem.patch

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

If there is no output, then the patch should apply cleanly. This command also exits

with a non-zero status if the check fails, so you can use it in scripts if you want.

Applying a Patch with am

If the contributor is a Git user and was good enough to use the format-patch com-

mand to generate their patch, then your job is easier because the patch contains author

information and a commit message for you. If you can, encourage your contributors to

118

CHAPTER 5 DISTRIBUTED GIT

use format-patch instead of diff to generate patches for you. You should only have to

use git apply for legacy patches and things like that.

To apply a patch generated by format-patch , you use git am . Technically, git am

is built to read an mbox file, which is a simple, plain-text format for storing one or

more e-mail messages in one text file. It looks something like this:

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

This is the beginning of the output of the format-patch command that you saw in the

previous section. This is also a valid mbox e-mail format. If someone has e-mailed you

the patch properly using git send-email, and you download that into an mbox format,

then you can point git am to that mbox file, and it will start applying all the patches it

sees. If you run a mail client that can save several e-mails out in mbox format, you can

save entire patch series into a file and then use git am to apply them one at a time.

However, if someone uploaded a patch file generated via format-patch to a tick-

eting system or something similar, you can save the file locally and then pass that file

saved on your disk to git am to apply it:

$ git am 0001-limit-log-function.patch

Applying: add limit to log function

You can see that it applied cleanly and automatically created the new commit for

you. The author information is taken from the e-mail’s From and Date headers, and the

message of the commit is taken from the Subject and body (before the patch) of the

e-mail. For example, if this patch was applied from the mbox example I just showed,

the commit generated would look something like this:

$ git log --pretty=fuller -1

commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Author: Jessica Smith <jessica@example.com>

AuthorDate: Sun Apr 6 10:17:23 2008 -0700

Commit: Scott Chacon <schacon@gmail.com>

CommitDate: Thu Apr 9 09:19:06 2009 -0700

add limit to log function

Limit log functionality to the first 20

The Commit information indicates the person who applied the patch and the time it

was applied. The Author information is the individual who originally created the patch

and when it was originally created.

But it’s possible that the patch won’t apply cleanly. Perhaps your main branch has

diverged too far from the branch the patch was built from, or the patch depends on

another patch you haven’t applied yet. In that case, the git am process will fail and ask

you what you want to do:

119

PRO GIT SCOTT CHACON

$ git am 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Patch failed at 0001.

When you have resolved this problem run "git am --resolved".

If you would prefer to skip this patch, instead run "git am --skip".

To restore the original branch and stop patching run "git am --abort".

This command puts conflict markers in any files it has issues with, much like a

conflicted merge or rebase operation. You solve this issue much the same way — edit

the file to resolve the conflict, stage the new file, and then run git am --resolved to

continue to the next patch:

$ (fix the file)

$ git add ticgit.gemspec

$ git am --resolved

Applying: seeing if this helps the gem

If you want Git to try a bit more intelligently to resolve the conflict, you can pass

a -3 option to it, which makes Git attempt a three-way merge. This option isn’t on

by default because it doesn’t work if the commit the patch says it was based on isn’t

in your repository. If you do have that commit — if the patch was based on a public

commit — then the -3 option is generally much smarter about applying a conflicting

patch:

$ git am -3 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

No changes -- Patch already applied.

In this case, I was trying to apply a patch I had already applied. Without the -3

option, it looks like a conflict.

If you’re applying a number of patches from an mbox, you can also run the am

command in interactive mode, which stops at each patch it finds and asks if you want

to apply it:

$ git am -3 -i mbox

Commit Body is:

seeing if this helps the gem

Apply? [y]es/[n]o/[e]dit/[v]iew patch/[a]ccept all

This is nice if you have a number of patches saved, because you can view the patch

first if you don’t remember what it is, or not apply the patch if you’ve already done so.

When all the patches for your topic are applied and committed into your branch,

you can choose whether and how to integrate them into a longer-running branch.

120

CHAPTER 5 DISTRIBUTED GIT

5.3.3 Checking Out Remote Branches

If your contribution came from a Git user who set up their own repository, pushed a

number of changes into it, and then sent you the URL to the repository and the name

of the remote branch the changes are in, you can add them as a remote and do merges

locally.

For instance, if Jessica sends you an e-mail saying that she has a great new feature

in the ruby-client branch of her repository, you can test it by adding the remote and

checking out that branch locally:

$ git remote add jessica git://github.com/jessica/myproject.git

$ git fetch jessica

$ git checkout -b rubyclient jessica/ruby-client

If she e-mails you again later with another branch containing another great feature,

you can fetch and check out because you already have the remote setup.

This is most useful if you’re working with a person consistently. If someone only

has a single patch to contribute once in a while, then accepting it over e-mail may be

less time consuming than requiring everyone to run their own server and having to

continually add and remove remotes to get a few patches. You’re also unlikely to want

to have hundreds of remotes, each for someone who contributes only a patch or two.

However, scripts and hosted services may make this easier — it depends largely on

how you develop and how your contributors develop.

The other advantage of this approach is that you get the history of the commits as

well. Although you may have legitimate merge issues, you know where in your history

their work is based; a proper three-way merge is the default rather than having to supply

a -3 and hope the patch was generated off a public commit to which you have access.

If you aren’t working with a person consistently but still want to pull from them in

this way, you can provide the URL of the remote repository to the git pull command.

This does a one-time pull and doesn’t save the URL as a remote reference:

$ git pull git://github.com/onetimeguy/project.git

From git://github.com/onetimeguy/project

* branch HEAD -> FETCH_HEAD

Merge made by recursive.

5.3.4 Determining What Is Introduced

Now you have a topic branch that contains contributed work. At this point, you can

determine what you’d like to do with it. This section revisits a couple of commands so

you can see how you can use them to review exactly what you’ll be introducing if you

merge this into your main branch.

It’s often helpful to get a review of all the commits that are in this branch but that

aren’t in your master branch. You can exclude commits in the master branch by adding

the --not option before the branch name. For example, if your contributor sends you

two patches and you create a branch called contrib and applied those patches there,

you can run this:

$ git log contrib --not master

commit 5b6235bd297351589efc4d73316f0a68d484f118

Author: Scott Chacon <schacon@gmail.com>

121

PRO GIT SCOTT CHACON

Date: Fri Oct 24 09:53:59 2008 -0700

seeing if this helps the gem

commit 7482e0d16d04bea79d0dba8988cc78df655f16a0

Author: Scott Chacon <schacon@gmail.com>

Date: Mon Oct 22 19:38:36 2008 -0700

updated the gemspec to hopefully work better

To see what changes each commit introduces, remember that you can pass the -p

option to git log and it will append the diff introduced to each commit.

To see a full diff of what would happen if you were to merge this topic branch with

another branch, you may have to use a weird trick to get the correct results. You may

think to run this:

$ git diff master

This command gives you a diff, but it may be misleading. If your master branch has

moved forward since you created the topic branch from it, then you’ll get seemingly

strange results. This happens because Git directly compares the snapshots of the last

commit of the topic branch you’re on and the snapshot of the last commit on the master

branch. For example, if you’ve added a line in a file on the master branch, a direct

comparison of the snapshots will look like the topic branch is going to remove that

line.

If master is a direct ancestor of your topic branch, this isn’t a problem; but if the

two histories have diverged, the diff will look like you’re adding all the new stuff in

your topic branch and removing everything unique to the master branch.

What you really want to see are the changes added to the topic branch — the work

you’ll introduce if you merge this branch with master. You do that by having Git

compare the last commit on your topic branch with the first common ancestor it has

with the master branch.

Technically, you can do that by explicitly figuring out the common ancestor and

then running your diff on it:

$ git merge-base contrib master

36c7dba2c95e6bbb78dfa822519ecfec6e1ca649

$ git diff 36c7db

However, that isn’t convenient, so Git provides another shorthand for doing the

same thing: the triple-dot syntax. In the context of the diff command, you can put

three periods after another branch to do a diff between the last commit of the branch

you’re on and its common ancestor with another branch:

$ git diff master...contrib

This command shows you only the work your current topic branch has introduced

since its common ancestor with master. That is a very useful syntax to remember.

122

CHAPTER 5 DISTRIBUTED GIT

5.3.5 Integrating Contributed Work

When all the work in your topic branch is ready to be integrated into a more mainline

branch, the question is how to do it. Furthermore, what overall workflow do you want

to use to maintain your project? You have a number of choices, so I’ll cover a few of

them.

Merging Workflows

One simple workflow merges your work into your master branch. In this scenario,

you have a master branch that contains basically stable code. When you have work in

a topic branch that you’ve done or that someone has contributed and you’ve verified,

you merge it into your master branch, delete the topic branch, and then continue the

process. If we have a repository with work in two branches named ruby client and

php client that looks like Figure 5.19 and merge ruby client first and then php client

next, then your history will end up looking like Figure 5.20.

Figure 5.19: History with several topic branches

That is probably the simplest workflow, but it’s problematic if you’re dealing with

larger repositories or projects.

If you have more developers or a larger project, you’ll probably want to use at least

a two-phase merge cycle. In this scenario, you have two long-running branches, master

and develop , in which you determine that master is updated only when a very stable

release is cut and all new code is integrated into the develop branch. You regularly

push both of these branches to the public repository. Each time you have a new topic

branch to merge in (Figure 5.21), you merge it into develop (Figure 5.22); then, when

you tag a release, you fast-forward master to wherever the now-stable develop branch

is (Figure 5.23).

123

PRO GIT SCOTT CHACON

Figure 5.20: After a topic branch merge

Figure 5.21: Before a topic branch merge

This way, when people clone your project’s repository, they can either check out

master to build the latest stable version and keep up to date on that easily, or they

can check out develop, which is the more cutting-edge stuff. You can also continue

this concept, having an integrate branch where all the work is merged together. Then,

when the codebase on that branch is stable and passes tests, you merge it into a develop

branch; and when that has proven itself stable for a while, you fast-forward your master

branch.

Large-Merging Workflows

The Git project has four long-running branches: master , next , and pu (proposed

updates) for new work, and maint for maintenance backports. When new work is intro-

duced by contributors, it’s collected into topic branches in the maintainer’s repository

in a manner similar to what I’ve described (see Figure 5.24). At this point, the topics

are evaluated to determine whether they’re safe and ready for consumption or whether

they need more work. If they’re safe, they’re merged into next , and that branch is

124

CHAPTER 5 DISTRIBUTED GIT

Figure 5.22: After a topic branch merge

Figure 5.23: After a topic branch release

pushed up so everyone can try the topics integrated together.

Figure 5.24: Managing a complex series of parallel contributed topic branches

If the topics still need work, they’re merged into pu instead. When it’s determined

125

PRO GIT SCOTT CHACON

that they’re totally stable, the topics are re-merged into master and are then rebuilt

from the topics that were in next but didn’t yet graduate to master . This means master

almost always moves forward, next is rebased occasionally, and pu is rebased even

more often (see Figure 5.25).

Figure 5.25: Merging contributed topic branches into long-term integration branches

When a topic branch has finally been merged into master , it’s removed from the

repository. The Git project also has a maint branch that is forked off from the last

release to provide backported patches in case a maintenance release is required. Thus,

when you clone the Git repository, you have four branches that you can check out to

evaluate the project in different stages of development, depending on how cutting edge

you want to be or how you want to contribute; and the maintainer has a structured

workflow to help them vet new contributions.

Rebasing and Cherry Picking Workflows

Other maintainers prefer to rebase or cherry-pick contributed work on top of their

master branch, rather than merging it in, to keep a mostly linear history. When you

have work in a topic branch and have determined that you want to integrate it, you

move to that branch and run the rebase command to rebuild the changes on top of your

current master (or develop , and so on) branch. If that works well, you can fast-forward

your master branch, and you’ll end up with a linear project history.

The other way to move introduced work from one branch to another is to cherry-

pick it. A cherry-pick in Git is like a rebase for a single commit. It takes the patch

that was introduced in a commit and tries to reapply it on the branch you’re currently

on. This is useful if you have a number of commits on a topic branch and you want

to integrate only one of them, or if you only have one commit on a topic branch and

you’d prefer to cherry-pick it rather than run rebase. For example, suppose you have a

project that looks like Figure 5.26.

If you want to pull commit e43a6 into your master branch, you can run

$ git cherry-pick e43a6fd3e94888d76779ad79fb568ed180e5fcdf

Finished one cherry-pick.

[master]: created a0a41a9: "More friendly message when locking the index fails."

3 files changed, 17 insertions(+), 3 deletions(-)

This pulls the same change introduced in e43a6 , but you get a new commit SHA–1

value, because the date applied is different. Now your history looks like Figure 5.27.

Now you can remove your topic branch and drop the commits you didn’t want to

pull in.

126

CHAPTER 5 DISTRIBUTED GIT

Figure 5.26: Example history before a cherry pick

Figure 5.27: History after cherry-picking a commit on a topic branch

5.3.6 Tagging Your Releases

When you’ve decided to cut a release, you’ll probably want to drop a tag so you can re-

create that release at any point going forward. You can create a new tag as I discussed

in Chapter 2. If you decide to sign the tag as the maintainer, the tagging may look

something like this:

$ git tag -s v1.5 -m ’my signed 1.5 tag’

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gmail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you do sign your tags, you may have the problem of distributing the public PGP

key used to sign your tags. The maintainer of the Git project has solved this issue by

including their public key as a blob in the repository and then adding a tag that points

directly to that content. To do this, you can figure out which key you want by running

gpg --list-keys :

$ gpg --list-keys

/Users/schacon/.gnupg/pubring.gpg

127

PRO GIT SCOTT CHACON

pub 1024D/F721C45A 2009-02-09 [expires: 2010-02-09]

uid Scott Chacon <schacon@gmail.com>

sub 2048g/45D02282 2009-02-09 [expires: 2010-02-09]

Then, you can directly import the key into the Git database by exporting it and

piping that through git hash-object , which writes a new blob with those contents into

Git and gives you back the SHA–1 of the blob:

$ gpg -a --export F721C45A | git hash-object -w --stdin

659ef797d181633c87ec71ac3f9ba29fe5775b92

Now that you have the contents of your key in Git, you can create a tag that points

directly to it by specifying the new SHA–1 value that the hash-object command gave

you:

$ git tag -a maintainer-pgp-pub 659ef797d181633c87ec71ac3f9ba29fe5775b92

If you run git push --tags , the maintainer-pgp-pub tag will be shared with ev-

eryone. If anyone wants to verify a tag, they can directly import your PGP key by

pulling the blob directly out of the database and importing it into GPG:

$ git show maintainer-pgp-pub | gpg --import

They can use that key to verify all your signed tags. Also, if you include instructions

in the tag message, running git show <tag> will let you give the end user more specific

instructions about tag verification.

5.3.7 Generating a Build Number

Because Git doesn’t have monotonically increasing numbers like ‘v123’ or the equiv-

alent to go with each commit, if you want to have a human-readable name to go with

a commit, you can run git describe on that commit. Git gives you the name of the

nearest tag with the number of commits on top of that tag and a partial SHA–1 value

of the commit you’re describing:

$ git describe master

v1.6.2-rc1-20-g8c5b85c

This way, you can export a snapshot or build and name it something understandable

to people. In fact, if you build Git from source code cloned from the Git repository, git

--version gives you something that looks like this. If you’re describing a commit that

you have directly tagged, it gives you the tag name.

The git describe command favors annotated tags (tags created with the -a or -s

flag), so release tags should be created this way if you’re using git describe , to ensure

the commit is named properly when described. You can also use this string as the target

of a checkout or show command, although it relies on the abbreviated SHA–1 value at

the end, so it may not be valid forever. For instance, the Linux kernel recently jumped

from 8 to 10 characters to ensure SHA–1 object uniqueness, so older git describe

output names were invalidated.

128

CHAPTER 5 DISTRIBUTED GIT

5.3.8 Preparing a Release

Now you want to release a build. One of the things you’ll want to do is create an

archive of the latest snapshot of your code for those poor souls who don’t use Git. The

command to do this is git archive :

$ git archive master --prefix=’project/’ | gzip > ‘git describe master‘.tar.gz

$ ls *.tar.gz

v1.6.2-rc1-20-g8c5b85c.tar.gz

If someone opens that tarball, they get the latest snapshot of your project under

a project directory. You can also create a zip archive in much the same way, but by

passing the --format=zip option to git archive :

$ git archive master --prefix=’project/’ --format=zip > ‘git describe master‘.zip

You now have a nice tarball and a zip archive of your project release that you can

upload to your website or e-mail to people.

5.3.9 The Shortlog

It’s time to e-mail your mailing list of people who want to know what’s happening in

your project. A nice way of quickly getting a sort of changelog of what has been added

to your project since your last release or e-mail is to use the git shortlog command.

It summarizes all the commits in the range you give it; for example, the following

gives you a summary of all the commits since your last release, if your last release was

named v1.0.1:

$ git shortlog --no-merges master --not v1.0.1

Chris Wanstrath (8):

Add support for annotated tags to Grit::Tag

Add packed-refs annotated tag support.

Add Grit::Commit#to_patch

Update version and History.txt

Remove stray ‘puts‘

Make ls_tree ignore nils

Tom Preston-Werner (4):

fix dates in history

dynamic version method

Version bump to 1.0.2

Regenerated gemspec for version 1.0.2

You get a clean summary of all the commits since v1.0.1, grouped by author, that

you can e-mail to your list.

5.4 Summary

You should feel fairly comfortable contributing to a project in Git as well as main-

taining your own project or integrating other users’ contributions. Congratulations on

being an effective Git developer! In the next chapter, you’ll learn more powerful tools

and tips for dealing with complex situations, which will truly make you a Git master.

129

PRO GIT SCOTT CHACON

130

Chapter 6

Git Tools

By now, you’ve learned most of the day-to-day commands and workflows that you

need to manage or maintain a Git repository for your source code control. You’ve

accomplished the basic tasks of tracking and committing files, and you’ve harnessed

the power of the staging area and lightweight topic branching and merging.

Now you’ll explore a number of very powerful things that Git can do that you may

not necessarily use on a day-to-day basis but that you may need at some point.

6.1 Revision Selection

Git allows you to specify specific commits or a range of commits in several ways. They

aren’t necessarily obvious but are helpful to know.

6.1.1 Single Revisions

You can obviously refer to a commit by the SHA–1 hash that it’s given, but there

are more human-friendly ways to refer to commits as well. This section outlines the

various ways you can refer to a single commit.

6.1.2 Short SHA

Git is smart enough to figure out what commit you meant to type if you provide the

first few characters, as long as your partial SHA–1 is at least four characters long and

unambiguous— that is, only one object in the current repository begins with that partial

SHA–1.

For example, to see a specific commit, suppose you run a git log command and

identify the commit where you added certain functionality:

$ git log

commit 734713bc047d87bf7eac9674765ae793478c50d3

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

131

PRO GIT SCOTT CHACON

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

added some blame and merge stuff

In this case, choose 1c002dd.... If you git show that commit, the following com-

mands are equivalent (assuming the shorter versions are unambiguous):

$ git show 1c002dd4b536e7479fe34593e72e6c6c1819e53b

$ git show 1c002dd4b536e7479f

$ git show 1c002d

Git can figure out a short, unique abbreviation for your SHA–1 values. If you pass

--abbrev-commit to the git log command, the output will use shorter values but keep

them unique; it defaults to using seven characters but makes them longer if necessary

to keep the SHA–1 unambiguous:

$ git log --abbrev-commit --pretty=oneline

ca82a6d changed the verison number

085bb3b removed unnecessary test code

a11bef0 first commit

Generally, eight to ten characters are more than enough to be unique within a

project. One of the largest Git projects, the Linux kernel, is beginning to need 12

characters out of the possible 40 to stay unique.

6.1.3 A SHORT NOTE ABOUT SHA–1

A lot of people become concerned at some point that they will, by random happen-

stance, have two objects in their repository that hash to the same SHA–1 value. What

then?

If you do happen to commit an object that hashes to the same SHA–1 value as a

previous object in your repository, GIt will see the previous object already in your Git

database and assume it was already written. If you try to check out that object again at

some point, you’ll always get the data of the first object.

However, you should be aware of how ridiculously unlikely this scenario is. The

SHA–1 digest is 20 bytes or 160 bits. The number of randomly hashed objects needed

to ensure a 50% probability of a single collision is about 280 (the formula for deter-

mining collision probability is p = n(n−1)
2

×
1

2160
. 280 is 1.2×1024 or 1 million billion

billion. That’s 1,200 times the number of grains of sand on the earth.

Here’s an example to give you an idea of what it would take to get a SHA–1 colli-

sion. If all 6.5 billion humans on Earth were programming, and every second, each one

was producing code that was the equivalent of the entire Linux kernel history (1 million

132

CHAPTER 6 GIT TOOLS

Git objects) and pushing it into one enormous Git repository, it would take 5 years until

that repository contained enough objects to have a 50% probability of a single SHA–1

object collision. A higher probability exists that every member of your programming

team will be attacked and killed by wolves in unrelated incidents on the same night.

6.1.4 Branch References

The most straightforward way to specify a commit requires that it have a branch refer-

ence pointed at it. Then, you can use a branch name in any Git command that expects

a commit object or SHA–1 value. For instance, if you want to show the last commit

object on a branch, the following commands are equivalent, assuming that the topic1

branch points to ca82a6d :

$ git show ca82a6dff817ec66f44342007202690a93763949

$ git show topic1

If you want to see which specific SHA a branch points to, or if you want to see what

any of these examples boils down to in terms of SHAs, you can use a Git plumbing tool

called rev-parse . You can see Chapter 9 for more information about plumbing tools;

basically, rev-parse exists for lower-level operations and isn’t designed to be used in

day-to-day operations. However, it can be helpful sometimes when you need to see

what’s really going on. Here you can run rev-parse on your branch.

$ git rev-parse topic1

ca82a6dff817ec66f44342007202690a93763949

6.1.5 RefLog Shortnames

One of the things Git does in the background while you’re working away is keep a

reflog — a log of where your HEAD and branch references have been for the last few

months.

You can see your reflog by using git reflog :

$ git reflog

734713b... HEAD@{0}: commit: fixed refs handling, added gc auto, updated

d921970... HEAD@{1}: merge phedders/rdocs: Merge made by recursive.

1c002dd... HEAD@{2}: commit: added some blame and merge stuff

1c36188... HEAD@{3}: rebase -i (squash): updating HEAD

95df984... HEAD@{4}: commit: # This is a combination of two commits.

1c36188... HEAD@{5}: rebase -i (squash): updating HEAD

7e05da5... HEAD@{6}: rebase -i (pick): updating HEAD

Every time your branch tip is updated for any reason, Git stores that information

for you in this temporary history. And you can specify older commits with this data, as

well. If you want to see the fifth prior value of the HEAD of your repository, you can

use the @n reference that you see in the reflog output:

$ git show HEAD@{5}

You can also use this syntax to see where a branch was some specific amount of

time ago. For instance, to see where your master branch was yesterday, you can type

133

PRO GIT SCOTT CHACON

$ git show master@{yesterday}

That shows you where the branch tip was yesterday. This technique only works for

data that’s still in your reflog, so you can’t use it to look for commits older than a few

months.

To see reflog information formatted like the git log output, you can run git log

-g:

$ git log -g master

commit 734713bc047d87bf7eac9674765ae793478c50d3

Reflog: master@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: commit: fixed refs handling, added gc auto, updated

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Reflog: master@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: merge phedders/rdocs: Merge made by recursive.

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

It’s important to note that the reflog information is strictly local — it’s a log of

what you’ve done in your repository. The references won’t be the same on someone

else’s copy of the repository; and right after you initially clone a repository, you’ll have

an empty reflog, as no activity has occurred yet in your repository. Running git show

HEAD@2.months.ago will work only if you cloned the project at least two months ago

— if you cloned it five minutes ago, you’ll get no results.

6.1.6 Ancestry References

The other main way to specify a commit is via its ancestry. If you place a ˆ at the end

of a reference, Git resolves it to mean the parent of that commit. Suppose you look at

the history of your project:

$ git log --pretty=format:’%h %s’ --graph

* 734713b fixed refs handling, added gc auto, updated tests

* d921970 Merge commit ’phedders/rdocs’

|\

| * 35cfb2b Some rdoc changes

* | 1c002dd added some blame and merge stuff

|/

* 1c36188 ignore *.gem

* 9b29157 add open3_detach to gemspec file list

Then, you can see the previous commit by specifying HEAD̂ , which means “the

parent of HEAD”:

134

CHAPTER 6 GIT TOOLS

$ git show HEAD̂

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

You can also specify a number after the ˆ— for example, d921970̂ 2 means “the

second parent of d921970.” This syntax is only useful for merge commits, which have

more than one parent. The first parent is the branch you were on when you merged,

and the second is the commit on the branch that you merged in:

$ git show d921970̂

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

added some blame and merge stuff

$ git show d921970̂ 2

commit 35cfb2b795a55793d7cc56a6cc2060b4bb732548

Author: Paul Hedderly <paul+git@mjr.org>

Date: Wed Dec 10 22:22:03 2008 +0000

Some rdoc changes

The other main ancestry specification is the . This also refers to the first parent, so

HEAD and HEAD̂ are equivalent. The difference becomes apparent when you specify a

number. HEAD 2 means “the first parent of the first parent,” or “the grandparent” — it

traverses the first parents the number of times you specify. For example, in the history

listed earlier, HEAD 3 would be

$ git show HEAD̃ 3

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

ignore *.gem

This can also be written HEAD̂ ˆ̂ , which again is the first parent of the first parent

of the first parent:

$ git show HEAD̂ ˆ̂

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

ignore *.gem

You can also combine these syntaxes — you can get the second parent of the pre-

vious reference (assuming it was a merge commit) by using HEAD 3̂ 2 , and so on.

135

PRO GIT SCOTT CHACON

6.1.7 Commit Ranges

Now that you can specify individual commits, let’s see how to specify ranges of com-

mits. This is particularly useful for managing your branches — if you have a lot of

branches, you can use range specifications to answer questions such as, “What work is

on this branch that I haven’t yet merged into my main branch?”

Double Dot

The most common range specification is the double-dot syntax. This basically

asks Git to resolve a range of commits that are reachable from one commit but aren’t

reachable from another. For example, say you have a commit history that looks like

Figure 6.1.

Figure 6.1: Example history for range selection

You want to see what is in your experiment branch that hasn’t yet been merged into

your master branch. You can ask Git to show you a log of just those commits with

master..experiment — that means “all commits reachable by experiment that aren’t

reachable by master.” For the sake of brevity and clarity in these examples, I’ll use the

letters of the commit objects from the diagram in place of the actual log output in the

order that they would display:

$ git log master..experiemnt

D

C

If, on the other hand, you want to see the opposite — all commits in master that

aren’t in experiment — you can reverse the branch names. experiment..master shows

you everything in master not reachable from experiment :

$ git log experiment..master

F

E

This is useful if you want to keep the experiment branch up to date and preview

what you’re about to merge in. Another very frequent use of this syntax is to see what

you’re about to push to a remote:

$ git log origin/master..HEAD

This command shows you any commits in your current branch that aren’t in the

master branch on your origin remote. If you run a git push and your current branch

is tracking origin/master , the commits listed by git log origin/master..HEAD are

the commits that will be transferred to the server. You can also leave off one side of

the syntax to have Git assume HEAD. For example, you can get the same results as in

the previous example by typing git log origin/master.. —Git substitutes HEAD if

one side is missing.

136

CHAPTER 6 GIT TOOLS

Multiple Points

The double-dot syntax is useful as a shorthand; but perhaps you want to specify

more than two branches to indicate your revision, such as seeing what commits are in

any of several branches that aren’t in the branch you’re currently on. Git allows you to

do this by using either the ˆ character or --not before any reference from which you

don’t want to see reachable commits. Thus these three commands are equivalent:

$ git log refA..refB

$ git log r̂efA refB

$ git log refB --not refA

This is nice because with this syntax you can specify more than two references in

your query, which you cannot do with the double-dot syntax. For insance, if you want

to see all commits that are reachable from refA or refB but not from refC , you can type

one of these:

$ git log refA refB r̂efC

$ git log refA refB --not refC

This makes for a very powerful revision query system that should help you figure

out what is in your branches.

Triple Dot

The last major range-selection syntax is the triple-dot syntax, which specifies all

the commits that are reachable by either of two references but not by both of them.

Look back at the example commit history in Figure 6.1. If you want to see what is in

master or experiment but not any common references, you can run

$ git log master...experiment

F

E

D

C

Again, this gives you normal log output but shows you only the commit information

for those four commits, appearing in the traditional commit date ordering.

A common switch to use with the log command in this case is --left-right , which

shows you which side of the range each commit is in. This helps make the data more

useful:

$ git log --left-right master...experiment

< F

< E

> D

> C

With these tools, you can much more easily let Git know what commit or commits

you want to inspect.

137

PRO GIT SCOTT CHACON

6.2 Interactive Staging

Git comes with a couple of scripts that make some command-line tasks easier. Here,

you’ll look at a few interactive commands that can help you easily craft your commits

to include only certain combinations and parts of files. These tools are very helpful

if you modify a bunch of files and then decide that you want those changes to be in

several focused commits rather than one big messy commit. This way, you can make

sure your commits are logically separate changesets and can be easily reviewed by the

developers working with you. If you run git add with the -i or --interactive option,

Git goes into an interactive shell mode, displaying something like this:

$ git add -i

staged unstaged path

1: unchanged +0/-1 TODO

2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now>

You can see that this command shows you a much different view of your staging

area — basically the same information you get with git status but a bit more succinct

and informative. It lists the changes you’ve staged on the left and unstaged changes on

the right.

After this comes a Commands section. Here you can do a number of things, in-

cluding staging files, unstaging files, staging parts of files, adding untracked files, and

seeing diffs of what has been staged.

6.2.1 Staging and Unstaging Files

If you type 2 or u at the What now> prompt, the script prompts you for which files you

want to stage:

What now> 2

staged unstaged path

1: unchanged +0/-1 TODO

2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

Update>>

To stage the TODO and index.html files, you can type the numbers:

Update>> 1,2

staged unstaged path

* 1: unchanged +0/-1 TODO

* 2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

Update>>

138

CHAPTER 6 GIT TOOLS

The * next to each file means the file is selected to be staged. If you press Enter

after typing nothing at the Update>> prompt, Git takes anything selected and stages it

for you:

Update>>

updated 2 paths

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

staged unstaged path

1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Now you can see that the TODO and index.html files are staged and the simplegit.rb

file is still unstaged. If you want to unstage the TODO file at this point, you use the 3

or r (for revert) option:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 3

staged unstaged path

1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Revert>> 1

staged unstaged path

* 1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Revert>> [enter]

reverted one path

Looking at your Git status again, you can see that you’ve unstaged the TODO file:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

staged unstaged path

1: unchanged +0/-1 TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

To see the diff of what you’ve staged, you can use the 6 or d (for diff) command.

It shows you a list of your staged files, and you can select the ones for which you

would like to see the staged diff. This is much like specifying git diff --cached on

the command line:

139

PRO GIT SCOTT CHACON

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 6

staged unstaged path

1: +1/-1 nothing index.html

Review diff>> 1

diff --git a/index.html b/index.html

index 4d07108..4335f49 100644

--- a/index.html

+++ b/index.html

@@ -16,7 +16,7 @@ Date Finder

<p id="out">...</p>

-<div id="footer">contact : support@github.com</div>

+<div id="footer">contact : email.support@github.com</div>

<script type="text/javascript">

With these basic commands, you can use the interactive add mode to deal with your

staging area a little more easily.

6.2.2 Staging Patches

It’s also possible for Git to stage certain parts of files and not the rest. For example, if

you make two changes to your simplegit.rb file and want to stage one of them and not

the other, doing so is very easy in Git. From the interactive prompt, type 5 or p (for

patch). Git will ask you which files you would like to partially stage; then, for each

section of the selected files, it will display hunks of the file diff and ask if you would

like to stage them, one by one:

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index dd5ecc4..57399e0 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -22,7 +22,7 @@ class SimpleGit

end

def log(treeish = ’master’)

- command("git log -n 25 #{treeish}")

+ command("git log -n 30 #{treeish}")

end

def blame(path)

Stage this hunk [y,n,a,d,/,j,J,g,e,?]?

You have a lot of options at this point. Typing ? shows a list of what you can do:

Stage this hunk [y,n,a,d,/,j,J,g,e,?]? ?

y - stage this hunk

n - do not stage this hunk

140

CHAPTER 6 GIT TOOLS

a - stage this and all the remaining hunks in the file

d - do not stage this hunk nor any of the remaining hunks in the file

g - select a hunk to go to

/ - search for a hunk matching the given regex

j - leave this hunk undecided, see next undecided hunk

J - leave this hunk undecided, see next hunk

k - leave this hunk undecided, see previous undecided hunk

K - leave this hunk undecided, see previous hunk

s - split the current hunk into smaller hunks

e - manually edit the current hunk

? - print help

Generally, you’ll type y or n if you want to stage each hunk, but staging all of them

in certain files or skipping a hunk decision until later can be helpful too. If you stage

one part of the file and leave another part unstaged, your status output will look like

this:

What now> 1

staged unstaged path

1: unchanged +0/-1 TODO

2: +1/-1 nothing index.html

3: +1/-1 +4/-0 lib/simplegit.rb

The status of the simplegit.rb file is interesting. It shows you that a couple of lines

are staged and a couple are unstaged. You’ve partially staged this file. At this point,

you can exit the interactive adding script and run git commit to commit the partially

staged files.

Finally, you don’t need to be in interactive add mode to do the partial-file staging—

you can start the same script by using git add -p or git add --patch on the command

line.

6.3 Stashing

Often, when you’ve been working on part of your project, things are in a messy state

and you want to switch branches for a bit to work on something else. The problem is,

you don’t want to do a commit of half-done work just so you can get back to this point

later. The answer to this issue is the git stash command.

Stashing takes the dirty state of your working directory — that is, your modified

tracked files and staged changes — and saves it on a stack of unfinished changes that

you can reapply at any time.

6.3.1 Stashing Your Work

To demonstrate, you’ll go into your project and start working on a couple of files and

possibly stage one of the changes. If you run git status , you can see your dirty state:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

141

PRO GIT SCOTT CHACON

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

Now you want to switch branches, but you don’t want to commit what you’ve been

working on yet; so you’ll stash the changes. To push a new stash onto your stack, run

git stash :

$ git stash

Saved working directory and index state \

"WIP on master: 049d078 added the index file"

HEAD is now at 049d078 added the index file

(To restore them type "git stash apply")

Your working directory is clean:

$ git status

On branch master

nothing to commit (working directory clean)

At this point, you can easily switch branches and do work elsewhere; your changes

are stored on your stack. To see which stashes you’ve stored, you can use git stash

list :

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051... Revert "added file_size"

stash@{2}: WIP on master: 21d80a5... added number to log

In this case, two stashes were done previously, so you have access to three different

stashed works. You can reapply the one you just stashed by using the command shown

in the help output of the original stash command: git stash apply . If you want to

apply one of the older stashes, you can specify it by naming it, like this: git stash

apply stash@2 . If you don’t specify a stash, Git assumes the most recent stash and

tries to apply it:

$ git stash apply

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: index.html

modified: lib/simplegit.rb

#

You can see that Git re-modifies the files you uncommitted when you saved the

stash. In this case, you had a clean working directory when you tried to apply the

stash, and you tried to apply it on the same branch you saved it from; but having a clean

142

CHAPTER 6 GIT TOOLS

working directory and applying it on the same branch aren’t necessary to successfully

apply a stash. You can save a stash on one branch, switch to another branch later, and

try to reapply the changes. You can also have modified and uncommitted files in your

working directory when you apply a stash — Git gives you merge conflicts if anything

no longer applies cleanly.

The changes to your files were reapplied, but the file you staged before wasn’t

restaged. To do that, you must run the git stash apply command with a --index

option to tell the command to try to reapply the staged changes. If you had run that

instead, you’d have gotten back to your original position:

$ git stash apply --index

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

The apply option only tries to apply the stashed work — you continue to have it on

your stack. To remove it, you can run git stash drop with the name of the stash to

remove:

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051... Revert "added file_size"

stash@{2}: WIP on master: 21d80a5... added number to log

$ git stash drop stash@{0}

Dropped stash@{0} (364e91f3f268f0900bc3ee613f9f733e82aaed43)

You can also run git stash pop to apply the stash and then immediately drop it

from your stack.

6.3.2 Creating a Branch from a Stash

If you stash some work, leave it there for a while, and continue on the branch from

which you stashed the work, you may have a problem reapplying the work. If the

apply tries to modify a file that you’ve since modified, you’ll get a merge conflict and

will have to try to resolve it. If you want an easier way to test the stashed changes

again, you can run git stash branch , which creates a new branch for you, checks out

the commit you were on when you stashed your work, reapplies your work there, and

then drops the stash if it applies successfully:

$ git stash branch testchanges

Switched to a new branch "testchanges"

On branch testchanges

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

143

PRO GIT SCOTT CHACON

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

Dropped refs/stash@{0} (f0dfc4d5dc332d1cee34a634182e168c4efc3359)

This is a nice shortcut to recover stashed work easily and work on it in a new

branch.

6.4 Rewriting History

Many times, when working with Git, you may want to revise your commit history for

some reason. One of the great things about Git is that it allows you to make decisions

at the last possible moment. You can decide what files go into which commits right

before you commit with the staging area, you can decide that you didn’t mean to be

working on something yet with the stash command, and you can rewrite commits that

already happened so they look like they happened in a different way. This can involve

changing the order of the commits, changing messages or modifying files in a commit,

squashing together or splitting apart commits, or removing commits entirely — all

before you share your work with others.

In this section, you’ll cover how to accomplish these very useful tasks so that you

can make your commit history look the way you want before you share it with others.

6.4.1 Changing the Last Commit

Changing your last commit is probably the most common rewriting of history that

you’ll do. You’ll often want to do two basic things to your last commit: change the

commit message, or change the snapshot you just recorded by adding, changing and

removing files.

If you only want to modify your last commit message, it’s very simple:

$ git commit --amend

That drops you into your text editor, which has your last commit message in it,

ready for you to modify the message. When you save and close the editor, the editor

writes a new commit containing that message and makes it your new last commit.

If you’ve committed and then you want to change the snapshot you committed by

adding or changing files, possibly because you forgot to add a newly created file when

you originally committed, the process works basically the same way. You stage the

changes you want by editing a file and running git add on it or git rm to a tracked file,

and the subsequent git commit --amend takes your current staging area and makes it

the snapshot for the new commit.

You need to be careful with this technique because amending changes the SHA–1

of the commit. It’s like a very small rebase — don’t amend your last commit if you’ve

already pushed it.

144

CHAPTER 6 GIT TOOLS

6.4.2 Changing Multiple Commit Messages

To modify a commit that is farther back in your history, you must move to more com-

plex tools. Git doesn’t have a modify-history tool, but you can use the rebase tool to

rebase a series of commits onto the HEAD they were originally based on instead of

moving them to another one. With the interactive rebase tool, you can then stop after

each commit you want to modify and change the message, add files, or do whatever

you wish. You can run rebase interactively by adding the -i option to git rebase . You

must indicate how far back you want to rewrite commits by telling the command which

commit to rebase onto.

For example, if you want to change the last three commit messages, or any of the

commit messages in that group, you supply as an argument to git rebase -i the parent

of the last commit you want to edit, which is HEAD 2̂ or HEAD 3 . It may be easier to

remember the 3 because you’re trying to edit the last three commits; but keep in mind

that you’re actually designating four commits ago, the parent of the last commit you

want to edit:

$ git rebase -i HEAD̃ 3

Remember again that this is a rebasing command — every commit included in the

range HEAD 3..HEAD will be rewritten, whether you change the message or not. Don’t

include any commit you’ve already pushed to a central server — doing so will confuse

other developers by providing an alternate version of the same change.

Running this command gives you a list of commits in your text editor that looks

something like this:

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Rebase 710f0f8..a5f4a0d onto 710f0f8

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

It’s important to note that these commits are listed in the opposite order than you

normally see them using the log command. If you run a log , you see something like

this:

$ git log --pretty=format:"%h %s HEAD̃ 3..HEAD"

a5f4a0d added cat-file

310154e updated README formatting and added blame

f7f3f6d changed my name a bit

Notice the reverse order. The interactive rebase gives you a script that it’s going to

run. It will start at the commit you specify on the command line (HEAD 3) and replay

145

PRO GIT SCOTT CHACON

the changes introduced in each of these commits from top to bottom. It lists the oldest

at the top, rather than the newest, because that’s the first one it will replay.

You need to edit the script so that it stops at the commit you want to edit. To do so,

change the word pick to the word edit for each of the commits you want the script to

stop after. For example, to modify only the third commit message, you change the file

to look like this:

edit f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

When you save and exit the editor, Git rewinds you back to the last commit in that

list and drops you on the command line with the following message:

$ git rebase -i HEAD̃ 3

Stopped at 7482e0d... updated the gemspec to hopefully work better

You can amend the commit now, with

git commit --amend

Once youre satisfied with your changes, run

git rebase --continue

These instructions tell you exactly what to do. Type

$ git commit --amend

Change the commit message, and exit the editor. Then, run

$ git rebase --continue

This command will apply the other two commits automatically, and then you’re

done. If you change pick to edit on more lines, you can repeat these steps for each

commit you change to edit. Each time, Git will stop, let you amend the commit, and

continue when you’re finished.

6.4.3 Reordering Commits

You can also use interactive rebases to reorder or remove commits entirely. If you want

to remove the “added cat-file” commit and change the order in which the other two

commits are introduced, you can change the rebase script from this

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

to this:

pick 310154e updated README formatting and added blame

pick f7f3f6d changed my name a bit

When you save and exit the editor, Git rewinds your branch to the parent of these

commits, applies 310154e and then f7f3f6d , and then stops. You effectively change the

order of those commits and remove the “added cat-file” commit completely.

146

CHAPTER 6 GIT TOOLS

6.4.4 Squashing a Commit

It’s also possible to take a series of commits and squash them down into a single commit

with the interactive rebasing tool. The script puts helpful instructions in the rebase

message:

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

If, instead of “pick” or “edit”, you specify “squash”, Git applies both that change

and the change directly before it and makes you merge the commit messages together.

So, if you want to make a single commit from these three commits, you make the script

look like this:

pick f7f3f6d changed my name a bit

squash 310154e updated README formatting and added blame

squash a5f4a0d added cat-file

When you save and exit the editor, Git applies all three changes and then puts you

back into the editor to merge the three commit messages:

This is a combination of 3 commits.

The first commit’s message is:

changed my name a bit

This is the 2nd commit message:

updated README formatting and added blame

This is the 3rd commit message:

added cat-file

When you save that, you have a single commit that introduces the changes of all

three previous commits.

6.4.5 Splitting a Commit

Splitting a commit undoes a commit and then partially stages and commits as many

times as commits you want to end up with. For example, suppose you want to split the

middle commit of your three commits. Instead of “updated README formatting and

added blame”, you want to split it into two commits: “updated README formatting”

for the first, and “added blame” for the second. You can do that in the rebase -i script

by changing the instruction on the commit you want to split to “edit”:

147

PRO GIT SCOTT CHACON

pick f7f3f6d changed my name a bit

edit 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Then, when the script drops you to the command line, you reset that commit, take

the changes that have been reset, and create multiple commits out of them. When

you save and exit the editor, Git rewinds to the parent of the first commit in your list,

applies the first commit (f7f3f6d), applies the second (310154e), and drops you to the

console. There, you can do a mixed reset of that commit with git reset HEAD̂ , which

effectively undoes that commit and leaves the modified files unstaged. Now you can

stage and commit files until you have several commits, and run git rebase --continue

when you’re done:

$ git reset HEAD̂

$ git add README

$ git commit -m ’updated README formatting’

$ git add lib/simplegit.rb

$ git commit -m ’added blame’

$ git rebase --continue

Git applies the last commit (a5f4a0d) in the script, and your history looks like this:

$ git log -4 --pretty=format:"%h %s"

1c002dd added cat-file

9b29157 added blame

35cfb2b updated README formatting

f3cc40e changed my name a bit

Once again, this changes the SHAs of all the commits in your list, so make sure no

commit shows up in that list that you’ve already pushed to a shared repository.

6.4.6 The Nuclear Option: filter-branch

There is another history-rewriting option that you can use if you need to rewrite a larger

number of commits in some scriptable way — for instance, changing your e-mail ad-

dress globally or removing a file from every commit. The command is filter-branch ,

and it can rewrite huge swaths of your history, so you probably shouldn’t use it un-

less your project isn’t yet public and other people haven’t based work off the commits

you’re about to rewrite. However, it can be very useful. You’ll learn a few of the

common uses so you can get an idea of some of the things it’s capable of.

Removing a File from Every Commit

This occurs fairly commonly. Someone accidentally commits a huge binary file

with a thoughtless git add . , and you want to remove it everywhere. Perhaps you

accidentally committed a file that contained a password, and you want to make your

project open source. filter-branch is the tool you probably want to use to scrub your

entire history. To remove a file named passwords.txt from your entire history, you can

use the --tree-filter option to filter-branch :

$ git filter-branch --tree-filter ’rm -f passwords.txt’ HEAD

Rewrite 6b9b3cf04e7c5686a9cb838c3f36a8cb6a0fc2bd (21/21)

Ref ’refs/heads/master’ was rewritten

148

CHAPTER 6 GIT TOOLS

The --tree-filter option runs the specified command after each checkout of the

project and then recommits the results. In this case, you remove a file called pass-

words.txt from every snapshot, whether it exists or not. If you want to remove all acci-

dentally committed editor backup files, you can run something like git filter-branch

--tree-filter ’rm -f * ’ HEAD .

You’ll be able to watch Git rewriting trees and commits and then move the branch

pointer at the end. It’s generally a good idea to do this in a testing branch and then

hard-reset your master branch after you’ve determined the outcome is what you really

want. To run filter-branch on all your branches, you can pass --all to the command.

Making a Subdirectory the New Root

Suppose you’ve done an import from another source control system and have sub-

directories that make no sense (trunk, tags, and so on). If you want to make the trunk

subdirectory be the new project root for every commit, filter-branch can help you do

that, too:

$ git filter-branch --subdirectory-filter trunk HEAD

Rewrite 856f0bf61e41a27326cdae8f09fe708d679f596f (12/12)

Ref ’refs/heads/master’ was rewritten

Now your new project root is what was in the trunk subdirectory each time. Git

will also automatically remove commits that did not affect the subdirectory.

Changing E-Mail Addresses Globally

Another common case is that you forgot to run git config to set your name and

e-mail address before you started working, or perhaps you want to open-source a

project at work and change all your work e-mail addresses to your personal address.

In any case, you can change e-mail addresses in multiple commits in a batch with

filter-branch as well. You need to be careful to change only the e-mail addresses that

are yours, so you use --commit-filter :

$ git filter-branch --commit-filter ’

if ["$GIT_AUTHOR_EMAIL" = "schacon@localhost"];

then

GIT_AUTHOR_NAME="Scott Chacon";

GIT_AUTHOR_EMAIL="schacon@example.com";

git commit-tree "$@";

else

git commit-tree "$@";

fi’ HEAD

This goes through and rewrites every commit to have your new address. Because

commits contain the SHA–1 values of their parents, this command changes every com-

mit SHA in your history, not just those that have the matching e-mail address.

6.5 Debugging with Git

Git also provides a couple of tools to help you debug issues in your projects. Because

Git is designed to work with nearly any type of project, these tools are pretty generic,

but they can often help you hunt for a bug or culprit when things go wrong.

149

PRO GIT SCOTT CHACON

6.5.1 File Annotation

If you track down a bug in your code and want to know when it was introduced and

why, file annotation is often your best tool. It shows you what commit was the last to

modify each line of any file. So, if you see that a method in your code is buggy, you can

annotate the file with git blame to see when each line of the method was last edited

and by whom. This example uses the -L option to limit the output to lines 12 through

22:

$ git blame -L 12,22 simplegit.rb

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 12) def show(tree = ’master’)

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 13) command("git show #{tree}")

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 14) end

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 15)

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 16) def log(tree = ’master’)

79eaf55d (Scott Chacon 2008-04-06 10:15:08 -0700 17) command("git log #{tree}")

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 18) end

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 19)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 20) def blame(path)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 21) command("git blame #{path}")

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 22) end

Notice that the first field is the partial SHA–1 of the commit that last modified

that line. The next two fields are values extracted from that commit—the author name

and the authored date of that commit — so you can easily see who modified that line

and when. After that come the line number and the content of the file. Also note

the 4̂832fe2 commit lines, which designate that those lines were in this file’s original

commit. That commit is when this file was first added to this project, and those lines

have been unchanged since. This is a tad confusing, because now you’ve seen at least

three different ways that Git uses the ˆ to modify a commit SHA, but that is what it

means here.

Another cool thing about Git is that it doesn’t track file renames explicitly. It

records the snapshots and then tries to figure out what was renamed implicitly, after

the fact. One of the interesting features of this is that you can ask it to figure out

all sorts of code movement as well. If you pass -C to git blame , Git analyzes the

file you’re annotating and tries to figure out where snippets of code within it origi-

nally came from if they were copied from elsewhere. Recently, I was refactoring a file

named GITServerHandler.m into multiple files, one of which was GITPackUpload.m . By

blaming GITPackUpload.m with the -C option, I could see where sections of the code

originally came from:

$ git blame -C -L 141,153 GITPackUpload.m

f344f58d GITServerHandler.m (Scott 2009-01-04 141)

f344f58d GITServerHandler.m (Scott 2009-01-04 142) - (void) gatherObjectShasFromC

f344f58d GITServerHandler.m (Scott 2009-01-04 143) {

70befddd GITServerHandler.m (Scott 2009-03-22 144) //NSLog(@"GATHER COMMI

ad11ac80 GITPackUpload.m (Scott 2009-03-24 145)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 146) NSString *parentSha;

ad11ac80 GITPackUpload.m (Scott 2009-03-24 147) GITCommit *commit = [g

ad11ac80 GITPackUpload.m (Scott 2009-03-24 148)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 149) //NSLog(@"GATHER COMMI

150

CHAPTER 6 GIT TOOLS

ad11ac80 GITPackUpload.m (Scott 2009-03-24 150)

56ef2caf GITServerHandler.m (Scott 2009-01-05 151) if(commit) {

56ef2caf GITServerHandler.m (Scott 2009-01-05 152) [refDict setOb

56ef2caf GITServerHandler.m (Scott 2009-01-05 153)

This is really useful. Normally, you get as the original commit the commit where

you copied the code over, because that is the first time you touched those lines in this

file. Git tells you the original commit where you wrote those lines, even if it was in

another file.

6.5.2 Binary Search

Annotating a file helps if you know where the issue is to begin with. If you don’t

know what is breaking, and there have been dozens or hundreds of commits since the

last state where you know the code worked, you’ll likely turn to git bisect for help.

The bisect command does a binary search through your commit history to help you

identify as quickly as possible which commit introduced an issue.

Let’s say you just pushed out a release of your code to a production environment,

you’re getting bug reports about something that wasn’t happening in your development

environment, and you can’t imagine why the code is doing that. You go back to your

code, and it turns out you can reproduce the issue, but you can’t figure out what is

going wrong. You can bisect the code to find out. First you run git bisect start to

get things going, and then you use git bisect bad to tell the system that the current

commit you’re on is broken. Then, you must tell bisect when the last known good state

was, using git bisect good [good commit] :

$ git bisect start

$ git bisect bad

$ git bisect good v1.0

Bisecting: 6 revisions left to test after this

[ecb6e1bc347ccecc5f9350d878ce677feb13d3b2] error handling on repo

Git figured out that about 12 commits came between the commit you marked as the

last good commit (v1.0) and the current bad version, and it checked out the middle one

for you. At this point, you can run your test to see if the issue exists as of this commit.

If it does, then it was introduced sometime before this middle commit; if it doesn’t,

then the problem was introduced sometime after the middle commit. It turns out there

is no issue here, and you tell Git that by typing git bisect good and continue your

journey:

$ git bisect good

Bisecting: 3 revisions left to test after this

[b047b02ea83310a70fd603dc8cd7a6cd13d15c04] secure this thing

Now you’re on another commit, halfway between the one you just tested and your

bad commit. You run your test again and find that this commit is broken, so you tell

Git that with git bisect bad :

$ git bisect bad

Bisecting: 1 revisions left to test after this

[f71ce38690acf49c1f3c9bea38e09d82a5ce6014] drop exceptions table

151

PRO GIT SCOTT CHACON

This commit is fine, and nowGit has all the information it needs to determine where

the issue was introduced. It tells you the SHA–1 of the first bad commit and show some

of the commit information and which files were modified in that commit so you can

figure out what happened that may have introduced this bug:

$ git bisect good

b047b02ea83310a70fd603dc8cd7a6cd13d15c04 is first bad commit

commit b047b02ea83310a70fd603dc8cd7a6cd13d15c04

Author: PJ Hyett <pjhyett@example.com>

Date: Tue Jan 27 14:48:32 2009 -0800

secure this thing

:040000 040000 40ee3e7821b895e52c1695092db9bdc4c61d1730

f24d3c6ebcfc639b1a3814550e62d60b8e68a8e4 M config

When you’re finished, you should run git bisect reset to reset your HEAD to

where you were before you started, or you’ll end up in a weird state:

$ git bisect reset

This is a powerful tool that can help you check hundreds of commits for an intro-

duced bug in minutes. In fact, if you have a script that will exit 0 if the project is good

or non–0 if the project is bad, you can fully automate git bisect . First, you again tell

it the scope of the bisect by providing the known bad and good commits. You can do

this by listing them with the bisect start command if you want, listing the known

bad commit first and the known good commit second:

$ git bisect start HEAD v1.0

$ git bisect run test-error.sh

Doing so automatically runs test-error.sh on each checked-out commit until Git

finds the first broken commit. You can also run something like make or make tests or

whatever you have that runs automated tests for you.

6.6 Submodules

It often happens that while working on one project, you need to use another project

from within it. Perhaps it’s a library that a third party developed or that you’re devel-

oping separately and using in multiple parent projects. A common issue arises in these

scenarios: you want to be able to treat the two projects as separate yet still be able to

use one from within the other.

Here’s an example. Suppose you’re developing a web site and creating Atom feeds.

Instead of writing your own Atom-generating code, you decide to use a library. You’re

likely to have to either include this code from a shared library like a CPAN install

or Ruby gem, or copy the source code into your own project tree. The issue with

including the library is that it’s difficult to customize the library in any way and often

more difficult to deploy it, because you need to make sure every client has that library

available. The issue with vendoring the code into your own project is that any custom

changes you make are difficult to merge when upstream changes become available.

152

CHAPTER 6 GIT TOOLS

Git addresses this issue using submodules. Submodules allow you to keep a Git

repository as a subdirectory of another Git repository. This lets you clone another

repository into your project and keep your commits separate.

6.6.1 Starting with Submodules

Suppose you want to add the Rack library (a Ruby web server gateway interface) to

your project, possibly maintain your own changes to it, but continue to merge in up-

stream changes. The first thing you should do is clone the external repository into your

subdirectory. You add external projects as submodules with the git submodule add

command:

$ git submodule add git://github.com/chneukirchen/rack.git rack

Initialized empty Git repository in /opt/subtest/rack/.git/

remote: Counting objects: 3181, done.

remote: Compressing objects: 100% (1534/1534), done.

remote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Receiving objects: 100% (3181/3181), 675.42 KiB | 422 KiB/s, done.

Resolving deltas: 100% (1951/1951), done.

Now you have the Rack project under a subdirectory named rack within your

project. You can go into that subdirectory, make changes, add your own writable re-

mote repository to push your changes into, fetch and merge from the original reposi-

tory, and more. If you run git status right after you add the submodule, you see two

things:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: .gitmodules

new file: rack

#

First you notice the .gitmodules file. This is a configuration file that stores the

mapping between the project’s URL and the local subdirectory you’ve pulled it into:

$ cat .gitmodules

[submodule "rack"]

path = rack

url = git://github.com/chneukirchen/rack.git

If you have multiple submodules, you’ll have multiple entries in this file. It’s impor-

tant to note that this file is version-controlled with your other files, like your .gitignore

file. It’s pushed and pulled with the rest of your project. This is how other people who

clone this project know where to get the submodule projects from.

The other listing in the git status output is the rack entry. If you run git diff on

that, you see something interesting:

$ git diff --cached rack

diff --git a/rack b/rack

153

PRO GIT SCOTT CHACON

new file mode 160000

index 0000000..08d709f

--- /dev/null

+++ b/rack

@@ -0,0 +1 @@

+Subproject commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

Although rack is a subdirectory in your working directory, Git sees it as a sub-

module and doesn’t track its contents when you’re not in that directory. Instead, Git

records it as a particular commit from that repository. When you make changes and

commit in that subdirectory, the superproject notices that the HEAD there has changed

and records the exact commit you’re currently working off of; that way, when others

clone this project, they can re-create the environment exactly.

This is an important point with submodules: you record them as the exact commit

they’re at. You can’t record a submodule at master or some other symbolic reference.

When you commit, you see something like this:

$ git commit -m ’first commit with submodule rack’

[master 0550271] first commit with submodule rack

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 rack

Notice the 160000 mode for the rack entry. That is a special mode in Git that basi-

cally means you’re recording a commit as a directory entry rather than a subdirectory

or a file.

You can treat the rack directory as a separate project and then update your super-

project from time to time with a pointer to the latest commit in that subproject. All the

Git commands work independently in the two directories:

$ git log -1

commit 0550271328a0038865aad6331e620cd7238601bb

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Apr 9 09:03:56 2009 -0700

first commit with submodule rack

$ cd rack/

$ git log -1

commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

Author: Christian Neukirchen <chneukirchen@gmail.com>

Date: Wed Mar 25 14:49:04 2009 +0100

Document version change

6.6.2 Cloning a Project with Submodules

Here you’ll clone a project with a submodule in it. When you receive such a project,

you get the directories that contain submodules, but none of the files yet:

$ git clone git://github.com/schacon/myproject.git

Initialized empty Git repository in /opt/myproject/.git/

remote: Counting objects: 6, done.

154

CHAPTER 6 GIT TOOLS

remote: Compressing objects: 100% (4/4), done.

remote: Total 6 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (6/6), done.

$ cd myproject

$ ls -l

total 8

-rw-r--r-- 1 schacon admin 3 Apr 9 09:11 README

drwxr-xr-x 2 schacon admin 68 Apr 9 09:11 rack

$ ls rack/

$

The rack directory is there, but empty. Youmust run two commands: git submodule

init to initialize your local configuration file, and git submodule update to fetch all

the data from that project and check out the appropriate commit listed in your super-

project:

$ git submodule init

Submodule ’rack’ (git://github.com/chneukirchen/rack.git) registered for path ’rack’

$ git submodule update

Initialized empty Git repository in /opt/myproject/rack/.git/

remote: Counting objects: 3181, done.

remote: Compressing objects: 100% (1534/1534), done.

remote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Receiving objects: 100% (3181/3181), 675.42 KiB | 173 KiB/s, done.

Resolving deltas: 100% (1951/1951), done.

Submodule path ’rack’: checked out ’08d709f78b8c5b0fbeb7821e37fa53e69afcf433’

Now your rack subdirectory is at the exact state it was in when you committed

earlier. If another developer makes changes to the rack code and commits, and you pull

that reference down and merge it in, you get something a bit odd:

$ git merge origin/master

Updating 0550271..85a3eee

Fast forward

rack | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

[master*]$ git status

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: rack

#

You merged in what is basically a change to the pointer for your submodule; but

it doesn’t update the code in the submodule directory, so it looks like you have a dirty

state in your working directory:

$ git diff

diff --git a/rack b/rack

index 6c5e70b..08d709f 160000

--- a/rack

155

PRO GIT SCOTT CHACON

+++ b/rack

@@ -1 +1 @@

-Subproject commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

+Subproject commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

This is the case because the pointer you have for the submodule isn’t what is ac-

tually in the submodule directory. To fix this, you must run git submodule update

again:

$ git submodule update

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 1), reused 2 (delta 0)

Unpacking objects: 100% (3/3), done.

From git@github.com:schacon/rack

08d709f..6c5e70b master -> origin/master

Submodule path ’rack’: checked out ’6c5e70b984a60b3cecd395edd5b48a7575bf58e0’

You have to do this every time you pull down a submodule change in the main

project. It’s strange, but it works.

One common problem happens when a developer makes a change locally in a sub-

module but doesn’t push it to a public server. Then, they commit a pointer to that

non-public state and push up the superproject. When other developers try to run git

submodule update , the submodule system can’t find the commit that is referenced, be-

cause it exists only on the first developer’s system. If that happens, you see an error

like this:

$ git submodule update

fatal: reference isnt a tree: 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Unable to checkout ’6c5e70b984a60b3cecd395edd5ba7575bf58e0’ in submodule path ’rack’

You have to see who last changed the submodule:

$ git log -1 rack

commit 85a3eee996800fcfa91e2119372dd4172bf76678

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Apr 9 09:19:14 2009 -0700

added a submodule reference I will never make public. hahahahaha!

Then, you e-mail that guy and yell at him.

6.6.3 Superprojects

Sometimes, developers want to get a combination of a large project’s subdirectories,

depending on what team they’re on. This is common if you’re coming from CVS or

Subversion, where you’ve defined a module or collection of subdirectories, and you

want to keep this type of workflow.

A good way to do this in Git is to make each of the subfolders a separate Git repos-

itory and then create superproject Git repositories that contain multiple submodules.

A benefit of this approach is that you can more specifically define the relationships

between the projects with tags and branches in the superprojects.

156

CHAPTER 6 GIT TOOLS

6.6.4 Issues with Submodules

Using submodules isn’t without hiccups, however. First, you must be relatively careful

when working in the submodule directory. When you run git submodule update , it

checks out the specific version of the project, but not within a branch. This is called

having a detached head — it means the HEAD file points directly to a commit, not to

a symbolic reference. The issue is that you generally don’t want to work in a detached

head environment, because it’s easy to lose changes. If you do an initial submodule

update , commit in that submodule directory without creating a branch to work in, and

then run git submodule update again from the superproject without committing in the

meantime, Git will overwrite your changes without telling you. Technically you won’t

lose the work, but you won’t have a branch pointing to it, so it will be somewhat

difficult to retrieive.

To avoid this issue, create a branch when you work in a submodule directory with

git checkout -b work or something equivalent. When you do the submodule update a

second time, it will still revert your work, but at least you have a pointer to get back to.

Switching branches with submodules in them can also be tricky. If you create a

new branch, add a submodule there, and then switch back to a branch without that

submodule, you still have the submodule directory as an untracked directory:

$ git checkout -b rack

Switched to a new branch "rack"

$ git submodule add git@github.com:schacon/rack.git rack

Initialized empty Git repository in /opt/myproj/rack/.git/

...

Receiving objects: 100% (3184/3184), 677.42 KiB | 34 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

$ git commit -am ’added rack submodule’

[rack cc49a69] added rack submodule

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 rack

$ git checkout master

Switched to branch "master"

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

rack/

You have to either move it out of the way or remove it, in which case you have to

clone it again when you switch back—and you may lose local changes or branches that

you didn’t push up.

The last main caveat that many people run into involves switching from subdirecto-

ries to submodules. If you’ve been tracking files in your project and you want to move

them out into a submodule, you must be careful or Git will get angry at you. Assume

that you have the rack files in a subdirectory of your project, and you want to switch it

to a submodule. If you delete the subdirectory and then run submodule add , Git yells

at you:

$ rm -Rf rack/

157

PRO GIT SCOTT CHACON

$ git submodule add git@github.com:schacon/rack.git rack

’rack’ already exists in the index

You have to unstage the rack directory first. Then you can add the submodule:

$ git rm -r rack

$ git submodule add git@github.com:schacon/rack.git rack

Initialized empty Git repository in /opt/testsub/rack/.git/

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 88 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

Now suppose you did that in a branch. If you try to switch back to a branch where

those files are still in the actual tree rather than a submodule — you get this error:

$ git checkout master

error: Untracked working tree file ’rack/AUTHORS’ would be overwritten by merge.

You have to move the rack submodule directory out of the way before you can

switch to a branch that doesn’t have it:

$ mv rack /tmp/

$ git checkout master

Switched to branch "master"

$ ls

README rack

Then, when you switch back, you get an empty rack directory. You can either run

git submodule update to reclone, or you can move your /tmp/rack directory back into

the empty directory.

6.7 Subtree Merging

Now that you’ve seen the difficulties of the submodule system, let’s look at an alternate

way to solve the same problem. When Git merges, it looks at what it has to merge to-

gether and then chooses an appropriate merging strategy to use. If you’re merging two

branches, Git uses a recursive strategy. If you’re merging more than two branches, Git

picks the octopus strategy. These strategies are automatically chosen for you because

the recursive strategy can handle complex three-way merge situations — for example,

more than one common ancestor — but it can only handle merging two branches. The

octopus merge can handle multiple branches but is more cautious to avoid difficult

conflicts, so it’s chosen as the default strategy if you’re trying to merge more than two

branches.

However, there are other strategies you can choose as well. One of them is the

subtree merge, and you can use it to deal with the subproject issue. Here you’ll see

how to do the same rack embedding as in the last section, but using subtree merges

instead.

The idea of the subtree merge is that you have two projects, and one of the projects

maps to a subdirectory of the other one and vice versa. When you specify a subtree

158

CHAPTER 6 GIT TOOLS

merge, Git is smart enough to figure out that one is a subtree of the other and merge

appropriately — it’s pretty amazing.

You first add the Rack application to your project. You add the Rack project as a

remote reference in your own project and then check it out into its own branch:

$ git remote add rack_remote git@github.com:schacon/rack.git

$ git fetch rack_remote

warning: no common commits

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 4 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

From git@github.com:schacon/rack

* [new branch] build -> rack_remote/build

* [new branch] master -> rack_remote/master

* [new branch] rack-0.4 -> rack_remote/rack-0.4

* [new branch] rack-0.9 -> rack_remote/rack-0.9

$ git checkout -b rack_branch rack_remote/master

Branch rack_branch set up to track remote branch refs/remotes/rack_remote/master.

Switched to a new branch "rack_branch"

Now you have the root of the Rack project in your rack branch branch and your

own project in the master branch. If you check out one and then the other, you can see

that they have different project roots:

$ ls

AUTHORS KNOWN-ISSUES Rakefile contrib lib

COPYING README bin example test

$ git checkout master

Switched to branch "master"

$ ls

README

You want to pull the Rack project into your master project as a subdirectory. You

can do that in Git with git read-tree . You’ll learn more about read-tree and its

friends in Chapter 9, but for now know that it reads the root tree of one branch into

your current staging area and working directory. You just switched back to your master

branch, and you pull the rack branch into the rack subdirectory of your master branch

of your main project:

$ git read-tree --prefix=rack/ -u rack_branch

When you commit, it looks like you have all the Rack files under that subdirectory

— as though you copied them in from a tarball. What gets interesting is that you can

fairly easily merge changes from one of the branches to the other. So, if the Rack

project updates, you can pull in upstream changes by switching to that branch and

pulling:

$ git checkout rack_branch

$ git pull

159

PRO GIT SCOTT CHACON

Then, you can merge those changes back into your master branch. You can use git

merge -s subtree and it will work fine; but Git will also merge the histories together,

which you probably don’t want. To pull in the changes and prepopulate the commit

message, use the --squash and --no-commit options as well as the -s subtree strategy

option:

$ git checkout master

$ git merge --squash -s subtree --no-commit rack_branch

Squash commit -- not updating HEAD

Automatic merge went well; stopped before committing as requested

All the changes from your Rack project are merged in and ready to be committed

locally. You can also do the opposite — make changes in the rack subdirectory of your

master branch and then merge them into your rack branch branch later to submit them

to the maintainers or push them upstream.

To get a diff between what you have in your rack subdirectory and the code in your

rack branch branch — to see if you need to merge them — you can’t use the normal

diff command. Instead, you must run git diff-tree with the branch you want to

compare to:

$ git diff-tree -p rack_branch

Or, to compare what is in your rack subdirectory with what the master branch on

the server was the last time you fetched, you can run

$ git diff-tree -p rack_remote/master

6.8 Summary

You’ve seen a number of advanced tools that allow you to manipulate your commits

and staging area more precisely. When you notice issues, you should be able to easily

figure out what commit introduced them, when, and by whom. If you want to use

subprojects in your project, you’ve learned a few ways to accommodate those needs.

At this point, you should be able to do most of the things in Git that you’ll need on the

command line day to day and feel comfortable doing so.

160

Chapter 7

Customizing Git

So far, I’ve covered the basics of how Git works and how to use it, and I’ve introduced

a number of tools that Git provides to help you use it easily and efficiently. In this

chapter, I’ll go through some operations that you can use to make Git operate in a

more customized fashion by introducing several important configuration settings and

the hooks system. With these tools, it’s easy to get Git to work exactly the way you,

your company, or your group needs it to.

7.1 Git Configuration

As you briefly saw in the Chapter 1, you can specify Git configuration settings with the

git config command. One of the first things you did was set up your name and e-mail

address:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Now you’ll learn a few of the more interesting options that you can set in this

manner to customize your Git usage.

You saw some simple Git configuration details in the first chapter, but I’ll go over

them again quickly here. Git uses a series of configuration files to determine non-

default behavior that you may want. The first place Git looks for these values is in an

/etc/gitconfig file, which contains values for every user on the system and all of their

repositories. If you pass the option --system to git config , it reads and writes from

this file specifically.

The next place Git looks is the /.gitconfig file, which is specific to each user.

You can make Git read and write to this file by passing the --global option.

Finally, Git looks for configuration values in the config file in the Git directory

(.git/config) of whatever repository you’re currently using. These values are specific

to that single repository. Each level overwrites values in the previous level, so values

in .git/config trump those in /etc/sysconfig , for instance. You can also set these

values by manually editing the file and inserting the correct syntax, but it’s generally

easier to run the git config command.

161

PRO GIT SCOTT CHACON

7.1.1 Basic Client Configuration

The configuration options recognized by Git fall into two categories: client side and

server side. The majority of the options are client side—configuring your personal

working preferences. Although tons of options are available, I’ll only cover the few

that either are commonly used or can significantly affect your workflow. Many options

are useful only in edge cases that I won’t go over here. If you want to see a list of all

the options your version of Git recognizes, you can run

$ git config --help

The manual page for git config lists all the available options in quite a bit of

detail.

core.editor

By default, Git uses whatever you’ve set as your default text editor or else falls

back to the Vi editor to create and edit your commit and tag messages. To change that

default to something else, you can use the core.editor setting:

$ git config --global core.editor emacs

Now, no matter what is set as your default shell editor variable, Git will fire up

Emacs to edit messages.

commit.template

If you set this to the path of a file on your system, Git will use that file as the

default message when you commit. For instance, suppose you create a template file at

$HOME/.gitmessage.txt that looks like this:

subject line

what happened

[ticket: X]

To tell Git to use it as the default message that appears in your editor when you run

git commit , set the commit.template configuration value:

$ git config --global commit.template $HOME/.gitmessage.txt

$ git commit

Then, your editor will open to something like this for your placeholder commit

message when you commit:

subject line

what happened

[ticket: X]

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

162

CHAPTER 7 CUSTOMIZING GIT

modified: lib/test.rb

#

˜

˜

".git/COMMIT_EDITMSG" 14L, 297C

If you have a commit-message policy in place, then putting a template for that

policy on your system and configuring Git to use it by default can help increase the

chance of that policy being followed regularly.

core.pager

The core.pager setting determines what pager is used when Git pages output such

as log and diff . You can set it to more or to your favorite pager (by default, it’s less),

or you can turn it off by setting it to a blank string:

$ git config --global core.pager ’’

If you run that, Git will page the entire output of all commands, no matter how long

they are.

user.signingkey

If you’re making signed annotated tags (as discussed in Chapter 2), setting your

GPG signing key as a configuration setting makes things easier. Set your key ID like

so:

$ git config --global user.signingkey <gpg-key-id>

Now, you can sign tags without having to specify your key every time with the git

tag command:

$ git tag -s <tag-name>

core.excludesfile

You can put patterns in your project’s .gitignore file to have Git not see them as

untracked files or try to stage them when you run git add on them, as discussed in

Chapter 2. However, if you want another file outside of your project to hold those val-

ues or have extra values, you can tell Git where that file is with the core.excludesfile

setting. Simply set it to the path of a file that has content similar to what a .gitignore

file would have.

help.autocorrect

This option is available only in Git 1.6.1 and later. If you mistype a command in

Git 1.6, it shows you something like this:

$ git com

git: ’com’ is not a git-command. See ’git --help’.

Did you mean this?

commit

If you set help.autocorrect to 1, Git will automatically run the command if it has

only one match under this scenario.

163

PRO GIT SCOTT CHACON

7.1.2 Colors in Git

Git can color its output to your terminal, which can help you visually parse the out-

put quickly and easily. A number of options can help you set the coloring to your

preference.

color.ui

Git automatically colors most of its output if you ask it to. You can get very specific

about what you want colored and how; but to turn on all the default terminal coloring,

set color.ui to true:

$ git config --global color.ui true

When that value is set, Git colors its output if the output goes to a terminal. Other

possible settings are false, which never colors the output, and always, which sets colors

all the time, even if you’re redirecting Git commands to a file or piping them to another

command. This setting was added in Git version 1.5.5; if you have an older version,

you’ll have to specify all the color settings individually.

You’ll rarely want color.ui = always . In most scenarios, if you want color codes

in your redirected output, you can instead pass a --color flag to the Git command to

force it to use color codes. The color.ui = true setting is almost always what you’ll

want to use.

color.*

If you want to be more specific about which commands are colored and how, or

you have an older version, Git provides verb-specific coloring settings. Each of these

can be set to true , false , or always :

color.branch

color.diff

color.interactive

color.status

In addition, each of these has subsettings you can use to set specific colors for

parts of the output, if you want to override each color. For example, to set the meta

information in your diff output to blue foreground, black background, and bold text,

you can run

$ git config --global color.diff.meta ‘‘blue black bold’’

You can set the color to any of the following values: normal, black, red, green,

yellow, blue, magenta, cyan, or white. If you want an attribute like bold in the previous

example, you can choose from bold, dim, ul, blink, and reverse.

See the git config manpage for all the subsettings you can configure, if you want

to do that.

7.1.3 External Merge and Diff Tools

Although Git has an internal implementation of diff, which is what you’ve been using,

you can set up an external tool instead. You can also set up a graphical merge conflic-

tresolution tool instead of having to resolve conflicts manually. I’ll demonstrate setting

up the Perforce Visual Merge Tool (P4Merge) to do your diffs and merge resolutions,

because it’s a nice graphical tool and it’s free.

164

CHAPTER 7 CUSTOMIZING GIT

If you want to try this out, P4Merge works on all major platforms, so you should

be able to do so. I’ll use path names in the examples that work on Mac and Linux

systems; for Windows, you’ll have to change /usr/local/bin to an executable path in

your environment.

You can download P4Merge here:

http://www.perforce.com/perforce/downloads/component.html

To begin, you’ll set up external wrapper scripts to run your commands. I’ll use the

Mac path for the executable; in other systems, it will be where your p4merge binary is

installed. Set up a merge wrapper script named extMerge that calls your binary with all

the arguments provided:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/p4merge.app/Contents/MacOS/p4merge $*

The diff wrapper checks to make sure seven arguments are provided and passes two

of them to your merge script. By default, Git passes the following arguments to the diff

program:

path old-file old-hex old-mode new-file new-hex new-mode

Because you only want the old-file and new-file arguments, you use the wrapper

script to pass the ones you need.

$ cat /usr/local/bin/extDiff

#!/bin/sh

[$# -eq 7] && /usr/local/bin/extMerge "$2" "$5"

You also need to make sure these tools are executable:

$ sudo chmod +x /usr/local/bin/extMerge

$ sudo chmod +x /usr/local/bin/extDiff

Now you can set up your config file to use your custom merge resolution and diff

tools. This takes a number of custom settings: merge.tool to tell Git what strategy to

use, mergetool.*.cmd to specify how to run the command, mergetool.trustExitCode

to tell Git if the exit code of that program indicates a successful merge resolution or

not, and diff.external to tell Git what command to run for diffs. So, you can either

run four config commands

$ git config --global merge.tool extMerge

$ git config --global mergetool.extMerge.cmd \

’extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"’

$ git config --global mergetool.trustExitCode false

$ git config --global diff.external extDiff

or you can edit your /.gitconfig file to add these lines:

165

PRO GIT SCOTT CHACON

[merge]

tool = extMerge

[mergetool "extMerge"]

cmd = extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"

trustExitCode = false

[diff]

external = extDiff

After all this is set, if you run diff commands such as this:

$ git diff 32d1776b1̂ 32d1776b1

Instead of getting the diff output on the command line, Git fires up P4Merge, which

looks something like Figure 7.1.

Figure 7.1: P4Merge

If you try to merge two branches and subsequently have merge conflicts, you can

run the command git mergetool ; it starts P4Merge to let you resolve the conflicts

through that GUI tool.

The nice thing about this wrapper setup is that you can change your diff and merge

tools easily. For example, to change your extDiff and extMerge tools to run the KDiff3

tool instead, all you have to do is edit your extMerge file:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/kdiff3.app/Contents/MacOS/kdiff3 $*

Now, Git will use the KDiff3 tool for diff viewing and merge conflict resolution.

