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6 Digital PID Controllers

6.1 Structure of System

6.1.1 Overview

A digital Filter or a digital controller mainly contains an analog to digital converter (ADC), a 
processor (e.g.  a microprocessor, microcontroller, PC, PLC, DSP or similar) and a digital to 
analog converter (DAC). 

There is no difference between a digital filter and a digital controller, only the use defines the 
name. A controller is nothing other than a filter used to control physical values. The structure
of a digital controller containing negative feedback is displayed in the picture above.
A digital Filter samples the input voltage x(t), each new x(n) – value is sent to the filter
algorithm, and the new output value y(n) is reconverted by DAC into a voltage yH(t). 
  

         Digital filter

We talk about sampling systems, which only samples an input signal each T0 and calculates
only then a new output value y(n). Between two samples there is no reaction on a change of
the input signal. Typically, we can see that the output voltage contains steps and constant
sections like stairs, see next diagram.

w(n) xd(n) y(n) y (n) x(t)

x(n)

Hcontrol algorithm D
A

A
D

DAC  with hold block

ADC

plant F(p)

processDigital-computer

digital controller

To

To



CS II Complete Paper Prof. Dr. Bayerlein

file Control Systems II Complete Paper V1.2 .docx 6

)(*)( nxKny dc= .

Read: The actual output value y(n) is calculated by multiplying the controller gain value Kc

with the actual measured input value xd(n) each To.
The processor must be able to multiply floating point values (Kc is normally a floating point
value), which normally is not supported with assembler language and some cheap C-
compilers. Then the range of values must be controlled by your program. The algorithm must 
be called in equidistant time intervals with the distance To. This must also be supported by
your processor either using a real time operating system (RTOS) like OS-9 or similar or
realising the constant ticks via other methods (timer, interrupts etc).

6.2.2 I- control algorithm
Now we will try to convert an integrator into a digital I- algorithm. This will then be used in a
PI or PIDT1- controller algorithm. We start with an analog integrator with transfer function
F(p) = KI/p. The gain (in this case the unity gain radian frequency) KI defines the integration 
time constant TI = 1/ KI. The differential equation of an integrator is

∫=
ta

dI dttxKty
0

)(*)( ,

where ta is the actual time. The integration starts at time t=0.
Now the replacement of the integration is done with the sum of rectangles. The integral
describes the area under the curve xd. The following picture describes this situation:

The curve ends at point ta = nTo. The last green rectangle has the amplitude xd(n), the
preceding rectangle xd(n-1) and so on. Each rectangle has the width To and the amplitude
xd(i), if i is the time i*T0. The area under the curve from 0 to ta can now be approximated
with the sum

∑
−

=

1

0

*)(
n

i
od Tix . This sum ends with the last yellow rectangle; however, you can see that the 

actual area is larger than the yellow area. So another version adds the green rectangle to the 
sum, but then the area seems a little bit too large. This version has the approximation

∑
=

n

i
od Tix

0

*)( .

So we get the following two versions of I- algorithms:

Without green rec (Prof. Baumann) With green rec (Prof. Bayerlein)
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Both versions can not be programmed because the sum of old xd(i) has to be calculated in
each step each To. So any time an integrator is in the filter, the following step to get a
recursive form of algorithm is necessary:
Trick to get recursive form of an algorithm.

xd(t)

tta
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converted via inverse Laplace transform into the differential equation (formal way)
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Now with discrete sampled times (t replaced by n) we get

. You can see I start with the Bayerlein- version including

green rectangle, the sum ends with i=n . 
Because of the sum we have to go the recursive way to get an algorithm without the
unprogrammable sum. The above equation one step before:
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right:
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dc . The difference of the sums gives the

only expression Kc/TN * xd(n). Sorted and written with the coefficients q we get
)1()()1()( 10 −++−= nxqnxqnyny dd with
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In the case of not using the green rectangle we get the following alternative:
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+= . Now you see I start with the Baumann- version without

green rectangle, the sum ends with i=n-1 . 
Again because of the sum we have to go the recursive way to get an algorithm without the
unprogrammable sum. The above equation one step before:
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We can demonstrate this algorithm with a simple example. Let us convert the PI – controller
with Kc=2 and TN=1s working with the sampling time To=0.2 s.
First we compare the unit step responses and then the reference response in a loop.
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If you design a PI- controller with pole compensation and 60° phase margin, this results in 
exactly the previously used PI- controller with Kc=2 and TN=1s. The following picture gives
idea of the resulting unit reference step responses.

The blue curve is the analog PI- response, the yellow curve is the response with the digital PI
Baumann version, and the green curve is my preferred solution. Of course I have chosen an 
example, where my version is the best. But you see the differences are negligible. For all 
further discussions I will use the version including the green rectangle.
If T0 changes to smaller values, the differences also become smaller. If T0 for example is
changed to T0=0.02 s, then q0=2.04, q1=-2. Then one step of the ramp- stair is replaced by 10
steps with amplitude 0.04. Then the difference is so small that you can see no difference in
the diagram. 

6.2.4 D-algorithm
The next step is to include a differentiator. So, I will start by discussing a pure differentiator,
after that the total PD, and finally the PID- algorithm.

    
  
The differential equation of a differentiator is  

)(*)( tx
dt

d
Kty dd=

so y(t) is proportional to the gradient or slope of the xd – curve. The next picture illustrates
this:

The analog differentiator has an output proportional to the slope of the green line. If we
sample the xd- curve, the ADC can only measure the values, not the changes in values. So a 

xd(t)
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n-1         n
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This is the general, famous recursive PID- algorithm used in many digital controller
applications. In each step T0 you need 3 multiplications, 3 additions and you have to store 3 
floating point values y(n-1), xd(n-1) and xd(n-2). In the following table you can find a
summary of all this different algorithms including a recursive form of P and PD.

Type F(p) qi, pi, all missing coefficients qi, pi=0 Form

P K q0=K non
recursive

P K q0=K, q1=-K, p1=1 recursive

D Kp q0=-q1=K/T0  non 
recursive

I KI /p p1=1, q0=KI *T0 recursive

PI KR(1+pTN)/pTN q0=KR(1+T0/TN), q1=-KR,  p1=1 recursive

PD K(1+pTV) q0=K(1+TV/T0), q1=-KTV/T0, st≈1+TV/T0 non 
recursive

PD K(1+pTV) q0=K(1+TV/T0), q1=-K(2TV/T0+1), q2=KTV/T0, 
p1=1, st≈1+TV/T0

recursive

PID K(1+pTD+1/pTI )=
K pT pT

pT
R N V

N

( )( )1 1+ +
q0=K(1+TD/T0+T0/TI ),
q1=-K(2TD/T0+1), q2=KTD/T0, p1=1,
st≈1+TV/T0

recursive 
design I

6.3 Exercise Example PID
Task: Convert a PID with the parameters KR=2, TN=1, Tv=0.1 into a digital PID with
sampling time T0=0.01. Compare the unit step responses.
First convert given bode form parameters into summing form parameters with WB p 21:

VN
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DVNI

N
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R TT

TT
TTTT

T

TT
KK

+
=+=

+
=

calculated: K = 2.2, TI = 1.1 and TD=0.09090…

q0=22.22,  q1=-42.20,  q2 =20.00. Note that it is very important to calculate with an accuracy
of at least 4 significant digits! Some more details relating calculation errors will follow.
Step response calculation table:

n xd(n) y(n)
-1 0 0 initialized!!
0 1 =q0=22.22
1 1 =y(0)+q0+q1=2.24
2 1 =2.26
3 1 =2.28
4 1 =2.30

h(t)

2.2

Δq

q0

t
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of output is mainly influenced by the time constant T. 63% full range change is done
in one time constant T. If a control system should react on a change of the output, then 
the sampling time should be small enough. A good control system has a sampling
time, which is smaller than 10% of the largest process time constant. So measure the
dominant time constant T of your system and set upper limit of T0 ≤ 0.1 T.

