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More than half of the flowering plants have a sophisti-
cated mechanism for self-pollen rejection, named self-
incompatibility (SI). In Brassicaceae, recognition speci-
ficity is achieved by the interaction of the stigmatic S-
RECEPTOR KINASE (SRK) and its ligand S-LOCUS
CYSTEINE-RICH PROTEIN (SCR). Recent years have seen
significant advances in understanding the SI response.
Progress has been made on elucidating the regulation
and function of proteins that act as either molecular
partners of SRK or modulators of SI. Thus, modules
controlling the specificity of the central receptor–ligand
interaction have been identified on both SRK and SCR
proteins. A role for intracellular protein trafficking in SI
has also been demonstrated. Here, we integrate the
novel findings into the existing model to present the
current understanding of SI signaling.

The freedom of choice: distinguishing the right mating
partner
In order to prevent inbreeding, plants have developed a
variety of mechanisms to avoid self-pollination. If never-
theless, a self-pollen grain successfully lands on the
stigmatic surface, it faces a stringent ‘genetic checkup’
before a decision is taken whether or not it can proceed
to fertilization. This barrier is known as genetic self-incom-
patibility (SI) and differs in its mechanism depending on
the plant family. In the Brassicaceae, the specificity of self-
pollen recognition is achieved by the interaction of the
plant receptor kinase SRK expressed on the stigmatic
plasma membrane (PM) with its ligand SCR (known also
as S-LOCUS PROTEIN 11, SP11) carried by the pollen.
Both proteins are encoded by the same highly polymorphic
locus, the S-locus, and SI response is initiated only upon
interaction between the receptor and its cognate ligand
[1–6].

Traditionally, the model for SI research within the
family has been the genusBrassica, with progress achieved
also using Arabidopsis lyrata an outcrossing close relative
of the self-fertile Arabidopsis thaliana. Since it was shown
that SI can be successfully reintroduced into A. thaliana
[7,8], this plant has become a favored model to study SI,
due to the sequenced genome, availability of large mutant
collections and its short life cycle. Even though A. thaliana
has lost its SI, several accessions still possess functional
SRK proteins [9].

Although SRK and SCR are the key components in the
SI response, the process of pollen rejection requires a
plethora of additional factors. These include among others:
(i) the E3 ubiquitin ligase ARM-REPEAT CONTAINING1
(ARC1), an SRK-interacting protein and positive regulator
of SI response [10,11]; (ii) the M-LOCUS PROTEIN
KINASE (MLPK), also a positive regulator of SI [12];
and (iii) the SRK inhibitor and negative regulator of SI
response THIOREDOXIN H-LIKE1 (THL1) [13–15]. The
functions of other SRK interactors, such as the KINASE-
ASSOCIATED PROTEIN PHOSPHATASE (KAPP), cal-
modulin and SORTING NEXIN1 (SNX1) in SI remain
poorly characterized [16]. Interestingly, the restoration
of SI in A. thaliana by the introduction of the A. lyrata
S-locus genes shows that most of those factors are under
evolutionary pressure as they have conserved their func-
tion in the self-fertile A. thaliana background. Therefore,
SI utilizes the general intracellular signaling machinery,
just adding SRK and SCR as the recognition module
defining specificity for SI signaling.

Significant progress has been made in understanding
the biogenesis and signaling of SRK, as well as the regu-
latory action of its molecular partners. In this review, we
summarize the recent achievements by following the mol-
ecular events that underlie SI in Brassicaceae.

Setting up the system: biosynthesis and targeting of
the SI components
The SI response system of Brassicaceae is established one
or two days before flower opening. Self-pollinations before
that are possible, which is an advantage for maintaining
homozygous plants for research purposes.