166

CHAPTER 7 CUSTOMIZING GIT

Git comes preset to use a number of other merge-resolution tools without your hav-

ing to set up the cmd configuration. You can set your merge tool to kdiff3, opendiff,

tkdiff, meld, xxdiff, emerge, vimdiff, or gvimdiff. If you’re not interested in using KD-

iff3 for diff but rather want to use it just for merge resolution, and the kdiff3 command

is in your path, then you can run

$ git config --global merge.tool kdiff3

If you run this instead of setting up the extMerge and extDiff files, Git will use

KDiff3 for merge resolution and the normal Git diff tool for diffs.

7.1.4 Formatting and Whitespace

Formatting and whitespace issues are some of the more frustrating and subtle problems

that many developers encounter when collaborating, especially cross-platform. It’s

very easy for patches or other collaborated work to introduce subtle whitespace changes

because editors silently introduce them or Windows programmers add carriage returns

at the end of lines they touch in cross-platform projects. Git has a few configuration

options to help with these issues.

core.autocrlf

If you’re programming on Windows or using another system but working with peo-

ple who are programming on Windows, you’ll probably run into line-ending issues at

some point. This is because Windows uses both a carriage-return character and a line-

feed character for newlines in its files, whereas Mac and Linux systems use only the

linefeed character. This is a subtle but incredibly annoying fact of cross-platform work.

Git can handle this by auto-converting CRLF line endings into LF when you com-

mit, and vice versa when it checks out code onto your filesystem. You can turn on this

functionality with the core.autocrlf setting. If you’re on a Windows machine, set it

to true — this converts LF endings into CRLF when you check out code:

$ git config --global core.autocrlf true

If you’re on a Linux or Mac system that uses LF line endings, then you don’t want

Git to automatically convert them when you check out files; however, if a file with

CRLF endings accidentally gets introduced, then you may want Git to fix it. You can

tell Git to convert CRLF to LF on commit but not the other way around by setting

core.autocrlf to input:

$ git config --global core.autocrlf input

This setup should leave you with CRLF endings in Windows checkouts but LF

endings on Mac and Linux systems and in the repository.

If you’re a Windows programmer doing a Windows-only project, then you can turn

off this functionality, recording the carriage returns in the repository by setting the

config value to false :

$ git config --global core.autocrlf false

core.whitespace

167

PRO GIT SCOTT CHACON

Git comes preset to detect and fix some whitespace issues. It can look for four

primary whitespace issues — two are enabled by default and can be turned off, and

two aren’t enabled by default but can be activated.

The two that are turned on by default are trailing-space , which looks for spaces

at the end of a line, and space-before-tab , which looks for spaces before tabs at the

beginning of a line.

The two that are disabled by default but can be turned on are indent-with-non-tab ,

which looks for lines that begin with eight or more spaces instead of tabs, and cr-at-eol ,

which tells Git that carriage returns at the end of lines are OK.

You can tell Git which of these you want enabled by setting core.whitespace to

the values you want on or off, separated by commas. You can disable settings by either

leaving them out of the setting string or prepending a - in front of the value. For

example, if you want all but cr-at-eol to be set, you can do this:

$ git config --global core.whitespace \

trailing-space,space-before-tab,indent-with-non-tab

Git will detect these issues when you run a git diff command and try to color

them so you can possibly fix them before you commit. It will also use these values to

help you when you apply patches with git apply . When you’re applying patches, you

can ask Git to warn you if it’s applying patches with the specified whitespace issues:

$ git apply --whitespace=warn <patch>

Or you can have Git try to automatically fix the issue before applying the patch:

$ git apply --whitespace=fix <patch>

These options apply to the git rebase option as well. If you’ve committed whites-

pace issues but haven’t yet pushed upstream, you can run a rebase with the --whitespace=fix

option to have Git automatically fix whitespace issues as it’s rewriting the patches.

7.1.5 Server Configuration

Not nearly as many configuration options are available for the server side of Git, but

there are a few interesting ones you may want to take note of.

receive.fsckObjects

By default, Git doesn’t check for consistency all the objects it receives during a

push. Although Git can check to make sure each object still matches its SHA–1 check-

sum and points to valid objects, it doesn’t do that by default on every push. This is a

relatively expensive operation and may add a lot of time to each push, depending on

the size of the repository or the push. If you want Git to check object consistency on

every push, you can force it to do so by setting receive.fsckObjects to true:

$ git config --system receive.fsckObjects true

Now, Git will check the integrity of your repository before each push is accepted to

make sure faulty clients aren’t introducing corrupt data.

receive.denyNonFastForwards

If you rebase commits that you’ve already pushed and then try to push again, or

otherwise try to push a commit to a remote branch that doesn’t contain the commit that

168

CHAPTER 7 CUSTOMIZING GIT

the remote branch currently points to, you’ll be denied. This is generally good policy;

but in the case of the rebase, you may determine that you know what you’re doing and

can force-update the remote branch with a -f flag to your push command.

To disable the ability to force-update remote branches to non-fast-forward refer-

ences, set receive.denyNonFastForwards :

$ git config --system receive.denyNonFastForwards true

The other way you can do this is via server-side receive hooks, which I’ll cover in

a bit. That approach lets you do more complex things like deny non-fast-forwards to a

certain subset of users.

receive.denyDeletes

One of the workarounds to the denyNonFastForwards policy is for the user to delete

the branch and then push it back up with the new reference. In newer versions of Git

(beginning with version 1.6.1), you can set receive.denyDeletes to true:

$ git config --system receive.denyDeletes true

This denies branch and tag deletion over a push across the board — no user can do

it. To remove remote branches, you must remove the ref files from the server manually.

There are also more interesting ways to do this on a per-user basis via ACLs, as you’ll

learn at the end of this chapter.

7.2 Git Attributes

Some of these settings can also be specified for a path, so that Git applies those settings

only for a subdirectory or subset of files. These path-specific settings are called Git

attributes and are set either in a .gitattribute file in one of your directories (normally

the root of your project) or in the .git/info/attributes file if you don’t want the

attributes file committed with your project.

Using attributes, you can do things like specify separate merge strategies for in-

dividual files or directories in your project, tell Git how to diff non-text files, or have

Git filter content before you check it into or out of Git. In this section, you’ll learn

about some of the attributes you can set on your paths in your Git project and see a few

examples of using this feature in practice.

7.2.1 Binary Files

One cool trick for which you can use Git attributes is telling Git which files are binary

(in cases it otherwise may not be able to figure out) and giving Git special instructions

about how to handle those files. For instance, some text files may be machine generated

and not diffable, whereas some binary files can be diffed — you’ll see how to tell Git

which is which.

Identifying Binary Files

Some files look like text files but for all intents and purposes are to be treated as bi-

nary data. For instance, Xcode projects on the Mac contain a file that ends in .pbxproj ,

which is basically a JSON (plain text javascript data format) dataset written out to

disk by the IDE that records your build settings and so on. Although it’s technically a

text file, because it’s all ASCII, you don’t want to treat it as such because it’s really a

169

PRO GIT SCOTT CHACON

lightweight database— you can’t merge the contents if two people changed it, and diffs

generally aren’t helpful. The file is meant to be consumed by a machine. In essence,

you want to treat it like a binary file.

To tell Git to treat all pbxproj files as binary data, add the following line to your

.gitattributes file:

*.pbxproj -crlf -diff

Now, Git won’t try to convert or fix CRLF issues; nor will it try to compute or print

a diff for changes in this file when you run git show or git diff on your project. In the

1.6 series of Git, you can also use a macro that is provided that means -crlf -diff :

*.pbxproj binary

Diffing Binary Files

In the 1.6 series of Git, you can use the Git attributes functionality to effectively

diff binary files. You do this by telling Git how to convert your binary data to a text

format that can be compared via the normal diff.

Because this is a pretty cool and not widely known feature, I’ll go over a few

examples. First, you’ll use this technique to solve one of the most annoying problems

known to humanity: version-controlling Word documents. Everyone knows that Word

is the most horrific editor around; but, oddly, everyone uses it. If you want to version-

control Word documents, you can stick them in a Git repository and commit every once

in a while; but what good does that do? If you run git diff normally, you only see

something like this:

$ git diff

diff --git a/chapter1.doc b/chapter1.doc

index 88839c4..4afcb7c 100644

Binary files a/chapter1.doc and b/chapter1.doc differ

You can’t directly compare two versions unless you check them out and scan them

manually, right? It turns out you can do this fairly well using Git attributes. Put the

following line in your .gitattributes file:

*.doc diff=word

This tells Git that any file that matches this pattern (.doc) should use the “word”

filter when you try to view a diff that contains changes. What is the “word” filter? You

have to set it up. Here you’ll configure Git to use the strings program to convert Word

documents into readable text files, which it will then diff properly:

$ git config diff.word.textconv strings

Now Git knows that if it tries to do a diff between two snapshots, and any of the

files end in .doc , it should run those files through the “word” filter, which is defined

as the strings program. This effectively makes nice text-based versions of your Word

files before attempting to diff them.

Here’s an example. I put Chapter 1 of this book into Git, added some text to a

paragraph, and saved the document. Then, I ran git diff to see what changed:

170

CHAPTER 7 CUSTOMIZING GIT

$ git diff

diff --git a/chapter1.doc b/chapter1.doc

index c1c8a0a..b93c9e4 100644

--- a/chapter1.doc

+++ b/chapter1.doc

@@ -8,7 +8,8 @@ re going to cover Version Control Systems (VCS) and Git basics

re going to cover how to get it and set it up for the first time if you don

t already have it on your system.

In Chapter Two we will go over basic Git usage - how to use Git for the 80%

-s going on, modify stuff and contribute changes. If the book spontaneously

+s going on, modify stuff and contribute changes. If the book spontaneously

+Let’s see if this works.

Git successfully and succinctly tells me that I added the string “Let’s see if this

works”, which is correct. It’s not perfect — it adds a bunch of random stuff at the end

— but it certainly works. If you can find or write a Word-to-plain-text converter that

works well enough, that solution will likely be incredibly effective. However, strings

is available on most Mac and Linux systems, so it may be a good first try to do this

with many binary formats.

Another interesting problem you can solve this way involves diffing image files.

One way to do this is to run JPEG files through a filter that extracts their EXIF infor-

mation — metadata that is recorded with most image formats. If you download and

install the exiftool program, you can use it to convert your images into text about the

metadata, so at least the diff will show you a textual representation of any changes that

happened:

$ echo ’*.png diff=exif’ >> .gitattributes

$ git config diff.exif.textconv exiftool

If you replace an image in your project and run git diff , you see something like

this:

diff --git a/image.png b/image.png

index 88839c4..4afcb7c 100644

--- a/image.png

+++ b/image.png

@@ -1,12 +1,12 @@

ExifTool Version Number : 7.74

-File Size : 70 kB

-File Modification Date/Time : 2009:04:21 07:02:45-07:00

+File Size : 94 kB

+File Modification Date/Time : 2009:04:21 07:02:43-07:00

File Type : PNG

MIME Type : image/png

-Image Width : 1058

-Image Height : 889

+Image Width : 1056

+Image Height : 827

Bit Depth : 8

Color Type : RGB with Alpha

You can easily see that the file size and image dimensions have both changed.

171

PRO GIT SCOTT CHACON

7.2.2 Keyword Expansion

SVN- or CVS-style keyword expansion is often requested by developers used to those

systems. The main problem with this in Git is that you can’t modify a file with in-

formation about the commit after you’ve committed, because Git checksums the file

first. However, you can inject text into a file when it’s checked out and remove it again

before it’s added to a commit. Git attributes offers you two ways to do this.

First, you can inject the SHA–1 checksum of a blob into an Id field in the file

automatically. If you set this attribute on a file or set of files, then the next time you

check out that branch, Git will replace that field with the SHA–1 of the blob. It’s

important to notice that it isn’t the SHA of the commit, but of the blob itself:

$ echo ’*.txt ident’ >> .gitattributes

$ echo ’Id’ > test.txt

The next time you check out this file, Git injects the SHA of the blob:

$ rm text.txt

$ git checkout -- text.txt

$ cat test.txt

$Id: 42812b7653c7b88933f8a9d6cad0ca16714b9bb3 $

However, that result is of limited use. If you’ve used keyword substitution in CVS

or Subversion, you can include a datestamp — the SHA isn’t all that helpful, because

it’s fairly random and you can’t tell if one SHA is older or newer than another.

It turns out that you can write your own filters for doing substitutions in files on

commit/checkout. These are the “clean” and “smudge” filters. In the .gitattributes

file, you can set a filter for particular paths and then set up scripts that will process files

just before they’re committed (“clean”, see Figure 7.2) and just before they’re checked

out (“smudge”, see Figure 7.3). These filters can be set to do all sorts of fun things.

Figure 7.2: The “smudge” filter is run on checkout.

The original commit message for this functionality gives a simple example of run-

ning all your C source code through the indent program before committing. You can

set it up by setting the filter attribute in your .gitattributes file to filter *.c files with

the “indent” filter:

*.c filter=indent

172

CHAPTER 7 CUSTOMIZING GIT

Figure 7.3: The “clean” filter is run when files are staged.

Then, tell Git what the “indent”” filter does on smudge and clean:

$ git config --global filter.indent.clean indent

$ git config --global filter.indent.smudge cat

In this case, when you commit files that match *.c , Git will run them through the

indent program before it commits them and then run them through the cat program

before it checks them back out onto disk. The cat program is basically a no-op: it spits

out the same data that it gets in. This combination effectively filters all C source code

files through indent before committing.

Another interesting example gets $Date$ keyword expansion, RCS style. To do this

properly, you need a small script that takes a filename, figures out the last commit date

for this project, and inserts the date into the file. Here is a small Ruby script that does

that:

#! /usr/bin/env ruby

data = STDIN.read

last_date = ‘git log --pretty=format:"%ad" -1‘

puts data.gsub(’$Date$’, ’$Date: ’ + last_date.to_s + ’$’)

All the script does is get the latest commit date from the git log command, stick

that into any $Date$ strings it sees in stdin, and print the results — it should be sim-

ple to do in whatever language you’re most comfortable in. You can name this file

expand date and put it in your path. Now, you need to set up a filter in Git (call it

dater) and tell it to use your expand date filter to smudge the files on checkout. You’ll

use a Perl expression to clean that up on commit:

$ git config filter.dater.smudge expand_date

$ git config filter.dater.clean ’perl -pe "s/\\\$Date[̂ \\\$]*\\\$/\\\$Date\\\$/"’

This Perl snippet strips out anything it sees in a $Date$ string, to get back to where

you started. Now that your filter is ready, you can test it by setting up a file with your

$Date$ keyword and then setting up a Git attribute for that file that engages the new

filter:

$ echo ’# $Date$’ > date_test.txt

$ echo ’date*.txt filter=dater’ >> .gitattributes

173

PRO GIT SCOTT CHACON

If you commit those changes and check out the file again, you see the keyword

properly substituted:

$ git add date_test.txt .gitattributes

$ git commit -m "Testing date expansion in Git"

$ rm date_test.txt

$ git checkout date_test.txt

$ cat date_test.txt

$Date: Tue Apr 21 07:26:52 2009 -0700$

You can see how powerful this technique can be for customized applications. You

have to be careful, though, because the .gitattributes file is committed and passed

around with the project but the driver (in this case, dater) isn’t; so, it won’t work

everywhere. When you design these filters, they should be able to fail gracefully and

have the project still work properly.

7.2.3 Exporting Your Repository

Git attribute data also allows you to do some interesting things when exporting an

archive of your project.

export-ignore

You can tell Git not to export certain files or directories when generating an archive.

If there is a subdirectory or file that you don’t want to include in your archive file

but that you do want checked into your project, you can determine those files via the

export-ignore attribute.

For example, say you have some test files in a test/ subdirectory, and it doesn’t

make sense to include them in the tarball export of your project. You can add the

following line to your Git attributes file:

test/ export-ignore

Now, when you run git archive to create a tarball of your project, that directory

won’t be included in the archive.

export-subst

Another thing you can do for your archives is some simple keyword substitution.

Git lets you put the string $Format:$ in any file with any of the --pretty=format for-

matting shortcodes, many of which you saw in Chapter 2. For instance, if you want to

include a file named LAST COMMIT in your project, and the last commit date was auto-

matically injected into it when git archive ran, you can set up the file like this:

$ echo ’Last commit date: $Format:%cd$’ > LAST_COMMIT

$ echo "LAST_COMMIT export-subst" >> .gitattributes

$ git add LAST_COMMIT .gitattributes

$ git commit -am ’adding LAST_COMMIT file for archives’

When you run git archive , the contents of that file when people open the archive

file will look like this:

$ cat LAST_COMMIT

Last commit date: $Format:Tue Apr 21 08:38:48 2009 -0700$

174

CHAPTER 7 CUSTOMIZING GIT

7.2.4 Merge Strategies

You can also use Git attributes to tell Git to use different merge strategies for specific

files in your project. One very useful option is to tell Git to not try to merge specific

files when they have conflicts, but rather to use your side of the merge over someone

else’s.

This is helpful if a branch in your project has diverged or is specialized, but you

want to be able to merge changes back in from it, and you want to ignore certain

files. Say you have a database settings file called database.xml that is different in two

branches, and you want to merge in your other branch without messing up the database

file. You can set up an attribute like this:

database.xml merge=ours

If you merge in the other branch, instead of having merge conflicts with the database.xml

file, you see something like this:

$ git merge topic

Auto-merging database.xml

Merge made by recursive.

In this case, database.xml stays at whatever version you originally had.

7.3 Git Hooks

Like many other Version Control Systems, Git has a way to fire off custom scripts

when certain important actions occur. There are two groups of these hooks: client side

and server side. The client-side hooks are for client operations such as committing and

merging. The server-side hooks are for Git server operations such as receiving pushed

commits. You can use these hooks for all sorts of reasons, and you’ll learn about a few

of them here.

7.3.1 Installing a Hook

The hooks are all stored in the hooks subdirectory of the Git directory. In most projects,

that’s .git/hooks . By default, Git populates this directory with a bunch of example

scripts, many of which are useful by themselves; but they also document the input

values of each script. All the examples are written as shell scripts, with some Perl

thrown in, but any properly named executable scripts will work fine — you can write

them in Ruby or Python or what have you. For post–1.6 versions of Git, these example

hook files end with .sample; you’ll need to rename them. For pre–1.6 versions of Git,

the example files are named properly but are not executable.

To enable a hook script, put a file in the hooks subdirectory of your Git directory

that is named appropriately and is executable. From that point forward, it should be

called. I’ll cover most of the major hook filenames here.

7.3.2 Client-Side Hooks

There are a lot of client-side hooks. This section splits them into committing-workflow

hooks, e-mailworkflow scripts, and the rest of the client-side scripts.

175

PRO GIT SCOTT CHACON

Committing-Workflow Hooks

The first four hooks have to do with the committing process. The pre-commit hook

is run first, before you even type in a commit message. It’s used to inspect the snapshot

that’s about to be committed, to see if you’ve forgotten something, to make sure tests

run, or to examine whatever you need to inspect in the code. Exiting non-zero from

this hook aborts the commit, although you can bypass it with git commit --no-verify .

You can do things like check for code style (run lint or something equivalent), check

for trailing whitespace (the default hook does exactly that), or check for appropriate

documentation on new methods.

The prepare-commit-msg hook is run before the commit message editor is fired up

but after the default message is created. It lets you edit the default message before

the commit author sees it. This hook takes a few options: the path to the file that

holds the commit message so far, the type of commit, and the commit SHA–1 if this is

an amended commit. This hook generally isn’t useful for normal commits; rather, it’s

good for commits where the default message is auto-generated, such as templated com-

mit messages, merge commits, squashed commits, and amended commits. You may

use it in conjunction with a commit template to programmatically insert information.

The commit-msg hook takes one parameter, which again is the path to a temporary

file that contains the current commit message. If this script exits non-zero, Git aborts

the commit process, so you can use it to validate your project state or commit message

before allowing a commit to go through. In the last section of this chapter, I’ll demon-

strate using this hook to check that your commit message is conformant to a required

pattern.

After the entire commit process is completed, the post-commit hook runs. It doesn’t

take any parameters, but you can easily get the last commit by running git log -1

HEAD . Generally, this script is used for notification or something similar.

The committing-workflow client-side scripts can be used in just about any work-

flow. They’re often used to enforce certain policies, although it’s important to note that

these scripts aren’t transferred during a clone. You can enforce policy on the server

side to reject pushes of commits that don’t conform to some policy, but it’s entirely

up to the developer to use these scripts on the client side. So, these are scripts to help

developers, and they must be set up and maintained by them, although they can be

overridden or modified by them at any time.

E-mail Workflow Hooks

You can set up three client-side hooks for an e-mailbased workflow. They’re all in-

voked by the git am command, so if you aren’t using that command in your workflow,

you can safely skip to the next section. If you’re taking patches over e-mail prepared

by git format-patch , then some of these may be helpful to you.

The first hook that is run is applypatch-msg . It takes a single argument: the name of

the temporary file that contains the proposed commit message. Git aborts the patch if

this script exits non-zero. You can use this to make sure a commit message is properly

formatted or to normalize the message by having the script edit it in place.

The next hook to run when applying patches via git am is pre-applypatch . It

takes no arguments and is run after the patch is applied, so you can use it to inspect

the snapshot before making the commit. You can run tests or otherwise inspect the

working tree with this script. If something is missing or the tests don’t pass, exiting

non-zero also aborts the git am script without committing the patch.

The last hook to run during a git am operation is post-applypatch . You can use

176

CHAPTER 7 CUSTOMIZING GIT

it to notify a group or the author of the patch you pulled in that you’ve done so. You

can’t stop the patching process with this script.

Other Client Hooks

The pre-rebase hook runs before you rebase anything and can halt the process by

exiting non-zero. You can use this hook to disallow rebasing any commits that have

already been pushed. The example pre-rebase hook that Git installs does this, although

it assumes that next is the name of the branch you publish. You’ll likely need to change

that to whatever your stable, published branch is.

After you run a successful git checkout , the post-checkout hook runs; you can

use it to set up your working directory properly for your project environment. This

may mean moving in large binary files that you don’t want source controlled, auto-

generating documentation, or something along those lines.

Finally, the post-merge hook runs after a successful merge command. You can use

it to restore data in the working tree that Git can’t track, such as permissions data. This

hook can likewise validate the presence of files external to Git control that you may

want copied in when the working tree changes.

7.3.3 Server-Side Hooks

In addition to the client-side hooks, you can use a couple of important server-side hooks

as a system administrator to enforce nearly any kind of policy for your project. These

scripts run before and after pushes to the server. The pre hooks can exit non-zero at

any time to reject the push as well as print an error message back to the client; you can

set up a push policy that’s as complex as you wish.

pre-receive and post-receive

The first script to run when handling a push from a client is pre-receive . It takes

a list of references that are being pushed from stdin; if it exits non-zero, none of them

are accepted. You can use this hook to do things like make sure none of the updated

references are non-fast-forwards; or to check that the user doing the pushing has create,

delete, or push access or access to push updates to all the files they’re modifying with

the push.

The post-receive hook runs after the entire process is completed and can be used

to update other services or notify users. It takes the same stdin data as the pre-receive

hook. Examples include e-mailing a list, notifying a continuous integration server, or

updating a ticket-tracking system — you can even parse the commit messages to see

if any tickets need to be opened, modified, or closed. This script can’t stop the push

process, but the client doesn’t disconnect until it has completed; so, be careful when

you try to do anything that may take a long time.

update

The update script is very similar to the pre-receive script, except that it’s run

once for each branch the pusher is trying to update. If the pusher is trying to push to

multiple branches, pre-receive runs only once, whereas update runs once per branch

they’re pushing to. Instead of reading from stdin, this script takes three arguments: the

name of the reference (branch), the SHA–1 that reference pointed to before the push,

and the SHA–1 the user is trying to push. If the update script exits non-zero, only that

reference is rejected; other references can still be updated.

177

PRO GIT SCOTT CHACON

7.4 An Example Git-Enforced Policy

In this section, you’ll use what you’ve learned to establish a Git workflow that checks

for a custom commit message format, enforces fast-forward-only pushes, and allows

only certain users to modify certain subdirectories in a project. You’ll build client

scripts that help the developer know if their push will be rejected and server scripts that

actually enforce the policies.

I used Ruby to write these, both because it’s my preferred scripting language and

because I feel it’s the most pseudocode-looking of the scripting languages; thus you

should be able to roughly follow the code even if you don’t use Ruby. However, any

language will work fine. All the sample hook scripts distributed with Git are in ei-

ther Perl or Bash scripting, so you can also see plenty of examples of hooks in those

languages by looking at the samples.

7.4.1 Server-Side Hook

All the server-side work will go into the update file in your hooks directory. The update

file runs once per branch being pushed and takes the reference being pushed to, the

old revision where that branch was, and the new revision being pushed. You also have

access to the user doing the pushing if the push is being run over SSH. If you’ve allowed

everyone to connect with a single user (like “git”) via public-key authentication, you

may have to give that user a shell wrapper that determines which user is connecting

based on the public key, and set an environment variable specifying that user. Here I

assume the connecting user is in the $USER environment variable, so your update script

begins by gathering all the information you need:

#!/usr/bin/env ruby

$refname = ARGV[0]

$oldrev = ARGV[1]

$newrev = ARGV[2]

$user = ENV[’USER’]

puts "Enforcing Policies... \n(#{$refname}) (#{$oldrev[0,6]}) (#{$newrev[0,6]})"

Yes, I’m using global variables. Don’t judge me— it’s easier to demonstrate in this

manner.

Enforcing a Specific Commit-Message Format

Your first challenge is to enforce that each commit message must adhere to a partic-

ular format. Just to have a target, assume that each message has to include a string that

looks like “ref: 1234” because you want each commit to link to a work item in your

ticketing system. You must look at each commit being pushed up, see if that string is in

the commit message, and, if the string is absent from any of the commits, exit non-zero

so the push is rejected.

You can get a list of the SHA–1 values of all the commits that are being pushed by

taking the $newrev and $oldrev values and passing them to a Git plumbing command

called git rev-list . This is basically the git log command, but by default it prints

out only the SHA–1 values and no other information. So, to get a list of all the commit

SHAs introduced between one commit SHA and another, you can run something like

this:

178

CHAPTER 7 CUSTOMIZING GIT

$ git rev-list 538c33..d14fc7

d14fc7c847ab946ec39590d87783c69b031bdfb7

9f585da4401b0a3999e84113824d15245c13f0be

234071a1be950e2a8d078e6141f5cd20c1e61ad3

dfa04c9ef3d5197182f13fb5b9b1fb7717d2222a

17716ec0f1ff5c77eff40b7fe912f9f6cfd0e475

You can take that output, loop through each of those commit SHAs, grab the mes-

sage for it, and test that message against a regular expression that looks for a pattern.

You have to figure out how to get the commit message from each of these commits

to test. To get the raw commit data, you can use another plumbing command called

git cat-file . I’ll go over all these plumbing commands in detail in Chapter 9; but for

now, here’s what that command gives you:

$ git cat-file commit ca82a6

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the verison number

A simple way to get the commit message from a commit when you have the SHA–1

value is to go to the first blank line and take everything after that. You can do so with

the sed command on Unix systems:

$ git cat-file commit ca82a6 | sed ’1,/̂ $/d’

changed the verison number

You can use that incantation to grab the commit message from each commit that is

trying to be pushed and exit if you see anything that doesn’t match. To exit the script

and reject the push, exit non-zero. The whole method looks like this:

$regex = /\[ref: (\d+)\]/

enforced custom commit message format

def check_message_format

missed_revs = ‘git rev-list #{$oldrev}..#{$newrev}‘.split("\n")

missed_revs.each do |rev|

message = ‘git cat-file commit #{rev} | sed ’1,/̂ $/d’‘

if !$regex.match(message)

puts "[POLICY] Your message is not formatted correctly"

exit 1

end

end

end

check_message_format

Putting that in your update script will reject updates that contain commits that have

messages that don’t adhere to your rule.

Enforcing a User-Based ACL System

Suppose you want to add a mechanism that uses an access control list (ACL) that

specifies which users are allowed to push changes to which parts of your projects.

179

PRO GIT SCOTT CHACON

Some people have full access, and others only have access to push changes to certain

subdirectories or specific files. To enforce this, you’ll write those rules to a file named

acl that lives in your bare Git repository on the server. You’ll have the update hook

look at those rules, see what files are being introduced for all the commits being pushed,

and determine whether the user doing the push has access to update all those files.

The first thing you’ll do is write your ACL. Here you’ll use a format very much

like the CVS ACL mechanism: it uses a series of lines, where the first field is avail or

unavail , the next field is a comma-delimited list of the users to which the rule applies,

and the last field is the path to which the rule applies (blank meaning open access). All

of these fields are delimited by a pipe (|) character.

In this case, you have a couple of administrators, some documentation writers with

access to the doc directory, and one developer who only has access to the lib and tests

directories, and your ACL file looks like this:

avail|nickh,pjhyett,defunkt,tpw

avail|usinclair,cdickens,ebronte|doc

avail|schacon|lib

avail|schacon|tests

You begin by reading this data into a structure that you can use. In this case, to

keep the example simple, you’ll only enforce the avail directives. Here is a method

that gives you an associative array where the key is the user name and the value is an

array of paths to which the user has write access:

def get_acl_access_data(acl_file)

read in ACL data

acl_file = File.read(acl_file).split("\n").reject { |line| line == ’’ }

access = {}

acl_file.each do |line|

avail, users, path = line.split(’|’)

next unless avail == ’avail’

users.split(’,’).each do |user|

access[user] ||= []

access[user] << path

end

end

access

end

On the ACL file you looked at earlier, this get acl access data method returns a

data structure that looks like this:

{"defunkt"=>[nil],

"tpw"=>[nil],

"nickh"=>[nil],

"pjhyett"=>[nil],

"schacon"=>["lib", "tests"],

"cdickens"=>["doc"],

"usinclair"=>["doc"],

"ebronte"=>["doc"]}

180

CHAPTER 7 CUSTOMIZING GIT

Now that you have the permissions sorted out, you need to determine what paths

the commits being pushed have modified, so you can make sure the user who’s pushing

has access to all of them.

You can pretty easily see what files have been modified in a single commit with the

--name-only option to the git log command (mentioned briefly in Chapter 2):

$ git log -1 --name-only --pretty=format:’’ 9f585d

README

lib/test.rb

If you use the ACL structure returned from the get acl access data method and

check it against the listed files in each of the commits, you can determine whether the

user has access to push all of their commits:

only allows certain users to modify certain subdirectories in a project

def check_directory_perms

access = get_acl_access_data(’acl’)

see if anyone is trying to push something they can’t

new_commits = ‘git rev-list #{$oldrev}..#{$newrev}‘.split("\n")

new_commits.each do |rev|

files_modified = ‘git log -1 --name-only --pretty=format:’’ #{rev}‘.split("\n")

files_modified.each do |path|

next if path.size == 0

has_file_access = false

access[$user].each do |access_path|

if !access_path # user has access to everything

|| (path.index(access_path) == 0) # access to this path

has_file_access = true

end

end

if !has_file_access

puts "[POLICY] You do not have access to push to #{path}"

exit 1

end

end

end

end

check_directory_perms

Most of that should be easy to follow. You get a list of new commits being pushed

to your server with git rev-list . Then, for each of those, you find which files are

modified and make sure the user who’s pushing has access to all the paths being mod-

ified. One Rubyism that may not be clear is path.index(access path) == 0 , which is

true if path begins with access path — this ensures that access path is not just in one

of the allowed paths, but an allowed path begins with each accessed path.

Now your users can’t push any commits with badly formed messages or with mod-

ified files outside of their designated paths.

Enforcing Fast-Forward-Only Pushes

181

PRO GIT SCOTT CHACON

The only thing left is to enforce fast-forward-only pushes. In Git versions 1.6 or

newer, you can set the receive.denyDeletes and receive.denyNonFastForwards set-

tings. But enforcing this with a hook will work in older versions of Git, and you can

modify it to do so only for certain users or whatever else you come up with later.

The logic for checking this is to see if any commits are reachable from the older

revision that aren’t reachable from the newer one. If there are none, then it was a

fast-forward push; otherwise, you deny it:

enforces fast-forward only pushes

def check_fast_forward

missed_refs = ‘git rev-list #{$newrev}..#{$oldrev}‘

missed_ref_count = missed_refs.split("\n").size

if missed_ref_count > 0

puts "[POLICY] Cannot push a non fast-forward reference"

exit 1

end

end

check_fast_forward

Everything is set up. If you run chmod u+x .git/hooks/update , which is the file

you into which you should have put all this code, and then try to push a non-fast-

forwarded reference, you get something like this:

$ git push -f origin master

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 323 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

Enforcing Policies...

(refs/heads/master) (8338c5) (c5b616)

[POLICY] Cannot push a non-fast-forward reference

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

To git@gitserver:project.git

! [remote rejected] master -> master (hook declined)

error: failed to push some refs to ’git@gitserver:project.git’

There are a couple of interesting things here. First, you see this where the hook

starts running.

Enforcing Policies...

(refs/heads/master) (fb8c72) (c56860)

Notice that you printed that out to stdout at the very beginning of your update script.

It’s important to note that anything your script prints to stdout will be transferred to the

client.

The next thing you’ll notice is the error message.

[POLICY] Cannot push a non fast-forward reference

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

182

CHAPTER 7 CUSTOMIZING GIT

The first line was printed out by you, the other two were Git telling you that the

update script exited non-zero and that is what is declining your push. Lastly, you have

this:

To git@gitserver:project.git

! [remote rejected] master -> master (hook declined)

error: failed to push some refs to ’git@gitserver:project.git’

You’ll see a remote rejected message for each reference that your hook declined,

and it tells you that it was declined specifically because of a hook failure.

Furthermore, if the ref marker isn’t there in any of your commits, you’ll see the

error message you’re printing out for that.

[POLICY] Your message is not formatted correctly

Or if someone tries to edit a file they don’t have access to and push a commit

containing it, they will see something similar. For instance, if a documentation author

tries to push a commit modifying something in the lib directory, they see

[POLICY] You do not have access to push to lib/test.rb

That’s all. From now on, as long as that update script is there and executable, your

repository will never be rewound and will never have a commit message without your

pattern in it, and your users will be sandboxed.

7.4.2 Client-Side Hooks

The downside to this approach is the whining that will inevitably result when your

users’ commit pushes are rejected. Having their carefully crafted work rejected at the

last minute can be extremely frustrating and confusing; and furthermore, they will have

to edit their history to correct it, which isn’t always for the faint of heart.

The answer to this dilemma is to provide some client-side hooks that users can use

to notify them when they’re doing something that the server is likely to reject. That

way, they can correct any problems before committing and before those issues become

more difficult to fix. Because hooks aren’t transferred with a clone of a project, you

must distribute these scripts some other way and then have your users copy them to their

.git/hooks directory and make them executable. You can distribute these hooks within

the project or in a separate project, but there is no way to set them up automatically.

To begin, you should check your commit message just before each commit is

recorded, so you know the server won’t reject your changes due to badly formatted

commit messages. To do this, you can add the commit-msg hook. If you have it read the

message from the file passed as the first argument and compare that to the pattern, you

can force Git to abort the commit if there is no match:

#!/usr/bin/env ruby

message_file = ARGV[0]

message = File.read(message_file)

$regex = /\[ref: (\d+)\]/

if !$regex.match(message)

183

PRO GIT SCOTT CHACON

puts "[POLICY] Your message is not formatted correctly"

exit 1

end

If that script is in place (in .git/hooks/commit-msg) and executable, and you com-

mit with a message that isn’t properly formatted, you see this:

$ git commit -am ’test’

[POLICY] Your message is not formatted correctly

No commit was completed in that instance. However, if your message contains the

proper pattern, Git allows you to commit:

$ git commit -am ’test [ref: 132]’

[master e05c914] test [ref: 132]

1 files changed, 1 insertions(+), 0 deletions(-)

Next, you want to make sure you aren’t modifying files that are outside your ACL

scope. If your project’s .git directory contains a copy of the ACL file you used previ-

ously, then the following pre-commit script will enforce those constraints for you:

#!/usr/bin/env ruby

$user = ENV[’USER’]

[insert acl_access_data method from above]

only allows certain users to modify certain subdirectories in a project

def check_directory_perms

access = get_acl_access_data(’.git/acl’)

files_modified = ‘git diff-index --cached --name-only HEAD‘.split("\n")

files_modified.each do |path|

next if path.size == 0

has_file_access = false

access[$user].each do |access_path|

if !access_path || (path.index(access_path) == 0)

has_file_access = true

end

if !has_file_access

puts "[POLICY] You do not have access to push to #{path}"

exit 1

end

end

end

check_directory_perms

This is roughly the same script as the server-side part, but with two important dif-

ferences. First, the ACL file is in a different place, because this script runs from your

working directory, not from your Git directory. You have to change the path to the ACL

file from this

184

CHAPTER 7 CUSTOMIZING GIT

access = get_acl_access_data(’acl’)

to this:

access = get_acl_access_data(’.git/acl’)

The other important difference is the way you get a listing of the files that have

been changed. Because the server-side method looks at the log of commits, and, at

this point, the commit hasn’t been recorded yet, you must get your file listing from the

staging area instead. Instead of

files_modified = ‘git log -1 --name-only --pretty=format:’’ #{ref}‘

you have to use

files_modified = ‘git diff-index --cached --name-only HEAD‘

But those are the only two differences — otherwise, the script works the same way.

One caveat is that it expects you to be running locally as the same user you push as to

the remote machine. If that is different, you must set the $user variable manually.

The last thing you have to do is check that you’re not trying to push non-fast-

forwarded references, but that is a bit less common. To get a reference that isn’t a

fast-forward, you either have to rebase past a commit you’ve already pushed up or try

pushing a different local branch up to the same remote branch.

Because the server will tell you that you can’t push a non-fast-forward anyway,

and the hook prevents forced pushes, the only accidental thing you can try to catch is

rebasing commits that have already been pushed.

Here is an example pre-rebase script that checks for that. It gets a list of all the

commits you’re about to rewrite and checks whether they exist in any of your remote

references. If it sees one that is reachable from one of your remote references, it aborts

the rebase:

#!/usr/bin/env ruby

base_branch = ARGV[0]

if ARGV[1]

topic_branch = ARGV[1]

else

topic_branch = "HEAD"

end

target_shas = ‘git rev-list #{base_branch}..#{topic_branch}‘.split("\n")

remote_refs = ‘git branch -r‘.split("\n").map { |r| r.strip }

target_shas.each do |sha|

remote_refs.each do |remote_ref|

shas_pushed = ‘git rev-list #̂{sha}̂ @ refs/remotes/#{remote_ref}‘

if shas_pushed.split(‘‘\n’’).include?(sha)

puts "[POLICY] Commit #{sha} has already been pushed to #{remote_ref}"

exit 1

end

end

end

185

PRO GIT SCOTT CHACON

This script uses a syntax that wasn’t covered in the Revision Selection section of

Chapter 6. You get a list of commits that have already been pushed up by running this:

git rev-list #̂{sha}̂ @ refs/remotes/#{remote_ref}

The SHÂ @ syntax resolves to all the parents of that commit. You’re looking for any

commit that is reachable from the last commit on the remote and that isn’t reachable

from any parent of any of the SHAs you’re trying to push up — meaning it’s a fast-

forward.

The main drawback to this approach is that it can be very slow and is often unnec-

essary — if you don’t try to force the push with -f, the server will warn you and not

accept the push. However, it’s an interesting exercise and can in theory help you avoid

a rebase that you might later have to go back and fix.

7.5 Summary

You’ve covered most of the major ways that you can customize your Git client and

server to best fit your workflow and projects. You’ve learned about all sorts of con-

figuration settings, file-based attributes, and event hooks, and you’ve built an example

policy-enforcing server. You should now be able to make Git fit nearly any workflow

you can dream up.

186

Chapter 8

Git and Other Systems

The world isn’t perfect. Usually, you can’t immediately switch every project you come

in contact with to Git. Sometimes you’re stuck on a project using another VCS, and

many times that system is Subversion. You’ll spend the first part of this chapter learning

about git svn , the bidirectional Subversion gateway tool in Git.

At some point, you may want to convert your existing project to Git. The second

part of this chapter covers how to migrate your project into Git: first from Subversion,

then from Perforce, and finally via a custom import script for a nonstandard importing

case.

8.1 Git and Subversion

Currently, the majority of open source development projects and a large number of

corporate projects use Subversion to manage their source code. It’s the most popular

open source VCS and has been around for nearly a decade. It’s also very similar in

many ways to CVS, which was the big boy of the source-control world before that.

One of Git’s great features is a bidirectional bridge to Subversion called git svn .

This tool allows you to use Git as a valid client to a Subversion server, so you can

use all the local features of Git and then push to a Subversion server as if you were

using Subversion locally. This means you can do local branching and merging, use

the staging area, use rebasing and cherry-picking, and so on, while your collaborators

continue to work in their dark and ancient ways. It’s a good way to sneak Git into the

corporate environment and help your fellow developers become more efficient while

you lobby to get the infrastructure changed to support Git fully. The Subversion bridge

is the gateway drug to the DVCS world.

8.1.1 git svn

The base command in Git for all the Subversion bridging commands is git svn . You

preface everything with that. It takes quite a few commands, so you’ll learn about the

common ones while going through a few small workflows.

It’s important to note that when you’re using git svn , you’re interacting with Sub-

version, which is a system that is far less sophisticated than Git. Although you can

187

PRO GIT SCOTT CHACON

easily do local branching and merging, it’s generally best to keep your history as lin-

ear as possible by rebasing your work and avoiding doing things like simultaneously

interacting with a Git remote repository.

Don’t rewrite your history and try to push again, and don’t push to a parallel Git

repository to collaborate with fellow Git developers at the same time. Subversion can

have only a single linear history, and confusing it is very easy. If you’re working with

a team, and some are using SVN and others are using Git, make sure everyone is using

the SVN server to collaborate — doing so will make your life easier.

8.1.2 Setting Up

To demonstrate this functionality, you need a typical SVN repository that you have

write access to. If you want to copy these examples, you’ll have to make a writeable

copy of my test repository. In order to do that easily, you can use a tool called svnsync

that comes with more recent versions of Subversion — it should be distributed with at

least 1.4. For these tests, I created a new Subversion repository on Google code that

was a partial copy of the protobuf project, which is a tool that encodes structured data

for network transmission.

To follow along, you first need to create a new local Subversion repository:

$ mkdir /tmp/test-svn

$ svnadmin create /tmp/test-svn

Then, enable all users to change revprops — the easy way is to add a pre-revprop-

change script that always exits 0:

$ cat /tmp/test-svn/hooks/pre-revprop-change

#!/bin/sh

exit 0;

$ chmod +x /tmp/test-svn/hooks/pre-revprop-change

You can now sync this project to your local machine by calling svnsync init with

the to and from repositories.

$ svnsync init file:///tmp/test-svn http://progit-example.googlecode.com/svn/

This sets up the properties to run the sync. You can then clone the code by running

$ svnsync sync file:///tmp/test-svn

Committed revision 1.

Copied properties for revision 1.

Committed revision 2.

Copied properties for revision 2.

Committed revision 3.

...

Although this operation may take only a few minutes, if you try to copy the original

repository to another remote repository instead of a local one, the process will take

nearly an hour, even though there are fewer than 100 commits. Subversion has to clone

one revision at a time and then push it back into another repository — it’s ridiculously

inefficient, but it’s the only easy way to do this.

188

CHAPTER 8 GIT AND OTHER SYSTEMS

8.1.3 Getting Started

Now that you have a Subversion repository to which you have write access, you can

go through a typical workflow. You’ll start with the git svn clone command, which

imports an entire Subversion repository into a local Git repository. Remember that

if you’re importing from a real hosted Subversion repository, you should replace the

file:///tmp/test-svn here with the URL of your Subversion repository:

$ git svn clone file:///tmp/test-svn -T trunk -b branches -t tags

Initialized empty Git repository in /Users/schacon/projects/testsvnsync/svn/.git/

r1 = b4e387bc68740b5af56c2a5faf4003ae42bd135c (trunk)

A m4/acx_pthread.m4

A m4/stl_hash.m4

...

r75 = d1957f3b307922124eec6314e15bcda59e3d9610 (trunk)

Found possible branch point: file:///tmp/test-svn/trunk => \

file:///tmp/test-svn /branches/my-calc-branch, 75

Found branch parent: (my-calc-branch) d1957f3b307922124eec6314e15bcda59e3d9610

Following parent with do_switch

Successfully followed parent

r76 = 8624824ecc0badd73f40ea2f01fce51894189b01 (my-calc-branch)

Checked out HEAD:

file:///tmp/test-svn/branches/my-calc-branch r76

This runs the equivalent of two commands — git svn init followed by git svn

fetch — on the URL you provide. This can take a while. The test project has only

about 75 commits and the codebase isn’t that big, so it takes just a few minutes. How-

ever, Git has to check out each version, one at a time, and commit it individually. For

a project with hundreds or thousands of commits, this can literally take hours or even

days to finish.

The -T trunk -b branches -t tags part tells Git that this Subversion repository

follows the basic branching and tagging conventions. If you name your trunk, branches,

or tags differently, you can change these options. Because this is so common, you can

replace this entire part with -s, which means standard layout and implies all those

options. The following command is equivalent:

$ git svn clone file:///tmp/test-svn -s

At this point, you should have a valid Git repository that has imported your branches

and tags:

$ git branch -a

* master

my-calc-branch

tags/2.0.2

tags/release-2.0.1

tags/release-2.0.2

tags/release-2.0.2rc1

trunk

It’s important to note how this tool namespaces your remote references differently.

When you’re cloning a normal Git repository, you get all the branches on that remote

189

PRO GIT SCOTT CHACON

server available locally as something like origin/[branch] - namespaced by the name

of the remote. However, git svn assumes that you won’t have multiple remotes and

saves all its references to points on the remote server with no namespacing. You can

use the Git plumbing command show-ref to look at all your full reference names:

$ git show-ref

1cbd4904d9982f386d87f88fce1c24ad7c0f0471 refs/heads/master

aee1ecc26318164f355a883f5d99cff0c852d3c4 refs/remotes/my-calc-branch

03d09b0e2aad427e34a6d50ff147128e76c0e0f5 refs/remotes/tags/2.0.2

50d02cc0adc9da4319eeba0900430ba219b9c376 refs/remotes/tags/release-2.0.1

4caaa711a50c77879a91b8b90380060f672745cb refs/remotes/tags/release-2.0.2

1c4cb508144c513ff1214c3488abe66dcb92916f refs/remotes/tags/release-2.0.2rc1

1cbd4904d9982f386d87f88fce1c24ad7c0f0471 refs/remotes/trunk

A normal Git repository looks more like this:

$ git show-ref

83e38c7a0af325a9722f2fdc56b10188806d83a1 refs/heads/master

3e15e38c198baac84223acfc6224bb8b99ff2281 refs/remotes/gitserver/master

0a30dd3b0c795b80212ae723640d4e5d48cabdff refs/remotes/origin/master

25812380387fdd55f916652be4881c6f11600d6f refs/remotes/origin/testing

You have two remote servers: one named gitserver with a master branch; and

another named origin with two branches, master and testing .

Notice how in the example of remote references imported from git svn , tags are

added as remote branches, not as real Git tags. Your Subversion import looks like it

has a remote named tags with branches under it.

8.1.4 Committing Back to Subversion

Now that you have a working repository, you can do some work on the project and

push your commits back upstream, using Git effectively as a SVN client. If you edit

one of the files and commit it, you have a commit that exists in Git locally that doesn’t

exist on the Subversion server:

$ git commit -am ’Adding git-svn instructions to the README’

[master 97031e5] Adding git-svn instructions to the README

1 files changed, 1 insertions(+), 1 deletions(-)

Next, you need to push your change upstream. Notice how this changes the way

you work with Subversion — you can do several commits offline and then push them

all at once to the Subversion server. To push to a Subversion server, you run the git

svn dcommit command:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M README.txt

Committed r79

M README.txt

r79 = 938b1a547c2cc92033b74d32030e86468294a5c8 (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

190

CHAPTER 8 GIT AND OTHER SYSTEMS

This takes all the commits you’ve made on top of the Subversion server code, does

a Subversion commit for each, and then rewrites your local Git commit to include a

unique identifier. This is important because it means that all the SHA–1 checksums for

your commits change. Partly for this reason, working with Git-based remote versions

of your projects concurrently with a Subversion server isn’t a good idea. If you look at

the last commit, you can see the new git-svn-id that was added:

$ git log -1

commit 938b1a547c2cc92033b74d32030e86468294a5c8

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sat May 2 22:06:44 2009 +0000

Adding git-svn instructions to the README

git-svn-id: file:///tmp/test-svn/trunk@79 4c93b258-373f-11de-be05-5f7a86268029

Notice that the SHA checksum that originally started with 97031e5 when you com-

mitted now begins with 938b1a5 . If you want to push to both a Git server and a Sub-

version server, you have to push (dcommit) to the Subversion server first, because that

action changes your commit data.

8.1.5 Pulling in New Changes

If you’re working with other developers, then at some point one of you will push, and

then the other one will try to push a change that conflicts. That change will be rejected

until you merge in their work. In git svn , it looks like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

Merge conflict during commit: Your file or directory ’README.txt’ is probably \

out-of-date: resource out of date; try updating at /Users/schacon/libexec/git-\

core/git-svn line 482

To resolve this situation, you can run git svn rebase , which pulls down any changes

on the server that you don’t have yet and rebases any work you have on top of what is

on the server:

$ git svn rebase

M README.txt

r80 = ff829ab914e8775c7c025d741beb3d523ee30bc4 (trunk)

First, rewinding head to replay your work on top of it...

Applying: first user change

Now, all your work is on top of what is on the Subversion server, so you can suc-

cessfully dcommit :

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M README.txt

Committed r81

M README.txt

r81 = 456cbe6337abe49154db70106d1836bc1332deed (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

191

PRO GIT SCOTT CHACON

It’s important to remember that unlike Git, which requires you to merge upstream

work you don’t yet have locally before you can push, git svn makes you do that only

if the changes conflict. If someone else pushes a change to one file and then you push

a change to another file, your dcommit will work fine:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M configure.ac

Committed r84

M autogen.sh

r83 = 8aa54a74d452f82eee10076ab2584c1fc424853b (trunk)

M configure.ac

r84 = cdbac939211ccb18aa744e581e46563af5d962d0 (trunk)

W: d2f23b80f67aaaa1f6f5aaef48fce3263ac71a92 and refs/remotes/trunk differ, \

using rebase:

:100755 100755 efa5a59965fbbb5b2b0a12890f1b351bb5493c18 \

015e4c98c482f0fa71e4d5434338014530b37fa6 M autogen.sh

First, rewinding head to replay your work on top of it...

Nothing to do.

This is important to remember, because the outcome is a project state that didn’t

exist on either of your computers when you pushed. If the changes are incompatible but

don’t conflict, you may get issues that are difficult to diagnose. This is different than

using a Git server — in Git, you can fully test the state on your client system before

publishing it, whereas in SVN, you can’t ever be certain that the states immediately

before commit and after commit are identical.

You should also run this command to pull in changes from the Subversion server,

even if you’re not ready to commit yourself. You can run git svn fetch to grab the

new data, but git svn rebase does the fetch and then updates your local commits.

$ git svn rebase

M generate_descriptor_proto.sh

r82 = bd16df9173e424c6f52c337ab6efa7f7643282f1 (trunk)

First, rewinding head to replay your work on top of it...

Fast-forwarded master to refs/remotes/trunk.

Running git svn rebase every once in a while makes sure your code is always up

to date. You need to be sure your working directory is clean when you run this, though.

If you have local changes, you must either stash your work or temporarily commit it

before running git svn rebase — otherwise, the command will stop if it sees that the

rebase will result in a merge conflict.

8.1.6 Git Branching Issues

When you’ve become comfortable with a Git workflow, you’ll likely create topic branches,

do work on them, and then merge them in. If you’re pushing to a Subversion server

via git svn, you may want to rebase your work onto a single branch each time instead

of merging branches together. The reason to prefer rebasing is that Subversion has a

linear history and doesn’t deal with merges like Git does, so git svn follows only the

first parent when converting the snapshots into Subversion commits.

192

CHAPTER 8 GIT AND OTHER SYSTEMS

Suppose your history looks like the following: you created an experiment branch,

did two commits, and then merged them back into master . When you dcommit , you see

output like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M CHANGES.txt

Committed r85

M CHANGES.txt

r85 = 4bfebeec434d156c36f2bcd18f4e3d97dc3269a2 (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

COPYING.txt: locally modified

INSTALL.txt: locally modified

M COPYING.txt

M INSTALL.txt

Committed r86

M INSTALL.txt

M COPYING.txt

r86 = 2647f6b86ccfcaad4ec58c520e369ec81f7c283c (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

Running dcommit on a branch with merged history works fine, except that when

you look at your Git project history, it hasn’t rewritten either of the commits you made

on the experiment branch — instead, all those changes appear in the SVN version of

the single merge commit.

When someone else clones that work, all they see is the merge commit with all the

work squashed into it; they don’t see the commit data about where it came from or

when it was committed.

8.1.7 Subversion Branching

Branching in Subversion isn’t the same as branching in Git; if you can avoid using

it much, that’s probably best. However, you can create and commit to branches in

Subversion using git svn.

Creating a New SVN Branch

To create a new branch in Subversion, you run git svn branch [branchname] :

$ git svn branch opera

Copying file:///tmp/test-svn/trunk at r87 to file:///tmp/test-svn/branches/opera...

Found possible branch point: file:///tmp/test-svn/trunk => \

file:///tmp/test-svn/branches/opera, 87

Found branch parent: (opera) 1f6bfe471083cbca06ac8d4176f7ad4de0d62e5f

Following parent with do_switch

Successfully followed parent

r89 = 9b6fe0b90c5c9adf9165f700897518dbc54a7cbf (opera)

This does the equivalent of the svn copy trunk branches/opera command in Sub-

version and operates on the Subversion server. It’s important to note that it doesn’t

check you out into that branch; if you commit at this point, that commit will go to

trunk on the server, not opera .

193

PRO GIT SCOTT CHACON

8.1.8 Switching Active Branches

Git figures out what branch your dcommits go to by looking for the tip of any of your

Subversion branches in your history — you should have only one, and it should be the

last one with a git-svn-id in your current branch history.

If you want to work on more than one branch simultaneously, you can set up local

branches to dcommit to specific Subversion branches by starting them at the imported

Subversion commit for that branch. If you want an opera branch that you can work on

separately, you can run

$ git branch opera remotes/opera

Now, if you want to merge your opera branch into trunk (your master branch),

you can do so with a normal git merge . But you need to provide a descriptive commit

message (via -m), or the merge will say “Merge branch opera” instead of something

useful.

Remember that although you’re using git merge to do this operation, and the merge

likely will be much easier than it would be in Subversion (because Git will automati-

cally detect the appropriate merge base for you), this isn’t a normal Git merge commit.

You have to push this data back to a Subversion server that can’t handle a commit that

tracks more than one parent; so, after you push it up, it will look like a single commit

that squashed in all the work of another branch under a single commit. After you merge

one branch into another, you can’t easily go back and continue working on that branch,

as you normally can in Git. The dcommit command that you run erases any informa-

tion that says what branch was merged in, so subsequent merge-base calculations will

be wrong — the dcommit makes your git merge result look like you ran git merge

--squash . Unfortunately, there’s no good way to avoid this situation — Subversion

can’t store this information, so you’ll always be crippled by its limitations while you’re

using it as your server. To avoid issues, you should delete the local branch (in this case,

opera) after you merge it into trunk.

8.1.9 Subversion Commands

The git svn toolset provides a number of commands to help ease the transition to Git

by providing some functionality that’s similar to what you had in Subversion. Here are

a few commands that give you what Subversion used to.

SVN Style History

If you’re used to Subversion and want to see your history in SVN output style, you

can run git svn log to view your commit history in SVN formatting:

$ git svn log

--

r87 | schacon | 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009) | 2 lines

autogen change

--

r86 | schacon | 2009-05-02 16:00:21 -0700 (Sat, 02 May 2009) | 2 lines

Merge branch ’experiment’

194

CHAPTER 8 GIT AND OTHER SYSTEMS

--

r85 | schacon | 2009-05-02 16:00:09 -0700 (Sat, 02 May 2009) | 2 lines

updated the changelog

You should know two important things about git svn log . First, it works offline,

unlike the real svn log command, which asks the Subversion server for the data. Sec-

ond, it only shows you commits that have been committed up to the Subversion server.

Local Git commits that you haven’t dcommited don’t show up; neither do commits

that people have made to the Subversion server in the meantime. It’s more like the last

known state of the commits on the Subversion server.

SVN Annotation

Much as the git svn log command simulates the svn log command offline, you

can get the equivalent of svn annotate by running git svn blame [FILE] . The output

looks like this:

$ git svn blame README.txt

2 temporal Protocol Buffers - Google’s data interchange format

2 temporal Copyright 2008 Google Inc.

2 temporal http://code.google.com/apis/protocolbuffers/

2 temporal

22 temporal C++ Installation - Unix

22 temporal =======================

2 temporal

79 schacon Committing in git-svn.

78 schacon

2 temporal To build and install the C++ Protocol Buffer runtime and the Protocol

2 temporal Buffer compiler (protoc) execute the following:

2 temporal

Again, it doesn’t show commits that you did locally in Git or that have been pushed

to Subversion in the meantime.

SVN Server Information

You can also get the same sort of information that svn info gives you by running

git svn info :

$ git svn info

Path: .

URL: https://schacon-test.googlecode.com/svn/trunk

Repository Root: https://schacon-test.googlecode.com/svn

Repository UUID: 4c93b258-373f-11de-be05-5f7a86268029

Revision: 87

Node Kind: directory

Schedule: normal

Last Changed Author: schacon

Last Changed Rev: 87

Last Changed Date: 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009)

This is like blame and log in that it runs offline and is up to date only as of the last

time you communicated with the Subversion server.

Ignoring What Subversion Ignores

195

PRO GIT SCOTT CHACON

If you clone a Subversion repository that has svn:ignore properties set anywhere,

you’ll likely want to set corresponding .gitignore files so you don’t accidentally com-

mit files that you shouldn’t. git svn has two commands to help with this issue. The

first is git svn create-ignore , which automatically creates corresponding .gitignore

files for you so your next commit can include them.

The second command is git svn show-ignore , which prints to stdout the lines you

need to put in a .gitignore file so you can redirect the output into your project exclude

file:

$ git svn show-ignore > .git/info/exclude

That way, you don’t litter the project with .gitignore files. This is a good op-

tion if you’re the only Git user on a Subversion team, and your teammates don’t want

.gitignore files in the project.

8.1.10 Git-Svn Summary

The git svn tools are useful if you’re stuck with a Subversion server for now or are

otherwise in a development environment that necessitates running a Subversion server.

You should consider it crippled Git, however, or you’ll hit issues in translation that

may confuse you and your collaborators. To stay out of trouble, try to follow these

guidelines:

• Keep a linear Git history that doesn’t contain merge commits made by git merge .

Rebase any work you do outside of your mainline branch back onto it; don’t

merge it in.

• Don’t set up and collaborate on a separate Git server. Possibly have one to speed

up clones for new developers, but don’t push anything to it that doesn’t have a

git-svn-id entry. You may even want to add a pre-receive hook that checks

each commit message for a git-svn-id and rejects pushes that contain commits

without it.

If you follow those guidelines, working with a Subversion server can be more bearable.

However, if it’s possible to move to a real Git server, doing so can gain your team a lot

more.

8.2 Migrating to Git

If you have an existing codebase in another VCS but you’ve decided to start using

Git, you must migrate your project one way or another. This section goes over some

importers that are included with Git for common systems and then demonstrates how

to develop your own custom importer.

8.2.1 Importing

You’ll learn how to import data from two of the bigger professionally used SCM sys-

tems — Subversion and Perforce — both because they make up the majority of users

I hear of who are currently switching, and because high-quality tools for both systems

are distributed with Git.

196

CHAPTER 8 GIT AND OTHER SYSTEMS

8.2.2 Subversion

If you read the previous section about using git svn , you can easily use those instruc-

tions to git svn clone a repository; then, stop using the Subversion server, push to a

new Git server, and start using that. If you want the history, you can accomplish that as

quickly as you can pull the data out of the Subversion server (which may take a while).

However, the import isn’t perfect; and because it will take so long, you may as well

do it right. The first problem is the author information. In Subversion, each person

committing has a user on the system who is recorded in the commit information. The

examples in the previous section show schacon in some places, such as the blame output

and the git svn log . If you want to map this to better Git author data, you need a

mapping from the Subversion users to the Git authors. Create a file called users.txt

that has this mapping in a format like this:

schacon = Scott Chacon <schacon@geemail.com>

selse = Someo Nelse <selse@geemail.com>

To get a list of the author names that SVN uses, you can run this:

$ svn log --xml | grep author | sort -u | perl -pe ’s/.>(.?)<./$1 = /’

That gives you the log output in XML format— you can look for the authors, create

a unique list, and then strip out the XML. (Obviously this only works on a machine with

grep , sort , and perl installed.) Then, redirect that output into your users.txt file so you

can add the equivalent Git user data next to each entry.

You can provide this file to git svn to help it map the author data more accurately.

You can also tell git svn not to include the metadata that Subversion normally imports,

by passing --no-metadata to the clone or init command. This makes your import

command look like this:

$ git-svn clone http://my-project.googlecode.com/svn/ \

--authors-file=users.txt --no-metadata -s my_project

Now you should have a nicer Subversion import in your my project directory. In-

stead of commits that look like this

commit 37efa680e8473b615de980fa935944215428a35a

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

git-svn-id: https://my-project.googlecode.com/svn/trunk@94 4c93b258-373f-11de-

be05-5f7a86268029

they look like this:

commit 03a8785f44c8ea5cdb0e8834b7c8e6c469be2ff2

Author: Scott Chacon <schacon@geemail.com>

Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

197

PRO GIT SCOTT CHACON

Not only does the Author field look a lot better, but the git-svn-id is no longer

there, either.

You need to do a bit of post-import cleanup. For one thing, you should clean up

the weird references that git svn set up. First you’ll move the tags so they’re actual

tags rather than strange remote branches, and then you’ll move the rest of the branches

so they’re local.

To move the tags to be proper Git tags, run

$ cp -Rf .git/refs/remotes/tags/* .git/refs/tags/

$ rm -Rf .git/refs/remotes/tags

This takes the references that were remote branches that started with tag/ and

makes them real (lightweight) tags.

Next, move the rest of the references under refs/remotes to be local branches:

$ cp -Rf .git/refs/remotes/* .git/refs/heads/

$ rm -Rf .git/refs/remotes

Now all the old branches are real Git branches and all the old tags are real Git tags.

The last thing to do is add your new Git server as a remote and push to it. Because you

want all your branches and tags to go up, you can run this:

$ git push origin --all

All your branches and tags should be on your new Git server in a nice, clean import.

8.2.3 Perforce

The next system you’ll look at importing from is Perforce. A Perforce importer is

also distributed with Git, but only in the contrib section of the source code — it isn’t

available by default like git svn . To run it, you must get the Git source code, which

you can download from git.kernel.org:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/contrib/fast-import

In this fast-import directory, you should find an executable Python script named

git-p4 . You must have Python and the p4 tool installed on your machine for this import

to work. For example, you’ll import the Jam project from the Perforce Public Depot.

To set up your client, you must export the P4PORT environment variable to point to

the Perforce depot:

$ export P4PORT=public.perforce.com:1666

Run the git-p4 clone command to import the Jam project from the Perforce server,

supplying the depot and project path and the path into which you want to import the

project:

$ git-p4 clone //public/jam/src@all /opt/p4import

Importing from //public/jam/src@all into /opt/p4import

Reinitialized existing Git repository in /opt/p4import/.git/

Import destination: refs/remotes/p4/master

Importing revision 4409 (100%)

198

CHAPTER 8 GIT AND OTHER SYSTEMS

If you go to the /opt/p4import directory and run git log , you can see your im-

ported work:

$ git log -2

commit 1fd4ec126171790efd2db83548b85b1bbbc07dc2

Author: Perforce staff <support@perforce.com>

Date: Thu Aug 19 10:18:45 2004 -0800

Drop ’rc3’ moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into

the main part of the document. Built new tar/zip balls.

Only 16 months later.

[git-p4: depot-paths = "//public/jam/src/": change = 4409]

commit ca8870db541a23ed867f38847eda65bf4363371d

Author: Richard Geiger <rmg@perforce.com>

Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

[git-p4: depot-paths = "//public/jam/src/": change = 3108]

You can see the git-p4 identifier in each commit. It’s fine to keep that identifier

there, in case you need to reference the Perforce change number later. However, if

you’d like to remove the identifier, now is the time to do so — before you start doing

work on the new repository. You can use git filter-branch to remove the identifier

strings en masse:

$ git filter-branch --msg-filter ’

sed -e "/̂ \[git-p4:/d"

’

Rewrite 1fd4ec126171790efd2db83548b85b1bbbc07dc2 (123/123)

Ref ’refs/heads/master’ was rewritten

If you run git log , you can see that all the SHA–1 checksums for the commits

have changed, but the git-p4 strings are no longer in the commit messages:

$ git log -2

commit 10a16d60cffca14d454a15c6164378f4082bc5b0

Author: Perforce staff <support@perforce.com>

Date: Thu Aug 19 10:18:45 2004 -0800

Drop ’rc3’ moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into

the main part of the document. Built new tar/zip balls.

Only 16 months later.

commit 2b6c6db311dd76c34c66ec1c40a49405e6b527b2

Author: Richard Geiger <rmg@perforce.com>

Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

Your import is ready to push up to your new Git server.

199

PRO GIT SCOTT CHACON

8.2.4 A Custom Importer

If your system isn’t Subversion or Perforce, you should look for an importer online

— quality importers are available for CVS, Clear Case, Visual Source Safe, even a

directory of archives. If none of these tools works for you, you have a rarer tool, or you

otherwise need a more custom importing process, you should use git fast-import .

This command reads simple instructions from stdin to write specific Git data. It’s

much easier to create Git objects this way than to run the raw Git commands or try to

write the raw objects (see Chapter 9 for more information). This way, you can write an

import script that reads the necessary information out of the system you’re importing

from and prints straightforward instructions to stdout. You can then run this program

and pipe its output through git fast-import .

To quickly demonstrate, you’ll write a simple importer. Suppose you work in

current, you back up your project by occasionally copying the directory into a time-

stamped back YYYY MM DD backup directory, and you want to import this into Git. Your

directory structure looks like this:

$ ls /opt/import_from

back_2009_01_02

back_2009_01_04

back_2009_01_14

back_2009_02_03

current

In order to import a Git directory, you need to review how Git stores its data. As

you may remember, Git is fundamentally a linked list of commit objects that point to a

snapshot of content. All you have to do is tell fast-import what the content snapshots

are, what commit data points to them, and the order they go in. Your strategy will be

to go through the snapshots one at a time and create commits with the contents of each

directory, linking each commit back to the previous one.

As you did in the “An Example Git Enforced Policy” section of Chapter 7, we’ll

write this in Ruby, because it’s what I generally work with and it tends to be easy to

read. You can write this example pretty easily in anything you’re familiar with — it

just needs to print the appropriate information to stdout.

To begin, you’ll change into the target directory and identify every subdirectory,

each of which is a snapshot that you want to import as a commit. You’ll change into

each subdirectory and print the commands necessary to export it. Your basic main loop

looks like this:

last_mark = nil

loop through the directories

Dir.chdir(ARGV[0]) do

Dir.glob("*").each do |dir|

next if File.file?(dir)

move into the target directory

Dir.chdir(dir) do

last_mark = print_export(dir, last_mark)

end

end

end

200

CHAPTER 8 GIT AND OTHER SYSTEMS

You run print export inside each directory, which takes the manifest and mark of

the previous snapshot and returns the manifest and mark of this one; that way, you

can link them properly. “Mark” is the fast-import term for an identifier you give to a

commit; as you create commits, you give each one a mark that you can use to link to it

from other commits. So, the first thing to do in your print export method is generate

a mark from the directory name:

mark = convert_dir_to_mark(dir)

You’ll do this by creating an array of directories and using the index value as the

mark, because a mark must be an integer. Your method looks like this:

$marks = []

def convert_dir_to_mark(dir)

if !$marks.include?(dir)

$marks << dir

end

($marks.index(dir) + 1).to_s

end

Now that you have an integer representation of your commit, you need a date for

the commit metadata. Because the date is expressed in the name of the directory, you’ll

parse it out. The next line in your print export file is

date = convert_dir_to_date(dir)

where convert dir to date is defined as

def convert_dir_to_date(dir)

if dir == ’current’

return Time.now().to_i

else

dir = dir.gsub(’back_’, ’’)

(year, month, day) = dir.split(’_’)

return Time.local(year, month, day).to_i

end

end

That returns an integer value for the date of each directory. The last piece of meta-

information you need for each commit is the committer data, which you hardcode in a

global variable:

$author = ’Scott Chacon <schacon@example.com>’

Now you’re ready to begin printing out the commit data for your importer. The

initial information states that you’re defining a commit object and what branch it’s

on, followed by the mark you’ve generated, the committer information and commit

message, and then the previous commit, if any. The code looks like this:

print the import information

puts ’commit refs/heads/master’

puts ’mark :’ + mark

puts "committer #{$author} #{date} -0700"

export_data(’imported from ’ + dir)

puts ’from :’ + last_mark if last_mark

201

PRO GIT SCOTT CHACON

You hardcode the time zone (–0700) because doing so is easy. If you’re importing

from another system, you must specify the time zone as an offset. The commit message

must be expressed in a special format:

data (size)\n(contents)

The format consists of the word data, the size of the data to be read, a newline, and

finally the data. Because you need to use the same format to specify the file contents

later, you create a helper method, export data :

def export_data(string)

print "data #{string.size}\n#{string}"

end

All that’s left is to specify the file contents for each snapshot. This is easy, because

you have each one in a directory — you can print out the deleteall command fol-

lowed by the contents of each file in the directory. Git will then record each snapshot

appropriately:

puts ’deleteall’

Dir.glob("**/*").each do |file|

next if !File.file?(file)

inline_data(file)

end

Note: Because many systems think of their revisions as changes from one commit

to another, fast-import can also take commands with each commit to specify which

files have been added, removed, or modified and what the new contents are. You could

calculate the differences between snapshots and provide only this data, but doing so is

more complex — you may as well give Git all the data and let it figure it out. If this

is better suited to your data, check the fast-import man page for details about how to

provide your data in this manner.

The format for listing the new file contents or specifying a modified file with the

new contents is as follows:

M 644 inline path/to/file

data (size)

(file contents)

Here, 644 is the mode (if you have executable files, you need to detect and specify

755 instead), and inline says you’ll list the contents immediately after this line. Your

inline data method looks like this:

def inline_data(file, code = ’M’, mode = ’644’)

content = File.read(file)

puts "#{code} #{mode} inline #{file}"

export_data(content)

end

You reuse the export data method you defined earlier, because it’s the same as the

way you specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the

next iteration:

202

CHAPTER 8 GIT AND OTHER SYSTEMS

return mark

That’s it. If you run this script, you’ll get content that looks something like this:

$ ruby import.rb /opt/import_from

commit refs/heads/master

mark :1

committer Scott Chacon <schacon@geemail.com> 1230883200 -0700

data 29

imported from back_2009_01_02deleteall

M 644 inline file.rb

data 12

version two

commit refs/heads/master

mark :2

committer Scott Chacon <schacon@geemail.com> 1231056000 -0700

data 29

imported from back_2009_01_04from :1

deleteall

M 644 inline file.rb

data 14

version three

M 644 inline new.rb

data 16

new version one

(...)

To run the importer, pipe this output through git fast-import while in the Git

directory you want to import into. You can create a new directory and then run git

init in it for a starting point, and then run your script:

$ git init

Initialized empty Git repository in /opt/import_to/.git/

$ ruby import.rb /opt/import_from | git fast-import

git-fast-import statistics:

Alloc’d objects: 5000

Total objects: 18 (1 duplicates)

blobs : 7 (1 duplicates 0 deltas)

trees : 6 (0 duplicates 1 deltas)

commits: 5 (0 duplicates 0 deltas)

tags : 0 (0 duplicates 0 deltas)

Total branches: 1 (1 loads)

marks: 1024 (5 unique)

atoms: 3

Memory total: 2255 KiB

pools: 2098 KiB

objects: 156 KiB

pack_report: getpagesize() = 4096

pack_report: core.packedGitWindowSize = 33554432

pack_report: core.packedGitLimit = 268435456

pack_report: pack_used_ctr = 9

203

PRO GIT SCOTT CHACON

pack_report: pack_mmap_calls = 5

pack_report: pack_open_windows = 1 / 1

pack_report: pack_mapped = 1356 / 1356

As you can see, when it completes successfully, it gives you a bunch of statistics

about what it accomplished. In this case, you imported 18 objects total for 5 commits

into 1 branch. Now, you can run git log to see your new history:

$ git log -2

commit 10bfe7d22ce15ee25b60a824c8982157ca593d41

Author: Scott Chacon <schacon@example.com>

Date: Sun May 3 12:57:39 2009 -0700

imported from current

commit 7e519590de754d079dd73b44d695a42c9d2df452

Author: Scott Chacon <schacon@example.com>

Date: Tue Feb 3 01:00:00 2009 -0700

imported from back_2009_02_03

There you go — a nice, clean Git repository. It’s important to note that nothing is

checked out — you don’t have any files in your working directory at first. To get them,

you must reset your branch to where master is now:

$ ls

$ git reset --hard master

HEAD is now at 10bfe7d imported from current

$ ls

file.rb lib

You can do a lot more with the fast-import tool — handle different modes, binary

data, multiple branches and merging, tags, progress indicators, and more. A number of

examples of more complex scenarios are available in the contrib/fast-import direc-

tory of the Git source code; one of the better ones is the git-p4 script I just covered.

8.3 Summary

You should feel comfortable using Git with Subversion or importing nearly any existing

repository into a new Git one without losing data. The next chapter will cover the raw

internals of Git so you can craft every single byte, if need be.

204

Chapter 9

Git Internals

You may have skipped to this chapter from a previous chapter, or you may have gotten

here after reading the rest of the book — in either case, this is where you’ll go over the

inner workings and implementation of Git. I found that learning this information was

fundamentally important to understanding how useful and powerful Git is, but others

have argued to me that it can be confusing and unnecessarily complex for beginners.

Thus, I’ve made this discussion the last chapter in the book so you could read it early

or later in your learning process. I leave it up to you to decide.

Now that you’re here, let’s get started. First, if it isn’t yet clear, Git is fundamentally

a content-addressable filesystem with a VCS user interface written on top of it. You’ll

learn more about what this means in a bit.

In the early days of Git (mostly pre 1.5), the user interface was much more complex

because it emphasized this filesystem rather than a polished VCS. In the last few years,

the UI has been refined until it’s as clean and easy to use as any system out there; but

often, the stereotype lingers about the early Git UI that was complex and difficult to

learn.

The content-addressable filesystem layer is amazingly cool, so I’ll cover that first

in this chapter; then, you’ll learn about the transport mechanisms and the repository

maintenance tasks that you may eventually have to deal with.

9.1 Plumbing and Porcelain

This book covers how to use Git with 30 or so verbs such as checkout , branch , remote ,

and so on. But because Git was initially a toolkit for a VCS rather than a full user-

friendly VCS, it has a bunch of verbs that do low-level work and were designed to be

chained together UNIX style or called from scripts. These commands are generally

referred to as “plumbing” commands, and the more user-friendly commands are called

“porcelain” commands.

The book’s first eight chapters deal almost exclusively with porcelain commands.

But in this chapter, you’ll be dealing mostly with the lower-level plumbing commands,

because they give you access to the inner workings of Git and help demonstrate how

and why Git does what it does. These commands aren’t meant to be used manually on

the command line, but rather to be used as building blocks for new tools and custom

scripts.

205

PRO GIT SCOTT CHACON

When you run git init in a new or existing directory, Git creates the .git direc-

tory, which is where almost everything that Git stores and manipulates is located. If

you want to back up or clone your repository, copying this single directory elsewhere

gives you nearly everything you need. This entire chapter basically deals with the stuff

in this directory. Here’s what it looks like:

$ ls

HEAD

branches/

config

description

hooks/

index

info/

objects/

refs/

You may see some other files in there, but this is a fresh git init repository —

it’s what you see by default. The branches directory isn’t used by newer Git versions,

and the description file is only used by the GitWeb program, so don’t worry about

those. The config file contains your project-specific configuration options, and the

info directory keeps a global exclude file for ignored patterns that you don’t want to

track in a .gitignore file. The hooks directory contains your client- or server-side hook

scripts, which are discussed in detail in Chapter 6.

This leaves four important entries: the HEAD and index files and the objects and

refs directories. These are the core parts of Git. The objects directory stores all the

content for your database, the refs directory stores pointers into commit objects in that

data (branches), the HEAD file points to the branch you currently have checked out, and

the index file is where Git stores your staging area information. You’ll now look at

each of these sections in detail to see how Git operates.

