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Spin-orbit coupled semiconductor nanowires with Zeeman splitting in proximity contact with
bulk s-wave superconductivity have recently been proposed as a promising platform for realizing
Majorana fermions. However, in this setup the chemical potential of the nanowire is generally
pinned by the Fermi surface of the superconductor. This makes the tuning of the chemical potential
by external electrical gates, a crucial requirement for unambiguous detection of Majorana fermions,
very challenging in experiments. Here we show that tunable topological superconducting regime
supporting Majorana fermions can be realized in semiconductor nanowires using uniaxial stress. For
n-type nanowires the uniaxial stress tunes the effective chemical potential, while for p-type systems
the effective pairing may also be modified by stress, thus significantly enhancing the topological
minigap. We show that the required stress, of the order of 0.1%, is within current experimental
reach using conventional piezo crystals.

PACS numbers: 03.67.Lx, 03.65.Vf, 71.10.Pm

Majorana fermions (MFs), first envisioned by E. Majo-
rana in 1937, are quantum particles which are their own
antiparticles [1–3]. MFs are not only of fundamental in-
terest because of their non-Abelian exchange statistics,
but also may serve as building blocks for fault-tolerant
topological quantum computation [4, 5]. In the past few
years, the possibility of realizing MFs using quasiparti-
cles in exotic solid state systems such as ν = 5/2 frac-
tional quantum Hall states [6–9], chiral p-wave superflu-
ids/superconductors [6, 10], etc. has generated a lot of
excitement in the condensed matter community. In par-
ticular, it has been proposed recently that MFs can be
generated using a heterostructure consisting of two very
conventional materials: an s-wave superconductor and a
semiconductor thin film/nanowire with strong spin-orbit
coupling [11–17], see a recent review [18]. This proposal,
following on the earlier idea proposed in cold atoms sys-
tems [19], has attracted widespread theoretical interest as
well as serious consideration in experiments. The super-
conducting proximity effect in nanowires has also been
demonstrated experimentally [20, 21]. Very recently, fol-
lowing the theoretical proposals, some preliminary exper-
imental signatures [22–25] which may be related to the
existence of MFs have been observed, although the un-
ambiguous detection of MFs still remains an outstanding
experimental challenge [26].

In the proposed semiconductor heterostructures, MFs
only exist for topological superconducting states within
a certain constrained parameter regime [13]. Therefore,
it is crucially important to have the ability to tune the
various physical parameters in experiments. Since the
spin-orbit coupling strength and the size of the nanowire
cannot be tuned after the samples are fabricated, and
the Zeeman field is generally limited to a narrow win-
dow (|Vz | ∼ ∆) because of its possible depairing effect,
it is essential to be able to tune the chemical poten-

FIG. 1. (Color online). Engineering Majorana fermions via
uniaxial stress. The stretching direction is along x in model A
(a) and z in model B (b). The stress is assumed to be provided
by conventional piezo crystals. (c) shows the pinning of the
chemical potential in semiconductor by the Fermi surface of
the s-wave superconductor. However, the total band structure
of the semiconductor can still be shifted by uniaxial stress.
The basic idea is quite similar for both n- and p-type systems,
although the physics for the latter is more complex; see text
for details.

tial to the correct level for the realization of the topo-
logical state. For semiconductor nanowires, it is well
known that the chemical potential can be tuned by using
suitably placed external electrical gates. Unfortunately,
the same technique may not work well in the proposed
Majorana system of semiconductor-superconductor het-
erostructures because the nanowire is in proximity con-
tact with the superconductor which has an extremely
high carrier density. The pinning of the chemical poten-
tial of the nanowire by the Fermi surface of the supercon-
ductor thus poses a major challenge in experiments [27].
In the recent Delft experiments [24] it has been found
that very large electric gate voltages (∼ (104 − 105)∆)
are required to tune the topological quantum phase tran-
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sition, which likely provides strong evidence for the pin-
ning of the nanowire chemical potential. The main mo-
tivation of the present work is to provide an alternative
method to overcome this experimental difficulty which
may greatly facilitate future experimental searches of
MFs in semiconductor-based heterostructures.
In this Letter we show that the topological suercon-