2. Another estimation of upper limit for T0 is possible, if PID- design is made by FRA-
method. Then the crossover frequency wd is known. A digital controller has a delay 
time between T0/2 and 1.5T0 which will be explained later. The worst case is Td= 1.5*

T0. A delay time block has a negative phase shift of φ = - w*Td*180°/π, where w is the 
radian frequency. This reduces the phase margin. If this reduction is as small as an
acceptable value Δφmax (e.g. Δφmax =-5°), then this gives an upper limit of T0.  

πωϕ /180**5.1* 0max °≥∆ Td , solved to T0:

./05818.0/*01164.0
180*5.1

*
max

max
0 dd

d

T ωωϕ
ω
πϕ

=∆=
°

∆
≤

3. Now some lower limits. First, lower limit is simply defined by calculation time. Of
course the sampling time must be larger than calculation time Tc including conversion 
time of ADC and DAC, so T0 > Tc. The way to estimate the calculation time is
described later.

4. Second, lower limit is a special estimation in PID- controllers. The smaller the
sampling time, the higher the first pulse after a reference step function. If this
amplitude should not be limited, T0 should not be too small. With the following values
you can calculate a lower limit: Maximum controller output ymax, input reference step 
amplitude x0 and the PID- parameters K, TI, TD and T0. 







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T

T
Kxqxy 0

0
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If you neglect the very small term T0/TI  this can be solved to T0:

1
0

max
0

−
≥

Kx

y
T

T D .

In our above example with the values TD=0.0909 s, ymax = 10V, x0=1V and K=2.2 we
get the limit T0 ≥ 25.6 ms. Remember with T0=10 ms we got the amplitude of 22.22V
which is too large when compared with the 10 V maximum.

5. Third, lower limit is caused by rounding errors in the calculation of the algorithm.
Especially in the PID- algorithm this leads to a clear limit of T0. Look first again on the
q0- value. Take the values of the first PID- example K=2.2, TI=1.1s, TD=0.09090s. 
Now compare the terms in the calculation of q0:







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++=

I

D

T

T

T

T
Kq 0

0
0 1 .

T0 TD/T0 T0/TI ratio
10 ms 9.0909 0.009090 1000
1 ms 90.9090 0.0009090 100000

0
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You can see you will have problems if you want to use the very fast short - int-
algorithms of assembler language. Then the lower limit of T0 is about 5 ms. This
problem is magnified with larger PID time constants. If processes are slower (e.g.
temperature controls are very slow), then TI could reach 1000 s, TD 100 s. With both 
these times the estimation with float – variables (Standard C- compiler on embedded 
systems) gives a T0 ≥ 0.345 s !!!

Before you design a digital control system, check these 5 limits in order to get a good system.

6.6 Accuracy of qi in PID- algorithm
The last point of last chapter is not only important in the choice of T0, but the accuracy of the
qi – coefficients must carefully be chosen. As mentioned, the term T0/TI carries the I-
information. To demonstrate the danger of inaccuracy we conduct the following experiment: 
we take the previous example (q0=22.22, q1= - 42.2 and q2=20.00) and increase the q1 – value 
with a very small 0.5% change. Caused by this error- propagation changes the effective TI –
time constant. This TI can be recalculated with the following method:
With given q- values you can solve the three q- equations for K, TD and TI:

0
2

0
1

0

0
0 *,21*,1*
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T
Kq DDD
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21 2qqK −−= and  
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qT
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210

0

qqq
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With the above qi you get back the original K=2.2, TI=1.1 and TD=0.09090909. With the
0.5% - change ( q1= - 42.411) you get K=2.411, TD=0.083 and TI= - 0.126. The K and TD

change does not matter, but the effective TI now is negative! This causes an unstable loop. 
With a 0.5% - change of q the TI value changes over 100% !!! Be careful!

6.7 Improved FRA – design of digital PID: Dirt effects
Next step is to develop a more realistic substitute of a digital PID for use in standard 
simulation Programs like Regdelph or for use in a standard simple FRA- design. 
The substitution is simple and very possible and consists of analog blocks. I found the
following analog replacement:

This covers the most important negative effects of a digital PID. Details:

6.7.1 Step- depth- estimation
The behaviour of the digital PID, which is developed starting with a pure PID (with st=∞) is
more like a PIDT1. But the digital PID behaves more like a PIDT1 with a starting impulse in
the step response with a definite width and height. The starting impulse of the digital PID has
amplitude q0, not a Dirac impulse like a PID.
Now it follows the choice of a stepdepth st. This is chosen such, that the impulse amplitude of
the first impulse of digital PID and its analog substitute circuit are equal. The first impulse
amplitude of the digital PID is already known:  y(0) = q0 = K*(1+TD/T0 +T0/TI ). The impulse
amplitude of the PIDT1 is, as you know, equal to the value h(t=0) of the PIDT1 - step
response, and it is h(t=0) =K*TD/T1 = Kc *TV/T1 , if T1 is the PT1 - time constant of the

Digital PID
q0, q1, q2, 

analog
PIDT1, st

Sample 
& Hold

Calculation
time
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The black curve is the input signal u(t). T0 is 0.5 s. The red curve is uH, resulting voltage after
sampling. If you now would filter the red curve with an ideal low pass filter, which removes
all harmonics of the red curve you get the blue curve. If you now compare black and blue
curve, you see the same curve but shifted by half of the sampling time. The Sample & Hold 
behaves like a delay time block with a delay time of T0/2 ! This is mathematically proven in
the next step.
It can be shown, that a Sample & Hold- block has the complex transfer function

0

01
)(

pT

e
pF

pT

H

−−
= with the complex frequency response

0

01
)(

Tj

e
jF

Tj

H ω
ω

ω−−
=

To separate the magnitude and the phase- function we use a trick. With Leonhard Euler the e-
function ejx can be replaced with cos x + j sin x. 