SCR genes encode small polymorphic polypeptides con-
taining a putative conserved secretion signal. This
suggests that SCR is processed via the secretory pathway
[17]. In most S-alleles it is expressed post-meiotically in
both microspore and the tapetal cells of the anther [3,18].
However, in some S-alleles, it is only expressed in the
tapetum, suggesting that sporophytic expression is
enough to trigger SI response. Interestingly, for these
alleles, SCR tapetal expression is greatly suppressed in
certain allelic combinations [19]. This downregulation
was linked to promoter methylation during the early
stages of anther development before the initiation of
SCR expression [20]. At maturity, before the degradation
of the tapetum, SCR is located on the pollen grain surface
[3,21].
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Figure 1. Molecular events in the papilla cell underlying Brassicaceae SI: a putative model. (a) Events in an unpollinated stigma papilla cell. SRK gene encoding the S-
receptor kinase is transcribed at the onset of pollination [23,24]. High levels of SRK mRNA are required in these early stages and are, at least in part, ensured by the U-box
protein PUB8 [27]. SRK protein passes through the secretory system to reach the endosomes and the PM. In the endosomes, it interacts with the thioredoxin THL1, which
prevents the nonspecific autoactivation of the overaccumulated SRK. At the PM, SRK is distributed in zones, designated ‘SI domains’ (in green), and exists as both
monomer (not depicted) and homodimer, the homodimer being a prerequisite for ligand binding [34]. The protein kinase MLPK is N-terminally anchored at the PM but
probably does not interact with SRK. The E3 ubiquitin ligase ARC1 is located in the cytosol and is inactive [38]. Exo70A1 travels through the Golgi apparatus to the PM,
where it is distributed in zones, similarly to SRK [39]. (b) Events in the stigma papilla cell following pollination (a simultaneous self- and cross-pollination event is depicted).
Upon self-pollination, SRK recognizes its cognate ligand (blue circles) that has passed through the cell wall, and binds it. This causes SRK phosphorylation [14] and the
recruitment of MLPK and ARC1 to the complex. MLPK is phosphorylated by SRK [43] and, together with SRK, phosphorylates ARC1 [45]. Thus activated, the complex is able
to spread the signal to neighboring SRK molecules; however, this chain reaction is contained within the same SI domain (in red) leaving the rest of the PM-located SRK
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The expression of SRK initiates in young flower buds,
peakingwhen they reachmaturity [22–24], and is specific to
stigmas [25]. SRK promoters can mediate a similar expres-
sion pattern even when introduced in tobacco (Nicotiana
tabacum) [23].Partof theSRKgene is transcribedalso in the
antisense direction, although the significance of these anti-
sense transcripts remains unknown [26]. The use of a trans-
genic self-incompatible A. thaliana line revealed that SRK
expression is regulated by the PLANT U-BOX8 (PUB8),
which is required for maintenance of sufficient SRKmRNA
levels and manifestation of SI response [27]. PUB8 is
strongly expressed in stigmas, but is also present in other
tissues, suggesting amore general function. PUB8 contains
ARMADILLO(ARM)-repeats and a U-box, but the way it
regulatesSRKmRNAavailability is not clear. Additionally,
inactivation of theRNA-dependentRNApolymerase RDR6,
which functions in the production of trans-acting short
interfering RNA (ta-siRNA), causes slight inhibition of
SRK expression. This effect is probably indirect because it
is accompanied by enhanced SI response [28] and might be
connected to the epigenetic silencing of SRK in tetraploid
Brassica plants [29].

SRK mRNA undergoes alternative splicing resulting in
a number ofmostly uncharacterized transcripts [1,25]. One
of these, comprising the first exon, encodes the full extra-
cellular domain of SRK, named eSRK (a glycosylated
protein comprising the extracellular domain of SRK. The
abbreviation is also used to designate the extracellular
domain of the full-length SRK in certain studies). Exist-
ence of eSRK has been demonstrated experimentally
[30,31]. It exists in different glycosylation forms and
appears even when the full-length A. lyrata SRK gene is
expressed in A. thaliana [32]. A membrane-bound form of
eSRK, named tSRK, has also been found [30] and more
recently been shown to have high affinity towards the
ligand SCR [5,21,31]. tSRK contains the extracellular
portion of the receptor, the transmembrane domain and
heterogeneous C-terminus, which mostly terminates
before the end of the juxtamembrane domain. Presence
of tSRK was detected even if SRK cDNA was expressed in
tobacco BY2 cells, which led to the conclusion that it is a
product of a post-translational modification, rather than
alternative splicing [31].

