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6 Digital PID Controllers
6.1 Structure of System

6.1.1 Overview

A digital Filter or a digital controller mainly contains an analog to digital converter (ADC), a
processor (e.g. a microprocessor, microcontroller, PC, PLC, DSP or similar) and a digital to
analog converter (DAC).

| To
w(n) — xd(n control algorithm y(® D' yH(n) plant F(p) x(0)
Digital-computer A process
| T DAC with hold block
)
x(n) D

A

ADC

digital controller

There is no difference between a digital filter and a digital controller, only the use defines the
name. A controller is nothing other than a filter used to control physical values. The structure
of a digital controller containing negative feedback is displayed in the picture above.

A digital Filter samples the input voltage x(t), each new x(n) — value is sent to the filter
algorithm, and the new output value y(n) is reconverted by DAC into a voltage yu(t).

| To | To

D xd(n control algorithm y@ D %n)
A Dugital-computer A

ADC

DAC with hold block
Digital filter

We talk about sampling systems, which only samples an input signal each T and calculates
only then a new output value y(n). Between two samples there is no reaction on a change of
the input signal. Typically, we can see that the output voltage contains steps and constant
sections like stairs, see next diagram.
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y(n) =K, *x,(n).

Read: The actual output value y(n) is calculated by multiplying the controller gain value K.
with the actual measured input value x4(n) each T,.

The processor must be able to multiply floating point values (K. is normally a floating point
value), which normally is not supported with assembler language and some cheap C-
compilers. Then the range of values must be controlled by your program. The algorithm must
be called in equidistant time intervals with the distance T,. This must also be supported by
your processor either using a real time operating system (RTOS) like OS-9 or similar or
realising the constant ticks via other methods (timer, interrupts etc).

6.2.2 I- control algorithm

Now we will try to convert an integrator into a digital I- algorithm. This will then be used in a
PI or PIDT1- controller algorithm. We start with an analog integrator with transfer function
F(p) = Ky¢/p. The gain (in this case the unity gain radian frequency) K; defines the integration
time constant T; = 1/ K. The differential equation of an integrator is

ta
y(t) =K, * j x, (O)dt,
0
where ta is the actual time. The integration starts at time t=0.
Now the replacement of the integration is done with the sum of rectangles. The integral
describes the area under the curve x4. The following picture describes this situation:

4 x4(1)

ta t

The curve ends at point ta = nT,. The last green rectangle has the amplitude xq4(n), the
preceding rectangle x4(n-1) and so on. Each rectangle has the width T, and the amplitude
xd(i), if i is the time i*Ty The area under the curve from 0 to ta can now be approximated
with the sum

n-1

ZXd (i)*T, . This sum ends with the last yellow rectangle; however, you can see that the
i=0

actual area is larger than the yellow area. So another version adds the green rectangle to the
sum, but then the area seems a little bit too large. This version has the approximation

Zn:xd (D)*T,.
i=0

So we get the following two versions of I- algorithms:

Without green rec (Prof. Baumann) With green rec (Prof. Bayerlein)
n-1 n

ym =K, *3 x,()*T, Y =K *> x,()*T,
i=0 i=0

Both versions can not be programmed because the sum of old x4(i) has to be calculated in
each step each T,. So any time an integrator is in the filter, the following step to get a
recursive form of algorithm is necessary:

Trick to get recursive form of an algorithm.
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K (1+ pT K
F (p)= L+ pTy) =——+K, = M This equation in the frequency domain can
pT, pTy X,(p)

converted via inverse Laplace transform into the differential equation (formal way)

YO =K%, 0+ 2= [, 0.

N
Now with discrete sampled times (t replaced by n) we get

K. ; . . L .
y(n)=K_x,(n)+— Z X, (1)*T,. You can see I start with the Bayerlein- version including
N i=0
green rectangle, the sum ends with i=n .
Because of the sum we have to go the recursive way to get an algorithm without the

unprogrammable sum. The above equation one step before:
K n-1
yin-)=K_x,(n-1)+ —CZ x, (i) *T, . Difference of both equations and y(n-1) moved to
N i=0

right:

T,

y(n)=yn-1)+K_x,(n)+ K; x,(n)—K_x,(n—1). The difference of the sums gives the

N
only expression K/Ty * x4(n). Sorted and written with the coefficients g we get

y(n) =y(n=1+qyx, (M) +qx,(n~1) with

c

T
4 =K.0+) and q=-K

N

In the case of not using the green rectangle we get the following alternative:

K. & . . . .
y(n) =K_x;(n)+—= Z X, (i) *T,. Now you see I start with the Baumann- version without
N i=0
green rectangle, the sum ends with i=n-1 .
Again because of the sum we have to go the recursive way to get an algorithm without the
unprogrammable sum. The above equation one step before:

K n-2
y(n-)=K_x,(n-1)+—= Z x, (i) *T,. Difference of both equations and y(n-1) moved to
N i=0

right:

T,

K
y(n)=y(n-1)+K_x,(n)+ 15 x;(n=1)— K_x,(n—1). The difference of the sums gives

N
the only expression K/Tn * xg(n-1). Sorted and written with the coefficients q we get

Y(n) = y(n 1)+ qyx, (1) + G, (n—1) with

q, =K

@

T
and q,=K, (—1+T—°) )

N

We can demonstrate this algorithm with a simple example. Let us convert the PI — controller
with K=2 and Tn=1s working with the sampling time T,=0.2 s.
First we compare the unit step responses and then the reference response in a loop.
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If you design a PI- controller with pole compensation and 60° phase margin, this results in
exactly the previously used PI- controller with K.=2 and Tn=1s. The following picture gives
idea of the resulting unit reference step responses.

D:\bay\doc CS2 new\pi digital rsr bay.sim

1.100 4

1.000
0.800 4
0.800 1
0.700 4
0.600 1
0.500 1
0.400 4
0.300 4
0.200 4
0.100 4

0.000 ! . . . . . . . . . . .
-1.000 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

The blue curve is the analog PI- response, the yellow curve is the response with the digital PI
Baumann version, and the green curve is my preferred solution. Of course I have chosen an
example, where my version is the best. But you see the differences are negligible. For all
further discussions I will use the version including the green rectangle.

If Ty changes to smaller values, the differences also become smaller. If T, for example is
changed to T¢=0.02 s, then qy=2.04, q;=-2. Then one step of the ramp- stair is replaced by 10
steps with amplitude 0.04. Then the difference is so small that you can see no difference in
the diagram.

6.2.4 D-algorithm

The next step is to include a differentiator. So, I will start by discussing a pure differentiator,
after that the total PD, and finally the PID- algorithm.

Kq

x> Y0

The differential equation of a differentiator is
d
t)=K, *—x,(t
y() Tt (0

so y(t) is proportional to the gradient or slope of the x4 — curve. The next picture illustrates
this:

A xd(t) —

t

n-1 n

The analog differentiator has an output proportional to the slope of the green line. If we
sample the xd- curve, the ADC can only measure the values, not the changes in values. So a
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T, T
qy :K*(1+T—°+T—D], q, :K*(

I 0

T
_1_2_D]’ q2:K*_D

0

T
I,

This is the general, famous recursive PID- algorithm used in many digital controller
applications. In each step Ty you need 3 multiplications, 3 additions and you have to store 3

floating point values y(n-1), x4(n-1) and x4(n-2). In the following table you can find a

summary of all this different algorithms including a recursive form of P and PD.

Type F(p) i, pi, all missing coefficients q;, p;=0 Form
P K go=K non
recursive
P K qo=K, q;=-K, p;=1 recursive
D Kp qo=-q1=K/T) non
recursive
I K;/p p1=1, qo=K; *T)y recursive
PI Kr(1+pTn)/pTn qo=Kgr(1+To/Tn), q1=-Kg, p1=1 recursive
PD K(1+pTv) qOZK(1+Tv/T0), qlz-KTv/To, st~1+Tvy/Ty non
recursive
PD K(1+pTv) qozK(1+Tv/T0), qlz-K(va/T0+1), qZ:KTv/T(), recursive
plzl, st=1+Tv/T
PID  |K(1+pTp*+1/pT)= Qo=KL +Tp/To+To/Tr), design |
K,(1+pT, )1+ pT,) |2=-KQTp/To+1), q:=KTp/To, pi=1, 8
PTN st=1+TV/T

6.3 Exercise Example PID

Task: Convert a PID with the parameters Kg=2, Tx=1, Ty=0.1 into a digital PID with
sampling time T,=0.01. Compare the unit step responses.

First convert given bode form parameters into summing form parameters with WB p 21:
T, +T,

K=K,

T, =T, +T,

N

T, T,

T, =—NV_
DT 4T,

calculated: K = 2.2, Ty=1.1 and Tp=0.09090...

qo=22.22, q;=-42.20, q» =20.00. Note that it is very important to calculate with an accuracy

of at least 4 significant digits! Some more details relating calculation errors will follow.

Step response calculation table:

n x4(n) | y(n)

-1 0 0 initialized!!

0 1 =qp=22.22

1 1 =y(0)+qo+q:=2.24
2 1 =2.26

3 1 =2.28

4 1 =2.30

Ah()

Z

2.2

do

%

R Aq

/ﬂ/

s /
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of output is mainly influenced by the time constant T. 63% full range change is done
in one time constant T. If a control system should react on a change of the output, then
the sampling time should be small enough. A good control system has a sampling
time, which is smaller than 10% of the largest process time constant. So measure the
dominant time constant T of your system and set upper limit of To <0.1 T.