0

00 sincos1
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TjT
jFH ω

ωω
ω
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After some further trigonometrical conversions we get the result
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ω

ω
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
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
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
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The expression in front of the e- function is real and defines the amplitude function of the
Sample & Hold block. The e-function itself has a magnitude 1 and defines the phase. The
amplitude function is the well known SI- function, which is depicted in the following
diagram:

Drawn is the magnitude function 

|SI(x)|=|sin(x)/x|.

You see zeros at x0=π, 2* π, …
x in our Sample & Hold is

2
0T

x
ω

= .

So we have a first zero at the 
frequency ω0=2 π/T0. This is the
sampling frequency! If we sample a 
sinusoidal signal with frequency fx

Sampling
Frequency

Shannon 
- limit
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6.7.4 Conclusion
If you want to design a digital PID, use the replacement

Delay time: Sum of Sample & Hold delay
T0/2 and calculation time Tc.

Step depth: st = 1 + Tv/T0.

The complete steps for an FRA design of a digital PID See the next Box:

Now an exercise with a 2PT1- process:

6.7.5 Example 
We will now design a digital controller with a sampling time of T0=55 ms. The process
transfer function reads
F K pT pTS S= + +( )( )1 11 2 with Ks=2, T1=5T0 =0.275 s and T2=3T0=0.165s.

It should be a real PIDT1 - controller, the phase margin being ϕR=60°.

Calculation of control difference xdn=w-x;
yn=yn1 + q0 * xdn + q1 * xdn1 + q2 * xdn2;
Output of yn on DAC
Actualizing: yn1=yn; xdn2=xdn1;xdn1=xdn;

Output of yn on DAC
Calculation of control difference xdn=w-x;
yn=yn1 + q0 * xdn + q1 * xdn1 + q2 * xdn2;
Actualizing: yn1=yn; xdn2=xdn1;xdn1=xdn;

second analogous substitute of a digital PID
Tdel=3/2To with real, Tdel=1/2To+Tc with ideal A.

xR

Tdel

Procedure of the FRA-design of digital PID - controller:
1. Decide for an appropriate sampling time T0, if possible T0<0.1* largest process

time constant.
2. In your FRA (Frequency Response Approach) - design you have to add to the

process a delay time term with Tdel =1/2T0+Tc, whereby Tc represents the 
calculation time. With the real algorithm Tc=T0. Delay phase is del= - Tdel

*180°/π.
3. If st is not 1 (PI – case) add the phase of the PDT1- part of the controller. Choose

Tv (e.g. with pole compensation or -30 dB method) and st = 1 + TV/T0 and the

PDT1- phase is  PDT1=arctan( Tv)-arctan( *Tv/st).
4. This gives new = s + del + PDT1. 

5. Now continue with standard FRA with the point 3 to 5 depending on the PI method 
symmetrical optimum or pole compensation of Workbook CS I page 37.

6. With the following equation set determine the parameters qi of the algorithm with

and 

and .
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The method to convert a continuous PIDT1 into a discrete / digital in Regdelph works with 
the following steps:
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PI design for this example:

Now in WindfC# this PI and PIDT1 can be tested. The 2PT1- process can be simulated in the 
menu ADC-Cards : Hardware Simulation:

Select this process:

Now real time test in the menu Realtime
functions  Student Control Box:
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7 Introduction into Z- transformation
The design method used in the previous chapter converts a differential equation into a
difference equation. For simple filters this is useful, but for more complex filters there are
other better methods using the mathematical tools of the Z-transformation. What is this?
To get a very simple introduction I take a general filter algorithm and convert this into the
frequency domain using the Laplace transformation:

.....)2()1()(.....)2()1()( 21021 +−+−+++−+−= nxqnxqnxqnypnypny   

Considering that y(n) is converted into the new function Y(p) and x(n) into X(p) and applying 
the shift theorem of Laplace (y(n-1) is the signal y(n) delayed with one T0), so y(n-1) is
converted into Y(p)*e-pTo. Finally:

....)()()(.....)()()( 2
210

2
21 ++++++= −−−− pTopTopTopTo epXqepXqpXqepYpepYppY

You see that the shift operator e-pTo appears several times so people introduced the 
replacement

0pTez =

The z- transformation is nothing other than a Laplace transformation adapted to digital
systems. Why the first mathematician used the replacement with positive exponent is
unknown. For me this seems crazy because all shift terms have negative exponent. But this is
now absolutely unchangeable.

We write with the replacement Y(p)   Y(z) and X(p)   X(z) the following equation:

.....*)(*)()(.....*)(*)()( 2
2

1
10

2
2

1
1 ++++++= −−−− zzXqzzXqzXqzzYpzzYpzY

Now put all Y(z) terms to the left, extract Y(z) and X(z) and you get:

( ) ( ).....*)(.....1*)( 2
2

1
10

2
2

1
1 +++=−−− −−−− zqzqqzXzpzpzY .

Equivalent to the complex transfer function F(p) we now can define a Z- transfer function 
F(z) of a general digital filter: 

.....1

....

)(

)(
)(

2
2

1
1

2
2

1
10

−−−
+++

== −−

−−

zpzp

zqzqq

zX

zY
zF

Like in continuous filters the Diff. equation                 F(p) in digital filters the
algorithm               F(z). The symbol    can be read as “corresponds with”.

The coefficients p and q describe the function. The biggest difference to continuous filters is
the huge advantage that you can realize and program a digital filter in one line of C-code! If 
the coefficients are known, you write the algorithm 

.....)2()1()(.....)2()1()( 21021 +−+−+++−+−= nxqnxqnxqnypnypny

in the C- program line

y=p1*yn1 + p2*yn2 + q0*x + q1*xn1 + q2*xn2 

with the same principles and additional step as described in the previous PID- chapters. Send 
y to the DAC, get x from the ADC and actualise the global variables each step with
yn2=yn1;yn1=y; xn2=xn1;xn1=x;

Example: The F(z) of the PID from the last exercise can be written as

1

21

1

7771.15021.48436.2
)( −

−−

−
+−

=
z

zz
zF .
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7.2 Conversion of F(p) into F(z)
With the next four methods you can convert any continuous, analog filter into a digital one.
The last two methods are available as software tools in WindfC#. First, we will start with two
analytical methods. We will demonstrate each method with a very simple PT1- example. The 
parameters are K=2, T = 0.5s and T0 = 0.1s.  

7.2.1 Impulse response invariant method
A very simple technique to get this filter is described by the following: Take the desired 
impulse response and sample with T0. Than take the sample amplitudes as q- values. Our 
example:
The unit impulse response of this PT1 is (see WB p.9) g(t)=(K/T) * e-t/T. With our numbers
we get g(t)=4/s * e-2t/s. This is the response after a unit dirac impulse with area 1. We get the 

following values:

t y(t) q
0 4 q0

0.1 3.27492301 q1

0.2 2.68128018 q2

0.3 2.19524654 q3

0.4 1.79731586 q4

0.5 1.47151776 q5

0.6 1.20477685 q6

… … …

The filter F(z) is
.......)( 2

2
1

10 +++= −− zqzqqzF

If you apply a digital unit impulse with
bottom diagram to the input of this filter, you

get exactly the same values at
the output y, but now with the 
red steps.

