

Simple Network Management Protocol

Chris Francois
CS 417d Fall 1998
cfrancois@acm.org

What is Network Management?

Basic tasks that fall under this category are:

Configuration Management

Keeping track of device settings and how they function

Fault Management

 Dealing with problems and emergencies in the network (router stops routing, server loses power, etc.)

Performance Management

- •How smoothly is the network running?
- •Can it handle the workload it currently has?

Network Management must be...

The management interface must be...

- Standardized
- Extendible
- Portable

The management mechanism must be...

- Inexpensive
- Implemented as software only

Functional Areas of Network Management

Configuration Management - inventory, configuration, provisioning

Fault Management - reactive and proactive network fault management

Performance Management - # of packets dropped, timeouts, collisions, CRC errors

Security Management - SNMP doesn t provide much here

Accounting Management - cost management and chargeback assessment

Asset Management - statistics of equipment, facility, and administration personnel

Planning Management - analysis of trends to help justify a network upgrade or bandwidth increase

SNMP & Network Management History

- 1983 TCP/IP replaces ARPANET at U.S. Dept. of Defense, effective birth of Internet
- First model for net management **HEMS** High-Level Entity Management System (*RFCs* 1021,1022,1024,1076)
- 1987 ISO OSI proposes CMIP Common Management Information Protocol, and CMOT (CMIP over TCP) for the actual network management protocol for use on the internet
- Nov. 1987 SGMP Simple Gateway Monitoring protocol (RFC 1028)
- 1989 Marshall T. Rose heads up SNMP working group to create a common network management framework to be used by both SGMP and CMOT to allow for transition to CMOT
- Aug. 1989 Internet-standard Network Management Framework "defined (RFCs 1065, 1066, 1067)
- Apr. 1989 SNMP promoted to recommended status as the de facto TCP/IP network management framework (RFC 1098)
- June 1989 IAB committee decides to let SNMP and CMOT develop separately
- May 1990 IAB promotes SNMP to a standard protocol with a recommended status (RFC 1157)
- Mar. 1991 format of MIBs and traps defined (RFCs 1212, 1215)
- TCP/IP MIB definition revised to create SNMPv1 (RFC 1213)

Versions

- Two major versions SNMPv1, SNMPv2
- SNMPv1 is the recommended standard
- •SNMPv2 has become split into:
 - •SNMPv2u SNMPv2 with user-based security
 - •SNMPv2* SNMPv2 with user-based security and additional features
 - •SNMPv2c SNMPv2 without security

What is SNMP?

- SNMP is a tool (protocol) that allows for remote and local management of items on the network including servers, workstations, routers, switches and other managed devices.
- Comprised of agents and managers
 - •Agent process running on each managed node collecting information about the device it is running on.
 - •Manager process running on a management workstation that requests information about devices on the network.

Advantages of using SNMP

- Standardized
- universally supported
- extendible
- portable
- allows distributed management access
- lightweight protocol

Client Pull & Server Push

• SNMP is a 'client pull "model

The management system (client) 'pulls 'data from the agent (server).

• SNMP is a 'server push "model

The agent (server) 'pushes "out a trap message to a (client) management system

SNMP & The OSI Model

7	Application Layer	Management and Agent APIs	
Ш		SNMP	
6	Presentation Layer	ASN.1 and BER	
5	Session Layer	RPC and NetBIOS	
4	Transport Layer	TCP and UDP	
3	Network Layer	IP and IPX	
2	Data Link Layer	Ethernet, Token Ring, FDDI	
1	Physical Layer		

Ports & UDP

•SNMP uses User Datagram Protocol (UDP) as the transport mechanism for SNMP messages

•Like FTP, SNMP uses two well-known ports to operate:

•UDP Port 161 - SNMP Messages

•UDP Port 162 - SNMP Trap Messages

The Three Parts of SNMP

SNMP network management is based on three parts:

SNMP Protocol

- •Defines format of messages exchanged by management systems and agents.
- Specifies the Get, GetNext, Set, and Trap operations

Structure of Management Information (SMI)

•Rules specifying the format used to define objects managed on the network that the SNMP protocol accesses

Management Information Base (MIB)

 A map of the hierarchical order of all managed objects and how they are accessed

Nodes

Items in an SNMP Network are called nodes. There are different types of nodes.