9.2 Git Objects

Git is a content-addressable filesystem. Great. What does that mean? It means that

at the core of Git is a simple key-value data store. You can insert any kind of content

into it, and it will give you back a key that you can use to retrieve the content again

at any time. To demonstrate, you can use the plumbing command hash-object , which

takes some data, stores it in your .git directory, and gives you back the key the data is

stored as. First, you initialize a new Git repository and verify that there is nothing in

the objects directory:

$ mkdir test

$ cd test

$ git init

Initialized empty Git repository in /tmp/test/.git/

$ find .git/objects

.git/objects

.git/objects/info

.git/objects/pack

$ find .git/objects -type f

$

206

CHAPTER 9 GIT INTERNALS

Git has initialized the objects directory and created pack and info subdirectories

in it, but there are no regular files. Now, store some text in your Git database:

$ echo ’test content’ | git hash-object -w --stdin

d670460b4b4aece5915caf5c68d12f560a9fe3e4

The -w tells hash-object to store the object; otherwise, the command simply tells

you what the key would be. --stdin tells the command to read the content from stdin;

if you don’t specify this, hash-object expects the path to a file. The output from the

command is a 40-character checksum hash. This is the SHA–1 hash — a checksum of

the content you’re storing plus a header, which you’ll learn about in a bit. Now you can

see how Git has stored your data:

$ find .git/objects -type f

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

You can see a file in the objects directory. This is how Git stores the content

initially — as a single file per piece of content, named with the SHA–1 checksum of

the content and its header. The subdirectory is named with the first 2 characters of the

SHA, and the filename is the remaining 38 characters.

You can pull the content back out of Git with the cat-file command. This com-

mand is sort of a Swiss army knife for inspecting Git objects. Passing -p to it instructs

the cat-file command to figure out the type of content and display it nicely for you:

$ git cat-file -p d670460b4b4aece5915caf5c68d12f560a9fe3e4

test content

Now, you can add content to Git and pull it back out again. You can also do this

with content in files. For example, you can do some simple version control on a file.

First, create a new file and save its contents in your database:

$ echo ’version 1’ > test.txt

$ git hash-object -w test.txt

83baae61804e65cc73a7201a7252750c76066a30

Then, write some new content to the file, and save it again:

$ echo ’version 2’ > test.txt

$ git hash-object -w test.txt

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

Your database contains the two new versions of the file as well as the first content

you stored there:

$ find .git/objects -type f

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

Now you can revert the file back to the first version

$ git cat-file -p 83baae61804e65cc73a7201a7252750c76066a30 > test.txt

$ cat test.txt

version 1

207

PRO GIT SCOTT CHACON

or the second version:

$ git cat-file -p 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a > test.txt

$ cat test.txt

version 2

But remembering the SHA–1 key for each version of your file isn’t practical; plus,

you aren’t storing the filename in your system — just the content. This object type is

called a blob. You can have Git tell you the object type of any object in Git, given its

SHA–1 key, with cat-file -t :

$ git cat-file -t 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

blob

9.2.1 Tree Objects

The next type you’ll look at is the tree object, which solves the problem of storing the

filename and also allows you to store a group of files together. Git stores content in

a manner similar to a UNIX filesystem, but a bit simplified. All the content is stored

as tree and blob objects, with trees corresponding to UNIX directory entries and blobs

corresponding more or less to inodes or file contents. A single tree object contains one

or more tree entries, each of which contains an SHA–1 pointer to a blob or subtree

with its associated mode, type, and filename. For example, the most recent tree in the

simplegit project may look something like this:

$ git cat-file -p master̂ {tree}

100644 blob a906cb2a4a904a152e80877d4088654daad0c859 README

100644 blob 8f94139338f9404f26296befa88755fc2598c289 Rakefile

040000 tree 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0 lib

The master̂ tree syntax specifies the tree object that is pointed to by the last com-

mit on your master branch. Notice that the lib subdirectory isn’t a blob but a pointer

to another tree:

$ git cat-file -p 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0

100644 blob 47c6340d6459e05787f644c2447d2595f5d3a54b simplegit.rb

Conceptually, the data that Git is storing is something like Figure 9.1.

You can create your own tree. Git normally creates a tree by taking the state of

your staging area or index and writing a tree object from it. So, to create a tree ob-

ject, you first have to set up an index by staging some files. To create an index with a

single entry — the first version of your text.txt file — you can use the plumbing com-

mand update-index . You use this command to artificially add the earlier version of the

test.txt file to a new staging area. You must pass it the --add option because the file

doesn’t yet exist in your staging area (you don’t even have a staging area set up yet)

and --cacheinfo because the file you’re adding isn’t in your directory but is in your

database. Then, you specify the mode, SHA–1, and filename:

$ git update-index --add --cacheinfo 100644 \

83baae61804e65cc73a7201a7252750c76066a30 test.txt

208

CHAPTER 9 GIT INTERNALS

Figure 9.1: Simple version of the Git data model

In this case, you’re specifying a mode of 100644 , which means it’s a normal file.

Other options are 100755 , which means it’s an executable file; and 120000 , which spec-

ifies a symbolic link. The mode is taken from normal UNIX modes but is much less

flexible — these three modes are the only ones that are valid for files (blobs) in Git

(although other modes are used for directories and submodules).

Now, you can use the write-tree command to write the staging area out to a tree

object. No -w option is needed— calling write-tree automatically creates a tree object

from the state of the index if that tree doesn’t yet exist:

$ git write-tree

d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git cat-file -p d8329fc1cc938780ffdd9f94e0d364e0ea74f579

100644 blob 83baae61804e65cc73a7201a7252750c76066a30 test.txt

You can also verify that this is a tree object:

$ git cat-file -t d8329fc1cc938780ffdd9f94e0d364e0ea74f579

tree

You’ll now create a new tree with the second version of test.txt and a new file as

well:

$ echo ’new file’ > new.txt

$ git update-index test.txt

$ git update-index --add new.txt

Your staging area now has the new version of test.txt as well as the new file new.txt.

Write out that tree (recording the state of the staging area or index to a tree object) and

see what it looks like:

$ git write-tree

0155eb4229851634a0f03eb265b69f5a2d56f341

$ git cat-file -p 0155eb4229851634a0f03eb265b69f5a2d56f341

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

209

PRO GIT SCOTT CHACON

Notice that this tree has both file entries and also that the test.txt SHA is the “version

2” SHA from earlier (1f7a7a). Just for fun, you’ll add the first tree as a subdirectory

into this one. You can read trees into your staging area by calling read-tree . In this

case, you can read an existing tree into your staging area as a subtree by using the

--prefix option to read-tree :

$ git read-tree --prefix=bak d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git write-tree

3c4e9cd789d88d8d89c1073707c3585e41b0e614

$ git cat-file -p 3c4e9cd789d88d8d89c1073707c3585e41b0e614

040000 tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579 bak

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

If you created a working directory from the new tree you just wrote, you would get

the two files in the top level of the working directory and a subdirectory named bak that

contained the first version of the test.txt file. You can think of the data that Git contains

for these structures as being like Figure 9.2.

Figure 9.2: The content structure of your current Git data

9.2.2 Commit Objects

You have three trees that specify the different snapshots of your project that you want to

track, but the earlier problem remains: you must remember all three SHA–1 values in

order to recall the snapshots. You also don’t have any information about who saved the

snapshots, when they were saved, or why they were saved. This is the basic information

that the commit object stores for you.

To create a commit object, you call commit-tree and specify a single tree SHA–1

and which commit objects, if any, directly preceded it. Start with the first tree you

wrote:

$ echo ’first commit’ | git commit-tree d8329f

fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Now you can look at your new commit object with cat-file :

210

CHAPTER 9 GIT INTERNALS

$ git cat-file -p fdf4fc3

tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579

author Scott Chacon <schacon@gmail.com> 1243040974 -0700

committer Scott Chacon <schacon@gmail.com> 1243040974 -0700

first commit

The format for a commit object is simple: it specifies the top-level tree for the

snapshot of the project at that point; the author/committer information pulled from

your user.name and user.email configuration settings, with the current timestamp; a

blank line, and then the commit message.

Next, you’ll write the other two commit objects, each referencing the commit that

came directly before it:

$ echo ’second commit’ | git commit-tree 0155eb -p fdf4fc3

cac0cab538b970a37ea1e769cbbde608743bc96d

$ echo ’third commit’ | git commit-tree 3c4e9c -p cac0cab

1a410efbd13591db07496601ebc7a059dd55cfe9

Each of the three commit objects points to one of the three snapshot trees you

created. Oddly enough, you have a real Git history now that you can view with the git

log command, if you run it on the last commit SHA–1:

$ git log --stat 1a410e

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:15:24 2009 -0700

third commit

bak/test.txt | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

commit cac0cab538b970a37ea1e769cbbde608743bc96d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:14:29 2009 -0700

second commit

new.txt | 1 +

test.txt | 2 +-

2 files changed, 2 insertions(+), 1 deletions(-)

commit fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:09:34 2009 -0700

first commit

test.txt | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

211

PRO GIT SCOTT CHACON

Amazing. You’ve just done the low-level operations to build up a Git history with-

out using any of the front ends. This is essentially what Git does when you run the

git add and git commit commands — it stores blobs for the files that have changed,

updates the index, writes out trees, and writes commit objects that reference the top-

level trees and the commits that came immediately before them. These three main Git

objects — the blob, the tree, and the commit — are initially stored as separate files in

your .git/objects directory. Here are all the objects in the example directory now,

commented with what they store:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # ’test content’

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

If you follow all the internal pointers, you get an object graph something like Figure

9.3.

Figure 9.3: All the objects in your Git directory

9.2.3 Object Storage

I mentioned earlier that a header is stored with the content. Let’s take a minute to look

at how Git stores its objects. You’ll see how to store a blob object — in this case, the

string “what is up, doc?” — interactively in the Ruby scripting language. You can start

up interactive Ruby mode with the irb command:

$ irb

>> content = "what is up, doc?"

=> "what is up, doc?"

212

CHAPTER 9 GIT INTERNALS

Git constructs a header that starts with the type of the object, in this case a blob.

Then, it adds a space followed by the size of the content and finally a null byte:

>> header = "blob #{content.length}\0"

=> "blob 16\000"

Git concatenates the header and the original content and then calculates the SHA–

1 checksum of that new content. You can calculate the SHA–1 value of a string in

Ruby by including the SHA1 digest library with the require command and then calling

Digest::SHA1.hexdigest() with the string:

>> store = header + content

=> "blob 16\000what is up, doc?"

>> require ’digest/sha1’

=> true

>> sha1 = Digest::SHA1.hexdigest(store)

=> "bd9dbf5aae1a3862dd1526723246b20206e5fc37"

Git compresses the new content with zlib, which you can do in Ruby with the zlib

library. First, you need to require the library and then run Zlib::Deflate.deflate()

on the content:

>> require ’zlib’

=> true

>> zlib_content = Zlib::Deflate.deflate(store)

=> "x\234K\312\311OR04c(\317H,Q\310,V(-\320QH\311O\266\a\000_\034\a\235"

Finally, you’ll write your zlib-deflated content to an object on disk. You’ll deter-

mine the path of the object you want to write out (the first two characters of the SHA–1

value being the subdirectory name, and the last 38 characters being the filename within

that directory). In Ruby, you can use the FileUtils.mkdir p() function to create the

subdirectory if it doesn’t exist. Then, open the file with File.open() and write out the

previously zlib-compressed content to the file with a write() call on the resulting file

handle:

>> path = ’.git/objects/’ + sha1[0,2] + ’/’ + sha1[2,38]

=> ".git/objects/bd/9dbf5aae1a3862dd1526723246b20206e5fc37"

>> require ’fileutils’

=> true

>> FileUtils.mkdir_p(File.dirname(path))

=> ".git/objects/bd"

>> File.open(path, ’w’) { |f| f.write zlib_content }

=> 32

That’s it — you’ve created a valid Git blob object. All Git objects are stored the

same way, just with different types — instead of the string blob, the header will be-

gin with commit or tree. Also, although the blob content can be nearly anything, the

commit and tree content are very specifically formatted.

213

PRO GIT SCOTT CHACON

9.3 Git References

You can run something like git log 1a410e to look through your whole history, but

you still have to remember that 1a410e is the last commit in order to walk that history

to find all those objects. You need a file in which you can store the SHA–1 value under

a simple name so you can use that pointer rather than the raw SHA–1 value.

In Git, these are called “references” or “refs”; you can find the files that contain the

SHA–1 values in the .git/refs directory. In the current project, this directory contains

no files, but it does contain a simple structure:

$ find .git/refs

.git/refs

.git/refs/heads

.git/refs/tags

$ find .git/refs -type f

$

To create a new reference that will help you remember where your latest commit

is, you can technically do something as simple as this:

$ echo "1a410efbd13591db07496601ebc7a059dd55cfe9" > .git/refs/heads/master

Now, you can use the head reference you just created instead of the SHA–1 value

in your Git commands:

$ git log --pretty=oneline master

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You aren’t encouraged to directly edit the reference files. Git provides a safer com-

mand to do this if you want to update a reference called update-ref :

$ git update-ref refs/heads/master 1a410efbd13591db07496601ebc7a059dd55cfe9

That’s basically what a branch in Git is: a simple pointer or reference to the head

of a line of work. To create a branch back at the second commit, you can do this:

$ git update-ref refs/heads/test cac0ca

Your branch will contain only work from that commit down:

$ git log --pretty=oneline test

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, your Git database conceptually looks something like Figure 9.4.

When you run commands like git branch (branchname) , Git basically runs that

update-ref command to add the SHA–1 of the last commit of the branch you’re on

into whatever new reference you want to create.

214

CHAPTER 9 GIT INTERNALS

Figure 9.4: Git directory objects with branch head references included

9.3.1 The HEAD

The question now is, when you run git branch (branchname) , how does Git know the

SHA–1 of the last commit? The answer is the HEAD file. The HEAD file is a symbolic

reference to the branch you’re currently on. By symbolic reference, I mean that unlike

a normal reference, it doesn’t generally contain a SHA–1 value but rather a pointer to

another reference. If you look at the file, you’ll normally see something like this:

$ cat .git/HEAD

ref: refs/heads/master

If you run git checkout test , Git updates the file to look like this:

$ cat .git/HEAD

ref: refs/heads/test

When you run git commit , it creates the commit object, specifying the parent of

that commit object to be whatever SHA–1 value the reference in HEAD points to.

You can also manually edit this file, but again a safer command exists to do so:

symbolic-ref . You can read the value of your HEAD via this command:

$ git symbolic-ref HEAD

refs/heads/master

You can also set the value of HEAD:

$ git symbolic-ref HEAD refs/heads/test

$ cat .git/HEAD

ref: refs/heads/test

You can’t set a symbolic reference outside of the refs style:

$ git symbolic-ref HEAD test

fatal: Refusing to point HEAD outside of refs/

215

PRO GIT SCOTT CHACON

9.3.2 Tags

You’ve just gone over Git’s three main object types, but there is a fourth. The tag

object is very much like a commit object — it contains a tagger, a date, a message, and

a pointer. The main difference is that a tag object points to a commit rather than a tree.

It’s like a branch reference, but it never moves — it always points to the same commit

but gives it a friendlier name.

As discussed in Chapter 2, there are two types of tags: annotated and lightweight.

You can make a lightweight tag by running something like this:

$ git update-ref refs/tags/v1.0 cac0cab538b970a37ea1e769cbbde608743bc96d

That is all a lightweight tag is — a branch that never moves. An annotated tag is

more complex, however. If you create an annotated tag, Git creates a tag object and

then writes a reference to point to it rather than directly to the commit. You can see this

by creating an annotated tag (-a specifies that it’s an annotated tag):

$ git tag -a v1.1 1a410efbd13591db07496601ebc7a059dd55cfe9 m ’test tag’

Here’s the object SHA–1 value it created:

$ cat .git/refs/tags/v1.1

9585191f37f7b0fb9444f35a9bf50de191beadc2

Now, run the cat-file command on that SHA–1 value:

$ git cat-file -p 9585191f37f7b0fb9444f35a9bf50de191beadc2

object 1a410efbd13591db07496601ebc7a059dd55cfe9

type commit

tag v1.1

tagger Scott Chacon <schacon@gmail.com> Sat May 23 16:48:58 2009 -0700

test tag

Notice that the object entry points to the commit SHA–1 value that you tagged.

Also notice that it doesn’t need to point to a commit; you can tag any Git object. In the

Git source code, for example, the maintainer has added their GPG public key as a blob

object and then tagged it. You can view the public key by running

$ git cat-file blob junio-gpg-pub

in the Git source code. The Linux kernel also has a non-commit-pointing tag object

— the first tag created points to the initial tree of the import of the source code.

9.3.3 Remotes

The third type of reference that you’ll see is a remote reference. If you add a remote

and push to it, Git stores the value you last pushed to that remote for each branch in

the refs/remotes directory. For instance, you can add a remote called origin and push

your master branch to it:

216

CHAPTER 9 GIT INTERNALS

$ git remote add origin git@github.com:schacon/simplegit-progit.git

$ git push origin master

Counting objects: 11, done.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (7/7), 716 bytes, done.

Total 7 (delta 2), reused 4 (delta 1)

To git@github.com:schacon/simplegit-progit.git

a11bef0..ca82a6d master -> master

Then, you can see what the master branch on the origin remote was the last time

you communicated with the server, by checking the refs/remotes/origin/master file:

$ cat .git/refs/remotes/origin/master

ca82a6dff817ec66f44342007202690a93763949

Remote references differ from branches (refs/heads references) mainly in that they

can’t be checked out. Git moves them around as bookmarks to the last known state of

where those branches were on those servers.

9.4 Packfiles

Let’s go back to the objects database for your test Git repository. At this point, you

have 11 objects — 4 blobs, 3 trees, 3 commits, and 1 tag:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/95/85191f37f7b0fb9444f35a9bf50de191beadc2 # tag

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # ’test content’

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

Git compresses the contents of these files with zlib, and you’re not storing much,

so all these files collectively take up only 925 bytes. You’ll add some larger content to

the repository to demonstrate an interesting feature of Git. Add the repo.rb file from

the Grit library you worked with earlier — this is about a 12K source code file:

$ curl http://github.com/mojombo/grit/raw/master/lib/grit/repo.rb > repo.rb

$ git add repo.rb

$ git commit -m ’added repo.rb’

[master 484a592] added repo.rb

3 files changed, 459 insertions(+), 2 deletions(-)

delete mode 100644 bak/test.txt

create mode 100644 repo.rb

rewrite test.txt (100%)

If you look at the resulting tree, you can see the SHA–1 value your repo.rb file got

for the blob object:

217

PRO GIT SCOTT CHACON

$ git cat-file -p master̂ {tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

You can then use git cat-file to see how big that object is:

$ git cat-file -s 9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e

12898

Now, modify that file a little, and see what happens:

$ echo ’# testing’ >> repo.rb

$ git commit -am ’modified repo a bit’

[master ab1afef] modified repo a bit

1 files changed, 1 insertions(+), 0 deletions(-)

Check the tree created by that commit, and you see something interesting:

$ git cat-file -p master̂ {tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 05408d195263d853f09dca71d55116663690c27c repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

The blob is now a different blob, which means that although you added only a

single line to the end of a 400-line file, Git stored that new content as a completely new

object:

$ git cat-file -s 05408d195263d853f09dca71d55116663690c27c

12908

You have two nearly identical 12K objects on your disk. Wouldn’t it be nice if Git

could store one of them in full but then the second object only as the delta between it

and the first?

It turns out that it can. The initial format in which Git saves objects on disk is called

a loose object format. However, occasionally Git packs up several of these objects into

a single binary file called a packfile in order to save space and be more efficient. Git

does this if you have too many loose objects around, if you run the git gc command

manually, or if you push to a remote server. To see what happens, you can manually

ask Git to pack up the objects by calling the git gc command:

$ git gc

Counting objects: 17, done.

Delta compression using 2 threads.

Compressing objects: 100% (13/13), done.

Writing objects: 100% (17/17), done.

Total 17 (delta 1), reused 10 (delta 0)

If you look in your objects directory, you’ll find that most of your objects are gone,

and a new pair of files has appeared:

218

CHAPTER 9 GIT INTERNALS

$ find .git/objects -type f

.git/objects/71/08f7ecb345ee9d0084193f147cdad4d2998293

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

.git/objects/info/packs

.git/objects/pack/pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.idx

.git/objects/pack/pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.pack

The objects that remain are the blobs that aren’t pointed to by any commit — in this

case, the “what is up, doc?” example and the “test content” example blobs you created

earlier. Because you never added them to any commits, they’re considered dangling

and aren’t packed up in your new packfile.

The other files are your new packfile and an index. The packfile is a single file

containing the contents of all the objects that were removed from your filesystem. The

index is a file that contains offsets into that packfile so you can quickly seek to a specific

object. What is cool is that although the objects on disk before you ran the gc were

collectively about 12K in size, the new packfile is only 6K. You’ve halved your disk

usage by packing your objects.

How does Git do this? When Git packs objects, it looks for files that are named and

sized similarly, and stores just the deltas from one version of the file to the next. You

can look into the packfile and see what Git did to save space. The git verify-pack

plumbing command allows you to see what was packed up:

$ git verify-pack -v pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.idx

0155eb4229851634a0f03eb265b69f5a2d56f341 tree 71 76 5400

05408d195263d853f09dca71d55116663690c27c blob 12908 3478 874

09f01cea547666f58d6a8d809583841a7c6f0130 tree 106 107 5086

1a410efbd13591db07496601ebc7a059dd55cfe9 commit 225 151 322

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a blob 10 19 5381

3c4e9cd789d88d8d89c1073707c3585e41b0e614 tree 101 105 5211

484a59275031909e19aadb7c92262719cfcdf19a commit 226 153 169

83baae61804e65cc73a7201a7252750c76066a30 blob 10 19 5362

9585191f37f7b0fb9444f35a9bf50de191beadc2 tag 136 127 5476

9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e blob 7 18 5193 1

05408d195263d853f09dca71d55116663690c27c \

ab1afef80fac8e34258ff41fc1b867c702daa24b commit 232 157 12

cac0cab538b970a37ea1e769cbbde608743bc96d commit 226 154 473

d8329fc1cc938780ffdd9f94e0d364e0ea74f579 tree 36 46 5316

e3f094f522629ae358806b17daf78246c27c007b blob 1486 734 4352

f8f51d7d8a1760462eca26eebafde32087499533 tree 106 107 749

fa49b077972391ad58037050f2a75f74e3671e92 blob 9 18 856

fdf4fc3344e67ab068f836878b6c4951e3b15f3d commit 177 122 627

chain length = 1: 1 object

pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.pack: ok

Here, the 9bc1d blob, which if you remember was the first version of your repo.rb

file, is referencing the 05408 blob, which was the second version of the file. The third

column in the output is the size of the object in the pack, so you can see that 05408

takes up 12K of the file but that 9bc1d only takes up 7 bytes. What is also interesting

is that the second version of the file is the one that is stored intact, whereas the original

version is stored as a delta — this is because you’re most likely to need faster access to

the most recent version of the file.

219

PRO GIT SCOTT CHACON

The really nice thing about this is that it can be repacked at any time. Git will

occasionally repack your database automatically, always trying to save more space.

You can also manually repack at any time by running git gc by hand.

9.5 The Refspec

Throughout this book, you’ve used simple mappings from remote branches to local

references; but they can be more complex. Suppose you add a remote like this:

$ git remote add origin git@github.com:schacon/simplegit-progit.git

It adds a section to your .git/config file, specifying the name of the remote

(origin), the URL of the remote repository, and the refspec for fetching:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/*:refs/remotes/origin/*

The format of the refspec is an optional +, followed by <src>:<dst> , where <src>

is the pattern for references on the remote side and <dst> is where those references will

be written locally. The + tells Git to update the reference even if it isn’t a fast-forward.

In the default case that is automatically written by a git remote add command,

Git fetches all the references under refs/heads/ on the server and writes them to

refs/remotes/origin/ locally. So, if there is a master branch on the server, you can

access the log of that branch locally via

$ git log origin/master

$ git log remotes/origin/master

$ git log refs/remotes/origin/master

They’re all equivalent, because Git expands each of them to refs/remotes/origin/master .

If you want Git instead to pull down only the master branch each time, and not

every other branch on the remote server, you can change the fetch line to

fetch = +refs/heads/master:refs/remotes/origin/master

This is just the default refspec for git fetch for that remote. If you want to do

something one time, you can specify the refspec on the command line, too. To pull the

master branch on the remote down to origin/mymaster locally, you can run

$ git fetch origin master:refs/remotes/origin/mymaster

You can also specify multiple refspecs. On the command line, you can pull down

several branches like so:

$ git fetch origin master:refs/remotes/origin/mymaster \

topic:refs/remotes/origin/topic

From git@github.com:schacon/simplegit

! [rejected] master -> origin/mymaster (non fast forward)

* [new branch] topic -> origin/topic

220

CHAPTER 9 GIT INTERNALS

In this case, the master branch pull was rejected because it wasn’t a fast-forward

reference. You can override that by specifying the + in front of the refspec.

You can also specify multiple refspecs for fetching in your configuration file. If

you want to always fetch the master and experiment branches, add two lines:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/experiment:refs/remotes/origin/experiment

You can’t use partial globs in the pattern, so this would be invalid:

fetch = +refs/heads/qa*:refs/remotes/origin/qa*

However, you can use namespacing to accomplish something like that. If you have

a QA team that pushes a series of branches, and you want to get the master branch and

any of the QA team’s branches but nothing else, you can use a config section like this:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/qa/*:refs/remotes/origin/qa/*

If you have a complex workflow process that has a QA team pushing branches, de-

velopers pushing branches, and integration teams pushing and collaborating on remote

branches, you can namespace them easily this way.

9.5.1 Pushing Refspecs

It’s nice that you can fetch namespaced references that way, but how does the QA team

get their branches into a qa/ namespace in the first place? You accomplish that by using

refspecs to push.

If the QA team wants to push their master branch to qa/master on the remote

server, they can run

$ git push origin master:refs/heads/qa/master

If they want Git to do that automatically each time they run git push origin , they

can add a push value to their config file:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/*:refs/remotes/origin/*

push = refs/heads/master:refs/heads/qa/master

Again, this will cause a git push origin to push the local master branch to the

remote qa/master branch by default.

9.5.2 Deleting References

You can also use the refspec to delete references from the remote server by running

something like this:

$ git push origin :topic

Because the refspec is <src>:<dst> , by leaving off the <src> part, this basically

says to make the topic branch on the remote nothing, which deletes it.

221

PRO GIT SCOTT CHACON

9.6 Transfer Protocols

Git can transfer data between two repositories in two major ways: over HTTP and via

the so-called smart protocols used in the file:// , ssh:// , and git:// transports. This

section will quickly cover how these two main protocols operate.

9.6.1 The Dumb Protocol

Git transport over HTTP is often referred to as the dumb protocol because it requires

no Git-specific code on the server side during the transport process. The fetch process

is a series of GET requests, where the client can assume the layout of the Git repository

on the server. Let’s follow the http-fetch process for the simplegit library:

$ git clone http://github.com/schacon/simplegit-progit.git

The first thing this command does is pull down the info/refs file. This file is

written by the update-server-info command, which is why you need to enable that as

a post-receive hook in order for the HTTP transport to work properly:

=> GET info/refs

ca82a6dff817ec66f44342007202690a93763949 refs/heads/master

Now you have a list of the remote references and SHAs. Next, you look for what

the HEAD reference is so you know what to check out when you’re finished:

=> GET HEAD

ref: refs/heads/master

You need to check out the master branch when you’ve completed the process. At

this point, you’re ready to start the walking process. Because your starting point is the

ca82a6 commit object you saw in the info/refs file, you start by fetching that:

=> GET objects/ca/82a6dff817ec66f44342007202690a93763949

(179 bytes of binary data)

You get an object back — that object is in loose format on the server, and you

fetched it over a static HTTP GET request. You can zlib-uncompress it, strip off the

header, and look at the commit content:

$ git cat-file -p ca82a6dff817ec66f44342007202690a93763949

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the verison number

Next, you have two more objects to retrieve — cfda3b , which is the tree of content

that the commit we just retrieved points to; and 085bb3 , which is the parent commit:

=> GET objects/08/5bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

(179 bytes of data)

222

CHAPTER 9 GIT INTERNALS

That gives you your next commit object. Grab the tree object:

=> GET objects/cf/da3bf379e4f8dba8717dee55aab78aef7f4daf

(404 - Not Found)

Oops — it looks like that tree object isn’t in loose format on the server, so you get

a 404 response back. There are a couple of reasons for this — the object could be in

an alternate repository, or it could be in a packfile in this repository. Git checks for any

listed alternates first:

=> GET objects/info/http-alternates

(empty file)

If this comes back with a list of alternate URLs, Git checks for loose files and

packfiles there — this is a nice mechanism for projects that are forks of one another

to share objects on disk. However, because no alternates are listed in this case, your

object must be in a packfile. To see what packfiles are available on this server, you need

to get the objects/info/packs file, which contains a listing of them (also generated by

update-server-info):

=> GET objects/info/packs

P pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

There is only one packfile on the server, so your object is obviously in there, but

you’ll check the index file to make sure. This is also useful if you have multiple pack-

files on the server, so you can see which packfile contains the object you need:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.idx

(4k of binary data)

Now that you have the packfile index, you can see if your object is in it — because

the index lists the SHAs of the objects contained in the packfile and the offsets to those

objects. Your object is there, so go ahead and get the whole packfile:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

(13k of binary data)

You have your tree object, so you continue walking your commits. They’re all also

within the packfile you just downloaded, so you don’t have to do any more requests to

your server. Git checks out a working copy of the master branch that was pointed to

by the HEAD reference you downloaded at the beginning.

The entire output of this process looks like this:

$ git clone http://github.com/schacon/simplegit-progit.git

Initialized empty Git repository in /private/tmp/simplegit-progit/.git/

got ca82a6dff817ec66f44342007202690a93763949

walk ca82a6dff817ec66f44342007202690a93763949

got 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Getting alternates list for http://github.com/schacon/simplegit-progit.git

Getting pack list for http://github.com/schacon/simplegit-progit.git

Getting index for pack 816a9b2334da9953e530f27bcac22082a9f5b835

Getting pack 816a9b2334da9953e530f27bcac22082a9f5b835

which contains cfda3bf379e4f8dba8717dee55aab78aef7f4daf

walk 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

walk a11bef06a3f659402fe7563abf99ad00de2209e6

223

PRO GIT SCOTT CHACON

9.6.2 The Smart Protocol

The HTTP method is simple but a bit inefficient. Using smart protocols is a more

common method of transferring data. These protocols have a process on the remote

end that is intelligent about Git — it can read local data and figure out what the client

has or needs and generate custom data for it. There are two sets of processes for

transferring data: a pair for uploading data and a pair for downloading data.

Uploading Data

To upload data to a remote process, Git uses the send-pack and receive-pack pro-

cesses. The send-pack process runs on the client and connects to a receive-pack pro-

cess on the remote side.

For example, say you run git push origin master in your project, and origin is

defined as a URL that uses the SSH protocol. Git fires up the send-pack process, which

initiates a connection over SSH to your server. It tries to run a command on the remote

server via an SSH call that looks something like this:

$ ssh -x git@github.com "git-receive-pack ’schacon/simplegit-progit.git’"

005bca82a6dff817ec66f4437202690a93763949 refs/heads/master report-status delete-refs

003e085bb3bcb608e1e84b2432f8ecbe6306e7e7 refs/heads/topic

0000

The git-receive-pack command immediately responds with one line for each ref-

erence it currently has — in this case, just the master branch and its SHA. The first line

also has a list of the server’s capabilities (here, report-status and delete-refs).

Each line starts with a 4-byte hex value specifying how long the rest of the line is.

Your first line starts with 005b, which is 91 in hex, meaning that 91 bytes remain on

that line. The next line starts with 003e, which is 62, so you read the remaining 62

bytes. The next line is 0000, meaning the server is done with its references listing.

Now that it knows the server’s state, your send-pack process determines what com-

mits it has that the server doesn’t. For each reference that this push will update, the

send-pack process tells the receive-pack process that information. For instance, if

you’re updating the master branch and adding an experiment branch, the send-pack

response may look something like this:

0085ca82a6dff817ec66f44342007202690a93763949 15027957951b64cf874c3557a0f3547bd83b3ff6 refs/heads/master

006700 cdfdb42577e2506715f8cfeacdbabc092bf63e8d refs/heads/experiment

0000

The SHA–1 value of all ’0’s means that nothing was there before — because you’re

adding the experiment reference. If you were deleting a reference, you would see the

opposite: all ’0’s on the right side.

Git sends a line for each reference you’re updating with the old SHA, the new SHA,

and the reference that is being updated. The first line also has the client’s capabilities.

Next, the client uploads a packfile of all the objects the server doesn’t have yet. Finally,

the server responds with a success (or failure) indication:

000Aunpack ok

Downloading Data

When you download data, the fetch-pack and upload-pack processes are involved.

The client initiates a fetch-pack process that connects to an upload-pack process on

the remote side to negotiate what data will be transferred down.

224

CHAPTER 9 GIT INTERNALS

There are different ways to initiate the upload-pack process on the remote reposi-

tory. You can run via SSH in the same manner as the receive-pack process. You can

also initiate the process via the Git daemon, which listens on a server on port 9418

by default. The fetch-pack process sends data that looks like this to the daemon after

connecting:

003fgit-upload-pack schacon/simplegit-progit.git\0host=myserver.com\0

It starts with the 4 bytes specifying how much data is following, then the command

to run followed by a null byte, and then the server’s hostname followed by a final null

byte. The Git daemon checks that the command can be run and that the repository

exists and has public permissions. If everything is cool, it fires up the upload-pack

process and hands off the request to it.

If you’re doing the fetch over SSH, fetch-pack instead runs something like this:

$ ssh -x git@github.com "git-upload-pack ’schacon/simplegit-progit.git’"

In either case, after fetch-pack connects, upload-pack sends back something like

this:

0088ca82a6dff817ec66f44342007202690a93763949 HEAD\0multi_ack thin-pack \

side-band side-band-64k ofs-delta shallow no-progress include-tag

003fca82a6dff817ec66f44342007202690a93763949 refs/heads/master

003e085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 refs/heads/topic

0000

This is very similar to what receive-pack responds with, but the capabilities are

different. In addition, it sends back the HEAD reference so the client knows what to

check out if this is a clone.

At this point, the fetch-pack process looks at what objects it has and responds with

the objects that it needs by sending “want” and then the SHA it wants. It sends all the

objects it already has with “have” and then the SHA. At the end of this list, it writes

“done” to initiate the upload-pack process to begin sending the packfile of the data it

needs:

0054want ca82a6dff817ec66f44342007202690a93763949 ofs-delta

0032have 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

0000

0009done

That is a very basic case of the transfer protocols. In more complex cases, the

client supports multi ack or side-band capabilities; but this example shows you the

basic back and forth used by the smart protocol processes.

9.7 Maintenance and Data Recovery

Occasionally, you may have to do some cleanup — make a repository more compact,

clean up an imported repository, or recover lost work. This section will cover some of

these scenarios.

225

PRO GIT SCOTT CHACON

9.7.1 Maintenance

Occasionally, Git automatically runs a command called “auto gc”. Most of the time,

this command does nothing. However, if there are too many loose objects (objects not

in a packfile) or too many packfiles, Git launches a full-fledged git gc command. The

gc stands for garbage collect, and the command does a number of things: it gathers up

all the loose objects and places them in packfiles, it consolidates packfiles into one big

packfile, and it removes objects that aren’t reachable from any commit and are a few

months old.

You can run auto gc manually as follows:

$ git gc --auto

Again, this generally does nothing. You must have around 7,000 loose objects or

more than 50 packfiles for Git to fire up a real gc command. You can modify these

limits with the gc.auto and gc.autopacklimit config settings, respectively.

The other thing gc will do is pack up your references into a single file. Suppose

your repository contains the following branches and tags:

$ find .git/refs -type f

.git/refs/heads/experiment

.git/refs/heads/master

.git/refs/tags/v1.0

.git/refs/tags/v1.1

If you run git gc , you’ll no longer have these files in the refs directory. Git will

move them for the sake of efficiency into a file named .git/packed-refs that looks

like this:

$ cat .git/packed-refs

pack-refs with: peeled

cac0cab538b970a37ea1e769cbbde608743bc96d refs/heads/experiment

ab1afef80fac8e34258ff41fc1b867c702daa24b refs/heads/master

cac0cab538b970a37ea1e769cbbde608743bc96d refs/tags/v1.0

9585191f37f7b0fb9444f35a9bf50de191beadc2 refs/tags/v1.1

1̂a410efbd13591db07496601ebc7a059dd55cfe9

If you update a reference, Git doesn’t edit this file but instead writes a new file to

refs/heads . To get the appropriate SHA for a given reference, Git checks for that refer-

ence in the refs directory and then checks the packed-refs file as a fallback. However,

if you can’t find a reference in the refs directory, it’s probably in your packed-refs

file.

Notice the last line of the file, which begins with a .̂ This means the tag directly

above is an annotated tag and that line is the commit that the annotated tag points to.

9.7.2 Data Recovery

At some point in your Git journey, you may accidentally lose a commit. Generally, this

happens because you force-delete a branch that had work on it, and it turns out you

wanted the branch after all; or you hard-reset a branch, thus abandoning commits that

you wanted something from. Assuming this happens, how can you get your commits

back?

226

CHAPTER 9 GIT INTERNALS

Here’s an example that hard-resets the master branch in your test repository to

an older commit and then recovers the lost commits. First, let’s review where your

repository is at this point:

$ git log --pretty=oneline

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, move the master branch back to the middle commit:

$ git reset --hard 1a410efbd13591db07496601ebc7a059dd55cfe9

HEAD is now at 1a410ef third commit

$ git log --pretty=oneline

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You’ve effectively lost the top two commits — you have no branch from which

those commits are reachable. You need to find the latest commit SHA and then add

a branch that points to it. The trick is finding that latest commit SHA — it’s not like

you’ve memorized it, right?

Often, the quickest way is to use a tool called git reflog . As you’re working,

Git silently records what your HEAD is every time you change it. Each time you

commit or change branches, the reflog is updated. The reflog is also updated by the git

update-ref command, which is another reason to use it instead of just writing the SHA

value to your ref files, as we covered in the “Git References” section of this chapter

earlier. You can see where you’ve been at any time by running git reflog :

$ git reflog

1a410ef HEAD@{0}: 1a410efbd13591db07496601ebc7a059dd55cfe9: updating HEAD

ab1afef HEAD@{1}: ab1afef80fac8e34258ff41fc1b867c702daa24b: updating HEAD

Here we can see the two commits that we have had checked out, however there is

not much information here. To see the same information in a much more useful way,

we can run git log -g , which will give you a normal log output for your reflog.

$ git log -g

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Reflog: HEAD@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:22:37 2009 -0700

third commit

commit ab1afef80fac8e34258ff41fc1b867c702daa24b

Reflog: HEAD@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

227

PRO GIT SCOTT CHACON

Date: Fri May 22 18:15:24 2009 -0700

modified repo a bit

It looks like the bottom commit is the one you lost, so you can recover it by

creating a new branch at that commit. For example, you can start a branch named

recover-branch at that commit (ab1afef):

$ git branch recover-branch ab1afef

$ git log --pretty=oneline recover-branch

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Cool — now you have a branch named recover-branch that is where your master

branch used to be, making the first two commits reachable again. Next, suppose your

loss was for some reason not in the reflog — you can simulate that by removing

recover-branch and deleting the reflog. Now the first two commits aren’t reachable

by anything:

$ git branch D recover-branch

$ rm -Rf .git/logs/

Because the reflog data is kept in the .git/logs/ directory, you effectively have no

reflog. How can you recover that commit at this point? One way is to use the git fsck

utility, which checks your database for integrity. If you run it with the --full option,

it shows you all objects that aren’t pointed to by another object:

$ git fsck --full

dangling blob d670460b4b4aece5915caf5c68d12f560a9fe3e4

dangling commit ab1afef80fac8e34258ff41fc1b867c702daa24b

dangling tree aea790b9a58f6cf6f2804eeac9f0abbe9631e4c9

dangling blob 7108f7ecb345ee9d0084193f147cdad4d2998293

In this case, you can see your missing commit after the dangling commit. You can

recover it the same way, by adding a branch that points to that SHA.

9.7.3 Removing Objects

There are a lot of great things about Git, but one feature that can cause issues is the fact

that a git clone downloads the entire history of the project, including every version

of every file. This is fine if the whole thing is source code, because Git is highly

optimized to compress that data efficiently. However, if someone at any point in the

history of your project added a single huge file, every clone for all time will be forced

to download that large file, even if it was removed from the project in the very next

commit. Because it’s reachable from the history, it will always be there.

This can be a huge problem when you’re converting Subversion or Perforce repos-

itories into Git. Because you don’t download the whole history in those systems, this

type of addition carries few consequences. If you did an import from another system

228

CHAPTER 9 GIT INTERNALS

or otherwise find that your repository is much larger than it should be, here is how you

can find and remove large objects.

Be warned: this technique is destructive to your commit history. It rewrites every

commit object downstream from the earliest tree you have to modify to remove a large

file reference. If you do this immediately after an import, before anyone has started to

base work on the commit, you’re fine — otherwise, you have to notify all contributors

that they must rebase their work onto your new commits.

To demonstrate, you’ll add a large file into your test repository, remove it in the

next commit, find it, and remove it permanently from the repository. First, add a large

object to your history:

$ curl http://kernel.org/pub/software/scm/git/git-1.6.3.1.tar.bz2 > git.tbz2

$ git add git.tbz2

$ git commit -am ’added git tarball’

[master 6df7640] added git tarball

1 files changed, 0 insertions(+), 0 deletions(-)

create mode 100644 git.tbz2

Oops — you didn’t want to add a huge tarball to your project. Better get rid of it:

$ git rm git.tbz2

rm ’git.tbz2’

$ git commit -m ’oops - removed large tarball’

[master da3f30d] oops - removed large tarball

1 files changed, 0 insertions(+), 0 deletions(-)

delete mode 100644 git.tbz2

Now, gc your database and see how much space you’re using:

$ git gc

Counting objects: 21, done.

Delta compression using 2 threads.

Compressing objects: 100% (16/16), done.

Writing objects: 100% (21/21), done.

Total 21 (delta 3), reused 15 (delta 1)

You can run the count-objects command to quickly see how much space you’re

using:

$ git count-objects -v

count: 4

size: 16

in-pack: 21

packs: 1

size-pack: 2016

prune-packable: 0

garbage: 0

The size-pack entry is the size of your packfiles in kilobytes, so you’re using 2MB.

Before the last commit, you were using closer to 2K — clearly, removing the file from

the previous commit didn’t remove it from your history. Every time anyone clones this

repository, they will have to clone all 2MB just to get this tiny project, because you

accidentally added a big file. Let’s get rid of it.

229

PRO GIT SCOTT CHACON

First you have to find it. In this case, you already know what file it is. But suppose

you didn’t; how would you identify what file or files were taking up so much space?

If you run git gc , all the objects are in a packfile; you can identify the big objects by

running another plumbing command called git verify-pack and sorting on the third

field in the output, which is file size. You can also pipe it through the tail command

because you’re only interested in the last few largest files:

$ git verify-pack -v .git/objects/pack/pack-3f8c0...bb.idx | sort -k 3 -n | tail -3

e3f094f522629ae358806b17daf78246c27c007b blob 1486 734 4667

05408d195263d853f09dca71d55116663690c27c blob 12908 3478 1189

7a9eb2fba2b1811321254ac360970fc169ba2330 blob 2056716 2056872 5401

The big object is at the bottom: 2MB. To find out what file it is, you’ll use the

rev-list command, which you used briefly in Chapter 7. If you pass --objects to

rev-list , it lists all the commit SHAs and also the blob SHAs with the file paths

associated with them. You can use this to find your blob’s name:

$ git rev-list --objects --all | grep 7a9eb2fb

7a9eb2fba2b1811321254ac360970fc169ba2330 git.tbz2

Now, you need to remove this file from all trees in your past. You can easily see

what commits modified this file:

$ git log --pretty=oneline -- git.tbz2

da3f30d019005479c99eb4c3406225613985a1db oops - removed large tarball

6df764092f3e7c8f5f94cbe08ee5cf42e92a0289 added git tarball

You must rewrite all the commits downstream from 6df76 to fully remove this file

from your Git history. To do so, you use filter-branch , which you used in Chapter 6:

$ git filter-branch --index-filter \

’git rm --cached --ignore-unmatch git.tbz2’ -- 6df7640̂ ..

Rewrite 6df764092f3e7c8f5f94cbe08ee5cf42e92a0289 (1/2)rm ’git.tbz2’

Rewrite da3f30d019005479c99eb4c3406225613985a1db (2/2)

Ref ’refs/heads/master’ was rewritten

The --index-filter option is similar to the --tree-filter option used in Chapter

6, except that instead of passing a command that modifies files checked out on disk,

you’re modifying your staging area or index each time. Rather than remove a specific

file with something like rm file , you have to remove it with git rm --cached — you

must remove it from the index, not from disk. The reason to do it this way is speed

— because Git doesn’t have to check out each revision to disk before running your

filter, the process can be much, much faster. You can accomplish the same task with

--tree-filter if you want. The --ignore-unmatch option to git rm tells it not to error

out if the pattern you’re trying to remove isn’t there. Finally, you ask filter-branch to

rewrite your history only from the 6df7640 commit up, because you know that is where

this problem started. Otherwise, it will start from the beginning and will unnecessarily

take longer.

Your history no longer contains a reference to that file. However, your reflog and a

new set of refs that Git added when you did the filter-branch under .git/refs/original

still do, so you have to remove them and then repack the database. You need to get rid

of anything that has a pointer to those old commits before you repack:

230

CHAPTER 9 GIT INTERNALS

$ rm -Rf .git/refs/original

$ rm -Rf .git/logs/

$ git gc

Counting objects: 19, done.

Delta compression using 2 threads.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (19/19), done.

Total 19 (delta 3), reused 16 (delta 1)

Let’s see how much space you saved.

$ git count-objects -v

count: 8

size: 2040

in-pack: 19

packs: 1

size-pack: 7

prune-packable: 0

garbage: 0

The packed repository size is down to 7K, which is much better than 2MB. You can

see from the size value that the big object is still in your loose objects, so it’s not gone;

but it won’t be transferred on a push or subsequent clone, which is what is important.

If you really wanted to, you could remove the object completely by running git prune

--expire .

9.8 Summary

You should have a pretty good understanding of what Git does in the background and,

to some degree, how it’s implemented. This chapter has covered a number of plumbing

commands— commands that are lower level and simpler than the porcelain commands

you’ve learned about in the rest of the book. Understanding how Git works at a lower

level should make it easier to understand why it’s doing what it’s doing and also to

write your own tools and helping scripts to make your specific workflow work for you.

Git as a content-addressable filesystem is a very powerful tool that you can easily

use as more than just a VCS. I hope you can use your newfound knowledge of Git

internals to implement your own cool application of this technology and feel more

comfortable using Git in more advanced ways.

231

PRO GIT SCOTT CHACON

For example, to browse the history of the project, Git doesn’t need to go out to the

server to get the history and display it for you—it simply reads it directly from your

local database. This means you see the project history almost instantly. If you want to

see the changes introduced between the current version of a file and the file a month

ago, Git can look up the file a month ago and do a local difference calculation, instead

of having to either ask a remote server to do it or pull an older version of the file from

the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If

you get on an airplane or a train and want to do a little work, you can commit happily

until you get to a network connection to upload. If you go home and can’t get your

VPN client working properly, you can still work. In many other systems, doing so is

either impossible or painful. In Perforce, for example, you can’t do much when you

aren’t connected to the server; and in Subversion and CVS, you can edit files, but you

can’t commit changes to your database (because your database is offline). This may

not seem like a huge deal, but you may be surprised what a big difference it can make.

1.3.3 Git Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that

checksum. This means it’s impossible to change the contents of any file or directory

without Git knowing about it. This functionality is built into Git at the lowest levels and

is integral to its philosophy. You can’t lose information in transit or get file corruption

without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA–1 hash. This

is a 40-character string composed of hexadecimal characters (09 and af) and calculated

based on the contents of a file or directory structure in Git. A SHA–1 hash looks

something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so

much. In fact, Git stores everything not by file name but in the Git database addressable

by the hash value of its contents.

1.3.4 Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It

is very difficult to get the system to do anything that is not undoable or to make it

erase data in any way. As in any VCS, you can lose or mess up changes you haven’t

committed yet; but after you commit a snapshot into Git, it is very difficult to lose,

especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger

of severely screwing things up. For a more in-depth look at how Git stores its data and

how you can recover data that seems lost, see “Under the Covers” in Chapter 9.

1.3.5 The Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest

of your learning process to go smoothly. Git has three main states that your files can

6

CHAPTER 1 GETTING STARTED

reside in: committed, modified, and staged. Committed means that the data is safely

stored in your local database. Modified means that you have changed the file but have

not committed it to your database yet. Staged means that you have marked a modified

file in its current version to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the

working directory, and the staging area.

Figure 1.6: Working directory, staging area, and git directory

The Git directory is where Git stores the metadata and object database for your

project. This is the most important part of Git, and it is what is copied when you clone

a repository from another computer.

The working directory is a single checkout of one version of the project. These files

are pulled out of the compressed database in the Git directory and placed on disk for

you to use or modify.

The staging area is a simple file, generally contained in your Git directory, that

stores information about what will go into your next commit. It’s sometimes referred

to as the index, but it’s becoming standard to refer to it as the staging area.

The basic Git workflow goes something like this:

1. You modify files in your working directory.

2. You stage the files, adding snapshots of them to your staging area.

3. You do a commit, which takes the files as they are in the staging area and stores

that snapshot permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed

since it was checked out but has not been staged, it is modified. In Chapter 2, you’ll

learn more about these states and how you can either take advantage of them or skip

the staged part entirely.

7

PRO GIT SCOTT CHACON

1.4 Installing Git

Let’s get into using some Git. First things first—you have to install it. You can get it a

number of ways; the two major ones are to install it from source or to install an existing

package for your platform.

1.4.1 Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most

recent version. Each version of Git tends to include useful UI enhancements, so getting

the latest version is often the best route if you feel comfortable compiling software from

source. It is also the case that many Linux distributions contain very old packages; so

unless you’re on a very up-to-date distro or are using backports, installing from source

may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl,

zlib, openssl, expat, and libiconv. For example, if you’re on a system that has yum

(such as Fedora) or apt-get (such as a Debian based system), you can use one of these

commands to install all of the dependencies:

$ yum install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

$ apt-get install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

When you have all the necessary dependencies, you can go ahead and grab the

latest snapshot from the Git web site:

http://git-scm.com/download

Then, compile and install:

$ tar -zxf git-1.6.0.5.tar.gz

$ cd git-1.6.0.5

$ make prefix=/usr/local all

$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

1.4.2 Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through

the basic package-management tool that comes with your distribution. If you’re on

Fedora, you can use yum:

$ yum install git-core

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git-core

8

CHAPTER 1 GETTING STARTED

1.4.3 Installing on Mac

There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git

installer, which you can download from the Google Code page (see Figure 1.7):

http://code.google.com/p/git-osx-installer

Figure 1.7: Git OS X installer

The other major way is to install Git via MacPorts (http://www.macports.org). If

you have MacPorts installed, install Git via

$ sudo port install git-core +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in

case you ever have to use Git with Subversion repositories (see Chapter 8).

1.4.4 Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier

installation procedures. Simply download the installer exe file from the Google Code

page, and run it:

http://code.google.com/p/msysgit

After it’s installed, you have both a command-line version (including an SSH client

that will come in handy later) and the standard GUI.

9

PRO GIT SCOTT CHACON

1.5 First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize

your Git environment. You should have to do these things only once; they’ll stick

around between upgrades. You can also change them at any time by running through

the commands again.

Git comes with a tool called git config that lets you get and set configuration vari-

ables that control all aspects of how Git looks and operates. These variables can be

stored in three different places:

• /etc/gitconfig file: Contains values for every user on the system and all their

repositories. If you pass the option--system to git config , it reads and writes

from this file specifically.

• /.gitconfig file: Specific to your user. You can make Git read and write to this

file specifically by passing the --global option.

• config file in the git directory (that is, .git/config) of whatever repository you’re

currently using: Specific to that single repository. Each level overrides values in

the previous level, so values in .git/config trump those in /etc/gitconfig .

OnWindows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Documents

and Settings\$USER for most people). It also still looks for /etc/gitconfig, although it’s

relative to the MSys root, which is wherever you decide to install Git on your Windows

system when you run the installer.

1.5.1 Your Identity

The first thing you should do when you install Git is to set your user name and e-mail

address. This is important because every Git commit uses this information, and it’s

immutably baked into the commits you pass around:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then

Git will always use that information for anything you do on that system. If you want to

override this with a different name or e-mail address for specific projects, you can run

the command without the --global option when you’re in that project.

1.5.2 Your Editor

Now that your identity is set up, you can configure the default text editor that will be

used when Git needs you to type in a message. By default, Git uses your system’s

default editor, which is generally Vi or Vim. If you want to use a different text editor,

such as Emacs, you can do the following:

$ git config --global core.editor emacs

10

CHAPTER 1 GETTING STARTED

1.5.3 Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve

merge conflicts. Say you want to use vimdiff:

$ git config --global merge.tool vimdiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and

opendiff as valid merge tools. You can also set up a custom tool; see Chapter 7 for

more information about doing that.

1.5.4 Checking Your Settings

If you want to check your settings, you can use the git config --list command to

list all the settings Git can find at that point:

$ git config --list

user.name=Scott Chacon

user.email=schacon@gmail.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different

files (/etc/gitconfig and /.gitconfig , for example). In this case, Git uses the last

value for each unique key it sees.

You can also check what Git thinks a specific key’s value is by typing git config

key:

$ git config user.name

Scott Chacon

1.6 Getting Help

If you ever need help while using Git, there are three ways to get the manual page

(manpage) help for any of the Git commands:

$ git help <verb>

$ git <verb> --help

$ man git-<verb>

For example, you can get the manpage help for the config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If

the manpages and this book aren’t enough and you need in-person help, you can try the

#git or #github channel on the Freenode IRC server (irc.freenode.net). These channels

are regularly filled with hundreds of people who are all very knowledgeable about Git

and are often willing to help.

11

PRO GIT SCOTT CHACON

1.7 Summary

You should have a basic understanding of what Git is and how it’s different from the

CVCS you may have been using. You should also now have a working version of Git

on your system that’s set up with your personal identity. It’s now time to learn some

Git basics.

12

Chapter 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers

every basic command you need to do the vast majority of the things you’ll eventually

spend your time doing with Git. By the end of the chapter, you should be able to

configure and initialize a repository, begin and stop tracking files, and stage and commit

changes. We’ll also show you how to set up Git to ignore certain files and file patterns,

how to undo mistakes quickly and easily, how to browse the history of your project and

view changes between commits, and how to push and pull from remote repositories.

2.1 Getting a Git Repository

You can get a Git project using two main approaches. The first takes an existing project

or directory and imports it into Git. The second clones an existing Git repository from

another server.

2.1.1 Initializing a Repository in an Existing Directory

If you’re starting to track an existing project in Git, you need to go to the project’s

directory and type

$ git init

This creates a new subdirectory named .git that contains all of your necessary repos-

itory files — a Git repository skeleton. At this point, nothing in your project is tracked

yet. (See Chapter 9 for more information about exactly what files are contained in the

.git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty direc-

tory), you should probably begin tracking those files and do an initial commit. You can

accomplish that with a few git add commands that specify the files you want to track,

followed by a commit:

$ git add *.c

$ git add README

$ git commit m ’initial project version’

We’ll go over what these commands do in just a minute. At this point, you have a

Git repository with tracked files and an initial commit.

13

PRO GIT SCOTT CHACON

2.1.2 Cloning an Existing Repository

If you want to get a copy of an existing Git repository — for example, a project you’d

like to contribute to — the command you need is git clone. If you’re familiar with

other VCS systems such as Subversion, you’ll notice that the command is clone and

not checkout. This is an important distinction — Git receives a copy of nearly all data

that the server has. Every version of every file for the history of the project is pulled

down when you run git clone . In fact, if your server disk gets corrupted, you can

use any of the clones on any client to set the server back to the state it was in when it

was cloned (you may lose some server-side hooks and such, but all the versioned data

would be there—see Chapter 4 for more details).

You clone a repository with git clone [url] . For example, if you want to clone

the Ruby Git library called Grit, you can do so like this:

$ git clone git://github.com/schacon/grit.git

That creates a directory named “grit”, initializes a .git directory inside it, pulls

down all the data for that repository, and checks out a working copy of the latest ver-

sion. If you go into the new grit directory, you’ll see the project files in there, ready

to be worked on or used. If you want to clone the repository into a directory named

something other than grit, you can specify that as the next command-line option:

$ git clone git://github.com/schacon/grit.git mygrit

That command does the same thing as the previous one, but the target directory is

called mygrit.

Git has a number of different transfer protocols you can use. The previous example

uses the git:// protocol, but you may also see http(s):// or user@server:/path.git ,

which uses the SSH transfer protocol. Chapter 4 will introduce all of the available

options the server can set up to access your Git repository and the pros and cons of

each.

2.2 Recording Changes to the Repository

You have a bona fide Git repository and a checkout or working copy of the files for that

project. You need to make some changes and commit snapshots of those changes into

your repository each time the project reaches a state you want to record.

Remember that each file in your working directory can be in one of two states:

tracked or untracked. Tracked files are files that were in the last snapshot; they can

be unmodified, modified, or staged. Untracked files are everything else - any files in

your working directory that were not in your last snapshot and are not in your staging

area. When you first clone a repository, all of your files will be tracked and unmodified

because you just checked them out and haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since

your last commit. You stage these modified files and then commit all your staged

changes, and the cycle repeats. This lifecycle is illustrated in Figure 2.1.

14

CHAPTER 2 GIT BASICS

Figure 2.1: The lifecycle of the status of your files

2.2.1 Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status

command. If you run this command directly after a clone, you should see something

like this:

$ git status

On branch master

nothing to commit (working directory clean)

This means you have a clean working directory—in other words, there are no

tracked and modified files. Git also doesn’t see any untracked files, or they would

be listed here. Finally, the command tells you which branch you’re on. For now, that

is always master, which is the default; you won’t worry about it here. The next chapter

will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file

didn’t exist before, and you run git status , you see your untracked file like so:

$ vim README

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Un-

tracked files” heading in your status output. Untracked basically means that Git sees

a file you didn’t have in the previous snapshot (commit); Git won’t start including it

in your commit snapshots until you explicitly tell it to do so. It does this so you don’t

accidentally begin including generated binary files or other files that you did not mean

to include. You do want to start including README, so let’s start tracking the file.

15

PRO GIT SCOTT CHACON

2.2.2 Tracking New Files

In order to begin tracking a new file, you use the command git add . To begin tracking

the README file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now

tracked and staged:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

You can tell that it’s staged because it’s under the “Changes to be committed” head-

ing. If you commit at this point, the version of the file at the time you ran git add is

what will be in the historical snapshot. You may recall that when you ran git init earlier,

you then ran git add (files) — that was to begin tracking files in your directory. The git

add command takes a path name for either a file or a directory; if it’s a directory, the

command adds all the files in that directory recursively.

2.2.3 Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file

called benchmarks.rb and then run your status command again, you get something

that looks like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

The benchmarks.rb file appears under a section named “Changed but not updated”

— which means that a file that is tracked has been modified in the working directory

but not yet staged. To stage it, you run the git add command (it’s a multipurpose

command— you use it to begin tracking new files, to stage files, and to do other things

like marking merge-conflicted files as resolved). Let’s run git add now to stage the

benchmarks.rb file, and then run git status again:

16

CHAPTER 2 GIT BASICS

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Both files are staged and will go into your next commit. At this point, suppose you

remember one little change that you want to make in benchmarks.rb before you commit

it. You open it again and make that change, and you’re ready to commit. However, let’s

run git status one more time:

$ vim benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

What the heck? Now benchmarks.rb is listed as both staged and unstaged. How is

that possible? It turns out that Git stages a file exactly as it is when you run the git add

command. If you commit now, the version of benchmarks.rb as it was when you last

ran the git add command is how it will go into the commit, not the version of the file as

it looks in your working directory when you run git commit. If you modify a file after

you run git add , you have to run git add again to stage the latest version of the file:

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

2.2.4 Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add or even

show you as being untracked. These are generally automatically generated files such

as log files or files produced by your build system. In such cases, you can create a file

listing patterns to match them named .gitignore. Here is an example .gitignore file:

17

PRO GIT SCOTT CHACON

$ cat .gitignore

*.[oa]

*̃

The first line tells Git to ignore any files ending in .o or .a — object and archive

files that may be the product of building your code. The second line tells Git to ignore

all files that end with a tilde (), which is used by many text editors such as Emacs to

mark temporary files. You may also include a log, tmp, or pid directory; automatically

generated documentation; and so on. Setting up a .gitignore file before you get going is

generally a good idea so you don’t accidentally commit files that you really don’t want

in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

• Blank lines or lines starting with # are ignored.

• Standard glob patterns work.

• You can end patterns with a forward slash (/) to specify a directory.

• You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*)

matches zero or more characters; [abc] matches any character inside the brackets (in

this case a, b, or c); a question mark (?) matches a single character; and brackets en-

closing characters seperated by a hyphen([0-9]) matches any character between them

(in this case 0 through 9) .

Here is another example .gitignore file:

a comment this is ignored

*.a # no .a files

!lib.a # but do track lib.a, even though you’re ignoring .a files above

/TODO # only ignore the root TODO file, not subdir/TODO

build/ # ignore all files in the build/ directory

doc/*.txt # ignore doc/notes.txt, but not doc/server/arch.txt

2.2.5 Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you — you want to know exactly what

you changed, not just which files were changed— you can use the git diff command.

We’ll cover git diff in more detail later; but you’ll probably use it most often to

answer these two questions: What have you changed but not yet staged? And what

have you staged that you are about to commit? Although git status answers those

questions very generally, git diff shows you the exact lines added and removed —

the patch, as it were.

Let’s say you edit and stage the README file again and then edit the bench-

marks.rb file without staging it. If you run your status command, you once again

see something like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

18

CHAPTER 2 GIT BASICS

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

To see what you’ve changed but not yet staged, type git diff with no other argu-

ments:

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..da65585 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

That command compares what is in your working directory with what is in your

staging area. The result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you

can use git diff -cached . (In Git versions 1.6.1 and later, you can also use git diff

-staged , which may be easier to remember.) This command compares your staged

changes to your last commit:

$ git diff --cached

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README2

@@ -0,0 +1,5 @@

+grit

+ by Tom Preston-Werner, Chris Wanstrath

+ http://github.com/mojombo/grit

+

+Grit is a Ruby library for extracting information from a Git repository

It’s important to note that git diff by itself doesn’t show all changes made since

your last commit — only changes that are still unstaged. This can be confusing, be-

cause if you’ve staged all of your changes, git diff will give you no output.

19

PRO GIT SCOTT CHACON

For another example, if you stage the benchmarks.rb file and then edit it, you can

use git diff to see the changes in the file that are staged and the changes that are

unstaged:

$ git add benchmarks.rb

$ echo ’# test line’ >> benchmarks.rb

$ git status

On branch master

#

Changes to be committed:

#

modified: benchmarks.rb

#

Changed but not updated:

#

modified: benchmarks.rb

#

Now you can use git diff to see what is still unstaged

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index e445e28..86b2f7c 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -127,3 +127,4 @@ end

main()

##pp Grit::GitRuby.cache_client.stats

+# test line

and git diff --cached to see what youve staged so far:

$ git diff --cached

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..e445e28 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

2.2.6 Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes.

Remember that anything that is still unstaged — any files you have created or modified

that you haven’t run git add on since you edited them — won’t go into this commit.

20

CHAPTER 2 GIT BASICS

They will stay as modified files on your disk. In this case, the last time you ran git

status , you saw that everything was staged, so you’re ready to commit your changes.

The simplest way to commit is to type git commit :

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s $EDITOR envi-

ronment variable — usually vim or emacs, although you can configure it with whatever

you want using the git config --global core.editor command as you saw in Chap-

ter 1).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

˜

˜

˜

".git/COMMIT_EDITMSG" 10L, 283C

You can see that the default commit message contains the latest output of the git

status command commented out and one empty line on top. You can remove these

comments and type your commit message, or you can leave them there to help you

remember what you’re committing. (For an even more explicit reminder of what you’ve

modified, you can pass the -v option to git commit . Doing so also puts the diff of your

change in the editor so you can see exactly what you did.) When you exit the editor, Git

creates your commit with that commit message (with the comments and diff stripped

out).

Alternatively, you can type your commit message inline with the commit command

by specifying it after a -m flag, like this:

$ git commit -m "Story 182: Fix benchmarks for speed"

[master]: created 463dc4f: "Fix benchmarks for speed"

2 files changed, 3 insertions(+), 0 deletions(-)

create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given

you some output about itself: which branch you committed to (master), what SHA–1

checksum the commit has (463dc4f), how many files were changed, and statistics about

lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging area.

Anything you didn’t stage is still sitting there modified; you can do another commit to

add it to your history. Every time you perform a commit, you’re recording a snapshot

of your project that you can revert to or compare to later.

21

PRO GIT SCOTT CHACON

2.2.7 Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them,

the staging area is sometimes a bit more complex than you need in your workflow. If

you want to skip the staging area, Git provides a simple shortcut. Providing the -a

option to the git commit command makes Git automatically stage every file that is

already tracked before doing the commit, letting you skip the git add part:

$ git status

On branch master

#

Changed but not updated:

#

modified: benchmarks.rb

#

$ git commit -a -m ’added new benchmarks’

[master 83e38c7] added new benchmarks

1 files changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the benchmarks.rb file in this case

before you commit.

2.2.8 Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accu-

rately, remove it from your staging area) and then commit. The git rm command does

that and also removes the file from your working directory so you don’t see it as an

untracked file next time around.

If you simply remove the file from your working directory, it shows up under the

“Changed but not updated” (that is, unstaged) area of your git status output:

$ rm grit.gemspec

$ git status

On branch master

#

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

#

deleted: grit.gemspec

#

Then, if you run git rm , it stages the file’s removal:

$ git rm grit.gemspec

rm ’grit.gemspec’

$ git status

On branch master

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: grit.gemspec

#

22

CHAPTER 2 GIT BASICS

The next time you commit, the file will be gone and no longer tracked. If you

modified the file and added it to the index already, you must force the removal with the

-f option. This is a safety feature to prevent accidental removal of data that hasn’t yet

been recorded in a snapshot and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree

but remove it from your staging area. In other words, you may want to keep the file

on your hard drive but not have Git track it anymore. This is particularly useful if you

forgot to add something to your .gitignore file and accidentally added it, like a large

log file or a bunch of .a compiled files. To do this, use the --cached option:

$ git rm --cached readme.txt

You can pass files, directories, and file-glob patterns to the git rm command. That

means you can do things such as

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its

own filename expansion in addition to your shell’s filename expansion. This command

removes all files that have the .log extension in the log/ directory. Or, you can do

something like this:

$ git rm *̃

This command removes all files that end with .

2.2.9 Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you

rename a file in Git, no metadata is stored in Git that tells it you renamed the file.

However, Git is pretty smart about figuring that out after the fact — we’ll deal with

detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in

Git, you can run something like

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status,

you’ll see that Git considers it a renamed file:

$ git mv README.txt README

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README.txt -> README

#

However, this is equivalent to running something like this:

23

PRO GIT SCOTT CHACON

$ mv README.txt README

$ git rm README.txt

$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file

that way or with the mv command. The only real difference is that mv is one command

instead of three — it’s a convenience function. More important, you can use any tool

you like to rename a file, and address the add/rm later, before you commit.

2.3 Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an

existing commit history, you’ll probably want to look back to see what has happened.

The most basic and powerful tool to do this is the git log command.

These examples use a very simple project called simplegit that I often use for

demonstrations. To get the project, run

git clone git://github.com/schacon/simplegit-progit.git

When you run git log in this project, you should get output that looks something

like this:

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

By default, with no arguments, git log lists the commits made in that repository

in reverse chronological order. That is, the most recent commits show up first. As you

can see, this command lists each commit with its SHA–1 checksum, the author’s name

and e-mail, the date written, and the commit message.

A huge number and variety of options to the git log command are available to

show you exactly what you’re looking for. Here, we’ll show you some of the most-

used options.

One of the more helpful options is -p, which shows the diff introduced in each

commit. You can also use -2, which limits the output to only the last two entries:

24

CHAPTER 2 GIT BASICS

$ git log p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require ’rake/gempackagetask’

spec = Gem::Specification.new do |s|

- s.version = "0.1.0"

+ s.version = "0.1.1"

s.author = "Scott Chacon"

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

end

end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

\ No newline at end of file

This option displays the same information but with a diff directly following each

entry. This is very helpful for code review or to quickly browse what happened during

a series of commits that a collaborator has added. You can also use a series of summa-

rizing options with git log . For example, if you want to see some abbreviated stats

for each commit, you can use the --stat option:

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

Rakefile | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

25

PRO GIT SCOTT CHACON

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

lib/simplegit.rb | 5 -----

1 files changed, 0 insertions(+), 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

README | 6 ++++++

Rakefile | 23 +++++++++++++++++++++++

lib/simplegit.rb | 25 +++++++++++++++++++++++++

3 files changed, 54 insertions(+), 0 deletions(-)

As you can see, the --stat option prints below each commit entry a list of modified

files, how many files were changed, and how many lines in those files were added

and removed. It also puts a summary of the information at the end. Another really

useful option is --pretty . This option changes the log output to formats other than the

default. A few prebuilt options are available for you to use. The oneline option prints

each commit on a single line, which is useful if you’re looking at a lot of commits.

In addition, the short , full , and fuller options show the output in roughly the same

format but with less or more information, respectively:

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the verison number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test code

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

The most interesting option is format , which allows you to specify your own log

output format. This is especially useful when you’re generating output for machine

parsing — because you specify the format explicitly, you know it won’t change with

updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 11 months ago : changed the verison number

085bb3b - Scott Chacon, 11 months ago : removed unnecessary test code

a11bef0 - Scott Chacon, 11 months ago : first commit

Table 2.1 lists some of the more useful options that format takes.

You may be wondering what the difference is between author and committer. The

author is the person who originally wrote the work, whereas the committer is the person

who last applied the work. So, if you send in a patch to a project and one of the core

members applies the patch, both of you get credit — you as the author and the core

member as the committer. We’ll cover this distinction a bit more in Chapter 5.

26

CHAPTER 2 GIT BASICS

Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author e-mail

%ad Author date (format respects the date= option)

%ar Author date, relative

%cn Committer name

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

The oneline and format options are particularly useful with another log option

called --graph . This option adds a nice little ASCII graph showing your branch and

merge history, which we can see our copy of the Grit project repository:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch ’master’ of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch ’defunkt’ into local

Those are only some simple output-formatting options to git log — there are many

more. Table 2.2 lists the options we’ve covered so far and some other common format-

ting options that may be useful, along with how they change the output of the log

command.

2.3.1 Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting op-

tions — that is, options that let you show only a subset of commits. You’ve seen one

such option already — the -2 option, which show only the last two commits. In fact,

you can do -<n> , where n is any integer to show the last n commits. In reality, you’re

unlikely to use that often, because Git by default pipes all output through a pager so

you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful.

For example, this command gets the list of commits made in the last two weeks:

27

PRO GIT SCOTT CHACON

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the

–stat command.

--name-only Show the list of files modified after the commit informa-

tion.

--name-status Show the list of files affected with added/modified/deleted

information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum

instead of all 40.

--relative-date Display the date in a relative format (for example, “2 weeks

ago”) instead of using the full date format.

--graph Display an ASCII graph of the branch and merge history

beside the log output.

--pretty Show commits in an alternate format. Options include one-

line, short, full, fuller, and format (where you specify your

own format).

$ git log --since=2.weeks

This command works with lots of formats— you can specify a specific date (“2008–

01–15”) or a relative date such as “2 years 1 day 3 minutes ago”.

You can also filter the list to commits that match some search criteria. The --author

option allows you to filter on a specific author, and the --grep option lets you search

for keywords in the commit messages. (Note that if you want to specify both author

and grep options, you have to add --all-match or the command will match commits

with either.)

The last really useful option to pass to git log as a filter is a path. If you specify a

directory or file name, you can limit the log output to commits that introduced a change

to those files. This is always the last option and is generally preceded by double dashes

(--) to separate the paths from the options.

In Table 2.3 we’ll list these and a few other common options for your reference.

Option Description

-(n) Show only the last n commits

--since, --after Limit the commits to those made after the specified date.

--until, --before Limit the commits to those made before the specified date.

--author Only show commits in which the author entry matches the

specified string.

--committer Only show commits in which the committer entry matches

the specified string.

For example, if you want to see which commits modifying test files in the Git source

code history were committed by Junio Hamano and were not merges in the month of

October 2008, you can run something like this:

28

CHAPTER 2 GIT BASICS

$ git log --pretty="%h:%s" --author=gitster --since="2008-10-01" \

--before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attribute

acd3b9e - Enhance hold_lock_file_for_{update,append}()

f563754 - demonstrate breakage of detached checkout wi

d1a43f2 - reset --hard/read-tree --reset -u: remove un

51a94af - Fix "checkout --track -b newbranch" on detac

b0ad11e - pull: allow "git pull origin $something:$cur

Of the nearly 20,000 commits in the Git source code history, this command shows

the 6 that match those criteria.

2.3.2 Using a GUI to Visualize History

If you like to use a more graphical tool to visualize your commit history, you may

want to take a look at a Tcl/Tk program called gitk that is distributed with Git. Gitk

is basically a visual git log tool, and it accepts nearly all the filtering options that

git log does. If you type gitk on the command line in your project, you should see

something like Figure 2.2.

Figure 2.2: The gitk history visualizer

You can see the commit history in the top half of the window along with a nice an-

cestry graph. The diff viewer in the bottom half of the window shows you the changes

introduced at any commit you click.

29

PRO GIT SCOTT CHACON

2.4 Undoing Things

At any stage, you may want to undo something. Here, we’ll review a few basic tools for

undoing changes that you’ve made. Be careful, because you can’t always undo some

of these undos. This is one of the few areas in Git where you may lose some work if

you do it wrong.

2.4.1 Changing Your Last Commit

One of the common undos takes place when you commit too early and possibly forget

to add some files, or you mess up your commit message. If you want to try that commit

again, you can run commit with the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If you’ve have

made no changes since your last commit (for instance, you run this command it imme-

diately after your previous commit), then your snapshot will look exactly the same and

all you’ll change is your commit message.

The same commit-message editor fires up, but it already contains the message of

your previous commit. You can edit the message the same as always, but it overwrites

your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a

file you wanted to add to this commit, you can do something like this:

$ git commit -m ’initial commit’

$ git add forgotten_file

$ git commit --amend

All three of these commands end up with a single commit — the second command

replaces the results of the first.

2.4.2 Unstaging a Staged File

The next two sections demonstrate how to wrangle your staging area and working

directory changes. The nice part is that the command you use to determine the state

of those two areas also reminds you how to undo changes to them. For example, let’s

say you’ve changed two files and want to commit them as two separate changes, but

you accidentally type git add * and stage them both. How can you unstage one of the

two? The git status command reminds you:

$ git add .

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

modified: benchmarks.rb

#

30

CHAPTER 2 GIT BASICS

Right below the “Changes to be committed” text, it says use git reset HEAD <file>...

to unstage. So, let’s use that advice to unstage the benchmarks.rb file:

$ git reset HEAD benchmarks.rb

benchmarks.rb: locally modified

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

The command is a bit strange, but it works. The benchmarks.rb file is modified but

once again unstaged.

2.4.3 Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the benchmarks.rb

file? How can you easily unmodify it — revert it back to what it looked like when you

last committed (or initially cloned, or however you got it into your working directory)?

Luckily, git status tells you how to do that, too. In the last example output, the

unstaged area looks like this:

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

It tells you pretty explicitly how to discard the changes you’ve made (at least, the

newer versions of Git, 1.6.1 and later, do this — if you have an older version, we highly

recommend upgrading it to get some of these nicer usability features). Let’s do what it

says:

$ git checkout -- benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

You can see that the changes have been reverted. You should also realize that this is

a dangerous command: any changes you made to that file are gone — you just copied

31

PRO GIT SCOTT CHACON

another file over it. Don’t ever use this command unless you absolutely know that you

don’t want the file. If you just need to get it out of the way, we’ll go over stashing and

branching in the next chapter; these are generally better ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even

commits that were on branches that were deleted or commits that were overwritten

with an --amend commit can be recovered (see Chapter 9 for data recovery). However,

anything you lose that was never committed is likely never to be seen again.

2.5 Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your

remote repositories. Remote repositories are versions of your project that are hosted

on the Internet or network somewhere. You can have several of them, each of which

generally is either read-only or read/write for you. Collaborating with others involves

managing these remote repositories and pushing and pulling data to and from them

when you need to share work. Managing remote repositories includes knowing how

to add remote repositories, remove remotes that are no longer valid, manage various

remote branches and define them as being tracked or not, and more. In this section,

we’ll cover these remote-management skills.

2.5.1 Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command.

It lists the shortnames of each remote handle you’ve specified. If you’ve cloned your

repository, you should at least see origin — that is the default name Git gives to the

server you cloned from:

$ git clone git://github.com/schacon/ticgit.git

Initialized empty Git repository in /private/tmp/ticgit/.git/

remote: Counting objects: 595, done.

remote: Compressing objects: 100% (269/269), done.

remote: Total 595 (delta 255), reused 589 (delta 253)

Receiving objects: 100% (595/595), 73.31 KiB | 1 KiB/s, done.