The same result you get with a method using F(z) – conversion tables like the table on the
following page. 

x
1

T0 t
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The problem with a filter of this type is the wrong DC- value. Especially in control systems
we need exact DC- values to avoid wrong results in control errors. The DC gain of analog
filter is K=2, the digital filter has a DC- gain of

0666.22
8187307531.01

4
)1( =

−
==zF , this is far away from 4.

7.2.2 Step response invariant filter

This type of filter is used for process simulations and to calculate dead-beat – controllers. The 
procedure is finally described by







−

= )(
11

)(0 pF
p

Z
z

z
zFH .

The notation { }Z can be read as “Z- transformed function of” and can be realized with the Z-
transform table see above. So take your F(p), divide by p, find equivalent F(z) in table and 
multiply this result with (z-1)/z. In our example we get with row number 6 and a=2

( )
( )( )To

To

ezz

ze
zF

pp
Z

pp
Z

2

2

1

1
*2)(

)2(

2
*2

)5.0*1(

2
−

−
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=⇒
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
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



+
=









+
.

For the final filter function this has to be multiplied with (z-1)/z and we get with T0=0.1

8187307531.0

3625384938.01
*2)(

2

2

0 −
=

−
−

= −

−

zez

e
zFH

To

To

.

This can not directly be converted into an algorithm because the F(z) must be normalized. 
This means only z with negative exponents is allowed and the coefficient in the denominator
without a z must be 1. So we normalize this result by dividing by z. We get

1

1

0 8187307531.01

3625384938.0
)( −

−

−
=

z

z
zFH .

This corresponds with the algorithm

)1(*3625384938.0)1(*8187307531.0)( −+−= nxnyny .

The unit step response of this filter is easily calculated with our table step by step and can 
directly be compared with the values of the PT1-step response function h(t)=2(1-e-t/0.5) :

n t x(n) y(n) h(t)=2(1-e-t/0.5)
0 0 1 0 0
1 0.1 1 0.3625384938 0.3625384938
2 0.2 1 0.6593599078 0.6593599078
3 0.3 1 0.9023767277 0.9023767277
4 0.4 1 1.1013422072 1.1013422072
5 0.5 1 1.264241118 1.264241118
… …. … …. ….
∞ ∞ 1 2 2

You can see that the values of the digital algorithm and the analog filter are absolutely
identical. That is the reason for the name “step response invariant filter”. The following
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)(33333333333.0)1(338333333333.0)(
3

1
)1(

6

5
)( nxnynxnyny +−=+−= .

As a result we get the step response in the following table and diagram:

In the beginning, the steps are a little bit too high, in the end too low, but the DC- gain is
correct. F(z=1) is

.

7.2.4 Filter with trapezoidal approach

A much better Taylor series of ln(z) leads to the trapezoidal approach, in which p is replaced 
by

)1(

)1(2
1

1

0
−

−

+
−

≈
z

z

T
p .

This is also known as “Boxer- Thaler transformation” or “Bilinear transformation”.

If we would do this replacement with the pure integrator, we get a result identical to a
replacement of the area by a sum of trapezoids. This is the reason for the name. Now apply
this to our PT1:

1

1

1

1

11

1

1

1
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11
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1

11

2
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=
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−
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=
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Corresponding algorithm:

)1(18.0)(18.0)1(81.0)1(
11

2
)(

11

2
)1(

11

9
)( −++−=−++−= nxnxnynxnxnyny .

n x(n) y(n)
0 1 0.333333333333333
1 1 0.611111111111111
2 1 0.842592592592592
3 1 1.035493827160490
4 1 1.196244855967080
5 1 1.330204046639230
6 1 1.441836705532690

n x(n) y(n)
0 1 0.181818181818182
1 1 0.512396694214876
2 1 0.782870022539444
3 1 1.004166382077730

2
6/1

1

3

1

6
5

1

1

3

1
)1( ==

−
=F
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Now you can close this window with the |F| - button and the magnitude curve of the bode plot
appears in the main window. 

Note that horizontal axis carries the log value of ω. To get ω read the value x and calculate 
ω=10x. With MS-Word I have added the asymptotical red straight lines. The crossing defines
the corner frequency at 0.3. ωc = 100.3 = 1.995 = 1 / T. This gives the T- value of 0.5. OK?

Now we open the conversion box for digital filters with the - button. You have to select
the method and the sampling time T0. 
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Compare the coefficients with the values in this paper. In this box I have used the form

F z
b b z b z

a z a z
zm

m

m
m

d( )
...
...

=
+ + +
+ + +

− −

− −
−0 1

1

1
11

which is more common for digital filters, but in control systems the form

d
m

m

m
m z
zpzp

zqzqq
zF −

−−

−−

−−−
+++

=
...1

...
)(

1
1

1
10

is more common for controllers. The difference is the sign of the coefficients in the
denominator.

If we now leave with the |F|- button, the program draws the magnitude curve of this digital 
filter drawn now in blue color. 
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The green curve is the new magnitude curve. It is the red curve shifted one octave right.

In the tool program WindfC# you can test this filter, if an ADC Card is available. First select 
your card in the main menu, then open the digital filter window again and start the running
with click on the button “Activate”. Then connect signal generator with the selected AD input 
and measure the output at DAC channel 0. If it is running, you see blue text which contains
actual time measurements of the T0 and the calculation time, here actual about 12 µs. 
You can additionally switch on a DA- 1 V -impulse at a second DA – channel 1. With a
scope, a real time measurement is possible. The period of pulse is T0, the duration the
calculation time Tc. 
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Example: Design the analogous PIDT1 with Kc=1.726, TN=0.275, TV=0.165, st=4 and 
T0=0.005s= 5 ms. These values are resulting from PIDT1- design with above 2PT1- process
(K=2, T1=0.275s, T2=0.165s) of previous example calculated with simple FRA- design via
Regdelph.(process + delay of 0.0075s =3/2T0 , PID with polcomp. st=4, phase margin 60° ).
This gives Kc=1.726.

If you ignore the desired stepdepth 4 and use design I with
5 ms sampling time you get 

An analog PIDT1 has a starting impulse at controller output after reference step of Kc*st = 
6.9039.

With the Design I – stepdepth 34, this gives Kc=5.9842 with resulting q of q0=207.16, q1=-
404.53, q2=197.48, p1=1 and p2=0. This relates to a stepdepth of stI=stmax=34. The starting
impulse at controller output after reference step has not the amplitude 6.904, but 207.16. 

With the trapezoidal-Design IV you get the result: q0=6.668, q1-13.017, q2=6.3526, 
p1=1.8857and p2= 0.8857. Now the starting impulse is only 6.668 instead of 6.908, but very 
close to this value.