2. Another estimation of upper limit for Ty is possible, if PID- design is made by FRA-
method. Then the crossover frequency wq is known. A digital controller has a delay
time between T(/2 and 1.5T, which will be explained later. The worst case is T4= 1.5
To. A delay time block has a negative phase shift of ¢ = - w*T4*180°/r, where w is the
radian frequency. This reduces the phase margin. If this reduction is as small as an
acceptable value AQmax (€.2. A@max =-5°), then this gives an upper limit of Tj.

Ag, .. 20, *1.5*%T, *180°/ 7 , solved to T:

A %
T < 2fPmx T _001164%Ag. /@, =0.05818/w,.
1.5%180°,

3. Now some lower limits. First, lower limit is simply defined by calculation time. Of
course the sampling time must be larger than calculation time T. including conversion
time of ADC and DAC, so Ty > T.. The way to estimate the calculation time is
described later.

4. Second, lower limit is a special estimation in PID- controllers. The smaller the
sampling time, the higher the first pulse after a reference step function. If this
amplitude should not be limited, T should not be too small. With the following values
you can calculate a lower limit: Maximum controller output ymay, input reference step
amplitude x and the PID- parameters K, T}, Tp and T.

0
T T

Vo 2 X0qp = X K| 1+ =2+ .
TO I

If you neglect the very small term To/T; this can be solved to Ty:

TD

T, > :
yl’l'lEIX _1
Kx,
In our above example with the values Tp=0.0909 s, ym.x = 10V, xo=1V and K=2.2 we
get the limit Ty > 25.6 ms. Remember with Ty=10 ms we got the amplitude of 22.22V
which is too large when compared with the 10 V maximum.

5. Third, lower limit is caused by rounding errors in the calculation of the algorithm.
Especially in the PID- algorithm this leads to a clear limit of T, Look first again on the
qo- value. Take the values of the first PID- example K=2.2, T\=1.1s, Tp=0.09090s.
Now compare the terms in the calculation of qo:

T, T
q, = K| 1+=2+=21.
TO TI

Ty Tp/Ty To/T; ratio
10ms | 9.0909 0.009090 1000
1 ms 90.9090 0.0009090 100000
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You can see you will have problems if you want to use the very fast short - int-
algorithms of assembler language. Then the lower limit of T is about 5 ms. This
problem is magnified with larger PID time constants. If processes are slower (e.g.
temperature controls are very slow), then Ty could reach 1000 s, Tp 100 s. With both
these times the estimation with float — variables (Standard C- compiler on embedded
systems) gives a To > 0.345 s !!!

Before you design a digital control system, check these 5 limits in order to get a good system.

6.6 Accuracy of g; in PID- algorithm

The last point of last chapter is not only important in the choice of Ty, but the accuracy of the
gi — coefficients must carefully be chosen. As mentioned, the term T(/T| carries the I-
information. To demonstrate the danger of inaccuracy we conduct the following experiment:
we take the previous example (qp=22.22, q;= - 42.2 and ,=20.00) and increase the q; — value
with a very small 0.5% change. Caused by this error- propagation changes the effective Ty —
time constant. This T can be recalculated with the following method:

With given g- values you can solve the three g- equations for K, Tp and T;:

T, T
g, =K*[1+2+-2| ¢q=K* —1—2T—D, qzzK*T—D
TI TO TO TO
KT,
4y +q, +q;,
With the above q; you get back the original K=2.2, T1=1.1 and Tp=0.09090909. With the
0.5% - change ( q;= - 42.411) you get K=2.411, Tp=0.083 and T;= - 0.126. The K and Tp

change does not matter, but the effective T; now is negative! This causes an unstable loop.
With a 0.5% - change of q the T} value changes over 100% !!! Be careful!

K=-q,—-2q, and T, :% and finally T, =

6.7 Improved FRA — design of digital PID: Dirt effects

Next step is to develop a more realistic substitute of a digital PID for use in standard
simulation Programs like Regdelph or for use in a standard simple FRA- design.

The substitution is simple and very possible and consists of analog blocks. I found the
following analog replacement:

Digital PID analog | Sample | | (;alculation
do, 91, 92, PIDT1, st & Hold time

This covers the most important negative effects of a digital PID. Details:

6.7.1 Step- depth- estimation

The behaviour of the digital PID, which is developed starting with a pure PID (with st=0) is
more like a PIDT1. But the digital PID behaves more like a PIDT1 with a starting impulse in
the step response with a definite width and height. The starting impulse of the digital PID has
amplitude qo, not a Dirac impulse like a PID.

Now it follows the choice of a stepdepth st. This is chosen such, that the impulse amplitude of
the first impulse of digital PID and its analog substitute circuit are equal. The first impulse
amplitude of the digital PID is already known: y(0) = qp = K*(1+Tp/Ty +To/T1 ). The impulse
amplitude of the PIDT1 is, as you know, equal to the value h(t=0) of the PIDT1 - step
response, and it is h(t=0) =K*Tp/T; = K. *Tv/T1 , if T; is the PT1 - time constant of the
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0.80 /
0.60

0.40 /
0.20

0.00 /

-0.20

-0.40

-0.60 /
-0.80 \

-1.00 : : : : : .

0.00 1.00 2.00 3.00 4.00 5.00 6.00

The black curve is the input signal u(t). Ty is 0.5 s. The red curve is uy, resulting voltage after
sampling. If you now would filter the red curve with an ideal low pass filter, which removes
all harmonics of the red curve you get the blue curve. If you now compare black and blue
curve, you see the same curve but shifted by half of the sampling time. The Sample & Hold
behaves like a delay time block with a delay time of T¢/2 ! This is mathematically proven in
the next step.

It can be shown, that a Sample & Hold- block has the complex transfer function

1— -pTy 1_e—ijo
F,(p)= with the complex frequency response F, (jo)=————
pT, joT,
To separate the magnitude and the phase- function we use a trick. With Leonhard Euler the e-
function e’ can be replaced with cos x + j sin x.
E,(jo)= 1-coswI + jsin T

After some further trigonometrical conversions we get the result

sin o,
2 ),

oT,

2
The expression in front of the e- function is real and defines the amplitude function of the
Sample & Hold block. The e-function itself has a magnitude 1 and defines the phase. The
amplitude function is the well known SI- function, which is depicted in the following
diagram:

joT,

Fy(jo)=

Drawn is the magnitude function

1.00

0.90 Shannon [SI)[=[sin(x)/x].

0280 - hmlt

0.70 Sampling You see zeros at Xo=m, 2* 7, ...
0.60 Frequency x in our Sample & Hold is

0.50 T,

0.40 Ty

0.30

0.20 So we have a first zero at the
0.10 frequency =2 m/Ty. This is the
0.00 ; ; . : ; ;

sampling frequency! If we sample a

0.00 100 200 300 400 500  6.00 . . . .
sinusoidal signal with frequency f
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Calculation of control difference xdn=w-x;
yn=ynl + q0 * xdn + ql * xdnl + q2 * xdn2;
Output of yn on DAC

Output of yn on DAC
Calculation of control difference xdn=w-x;
yn=ynl + q0 * xdn + ql * xdnl + q2 * xdn2;

Actualizing: yn1=yn; xdn2=deM

Actualizing: yn1=yn; xdn2=xdn1;xdn1=xdn;

6.7.4 Conclusion
If you want to design a digital PID, use the replacement

Kpn stTyTy Td‘el Delay time: Sum of Sample & Hold delay
Xg xR To/2 and calculation time T..
L > >
Step depth: st =1 + T/T,.

Tdel=3/2To with real, Tdel=1/2To+Tc with ideal A.
second analogous substitute of a digital PID

The complete steps for an FRA design of a digital PID See the next Box:

Procedure of the FRA-design of digital PID - controller:

1. Decide for an appropriate sampling time Ty, if possible Ty<0.1* largest process
time constant.

In your FRA (Frequency Response Approach) - design you have to add to the
process a delay time term with Tqe =1/2T(+T,, whereby T. represents the
calculation time. With the real algorithm T.=T, Delay phase is ¢ge= - ®Tgel
*180°/m.

If st is not 1 (PI — case) add the phase of the PDT1- part of the controller. Choose
Ty (e.g. with pole compensation or -30 dB method) and st = 1 + Tvy/T and the

2.

PDT1- phase is ¢ppri=arctan(wTy)-arctan(w*T/st).

This gives @new = Og +@Qdel +PPDTI.

Now continue with standard FRA with the point 3 to 5 depending on the PI method
symmetrical optimum or pole compensation of Workbook CS I page 37.

With the following equation set determine the parameters q; of the algorithm with
o = K(1+ 2+ 22), K(1+22%), g, = K-> and
]I 0 [;, - [“

K=Ky (Ty+T,)/Ty. T, =Ty +T, and T, =T, T, (T, +T,)-

q,

Now an exercise with a 2PT1- process:

6.7.5 Example

We will now design a digital controller with a sampling time of T;=55 ms. The process

transfer function reads
F; = K, /(1+ pT))(1 + pT,) with Kg=2, T;=5T¢ =0.275 s and T,=3T(=0.165s.