SRK is predicted to be synthesized in the endoplasmic
reticulum (ER), because the protein contains a signal pep-
tide [1], is glycosylated [30], and showsmanifestation at the
PM [23,33–36]. Immunohistochemical studies have indeed
demonstrated ER localization, as well as presence in the
Golgi and trans-Golgi network? [34], which mark the most
probableway of SRK trafficking in the cell. Ultimately, SRK
reaches the endosomes and the PM [23,33–36]. Electron
microscopy immunolocalization shows that SRK is also
present in small vesicles in close proximity to the PM. This

suggests a continuous SRK traffic between the PM and the
endosomes. In the endosomes, the receptor is very abundant
and colocalizeswith its inhibitorTHIOREDOXINH-LIKE1
(THL1) [34]. Overexpression of SRK leads to nonspecific
autoactivation [37], which explains why the highly concen-
trated endosomal SRK needs to be inhibited.

Only small amounts of SRK are present at the PMwhich
are distributed in zones, or ‘SI Domains’ [36], resulting in
areas of the membrane lacking the receptor [34]. This
phenomenon was also observed when expressing SRK in
a heterologous system [37]. Contrary to expectations, no
THL1 was detected at the PM [34], implying that here the
receptor is in an uninhibited ready-to-be-activated state.
However this speculation has to be treated with caution
because other factors might inhibit SRK at the PM instead.

The M-locus Protein Kinase (MLPK) is essential for the
manifestation of the SI response. Plants lackingMLPK are
incapable of rejecting self-pollen [12]. It is expressed as two
types of transcripts, Mlpkf1 and Mlpkf2, differing in the
transcription initiation site and their tissue specificity.
None of the two forms is strictly stigma-specific, suggesting
additional roles unrelated to SI. The difference in mRNA is
reflected in the N-termini of the translated proteins. In
spite of this difference, both isoforms complement MPLK-
deficient plants. Both isoforms are targeted and anchored
to the cytoplasmic face of the PM by their N-termini,
despite using different membrane association mechan-
isms. MLPKf1 undergoes myristoylation at Gly2, a
Gly2Ala mutation completely abolishing myristoylation
and PM localization in BY2 protoplasts. By contrast,
Gly2 of MLPKf2 is not myristoylated and the protein
associates with PM using an N-terminal hydrophobic
region [35].

ARM-REPEAT CONTAINING 1 (ARC1) is an E3 ubi-
quitin ligase, which was identified as a SRK interactor in a
yeast two-hybrid screen. The interaction is mediated by its
C-terminal ARM-repeats and is specific to the phosphory-
lated kinase domain of SRK. Expression ofARC1 is stigma-
specific and is induced together with SRK [10]. Down-
regulation of ARC1 impairs SI response and therefore
ARC1 is considered a positive regulator [11]. Its ubiquiti-
nation activity during self-pollen rejection has been
demonstrated [38] but so far it is unclear whether SRK
is a substrate of ARC1. Localization experiments in tobacco
BY2 cells have shown that in the absence of active SRK,
ARC1 is predominantly cytoplasmic although part of ARC1
migrates to the nucleus. This dual localization, whose
significance is so far poorly understood, is a result of active
nuclear import and export [38].

Recently, Exo70A1, a member of the exocyst complex,
was identified as an ARC1 interactor, and is necessary in
the stigma for accepting compatible pollen [39]. Similarly
to the yeast and animal homologues, the plant Exo70A1

inactive (domains in green) and free for further decision events. Exo70A1 is probably removed from the SI domain by ARC1-mediated ubiquitination and proteasome
relocalization. The phosphorylated ARC1 and MLPK dissociate from the complex. ARC1 travels to the proteasome/COP9 signalosome (marked ‘PS/CSN’, in gray) [38,39].
MLPK can also be found in the PS/CSN [39]. SRK is endocytosed to the endosomes, where it may remain active before being sent for degradation. New receptors are
synthesized from the available mRNA pool (not depicted) [34]. The actin filaments (gray lines) are partially depolymerized [48]. All this ensures targeted pollen rejection
allowing a compatible pollen grain to be accepted by the same papilla cell at the same time. Upon compatible pollination, SRK is not activated by the non-cognate SCR (blue
squares). Exo70A1 targets so far unidentified components to the PM for post-pollination events such as pollen hydration (not depicted). This is followed by disappearance
of the protein from the PM [39]. Prominent actin filaments are formed (gray lines) focusing on the contact site, many vesicular structures are transported in this direction
and the central vacuole is elongated towards the accepted pollen [48]. With the exception of SRK and SCR and proteasome structures, proteins that are known to positively
regulate SI response are depicted with green borders, whereas known negative regulators have red borders.
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whose expression is not stigma-specific, may be involved in
the polarized secretion of vesicles to the PM [40]. RFP-
fusions of the protein show Golgi localization in immature
stigmas and later traffic to the PM at anthesis [39].

