Theform XObject specified by the \mathbf{O}
far planes, respectively. A value of ANF are determined automatically based on

The Subtype entry specifies thetypeof are projected onto the near plane and sc graphic projection and \mathbf{P} for perspective \boldsymbol{F}

For orthographic projection, objects are discarding their z value They arescaled system to those of the annotation'starge tors specified by the $\mathbf{O S}$ entry and the \mathbf{O}

For perspective projection, a given coor plane, defininga2D coordinate $\left(x_{1}, y_{1}\right)$

$$
\begin{aligned}
x_{1} & =x \times \frac{n}{z} \\
y_{1} & =y \times \frac{n}{z}
\end{aligned}
$$

where n is the z coordinate of thenear p
Scaling with perspective projection is projection. The FOV entry specifies an the z axis in the camera coordinate sys with the near plane, forming a circular this circleand graphics from the positio
pr CS means that the near and far planes heobjects in theartwork.
rojection, which determines how objects iled. The possible values are \mathbf{O} for orthoojection.
projected onto the near plane by simply from units of thenear planes coordinate coordinatesystem by the combined facentry.
linate (x, y, z) is projected onto the near sing the following formulas:

FIGURE 9.5 Perspective projection of $3 D$ artwork onto the near plane

PLATE 3 Lab color space ("Lab Color Spaces," page 250)

PLATE 4 Color gamuts ("Lab Color Spaces," page 250)

PLATE 12 Radial shadings depicting a sphere ("Type 3 (Radial) Shadings," page 313)

PLATE 13 Radial shadings with extension ("Type 3 (Radial) Shadings," page 313)

PLATE 14 Radial shading effect ("Type 3 (Radial) Shadings," page 313)

PLATE 16 Transparency groups (Section 7.1, "Overview of Transparency," page 515)

PLATE 17 Isolated and knockout groups (Sections 7.3.4, "Isolated Groups," page 539 and 7.3.5, "Knockout Groups," page 540)