ducting regime in both n- and p-type nanowires can be
externally tuned using uniaxial stress, which can be gen-
erated and controlled even by conventional piezo crys-
tals. The uniaxial stress modifies the band structure of
the nanowires slightly, remarkably leading to a topolog-
ical transition from the trivial to the topological super-
conducting state with MFs at the wire-ends. With the
experimentally accessible strength of the uniaxial stress
(assuming |ε| < 0.3%) , the effective chemical potential
can be tuned about 42 meV for electrons, and 5 - 20 meV
for hole levels. Moreover, for the p-type systems, the
uniaxial stress may also significantly enhance the mini-
mum topological energy gap (minigap) that protects the
MFs from thermal excitations. The newly added ele-
ments for generating the uniaxial stress can be effectively
integrated into the design of semiconductor devices us-
ing modern nanotechnology (e.g., MBE, e-beam lithog-
raphy, etc). Therefore, our proposed scheme can go a
long way in facilitating the realization and detection of
Majorana fermions in semiconductor quantum wire het-
erostructures and the eventual implementation of topo-
logical quantum computation.
Our basic setup for experiments is illustrated in Fig. 1a

and 1b. The semiconductor nanowire (e.g., InSb, InAs,
etc.) is in proximity contact with an s-wave supercon-
ductor. The uniaxial stress applied on the semiconduc-
tor nanowires can be generated using nano-ferroelectric
materials or by simply gluing the nanowire tightly to the
surface of piezoelectric crystals [28–32] such as the piezo-
electric lead zirconic titanate (PZT) ceramic stack. The
stretching direction of the piezo crystal can be chosen ei-
ther along x (model A) or along z direction (model B).
The strain tensor can be determined as,

ε(a)xx = −ε, ε(a)yy = ε(a)zz =
2C12

C11
ε,

ε(b)zz = −ε, ε(b)yy = ε(b)xx =
2C12

C11
ε, (1)

where ε = (1 − a/a0) defines the relative changes of the
lattice constant along the corresponding crystallographic
directions. Here a0 and a are the equilibrium and dis-
torted lattice constants, respectively. ε > 0(< 0) cor-
responds to compressive (tensile) stress. In experiments
the sign of ε can be controlled by the voltage bias across
the piezo crystals [28, 29]. C11 and C12 are the elastic
stiffness tensors. The superscripts in Eq. (1) represent
the two different models shown in Fig. 1. Note that
ε ∼ P/Y, where P is the stress and Y is Young’s modu-
lus. Using typical values for Y ∼ 100 GPa and P ∼ 100

-0.04 -0.02 0.00 0.02 0.04
k (nm

-1
)

-1
0
1
2
3
4
5
6
7

E
ne

rg
y 

(m
eV

)

0 20 40 60 80 100
Carrier Density (x 10

4
/cm)

0

4

8

12

16

µ 
(m

eV
)

(a) (b)

Topological Superfluid

µ

FIG. 2. (Color online) (a) Band structure of InSb nanowires.
The solid horizontal dash-dotted line represents the possible
pinned chemical potential when placed in proximity to the
superconductor. (b) The chemical potential as a function of
carrier density. α ∼ 0.2 eV·Å, m = 0.013m0, ∆0 = 0.5 meV,
Vz = 1.0 meV.

MPa, we see that ε ∼ 0.1%. Such a small strain can be
provided using conventional piezo crystals. For model A,
ε up to 0.11% has already been realized in experiments,
and in principle, ε up to 0.6% can be achieved [29, 30]
(but only a fraction of the strain is transferred to the sam-
ple). The same setup has been widely used to tune the
optical spectrum of semiconductor quantum dots [28, 30–
32], the results of which agree excellently with theory [31].
For model B, it is more suitable to provide compressive
stress along the z direction, and there is no limitation
on the maximum ε because the compressive stress is not
limited by the gluing technique. Although this impor-
tant difference must be kept in mind, in the numerical
simulations we do not take it into account for the sake of
comparison between two models. We assume |ε| < 0.3%
the most probable regime that can be accessed in ex-
periments. Since the lattice deformation is very small,
the effect of uniaxial stress to the superconductivity of
the substrate can be negligible [33]. Following the orig-
inal Delft experiments [24], here we use parameters for
InSb nanowires to demonstrate that such a small strain
is already sufficient for the realization of MFs. We also
briefly discuss the possibilities in InAs nanowire before
the conclusion. For these two systems the values of the
corresponding parameters are taken from Ref. [34].
The effective Hamiltonian for n-type nanowire under