The papilla PM at the onset of pollination: the SRK
complex
At the time of flower opening, the papilla cell has a full set
of correctly distributed factors enabling it to respond ade-
quately to pollination attempts.

A subset of the full-length SRK molecules form homo-
dimers (Figure 1a). The process happens spontaneously
and is not caused by the ligand [31,37]. On the contrary, it
seems that the dimerization is a prerequisite to ligand-
binding, as the extracellular domain of SRK can bind its
cognate SCR only as a dimer but not in monomeric form
[31]. Receptor dimerization occurs through the extracellu-
lar part of SRK and involves the PAN_APPLE domain and
to a lesser extent the epidermal growth factor (EGF)-like
domain [41] (see Figure 2). Because this interaction
analysis was done using the yeast two-hybrid system, it
can be noted that SRK dimerization is dependent only on
the protein backbone and there is no requirement for
glycosylation. Importantly, heterodimerization of SRK
molecules from different S-haplotypes seems possible,
but interactions are weak and the dimers would be
unstable [41]. It is possible that these interactions contrib-
ute to the known phenomena of dominance, codominance
and mutual weakening,because in nature plants are
usually heterozygous for the S-locus [42].

MLPK was shown to interact with SRK in BY2 proto-
plasts in the absence of SCR suggesting that it is a com-
ponent of the inactive receptor complex [35]. However,
when overexpressed in a heterologous system, SRK tends
to be autoactivated [37,38] and experimental data suggests
that the SRK–MLPK interaction is only transient [35,43].
Therefore, the question of whether MLPK binds activated
or inactive SRK remains open.

While present at the PM, there is no evidence at this
time that Exo70A1 interacts with any of the other com-
ponents.

Rendezvous: SRK–SCR interaction at the plasma
membrane
Upon pollination, SCR travels from the pollen coat through
the papilla cell wall but only with the help of as yet
unidentified pollen coat proteins [21].

The receptor–ligand interaction happens at the PM of
the papilla cell. In an in vitro study, the binding of SCRwas
mapped to the two hypervariable regions within the Lec-
tin-like 2 domain of SRK [44] (Figure 2). These regions
were additionally shown to be responsible for the ligand-
selective activation of SI response in vivo, and were
suggested to form a three-dimensional SCR-binding pocket
[32]. Surprisingly, in a recent study, interaction was found
between non-cognate receptor–ligand couples [44],
confirming the earlier demonstration that ligand-binding
does not necessarily cause the activation of SRK [41]. Thus,
activation of the SI response is based on two phenomena:
physical interaction between SRK and SCR, and activation
of the SRK kinase domain. Interestingly, SRK activation
can be induced by a monoclonal antibody designed against
the N-terminus of SRK3, which can functionally substitute
the natural ligand [14,34].

The outcome of the encounter between the receptor and
the ligand is crucial for the pollen grain. If no signal is
transmitted, the pollen will hydrate, germinate and the
pollen tube will penetrate the papilla cell (see Box 1). If
signaling is initiated, the pollen will be rejected.

A negative decision: activation and fate of the SRK
complex
Following SCR recognition, the signal is relayed across the
PM and after a series of phosphorylation events, an acti-
vated receptor complex is formed that includes SRK,
MLPK and ARC1 (Figure 1b). SRK and MLPK can autop-
hosphorylate in vitro [12,37], and SRK is phosphorylated
specifically after self-pollination in papilla cells [14]. Thus,
within the complex both proteins are probably in a phos-
phorylated state, creating a scaffold for recruitment of
ARC1, which specifically binds the phosphorylated kinase
domain of SRK [10]. An interaction with MLPK is also
suggested by in vitro experiments. Both kinases can phos-
phorylate ARC1 in vitro and, surprisingly, MLPK shows
much higher activity than SRK [45]. This fact shows a
molecular basis for the observed loss of SI response after
inactivation of the MLPK kinase domain [12].