It should be a real PIDT1 - controller, the phase margin being (Pg=60°.
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The method to convert a continuous PIDT1 into a discrete / digital in Regdelph works with
the following steps:
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PI design for this example:

"_3\"""""“ wd 217313345 g0 03809219391
® Pl TN 0275
© PIDT1 p1 1

Now in WindfC# this PI and PIDT1 can be tested. The 2PT1- process can be simulated in the
menu ADC-Cards :-> Hardware Simulation:

ADC-Cards
. E no Card Simulated Process
‘L Meilhaus ME2600 Simulated Processes DAC Ois Input ADC 0is Output
— USBFHL Orlowski Ll e e Define K/T -
NI traditional [ - K |2 & &
NI DAQmx T 027 =1c
H-arf!_\/iare Simulation |I T2 0165 %
. © Fi) —
Select this process: | & Calc Fizg) >>> |
Limitation
Enable Limit
Synchron to Controll Toinms
Now real time test in the menu Realtime o' Student Control converted by Chen Zhou
functions = Student Control Box: 7 AEH v x
: Displ runtime values
y - Prof. Dr. Bayerlein B Run || satrsr Tofms) ;y X =ev8
n | Realtime functions | Controller Design S @ 570 | [ statPsr | E 1 points 3 Xr=0

%( | Student Control Box | Max Points= 3000 W= 0

Data logger DT9062 Version Controller Type,
— Inverted xy- pendulum © Prof ©r © PIAWU ©DBY) ©OR
- DT1

- Tt © Stud © pDT1 O°F © PIDTTAWU  © DB(V+1)

Curve | Parameters | Last X-Values | Last Xr-Values | Last W-Values | Controller Set |
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7 Introduction into Z- transformation

The design method used in the previous chapter converts a differential equation into a
difference equation. For simple filters this is useful, but for more complex filters there are
other better methods using the mathematical tools of the Z-transformation. What is this?
To get a very simple introduction I take a general filter algorithm and convert this into the
frequency domain using the Laplace transformation:

y(n)=p,yn-)+p,y(n=2)+...+q,x(n) + g, x(n-1) + g, x(n - 2) +.....

Considering that y(n) is converted into the new function Y(p) and x(n) into X(p) and applying
the shift theorem of Laplace (y(n-1) is the signal y(n) delayed with one Ty), so y(n-1) is
converted into Y(p)*e?"°. Finally:

Y(p)=pY(pe ™ + p,Y(p)e ™" +....+q, X (P)+q, X (p)e "™ +q, X (p)e " +....
You see that the shift operator e appears several times so people introduced the
replacement

7 = epTO

The z- transformation is nothing other than a Laplace transformation adapted to digital
systems. Why the first mathematician used the replacement with positive exponent is
unknown. For me this seems crazy because all shift terms have negative exponent. But this is
now absolutely unchangeable.

We write with the replacement Y(p) 2 Y(z) and X(p) = X(z) the following equation:
Y(2)=pY(@)*z ' +p,Y(2)*2 7 +.. + @, X (2) + q, X (2)* 2 + @, X (2)* 27 +.....

Equivalent to the complex transfer function F(p) we now can define a Z- transfer function
F(z) of a general digital filter:

_Y(2) qutqz+qz ..
X(z) 1-pz'-p,z7°—...

F(z)

Like in continuous filters the Diff. equation O-»—@ F(p) in digital filters the
algorithm O—+»—@ F(z). The symbol O-»—@ can be read as “corresponds with”.

The coefficients p and q describe the function. The biggest difference to continuous filters is
the huge advantage that you can realize and program a digital filter in one line of C-code! If
the coefficients are known, you write the algorithm

y(n)=p,yn-)+p,y(n—=2)+....+q,x(n) + g, x(n-1) + g, x(n - 2) +.....
in the C- program line
y=pl*ynl + p2*yn2 + q0*x + q1*xnl + q2*xn2

with the same principles and additional step as described in the previous PID- chapters. Send
y to the DAC, get x from the ADC and actualise the global variables each step with
yn2=ynl;ynl=y; xn2=xnl;xnl=x;

Example: The F(z) of the PID from the last exercise can be written as

2.8436—4.5021z" +1.7771z

Fz)= 1-z7"

file Control Systems II Complete Paper V1.2 .docx 26



CS II Complete Paper Prof. Dr. Bayerlein

2 Conversion of F(p) into F(z)

With the next four methods you can convert any continuous, analog filter into a digital one.
The last two methods are available as software tools in WindfC#. First, we will start with two
analytical methods. We will demonstrate each method with a very simple PT1- example. The
parameters are K=2, T = 0.5s and T = 0.1s.

7.2.1 Impulse response invariant method

A very simple technique to get this filter is described by the following: Take the desired

impulse response and sample with Ty. Than take the sample amplitudes as g- values. Our

example:

The unit impulse response of this PT1 is (see WB p.9) g(t)=(K/T) * e". With our numbers

we get g(t)=4/s * e"*. This is the response after a unit dirac impulse with area 1. We get the
following values:

4. 000

e TG q
3.000 0 4 QP
2.500 0.1 |3.27492301 | q
2000 0.2 |2.68128018 | gy
i 0.3 |2.19524654 | gs

= 0.4 | 1.79731586 | q.
00 0.5 | 1.47151776 | gs
L 0.6 | 1.20477685 | gg
0.000 . . . . { : : : : X

0.000 0.200 0.400 0.600 0.200 1.000

The filter F(z) is 4000 =

_ _ 3.500
F(2)=q,+qz "' +q,z7° +....... B
If you apply a digital unit impulse with 2500
bottom diagram to the input of this filter, you | 200

get exactly the same values at | 1500

)1( the output y, but now with the | 1.000
red steps. 0.500
T t 0.000

0 0.000 0.200 0.400 0.600 0.800 1.000

The same result you get with a method using F(z) — conversion tables like the table on the
following page.
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The problem with a filter of this type is the wrong DC- value. Especially in control systems
we need exact DC- values to avoid wrong results in control errors. The DC gain of analog
filter is K=2, the digital filter has a DC- gain of

F(z=1)= 4 = 22.0666, this is far away from 4.

1-0.8187307531

7.2.2 Step response invariant filter

This type of filter is used for process simulations and to calculate dead-beat — controllers. The
procedure is finally described by

HOF(Z):ZT_IZ{%F(p)} .

The notation Z{ } can be read as “Z- transformed function of” and can be realized with the Z-

transform table see above. So take your F(p), divide by p, find equivalent F(z) in table and
multiply this result with (z-1)/z. In our example we get with row number 6 and a=2

2 B w2 . (1_6—2TO)Z
z{m}_z{z p(2+p)}:>F(z)—2 =)

For the final filter function this has to be multiplied with (z-1)/z and we get with T(=0.1

1—e2™ 0.3625384938
H,F(z)=2* —— = )
z—e z—0.8187307531

This can not directly be converted into an algorithm because the F(z) must be normalized.
This means only z with negative exponents is allowed and the coefficient in the denominator
without a z must be 1. So we normalize this result by dividing by z. We get

0.3625384938z !
1-0.8187307531z 7"

This corresponds with the algorithm

y(n) = 0.8187307531* y(n —1) + 0.3625384938* x(n —1).

H,F(z) =

The unit step response of this filter is easily calculated with our table step by step and can

directly be compared with the values of the PT1-step response function h(t)=2(1-e™*?) :
n |t x(n) | y(n) h(t)=2(1-e""?)

0 |0 1 0 0

1 101 |1 0.3625384938 0.3625384938

2 102 |1 0.6593599078 0.6593599078

3 103 |1 0.9023767277 0.9023767277

4 104 |1 1.1013422072 1.1013422072

5 |05 |1 1.264241118 1.264241118

00 | o0 1 2 2

You can see that the values of the digital algorithm and the analog filter are absolutely
identical. That is the reason for the name “step response invariant filter”. The following

file Control Systems II Complete Paper V1.2 .docx 30



CS II Complete Paper Prof. Dr. Bayerlein

1
y(n) = % y(n=1)+ - x(n) = 0.833333333333y(n — 1) + 0.33333333333 x(n).

As aresult we get the step response in the following table and diagram:

n [ x(n) | y(n)

0 |1 |0.333333333333333 16
11 |0611111111111111 »
2 [1 | 0.842592592592592 o
3 [1 | 1.035493827160490

4 |1 |1.196244855967080 10
5 1 | 1.330204046639230 0.8
6 |1 | 1.441836705532690 06

el V7

0.2 /
0.0 . . . . . . ' . . .
00 01 02 03 04 0S 06 07 08 09 1.0

In the beginning, the steps are a little bit too high, in the end too low, but the DC- gain is
correct. F(z=1) is

Fi)=-—¢ -2

7.2.4 Filter with trapezoidal approach

A much better Taylor series of In(z) leads to the trapezoidal approach, in which p is replaced
by

L 20-7Y
T, (1+z7")

This is also known as “Boxer- Thaler transformation” or “Bilinear transformation”.

If we would do this replacement with the pure integrator, we get a result identical to a
replacement of the area by a sum of trapezoids. This is the reason for the name. Now apply
this to our PT1:

F(z) = K K _ . 20+zY) 204z 2 1+z”
L+pT | 21-z" . 1+z7+100-z7) 11-9z7 11, 9 . '
T,1+z" 11

Corresponding algorithm:

9 2 2 — — _
y(n) = Hy(n -+ Hx(n) + Hx(n —-1)=081y(n—-1)+018x(n)+018x(n—1).