Managed nodes

Typically runs an agent process that services requests from a management node

Management nodes

Typically a workstation running some network management & monitoring software

Nodes that are not manageable by SNMP

A node may not support SNMP, but may be manageable by SNMP through a proxy agent running on another machine

Nodes can be both managed nodes and a management node at the same time (typically this is the case, since you want to be able to manage the workstation that your management application is running on.)

Community Names

Community names are used to define where an SNMP message is destined for.

They mirror the same concept as a Windows NT or Unix domain.

- Set up your agents to belong to certain communities.
- •Set up your management applications to monitor and receive traps from certain community names.

SIMP Agents

Two basic designs of agents

Extendible Agents

 Open, modular design allows for adaptations to new management data and operational requirements

Monolithic Agents

- not extendible
- optimized for specific hardware platform and OS
- •this optimization results in less overhead (memory and system resources) and quicker execution

Proxy & Gateway Agents

Proxy & Gateway Agents extend the capabilities of SNMP by allowing it to:

- •Manage a device that cannot support an SNMP agent
- Manage a device that supports a non-SNMP management agent
- •Allow a non-SNMP management system to access an SNMP agent
- Provide firewall-type security to other SNMP agents (UDP packet filtering)
- Translate between different formats of SNMP messages (v1 and v2)
- •Consolidate multiple managed nodes into a single network address (also to provide a single trap destination)

Four Basic Operations

•Get

Retrieves the value of a MIB variable stored on the agent machine (integer, string, or address of another MIB variable)

•GetNext

Retrieves the next value of the next lexical MIB variable

Set

Changes the value of a MIB variable

Trap

An unsolicited notification sent by an agent to a management application (typically a notification of something unexpected, like an error)

Traps

- Traps are unrequested event reports that are sent to a management system by an SNMP agent process
- •When a trappable event occurs, a trap message is generated by the agent and is sent to a trap destination (a specific, configured network address)
- •Many events can be configured to signal a trap, like a network cable fault, failing NIC or Hard Drive, a 'General Protection Fault', or a power supply failure
- Traps can also be throttled -- You can limit the number of traps sent per second from the agent
- •Traps have a priority associated with them -- Critical, Major, Minor, Warning, Marginal, Informational, Normal, Unknown

Trap Receivers

- •Traps are received by a management application.
- •Management applications can handle the trap in a few ways:
 - •Poll the agent that sent the trap for more information about the event, and the status of the rest of the machine.
 - Log the reception of the trap.
 - Completely ignore the trap.
- •Management applications can be set up to send off an e-mail, call a voice mail and leave a message, or send an alphanumeric page to the network administrator spager that says:

Your PDC just Blue-Screened at 03:46AM. Have a nice day. :)

Languages of SNMP

Structure of Management Information (SMI)

specifies the format used for defining managed objects that are accessed via the SNMP protocol

Abstract Syntax Notation One (ASN.1)

used to define the format of SNMP messages and managed objects (MIB modules) using an unambiguous data description format

Basic Encoding Rules (BER)

used to encode the SNMP messages into a format suitable for transmission across a network

SMIV1

Structure of Management Information

SMIv1 is described in RFCs 1155, 1212, 1215

These RFCs describe:

- •How MIB modules are defined with CCITT X.208 ASN.1 data description language
- •The subset of the ASN.1 language that is used in MIBs
- •The addition of the APPLICATION data type to ASN.1, specifically for use with SNMP MIBs
- •All ASN.1 constructs are serialized using the CCITT X.209 BER for transmission across the wire
- •definition of the high-level structure of the Internet branch (iso(1).org(3).dod(6).internet(1)) of the MIB naming tree
- •the definition and description of an SNMP managed object

SMIV2

Structure of Management Information

SMIv2 is described in RFCs 1442, 1443, 1444

These RFCs describe:

- •SMIv2 is a backward compatible update to SMIv1
- •The only exception is the Counter64 type defined by SMIv2
- Counter64 cannot be created in SMIv2
- •RFC 2089 defines how bilingual (SMIv1 & SMIv2) agents handle the Counter64 data type
- •IETF requires that new and revised RFCs specify MIB modules using SMIv2

ASN.1

Abstract Syntax Notation One

ASN.1 is nothing more than a language definition. It is similar to C/C++ and other programming languages.