You now can choose the best fitting design for your application. Design IV with good Kcst –
value should be the best choice.

All designs can be quickly computed with the program WindfC#.

Here are the screen shots:
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7.4.2 Final Overview of digital PID control algorithms

Ideal algorithm: delay time Tdel =T0/2+Tc

)()()()()()( 2121 21021 −−−− ++++= nnnnnn ddd xqxqxqypypy

Real algorithm: delay time Tdel =3T0/2 

)()()()()()( 32121 21021 −−−−− ++++= nnnnnn ddd xqxqxqypypy

Type F(p) qi, pi, all missing qi,pi=0 remarks

P K q0=K non recurs.

P K q0=K, q1=-K, p1=1 recursive

PI KR(1+pTN)/pTN q0=KR(1+T0/TN), q1=-KR,  p1=1 recursive

PD K(1+pTV) q0=K(1+TV/T0), q1=-KTV/T0, st≈1+TV/T0 non 
recursive

PD K(1+pTV) q0=K(1+TV/T0), q1=-K(2TV/T0+1), q2=KTV/T0, 
p1=1, st≈1+TV/T0

recursive

PID K(1+pTD+1/pTi )=
K pT pT

pT
R N V

N

( )( )1 1+ +
q0=K(1+TD/T0+T0/Ti ),
q1=-K(2TD/T0+1), q2=KTD/T0, p1=1, st≈1+TV/T0

recursive
Design I

PIDT1 K(1+pTD+1/pTi )/(1+pT1),
K pT pT

pT pT
R N V

N

( )( )
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1 1

1 1

+ +
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Design IV
trapezoids, 



CS II Complete Paper Prof. Dr. Bayerlein

file Control Systems II Complete Paper V1.2 .docx 44

inflection) construction, which also can be done automatically with a computer if the noise is 
not too large.
Procedure:
1. If the process can be approximated with 2PT1 + delay time block, the step response

should look like this:

2. Construction of the turn tangent.  Determination of  Tu and Tg. Using tool in  WindfC#:
Menu “Identification”  “Reuter 2PT1-Identification”

Type in Tu and Tg and get the
resulting times T1, T2 and 
sometimes delay.

step response of

2PT1+TZ

final value

Tu

Tg

turn tangent K T1 1 T2 1 Tt

K=fv / U0.

Inflection
point
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Now derive s to the single parameters:

With the abbreviations

and 

You can write the M equations with matrices:
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The qi and the Aij – values can be calculated with the starting values of A and the measured 
points. The Ai are the new estimated parameters and the Ai

l are the starting values or old 
parameters. The above matric equation can be solved:
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So a matric – Inversion is necessary, but not a problem, because several algorithms are
available since years.
Convergence is possible (the new sum of squares with the new parameters is smaller than the
previous one), if starting values are near to the valley (minimum). 
If the function f(x) is a parabolic function like f(x) = A1+A2x+A3x

2+A4x
3+ …. then 

convergence is guaranteed in one step.
Example:
A PT1- step response is measured in the file  SRtestidLS.sim. The content of this file is with a
blank separator:
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8.2.2 Example for Controller design purpose
Now a 3PT1- process should be identified via step response and used to design a controller, 
which is tested at the original 3PT1- Process. The data of the 3 PT1 are K=3.1415, T1=1.5, 
T2=0.6 andT3=0.7. The step response is created with program Regdelph and is stored in the
file 3pt1SA_10sec.sim. This file can be loaded with the identification module in WindfC# via
menu “Identification time function LS”. The identification should be set to 2PT1, try Init-
Button, set Number of Parmeters to 5 and then you should get the following result:
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With this design a second PIDT1 using tool in menu “Controller design  FRA 2PT1 with 
delay” has the resulting values

Green: with this model
Red: Previous original controller
Result: overshoot a little bit 
larger, but faster.



CS II Complete Paper Prof. Dr. Bayerlein

file Control Systems II Complete Paper V1.2 .docx 52
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Herr you have two equations with the three unknowns BK, T1 und Tz. Now divide xmax by xmin

and BK can be reduced and you have one equation with two unknowns T1 and Tz.

Start with Tz =0 (no delay) and look for a solution without delay (2PT1-process). Solve the

equation g(T1)=0 e.g. with nested intervals. If there is no solution add a delay. 

See following numerical example: toff = 1.3863, tmax = 2.1972,  ton  = 3.5835,  tmin =
3.7741,  xmax = 1.3333 , xmin = 0.9697. Then the function g(T1) hast the displayed curve:

You see two zeros at T1=1 and T2=2. 
Because both time constants have
absolut the same importance, this
gives the solution for both time
constants. The solution is difficult, if
both time constants have nearly the
same value. If the original process has
mor than two time constants, 
sometimes no solution is possible, 
g(T1) lays completely over the zero-
axis. Then you have to add a delay. 
To look for the zeroes use nested 
intervals. This always converges, if

the starting values are on the left and right side of a zero. It is helpful to look first for the
minimum of g(T1). If this value is negative: OK, if not add a delay. Derive the equation g(T1). 
With the short expressions a=tmin-toff, b=tmin, c=tmin-ton, d=tmax-toff und e=tmax und ea=exp(-
a/T1), eb=exp(-b/T1) usw. und Λ=Xmax/xmin

g(T1)= Λ(ea-eb-ec+1)-ed+ee  und

g’(T1)= (-1/T1
2)*  Λ(a*ea-b*eb-c*ec)-d*ed+e*ee,

The factor (-1/T1
2) has no influence tot he zero of g’.

Use now following order:

1. Look for a starting Ta, so that g’(Ta)<0

2. Look for an ending Te, so that g’(Te)>0

3. Look for Tm with  g’(Tm)=0 using nested intervals.

4. Look for a new Ta>Tm, so that g(Ta)>0
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A controller design with these values gives the following numbers and RSR:

Red: Original controller
Green: Step response identification
Blue: Two-Point-Controller identification.

8.4 Identification with program IDA.exe
This method has the advantage to identify a free transfer function F(p) with any input and the
responding output. Input and output signals must start from constant signals (zero initial
conditions). Disadvantage: The source code is not available, The program is a commercial
one from a German Engineering office Kahlert (www.kahlert.com).  The official version is
Winfact8, FH-Lübeck version is 6.
I have prepared two versions of signals around the 3PT1- process. First with a reference step
response together with the Two-Point-controller the input signal of the process (this is the
output of the controller) and output signal of the process are stored in the both files
zpr3PT1in.sim and zpr3PT1out.sim. A second version uses one of the PIDT1- controller, a
reference step response has produced the both signals stored in the files idaPIDprocessin.sim
and idaPIDprocessOut.sim.
Now start IDA.exe. The menu language is German. Load input and output files with menu 
“Datei  Eingangssignal x(t)” and “Datei  Ausgangssignal y(t)”. The resulting window
with the files zpr3PT1…. looks like this:

Now in menu “Datei 
Steuerparameter” set the “Nennergrad “ 
= Denominator-degree” to 4 and 
checkBox “n anpassen”. Close this
window and start
“approximation”
. Each click on 
“Weiter”increase
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With the files idaPIDprocess the following data can be calculated:

You can see only very small differences. The three reference step responses (Original, zpr-
data and PID data) are displayed in the following picture (there are really three curves!).