X(n) | y(n)

1 [0.181818181818182
1 | 0.512396694214876
1 | 0.782870022539444
1 | 1.004166382077730

WIN |~ (OB
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' Define analog filter parameters conv. by Stephan Ludwig * ‘ E‘M
IFI
|z 8 ¢ x8 2R 2

BodePar | |Fitable | phitable | IFi+phitable |

Fitter Info
‘ *zk d wo 0 = real zeroes (n_r)
’ ‘p_rO 0 0 = complex zeroes (nc)
@ = real poles (p_r)
s complex poles {pc)
‘ z ’ DC-Gain
0 delay
Bode-Plot Parameter
lin/log Start frequency End frequency Curve Params
® In 0.01 100 4 1000 Phase-wrapping
@ log w-start w-end decades Points< 32767 ) No
0.00159154943 15.91549431 120 (") Phase wrap -180°
f-start f-end +max dB @ Phase wrap -270°
2 2
x=log w start x=log w end

Now you can close this window with the |F| - button and the magnitude curve of the bode plot
appears in the main window.

Main Page lm
EETENEER XXM

new 1000 Points

10

-10

-20

-3 -2 -1 0 1 2 3
=--0.01 w=10"x 100-->
Note that horizontal axis carries the log value of . To get  read the value x and calculate

®=10". With MS-Word I have added the asymptotical red straight lines. The crossing defines
the corner frequency at 0.3. @, = 10°2 = 1.995 = 1/ T. This gives the T- value of 0.5. OK?

A—>
Now we open the conversion box for digital filters with the D - button. You have to select
the method and the sampling time T.
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Definition of Digital Filter coefﬁc_im B

EEETEEE

mag-table I phase+able I mag*phase-table[

Bode-Plot Parameter

lin/log Start frequency End frequency Curve Params
' lin 0.01 100 4 1000 Phase-wrapping
@ log w-start w-end decades Points< 32767 @ No
0.00159154943 15.91549431 120 () Phase wrap -180°
I f-start f-end +max dB @ Phase wrap -270°
-2 2
|| x=log w start x=log w end

Compare the coefficients with the values in this paper. In this box I have used the form
by +bz '+..4b, 2" _

F(Z): 0 1_1 m_mzd

l+az +..+a,z

which is more common for digital filters, but in control systems the form

qQo+qz ' +..+q,z " -

l-pz'—..—p,z

is more common for controllers. The difference is the sign of the coefficients in the

denominator.

F(z)=

—-m

If we now leave with the |F|- button, the program draws the magnitude curve of this digital

filter drawn now in blue color.
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No File
Converted from analog Filter None Filter Info 1 = degree of F(z)
*FZ ai bi 0 delay n*To
> 1 0.333333333333333 0 continuous delay Td
coeff 1 |-0.833333333333333 0
0.1 s
design sampling time To
01 s
runtime sampling time To
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1000 Points

-20

-30

-3 -2 -1 0 1 2 3
=--0.01 w=10"x 200--=

The green curve is the new magnitude curve. It is the red curve shifted one octave right.

Real time Digital Fitter

- -
ADC-Cards Activate | [ Deactivate |
E no Card Selected ADC-module no card
Meilhaus ME2600
— USB FHL Orlowski o
NI traditional
| NIDAQmx
Hardware Simulation /I ADCon
NIcRI [¥] DAC on
=t [¥] Fitter on, if off, Sample&Hold
Meilhaus ME4660 [™] Impulse on DABon 1
L " B R

Chan AD  Chan DA

In the tool program WindfC# you can test this filter, if an ADC Card is available. First select
your card in the main menu, then open the digital filter window again and start the running
with click on the button “Activate”. Then connect signal generator with the selected AD input
and measure the output at DAC channel 0. If it is running, you see blue text which contains
actual time measurements of the T, and the calculation time, here actual about 12 ps.

You can additionally switch on a DA- 1 V -impulse at a second DA — channel 1. With a
scope, a real time measurement is possible. The period of pulse is Ty, the duration the
calculation time T..
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Example: Design the analogous PIDT1 with K.=1.726, Tny=0.275, Ty=0.165, st=4 and
Ty=0.005s= 5 ms. These values are resulting from PIDT1- design with above 2PT1- process
(K=2, T1=0.275s, T,=0.165s) of previous example calculated with simple FRA- design via
Regdelph.(process + delay of 0.0075s =3/2T, PID with polcomp. st=4, phase margin 60°).
This gives K.=1.726.

"FRA-Design converted by Michael Gack = Lf you ignore the desired stepdepth 4 and use design I with
5 ms sampling time you get

g v X
Process: 2PT1 + delay Process Algorithm
Ks 2 @ 2PT1 K 2 ideal
T2 0.165
l' : A T2 0165
‘ delay 0.0075 ¢ Fi2)
Tt 0 + 0.0075 (+3To/2)
Design-parameters
Damping of the closed loop Phir 60
h To 5 ms
d 061237
uve 0.087733
phr |60 ’ Controller 4 42.61909956 q0 207.160578
P
Speed of the closed loop POT1 Kr 5.984155351 ql -404.5285017
wd 11.365 1/s Pl TN 0275 q2 1974771266
st 4
@ PIDT1 Tv 0.165 p1 1
K 1.726]
DB{v) st 34
6.9039
DB(v+1)
OR

An analog PIDT1 has a starting impulse at controller output after reference step of K *st =
6.9039.

With the Design I — stepdepth 34, this gives K.=5.9842 with resulting q of qo=207.16, q:=-
404.53, q»=197.48, p;=1 and p,=0. This relates to a stepdepth of stj=stm.x=34. The starting
impulse at controller output after reference step has not the amplitude 6.904, but 207.16.

With the trapezoidal-Design IV you get the result: qp=6.668, q:-13.017, q,=6.3526,
p1=1.8857and p,= 0.8857. Now the starting impulse is only 6.668 instead of 6.908, but very
close to this value.

You now can choose the best fitting design for your application. Design IV with good Kst —
value should be the best choice.

All designs can be quickly computed with the program WindfC#.

Here are the screen shots:
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7.4.2 Final Overview of digital PID control algorithms

Ideal algorithm: delay time Tge; =To/2+T,

y(n) = py(n-1)+ p,y(n-2)+qyx,(n) +q,x,(n-1) + q,x,(n-2)
Real algorithm: delay time Tge =3T(/2

y(n)=p,y(n-1)+ p,y(n-2)+qox,(n-1) +q,x;(n-2) + g, X, (n-3)

Type F(p) di, pi, all missing qi,p;i=0 remarks
p K go=K non recurs.
P K qo=K, q;=-K, p;=1 recursive
PI Kr(1+pTn)/pTn qo=Kr(1+To/Tn), q1=-Kg, pi1=1 recursive
PD K(1+pTy) qo=K(1+Tv/Ty), q1=-KTy/Ty, st=1+Tvy/Ty non
recursive
PD K(1+pTv) qO:K(1+Tv/T0), qlz-K(ZTv/T0+1), qZ:KTv/To, recursive
p1:1, Stzl‘*‘Tv/To
PID K(1+pTp+1/pT; )= qo=K(1+Tp/To+To/T;), recursive
Ky(1+ pTy)(1+ pT,) 01=-K(2Tp/To+1), @u=KTp/To, p1=1, stx1+Ty/T, |Design I
pTy
PIDT1 |K(1+pTp+1/pT;)/(1+pTy), T T K,T recursive
(1+pTo+1/pTi )/(1+pT1) g0 =b(1+2 1421 <L recureve
Kp(+ pTy )+ pT)) T, T, 2T, (1+2T,/T,) |18 4
t
pTy(1+ pTy) ( T, T, T, T, j HpeOI®
tmax =1+Tv/To, =b(1-2—/)(1+2—)+(1+2—)(1-2—
s v/To q; =b| ( T X T ) +( T X T )
T T;
=b(1-2-5)(1-2-5),
q, = b( T X T )
4T /T,
1= 1/ ; d p,=1-p,
(1+2T/T;)
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inflection) construction, which also can be done automatically with a computer if the noise is

not too large.

Procedure:

1. If the process can be approximated with 2PT1 + delay time block, the step response
should look like this:

| | K T 1 T2 1 T
/ firdl valte 7 ] [
Step response of
2PTI+TZ K=fv / U,.
Inflection
f.— point
L / 1
u

2. Construction of the turn tangent. Determination of Tu and Tg. Using tool in WindfC#:
Menu “Identification” = “Reuter 2PT1-Identification”

{fC# - Tools for Control Systems - Prof. Dr. Bays

Actions | Identification | Realtime functions  Controller
= ‘ By time function LS i
| Reuter 2PT1- Identification | < |L

i R -
@ By Off-ine LS- method \ .

2-point controller Identification

141l DT1 with 2 nainte
Identification of a f
Type in Tu and Tg and get the 2PT1-model with the
resulting times T1, T2 and method of Reuter

sometimes delay.

7g 1

"Tu
T | Tu/Tg (01
Ta ‘10|
Flp)=K/(1+pT1)(1+pT2)
T1 46118796 Delay |0
T2 |2.818592
[ Sensitivity ] @ Addto report] [/ OK ] [ A Cancel J

file Control Systems II Complete Paper V1.2 .docx

44



CS II Complete Paper Prof. Dr. Bayerlein

N [ = H > - f
Now derive s to the single parameters:
"\— /
With the abbreviations
H
and
. ;
e,
! V 4 | K

You can write the M equations with matrices:

CI1I A, Ay Ay A - A1l
CIQ Ay Ay Ay || A - Aé
Cblw Ay, Ay NAy — Azlvz

The q; and the A;; — values can be calculated with the starting values of A and the measured
points. The A; are the new estimated parameters and the A;' are the starting values or old
parameters. The above matric equation can be solved:

-1

A A1l A, Ay Ay C[1l

A, Aé Ay Ay Ay q;
= +

Ay Azlw Ay Ay Q1lv1

So a matric — Inversion is necessary, but not a problem, because several algorithms are
available since years.