Resolving deltas: 100% (255/255), done.

$ cd ticgit

$ git remote

origin

You can also specify -v, which shows you the URL that Git has stored for the

shortname to be expanded to:

$ git remote -v

origin git://github.com/schacon/ticgit.git

If you have more than one remote, the command lists them all. For example, my

Grit repository looks something like this.

$ cd grit

$ git remote -v

bakkdoor git://github.com/bakkdoor/grit.git

32

CHAPTER 2 GIT BASICS

cho45 git://github.com/cho45/grit.git

defunkt git://github.com/defunkt/grit.git

koke git://github.com/koke/grit.git

origin git@github.com:mojombo/grit.git

This means we can pull contributions from any of these users pretty easily. But

notice that only the origin remote is an SSH URL, so it’s the only one I can push to

(we’ll cover why this is in Chapter 4).

2.5.2 Adding Remote Repositories

I’ve mentioned and given some demonstrations of adding remote repositories in previ-

ous sections, but here is how to do it explicitly. To add a new remote Git repository as

a shortname you can reference easily, run git remote add [shortname] [url] :

$ git remote

origin

$ git remote add pb git://github.com/paulboone/ticgit.git

$ git remote -v

origin git://github.com/schacon/ticgit.git

pb git://github.com/paulboone/ticgit.git

Now you can use the string pb on the command line in lieu of the whole URL. For

example, if you want to fetch all the information that Paul has but that you don’t yet

have in your repository, you can run git fetch pb:

$ git fetch pb

remote: Counting objects: 58, done.

remote: Compressing objects: 100% (41/41), done.

remote: Total 44 (delta 24), reused 1 (delta 0)

Unpacking objects: 100% (44/44), done.

From git://github.com/paulboone/ticgit

* [new branch] master -> pb/master

* [new branch] ticgit -> pb/ticgit

Paul’s master branch is accessible locally as pb/master — you can merge it into

one of your branches, or you can check out a local branch at that point if you want to

inspect it.

2.5.3 Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run

$ git fetch [remote-name]

The command goes out to that remote project and pulls down all the data from that

remote project that you don’t have yet. After you do this, you should have references

to all the branches from that remote, which you can merge in or inspect at any time.

(We’ll go over what branches are and how to use them in much more detail in Chapter

3.)

If you cloned a repository, the command automatically adds that remote reposi-

tory under the name origin. So, git fetch origin fetches any new work that has been

33

PRO GIT SCOTT CHACON

pushed to that server since you cloned (or last fetched from) it. It’s important to note

that the fetch command pulls the data to your local repository — it doesn’t automati-

cally merge it with any of your work or modify what you’re currently working on. You

have to merge it manually into your work when you’re ready.

If you have a branch set up to track a remote branch (see the next section and Chap-

ter 3 for more information), you can use the git pull command to automatically fetch

and then merge a remote branch into your current branch. This may be an easier or

more comfortable workflow for you; and by default, the git clone command automat-

ically sets up your local master branch to track the remote master branch on the server

you cloned from (assuming the remote has a master branch). Running git pull gener-

ally fetches data from the server you originally cloned from and automatically tries to

merge it into the code you’re currently working on.

2.5.4 Pushing to Your Remotes

When you have your project at a point that you want to share, you have to push it

upstream. The command for this is simple: git push [remote-name] [branch-name] .

If you want to push your master branch to your origin server (again, cloning generally

sets up both of those names for you automatically), then you can run this to push your

work back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write

access and if nobody has pushed in the meantime. If you and someone else clone at

the same time and they push upstream and then you push upstream, your push will

rightly be rejected. You’ll have to pull down their work first and incorporate it into

yours before you’ll be allowed to push. See Chapter 3 for more detailed information

on how to push to remote servers.

2.5.5 Inspecting a Remote

If you want to see more information about a particular remote, you can use the git

remote show [remote-name] command. If you run this command with a particular

shortname, such as origin , you get something like this:

$ git remote show origin

* remote origin

URL: git://github.com/schacon/ticgit.git

Remote branch merged with ’git pull’ while on branch master

master

Tracked remote branches

master

ticgit

It lists the URL for the remote repository as well as the tracking branch information.

The command helpfully tells you that if you’re on the master branch and you run git

pull , it will automatically merge in the master branch on the remote after it fetches all

the remote references. It also lists all the remote references it has pulled down.

That is a simple example you’re likely to encounter. When you’re using Git more

heavily, however, you may see much more information from git remote show :

34

CHAPTER 2 GIT BASICS

$ git remote show origin

* remote origin

URL: git@github.com:defunkt/github.git

Remote branch merged with ’git pull’ while on branch issues

issues

Remote branch merged with ’git pull’ while on branch master

master

New remote branches (next fetch will store in remotes/origin)

caching

Stale tracking branches (use ’git remote prune’)

libwalker

walker2

Tracked remote branches

acl

apiv2

dashboard2

issues

master

postgres

Local branch pushed with ’git push’

master:master

This command shows which branch is automatically pushed when you run git

push on certain branches. It also shows you which remote branches on the server you

don’t yet have, which remote branches you have that have been removed from the

server, and multiple branches that are automatically merged when you run git pull .

2.5.6 Removing and Renaming Remotes

If you want to rename a reference, in newer versions of Git you can run git remote

rename to change a remote’s shortname. For instance, if you want to rename pb to paul ,

you can do so with git remote rename :

$ git remote rename pb paul

$ git remote

origin

paul

It’s worth mentioning that this changes your remote branch names, too. What used

to be referenced at pb/master is now at paul/master .

If you want to remove a reference for some reason — you’ve moved the server

or are no longer using a particular mirror, or perhaps a contributor isn’t contributing

anymore — you can use git remote rm :

$ git remote rm paul

$ git remote

origin

2.6 Tagging

Like most VCSs, Git has the ability to tag specific points in history as being important.

Generally, people use this functionality to mark release points (v1.0, and so on). In this

35

PRO GIT SCOTT CHACON

section, you’ll learn how to list the available tags, how to create new tags, and what the

different types of tags are.

2.6.1 Listing Your Tags

Listing the available tags in Git is straightforward. Just type git tag :

$ git tag

v0.1

v1.3

This command lists the tags in alphabetical order; the order in which they appear

has no real importance.

You can also search for tags with a particular pattern. The Git source repo, for

instance, contains more than 240 tags. If you’re only interested in looking at the 1.4.2

series, you can run this:

$ git tag -l ’v1.4.2.*’

v1.4.2.1

v1.4.2.2

v1.4.2.3

v1.4.2.4

2.6.2 Creating Tags

Git uses two main types of tags: lightweight and annotated. A lightweight tag is very

much like a branch that doesn’t change — it’s just a pointer to a specific commit.

Annotated tags, however, are stored as full objects in the Git database. They’re check-

summed; contain the tagger name, e-mail, and date; have a tagging message; and can

be signed and verified with GNU Privacy Guard (GPG). It’s generally recommended

that you create annotated tags so you can have all this information; but if you want a

temporary tag or for some reason don’t want to keep the other information, lightweight

tags are available too.

2.6.3 Annotated Tags

Creating an annotated tag in Git is simple. The easiest way is to specify -a when you

run the tag command:

$ git tag -a v1.4 -m ’my version 1.4’

$ git tag

v0.1

v1.3

v1.4

The -m specifies a tagging message, which is stored with the tag. If you don’t

specify a message for an annotated tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the git

show command:

36

CHAPTER 2 GIT BASICS

$ git show v1.4

tag v1.4

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 14:45:11 2009 -0800

my version 1.4

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

That shows the tagger information, the date the commit was tagged, and the anno-

tation message before showing the commit information.

2.6.4 Signed Tags

You can also sign your tags with GPG, assuming you have a private key. All you have

to do is use -s instead of -a:

$ git tag -s v1.5 -m ’my signed 1.5 tag’

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gee-mail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you run git show on that tag, you can see your GPG signature attached to it:

$ git show v1.5

tag v1.5

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:22:20 2009 -0800

my signed 1.5 tag

-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1.4.8 (Darwin)

iEYEABECAAYFAkmQurIACgkQON3DxfchxFr5cACeIMN+ZxLKggJQf0QYiQBwgySN

Ki0An2JeAVUCAiJ7Ox6ZEtK+NvZAj82/

=WryJ

-----END PGP SIGNATURE-----

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

A bit later, you’ll learn how to verify signed tags.

37

PRO GIT SCOTT CHACON

2.6.5 Lightweight Tags

Another way to tag commits is with a lightweight tag. This is basically the commit

checksum stored in a file — no other information is kept. To create a lightweight tag,

don’t supply the -a, -s, or -m option:

$ git tag v1.4-lw

$ git tag

v0.1

v1.3

v1.4

v1.4-lw

v1.5

This time, if you run git show on the tag, you don’t see the extra tag information.

The command just shows the commit:

$ git show v1.4-lw

commit 15027957951b64cf874c3557a0f3547bd83b3ff6

Merge: 4a447f7... a6b4c97...

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sun Feb 8 19:02:46 2009 -0800

Merge branch ’experiment’

2.6.6 Verifying Tags

To verify a signed tag, you use git tag -v [tag-name] . This command uses GPG to

verify the signature. You need the signer’s public key in your keyring for this to work

properly:

$ git tag -v v1.4.2.1

object 883653babd8ee7ea23e6a5c392bb739348b1eb61

type commit

tag v1.4.2.1

tagger Junio C Hamano <junkio@cox.net> 1158138501 -0700

GIT 1.4.2.1

Minor fixes since 1.4.2, including git-mv and git-http with alternates.

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID F3119B9A

gpg: Good signature from "Junio C Hamano <junkio@cox.net>"

gpg: aka "[jpeg image of size 1513]"

Primary key fingerprint: 3565 2A26 2040 E066 C9A7 4A7D C0C6 D9A4 F311 9B9A

If you don’t have the signer’s public key, you get something like this instead:

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID F3119B9A

gpg: Can’t check signature: public key not found

error: could not verify the tag ’v1.4.2.1’

38

CHAPTER 2 GIT BASICS

2.6.7 Tagging Later

You can also tag commits after you’ve moved past them. Suppose your commit history

looks like this:

$ git log --pretty=oneline

15027957951b64cf874c3557a0f3547bd83b3ff6 Merge branch ’experiment’

a6b4c97498bd301d84096da251c98a07c7723e65 beginning write support

0d52aaab4479697da7686c15f77a3d64d9165190 one more thing

6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch ’experiment’

0b7434d86859cc7b8c3d5e1dddfed66ff742fcbc added a commit function

4682c3261057305bdd616e23b64b0857d832627b added a todo file

166ae0c4d3f420721acbb115cc33848dfcc2121a started write support

9fceb02d0ae598e95dc970b74767f19372d61af8 updated rakefile

964f16d36dfccde844893cac5b347e7b3d44abbc commit the todo

8a5cbc430f1a9c3d00faaeffd07798508422908a updated readme

Now, suppose you forgot to tag the project at v1.2, which was at the “updated

rakefile” commit. You can add it after the fact. To tag that commit, you specify the

commit checksum (or part of it) at the end of the command:

$ git tag -a v1.2 9fceb02

You can see that you’ve tagged the commit:

$ git tag

v0.1

v1.2

v1.3

v1.4

v1.4-lw

v1.5

$ git show v1.2

tag v1.2

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:32:16 2009 -0800

version 1.2

commit 9fceb02d0ae598e95dc970b74767f19372d61af8

Author: Magnus Chacon <mchacon@gee-mail.com>

Date: Sun Apr 27 20:43:35 2008 -0700

updated rakefile

...

2.6.8 Sharing Tags

By default, the git push command doesn’t transfer tags to remote servers. You will

have to explicitly push tags to a shared server after you have created them. This process

is just like sharing remote branches you can run git push origin [tagname] .

39

PRO GIT SCOTT CHACON

$ git push origin v1.5

Counting objects: 50, done.

Compressing objects: 100% (38/38), done.

Writing objects: 100% (44/44), 4.56 KiB, done.

Total 44 (delta 18), reused 8 (delta 1)

To git@github.com:schacon/simplegit.git

* [new tag] v1.5 -> v1.5

If you have a lot of tags that you want to push up at once, you can also use the

--tags option to the git push command. This will transfer all of your tags to the

remote server that are not already there.

$ git push origin --tags

Counting objects: 50, done.

Compressing objects: 100% (38/38), done.

Writing objects: 100% (44/44), 4.56 KiB, done.

Total 44 (delta 18), reused 8 (delta 1)

To git@github.com:schacon/simplegit.git

* [new tag] v0.1 -> v0.1

* [new tag] v1.2 -> v1.2

* [new tag] v1.4 -> v1.4

* [new tag] v1.4-lw -> v1.4-lw

* [new tag] v1.5 -> v1.5

Now, when someone else clones or pulls from your repository, they will get all your

tags as well.

2.7 Tips and Tricks

Before we finish this chapter on basic Git, a few little tips and tricks may make your

Git experience a bit simpler, easier, or more familiar. Many people use Git without

using any of these tips, and we won’t refer to them or assume you’ve used them later

in the book; but you should probably know how to do them.

2.7.1 Auto-Completion

If you use the Bash shell, Git comes with a nice auto-completion script you can enable.

Download the Git source code, and look in the contrib/completion directory; there

should be a file called git-completion.bash . Copy this file to your home directory,

and add this to your .bashrc file:

source /̃.git-completion.bash

If you want to set up Git to automatically have Bash shell completion for all users,

copy this script to the /opt/local/etc/bash completion.d directory on Mac systems

or to the /etc/bash completion.d/ directory on Linux systems. This is a directory of

scripts that Bash will automatically load to provide shell completions.

If you’re using Windows with Git Bash, which is the default when installing Git on

Windows with msysGit, auto-completion should be preconfigured.

Press the Tab key when you’re writing a Git command, and it should return a set of

suggestions for you to pick from:

40

CHAPTER 2 GIT BASICS

$ git co<tab><tab>

commit config

In this case, typing git co and then pressing the Tab key twice suggests commit and

config. Adding m<tab> completes git commit automatically.

This also works with options, which is probably more useful. For instance, if you’re

running a git log command and can’t remember one of the options, you can start

typing it and press Tab to see what matches:

$ git log --s<tab>

--shortstat --since= --src-prefix= --stat --summary

That’s a pretty nice trick and may save you some time and documentation reading.

2.7.2 Git Aliases

Git doesn’t infer your command if you type it in partially. If you don’t want to type

the entire text of each of the Git commands, you can easily set up an alias for each

command using git config . Here are a couple of examples you may want to set up:

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status

This means that, for example, instead of typing git commit , you just need to type

git ci . As you go on using Git, you’ll probably use other commands frequently as

well; in this case, don’t hesitate to create new aliases.

This technique can also be very useful in creating commands that you think should

exist. For example, to correct the usability problem you encountered with unstaging a

file, you can add your own unstage alias to Git:

$ git config --global alias.unstage ’reset HEAD --’

This makes the following two commands equivalent:

$ git unstage fileA

$ git reset HEAD fileA

This seems a bit clearer. It’s also common to add a last command, like this:

$ git config --global alias.last ’log -1 HEAD’

This way, you can see the last commit easily:

$ git last

commit 66938dae3329c7aebe598c2246a8e6af90d04646

Author: Josh Goebel <dreamer3@example.com>

Date: Tue Aug 26 19:48:51 2008 +0800

test for current head

Signed-off-by: Scott Chacon <schacon@example.com>

41

PRO GIT SCOTT CHACON

As you can tell, Git simply replaces the new command with whatever you alias it

for. However, maybe you want to run an external command, rather than a Git subcom-

mand. In that case, you start the command with a ! character. This is useful if you

write your own tools that work with a Git repository. We can demonstrate by aliasing

git visual to run gitk :

$ git config --global alias.visual "!gitk"

2.8 Summary

At this point, you can do all the basic local Git operations — creating or cloning a

repository, making changes, staging and committing those changes, and viewing the

history of all the changes the repository has been through. Next, we’ll cover Git’s

killer feature: its branching model.

42

Chapter 3

Git Branching

Nearly every VCS has some form of branching support. Branching means you diverge

from the main line of development and continue to do work without messing with that

main line. In many VCS tools, this is a somewhat expensive process, often requiring

you to create a new copy of your source code directory, which can take a long time for

large projects.

Some people refer to the branching model in Git as its “killer feature,” and it

certainly sets Git apart in the VCS community. Why is it so special? The way Git

branches is incredibly lightweight, making branching operations nearly instantaneous

and switching back and forth between branches generally just as fast. Unlike many

other VCSs, Git encourages a workflow that branches and merges often, even multiple

times in a day. Understanding and mastering this feature gives you a powerful and

unique tool and can literally change the way that you develop.

3.1 What a Branch Is

To really understand the way Git does branching, we need to take a step back and

examine how Git stores its data. As you may remember from Chapter 1, Git doesn’t

store data as a series of changesets or deltas, but instead as a series of snapshots.

When you commit in Git, Git stores a commit object that contains a pointer to the

snapshot of the content you staged, the author and message metadata, and zero or more

pointers to the commit or commits that were the direct parents of this commit: zero

parents for the first commit, one parent for a normal commit, and multiple parents for

a commit that results from a merge of two or more branches.

To visualize this, let’s assume that you have a directory containing three files, and

you stage them all and commit. Staging the files checksums each one (the SHA–1 hash

we mentioned in Chapter 1), stores that version of the file in the Git repository (Git

refers to them as blobs), and adds that checksum to the staging area:

$ git add README test.rb LICENSE2

$ git commit -m ’initial commit of my project’

When you create the commit by running git commit , Git checksums each subdi-

rectory (in this case, just the root project directory) and stores those tree objects in the

43

PRO GIT SCOTT CHACON

Git repository. Git then creates a commit object that has the metadata and a pointer to

the root project tree so it can re-create that snapshot when needed.

Your Git repository now contains five objects: one blob for the contents of each of

your three files, one tree that lists the contents of the directory and specifies which file

names are stored as which blobs, and one commit with the pointer to that root tree and

all the commit metadata. Conceptually, the data in your Git repository looks something

like Figure 3.1.

Figure 3.1: Single commit repository data

If you make some changes and commit again, the next commit stores a pointer to

the commit that came immediately before it. After two more commits, your history

might look something like Figure 3.2.

Figure 3.2: Git object data for multiple commits

A branch in Git is simply a lightweight movable pointer to one of these commits.

The default branch name in Git is master. As you initially make commits, you’re given

a master branch that points to the last commit you made. Every time you commit, it

moves forward automatically.

What happens if you create a new branch? Well, doing so creates a new pointer for

you to move around. Let’s say you create a new branch called testing. You do this with

the git branch command:

$ git branch testing

44

CHAPTER 3 GIT BRANCHING

Figure 3.3: Branch pointing into the commit data’s history

Figure 3.4: Multiple branches pointing into the commit’s data history

This creates a new pointer at the same commit you’re currently on (see Figure 3.4).

How does Git know what branch you’re currently on? It keeps a special pointer

called HEAD. Note that this is a lot different than the concept of HEAD in other VCSs

you may be used to, such as Subversion or CVS. In Git, this is a pointer to the local

branch you’re currently on. In this case, you’re still on master. The git branch command

only created a new branch — it didn’t switch to that branch (see Figure 3.5).

Figure 3.5: HEAD file pointing to the branch you’re on

To switch to an existing branch, you run the git checkout command. Let’s switch

to the new testing branch:

45

PRO GIT SCOTT CHACON

$ git checkout testing

This moves HEAD to point to the testing branch (see Figure 3.6).

Figure 3.6: HEAD points to another branch when you switch branches.

What is the significance of that? Well, let’s do another commit:

$ vim test.rb

$ git commit -a -m ’made a change’

Figure 3.7 illustrates the result.

Figure 3.7: The branch that HEAD points to moves forward with each commit.

This is interesting, because now your testing branch has moved forward, but your

master branch still points to the commit you were on when you ran git checkout to

switch branches. Let’s switch back to the master branch:

$ git checkout master

Figure 3.8 shows the result.

That command did two things. It moved the HEAD pointer back to point to the

master branch, and it reverted the files in your working directory back to the snapshot

that master points to. This also means the changes you make from this point forward

46

CHAPTER 3 GIT BRANCHING

Figure 3.8: HEAD moves to another branch on a checkout.

will diverge from an older version of the project. It essentially rewinds the work you’ve

done in your testing branch temporarily so you can go in a different direction.

Let’s make a few changes and commit again:

$ vim test.rb

$ git commit -a -m ’made other changes’

Now your project history has diverged (see Figure 3.9). You created and switched

to a branch, did some work on it, and then switched back to your main branch and did

other work. Both of those changes are isolated in separate branches: you can switch

back and forth between the branches and merge them together when you’re ready. And

you did all that with simple branch and checkout commands.

Figure 3.9: The branch histories have diverged.

Because a branch in Git is in actuality a simple file that contains the 40 character

SHA–1 checksum of the commit it points to, branches are cheap to create and destroy.

Creating a new branch is as quick and simple as writing 41 bytes to a file (40 characters

and a newline).

47

PRO GIT SCOTT CHACON

This is in sharp contrast to the way most VCS tools branch, which involves copying

all of the project’s files into a second directory. This can take several seconds or even

minutes, depending on the size of the project, whereas in Git the process is always

instantaneous. Also, because we’re recording the parents when we commit, finding a

proper merge base for merging is automatically done for us and is generally very easy

to do. These features help encourage developers to create and use branches often.

Let’s see why you should do so.

3.2 Basic Branching and Merging

Let’s go through a simple example of branching and merging with a workflow that you

might use in the real world. You’ll follow these steps:

1. Do work on a web site.

2. Create a branch for a new story you’re working on.

3. Do some work in that branch.

At this stage, you’ll receive a call that another issue is critical and you need a hotfix.

You’ll do the following:

1. Revert back to your production branch.

2. Create a branch to add the hotfix.

3. After it’s tested, merge the hotfix branch, and push to production.

4. Switch back to your original story and continue working.

3.2.1 Basic Branching

First, let’s say you’re working on your project and have a couple of commits already

(see Figure 3.10).

Figure 3.10: A short and simple commit history

You’ve decided that you’re going to work on issue #53 in whatever issue-tracking

system your company uses. To be clear, Git isn’t tied into any particular issue-tracking

system; but because issue #53 is a focused topic that you want to work on, you’ll create

a new branch in which to work. To create a branch and switch to it at the same time,

you can run the git checkout command with the -b switch:

$ git checkout -b iss53

Switched to a new branch "iss53"

48

CHAPTER 3 GIT BRANCHING

This is shorthand for

$ git branch iss53

$ git checkout iss53

Figure 3.11 illustrates the result.

Figure 3.11: Creating a new branch pointer

You work on your web site and do some commits. Doing so moves the iss53

branch forward, because you have it checked out (that is, your HEAD is pointing to it;

see Figure 3.12):

$ vim index.html

$ git commit -a -m ’added a new footer [issue 53]’

Figure 3.12: The iss53 branch has moved forward with your work.

Now you get the call that there is an issue with the web site, and you need to fix it

immediately. With Git, you don’t have to deploy your fix along with the iss53 changes

you’ve made, and you don’t have to put a lot of effort into reverting those changes

before you can work on applying your fix to what is in production. All you have to do

is switch back to your master branch.

However, before you do that, note that if your working directory or staging area has

uncommitted changes that conflict with the branch you’re checking out, Git won’t let

you switch branches. It’s best to have a clean working state when you switch branches.

There are ways to get around this (namely, stashing and commit amending) that we’ll

cover later. For now, you’ve committed all your changes, so you can switch back to

your master branch:

$ git checkout master

Switched to branch "master"

49

PRO GIT SCOTT CHACON

At this point, your project working directory is exactly the way it was before you

started working on issue #53, and you can concentrate on your hotfix. This is an im-

portant point to remember: Git resets your working directory to look like the snapshot

of the commit that the branch you check out points to. It adds, removes, and modifies

files automatically to make sure your working copy is what the branch looked like on

your last commit to it.

Next, you have a hotfix to make. Let’s create a hotfix branch on which to work until

it’s completed (see Figure 3.13):

$ git checkout -b ’hotfix’

Switched to a new branch "hotfix"

$ vim index.html

$ git commit -a -m ’fixed the broken email address’

[hotfix]: created 3a0874c: "fixed the broken email address"

1 files changed, 0 insertions(+), 1 deletions(-)

Figure 3.13: hotfix branch based back at your master branch point

You can run your tests, make sure the hotfix is what you want, and merge it back

into your master branch to deploy to production. You do this with the git merge com-

mand:

$ git checkout master

$ git merge hotfix

Updating f42c576..3a0874c

Fast forward

README | 1 -

1 files changed, 0 insertions(+), 1 deletions(-)

You’ll notice the phrase “Fast forward” in that merge. Because the commit pointed

to by the branch you merged in was directly upstream of the commit you’re on, Git

moves the pointer forward. To phrase that another way, when you try to merge one

commit with a commit that can be reached by following the first commit’s history, Git

simplifies things by moving the pointer forward because there is no divergent work to

merge together — this is called a “fast forward”.

Your change is now in the snapshot of the commit pointed to by the master branch,

and you can deploy your change (see Figure 3.14).

After that your super-important fix is deployed, you’re ready to switch back to the

work you were doing before you were interrupted. However, first you’ll delete the

50

CHAPTER 3 GIT BRANCHING

Figure 3.14: Your master branch points to the same place as your hotfix branch after

the merge.

hotfix branch, because you no longer need it — the master branch points at the same

place. You can delete it with the -d option to git branch :

$ git branch -d hotfix

Deleted branch hotfix (3a0874c).

Now you can switch back to your work-in-progress branch on issue #53 and con-

tinue working on it (see Figure 3.15):

$ git checkout iss53

Switched to branch "iss53"

$ vim index.html

$ git commit -a -m ’finished the new footer [issue 53]’

[iss53]: created ad82d7a: "finished the new footer [issue 53]"

1 files changed, 1 insertions(+), 0 deletions(-)

Figure 3.15: Your iss53 branch can move forward independently.

It’s worth noting here that the work you did in your hotfix branch is not contained

in the files in your iss53 branch. If you need to pull it in, you can merge your master

branch into your iss53 branch by running git merge master , or you can wait to inte-

grate those changes until you decide to pull the iss53 branch back into master later.

51

PRO GIT SCOTT CHACON

3.2.2 Basic Merging

Suppose you’ve decided that your issue #53 work is complete and ready to be merged

into your master branch. In order to do that, you’ll merge in your iss53 branch, much

like you merged in your hotfix branch earlier. All you have to do is check out the

branch you wish to merge into and then run the git merge command:

$ git checkout master

$ git merge iss53

Merge made by recursive.

README | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

This looks a bit different than the hotfix merge you did earlier. In this case, your

development history has diverged from some older point. Because the commit on the

branch you’re on isn’t a direct ancestor of the branch you’re merging in, Git has to

do some work. In this case, Git does a simple three-way merge, using the two snap-

shots pointed to by the branch tips and the common ancestor of the two. Figure 3.16

highlights the three snapshots that Git uses to do its merge in this case.

Figure 3.16: Git automatically identifies the best common-ancestor merge base for

branch merging.

Instead of just moving the branch pointer forward, Git creates a new snapshot that

results from this three-way merge and automatically creates a new commit that points

to it (see Figure 3.17). This is referred to as a merge commit and is special in that it

has more than one parent.

It’s worth pointing out that Git determines the best common ancestor to use for its

merge base; this is different than CVS or Subversion (before version 1.5), where the

developer doing the merge has to figure out the best merge base for themselves. This

makes merging a heck of a lot easier in Git than in these other systems.

Now that your work is merged in, you have no further need for the iss53 branch.

You can delete it and then manually close the ticket in your ticket-tracking system:

52

CHAPTER 3 GIT BRANCHING

Figure 3.17: Git automatically creates a new commit object that contains the merged

work.

$ git branch -d iss53

3.2.3 Basic Merge Conflicts

Occasionally, this process doesn’t go smoothly. If you changed the same part of the

same file differently in the two branches you’re merging together, Git won’t be able to

merge them cleanly. If your fix for issue #53 modified the same part of a file as the

hotfix , you’ll get a merge conflict that looks something like this:

$ git merge iss53

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

Git hasn’t automatically created a new merge commit. It has paused the process

while you resolve the conflict. If you want to see which files are unmerged at any point

after a merge conflict, you can run git status :

[master*]$ git status

index.html: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

unmerged: index.html

#

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged.

Git adds standard conflict-resolution markers to the files that have conflicts, so you can

open them manually and resolve those conflicts. Your file contains a section that looks

something like this:

<<<<<<< HEAD:index.html

<div id="footer">contact : email.support@github.com</div>

=======

<div id="footer">

please contact us at support@github.com

53

PRO GIT SCOTT CHACON

</div>

>>>>>>> iss53:index.html

This means the version in HEAD (your master branch, because that was what you

had checked out when you ran your merge command) is the top part of that block

(everything above the =======), while the version in your iss53 branch looks like ev-

erything in the bottom part. In order to resolve the conflict, you have to either choose

one side or the other or merge the contents yourself. For instance, you might resolve

this conflict by replacing the entire block with this:

<div id="footer">

please contact us at email.support@github.com

</div>

This resolution has a little of each section, and I’ve fully removed the <<<<<<< ,

======= , and >>>>>>> lines. After you’ve resolved each of these sections in each con-

flicted file, run git add on each file to mark it as resolved. Staging the file marks it as

resolved in Git. If you want to use a graphical tool to resolve these issues, you can run

git mergetool , which fires up an appropriate visual merge tool and walks you through

the conflicts:

$ git mergetool

merge tool candidates: kdiff3 tkdiff xxdiff meld gvimdiff opendiff emerge vimdiff

Merging the files: index.html

Normal merge conflict for ’index.html’:

{local}: modified

{remote}: modified

Hit return to start merge resolution tool (opendiff):

If you want to use a merge tool other than the default (Git chose opendiff for

me in this case because I ran the command on a Mac), you can see all the supported

tools listed at the top after “merge tool candidates”. Type the name of the tool you’d

rather use. In Chapter 7, we’ll discuss how you can change this default value for your

environment.

After you exit the merge tool, Git asks you if the merge was successful. If you tell

the script that it was, it stages the file to mark it as resolved for you.

You can run git status again to verify that all conflicts have been resolved:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

If you’re happy with that, and you verify that everything that had conflicts has been

staged, you can type git commit to finalize the merge commit. The commit message

by default looks something like this:

54

CHAPTER 3 GIT BRANCHING

Merge branch ’iss53’

Conflicts:

index.html

#

It looks like you may be committing a MERGE.

If this is not correct, please remove the file

.git/MERGE_HEAD

and try again.

#

You can modify that message with details about how you resolved the merge if you

think it would be helpful to others looking at this merge in the future — why you did

what you did, if it’s not obvious.

3.3 Branch Management

Now that you’ve created, merged, and deleted some branches, let’s look at some branch-

management tools that will come in handy when you begin using branches all the time.

The git branch command does more than just create and delete branches. If you

run it with no arguments, you get a simple listing of your current branches:

$ git branch

iss53

* master

testing

Notice the * character that prefixes the master branch: it indicates the branch that

you currently have checked out. This means that if you commit at this point, the master

branch will be moved forward with your new work. To see the last commit on each

branch, you can run git branch v :

$ git branch -v

iss53 93b412c fix javascript issue

* master 7a98805 Merge branch ’iss53’

testing 782fd34 add scott to the author list in the readmes

Another useful option to figure out what state your branches are in is to filter this list

to branches that you have or have not yet merged into the branch you’re currently on.

The useful --merged and --no-merged options have been available in Git since version

1.5.6 for this purpose. To see which branches are already merged into the branch you’re

on, you can run git branch merged :

$ git branch --merged

iss53

* master

Because you already merged in iss53 earlier, you see it in your list. Branches on

this list without the * in front of them are generally fine to delete with git branch -d ;

you’ve already incorporated their work into another branch, so you’re not going to lose

anything.

To see all the branches that contain work you haven’t yet merged in, you can run

git branch --no-merged :

55

PRO GIT SCOTT CHACON

$ git branch --no-merged

testing

This shows your other branch. Because it contains work that isn’t merged in yet,

trying to delete it with git branch -d will fail:

$ git branch -d testing

error: The branch ’testing’ is not an ancestor of your current HEAD.

If you are sure you want to delete it, run git branch -D testing . If you really do

want to delete the branch and lose that work, you can force it with -D, as the helpful

message points out.

3.4 Branching Workflows

Now that you have the basics of branching and merging down, what can or should

you do with them? In this section, we’ll cover some common workflows that this

lightweight branching makes possible, so you can decide if you would like to incorpo-

rate it into your own development cycle.

3.4.1 Long-Running Branches

Because Git uses a simple three-way merge, merging from one branch into another

multiple times over a long period is generally easy to do. This means you can have

several branches that are always open and that you use for different stages of your

development cycle; you can merge regularly from some of them into others.

Many Git developers have a workflow that embraces this approach, such as having

only code that is entirely stable in their master branch — possibly only code that has

been or will be released. They have another parallel branch named develop or next that

they work from or use to test stability— it isn’t necessarily always stable, but whenever

it gets to a stable state, it can be merged into master . It’s used to pull in topic branches

(short-lived branches, like your earlier iss53 branch) when they’re ready, to make sure

they pass all the tests and don’t introduce bugs.

In reality, we’re talking about pointers moving up the line of commits you’re mak-

ing. The stable branches are farther down the line in your commit history, and the

bleeding-edge branches are farther up the history (see Figure 3.18).

Figure 3.18: More stable branches are generally farther down the commit history.

It’s generally easier to think about them as work silos, where sets of commits grad-

uate to a more stable silo when they’re fully tested (see Figure 3.19).

You can keep doing this for several levels of stability. Some larger projects also

have a proposed or pu (proposed updates) branch that has integrated branches that may

not be ready to go into the next or master branch. The idea is that your branches are at

various levels of stability; when they reach a more stable level, they’re merged into the

56

CHAPTER 3 GIT BRANCHING

Figure 3.19: It may be helpful to think of your branches as silos.

branch above them. Again, having multiple long-running branches isn’t necessary, but

it’s often helpful, especially when you’re dealing with very large or complex projects.

3.4.2 Topic Branches

Topic branches, however, are useful in projects of any size. A topic branch is a short-

lived branch that you create and use for a single particular feature or related work. This

is something you’ve likely never done with a VCS before because it’s generally too

expensive to create and merge branches. But in Git it’s common to create, work on,

merge, and delete branches several times a day.

You saw this in the last section with the iss53 and hotfix branches you created.

You did a few commits on them and deleted them directly after merging them into your

main branch. This technique allows you to context-switch quickly and completely —

because your work is separated into silos where all the changes in that branch have to

do with that topic, it’s easier to see what has happened during code review and such.

You can keep the changes there for minutes, days, or months, and merge them in when

they’re ready, regardless of the order in which they were created or worked on.

Consider an example of doing some work (on master), branching off for an issue

(iss91), working on it for a bit, branching off the second branch to try another way

of handling the same thing (iss91v2), going back to your master branch and working

there for a while, and then branching off there to do some work that you’re not sure is

a good idea (dumbidea branch). Your commit history will look something like Figure

3.20.

Now, let’s say you decide you like the second solution to your issue best (iss91v2);

and you showed the dumbidea branch to your coworkers, and it turns out to be genius.

You can throw away the original iss91 branch (losing commits C5 and C6) and merge

in the other two. Your history then looks like Figure 3.21.

It’s important to remember when you’re doing all this that these branches are com-

pletely local. When you’re branching and merging, everything is being done only in

your Git repository — no server communication is happening.

57

PRO GIT SCOTT CHACON

Figure 3.20: Your commit history with multiple topic branches

Figure 3.21: Your history after merging in dumbidea and iss91v2

3.5 Remote Branches

Remote branches are references to the state of branches on your remote repositories.

They’re local branches that you can’t move; they’re moved automatically whenever

you do any network communication. Remote branches act as bookmarks to remind

58

CHAPTER 3 GIT BRANCHING

you where the branches on your remote repositories were the last time you connected

to them.

They take the form (remote)/(branch) . For instance, if you wanted to see what the

master branch on your origin remote looked like as of the last time you communicated

with it, you would check the origin/master branch. If you were working on an issue

with a partner and they pushed up an iss53 branch, you might have your own local

iss53 branch; but the branch on the server would point to the commit at origin/iss53 .

This may be a bit confusing, so let’s look at an example. Let’s say you have a Git

server on your network at git.ourcompany.com . If you clone from this, Git automat-

ically names it origin for you, pulls down all its data, creates a pointer to where its

master branch is, and names it origin/master locally; and you can’t move it. Git also

gives you your own master branch starting at the same place as origin’s master branch,

so you have something to work from (see Figure 3.22).

Figure 3.22: A Git clone gives you your own master branch and origin/master pointing

to origin’s master branch.

If you do some work on your local master branch, and, in the meantime, someone

else pushes to git.ourcompany.com and updates its master branch, then your histories

move forward differently. Also, as long as you stay out of contact with your origin

server, your origin/master pointer doesn’t move (see Figure 3.23).

To synchronize your work, you run a git fetch origin command. This command

looks up which server origin is (in this case, it’s git.ourcompany.com), fetches any

data from it that you don’t yet have, and updates your local database, moving your

origin/master pointer to its new, more up-to-date position (see Figure 3.24).

To demonstrate having multiple remote servers and what remote branches for those

remote projects look like, let’s assume you have another internal Git server that is used

only for development by one of your sprint teams. This server is at git.team1.ourcompany.com .

You can add it as a new remote reference to the project you’re currently working on by

59

PRO GIT SCOTT CHACON

Figure 3.23: Working locally and having someone push to your remote server makes

each history move forward differently.

Figure 3.24: The git fetch command updates your remote references.

running the git remote add command as we covered in Chapter 2. Name this remote

teamone , which will be your shortname for that whole URL (see Figure 3.25).

Now, you can run git fetch teamone to fetch everything server has that you don’t

have yet. Because that server is a subset of the data your origin server has right now,

Git fetches no data but sets a remote branch called teamone/master to point to the

commit that teamone has as its master branch (see Figure 3.26).

60

CHAPTER 3 GIT BRANCHING

Figure 3.25: Adding another server as a remote

Figure 3.26: You get a reference to teamone’s master branch position locally.

3.5.1 Pushing

When you want to share a branch with the world, you need to push it up to a remote

that you have write access to. Your local branches aren’t automatically synchronized to

the remotes you write to — you have to explicitly push the branches you want to share.

That way, you can use private branches do work you don’t want to share, and push up

only the topic branches you want to collaborate on.

If you have a branch named serverfix that you want to work on with others, you

can push it up the same way you pushed your first branch. Run git push (remote)

(branch) :

61

PRO GIT SCOTT CHACON

$ git push origin serverfix

Counting objects: 20, done.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (15/15), 1.74 KiB, done.

Total 15 (delta 5), reused 0 (delta 0)

To git@github.com:schacon/simplegit.git

* [new branch] serverfix -> serverfix

This is a bit of a shortcut. Git automatically expands the serverfix branchname

out to refs/heads/serverfix:refs/heads/serverfix , which means, “Take my server-

fix local branch and push it to update the remote’s serverfix branch.” We’ll go over

the refs/heads/ part in detail in Chapter 9, but you can generally leave it off. You

can also do git push origin serverfix:serverfix , which does the same thing — it

says, “Take my serverfix and make it the remote’s serverfix.” You can use this format

to push a local branch into a remote branch that is named differently. If you didn’t

want it to be called serverfix on the remote, you could instead run git push origin

serverfix:awesomebranch to push your local serverfix branch to the awesomebranch

branch on the remote project.

The next time one of your collaborators fetches from the server, they will get

a reference to where the server’s version of serverfix is under the remote branch

origin/serverfix :

$ git fetch origin

remote: Counting objects: 20, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 15 (delta 5), reused 0 (delta 0)

Unpacking objects: 100% (15/15), done.

From git@github.com:schacon/simplegit

* [new branch] serverfix -> origin/serverfix

It’s important to note that when you do a fetch that brings down new remote

branches, you don’t automatically have local, editable copies of them. In other words,

in this case, you don’t have a new serverfix branch— you only have an origin/serverfix

pointer that you can’t modify.

To merge this work into your current working branch, you can run git merge

origin/serverfix . If you want your own serverfix branch that you can work on,

you can base it off your remote branch:

$ git checkout -b serverfix origin/serverfix

Branch serverfix set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "serverfix"

This gives you a local branch that you can work on that starts where origin/serverfix

is.

3.5.2 Tracking Branches

Checking out a local branch from a remote branch automatically creates what is called

a tracking branch. Tracking branches are local branches that have a direct relationship

to a remote branch. If you’re on a tracking branch and type git push, Git automatically

knows which server and branch to push to. Also, running git pull while on one of

62

CHAPTER 3 GIT BRANCHING

these branches fetches all the remote references and then automatically merges in the

corresponding remote branch.

When you clone a repository, it generally automatically creates a master branch that

tracks origin/master . That’s why git push and git pull work out of the box with no

other arguments. However, you can set up other tracking branches if you wish — ones

that don’t track branches on origin and don’t track the master branch. The simple case

is the example you just saw, running git checkout -b [branch] [remotename]/[branch] .

If you have Git version 1.6.2 or later, you can also use the --track shorthand:

$ git checkout --track origin/serverfix

Branch serverfix set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "serverfix"

To set up a local branch with a different name than the remote branch, you can

easily use the first version with a different local branch name:

$ git checkout -b sf origin/serverfix

Branch sf set up to track remote branch refs/remotes/origin/serverfix.

Switched to a new branch "sf"

Now, your local branch sf will automatically push to and pull from origin/serverfix.

3.5.3 Deleting Remote Branches

Suppose you’re done with a remote branch — say, you and your collaborators are fin-

ished with a feature and have merged it into your remote’s master branch (or whatever

branch your stable codeline is in). You can delete a remote branch using the rather ob-

tuse syntax git push [remotename] :[branch] . If you want to delete your serverfix

branch from the server, you run the following:

$ git push origin :serverfix

To git@github.com:schacon/simplegit.git

- [deleted] serverfix

Boom. No more branch on your server. You may want to dog-ear this page, because

you’ll need that command, and you’ll likely forget the syntax. A way to remember this

command is by recalling the git push [remotename] [localbranch]:[remotebranch]

syntax that we went over a bit earlier. If you leave off the [localbranch] portion, then

you’re basically saying, “Take nothing on my side and make it be [remotebranch] .”

3.6 Rebasing

In Git, there are two main ways to integrate changes from one branch into another: the

merge and the rebase . In this section you’ll learn what rebasing is, how to do it, why

it’s a pretty amazing tool, and in what cases you won’t want to use it.

63

PRO GIT SCOTT CHACON

Figure 3.27: Your initial diverged commit history

3.6.1 The Basic Rebase

If you go back to an earlier example from the Merge section (see Figure 3.27), you can

see that you diverged your work and made commits on two different branches.

The easiest way to integrate the branches, as we’ve already covered, is the merge

command. It performs a three-way merge between the two latest branch snapshots (C3

and C4) and the most recent common ancestor of the two (C2), creating a new snapshot

(and commit), as shown in Figure 3.28.

Figure 3.28: Merging a branch to integrate the diverged work history

However, there is another way: you can take the patch of the change that was

introduced in C3 and reapply it on top of C4. In Git, this is called rebasing. With the

rebase command, you can take all the changes that were committed on one branch and

replay them on another one.

In this example, you’d run the following:

$ git checkout experiment

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: added staged command

It works by going to the common ancestor of the two branches (the one you’re on

and the one you’re rebasing onto), getting the diff introduced by each commit of the

branch you’re on, saving those diffs to temporary files, resetting the current branch to

the same commit as the branch you are rebasing onto, and finally applying each change

in turn. Figure 3.29 illustrates this process.

64

CHAPTER 3 GIT BRANCHING

Figure 3.29: Rebasing the change introduced in C3 onto C4

At this point, you can go back to the master branch and do a fast-forward merge

(see Figure 3.30).

Figure 3.30: Fast-forwarding the master branch

Now, the snapshot pointed to by C3 is exactly the same as the one that was pointed

to by C5 in the merge example. There is no difference in the end product of the inte-

gration, but rebasing makes for a cleaner history. If you examine the log of a rebased

branch, it looks like a linear history: it appears that all the work happened in series,

even when it originally happened in parallel.

Often, you’ll do this to make sure your commits apply cleanly on a remote branch

— perhaps in a project to which you’re trying to contribute but that you don’t main-

tain. In this case, you’d do your work in a branch and then rebase your work onto

origin/master when you were ready to submit your patches to the main project. That

way, the maintainer doesn’t have to do any integration work — just a fast-forward or a

clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether it’s

the last of the rebased commits for a rebase or the final merge commit after a merge, is

the same snapshot — it’s only the history that is different. Rebasing replays changes

from one line of work onto another in the order they were introduced, whereas merging

takes the endpoints and merges them together.

3.6.2 More Interesting Rebases

You can also have your rebase replay on something other than the rebase branch. Take

a history like Figure 3.31, for example. You branched a topic branch (server) to add

some server-side functionality to your project, and made a commit. Then, you branched

off that to make the client-side changes (client) and committed a few times. Finally,

you went back to your server branch and did a few more commits.

Suppose you decide that you want to merge your client-side changes into your

mainline for a release, but you want to hold off on the server-side changes until it’s

65

PRO GIT SCOTT CHACON

Figure 3.31: A history with a topic branch off another topic branch

tested further. You can take the changes on client that aren’t on server (C8 and C9) and

replay them on your master branch by using the --onto option of git rebase :

$ git rebase --onto master server client

This basically says, “Check out the client branch, figure out the patches from

the common ancestor of the client and server branches, and then replay them onto

master .” It’s a bit complex; but the result, shown in Figure 3.32, is pretty cool.

Figure 3.32: Rebasing a topic branch off another topic branch

Now you can fast-forward your master branch (see Figure 3.33):

$ git checkout master

$ git merge client

66

CHAPTER 3 GIT BRANCHING

Figure 3.33: Fast-forwarding your master branch to include the client branch changes

Let’s say you decide to pull in your server branch as well. You can rebase the

server branch onto the master branch without having to check it out first by running

git rebase [basebranch] [topicbranch] — which checks out the topic branch (in

this case, server) for you and replays it onto the base branch (master):

$ git rebase master server

This replays your server work on top of your master work, as shown in Figure

3.34.

Figure 3.34: Rebasing your server branch on top of your master branch

Then, you can fast-forward the base branch (master):

$ git checkout master

$ git merge server

You can remove the client and server branches because all the work is integrated

and you don’t need them anymore, leaving your history for this entire process looking

like Figure 3.35:

$ git branch -d client

$ git branch -d server

Figure 3.35: Final commit history

67

PRO GIT SCOTT CHACON

3.6.3 The Perils of Rebasing

Ahh, but the bliss of rebasing isn’t without its drawbacks, which can be summed up in

a single line:

Do not rebase commits that you have pushed to a public repository.

If you follow that guideline, you’ll be fine. If you don’t, people will hate you, and

you’ll be scorned by friends and family.

When you rebase stuff, you’re abandoning existing commits and creating new ones

that are similar but different. If you push commits somewhere and others pull them

down and base work on them, and then you rewrite those commits with git rebase

and push them up again, your collaborators will have to re-merge their work and things

will get messy when you try to pull their work back into yours.

Let’s look at an example of how rebasing work that you’ve made public can cause

problems. Suppose you clone from a central server and then do some work off that.

Your commit history looks like Figure 3.36.

Figure 3.36: Clone a repository, and base some work on it.

Now, someone else does more work that includes a merge, and pushes that work to

the central server. You fetch them and merge the new remote branch into your work,

making your history look something like Figure 3.37.

Next, the person who pushed the merged work decides to go back and rebase their

work instead; they do a git push --force to overwrite the history on the server. You

then fetch from that server, bringing down the new commits.

At this point, you have to merge this work in again, even though you’ve already

done so. Rebasing changes the SHA–1 hashes of these commits so to Git they look

like new commits, when in fact you already have the C4 work in your history (see

Figure 3.39).

You have to merge that work in at some point so you can keep up with the other

developer in the future. After you do that, your commit history will contain both the

C4 and C4’ commits, which have different SHA–1 hashes but introduce the same work

and have the same commit message. If you run a git log when your history looks

like this, you’ll see two commits that have the same author date and message, which

68

CHAPTER 3 GIT BRANCHING

Figure 3.37: Fetch more commits, and merge them into your work.

Figure 3.38: Someone pushes rebased commits, abandoning commits you’ve based

your work on.

will be confusing. Furthermore, if you push this history back up to the server, you’ll

reintroduce all those rebased commits to the central server, which can further confuse

people.

If you treat rebasing as a way to clean up and work with commits before you push

them, and if you only rebase commits that have never been available publicly, then

you’ll be fine. If you rebase commits that have already been pushed publicly, and

people may have based work on those commits, then you may be in for some frustrating

trouble.

69

PRO GIT SCOTT CHACON

Figure 3.39: You merge in the same work again into a new merge commit.

3.7 Summary

We’ve covered basic branching and merging in Git. You should feel comfortable cre-

ating and switching to new branches, switching between branches and merging local

branches together. You should also be able to share your branches by pushing them to

a shared server, working with others on shared branches and rebasing your branches

before they are shared.

70

Chapter 4

Git on the Server

At this point, you should be able to do most of the day-to-day tasks for which you’ll

be using Git. However, in order to do any collaboration in Git, you’ll need to have a

remote Git repository. Although you can technically push changes to and pull changes

from individuals’ repositories, doing so is discouraged because you can fairly easily

confuse what they’re working on if you’re not careful. Furthermore, you want your

collaborators to be able to access the repository even if your computer is offline —

having a more reliable common repository is often useful. Therefore, the preferred

method for collaborating with someone is to set up an intermediate repository that you

both have access to, and push to and pull from that. We’ll refer to this repository as a

“Git server”; but you’ll notice that it generally takes a tiny amount of resources to host

a Git repository, so you’ll rarely need to use an entire server for it.

Running a Git server is simple. First, you choose which protocols you want your

server to communicate with. The first section of this chapter will cover the available

protocols and the pros and cons of each. The next sections will explain some typical

setups using those protocols and how to get your server running with them. Last, we’ll

go over a few hosted options, if you don’t mind hosting your code on someone else’s

server and don’t want to go through the hassle of setting up and maintaining your own

server.

If you have no interest in running your own server, you can skip to the last section

of the chapter to see some options for setting up a hosted account and then move on to

the next chapter, where we discuss the various ins and outs of working in a distributed

source control environment.

A remote repository is generally a bare repository — a Git repository that has no

working directory. Because the repository is only used as a collaboration point, there is

no reason to have a snapshot checked out on disk; it’s just the Git data. In the simplest

terms, a bare repository is the contents of your project’s .git directory and nothing

else.

4.1 The Protocols

Git can use four major network protocols to transfer data: Local, Secure Shell (SSH),

Git, and HTTP. Here we’ll discuss what they are and in what basic circumstances you

would want (or not want) to use them.

71

PRO GIT SCOTT CHACON

It’s important to note that with the exception of the HTTP protocols, all of these

require Git to be installed and working on the server.

4.1.1 Local Protocol

The most basic is the Local protocol, in which the remote repository is in another

directory on disk. This is often used if everyone on your team has access to a shared

filesystem such as an NFS mount, or in the less likely case that everyone logs in to the

same computer. The latter wouldn’t be ideal, because all your code repository instances

would reside on the same computer, making a catastrophic loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from

a local file-based repository. To clone a repository like this or to add one as a remote

to an existing project, use the path to the repository as the URL. For example, to clone

a local repository, you can run something like this:

$ git clone /opt/git/project.git

Or you can do this:

$ git clone file:///opt/git/project.git

Git operates slightly differently if you explicitly specify file:// at the beginning

of the URL. If you just specify the path, Git tries to use hardlinks or directly copy

the files it needs. If you specify file:// , Git fires up the processes that it normally

uses to transfer data over a network which is generally a lot less efficient method of

transferring the data. The main reason to specify the file:// prefix is if you want a

clean copy of the repository with extraneous references or objects left out — generally

after an import from another version-control system or something similar (see Chapter

9 for maintenance tasks). We’ll use the normal path here because doing so is almost

always faster.

To add a local repository to an existing Git project, you can run something like this:

$ git remote add local_proj /opt/git/project.git

Then, you can push to and pull from that remote as though you were doing so over

a network.

The Pros

The pros of file-based repositories are that they’re simple and they use existing

file permissions and network access. If you already have a shared filesystem to which

your whole team has access, setting up a repository is very easy. You stick the bare

repository copy somewhere everyone has shared access to and set the read/write per-

missions as you would for any other shared directory. We’ll discuss how to export a

bare repository copy for this purpose in the next section, “Getting Git on a Server.”

This is also a nice option for quickly grabbing work from someone else’s working

repository. If you and a co-worker are working on the same project and they want

you to check something out, running a command like git pull /home/john/project

is often easier than them pushing to a remote server and you pulling down.

The Cons

The cons of this method are that shared access is generally more difficult to set up

and reach from multiple locations than basic network access. If you want to push from

72

CHAPTER 4 GIT ON THE SERVER

your laptop when you’re at home, you have to mount the remote disk, which can be

difficult and slow compared to network-based access.

It’s also important to mention that this isn’t necessarily the fastest option if you’re

using a shared mount of some kind. A local repository is fast only if you have fast

access to the data. A repository on NFS is often slower than the repository over SSH

on the same server, allowing Git to run off local disks on each system.

4.1.2 The SSH Protocol

Probably the most common transport protocol for Git is SSH. This is because SSH

access to servers is already set up in most places — and if it isn’t, it’s easy to do. SSH

is also the only network-based protocol that you can easily read from and write to. The

other two network protocols (HTTP and Git) are generally read-only, so even if you

have them available for the unwashed masses, you still need SSH for your own write

commands. SSH is also an authenticated network protocol; and because it’s ubiquitous,

it’s generally easy to set up and use.

To clone a Git repository over SSH, you can specify ssh:// URL like this:

$ git clone ssh://user@server:project.git

Or you can not specify a protocol — Git assumes SSH if you aren’t explicit:

$ git clone user@server:project.git

You can also not specify a user, and Git assumes the user you’re currently logged

in as.

The Pros

The pros of using SSH are many. First, you basically have to use it if you want

authenticated write access to your repository over a network. Second, SSH is rela-

tively easy to set up — SSH daemons are commonplace, many network admins have

experience with them, and many OS distributions are set up with them or have tools

to manage them. Next, access over SSH is secure — all data transfer is encrypted and

authenticated. Last, like the Git and Local protocols, SSH is efficient, making the data

as compact as possible before transferring it.

The Cons

The negative aspect of SSH is that you can’t serve anonymous access of your repos-

itory over it. People must have access to your machine over SSH to access it, even in a

read-only capacity, which doesn’t make SSH access conducive to open source projects.

If you’re using it only within your corporate network, SSH may be the only proto-

col you need to deal with. If you want to allow anonymous read-only access to your

projects, you’ll have to set up SSH for you to push over but something else for others

to pull over.

4.1.3 The Git Protocol

Next is the Git protocol. This is a special daemon that comes packaged with Git; it

listens on a dedicated port (9418) that provides a service similar to the SSH protocol,

but with absolutely no authentication. In order for a repository to be served over the Git

protocol, you must create the git-export-daemon-ok file — the daemon won’t serve a

repository without that file in it — but other than that there is no security. Either the

73

PRO GIT SCOTT CHACON

Git repository is available for everyone to clone or it isn’t. This means that there is

generally no pushing over this protocol. You can enable push access; but given the lack

of authentication, if you turn on push access, anyone on the internet who finds your

project’s URL could push to your project. Suffice it to say that this is rare.

The Pros

The Git protocol is the fastest transfer protocol available. If you’re serving a lot

of traffic for a public project or serving a very large project that doesn’t require user

authentication for read access, it’s likely that you’ll want to set up a Git daemon to

serve your project. It uses the same data-transfer mechanism as the SSH protocol but

without the encryption and authentication overhead.

The Cons

The downside of the Git protocol is the lack of authentication. It’s generally un-

desirable for the Git protocol to be the only access to your project. Generally, you’ll

pair it with SSH access for the few developers who have push (write) access and have

everyone else use git:// for read-only access. It’s also probably the most difficult pro-

tocol to set up. It must run its own daemon, which is custom — we’ll look at setting

one up in the “Gitosis” section of this chapter — it requires xinetd configuration or the

like, which isn’t always a walk in the park. It also requires firewall access to port 9418,

which isn’t a standard port that corporate firewalls always allow. Behind big corporate

firewalls, this obscure port is commonly blocked.

4.1.4 The HTTP/S Protocol

Last we have the HTTP protocol. The beauty of the HTTP or HTTPS protocol is the

simplicity of setting it up. Basically, all you have to do is put the bare Git repository

under your HTTP document root and set up a specific post-update hook, and you’re

done (See Chapter 7 for details on Git hooks). At that point, anyone who can access

the web server under which you put the repository can also clone your repository. To

allow read access to your repository over HTTP, do something like this:

$ cd /var/www/htdocs/

$ git clone --bare /path/to/git_project gitproject.git

$ cd gitproject.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

That’s all. The post-update hook that comes with Git by default runs the appro-

priate command (git update-server-info) to make HTTP fetching and cloning work

properly. This command is run when you push to this repository over SSH; then, other

people can clone via something like

$ git clone http://example.com/gitproject.git

In this particular case, we’re using the /var/www/htdocs path that is common for

Apache setups, but you can use any static web server — just put the bare repository

in its path. The Git data is served as basic static files (see Chapter 9 for details about

exactly how it’s served).

It’s possible to make Git push over HTTP as well, although that technique isn’t

as widely used and requires you to set up complex WebDAV requirements. Because

it’s rarely used, we won’t cover it in this book. If you’re interested in using the

74

CHAPTER 4 GIT ON THE SERVER

HTTP-push protocols, you can read about preparing a repository for this purpose at

http://www.kernel.org/pub/software/scm/git/docs/howto/setup-git-server-over-http.txt .

One nice thing about making Git push over HTTP is that you can use any WebDAV

server, without specific Git features; so, you can use this functionality if your web-

hosting provider supports WebDAV for writing updates to your web site.

The Pros

The upside of using the HTTP protocol is that it’s easy to set up. Running the

handful of required commands gives you a simple way to give the world read access to

your Git repository. It takes only a few minutes to do. The HTTP protocol also isn’t

very resource intensive on your server. Because it generally uses a static HTTP server

to serve all the data, a normal Apache server can serve thousands of files per second on

average — it’s difficult to overload even a small server.

You can also serve your repositories read-only over HTTPS, which means you can

encrypt the content transfer; or you can go so far as to make the clients use specific

signed SSL certificates. Generally, if you’re going to these lengths, it’s easier to use

SSH public keys; but it may be a better solution in your specific case to use signed

SSL certificates or other HTTP-based authentication methods for read-only access over

HTTPS.

Another nice thing is that HTTP is such a commonly used protocol that corporate

firewalls are often set up to allow traffic through this port.

The Cons

The downside of serving your repository over HTTP is that it’s relatively inefficient

for the client. It generally takes a lot longer to clone or fetch from the repository, and

you often have a lot more network overhead and transfer volume over HTTP than with

any of the other network protocols. Because it’s not as intelligent about transferring

only the data you need — there is no dynamic work on the part of the server in these

transactions — the HTTP protocol is often referred to as a dumb protocol. For more

information about the differences in efficiency between the HTTP protocol and the

other protocols, see Chapter 9.

4.2 Getting Git on a Server

In order to initially set up any Git server, you have to export an existing repository into

a new bare repository — a repository that doesn’t contain a working directory. This is

generally straightforward to do. In order to clone your repository to create a new bare

repository, you run the clone command with the --bare option. By convention, bare

repository directories end in .git , like so:

$ git clone --bare my_project my_project.git

Initialized empty Git repository in /opt/projects/my_project.git/

The output for this command is a little confusing. Since clone is basically a git

init then a git fetch , we see some output from the git init part, which creates an

empty directory. The actual object transfer gives no output, but it does happen. You

should now have a copy of the Git directory data in your my project.git directory.

This is roughly equivalent to something like

$ cp -Rf my_project/.git my_project.git

75

PRO GIT SCOTT CHACON

There are a couple of minor differences in the configuration file; but for your pur-

pose, this is close to the same thing. It takes the Git repository by itself, without a

working directory, and creates a directory specifically for it alone.

4.2.1 Putting the Bare Repository on a Server

Now that you have a bare copy of your repository, all you need to do is put it on a server

and set up your protocols. Let’s say you’ve set up a server called git.example.com

that you have SSH access to, and you want to store all your Git repositories under

the /opt/git directory. You can set up your new repository by copying your bare

repository over:

$ scp -r my_project.git user@git.example.com:/opt/git

At this point, other users who have SSH access to the same server which has read-

access to the /opt/git directory can clone your repository by running

$ git clone user@git.example.com:/opt/git/my_project.git

If a user SSHs into a server and has write access to the /opt/git/my project.git

directory, they will also automatically have push access. Git will automatically add

group write permissions to a repository properly if you run the git init command

with the --shared option.

$ ssh user@git.example.com

$ cd /opt/git/my_project.git

$ git init --bare --shared

You see how easy it is to take a Git repository, create a bare version, and place it

on a server to which you and your collaborators have SSH access. Now you’re ready

to collaborate on the same project.

It’s important to note that this is literally all you need to do to run a useful Git

server to which several people have access — just add SSH-able accounts on a server,

and stick a bare repository somewhere that all those users have read and write access

to. You’re ready to go — nothing else needed.

In the next few sections, you’ll see how to expand to more sophisticated setups.

This discussion will include not having to create user accounts for each user, adding

public read access to repositories, setting up web UIs, using the Gitosis tool, and more.

However, keep in mind that to collaborate with a couple of people on a private project,

all you need is an SSH server and a bare repository.

4.2.2 Small Setups

If you’re a small outfit or are just trying out Git in your organization and have only

a few developers, things can be simple for you. One of the most complicated aspects

of setting up a Git server is user management. If you want some repositories to be

read-only to certain users and read/write to others, access and permissions can be a bit

difficult to arrange.

SSH Access

If you already have a server to which all your developers have SSH access, it’s

generally easiest to set up your first repository there, because you have to do almost

76

CHAPTER 4 GIT ON THE SERVER

no work (as we covered in the last section). If you want more complex access control

type permissions on your repositories, you can handle them with the normal filesystem

permissions of the operating system your server runs.

If you want to place your repositories on a server that doesn’t have accounts for

everyone on your team whom you want to have write access, then you must set up SSH

access for them. We assume that if you have a server with which to do this, you already

have an SSH server installed, and that’s how you’re accessing the server.

There are a few ways you can give access to everyone on your team. The first is to

set up accounts for everybody, which is straightforward but can be cumbersome. You

may not want to run adduser and set temporary passwords for every user.

A second method is to create a single ‘git’ user on the machine, ask every user

who is to have write access to send you an SSH public key, and add that key to the

/.ssh/authorized keys file of your new ‘git’ user. At that point, everyone will be able

to access that machine via the ‘git’ user. This doesn’t affect the commit data in any

way — the SSH user you connect as doesn’t affect the commits you’ve recorded.

Another way to do it is to have your SSH server authenticate from an LDAP server

or some other centralized authentication source that you may already have set up. As

long as each user can get shell access on the machine, any SSH authentication mecha-

nism you can think of should work.

4.3 Generating Your SSH Public Key

That being said, many Git servers authenticate using SSH public keys. In order to

provide a public key, each user in your system must generate one if they don’t already

have one. This process is similar across all operating systems. First, you should check

to make sure you don’t already have a key. By default, a user’s SSH keys are stored in

that user’s /.ssh directory. You can easily check to see if you have a key already by

going to that directory and listing the contents:

$ cd /̃.ssh

$ ls

authorized_keys2 id_dsa known_hosts

config id_dsa.pub

You’re looking for a pair of files named something and something.pub, where the

something is usually id dsa or id rsa . The .pub file is your public key, and the other

file is your private key. If you don’t have these files (or you don’t even have a .ssh

directory), you can create them by running a program called ssh-keygen , which is

provided with the SSH package on Linux/Mac systems and comes with the MSysGit

package on Windows:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/schacon/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /Users/schacon/.ssh/id_rsa.

Your public key has been saved in /Users/schacon/.ssh/id_rsa.pub.

The key fingerprint is:

43:c5:5b:5f:b1:f1:50:43:ad:20:a6:92:6a:1f:9a:3a schacon@agadorlaptop.local

77

PRO GIT SCOTT CHACON

First it confirms where you want to save the key (.ssh/id rsa), and then it asks

twice for a passphrase, which you can leave empty if you don’t want to type a password

when you use the key.

Now, each user that does this has to send their public key to you or whoever is

administrating the Git server (assuming you’re using an SSH server setup that requires

public keys). All they have to do is copy the contents of the .pub file and e-mail it. The

public keys look something like this:

$ cat /̃.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAklOUpkDHrfHY17SbrmTIpNLTGK9Tjom/BWDSU

GPl+nafzlHDTYW7hdI4yZ5ew18JH4JW9jbhUFrviQzM7xlELEVf4h9lFX5QVkbPppSwg0cda3

Pbv7kOdJ/MTyBlWXFCR+HAo3FXRitBqxiX1nKhXpHAZsMciLq8V6RjsNAQwdsdMFvSlVK/7XA

t3FaoJoAsncM1Q9x5+3V0Ww68/eIFmb1zuUFljQJKprrX88XypNDvjYNby6vw/Pb0rwert/En

mZ+AW4OZPnTPI89ZPmVMLuayrD2cE86Z/il8b+gw3r3+1nKatmIkjn2so1d01QraTlMqVSsbx

NrRFi9wrf+M7Q== schacon@agadorlaptop.local

For a more in-depth tutorial on creating an SSH key on multiple operating systems,

see the GitHub guide on SSH keys at http://github.com/guides/providing-your-ssh-key .

4.4 Setting Up the Server

Let’s walk through setting up SSH access on the server side. In this example, you’ll

use the authorized keys method for authenticating your users. We also assume you’re

running a standard Linux distribution like Ubuntu. First, you create a ‘git’ user and a

.ssh directory for that user.

$ sudo adduser git

$ su git

$ cd

$ mkdir .ssh

Next, you need to add some developer SSH public keys to the authorized keys file

for that user. Let’s assume you’ve received a few keys by e-mail and saved them to

temporary files. Again, the public keys look something like this:

$ cat /tmp/id_rsa.john.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCB007n/ww+ouN4gSLKssMxXnBOvf9LGt4L

ojG6rs6hPB09j9R/T17/x4lhJA0F3FR1rP6kYBRsWj2aThGw6HXLm9/5zytK6Ztg3RPKK+4k

Yjh6541NYsnEAZuXz0jTTyAUfrtU3Z5E003C4oxOj6H0rfIF1kKI9MAQLMdpGW1GYEIgS9Ez

Sdfd8AcCIicTDWbqLAcU4UpkaX8KyGlLwsNuuGztobF8m72ALC/nLF6JLtPofwFBlgc+myiv

O7TCUSBdLQlgMVOFq1I2uPWQOkOWQAHukEOmfjy2jctxSDBQ220ymjaNsHT4kgtZg2AYYgPq

dAv8JggJICUvax2T9va5 gsg-keypair

You just append them to your authorized keys file:

$ cat /tmp/id_rsa.john.pub >> /̃.ssh/authorized_keys

$ cat /tmp/id_rsa.josie.pub >> /̃.ssh/authorized_keys

$ cat /tmp/id_rsa.jessica.pub >> /̃.ssh/authorized_keys

Now, you can set up an empty repository for them by running git init with the

--bare option, which initializes the repository without a working directory:

78

CHAPTER 4 GIT ON THE SERVER

$ cd /opt/git

$ mkdir project.git

$ cd project.git

$ git --bare init

Then, John, Josie, or Jessica can push the first version of their project into that

repository by adding it as a remote and pushing up a branch. Note that someone must

shell onto the machine and create a bare repository every time you want to add a project.

Let’s use gitserver as the hostname of the server on which you’ve set up your ‘git’

user and repository. If you’re running it internally, and you set up DNS for gitserver

to point to that server, then you can use the commands pretty much as is:

on Johns computer

$ cd myproject

$ git init

$ git add .

$ git commit -m ’initial commit’

$ git remote add origin git@gitserver:/opt/git/project.git

$ git push origin master

At this point, the others can clone it down and push changes back up just as easily:

$ git clone git@gitserver:/opt/git/project.git

$ vim README

$ git commit -am ’fix for the README file’

$ git push origin master

With this method, you can quickly get a read/write Git server up and running for a

handful of developers.

As an extra precaution, you can easily restrict the ‘git’ user to only doing Git activ-

ities with a limited shell tool called git-shell that comes with Git. If you set this as

your ‘git’ user’s login shell, then the ‘git’ user can’t have normal shell access to your

server. To use this, specify git-shell instead of bash or csh for your user’s login shell.

To do so, you’ll likely have to edit your /etc/passwd file:

$ sudo vim /etc/passwd

At the bottom, you should find a line that looks something like this:

git:x:1000:1000::/home/git:/bin/sh

Change /bin/sh to /usr/bin/git-shell (or run which git-shell to see where it’s

installed). The line should look something like this:

git:x:1000:1000::/home/git:/usr/bin/git-shell

Now, the ‘git’ user can only use the SSH connection to push and pull Git repos-

itories and can’t shell onto the machine. If you try, you’ll see a login rejection like

this:

$ ssh git@gitserver

fatal: What do you think I am? A shell?

Connection to gitserver closed.

79

PRO GIT SCOTT CHACON

4.5 Public Access

What if you want anonymous read access to your project? Perhaps instead of hosting

an internal private project, you want to host an open source project. Or maybe you

have a bunch of automated build servers or continuous integration servers that change

a lot, and you don’t want to have to generate SSH keys all the time — you just want to

add simple anonymous read access.

Probably the simplest way for smaller setups is to run a static web server with

its document root where your Git repositories are, and then enable that post-update

hook we mentioned in the first section of this chapter. Let’s work from the previous

example. Say you have your repositories in the /opt/git directory, and an Apache

server is running on your machine. Again, you can use any web server for this; but as

an example, we’ll demonstrate some basic Apache configurations that should give you

an idea of what you might need.

First you need to enable the hook:

$ cd project.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

If you’re using a version of Git earlier than 1.6, the mv command isn’t necessary —

Git started naming the hooks examples with the .sample postfix only recently.

What does this post-update hook do? It looks basically like this:

$ cat .git/hooks/post-update

#!/bin/sh

exec git-update-server-info

This means that when you push to the server via SSH, Git will run this command

to update the files needed for HTTP fetching.

Next, you need to add a VirtualHost entry to your Apache configuration with the

document root as the root directory of your Git projects. Here, we’re assuming that you

have wildcard DNS set up to send *.gitserver to whatever box you’re using to run all

this:

<VirtualHost *:80>

ServerName git.gitserver

DocumentRoot /opt/git

<Directory /opt/git/>

Order allow, deny

allow from all

</Directory>

</VirtualHost>

You’ll also need to set the Unix user group of the /opt/git directories to www-data

so your web server can read-access the repositories, because the Apache instance run-

ning the CGI script will (by default) be running as that user:

$ chgrp -R www-data /opt/git

When you restart Apache, you should be able to clone your repositories under that

directory by specifying the URL for your project:

80

CHAPTER 4 GIT ON THE SERVER

$ git clone http://git.gitserver/project.git

This way, you can set up HTTP-based read access to any of your projects for a fair

number of users in a few minutes. Another simple option for public unauthenticated

access is to start a Git daemon, although that requires you to daemonize the process -

we’ll cover this option in the next section, if you prefer that route.

4.6 GitWeb

Now that you have basic read/write and read-only access to your project, you may

want to set up a simple web-based visualizer. Git comes with a CGI script called

GitWeb that is commonly used for this. You can see GitWeb in use at sites like

http://git.kernel.org (see Figure 4.1).

Figure 4.1: The GitWeb web-based user interface

If you want to check out what GitWeb would look like for your project, Git comes

with a command to fire up a temporary instance if you have a lightweight server on

your system like lighttpd or webrick . On Linux machines, lighttpd is often installed,

so you may be able to get it to run by typing git instaweb in your project directory. If

you’re running a Mac, Leopard comes preinstalled with Ruby, so webrick may be your

best bet. To start instaweb with a non-lighttpd handler, you can run it with the --httpd

option.

$ git instaweb --httpd=webrick

[2009-02-21 10:02:21] INFO WEBrick 1.3.1

[2009-02-21 10:02:21] INFO ruby 1.8.6 (2008-03-03) [universal-darwin9.0]

81

PRO GIT SCOTT CHACON

That starts up an HTTPD server on port 1234 and then automatically starts a web

browser that opens on that page. It’s pretty easy on your part. When you’re done and

want to shut down the server, you can run the same command with the --stop option:

$ git instaweb --httpd=webrick --stop

If you want to run the web interface on a server all the time for your team or for an

open source project you’re hosting, you’ll need to set up the CGI script to be served by

your normal web server. Some Linux distributions have a gitweb package that you may

be able to install via apt or yum , so you may want to try that first. We’ll walk though

installing GitWeb manually very quickly. First, you need to get the Git source code,

which GitWeb comes with, and generate the custom CGI script:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/

$ make GITWEB_PROJECTROOT="/opt/git" \

prefix=/usr gitweb/gitweb.cgi

$ sudo cp -Rf gitweb /var/www/

Notice that you have to tell the command where to find your Git repositories with

the GITWEB PROJECTROOT variable. Now, you need to make Apache use CGI for that

script, for which you can add a VirtualHost:

<VirtualHost *:80>

ServerName gitserver

DocumentRoot /var/www/gitweb

<Directory /var/www/gitweb>

Options ExecCGI +FollowSymLinks +SymLinksIfOwnerMatch

AllowOverride All

order allow,deny

Allow from all

AddHandler cgi-script cgi

DirectoryIndex gitweb.cgi

</Directory>

</VirtualHost>

Again, GitWeb can be served with any CGI capable web server; if you prefer to

use something else, it shouldn’t be difficult to set up. At this point, you should be

able to visit http://gitserver/ to view your repositories online, and you can use

http://git.gitserver to clone and fetch your repositories over HTTP.

4.7 Gitosis

Keeping all users’ public keys in the authorized keys file for access works well only

for a while. When you have hundreds of users, it’s much more of a pain to manage that

process. You have to shell onto the server each time, and there is no access control —

everyone in the file has read and write access to every project.

At this point, you may want to turn to a widely used software project called Gitosis.

Gitosis is basically a set of scripts that help you manage the authorized keys file as

well as implement some simple access controls. The really interesting part is that the

UI for this tool for adding people and determining access isn’t a web interface but a

82

CHAPTER 4 GIT ON THE SERVER

special Git repository. You set up the information in that project; and when you push

it, Gitosis reconfigures the server based on that, which is cool.

Installing Gitosis isn’t the simplest task ever, but it’s not too difficult. It’s easiest to

use a Linux server for it — these examples use a stock Ubuntu 8.10 server.

Gitosis requires some Python tools, so first you have to install the Python setuptools

package, which Ubuntu provides as python-setuptools:

$ apt-get install python-setuptools

Next, you clone and install Gitosis from the project’s main site:

$ git clone git://eagain.net/gitosis.git

$ cd gitosis

$ sudo python setup.py install

That installs a couple of executables that Gitosis will use. Next, Gitosis wants to

put its repositories under /home/git , which is fine. But you have already set up your

repositories in /opt/git , so instead of reconfiguring everything, you create a symlink:

$ ln -s /opt/git /home/git/repositories

Gitosis is going to manage your keys for you, so you need to remove the current

file, re-add the keys later, and let Gitosis control the authorized keys file automatically.

For now, move the authorized keys file out of the way:

$ mv /home/git/.ssh/authorized_keys /home/git/.ssh/ak.bak

Next you need to turn your shell back on for the ‘git’ user, if you changed it to the

git-shell command. People still won’t be able to log in, but Gitosis will control that

for you. So, let’s change this line in your /etc/passwd file

git:x:1000:1000::/home/git:/usr/bin/git-shell

back to this:

git:x:1000:1000::/home/git:/bin/sh

Now it’s time to initialize Gitosis. You do this by running the gitosis-init com-

mand with your personal public key. If your public key isn’t on the server, you’ll have

to copy it there:

$ sudo -H -u git gitosis-init < /tmp/id_dsa.pub

Initialized empty Git repository in /opt/git/gitosis-admin.git/

Reinitialized existing Git repository in /opt/git/gitosis-admin.git/

This lets the user with that key modify the main Git repository that controls the

Gitosis setup. Next, you have to manually set the execute bit on the post-update script

for your new control repository.

$ sudo chmod 755 /opt/git/gitosis-admin.git/hooks/post-update

You’re ready to roll. If you’re set up correctly, you can try to SSH into your server

as the user for which you added the public key to initialize Gitosis. You should see

something like this:

83

PRO GIT SCOTT CHACON

$ ssh git@gitserver

PTY allocation request failed on channel 0

fatal: unrecognized command ’gitosis-serve schacon@quaternion’

Connection to gitserver closed.

That means Gitosis recognized you but shut you out because you’re not trying to

do any Git commands. So, let’s do an actual Git command — you’ll clone the Gitosis

control repository:

on your local computer

$ git clone git@gitserver:gitosis-admin.git

Now you have a directory named gitosis-admin , which has two major parts:

$ cd gitosis-admin

$ find .