uniaxial stress reads as [35, 36],

H =
k2

2m
− µ− acTr(ε), (2)

where ac denotes the deformation potential of the con-
duction band. The uniaxial stress does not change the
band structure, but only shifts the effective chemical po-
tential to µ = µF − acTr(ε) (µF is pinned). In Fig. 2a,
we plot the typical band structure of free electrons in
nanowires in a single transverse confinement band and in
Fig. 2b we plot the corresponding chemical potential as
a function of carrier density. The topological supercon-
ductivity with MFs can be achieved when the chemical
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FIG. 3. (Color online). (a) Typical band dispersions of the
heavy hole bands for different values of strain ε in model A.
(b) Energy of heavy hole bands at k = 0 as a function of
strain ε for models A and B. Other parameters are γ1 = 34.8,
γ2 = 15.5, α = 2.0 eV·Å, Vz = 1.5 meV, Lz = 14 nm, and
Ly = 10 nm, µ = 0.

potential falls in the small window (shaded regime) in
Fig. 2b, in which case the system has only one Fermi sur-
face. The small window in the parameter space greatly
limits the flexibility for the experimental observation of
MFs. For InSb, ac ∼ −6.94 eV, and |ε| < 0.3%, we es-
timate acTr(ε) ∼ ±21 meV. We see from Fig. 2b that
such a huge change of the effective chemical potential
can change the carrier density by about 1 - 2 orders of
magnitude. Thus, for a wide range of carrier density, the
nanowire can always be tuned to the topological regime.
The Hamiltonian for p-type nanowires under uniaxial

stress reads as [37],

H = HKL +HBP, (3)

where HKL = (2γ1+5γ2)
4 ∇2 − γ2(∇ · J)2 − iα(J × ∇)z +

VzJz − µ is the Kohn-Luttinger Hamiltonian, α is the
Rashba spin-orbit coupling strength, Vz = g∗hµB is the
Zeeman field along the z direction, J is the total angular
momentum operator for the spin-3/2 holes and γ1 and
γ2 are Luttinger parameters. The second term describes
the Bir-Pikus model [35, 36, 38, 39]

HBP =









Pε +Qε 0 Rε 0
0 Pε −Qε 0 Rε

R∗
ε 0 Pε −Qε 0
0 R∗

ε 0 Pε +Qε









, (4)

where Pε = −avTr(ε), Qε = − b
2 (εxx + εyy − 2εzz),

Rε =
√
3
2 b(εxx − εyy), with av and b the deformation

potentials of the valence bands. Notice that Pε, Qε and
Rε have totally different roles to the band structures of
holes in nanowires. Pε shifts the global band structure,
while Qε increases or decreases the splitting between the
HH and LH bands. The non-zeroRε may greatly enhance
or suppress the coupling between HH and LH, thus mod-
ifying the effective pairing strength. In contrast to the
case of electrons, the two models A and B yield totally
different results.

The modification of the band structure of p-type
nanowires due to uniaxial stress is shown in Fig. 3a for
different values of ε. Here we only plot the two HH bands
because the LH bands are separated by a large energy gap
(∼ 100 meV) induced by the confinement. At k = 0, two
HH bands are split by a small Zeeman field VZ . When
the chemical potential lies in the Zeeman gap, the system
has only a single Fermi surface, yielding topological su-
perconductivity and the associated MFs under suitable
conditions. We see from Fig. 3 that by tuning the uni-
axial stress, we can shift the bands of the semiconductor
up or down so that the Fermi level of the superconductor
can lie in the Zeeman gap, yielding topological supercon-
ductivity. In Fig. 3b, we plot E0, the energy of the HH
bands at k = 0, against ε. Within the experimentally
accessible regime, E0 can be tuned by ±3 meV for model
B and ±10 meV for model A.
The above single particle results provide the basic

physical picture for tuning the n- and p-type nanowires
to the topological regime using uniaxial stress. To ob-
tain concrete parameter regions and analyze the robust-
ness of the MFs, the superconducting order parameter
needs to be taken into account. We illustrate this below
using the example of topological superconducting state
in p-type nanowires[17]. In the nanowire heterostruc-
tures, the superconducting order parameter can be in-
duced to the nanowire through proximity effect [21],

yielding Hsc =
∑

m= 1

2
, 3
2

∫

dr∆mψ
†
mψ

†
−m. The corre-

sponding BdG Hamiltonian can be written as [17]