Convergence is possible (the new sum of squares with the new parameters is smaller than the
previous one), if starting values are near to the valley (minimum).

If the function f(x) is a parabolic function like f(x) = A1+A2X+A3X2+A4X3+ .... then
convergence is guaranteed in one step.

Example:

A PT1- step response is measured in the file SRtestidLS.sim. The content of this file is with a
blank separator:
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Name F(P)*eXP('pTdel) f(t)+Uoff
PT1 Fipy- K y=K[1-exp(~1/T)|
14 oI
IT1 K/p(1+1T]
121+ 72) KT(e"/T+i—1j
T
PT2.d<1 K — X KexP(_d[/T)-sin V1-d* fr D
14+ 2dTp+ T p* i T | >
(Do=1/T
. 1-d*
d
2PT1 = y
K 14 1 (Z;e t/Tl—IZe t/Tl)
(1+Zp)1+ Tp) = '
Poly A y=a+bx+cx’ +d’ +ext + i’ + gx°
Exp / y =K, exp(K,x) + K,
Hyperbel 1 |./ ,_a+c*x+d*x3
1+b*x
Hyperbel 2 |./. V_a+d*x+e*x2
T 14b*x+c*x’
PIDT1 _ 1+ pT; + pT, t-T, T 1
F(p)=K—1Z1" 2D " Lo | e g Pl e
(p) L+ pT, h(t) K{ T, r1 (L 14 TIJexp( t/T,)}
U, iz .
DLs FO) == —gg o | () = —=20_ g~ gy ogt
P l+=p+—p \/72
@o @o 1_d
o = gVl - d*

8.2.2 Example for Controller design purpose

Now a 3PT1- process should be identified via step response and used to design a controller,
which is tested at the original 3PT1- Process. The data of the 3 PT1 are K=3.1415, T1=1.5,
T2=0.6 andT3=0.7. The step response is created with program Regdelph and is stored in the
file 3pt1SA_10sec.sim. This file can be loaded with the identification module in WindfC# via
menu “Identification >time function LS”. The identification should be set to 2PT1, try Init-
Button, set Number of Parmeters to 5 and then you should get the following result:
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toa — L t,
X = BK exp(—Mj {exp(—ﬁj — 1}
L L

The function x3(t) has a minimum at ty;, with the value

= t
X = BKS1— exp(— M} 1- exp(o—ffj + exp(tﬂj .
T T L

Herr you have two equations with the three unknowns BK, T; und T,. Now divide Xpax by Xmin
and BK can be reduced and you have one equation with two unknowns T; and T,.

Start with T, =0 (no delay) and look for a solution without delay (2PT1-process). Solve the

X tmin_toff - t . —t
T) = 2max | aypl —exp| —-min | _ axp| — —min on |49
o {p( el -t o] }
t -t
_exp _max—off +exp _tmﬁ :0
T L

equation g(T;)=0 e.g. with nested intervals. If there is no solution add a delay.

See following numerical example: toff = 1.3863, tmax = 2.1972, ton = 3.5835, tmin =
3.7741, xmax = 1.3333, xmin = 0.9697. Then the function g(T;) hast the displayed curve:

0.30 You see two zeros at T;=1 and T»,=2.
[——=cvonTisim -
. Because both time constants have
absolut the same importance, this
0204 gives the solution for both time
0.15 | constants. The solution is difficult, if
oo both time constants have nearly the
same value. If the original process has
0.05 | mor than two time constants,
— sometimes no solution is possible,
g(T;) lays completely over the zero-
e o . > 5 . ‘ ¢  axis. Then you have to add a delay.

Zeit To look for the zeroes use nested
intervals. This always converges, if
the starting values are on the left and right side of a zero. It is helpful to look first for the
minimum of g(T). If this value is negative: OK, if not add a delay. Derive the equation g(T1).
With the short expressions a=tmin-toff, B=tmin, C=tmin-ton, d=tmax-tofs UNd €=tpyax Und ea=exp(-
a/T;), eb=exp(-b/T7) usw. und A=Xax/Xmin

g(T1)= A(ea-eb-ect+1)-ed+ee und

g’(T1)= (-1/T1%)* A(a*ea-b*eb-c*ec)-d*ed+e*ee,

The factor (-1/T;?) has no influence tot he zero of g’.
Use now following order:

1. Look for a starting Ta, so that g’(Ta)<0

2. Look for an ending Te, so that g’(Te)>0

3. Look for Tm with g’(Tm)=0 using nested intervals.

4. Look for a new Ta>Tm, so that g(Ta)>0
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A controller design with these values gives the following numbers and RSR:

1.0

0.80 ;
' Controller: PIDT1

060 ; K 040439 LT
5 Tn 14273 s

0.40 : Tv 11868 gr---meesbeee
s 5

020  f------ ---------- R REGREEEEEE

0.0 '

0.0 1.0 2.0 3.0 40 5.0 6.0 7.0 8.0 9.0

Red: Original controller
Green: Step response identification
Blue: Two-Point-Controller identification.

8.4 Identification with program IDA.exe

This method has the advantage to identify a free transfer function F(p) with any input and the
responding output. Input and output signals must start from constant signals (zero initial
conditions). Disadvantage: The source code is not available, The program is a commercial
one from a German Engineering office Kahlert (www.kahlert.com). The official version is
Winfact8, FH-Liibeck version is 6.

I have prepared two versions of signals around the 3PT1- process. First with a reference step
response together with the Two-Point-controller the input signal of the process (this is the
output of the controller) and output signal of the process are stored in the both files
zpr3PTlin.sim and zpr3PT1out.sim. A second version uses one of the PIDT1- controller, a
reference step response has produced the both signals stored in the files idaPIDprocessin.sim
and idaPIDprocessOut.sim.

Now start IDA.exe. The menu language is German. Load input and output files with menu
“Datei = Eingangssignal x(t)” and “Datei = Ausgangssignal y(t)”. The resulting window
with the files zpr3PT1.... looks like this:

. . Zahler Nenner
Now in menu “Datei =

Steuerparameter” set the “Nennergrad « | Grad 0 _|4| Grad: |3 _|4|

= Denominator-degree” to 4 and ‘ ‘
checkBox “n anpassen”. Close this R 116756526 =l a0y [1.64027455 -]
window and start [ a1): |4.524276224
“approximation”  Nermergadni [¢ ] [0 a(2): [3.813814435
. Each click on [ o f
“Weiter”increase

* nanpasser |0 - [ |
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With the files idaPIDprocess the following data can be calculated:

frequency response polynom

(74 (73
sCon (—»(Poly D »*

r, block no 6

II 0.4184

I | 1.4585

S limi€ T [1.00000E +30
 OK X cancel |

I | 0.8448

I | 5.0000

You can see only very small differences. The three reference step responses (Original, zpr-
data and PID data) are displayed in the following picture (there are really three curves!).

[ 0 0 0 0 [ [ [
11 e femn s e e e maaaaet s fmmnsanaens -
' ' ' ' ' ' '

---------- B il Sl e i Sl Tl il Sl

I fem e ; / ---------- SRR : :
' ' ' ' ' ' ' '

---------- B e L I i S e

Y R T—— & S— " A— N S L I—— R A :
i H H . ' i ' i

080  fo-e-ee-e- LE— RO LR RN LS R I A
i H H . ' i : i

' ' ' ' ' ' ' '

070  lececeeee- e R LI e LS S A B
' ' ' ' ' ' ' '

' ' ' ' ' ' ' '

060  f-----e-e- Fa e Fmmmn e b A g o -
i H H . ' i i i

050  f-----n-n-d s i EECTEEEES P h EECEETEEEE it CECECRREEE -
i H H . ' i i i

' ' ' ' ' ' ' '

040  fee-eeoe- L] S SO Seemsaiai S  H— emeenmaen O -
' ' ' ' ' ' '

' ' ' ' ' ' '

030  feeeeeen- A — R N LS S
' ' ' ' ' ' ' '

i H . ' ' i : i

020  pe---em=of-- - ————————— - A m e ————— e —————— D e mmmm————-——r—
i H H . . i i i

' ' ' ' ' ' ' '

010  pe--=qfe-=-- dem e ———— R D B D e m - —————— P -
i H H . ' i i :

' ' ' ' ' ' ' '

0.0 ' i i 0 . \ \ i
' ' ' ' ' ' ' '

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Last step is the comparison of the three time constants. For this purpose the transfer function
F(p) has to be converted into a time-constant form usind tool Windfc#- You can load the ufk-
files with the ufk- button, then click on button “Factorise” and you get the following results,
compared with the original time constants T1=1,5, T2=0.7 and T3=0.6.

| Tord [Tord You can see, that difference in control system
1.4315258 1.3370105 behavior is small in spite of the differences in
0.78238697 L time constants are big, more than 20%-

0.54432049 0.4806527
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Identification ai bi
oo oo O v o (R
[ Optimize ] 1 |-2.92684446939893 2.9969720243217E-05
2 |2.8553538193737 6.71780321681581E-06
LS-Sum |0.0048212075 LS-Sum % |0.00067574433 ~
3 |-0.928457652330407 -1.17841167934785E-08
x(n)=a1%x(n-1)}+a2%(n-2)+...+b0xr{n-d)+b 1*xr{n-1-d)...