Last step is the comparison of the three time constants. For this purpose the transfer function 
F(p) has to be converted into a time-constant form usind tool Windfc#- You can load the ufk-
files with the ufk- button, then click on button “Factorise” and you get the following results, 
compared with the original time constants T1=1,5, T2=0.7 and T3=0.6.

     

You can see, that difference in control system 
behavior is small in spite of the differences in
time constants are big, more than 20%-
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These both results can be compared as bode plot with the original 3PT1- bodeplot: This
results in three nearby identic curves:

This identification should be tested now by a new F(z) with free ai and bi and an arbitrary
signal. The output generator of an F(z) with any input is a module in Windfc# behind the
button with the step response icon. 
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This module is prepared to use this method in a realtime- measurement with the controller-
module. Open either “Real-Time- Controller Student control Box” or “Real-Time-
Controller Adaptive Advanced controller”.
Example: First go to menu “ADC-Cards” and select “Hardware simulation”, then select any
model and close this window. Open “Real-Time- Controller Student control Box”. Start a 
reference step response with buttons RUN and RSR, mark Xr- Checkbox and leave with 
green arrow.

After this open menu “identification  by Offline  LS – method” and push “Get RTC- Data” 
– Button. Then both curves (input and output of the realtime- process) can be seen in the 
display. Rest is already described. Result should be identical with the selected model in the
hardware simulation. 

Theory:
A general process has the transfer function 

With m is the degree of the function and d is a delay. The unknowns are the ai and bi. A PTn-
process has b0=0. This gives the algorithm (output y and input u)

y(k) =- a1y(k-1) - …- am y(k-m) + b0 u(k-d) + b1u(k-d-1)  - … - bm u(k-d-m).

The same equation one step before:

y(k-1) =- a1y(k-2) - …- am y(k-m-1) + b0 u(k-d-1) + b1u(k-d-2)  - … - bm u(k-d-m-1).

No do this as long there are as many equations as unknowns. This equation system looks like
this:

d

m

m
m z
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zbzbb
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Then design controllers with menu “Controller Design  Design of digital PIDT1+div”,
select the same process with same parameters and leave with green arrow button.
Activate identification on “Real-Time- Controller Adaptive Advanced controller” on the
page “Adaptive parameters”:

Follow the settings below on page Parameters:

Activate Realtime Curve with

and set the amplitude scale U- range to 0 – 2V. 
Now play with the different controllers and change K and T –values in the 
simulation with the buttons to double or half the values and see the reaction of
the identification.
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9 Special Digital Controllers

9.1 Preparation step response invariant Function
To design a dead-beat controller with known F(p) of the process first you have to calculate the
step response invariant filter function H0F(z) of the process. This can be done with the
following mechanism:

So in other words: Take the process F(p), multiply with 1/p, go to the Z- transform – look up 
table (see page 27), take the F(z) and multiply this function with (z-1)/z. Finally normalize the
result, so that the coefficient in the denominator without a z is one.
Example: 

  

9.2 Calculation of H0F(z) from F(p) with simple standard blocks

For the simple transfer blocks PT1, IT1, PT2 and 2PT1 the coefficients of the z -transfer 
function with hold block can easily be derived. H0F(z) has the following form: 
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and the resulting DBC described with the following function:
(ideal version d=0):
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or the real version (d=1):
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R zpzpzp

zqzqzq
zF with the algorithm

...)()()(...)()()( 32132 21021 ++++++= −−−−− nnnnnn dddRRR xqxqxqxpxpx

then you can calculate the q and p coefficients simply with the following equations:

and 

q1=q0*a1, q2=q0*a2, q3=q0*a3, …..and
p1=q0*b1, p2=q0*b2, p3=q0*b3, …..

In the above example the coefficients become to
b1=0.3935 and a1=-0.6065 and then

q0=1/b1=2.541, q1= - 1.541 and p1=1.

The ideal algorithm is
)(541.1)(541.2)()( 11 −− −+= nnnn ddRR xxxx

and the real:
)(541.1)(541.2)()( 212 −−− −+= nnnn ddRR xxxx

9.3.1 The Dead Beat version DB(v+1)
A second version of Dead beat controller is the DB(v+1). This controller has the advantage of
a smaller starting impulse. The large qo is separated on two smaller qonew, but this algorithm 
takes one step more. It has the settling time of (m+1)*T0 with the ideal and (m+2)T0 with the
real algorithm.
The calculation of the pi and qi looks like this:

)...(1 100 mbbbq +++=
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you can find a Dead-Beat-controller with the 'real' algorithm

)()()()( 212 10 −−− ++= nnnn ddRR xqxqxx

which has a delay time of T0 that is added immediately to the process for the controller-
design. The values for q results in:

( ) ( )
q

K T T
and q

T T

K T T K
q0

0
1

0

0
0

1

1 1

1
=

− −
=

− −
− −

= −
exp( / )

exp( / )

exp( / )
.

Numerical example:  With K=1 and T=5T0 follows q0=5.5161 and q1=-4.5161.

9.4.2 Dead-Beat - controller for a 2PT1 - process

For a 2PT1 - process with the transfer function

you can find a Dead-Beat-controller with the 'real' algorithm

)()()()()()( 32132 21021 −−−−− ++++= nnnnnn dddRRR xqxqxqxpxpx

which again has a delay time of T0 that is added immediately to the process for the controller-
design. The values for q come out to:

( ) ( )
( )( ) .1

)/exp(1)/exp(1)(

)/exp(1)/exp(1
21

201021

202101
2 =+

−−−
−−−

−= ppand
TTTTTT

TTTTTT
p

Numerical example:  With K=2 and T1=5T0 and T2=3T0 follows

q0=9.7306,  q1=-14.9391, q
2
=5.7084, p1=0.5443 and p2=0.4557.

9.4.3 Dead-Beat - controller for a IT1 - process

For an IT1 - process with the transfer function

F p
K

pT pTS ( )
( )( )

=
+ +1 11 2

( )( )
q

T T T T

K T T T T0
0 1 0 2

0 1 0 21 1
=
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0 1 0 2

0 1 0 21 1
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Now Dead- beat controller with standard design (s.a.) real algorithm, degree m=1:
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The ps and qs :

and 

q1=q0*a1=- 1.50555185 and p1=q0*b1=1. We get the transfer function of the DB-controller

2

21

1

505551852.18388852.1
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z

zz

zX

zY
zF

d
R with the corresponding algorithm

)2(505551852.1)1(8388852.1)2()( −−−+−= nxnxnyny dd .