HBdG =

(

H1D ∆4

∆∗
4 −γ†H∗

1Dγ

)

(5)

in the Nambu spinor basis Ψ = (ψ, γψ†)T . Here H1D =
∫

dydzψ∗
yψ

z
zHψzψy, γ = i(I ⊗ σx)τy, σx, I and τy are

Pauli operators, and ∆4 =diag(∆ 3

2

, ∆ 1

2

, ∆ 1

2

, ∆ 3

2

).
The topological parameter regime for MFs can be ob-

tained by the topological index [40, 41]

M = sign(Pf(Γ(0)) · Pf(Γ(π
a
))) (6)

where Pf(Γ) refers to the Pfaffian of the matrix Γ =
−iHBdG(k)(τy ⊗ γ), a is the lattice constant. M = +1
(-1) corresponds to the topologically trivial (nontrivial)
superconducting states without (with) MFs. Note that
for sufficient large k all the eigenvalues of Γ are dom-
inated by the k2 terms, yielding sign(Pf(Γ(π

a
))) = 1.

The Pfaffian at k = 0 can be derived analytically, yield-
ing M = sgnF , with F = f0 − f1V

2
z + 9

16v
4
z , f0 =

(µ̄2+∆ 3

2

∆ 1

2

−β2
1−β2

2)
2+((∆ 3

2

−∆ 1

2

)µ̄+β1(∆ 3

2

+∆ 1

2

))2,

f1 = (10µ̄2 + 10β2
1 + 16β1µ̄ + 9∆2

1

2

+ ∆2
3

2

− 6β2
2)/4,

β1 = π2γ2(L
−2
z −L−2

y /2)+Qε, β2 =
√
3π2γ2L

−2
y /2+Rε,

and µ̄ = µ+γ1π
2(L−2

y +L−2
z /2). The boundary for topo-

logical phase transition is determined by F = 0. Gener-
ally, the magnitudes of ∆ 3

2

and ∆ 1

2

are not essential for
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FIG. 4. (Color online). The parameter regimes for the exis-
tence of Majorana fermions. (a), (b) show the results for case
(I) and case (II), respectively, see text for details. The plus
sign (+) corresponds to Vz without uniaxial stress. For case
(I) we use Ly ≃ 10.0 nm, Lz ≃ 14.0 nm, for case (II) we use
Ly ≃ 14.2 nm, Lz ≃ 9.7 nm. The chemical potential in all
the figures are pinned at µ = −96.0 meV. In (b) the shaded
regime corresponds to the lower bound of Vz/∆ = 2/3. The
corresponding mini-gap and lowest non-negative energy level
obtained by numerically solving the BdG equation 5 are pre-
sented in (c) and (d), respectively, for Vz = 1.5 meV. The
other parameters are the same as Fig. 3.

the topological quantum phase transition (but the rela-
tive sign is important) [17]. Henceforth we only consider
two different possible cases (I) ∆ 3

2

= ∆ 1

2

= ∆ and (II)
∆ 3

2

= −∆ 1

2

= ∆. For other values of ∆ 3

2

and ∆ 1

2

, the
results are similar.

In Fig. 4a and 4b, we plot the boundary between the
topological and non-topological superconducting states.
In these figures, we assume that without uniaxial stress
the chemical potential lies in a regime which requires a
large Zeeman field for realizing the topological supercon-
ducting state. By applying the uniaxial stress the re-
quired critical Zeeman field can be significantly reduced.
In case (I) in Fig. 4a, the critical Zeeman field can even
approache zero for model A. We have also verified that
for a wide range of parameters (µ, Lz, Ly · · · ) simi-
lar features can always been found. For case (II) in
Fig. 4b the required Zeeman field can be reduced to
around 1 meV (Bz = 0.3 T for g∗h ∼ 50). Generally
for case (II), the minimum required V c