Curve | ASCIlin Data | ASCIl out Data

llE@l@@llll@@.@@@ U

AP

ORI B NN 00— = NI (NN~ ONS

COOO0COO000 ————aaaaa

o

1 2 3 4 5 6 7 8 9 10 1"

a1=-2.9268 a2=2.8554 a3=-0.9285 b0=0 b1=2.997E-05 b2=6.7178E-06 b3=-1.1784E-08 m=2 K=3.13530982862841 T1=0 T2=0

Leg

EEN
=53

These both results can be compared as bode plot with the original 3PT1- bodeplot: This
results in three nearby identic curves:

EELTENEER LEEME [

idLSoffoyPID 1000 Points Legend

20, M Curvel
101 B Cuve?

-3 -2 -1 0 1 2 3

=--0.01 w=10"x 100-->=

This identification should be tested now by a new F(z) with free ai and bi and an arbitrary
signal. The output generator of an F(z) with any input is a module in Windfc# behind the
button with the step response icon.

Some Tools ADCE
i | s |

01 W Curve 3
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This module is prepared to use this method in a realtime- measurement with the controller-
module. Open either “Real-Time- Controller 2 Student control Box” or “Real-Time-
Controller 2 Adaptive Advanced controller”.

Example: First go to menu “ADC-Cards” and select “->Hardware simulation”, then select any
model and close this window. Open “Real-Time- Controller = Student control Box”. Start a
reference step response with buttons RUN and RSR, mark Xr- Checkbox and leave with

green arrow. \ //

Draw last cv

Displ

10 24| To(ms) @]
11100 [2] points 125
Max Points= 3000 £ w

After this open menu “identification = by Offline LS — method” and push “Get RTC- Data”
— Button. Then both curves (input and output of the realtime- process) can be seen in the
display. Rest is already described. Result should be identical with the selected model in the
hardware simulation.

Theory:
A general process has the transfer function

b,+bz'+..+b z "
F(Z)= 0 171 m — Z.d
l1+a,z +....+a,z

With m is the degree of the function and d is a delay. The unknowns are the a; and b;. A PTn-
process has by=0. This gives the algorithm (output y and input u)

y(k) =- a;y(k-1) - ...- amy(k-m) + bo u(k-d) + bju(k-d-1) - ... - bp u(k-d-m).
The same equation one step before:
y(k-1) =- a;y(k-2) - ...- any(k-m-1) + by u(k-d-1) + bju(k-d-2) - ... - by u(k-d-m-1).

No do this as long there are as many equations as unknowns. This equation system looks like
this:
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Simulated Processes DAC Qis Input ADC Ois

) Define K/ T
P
, K 2
D 1T
@ 2PT1 n (01
) PT2 T2 002

-

Then design controllers with menu “Controller Design = Design of digital PIDT1+div”,
select the same process with same parameters and leave with green arrow button.

Activate identification on “Real-Time- Controller 2> Adaptive Advanced controller” on the
page “Adaptive parameters”:

[] Adaption Active

{identification Active:

Follow the settings below on page Parameters:

Display
B8 Run 10 2] Toims) =

@ []1 1100 || points O x
Max Points= 3000 w

Version Controller Type
@ Prof @ P © PI ) PIAWU ) DB(V
) Stud @) PDT1  © PIDT1 ) PIDTTAWU () DBV

Curve | Parameters iAdaptive Parameters I Last X-Values | Last Xr-Values I Lz

Signal Parameter

Amp| 1 Uoff 0 Pulse 50
Time Function Signal AMP Initial Conditions
at
(7) Step autostop @ W © X=0
impuls autostop o Z1 () Xr=Xroff
@ req continous ® 22 @ Xcontrolled to Uoff br
Input at ADC () Xcontrolled to Uoff br

() Xcontrolled by choos

Activate Realtime Curve with
Realtime Curve

and set the amplitude scale U- range to 0 — 2V.
= Now play with the different controllers and change K and T —values in the
= (=] simulation with the buttons to double or half the values and see the reaction of
1 [=) E] the identification.
K2

U+ange
0Vbis 2V~
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9 Special Digital Controllers

9.1 Preparation step response invariant Function

To design a dead-beat controller with known F(p) of the process first you have to calculate the
step response invariant filter function HyF(z) of the process. This can be done with the
following mechanism:

w®(4) x(¢) . x*r¢)
| He F(p) O

]

-p%
HoF(2) = z[H.(P).F(P)] - Z{”%J -F{p)}
e < 2| B - ] a2 2]

HoFte) = (4-27)-Z [ 3-Fle)f

HoF(e) = &4 . Z [ % -Fip)]

So in other words: Take the process F(p), multiply with 1/p, go to the Z- transform — look up
table (see page 27), take the F(z) and multiply this function with (z-1)/z. Finally normalize the
result, so that the coefficient in the denominator without a z is one.

Example:
Bcﬁ’picl: o 1 1s . -
«r) e ‘. L x"t¢)
- X&) _ z-1. !
HeFiz) Uts) IT Z{% i+ P

a-1 fl-e-r.)i

€ lt;- WNe-e )

Z-e

far To =Q5s gilf

Ho Flz) = 41—-060F _ Q393
Z - 0607 & -0,60¥

9.2 Calculation of HoF(z) from F(p) with simple standard blocks

For the simple transfer blocks PT1, IT1, PT2 and 2PT1 the coefficients of the z -transfer
function with hold block can easily be derived. HoF(z) has the following form:
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w xd xR y

%%3? E®) E®)

Is the general HoF(z) written as
b, +bz ' +..+b z "
H F(z)=— 2% n? i)

m

l+az ' +a,z % +..+a,z" Xg
and the resulting DBC described with the following function:
(ideal version d=0):
Qo +q,z " +..+q,z "

I =) — = X& ith the algorithm
1-pz- -p,z° —...—p,z X,

Xg (n) = D1 Xg (n-1)+ D)y Xg (n-2)+..+ qoXq (n)+ a,X4 (n-1)+ q,X4 (n-2)+...

FR(Z):

or the real version (d=1):

quz ' +qz7 +..+q,z "
1-pz?-pyz°—..—p,z"
Xp(n) = pxa(n=2)+ p,xy(n=-3)+...+qyx;,(n-1)+q,x;,(n—2)+ q,x,(n-3) +...

1

F,(z)= — Wwith the algorithm

then you can calculate the q and p coefficients simply with the following equations:

q, =1/(b, +b, +...+b,) and

qi1=qo*ai, u=qo*az, qz=qp*as, .....and
P1=qo*b1, p2=qo*b2, p3=qo*bs, .....

In the above example the coefficients become to
b;=0.3935 and a;=-0.6065 and then

qo=1/b1=2.541, q;= - 1.541 and p;=1.
The ideal algorithm is
Xp(n)=xz(n-1)+2.541x, (n) —1.541x,(n-1)

and the real:
Xp(n)=xz(n-2)+2.541x,(n-1) -1.541x, (n - 2)

9.3.1 The Dead Beat version DB(v+1)

A second version of Dead beat controller is the DB(v+1). This controller has the advantage of

a smaller starting impulse. The large q, is separated on two smaller qopew, but this algorithm

takes one step more. It has the settling time of (m+1)*T, with the ideal and (m+2)T, with the

real algorithm.
The calculation of the p; and q; looks like this:
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you can find a Dead-Beat-controller with the 'real" algorithm
Xg(n) =Xz (n=2)+qoX, (n-1) + q,x4(n-2)

which has a delay time of T that is added immediately to the process for the controller-
design. The values for q results in:

1 —exp(-T, /T) 1

d q, = =—-q, .
K(1-exp(-T, / T)) e K(l1-exp(-T,/T)) K @

q, =
Numerical example: With K=1 and T=5T follows qy=5.5161 and q;=-4.5161.

9.4.2 Dead-Beat - controller for a 2PT1 - process

For a 2PT1 - process with the transfer function

K
) = e )

you can find a Dead-Beat-controller with the 'real’ algorithm

Xg(n) = pixp(n=2)+ pyXp(n=3)+qox, (n-1) + q,x;,(n-2) + q,x,(n-3)
which again has a delay time of T that is added immediately to the process for the controller-
design. The values for q come out to:

o = exp(T/ T)exp(T, / T,)

" K(1-exp(T, / T))(1-exp(T, / T;))

g =— exp(1y / T}) +exp(T, / T,)

' K(1—exp(Ty / T))(1-exp(T, / T,))
1

q, =

K(1-exp(T,/ T))(1-exp(T, / T,)) ’

_ T(1—exp(T, /T,))-T,(1—exp(T, /T,))
(T1 - Tz )(1 - eXP(To /Tl))(l - eXP(To /Tz ))

and p, + p, =1.

2 =
Numerical example: With K=2 and T;=5T, and T,=3T, follows

0=9.7306, q;=-14.9391, q,=5.7084, p,=0.5443 and p,=0.4557.

9.4.3 Dead-Beat - controller for a IT1 - process

For an IT1 - process with the transfer function
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Now Dead- beat controller with standard design (s.a.) real algorithm, degree m=1:

F.(2)= Y(z)  qz'+qzi+..+q,z" quzl+qz”
‘ X,(2) 1-pz°-p,z°—..=p,z"" 1-pz”
The ps and gs :

Qo =1/(b, +b, +...+b ) =1/b =1.8388852 and

gi1=qo*a;=- 1.50555185 and p;=qp*b;=1. We get the transfer function of the DB-controller

Y(z) 1.8388852z7' —1.505551852z"

FR(Z)sz(z)_ 1-2z72

with the corresponding algorithm

y(n) = y(n—2)+1.8388852x, (n—1) —1.505551852x,, (n — 2) .