./gitosis.conf

./keydir

./keydir/scott.pub

The gitosis.conf file is the control file you use to specify users, repositories, and

permissions. The keydir directory is where you store the public keys of all the users

who have any sort of access to your repositories — one file per user. The name of the

file in keydir (in the previous example, scott.pub) will be different for you — Gitosis

takes that name from the description at the end of the public key that was imported

with the gitosis-init script.

If you look at the gitosis.conf file, it should only specify information about the

gitosis-admin project that you just cloned:

$ cat gitosis.conf

[gitosis]

[group gitosis-admin]

writable = gitosis-admin

members = scott

It shows you that the ‘scott’ user — the user with whose public key you initialized

Gitosis — is the only one who has access to the gitosis-admin project.

Now, let’s add a new project for you. You’ll add a new section called mobile where

you’ll list the developers on your mobile team and projects that those developers need

access to. Because ‘scott’ is the only user in the system right now, you’ll add him as

the only member, and you’ll create a new project called iphone project to start on:

[group mobile]

writable = iphone_project

members = scott

Whenever you make changes to the gitosis-admin project, you have to commit the

changes and push them back up to the server in order for them to take effect:

$ git commit -am ’add iphone_project and mobile group’

[master]: created 8962da8: "changed name"

1 files changed, 4 insertions(+), 0 deletions(-)

84

CHAPTER 4 GIT ON THE SERVER

$ git push

Counting objects: 5, done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 272 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

To git@gitserver:/opt/git/gitosis-admin.git

fb27aec..8962da8 master -> master

You can make your first push to the new iphone project project by adding your

server as a remote to your local version of the project and pushing. You no longer have

to manually create a bare repository for new projects on the server — Gitosis creates

them automatically when it sees the first push:

$ git remote add origin git@gitserver:iphone_project.git

$ git push origin master

Initialized empty Git repository in /opt/git/iphone_project.git/

Counting objects: 3, done.

Writing objects: 100% (3/3), 230 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

To git@gitserver:iphone_project.git

* [new branch] master -> master

Notice that you don’t need to specify the path (in fact, doing so won’t work), just a

colon and then the name of the project — Gitosis finds it for you.

You want to work on this project with your friends, so you’ll have to re-add their

public keys. But instead of appending them manually to the /.ssh/authorized keys

file on your server, you’ll add them, one key per file, into the keydir directory. How

you name the keys determines how you refer to the users in the gitosis.conf file. Let’s

re-add the public keys for John, Josie, and Jessica:

$ cp /tmp/id_rsa.john.pub keydir/john.pub

$ cp /tmp/id_rsa.josie.pub keydir/josie.pub

$ cp /tmp/id_rsa.jessica.pub keydir/jessica.pub

Now you can add them all to your ‘mobile’ team so they have read and write access

to iphone project :

[group mobile]

writable = iphone_project

members = scott john josie jessica

After you commit and push that change, all four users will be able to read from and

write to that project.

Gitosis has simple access controls as well. If you want John to have only read

access to this project, you can do this instead:

[group mobile]

writable = iphone_project

members = scott josie jessica

[group mobile_ro]

readable = iphone_project

members = john

85

PRO GIT SCOTT CHACON

Now John can clone the project and get updates, but Gitosis won’t allow him to

push back up to the project. You can create as many of these groups as you want, each

containing different users and projects. You can also specify another group as one of

the members, to inherit all of its members automatically.

If you have any issues, it may be useful to add loglevel=DEBUG under the [gitosis]

section. If you’ve lost push access by pushing a messed-up configuration, you can

manually fix the file on the server under /home/git/.gitosis.conf — the file from

which Gitosis reads its info. A push to the project takes the gitosis.conf file you just

pushed up and sticks it there. If you edit that file manually, it remains like that until the

next successful push to the gitosis-admin project.

4.8 Git Daemon

For public, unauthenticated read access to your projects, you’ll want to move past the

HTTP protocol and start using the Git protocol. The main reason is speed. The Git

protocol is far more efficient and thus faster than the HTTP protocol, so using it will

save your users time.

Again, this is for unauthenticated read-only access. If you’re running this on a

server outside your firewall, it should only be used for projects that are publicly visible

to the world. If the server you’re running it on is inside your firewall, you might use

it for projects that a large number of people or computers (continuous integration or

build servers) have read-only access to, when you don’t want to have to add an SSH

key for each.

In any case, the Git protocol is relatively easy to set up. Basically, you need to run

this command in a daemonized manner:

git daemon --reuseaddr --base-path=/opt/git/ /opt/git/

--reuseaddr allows the server to restart without waiting for old connections to time

out, the --base-path option allows people to clone projects without specifying the

entire path, and the path at the end tells the Git daemon where to look for repositories

to export. If you’re running a firewall, you’ll also need to punch a hole in it at port

9418 on the box you’re setting this up on.

You can daemonize this process a number of ways, depending on the operating

system you’re running. On an Ubuntu machine, you use an Upstart script. So, in the

following file

/etc/event.d/local-git-daemon

you put this script:

start on startup

stop on shutdown

exec /usr/bin/git daemon \

--user=git --group=git \

--reuseaddr \

--base-path=/opt/git/ \

/opt/git/

respawn

86

CHAPTER 4 GIT ON THE SERVER

For security reasons, it is strongly encouraged to have this daemon run as a user

with read-only permissions to the repositories you can easily do this by creating a new

user ‘git-ro’ and running the daemon as them. For the sake of simplicity we’ll simply

run it as the same ‘git’ user that Gitosis is running as.

When you restart your machine, your Git daemon will start automatically and

respawn if it goes down. To get it running without having to reboot, you can run

this:

initctl start local-git-daemon

On other systems, you may want to use xinetd , a script in your sysvinit system, or

something else— as long as you get that command daemonized and watched somehow.

Next, you have to tell your Gitosis server which repositories to allow unauthen-

ticated Git server-based access to. If you add a section for each repository, you can

specify the ones from which you want your Git daemon to allow reading. If you want

to allow Git protocol access for your iphone project, you add this to the end of the

gitosis.conf file:

[repo iphone_project]

daemon = yes

When that is committed and pushed up, your running daemon should start serving

requests for the project to anyone who has access to port 9418 on your server.

If you decide not to use Gitosis, but you want to set up a Git daemon, you’ll have

to run this on each project you want the Git daemon to serve:

$ cd /path/to/project.git

$ touch git-daemon-export-ok

The presence of that file tells Git that it’s OK to serve this project without authen-

tication.

Gitosis can also control which projects GitWeb shows. First, you need to add some-

thing like the following to the /etc/gitweb.conf file:

$projects_list = "/home/git/gitosis/projects.list";

$projectroot = "/home/git/repositories";

$export_ok = "git-daemon-export-ok";

@git_base_url_list = (’git://gitserver’);

You can control which projects GitWeb lets users browse by adding or removing

a gitweb setting in the Gitosis configuration file. For instance, if you want the iphone

project to show up on GitWeb, you make the repo setting look like this:

[repo iphone_project]

daemon = yes

gitweb = yes

Now, if you commit and push the project, GitWeb will automatically start showing

your iphone project.

87

PRO GIT SCOTT CHACON

4.9 Hosted Git

If you don’t want to go through all of the work involved in setting up your own Git

server, you have several options for hosting your Git projects on an external dedicated

hosting site. Doing so offers a number of advantages: a hosting site is generally quick

to set up and easy to start projects on, and no server maintenance or monitoring is

involved. Even if you set up and run your own server internally, you may still want to

use a public hosting site for your open source code — it’s generally easier for the open

source community to find and help you with.

These days, you have a huge number of hosting options to choose from, each

with different advantages and disadvantages. To see an up-to-date list, check out the

GitHosting page on the main Git wiki:

http://git.or.cz/gitwiki/GitHosting

Because we can’t cover all of them, and because I happen to work at one of them,

we’ll use this section to walk through setting up an account and creating a new project

at GitHub. This will give you an idea of what is involved.

GitHub is by far the largest open source Git hosting site and it’s also one of the

very few that offers both public and private hosting options so you can keep your open

source and private commercial code in the same place. In fact, we used GitHub to

privately collaborate on this book.

4.9.1 GitHub

GitHub is slightly different than most code-hosting sites in the way that it namespaces

projects. Instead of being primarily based on the project, GitHub is user centric. That

means when I host my grit project on GitHub, you won’t find it at github.com/grit

but instead at github.com/schacon/grit . There is no canonical version of any project,

which allows a project to move from one user to another seamlessly if the first author

abandons the project.

GitHub is also a commercial company that charges for accounts that maintain pri-

vate repositories, but anyone can quickly get a free account to host as many open source

projects as they want. We’ll quickly go over how that is done.

4.9.2 Setting Up a User Account

The first thing you need to do is set up a free user account. If you visit the Pricing and

Signup page at http://github.com/plans and click the “Sign Up” button on the Free

account (see figure 4–2), you’re taken to the signup page.

Here you must choose a username that isn’t yet taken in the system and enter an

e-mail address that will be associated with the account and a password (see Figure 4.3).

If you have it available, this is a good time to add your public SSH key as well. We

covered how to generate a new key earlier, in the “Simple Setups” section. Take the

contents of the public key of that pair, and paste it into the SSH Public Key text box.

Clicking the “explain ssh keys” link takes you to detailed instructions on how to do so

on all major operating systems. Clicking the “I agree, sign me up” button takes you to

your new user dashboard (see Figure 4.4).

Next you can create a new repository.

88

CHAPTER 4 GIT ON THE SERVER

Figure 4.2: The GitHub plan page

Figure 4.3: The GitHub user signup form

4.9.3 Creating a New Repository

Start by clicking the “create a new one” link next to Your Repositories on the user

dashboard. You’re taken to the Create a New Repository form (see Figure 4.5).

All you really have to do is provide a project name, but you can also add a descrip-

tion. When that is done, click the “Create Repository” button. Now you have a new

repository on GitHub (see Figure 4.6).

Since you have no code there yet, GitHub will show you instructions for how create

a brand-new project, push an existing Git project up, or import a project from a public

Subversion repository (see Figure 4.7).

89

PRO GIT SCOTT CHACON

Figure 4.4: The GitHub user dashboard

Figure 4.5: Creating a new repository on GitHub

Figure 4.6: GitHub project header information

These instructions are similar to what we’ve already gone over. To initialize a

project if it isn’t already a Git project, you use

$ git init

$ git add .

$ git commit -m ’initial commit’

When you have a Git repository locally, add GitHub as a remote and push up your

master branch:

90

CHAPTER 4 GIT ON THE SERVER

Figure 4.7: Instructions for a new repository

$ git remote add origin git@github.com:testinguser/iphone_project.git

$ git push origin master

Now your project is hosted on GitHub, and you can give the URL to anyone you

want to share your project with. In this case, it’s http://github.com/testinguser/iphone project .

You can also see from the header on each of your project’s pages that you have two Git

URLs (see Figure 4.8).

Figure 4.8: Project header with a public URL and a private URL

The Public Clone URL is a public, read-only Git URL over which anyone can clone

the project. Feel free to give out that URL and post it on your web site or what have

you.

The Your Clone URL is a read/write SSH-based URL that you can read or write

over only if you connect with the SSH private key associated with the public key you

uploaded for your user. When other users visit this project page, they won’t see that

URL—only the public one.

91

PRO GIT SCOTT CHACON

4.9.4 Importing from Subversion

If you have an existing public Subversion project that you want to import into Git,

GitHub can often do that for you. At the bottom of the instructions page is a link to a

Subversion import. If you click it, you see a form with information about the import

process and a text box where you can paste in the URL of your public Subversion

project (see Figure 4.9).

Figure 4.9: Subversion importing interface

If your project is very large, nonstandard, or private, this process probably won’t

work for you. In Chapter 7, you’ll learn how to do more complicated manual project

imports.

4.9.5 Adding Collaborators

Let’s add the rest of the team. If John, Josie, and Jessica all sign up for accounts on

GitHub, and you want to give them push access to your repository, you can add them

to your project as collaborators. Doing so will allow pushes from their public keys to

work.

Click the “edit” button in the project header or the Admin tab at the top of the

project to reach the Admin page of your GitHub project (see Figure 4.10).

To give another user write access to your project, click the “Add another collabora-

tor” link. A new text box appears, into which you can type a username. As you type,

a helper pops up, showing you possible username matches. When you find the correct

user, click the Add button to add that user as a collaborator on your project (see Figure

4.11).

When you’re finished adding collaborators, you should see a list of them in the

Repository Collaborators box (see Figure 4.12).

If you need to revoke access to individuals, you can click the “revoke” link, and

their push access will be removed. For future projects, you can also copy collaborator

groups by copying the permissions of an existing project.

92

CHAPTER 4 GIT ON THE SERVER

Figure 4.10: GitHub administration page

Figure 4.11: Adding a collaborator to your project

Figure 4.12: A list of collaborators on your project

4.9.6 Your Project

After you push your project up or have it imported from Subversion, you have a main

project page that looks something like Figure 4.13.

When people visit your project, they see this page. It contains tabs to different

aspects of your projects. The Commits tab shows a list of commits in reverse chrono-

logical order, similar to the output of the git log command. The Network tab shows

all the people who have forked your project and contributed back. The Downloads

93

PRO GIT SCOTT CHACON

Figure 4.13: A GitHub main project page

tab allows you to upload project binaries and link to tarballs and zipped versions of

any tagged points in your project. The Wiki tab provides a wiki where you can write

documentation or other information about your project. The Graphs tab has some con-

tribution visualizations and statistics about your project. The main Source tab that

you land on shows your project’s main directory listing and automatically renders the

README file below it if you have one. This tab also shows a box with the latest

commit information.

4.9.7 Forking Projects

If you want to contribute to an existing project to which you don’t have push access,

GitHub encourages forking the project. When you land on a project page that looks

interesting and you want to hack on it a bit, you can click the “fork” button in the

project header to have GitHub copy that project to your user so you can push to it.

This way, projects don’t have to worry about adding users as collaborators to give

them push access. People can fork a project and push to it, and the main project main-

tainer can pull in those changes by adding them as remotes and merging in their work.

To fork a project, visit the project page (in this case, mojombo/chronic) and click

the “fork” button in the header (see Figure 4.14).

After a few seconds, you’re taken to your new project page, which indicates that

this project is a fork of another one (see Figure 4.15).

4.9.8 GitHub Summary

That’s all we’ll cover about GitHub, but it’s important to note how quickly you can do

all this. You can create an account, add a new project, and push to it in a matter of

94

CHAPTER 4 GIT ON THE SERVER

Figure 4.14: Get a writable copy of any repository by clicking the “fork” button.

Figure 4.15: Your fork of a project

minutes. If your project is open source, you also get a huge community of developers

who now have visibility into your project and may well fork it and help contribute to

it. At the very least, this may be a way to get up and running with Git and try it out

quickly.

4.10 Summary

You have several options to get a remote Git repository up and running so that you can

collaborate with others or share your work.

Running your own server gives you a lot of control and allows you to run the server

within your own firewall, but such a server generally requires a fair amount of your

time to set up and maintain. If you place your data on a hosted server, it’s easy to set

up and maintain; however, you have to be able to keep your code on someone else’s

servers, and some organizations don’t allow that.

It should be fairly straightforward to determine which solution or combination of

solutions is appropriate for you and your organization.

95

PRO GIT SCOTT CHACON

96

Chapter 5

Distributed Git

Now that you have a remote Git repository set up as a point for all the developers to

share their code, and you’re familiar with basic Git commands in a local workflow,

you’ll look at how to utilize some of the distributed workflows that Git affords you.

In this chapter, you’ll see how to work with Git in a distributed environment as a

contributor and an integrator. That is, you’ll learn how to contribute code successfully

to a project and make it as easy on you and the project maintainer as possible, and also

how to maintain a project successfully with a number of developers contributing.

5.1 Distributed Workflows

Unlike Centralized Version Control Systems (CVCSs), the distributed nature of Git

allows you to be far more flexible in how developers collaborate on projects. In cen-

tralized systems, every developer is a node working more or less equally on a central

hub. In Git, however, every developer is potentially both a node and a hub — that is,

every developer can both contribute code to other repositories and maintain a public

repository on which others can base their work and which they can contribute to. This

opens a vast range of workflow possibilities for your project and/or your team, so I’ll

cover a few common paradigms that take advantage of this flexibility. I’ll go over the

strengths and possible weaknesses of each design; you can choose a single one to use,

or you can mix and match features from each.

5.1.1 Centralized Workflow

In centralized systems, there is generally a single collaboration model—the centralized

workflow. One central hub, or repository, can accept code, and everyone synchronizes

their work to it. A number of developers are nodes — consumers of that hub — and

synchronize to that one place (see Figure 5.1).

This means that if two developers clone from the hub and both make changes, the

first developer to push their changes back up can do so with no problems. The second

developer must merge in the first one’s work before pushing changes up, so as not to

overwrite the first developer’s changes. This concept is true in Git as it is in Subversion

(or any CVCS), and this model works perfectly in Git.

97

PRO GIT SCOTT CHACON

Figure 5.1: Centralized workflow

If you have a small team or are already comfortable with a centralized workflow in

your company or team, you can easily continue using that workflow with Git. Simply

set up a single repository, and give everyone on your team push access; Git won’t let

users overwrite each other. If one developer clones, makes changes, and then tries to

push their changes while another developer has pushed in the meantime, the server will

reject that developer’s changes. They will be told that they’re trying to push non-fast-

forward changes and that they won’t be able to do so until they fetch and merge. This

workflow is attractive to a lot of people because it’s a paradigm that many are familiar

and comfortable with.

5.1.2 Integration-Manager Workflow

Because Git allows you to have multiple remote repositories, it’s possible to have a

workflow where each developer has write access to their own public repository and

read access to everyone else’s. This scenario often includes a canonical repository that

represents the “official” project. To contribute to that project, you create your own

public clone of the project and push your changes to it. Then, you can send a request to

the maintainer of the main project to pull in your changes. They can add your repository

as a remote, test your changes locally, merge them into their branch, and push back to

their repository. The process works as follow (see Figure 5.2):

1. The project maintainer pushes to their public repository.

2. A contributor clones that repository and makes changes.

3. The contributor pushes to their own public copy.

4. The contributor sends the maintainer an e-mail asking them to pull changes.

5. The maintainer adds the contributor’s repo as a remote and merges locally.

6. The maintainer pushes merged changes to the main repository.

This is a very common workflow with sites like GitHub, where it’s easy to fork a

project and push your changes into your fork for everyone to see. One of the main

advantages of this approach is that you can continue to work, and the maintainer of the

main repository can pull in your changes at any time. Contributors don’t have to wait

for the project to incorporate their changes — each party can work at their own pace.

98

CHAPTER 5 DISTRIBUTED GIT

Figure 5.2: Integration-manager workflow

5.1.3 Dictator and Lieutenants Workflow

This is a variant of a multiple-repository workflow. It’s generally used by huge projects

with hundreds of collaborators; one famous example is the Linux kernel. Various in-

tegration managers are in charge of certain parts of the repository; they’re called lieu-

tenants. All the lieutenants have one integration manager known as the benevolent

dictator. The benevolent dictator’s repository serves as the reference repository from

which all the collaborators need to pull. The process works like this (see Figure 5.3):

1. Regular developers work on their topic branch and rebase their work on top of

master. The master branch is that of the dictator.

2. Lieutenants merge the developers’ topic branches into their master branch.

3. The dictator merges the lieutenants’ master branches into the dictator’s master

branch.

4. The dictator pushes their master to the reference repository so the other develop-

ers can rebase on it.

Figure 5.3: Benevolent dictator workflow

This kind of workflow isn’t common but can be useful in very big projects or in highly

hierarchical environments, because as it allows the project leader (the dictator) to del-

99

PRO GIT SCOTT CHACON

egate much of the work and collect large subsets of code at multiple points before

integrating them.

These are some commonly used workflows that are possible with a distributed sys-

tem like Git, but you can see that many variations are possible to suit your particular

real-world workflow. Now that you can (I hope) determine which workflow combina-

tion may work for you, I’ll cover some more specific examples of how to accomplish

the main roles that make up the different flows.

5.2 Contributing to a Project

You know what the different workflows are, and you should have a pretty good grasp

of fundamental Git usage. In this section, you’ll learn about a few common patterns

for contributing to a project.

The main difficulty with describing this process is that there are a huge number

of variations on how it’s done. Because Git is very flexible, people can and do work

together many ways, and it’s problematic to describe how you should contribute to a

project — every project is a bit different. Some of the variables involved are active

contributor size, chosen workflow, your commit access, and possibly the external con-

tribution method.

The first variable is active contributor size. How many users are actively contribut-

ing code to this project, and how often? In many instances, you’ll have two or three

developers with a few commits a day, or possibly less for somewhat dormant projects.

For really large companies or projects, the number of developers could be in the thou-

sands, with dozens or even hundreds of patches coming in each day. This is important

because with more and more developers, you run into more issues with making sure

your code applies cleanly or can be easily merged. Changes you submit may be ren-

dered obsolete or severely broken by work that is merged in while you were working

or while your changes were waiting to be approved or applied. How can you keep your

code consistently up to date and your patches valid?

The next variable is the workflow in use for the project. Is it centralized, with

each developer having equal write access to the main codeline? Does the project have

a maintainer or integration manager who checks all the patches? Are all the patches

peer-reviewed and approved? Are you involved in that process? Is a lieutenant system

in place, and do you have to submit your work to them first?

The next issue is your commit access. The workflow required in order to contribute

to a project is much different if you have write access to the project than if you don’t.

If you don’t have write access, how does the project prefer to accept contributed work?

Does it even have a policy? How much work are you contributing at a time? How often

do you contribute?

All these questions can affect how you contribute effectively to a project and what

workflows are preferred or available to you. I’ll cover aspects of each of these in a series

of use cases, moving from simple to more complex; you should be able to construct the

specific workflows you need in practice from these examples.

5.2.1 Commit Guidelines

Before you start looking at the specific use cases, here’s a quick note about commit

messages. Having a good guideline for creating commits and sticking to it makes work-

100

CHAPTER 5 DISTRIBUTED GIT

ing with Git and collaborating with others a lot easier. The Git project provides a doc-

ument that lays out a number of good tips for creating commits from which to submit

patches— you can read it in the Git source code in the Documentation/SubmittingPatches

file.

First, you don’t want to submit any whitespace errors. Git provides an easy way to

check for this — before you commit, run git diff --check , which identifies possible

whitespace errors and lists them for you. Here is an example, where I’ve replaced a red

terminal color with Xs:

$ git diff --check

lib/simplegit.rb:5: trailing whitespace.

+ @git_dir = File.expand_path(git_dir)XX

lib/simplegit.rb:7: trailing whitespace.

+ XXXXXXXXXXX

lib/simplegit.rb:26: trailing whitespace.

+ def command(git_cmd)XXXX

If you run that command before committing, you can tell if you’re about to commit

whitespace issues that may annoy other developers.

Next, try to make each commit a logically separate changeset. If you can, try to

make your changes digestible — don’t code for a whole weekend on five different

issues and then submit them all as one massive commit on Monday. Even if you don’t

commit during the weekend, use the staging area on Monday to split your work into at

least one commit per issue, with a useful message per commit. If some of the changes

modify the same file, try to use git add --patch to partially stage files (covered in

detail in Chapter 6). The project snapshot at the tip of the branch is identical whether

you do one commit or five, as long as all the changes are added at some point, so try to

make things easier on your fellow developers when they have to review your changes.

This approach also makes it easier to pull out or revert one of the changesets if you

need to later. Chapter 6 describes a number of useful Git tricks for rewriting history

and interactively staging files— use these tools to help craft a clean and understandable

history.

The last thing to keep in mind is the commit message. Getting in the habit of

creating quality commit messages makes using and collaborating with Git a lot easier.

As a general rule, your messages should start with a single line that’s no more than

about 50 characters and that describes the changeset concisely, followed by a blank line,

followed by a more detailed explanation. The Git project requires that the more detailed

explanation include your motivation for the change and contrast its implementation

with previous behavior — this is a good guideline to follow. It’s also a good idea to use

the imperative present tense in these messages. In other words, use commands. Instead

of “I added tests for” or “Adding tests for,” use “Add tests for.” Here is a template

originally written by Tim Pope at tpope.net:

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72

characters or so. In some contexts, the first line is treated as the

subject of an email and the rest of the text as the body. The blank

line separating the summary from the body is critical (unless you omit

the body entirely); tools like rebase can get confused if you run the

101

PRO GIT SCOTT CHACON

two together.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded by a

single space, with blank lines in between, but conventions vary here

If all your commit messages look like this, things will be a lot easier for you and

the developers you work with. The Git project has well-formatted commit messages

— I encourage you to run git log --no-merges there to see what a nicely formatted

project-commit history looks like.

In the following examples, and throughout most of this book, for the sake of brevity

I don’t format messages nicely like this; instead, I use the -m option to git commit . Do

as I say, not as I do.

5.2.2 Private Small Team

The simplest setup you’re likely to encounter is a private project with one or two other

developers. By private, I mean closed source — not read-accessible to the outside

world. You and the other developers all have push access to the repository.

In this environment, you can follow a workflow similar to what you might do when

using Subversion or another centralized system. You still get the advantages of things

like offline committing and vastly simpler branching and merging, but the workflow

can be very similar; the main difference is that merges happen client-side rather than

on the server at commit time. Let’s see what it might look like when two developers

start to work together with a shared repository. The first developer, John, clones the

repository, makes a change, and commits locally. (I’m replacing the protocol messages

with ... in these examples to shorten them somewhat.)

John’s Machine

$ git clone john@githost:simplegit.git

Initialized empty Git repository in /home/john/simplegit/.git/

...

$ cd simplegit/

$ vim lib/simplegit.rb

$ git commit -am ’removed invalid default value’

[master 738ee87] removed invalid default value

1 files changed, 1 insertions(+), 1 deletions(-)

The second developer, Jessica, does the same thing — clones the repository and

commits a change:

Jessica’s Machine

$ git clone jessica@githost:simplegit.git

Initialized empty Git repository in /home/jessica/simplegit/.git/

...

$ cd simplegit/

$ vim TODO

$ git commit -am ’add reset task’

102

CHAPTER 5 DISTRIBUTED GIT

[master fbff5bc] add reset task

1 files changed, 1 insertions(+), 0 deletions(-)

Now, Jessica pushes her work up to the server:

Jessica’s Machine

$ git push origin master

...

To jessica@githost:simplegit.git

1edee6b..fbff5bc master -> master

John tries to push his change up, too:

John’s Machine

$ git push origin master

To john@githost:simplegit.git

! [rejected] master -> master (non-fast forward)

error: failed to push some refs to ’john@githost:simplegit.git’

John isn’t allowed to push because Jessica has pushed in the meantime. This is

especially important to understand if you’re used to Subversion, because you’ll notice

that the two developers didn’t edit the same file. Although Subversion automatically

does such a merge on the server if different files are edited, in Git you must merge the

commits locally. John has to fetch Jessica’s changes and merge them in before he will

be allowed to push:

$ git fetch origin

...

From john@githost:simplegit

+ 049d078...fbff5bc master -> origin/master

At this point, John’s local repository looks something like Figure 5.4.

Figure 5.4: John’s initial repository

John has a reference to the changes Jessica pushed up, but he has to merge them

into his own work before he is allowed to push:

103

PRO GIT SCOTT CHACON

$ git merge origin/master

Merge made by recursive.

TODO | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

The merge goes smoothly — John’s commit history now looks like Figure 5.5.

Figure 5.5: John’s repository after merging origin/master

Now, John can test his code to make sure it still works properly, and then he can

push his new merged work up to the server:

$ git push origin master

...

To john@githost:simplegit.git

fbff5bc..72bbc59 master -> master

Finally, John’s commit history looks like Figure 5.6.

Figure 5.6: John’s history after pushing to the origin server

In the meantime, Jessica has been working on a topic branch. She’s created a topic

branch called issue54 and done three commits on that branch. She hasn’t fetched

John’s changes yet, so her commit history looks like Figure 5.7.

Jessica wants to sync up with John, so she fetches:

Jessica’s Machine

$ git fetch origin

104

CHAPTER 5 DISTRIBUTED GIT

Figure 5.7: Jessica’s initial commit history

...

From jessica@githost:simplegit

fbff5bc..72bbc59 master -> origin/master

That pulls down the work John has pushed up in the meantime. Jessica’s history

now looks like Figure 5.8.

Figure 5.8: Jessica’s history after fetching John’s changes

Jessica thinks her topic branch is ready, but she wants to know what she has to

merge her work into so that she can push. She runs git log to find out:

$ git log --no-merges origin/master îssue54

commit 738ee872852dfaa9d6634e0dea7a324040193016

Author: John Smith <jsmith@example.com>

Date: Fri May 29 16:01:27 2009 -0700

removed invalid default value

Now, Jessica can merge her topic work into her master branch, merge John’s work

(origin/master) into her master branch, and then push back to the server again. First,

she switches back to her master branch to integrate all this work:

$ git checkout master

Switched to branch "master"

Your branch is behind ’origin/master’ by 2 commits, and can be fast-forwarded.

She can merge either origin/master or issue54 first — they’re both upstream, so

the order doesn’t matter. The end snapshot should be identical no matter which order

she chooses; only the history will be slightly different. She chooses to merge in issue54

first:

105

PRO GIT SCOTT CHACON

$ git merge issue54

Updating fbff5bc..4af4298

Fast forward

README | 1 +

lib/simplegit.rb | 6 +++++-

2 files changed, 6 insertions(+), 1 deletions(-)

No problems occur; as you can see it, was a simple fast-forward. Now Jessica

merges in John’s work (origin/master):

$ git merge origin/master

Auto-merging lib/simplegit.rb

Merge made by recursive.

lib/simplegit.rb | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

Everything merges cleanly, and Jessica’s history looks like Figure 5.9.

Figure 5.9: Jessica’s history after merging John’s changes

Now origin/master is reachable from Jessica’s master branch, so she should be

able to successfully push (assuming John hasn’t pushed again in the meantime):

$ git push origin master

...

To jessica@githost:simplegit.git

72bbc59..8059c15 master -> master

Each developer has committed a few times and merged each other’s work success-

fully; see Figure 5.10.

Figure 5.10: Jessica’s history after pushing all changes back to the server

That is one of the simplest workflows. You work for a while, generally in a topic

branch, and merge into your master branch when it’s ready to be integrated. When

106

CHAPTER 5 DISTRIBUTED GIT

you want to share that work, you merge it into your own master branch, then fetch and

merge origin/master if it has changed, and finally push to the master branch on the

server. The general sequence is something like that shown in Figure 5.11.

Figure 5.11: General sequence of events for a simple multiple-developer Git workflow

5.2.3 Private Managed Team

In this next scenario, you’ll look at contributor roles in a larger private group. You’ll

learn how to work in an environment where small groups collaborate on features and

then those team-based contributions are integrated by another party.

Let’s say that John and Jessica are working together on one feature, while Jes-

sica and Josie are working on a second. In this case, the company is using a type of

integration-manager workflow where the work of the individual groups is integrated

107

PRO GIT SCOTT CHACON

only by certain engineers, and the master branch of the main repo can be updated only

by those engineers. In this scenario, all work is done in team-based branches and pulled

together by the integrators later.

Let’s follow Jessica’s workflow as she works on her two features, collaborating in

parallel with two different developers in this environment. Assuming she already has

her repository cloned, she decides to work on featureA first. She creates a new branch

for the feature and does some work on it there:

Jessica’s Machine

$ git checkout -b featureA

Switched to a new branch "featureA"

$ vim lib/simplegit.rb

$ git commit -am ’add limit to log function’

[featureA 3300904] add limit to log function

1 files changed, 1 insertions(+), 1 deletions(-)

At this point, she needs to share her work with John, so she pushes her featureA

branch commits up to the server. Jessica doesn’t have push access to the master branch

— only the integrators do— so she has to push to another branch in order to collaborate

with John:

$ git push origin featureA

...

To jessica@githost:simplegit.git

* [new branch] featureA -> featureA

Jessica e-mails John to tell him that she’s pushed some work into a branch named

featureA and he can look at it now. While she waits for feedback from John, Jessica

decides to start working on featureB with Josie. To begin, she starts a new feature

branch, basing it off the server’s master branch:

Jessica’s Machine

$ git fetch origin

$ git checkout -b featureB origin/master

Switched to a new branch "featureB"

Now, Jessica makes a couple of commits on the featureB branch:

$ vim lib/simplegit.rb

$ git commit -am ’made the ls-tree function recursive’

[featureB e5b0fdc] made the ls-tree function recursive

1 files changed, 1 insertions(+), 1 deletions(-)

$ vim lib/simplegit.rb

$ git commit -am ’add ls-files’

[featureB 8512791] add ls-files

1 files changed, 5 insertions(+), 0 deletions(-)

Jessica’s repository looks like Figure 5.12.

She’s ready to push up her work, but gets an e-mail from Josie that a branch with

some initial work on it was already pushed to the server as featureBee . Jessica first

needs to merge those changes in with her own before she can push to the server. She

can then fetch Josie’s changes down with git fetch :

108

CHAPTER 5 DISTRIBUTED GIT

Figure 5.12: Jessica’s initial commit history

$ git fetch origin

...

From jessica@githost:simplegit

* [new branch] featureBee -> origin/featureBee

Jessica can now merge this into the work she did with git merge :

$ git merge origin/featureBee

Auto-merging lib/simplegit.rb

Merge made by recursive.

lib/simplegit.rb | 4 ++++

1 files changed, 4 insertions(+), 0 deletions(-)

There is a bit of a problem — she needs to push the merged work in her featureB

branch to the featureBee branch on the server. She can do so by specifying the local

branch followed by a colon (:) followed by the remote branch to the git push com-

mand:

$ git push origin featureB:featureBee

...

To jessica@githost:simplegit.git

fba9af8..cd685d1 featureB -> featureBee

This is called a refspec. See Chapter 9 for a more detailed discussion of Git refspecs

and different things you can do with them.

Next, John e-mails Jessica to say he’s pushed some changes to the featureA branch

and ask her to verify them. She runs a git fetch to pull down those changes:

$ git fetch origin

...

From jessica@githost:simplegit

3300904..aad881d featureA -> origin/featureA

Then, she can see what has been changed with git log :

109

PRO GIT SCOTT CHACON

$ git log origin/featureA f̂eatureA

commit aad881d154acdaeb2b6b18ea0e827ed8a6d671e6

Author: John Smith <jsmith@example.com>

Date: Fri May 29 19:57:33 2009 -0700

changed log output to 30 from 25

Finally, she merges John’s work into her own featureA branch:

$ git checkout featureA

Switched to branch "featureA"

$ git merge origin/featureA

Updating 3300904..aad881d

Fast forward

lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

Jessica wants to tweak something, so she commits again and then pushes this back

up to the server:

$ git commit -am ’small tweak’

[featureA ed774b3] small tweak

1 files changed, 1 insertions(+), 1 deletions(-)

$ git push origin featureA

...

To jessica@githost:simplegit.git

3300904..ed774b3 featureA -> featureA

Jessica’s commit history now looks something like Figure 5.13.

Figure 5.13: Jessica’s history after committing on a feature branch

Jessica, Josie, and John inform the integrators that the featureA and featureBee

branches on the server are ready for integration into the mainline. After they integrate

these branches into the mainline, a fetch will bring down the new merge commits,

making the commit history look like Figure 5.14.

Many groups switch to Git because of this ability to have multiple teams working in

parallel, merging the different lines of work late in the process. The ability of smaller

110

CHAPTER 5 DISTRIBUTED GIT

Figure 5.14: Jessica’s history after merging both her topic branches

subgroups of a team to collaborate via remote branches without necessarily having

to involve or impede the entire team is a huge benefit of Git. The sequence for the

workflow you saw here is something like Figure 5.15.

5.2.4 Public Small Project

Contributing to public projects is a bit different. Because you don’t have the permis-

sions to directly update branches on the project, you have to get the work to the main-

tainers some other way. This first example describes contributing via forking on Git

hosts that support easy forking. The repo.or.cz and GitHub hosting sites both support

this, and many project maintainers expect this style of contribution. The next section

deals with projects that prefer to accept contributed patches via e-mail.

First, you’ll probably want to clone the main repository, create a topic branch for

the patch or patch series you’re planning to contribute, and do your work there. The

sequence looks basically like this:

$ git clone (url)

$ cd project

$ git checkout -b featureA

$ (work)

$ git commit

$ (work)

$ git commit

You may want to use rebase -i to squash your work down to a single commit, or

rearrange the work in the commits to make the patch easier for the maintainer to review

— see Chapter 6 for more information about interactive rebasing.

When your branch work is finished and you’re ready to contribute it back to the

maintainers, go to the original project page and click the “Fork” button, creating your

own writable fork of the project. You then need to add in this new repository URL as a

second remote, in this case named myfork :

$ git remote add myfork (url)

You need to push your work up to it. It’s easiest to push the remote branch you’re

working on up to your repository, rather than merging into your master branch and

111

PRO GIT SCOTT CHACON

Figure 5.15: Basic sequence of this managed-team workflow

pushing that up. The reason is that if the work isn’t accepted or is cherry picked, you

don’t have to rewind your master branch. If the maintainers merge, rebase, or cherry-

pick your work, you’ll eventually get it back via pulling from their repository anyhow:

$ git push myfork featureA

When your work has been pushed up to your fork, you need to notify the maintainer.

This is often called a pull request, and you can either generate it via the website —

GitHub has a “pull request” button that automatically messages the maintainer — or

run the git request-pull command and e-mail the output to the project maintainer

manually.

The request-pull command takes the base branch into which you want your topic

branch pulled and the Git repository URL you want them to pull from, and outputs a

summary of all the changes you’re asking to be pulled in. For instance, if Jessica wants

112

CHAPTER 5 DISTRIBUTED GIT

to send John a pull request, and she’s done two commits on the topic branch she just

pushed up, she can run this:

$ git request-pull origin/master myfork

The following changes since commit 1edee6b1d61823a2de3b09c160d7080b8d1b3a40:

John Smith (1):

added a new function

are available in the git repository at:

git://githost/simplegit.git featureA

Jessica Smith (2):

add limit to log function

change log output to 30 from 25

lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

The output can be sent to the maintainer—it tells themwhere the work was branched

from, summarizes the commits, and tells where to pull this work from.

On a project for which you’re not the maintainer, it’s generally easier to have a

branch like master always track origin/master and to do your work in topic branches

that you can easily discard if they’re rejected. Having work themes isolated into topic

branches also makes it easier for you to rebase your work if the tip of the main reposi-

tory has moved in the meantime and your commits no longer apply cleanly. For exam-

ple, if you want to submit a second topic of work to the project, don’t continue working

on the topic branch you just pushed up — start over from the main repository’s master

branch:

$ git checkout -b featureB origin/master

$ (work)

$ git commit

$ git push myfork featureB

$ (email maintainer)

$ git fetch origin

Now, each of your topics is contained within a silo — similar to a patch queue —

that you can rewrite, rebase, and modify without the topics interfering or interdepend-

ing on each other as in Figure 5.16.

Let’s say the project maintainer has pulled in a bunch of other patches and tried

your first branch, but it no longer cleanly merges. In this case, you can try to rebase

that branch on top of origin/master , resolve the conflicts for the maintainer, and then

resubmit your changes:

$ git checkout featureA

$ git rebase origin/master

$ git push f myfork featureA

This rewrites your history to now look like Figure 5.17.

Because you rebased the branch, you have to specify the f to your push command

in order to be able to replace the featureA branch on the server with a commit that isn’t

113

PRO GIT SCOTT CHACON

Figure 5.16: Initial commit history with featureB work

Figure 5.17: Commit history after featureA work

a descendant of it. An alternative would be to push this new work to a different branch

on the server (perhaps called featureAv2).

Let’s look at one more possible scenario: the maintainer has looked at work in your

second branch and likes the concept but would like you to change an implementation

detail. You’ll also take this opportunity to move the work to be based off the project’s

current master branch. You start a new branch based off the current origin/master

branch, squash the featureB changes there, resolve any conflicts, make the implemen-

tation change, and then push that up as a new branch:

$ git checkout -b featureBv2 origin/master

$ git merge --no-commit --squash featureB

$ (change implementation)

$ git commit

$ git push myfork featureBv2

The --squash option takes all the work on the merged branch and squashes it into

one non-merge commit on top of the branch you’re on. The --no-commit option tells

Git not to automatically record a commit. This allows you to introduce all the changes

from another branch and then make more changes before recording the new commit.

Now you can send the maintainer a message that you’ve made the requested changes

and they can find those changes in your featureBv2 branch (see Figure 5.18).

114

CHAPTER 5 DISTRIBUTED GIT

Figure 5.18: Commit history after featureBv2 work

5.2.5 Public Large Project

Many larger projects have established procedures for accepting patches — you’ll need

to check the specific rules for each project, because they will differ. However, many

larger public projects accept patches via a developer mailing list, so I’ll go over an

example of that now.

The workflow is similar to the previous use case — you create topic branches for

each patch series you work on. The difference is how you submit them to the project.

Instead of forking the project and pushing to your own writable version, you generate

e-mail versions of each commit series and e-mail them to the developer mailing list:

$ git checkout -b topicA

$ (work)

$ git commit

$ (work)

$ git commit

Now you have two commits that you want to send to the mailing list. You use git

format-patch to generate the mbox-formatted files that you can e-mail to the list — it

turns each commit into an e-mail message with the first line of the commit message as

the subject and the rest of the message plus the patch that the commit introduces as the

body. The nice thing about this is that applying a patch from an e-mail generated with

format-patch preserves all the commit information properly, as you’ll see more of in

the next section when you apply these commits:

$ git format-patch -M origin/master

0001-add-limit-to-log-function.patch

0002-changed-log-output-to-30-from-25.patch

The format-patch command prints out the names of the patch files it creates. The

-M switch tells Git to look for renames. The files end up looking like this:

$ cat 0001-add-limit-to-log-function.patch

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

115

PRO GIT SCOTT CHACON

lib/simplegit.rb | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index 76f47bc..f9815f1 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -14,7 +14,7 @@ class SimpleGit

end

def log(treeish = ’master’)

- command("git log #{treeish}")

+ command("git log -n 20 #{treeish}")

end

def ls_tree(treeish = ’master’)

--

1.6.2.rc1.20.g8c5b.dirty

You can also edit these patch files to add more information for the e-mail list that

you don’t want to show up in the commit message. If you add text between the -- line

and the beginning of the patch (the lib/simplegit.rb line), then developers can read

it; but applying the patch excludes it.

To e-mail this to a mailing list, you can either paste the file into your e-mail pro-

gram or send it via a command-line program. Pasting the text often causes formatting

issues, especially with “smarter” clients that don’t preserve newlines and other whites-

pace appropriately. Luckily, Git provides a tool to help you send properly format-

ted patches via IMAP, which may be easier for you. I’ll demonstrate how to send

a patch via Gmail, which happens to be the e-mail agent I use; you can read de-

tailed instructions for a number of mail programs at the end of the aforementioned

Documentation/SubmittingPatches file in the Git source code.

First, you need to set up the imap section in your /.gitconfig file. You can set

each value separately with a series of git config commands, or you can add them

manually; but in the end, your config file should look something like this:

[imap]

folder = "[Gmail]/Drafts"

host = imaps://imap.gmail.com

user = user@gmail.com

pass = p4ssw0rd

port = 993

sslverify = false

If your IMAP server doesn’t use SSL, the last two lines probably aren’t necessary,

and the host value will be imap:// instead of imaps:// . When that is set up, you can

use git send-email to place the patch series in the Drafts folder of the specified IMAP

server:

$ git send-email *.patch

0001-added-limit-to-log-function.patch

116

CHAPTER 5 DISTRIBUTED GIT

0002-changed-log-output-to-30-from-25.patch

Who should the emails appear to be from? [Jessica Smith <jessica@example.com>]

Emails will be sent from: Jessica Smith <jessica@example.com>

Who should the emails be sent to? jessica@example.com

Message-ID to be used as In-Reply-To for the first email? y

Then, Git spits out a bunch of log information looking something like this for each

patch you’re sending:

(mbox) Adding cc: Jessica Smith <jessica@example.com> from

\line ’From: Jessica Smith <jessica@example.com>’

OK. Log says:

Sendmail: /usr/sbin/sendmail -i jessica@example.com

From: Jessica Smith <jessica@example.com>

To: jessica@example.com

Subject: [PATCH 1/2] added limit to log function

Date: Sat, 30 May 2009 13:29:15 -0700

Message-Id: <1243715356-61726-1-git-send-email-jessica@example.com>

X-Mailer: git-send-email 1.6.2.rc1.20.g8c5b.dirty

In-Reply-To: <y>

References: <y>

Result: OK

At this point, you should be able to go to your Drafts folder, change the To field

to the mailing list you’re sending the patch to, possibly CC the maintainer or person

responsible for that section, and send it off.

5.2.6 Summary

This section has covered a number of common workflows for dealing with several very

different types of Git projects you’re likely to encounter and introduced a couple of

new tools to help you manage this process. Next, you’ll see how to work the other side

of the coin: maintaining a Git project. You’ll learn how to be a benevolent dictator or

integration manager.

5.3 Maintaining a Project

In addition to knowing how to effectively contribute to a project, you’ll likely need to

know how to maintain one. This can consist of accepting and applying patches gener-

ated via format-patch and e-mailed to you, or integrating changes in remote branches

for repositories you’ve added as remotes to your project. Whether you maintain a

canonical repository or want to help by verifying or approving patches, you need to

know how to accept work in a way that is clearest for other contributors and sustain-

able by you over the long run.

5.3.1 Working in Topic Branches

When you’re thinking of integrating new work, it’s generally a good idea to try it out in

a topic branch — a temporary branch specifically made to try out that new work. This

117

PRO GIT SCOTT CHACON

way, it’s easy to tweak a patch individually and leave it if it’s not working until you

have time to come back to it. If you create a simple branch name based on the theme of

the work you’re going to try, such as ruby client or something similarly descriptive,

you can easily remember it if you have to abandon it for a while and come back later.

The maintainer of the Git project tends to namespace these branches as well — such as

sc/ruby client , where sc is short for the person who contributed the work. As you’ll

remember, you can create the branch based off your master branch like this:

$ git branch sc/ruby_client master

Or, if you want to also switch to it immediately, you can use the checkout -b

option:

$ git checkout -b sc/ruby_client master

Now you’re ready to add your contributed work into this topic branch and determine

if you want to merge it into your longer-term branches.

5.3.2 Applying Patches from E-mail

If you receive a patch over e-mail that you need to integrate into your project, you need

to apply the patch in your topic branch to evaluate it. There are two ways to apply an

e-mailed patch: with git apply or with git am .

Applying a Patch with apply

If you received the patch from someone who generated it with the git diff or a

Unix diff command, you can apply it with the git apply command. Assuming you

saved the patch at /tmp/patch-ruby-client.patch , you can apply the patch like this:

$ git apply /tmp/patch-ruby-client.patch

This modifies the files in your working directory. It’s almost identical to running a

patch -p1 command to apply the patch, although it’s more paranoid and accepts fewer

fuzzy matches then patch. It also handles file adds, deletes, and renames if they’re

described in the git diff format, which patch won’t do. Finally, git apply is an

“apply all or abort all” model where either everything is applied or nothing is, whereas

patch can partially apply patchfiles, leaving your working directory in a weird state.

git apply is over all much more paranoid than patch . It won’t create a commit for you

— after running it, you must stage and commit the changes introduced manually.

You can also use git apply to see if a patch applies cleanly before you try actually

applying it — you can run git apply --check with the patch:

$ git apply --check 0001-seeing-if-this-helps-the-gem.patch

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

If there is no output, then the patch should apply cleanly. This command also exits

with a non-zero status if the check fails, so you can use it in scripts if you want.

Applying a Patch with am

If the contributor is a Git user and was good enough to use the format-patch com-

mand to generate their patch, then your job is easier because the patch contains author

information and a commit message for you. If you can, encourage your contributors to

118

CHAPTER 5 DISTRIBUTED GIT

use format-patch instead of diff to generate patches for you. You should only have to

use git apply for legacy patches and things like that.

To apply a patch generated by format-patch , you use git am . Technically, git am

is built to read an mbox file, which is a simple, plain-text format for storing one or

more e-mail messages in one text file. It looks something like this:

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

This is the beginning of the output of the format-patch command that you saw in the

previous section. This is also a valid mbox e-mail format. If someone has e-mailed you

the patch properly using git send-email, and you download that into an mbox format,

then you can point git am to that mbox file, and it will start applying all the patches it

sees. If you run a mail client that can save several e-mails out in mbox format, you can

save entire patch series into a file and then use git am to apply them one at a time.

However, if someone uploaded a patch file generated via format-patch to a tick-

eting system or something similar, you can save the file locally and then pass that file

saved on your disk to git am to apply it:

$ git am 0001-limit-log-function.patch

Applying: add limit to log function

You can see that it applied cleanly and automatically created the new commit for

you. The author information is taken from the e-mail’s From and Date headers, and the

message of the commit is taken from the Subject and body (before the patch) of the

e-mail. For example, if this patch was applied from the mbox example I just showed,

the commit generated would look something like this:

$ git log --pretty=fuller -1

commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Author: Jessica Smith <jessica@example.com>

AuthorDate: Sun Apr 6 10:17:23 2008 -0700

Commit: Scott Chacon <schacon@gmail.com>

CommitDate: Thu Apr 9 09:19:06 2009 -0700

add limit to log function

Limit log functionality to the first 20

The Commit information indicates the person who applied the patch and the time it

was applied. The Author information is the individual who originally created the patch

and when it was originally created.

But it’s possible that the patch won’t apply cleanly. Perhaps your main branch has

diverged too far from the branch the patch was built from, or the patch depends on

another patch you haven’t applied yet. In that case, the git am process will fail and ask

you what you want to do:

119

PRO GIT SCOTT CHACON

$ git am 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Patch failed at 0001.

When you have resolved this problem run "git am --resolved".

If you would prefer to skip this patch, instead run "git am --skip".

To restore the original branch and stop patching run "git am --abort".

This command puts conflict markers in any files it has issues with, much like a

conflicted merge or rebase operation. You solve this issue much the same way — edit

the file to resolve the conflict, stage the new file, and then run git am --resolved to

continue to the next patch:

$ (fix the file)

$ git add ticgit.gemspec

$ git am --resolved

Applying: seeing if this helps the gem

If you want Git to try a bit more intelligently to resolve the conflict, you can pass

a -3 option to it, which makes Git attempt a three-way merge. This option isn’t on

by default because it doesn’t work if the commit the patch says it was based on isn’t

in your repository. If you do have that commit — if the patch was based on a public

commit — then the -3 option is generally much smarter about applying a conflicting

patch:

$ git am -3 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

No changes -- Patch already applied.

In this case, I was trying to apply a patch I had already applied. Without the -3

option, it looks like a conflict.

If you’re applying a number of patches from an mbox, you can also run the am

command in interactive mode, which stops at each patch it finds and asks if you want

to apply it:

$ git am -3 -i mbox

Commit Body is:

seeing if this helps the gem

Apply? [y]es/[n]o/[e]dit/[v]iew patch/[a]ccept all

This is nice if you have a number of patches saved, because you can view the patch

first if you don’t remember what it is, or not apply the patch if you’ve already done so.

When all the patches for your topic are applied and committed into your branch,

you can choose whether and how to integrate them into a longer-running branch.

120

CHAPTER 5 DISTRIBUTED GIT

5.3.3 Checking Out Remote Branches

If your contribution came from a Git user who set up their own repository, pushed a

number of changes into it, and then sent you the URL to the repository and the name

of the remote branch the changes are in, you can add them as a remote and do merges

locally.

For instance, if Jessica sends you an e-mail saying that she has a great new feature

in the ruby-client branch of her repository, you can test it by adding the remote and

checking out that branch locally:

$ git remote add jessica git://github.com/jessica/myproject.git

$ git fetch jessica

$ git checkout -b rubyclient jessica/ruby-client

If she e-mails you again later with another branch containing another great feature,

you can fetch and check out because you already have the remote setup.

This is most useful if you’re working with a person consistently. If someone only

has a single patch to contribute once in a while, then accepting it over e-mail may be

less time consuming than requiring everyone to run their own server and having to

continually add and remove remotes to get a few patches. You’re also unlikely to want

to have hundreds of remotes, each for someone who contributes only a patch or two.

However, scripts and hosted services may make this easier — it depends largely on

how you develop and how your contributors develop.

The other advantage of this approach is that you get the history of the commits as

well. Although you may have legitimate merge issues, you know where in your history

their work is based; a proper three-way merge is the default rather than having to supply

a -3 and hope the patch was generated off a public commit to which you have access.

If you aren’t working with a person consistently but still want to pull from them in

this way, you can provide the URL of the remote repository to the git pull command.

This does a one-time pull and doesn’t save the URL as a remote reference:

$ git pull git://github.com/onetimeguy/project.git

From git://github.com/onetimeguy/project

* branch HEAD -> FETCH_HEAD

Merge made by recursive.

5.3.4 Determining What Is Introduced

Now you have a topic branch that contains contributed work. At this point, you can

determine what you’d like to do with it. This section revisits a couple of commands so

you can see how you can use them to review exactly what you’ll be introducing if you

merge this into your main branch.

It’s often helpful to get a review of all the commits that are in this branch but that

aren’t in your master branch. You can exclude commits in the master branch by adding

the --not option before the branch name. For example, if your contributor sends you

two patches and you create a branch called contrib and applied those patches there,

you can run this:

$ git log contrib --not master

commit 5b6235bd297351589efc4d73316f0a68d484f118

Author: Scott Chacon <schacon@gmail.com>

121

PRO GIT SCOTT CHACON

Date: Fri Oct 24 09:53:59 2008 -0700

seeing if this helps the gem

commit 7482e0d16d04bea79d0dba8988cc78df655f16a0

Author: Scott Chacon <schacon@gmail.com>

Date: Mon Oct 22 19:38:36 2008 -0700

updated the gemspec to hopefully work better

To see what changes each commit introduces, remember that you can pass the -p

option to git log and it will append the diff introduced to each commit.

To see a full diff of what would happen if you were to merge this topic branch with

another branch, you may have to use a weird trick to get the correct results. You may

think to run this:

$ git diff master

This command gives you a diff, but it may be misleading. If your master branch has

moved forward since you created the topic branch from it, then you’ll get seemingly

strange results. This happens because Git directly compares the snapshots of the last

commit of the topic branch you’re on and the snapshot of the last commit on the master

branch. For example, if you’ve added a line in a file on the master branch, a direct

comparison of the snapshots will look like the topic branch is going to remove that

line.

If master is a direct ancestor of your topic branch, this isn’t a problem; but if the

two histories have diverged, the diff will look like you’re adding all the new stuff in

your topic branch and removing everything unique to the master branch.

What you really want to see are the changes added to the topic branch — the work

you’ll introduce if you merge this branch with master. You do that by having Git

compare the last commit on your topic branch with the first common ancestor it has

with the master branch.

Technically, you can do that by explicitly figuring out the common ancestor and

then running your diff on it:

$ git merge-base contrib master

36c7dba2c95e6bbb78dfa822519ecfec6e1ca649

$ git diff 36c7db

However, that isn’t convenient, so Git provides another shorthand for doing the

same thing: the triple-dot syntax. In the context of the diff command, you can put

three periods after another branch to do a diff between the last commit of the branch

you’re on and its common ancestor with another branch:

$ git diff master...contrib

This command shows you only the work your current topic branch has introduced

since its common ancestor with master. That is a very useful syntax to remember.

122

CHAPTER 5 DISTRIBUTED GIT

5.3.5 Integrating Contributed Work

When all the work in your topic branch is ready to be integrated into a more mainline

branch, the question is how to do it. Furthermore, what overall workflow do you want

to use to maintain your project? You have a number of choices, so I’ll cover a few of

them.

Merging Workflows

One simple workflow merges your work into your master branch. In this scenario,

you have a master branch that contains basically stable code. When you have work in

a topic branch that you’ve done or that someone has contributed and you’ve verified,

you merge it into your master branch, delete the topic branch, and then continue the

process. If we have a repository with work in two branches named ruby client and

php client that looks like Figure 5.19 and merge ruby client first and then php client

next, then your history will end up looking like Figure 5.20.

Figure 5.19: History with several topic branches

That is probably the simplest workflow, but it’s problematic if you’re dealing with

larger repositories or projects.

If you have more developers or a larger project, you’ll probably want to use at least

a two-phase merge cycle. In this scenario, you have two long-running branches, master

and develop , in which you determine that master is updated only when a very stable

release is cut and all new code is integrated into the develop branch. You regularly

push both of these branches to the public repository. Each time you have a new topic

branch to merge in (Figure 5.21), you merge it into develop (Figure 5.22); then, when

you tag a release, you fast-forward master to wherever the now-stable develop branch

is (Figure 5.23).

123

PRO GIT SCOTT CHACON

Figure 5.20: After a topic branch merge

Figure 5.21: Before a topic branch merge

This way, when people clone your project’s repository, they can either check out

master to build the latest stable version and keep up to date on that easily, or they

can check out develop, which is the more cutting-edge stuff. You can also continue

this concept, having an integrate branch where all the work is merged together. Then,

when the codebase on that branch is stable and passes tests, you merge it into a develop

branch; and when that has proven itself stable for a while, you fast-forward your master

branch.

Large-Merging Workflows

The Git project has four long-running branches: master , next , and pu (proposed

updates) for new work, and maint for maintenance backports. When new work is intro-

duced by contributors, it’s collected into topic branches in the maintainer’s repository

in a manner similar to what I’ve described (see Figure 5.24). At this point, the topics

are evaluated to determine whether they’re safe and ready for consumption or whether

they need more work. If they’re safe, they’re merged into next , and that branch is

124

CHAPTER 5 DISTRIBUTED GIT

Figure 5.22: After a topic branch merge

Figure 5.23: After a topic branch release

pushed up so everyone can try the topics integrated together.

Figure 5.24: Managing a complex series of parallel contributed topic branches

If the topics still need work, they’re merged into pu instead. When it’s determined

125

PRO GIT SCOTT CHACON

that they’re totally stable, the topics are re-merged into master and are then rebuilt

from the topics that were in next but didn’t yet graduate to master . This means master

almost always moves forward, next is rebased occasionally, and pu is rebased even

more often (see Figure 5.25).

Figure 5.25: Merging contributed topic branches into long-term integration branches

When a topic branch has finally been merged into master , it’s removed from the

repository. The Git project also has a maint branch that is forked off from the last

release to provide backported patches in case a maintenance release is required. Thus,

when you clone the Git repository, you have four branches that you can check out to

evaluate the project in different stages of development, depending on how cutting edge

you want to be or how you want to contribute; and the maintainer has a structured

workflow to help them vet new contributions.

Rebasing and Cherry Picking Workflows

Other maintainers prefer to rebase or cherry-pick contributed work on top of their

master branch, rather than merging it in, to keep a mostly linear history. When you

have work in a topic branch and have determined that you want to integrate it, you

move to that branch and run the rebase command to rebuild the changes on top of your

current master (or develop , and so on) branch. If that works well, you can fast-forward

your master branch, and you’ll end up with a linear project history.

The other way to move introduced work from one branch to another is to cherry-

pick it. A cherry-pick in Git is like a rebase for a single commit. It takes the patch

that was introduced in a commit and tries to reapply it on the branch you’re currently

on. This is useful if you have a number of commits on a topic branch and you want

to integrate only one of them, or if you only have one commit on a topic branch and

you’d prefer to cherry-pick it rather than run rebase. For example, suppose you have a

project that looks like Figure 5.26.

If you want to pull commit e43a6 into your master branch, you can run

$ git cherry-pick e43a6fd3e94888d76779ad79fb568ed180e5fcdf

Finished one cherry-pick.

[master]: created a0a41a9: "More friendly message when locking the index fails."

3 files changed, 17 insertions(+), 3 deletions(-)

This pulls the same change introduced in e43a6 , but you get a new commit SHA–1

value, because the date applied is different. Now your history looks like Figure 5.27.

Now you can remove your topic branch and drop the commits you didn’t want to

pull in.

126

CHAPTER 5 DISTRIBUTED GIT

Figure 5.26: Example history before a cherry pick

Figure 5.27: History after cherry-picking a commit on a topic branch

5.3.6 Tagging Your Releases

When you’ve decided to cut a release, you’ll probably want to drop a tag so you can re-

create that release at any point going forward. You can create a new tag as I discussed

in Chapter 2. If you decide to sign the tag as the maintainer, the tagging may look

something like this:

$ git tag -s v1.5 -m ’my signed 1.5 tag’

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gmail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you do sign your tags, you may have the problem of distributing the public PGP

key used to sign your tags. The maintainer of the Git project has solved this issue by

including their public key as a blob in the repository and then adding a tag that points

directly to that content. To do this, you can figure out which key you want by running

gpg --list-keys :

$ gpg --list-keys

/Users/schacon/.gnupg/pubring.gpg

127

PRO GIT SCOTT CHACON

pub 1024D/F721C45A 2009-02-09 [expires: 2010-02-09]

uid Scott Chacon <schacon@gmail.com>

sub 2048g/45D02282 2009-02-09 [expires: 2010-02-09]

Then, you can directly import the key into the Git database by exporting it and

piping that through git hash-object , which writes a new blob with those contents into

Git and gives you back the SHA–1 of the blob:

$ gpg -a --export F721C45A | git hash-object -w --stdin

659ef797d181633c87ec71ac3f9ba29fe5775b92

Now that you have the contents of your key in Git, you can create a tag that points

directly to it by specifying the new SHA–1 value that the hash-object command gave

you:

$ git tag -a maintainer-pgp-pub 659ef797d181633c87ec71ac3f9ba29fe5775b92

If you run git push --tags , the maintainer-pgp-pub tag will be shared with ev-

eryone. If anyone wants to verify a tag, they can directly import your PGP key by

pulling the blob directly out of the database and importing it into GPG:

$ git show maintainer-pgp-pub | gpg --import

They can use that key to verify all your signed tags. Also, if you include instructions

in the tag message, running git show <tag> will let you give the end user more specific

instructions about tag verification.

5.3.7 Generating a Build Number

Because Git doesn’t have monotonically increasing numbers like ‘v123’ or the equiv-

alent to go with each commit, if you want to have a human-readable name to go with

a commit, you can run git describe on that commit. Git gives you the name of the

nearest tag with the number of commits on top of that tag and a partial SHA–1 value

of the commit you’re describing:

$ git describe master

v1.6.2-rc1-20-g8c5b85c

This way, you can export a snapshot or build and name it something understandable

to people. In fact, if you build Git from source code cloned from the Git repository, git

--version gives you something that looks like this. If you’re describing a commit that

you have directly tagged, it gives you the tag name.

The git describe command favors annotated tags (tags created with the -a or -s

flag), so release tags should be created this way if you’re using git describe , to ensure

the commit is named properly when described. You can also use this string as the target

of a checkout or show command, although it relies on the abbreviated SHA–1 value at

the end, so it may not be valid forever. For instance, the Linux kernel recently jumped

from 8 to 10 characters to ensure SHA–1 object uniqueness, so older git describe

output names were invalidated.

128

CHAPTER 5 DISTRIBUTED GIT

5.3.8 Preparing a Release

Now you want to release a build. One of the things you’ll want to do is create an

archive of the latest snapshot of your code for those poor souls who don’t use Git. The

command to do this is git archive :

$ git archive master --prefix=’project/’ | gzip > ‘git describe master‘.tar.gz

$ ls *.tar.gz

v1.6.2-rc1-20-g8c5b85c.tar.gz

If someone opens that tarball, they get the latest snapshot of your project under

a project directory. You can also create a zip archive in much the same way, but by

passing the --format=zip option to git archive :

$ git archive master --prefix=’project/’ --format=zip > ‘git describe master‘.zip

You now have a nice tarball and a zip archive of your project release that you can

upload to your website or e-mail to people.

5.3.9 The Shortlog

It’s time to e-mail your mailing list of people who want to know what’s happening in

your project. A nice way of quickly getting a sort of changelog of what has been added

to your project since your last release or e-mail is to use the git shortlog command.

It summarizes all the commits in the range you give it; for example, the following

gives you a summary of all the commits since your last release, if your last release was

named v1.0.1:

$ git shortlog --no-merges master --not v1.0.1

Chris Wanstrath (8):

Add support for annotated tags to Grit::Tag

Add packed-refs annotated tag support.

Add Grit::Commit#to_patch

Update version and History.txt

Remove stray ‘puts‘

Make ls_tree ignore nils

Tom Preston-Werner (4):

fix dates in history

dynamic version method

Version bump to 1.0.2

Regenerated gemspec for version 1.0.2

You get a clean summary of all the commits since v1.0.1, grouped by author, that

you can e-mail to your list.

5.4 Summary

You should feel fairly comfortable contributing to a project in Git as well as main-

taining your own project or integrating other users’ contributions. Congratulations on

being an effective Git developer! In the next chapter, you’ll learn more powerful tools

and tips for dealing with complex situations, which will truly make you a Git master.

129

PRO GIT SCOTT CHACON

130

Chapter 6

Git Tools

By now, you’ve learned most of the day-to-day commands and workflows that you

need to manage or maintain a Git repository for your source code control. You’ve

accomplished the basic tasks of tracking and committing files, and you’ve harnessed

the power of the staging area and lightweight topic branching and merging.

Now you’ll explore a number of very powerful things that Git can do that you may

not necessarily use on a day-to-day basis but that you may need at some point.

6.1 Revision Selection

Git allows you to specify specific commits or a range of commits in several ways. They

aren’t necessarily obvious but are helpful to know.

6.1.1 Single Revisions

You can obviously refer to a commit by the SHA–1 hash that it’s given, but there

are more human-friendly ways to refer to commits as well. This section outlines the

various ways you can refer to a single commit.

6.1.2 Short SHA

Git is smart enough to figure out what commit you meant to type if you provide the

first few characters, as long as your partial SHA–1 is at least four characters long and

unambiguous— that is, only one object in the current repository begins with that partial

SHA–1.

For example, to see a specific commit, suppose you run a git log command and

identify the commit where you added certain functionality:

$ git log

commit 734713bc047d87bf7eac9674765ae793478c50d3

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

131

PRO GIT SCOTT CHACON

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

added some blame and merge stuff

In this case, choose 1c002dd.... If you git show that commit, the following com-

mands are equivalent (assuming the shorter versions are unambiguous):

$ git show 1c002dd4b536e7479fe34593e72e6c6c1819e53b

$ git show 1c002dd4b536e7479f

$ git show 1c002d

Git can figure out a short, unique abbreviation for your SHA–1 values. If you pass

--abbrev-commit to the git log command, the output will use shorter values but keep

them unique; it defaults to using seven characters but makes them longer if necessary

to keep the SHA–1 unambiguous:

$ git log --abbrev-commit --pretty=oneline

ca82a6d changed the verison number

085bb3b removed unnecessary test code

a11bef0 first commit

Generally, eight to ten characters are more than enough to be unique within a

project. One of the largest Git projects, the Linux kernel, is beginning to need 12

characters out of the possible 40 to stay unique.

6.1.3 A SHORT NOTE ABOUT SHA–1

A lot of people become concerned at some point that they will, by random happen-

stance, have two objects in their repository that hash to the same SHA–1 value. What

then?

If you do happen to commit an object that hashes to the same SHA–1 value as a

previous object in your repository, GIt will see the previous object already in your Git

database and assume it was already written. If you try to check out that object again at

some point, you’ll always get the data of the first object.

However, you should be aware of how ridiculously unlikely this scenario is. The

SHA–1 digest is 20 bytes or 160 bits. The number of randomly hashed objects needed

to ensure a 50% probability of a single collision is about 280 (the formula for deter-

mining collision probability is p = n(n−1)
2

×
1

2160
. 280 is 1.2×1024 or 1 million billion

billion. That’s 1,200 times the number of grains of sand on the earth.

Here’s an example to give you an idea of what it would take to get a SHA–1 colli-

sion. If all 6.5 billion humans on Earth were programming, and every second, each one

was producing code that was the equivalent of the entire Linux kernel history (1 million

132

CHAPTER 6 GIT TOOLS

Git objects) and pushing it into one enormous Git repository, it would take 5 years until

that repository contained enough objects to have a 50% probability of a single SHA–1

object collision. A higher probability exists that every member of your programming

team will be attacked and killed by wolves in unrelated incidents on the same night.

6.1.4 Branch References

The most straightforward way to specify a commit requires that it have a branch refer-

ence pointed at it. Then, you can use a branch name in any Git command that expects

a commit object or SHA–1 value. For instance, if you want to show the last commit

object on a branch, the following commands are equivalent, assuming that the topic1

branch points to ca82a6d :

$ git show ca82a6dff817ec66f44342007202690a93763949

$ git show topic1

If you want to see which specific SHA a branch points to, or if you want to see what

any of these examples boils down to in terms of SHAs, you can use a Git plumbing tool

called rev-parse . You can see Chapter 9 for more information about plumbing tools;

basically, rev-parse exists for lower-level operations and isn’t designed to be used in

day-to-day operations. However, it can be helpful sometimes when you need to see

what’s really going on. Here you can run rev-parse on your branch.

$ git rev-parse topic1

ca82a6dff817ec66f44342007202690a93763949

6.1.5 RefLog Shortnames

One of the things Git does in the background while you’re working away is keep a

reflog — a log of where your HEAD and branch references have been for the last few

months.

You can see your reflog by using git reflog :

$ git reflog

734713b... HEAD@{0}: commit: fixed refs handling, added gc auto, updated

d921970... HEAD@{1}: merge phedders/rdocs: Merge made by recursive.

1c002dd... HEAD@{2}: commit: added some blame and merge stuff

1c36188... HEAD@{3}: rebase -i (squash): updating HEAD

95df984... HEAD@{4}: commit: # This is a combination of two commits.

1c36188... HEAD@{5}: rebase -i (squash): updating HEAD

7e05da5... HEAD@{6}: rebase -i (pick): updating HEAD

Every time your branch tip is updated for any reason, Git stores that information

for you in this temporary history. And you can specify older commits with this data, as

well. If you want to see the fifth prior value of the HEAD of your repository, you can

use the @n reference that you see in the reflog output:

$ git show HEAD@{5}

You can also use this syntax to see where a branch was some specific amount of

time ago. For instance, to see where your master branch was yesterday, you can type

133

PRO GIT SCOTT CHACON

$ git show master@{yesterday}

That shows you where the branch tip was yesterday. This technique only works for

data that’s still in your reflog, so you can’t use it to look for commits older than a few

months.

To see reflog information formatted like the git log output, you can run git log

-g:

$ git log -g master

commit 734713bc047d87bf7eac9674765ae793478c50d3

Reflog: master@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: commit: fixed refs handling, added gc auto, updated

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Reflog: master@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: merge phedders/rdocs: Merge made by recursive.

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

It’s important to note that the reflog information is strictly local — it’s a log of

what you’ve done in your repository. The references won’t be the same on someone

else’s copy of the repository; and right after you initially clone a repository, you’ll have

an empty reflog, as no activity has occurred yet in your repository. Running git show

HEAD@2.months.ago will work only if you cloned the project at least two months ago

— if you cloned it five minutes ago, you’ll get no results.

6.1.6 Ancestry References

The other main way to specify a commit is via its ancestry. If you place a ˆ at the end

of a reference, Git resolves it to mean the parent of that commit. Suppose you look at

the history of your project:

$ git log --pretty=format:’%h %s’ --graph

* 734713b fixed refs handling, added gc auto, updated tests

* d921970 Merge commit ’phedders/rdocs’

|\

| * 35cfb2b Some rdoc changes

* | 1c002dd added some blame and merge stuff

|/

* 1c36188 ignore *.gem

* 9b29157 add open3_detach to gemspec file list

Then, you can see the previous commit by specifying HEAD̂ , which means “the

parent of HEAD”:

134

CHAPTER 6 GIT TOOLS

$ git show HEAD̂

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

You can also specify a number after the ˆ— for example, d921970̂ 2 means “the

second parent of d921970.” This syntax is only useful for merge commits, which have

more than one parent. The first parent is the branch you were on when you merged,

and the second is the commit on the branch that you merged in:

$ git show d921970̂

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

added some blame and merge stuff

$ git show d921970̂ 2

commit 35cfb2b795a55793d7cc56a6cc2060b4bb732548

Author: Paul Hedderly <paul+git@mjr.org>

Date: Wed Dec 10 22:22:03 2008 +0000

Some rdoc changes

The other main ancestry specification is the . This also refers to the first parent, so

HEAD and HEAD̂ are equivalent. The difference becomes apparent when you specify a

number. HEAD 2 means “the first parent of the first parent,” or “the grandparent” — it

traverses the first parents the number of times you specify. For example, in the history

listed earlier, HEAD 3 would be

$ git show HEAD̃ 3

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

ignore *.gem

This can also be written HEAD̂ ˆ̂ , which again is the first parent of the first parent

of the first parent:

$ git show HEAD̂ ˆ̂

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

ignore *.gem

You can also combine these syntaxes — you can get the second parent of the pre-

vious reference (assuming it was a merge commit) by using HEAD 3̂ 2 , and so on.

135

PRO GIT SCOTT CHACON

6.1.7 Commit Ranges

Now that you can specify individual commits, let’s see how to specify ranges of com-

mits. This is particularly useful for managing your branches — if you have a lot of

branches, you can use range specifications to answer questions such as, “What work is

on this branch that I haven’t yet merged into my main branch?”

Double Dot

The most common range specification is the double-dot syntax. This basically

asks Git to resolve a range of commits that are reachable from one commit but aren’t

reachable from another. For example, say you have a commit history that looks like

Figure 6.1.

Figure 6.1: Example history for range selection

You want to see what is in your experiment branch that hasn’t yet been merged into

your master branch. You can ask Git to show you a log of just those commits with

master..experiment — that means “all commits reachable by experiment that aren’t

reachable by master.” For the sake of brevity and clarity in these examples, I’ll use the

letters of the commit objects from the diagram in place of the actual log output in the

order that they would display:

$ git log master..experiemnt

D

C

If, on the other hand, you want to see the opposite — all commits in master that

aren’t in experiment — you can reverse the branch names. experiment..master shows

you everything in master not reachable from experiment :

$ git log experiment..master

F

E

This is useful if you want to keep the experiment branch up to date and preview

what you’re about to merge in. Another very frequent use of this syntax is to see what

you’re about to push to a remote:

$ git log origin/master..HEAD

This command shows you any commits in your current branch that aren’t in the

master branch on your origin remote. If you run a git push and your current branch

is tracking origin/master , the commits listed by git log origin/master..HEAD are

the commits that will be transferred to the server. You can also leave off one side of

the syntax to have Git assume HEAD. For example, you can get the same results as in

the previous example by typing git log origin/master.. —Git substitutes HEAD if

one side is missing.

136

CHAPTER 6 GIT TOOLS

Multiple Points

The double-dot syntax is useful as a shorthand; but perhaps you want to specify

more than two branches to indicate your revision, such as seeing what commits are in

any of several branches that aren’t in the branch you’re currently on. Git allows you to

do this by using either the ˆ character or --not before any reference from which you

don’t want to see reachable commits. Thus these three commands are equivalent:

$ git log refA..refB

$ git log r̂efA refB

$ git log refB --not refA

This is nice because with this syntax you can specify more than two references in

your query, which you cannot do with the double-dot syntax. For insance, if you want

to see all commits that are reachable from refA or refB but not from refC , you can type

one of these:

$ git log refA refB r̂efC

$ git log refA refB --not refC

This makes for a very powerful revision query system that should help you figure

out what is in your branches.

Triple Dot

The last major range-selection syntax is the triple-dot syntax, which specifies all

the commits that are reachable by either of two references but not by both of them.

Look back at the example commit history in Figure 6.1. If you want to see what is in

master or experiment but not any common references, you can run

$ git log master...experiment

F

E

D

C

Again, this gives you normal log output but shows you only the commit information

for those four commits, appearing in the traditional commit date ordering.

A common switch to use with the log command in this case is --left-right , which

shows you which side of the range each commit is in. This helps make the data more

useful:

$ git log --left-right master...experiment

< F

< E

> D

> C

With these tools, you can much more easily let Git know what commit or commits

you want to inspect.

137

PRO GIT SCOTT CHACON

6.2 Interactive Staging

Git comes with a couple of scripts that make some command-line tasks easier. Here,

you’ll look at a few interactive commands that can help you easily craft your commits

to include only certain combinations and parts of files. These tools are very helpful

if you modify a bunch of files and then decide that you want those changes to be in

several focused commits rather than one big messy commit. This way, you can make

sure your commits are logically separate changesets and can be easily reviewed by the

developers working with you. If you run git add with the -i or --interactive option,

Git goes into an interactive shell mode, displaying something like this:

$ git add -i

staged unstaged path

1: unchanged +0/-1 TODO

2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now>

You can see that this command shows you a much different view of your staging

area — basically the same information you get with git status but a bit more succinct

and informative. It lists the changes you’ve staged on the left and unstaged changes on

the right.

After this comes a Commands section. Here you can do a number of things, in-

cluding staging files, unstaging files, staging parts of files, adding untracked files, and

seeing diffs of what has been staged.