Now the drawings with reference step w=2:

n t in s w(n) x(n)=0.8187..x(n-1)+0.5438..y(n-1) xd(n) y(n)=see above
0 0 2 0 2 0
1 0.1 2 0 2 3.67777
2 0.2 2 0.5438*3.6777=2.0000000 0 1.839*2-1.5056*2=0.66666
3 0.3 2 0.8187*2+0.5438*0.66666=2.0000 0 3.6777-1.506*2=0.66666
4 0.4 2 Dito =2 0 0.66666666 

Description of the function in words: Because it is a real function the first cycle is empty,
nothing happens. Then the dead beat controller throws out a first pulse with an amplitude of
3.677. This value is exactly the amout which is necessary to move the PT1- output in one T0

to the desired value 2. Here’s the proof: The PT1- step response has the function

0000.2181269.0*0331.11)1(*0331.11)1(*3*6777.3)( 5.0/1.0/ ==−=−= −− eetx Tt

at time t=T0 this is exactly 2. After this “pull- up-step” the controller switches to value 
0.66666, which is necessary to hold the output of the PT1 at 2 similar to trickle charging or
maintenance charging of accumulators because 3*0.6666=2. So as predicted after 2 steps in a 
first order process the reference step reaches the desired value.

This behaviour can be compared with kind to boil potatoes with experienced users. First, 
switch to full power and in the right moment switch back to the power which maintains the
boiling temperature.

w=2
x(t) 
y(t)

T0         2 T0        3 T0      4 T0

2

3.677

0.666

8388852.11)...(1 1100 ==+++= bbbbq m
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Note, that this is the process function with output x and input y.

Now Dead- beat controller with standard design, ideal algorithm and degree m=2:

2
2

1
1

2
2

1
10

2
2

1
1

1
10

1...1

...

)(

)(
)( −−

−−

−−−

−−

−−
++

=
−−−−

+++
==

zpzp

zqzqq

zpzpzp

zqzqzq

zX

zY
zF

m
m

m
m

d
R

The ps and qs :

and 

q1=q0*a1=- 49.9524 and p1=q0*b1=0.524986. 

q2=q0*a2=21.4729 and p2=q0*b2=0.475014. 

Note that p1+p2=1!  Finally we get the transfer function of the DB-controller

21

21

475014.0524986.01
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d
R with the corresponding algorithm

)2(47.21)1(95.49)(99.28)2(4750.0)1(5250.0)( −+−−+−+−= nxnxnxnynyny ddd . With 

4 significant digits. Compare the WindfC#- results, in the main menu “Controller-Design” the 
Item “Design of digital PI/PIDT1+div” has following results (part of the window):

9855.28)(1)...(1 21100 =+=+++= bbbbbq m
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The controller starts first with a strong pull up impulse, then it has to brake with a strong
negative controller output. Not all actuators can work with negative output signals. A Motor –
actuator must be able to brake, a temperature controller must be able to cool!

See next page simulation of this example with WindfC#:

Black curve DB- controller here with real algorithm. After 3 * T0 desired value is reached.
Blue curve is RSR of a PIDT1 with 60° phase margin, pole compensation. Red curve is the
RSR of same Dead-beat but now with limitation to + and – 10 V. Result is worse than PID. 

9.6 Orientation Controller
This type is developed in 1991 at TU Chemnitz (Ehrlicher). 
File :  Orientierungsregler Ehrlich TU Chemnitz1.pdf
The advantages compared with Dead beat controller are:

1. No problems with limited controller outputs
2. No problems with unstable processes
3. Simple design from HoF(z), so online adaptive mode possible

The algorithm:
Note: now different letters for the signals:

w=2
x(t) 
y(t)

T0         2 T0        3 T0      4 T0

1

28.99

0.5

-20.97
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and run each T0:

void xr_or(ref double uk, double[] hr, double[] gr, double[] u, ref
double[] y, int m, double[] teta, double wk, double f3l, double yk)
{   /*Orientierungsregler  only for real mode*/
    double ck, SumB, hv1, hv2, xprae;
    int i;
    y[0] = yk;
    SumB = 0; hv2 = 0;
    for (i = 1; i <= m; i++) SumB = SumB + teta[i + m + 1];
    for (i = 1; i <= m; i++) hv2 = hv2+teta[i]*y[i]-teta[i+m+1] * u[i + 1];
    if (SumB == 0) ck = 10 * limitation; else ck = (yk + hv2) / SumB;
    if (ck > 10 * limitation) ck = 10 * limitation;
    if (ck < -10 * limit_low) ck = -10 * limit_low;
    xprae = 0;
    for (i=1;i<=m;i++) xprae=xprae+teta[i+m+1]*(u[i]-ck)-teta[i] * y[i-1];
    hv1 = gr[1] * xprae;
    for (i=2;i<=m;i++) hv1=hv1-hr[i] * (u[i - 1] - ck) + gr[i] * y[i - 2];
    uk = f3l * wk - ck + hv1;
    for (i = m; i > 0; i--) y[i] = y[i - 1];
}

uk is output of new controller value
hr=pr and gr=qr are the controller coefficients
u[] are the old controller outputs
y[] are the old process outputs
m degree
teta the ai and bi in one vector
wk the actual desired value
f31 the f3 value
yk the actual process output.

9.7 PFC- Predictive Functional Control
See Book: Predictive Functional Control - Principles and Industrial Applications - Richalet, 
O’Donovan.
See German diploma thesis Graeper: file: DA Graeper PFC.pdf

The idea is 20 years old, but has not resettled in daily control system design. The “father” of
this idea is the French scientist Richalet. I was on a two days presentation in FH Köln and was
impressed by this idea. This method has great success in chemical industry, if processes are 
nonlinear and complicated.
The application engineers give this method more future than state space design, which is
normally used in similar cases.

The idea: Because computers and processors become more powerful it should be possible to 
use the knowledge of the model in each step. 
PID and Dead- Beat controllers use the knowledge only in the design phase, after design in 
the runtime phase model is not used, controller parameters are constant.



CS II Complete Paper Prof. Dr. Bayerlein

file Control Systems II Complete Paper V1.2 .docx 78

Now PFC design:
Let the starting point be x(n)=xm(n)= 0. Desired value is one. With model function a
prediction can be made:

)(90484.0)(038065.0)()()1( 11 nxnynxanybnxm +=−=+
This can be used to calculate the necessary controller output y(n) to get the desired value w=1 
from any starting point x(n):

wnxanybnxm =−=+ )()()1( 11

In simple PT1- case the solution is simple:

1

1 )(
)(

b

nxaw
ny

+
=

The first controller output value and following steps are:

n y(n) y(n) limited xm(n)
0 26.27 10 0
1 17.22 10 0.38065
2 9.035 9.035 0.72508
3 2.5 2.5 1
4 2.5 2.5 1

If there is no limitation, this controller behaves like a DB, the first impulse is the qo of the
DBC. But with limitation this PFC has no overshoot, in opposite to the DBC:
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If process is a 2PT1, then the design has to be changed, because with one positive impulse the
desired value cannot be reached, there must be a breaking step. So the time for the inflection
point tw is calculated of the step response of the model:

)ln(
2

1

21

21

T
T

TT

TT
tw −

=

Now the number of the steps to this inflection point is calculated in the “horizon”:

h= tw/T0 with truncated decimals (h is integer)

There are two versions of 2 PT1 programmed by Mr. Graeper and a third 
developed by myself. If a change is made in the two parameters h and 
desired settling time Tr, you must click on button “Activate changes”.