Now the drawings with reference step w=2:

n | tins | w(n) | x(n)=0.8187..x(n-1)+0.5438..y(n-1) | x4(n) | y(n)=see above
010 2 0 2 0
11]0.1 2 0 2 3.67777
2 10.2 2 0.5438*3.6777=2.0000000 0 1.839*2-1.5056*2=0.66666
3103 2 0.8187*2+0.5438*0.66666=2.0000 | 0 3.6777-1.506*2=0.66666
4104 2 Dito =2 0 0.66666666
3.677 w=2
Xt —
yt) —
2
0.666
I l | >
To 2Ty 3 Ty 4T, g

Description of the function in words: Because it is a real function the first cycle is empty,
nothing happens. Then the dead beat controller throws out a first pulse with an amplitude of
3.677. This value is exactly the amout which is necessary to move the PT1- output in one T
to the desired value 2. Here’s the proof: The PT1- step response has the function

x(t) =3.6777*3*(1—-e"'")=11.0331*(1-e*"*°) =11.0331*0.181269 = 2.0000

at time t=T this is exactly 2. After this “pull- up-step” the controller switches to value
0.66666, which is necessary to hold the output of the PT1 at 2 similar to trickle charging or
maintenance charging of accumulators because 3*0.6666=2. So as predicted after 2 steps in a
first order process the reference step reaches the desired value.

This behaviour can be compared with kind to boil potatoes with experienced users. First,
switch to full power and in the right moment switch back to the power which maintains the
boiling temperature.
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Hardware Simulator
Manual Control | Simulated Process \

Simulated Processes DAC Ois Input ADC 0is Output
Define K/ T Resulting F(z)

O rm = ‘ of F T
ot P 1 R e - 11 ) L —
® 2PT1 T1 |01 % E] ai bi

o  |n 3 = » o N
: = 1 -1.7235682 0.018111834
O Fa ] Calc Fz) >>> | 2 074081822 0.016388265

Limitation
Enable Limit

Synchron to Controller 20 4| Toinms

Note, that this is the process function with output x and input y.

Now Dead- beat controller with standard design, ideal algorithm and degree m=2:

Y(2) qyz +qz ' +..+q,z " q,+q,z" +q,z7°
Fr(2) = = ] ) T ) )

X4(2z) 1-pz- —-p,z°—..—p,z 1-pz" —p,z
The ps and gs :

qo =1/(by +b, +...+b, ) =1/(b, +b,) = 28.9855 and

qi1=qo*a;=- 49.9524 and p;=qy*b;=0.524986.
q2=Qqo*a;=21.4729 and p,=qp*b,=0.475014.
Note that p;+p,=1! Finally we get the transfer function of the DB-controller

Y(z) _ 28.9855-49.9524z7" +21.4729z7°
X,(2) 1-0.524986z ' —0.475014z°

F,(z)= with the corresponding algorithm
y(n) =0.5250y(n-1)+0.4750y(n — 2) + 28.99x, (n) —49.95x, (n —1) + 21.47x,(n — 2) . With

4 significant digits. Compare the WindfC#- results, in the main menu “Controller-Design” the
Item “Design of digital PI/PIDT1+div” has following results (part of the window):

qi pi
2 |-49.958354 0.524373919
21.47293 0.47502081
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A

28.99

w=2 —
x(t) ——
yo —

i

Z %
1 /
/ 0.5
| |
]

o 2l 3Ty 4T

At

v

-20.97

The controller starts first with a strong pull up impulse, then it has to brake with a strong
negative controller output. Not all actuators can work with negative output signals. A Motor —
actuator must be able to brake, a temperature controller must be able to cool!

See next page simulation of this example with WindfC#:

1.200
1.100
1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100

0.000 . . . . . .
-0.100 0.000 0.100 0.200 0.300 0.400 0.500 0.600

Black curve DB- controller here with real algorithm. After 3 * T, desired value is reached.
Blue curve is RSR of a PIDT1 with 60° phase margin, pole compensation. Red curve is the
RSR of same Dead-beat but now with limitation to + and — 10 V. Result is worse than PID.

9.6 Orientation Controller

This type is developed in 1991 at TU Chemnitz (Ehrlicher).
File : Orientierungsregler Ehrlich TU Chemnitz1.pdf
The advantages compared with Dead beat controller are:
1. No problems with limited controller outputs
2. No problems with unstable processes
3. Simple design from H,F(z), so online adaptive mode possible

The algorithm:
Note: now different letters for the signals:
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hvkl = a[l] * a[l] - a[2]

hl = b[1l] + b[2] + b[3] - a[l] * (b[1] + b[2] - a[l] * b[1]) - a[2] * b[1

if (hl == 0) £3 = 1000; else £f3 = 1.0 / hl;

for (1 = 1; 1i <= m; i++) q[i] = (a[i + 2] - a[l] * a[1 + 1] + hvkl * a[i]) * £3;
for (1 = 2; 1 <= m; i++) p[i] = (b[1i + 2] - a[l] * b[i + 1] + hvkl * b[i]) * f3;|

and run each Ty:

void xr_or(ref double uk, double[] hr, double[] gr, double[] u, ref
double[] y, int m, double[] teta, double wk, double f31, double yk)
{ /*0rientierungsregler only for real mode*/
double ck, SumB, hvil, hv2, xprae;
int 1i;
y[0] = yk;
SumB = 0; hv2 = 0;
for (1 =1; 1 <= m; i++) SumB = SumB + teta[i + m + 1];
for (1 =1; i <= m; i++) hv2 = hv2+teta[i]*y[i]-teta[i+m+1] * u[i + 1];
if (SumB == 0) ck = 10 * limitation; else ck = (yk + hv2) / SumB;
if (ck > 10 * limitation) ck 10 * limitation;
if (ck < -10 * limit_low) ck -10 * limit_low;
Xprae = 0;
for (i=1;i<=m;i++) xprae=xprae+teta[i+m+1]*(u[i]-ck)-teta[i] * y[i-1];
hvi = gr[1] * xprae;
for (i=2;i<=m;i++) hvl=hvi-hr[i] * (u[i - 1] - ck) + gr[i] * y[i - 2];
uk = f31 * wk - ck + hvi;
for (1 =m; i >0; i--) y[i] = y[1 - 1];

}

uk is output of new controller value

hr=pr and gr=qr are the controller coefficients
u[] are the old controller outputs

yl[] are the old process outputs

m degree

teta the a; and b; in one vector

wk the actual desired value

£31 the f3 value

yk the actual process output.

9.7 PFC- Predictive Functional Control

See Book: Predictive Functional Control - Principles and Industrial Applications - Richalet,
O’Donovan.
See German diploma thesis Graeper: file: DA Graeper PFC.pdf

The idea is 20 years old, but has not resettled in daily control system design. The “father” of
this idea is the French scientist Richalet. I was on a two days presentation in FH Ko6ln and was
impressed by this idea. This method has great success in chemical industry, if processes are
nonlinear and complicated.

The application engineers give this method more future than state space design, which is
normally used in similar cases.

The idea: Because computers and processors become more powerful it should be possible to
use the knowledge of the model in each step.

PID and Dead- Beat controllers use the knowledge only in the design phase, after design in
the runtime phase model is not used, controller parameters are constant.
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Now PFC design:
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Legend

l XPIDAWL
H XPIAWU
H XPIDT1
B XDB(\V)

0
0 01 02 03 04050607 0809 1 111213 14 15 16 1.7 1.8 19 2

Let the starting point be x(n)=xy(n)= 0. Desired value is one. With model function a
prediction can be made:

x,,(n+1)=b,y(n)—a,x(n) = 0.038065 y(n) + 0.90484x(n)
This can be used to calculate the necessary controller output y(n) to get the desired value w=1
from any starting point x(n):
x,(n+1)=by(n)—a,x(n)=w

In simple PT1- case the solution is simple:

() = w+a,x(n)
by
The first controller output value and following steps are:
n | y(n) y(n) limited Xm(N)
0 |26.27 10 0
1 [17.22 10 0.38065
2 19.035 9.035 0.72508
3 |25 2.5 1
4 |25 2.5 1

If there is no limitation, this controller behaves like a DB, the first impulse is the g, of the
DBC. But with limitation this PFC has no overshoot, in opposite to the DBC:

11
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If process is a 2PT1, then the design has to be changed, because with one positive impulse the
desired value cannot be reached, there must be a breaking step. So the time for the inflection
point t,, is calculated of the step response of the model:

TT. T
w Tl _ T2 ( T2 )
Now the number of the steps to this inflection point is calculated in the “horizon”:

h=t,,/Ty with truncated decimals (h is integer)

There are two versions of 2 PT1 programmed by Mr. Graeper and a third

) 2PT1-Modell

) developed by myself. If a change is made in the two parameters h and
) 2PTTMedel 2 gesired settling time Tr, you must click on button “Activate changes”.
() 2PT1 Modell 3

PFC-Parameter
h: 1 =

>

Tr: 0040 (£
Activate changes

Play with the different models. My third version automatically adapt to ideal / real version,
the both two versions are only valid in ideal mode.