6.2.1 Staging and Unstaging Files

If you type 2 or u at the What now> prompt, the script prompts you for which files you

want to stage:

What now> 2

staged unstaged path

1: unchanged +0/-1 TODO

2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

Update>>

To stage the TODO and index.html files, you can type the numbers:

Update>> 1,2

staged unstaged path

* 1: unchanged +0/-1 TODO

* 2: unchanged +1/-1 index.html

3: unchanged +5/-1 lib/simplegit.rb

Update>>

138

CHAPTER 6 GIT TOOLS

The * next to each file means the file is selected to be staged. If you press Enter

after typing nothing at the Update>> prompt, Git takes anything selected and stages it

for you:

Update>>

updated 2 paths

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

staged unstaged path

1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Now you can see that the TODO and index.html files are staged and the simplegit.rb

file is still unstaged. If you want to unstage the TODO file at this point, you use the 3

or r (for revert) option:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 3

staged unstaged path

1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Revert>> 1

staged unstaged path

* 1: +0/-1 nothing TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

Revert>> [enter]

reverted one path

Looking at your Git status again, you can see that you’ve unstaged the TODO file:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

staged unstaged path

1: unchanged +0/-1 TODO

2: +1/-1 nothing index.html

3: unchanged +5/-1 lib/simplegit.rb

To see the diff of what you’ve staged, you can use the 6 or d (for diff) command.

It shows you a list of your staged files, and you can select the ones for which you

would like to see the staged diff. This is much like specifying git diff --cached on

the command line:

139

PRO GIT SCOTT CHACON

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 6

staged unstaged path

1: +1/-1 nothing index.html

Review diff>> 1

diff --git a/index.html b/index.html

index 4d07108..4335f49 100644

--- a/index.html

+++ b/index.html

@@ -16,7 +16,7 @@ Date Finder

<p id="out">...</p>

-<div id="footer">contact : support@github.com</div>

+<div id="footer">contact : email.support@github.com</div>

<script type="text/javascript">

With these basic commands, you can use the interactive add mode to deal with your

staging area a little more easily.

6.2.2 Staging Patches

It’s also possible for Git to stage certain parts of files and not the rest. For example, if

you make two changes to your simplegit.rb file and want to stage one of them and not

the other, doing so is very easy in Git. From the interactive prompt, type 5 or p (for

patch). Git will ask you which files you would like to partially stage; then, for each

section of the selected files, it will display hunks of the file diff and ask if you would

like to stage them, one by one:

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index dd5ecc4..57399e0 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -22,7 +22,7 @@ class SimpleGit

end

def log(treeish = ’master’)

- command("git log -n 25 #{treeish}")

+ command("git log -n 30 #{treeish}")

end

def blame(path)

Stage this hunk [y,n,a,d,/,j,J,g,e,?]?

You have a lot of options at this point. Typing ? shows a list of what you can do:

Stage this hunk [y,n,a,d,/,j,J,g,e,?]? ?

y - stage this hunk

n - do not stage this hunk

140

CHAPTER 6 GIT TOOLS

a - stage this and all the remaining hunks in the file

d - do not stage this hunk nor any of the remaining hunks in the file

g - select a hunk to go to

/ - search for a hunk matching the given regex

j - leave this hunk undecided, see next undecided hunk

J - leave this hunk undecided, see next hunk

k - leave this hunk undecided, see previous undecided hunk

K - leave this hunk undecided, see previous hunk

s - split the current hunk into smaller hunks

e - manually edit the current hunk

? - print help

Generally, you’ll type y or n if you want to stage each hunk, but staging all of them

in certain files or skipping a hunk decision until later can be helpful too. If you stage

one part of the file and leave another part unstaged, your status output will look like

this:

What now> 1

staged unstaged path

1: unchanged +0/-1 TODO

2: +1/-1 nothing index.html

3: +1/-1 +4/-0 lib/simplegit.rb

The status of the simplegit.rb file is interesting. It shows you that a couple of lines

are staged and a couple are unstaged. You’ve partially staged this file. At this point,

you can exit the interactive adding script and run git commit to commit the partially

staged files.

Finally, you don’t need to be in interactive add mode to do the partial-file staging—

you can start the same script by using git add -p or git add --patch on the command

line.

6.3 Stashing

Often, when you’ve been working on part of your project, things are in a messy state

and you want to switch branches for a bit to work on something else. The problem is,

you don’t want to do a commit of half-done work just so you can get back to this point

later. The answer to this issue is the git stash command.

Stashing takes the dirty state of your working directory — that is, your modified

tracked files and staged changes — and saves it on a stack of unfinished changes that

you can reapply at any time.

6.3.1 Stashing Your Work

To demonstrate, you’ll go into your project and start working on a couple of files and

possibly stage one of the changes. If you run git status , you can see your dirty state:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

141

PRO GIT SCOTT CHACON

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

Now you want to switch branches, but you don’t want to commit what you’ve been

working on yet; so you’ll stash the changes. To push a new stash onto your stack, run

git stash :

$ git stash

Saved working directory and index state \

"WIP on master: 049d078 added the index file"

HEAD is now at 049d078 added the index file

(To restore them type "git stash apply")

Your working directory is clean:

$ git status

On branch master

nothing to commit (working directory clean)

At this point, you can easily switch branches and do work elsewhere; your changes

are stored on your stack. To see which stashes you’ve stored, you can use git stash

list :

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051... Revert "added file_size"

stash@{2}: WIP on master: 21d80a5... added number to log

In this case, two stashes were done previously, so you have access to three different

stashed works. You can reapply the one you just stashed by using the command shown

in the help output of the original stash command: git stash apply . If you want to

apply one of the older stashes, you can specify it by naming it, like this: git stash

apply stash@2 . If you don’t specify a stash, Git assumes the most recent stash and

tries to apply it:

$ git stash apply

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: index.html

modified: lib/simplegit.rb

#

You can see that Git re-modifies the files you uncommitted when you saved the

stash. In this case, you had a clean working directory when you tried to apply the

stash, and you tried to apply it on the same branch you saved it from; but having a clean

142

CHAPTER 6 GIT TOOLS

working directory and applying it on the same branch aren’t necessary to successfully

apply a stash. You can save a stash on one branch, switch to another branch later, and

try to reapply the changes. You can also have modified and uncommitted files in your

working directory when you apply a stash — Git gives you merge conflicts if anything

no longer applies cleanly.

The changes to your files were reapplied, but the file you staged before wasn’t

restaged. To do that, you must run the git stash apply command with a --index

option to tell the command to try to reapply the staged changes. If you had run that

instead, you’d have gotten back to your original position:

$ git stash apply --index

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

The apply option only tries to apply the stashed work — you continue to have it on

your stack. To remove it, you can run git stash drop with the name of the stash to

remove:

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051... Revert "added file_size"

stash@{2}: WIP on master: 21d80a5... added number to log

$ git stash drop stash@{0}

Dropped stash@{0} (364e91f3f268f0900bc3ee613f9f733e82aaed43)

You can also run git stash pop to apply the stash and then immediately drop it

from your stack.

6.3.2 Creating a Branch from a Stash

If you stash some work, leave it there for a while, and continue on the branch from

which you stashed the work, you may have a problem reapplying the work. If the

apply tries to modify a file that you’ve since modified, you’ll get a merge conflict and

will have to try to resolve it. If you want an easier way to test the stashed changes

again, you can run git stash branch , which creates a new branch for you, checks out

the commit you were on when you stashed your work, reapplies your work there, and

then drops the stash if it applies successfully:

$ git stash branch testchanges

Switched to a new branch "testchanges"

On branch testchanges

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

143

PRO GIT SCOTT CHACON

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: lib/simplegit.rb

#

Dropped refs/stash@{0} (f0dfc4d5dc332d1cee34a634182e168c4efc3359)

This is a nice shortcut to recover stashed work easily and work on it in a new

branch.

6.4 Rewriting History

Many times, when working with Git, you may want to revise your commit history for

some reason. One of the great things about Git is that it allows you to make decisions

at the last possible moment. You can decide what files go into which commits right

before you commit with the staging area, you can decide that you didn’t mean to be

working on something yet with the stash command, and you can rewrite commits that

already happened so they look like they happened in a different way. This can involve

changing the order of the commits, changing messages or modifying files in a commit,

squashing together or splitting apart commits, or removing commits entirely — all

before you share your work with others.

In this section, you’ll cover how to accomplish these very useful tasks so that you

can make your commit history look the way you want before you share it with others.

6.4.1 Changing the Last Commit

Changing your last commit is probably the most common rewriting of history that

you’ll do. You’ll often want to do two basic things to your last commit: change the

commit message, or change the snapshot you just recorded by adding, changing and

removing files.

If you only want to modify your last commit message, it’s very simple:

$ git commit --amend

That drops you into your text editor, which has your last commit message in it,

ready for you to modify the message. When you save and close the editor, the editor

writes a new commit containing that message and makes it your new last commit.

If you’ve committed and then you want to change the snapshot you committed by

adding or changing files, possibly because you forgot to add a newly created file when

you originally committed, the process works basically the same way. You stage the

changes you want by editing a file and running git add on it or git rm to a tracked file,

and the subsequent git commit --amend takes your current staging area and makes it

the snapshot for the new commit.

You need to be careful with this technique because amending changes the SHA–1

of the commit. It’s like a very small rebase — don’t amend your last commit if you’ve

already pushed it.

144

CHAPTER 6 GIT TOOLS

6.4.2 Changing Multiple Commit Messages

To modify a commit that is farther back in your history, you must move to more com-

plex tools. Git doesn’t have a modify-history tool, but you can use the rebase tool to

rebase a series of commits onto the HEAD they were originally based on instead of

moving them to another one. With the interactive rebase tool, you can then stop after

each commit you want to modify and change the message, add files, or do whatever

you wish. You can run rebase interactively by adding the -i option to git rebase . You

must indicate how far back you want to rewrite commits by telling the command which

commit to rebase onto.

For example, if you want to change the last three commit messages, or any of the

commit messages in that group, you supply as an argument to git rebase -i the parent

of the last commit you want to edit, which is HEAD 2̂ or HEAD 3 . It may be easier to

remember the 3 because you’re trying to edit the last three commits; but keep in mind

that you’re actually designating four commits ago, the parent of the last commit you

want to edit:

$ git rebase -i HEAD̃ 3

Remember again that this is a rebasing command — every commit included in the

range HEAD 3..HEAD will be rewritten, whether you change the message or not. Don’t

include any commit you’ve already pushed to a central server — doing so will confuse

other developers by providing an alternate version of the same change.

Running this command gives you a list of commits in your text editor that looks

something like this:

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Rebase 710f0f8..a5f4a0d onto 710f0f8

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

It’s important to note that these commits are listed in the opposite order than you

normally see them using the log command. If you run a log , you see something like

this:

$ git log --pretty=format:"%h %s HEAD̃ 3..HEAD"

a5f4a0d added cat-file

310154e updated README formatting and added blame

f7f3f6d changed my name a bit

Notice the reverse order. The interactive rebase gives you a script that it’s going to

run. It will start at the commit you specify on the command line (HEAD 3) and replay

145

PRO GIT SCOTT CHACON

the changes introduced in each of these commits from top to bottom. It lists the oldest

at the top, rather than the newest, because that’s the first one it will replay.

You need to edit the script so that it stops at the commit you want to edit. To do so,

change the word pick to the word edit for each of the commits you want the script to

stop after. For example, to modify only the third commit message, you change the file

to look like this:

edit f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

When you save and exit the editor, Git rewinds you back to the last commit in that

list and drops you on the command line with the following message:

$ git rebase -i HEAD̃ 3

Stopped at 7482e0d... updated the gemspec to hopefully work better

You can amend the commit now, with

git commit --amend

Once youre satisfied with your changes, run

git rebase --continue

These instructions tell you exactly what to do. Type

$ git commit --amend

Change the commit message, and exit the editor. Then, run

$ git rebase --continue

This command will apply the other two commits automatically, and then you’re

done. If you change pick to edit on more lines, you can repeat these steps for each

commit you change to edit. Each time, Git will stop, let you amend the commit, and

continue when you’re finished.

6.4.3 Reordering Commits

You can also use interactive rebases to reorder or remove commits entirely. If you want

to remove the “added cat-file” commit and change the order in which the other two

commits are introduced, you can change the rebase script from this

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

to this:

pick 310154e updated README formatting and added blame

pick f7f3f6d changed my name a bit

When you save and exit the editor, Git rewinds your branch to the parent of these

commits, applies 310154e and then f7f3f6d , and then stops. You effectively change the

order of those commits and remove the “added cat-file” commit completely.

146

CHAPTER 6 GIT TOOLS

6.4.4 Squashing a Commit

It’s also possible to take a series of commits and squash them down into a single commit

with the interactive rebasing tool. The script puts helpful instructions in the rebase

message:

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

If, instead of “pick” or “edit”, you specify “squash”, Git applies both that change

and the change directly before it and makes you merge the commit messages together.

So, if you want to make a single commit from these three commits, you make the script

look like this:

pick f7f3f6d changed my name a bit

squash 310154e updated README formatting and added blame

squash a5f4a0d added cat-file

When you save and exit the editor, Git applies all three changes and then puts you

back into the editor to merge the three commit messages:

This is a combination of 3 commits.

The first commit’s message is:

changed my name a bit

This is the 2nd commit message:

updated README formatting and added blame

This is the 3rd commit message:

added cat-file

When you save that, you have a single commit that introduces the changes of all

three previous commits.

6.4.5 Splitting a Commit

Splitting a commit undoes a commit and then partially stages and commits as many

times as commits you want to end up with. For example, suppose you want to split the

middle commit of your three commits. Instead of “updated README formatting and

added blame”, you want to split it into two commits: “updated README formatting”

for the first, and “added blame” for the second. You can do that in the rebase -i script

by changing the instruction on the commit you want to split to “edit”:

147

PRO GIT SCOTT CHACON

pick f7f3f6d changed my name a bit

edit 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Then, when the script drops you to the command line, you reset that commit, take

the changes that have been reset, and create multiple commits out of them. When

you save and exit the editor, Git rewinds to the parent of the first commit in your list,

applies the first commit (f7f3f6d), applies the second (310154e), and drops you to the

console. There, you can do a mixed reset of that commit with git reset HEAD̂ , which

effectively undoes that commit and leaves the modified files unstaged. Now you can

stage and commit files until you have several commits, and run git rebase --continue

when you’re done:

$ git reset HEAD̂

$ git add README

$ git commit -m ’updated README formatting’

$ git add lib/simplegit.rb

$ git commit -m ’added blame’

$ git rebase --continue

Git applies the last commit (a5f4a0d) in the script, and your history looks like this:

$ git log -4 --pretty=format:"%h %s"

1c002dd added cat-file

9b29157 added blame

35cfb2b updated README formatting

f3cc40e changed my name a bit

Once again, this changes the SHAs of all the commits in your list, so make sure no

commit shows up in that list that you’ve already pushed to a shared repository.

6.4.6 The Nuclear Option: filter-branch

There is another history-rewriting option that you can use if you need to rewrite a larger

number of commits in some scriptable way — for instance, changing your e-mail ad-

dress globally or removing a file from every commit. The command is filter-branch ,

and it can rewrite huge swaths of your history, so you probably shouldn’t use it un-

less your project isn’t yet public and other people haven’t based work off the commits

you’re about to rewrite. However, it can be very useful. You’ll learn a few of the

common uses so you can get an idea of some of the things it’s capable of.

Removing a File from Every Commit

This occurs fairly commonly. Someone accidentally commits a huge binary file

with a thoughtless git add . , and you want to remove it everywhere. Perhaps you

accidentally committed a file that contained a password, and you want to make your

project open source. filter-branch is the tool you probably want to use to scrub your

entire history. To remove a file named passwords.txt from your entire history, you can

use the --tree-filter option to filter-branch :

$ git filter-branch --tree-filter ’rm -f passwords.txt’ HEAD

Rewrite 6b9b3cf04e7c5686a9cb838c3f36a8cb6a0fc2bd (21/21)

Ref ’refs/heads/master’ was rewritten

148

CHAPTER 6 GIT TOOLS

The --tree-filter option runs the specified command after each checkout of the

project and then recommits the results. In this case, you remove a file called pass-

words.txt from every snapshot, whether it exists or not. If you want to remove all acci-

dentally committed editor backup files, you can run something like git filter-branch

--tree-filter ’rm -f * ’ HEAD .

You’ll be able to watch Git rewriting trees and commits and then move the branch

pointer at the end. It’s generally a good idea to do this in a testing branch and then

hard-reset your master branch after you’ve determined the outcome is what you really

want. To run filter-branch on all your branches, you can pass --all to the command.

Making a Subdirectory the New Root

Suppose you’ve done an import from another source control system and have sub-

directories that make no sense (trunk, tags, and so on). If you want to make the trunk

subdirectory be the new project root for every commit, filter-branch can help you do

that, too:

$ git filter-branch --subdirectory-filter trunk HEAD

Rewrite 856f0bf61e41a27326cdae8f09fe708d679f596f (12/12)

Ref ’refs/heads/master’ was rewritten

Now your new project root is what was in the trunk subdirectory each time. Git

will also automatically remove commits that did not affect the subdirectory.

Changing E-Mail Addresses Globally

Another common case is that you forgot to run git config to set your name and

e-mail address before you started working, or perhaps you want to open-source a

project at work and change all your work e-mail addresses to your personal address.

In any case, you can change e-mail addresses in multiple commits in a batch with

filter-branch as well. You need to be careful to change only the e-mail addresses that

are yours, so you use --commit-filter :

$ git filter-branch --commit-filter ’

if ["$GIT_AUTHOR_EMAIL" = "schacon@localhost"];

then

GIT_AUTHOR_NAME="Scott Chacon";

GIT_AUTHOR_EMAIL="schacon@example.com";

git commit-tree "$@";

else

git commit-tree "$@";

fi’ HEAD

This goes through and rewrites every commit to have your new address. Because

commits contain the SHA–1 values of their parents, this command changes every com-

mit SHA in your history, not just those that have the matching e-mail address.

6.5 Debugging with Git

Git also provides a couple of tools to help you debug issues in your projects. Because

Git is designed to work with nearly any type of project, these tools are pretty generic,

but they can often help you hunt for a bug or culprit when things go wrong.

149

PRO GIT SCOTT CHACON

6.5.1 File Annotation

If you track down a bug in your code and want to know when it was introduced and

why, file annotation is often your best tool. It shows you what commit was the last to

modify each line of any file. So, if you see that a method in your code is buggy, you can

annotate the file with git blame to see when each line of the method was last edited

and by whom. This example uses the -L option to limit the output to lines 12 through

22:

$ git blame -L 12,22 simplegit.rb

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 12) def show(tree = ’master’)

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 13) command("git show #{tree}")

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 14) end

4̂832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 15)

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 16) def log(tree = ’master’)

79eaf55d (Scott Chacon 2008-04-06 10:15:08 -0700 17) command("git log #{tree}")

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 18) end

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 19)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 20) def blame(path)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 21) command("git blame #{path}")

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 22) end

Notice that the first field is the partial SHA–1 of the commit that last modified

that line. The next two fields are values extracted from that commit—the author name

and the authored date of that commit — so you can easily see who modified that line

and when. After that come the line number and the content of the file. Also note

the 4̂832fe2 commit lines, which designate that those lines were in this file’s original

commit. That commit is when this file was first added to this project, and those lines

have been unchanged since. This is a tad confusing, because now you’ve seen at least

three different ways that Git uses the ˆ to modify a commit SHA, but that is what it

means here.

Another cool thing about Git is that it doesn’t track file renames explicitly. It

records the snapshots and then tries to figure out what was renamed implicitly, after

the fact. One of the interesting features of this is that you can ask it to figure out

all sorts of code movement as well. If you pass -C to git blame , Git analyzes the

file you’re annotating and tries to figure out where snippets of code within it origi-

nally came from if they were copied from elsewhere. Recently, I was refactoring a file

named GITServerHandler.m into multiple files, one of which was GITPackUpload.m . By

blaming GITPackUpload.m with the -C option, I could see where sections of the code

originally came from:

$ git blame -C -L 141,153 GITPackUpload.m

f344f58d GITServerHandler.m (Scott 2009-01-04 141)

f344f58d GITServerHandler.m (Scott 2009-01-04 142) - (void) gatherObjectShasFromC

f344f58d GITServerHandler.m (Scott 2009-01-04 143) {

70befddd GITServerHandler.m (Scott 2009-03-22 144) //NSLog(@"GATHER COMMI

ad11ac80 GITPackUpload.m (Scott 2009-03-24 145)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 146) NSString *parentSha;

ad11ac80 GITPackUpload.m (Scott 2009-03-24 147) GITCommit *commit = [g

ad11ac80 GITPackUpload.m (Scott 2009-03-24 148)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 149) //NSLog(@"GATHER COMMI

150

CHAPTER 6 GIT TOOLS

ad11ac80 GITPackUpload.m (Scott 2009-03-24 150)

56ef2caf GITServerHandler.m (Scott 2009-01-05 151) if(commit) {

56ef2caf GITServerHandler.m (Scott 2009-01-05 152) [refDict setOb

56ef2caf GITServerHandler.m (Scott 2009-01-05 153)

This is really useful. Normally, you get as the original commit the commit where

you copied the code over, because that is the first time you touched those lines in this

file. Git tells you the original commit where you wrote those lines, even if it was in

another file.

6.5.2 Binary Search

Annotating a file helps if you know where the issue is to begin with. If you don’t

know what is breaking, and there have been dozens or hundreds of commits since the

last state where you know the code worked, you’ll likely turn to git bisect for help.

The bisect command does a binary search through your commit history to help you

identify as quickly as possible which commit introduced an issue.

Let’s say you just pushed out a release of your code to a production environment,

you’re getting bug reports about something that wasn’t happening in your development

environment, and you can’t imagine why the code is doing that. You go back to your

code, and it turns out you can reproduce the issue, but you can’t figure out what is

going wrong. You can bisect the code to find out. First you run git bisect start to

get things going, and then you use git bisect bad to tell the system that the current

commit you’re on is broken. Then, you must tell bisect when the last known good state

was, using git bisect good [good commit] :

$ git bisect start

$ git bisect bad

$ git bisect good v1.0

Bisecting: 6 revisions left to test after this

[ecb6e1bc347ccecc5f9350d878ce677feb13d3b2] error handling on repo

Git figured out that about 12 commits came between the commit you marked as the

last good commit (v1.0) and the current bad version, and it checked out the middle one

for you. At this point, you can run your test to see if the issue exists as of this commit.

If it does, then it was introduced sometime before this middle commit; if it doesn’t,

then the problem was introduced sometime after the middle commit. It turns out there

is no issue here, and you tell Git that by typing git bisect good and continue your

journey:

$ git bisect good

Bisecting: 3 revisions left to test after this

[b047b02ea83310a70fd603dc8cd7a6cd13d15c04] secure this thing

Now you’re on another commit, halfway between the one you just tested and your

bad commit. You run your test again and find that this commit is broken, so you tell

Git that with git bisect bad :

$ git bisect bad

Bisecting: 1 revisions left to test after this

[f71ce38690acf49c1f3c9bea38e09d82a5ce6014] drop exceptions table

151

PRO GIT SCOTT CHACON

This commit is fine, and nowGit has all the information it needs to determine where

the issue was introduced. It tells you the SHA–1 of the first bad commit and show some

of the commit information and which files were modified in that commit so you can

figure out what happened that may have introduced this bug:

$ git bisect good

b047b02ea83310a70fd603dc8cd7a6cd13d15c04 is first bad commit

commit b047b02ea83310a70fd603dc8cd7a6cd13d15c04

Author: PJ Hyett <pjhyett@example.com>

Date: Tue Jan 27 14:48:32 2009 -0800

secure this thing

:040000 040000 40ee3e7821b895e52c1695092db9bdc4c61d1730

f24d3c6ebcfc639b1a3814550e62d60b8e68a8e4 M config

When you’re finished, you should run git bisect reset to reset your HEAD to

where you were before you started, or you’ll end up in a weird state:

$ git bisect reset

This is a powerful tool that can help you check hundreds of commits for an intro-

duced bug in minutes. In fact, if you have a script that will exit 0 if the project is good

or non–0 if the project is bad, you can fully automate git bisect . First, you again tell

it the scope of the bisect by providing the known bad and good commits. You can do

this by listing them with the bisect start command if you want, listing the known

bad commit first and the known good commit second:

$ git bisect start HEAD v1.0

$ git bisect run test-error.sh

Doing so automatically runs test-error.sh on each checked-out commit until Git

finds the first broken commit. You can also run something like make or make tests or

whatever you have that runs automated tests for you.

6.6 Submodules

It often happens that while working on one project, you need to use another project

from within it. Perhaps it’s a library that a third party developed or that you’re devel-

oping separately and using in multiple parent projects. A common issue arises in these

scenarios: you want to be able to treat the two projects as separate yet still be able to

use one from within the other.

Here’s an example. Suppose you’re developing a web site and creating Atom feeds.

Instead of writing your own Atom-generating code, you decide to use a library. You’re

likely to have to either include this code from a shared library like a CPAN install

or Ruby gem, or copy the source code into your own project tree. The issue with

including the library is that it’s difficult to customize the library in any way and often

more difficult to deploy it, because you need to make sure every client has that library

available. The issue with vendoring the code into your own project is that any custom

changes you make are difficult to merge when upstream changes become available.

152

CHAPTER 6 GIT TOOLS

Git addresses this issue using submodules. Submodules allow you to keep a Git

repository as a subdirectory of another Git repository. This lets you clone another

repository into your project and keep your commits separate.

6.6.1 Starting with Submodules

Suppose you want to add the Rack library (a Ruby web server gateway interface) to

your project, possibly maintain your own changes to it, but continue to merge in up-

stream changes. The first thing you should do is clone the external repository into your

subdirectory. You add external projects as submodules with the git submodule add

command:

$ git submodule add git://github.com/chneukirchen/rack.git rack

Initialized empty Git repository in /opt/subtest/rack/.git/

remote: Counting objects: 3181, done.

remote: Compressing objects: 100% (1534/1534), done.

remote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Receiving objects: 100% (3181/3181), 675.42 KiB | 422 KiB/s, done.

Resolving deltas: 100% (1951/1951), done.

Now you have the Rack project under a subdirectory named rack within your

project. You can go into that subdirectory, make changes, add your own writable re-

mote repository to push your changes into, fetch and merge from the original reposi-

tory, and more. If you run git status right after you add the submodule, you see two

things:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: .gitmodules

new file: rack

#

First you notice the .gitmodules file. This is a configuration file that stores the

mapping between the project’s URL and the local subdirectory you’ve pulled it into:

$ cat .gitmodules

[submodule "rack"]

path = rack

url = git://github.com/chneukirchen/rack.git

If you have multiple submodules, you’ll have multiple entries in this file. It’s impor-

tant to note that this file is version-controlled with your other files, like your .gitignore

file. It’s pushed and pulled with the rest of your project. This is how other people who

clone this project know where to get the submodule projects from.

The other listing in the git status output is the rack entry. If you run git diff on

that, you see something interesting:

$ git diff --cached rack

diff --git a/rack b/rack

153

PRO GIT SCOTT CHACON

new file mode 160000

index 0000000..08d709f

--- /dev/null

+++ b/rack

@@ -0,0 +1 @@

+Subproject commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

Although rack is a subdirectory in your working directory, Git sees it as a sub-

module and doesn’t track its contents when you’re not in that directory. Instead, Git

records it as a particular commit from that repository. When you make changes and

commit in that subdirectory, the superproject notices that the HEAD there has changed

and records the exact commit you’re currently working off of; that way, when others

clone this project, they can re-create the environment exactly.

This is an important point with submodules: you record them as the exact commit

they’re at. You can’t record a submodule at master or some other symbolic reference.

When you commit, you see something like this:

$ git commit -m ’first commit with submodule rack’

[master 0550271] first commit with submodule rack

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 rack

Notice the 160000 mode for the rack entry. That is a special mode in Git that basi-

cally means you’re recording a commit as a directory entry rather than a subdirectory

or a file.

You can treat the rack directory as a separate project and then update your super-

project from time to time with a pointer to the latest commit in that subproject. All the

Git commands work independently in the two directories:

$ git log -1

commit 0550271328a0038865aad6331e620cd7238601bb

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Apr 9 09:03:56 2009 -0700

first commit with submodule rack

$ cd rack/

$ git log -1

commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

Author: Christian Neukirchen <chneukirchen@gmail.com>

Date: Wed Mar 25 14:49:04 2009 +0100

Document version change

6.6.2 Cloning a Project with Submodules

Here you’ll clone a project with a submodule in it. When you receive such a project,

you get the directories that contain submodules, but none of the files yet:

$ git clone git://github.com/schacon/myproject.git

Initialized empty Git repository in /opt/myproject/.git/

remote: Counting objects: 6, done.

154

CHAPTER 6 GIT TOOLS

remote: Compressing objects: 100% (4/4), done.

remote: Total 6 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (6/6), done.

$ cd myproject

$ ls -l

total 8

-rw-r--r-- 1 schacon admin 3 Apr 9 09:11 README

drwxr-xr-x 2 schacon admin 68 Apr 9 09:11 rack

$ ls rack/

$

The rack directory is there, but empty. Youmust run two commands: git submodule

init to initialize your local configuration file, and git submodule update to fetch all

the data from that project and check out the appropriate commit listed in your super-

project:

$ git submodule init

Submodule ’rack’ (git://github.com/chneukirchen/rack.git) registered for path ’rack’

$ git submodule update

Initialized empty Git repository in /opt/myproject/rack/.git/

remote: Counting objects: 3181, done.

remote: Compressing objects: 100% (1534/1534), done.

remote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Receiving objects: 100% (3181/3181), 675.42 KiB | 173 KiB/s, done.

Resolving deltas: 100% (1951/1951), done.

Submodule path ’rack’: checked out ’08d709f78b8c5b0fbeb7821e37fa53e69afcf433’

Now your rack subdirectory is at the exact state it was in when you committed

earlier. If another developer makes changes to the rack code and commits, and you pull

that reference down and merge it in, you get something a bit odd:

$ git merge origin/master

Updating 0550271..85a3eee

Fast forward

rack | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

[master*]$ git status

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: rack

#

You merged in what is basically a change to the pointer for your submodule; but

it doesn’t update the code in the submodule directory, so it looks like you have a dirty

state in your working directory:

$ git diff

diff --git a/rack b/rack

index 6c5e70b..08d709f 160000

--- a/rack

155

PRO GIT SCOTT CHACON

+++ b/rack

@@ -1 +1 @@

-Subproject commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

+Subproject commit 08d709f78b8c5b0fbeb7821e37fa53e69afcf433

This is the case because the pointer you have for the submodule isn’t what is ac-

tually in the submodule directory. To fix this, you must run git submodule update

again:

$ git submodule update

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 1), reused 2 (delta 0)

Unpacking objects: 100% (3/3), done.

From git@github.com:schacon/rack

08d709f..6c5e70b master -> origin/master

Submodule path ’rack’: checked out ’6c5e70b984a60b3cecd395edd5b48a7575bf58e0’

You have to do this every time you pull down a submodule change in the main

project. It’s strange, but it works.

One common problem happens when a developer makes a change locally in a sub-

module but doesn’t push it to a public server. Then, they commit a pointer to that

non-public state and push up the superproject. When other developers try to run git

submodule update , the submodule system can’t find the commit that is referenced, be-

cause it exists only on the first developer’s system. If that happens, you see an error

like this:

$ git submodule update

fatal: reference isnt a tree: 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Unable to checkout ’6c5e70b984a60b3cecd395edd5ba7575bf58e0’ in submodule path ’rack’

You have to see who last changed the submodule:

$ git log -1 rack

commit 85a3eee996800fcfa91e2119372dd4172bf76678

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Apr 9 09:19:14 2009 -0700

added a submodule reference I will never make public. hahahahaha!

Then, you e-mail that guy and yell at him.

6.6.3 Superprojects

Sometimes, developers want to get a combination of a large project’s subdirectories,

depending on what team they’re on. This is common if you’re coming from CVS or

Subversion, where you’ve defined a module or collection of subdirectories, and you

want to keep this type of workflow.

A good way to do this in Git is to make each of the subfolders a separate Git repos-

itory and then create superproject Git repositories that contain multiple submodules.

A benefit of this approach is that you can more specifically define the relationships

between the projects with tags and branches in the superprojects.

156

CHAPTER 6 GIT TOOLS

6.6.4 Issues with Submodules

Using submodules isn’t without hiccups, however. First, you must be relatively careful

when working in the submodule directory. When you run git submodule update , it

checks out the specific version of the project, but not within a branch. This is called

having a detached head — it means the HEAD file points directly to a commit, not to

a symbolic reference. The issue is that you generally don’t want to work in a detached

head environment, because it’s easy to lose changes. If you do an initial submodule

update , commit in that submodule directory without creating a branch to work in, and

then run git submodule update again from the superproject without committing in the

meantime, Git will overwrite your changes without telling you. Technically you won’t

lose the work, but you won’t have a branch pointing to it, so it will be somewhat

difficult to retrieive.

To avoid this issue, create a branch when you work in a submodule directory with

git checkout -b work or something equivalent. When you do the submodule update a

second time, it will still revert your work, but at least you have a pointer to get back to.

Switching branches with submodules in them can also be tricky. If you create a

new branch, add a submodule there, and then switch back to a branch without that

submodule, you still have the submodule directory as an untracked directory:

$ git checkout -b rack

Switched to a new branch "rack"

$ git submodule add git@github.com:schacon/rack.git rack

Initialized empty Git repository in /opt/myproj/rack/.git/

...

Receiving objects: 100% (3184/3184), 677.42 KiB | 34 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

$ git commit -am ’added rack submodule’

[rack cc49a69] added rack submodule

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 rack

$ git checkout master

Switched to branch "master"

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

rack/

You have to either move it out of the way or remove it, in which case you have to

clone it again when you switch back—and you may lose local changes or branches that

you didn’t push up.

The last main caveat that many people run into involves switching from subdirecto-

ries to submodules. If you’ve been tracking files in your project and you want to move

them out into a submodule, you must be careful or Git will get angry at you. Assume

that you have the rack files in a subdirectory of your project, and you want to switch it

to a submodule. If you delete the subdirectory and then run submodule add , Git yells

at you:

$ rm -Rf rack/

157

PRO GIT SCOTT CHACON

$ git submodule add git@github.com:schacon/rack.git rack

’rack’ already exists in the index

You have to unstage the rack directory first. Then you can add the submodule:

$ git rm -r rack

$ git submodule add git@github.com:schacon/rack.git rack

Initialized empty Git repository in /opt/testsub/rack/.git/

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 88 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

Now suppose you did that in a branch. If you try to switch back to a branch where

those files are still in the actual tree rather than a submodule — you get this error:

$ git checkout master

error: Untracked working tree file ’rack/AUTHORS’ would be overwritten by merge.

You have to move the rack submodule directory out of the way before you can

switch to a branch that doesn’t have it:

$ mv rack /tmp/

$ git checkout master

Switched to branch "master"

$ ls

README rack

Then, when you switch back, you get an empty rack directory. You can either run

git submodule update to reclone, or you can move your /tmp/rack directory back into

the empty directory.

6.7 Subtree Merging

Now that you’ve seen the difficulties of the submodule system, let’s look at an alternate

way to solve the same problem. When Git merges, it looks at what it has to merge to-

gether and then chooses an appropriate merging strategy to use. If you’re merging two

branches, Git uses a recursive strategy. If you’re merging more than two branches, Git

picks the octopus strategy. These strategies are automatically chosen for you because

the recursive strategy can handle complex three-way merge situations — for example,

more than one common ancestor — but it can only handle merging two branches. The

octopus merge can handle multiple branches but is more cautious to avoid difficult

conflicts, so it’s chosen as the default strategy if you’re trying to merge more than two

branches.

However, there are other strategies you can choose as well. One of them is the

subtree merge, and you can use it to deal with the subproject issue. Here you’ll see

how to do the same rack embedding as in the last section, but using subtree merges

instead.

The idea of the subtree merge is that you have two projects, and one of the projects

maps to a subdirectory of the other one and vice versa. When you specify a subtree

158

CHAPTER 6 GIT TOOLS

merge, Git is smart enough to figure out that one is a subtree of the other and merge

appropriately — it’s pretty amazing.

You first add the Rack application to your project. You add the Rack project as a

remote reference in your own project and then check it out into its own branch:

$ git remote add rack_remote git@github.com:schacon/rack.git

$ git fetch rack_remote

warning: no common commits

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 4 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

From git@github.com:schacon/rack

* [new branch] build -> rack_remote/build

* [new branch] master -> rack_remote/master

* [new branch] rack-0.4 -> rack_remote/rack-0.4

* [new branch] rack-0.9 -> rack_remote/rack-0.9

$ git checkout -b rack_branch rack_remote/master

Branch rack_branch set up to track remote branch refs/remotes/rack_remote/master.

Switched to a new branch "rack_branch"

Now you have the root of the Rack project in your rack branch branch and your

own project in the master branch. If you check out one and then the other, you can see

that they have different project roots:

$ ls

AUTHORS KNOWN-ISSUES Rakefile contrib lib

COPYING README bin example test

$ git checkout master

Switched to branch "master"

$ ls

README

You want to pull the Rack project into your master project as a subdirectory. You

can do that in Git with git read-tree . You’ll learn more about read-tree and its

friends in Chapter 9, but for now know that it reads the root tree of one branch into

your current staging area and working directory. You just switched back to your master

branch, and you pull the rack branch into the rack subdirectory of your master branch

of your main project:

$ git read-tree --prefix=rack/ -u rack_branch

When you commit, it looks like you have all the Rack files under that subdirectory

— as though you copied them in from a tarball. What gets interesting is that you can

fairly easily merge changes from one of the branches to the other. So, if the Rack

project updates, you can pull in upstream changes by switching to that branch and

pulling:

$ git checkout rack_branch

$ git pull

159

PRO GIT SCOTT CHACON

Then, you can merge those changes back into your master branch. You can use git

merge -s subtree and it will work fine; but Git will also merge the histories together,

which you probably don’t want. To pull in the changes and prepopulate the commit

message, use the --squash and --no-commit options as well as the -s subtree strategy

option:

$ git checkout master

$ git merge --squash -s subtree --no-commit rack_branch

Squash commit -- not updating HEAD

Automatic merge went well; stopped before committing as requested

All the changes from your Rack project are merged in and ready to be committed

locally. You can also do the opposite — make changes in the rack subdirectory of your

master branch and then merge them into your rack branch branch later to submit them

to the maintainers or push them upstream.

To get a diff between what you have in your rack subdirectory and the code in your

rack branch branch — to see if you need to merge them — you can’t use the normal

diff command. Instead, you must run git diff-tree with the branch you want to

compare to:

$ git diff-tree -p rack_branch

Or, to compare what is in your rack subdirectory with what the master branch on

the server was the last time you fetched, you can run

$ git diff-tree -p rack_remote/master

6.8 Summary

You’ve seen a number of advanced tools that allow you to manipulate your commits

and staging area more precisely. When you notice issues, you should be able to easily

figure out what commit introduced them, when, and by whom. If you want to use

subprojects in your project, you’ve learned a few ways to accommodate those needs.

At this point, you should be able to do most of the things in Git that you’ll need on the

command line day to day and feel comfortable doing so.

160

Chapter 7

Customizing Git

So far, I’ve covered the basics of how Git works and how to use it, and I’ve introduced

a number of tools that Git provides to help you use it easily and efficiently. In this

chapter, I’ll go through some operations that you can use to make Git operate in a

more customized fashion by introducing several important configuration settings and

the hooks system. With these tools, it’s easy to get Git to work exactly the way you,

your company, or your group needs it to.

7.1 Git Configuration

As you briefly saw in the Chapter 1, you can specify Git configuration settings with the

git config command. One of the first things you did was set up your name and e-mail

address:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Now you’ll learn a few of the more interesting options that you can set in this

manner to customize your Git usage.

You saw some simple Git configuration details in the first chapter, but I’ll go over

them again quickly here. Git uses a series of configuration files to determine non-

default behavior that you may want. The first place Git looks for these values is in an

/etc/gitconfig file, which contains values for every user on the system and all of their

repositories. If you pass the option --system to git config , it reads and writes from

this file specifically.

The next place Git looks is the /.gitconfig file, which is specific to each user.

You can make Git read and write to this file by passing the --global option.

Finally, Git looks for configuration values in the config file in the Git directory

(.git/config) of whatever repository you’re currently using. These values are specific

to that single repository. Each level overwrites values in the previous level, so values

in .git/config trump those in /etc/sysconfig , for instance. You can also set these

values by manually editing the file and inserting the correct syntax, but it’s generally

easier to run the git config command.

161

PRO GIT SCOTT CHACON

7.1.1 Basic Client Configuration

The configuration options recognized by Git fall into two categories: client side and

server side. The majority of the options are client side—configuring your personal

working preferences. Although tons of options are available, I’ll only cover the few

that either are commonly used or can significantly affect your workflow. Many options

are useful only in edge cases that I won’t go over here. If you want to see a list of all

the options your version of Git recognizes, you can run

$ git config --help

The manual page for git config lists all the available options in quite a bit of

detail.

core.editor

By default, Git uses whatever you’ve set as your default text editor or else falls

back to the Vi editor to create and edit your commit and tag messages. To change that

default to something else, you can use the core.editor setting:

$ git config --global core.editor emacs

Now, no matter what is set as your default shell editor variable, Git will fire up

Emacs to edit messages.

commit.template

If you set this to the path of a file on your system, Git will use that file as the

default message when you commit. For instance, suppose you create a template file at

$HOME/.gitmessage.txt that looks like this:

subject line

what happened

[ticket: X]

To tell Git to use it as the default message that appears in your editor when you run

git commit , set the commit.template configuration value:

$ git config --global commit.template $HOME/.gitmessage.txt

$ git commit

Then, your editor will open to something like this for your placeholder commit

message when you commit:

subject line

what happened

[ticket: X]

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

162

CHAPTER 7 CUSTOMIZING GIT

modified: lib/test.rb

#

˜

˜

".git/COMMIT_EDITMSG" 14L, 297C

If you have a commit-message policy in place, then putting a template for that

policy on your system and configuring Git to use it by default can help increase the

chance of that policy being followed regularly.

core.pager

The core.pager setting determines what pager is used when Git pages output such

as log and diff . You can set it to more or to your favorite pager (by default, it’s less),

or you can turn it off by setting it to a blank string:

$ git config --global core.pager ’’

If you run that, Git will page the entire output of all commands, no matter how long

they are.

user.signingkey

If you’re making signed annotated tags (as discussed in Chapter 2), setting your

GPG signing key as a configuration setting makes things easier. Set your key ID like

so:

$ git config --global user.signingkey <gpg-key-id>

Now, you can sign tags without having to specify your key every time with the git

tag command:

$ git tag -s <tag-name>

core.excludesfile

You can put patterns in your project’s .gitignore file to have Git not see them as

untracked files or try to stage them when you run git add on them, as discussed in

Chapter 2. However, if you want another file outside of your project to hold those val-

ues or have extra values, you can tell Git where that file is with the core.excludesfile

setting. Simply set it to the path of a file that has content similar to what a .gitignore

file would have.

help.autocorrect

This option is available only in Git 1.6.1 and later. If you mistype a command in

Git 1.6, it shows you something like this:

$ git com

git: ’com’ is not a git-command. See ’git --help’.

Did you mean this?

commit

If you set help.autocorrect to 1, Git will automatically run the command if it has

only one match under this scenario.

163

PRO GIT SCOTT CHACON

7.1.2 Colors in Git

Git can color its output to your terminal, which can help you visually parse the out-

put quickly and easily. A number of options can help you set the coloring to your

preference.

color.ui

Git automatically colors most of its output if you ask it to. You can get very specific

about what you want colored and how; but to turn on all the default terminal coloring,

set color.ui to true:

$ git config --global color.ui true

When that value is set, Git colors its output if the output goes to a terminal. Other

possible settings are false, which never colors the output, and always, which sets colors

all the time, even if you’re redirecting Git commands to a file or piping them to another

command. This setting was added in Git version 1.5.5; if you have an older version,

you’ll have to specify all the color settings individually.

You’ll rarely want color.ui = always . In most scenarios, if you want color codes

in your redirected output, you can instead pass a --color flag to the Git command to

force it to use color codes. The color.ui = true setting is almost always what you’ll

want to use.

color.*

If you want to be more specific about which commands are colored and how, or

you have an older version, Git provides verb-specific coloring settings. Each of these

can be set to true , false , or always :

color.branch

color.diff

color.interactive

color.status

In addition, each of these has subsettings you can use to set specific colors for

parts of the output, if you want to override each color. For example, to set the meta

information in your diff output to blue foreground, black background, and bold text,

you can run

$ git config --global color.diff.meta ‘‘blue black bold’’

You can set the color to any of the following values: normal, black, red, green,

yellow, blue, magenta, cyan, or white. If you want an attribute like bold in the previous

example, you can choose from bold, dim, ul, blink, and reverse.

See the git config manpage for all the subsettings you can configure, if you want

to do that.

7.1.3 External Merge and Diff Tools

Although Git has an internal implementation of diff, which is what you’ve been using,

you can set up an external tool instead. You can also set up a graphical merge conflic-

tresolution tool instead of having to resolve conflicts manually. I’ll demonstrate setting

up the Perforce Visual Merge Tool (P4Merge) to do your diffs and merge resolutions,

because it’s a nice graphical tool and it’s free.

164

CHAPTER 7 CUSTOMIZING GIT

If you want to try this out, P4Merge works on all major platforms, so you should

be able to do so. I’ll use path names in the examples that work on Mac and Linux

systems; for Windows, you’ll have to change /usr/local/bin to an executable path in

your environment.

You can download P4Merge here:

http://www.perforce.com/perforce/downloads/component.html

To begin, you’ll set up external wrapper scripts to run your commands. I’ll use the

Mac path for the executable; in other systems, it will be where your p4merge binary is

installed. Set up a merge wrapper script named extMerge that calls your binary with all

the arguments provided:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/p4merge.app/Contents/MacOS/p4merge $*

The diff wrapper checks to make sure seven arguments are provided and passes two

of them to your merge script. By default, Git passes the following arguments to the diff

program:

path old-file old-hex old-mode new-file new-hex new-mode

Because you only want the old-file and new-file arguments, you use the wrapper

script to pass the ones you need.

$ cat /usr/local/bin/extDiff

#!/bin/sh

[$# -eq 7] && /usr/local/bin/extMerge "$2" "$5"

You also need to make sure these tools are executable:

$ sudo chmod +x /usr/local/bin/extMerge

$ sudo chmod +x /usr/local/bin/extDiff

Now you can set up your config file to use your custom merge resolution and diff

tools. This takes a number of custom settings: merge.tool to tell Git what strategy to

use, mergetool.*.cmd to specify how to run the command, mergetool.trustExitCode

to tell Git if the exit code of that program indicates a successful merge resolution or

not, and diff.external to tell Git what command to run for diffs. So, you can either

run four config commands

$ git config --global merge.tool extMerge

$ git config --global mergetool.extMerge.cmd \

’extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"’

$ git config --global mergetool.trustExitCode false

$ git config --global diff.external extDiff

or you can edit your /.gitconfig file to add these lines:

165

PRO GIT SCOTT CHACON

[merge]

tool = extMerge

[mergetool "extMerge"]

cmd = extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"

trustExitCode = false

[diff]

external = extDiff

After all this is set, if you run diff commands such as this:

$ git diff 32d1776b1̂ 32d1776b1

Instead of getting the diff output on the command line, Git fires up P4Merge, which

looks something like Figure 7.1.

Figure 7.1: P4Merge

If you try to merge two branches and subsequently have merge conflicts, you can

run the command git mergetool ; it starts P4Merge to let you resolve the conflicts

through that GUI tool.

The nice thing about this wrapper setup is that you can change your diff and merge

tools easily. For example, to change your extDiff and extMerge tools to run the KDiff3

tool instead, all you have to do is edit your extMerge file:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/kdiff3.app/Contents/MacOS/kdiff3 $*

Now, Git will use the KDiff3 tool for diff viewing and merge conflict resolution.

166

CHAPTER 7 CUSTOMIZING GIT

Git comes preset to use a number of other merge-resolution tools without your hav-

ing to set up the cmd configuration. You can set your merge tool to kdiff3, opendiff,

tkdiff, meld, xxdiff, emerge, vimdiff, or gvimdiff. If you’re not interested in using KD-

iff3 for diff but rather want to use it just for merge resolution, and the kdiff3 command

is in your path, then you can run

$ git config --global merge.tool kdiff3

If you run this instead of setting up the extMerge and extDiff files, Git will use

KDiff3 for merge resolution and the normal Git diff tool for diffs.

7.1.4 Formatting and Whitespace

Formatting and whitespace issues are some of the more frustrating and subtle problems

that many developers encounter when collaborating, especially cross-platform. It’s

very easy for patches or other collaborated work to introduce subtle whitespace changes

because editors silently introduce them or Windows programmers add carriage returns

at the end of lines they touch in cross-platform projects. Git has a few configuration

options to help with these issues.

core.autocrlf

If you’re programming on Windows or using another system but working with peo-

ple who are programming on Windows, you’ll probably run into line-ending issues at

some point. This is because Windows uses both a carriage-return character and a line-

feed character for newlines in its files, whereas Mac and Linux systems use only the

linefeed character. This is a subtle but incredibly annoying fact of cross-platform work.

Git can handle this by auto-converting CRLF line endings into LF when you com-

mit, and vice versa when it checks out code onto your filesystem. You can turn on this

functionality with the core.autocrlf setting. If you’re on a Windows machine, set it

to true — this converts LF endings into CRLF when you check out code:

$ git config --global core.autocrlf true

If you’re on a Linux or Mac system that uses LF line endings, then you don’t want

Git to automatically convert them when you check out files; however, if a file with

CRLF endings accidentally gets introduced, then you may want Git to fix it. You can

tell Git to convert CRLF to LF on commit but not the other way around by setting

core.autocrlf to input:

$ git config --global core.autocrlf input

This setup should leave you with CRLF endings in Windows checkouts but LF

endings on Mac and Linux systems and in the repository.

If you’re a Windows programmer doing a Windows-only project, then you can turn

off this functionality, recording the carriage returns in the repository by setting the

config value to false :

$ git config --global core.autocrlf false

core.whitespace

167

PRO GIT SCOTT CHACON

Git comes preset to detect and fix some whitespace issues. It can look for four

primary whitespace issues — two are enabled by default and can be turned off, and

two aren’t enabled by default but can be activated.

The two that are turned on by default are trailing-space , which looks for spaces

at the end of a line, and space-before-tab , which looks for spaces before tabs at the

beginning of a line.

The two that are disabled by default but can be turned on are indent-with-non-tab ,

which looks for lines that begin with eight or more spaces instead of tabs, and cr-at-eol ,

which tells Git that carriage returns at the end of lines are OK.

You can tell Git which of these you want enabled by setting core.whitespace to

the values you want on or off, separated by commas. You can disable settings by either

leaving them out of the setting string or prepending a - in front of the value. For

example, if you want all but cr-at-eol to be set, you can do this:

$ git config --global core.whitespace \

trailing-space,space-before-tab,indent-with-non-tab

Git will detect these issues when you run a git diff command and try to color

them so you can possibly fix them before you commit. It will also use these values to

help you when you apply patches with git apply . When you’re applying patches, you

can ask Git to warn you if it’s applying patches with the specified whitespace issues:

$ git apply --whitespace=warn <patch>

Or you can have Git try to automatically fix the issue before applying the patch:

$ git apply --whitespace=fix <patch>

These options apply to the git rebase option as well. If you’ve committed whites-

pace issues but haven’t yet pushed upstream, you can run a rebase with the --whitespace=fix

option to have Git automatically fix whitespace issues as it’s rewriting the patches.

7.1.5 Server Configuration

Not nearly as many configuration options are available for the server side of Git, but

there are a few interesting ones you may want to take note of.

receive.fsckObjects

By default, Git doesn’t check for consistency all the objects it receives during a

push. Although Git can check to make sure each object still matches its SHA–1 check-

sum and points to valid objects, it doesn’t do that by default on every push. This is a

relatively expensive operation and may add a lot of time to each push, depending on

the size of the repository or the push. If you want Git to check object consistency on

every push, you can force it to do so by setting receive.fsckObjects to true:

$ git config --system receive.fsckObjects true

Now, Git will check the integrity of your repository before each push is accepted to

make sure faulty clients aren’t introducing corrupt data.

receive.denyNonFastForwards

If you rebase commits that you’ve already pushed and then try to push again, or

otherwise try to push a commit to a remote branch that doesn’t contain the commit that

168

CHAPTER 7 CUSTOMIZING GIT

the remote branch currently points to, you’ll be denied. This is generally good policy;

but in the case of the rebase, you may determine that you know what you’re doing and

can force-update the remote branch with a -f flag to your push command.

To disable the ability to force-update remote branches to non-fast-forward refer-

ences, set receive.denyNonFastForwards :

$ git config --system receive.denyNonFastForwards true

The other way you can do this is via server-side receive hooks, which I’ll cover in

a bit. That approach lets you do more complex things like deny non-fast-forwards to a

certain subset of users.

receive.denyDeletes

One of the workarounds to the denyNonFastForwards policy is for the user to delete

the branch and then push it back up with the new reference. In newer versions of Git

(beginning with version 1.6.1), you can set receive.denyDeletes to true:

$ git config --system receive.denyDeletes true

This denies branch and tag deletion over a push across the board — no user can do

it. To remove remote branches, you must remove the ref files from the server manually.

There are also more interesting ways to do this on a per-user basis via ACLs, as you’ll

learn at the end of this chapter.

7.2 Git Attributes

Some of these settings can also be specified for a path, so that Git applies those settings

only for a subdirectory or subset of files. These path-specific settings are called Git

attributes and are set either in a .gitattribute file in one of your directories (normally

the root of your project) or in the .git/info/attributes file if you don’t want the

attributes file committed with your project.

Using attributes, you can do things like specify separate merge strategies for in-

dividual files or directories in your project, tell Git how to diff non-text files, or have

Git filter content before you check it into or out of Git. In this section, you’ll learn

about some of the attributes you can set on your paths in your Git project and see a few

examples of using this feature in practice.

7.2.1 Binary Files

One cool trick for which you can use Git attributes is telling Git which files are binary

(in cases it otherwise may not be able to figure out) and giving Git special instructions

about how to handle those files. For instance, some text files may be machine generated

and not diffable, whereas some binary files can be diffed — you’ll see how to tell Git

which is which.

Identifying Binary Files

Some files look like text files but for all intents and purposes are to be treated as bi-

nary data. For instance, Xcode projects on the Mac contain a file that ends in .pbxproj ,

which is basically a JSON (plain text javascript data format) dataset written out to

disk by the IDE that records your build settings and so on. Although it’s technically a

text file, because it’s all ASCII, you don’t want to treat it as such because it’s really a

169

PRO GIT SCOTT CHACON

lightweight database— you can’t merge the contents if two people changed it, and diffs

generally aren’t helpful. The file is meant to be consumed by a machine. In essence,

you want to treat it like a binary file.

To tell Git to treat all pbxproj files as binary data, add the following line to your

.gitattributes file:

*.pbxproj -crlf -diff

Now, Git won’t try to convert or fix CRLF issues; nor will it try to compute or print

a diff for changes in this file when you run git show or git diff on your project. In the

1.6 series of Git, you can also use a macro that is provided that means -crlf -diff :

*.pbxproj binary

Diffing Binary Files

In the 1.6 series of Git, you can use the Git attributes functionality to effectively

diff binary files. You do this by telling Git how to convert your binary data to a text

format that can be compared via the normal diff.

Because this is a pretty cool and not widely known feature, I’ll go over a few

examples. First, you’ll use this technique to solve one of the most annoying problems

known to humanity: version-controlling Word documents. Everyone knows that Word

is the most horrific editor around; but, oddly, everyone uses it. If you want to version-

control Word documents, you can stick them in a Git repository and commit every once

in a while; but what good does that do? If you run git diff normally, you only see

something like this:

$ git diff

diff --git a/chapter1.doc b/chapter1.doc

index 88839c4..4afcb7c 100644

Binary files a/chapter1.doc and b/chapter1.doc differ

You can’t directly compare two versions unless you check them out and scan them

manually, right? It turns out you can do this fairly well using Git attributes. Put the

following line in your .gitattributes file:

*.doc diff=word

This tells Git that any file that matches this pattern (.doc) should use the “word”

filter when you try to view a diff that contains changes. What is the “word” filter? You

have to set it up. Here you’ll configure Git to use the strings program to convert Word

documents into readable text files, which it will then diff properly:

$ git config diff.word.textconv strings

Now Git knows that if it tries to do a diff between two snapshots, and any of the

files end in .doc , it should run those files through the “word” filter, which is defined

as the strings program. This effectively makes nice text-based versions of your Word

files before attempting to diff them.

Here’s an example. I put Chapter 1 of this book into Git, added some text to a

paragraph, and saved the document. Then, I ran git diff to see what changed:

170

CHAPTER 7 CUSTOMIZING GIT

$ git diff

diff --git a/chapter1.doc b/chapter1.doc

index c1c8a0a..b93c9e4 100644

--- a/chapter1.doc

+++ b/chapter1.doc

@@ -8,7 +8,8 @@ re going to cover Version Control Systems (VCS) and Git basics

re going to cover how to get it and set it up for the first time if you don

t already have it on your system.

In Chapter Two we will go over basic Git usage - how to use Git for the 80%

-s going on, modify stuff and contribute changes. If the book spontaneously

+s going on, modify stuff and contribute changes. If the book spontaneously

+Let’s see if this works.

Git successfully and succinctly tells me that I added the string “Let’s see if this

works”, which is correct. It’s not perfect — it adds a bunch of random stuff at the end

— but it certainly works. If you can find or write a Word-to-plain-text converter that

works well enough, that solution will likely be incredibly effective. However, strings

is available on most Mac and Linux systems, so it may be a good first try to do this

with many binary formats.

Another interesting problem you can solve this way involves diffing image files.

One way to do this is to run JPEG files through a filter that extracts their EXIF infor-

mation — metadata that is recorded with most image formats. If you download and

install the exiftool program, you can use it to convert your images into text about the

metadata, so at least the diff will show you a textual representation of any changes that

happened:

$ echo ’*.png diff=exif’ >> .gitattributes

$ git config diff.exif.textconv exiftool

If you replace an image in your project and run git diff , you see something like

this:

diff --git a/image.png b/image.png

index 88839c4..4afcb7c 100644

--- a/image.png

+++ b/image.png

@@ -1,12 +1,12 @@

ExifTool Version Number : 7.74

-File Size : 70 kB

-File Modification Date/Time : 2009:04:21 07:02:45-07:00

+File Size : 94 kB

+File Modification Date/Time : 2009:04:21 07:02:43-07:00

File Type : PNG

MIME Type : image/png

-Image Width : 1058

-Image Height : 889

+Image Width : 1056

+Image Height : 827

Bit Depth : 8

Color Type : RGB with Alpha

You can easily see that the file size and image dimensions have both changed.

171

PRO GIT SCOTT CHACON

7.2.2 Keyword Expansion

SVN- or CVS-style keyword expansion is often requested by developers used to those

systems. The main problem with this in Git is that you can’t modify a file with in-

formation about the commit after you’ve committed, because Git checksums the file

first. However, you can inject text into a file when it’s checked out and remove it again

before it’s added to a commit. Git attributes offers you two ways to do this.

First, you can inject the SHA–1 checksum of a blob into an Id field in the file

automatically. If you set this attribute on a file or set of files, then the next time you

check out that branch, Git will replace that field with the SHA–1 of the blob. It’s

important to notice that it isn’t the SHA of the commit, but of the blob itself:

$ echo ’*.txt ident’ >> .gitattributes

$ echo ’Id’ > test.txt

The next time you check out this file, Git injects the SHA of the blob:

$ rm text.txt

$ git checkout -- text.txt

$ cat test.txt

$Id: 42812b7653c7b88933f8a9d6cad0ca16714b9bb3 $

However, that result is of limited use. If you’ve used keyword substitution in CVS

or Subversion, you can include a datestamp — the SHA isn’t all that helpful, because

it’s fairly random and you can’t tell if one SHA is older or newer than another.

It turns out that you can write your own filters for doing substitutions in files on

commit/checkout. These are the “clean” and “smudge” filters. In the .gitattributes

file, you can set a filter for particular paths and then set up scripts that will process files

just before they’re committed (“clean”, see Figure 7.2) and just before they’re checked

out (“smudge”, see Figure 7.3). These filters can be set to do all sorts of fun things.

Figure 7.2: The “smudge” filter is run on checkout.

The original commit message for this functionality gives a simple example of run-

ning all your C source code through the indent program before committing. You can

set it up by setting the filter attribute in your .gitattributes file to filter *.c files with

the “indent” filter:

*.c filter=indent

172

CHAPTER 7 CUSTOMIZING GIT

Figure 7.3: The “clean” filter is run when files are staged.

Then, tell Git what the “indent”” filter does on smudge and clean:

$ git config --global filter.indent.clean indent

$ git config --global filter.indent.smudge cat

In this case, when you commit files that match *.c , Git will run them through the

indent program before it commits them and then run them through the cat program

before it checks them back out onto disk. The cat program is basically a no-op: it spits

out the same data that it gets in. This combination effectively filters all C source code

files through indent before committing.

Another interesting example gets $Date$ keyword expansion, RCS style. To do this

properly, you need a small script that takes a filename, figures out the last commit date

for this project, and inserts the date into the file. Here is a small Ruby script that does

that:

#! /usr/bin/env ruby

data = STDIN.read

last_date = ‘git log --pretty=format:"%ad" -1‘

puts data.gsub(’$Date$’, ’$Date: ’ + last_date.to_s + ’$’)

All the script does is get the latest commit date from the git log command, stick

that into any $Date$ strings it sees in stdin, and print the results — it should be sim-

ple to do in whatever language you’re most comfortable in. You can name this file

expand date and put it in your path. Now, you need to set up a filter in Git (call it

dater) and tell it to use your expand date filter to smudge the files on checkout. You’ll

use a Perl expression to clean that up on commit:

$ git config filter.dater.smudge expand_date

$ git config filter.dater.clean ’perl -pe "s/\\\$Date[̂ \\\$]*\\\$/\\\$Date\\\$/"’

This Perl snippet strips out anything it sees in a $Date$ string, to get back to where

you started. Now that your filter is ready, you can test it by setting up a file with your

$Date$ keyword and then setting up a Git attribute for that file that engages the new

filter:

$ echo ’# $Date$’ > date_test.txt

$ echo ’date*.txt filter=dater’ >> .gitattributes

173

PRO GIT SCOTT CHACON

If you commit those changes and check out the file again, you see the keyword

properly substituted:

$ git add date_test.txt .gitattributes

$ git commit -m "Testing date expansion in Git"

$ rm date_test.txt

$ git checkout date_test.txt

$ cat date_test.txt

$Date: Tue Apr 21 07:26:52 2009 -0700$

You can see how powerful this technique can be for customized applications. You

have to be careful, though, because the .gitattributes file is committed and passed

around with the project but the driver (in this case, dater) isn’t; so, it won’t work

everywhere. When you design these filters, they should be able to fail gracefully and

have the project still work properly.

7.2.3 Exporting Your Repository

Git attribute data also allows you to do some interesting things when exporting an

archive of your project.

export-ignore

You can tell Git not to export certain files or directories when generating an archive.

If there is a subdirectory or file that you don’t want to include in your archive file

but that you do want checked into your project, you can determine those files via the

export-ignore attribute.

For example, say you have some test files in a test/ subdirectory, and it doesn’t

make sense to include them in the tarball export of your project. You can add the

following line to your Git attributes file:

test/ export-ignore

Now, when you run git archive to create a tarball of your project, that directory

won’t be included in the archive.

export-subst

Another thing you can do for your archives is some simple keyword substitution.

Git lets you put the string $Format:$ in any file with any of the --pretty=format for-

matting shortcodes, many of which you saw in Chapter 2. For instance, if you want to

include a file named LAST COMMIT in your project, and the last commit date was auto-

matically injected into it when git archive ran, you can set up the file like this:

$ echo ’Last commit date: $Format:%cd$’ > LAST_COMMIT

$ echo "LAST_COMMIT export-subst" >> .gitattributes

$ git add LAST_COMMIT .gitattributes

$ git commit -am ’adding LAST_COMMIT file for archives’

When you run git archive , the contents of that file when people open the archive

file will look like this:

$ cat LAST_COMMIT

Last commit date: $Format:Tue Apr 21 08:38:48 2009 -0700$

174

CHAPTER 7 CUSTOMIZING GIT

7.2.4 Merge Strategies

You can also use Git attributes to tell Git to use different merge strategies for specific

files in your project. One very useful option is to tell Git to not try to merge specific

files when they have conflicts, but rather to use your side of the merge over someone

else’s.

This is helpful if a branch in your project has diverged or is specialized, but you

want to be able to merge changes back in from it, and you want to ignore certain

files. Say you have a database settings file called database.xml that is different in two

branches, and you want to merge in your other branch without messing up the database

file. You can set up an attribute like this:

database.xml merge=ours

If you merge in the other branch, instead of having merge conflicts with the database.xml

file, you see something like this:

$ git merge topic

Auto-merging database.xml

Merge made by recursive.

In this case, database.xml stays at whatever version you originally had.

7.3 Git Hooks

Like many other Version Control Systems, Git has a way to fire off custom scripts

when certain important actions occur. There are two groups of these hooks: client side

and server side. The client-side hooks are for client operations such as committing and

merging. The server-side hooks are for Git server operations such as receiving pushed

commits. You can use these hooks for all sorts of reasons, and you’ll learn about a few

of them here.

7.3.1 Installing a Hook

The hooks are all stored in the hooks subdirectory of the Git directory. In most projects,

that’s .git/hooks . By default, Git populates this directory with a bunch of example

scripts, many of which are useful by themselves; but they also document the input

values of each script. All the examples are written as shell scripts, with some Perl

thrown in, but any properly named executable scripts will work fine — you can write

them in Ruby or Python or what have you. For post–1.6 versions of Git, these example

hook files end with .sample; you’ll need to rename them. For pre–1.6 versions of Git,

the example files are named properly but are not executable.

To enable a hook script, put a file in the hooks subdirectory of your Git directory

that is named appropriately and is executable. From that point forward, it should be

called. I’ll cover most of the major hook filenames here.

7.3.2 Client-Side Hooks

There are a lot of client-side hooks. This section splits them into committing-workflow

hooks, e-mailworkflow scripts, and the rest of the client-side scripts.

175

PRO GIT SCOTT CHACON

Committing-Workflow Hooks

The first four hooks have to do with the committing process. The pre-commit hook

is run first, before you even type in a commit message. It’s used to inspect the snapshot

that’s about to be committed, to see if you’ve forgotten something, to make sure tests

run, or to examine whatever you need to inspect in the code. Exiting non-zero from

this hook aborts the commit, although you can bypass it with git commit --no-verify .

You can do things like check for code style (run lint or something equivalent), check

for trailing whitespace (the default hook does exactly that), or check for appropriate

documentation on new methods.

The prepare-commit-msg hook is run before the commit message editor is fired up

but after the default message is created. It lets you edit the default message before

the commit author sees it. This hook takes a few options: the path to the file that

holds the commit message so far, the type of commit, and the commit SHA–1 if this is

an amended commit. This hook generally isn’t useful for normal commits; rather, it’s

good for commits where the default message is auto-generated, such as templated com-

mit messages, merge commits, squashed commits, and amended commits. You may

use it in conjunction with a commit template to programmatically insert information.

The commit-msg hook takes one parameter, which again is the path to a temporary

file that contains the current commit message. If this script exits non-zero, Git aborts

the commit process, so you can use it to validate your project state or commit message

before allowing a commit to go through. In the last section of this chapter, I’ll demon-

strate using this hook to check that your commit message is conformant to a required

pattern.

After the entire commit process is completed, the post-commit hook runs. It doesn’t

take any parameters, but you can easily get the last commit by running git log -1

HEAD . Generally, this script is used for notification or something similar.

The committing-workflow client-side scripts can be used in just about any work-

flow. They’re often used to enforce certain policies, although it’s important to note that

these scripts aren’t transferred during a clone. You can enforce policy on the server

side to reject pushes of commits that don’t conform to some policy, but it’s entirely

up to the developer to use these scripts on the client side. So, these are scripts to help

developers, and they must be set up and maintained by them, although they can be

overridden or modified by them at any time.

E-mail Workflow Hooks

You can set up three client-side hooks for an e-mailbased workflow. They’re all in-

voked by the git am command, so if you aren’t using that command in your workflow,

you can safely skip to the next section. If you’re taking patches over e-mail prepared

by git format-patch , then some of these may be helpful to you.

The first hook that is run is applypatch-msg . It takes a single argument: the name of

the temporary file that contains the proposed commit message. Git aborts the patch if

this script exits non-zero. You can use this to make sure a commit message is properly

formatted or to normalize the message by having the script edit it in place.

The next hook to run when applying patches via git am is pre-applypatch . It

takes no arguments and is run after the patch is applied, so you can use it to inspect

the snapshot before making the commit. You can run tests or otherwise inspect the

working tree with this script. If something is missing or the tests don’t pass, exiting

non-zero also aborts the git am script without committing the patch.

The last hook to run during a git am operation is post-applypatch . You can use

176

CHAPTER 7 CUSTOMIZING GIT

it to notify a group or the author of the patch you pulled in that you’ve done so. You

can’t stop the patching process with this script.

Other Client Hooks

The pre-rebase hook runs before you rebase anything and can halt the process by

exiting non-zero. You can use this hook to disallow rebasing any commits that have

already been pushed. The example pre-rebase hook that Git installs does this, although

it assumes that next is the name of the branch you publish. You’ll likely need to change

that to whatever your stable, published branch is.

After you run a successful git checkout , the post-checkout hook runs; you can

use it to set up your working directory properly for your project environment. This

may mean moving in large binary files that you don’t want source controlled, auto-

generating documentation, or something along those lines.

Finally, the post-merge hook runs after a successful merge command. You can use

it to restore data in the working tree that Git can’t track, such as permissions data. This

hook can likewise validate the presence of files external to Git control that you may

want copied in when the working tree changes.

7.3.3 Server-Side Hooks

In addition to the client-side hooks, you can use a couple of important server-side hooks

as a system administrator to enforce nearly any kind of policy for your project. These

scripts run before and after pushes to the server. The pre hooks can exit non-zero at

any time to reject the push as well as print an error message back to the client; you can

set up a push policy that’s as complex as you wish.

pre-receive and post-receive

The first script to run when handling a push from a client is pre-receive . It takes

a list of references that are being pushed from stdin; if it exits non-zero, none of them

are accepted. You can use this hook to do things like make sure none of the updated

references are non-fast-forwards; or to check that the user doing the pushing has create,

delete, or push access or access to push updates to all the files they’re modifying with

the push.

The post-receive hook runs after the entire process is completed and can be used

to update other services or notify users. It takes the same stdin data as the pre-receive

hook. Examples include e-mailing a list, notifying a continuous integration server, or

updating a ticket-tracking system — you can even parse the commit messages to see

if any tickets need to be opened, modified, or closed. This script can’t stop the push

process, but the client doesn’t disconnect until it has completed; so, be careful when

you try to do anything that may take a long time.

update

The update script is very similar to the pre-receive script, except that it’s run

once for each branch the pusher is trying to update. If the pusher is trying to push to

multiple branches, pre-receive runs only once, whereas update runs once per branch

they’re pushing to. Instead of reading from stdin, this script takes three arguments: the

name of the reference (branch), the SHA–1 that reference pointed to before the push,

and the SHA–1 the user is trying to push. If the update script exits non-zero, only that

reference is rejected; other references can still be updated.

177

PRO GIT SCOTT CHACON

7.4 An Example Git-Enforced Policy

In this section, you’ll use what you’ve learned to establish a Git workflow that checks

for a custom commit message format, enforces fast-forward-only pushes, and allows

only certain users to modify certain subdirectories in a project. You’ll build client

scripts that help the developer know if their push will be rejected and server scripts that

actually enforce the policies.

I used Ruby to write these, both because it’s my preferred scripting language and

because I feel it’s the most pseudocode-looking of the scripting languages; thus you

should be able to roughly follow the code even if you don’t use Ruby. However, any

language will work fine. All the sample hook scripts distributed with Git are in ei-

ther Perl or Bash scripting, so you can also see plenty of examples of hooks in those

languages by looking at the samples.

7.4.1 Server-Side Hook

All the server-side work will go into the update file in your hooks directory. The update

file runs once per branch being pushed and takes the reference being pushed to, the

old revision where that branch was, and the new revision being pushed. You also have

access to the user doing the pushing if the push is being run over SSH. If you’ve allowed

everyone to connect with a single user (like “git”) via public-key authentication, you

may have to give that user a shell wrapper that determines which user is connecting

based on the public key, and set an environment variable specifying that user. Here I

assume the connecting user is in the $USER environment variable, so your update script

begins by gathering all the information you need:

#!/usr/bin/env ruby

$refname = ARGV[0]

$oldrev = ARGV[1]

$newrev = ARGV[2]

$user = ENV[’USER’]

puts "Enforcing Policies... \n(#{$refname}) (#{$oldrev[0,6]}) (#{$newrev[0,6]})"

Yes, I’m using global variables. Don’t judge me— it’s easier to demonstrate in this

manner.

Enforcing a Specific Commit-Message Format

Your first challenge is to enforce that each commit message must adhere to a partic-

ular format. Just to have a target, assume that each message has to include a string that

looks like “ref: 1234” because you want each commit to link to a work item in your

ticketing system. You must look at each commit being pushed up, see if that string is in

the commit message, and, if the string is absent from any of the commits, exit non-zero

so the push is rejected.

You can get a list of the SHA–1 values of all the commits that are being pushed by

taking the $newrev and $oldrev values and passing them to a Git plumbing command

called git rev-list . This is basically the git log command, but by default it prints

out only the SHA–1 values and no other information. So, to get a list of all the commit

SHAs introduced between one commit SHA and another, you can run something like

this:

178

CHAPTER 7 CUSTOMIZING GIT

$ git rev-list 538c33..d14fc7

d14fc7c847ab946ec39590d87783c69b031bdfb7

9f585da4401b0a3999e84113824d15245c13f0be

234071a1be950e2a8d078e6141f5cd20c1e61ad3

dfa04c9ef3d5197182f13fb5b9b1fb7717d2222a

17716ec0f1ff5c77eff40b7fe912f9f6cfd0e475

You can take that output, loop through each of those commit SHAs, grab the mes-

sage for it, and test that message against a regular expression that looks for a pattern.

You have to figure out how to get the commit message from each of these commits

to test. To get the raw commit data, you can use another plumbing command called

git cat-file . I’ll go over all these plumbing commands in detail in Chapter 9; but for

now, here’s what that command gives you:

$ git cat-file commit ca82a6

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the verison number

A simple way to get the commit message from a commit when you have the SHA–1

value is to go to the first blank line and take everything after that. You can do so with

the sed command on Unix systems:

$ git cat-file commit ca82a6 | sed ’1,/̂ $/d’

changed the verison number

You can use that incantation to grab the commit message from each commit that is

trying to be pushed and exit if you see anything that doesn’t match. To exit the script

and reject the push, exit non-zero. The whole method looks like this:

$regex = /\[ref: (\d+)\]/

enforced custom commit message format

def check_message_format

missed_revs = ‘git rev-list #{$oldrev}..#{$newrev}‘.split("\n")

missed_revs.each do |rev|

message = ‘git cat-file commit #{rev} | sed ’1,/̂ $/d’‘

if !$regex.match(message)

puts "[POLICY] Your message is not formatted correctly"

exit 1

end

end

end

check_message_format

Putting that in your update script will reject updates that contain commits that have

messages that don’t adhere to your rule.

Enforcing a User-Based ACL System

Suppose you want to add a mechanism that uses an access control list (ACL) that

specifies which users are allowed to push changes to which parts of your projects.

179

PRO GIT SCOTT CHACON

Some people have full access, and others only have access to push changes to certain

subdirectories or specific files. To enforce this, you’ll write those rules to a file named

acl that lives in your bare Git repository on the server. You’ll have the update hook

look at those rules, see what files are being introduced for all the commits being pushed,

and determine whether the user doing the push has access to update all those files.

The first thing you’ll do is write your ACL. Here you’ll use a format very much

like the CVS ACL mechanism: it uses a series of lines, where the first field is avail or

unavail , the next field is a comma-delimited list of the users to which the rule applies,

and the last field is the path to which the rule applies (blank meaning open access). All

of these fields are delimited by a pipe (|) character.

In this case, you have a couple of administrators, some documentation writers with

access to the doc directory, and one developer who only has access to the lib and tests

directories, and your ACL file looks like this:

avail|nickh,pjhyett,defunkt,tpw

avail|usinclair,cdickens,ebronte|doc

avail|schacon|lib

avail|schacon|tests

You begin by reading this data into a structure that you can use. In this case, to

keep the example simple, you’ll only enforce the avail directives. Here is a method

that gives you an associative array where the key is the user name and the value is an

array of paths to which the user has write access:

def get_acl_access_data(acl_file)

read in ACL data

acl_file = File.read(acl_file).split("\n").reject { |line| line == ’’ }

access = {}

acl_file.each do |line|

avail, users, path = line.split(’|’)

next unless avail == ’avail’

users.split(’,’).each do |user|

access[user] ||= []

access[user] << path

end

end

access

end

On the ACL file you looked at earlier, this get acl access data method returns a

data structure that looks like this:

{"defunkt"=>[nil],

"tpw"=>[nil],

"nickh"=>[nil],

"pjhyett"=>[nil],

"schacon"=>["lib", "tests"],

"cdickens"=>["doc"],

"usinclair"=>["doc"],

"ebronte"=>["doc"]}

180

CHAPTER 7 CUSTOMIZING GIT

Now that you have the permissions sorted out, you need to determine what paths

the commits being pushed have modified, so you can make sure the user who’s pushing

has access to all of them.