The molecular role of ARC1 in SI is still unclear. It
possesses an E3 ubiquitin ligase activity and upon incom-
patible pollination ubiquitinates multiple targets [38]. A
recent study on the flagellin receptor FLAGELLIN SEN-
SING2 receptor kinase (FLS2) demonstrated that PRKs,
similarly to their animal counterparts, can be targets of
ubiquitination upon signaling [46]. Although it is tempting

Figure 2. Structure of SRK. For the domain structure of the extracellular portion of SRK, we used the classification from the study of Naithani et al. [41]. From left to right the
domains and their functions are as follows: The Lectin-like domain 1 – might have implications in the activation of SRK. A monoclonal antibody raised against the first
several amino acids in the N-terminus of this domain is able to activate SRK in vivo [14,34]. DR – ‘deletable region’. A linker sequence of variable size [41]. Lectin-like domain
2 – together with the EGF-like domain, responsible for binding of SCR [44]. Contains two hypervariable regions that define haplotype specificity [32,58]. EGF-like domain –

has a supporting role in receptor dimerization [41]. PAN_APPLE domain – responsible for homo and heterodimerization of SRK molecules. The extracellular domain of SRK
contains three hypervariable regions (hvI–III) in the Lectin-like 2 and EGF-like domains. The first two define SCR binding [44] and the haplotype specificity of the receptor
[32,58]. The C-terminal variable region (CVR), found within the PAN_APPLE domain determines SRK dimerization affinity [41]. TM – transmembrane domain. JM –

juxtamembrane domain. Its function is not well studied in SRK, but PRKs lacking juxtamembrane domain lose their kinase activity [59]. Kinase domain – has Ser-Thr kinase
activity [22,37]. When phosphorylated, it is responsible for the interaction with ARC1 [10]. C-terminal stretch – no data is available on the function of this region.
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to speculate that SRKmight also be ubiquitinated, this has
not been experimentally demonstrated. Instead, ARC1
was proposed to target and negatively regulate factors
that promote the process opposite to SI – compatible pollen
acceptance [38].

Such a factor may be Exo70A1. It is ubiquitinated by
ARC1 invitroandsent to theproteasome. Its overexpression
leads to partial loss of SI, possibly due toproviding excessive
substrate for ARC1. Exo70A1 has also a critical role for
pollen acceptance during compatible pollination [39] (see
Box1). In this context, initiationofSIwould require removal
of Exo70A1at the PM, thus preventing vesicle secretion and
pollen acceptance. However, additional experiments are
needed to specify the role of Exo70A1 in the SI response;
in particular its trafficking dynamics in a SI plant back-
ground. As Brassica papilla cells are not suitable for live
imaging [39], an SI-restored A. thaliana plant [8] will be
more suitable to address such questions.

A particularity of Brassicaceae SI response is the ability
of the papilla cell to remain receptive to cross-pollen, even
if it is simultaneously self-pollinated [47]. This phenom-
enon provides an advantage for the cross-pollen, which
competes with the self-pollen for cell surface, rather than a
limited number of cells. At the same time, it demands a
strictly localized SI response. This is likely to be ensured by
the unequal distribution of the SI components on the PM.
SRK is known to transphosphorylate rapidly [37] and
activation of the receptor would spread the signal laterally
across the membrane. This chain reaction will continue
until the border of the ‘SI domain’ is reached. Thus, acti-
vation will be contained within the domain underlying the
contact site, ensuring proper SI response, while leaving the
rest of the PM intact for further independent decisions [36]
(Figure 1b).

