Discrete Differential Geometry: An Applied Introduction

Hence every tuple must be given a sign indicating whether it agrees
() or disagrees () with the intrinsic orientation of the simplex.
Given a set of integers representing a simplex, there are two equiv-
alence classes of orderings of the given tuple: the even and odd
permutations of the integers in question. These two equivalence
classes correspond to the two possible orientations of the simplex
(see Fig. 2).

Note that assigning a sign to any one alias (i.e., the representative)
implicitly assigns a sign to all other aliases. Let us assume for a
moment that the sign of all representatives is known. Then the sign
S of an arbitrary tuple ¢, with representative r, is

Sr
Sr

S/ if ¢ is in the same equivalence class as r
if ¢ is in the opposite equivalence class
More formally, let P be the permutation that permutes ¢ into r (i.e.,
r Pt). Then

St SPSPt

(Here S P denotes the sign of the permutation P with 1 for even

and 1 for odd permutations.)

All that remains, then, is to choose an intrinsic orientation for each
simplex and set the sign of the representative alias accordingly. In
general the assignment of orientations is arbitrary, as long as it is
consistent. For all subsimplices we choose the representative to be
positively oriented, so that the right-hand-side of the above expres-
sion reduces to S P . For top-level simplices (tets in 3D, triangles
in 2D), we use the convention that a positive volume corresponds to
a positively oriented simplex. We therefore require a volume form
which, together with an assignment of points to vertices, will allow
us to orient all tets. Recall that a volume form accepts three (for 3D;
two for 2D) vectors and returns either a positive or negative num-
ber (assuming the vectors are linearly independent). So the sign of
a 4-tuple is:

Sip i1 ia i3 S Vol piy piy piy Piy Piy Py
4 The Boundary Operator
The faces of a k-simplex are the k 1 -simplices that are incident
on it, i.e., the subset of one lower dimension. Every k-simplex has
k 1 faces. Each face corresponds to removing one integer from
the tuple, and the relative orientation of the face is 1 * where i is
the index of the integer that was removed. To clarify:

The faces of atet 1yt trht3 are tytjtr, ot t3,
totrp t3 ,and) 1 t3 .

The faces of atriangle fo f1 f> are fo fi . fo fo» ,and
fi fa

The faces of anedge ey e are ey and eg .

We can now define the boundary operator ~which maps simplices
to their their faces. Given the set of tets T we define 3: T F*as

io i1 i3
i1 ip i3

io i1 B2
io iy i3

io i1 2 I3

Similarly for 2:F E3 (which maps each triangle to its three
edges)and ':E V2 (which maps each edge to its two vertices).

We represent these operators as sparse adjacency matrices (or,
equivalently, signed adjacency lists), containing elements of type

land 1only. So 3 isimplemented as a matrix of size F T
with 4 non-zero elements per column, 2an E F matrix with
3 non-zero elements per column, and 'a V E matrix with 2
non-zero elements per column (one 1 and one 1). The trans-
poses of these matrices are known as the coboundary operators,

57

SIGGRAPH 2006

and they map simplices to their cofaces—neighbor simplices of one
higher dimension. For example, maps an edge to the “pin-
wheel” of triangles incident on that edge.

Figure 3: The boundary operator identifies the faces of a simplex
as well as their relative orientations. In this illustration, arrows
indicate intrinsic orientations and signs indicate the relative orien-
tation of a face to a parent.

These matrices allow us to iterate over the faces or cofaces of any
simplex, by walking down the columns or across the rows, respec-
tively. In order to traverse neighbors that are more than one dimen-
sion removed (i.e., the tets adjacent to an edge or the faces adjacent
to a vertex) we simply concatenate the appropriate matrices, but
without the signs. (If we kept the signs in the matrix multiplication
any such consecutive product would simply return the zero matrix
reflecting the fact that the boundary of a boundary is always empty.)

5 Construction

Although we still need a few auxiliary wrapper and iterator data
structures to provide an interface to the mesh elements, the simplex
lists and boundary matrices contain the entirety of the topological
data of the mesh. All that remains, then, is to fill in this data.

We read in our mesh as a list of x y z vertex positions and a list of
4-tuples specifying the tets. Reading the mesh in this format elimi-
nates the possibility of many non-manifold scenarios; for example,
there cannot be an isolated edge that does not belong to a tet. We
assume that all integers in the range O n appear at least once in
the tet list (this eliminates isolated vertices), and no integer outside
of this range is present.

Once T is read in, building E and F is trivial; for each tuple in T,
append all subsets of size 2 and 3 to E and F respectively. We must
be sure to avoid duplicates, either by using a unique associative
container, or by sorting the list afterward and removing duplicates.
Then the boundary operator matrices are constructed as follows:

for each simplex s
construct a tuple for each face f of s
as described in Section 4
determine the index i of f by locating
its representative
set the entry of the appropriate matrix
atrow i, column sto S f

Figure 4 shows a complete example of a mesh and its associated
data structure.

6 DEC Operators

Now we discuss the implementation of the two most commonly
used DEC operators: the exterior derivative and the Hodge star.
As we will see, in the end these also amount to nothing more than
sparse matrices that can be applied to our form vectors.