Syntax examples:

```
-- two dashes is a comment -- The C equivalent is written in the comment

MostSevereAlarm ::= INTEGER -- typedef MostSevereAlarm int;

circuitAlarms MostSevereAlarm ::= 3 -- MostSevereAlarm circuitAlarms = 3;

MostSevereAlarm ::= INTEGER (1..5) -- specify a valid range

ErrorCounts ::= SEQUENCE {

circuitID OCTET STRING,

erroredSeconds INTEGER,

unavailableSeconds INTEGER

} -- data structures are defined using the SEQUENCE keyword
```

Basic Encoding Rules

The relationship between ASN.1 and BER parallels that of source code and machine code.

CCITT X.209 specifies the Basic Encoding Rules

All SNMP messages are converted / serialized from ASN.1 notation into smaller, binary data (BER)

SNMP Data Types

- •INTEGER -- signed 32-bit integer
- •OCTET STRING
- •OBJECT IDENTIFIER (OID)
- •NULL -- not actually data type, but data value
- •lpAddress -- OCTET STRING of size 4, in network byte order (B.E.)
- Counter -- unsigned 32-bit integer (rolls over)
- Gauge -- unsigned 32-bit integer (will top out and stay there)
- TimeTicks -- unsigned 32-bit integer (rolls over after 497 days)
- Opaque -- used to create new data types not in SNMPv1
- •DateAndTime, DisplayString, MacAddress, PhysAddress, TimeInterval, TimeStamp, TruthValue, VariablePointer -- textual conventions used as types

Yellow items defined by ASN.1

Orange items defined by RFC 1155

Managed 'Objects "& MIBs

Always defined and referenced within the context of a MIB

A typical MIB variable definition:

```
sysContact OBJECT-TYPE -- OBJECT-TYPE is a macro
```

SYNTAX DisplayString (SIZE (0..255))

ACCESS read-write

STATUS mandatory

andatory -- or optional, deprecated, obsolete

-- or read-write, write-only, not-accessible

DESCRIPTION

Chris Francois
cfrancois@acm.org

(360)650-0000 "

::= { system 4 }

Basic Message Format

Message Length

Message Version

Community String

PDU Header

PDU Body

Message Preamble

SNMP Protocol Data Unit

SNMP Message Formats

Message Length

Message Version

Community String

PDU Type

PDU Length

Request ID

Error Status

Error Index

Length of Variable Bindings

Length of First Binding

OID of First Binding

Type of First Binding

Value of First Binding

Length of Second Binding

OID of Second Binding

Type of Second Binding

Value of Second Binding

Additional Variable Bindings

SNMP Message Preamble

PDU (Header

> PDU Body

Message Length

Message Version

Community String

PDU Type

PDU Length

Enterprises MIB OID

Agent IP Address

Standard Trap Type

Specific Trap Type

Time Stamp

Length of Variable Bindings

Length of First Binding

OID of First Binding

Type of First Binding

Value of First Binding

Length of Second Binding

OID of Second Binding

Type of Second Binding

Value of Second Binding

Additional Variable Bindings

Commercial SNMP Applications

Here are some of the various SNMP Management products available today:

- •http://www.hp.com/go/openview/
- •http://www.tivoli.com/
- •http://www.novell.com/products/managewise/
- •http://www.sun.com/solstice/
- •http://www.microsoft.com/smsmgmt/
- •http://www.compaq.com/products/servers/management/
- •http://www.redpt.com/
- •http://www.empiretech.com/
- •ftp://ftp.cinco.com/users/cinco/demo/
- •http://www.netinst.com/html/snmp.html
- •http://www.netinst.com/html/Observer.html
- •http://www.gordian.com/products_technologies/snmp.html
- •http://www.castlerock.com/
- •http://www.adventnet.com/
- •http://www.smplsft.com/