Example: 2PT1 model with K=0.4, T;=0.1s T,=0.02s and T¢=10ms. Ideal algorithms
First the conventional solutions:

ai bi qi pi
1 |-1.5113681 0.008234357 2 |-100.90975 0.54978462
2 |0.54881164 0.0067430664 | 36.642554 0.45021538

RTC- Data 100 Point:

Pi is slow, PIDT1 and OR OK, but DB — controllers with high overshoot.
Now the PFC together with PIDT1:

1st version with h=4 and Tr=30 ms

2nd version with h=3 and Tr=10 ms

3" version with h=2, Tr no influence
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X, (k)=—ax(k-1)—a,x(k—2)+b,y'(k-=1)+b,y'(k-2)

x,, (k) =—a,x(k-1)—a,x(k—-2)+b,y(k —2)+b,y(k - 3)

X, (k+1) =-a,x(k)—a,x(k—=1)+b,y(k -=1) + b, y(k - 32)

X, (k+2)=-a,x,(k+1)—a,x(k)+by(k)+b,y(k-1) =w,,,

Last equation solved to y(k) is
Y(K) = (W,e,, +a,x,, (k+1) + a,x(k) = b,y(k = 1)/ b,

In C — program:

xmodPred = -fal * fax - fa2 * valold + fbl * fYrold + fb2 * fYrold2;
wnew = xmodPred + (w - xmodPred) / iH;
fYr = (wnew + fal * xmodPred + fa2 * xmodpredold - fb2 * fYr) / fb1;

Results:
Again 2PT1 model with K=0.4, T1=0.1s T,=0.02s and T,=10ms. With actuator limit +-10V.

Blue: h=1
1.1 Red : h=2
Green: h=3

0.91
0.81
0.71
0.51
0.51
0.4 1 /
0.31 /

02{ /

01{ /

In real case I have got exactly the same
curves one To shift right.

-0.1 .
0 0.1

But if I deactivate the actuator limitations, following results happen:

11

1.
0.9
0.8
0.7
0.6
051
0.4
03]/,
021}/
014/

ot 770 001 002 003 004 005 0.06 007 0.08 009 0.1

0.1 T T r + . v " - -
0 001 002 003 0.04 005 006 0.07 0.08 009 (

The process outputs seemed OK, but the controller outputs have strong oscillations (see blue
right curve in the case of h=1).
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9.7.2 Theory of 4" version 2" order PFC

Now I want to introduce a fourth version with 2™ order processes. The idea is similar to Dead
Beat. In a second order process one step is not sufficient to reach the final value, a Dead Beat
controller — the fastest possible one — needs two steps. So following equations are valid:

Process equation is used to predict future values (k+1, k+2 ...):x(k+2) should

reach the desired value w and all further x(k+x) too. 2PT1-Model 1

HF(z)= blz*l - b2Z72 = X(2) _ output 2|'°T1-Model 2
1+ 012’1 + (122’2 Y(2) input F&z) degree 2

Equ(l): x(k)=-a,x(k-1)—a,x(k—-2)+b,y(k—-1)+b,y(k-2) ® Fiz)degree 2V2

Equ(2): x,(k+1)=-a,x(k)—a,x(k—-1)+b,y(k)+b,y(k-1)

Equ(3): x(k+2)=-a,x,(k+1)—a,x(k)+by(k+1)+b,y(k}=w
Equ(4): x(k+3)=-ax(k+2)—a,x(k+1)+b,y(k+2)+b,y(k+1)=w
Equ(5): x(k+4)=—-a,x(k+3)—a,x(k+2)+by(k+3)+b,y(k+2)=w

In Equ(1) all values are known and measured. In Equ(2) the value x,(k+1) is a predicted
output of the process and unknown. y(k) is the unknown new PFC- controller output. In
Equ(3) x(k+2) should reach the desired value w. A third unknown y(k+1) appears in this
equation. In Equ(4) y(k+2) is the value which holds the final value and can be called y(k+2) =
y(©). x(k+2) =w. So Equ(4) and Equ(5) can be rewritten as

Equ(4): w=—-aw-a,x,,(k+1)+b,y(©)+b,y(k+1)

Equ(5): x(k+4)=w=-aw-a,w+b,y(®)+b,y(»)

The solution of Equ(5) gives the final value of controller output to hold the desired value at
process output, which is w/K, if K is the process DC — gain.

1
Equ(6): y() = WM
b, +b,

Now we have with Equ(2), Equ(3) and Equ(4) three equations with three unknowns, which
can be solved:

Equ(2): : —a,x(k) —a,x(k —1) + blm+ b,y(k —1)

Equ(3): w=—ax, (k+1)-a,x(k)+by(k +1)+b,y(k)

Equ(4): w=-aw-— azlxm (k+1)+b,y()+b, ﬂi(k +1)

With the starting values z; und z,

Equ(7): z, =—a,x(k)—a,x(k-1)+b,y(k -1)
Equ(8): z, =-a,x(k)
I got the following solutions:

b, [bz (W_ Z, + b2Z1/b1)_ bl(W+ a,w— bJ(OO))]
b; —a,bb, +a,b;
Equ(10): y(k)=(x, (k+1)—z,)/b,

Equ(®9): x,(k+1)=

Equ(11): y(k +1) = (w+a,x,, (k +1) +z, —b,y(k))/b,
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Equ(8d): z, =-a,x(k +1)
I got the following solutions:

[bz (W_ Z, + bzzl/bl)_ bl(W+ aw- b1)’(°°))]
b; —a,bb, +a,b;
Equ(10d): y(k)= (xm (k+2)— zl)/b1

Equ(9d): x, (k+2)= b,

Equ(11d): y(k+1)=(w+a,x, (k +2) +z, —b,y(k))/b,
Resulting reference step responses with one To — delay:
RTC- Data 40 Points Legende

W XPIDAW
W XDB(V)
H XPFC

9.8 PFC — Controller in tool program Windfc#

Here you can find some hints to use and test these PFC- controllers in my tool program
Windfc# starting with version nb. 7.4.17. the source code is also published, so it should be
easy to implement these controllers in other hardware combinations.

= (5] WINDF7CSharp

- A You can find the PFC- source in the file
- (=4 Properties

“FormAdaptiveControl.cs”. the sour e runs under MS
Studio 2008 or MS Studio 2010.

@) [« References

@ 1 AD-Filter

@ 1 ChartTools

@ 1 ControllerDesign
@ [ Datatoolcoll

@ 1 Hardwaretools

@ [ Identification

@ [ Init

B |7 RealTimeController

@ -] FormDigitek.cs

e
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-

.Cor(oller Design convited by‘DameI Binias and Maxirgilian Beckmann -

— P —

3 BK ‘ A Cancel ’ ‘ Add to report ‘ &l Controller-Design
Process Algorithm
@ 2PT1 K 04 ) ideal ’
0 m T 01 © redl
AR T2 002
© F@)
Tt 0 + 0.015 (+3To/2)
Phir 60
To 10 ms
[ |

Now open the window with the realtime- controllers with menu “Realtime functions -
Adaptive Advanced Controller”.
trol Systems - Prof. Dr. Bayerlein

ation | Realtime functions ‘ Controller Design ¢
-. %( Student Control Box L
Data logger DT9062
— Inverted xy- pendulum —
Crane Model MUK

Active Digital RT-Filter

H | Adaptive Advanced Controller

CST Pendulum
||3C11vn-l-v-v'mﬁvrn—

Here you can select different types of controllers.

Controller Type
@ P © PI ) PIAWU ) DB(V) ® OR (*) Cascaded (") Free PID () Fuzzy Con

() PDT1 O PIDT1T ) PIDTTAWU ) DB(V+#1) () PFC () 2P<on Edit free PID

This module can now calculate a single reference step response (RSR) or a continuous
response on a square reference signal jumping up and down. The single RSRs are displayed in
the folder “Curve”, the continuous signal is displayed in real time in a new window.

Lets start with the single RSRs. In folder “Parameters” you can set some settings. Choose the
following settings for the first RSR with a PIDT1- controller with this process:
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This is the reference step response of our process with a digital PIDT1 in an “real algorithm”,
where the delay of the controller is artificially enlarged to one To to avoid problems with
hardware dependent delays like calculation time and AD — conversion time.

Now PFC- Controller. The setting are made in the “PFC Parameters”- folder:

e N\ . .

PEC-Modelselect  FT1-1ode PFBﬁrameter \

© PT1Bay 01 T [0040
\ ) 2PT1-Model 1 Nodd IT1-Model
I\ O 2PT1-Model 2 Km: 04 Km: 3 ai bi
| T® Fdegee2 T 0 T 008 » [ o
© F)degree2V2 T2 002 -1.51136807774859 0.00823435695328357
0.548811636094027 0.00674306638488982
tWNQ.040235948 : _

Model Out Limited =~ h=4

Start first with first second order PFC, change the 2PT1- parameters of the PFC to our process
values, select h=2 (two step horizon), click on button “2>F(z)” to get the F(z) of the model
and click on “Activate changes” — button.

Now select controller type “PFC” and start RSR with RUN and StartRSR — button. Result:

Curve | Parameters | Adaptive Parameters I Last X-Values | Last Xr-Values | Last W-Values | Controller Set I PFC |:4a]:*

E=E == RV D 4 (=

RTC- Data 100 Points Legende

1.11 W XPIDT1

11
il - W XPFC

0.81
0.7 4
0.6
0.5
0.4
0.3
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-01 - - r - - : : . . .
l 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Red curve is this PFC. It takes 90ms to reach 2% final value. Time scale changed to 0.2 sec
gives this picture:
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Green curve is desired value w and blue curve is process output x. Now you can play with all

parameters and see reaction on the controlled process.

Prof. Dr. Bayerlein 1/17/2012 2:55:00 PM
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