Play with the different models. My third version automatically adapt to ideal / real version,
the both two versions are only valid in ideal mode.
Example: 2PT1 model with K=0.4, T1=0.1s  T2=0.02s and T0=10ms. Ideal algorithms
First the conventional solutions:

Pi is slow, PIDT1 and OR OK, but DB – controllers with high overshoot. 
Now the PFC together with PIDT1:
1st version with h=4 and Tr=30 ms
2nd version with h=3 and Tr=10 ms
3rd version with h=2, Tr no influence
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)2(')1(')2()1()( 2121 −+−+−−−−= kybkybkxakxakxm

)3()2()2()1()( 2121 −+−+−−−−= kybkybkxakxakxm

)32()1()1()()1( 2121 −+−+−−−=+ kybkybkxakxakxm

newmm wkybkybkxakxakx =−++−+−=+ )1()()()1()2( 2121

Last equation solved to y(k) is

( ) 1221 /)1()()1()( bkybkxakxawky mnew −−+++=

In C – program:

  xmodPred = -fa1 * fax - fa2 * valold + fb1 * fYrold + fb2 * fYrold2;
  wnew = xmodPred + (w - xmodPred) / iH;
  fYr = (wnew + fa1 * xmodPred + fa2 * xmodpredold - fb2 * fYr) / fb1; 

Results:
Again 2PT1 model with K=0.4, T1=0.1s  T2=0.02s and T0=10ms. With actuator limit +-10V.

Blue: h=1
Red : h=2
Green: h=3

In real case I have  got exactly the same 
curves one To shift right.

But if I deactivate the actuator limitations, following results happen:

The process outputs seemed OK, but the controller outputs have strong oscillations (see blue 
right curve in the case of h=1). 
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9.7.2 Theory of 4th version 2nd order PFC
Now I want to introduce a fourth version with 2nd order processes. The idea is similar to Dead
Beat. In a second order process one step is not sufficient to reach the final value, a Dead Beat
controller – the fastest possible one – needs two steps. So following equations are valid:
Process equation is used to predict future values (k+1, k+2 …):x(k+2) should 
reach the desired value w and all further x(k+x) too.

input

output
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1
1

0   

)2()1()2()1()(:)1( 2121 −+−+−−−−= kybkybkxakxakxEqu

)1()()1()()1(:)2( 2121 −++−−−=+ kybkybkxakxakxEqu m

wkybkybkxakxakxEqu m =+++−+−=+ )()1()()1()2(:)3( 2121

wkybkybkxakxakxEqu =+++++−+−=+ )1()2()1()2()3(:)4( 2121

wkybkybkxakxakxEqu =+++++−+−=+ )2()3()2()3()4(:)5( 2121

In Equ(1) all values are known and measured. In Equ(2) the value xm(k+1) is a predicted
output of the process and unknown. y(k) is the unknown new PFC- controller output. In 
Equ(3) x(k+2) should reach the desired value w. A third unknown y(k+1) appears in this 
equation. In Equ(4) y(k+2) is the value which holds the final value and can be called y(k+2) =
y(∞). x(k+2) =w.   So Equ(4) and Equ(5) can be rewritten as

)1()()1(:)4( 2121 ++∞++−−= kybybkxawawEqu m

)()()4(:)5( 2121 ∞+∞+−−==+ ybybwawawkxEqu
The solution of Equ(5) gives the final value of controller output to hold the desired value at
process output, which is w/K, if K is the process DC – gain.
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Now we have with Equ(2), Equ(3) and Equ(4) three equations with three unknowns, which 
can be solved:

)1()()1()()1(:)2( 2121 −++−−−=+ kybkybkxakxakxEqu m

)()1()()1(:)3( 2121 kybkybkxakxawEqu m +++−+−=
)1()()1(:)4( 2121 ++∞++−−= kybybkxawawEqu m

With the starting values z1 und z2

)1()1()(:)7( 2211 −+−−−= kybkxakxazEqu

)(:)8( 22 kxazEqu −=
I got the following solutions:
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( ) 11 /)1()(:)10( bzkxkyEqu m −+=

( ) 1221 /)()1()1(:)11( bkybzkxawkyEqu m −+++=+
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)1(:)8( 22 +−= kxazdEqu

I got the following solutions:

( ) ( )[ ]
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111112221 )(
)2(:)9(

babbab

ybwawbbzbzwbb
kxdEqu m +−

∞−+−+−
=+

( ) 11 /)2()(:)10( bzkxkydEqu m −+=

( ) 1221 /)()2()1(:)11( bkybzkxawkydEqu m −+++=+

Resulting reference step responses with one To – delay:

9.8 PFC – Controller in tool program Windfc#
Here you can find some hints to use and test these PFC- controllers in my tool program
Windfc# starting with version nb. 7.4.17. the source code is also published, so it should be
easy to implement these controllers in other hardware combinations. 

You can find the PFC- source in the file 
“FormAdaptiveControl.cs”. the sour e runs under MS
Studio 2008 or MS Studio 2010.
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Now open the window with the realtime- controllers with menu “Realtime functions 
Adaptive Advanced Controller”. 

Here you can select different types of controllers.

This module can now calculate a single reference step response (RSR) or a continuous
response on a square reference signal jumping up and down. The single RSRs are displayed in 
the folder “Curve”, the continuous signal is displayed in real time in a new window. 
Lets start with the single RSRs. In folder “Parameters” you can set some settings. Choose the
following settings for the first RSR with a PIDT1- controller with this process:
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This is the reference step response of our process with a digital PIDT1 in an “real algorithm”, 
where the delay of the controller is artificially enlarged to one To to avoid problems with 
hardware dependent delays like calculation time and AD – conversion time. 
Now PFC- Controller. The setting are made in the “PFC Parameters”- folder:

Start first with first second order PFC, change the 2PT1- parameters of the PFC to our process
values, select h=2 (two step horizon), click on button “F(z)” to get the F(z) of the model
and click on “Activate changes” – button.

Now select controller type “PFC” and start RSR with RUN and StartRSR – button. Result:

Red curve is this PFC. It takes 90ms to reach 2% final value. Time scale changed to 0.2 sec
gives this picture:
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Green curve is desired value w and blue curve is process output x. Now you can play with all
parameters and see reaction on the controlled process.

Prof. Dr. Bayerlein 1/17/2012 2:55:00 PM