HP OpenView

IBM NetView

Novell ManageWise

Sun MicroSystems Solstice

Microsoft SMS Server

Compaq Insight Manger

SnmpQL - ODBC Compliant

Empire Technologies

Cinco Networks NetXray

SNMP Collector (Win9X/NT)

Observer

Gordian & SNMP Agent

Castle Rock Computing

Advent Network Management

SimpleAgent, SimpleTester

SNMP & Windows NT 5.0

Proposed features of the Windows NT5 SNMP Service

- •Full bilingual support for SNMPv1 and SNMPv2c
- ability to map SNMPv2c requests to SNMPv1 for processing by extension agents
- better synchronization of MIB variables
- •a new extension agent framework (backward compatible with original framework, but with MS add-ons)
- code-generator for creation of extension agents
- •MIB-II, LAN Manager 2, IP Forwarding MIB (RFC 1354), and Host Resources MIB (RFC 1514) extension agents included
- •All MIB modules included with SNMP install
- •SMS 2.0 also has a Symantec PCAnywhere type of application integrated into it, allowing 'femote-but-local 'management as well

SNMP RFC \$

RFC	Description	Published	Current Status
	\$M\v1	Aug-88	Obsoleted by 1155
1088	SNMPv1 MIB	Aug-88	Obsoleted by 1156
1067	SNIMPv1	Aug-88	Obsoleted by 1098
1098	SNIMPv1	Apr-89	Obsoleted by 1157
1155	SMIv1	Mary-90	Standard
1156	SNIMPV1 MIB	Mary-90	Historic
1157	SNIMPv1	May-90	Standard
1158	SNIMPV1 MIB-II	Mary-90	Obsoleted by 1213
1212	SNMPv1 MIB definitions	Mar-91	Standard
1213	Sinimpy1 MIB-11	Mar-91	Standard
1215	SINIMPv1 traps	Mar-91	Informational
1351	Secure SNMP administrative model	Jul-92	Proposed Standard
1352	Secure SNMP managed objects	Jul-92	Proposed Standard
1353	Secure SNMP security protocols	Jul-92	Proposed Standard
1441	Introduction to SNMPv2	Apr-93	Proposed Standard
1442	SM1v2	Apr-93	Obsoleted by 1902
1443	Textual conventions for SNMPv2	Apr-93	Obsoleted by 1903
नुक्कि	Conformance statements for SNMPv2	Apr-93	Obsoleted by 1904
1445	SNMPv2 administrative model	Apr-93	Historic
	SNIMPv2 security protocols	Apr-93	Historic
	SNMPv2 party MIB	Apr-93	Historic
	SNIMPv2 protocol operations	Apr-93	Obsoleted by 1905
	SNIMPv2 transport mapping	Apr-93	Obsoleted by 1906
1450	SNMPv2 MIB	&9-7qA	Obsoleted by 1907
	Manger-to-manger MIB	Apr-93	Historic
	Coexistence of SNMPv1 and SNMPv2	Apr-93	Obsoleted by 1908
	Community-Based SNMPv2	Jan-96	Experimental
	\$M\v2	Jan-96	Draft Standard
	Textual conventions for SINMPv2	Jan-96	Draft Standard
	Conformance statements for SNMPv2	Jan-96	Draft Standard
	Protocol operations for SNMPv2	Jan-96	Draft Standard
	Transport mapping for SNMPv2	Jan-96	Draft Standard
	SNIMPV2 MIB	Jan-96	Draft Standard
	Coexistence of SNMPv1 and SNMPv2	Jan-96	Draft Standard
	Administrative infrastructure for SNMPv2	F e b-96	Experimental
1910	User-based security for SNIMPv2	Feb-96	Experimental