Following this activation step, the receptor complex
dissociates and its components are internalized following

different pathways. SRK, perhaps together with SCR, is
endocytosed and enters the endosomes where it colocalizes
with THL1. This ligand-induced internalization is an inter-
mediate step before the degradation of the receptor, which
probably occurs in the vacuole [34]. Studies in tobacco
protoplasts suggest that after leaving the active complex,
ARC1 relocalizes to ER-associated proteasome/COP9 sig-
nalosome (PS/CSN) and was proposed to carry ubiquiti-
nated substrates there [38]. Indeed, in the presence of
active SRK, Exo70A1 colocalizes with ARC1 in proteaso-
mal compartments [39]. Surprisingly, when coexpressed,
MLPK can also be found colocalizing with ARC1 in the
perinuclear region, suggesting a stronger connection be-
tween it and ARC1 during SI response than previously
expected [45]. So far, no data are available on the stability
of ARC1, MLPK or Exo70A1 but their relocalization pat-
tern suggests that following successful signaling, all the
known members of the complex, together with SRK, are
destroyed to be replaced by newly synthesized ones.

A result of the incompatible pollination is the partial
depolymerization of the actin cytoskeleton in the region of
pollen contact, which affects the vesicle secretion and the
disruption of the vacuolar system [48].

The ‘No’ factor: SRK and PRK signaling
Receptor signaling has become a central topic in plant
biology. Advances in understanding signaling of the bras-
sinosteroid receptor BRASSINOSTEROID INSENSI-
TIVE1 receptor kinase (BRI1) and the flagellin receptor
FLS2 have underlined the importance of partner proteins
and cellular compartmentalization [49,50]. In both cases,
receptor–ligand interaction happens at the PM and is
followed by the formation of an active complex with the
coreceptor BAK1 (Figure 3). This initiates additional phos-
phorylation events allowing the complex to transmit the
signal to downstream components [50–52]. In the case of
SI, the complex formation at the PM seems to follow a
similar principle, even if utilizing different factors. In order
to initiate SI, the SRK complex requires the presence of
MLPK (Figure 3). Despite being structurally different to
BAK1, MLPK is also not involved in ligand perception but
rather plays a role in complex activation. Even though it
has no extracellular or TM domains, the PM localization of
MLPK is crucial to its function. Mutated proteins with no
PManchoring sequences are not able to complement them-
locus mutation in Brassica [35]. In addition to its function
in phosphorylation, BAK1 has been shown to mediate the
internalization of BRI1 and FLS2 [53,54]. Endocytosis has
emerged in recent years as a major factor in regulation of
plant receptor kinase (PRK) signal transduction. Traffick-
ing of active receptors to the endosomes has traditionally
been regarded as a silencing step. However, the concept of
endosomes as signaling compartments in plant cells has
gained support with studies on BRI1 [49,55].

SRK also undergoes internalization after binding SCR.
So far, an implication of MLPK in this process has not been
addressed. Once in the endosomes, SRK colocalizes with its
inhibitor THL1, which is the basis of the suggestion that
any signaling initiated by SRK is terminated in endo-
somes. This idea is supported by the finding that the
receptor is later degraded [34], and that most of the known

Box 1. Pollen acceptance after compatible pollination

Papilla cells take an active role in pollen acceptance (Figure 1b).
SRK–SCR interaction has no role in compatible pollination, because
plants such as A. thaliana, which lack one or both components, can
accept pollen. The earliest response to cross-pollination is the
disappearance of Exo70A1 from the PM. Mutants lacking this
protein are incapable of pollen acceptance, which suggests that it
carries out its function prior to its removal from the PM [40].
Exo70A1 is a member of the exocyst complex involved in vesicle
tethering during polarized secretion [40,62]. Brassicaceae plants
possess a dry stigmatic surface and the function of the exocyst in
pollen acceptance may be to facilitate targeted exocytosis and
delivery of water to support pollen hydration and germination.
Additionally, enzymes need to be transported to the cell wall in
order to support pollen tube penetration.

Investigation on the actin dynamics showed that cross-pollination
induces bundle formation directed towards the site of pollen contact
[48]. This is followed by the reorganization of the vacuolar structure
[48] and targeted exocytosis [63]. By analogy to other systems [52],
Ca2+ concentration is proposed to regulate actin formation through
the action of actin-binding proteins [48]. As for the Brassicaceae, a
calmodulin was isolated as an interactor of SRK, but its role has not
been investigated in detail.