z ≃ p∆, where
p = 2

√

1 + β2
1/β

2
2/(2 +

√

1 + β2
1/β

2
2) ∈ [2/3, 2). We see

that there are also a wide range of parameters that en-
able us to achieve the minimum required Zeeman field
at p = 2/3 via uniaxial stress. To further verify that
the right regime of each curve in Fig. 4a and 4b are in-
deed the topological superconducting regime we plot the

mini-gap (solid line) and the lowest non-negative energy
level (dashed line) as a function of uniaxial stress ε in
Fig. 4c and 4d, respectively. In the topological super-
conducting state, the zero energy MFs indeed exist with
large minigaps around several Kelvin. We have also con-
firmed that the corresponding wavefunctions of MFs are
well localized at the two ends of the nanowire.
The difference between the two types of uniaxial stress

in models A and B can be understood by projecting the
Hamiltonian to the lowest two HH bands, which yields
the effective pairing at k → 0,

∆eff = (∆ 3

2

− κ∆ 1

2

)/κ (7)

where κ =
√

(β1/β2)2 + 1 − β1/β2 ∈ (−∞, 0). When
ε = 0, κ only depends on the size of the nanowire, thus
cannot be tuned. However, when the uniaxial stress is
applied, κ can be tuned in a considerably wide range.
For model A, the off-diagonal term Rε 6= 0, thus β2 can
approach zero with a properly chosen strain ε. For the
parameters used in Fig. 4 we find that the effective pair-
ing increases (decreases) monotonically as a function of
ε for model A (B), thus for model B, we observe signif-
icant enhancement of the mini-gap (∼ 30%) in Fig. 4d.
The maximum increase of the mini-gap can be obtained
by optimizing different physical parameters. Since the
weights of Qε and Rε are more significant for nanowires
with larger lateral sizes, we expect the enhancement of
the minigap to be more significant in larger cross section
nanowires.
Finally, several remarks are in order. First, although

the basic idea in this paper is demonstrated using the sin-
gle band model, the same idea can be straightforwardly
extended to the multiband case. Using the diameter of
nanowire from Ref. 24, we estimate the band spacing for
electron (hole) is 6 - 1 (3 - 0.2) meV. Thus we expect
that the stress can tune the effective chemical potential
of both electrons and holes to the topological regime even
though the initial value corresponded to an even number
of Fermi surfaces. Obviously the tunability of our pro-
posal is more efficient for larger size of nanowires. Sec-
ond, our proposal here can also be used to engineer MFs
in the vortex core of semiconductor quantum wells. For
electrons the tuning of the band structures is exactly the
same as in Eq. 2. For holes there are some qualitative dif-
ference from Fig. 3 since the confinement along the y di-
rection is relaxed. As a consequence, β2 = 0 when ε = 0,
thus Rε play a more significant role in the determination
of the minigap of MFs. Third, we have also checked the
validity of our proposal for InAs nanowires, and similar
features have been found. However, for InAs, we note
that ac ∼ −5.17 and b ∼ −1.00, which are smaller than
their counterparts in InSb, thus in principle a slightly
larger stress is required.
To conclude, due to the proximity effect between

nanowires and a bulk superconductor, the chemical po-
tential of the nanowire is generally pinned by the Fermi
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surface of the superconductor. Consequently, tuning the
chemical potential of nanowires via electrical gates to
bring it in the topological regime is inefficient in this
setup. We show that this crucial obstacle can be over-
come using uniaxial stress which modifies the band struc-
ture slightly, leading, remarkably, to a transition from
non-topological to topological states with MFs. With
the experimentally accessible strength of the uniaxial
stress, the effective chemical potential can be tuned about
42 meV for electrons, and 5 - 20 meV for hole levels.
Moreover, in p-type nanowires, uniaxial stress also sig-
nificantly enhances the minimum energy gap (minigap)
that protects the MFs from thermal excitations. The
newly added elements for generating uniaxial stress can
be effectively integrated into the design of semiconduc-
tor devices using modern nanotechnology. Therefore our
scheme can be used for the realization of topological Ma-
jorana fermion excitations in semiconductors and the im-
plementation of topological quantum computation.
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