You can pretty easily see what files have been modified in a single commit with the

--name-only option to the git log command (mentioned briefly in Chapter 2):

$ git log -1 --name-only --pretty=format:’’ 9f585d

README

lib/test.rb

If you use the ACL structure returned from the get acl access data method and

check it against the listed files in each of the commits, you can determine whether the

user has access to push all of their commits:

only allows certain users to modify certain subdirectories in a project

def check_directory_perms

access = get_acl_access_data(’acl’)

see if anyone is trying to push something they can’t

new_commits = ‘git rev-list #{$oldrev}..#{$newrev}‘.split("\n")

new_commits.each do |rev|

files_modified = ‘git log -1 --name-only --pretty=format:’’ #{rev}‘.split("\n")

files_modified.each do |path|

next if path.size == 0

has_file_access = false

access[$user].each do |access_path|

if !access_path # user has access to everything

|| (path.index(access_path) == 0) # access to this path

has_file_access = true

end

end

if !has_file_access

puts "[POLICY] You do not have access to push to #{path}"

exit 1

end

end

end

end

check_directory_perms

Most of that should be easy to follow. You get a list of new commits being pushed

to your server with git rev-list . Then, for each of those, you find which files are

modified and make sure the user who’s pushing has access to all the paths being mod-

ified. One Rubyism that may not be clear is path.index(access path) == 0 , which is

true if path begins with access path — this ensures that access path is not just in one

of the allowed paths, but an allowed path begins with each accessed path.

Now your users can’t push any commits with badly formed messages or with mod-

ified files outside of their designated paths.

Enforcing Fast-Forward-Only Pushes

181

PRO GIT SCOTT CHACON

The only thing left is to enforce fast-forward-only pushes. In Git versions 1.6 or

newer, you can set the receive.denyDeletes and receive.denyNonFastForwards set-

tings. But enforcing this with a hook will work in older versions of Git, and you can

modify it to do so only for certain users or whatever else you come up with later.

The logic for checking this is to see if any commits are reachable from the older

revision that aren’t reachable from the newer one. If there are none, then it was a

fast-forward push; otherwise, you deny it:

enforces fast-forward only pushes

def check_fast_forward

missed_refs = ‘git rev-list #{$newrev}..#{$oldrev}‘

missed_ref_count = missed_refs.split("\n").size

if missed_ref_count > 0

puts "[POLICY] Cannot push a non fast-forward reference"

exit 1

end

end

check_fast_forward

Everything is set up. If you run chmod u+x .git/hooks/update , which is the file

you into which you should have put all this code, and then try to push a non-fast-

forwarded reference, you get something like this:

$ git push -f origin master

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 323 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

Enforcing Policies...

(refs/heads/master) (8338c5) (c5b616)

[POLICY] Cannot push a non-fast-forward reference

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

To git@gitserver:project.git

! [remote rejected] master -> master (hook declined)

error: failed to push some refs to ’git@gitserver:project.git’

There are a couple of interesting things here. First, you see this where the hook

starts running.

Enforcing Policies...

(refs/heads/master) (fb8c72) (c56860)

Notice that you printed that out to stdout at the very beginning of your update script.

It’s important to note that anything your script prints to stdout will be transferred to the

client.

The next thing you’ll notice is the error message.

[POLICY] Cannot push a non fast-forward reference

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

182

CHAPTER 7 CUSTOMIZING GIT

The first line was printed out by you, the other two were Git telling you that the

update script exited non-zero and that is what is declining your push. Lastly, you have

this:

To git@gitserver:project.git

! [remote rejected] master -> master (hook declined)

error: failed to push some refs to ’git@gitserver:project.git’

You’ll see a remote rejected message for each reference that your hook declined,

and it tells you that it was declined specifically because of a hook failure.

Furthermore, if the ref marker isn’t there in any of your commits, you’ll see the

error message you’re printing out for that.

[POLICY] Your message is not formatted correctly

Or if someone tries to edit a file they don’t have access to and push a commit

containing it, they will see something similar. For instance, if a documentation author

tries to push a commit modifying something in the lib directory, they see

[POLICY] You do not have access to push to lib/test.rb

That’s all. From now on, as long as that update script is there and executable, your

repository will never be rewound and will never have a commit message without your

pattern in it, and your users will be sandboxed.

7.4.2 Client-Side Hooks

The downside to this approach is the whining that will inevitably result when your

users’ commit pushes are rejected. Having their carefully crafted work rejected at the

last minute can be extremely frustrating and confusing; and furthermore, they will have

to edit their history to correct it, which isn’t always for the faint of heart.

The answer to this dilemma is to provide some client-side hooks that users can use

to notify them when they’re doing something that the server is likely to reject. That

way, they can correct any problems before committing and before those issues become

more difficult to fix. Because hooks aren’t transferred with a clone of a project, you

must distribute these scripts some other way and then have your users copy them to their

.git/hooks directory and make them executable. You can distribute these hooks within

the project or in a separate project, but there is no way to set them up automatically.

To begin, you should check your commit message just before each commit is

recorded, so you know the server won’t reject your changes due to badly formatted

commit messages. To do this, you can add the commit-msg hook. If you have it read the

message from the file passed as the first argument and compare that to the pattern, you

can force Git to abort the commit if there is no match:

#!/usr/bin/env ruby

message_file = ARGV[0]

message = File.read(message_file)

$regex = /\[ref: (\d+)\]/

if !$regex.match(message)

183

PRO GIT SCOTT CHACON

puts "[POLICY] Your message is not formatted correctly"

exit 1

end

If that script is in place (in .git/hooks/commit-msg) and executable, and you com-

mit with a message that isn’t properly formatted, you see this:

$ git commit -am ’test’

[POLICY] Your message is not formatted correctly

No commit was completed in that instance. However, if your message contains the

proper pattern, Git allows you to commit:

$ git commit -am ’test [ref: 132]’

[master e05c914] test [ref: 132]

1 files changed, 1 insertions(+), 0 deletions(-)

Next, you want to make sure you aren’t modifying files that are outside your ACL

scope. If your project’s .git directory contains a copy of the ACL file you used previ-

ously, then the following pre-commit script will enforce those constraints for you:

#!/usr/bin/env ruby

$user = ENV[’USER’]

[insert acl_access_data method from above]

only allows certain users to modify certain subdirectories in a project

def check_directory_perms

access = get_acl_access_data(’.git/acl’)

files_modified = ‘git diff-index --cached --name-only HEAD‘.split("\n")

files_modified.each do |path|

next if path.size == 0

has_file_access = false

access[$user].each do |access_path|

if !access_path || (path.index(access_path) == 0)

has_file_access = true

end

if !has_file_access

puts "[POLICY] You do not have access to push to #{path}"

exit 1

end

end

end

check_directory_perms

This is roughly the same script as the server-side part, but with two important dif-

ferences. First, the ACL file is in a different place, because this script runs from your

working directory, not from your Git directory. You have to change the path to the ACL

file from this

184

CHAPTER 7 CUSTOMIZING GIT

access = get_acl_access_data(’acl’)

to this:

access = get_acl_access_data(’.git/acl’)

The other important difference is the way you get a listing of the files that have

been changed. Because the server-side method looks at the log of commits, and, at

this point, the commit hasn’t been recorded yet, you must get your file listing from the

staging area instead. Instead of

files_modified = ‘git log -1 --name-only --pretty=format:’’ #{ref}‘

you have to use

files_modified = ‘git diff-index --cached --name-only HEAD‘

But those are the only two differences — otherwise, the script works the same way.

One caveat is that it expects you to be running locally as the same user you push as to

the remote machine. If that is different, you must set the $user variable manually.

The last thing you have to do is check that you’re not trying to push non-fast-

forwarded references, but that is a bit less common. To get a reference that isn’t a

fast-forward, you either have to rebase past a commit you’ve already pushed up or try

pushing a different local branch up to the same remote branch.

Because the server will tell you that you can’t push a non-fast-forward anyway,

and the hook prevents forced pushes, the only accidental thing you can try to catch is

rebasing commits that have already been pushed.

Here is an example pre-rebase script that checks for that. It gets a list of all the

commits you’re about to rewrite and checks whether they exist in any of your remote

references. If it sees one that is reachable from one of your remote references, it aborts

the rebase:

#!/usr/bin/env ruby

base_branch = ARGV[0]

if ARGV[1]

topic_branch = ARGV[1]

else

topic_branch = "HEAD"

end

target_shas = ‘git rev-list #{base_branch}..#{topic_branch}‘.split("\n")

remote_refs = ‘git branch -r‘.split("\n").map { |r| r.strip }

target_shas.each do |sha|

remote_refs.each do |remote_ref|

shas_pushed = ‘git rev-list #̂{sha}̂ @ refs/remotes/#{remote_ref}‘

if shas_pushed.split(‘‘\n’’).include?(sha)

puts "[POLICY] Commit #{sha} has already been pushed to #{remote_ref}"

exit 1

end

end

end

185

PRO GIT SCOTT CHACON

This script uses a syntax that wasn’t covered in the Revision Selection section of

Chapter 6. You get a list of commits that have already been pushed up by running this:

git rev-list #̂{sha}̂ @ refs/remotes/#{remote_ref}

The SHÂ @ syntax resolves to all the parents of that commit. You’re looking for any

commit that is reachable from the last commit on the remote and that isn’t reachable

from any parent of any of the SHAs you’re trying to push up — meaning it’s a fast-

forward.

The main drawback to this approach is that it can be very slow and is often unnec-

essary — if you don’t try to force the push with -f, the server will warn you and not

accept the push. However, it’s an interesting exercise and can in theory help you avoid

a rebase that you might later have to go back and fix.

7.5 Summary

You’ve covered most of the major ways that you can customize your Git client and

server to best fit your workflow and projects. You’ve learned about all sorts of con-

figuration settings, file-based attributes, and event hooks, and you’ve built an example

policy-enforcing server. You should now be able to make Git fit nearly any workflow

you can dream up.

186

Chapter 8

Git and Other Systems

The world isn’t perfect. Usually, you can’t immediately switch every project you come

in contact with to Git. Sometimes you’re stuck on a project using another VCS, and

many times that system is Subversion. You’ll spend the first part of this chapter learning

about git svn , the bidirectional Subversion gateway tool in Git.

At some point, you may want to convert your existing project to Git. The second

part of this chapter covers how to migrate your project into Git: first from Subversion,

then from Perforce, and finally via a custom import script for a nonstandard importing

case.

8.1 Git and Subversion

Currently, the majority of open source development projects and a large number of

corporate projects use Subversion to manage their source code. It’s the most popular

open source VCS and has been around for nearly a decade. It’s also very similar in

many ways to CVS, which was the big boy of the source-control world before that.

One of Git’s great features is a bidirectional bridge to Subversion called git svn .

This tool allows you to use Git as a valid client to a Subversion server, so you can

use all the local features of Git and then push to a Subversion server as if you were

using Subversion locally. This means you can do local branching and merging, use

the staging area, use rebasing and cherry-picking, and so on, while your collaborators

continue to work in their dark and ancient ways. It’s a good way to sneak Git into the

corporate environment and help your fellow developers become more efficient while

you lobby to get the infrastructure changed to support Git fully. The Subversion bridge

is the gateway drug to the DVCS world.

8.1.1 git svn

The base command in Git for all the Subversion bridging commands is git svn . You

preface everything with that. It takes quite a few commands, so you’ll learn about the

common ones while going through a few small workflows.

It’s important to note that when you’re using git svn , you’re interacting with Sub-

version, which is a system that is far less sophisticated than Git. Although you can

187

PRO GIT SCOTT CHACON

easily do local branching and merging, it’s generally best to keep your history as lin-

ear as possible by rebasing your work and avoiding doing things like simultaneously

interacting with a Git remote repository.

Don’t rewrite your history and try to push again, and don’t push to a parallel Git

repository to collaborate with fellow Git developers at the same time. Subversion can

have only a single linear history, and confusing it is very easy. If you’re working with

a team, and some are using SVN and others are using Git, make sure everyone is using

the SVN server to collaborate — doing so will make your life easier.

8.1.2 Setting Up

To demonstrate this functionality, you need a typical SVN repository that you have

write access to. If you want to copy these examples, you’ll have to make a writeable

copy of my test repository. In order to do that easily, you can use a tool called svnsync

that comes with more recent versions of Subversion — it should be distributed with at

least 1.4. For these tests, I created a new Subversion repository on Google code that

was a partial copy of the protobuf project, which is a tool that encodes structured data

for network transmission.

To follow along, you first need to create a new local Subversion repository:

$ mkdir /tmp/test-svn

$ svnadmin create /tmp/test-svn

Then, enable all users to change revprops — the easy way is to add a pre-revprop-

change script that always exits 0:

$ cat /tmp/test-svn/hooks/pre-revprop-change

#!/bin/sh

exit 0;

$ chmod +x /tmp/test-svn/hooks/pre-revprop-change

You can now sync this project to your local machine by calling svnsync init with

the to and from repositories.

$ svnsync init file:///tmp/test-svn http://progit-example.googlecode.com/svn/

This sets up the properties to run the sync. You can then clone the code by running

$ svnsync sync file:///tmp/test-svn

Committed revision 1.

Copied properties for revision 1.

Committed revision 2.

Copied properties for revision 2.

Committed revision 3.

...

Although this operation may take only a few minutes, if you try to copy the original

repository to another remote repository instead of a local one, the process will take

nearly an hour, even though there are fewer than 100 commits. Subversion has to clone

one revision at a time and then push it back into another repository — it’s ridiculously

inefficient, but it’s the only easy way to do this.

188

CHAPTER 8 GIT AND OTHER SYSTEMS

8.1.3 Getting Started

Now that you have a Subversion repository to which you have write access, you can

go through a typical workflow. You’ll start with the git svn clone command, which

imports an entire Subversion repository into a local Git repository. Remember that

if you’re importing from a real hosted Subversion repository, you should replace the

file:///tmp/test-svn here with the URL of your Subversion repository:

$ git svn clone file:///tmp/test-svn -T trunk -b branches -t tags

Initialized empty Git repository in /Users/schacon/projects/testsvnsync/svn/.git/

r1 = b4e387bc68740b5af56c2a5faf4003ae42bd135c (trunk)

A m4/acx_pthread.m4

A m4/stl_hash.m4

...

r75 = d1957f3b307922124eec6314e15bcda59e3d9610 (trunk)

Found possible branch point: file:///tmp/test-svn/trunk => \

file:///tmp/test-svn /branches/my-calc-branch, 75

Found branch parent: (my-calc-branch) d1957f3b307922124eec6314e15bcda59e3d9610

Following parent with do_switch

Successfully followed parent

r76 = 8624824ecc0badd73f40ea2f01fce51894189b01 (my-calc-branch)

Checked out HEAD:

file:///tmp/test-svn/branches/my-calc-branch r76

This runs the equivalent of two commands — git svn init followed by git svn

fetch — on the URL you provide. This can take a while. The test project has only

about 75 commits and the codebase isn’t that big, so it takes just a few minutes. How-

ever, Git has to check out each version, one at a time, and commit it individually. For

a project with hundreds or thousands of commits, this can literally take hours or even

days to finish.

The -T trunk -b branches -t tags part tells Git that this Subversion repository

follows the basic branching and tagging conventions. If you name your trunk, branches,

or tags differently, you can change these options. Because this is so common, you can

replace this entire part with -s, which means standard layout and implies all those

options. The following command is equivalent:

$ git svn clone file:///tmp/test-svn -s

At this point, you should have a valid Git repository that has imported your branches

and tags:

$ git branch -a

* master

my-calc-branch

tags/2.0.2

tags/release-2.0.1

tags/release-2.0.2

tags/release-2.0.2rc1

trunk

It’s important to note how this tool namespaces your remote references differently.

When you’re cloning a normal Git repository, you get all the branches on that remote

189

PRO GIT SCOTT CHACON

server available locally as something like origin/[branch] - namespaced by the name

of the remote. However, git svn assumes that you won’t have multiple remotes and

saves all its references to points on the remote server with no namespacing. You can

use the Git plumbing command show-ref to look at all your full reference names:

$ git show-ref

1cbd4904d9982f386d87f88fce1c24ad7c0f0471 refs/heads/master

aee1ecc26318164f355a883f5d99cff0c852d3c4 refs/remotes/my-calc-branch

03d09b0e2aad427e34a6d50ff147128e76c0e0f5 refs/remotes/tags/2.0.2

50d02cc0adc9da4319eeba0900430ba219b9c376 refs/remotes/tags/release-2.0.1

4caaa711a50c77879a91b8b90380060f672745cb refs/remotes/tags/release-2.0.2

1c4cb508144c513ff1214c3488abe66dcb92916f refs/remotes/tags/release-2.0.2rc1

1cbd4904d9982f386d87f88fce1c24ad7c0f0471 refs/remotes/trunk

A normal Git repository looks more like this:

$ git show-ref

83e38c7a0af325a9722f2fdc56b10188806d83a1 refs/heads/master

3e15e38c198baac84223acfc6224bb8b99ff2281 refs/remotes/gitserver/master

0a30dd3b0c795b80212ae723640d4e5d48cabdff refs/remotes/origin/master

25812380387fdd55f916652be4881c6f11600d6f refs/remotes/origin/testing

You have two remote servers: one named gitserver with a master branch; and

another named origin with two branches, master and testing .

Notice how in the example of remote references imported from git svn , tags are

added as remote branches, not as real Git tags. Your Subversion import looks like it

has a remote named tags with branches under it.

8.1.4 Committing Back to Subversion

Now that you have a working repository, you can do some work on the project and

push your commits back upstream, using Git effectively as a SVN client. If you edit

one of the files and commit it, you have a commit that exists in Git locally that doesn’t

exist on the Subversion server:

$ git commit -am ’Adding git-svn instructions to the README’

[master 97031e5] Adding git-svn instructions to the README

1 files changed, 1 insertions(+), 1 deletions(-)

Next, you need to push your change upstream. Notice how this changes the way

you work with Subversion — you can do several commits offline and then push them

all at once to the Subversion server. To push to a Subversion server, you run the git

svn dcommit command:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M README.txt

Committed r79

M README.txt

r79 = 938b1a547c2cc92033b74d32030e86468294a5c8 (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

190

CHAPTER 8 GIT AND OTHER SYSTEMS

This takes all the commits you’ve made on top of the Subversion server code, does

a Subversion commit for each, and then rewrites your local Git commit to include a

unique identifier. This is important because it means that all the SHA–1 checksums for

your commits change. Partly for this reason, working with Git-based remote versions

of your projects concurrently with a Subversion server isn’t a good idea. If you look at

the last commit, you can see the new git-svn-id that was added:

$ git log -1

commit 938b1a547c2cc92033b74d32030e86468294a5c8

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sat May 2 22:06:44 2009 +0000

Adding git-svn instructions to the README

git-svn-id: file:///tmp/test-svn/trunk@79 4c93b258-373f-11de-be05-5f7a86268029

Notice that the SHA checksum that originally started with 97031e5 when you com-

mitted now begins with 938b1a5 . If you want to push to both a Git server and a Sub-

version server, you have to push (dcommit) to the Subversion server first, because that

action changes your commit data.

8.1.5 Pulling in New Changes

If you’re working with other developers, then at some point one of you will push, and

then the other one will try to push a change that conflicts. That change will be rejected

until you merge in their work. In git svn , it looks like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

Merge conflict during commit: Your file or directory ’README.txt’ is probably \

out-of-date: resource out of date; try updating at /Users/schacon/libexec/git-\

core/git-svn line 482

To resolve this situation, you can run git svn rebase , which pulls down any changes

on the server that you don’t have yet and rebases any work you have on top of what is

on the server:

$ git svn rebase

M README.txt

r80 = ff829ab914e8775c7c025d741beb3d523ee30bc4 (trunk)

First, rewinding head to replay your work on top of it...

Applying: first user change

Now, all your work is on top of what is on the Subversion server, so you can suc-

cessfully dcommit :

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M README.txt

Committed r81

M README.txt

r81 = 456cbe6337abe49154db70106d1836bc1332deed (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

191

PRO GIT SCOTT CHACON

It’s important to remember that unlike Git, which requires you to merge upstream

work you don’t yet have locally before you can push, git svn makes you do that only

if the changes conflict. If someone else pushes a change to one file and then you push

a change to another file, your dcommit will work fine:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M configure.ac

Committed r84

M autogen.sh

r83 = 8aa54a74d452f82eee10076ab2584c1fc424853b (trunk)

M configure.ac

r84 = cdbac939211ccb18aa744e581e46563af5d962d0 (trunk)

W: d2f23b80f67aaaa1f6f5aaef48fce3263ac71a92 and refs/remotes/trunk differ, \

using rebase:

:100755 100755 efa5a59965fbbb5b2b0a12890f1b351bb5493c18 \

015e4c98c482f0fa71e4d5434338014530b37fa6 M autogen.sh

First, rewinding head to replay your work on top of it...

Nothing to do.

This is important to remember, because the outcome is a project state that didn’t

exist on either of your computers when you pushed. If the changes are incompatible but

don’t conflict, you may get issues that are difficult to diagnose. This is different than

using a Git server — in Git, you can fully test the state on your client system before

publishing it, whereas in SVN, you can’t ever be certain that the states immediately

before commit and after commit are identical.

You should also run this command to pull in changes from the Subversion server,

even if you’re not ready to commit yourself. You can run git svn fetch to grab the

new data, but git svn rebase does the fetch and then updates your local commits.

$ git svn rebase

M generate_descriptor_proto.sh

r82 = bd16df9173e424c6f52c337ab6efa7f7643282f1 (trunk)

First, rewinding head to replay your work on top of it...

Fast-forwarded master to refs/remotes/trunk.

Running git svn rebase every once in a while makes sure your code is always up

to date. You need to be sure your working directory is clean when you run this, though.

If you have local changes, you must either stash your work or temporarily commit it

before running git svn rebase — otherwise, the command will stop if it sees that the

rebase will result in a merge conflict.

8.1.6 Git Branching Issues

When you’ve become comfortable with a Git workflow, you’ll likely create topic branches,

do work on them, and then merge them in. If you’re pushing to a Subversion server

via git svn, you may want to rebase your work onto a single branch each time instead

of merging branches together. The reason to prefer rebasing is that Subversion has a

linear history and doesn’t deal with merges like Git does, so git svn follows only the

first parent when converting the snapshots into Subversion commits.

192

CHAPTER 8 GIT AND OTHER SYSTEMS

Suppose your history looks like the following: you created an experiment branch,

did two commits, and then merged them back into master . When you dcommit , you see

output like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

M CHANGES.txt

Committed r85

M CHANGES.txt

r85 = 4bfebeec434d156c36f2bcd18f4e3d97dc3269a2 (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

COPYING.txt: locally modified

INSTALL.txt: locally modified

M COPYING.txt

M INSTALL.txt

Committed r86

M INSTALL.txt

M COPYING.txt

r86 = 2647f6b86ccfcaad4ec58c520e369ec81f7c283c (trunk)

No changes between current HEAD and refs/remotes/trunk

Resetting to the latest refs/remotes/trunk

Running dcommit on a branch with merged history works fine, except that when

you look at your Git project history, it hasn’t rewritten either of the commits you made

on the experiment branch — instead, all those changes appear in the SVN version of

the single merge commit.

When someone else clones that work, all they see is the merge commit with all the

work squashed into it; they don’t see the commit data about where it came from or

when it was committed.

8.1.7 Subversion Branching

Branching in Subversion isn’t the same as branching in Git; if you can avoid using

it much, that’s probably best. However, you can create and commit to branches in

Subversion using git svn.

Creating a New SVN Branch

To create a new branch in Subversion, you run git svn branch [branchname] :

$ git svn branch opera

Copying file:///tmp/test-svn/trunk at r87 to file:///tmp/test-svn/branches/opera...

Found possible branch point: file:///tmp/test-svn/trunk => \

file:///tmp/test-svn/branches/opera, 87

Found branch parent: (opera) 1f6bfe471083cbca06ac8d4176f7ad4de0d62e5f

Following parent with do_switch

Successfully followed parent

r89 = 9b6fe0b90c5c9adf9165f700897518dbc54a7cbf (opera)

This does the equivalent of the svn copy trunk branches/opera command in Sub-

version and operates on the Subversion server. It’s important to note that it doesn’t

check you out into that branch; if you commit at this point, that commit will go to

trunk on the server, not opera .

193

PRO GIT SCOTT CHACON

8.1.8 Switching Active Branches

Git figures out what branch your dcommits go to by looking for the tip of any of your

Subversion branches in your history — you should have only one, and it should be the

last one with a git-svn-id in your current branch history.

If you want to work on more than one branch simultaneously, you can set up local

branches to dcommit to specific Subversion branches by starting them at the imported

Subversion commit for that branch. If you want an opera branch that you can work on

separately, you can run

$ git branch opera remotes/opera

Now, if you want to merge your opera branch into trunk (your master branch),

you can do so with a normal git merge . But you need to provide a descriptive commit

message (via -m), or the merge will say “Merge branch opera” instead of something

useful.

Remember that although you’re using git merge to do this operation, and the merge

likely will be much easier than it would be in Subversion (because Git will automati-

cally detect the appropriate merge base for you), this isn’t a normal Git merge commit.

You have to push this data back to a Subversion server that can’t handle a commit that

tracks more than one parent; so, after you push it up, it will look like a single commit

that squashed in all the work of another branch under a single commit. After you merge

one branch into another, you can’t easily go back and continue working on that branch,

as you normally can in Git. The dcommit command that you run erases any informa-

tion that says what branch was merged in, so subsequent merge-base calculations will

be wrong — the dcommit makes your git merge result look like you ran git merge

--squash . Unfortunately, there’s no good way to avoid this situation — Subversion

can’t store this information, so you’ll always be crippled by its limitations while you’re

using it as your server. To avoid issues, you should delete the local branch (in this case,

opera) after you merge it into trunk.

8.1.9 Subversion Commands

The git svn toolset provides a number of commands to help ease the transition to Git

by providing some functionality that’s similar to what you had in Subversion. Here are

a few commands that give you what Subversion used to.

SVN Style History

If you’re used to Subversion and want to see your history in SVN output style, you

can run git svn log to view your commit history in SVN formatting:

$ git svn log

--

r87 | schacon | 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009) | 2 lines

autogen change

--

r86 | schacon | 2009-05-02 16:00:21 -0700 (Sat, 02 May 2009) | 2 lines

Merge branch ’experiment’

194

CHAPTER 8 GIT AND OTHER SYSTEMS

--

r85 | schacon | 2009-05-02 16:00:09 -0700 (Sat, 02 May 2009) | 2 lines

updated the changelog

You should know two important things about git svn log . First, it works offline,

unlike the real svn log command, which asks the Subversion server for the data. Sec-

ond, it only shows you commits that have been committed up to the Subversion server.

Local Git commits that you haven’t dcommited don’t show up; neither do commits

that people have made to the Subversion server in the meantime. It’s more like the last

known state of the commits on the Subversion server.

SVN Annotation

Much as the git svn log command simulates the svn log command offline, you

can get the equivalent of svn annotate by running git svn blame [FILE] . The output

looks like this:

$ git svn blame README.txt

2 temporal Protocol Buffers - Google’s data interchange format

2 temporal Copyright 2008 Google Inc.

2 temporal http://code.google.com/apis/protocolbuffers/

2 temporal

22 temporal C++ Installation - Unix

22 temporal =======================

2 temporal

79 schacon Committing in git-svn.

78 schacon

2 temporal To build and install the C++ Protocol Buffer runtime and the Protocol

2 temporal Buffer compiler (protoc) execute the following:

2 temporal

Again, it doesn’t show commits that you did locally in Git or that have been pushed

to Subversion in the meantime.

SVN Server Information

You can also get the same sort of information that svn info gives you by running

git svn info :

$ git svn info

Path: .

URL: https://schacon-test.googlecode.com/svn/trunk

Repository Root: https://schacon-test.googlecode.com/svn

Repository UUID: 4c93b258-373f-11de-be05-5f7a86268029

Revision: 87

Node Kind: directory

Schedule: normal

Last Changed Author: schacon

Last Changed Rev: 87

Last Changed Date: 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009)

This is like blame and log in that it runs offline and is up to date only as of the last

time you communicated with the Subversion server.

Ignoring What Subversion Ignores

195

PRO GIT SCOTT CHACON

If you clone a Subversion repository that has svn:ignore properties set anywhere,

you’ll likely want to set corresponding .gitignore files so you don’t accidentally com-

mit files that you shouldn’t. git svn has two commands to help with this issue. The

first is git svn create-ignore , which automatically creates corresponding .gitignore

files for you so your next commit can include them.

The second command is git svn show-ignore , which prints to stdout the lines you

need to put in a .gitignore file so you can redirect the output into your project exclude

file:

$ git svn show-ignore > .git/info/exclude

That way, you don’t litter the project with .gitignore files. This is a good op-

tion if you’re the only Git user on a Subversion team, and your teammates don’t want

.gitignore files in the project.

8.1.10 Git-Svn Summary

The git svn tools are useful if you’re stuck with a Subversion server for now or are

otherwise in a development environment that necessitates running a Subversion server.

You should consider it crippled Git, however, or you’ll hit issues in translation that

may confuse you and your collaborators. To stay out of trouble, try to follow these

guidelines:

• Keep a linear Git history that doesn’t contain merge commits made by git merge .

Rebase any work you do outside of your mainline branch back onto it; don’t

merge it in.

• Don’t set up and collaborate on a separate Git server. Possibly have one to speed

up clones for new developers, but don’t push anything to it that doesn’t have a

git-svn-id entry. You may even want to add a pre-receive hook that checks

each commit message for a git-svn-id and rejects pushes that contain commits

without it.

If you follow those guidelines, working with a Subversion server can be more bearable.

However, if it’s possible to move to a real Git server, doing so can gain your team a lot

more.

8.2 Migrating to Git

If you have an existing codebase in another VCS but you’ve decided to start using

Git, you must migrate your project one way or another. This section goes over some

importers that are included with Git for common systems and then demonstrates how

to develop your own custom importer.

8.2.1 Importing

You’ll learn how to import data from two of the bigger professionally used SCM sys-

tems — Subversion and Perforce — both because they make up the majority of users

I hear of who are currently switching, and because high-quality tools for both systems

are distributed with Git.

196

CHAPTER 8 GIT AND OTHER SYSTEMS

8.2.2 Subversion

If you read the previous section about using git svn , you can easily use those instruc-

tions to git svn clone a repository; then, stop using the Subversion server, push to a

new Git server, and start using that. If you want the history, you can accomplish that as

quickly as you can pull the data out of the Subversion server (which may take a while).

However, the import isn’t perfect; and because it will take so long, you may as well

do it right. The first problem is the author information. In Subversion, each person

committing has a user on the system who is recorded in the commit information. The

examples in the previous section show schacon in some places, such as the blame output

and the git svn log . If you want to map this to better Git author data, you need a

mapping from the Subversion users to the Git authors. Create a file called users.txt

that has this mapping in a format like this:

schacon = Scott Chacon <schacon@geemail.com>

selse = Someo Nelse <selse@geemail.com>

To get a list of the author names that SVN uses, you can run this:

$ svn log --xml | grep author | sort -u | perl -pe ’s/.>(.?)<./$1 = /’

That gives you the log output in XML format— you can look for the authors, create

a unique list, and then strip out the XML. (Obviously this only works on a machine with

grep , sort , and perl installed.) Then, redirect that output into your users.txt file so you

can add the equivalent Git user data next to each entry.

You can provide this file to git svn to help it map the author data more accurately.

You can also tell git svn not to include the metadata that Subversion normally imports,

by passing --no-metadata to the clone or init command. This makes your import

command look like this:

$ git-svn clone http://my-project.googlecode.com/svn/ \

--authors-file=users.txt --no-metadata -s my_project

Now you should have a nicer Subversion import in your my project directory. In-

stead of commits that look like this

commit 37efa680e8473b615de980fa935944215428a35a

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

git-svn-id: https://my-project.googlecode.com/svn/trunk@94 4c93b258-373f-11de-

be05-5f7a86268029

they look like this:

commit 03a8785f44c8ea5cdb0e8834b7c8e6c469be2ff2

Author: Scott Chacon <schacon@geemail.com>

Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

197

PRO GIT SCOTT CHACON

Not only does the Author field look a lot better, but the git-svn-id is no longer

there, either.

You need to do a bit of post-import cleanup. For one thing, you should clean up

the weird references that git svn set up. First you’ll move the tags so they’re actual

tags rather than strange remote branches, and then you’ll move the rest of the branches

so they’re local.

To move the tags to be proper Git tags, run

$ cp -Rf .git/refs/remotes/tags/* .git/refs/tags/

$ rm -Rf .git/refs/remotes/tags

This takes the references that were remote branches that started with tag/ and

makes them real (lightweight) tags.

Next, move the rest of the references under refs/remotes to be local branches:

$ cp -Rf .git/refs/remotes/* .git/refs/heads/

$ rm -Rf .git/refs/remotes

Now all the old branches are real Git branches and all the old tags are real Git tags.

The last thing to do is add your new Git server as a remote and push to it. Because you

want all your branches and tags to go up, you can run this:

$ git push origin --all

All your branches and tags should be on your new Git server in a nice, clean import.

8.2.3 Perforce

The next system you’ll look at importing from is Perforce. A Perforce importer is

also distributed with Git, but only in the contrib section of the source code — it isn’t

available by default like git svn . To run it, you must get the Git source code, which

you can download from git.kernel.org:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/contrib/fast-import

In this fast-import directory, you should find an executable Python script named

git-p4 . You must have Python and the p4 tool installed on your machine for this import

to work. For example, you’ll import the Jam project from the Perforce Public Depot.

To set up your client, you must export the P4PORT environment variable to point to

the Perforce depot:

$ export P4PORT=public.perforce.com:1666

Run the git-p4 clone command to import the Jam project from the Perforce server,

supplying the depot and project path and the path into which you want to import the

project:

$ git-p4 clone //public/jam/src@all /opt/p4import

Importing from //public/jam/src@all into /opt/p4import

Reinitialized existing Git repository in /opt/p4import/.git/

Import destination: refs/remotes/p4/master

Importing revision 4409 (100%)

198

CHAPTER 8 GIT AND OTHER SYSTEMS

If you go to the /opt/p4import directory and run git log , you can see your im-

ported work:

$ git log -2

commit 1fd4ec126171790efd2db83548b85b1bbbc07dc2

Author: Perforce staff <support@perforce.com>

Date: Thu Aug 19 10:18:45 2004 -0800

Drop ’rc3’ moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into

the main part of the document. Built new tar/zip balls.

Only 16 months later.

[git-p4: depot-paths = "//public/jam/src/": change = 4409]

commit ca8870db541a23ed867f38847eda65bf4363371d

Author: Richard Geiger <rmg@perforce.com>

Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

[git-p4: depot-paths = "//public/jam/src/": change = 3108]

You can see the git-p4 identifier in each commit. It’s fine to keep that identifier

there, in case you need to reference the Perforce change number later. However, if

you’d like to remove the identifier, now is the time to do so — before you start doing

work on the new repository. You can use git filter-branch to remove the identifier

strings en masse:

$ git filter-branch --msg-filter ’

sed -e "/̂ \[git-p4:/d"

’

Rewrite 1fd4ec126171790efd2db83548b85b1bbbc07dc2 (123/123)

Ref ’refs/heads/master’ was rewritten

If you run git log , you can see that all the SHA–1 checksums for the commits

have changed, but the git-p4 strings are no longer in the commit messages:

$ git log -2

commit 10a16d60cffca14d454a15c6164378f4082bc5b0

Author: Perforce staff <support@perforce.com>

Date: Thu Aug 19 10:18:45 2004 -0800

Drop ’rc3’ moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into

the main part of the document. Built new tar/zip balls.

Only 16 months later.

commit 2b6c6db311dd76c34c66ec1c40a49405e6b527b2

Author: Richard Geiger <rmg@perforce.com>

Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

Your import is ready to push up to your new Git server.

199

PRO GIT SCOTT CHACON

8.2.4 A Custom Importer

If your system isn’t Subversion or Perforce, you should look for an importer online

— quality importers are available for CVS, Clear Case, Visual Source Safe, even a

directory of archives. If none of these tools works for you, you have a rarer tool, or you

otherwise need a more custom importing process, you should use git fast-import .

This command reads simple instructions from stdin to write specific Git data. It’s

much easier to create Git objects this way than to run the raw Git commands or try to

write the raw objects (see Chapter 9 for more information). This way, you can write an

import script that reads the necessary information out of the system you’re importing

from and prints straightforward instructions to stdout. You can then run this program

and pipe its output through git fast-import .

To quickly demonstrate, you’ll write a simple importer. Suppose you work in

current, you back up your project by occasionally copying the directory into a time-

stamped back YYYY MM DD backup directory, and you want to import this into Git. Your

directory structure looks like this:

$ ls /opt/import_from

back_2009_01_02

back_2009_01_04

back_2009_01_14

back_2009_02_03

current

In order to import a Git directory, you need to review how Git stores its data. As

you may remember, Git is fundamentally a linked list of commit objects that point to a

snapshot of content. All you have to do is tell fast-import what the content snapshots

are, what commit data points to them, and the order they go in. Your strategy will be

to go through the snapshots one at a time and create commits with the contents of each

directory, linking each commit back to the previous one.

As you did in the “An Example Git Enforced Policy” section of Chapter 7, we’ll

write this in Ruby, because it’s what I generally work with and it tends to be easy to

read. You can write this example pretty easily in anything you’re familiar with — it

just needs to print the appropriate information to stdout.

To begin, you’ll change into the target directory and identify every subdirectory,

each of which is a snapshot that you want to import as a commit. You’ll change into

each subdirectory and print the commands necessary to export it. Your basic main loop

looks like this:

last_mark = nil

loop through the directories

Dir.chdir(ARGV[0]) do

Dir.glob("*").each do |dir|

next if File.file?(dir)

move into the target directory

Dir.chdir(dir) do

last_mark = print_export(dir, last_mark)

end

end

end

200

CHAPTER 8 GIT AND OTHER SYSTEMS

You run print export inside each directory, which takes the manifest and mark of

the previous snapshot and returns the manifest and mark of this one; that way, you

can link them properly. “Mark” is the fast-import term for an identifier you give to a

commit; as you create commits, you give each one a mark that you can use to link to it

from other commits. So, the first thing to do in your print export method is generate

a mark from the directory name:

mark = convert_dir_to_mark(dir)

You’ll do this by creating an array of directories and using the index value as the

mark, because a mark must be an integer. Your method looks like this:

$marks = []

def convert_dir_to_mark(dir)

if !$marks.include?(dir)

$marks << dir

end

($marks.index(dir) + 1).to_s

end

Now that you have an integer representation of your commit, you need a date for

the commit metadata. Because the date is expressed in the name of the directory, you’ll

parse it out. The next line in your print export file is

date = convert_dir_to_date(dir)

where convert dir to date is defined as

def convert_dir_to_date(dir)

if dir == ’current’

return Time.now().to_i

else

dir = dir.gsub(’back_’, ’’)

(year, month, day) = dir.split(’_’)

return Time.local(year, month, day).to_i

end

end

That returns an integer value for the date of each directory. The last piece of meta-

information you need for each commit is the committer data, which you hardcode in a

global variable:

$author = ’Scott Chacon <schacon@example.com>’

Now you’re ready to begin printing out the commit data for your importer. The

initial information states that you’re defining a commit object and what branch it’s

on, followed by the mark you’ve generated, the committer information and commit

message, and then the previous commit, if any. The code looks like this:

print the import information

puts ’commit refs/heads/master’

puts ’mark :’ + mark

puts "committer #{$author} #{date} -0700"

export_data(’imported from ’ + dir)

puts ’from :’ + last_mark if last_mark

201

PRO GIT SCOTT CHACON

You hardcode the time zone (–0700) because doing so is easy. If you’re importing

from another system, you must specify the time zone as an offset. The commit message

must be expressed in a special format:

data (size)\n(contents)

The format consists of the word data, the size of the data to be read, a newline, and

finally the data. Because you need to use the same format to specify the file contents

later, you create a helper method, export data :

def export_data(string)

print "data #{string.size}\n#{string}"

end

All that’s left is to specify the file contents for each snapshot. This is easy, because

you have each one in a directory — you can print out the deleteall command fol-

lowed by the contents of each file in the directory. Git will then record each snapshot

appropriately:

puts ’deleteall’

Dir.glob("**/*").each do |file|

next if !File.file?(file)

inline_data(file)

end

Note: Because many systems think of their revisions as changes from one commit

to another, fast-import can also take commands with each commit to specify which

files have been added, removed, or modified and what the new contents are. You could

calculate the differences between snapshots and provide only this data, but doing so is

more complex — you may as well give Git all the data and let it figure it out. If this

is better suited to your data, check the fast-import man page for details about how to

provide your data in this manner.

The format for listing the new file contents or specifying a modified file with the

new contents is as follows:

M 644 inline path/to/file

data (size)

(file contents)

Here, 644 is the mode (if you have executable files, you need to detect and specify

755 instead), and inline says you’ll list the contents immediately after this line. Your

inline data method looks like this:

def inline_data(file, code = ’M’, mode = ’644’)

content = File.read(file)

puts "#{code} #{mode} inline #{file}"

export_data(content)

end

You reuse the export data method you defined earlier, because it’s the same as the

way you specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the

next iteration:

202

CHAPTER 8 GIT AND OTHER SYSTEMS

return mark

That’s it. If you run this script, you’ll get content that looks something like this:

$ ruby import.rb /opt/import_from

commit refs/heads/master

mark :1

committer Scott Chacon <schacon@geemail.com> 1230883200 -0700

data 29

imported from back_2009_01_02deleteall

M 644 inline file.rb

data 12

version two

commit refs/heads/master

mark :2

committer Scott Chacon <schacon@geemail.com> 1231056000 -0700

data 29

imported from back_2009_01_04from :1

deleteall

M 644 inline file.rb

data 14

version three

M 644 inline new.rb

data 16

new version one

(...)

To run the importer, pipe this output through git fast-import while in the Git

directory you want to import into. You can create a new directory and then run git

init in it for a starting point, and then run your script:

$ git init

Initialized empty Git repository in /opt/import_to/.git/

$ ruby import.rb /opt/import_from | git fast-import

git-fast-import statistics:

Alloc’d objects: 5000

Total objects: 18 (1 duplicates)

blobs : 7 (1 duplicates 0 deltas)

trees : 6 (0 duplicates 1 deltas)

commits: 5 (0 duplicates 0 deltas)

tags : 0 (0 duplicates 0 deltas)

Total branches: 1 (1 loads)

marks: 1024 (5 unique)

atoms: 3

Memory total: 2255 KiB

pools: 2098 KiB

objects: 156 KiB

pack_report: getpagesize() = 4096

pack_report: core.packedGitWindowSize = 33554432

pack_report: core.packedGitLimit = 268435456

pack_report: pack_used_ctr = 9

203

PRO GIT SCOTT CHACON

pack_report: pack_mmap_calls = 5

pack_report: pack_open_windows = 1 / 1

pack_report: pack_mapped = 1356 / 1356

As you can see, when it completes successfully, it gives you a bunch of statistics

about what it accomplished. In this case, you imported 18 objects total for 5 commits

into 1 branch. Now, you can run git log to see your new history:

$ git log -2

commit 10bfe7d22ce15ee25b60a824c8982157ca593d41

Author: Scott Chacon <schacon@example.com>

Date: Sun May 3 12:57:39 2009 -0700

imported from current

commit 7e519590de754d079dd73b44d695a42c9d2df452

Author: Scott Chacon <schacon@example.com>

Date: Tue Feb 3 01:00:00 2009 -0700

imported from back_2009_02_03

There you go — a nice, clean Git repository. It’s important to note that nothing is

checked out — you don’t have any files in your working directory at first. To get them,

you must reset your branch to where master is now:

$ ls

$ git reset --hard master

HEAD is now at 10bfe7d imported from current

$ ls

file.rb lib

You can do a lot more with the fast-import tool — handle different modes, binary

data, multiple branches and merging, tags, progress indicators, and more. A number of

examples of more complex scenarios are available in the contrib/fast-import direc-

tory of the Git source code; one of the better ones is the git-p4 script I just covered.

8.3 Summary

You should feel comfortable using Git with Subversion or importing nearly any existing

repository into a new Git one without losing data. The next chapter will cover the raw

internals of Git so you can craft every single byte, if need be.

204

Chapter 9

Git Internals

You may have skipped to this chapter from a previous chapter, or you may have gotten

here after reading the rest of the book — in either case, this is where you’ll go over the

inner workings and implementation of Git. I found that learning this information was

fundamentally important to understanding how useful and powerful Git is, but others

have argued to me that it can be confusing and unnecessarily complex for beginners.

Thus, I’ve made this discussion the last chapter in the book so you could read it early

or later in your learning process. I leave it up to you to decide.

Now that you’re here, let’s get started. First, if it isn’t yet clear, Git is fundamentally

a content-addressable filesystem with a VCS user interface written on top of it. You’ll

learn more about what this means in a bit.

In the early days of Git (mostly pre 1.5), the user interface was much more complex

because it emphasized this filesystem rather than a polished VCS. In the last few years,

the UI has been refined until it’s as clean and easy to use as any system out there; but

often, the stereotype lingers about the early Git UI that was complex and difficult to

learn.

The content-addressable filesystem layer is amazingly cool, so I’ll cover that first

in this chapter; then, you’ll learn about the transport mechanisms and the repository

maintenance tasks that you may eventually have to deal with.

9.1 Plumbing and Porcelain

This book covers how to use Git with 30 or so verbs such as checkout , branch , remote ,

and so on. But because Git was initially a toolkit for a VCS rather than a full user-

friendly VCS, it has a bunch of verbs that do low-level work and were designed to be

chained together UNIX style or called from scripts. These commands are generally

referred to as “plumbing” commands, and the more user-friendly commands are called

“porcelain” commands.

The book’s first eight chapters deal almost exclusively with porcelain commands.

But in this chapter, you’ll be dealing mostly with the lower-level plumbing commands,

because they give you access to the inner workings of Git and help demonstrate how

and why Git does what it does. These commands aren’t meant to be used manually on

the command line, but rather to be used as building blocks for new tools and custom

scripts.

205

PRO GIT SCOTT CHACON

When you run git init in a new or existing directory, Git creates the .git direc-

tory, which is where almost everything that Git stores and manipulates is located. If

you want to back up or clone your repository, copying this single directory elsewhere

gives you nearly everything you need. This entire chapter basically deals with the stuff

in this directory. Here’s what it looks like:

$ ls

HEAD

branches/

config

description

hooks/

index

info/

objects/

refs/

You may see some other files in there, but this is a fresh git init repository —

it’s what you see by default. The branches directory isn’t used by newer Git versions,

and the description file is only used by the GitWeb program, so don’t worry about

those. The config file contains your project-specific configuration options, and the

info directory keeps a global exclude file for ignored patterns that you don’t want to

track in a .gitignore file. The hooks directory contains your client- or server-side hook

scripts, which are discussed in detail in Chapter 6.

This leaves four important entries: the HEAD and index files and the objects and

refs directories. These are the core parts of Git. The objects directory stores all the

content for your database, the refs directory stores pointers into commit objects in that

data (branches), the HEAD file points to the branch you currently have checked out, and

the index file is where Git stores your staging area information. You’ll now look at

each of these sections in detail to see how Git operates.

9.2 Git Objects

Git is a content-addressable filesystem. Great. What does that mean? It means that

at the core of Git is a simple key-value data store. You can insert any kind of content

into it, and it will give you back a key that you can use to retrieve the content again

at any time. To demonstrate, you can use the plumbing command hash-object , which

takes some data, stores it in your .git directory, and gives you back the key the data is

stored as. First, you initialize a new Git repository and verify that there is nothing in

the objects directory:

$ mkdir test

$ cd test

$ git init

Initialized empty Git repository in /tmp/test/.git/

$ find .git/objects

.git/objects

.git/objects/info

.git/objects/pack

$ find .git/objects -type f

$

206

CHAPTER 9 GIT INTERNALS

Git has initialized the objects directory and created pack and info subdirectories

in it, but there are no regular files. Now, store some text in your Git database:

$ echo ’test content’ | git hash-object -w --stdin

d670460b4b4aece5915caf5c68d12f560a9fe3e4

The -w tells hash-object to store the object; otherwise, the command simply tells

you what the key would be. --stdin tells the command to read the content from stdin;

if you don’t specify this, hash-object expects the path to a file. The output from the

command is a 40-character checksum hash. This is the SHA–1 hash — a checksum of

the content you’re storing plus a header, which you’ll learn about in a bit. Now you can

see how Git has stored your data:

$ find .git/objects -type f

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

You can see a file in the objects directory. This is how Git stores the content

initially — as a single file per piece of content, named with the SHA–1 checksum of

the content and its header. The subdirectory is named with the first 2 characters of the

SHA, and the filename is the remaining 38 characters.

You can pull the content back out of Git with the cat-file command. This com-

mand is sort of a Swiss army knife for inspecting Git objects. Passing -p to it instructs

the cat-file command to figure out the type of content and display it nicely for you:

$ git cat-file -p d670460b4b4aece5915caf5c68d12f560a9fe3e4

test content

Now, you can add content to Git and pull it back out again. You can also do this

with content in files. For example, you can do some simple version control on a file.

First, create a new file and save its contents in your database:

$ echo ’version 1’ > test.txt

$ git hash-object -w test.txt

83baae61804e65cc73a7201a7252750c76066a30

Then, write some new content to the file, and save it again:

$ echo ’version 2’ > test.txt

$ git hash-object -w test.txt

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

Your database contains the two new versions of the file as well as the first content

you stored there:

$ find .git/objects -type f

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

Now you can revert the file back to the first version

$ git cat-file -p 83baae61804e65cc73a7201a7252750c76066a30 > test.txt

$ cat test.txt

version 1

207

PRO GIT SCOTT CHACON

or the second version:

$ git cat-file -p 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a > test.txt

$ cat test.txt

version 2

But remembering the SHA–1 key for each version of your file isn’t practical; plus,

you aren’t storing the filename in your system — just the content. This object type is

called a blob. You can have Git tell you the object type of any object in Git, given its

SHA–1 key, with cat-file -t :

$ git cat-file -t 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

blob

9.2.1 Tree Objects

The next type you’ll look at is the tree object, which solves the problem of storing the

filename and also allows you to store a group of files together. Git stores content in

a manner similar to a UNIX filesystem, but a bit simplified. All the content is stored

as tree and blob objects, with trees corresponding to UNIX directory entries and blobs

corresponding more or less to inodes or file contents. A single tree object contains one

or more tree entries, each of which contains an SHA–1 pointer to a blob or subtree

with its associated mode, type, and filename. For example, the most recent tree in the

simplegit project may look something like this:

$ git cat-file -p master̂ {tree}

100644 blob a906cb2a4a904a152e80877d4088654daad0c859 README

100644 blob 8f94139338f9404f26296befa88755fc2598c289 Rakefile

040000 tree 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0 lib

The master̂ tree syntax specifies the tree object that is pointed to by the last com-

mit on your master branch. Notice that the lib subdirectory isn’t a blob but a pointer

to another tree:

$ git cat-file -p 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0

100644 blob 47c6340d6459e05787f644c2447d2595f5d3a54b simplegit.rb

Conceptually, the data that Git is storing is something like Figure 9.1.

You can create your own tree. Git normally creates a tree by taking the state of

your staging area or index and writing a tree object from it. So, to create a tree ob-

ject, you first have to set up an index by staging some files. To create an index with a

single entry — the first version of your text.txt file — you can use the plumbing com-

mand update-index . You use this command to artificially add the earlier version of the

test.txt file to a new staging area. You must pass it the --add option because the file

doesn’t yet exist in your staging area (you don’t even have a staging area set up yet)

and --cacheinfo because the file you’re adding isn’t in your directory but is in your

database. Then, you specify the mode, SHA–1, and filename:

$ git update-index --add --cacheinfo 100644 \

83baae61804e65cc73a7201a7252750c76066a30 test.txt

208

CHAPTER 9 GIT INTERNALS

Figure 9.1: Simple version of the Git data model

In this case, you’re specifying a mode of 100644 , which means it’s a normal file.

Other options are 100755 , which means it’s an executable file; and 120000 , which spec-

ifies a symbolic link. The mode is taken from normal UNIX modes but is much less

flexible — these three modes are the only ones that are valid for files (blobs) in Git

(although other modes are used for directories and submodules).

Now, you can use the write-tree command to write the staging area out to a tree

object. No -w option is needed— calling write-tree automatically creates a tree object

from the state of the index if that tree doesn’t yet exist:

$ git write-tree

d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git cat-file -p d8329fc1cc938780ffdd9f94e0d364e0ea74f579

100644 blob 83baae61804e65cc73a7201a7252750c76066a30 test.txt

You can also verify that this is a tree object:

$ git cat-file -t d8329fc1cc938780ffdd9f94e0d364e0ea74f579

tree

You’ll now create a new tree with the second version of test.txt and a new file as

well:

$ echo ’new file’ > new.txt

$ git update-index test.txt

$ git update-index --add new.txt

Your staging area now has the new version of test.txt as well as the new file new.txt.

Write out that tree (recording the state of the staging area or index to a tree object) and

see what it looks like:

$ git write-tree

0155eb4229851634a0f03eb265b69f5a2d56f341

$ git cat-file -p 0155eb4229851634a0f03eb265b69f5a2d56f341

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

209

PRO GIT SCOTT CHACON

Notice that this tree has both file entries and also that the test.txt SHA is the “version

2” SHA from earlier (1f7a7a). Just for fun, you’ll add the first tree as a subdirectory

into this one. You can read trees into your staging area by calling read-tree . In this

case, you can read an existing tree into your staging area as a subtree by using the

--prefix option to read-tree :

$ git read-tree --prefix=bak d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git write-tree

3c4e9cd789d88d8d89c1073707c3585e41b0e614

$ git cat-file -p 3c4e9cd789d88d8d89c1073707c3585e41b0e614

040000 tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579 bak

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

If you created a working directory from the new tree you just wrote, you would get

the two files in the top level of the working directory and a subdirectory named bak that

contained the first version of the test.txt file. You can think of the data that Git contains

for these structures as being like Figure 9.2.

Figure 9.2: The content structure of your current Git data

9.2.2 Commit Objects

You have three trees that specify the different snapshots of your project that you want to

track, but the earlier problem remains: you must remember all three SHA–1 values in

order to recall the snapshots. You also don’t have any information about who saved the

snapshots, when they were saved, or why they were saved. This is the basic information

that the commit object stores for you.

To create a commit object, you call commit-tree and specify a single tree SHA–1

and which commit objects, if any, directly preceded it. Start with the first tree you

wrote:

$ echo ’first commit’ | git commit-tree d8329f

fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Now you can look at your new commit object with cat-file :

210

CHAPTER 9 GIT INTERNALS

$ git cat-file -p fdf4fc3

tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579

author Scott Chacon <schacon@gmail.com> 1243040974 -0700

committer Scott Chacon <schacon@gmail.com> 1243040974 -0700

first commit

The format for a commit object is simple: it specifies the top-level tree for the

snapshot of the project at that point; the author/committer information pulled from

your user.name and user.email configuration settings, with the current timestamp; a

blank line, and then the commit message.

Next, you’ll write the other two commit objects, each referencing the commit that

came directly before it:

$ echo ’second commit’ | git commit-tree 0155eb -p fdf4fc3

cac0cab538b970a37ea1e769cbbde608743bc96d

$ echo ’third commit’ | git commit-tree 3c4e9c -p cac0cab

1a410efbd13591db07496601ebc7a059dd55cfe9

Each of the three commit objects points to one of the three snapshot trees you

created. Oddly enough, you have a real Git history now that you can view with the git

log command, if you run it on the last commit SHA–1:

$ git log --stat 1a410e

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:15:24 2009 -0700

third commit

bak/test.txt | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

commit cac0cab538b970a37ea1e769cbbde608743bc96d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:14:29 2009 -0700

second commit

new.txt | 1 +

test.txt | 2 +-

2 files changed, 2 insertions(+), 1 deletions(-)

commit fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:09:34 2009 -0700

first commit

test.txt | 1 +

1 files changed, 1 insertions(+), 0 deletions(-)

211

PRO GIT SCOTT CHACON

Amazing. You’ve just done the low-level operations to build up a Git history with-

out using any of the front ends. This is essentially what Git does when you run the

git add and git commit commands — it stores blobs for the files that have changed,

updates the index, writes out trees, and writes commit objects that reference the top-

level trees and the commits that came immediately before them. These three main Git

objects — the blob, the tree, and the commit — are initially stored as separate files in

your .git/objects directory. Here are all the objects in the example directory now,

commented with what they store:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # ’test content’

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

If you follow all the internal pointers, you get an object graph something like Figure

9.3.

Figure 9.3: All the objects in your Git directory

9.2.3 Object Storage

I mentioned earlier that a header is stored with the content. Let’s take a minute to look

at how Git stores its objects. You’ll see how to store a blob object — in this case, the

string “what is up, doc?” — interactively in the Ruby scripting language. You can start

up interactive Ruby mode with the irb command:

$ irb

>> content = "what is up, doc?"

=> "what is up, doc?"

212

CHAPTER 9 GIT INTERNALS

Git constructs a header that starts with the type of the object, in this case a blob.

Then, it adds a space followed by the size of the content and finally a null byte:

>> header = "blob #{content.length}\0"

=> "blob 16\000"

Git concatenates the header and the original content and then calculates the SHA–

1 checksum of that new content. You can calculate the SHA–1 value of a string in

Ruby by including the SHA1 digest library with the require command and then calling

Digest::SHA1.hexdigest() with the string:

>> store = header + content

=> "blob 16\000what is up, doc?"

>> require ’digest/sha1’

=> true

>> sha1 = Digest::SHA1.hexdigest(store)

=> "bd9dbf5aae1a3862dd1526723246b20206e5fc37"

Git compresses the new content with zlib, which you can do in Ruby with the zlib

library. First, you need to require the library and then run Zlib::Deflate.deflate()

on the content:

>> require ’zlib’

=> true

>> zlib_content = Zlib::Deflate.deflate(store)

=> "x\234K\312\311OR04c(\317H,Q\310,V(-\320QH\311O\266\a\000_\034\a\235"

Finally, you’ll write your zlib-deflated content to an object on disk. You’ll deter-

mine the path of the object you want to write out (the first two characters of the SHA–1

value being the subdirectory name, and the last 38 characters being the filename within

that directory). In Ruby, you can use the FileUtils.mkdir p() function to create the

subdirectory if it doesn’t exist. Then, open the file with File.open() and write out the

previously zlib-compressed content to the file with a write() call on the resulting file

handle:

>> path = ’.git/objects/’ + sha1[0,2] + ’/’ + sha1[2,38]

=> ".git/objects/bd/9dbf5aae1a3862dd1526723246b20206e5fc37"

>> require ’fileutils’

=> true

>> FileUtils.mkdir_p(File.dirname(path))

=> ".git/objects/bd"

>> File.open(path, ’w’) { |f| f.write zlib_content }

=> 32

That’s it — you’ve created a valid Git blob object. All Git objects are stored the

same way, just with different types — instead of the string blob, the header will be-

gin with commit or tree. Also, although the blob content can be nearly anything, the

commit and tree content are very specifically formatted.

213

PRO GIT SCOTT CHACON

9.3 Git References

You can run something like git log 1a410e to look through your whole history, but

you still have to remember that 1a410e is the last commit in order to walk that history

to find all those objects. You need a file in which you can store the SHA–1 value under

a simple name so you can use that pointer rather than the raw SHA–1 value.

In Git, these are called “references” or “refs”; you can find the files that contain the

SHA–1 values in the .git/refs directory. In the current project, this directory contains

no files, but it does contain a simple structure:

$ find .git/refs

.git/refs

.git/refs/heads

.git/refs/tags

$ find .git/refs -type f

$

To create a new reference that will help you remember where your latest commit

is, you can technically do something as simple as this:

$ echo "1a410efbd13591db07496601ebc7a059dd55cfe9" > .git/refs/heads/master

Now, you can use the head reference you just created instead of the SHA–1 value

in your Git commands:

$ git log --pretty=oneline master

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You aren’t encouraged to directly edit the reference files. Git provides a safer com-

mand to do this if you want to update a reference called update-ref :

$ git update-ref refs/heads/master 1a410efbd13591db07496601ebc7a059dd55cfe9

That’s basically what a branch in Git is: a simple pointer or reference to the head

of a line of work. To create a branch back at the second commit, you can do this:

$ git update-ref refs/heads/test cac0ca

Your branch will contain only work from that commit down:

$ git log --pretty=oneline test

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, your Git database conceptually looks something like Figure 9.4.

When you run commands like git branch (branchname) , Git basically runs that

update-ref command to add the SHA–1 of the last commit of the branch you’re on

into whatever new reference you want to create.

214

CHAPTER 9 GIT INTERNALS

Figure 9.4: Git directory objects with branch head references included

9.3.1 The HEAD

The question now is, when you run git branch (branchname) , how does Git know the

SHA–1 of the last commit? The answer is the HEAD file. The HEAD file is a symbolic

reference to the branch you’re currently on. By symbolic reference, I mean that unlike

a normal reference, it doesn’t generally contain a SHA–1 value but rather a pointer to

another reference. If you look at the file, you’ll normally see something like this:

$ cat .git/HEAD

ref: refs/heads/master

If you run git checkout test , Git updates the file to look like this:

$ cat .git/HEAD

ref: refs/heads/test

When you run git commit , it creates the commit object, specifying the parent of

that commit object to be whatever SHA–1 value the reference in HEAD points to.

You can also manually edit this file, but again a safer command exists to do so:

symbolic-ref . You can read the value of your HEAD via this command:

$ git symbolic-ref HEAD

refs/heads/master

You can also set the value of HEAD:

$ git symbolic-ref HEAD refs/heads/test

$ cat .git/HEAD

ref: refs/heads/test

You can’t set a symbolic reference outside of the refs style:

$ git symbolic-ref HEAD test

fatal: Refusing to point HEAD outside of refs/

215

PRO GIT SCOTT CHACON

9.3.2 Tags

You’ve just gone over Git’s three main object types, but there is a fourth. The tag

object is very much like a commit object — it contains a tagger, a date, a message, and

a pointer. The main difference is that a tag object points to a commit rather than a tree.

It’s like a branch reference, but it never moves — it always points to the same commit

but gives it a friendlier name.

As discussed in Chapter 2, there are two types of tags: annotated and lightweight.

You can make a lightweight tag by running something like this:

$ git update-ref refs/tags/v1.0 cac0cab538b970a37ea1e769cbbde608743bc96d

That is all a lightweight tag is — a branch that never moves. An annotated tag is

more complex, however. If you create an annotated tag, Git creates a tag object and

then writes a reference to point to it rather than directly to the commit. You can see this

by creating an annotated tag (-a specifies that it’s an annotated tag):

$ git tag -a v1.1 1a410efbd13591db07496601ebc7a059dd55cfe9 m ’test tag’

Here’s the object SHA–1 value it created:

$ cat .git/refs/tags/v1.1

9585191f37f7b0fb9444f35a9bf50de191beadc2

Now, run the cat-file command on that SHA–1 value:

$ git cat-file -p 9585191f37f7b0fb9444f35a9bf50de191beadc2

object 1a410efbd13591db07496601ebc7a059dd55cfe9

type commit

tag v1.1

tagger Scott Chacon <schacon@gmail.com> Sat May 23 16:48:58 2009 -0700

test tag

Notice that the object entry points to the commit SHA–1 value that you tagged.

Also notice that it doesn’t need to point to a commit; you can tag any Git object. In the

Git source code, for example, the maintainer has added their GPG public key as a blob

object and then tagged it. You can view the public key by running

$ git cat-file blob junio-gpg-pub

in the Git source code. The Linux kernel also has a non-commit-pointing tag object

— the first tag created points to the initial tree of the import of the source code.

9.3.3 Remotes

The third type of reference that you’ll see is a remote reference. If you add a remote

and push to it, Git stores the value you last pushed to that remote for each branch in

the refs/remotes directory. For instance, you can add a remote called origin and push

your master branch to it:

216

CHAPTER 9 GIT INTERNALS

$ git remote add origin git@github.com:schacon/simplegit-progit.git

$ git push origin master

Counting objects: 11, done.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (7/7), 716 bytes, done.

Total 7 (delta 2), reused 4 (delta 1)

To git@github.com:schacon/simplegit-progit.git

a11bef0..ca82a6d master -> master

Then, you can see what the master branch on the origin remote was the last time

you communicated with the server, by checking the refs/remotes/origin/master file:

$ cat .git/refs/remotes/origin/master

ca82a6dff817ec66f44342007202690a93763949

Remote references differ from branches (refs/heads references) mainly in that they

can’t be checked out. Git moves them around as bookmarks to the last known state of

where those branches were on those servers.

9.4 Packfiles

Let’s go back to the objects database for your test Git repository. At this point, you

have 11 objects — 4 blobs, 3 trees, 3 commits, and 1 tag:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/95/85191f37f7b0fb9444f35a9bf50de191beadc2 # tag

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # ’test content’

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

Git compresses the contents of these files with zlib, and you’re not storing much,

so all these files collectively take up only 925 bytes. You’ll add some larger content to

the repository to demonstrate an interesting feature of Git. Add the repo.rb file from

the Grit library you worked with earlier — this is about a 12K source code file:

$ curl http://github.com/mojombo/grit/raw/master/lib/grit/repo.rb > repo.rb

$ git add repo.rb

$ git commit -m ’added repo.rb’

[master 484a592] added repo.rb

3 files changed, 459 insertions(+), 2 deletions(-)

delete mode 100644 bak/test.txt

create mode 100644 repo.rb

rewrite test.txt (100%)

If you look at the resulting tree, you can see the SHA–1 value your repo.rb file got

for the blob object:

217

PRO GIT SCOTT CHACON

$ git cat-file -p master̂ {tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

You can then use git cat-file to see how big that object is:

$ git cat-file -s 9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e

12898

Now, modify that file a little, and see what happens:

$ echo ’# testing’ >> repo.rb

$ git commit -am ’modified repo a bit’

[master ab1afef] modified repo a bit

1 files changed, 1 insertions(+), 0 deletions(-)

Check the tree created by that commit, and you see something interesting:

$ git cat-file -p master̂ {tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 05408d195263d853f09dca71d55116663690c27c repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

The blob is now a different blob, which means that although you added only a

single line to the end of a 400-line file, Git stored that new content as a completely new

object:

$ git cat-file -s 05408d195263d853f09dca71d55116663690c27c

12908

You have two nearly identical 12K objects on your disk. Wouldn’t it be nice if Git

could store one of them in full but then the second object only as the delta between it

and the first?

It turns out that it can. The initial format in which Git saves objects on disk is called

a loose object format. However, occasionally Git packs up several of these objects into

a single binary file called a packfile in order to save space and be more efficient. Git

does this if you have too many loose objects around, if you run the git gc command

manually, or if you push to a remote server. To see what happens, you can manually

ask Git to pack up the objects by calling the git gc command:

$ git gc

Counting objects: 17, done.

Delta compression using 2 threads.

Compressing objects: 100% (13/13), done.

Writing objects: 100% (17/17), done.

Total 17 (delta 1), reused 10 (delta 0)

If you look in your objects directory, you’ll find that most of your objects are gone,

and a new pair of files has appeared:

218

CHAPTER 9 GIT INTERNALS

$ find .git/objects -type f

.git/objects/71/08f7ecb345ee9d0084193f147cdad4d2998293

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

.git/objects/info/packs

.git/objects/pack/pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.idx

.git/objects/pack/pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.pack

The objects that remain are the blobs that aren’t pointed to by any commit — in this

case, the “what is up, doc?” example and the “test content” example blobs you created

earlier. Because you never added them to any commits, they’re considered dangling

and aren’t packed up in your new packfile.

The other files are your new packfile and an index. The packfile is a single file

containing the contents of all the objects that were removed from your filesystem. The

index is a file that contains offsets into that packfile so you can quickly seek to a specific

object. What is cool is that although the objects on disk before you ran the gc were

collectively about 12K in size, the new packfile is only 6K. You’ve halved your disk

usage by packing your objects.

How does Git do this? When Git packs objects, it looks for files that are named and

sized similarly, and stores just the deltas from one version of the file to the next. You

can look into the packfile and see what Git did to save space. The git verify-pack

plumbing command allows you to see what was packed up:

$ git verify-pack -v pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.idx

0155eb4229851634a0f03eb265b69f5a2d56f341 tree 71 76 5400

05408d195263d853f09dca71d55116663690c27c blob 12908 3478 874

09f01cea547666f58d6a8d809583841a7c6f0130 tree 106 107 5086

1a410efbd13591db07496601ebc7a059dd55cfe9 commit 225 151 322

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a blob 10 19 5381

3c4e9cd789d88d8d89c1073707c3585e41b0e614 tree 101 105 5211

484a59275031909e19aadb7c92262719cfcdf19a commit 226 153 169

83baae61804e65cc73a7201a7252750c76066a30 blob 10 19 5362

9585191f37f7b0fb9444f35a9bf50de191beadc2 tag 136 127 5476

9bc1dc421dcd51b4ac296e3e5b6e2a99cf44391e blob 7 18 5193 1

05408d195263d853f09dca71d55116663690c27c \

ab1afef80fac8e34258ff41fc1b867c702daa24b commit 232 157 12

cac0cab538b970a37ea1e769cbbde608743bc96d commit 226 154 473

d8329fc1cc938780ffdd9f94e0d364e0ea74f579 tree 36 46 5316

e3f094f522629ae358806b17daf78246c27c007b blob 1486 734 4352

f8f51d7d8a1760462eca26eebafde32087499533 tree 106 107 749

fa49b077972391ad58037050f2a75f74e3671e92 blob 9 18 856

fdf4fc3344e67ab068f836878b6c4951e3b15f3d commit 177 122 627

chain length = 1: 1 object

pack-7a16e4488ae40c7d2bc56ea2bd43e25212a66c45.pack: ok

Here, the 9bc1d blob, which if you remember was the first version of your repo.rb

file, is referencing the 05408 blob, which was the second version of the file. The third

column in the output is the size of the object in the pack, so you can see that 05408

takes up 12K of the file but that 9bc1d only takes up 7 bytes. What is also interesting

is that the second version of the file is the one that is stored intact, whereas the original

version is stored as a delta — this is because you’re most likely to need faster access to

the most recent version of the file.

219

PRO GIT SCOTT CHACON

The really nice thing about this is that it can be repacked at any time. Git will

occasionally repack your database automatically, always trying to save more space.

You can also manually repack at any time by running git gc by hand.

9.5 The Refspec

Throughout this book, you’ve used simple mappings from remote branches to local

references; but they can be more complex. Suppose you add a remote like this:

$ git remote add origin git@github.com:schacon/simplegit-progit.git

It adds a section to your .git/config file, specifying the name of the remote

(origin), the URL of the remote repository, and the refspec for fetching:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/*:refs/remotes/origin/*

The format of the refspec is an optional +, followed by <src>:<dst> , where <src>

is the pattern for references on the remote side and <dst> is where those references will

be written locally. The + tells Git to update the reference even if it isn’t a fast-forward.

In the default case that is automatically written by a git remote add command,

Git fetches all the references under refs/heads/ on the server and writes them to

refs/remotes/origin/ locally. So, if there is a master branch on the server, you can

access the log of that branch locally via

$ git log origin/master

$ git log remotes/origin/master

$ git log refs/remotes/origin/master

They’re all equivalent, because Git expands each of them to refs/remotes/origin/master .

If you want Git instead to pull down only the master branch each time, and not

every other branch on the remote server, you can change the fetch line to

fetch = +refs/heads/master:refs/remotes/origin/master

This is just the default refspec for git fetch for that remote. If you want to do

something one time, you can specify the refspec on the command line, too. To pull the

master branch on the remote down to origin/mymaster locally, you can run

$ git fetch origin master:refs/remotes/origin/mymaster

You can also specify multiple refspecs. On the command line, you can pull down

several branches like so:

$ git fetch origin master:refs/remotes/origin/mymaster \

topic:refs/remotes/origin/topic

From git@github.com:schacon/simplegit

! [rejected] master -> origin/mymaster (non fast forward)

* [new branch] topic -> origin/topic

220

CHAPTER 9 GIT INTERNALS

In this case, the master branch pull was rejected because it wasn’t a fast-forward

reference. You can override that by specifying the + in front of the refspec.

You can also specify multiple refspecs for fetching in your configuration file. If

you want to always fetch the master and experiment branches, add two lines:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/experiment:refs/remotes/origin/experiment

You can’t use partial globs in the pattern, so this would be invalid:

fetch = +refs/heads/qa*:refs/remotes/origin/qa*

However, you can use namespacing to accomplish something like that. If you have

a QA team that pushes a series of branches, and you want to get the master branch and

any of the QA team’s branches but nothing else, you can use a config section like this:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/master:refs/remotes/origin/master

fetch = +refs/heads/qa/*:refs/remotes/origin/qa/*

If you have a complex workflow process that has a QA team pushing branches, de-

velopers pushing branches, and integration teams pushing and collaborating on remote

branches, you can namespace them easily this way.

9.5.1 Pushing Refspecs

It’s nice that you can fetch namespaced references that way, but how does the QA team

get their branches into a qa/ namespace in the first place? You accomplish that by using

refspecs to push.

If the QA team wants to push their master branch to qa/master on the remote

server, they can run

$ git push origin master:refs/heads/qa/master

If they want Git to do that automatically each time they run git push origin , they

can add a push value to their config file:

[remote "origin"]

url = git@github.com:schacon/simplegit-progit.git

fetch = +refs/heads/*:refs/remotes/origin/*

push = refs/heads/master:refs/heads/qa/master

Again, this will cause a git push origin to push the local master branch to the

remote qa/master branch by default.

9.5.2 Deleting References

You can also use the refspec to delete references from the remote server by running

something like this:

$ git push origin :topic

Because the refspec is <src>:<dst> , by leaving off the <src> part, this basically

says to make the topic branch on the remote nothing, which deletes it.

221

PRO GIT SCOTT CHACON

9.6 Transfer Protocols

Git can transfer data between two repositories in two major ways: over HTTP and via

the so-called smart protocols used in the file:// , ssh:// , and git:// transports. This

section will quickly cover how these two main protocols operate.

9.6.1 The Dumb Protocol

Git transport over HTTP is often referred to as the dumb protocol because it requires

no Git-specific code on the server side during the transport process. The fetch process

is a series of GET requests, where the client can assume the layout of the Git repository

on the server. Let’s follow the http-fetch process for the simplegit library:

$ git clone http://github.com/schacon/simplegit-progit.git

The first thing this command does is pull down the info/refs file. This file is

written by the update-server-info command, which is why you need to enable that as

a post-receive hook in order for the HTTP transport to work properly:

=> GET info/refs

ca82a6dff817ec66f44342007202690a93763949 refs/heads/master

Now you have a list of the remote references and SHAs. Next, you look for what

the HEAD reference is so you know what to check out when you’re finished:

=> GET HEAD

ref: refs/heads/master

You need to check out the master branch when you’ve completed the process. At

this point, you’re ready to start the walking process. Because your starting point is the

ca82a6 commit object you saw in the info/refs file, you start by fetching that:

=> GET objects/ca/82a6dff817ec66f44342007202690a93763949

(179 bytes of binary data)

You get an object back — that object is in loose format on the server, and you

fetched it over a static HTTP GET request. You can zlib-uncompress it, strip off the

header, and look at the commit content:

$ git cat-file -p ca82a6dff817ec66f44342007202690a93763949

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the verison number

Next, you have two more objects to retrieve — cfda3b , which is the tree of content

that the commit we just retrieved points to; and 085bb3 , which is the parent commit:

=> GET objects/08/5bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

(179 bytes of data)

222

CHAPTER 9 GIT INTERNALS

That gives you your next commit object. Grab the tree object:

=> GET objects/cf/da3bf379e4f8dba8717dee55aab78aef7f4daf

(404 - Not Found)

Oops — it looks like that tree object isn’t in loose format on the server, so you get

a 404 response back. There are a couple of reasons for this — the object could be in

an alternate repository, or it could be in a packfile in this repository. Git checks for any

listed alternates first:

=> GET objects/info/http-alternates

(empty file)

If this comes back with a list of alternate URLs, Git checks for loose files and

packfiles there — this is a nice mechanism for projects that are forks of one another

to share objects on disk. However, because no alternates are listed in this case, your

object must be in a packfile. To see what packfiles are available on this server, you need

to get the objects/info/packs file, which contains a listing of them (also generated by

update-server-info):

=> GET objects/info/packs

P pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

There is only one packfile on the server, so your object is obviously in there, but

you’ll check the index file to make sure. This is also useful if you have multiple pack-

files on the server, so you can see which packfile contains the object you need:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.idx

(4k of binary data)

Now that you have the packfile index, you can see if your object is in it — because

the index lists the SHAs of the objects contained in the packfile and the offsets to those

objects. Your object is there, so go ahead and get the whole packfile:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

(13k of binary data)

You have your tree object, so you continue walking your commits. They’re all also

within the packfile you just downloaded, so you don’t have to do any more requests to

your server. Git checks out a working copy of the master branch that was pointed to

by the HEAD reference you downloaded at the beginning.