Ca2+ is essential to pollen germination and growth [64,65] and,
along with water for hydration [66], the papilla cell needs to provide
Ca2+ to the pollen grain. In support of this, Ca2+ accumulation was
observed at the site of compatible pollen contact [67].
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positive SI regulators, perhaps also ARC1 during SI, are
localized at the PM. However, we cannot exclude that SRK
may continue to signal from the endosomes before being
ultimately silenced. Following this concept, SI signaling
would consist of a two-step process: (i) labeling of the PM
underneath the pollen grain followed by endocytosis of the
activated SRK (possibly associated with other com-
ponents); and (ii) recruitment of additional factors at the
endosomes, which are then targeted to the labeled PM.

Shaping the future: perspectives for SI research
Since 2003, many new components involved in SI response
have been identified. Because of the lack of accessible
genetic resourcesmany of them, such as calmodulin, KAPP
and SNX1, despite showing great promise for SRK regu-
lation [16,53,56,57], have remained poorly characterized in
terms of SI. Factors such as PUB8 and Exo70A1 need to be
further investigated to clarify their role. In this respect,
one of the major aims for the near future will be to widen
the use of A. thaliana as a model system to study SI. The
recent discovery that despite the loss of SI, at least four
accessions have retained functional SRK [9] will have
impact not only on the understanding of SI evolution
within Brassicaceae, but will also provide a good tool to
enhance our understanding of SRK and receptor kinase
signaling in plants.

Acknowledgements
This work was supported by the ANR Blanc ENDOSRK and ANR Blanc
RETROMER. We thank three anonymous reviewers for critical reviews of
the manuscript.

References
1 Stein, J.C. et al. (1991) Molecular cloning of a putative receptor protein

kinase gene encoded at the self-incompatibility locus of Brassica
oleracea. Proc. Natl. Acad. Sci. U. S. A. 88, 8816–8820

2 Schopfer, C.R. et al. (1999) The male determinant of self-
incompatibility in Brassica. Science 286, 1697–1700

3 Shiba, H. et al. (2001) A pollen coat protein, SP11/SCR, determines the
pollen S-specificity in the self-incompatibility of Brassica species. Plant
Physiol. 125, 2095–2103

4 Takasaki, T. et al. (2000) The S receptor kinase determines self-
incompatibility in Brassica stigma. Nature 403, 913–916

5 Takayama, S. et al. (2001) Direct ligand-receptor complex interaction
controls Brassica self-incompatibility. Nature 413, 534–538

6 Kachroo, A. et al. (2001) Allele-specific receptor-ligand interactions in
Brassica self-incompatibility. Science 293, 1824–1826

7 Nasrallah, M.E. et al. (2002) Generation of self-incompatible
Arabidopsis thaliana by transfer of two S locus genes from A. lyrata.
Science 297, 247–249

8 Nasrallah, M.E. et al. (2004) Natural variation in expression of self-
incompatibility in Arabidopsis thaliana: implications for the evolution
of selfing. Proc. Natl. Acad. Sci. U. S. A. 101, 16070–16074

9 Tsuchimatsu, T. et al. (2010) Evolution of self-compatibility in
Arabidopsis by a mutation in the male specificity gene. Nature 464,
1342–1346

10 Gu,T. et al. (1998)Binding of anarm repeat protein to the kinase domain
of the S-locus receptor kinase.Proc. Natl. Acad. Sci. U. S. A. 95, 382–387

Figure 3. Endocytosis in plant receptor kinase signaling. To achieve active status, plant receptor kinases require additional kinase activity. For BRI1 and FLS2, this is
provided by the coreceptor BAK1. BAK1 probably does not participate in ligand recognition [54,60]. Following the same principle, SRK activation requires the activity of the
membrane-anchored kinase MLPK [12]. It has been proposed that signaling for FLS2 and SRK initiates at the PM [34,51,61] and such a possibility exists for BRI1 as well (not
depicted) [49]. Activation of PRKs is followed by internalization to endosomes. BRI1 signals from these compartments to initiate the brassinosteroid signal transduction [55];
the same may be true for FLS2, though in this case the hypothesis is based on indirect evidence. Currently available data for SRK suggests signaling from the PM. However,
the observation that active SRK is accumulated in the endosomes, rather than being immediately sent for degradation indicates that additional signaling steps might occur
in this compartment. In this case output is probably targeted back to the part of the PM where the receptor was initially activated, and which corresponds to the site of self-
pollen rejection. The hypothetical SRK endosomal signaling is marked with a question mark.
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