The entire output of this process looks like this:

$ git clone http://github.com/schacon/simplegit-progit.git

Initialized empty Git repository in /private/tmp/simplegit-progit/.git/

got ca82a6dff817ec66f44342007202690a93763949

walk ca82a6dff817ec66f44342007202690a93763949

got 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Getting alternates list for http://github.com/schacon/simplegit-progit.git

Getting pack list for http://github.com/schacon/simplegit-progit.git

Getting index for pack 816a9b2334da9953e530f27bcac22082a9f5b835

Getting pack 816a9b2334da9953e530f27bcac22082a9f5b835

which contains cfda3bf379e4f8dba8717dee55aab78aef7f4daf

walk 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

walk a11bef06a3f659402fe7563abf99ad00de2209e6

223

PRO GIT SCOTT CHACON

9.6.2 The Smart Protocol

The HTTP method is simple but a bit inefficient. Using smart protocols is a more

common method of transferring data. These protocols have a process on the remote

end that is intelligent about Git — it can read local data and figure out what the client

has or needs and generate custom data for it. There are two sets of processes for

transferring data: a pair for uploading data and a pair for downloading data.

Uploading Data

To upload data to a remote process, Git uses the send-pack and receive-pack pro-

cesses. The send-pack process runs on the client and connects to a receive-pack pro-

cess on the remote side.

For example, say you run git push origin master in your project, and origin is

defined as a URL that uses the SSH protocol. Git fires up the send-pack process, which

initiates a connection over SSH to your server. It tries to run a command on the remote

server via an SSH call that looks something like this:

$ ssh -x git@github.com "git-receive-pack ’schacon/simplegit-progit.git’"

005bca82a6dff817ec66f4437202690a93763949 refs/heads/master report-status delete-refs

003e085bb3bcb608e1e84b2432f8ecbe6306e7e7 refs/heads/topic

0000

The git-receive-pack command immediately responds with one line for each ref-

erence it currently has — in this case, just the master branch and its SHA. The first line

also has a list of the server’s capabilities (here, report-status and delete-refs).

Each line starts with a 4-byte hex value specifying how long the rest of the line is.

Your first line starts with 005b, which is 91 in hex, meaning that 91 bytes remain on

that line. The next line starts with 003e, which is 62, so you read the remaining 62

bytes. The next line is 0000, meaning the server is done with its references listing.

Now that it knows the server’s state, your send-pack process determines what com-

mits it has that the server doesn’t. For each reference that this push will update, the

send-pack process tells the receive-pack process that information. For instance, if

you’re updating the master branch and adding an experiment branch, the send-pack

response may look something like this:

0085ca82a6dff817ec66f44342007202690a93763949 15027957951b64cf874c3557a0f3547bd83b3ff6 refs/heads/master

006700 cdfdb42577e2506715f8cfeacdbabc092bf63e8d refs/heads/experiment

0000

The SHA–1 value of all ’0’s means that nothing was there before — because you’re

adding the experiment reference. If you were deleting a reference, you would see the

opposite: all ’0’s on the right side.

Git sends a line for each reference you’re updating with the old SHA, the new SHA,

and the reference that is being updated. The first line also has the client’s capabilities.

Next, the client uploads a packfile of all the objects the server doesn’t have yet. Finally,

the server responds with a success (or failure) indication:

000Aunpack ok

Downloading Data

When you download data, the fetch-pack and upload-pack processes are involved.

The client initiates a fetch-pack process that connects to an upload-pack process on

the remote side to negotiate what data will be transferred down.

224

CHAPTER 9 GIT INTERNALS

There are different ways to initiate the upload-pack process on the remote reposi-

tory. You can run via SSH in the same manner as the receive-pack process. You can

also initiate the process via the Git daemon, which listens on a server on port 9418

by default. The fetch-pack process sends data that looks like this to the daemon after

connecting:

003fgit-upload-pack schacon/simplegit-progit.git\0host=myserver.com\0

It starts with the 4 bytes specifying how much data is following, then the command

to run followed by a null byte, and then the server’s hostname followed by a final null

byte. The Git daemon checks that the command can be run and that the repository

exists and has public permissions. If everything is cool, it fires up the upload-pack

process and hands off the request to it.

If you’re doing the fetch over SSH, fetch-pack instead runs something like this:

$ ssh -x git@github.com "git-upload-pack ’schacon/simplegit-progit.git’"

In either case, after fetch-pack connects, upload-pack sends back something like

this:

0088ca82a6dff817ec66f44342007202690a93763949 HEAD\0multi_ack thin-pack \

side-band side-band-64k ofs-delta shallow no-progress include-tag

003fca82a6dff817ec66f44342007202690a93763949 refs/heads/master

003e085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 refs/heads/topic

0000

This is very similar to what receive-pack responds with, but the capabilities are

different. In addition, it sends back the HEAD reference so the client knows what to

check out if this is a clone.

At this point, the fetch-pack process looks at what objects it has and responds with

the objects that it needs by sending “want” and then the SHA it wants. It sends all the

objects it already has with “have” and then the SHA. At the end of this list, it writes

“done” to initiate the upload-pack process to begin sending the packfile of the data it

needs:

0054want ca82a6dff817ec66f44342007202690a93763949 ofs-delta

0032have 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

0000

0009done

That is a very basic case of the transfer protocols. In more complex cases, the

client supports multi ack or side-band capabilities; but this example shows you the

basic back and forth used by the smart protocol processes.

9.7 Maintenance and Data Recovery

Occasionally, you may have to do some cleanup — make a repository more compact,

clean up an imported repository, or recover lost work. This section will cover some of

these scenarios.

225

PRO GIT SCOTT CHACON

9.7.1 Maintenance

Occasionally, Git automatically runs a command called “auto gc”. Most of the time,

this command does nothing. However, if there are too many loose objects (objects not

in a packfile) or too many packfiles, Git launches a full-fledged git gc command. The

gc stands for garbage collect, and the command does a number of things: it gathers up

all the loose objects and places them in packfiles, it consolidates packfiles into one big

packfile, and it removes objects that aren’t reachable from any commit and are a few

months old.

You can run auto gc manually as follows:

$ git gc --auto

Again, this generally does nothing. You must have around 7,000 loose objects or

more than 50 packfiles for Git to fire up a real gc command. You can modify these

limits with the gc.auto and gc.autopacklimit config settings, respectively.

The other thing gc will do is pack up your references into a single file. Suppose

your repository contains the following branches and tags:

$ find .git/refs -type f

.git/refs/heads/experiment

.git/refs/heads/master

.git/refs/tags/v1.0

.git/refs/tags/v1.1

If you run git gc , you’ll no longer have these files in the refs directory. Git will

move them for the sake of efficiency into a file named .git/packed-refs that looks

like this:

$ cat .git/packed-refs

pack-refs with: peeled

cac0cab538b970a37ea1e769cbbde608743bc96d refs/heads/experiment

ab1afef80fac8e34258ff41fc1b867c702daa24b refs/heads/master

cac0cab538b970a37ea1e769cbbde608743bc96d refs/tags/v1.0

9585191f37f7b0fb9444f35a9bf50de191beadc2 refs/tags/v1.1

1̂a410efbd13591db07496601ebc7a059dd55cfe9

If you update a reference, Git doesn’t edit this file but instead writes a new file to

refs/heads . To get the appropriate SHA for a given reference, Git checks for that refer-

ence in the refs directory and then checks the packed-refs file as a fallback. However,

if you can’t find a reference in the refs directory, it’s probably in your packed-refs

file.

Notice the last line of the file, which begins with a .̂ This means the tag directly

above is an annotated tag and that line is the commit that the annotated tag points to.

9.7.2 Data Recovery

At some point in your Git journey, you may accidentally lose a commit. Generally, this

happens because you force-delete a branch that had work on it, and it turns out you

wanted the branch after all; or you hard-reset a branch, thus abandoning commits that

you wanted something from. Assuming this happens, how can you get your commits

back?

226

CHAPTER 9 GIT INTERNALS

Here’s an example that hard-resets the master branch in your test repository to

an older commit and then recovers the lost commits. First, let’s review where your

repository is at this point:

$ git log --pretty=oneline

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, move the master branch back to the middle commit:

$ git reset --hard 1a410efbd13591db07496601ebc7a059dd55cfe9

HEAD is now at 1a410ef third commit

$ git log --pretty=oneline

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You’ve effectively lost the top two commits — you have no branch from which

those commits are reachable. You need to find the latest commit SHA and then add

a branch that points to it. The trick is finding that latest commit SHA — it’s not like

you’ve memorized it, right?

Often, the quickest way is to use a tool called git reflog . As you’re working,

Git silently records what your HEAD is every time you change it. Each time you

commit or change branches, the reflog is updated. The reflog is also updated by the git

update-ref command, which is another reason to use it instead of just writing the SHA

value to your ref files, as we covered in the “Git References” section of this chapter

earlier. You can see where you’ve been at any time by running git reflog :

$ git reflog

1a410ef HEAD@{0}: 1a410efbd13591db07496601ebc7a059dd55cfe9: updating HEAD

ab1afef HEAD@{1}: ab1afef80fac8e34258ff41fc1b867c702daa24b: updating HEAD

Here we can see the two commits that we have had checked out, however there is

not much information here. To see the same information in a much more useful way,

we can run git log -g , which will give you a normal log output for your reflog.

$ git log -g

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Reflog: HEAD@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:22:37 2009 -0700

third commit

commit ab1afef80fac8e34258ff41fc1b867c702daa24b

Reflog: HEAD@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

227

PRO GIT SCOTT CHACON

Date: Fri May 22 18:15:24 2009 -0700

modified repo a bit

It looks like the bottom commit is the one you lost, so you can recover it by

creating a new branch at that commit. For example, you can start a branch named

recover-branch at that commit (ab1afef):

$ git branch recover-branch ab1afef

$ git log --pretty=oneline recover-branch

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Cool — now you have a branch named recover-branch that is where your master

branch used to be, making the first two commits reachable again. Next, suppose your

loss was for some reason not in the reflog — you can simulate that by removing

recover-branch and deleting the reflog. Now the first two commits aren’t reachable

by anything:

$ git branch D recover-branch

$ rm -Rf .git/logs/

Because the reflog data is kept in the .git/logs/ directory, you effectively have no

reflog. How can you recover that commit at this point? One way is to use the git fsck

utility, which checks your database for integrity. If you run it with the --full option,

it shows you all objects that aren’t pointed to by another object:

$ git fsck --full

dangling blob d670460b4b4aece5915caf5c68d12f560a9fe3e4

dangling commit ab1afef80fac8e34258ff41fc1b867c702daa24b

dangling tree aea790b9a58f6cf6f2804eeac9f0abbe9631e4c9

dangling blob 7108f7ecb345ee9d0084193f147cdad4d2998293

In this case, you can see your missing commit after the dangling commit. You can

recover it the same way, by adding a branch that points to that SHA.

9.7.3 Removing Objects

There are a lot of great things about Git, but one feature that can cause issues is the fact

that a git clone downloads the entire history of the project, including every version

of every file. This is fine if the whole thing is source code, because Git is highly

optimized to compress that data efficiently. However, if someone at any point in the

history of your project added a single huge file, every clone for all time will be forced

to download that large file, even if it was removed from the project in the very next

commit. Because it’s reachable from the history, it will always be there.

This can be a huge problem when you’re converting Subversion or Perforce repos-

itories into Git. Because you don’t download the whole history in those systems, this

type of addition carries few consequences. If you did an import from another system

228

CHAPTER 9 GIT INTERNALS

or otherwise find that your repository is much larger than it should be, here is how you

can find and remove large objects.

Be warned: this technique is destructive to your commit history. It rewrites every

commit object downstream from the earliest tree you have to modify to remove a large

file reference. If you do this immediately after an import, before anyone has started to

base work on the commit, you’re fine — otherwise, you have to notify all contributors

that they must rebase their work onto your new commits.

To demonstrate, you’ll add a large file into your test repository, remove it in the

next commit, find it, and remove it permanently from the repository. First, add a large

object to your history:

$ curl http://kernel.org/pub/software/scm/git/git-1.6.3.1.tar.bz2 > git.tbz2

$ git add git.tbz2

$ git commit -am ’added git tarball’

[master 6df7640] added git tarball

1 files changed, 0 insertions(+), 0 deletions(-)

create mode 100644 git.tbz2

Oops — you didn’t want to add a huge tarball to your project. Better get rid of it:

$ git rm git.tbz2

rm ’git.tbz2’

$ git commit -m ’oops - removed large tarball’

[master da3f30d] oops - removed large tarball

1 files changed, 0 insertions(+), 0 deletions(-)

delete mode 100644 git.tbz2

Now, gc your database and see how much space you’re using:

$ git gc

Counting objects: 21, done.

Delta compression using 2 threads.

Compressing objects: 100% (16/16), done.

Writing objects: 100% (21/21), done.

Total 21 (delta 3), reused 15 (delta 1)

You can run the count-objects command to quickly see how much space you’re

using:

$ git count-objects -v

count: 4

size: 16

in-pack: 21

packs: 1

size-pack: 2016

prune-packable: 0

garbage: 0

The size-pack entry is the size of your packfiles in kilobytes, so you’re using 2MB.

Before the last commit, you were using closer to 2K — clearly, removing the file from

the previous commit didn’t remove it from your history. Every time anyone clones this

repository, they will have to clone all 2MB just to get this tiny project, because you

accidentally added a big file. Let’s get rid of it.

229

PRO GIT SCOTT CHACON

First you have to find it. In this case, you already know what file it is. But suppose

you didn’t; how would you identify what file or files were taking up so much space?

If you run git gc , all the objects are in a packfile; you can identify the big objects by

running another plumbing command called git verify-pack and sorting on the third

field in the output, which is file size. You can also pipe it through the tail command

because you’re only interested in the last few largest files:

$ git verify-pack -v .git/objects/pack/pack-3f8c0...bb.idx | sort -k 3 -n | tail -3

e3f094f522629ae358806b17daf78246c27c007b blob 1486 734 4667

05408d195263d853f09dca71d55116663690c27c blob 12908 3478 1189

7a9eb2fba2b1811321254ac360970fc169ba2330 blob 2056716 2056872 5401

The big object is at the bottom: 2MB. To find out what file it is, you’ll use the

rev-list command, which you used briefly in Chapter 7. If you pass --objects to

rev-list , it lists all the commit SHAs and also the blob SHAs with the file paths

associated with them. You can use this to find your blob’s name:

$ git rev-list --objects --all | grep 7a9eb2fb

7a9eb2fba2b1811321254ac360970fc169ba2330 git.tbz2

Now, you need to remove this file from all trees in your past. You can easily see

what commits modified this file:

$ git log --pretty=oneline -- git.tbz2

da3f30d019005479c99eb4c3406225613985a1db oops - removed large tarball

6df764092f3e7c8f5f94cbe08ee5cf42e92a0289 added git tarball

You must rewrite all the commits downstream from 6df76 to fully remove this file

from your Git history. To do so, you use filter-branch , which you used in Chapter 6:

$ git filter-branch --index-filter \

’git rm --cached --ignore-unmatch git.tbz2’ -- 6df7640̂ ..

Rewrite 6df764092f3e7c8f5f94cbe08ee5cf42e92a0289 (1/2)rm ’git.tbz2’

Rewrite da3f30d019005479c99eb4c3406225613985a1db (2/2)

Ref ’refs/heads/master’ was rewritten

The --index-filter option is similar to the --tree-filter option used in Chapter

6, except that instead of passing a command that modifies files checked out on disk,

you’re modifying your staging area or index each time. Rather than remove a specific

file with something like rm file , you have to remove it with git rm --cached — you

must remove it from the index, not from disk. The reason to do it this way is speed

— because Git doesn’t have to check out each revision to disk before running your

filter, the process can be much, much faster. You can accomplish the same task with

--tree-filter if you want. The --ignore-unmatch option to git rm tells it not to error

out if the pattern you’re trying to remove isn’t there. Finally, you ask filter-branch to

rewrite your history only from the 6df7640 commit up, because you know that is where

this problem started. Otherwise, it will start from the beginning and will unnecessarily

take longer.

Your history no longer contains a reference to that file. However, your reflog and a

new set of refs that Git added when you did the filter-branch under .git/refs/original

still do, so you have to remove them and then repack the database. You need to get rid

of anything that has a pointer to those old commits before you repack:

230

CHAPTER 9 GIT INTERNALS

$ rm -Rf .git/refs/original

$ rm -Rf .git/logs/

$ git gc

Counting objects: 19, done.

Delta compression using 2 threads.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (19/19), done.

Total 19 (delta 3), reused 16 (delta 1)

Let’s see how much space you saved.

$ git count-objects -v

count: 8

size: 2040

in-pack: 19

packs: 1

size-pack: 7

prune-packable: 0

garbage: 0

The packed repository size is down to 7K, which is much better than 2MB. You can

see from the size value that the big object is still in your loose objects, so it’s not gone;

but it won’t be transferred on a push or subsequent clone, which is what is important.

If you really wanted to, you could remove the object completely by running git prune

--expire .

9.8 Summary

You should have a pretty good understanding of what Git does in the background and,

to some degree, how it’s implemented. This chapter has covered a number of plumbing

commands— commands that are lower level and simpler than the porcelain commands

you’ve learned about in the rest of the book. Understanding how Git works at a lower

level should make it easier to understand why it’s doing what it’s doing and also to

write your own tools and helping scripts to make your specific workflow work for you.

Git as a content-addressable filesystem is a very powerful tool that you can easily

use as more than just a VCS. I hope you can use your newfound knowledge of Git

internals to implement your own cool application of this technology and feel more

comfortable using Git in more advanced ways.

231

PRO GIT SCOTT CHACON

For example, to browse the history of the project, Git doesn’t need to go out to the

server to get the history and display it for you—it simply reads it directly from your

local database. This means you see the project history almost instantly. If you want to

see the changes introduced between the current version of a file and the file a month

ago, Git can look up the file a month ago and do a local difference calculation, instead

of having to either ask a remote server to do it or pull an older version of the file from

the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If

you get on an airplane or a train and want to do a little work, you can commit happily

until you get to a network connection to upload. If you go home and can’t get your

VPN client working properly, you can still work. In many other systems, doing so is

either impossible or painful. In Perforce, for example, you can’t do much when you

aren’t connected to the server; and in Subversion and CVS, you can edit files, but you

can’t commit changes to your database (because your database is offline). This may

not seem like a huge deal, but you may be surprised what a big difference it can make.

1.3.3 Git Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that

checksum. This means it’s impossible to change the contents of any file or directory

without Git knowing about it. This functionality is built into Git at the lowest levels and

is integral to its philosophy. You can’t lose information in transit or get file corruption

without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA–1 hash. This

is a 40-character string composed of hexadecimal characters (09 and af) and calculated

based on the contents of a file or directory structure in Git. A SHA–1 hash looks

something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so

much. In fact, Git stores everything not by file name but in the Git database addressable

by the hash value of its contents.

1.3.4 Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It

is very difficult to get the system to do anything that is not undoable or to make it

erase data in any way. As in any VCS, you can lose or mess up changes you haven’t

committed yet; but after you commit a snapshot into Git, it is very difficult to lose,

especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger

of severely screwing things up. For a more in-depth look at how Git stores its data and

how you can recover data that seems lost, see “Under the Covers” in Chapter 9.

1.3.5 The Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest

of your learning process to go smoothly. Git has three main states that your files can

6

CHAPTER 1 GETTING STARTED

reside in: committed, modified, and staged. Committed means that the data is safely

stored in your local database. Modified means that you have changed the file but have

not committed it to your database yet. Staged means that you have marked a modified

file in its current version to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the

working directory, and the staging area.

Figure 1.6: Working directory, staging area, and git directory

The Git directory is where Git stores the metadata and object database for your

project. This is the most important part of Git, and it is what is copied when you clone

a repository from another computer.

The working directory is a single checkout of one version of the project. These files

are pulled out of the compressed database in the Git directory and placed on disk for

you to use or modify.

The staging area is a simple file, generally contained in your Git directory, that

stores information about what will go into your next commit. It’s sometimes referred

to as the index, but it’s becoming standard to refer to it as the staging area.

The basic Git workflow goes something like this:

1. You modify files in your working directory.

2. You stage the files, adding snapshots of them to your staging area.

3. You do a commit, which takes the files as they are in the staging area and stores

that snapshot permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed

since it was checked out but has not been staged, it is modified. In Chapter 2, you’ll

learn more about these states and how you can either take advantage of them or skip

the staged part entirely.

7

PRO GIT SCOTT CHACON

1.4 Installing Git

Let’s get into using some Git. First things first—you have to install it. You can get it a

number of ways; the two major ones are to install it from source or to install an existing

package for your platform.

1.4.1 Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most

recent version. Each version of Git tends to include useful UI enhancements, so getting

the latest version is often the best route if you feel comfortable compiling software from

source. It is also the case that many Linux distributions contain very old packages; so

unless you’re on a very up-to-date distro or are using backports, installing from source

may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl,

zlib, openssl, expat, and libiconv. For example, if you’re on a system that has yum

(such as Fedora) or apt-get (such as a Debian based system), you can use one of these

commands to install all of the dependencies:

$ yum install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

$ apt-get install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

When you have all the necessary dependencies, you can go ahead and grab the

latest snapshot from the Git web site:

http://git-scm.com/download

Then, compile and install:

$ tar -zxf git-1.6.0.5.tar.gz

$ cd git-1.6.0.5

$ make prefix=/usr/local all

$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

1.4.2 Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through

the basic package-management tool that comes with your distribution. If you’re on

Fedora, you can use yum:

$ yum install git-core

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git-core

8

CHAPTER 1 GETTING STARTED

1.4.3 Installing on Mac

There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git

installer, which you can download from the Google Code page (see Figure 1.7):

http://code.google.com/p/git-osx-installer

Figure 1.7: Git OS X installer

The other major way is to install Git via MacPorts (http://www.macports.org). If

you have MacPorts installed, install Git via

$ sudo port install git-core +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in

case you ever have to use Git with Subversion repositories (see Chapter 8).

1.4.4 Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier

installation procedures. Simply download the installer exe file from the Google Code

page, and run it:

http://code.google.com/p/msysgit

After it’s installed, you have both a command-line version (including an SSH client

that will come in handy later) and the standard GUI.

9

PRO GIT SCOTT CHACON

1.5 First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize

your Git environment. You should have to do these things only once; they’ll stick

around between upgrades. You can also change them at any time by running through

the commands again.

Git comes with a tool called git config that lets you get and set configuration vari-

ables that control all aspects of how Git looks and operates. These variables can be

stored in three different places:

• /etc/gitconfig file: Contains values for every user on the system and all their

repositories. If you pass the option--system to git config , it reads and writes

from this file specifically.

• /.gitconfig file: Specific to your user. You can make Git read and write to this

file specifically by passing the --global option.

• config file in the git directory (that is, .git/config) of whatever repository you’re

currently using: Specific to that single repository. Each level overrides values in

the previous level, so values in .git/config trump those in /etc/gitconfig .

OnWindows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Documents

and Settings\$USER for most people). It also still looks for /etc/gitconfig, although it’s

relative to the MSys root, which is wherever you decide to install Git on your Windows

system when you run the installer.

1.5.1 Your Identity

The first thing you should do when you install Git is to set your user name and e-mail

address. This is important because every Git commit uses this information, and it’s

immutably baked into the commits you pass around:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then

Git will always use that information for anything you do on that system. If you want to

override this with a different name or e-mail address for specific projects, you can run

the command without the --global option when you’re in that project.

1.5.2 Your Editor

Now that your identity is set up, you can configure the default text editor that will be

used when Git needs you to type in a message. By default, Git uses your system’s

default editor, which is generally Vi or Vim. If you want to use a different text editor,

such as Emacs, you can do the following:

$ git config --global core.editor emacs

10

CHAPTER 1 GETTING STARTED

1.5.3 Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve

merge conflicts. Say you want to use vimdiff:

$ git config --global merge.tool vimdiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and

opendiff as valid merge tools. You can also set up a custom tool; see Chapter 7 for

more information about doing that.

1.5.4 Checking Your Settings

If you want to check your settings, you can use the git config --list command to

list all the settings Git can find at that point:

$ git config --list

user.name=Scott Chacon

user.email=schacon@gmail.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different

files (/etc/gitconfig and /.gitconfig , for example). In this case, Git uses the last

value for each unique key it sees.

You can also check what Git thinks a specific key’s value is by typing git config

key:

$ git config user.name

Scott Chacon

1.6 Getting Help

If you ever need help while using Git, there are three ways to get the manual page

(manpage) help for any of the Git commands:

$ git help <verb>

$ git <verb> --help

$ man git-<verb>

For example, you can get the manpage help for the config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If

the manpages and this book aren’t enough and you need in-person help, you can try the

#git or #github channel on the Freenode IRC server (irc.freenode.net). These channels

are regularly filled with hundreds of people who are all very knowledgeable about Git

and are often willing to help.

11

PRO GIT SCOTT CHACON

1.7 Summary

You should have a basic understanding of what Git is and how it’s different from the

CVCS you may have been using. You should also now have a working version of Git

on your system that’s set up with your personal identity. It’s now time to learn some

Git basics.

12

Chapter 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers

every basic command you need to do the vast majority of the things you’ll eventually

spend your time doing with Git. By the end of the chapter, you should be able to

configure and initialize a repository, begin and stop tracking files, and stage and commit

changes. We’ll also show you how to set up Git to ignore certain files and file patterns,

how to undo mistakes quickly and easily, how to browse the history of your project and

view changes between commits, and how to push and pull from remote repositories.

2.1 Getting a Git Repository

You can get a Git project using two main approaches. The first takes an existing project

or directory and imports it into Git. The second clones an existing Git repository from

another server.

2.1.1 Initializing a Repository in an Existing Directory

If you’re starting to track an existing project in Git, you need to go to the project’s

directory and type

$ git init

This creates a new subdirectory named .git that contains all of your necessary repos-

itory files — a Git repository skeleton. At this point, nothing in your project is tracked

yet. (See Chapter 9 for more information about exactly what files are contained in the

.git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty direc-

tory), you should probably begin tracking those files and do an initial commit. You can

accomplish that with a few git add commands that specify the files you want to track,

followed by a commit:

$ git add *.c

$ git add README

$ git commit m ’initial project version’

We’ll go over what these commands do in just a minute. At this point, you have a

Git repository with tracked files and an initial commit.

13

PRO GIT SCOTT CHACON

2.1.2 Cloning an Existing Repository

If you want to get a copy of an existing Git repository — for example, a project you’d

like to contribute to — the command you need is git clone. If you’re familiar with

other VCS systems such as Subversion, you’ll notice that the command is clone and

not checkout. This is an important distinction — Git receives a copy of nearly all data

that the server has. Every version of every file for the history of the project is pulled

down when you run git clone . In fact, if your server disk gets corrupted, you can

use any of the clones on any client to set the server back to the state it was in when it

was cloned (you may lose some server-side hooks and such, but all the versioned data

would be there—see Chapter 4 for more details).

You clone a repository with git clone [url] . For example, if you want to clone

the Ruby Git library called Grit, you can do so like this:

$ git clone git://github.com/schacon/grit.git

That creates a directory named “grit”, initializes a .git directory inside it, pulls

down all the data for that repository, and checks out a working copy of the latest ver-

sion. If you go into the new grit directory, you’ll see the project files in there, ready

to be worked on or used. If you want to clone the repository into a directory named

something other than grit, you can specify that as the next command-line option:

$ git clone git://github.com/schacon/grit.git mygrit

That command does the same thing as the previous one, but the target directory is

called mygrit.

Git has a number of different transfer protocols you can use. The previous example

uses the git:// protocol, but you may also see http(s):// or user@server:/path.git ,

which uses the SSH transfer protocol. Chapter 4 will introduce all of the available

options the server can set up to access your Git repository and the pros and cons of

each.

2.2 Recording Changes to the Repository

You have a bona fide Git repository and a checkout or working copy of the files for that

project. You need to make some changes and commit snapshots of those changes into

your repository each time the project reaches a state you want to record.

Remember that each file in your working directory can be in one of two states:

tracked or untracked. Tracked files are files that were in the last snapshot; they can

be unmodified, modified, or staged. Untracked files are everything else - any files in

your working directory that were not in your last snapshot and are not in your staging

area. When you first clone a repository, all of your files will be tracked and unmodified

because you just checked them out and haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since

your last commit. You stage these modified files and then commit all your staged

changes, and the cycle repeats. This lifecycle is illustrated in Figure 2.1.

14

CHAPTER 2 GIT BASICS

Figure 2.1: The lifecycle of the status of your files

2.2.1 Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status

command. If you run this command directly after a clone, you should see something

like this:

$ git status

On branch master

nothing to commit (working directory clean)

This means you have a clean working directory—in other words, there are no

tracked and modified files. Git also doesn’t see any untracked files, or they would

be listed here. Finally, the command tells you which branch you’re on. For now, that

is always master, which is the default; you won’t worry about it here. The next chapter

will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file

didn’t exist before, and you run git status , you see your untracked file like so:

$ vim README

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Un-

tracked files” heading in your status output. Untracked basically means that Git sees

a file you didn’t have in the previous snapshot (commit); Git won’t start including it

in your commit snapshots until you explicitly tell it to do so. It does this so you don’t

accidentally begin including generated binary files or other files that you did not mean

to include. You do want to start including README, so let’s start tracking the file.

15

PRO GIT SCOTT CHACON

2.2.2 Tracking New Files

In order to begin tracking a new file, you use the command git add . To begin tracking

the README file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now

tracked and staged:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

You can tell that it’s staged because it’s under the “Changes to be committed” head-

ing. If you commit at this point, the version of the file at the time you ran git add is

what will be in the historical snapshot. You may recall that when you ran git init earlier,

you then ran git add (files) — that was to begin tracking files in your directory. The git

add command takes a path name for either a file or a directory; if it’s a directory, the

command adds all the files in that directory recursively.

2.2.3 Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file

called benchmarks.rb and then run your status command again, you get something

that looks like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

The benchmarks.rb file appears under a section named “Changed but not updated”

— which means that a file that is tracked has been modified in the working directory

but not yet staged. To stage it, you run the git add command (it’s a multipurpose

command— you use it to begin tracking new files, to stage files, and to do other things

like marking merge-conflicted files as resolved). Let’s run git add now to stage the

benchmarks.rb file, and then run git status again:

16

CHAPTER 2 GIT BASICS

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Both files are staged and will go into your next commit. At this point, suppose you

remember one little change that you want to make in benchmarks.rb before you commit

it. You open it again and make that change, and you’re ready to commit. However, let’s

run git status one more time:

$ vim benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

What the heck? Now benchmarks.rb is listed as both staged and unstaged. How is

that possible? It turns out that Git stages a file exactly as it is when you run the git add

command. If you commit now, the version of benchmarks.rb as it was when you last

ran the git add command is how it will go into the commit, not the version of the file as

it looks in your working directory when you run git commit. If you modify a file after

you run git add , you have to run git add again to stage the latest version of the file:

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

#

2.2.4 Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add or even

show you as being untracked. These are generally automatically generated files such

as log files or files produced by your build system. In such cases, you can create a file

listing patterns to match them named .gitignore. Here is an example .gitignore file:

17

PRO GIT SCOTT CHACON

$ cat .gitignore

*.[oa]

*̃

The first line tells Git to ignore any files ending in .o or .a — object and archive

files that may be the product of building your code. The second line tells Git to ignore

all files that end with a tilde (), which is used by many text editors such as Emacs to

mark temporary files. You may also include a log, tmp, or pid directory; automatically

generated documentation; and so on. Setting up a .gitignore file before you get going is

generally a good idea so you don’t accidentally commit files that you really don’t want

in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

• Blank lines or lines starting with # are ignored.

• Standard glob patterns work.

• You can end patterns with a forward slash (/) to specify a directory.

• You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*)

matches zero or more characters; [abc] matches any character inside the brackets (in

this case a, b, or c); a question mark (?) matches a single character; and brackets en-

closing characters seperated by a hyphen([0-9]) matches any character between them

(in this case 0 through 9) .

Here is another example .gitignore file:

a comment this is ignored

*.a # no .a files

!lib.a # but do track lib.a, even though you’re ignoring .a files above

/TODO # only ignore the root TODO file, not subdir/TODO

build/ # ignore all files in the build/ directory

doc/*.txt # ignore doc/notes.txt, but not doc/server/arch.txt

2.2.5 Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you — you want to know exactly what

you changed, not just which files were changed— you can use the git diff command.

We’ll cover git diff in more detail later; but you’ll probably use it most often to

answer these two questions: What have you changed but not yet staged? And what

have you staged that you are about to commit? Although git status answers those

questions very generally, git diff shows you the exact lines added and removed —

the patch, as it were.

Let’s say you edit and stage the README file again and then edit the bench-

marks.rb file without staging it. If you run your status command, you once again

see something like this:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

18

CHAPTER 2 GIT BASICS

#

new file: README

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: benchmarks.rb

#

To see what you’ve changed but not yet staged, type git diff with no other argu-

ments:

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..da65585 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

That command compares what is in your working directory with what is in your

staging area. The result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you

can use git diff -cached . (In Git versions 1.6.1 and later, you can also use git diff

-staged , which may be easier to remember.) This command compares your staged

changes to your last commit:

$ git diff --cached

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README2

@@ -0,0 +1,5 @@

+grit

+ by Tom Preston-Werner, Chris Wanstrath

+ http://github.com/mojombo/grit

+

+Grit is a Ruby library for extracting information from a Git repository

It’s important to note that git diff by itself doesn’t show all changes made since

your last commit — only changes that are still unstaged. This can be confusing, be-

cause if you’ve staged all of your changes, git diff will give you no output.

19

PRO GIT SCOTT CHACON

For another example, if you stage the benchmarks.rb file and then edit it, you can

use git diff to see the changes in the file that are staged and the changes that are

unstaged:

$ git add benchmarks.rb

$ echo ’# test line’ >> benchmarks.rb

$ git status

On branch master

#

Changes to be committed:

#

modified: benchmarks.rb

#

Changed but not updated:

#

modified: benchmarks.rb

#

Now you can use git diff to see what is still unstaged

$ git diff

diff --git a/benchmarks.rb b/benchmarks.rb

index e445e28..86b2f7c 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -127,3 +127,4 @@ end

main()

##pp Grit::GitRuby.cache_client.stats

+# test line

and git diff --cached to see what youve staged so far:

$ git diff --cached

diff --git a/benchmarks.rb b/benchmarks.rb

index 3cb747f..e445e28 100644

--- a/benchmarks.rb

+++ b/benchmarks.rb

@@ -36,6 +36,10 @@ def main

@commit.parents[0].parents[0].parents[0]

end

+ run_code(x, ’commits 1’) do

+ git.commits.size

+ end

+

run_code(x, ’commits 2’) do

log = git.commits(’master’, 15)

log.size

2.2.6 Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes.

Remember that anything that is still unstaged — any files you have created or modified

that you haven’t run git add on since you edited them — won’t go into this commit.

20

CHAPTER 2 GIT BASICS

They will stay as modified files on your disk. In this case, the last time you ran git

status , you saw that everything was staged, so you’re ready to commit your changes.

The simplest way to commit is to type git commit :

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s $EDITOR envi-

ronment variable — usually vim or emacs, although you can configure it with whatever

you want using the git config --global core.editor command as you saw in Chap-

ter 1).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting

with ’#’ will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README

modified: benchmarks.rb

˜

˜

˜

".git/COMMIT_EDITMSG" 10L, 283C

You can see that the default commit message contains the latest output of the git

status command commented out and one empty line on top. You can remove these

comments and type your commit message, or you can leave them there to help you

remember what you’re committing. (For an even more explicit reminder of what you’ve

modified, you can pass the -v option to git commit . Doing so also puts the diff of your

change in the editor so you can see exactly what you did.) When you exit the editor, Git

creates your commit with that commit message (with the comments and diff stripped

out).

Alternatively, you can type your commit message inline with the commit command

by specifying it after a -m flag, like this:

$ git commit -m "Story 182: Fix benchmarks for speed"

[master]: created 463dc4f: "Fix benchmarks for speed"

2 files changed, 3 insertions(+), 0 deletions(-)

create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given

you some output about itself: which branch you committed to (master), what SHA–1

checksum the commit has (463dc4f), how many files were changed, and statistics about

lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging area.

Anything you didn’t stage is still sitting there modified; you can do another commit to

add it to your history. Every time you perform a commit, you’re recording a snapshot

of your project that you can revert to or compare to later.

21

PRO GIT SCOTT CHACON

2.2.7 Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them,

the staging area is sometimes a bit more complex than you need in your workflow. If

you want to skip the staging area, Git provides a simple shortcut. Providing the -a

option to the git commit command makes Git automatically stage every file that is

already tracked before doing the commit, letting you skip the git add part:

$ git status

On branch master

#

Changed but not updated:

#

modified: benchmarks.rb

#

$ git commit -a -m ’added new benchmarks’

[master 83e38c7] added new benchmarks

1 files changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the benchmarks.rb file in this case

before you commit.

2.2.8 Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accu-

rately, remove it from your staging area) and then commit. The git rm command does

that and also removes the file from your working directory so you don’t see it as an

untracked file next time around.

If you simply remove the file from your working directory, it shows up under the

“Changed but not updated” (that is, unstaged) area of your git status output:

$ rm grit.gemspec

$ git status

On branch master

#

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

#

deleted: grit.gemspec

#

Then, if you run git rm , it stages the file’s removal:

$ git rm grit.gemspec

rm ’grit.gemspec’

$ git status

On branch master

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: grit.gemspec

#

22

CHAPTER 2 GIT BASICS

The next time you commit, the file will be gone and no longer tracked. If you

modified the file and added it to the index already, you must force the removal with the

-f option. This is a safety feature to prevent accidental removal of data that hasn’t yet

been recorded in a snapshot and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree

but remove it from your staging area. In other words, you may want to keep the file

on your hard drive but not have Git track it anymore. This is particularly useful if you

forgot to add something to your .gitignore file and accidentally added it, like a large

log file or a bunch of .a compiled files. To do this, use the --cached option:

$ git rm --cached readme.txt

You can pass files, directories, and file-glob patterns to the git rm command. That

means you can do things such as

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its

own filename expansion in addition to your shell’s filename expansion. This command

removes all files that have the .log extension in the log/ directory. Or, you can do

something like this:

$ git rm *̃

This command removes all files that end with .

2.2.9 Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you

rename a file in Git, no metadata is stored in Git that tells it you renamed the file.

However, Git is pretty smart about figuring that out after the fact — we’ll deal with

detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in

Git, you can run something like

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status,

you’ll see that Git considers it a renamed file:

$ git mv README.txt README

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README.txt -> README

#

However, this is equivalent to running something like this:

23

PRO GIT SCOTT CHACON

$ mv README.txt README

$ git rm README.txt

$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file

that way or with the mv command. The only real difference is that mv is one command

instead of three — it’s a convenience function. More important, you can use any tool

you like to rename a file, and address the add/rm later, before you commit.

2.3 Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an

existing commit history, you’ll probably want to look back to see what has happened.

The most basic and powerful tool to do this is the git log command.

These examples use a very simple project called simplegit that I often use for

demonstrations. To get the project, run

git clone git://github.com/schacon/simplegit-progit.git

When you run git log in this project, you should get output that looks something

like this:

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

By default, with no arguments, git log lists the commits made in that repository

in reverse chronological order. That is, the most recent commits show up first. As you

can see, this command lists each commit with its SHA–1 checksum, the author’s name

and e-mail, the date written, and the commit message.

A huge number and variety of options to the git log command are available to

show you exactly what you’re looking for. Here, we’ll show you some of the most-

used options.

One of the more helpful options is -p, which shows the diff introduced in each

commit. You can also use -2, which limits the output to only the last two entries:

24

CHAPTER 2 GIT BASICS

$ git log p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require ’rake/gempackagetask’

spec = Gem::Specification.new do |s|

- s.version = "0.1.0"

+ s.version = "0.1.1"

s.author = "Scott Chacon"

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

end

end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

\ No newline at end of file

This option displays the same information but with a diff directly following each

entry. This is very helpful for code review or to quickly browse what happened during

a series of commits that a collaborator has added. You can also use a series of summa-

rizing options with git log . For example, if you want to see some abbreviated stats

for each commit, you can use the --stat option:

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the verison number

Rakefile | 2 +-

1 files changed, 1 insertions(+), 1 deletions(-)

25

PRO GIT SCOTT CHACON

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test code

lib/simplegit.rb | 5 -----

1 files changed, 0 insertions(+), 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

README | 6 ++++++

Rakefile | 23 +++++++++++++++++++++++

lib/simplegit.rb | 25 +++++++++++++++++++++++++

3 files changed, 54 insertions(+), 0 deletions(-)

As you can see, the --stat option prints below each commit entry a list of modified

files, how many files were changed, and how many lines in those files were added

and removed. It also puts a summary of the information at the end. Another really

useful option is --pretty . This option changes the log output to formats other than the

default. A few prebuilt options are available for you to use. The oneline option prints

each commit on a single line, which is useful if you’re looking at a lot of commits.

In addition, the short , full , and fuller options show the output in roughly the same

format but with less or more information, respectively:

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the verison number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test code

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

The most interesting option is format , which allows you to specify your own log

output format. This is especially useful when you’re generating output for machine

parsing — because you specify the format explicitly, you know it won’t change with

updates to Git:

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 11 months ago : changed the verison number

085bb3b - Scott Chacon, 11 months ago : removed unnecessary test code

a11bef0 - Scott Chacon, 11 months ago : first commit

Table 2.1 lists some of the more useful options that format takes.

You may be wondering what the difference is between author and committer. The

author is the person who originally wrote the work, whereas the committer is the person

who last applied the work. So, if you send in a patch to a project and one of the core

members applies the patch, both of you get credit — you as the author and the core

member as the committer. We’ll cover this distinction a bit more in Chapter 5.

26

CHAPTER 2 GIT BASICS

Option Description of Output

%H Commit hash

%h Abbreviated commit hash

%T Tree hash

%t Abbreviated tree hash

%P Parent hashes

%p Abbreviated parent hashes

%an Author name

%ae Author e-mail

%ad Author date (format respects the date= option)

%ar Author date, relative

%cn Committer name

%ce Committer email

%cd Committer date

%cr Committer date, relative

%s Subject

The oneline and format options are particularly useful with another log option

called --graph . This option adds a nice little ASCII graph showing your branch and

merge history, which we can see our copy of the Grit project repository:

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch ’master’ of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch ’defunkt’ into local

Those are only some simple output-formatting options to git log — there are many

more. Table 2.2 lists the options we’ve covered so far and some other common format-

ting options that may be useful, along with how they change the output of the log

command.

2.3.1 Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting op-

tions — that is, options that let you show only a subset of commits. You’ve seen one

such option already — the -2 option, which show only the last two commits. In fact,

you can do -<n> , where n is any integer to show the last n commits. In reality, you’re

unlikely to use that often, because Git by default pipes all output through a pager so

you see only one page of log output at a time.

However, the time-limiting options such as --since and --until are very useful.

For example, this command gets the list of commits made in the last two weeks:

27

PRO GIT SCOTT CHACON

Option Description

-p Show the patch introduced with each commit.

--stat Show statistics for files modified in each commit.

--shortstat Display only the changed/insertions/deletions line from the

–stat command.

--name-only Show the list of files modified after the commit informa-

tion.

--name-status Show the list of files affected with added/modified/deleted

information as well.

--abbrev-commit Show only the first few characters of the SHA-1 checksum

instead of all 40.

--relative-date Display the date in a relative format (for example, “2 weeks

ago”) instead of using the full date format.

--graph Display an ASCII graph of the branch and merge history

beside the log output.

--pretty Show commits in an alternate format. Options include one-

line, short, full, fuller, and format (where you specify your

own format).

$ git log --since=2.weeks

This command works with lots of formats— you can specify a specific date (“2008–

01–15”) or a relative date such as “2 years 1 day 3 minutes ago”.

You can also filter the list to commits that match some search criteria. The --author

option allows you to filter on a specific author, and the --grep option lets you search

for keywords in the commit messages. (Note that if you want to specify both author

and grep options, you have to add --all-match or the command will match commits

with either.)

The last really useful option to pass to git log as a filter is a path. If you specify a

directory or file name, you can limit the log output to commits that introduced a change

to those files. This is always the last option and is generally preceded by double dashes

(--) to separate the paths from the options.

In Table 2.3 we’ll list these and a few other common options for your reference.

Option Description

-(n) Show only the last n commits

--since, --after Limit the commits to those made after the specified date.

--until, --before Limit the commits to those made before the specified date.

--author Only show commits in which the author entry matches the

specified string.

--committer Only show commits in which the committer entry matches

the specified string.

For example, if you want to see which commits modifying test files in the Git source

code history were committed by Junio Hamano and were not merges in the month of

October 2008, you can run something like this:

28

CHAPTER 2 GIT BASICS

$ git log --pretty="%h:%s" --author=gitster --since="2008-10-01" \

--before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attribute

acd3b9e - Enhance hold_lock_file_for_{update,append}()

f563754 - demonstrate breakage of detached checkout wi

d1a43f2 - reset --hard/read-tree --reset -u: remove un

51a94af - Fix "checkout --track -b newbranch" on detac

b0ad11e - pull: allow "git pull origin $something:$cur

Of the nearly 20,000 commits in the Git source code history, this command shows

the 6 that match those criteria.

2.3.2 Using a GUI to Visualize History

If you like to use a more graphical tool to visualize your commit history, you may

want to take a look at a Tcl/Tk program called gitk that is distributed with Git. Gitk

is basically a visual git log tool, and it accepts nearly all the filtering options that

git log does. If you type gitk on the command line in your project, you should see

something like Figure 2.2.

Figure 2.2: The gitk history visualizer

You can see the commit history in the top half of the window along with a nice an-

cestry graph. The diff viewer in the bottom half of the window shows you the changes

introduced at any commit you click.

29

PRO GIT SCOTT CHACON

2.4 Undoing Things

At any stage, you may want to undo something. Here, we’ll review a few basic tools for

undoing changes that you’ve made. Be careful, because you can’t always undo some

of these undos. This is one of the few areas in Git where you may lose some work if

you do it wrong.

2.4.1 Changing Your Last Commit

One of the common undos takes place when you commit too early and possibly forget

to add some files, or you mess up your commit message. If you want to try that commit

again, you can run commit with the --amend option:

$ git commit --amend

This command takes your staging area and uses it for the commit. If you’ve have

made no changes since your last commit (for instance, you run this command it imme-

diately after your previous commit), then your snapshot will look exactly the same and

all you’ll change is your commit message.

The same commit-message editor fires up, but it already contains the message of

your previous commit. You can edit the message the same as always, but it overwrites

your previous commit.

As an example, if you commit and then realize you forgot to stage the changes in a

file you wanted to add to this commit, you can do something like this:

$ git commit -m ’initial commit’

$ git add forgotten_file

$ git commit --amend

All three of these commands end up with a single commit — the second command

replaces the results of the first.

2.4.2 Unstaging a Staged File

The next two sections demonstrate how to wrangle your staging area and working

directory changes. The nice part is that the command you use to determine the state

of those two areas also reminds you how to undo changes to them. For example, let’s

say you’ve changed two files and want to commit them as two separate changes, but

you accidentally type git add * and stage them both. How can you unstage one of the

two? The git status command reminds you:

$ git add .

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

modified: benchmarks.rb

#

30

CHAPTER 2 GIT BASICS

Right below the “Changes to be committed” text, it says use git reset HEAD <file>...

to unstage. So, let’s use that advice to unstage the benchmarks.rb file:

$ git reset HEAD benchmarks.rb

benchmarks.rb: locally modified

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

The command is a bit strange, but it works. The benchmarks.rb file is modified but

once again unstaged.

2.4.3 Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the benchmarks.rb

file? How can you easily unmodify it — revert it back to what it looked like when you

last committed (or initially cloned, or however you got it into your working directory)?

Luckily, git status tells you how to do that, too. In the last example output, the

unstaged area looks like this:

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: benchmarks.rb

#

It tells you pretty explicitly how to discard the changes you’ve made (at least, the

newer versions of Git, 1.6.1 and later, do this — if you have an older version, we highly

recommend upgrading it to get some of these nicer usability features). Let’s do what it

says:

$ git checkout -- benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.txt

#

You can see that the changes have been reverted. You should also realize that this is

a dangerous command: any changes you made to that file are gone — you just copied

31

PRO GIT SCOTT CHACON

another file over it. Don’t ever use this command unless you absolutely know that you

don’t want the file. If you just need to get it out of the way, we’ll go over stashing and

branching in the next chapter; these are generally better ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even

commits that were on branches that were deleted or commits that were overwritten

with an --amend commit can be recovered (see Chapter 9 for data recovery). However,

anything you lose that was never committed is likely never to be seen again.

2.5 Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your

remote repositories. Remote repositories are versions of your project that are hosted

on the Internet or network somewhere. You can have several of them, each of which

generally is either read-only or read/write for you. Collaborating with others involves

managing these remote repositories and pushing and pulling data to and from them

when you need to share work. Managing remote repositories includes knowing how

to add remote repositories, remove remotes that are no longer valid, manage various

remote branches and define them as being tracked or not, and more. In this section,

we’ll cover these remote-management skills.

2.5.1 Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command.

It lists the shortnames of each remote handle you’ve specified. If you’ve cloned your

repository, you should at least see origin — that is the default name Git gives to the

server you cloned from:

$ git clone git://github.com/schacon/ticgit.git

Initialized empty Git repository in /private/tmp/ticgit/.git/

remote: Counting objects: 595, done.

remote: Compressing objects: 100% (269/269), done.

remote: Total 595 (delta 255), reused 589 (delta 253)

Receiving objects: 100% (595/595), 73.31 KiB | 1 KiB/s, done.

Resolving deltas: 100% (255/255), done.

$ cd ticgit

$ git remote

origin

You can also specify -v, which shows you the URL that Git has stored for the

shortname to be expanded to:

$ git remote -v

origin git://github.com/schacon/ticgit.git

If you have more than one remote, the command lists them all. For example, my

Grit repository looks something like this.

$ cd grit

$ git remote -v

bakkdoor git://github.com/bakkdoor/grit.git

32

CHAPTER 2 GIT BASICS

cho45 git://github.com/cho45/grit.git

defunkt git://github.com/defunkt/grit.git

koke git://github.com/koke/grit.git

origin git@github.com:mojombo/grit.git

This means we can pull contributions from any of these users pretty easily. But

notice that only the origin remote is an SSH URL, so it’s the only one I can push to

(we’ll cover why this is in Chapter 4).

2.5.2 Adding Remote Repositories

I’ve mentioned and given some demonstrations of adding remote repositories in previ-

ous sections, but here is how to do it explicitly. To add a new remote Git repository as

a shortname you can reference easily, run git remote add [shortname] [url] :

$ git remote

origin

$ git remote add pb git://github.com/paulboone/ticgit.git

$ git remote -v

origin git://github.com/schacon/ticgit.git

pb git://github.com/paulboone/ticgit.git

Now you can use the string pb on the command line in lieu of the whole URL. For

example, if you want to fetch all the information that Paul has but that you don’t yet

have in your repository, you can run git fetch pb:

$ git fetch pb

remote: Counting objects: 58, done.

remote: Compressing objects: 100% (41/41), done.

remote: Total 44 (delta 24), reused 1 (delta 0)

Unpacking objects: 100% (44/44), done.

From git://github.com/paulboone/ticgit

* [new branch] master -> pb/master

* [new branch] ticgit -> pb/ticgit

Paul’s master branch is accessible locally as pb/master — you can merge it into

one of your branches, or you can check out a local branch at that point if you want to

inspect it.

2.5.3 Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run

$ git fetch [remote-name]

The command goes out to that remote project and pulls down all the data from that

remote project that you don’t have yet. After you do this, you should have references

to all the branches from that remote, which you can merge in or inspect at any time.

(We’ll go over what branches are and how to use them in much more detail in Chapter

3.)

If you cloned a repository, the command automatically adds that remote reposi-

tory under the name origin. So, git fetch origin fetches any new work that has been

33

Pro Git

Scott Chacon

July 29, 2009

Contents

1 Getting Started 1

1.1 About Version Control . 1

1.1.1 Local Version Control Systems 1

1.1.2 Centralized Version Control Systems 2

1.1.3 Distributed Version Control Systems 3

1.2 A Short History of Git . 4

1.3 Git Basics . 4

1.3.1 Snapshots, Not Differences 4

1.3.2 Nearly Every Operation Is Local 5

1.3.3 Git Has Integrity . 6

1.3.4 Git Generally Only Adds Data 6

1.3.5 The Three States . 6

1.4 Installing Git . 8

1.4.1 Installing from Source . 8

1.4.2 Installing on Linux . 8

1.4.3 Installing on Mac . 9

1.4.4 Installing on Windows . 9

1.5 First-Time Git Setup . 10

1.5.1 Your Identity . 10

1.5.2 Your Editor . 10

1.5.3 Your Diff Tool . 11

1.5.4 Checking Your Settings . 11

1.6 Getting Help . 11

1.7 Summary . 12

2 Git Basics 13

2.1 Getting a Git Repository . 13

2.1.1 Initializing a Repository in an Existing Directory 13

2.1.2 Cloning an Existing Repository 14

2.2 Recording Changes to the Repository 14

2.2.1 Checking the Status of Your Files 15

2.2.2 Tracking New Files . 16

2.2.3 Staging Modified Files . 16

2.2.4 Ignoring Files . 17

2.2.5 Viewing Your Staged and Unstaged Changes 18

2.2.6 Committing Your Changes 20

2.2.7 Skipping the Staging Area 22

i

PRO GIT SCOTT CHACON

2.2.8 Removing Files . 22

2.2.9 Moving Files . 23

2.3 Viewing the Commit History . 24

2.3.1 Limiting Log Output . 27

2.3.2 Using a GUI to Visualize History 29

2.4 Undoing Things . 30

2.4.1 Changing Your Last Commit 30

2.4.2 Unstaging a Staged File . 30

2.4.3 Unmodifying a Modified File 31

2.5 Working with Remotes . 32

2.5.1 Showing Your Remotes . 32

2.5.2 Adding Remote Repositories 33

2.5.3 Fetching and Pulling from Your Remotes 33

2.5.4 Pushing to Your Remotes . 34

2.5.5 Inspecting a Remote . 34

2.5.6 Removing and Renaming Remotes 35

2.6 Tagging . 35

2.6.1 Listing Your Tags . 36

2.6.2 Creating Tags . 36

2.6.3 Annotated Tags . 36

2.6.4 Signed Tags . 37

2.6.5 Lightweight Tags . 38

2.6.6 Verifying Tags . 38

2.6.7 Tagging Later . 39

2.6.8 Sharing Tags . 39

2.7 Tips and Tricks . 40

2.7.1 Auto-Completion . 40

2.7.2 Git Aliases . 41

2.8 Summary . 42

3 Git Branching 43

3.1 What a Branch Is . 43

3.2 Basic Branching and Merging . 48

3.2.1 Basic Branching . 48

3.2.2 Basic Merging . 52

3.2.3 Basic Merge Conflicts . 53

3.3 Branch Management . 55

3.4 Branching Workflows . 56

3.4.1 Long-Running Branches . 56

3.4.2 Topic Branches . 57

3.5 Remote Branches . 58

3.5.1 Pushing . 61

3.5.2 Tracking Branches . 62

3.5.3 Deleting Remote Branches 63

3.6 Rebasing . 63

3.6.1 The Basic Rebase . 64

3.6.2 More Interesting Rebases . 65

3.6.3 The Perils of Rebasing . 68

ii

CHAPTER 0 CONTENTS

3.7 Summary . 70

4 Git on the Server 71

4.1 The Protocols . 71

4.1.1 Local Protocol . 72

4.1.2 The SSH Protocol . 73

4.1.3 The Git Protocol . 73

4.1.4 The HTTP/S Protocol . 74

4.2 Getting Git on a Server . 75

4.2.1 Putting the Bare Repository on a Server 76

4.2.2 Small Setups . 76

4.3 Generating Your SSH Public Key . 77

4.4 Setting Up the Server . 78

4.5 Public Access . 80

4.6 GitWeb . 81

4.7 Gitosis . 82

4.8 Git Daemon . 86

4.9 Hosted Git . 88

4.9.1 GitHub . 88

4.9.2 Setting Up a User Account 88

4.9.3 Creating a New Repository 89

4.9.4 Importing from Subversion 92

4.9.5 Adding Collaborators . 92

4.9.6 Your Project . 93

4.9.7 Forking Projects . 94

4.9.8 GitHub Summary . 94

4.10 Summary . 95

5 Distributed Git 97

5.1 Distributed Workflows . 97

5.1.1 Centralized Workflow . 97

5.1.2 Integration-Manager Workflow 98

5.1.3 Dictator and Lieutenants Workflow 99

5.2 Contributing to a Project . 100

5.2.1 Commit Guidelines . 100

5.2.2 Private Small Team . 102

5.2.3 Private Managed Team . 107

5.2.4 Public Small Project . 111

5.2.5 Public Large Project . 115

5.2.6 Summary . 117

5.3 Maintaining a Project . 117

5.3.1 Working in Topic Branches 117

5.3.2 Applying Patches from E-mail 118

5.3.3 Checking Out Remote Branches 121

5.3.4 Determining What Is Introduced 121

5.3.5 Integrating Contributed Work 123

5.3.6 Tagging Your Releases . 127

5.3.7 Generating a Build Number 128

iii

PRO GIT SCOTT CHACON

5.3.8 Preparing a Release . 129

5.3.9 The Shortlog . 129

5.4 Summary . 129

6 Git Tools 131

6.1 Revision Selection . 131

6.1.1 Single Revisions . 131

6.1.2 Short SHA . 131

6.1.3 A SHORT NOTE ABOUT SHA–1 132

6.1.4 Branch References . 133

6.1.5 RefLog Shortnames . 133

6.1.6 Ancestry References . 134

6.1.7 Commit Ranges . 136

6.2 Interactive Staging . 138

6.2.1 Staging and Unstaging Files 138

6.2.2 Staging Patches . 140

6.3 Stashing . 141

6.3.1 Stashing Your Work . 141

6.3.2 Creating a Branch from a Stash 143

6.4 Rewriting History . 144

6.4.1 Changing the Last Commit 144

6.4.2 Changing Multiple Commit Messages 145

6.4.3 Reordering Commits . 146

6.4.4 Squashing a Commit . 147

6.4.5 Splitting a Commit . 147

6.4.6 The Nuclear Option: filter-branch 148

6.5 Debugging with Git . 149

6.5.1 File Annotation . 150

6.5.2 Binary Search . 151

6.6 Submodules . 152

6.6.1 Starting with Submodules 153

6.6.2 Cloning a Project with Submodules 154

6.6.3 Superprojects . 156

6.6.4 Issues with Submodules . 157

6.7 Subtree Merging . 158

6.8 Summary . 160

7 Customizing Git 161

7.1 Git Configuration . 161

7.1.1 Basic Client Configuration 162

7.1.2 Colors in Git . 164

7.1.3 External Merge and Diff Tools 164

7.1.4 Formatting and Whitespace 167

7.1.5 Server Configuration . 168

7.2 Git Attributes . 169

7.2.1 Binary Files . 169

7.2.2 Keyword Expansion . 172

7.2.3 Exporting Your Repository 174

iv

CHAPTER 0 CONTENTS

7.2.4 Merge Strategies . 175

7.3 Git Hooks . 175

7.3.1 Installing a Hook . 175

7.3.2 Client-Side Hooks . 175

7.3.3 Server-Side Hooks . 177

7.4 An Example Git-Enforced Policy . 178

7.4.1 Server-Side Hook . 178

7.4.2 Client-Side Hooks . 183

7.5 Summary . 186

8 Git and Other Systems 187

8.1 Git and Subversion . 187

8.1.1 git svn . 187

8.1.2 Setting Up . 188

8.1.3 Getting Started . 189

8.1.4 Committing Back to Subversion 190

8.1.5 Pulling in New Changes . 191

8.1.6 Git Branching Issues . 192

8.1.7 Subversion Branching . 193

8.1.8 Switching Active Branches 194

8.1.9 Subversion Commands . 194

8.1.10 Git-Svn Summary . 196

8.2 Migrating to Git . 196

8.2.1 Importing . 196

8.2.2 Subversion . 197

8.2.3 Perforce . 198

8.2.4 A Custom Importer . 200

8.3 Summary . 204

9 Git Internals 205

9.1 Plumbing and Porcelain . 205

9.2 Git Objects . 206

9.2.1 Tree Objects . 208

9.2.2 Commit Objects . 210

9.2.3 Object Storage . 212

9.3 Git References . 214

9.3.1 The HEAD . 215

9.3.2 Tags . 216

9.3.3 Remotes . 216

9.4 Packfiles . 217

9.5 The Refspec . 220

9.5.1 Pushing Refspecs . 221

9.5.2 Deleting References . 221

9.6 Transfer Protocols . 222

9.6.1 The Dumb Protocol . 222

9.6.2 The Smart Protocol . 224

9.7 Maintenance and Data Recovery . 225

9.7.1 Maintenance . 226

v

PRO GIT SCOTT CHACON

9.7.2 Data Recovery . 226

9.7.3 Removing Objects . 228

9.8 Summary . 231

vi

Chapter 1

Getting Started

This chapter will be about getting started with Git. We will begin at the beginning by

explaining some background on version control tools, then move on to how to get Git

running on your system and finally how to get it setup to start working with. At the end

of this chapter you should understand why Git is around, why you should use it and

you should be all setup to do so.

1.1 About Version Control

What is version control, and why should you care? Version control is a system that

records changes to a file or set of files over time so that you can recall specific versions

later. For the examples in this book you will use software source code as the files being

version controlled, though in reality you can do this with nearly any type of file on a

computer.

If you are a graphic or web designer and want to keep every version of an image

or layout (which you would most certainly want to), a Version Control System (VCS)

is a very wise thing to use. It allows you to revert files back to a previous state, revert

the entire project back to a previous state, compare changes over time, see who last

modified something that might be causing a problem, who introduced an issue and

when, and more. Using a VCS also generally means that if you screw things up or lose

files, you can easily recover. In addition, you get all this for very little overhead.

1.1.1 Local Version Control Systems

Many people’s version-control method of choice is to copy files into another directory

(perhaps a time-stamped directory, if they’re clever). This approach is very common

because it is so simple, but it is also incredibly error prone. It is easy to forget which

directory you’re in and accidentally write to the wrong file or copy over files you don’t

mean to.

To deal with this issue, programmers long ago developed local VCSs that had a

simple database that kept all the changes to files under revision control (see Figure

1.1).

One of the more popular VCS tools was a system called rcs, which is still dis-

tributed with many computers today. Even the popular Mac OS X operating system

1

PRO GIT SCOTT CHACON

Figure 1.1: Local version control diagram

includes the rcs command when you install the Developer Tools. This tool basically

works by keeping patch sets (that is, the differences between files) from one change to

another in a special format on disk; it can then re-create what any file looked like at

any point in time by adding up all the patches.

1.1.2 Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with de-

velopers on other systems. To deal with this problem, Centralized Version Control

Systems (CVCSs) were developed. These systems, such as CVS, Subversion, and Per-

force, have a single server that contains all the versioned files, and a number of clients

that check out files from that central place. For many years, this has been the standard

for version control (see Figure 1.2).

Figure 1.2: Centralized version control diagram

2

CHAPTER 1 GETTING STARTED

This setup offers many advantages, especially over local VCSs. For example, ev-

eryone knows to a certain degree what everyone else on the project is doing. Adminis-

trators have fine-grained control over who can do what; and it’s far easier to administer

a CVCS than it is to deal with local databases on every client.

However, this setup also has some serious downsides. The most obvious is the

single point of failure that the centralized server represents. If that server goes down for

an hour, then during that hour nobody can collaborate at all or save versioned changes

to anything they’re working on. If the hard disk the central database is on becomes

corrupted, and proper backups haven’t been kept, you lose absolutely everything—the

entire history of the project except whatever single snapshots people happen to have on

their local machines. Local VCS systems suffer from this same problem—whenever

you have the entire history of the project in a single place, you risk losing everything.

1.1.3 Distributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such

as Git, Mercurial, Bazaar or Darcs), clients don’t just check out the latest snapshot of

the files: they fully mirror the repository. Thus if any server dies, and these systems

were collaborating via it, any of the client repositories can be copied back up to the

server to restore it. Every checkout is really a full backup of all the data (see Figure

1.3).

Figure 1.3: Distributed version control diagram

Furthermore, many of these systems deal pretty well with having several remote

repositories they can work with, so you can collaborate with different groups of people

3

PRO GIT SCOTT CHACON

in different ways simultaneously within the same project. This allows you to set up sev-

eral types of workflows that aren’t possible in centralized systems, such as hierarchical

models.

1.2 A Short History of Git

As with many great things in life, Git began with a bit of creative destruction and fiery

controversy. The Linux kernel is an open source software project of fairly large scope.

For most of the lifetime of the Linux kernel maintenance (19912002), changes to the

software were passed around as patches and archived files. In 2002, the Linux kernel

project began using a proprietary DVCS system called BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel

and the commercial company that developed BitKeeper broke down, and the tool’s

free-of-charge status was revoked. This prompted the Linux development community

(and in particular Linus Torvalds, the creator of Linux) to develop their own tool based

on some of the lessons they learned while using BitKeeper. Some of the goals of the

new system were as follows:

• Speed

• Simple design

• Strong support for non-linear development (thousands of parallel branches)

• Fully distributed

• Able to handle large projects like the Linux kernel efficiently (speed and data

size)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain

these initial qualities. It’s incredibly fast, it’s very efficient with large projects, and it

has an incredible branching system for non-linear development (See Chapter 3).

1.3 Git Basics

So, what is Git in a nutshell? This is an important section to absorb, because if you

understand what Git is and the fundamentals of how it works, then using Git effectively

will probably be much easier for you. As you learn Git, try to clear your mind of the

things you may know about other VCSs, such as Subversion and Perforce; doing so

will help you avoid subtle confusion when using the tool. Git stores and thinks about

information much differently than these other systems, even though the user interface

is fairly similar; understanding those differences will help prevent you from becoming

confused while using it.

1.3.1 Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included)

is the way Git thinks about its data. Conceptually, most other systems store information

as a list of file-based changes. These systems (CVS, Subversion, Perforce, Bazaar, and

4

CHAPTER 1 GETTING STARTED

so on) think of the information they keep as a set of files and the changes made to each

file over time, as illustrated in Figure 1.4.

Figure 1.4: Other systems tend to store data as changes to a base version of each file.

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more

like a set of snapshots of a mini filesystem. Every time you commit, or save the state

of your project in Git, it basically takes a picture of what all your files look like at

that moment and stores a reference to that snapshot. To be efficient, if files have not

changed, Git doesn’t store the file again—just a link to the previous identical file it has

already stored. Git thinks about its data more like Figure 1.5.

Figure 1.5: Git stores data as snapshots of the project over time.

This is an important distinction between Git and nearly all other VCSs. It makes

Git reconsider almost every aspect of version control that most other systems copied

from the previous generation. This makes Git more like a mini filesystem with some

incredibly powerful tools built on top of it, rather than simply a VCS. We’ll explore

some of the benefits you gain by thinking of your data this way when we cover Git

branching in Chapter 3.

1.3.2 Nearly Every Operation Is Local

Most operations in Git only need local files and resources to operate generally no

information is needed from another computer on your network. If you’re used to a

CVCS where most operations have that network latency overhead, this aspect of Git

will make you think that the gods of speed have blessed Git with unworldly powers.

Because you have the entire history of the project right there on your local disk, most

operations seem almost instantaneous.

5

PRO GIT SCOTT CHACON

For example, to browse the history of the project, Git doesn’t need to go out to the

server to get the history and display it for you—it simply reads it directly from your

local database. This means you see the project history almost instantly. If you want to

see the changes introduced between the current version of a file and the file a month

ago, Git can look up the file a month ago and do a local difference calculation, instead

of having to either ask a remote server to do it or pull an older version of the file from

the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If

you get on an airplane or a train and want to do a little work, you can commit happily

until you get to a network connection to upload. If you go home and can’t get your

VPN client working properly, you can still work. In many other systems, doing so is

either impossible or painful. In Perforce, for example, you can’t do much when you

aren’t connected to the server; and in Subversion and CVS, you can edit files, but you

can’t commit changes to your database (because your database is offline). This may

not seem like a huge deal, but you may be surprised what a big difference it can make.

1.3.3 Git Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that

checksum. This means it’s impossible to change the contents of any file or directory

without Git knowing about it. This functionality is built into Git at the lowest levels and

is integral to its philosophy. You can’t lose information in transit or get file corruption

without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA–1 hash. This

is a 40-character string composed of hexadecimal characters (09 and af) and calculated

based on the contents of a file or directory structure in Git. A SHA–1 hash looks

something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so

much. In fact, Git stores everything not by file name but in the Git database addressable

by the hash value of its contents.

1.3.4 Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It

is very difficult to get the system to do anything that is not undoable or to make it

erase data in any way. As in any VCS, you can lose or mess up changes you haven’t

committed yet; but after you commit a snapshot into Git, it is very difficult to lose,

especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger

of severely screwing things up. For a more in-depth look at how Git stores its data and

how you can recover data that seems lost, see “Under the Covers” in Chapter 9.

1.3.5 The Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest

of your learning process to go smoothly. Git has three main states that your files can

6

CHAPTER 1 GETTING STARTED

reside in: committed, modified, and staged. Committed means that the data is safely

stored in your local database. Modified means that you have changed the file but have

not committed it to your database yet. Staged means that you have marked a modified

file in its current version to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the

working directory, and the staging area.

Figure 1.6: Working directory, staging area, and git directory

The Git directory is where Git stores the metadata and object database for your

project. This is the most important part of Git, and it is what is copied when you clone

a repository from another computer.

The working directory is a single checkout of one version of the project. These files

are pulled out of the compressed database in the Git directory and placed on disk for

you to use or modify.

The staging area is a simple file, generally contained in your Git directory, that

stores information about what will go into your next commit. It’s sometimes referred

to as the index, but it’s becoming standard to refer to it as the staging area.

The basic Git workflow goes something like this:

1. You modify files in your working directory.

2. You stage the files, adding snapshots of them to your staging area.

3. You do a commit, which takes the files as they are in the staging area and stores

that snapshot permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed

since it was checked out but has not been staged, it is modified. In Chapter 2, you’ll

learn more about these states and how you can either take advantage of them or skip

the staged part entirely.

7

PRO GIT SCOTT CHACON

1.4 Installing Git

Let’s get into using some Git. First things first—you have to install it. You can get it a

number of ways; the two major ones are to install it from source or to install an existing

package for your platform.

1.4.1 Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most

recent version. Each version of Git tends to include useful UI enhancements, so getting

the latest version is often the best route if you feel comfortable compiling software from

source. It is also the case that many Linux distributions contain very old packages; so

unless you’re on a very up-to-date distro or are using backports, installing from source

may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl,

zlib, openssl, expat, and libiconv. For example, if you’re on a system that has yum

(such as Fedora) or apt-get (such as a Debian based system), you can use one of these

commands to install all of the dependencies:

$ yum install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

$ apt-get install curl-devel expat-devel gettext-devel \

openssl-devel zlib-devel

When you have all the necessary dependencies, you can go ahead and grab the

latest snapshot from the Git web site:

http://git-scm.com/download

Then, compile and install:

$ tar -zxf git-1.6.0.5.tar.gz

$ cd git-1.6.0.5

$ make prefix=/usr/local all

$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

1.4.2 Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through

the basic package-management tool that comes with your distribution. If you’re on

Fedora, you can use yum:

$ yum install git-core

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git-core

8

CHAPTER 1 GETTING STARTED

1.4.3 Installing on Mac

There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git

installer, which you can download from the Google Code page (see Figure 1.7):

http://code.google.com/p/git-osx-installer

Figure 1.7: Git OS X installer

The other major way is to install Git via MacPorts (http://www.macports.org). If

you have MacPorts installed, install Git via

$ sudo port install git-core +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in

case you ever have to use Git with Subversion repositories (see Chapter 8).

1.4.4 Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier

installation procedures. Simply download the installer exe file from the Google Code

page, and run it:

http://code.google.com/p/msysgit

After it’s installed, you have both a command-line version (including an SSH client

that will come in handy later) and the standard GUI.

9

PRO GIT SCOTT CHACON

1.5 First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize

your Git environment. You should have to do these things only once; they’ll stick

around between upgrades. You can also change them at any time by running through

the commands again.

Git comes with a tool called git config that lets you get and set configuration vari-

ables that control all aspects of how Git looks and operates. These variables can be

stored in three different places:

• /etc/gitconfig file: Contains values for every user on the system and all their

repositories. If you pass the option--system to git config , it reads and writes

from this file specifically.

• /.gitconfig file: Specific to your user. You can make Git read and write to this

file specifically by passing the --global option.

• config file in the git directory (that is, .git/config) of whatever repository you’re

currently using: Specific to that single repository. Each level overrides values in

the previous level, so values in .git/config trump those in /etc/gitconfig .

OnWindows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Documents

and Settings\$USER for most people). It also still looks for /etc/gitconfig, although it’s

relative to the MSys root, which is wherever you decide to install Git on your Windows

system when you run the installer.

1.5.1 Your Identity

The first thing you should do when you install Git is to set your user name and e-mail

address. This is important because every Git commit uses this information, and it’s

immutably baked into the commits you pass around:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then

Git will always use that information for anything you do on that system. If you want to

override this with a different name or e-mail address for specific projects, you can run

the command without the --global option when you’re in that project.

1.5.2 Your Editor

Now that your identity is set up, you can configure the default text editor that will be

used when Git needs you to type in a message. By default, Git uses your system’s

default editor, which is generally Vi or Vim. If you want to use a different text editor,

such as Emacs, you can do the following:

$ git config --global core.editor emacs

10

CHAPTER 1 GETTING STARTED

1.5.3 Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve

merge conflicts. Say you want to use vimdiff:

$ git config --global merge.tool vimdiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and

opendiff as valid merge tools. You can also set up a custom tool; see Chapter 7 for

more information about doing that.

1.5.4 Checking Your Settings

If you want to check your settings, you can use the git config --list command to

list all the settings Git can find at that point:

$ git config --list

user.name=Scott Chacon

user.email=schacon@gmail.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

You may see keys more than once, because Git reads the same key from different

files (/etc/gitconfig and /.gitconfig , for example). In this case, Git uses the last

value for each unique key it sees.

You can also check what Git thinks a specific key’s value is by typing git config

key:

$ git config user.name

Scott Chacon

1.6 Getting Help

If you ever need help while using Git, there are three ways to get the manual page

(manpage) help for any of the Git commands:

$ git help <verb>

$ git <verb> --help

$ man git-<verb>

For example, you can get the manpage help for the config command by running

$ git help config

These commands are nice because you can access them anywhere, even offline. If

the manpages and this book aren’t enough and you need in-person help, you can try the

#git or #github channel on the Freenode IRC server (irc.freenode.net). These channels

are regularly filled with hundreds of people who are all very knowledgeable about Git

and are often willing to help.

11

PRO GIT SCOTT CHACON

1.7 Summary

You should have a basic understanding of what Git is and how it’s different from the

CVCS you may have been using. You should also now have a working version of Git

on your system that’s set up with your personal identity. It’s now time to learn some

Git basics.

12

Chapter 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers

every basic command you need to do the vast majority of the things you’ll eventually

spend your time doing with Git. By the end of the chapter, you should be able to

configure and initialize a repository, begin and stop tracking files, and stage and commit

changes. We’ll also show you how to set up Git to ignore certain files and file patterns,

how to undo mistakes quickly and easily, how to browse the history of your project and

view changes between commits, and how to push and pull from remote repositories.

2.1 Getting a Git Repository

You can get a Git project using two main approaches. The first takes an existing project

or directory and imports it into Git. The second clones an existing Git repository from

another server.

2.1.1 Initializing a Repository in an Existing Directory

If you’re starting to track an existing project in Git, you need to go to the project’s

directory and type

$ git init

This creates a new subdirectory named .git that contains all of your necessary repos-

itory files — a Git repository skeleton. At this point, nothing in your project is tracked

yet. (See Chapter 9 for more information about exactly what files are contained in the

.git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty direc-

tory), you should probably begin tracking those files and do an initial commit. You can

accomplish that with a few git add commands that specify the files you want to track,

followed by a commit:

$ git add *.c

$ git add README

$ git commit m ’initial project version’

We’ll go over what these commands do in just a minute. At this point, you have a

Git repository with tracked files and an initial commit.

13

	test
	teeest
	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	test
	teest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	test
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	test
	teest
	teeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest

	teest
	teest
	teeeeeeeeeeest

	test
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	test
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	test
	teeeeeeeeeeest

	teest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teest
	teeest
	teeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	test
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teest
	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeest
	teeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	test
	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	test
	teest
	teeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	test
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	test
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	test
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	test
	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	test
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	test
	test
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	test
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeeeest

	test
	teeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teest
	teest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest

	teest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest

	teest
	teeeeeeeeeest

	teest
	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeest

	teest
	teeeest
	teeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest

	teeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest

	teest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest

	teeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest

	teeest
	teeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

	teeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest
	teeeeeeeeeeeeeeest

